message_pump_win.h revision c7f5f8508d98d5952d42ed7648c2a8f30a4da156
1// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#ifndef BASE_MESSAGE_PUMP_WIN_H_
6#define BASE_MESSAGE_PUMP_WIN_H_
7
8#include <windows.h>
9
10#include <list>
11
12#include "base/lock.h"
13#include "base/message_pump.h"
14#include "base/observer_list.h"
15#include "base/scoped_handle.h"
16#include "base/time.h"
17
18namespace base {
19
20// MessagePumpWin serves as the base for specialized versions of the MessagePump
21// for Windows. It provides basic functionality like handling of observers and
22// controlling the lifetime of the message pump.
23class MessagePumpWin : public MessagePump {
24 public:
25  // An Observer is an object that receives global notifications from the
26  // MessageLoop.
27  //
28  // NOTE: An Observer implementation should be extremely fast!
29  //
30  class Observer {
31   public:
32    virtual ~Observer() {}
33
34    // This method is called before processing a message.
35    // The message may be undefined in which case msg.message is 0
36    virtual void WillProcessMessage(const MSG& msg) = 0;
37
38    // This method is called when control returns from processing a UI message.
39    // The message may be undefined in which case msg.message is 0
40    virtual void DidProcessMessage(const MSG& msg) = 0;
41  };
42
43  // Dispatcher is used during a nested invocation of Run to dispatch events.
44  // If Run is invoked with a non-NULL Dispatcher, MessageLoop does not
45  // dispatch events (or invoke TranslateMessage), rather every message is
46  // passed to Dispatcher's Dispatch method for dispatch. It is up to the
47  // Dispatcher to dispatch, or not, the event.
48  //
49  // The nested loop is exited by either posting a quit, or returning false
50  // from Dispatch.
51  class Dispatcher {
52   public:
53    virtual ~Dispatcher() {}
54    // Dispatches the event. If true is returned processing continues as
55    // normal. If false is returned, the nested loop exits immediately.
56    virtual bool Dispatch(const MSG& msg) = 0;
57  };
58
59  MessagePumpWin() : have_work_(0), state_(NULL) {}
60  virtual ~MessagePumpWin() {}
61
62  // Add an Observer, which will start receiving notifications immediately.
63  void AddObserver(Observer* observer);
64
65  // Remove an Observer.  It is safe to call this method while an Observer is
66  // receiving a notification callback.
67  void RemoveObserver(Observer* observer);
68
69  // Give a chance to code processing additional messages to notify the
70  // message loop observers that another message has been processed.
71  void WillProcessMessage(const MSG& msg);
72  void DidProcessMessage(const MSG& msg);
73
74  // Like MessagePump::Run, but MSG objects are routed through dispatcher.
75  void RunWithDispatcher(Delegate* delegate, Dispatcher* dispatcher);
76
77  // MessagePump methods:
78  virtual void Run(Delegate* delegate) { RunWithDispatcher(delegate, NULL); }
79  virtual void Quit();
80
81 protected:
82  struct RunState {
83    Delegate* delegate;
84    Dispatcher* dispatcher;
85
86    // Used to flag that the current Run() invocation should return ASAP.
87    bool should_quit;
88
89    // Used to count how many Run() invocations are on the stack.
90    int run_depth;
91  };
92
93  virtual void DoRunLoop() = 0;
94  int GetCurrentDelay() const;
95
96  ObserverList<Observer> observers_;
97
98  // The time at which delayed work should run.
99  Time delayed_work_time_;
100
101  // A boolean value used to indicate if there is a kMsgDoWork message pending
102  // in the Windows Message queue.  There is at most one such message, and it
103  // can drive execution of tasks when a native message pump is running.
104  LONG have_work_;
105
106  // State for the current invocation of Run.
107  RunState* state_;
108};
109
110//-----------------------------------------------------------------------------
111// MessagePumpForUI extends MessagePumpWin with methods that are particular to a
112// MessageLoop instantiated with TYPE_UI.
113//
114// MessagePumpForUI implements a "traditional" Windows message pump. It contains
115// a nearly infinite loop that peeks out messages, and then dispatches them.
116// Intermixed with those peeks are callouts to DoWork for pending tasks, and
117// DoDelayedWork for pending timers. When there are no events to be serviced,
118// this pump goes into a wait state. In most cases, this message pump handles
119// all processing.
