message_pump_win.cc revision 72a454cd3513ac24fbdd0e0cb9ad70b86a99b801
1// Copyright (c) 2010 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/message_pump_win.h"
6
7#include <math.h>
8
9#include "base/metrics/histogram.h"
10
11namespace base {
12
13static const wchar_t kWndClass[] = L"Chrome_MessagePumpWindow";
14
15// Message sent to get an additional time slice for pumping (processing) another
16// task (a series of such messages creates a continuous task pump).
17static const int kMsgHaveWork = WM_USER + 1;
18
19//-----------------------------------------------------------------------------
20// MessagePumpWin public:
21
22void MessagePumpWin::AddObserver(Observer* observer) {
23  observers_.AddObserver(observer);
24}
25
26void MessagePumpWin::RemoveObserver(Observer* observer) {
27  observers_.RemoveObserver(observer);
28}
29
30void MessagePumpWin::WillProcessMessage(const MSG& msg) {
31  FOR_EACH_OBSERVER(Observer, observers_, WillProcessMessage(msg));
32}
33
34void MessagePumpWin::DidProcessMessage(const MSG& msg) {
35  FOR_EACH_OBSERVER(Observer, observers_, DidProcessMessage(msg));
36}
37
38void MessagePumpWin::RunWithDispatcher(
39    Delegate* delegate, Dispatcher* dispatcher) {
40  RunState s;
41  s.delegate = delegate;
42  s.dispatcher = dispatcher;
43  s.should_quit = false;
44  s.run_depth = state_ ? state_->run_depth + 1 : 1;
45
46  RunState* previous_state = state_;
47  state_ = &s;
48
49  DoRunLoop();
50
51  state_ = previous_state;
52}
53
54void MessagePumpWin::Quit() {
55  DCHECK(state_);
56  state_->should_quit = true;
57}
58
59//-----------------------------------------------------------------------------
60// MessagePumpWin protected:
61
62int MessagePumpWin::GetCurrentDelay() const {
63  if (delayed_work_time_.is_null())
64    return -1;
65
66  // Be careful here.  TimeDelta has a precision of microseconds, but we want a
67  // value in milliseconds.  If there are 5.5ms left, should the delay be 5 or
68  // 6?  It should be 6 to avoid executing delayed work too early.
69  double timeout =
70      ceil((delayed_work_time_ - TimeTicks::Now()).InMillisecondsF());
71
72  // If this value is negative, then we need to run delayed work soon.
73  int delay = static_cast<int>(timeout);
74  if (delay < 0)
75    delay = 0;
76
77  return delay;
78}
79
80//-----------------------------------------------------------------------------
81// MessagePumpForUI public:
82
83MessagePumpForUI::MessagePumpForUI() {
84  InitMessageWnd();
85}
86
87MessagePumpForUI::~MessagePumpForUI() {
88  DestroyWindow(message_hwnd_);
89  UnregisterClass(kWndClass, GetModuleHandle(NULL));
90}
91
92void MessagePumpForUI::ScheduleWork() {
93  if (InterlockedExchange(&have_work_, 1))
94    return;  // Someone else continued the pumping.
95
96  // Make sure the MessagePump does some work for us.
97  PostMessage(message_hwnd_, kMsgHaveWork, reinterpret_cast<WPARAM>(this), 0);
98}
99
100void MessagePumpForUI::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
101  //
102  // We would *like* to provide high resolution timers.  Windows timers using
103  // SetTimer() have a 10ms granularity.  We have to use WM_TIMER as a wakeup
104  // mechanism because the application can enter modal windows loops where it
105  // is not running our MessageLoop; the only way to have our timers fire in
106  // these cases is to post messages there.
107  //
108  // To provide sub-10ms timers, we process timers directly from our run loop.
109  // For the common case, timers will be processed there as the run loop does
110  // its normal work.  However, we *also* set the system timer so that WM_TIMER
111  // events fire.  This mops up the case of timers not being able to work in
112  // modal message loops.  It is possible for the SetTimer to pop and have no
113  // pending timers, because they could have already been processed by the
114  // run loop itself.
115  //
116  // We use a single SetTimer corresponding to the timer that will expire
117  // soonest.  As new timers are created and destroyed, we update SetTimer.
118  // Getting a spurrious SetTimer event firing is benign, as we'll just be
119  // processing an empty timer queue.