120//
121// However, when a task, or windows event, invokes on the stack a native dialog
122// box or such, that window typically provides a bare bones (native?) message
123// pump.  That bare-bones message pump generally supports little more than a
124// peek of the Windows message queue, followed by a dispatch of the peeked
125// message.  MessageLoop extends that bare-bones message pump to also service
126// Tasks, at the cost of some complexity.
127//
128// The basic structure of the extension (refered to as a sub-pump) is that a
129// special message, kMsgHaveWork, is repeatedly injected into the Windows
130// Message queue.  Each time the kMsgHaveWork message is peeked, checks are
131// made for an extended set of events, including the availability of Tasks to
132// run.
133//
134// After running a task, the special message kMsgHaveWork is again posted to
135// the Windows Message queue, ensuring a future time slice for processing a
136// future event.  To prevent flooding the Windows Message queue, care is taken
137// to be sure that at most one kMsgHaveWork message is EVER pending in the
138// Window's Message queue.
139//
140// There are a few additional complexities in this system where, when there are
141// no Tasks to run, this otherwise infinite stream of messages which drives the
142// sub-pump is halted.  The pump is automatically re-started when Tasks are
143// queued.
144//
145// A second complexity is that the presence of this stream of posted tasks may
146// prevent a bare-bones message pump from ever peeking a WM_PAINT or WM_TIMER.
147// Such paint and timer events always give priority to a posted message, such as
148// kMsgHaveWork messages.  As a result, care is taken to do some peeking in
149// between the posting of each kMsgHaveWork message (i.e., after kMsgHaveWork
150// is peeked, and before a replacement kMsgHaveWork is posted).
151//
152// NOTE: Although it may seem odd that messages are used to start and stop this
153// flow (as opposed to signaling objects, etc.), it should be understood that
154// the native message pump will *only* respond to messages.  As a result, it is
155// an excellent choice.  It is also helpful that the starter messages that are
156// placed in the queue when new task arrive also awakens DoRunLoop.
157//
158class MessagePumpForUI : public MessagePumpWin {
159 public:
160  // The application-defined code passed to the hook procedure.
161  static const int kMessageFilterCode = 0x5001;
162
163  MessagePumpForUI();
164  virtual ~MessagePumpForUI();
165
166  // MessagePump methods:
167  virtual void ScheduleWork();
168  virtual void ScheduleDelayedWork(const Time& delayed_work_time);
169
170  // Applications can call this to encourage us to process all pending WM_PAINT
171  // messages.  This method will process all paint messages the Windows Message
172  // queue can provide, up to some fixed number (to avoid any infinite loops).
173  void PumpOutPendingPaintMessages();
174
175 private:
176  static LRESULT CALLBACK WndProcThunk(
177      HWND hwnd, UINT message, WPARAM wparam, LPARAM lparam);
178  virtual void DoRunLoop();
179  void InitMessageWnd();
180  void WaitForWork();
181  void HandleWorkMessage();
182  void HandleTimerMessage();
183  bool ProcessNextWindowsMessage();
184  bool ProcessMessageHelper(const MSG& msg);
185  bool ProcessPumpReplacementMessage();
186
187  // A hidden message-only window.
188  HWND message_hwnd_;
189};
190
191//-----------------------------------------------------------------------------
192// MessagePumpForIO extends MessagePumpWin with methods that are particular to a
193// MessageLoop instantiated with TYPE_IO. This version of MessagePump does not
194// deal with Windows mesagges, and instead has a Run loop based on Completion
195// Ports so it is better suited for IO operations.
196//
197class MessagePumpForIO : public MessagePumpWin {
198 public:
199  struct IOContext;
200
201  // Clients interested in receiving OS notifications when asynchronous IO
202  // operations complete should implement this interface and register themselves
203  // with the message pump.
204  //
205  // Typical use #1:
206  //   // Use only when there are no user's buffers involved on the actual IO,
207  //   // so that all the cleanup can be done by the message pump.
208  //   class MyFile : public IOHandler {
209  //     MyFile() {
210  //       ...
211  //       context_ = new IOContext;
212  //       context_->handler = this;
213  //       message_pump->RegisterIOHandler(file_, this);
214  //     }
215  //     ~MyFile() {
216  //       if (pending_) {
217  //         // By setting the handler to NULL, we're asking for this context
218  //         // to be deleted when received, without calling back to us.