120  //
121  delayed_work_time_ = delayed_work_time;
122
123  int delay_msec = GetCurrentDelay();
124  DCHECK(delay_msec >= 0);
125  if (delay_msec < USER_TIMER_MINIMUM)
126    delay_msec = USER_TIMER_MINIMUM;
127
128  // Create a WM_TIMER event that will wake us up to check for any pending
129  // timers (in case we are running within a nested, external sub-pump).
130  SetTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this), delay_msec, NULL);
131}
132
133void MessagePumpForUI::PumpOutPendingPaintMessages() {
134  // If we are being called outside of the context of Run, then don't try to do
135  // any work.
136  if (!state_)
137    return;
138
139  // Create a mini-message-pump to force immediate processing of only Windows
140  // WM_PAINT messages.  Don't provide an infinite loop, but do enough peeking
141  // to get the job done.  Actual common max is 4 peeks, but we'll be a little
142  // safe here.
143  const int kMaxPeekCount = 20;
144  int peek_count;
145  for (peek_count = 0; peek_count < kMaxPeekCount; ++peek_count) {
146    MSG msg;
147    if (!PeekMessage(&msg, NULL, 0, 0, PM_REMOVE | PM_QS_PAINT))
148      break;
149    ProcessMessageHelper(msg);
150    if (state_->should_quit)  // Handle WM_QUIT.
151      break;
152  }
153  // Histogram what was really being used, to help to adjust kMaxPeekCount.
154  DHISTOGRAM_COUNTS("Loop.PumpOutPendingPaintMessages Peeks", peek_count);
155}
156
157//-----------------------------------------------------------------------------
158// MessagePumpForUI private:
159
160// static
161LRESULT CALLBACK MessagePumpForUI::WndProcThunk(
162    HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam) {
163  switch (message) {
164    case kMsgHaveWork:
165      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleWorkMessage();
166      break;
167    case WM_TIMER:
168      reinterpret_cast<MessagePumpForUI*>(wparam)->HandleTimerMessage();
169      break;
170  }
171  return DefWindowProc(hwnd, message, wparam, lparam);
172}
173
174void MessagePumpForUI::DoRunLoop() {
175  // IF this was just a simple PeekMessage() loop (servicing all possible work
176  // queues), then Windows would try to achieve the following order according
177  // to MSDN documentation about PeekMessage with no filter):
178  //    * Sent messages
179  //    * Posted messages
180  //    * Sent messages (again)
181  //    * WM_PAINT messages
182  //    * WM_TIMER messages
183  //
184  // Summary: none of the above classes is starved, and sent messages has twice
185  // the chance of being processed (i.e., reduced service time).
186
187  for (;;) {
188    // If we do any work, we may create more messages etc., and more work may
189    // possibly be waiting in another task group.  When we (for example)
190    // ProcessNextWindowsMessage(), there is a good chance there are still more
191    // messages waiting.  On the other hand, when any of these methods return
192    // having done no work, then it is pretty unlikely that calling them again
193    // quickly will find any work to do.  Finally, if they all say they had no
194    // work, then it is a good time to consider sleeping (waiting) for more
195    // work.
196
197    bool more_work_is_plausible = ProcessNextWindowsMessage();
198    if (state_->should_quit)
199      break;
200
201    more_work_is_plausible |= state_->delegate->DoWork();
202    if (state_->should_quit)
203      break;
204
205    more_work_is_plausible |=
206        state_->delegate->DoDelayedWork(&delayed_work_time_);
207    // If we did not process any delayed work, then we can assume that our
208    // existing WM_TIMER if any will fire when delayed work should run.  We
209    // don't want to disturb that timer if it is already in flight.  However,
210    // if we did do all remaining delayed work, then lets kill the WM_TIMER.
211    if (more_work_is_plausible && delayed_work_time_.is_null())
212      KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
213    if (state_->should_quit)
214      break;
215
216    if (more_work_is_plausible)
217      continue;
218
219    more_work_is_plausible = state_->delegate->DoIdleWork();
220    if (state_->should_quit)
221      break;
222
223    if (more_work_is_plausible)
224      continue;
225
226    WaitForWork();  // Wait (sleep) until we have work to do again.
227  }
228}
229
230void MessagePumpForUI::InitMessageWnd() {
231  HINSTANCE hinst = GetModuleHandle(NULL);
232
233  WNDCLASSEX wc = {0};
234  wc.cbSize = sizeof(wc);
235  wc.lpfnWndProc = WndProcThunk;
236  wc.hInstance = hinst;
237  wc.lpszClassName = kWndClass;
238  RegisterClassEx(&wc);
239
240  message_hwnd_ =
241      CreateWindow(kWndClass, 0, 0, 0, 0, 0, 0, HWND_MESSAGE, 0, hinst, 0);
242  DCHECK(message_hwnd_);
243}
244
245void MessagePumpForUI::WaitForWork() {
246  // Wait until a message is available, up to the time needed by the timer
247  // manager to fire the next set of timers.
248  int delay = GetCurrentDelay();
249  if (delay < 0)  // Negative value means no timers waiting.
250    delay = INFINITE;
251
252  DWORD result;
253  result = MsgWaitForMultipleObjectsEx(0, NULL, delay, QS_ALLINPUT,
254                                       MWMO_INPUTAVAILABLE);
255
256  if (WAIT_OBJECT_0 == result) {
257    // A WM_* message is available.
258    // If a parent child relationship exists between windows across threads
259    // then their thread inputs are implicitly attached.
260    // This causes the MsgWaitForMultipleObjectsEx API to return indicating
261    // that messages are ready for processing (specifically mouse messages
262    // intended for the child window. Occurs if the child window has capture)
263    // The subsequent PeekMessages call fails to return any messages thus
264    // causing us to enter a tight loop at times.
265    // The WaitMessage call below is a workaround to give the child window
266    // sometime to process its input messages.
267    MSG msg = {0};
268    DWORD queue_status = GetQueueStatus(QS_MOUSE);
269    if (HIWORD(queue_status) & QS_MOUSE &&
270       !PeekMessage(&msg, NULL, WM_MOUSEFIRST, WM_MOUSELAST, PM_NOREMOVE)) {
271      WaitMessage();
272    }
273    return;
274  }
275
276  DCHECK_NE(WAIT_FAILED, result) << GetLastError();
277}
278
279void MessagePumpForUI::HandleWorkMessage() {
280  // If we are being called outside of the context of Run, then don't try to do
281  // any work.  This could correspond to a MessageBox call or something of that
282  // sort.
283  if (!state_) {
284    // Since we handled a kMsgHaveWork message, we must still update this flag.
285    InterlockedExchange(&have_work_, 0);
286    return;
287  }
288
289  // Let whatever would have run had we not been putting messages in the queue
290  // run now.  This is an attempt to make our dummy message not starve other
291  // messages that may be in the Windows message queue.
292  ProcessPumpReplacementMessage();
293
294  // Now give the delegate a chance to do some work.  He'll let us know if he
295  // needs to do more work.
296  if (state_->delegate->DoWork())
297    ScheduleWork();
298}
299
300void MessagePumpForUI::HandleTimerMessage() {
301  KillTimer(message_hwnd_, reinterpret_cast<UINT_PTR>(this));
302
303  // If we are being called outside of the context of Run, then don't do
304  // anything.  This could correspond to a MessageBox call or something of
305  // that sort.
306  if (!state_)
307    return;
308
309  state_->delegate->DoDelayedWork(&delayed_work_time_);
310  if (!delayed_work_time_.is_null()) {
311    // A bit gratuitous to set delayed_work_time_ again, but oh well.
312    ScheduleDelayedWork(delayed_work_time_);
313  }
314}
315
316bool MessagePumpForUI::ProcessNextWindowsMessage() {
317  // If there are sent messages in the queue then PeekMessage internally
318  // dispatches the message and returns false. We return true in this
319  // case to ensure that the message loop peeks again instead of calling
320  // MsgWaitForMultipleObjectsEx again.
321  bool sent_messages_in_queue = false;
322  DWORD queue_status = GetQueueStatus(QS_SENDMESSAGE);
323  if (HIWORD(queue_status) & QS_SENDMESSAGE)
324    sent_messages_in_queue = true;
325
326  MSG msg;
327  if (PeekMessage(&msg, NULL, 0, 0, PM_REMOVE))
328    return ProcessMessageHelper(msg);
329
330  return sent_messages_in_queue;
331}
332
333bool MessagePumpForUI::ProcessMessageHelper(const MSG& msg) {
334  if (WM_QUIT == msg.message) {
335    // Repost the QUIT message so that it will be retrieved by the primary
336    // GetMessage() loop.
337    state_->should_quit = true;
338    PostQuitMessage(static_cast<int>(msg.wParam));
339    return false;
340  }
341
342  // While running our main message pump, we discard kMsgHaveWork messages.
343  if (msg.message == kMsgHaveWork && msg.hwnd == message_hwnd_)
344    return ProcessPumpReplacementMessage();
345
346  if (CallMsgFilter(const_cast<MSG*>(&msg), kMessageFilterCode))
347    return true;
348
349  WillProcessMessage(msg);
350
351  if (state_->dispatcher) {
352    if (!state_->dispatcher->Dispatch(msg))
353      state_->should_quit = true;
354  } else {
355    TranslateMessage(&msg);
356    DispatchMessage(&msg);
357  }
358
359  DidProcessMessage(msg);
360  return true;
361}
362
363bool MessagePumpForUI::ProcessPumpReplacementMessage() {
364  // When we encounter a kMsgHaveWork message, this method is called to peek
365  // and process a replacement message, such as a WM_PAINT or WM_TIMER.  The
366  // goal is to make the kMsgHaveWork as non-intrusive as possible, even though
367  // a continuous stream of such messages are posted.  This method carefully
368  // peeks a message while there is no chance for a kMsgHaveWork to be pending,
369  // then resets the have_work_ flag (allowing a replacement kMsgHaveWork to
370  // possibly be posted), and finally dispatches that peeked replacement.  Note
371  // that the re-post of kMsgHaveWork may be asynchronous to this thread!!
372
373  MSG msg;
374  bool have_message = (0 != PeekMessage(&msg, NULL, 0, 0, PM_REMOVE));
375  DCHECK(!have_message || kMsgHaveWork != msg.message ||
376         msg.hwnd != message_hwnd_);
377
378  // Since we discarded a kMsgHaveWork message, we must update the flag.
379  int old_have_work = InterlockedExchange(&have_work_, 0);
380  DCHECK(old_have_work);
381
382  // We don't need a special time slice if we didn't have_message to process.
383  if (!have_message)
384    return false;
385
386  // Guarantee we'll get another time slice in the case where we go into native
387  // windows code.   This ScheduleWork() may hurt performance a tiny bit when
388  // tasks appear very infrequently, but when the event queue is busy, the
389  // kMsgHaveWork events get (percentage wise) rarer and rarer.
390  ScheduleWork();
391  return ProcessMessageHelper(msg);
392}
393
394//-----------------------------------------------------------------------------
395// MessagePumpForIO public:
396
397MessagePumpForIO::MessagePumpForIO() {
398  port_.Set(CreateIoCompletionPort(INVALID_HANDLE_VALUE, NULL, NULL, 1));
399  DCHECK(port_.IsValid());
400}
401
402void MessagePumpForIO::ScheduleWork() {
403  if (InterlockedExchange(&have_work_, 1))
404    return;  // Someone else continued the pumping.
405
406  // Make sure the MessagePump does some work for us.
407  BOOL ret = PostQueuedCompletionStatus(port_, 0,
408                                        reinterpret_cast<ULONG_PTR>(this),
409                                        reinterpret_cast<OVERLAPPED*>(this));
410  DCHECK(ret);
411}
412
413void MessagePumpForIO::ScheduleDelayedWork(const TimeTicks& delayed_work_time) {
414  // We know that we can't be blocked right now since this method can only be
415  // called on the same thread as Run, so we only need to update our record of
416  // how long to sleep when we do sleep.
417  delayed_work_time_ = delayed_work_time;
418}
419
420void MessagePumpForIO::RegisterIOHandler(HANDLE file_handle,
421                                         IOHandler* handler) {
422  ULONG_PTR key = reinterpret_cast<ULONG_PTR>(handler);
423  HANDLE port = CreateIoCompletionPort(file_handle, port_, key, 1);
424  DPCHECK(port);
425}
426
427//-----------------------------------------------------------------------------
428// MessagePumpForIO private:
429
430void MessagePumpForIO::DoRunLoop() {
431  for (;;) {
432    // If we do any work, we may create more messages etc., and more work may
433    // possibly be waiting in another task group.  When we (for example)
434    // WaitForIOCompletion(), there is a good chance there are still more
435    // messages waiting.  On the other hand, when any of these methods return
436    // having done no work, then it is pretty unlikely that calling them
437    // again quickly will find any work to do.  Finally, if they all say they
438    // had no work, then it is a good time to consider sleeping (waiting) for
439    // more work.
440
441    bool more_work_is_plausible = state_->delegate->DoWork();
442    if (state_->should_quit)
443      break;
444
445    more_work_is_plausible |= WaitForIOCompletion(0, NULL);
446    if (state_->should_quit)
447      break;
448
449    more_work_is_plausible |=
450        state_->delegate->DoDelayedWork(&delayed_work_time_);
451    if (state_->should_quit)
452      break;
453
454    if (more_work_is_plausible)
455      continue;
456
457    more_work_is_plausible = state_->delegate->DoIdleWork();
458    if (state_->should_quit)
459      break;
460
461    if (more_work_is_plausible)
462      continue;
463
464    WaitForWork();  // Wait (sleep) until we have work to do again.
465  }
466}
467
468// Wait until IO completes, up to the time needed by the timer manager to fire
469// the next set of timers.
470void MessagePumpForIO::WaitForWork() {
471  // We do not support nested IO message loops. This is to avoid messy
472  // recursion problems.
473  DCHECK(state_->run_depth == 1) << "Cannot nest an IO message loop!";
474
475  int timeout = GetCurrentDelay();
476  if (timeout < 0)  // Negative value means no timers waiting.
477    timeout = INFINITE;
478
479  WaitForIOCompletion(timeout, NULL);
480}
481
482bool MessagePumpForIO::WaitForIOCompletion(DWORD timeout, IOHandler* filter) {
483  IOItem item;
484  if (completed_io_.empty() || !MatchCompletedIOItem(filter, &item)) {
485    // We have to ask the system for another IO completion.
486    if (!GetIOItem(timeout, &item))
487      return false;
488
489    if (ProcessInternalIOItem(item))
490      return true;
491  }
492
493  if (item.context->handler) {
494    if (filter && item.handler != filter) {
495      // Save this item for later
496      completed_io_.push_back(item);
497    } else {
498      DCHECK_EQ(item.context->handler, item.handler);
499      WillProcessIOEvent();
500      item.handler->OnIOCompleted(item.context, item.bytes_transfered,
501                                  item.error);
502      DidProcessIOEvent();
503    }
504  } else {
505    // The handler must be gone by now, just cleanup the mess.
506    delete item.context;
507  }
508  return true;
509}
510
511// Asks the OS for another IO completion result.
512bool MessagePumpForIO::GetIOItem(DWORD timeout, IOItem* item) {
513  memset(item, 0, sizeof(*item));
514  ULONG_PTR key = NULL;
515  OVERLAPPED* overlapped = NULL;
516  if (!GetQueuedCompletionStatus(port_.Get(), &item->bytes_transfered, &key,
517                                 &overlapped, timeout)) {
518    if (!overlapped)
519      return false;  // Nothing in the queue.
520    item->error = GetLastError();
521    item->bytes_transfered = 0;
522  }
523
524  item->handler = reinterpret_cast<IOHandler*>(key);
525  item->context = reinterpret_cast<IOContext*>(overlapped);
526  return true;
527}
528
529bool MessagePumpForIO::ProcessInternalIOItem(const IOItem& item) {
530  if (this == reinterpret_cast<MessagePumpForIO*>(item.context) &&
531      this == reinterpret_cast<MessagePumpForIO*>(item.handler)) {
532    // This is our internal completion.
533    DCHECK(!item.bytes_transfered);
534    InterlockedExchange(&have_work_, 0);
535    return true;
536  }
537  return false;
538}
539
540// Returns a completion item that was previously received.
541bool MessagePumpForIO::MatchCompletedIOItem(IOHandler* filter, IOItem* item) {
542  DCHECK(!completed_io_.empty());
543  for (std::list<IOItem>::iterator it = completed_io_.begin();
544       it != completed_io_.end(); ++it) {
545    if (!filter || it->handler == filter) {
546      *item = *it;
547      completed_io_.erase(it);
548      return true;
549    }
550  }
551  return false;
552}
553
554void MessagePumpForIO::AddIOObserver(IOObserver *obs) {
555  io_observers_.AddObserver(obs);
556}
557
558void MessagePumpForIO::RemoveIOObserver(IOObserver *obs) {
559  io_observers_.RemoveObserver(obs);
560}
561
562void MessagePumpForIO::WillProcessIOEvent() {
563  FOR_EACH_OBSERVER(IOObserver, io_observers_, WillProcessIOEvent());
564}
565
566void MessagePumpForIO::DidProcessIOEvent() {
567  FOR_EACH_OBSERVER(IOObserver, io_observers_, DidProcessIOEvent());
568}
569
570}  // namespace base
571