219  //         context_->handler = NULL;
220  //       } else {
221  //         delete context_;
222  //      }
223  //     }
224  //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
225  //                                DWORD error) {
226  //         pending_ = false;
227  //     }
228  //     void DoSomeIo() {
229  //       ...
230  //       // The only buffer required for this operation is the overlapped
231  //       // structure.
232  //       ConnectNamedPipe(file_, &context_->overlapped);
233  //       pending_ = true;
234  //     }
235  //     bool pending_;
236  //     IOContext* context_;
237  //     HANDLE file_;
238  //   };
239  //
240  // Typical use #2:
241  //   class MyFile : public IOHandler {
242  //     MyFile() {
243  //       ...
244  //       message_pump->RegisterIOHandler(file_, this);
245  //     }
246  //     // Plus some code to make sure that this destructor is not called
247  //     // while there are pending IO operations.
248  //     ~MyFile() {
249  //     }
250  //     virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
251  //                                DWORD error) {
252  //       ...
253  //       delete context;
254  //     }
255  //     void DoSomeIo() {
256  //       ...
257  //       IOContext* context = new IOContext;
258  //       // This is not used for anything. It just prevents the context from
259  //       // being considered "abandoned".
260  //       context->handler = this;
261  //       ReadFile(file_, buffer, num_bytes, &read, &context->overlapped);
262  //     }
263  //     HANDLE file_;
264  //   };
265  //
266  // Typical use #3:
267  // Same as the previous example, except that in order to deal with the
268  // requirement stated for the destructor, the class calls WaitForIOCompletion
269  // from the destructor to block until all IO finishes.
270  //     ~MyFile() {
271  //       while(pending_)
272  //         message_pump->WaitForIOCompletion(INFINITE, this);
273  //     }
274  //
275  class IOHandler {
276   public:
277    virtual ~IOHandler() {}
278    // This will be called once the pending IO operation associated with
279    // |context| completes. |error| is the Win32 error code of the IO operation
280    // (ERROR_SUCCESS if there was no error). |bytes_transfered| will be zero
281    // on error.
282    virtual void OnIOCompleted(IOContext* context, DWORD bytes_transfered,
283                               DWORD error) = 0;
284  };
285
286  // The extended context that should be used as the base structure on every
287  // overlapped IO operation. |handler| must be set to the registered IOHandler
288  // for the given file when the operation is started, and it can be set to NULL
289  // before the operation completes to indicate that the handler should not be
290  // called anymore, and instead, the IOContext should be deleted when the OS
291  // notifies the completion of this operation. Please remember that any buffers
292  // involved with an IO operation should be around until the callback is
293  // received, so this technique can only be used for IO that do not involve
294  // additional buffers (other than the overlapped structure itself).
295  struct IOContext {
296    OVERLAPPED overlapped;
297    IOHandler* handler;
298  };
299
300  MessagePumpForIO();
301  virtual ~MessagePumpForIO() {}
302
303  // MessagePump methods:
304  virtual void ScheduleWork();
305  virtual void ScheduleDelayedWork(const Time& delayed_work_time);
306
307  // Register the handler to be used when asynchronous IO for the given file
308  // completes. The registration persists as long as |file_handle| is valid, so
309  // |handler| must be valid as long as there is pending IO for the given file.
310  void RegisterIOHandler(HANDLE file_handle, IOHandler* handler);
311
312  // Waits for the next IO completion that should be processed by |filter|, for
313  // up to |timeout| milliseconds. Return true if any IO operation completed,
314  // regardless of the involved handler, and false if the timeout expired. If
315  // the completion port received any message and the involved IO handler
316  // matches |filter|, the callback is called before returning from this code;
317  // if the handler is not the one that we are looking for, the callback will
318  // be postponed for another time, so reentrancy problems can be avoided.
319  // External use of this method should be reserved for the rare case when the
320  // caller is willing to allow pausing regular task dispatching on this thread.
321  bool WaitForIOCompletion(DWORD timeout, IOHandler* filter);
322
323 private:
324  struct IOItem {
325    IOHandler* handler;
326    IOContext* context;
327    DWORD bytes_transfered;
328    DWORD error;
329  };
330
331  virtual void DoRunLoop();
332  void WaitForWork();
333  bool MatchCompletedIOItem(IOHandler* filter, IOItem* item);
334  bool GetIOItem(DWORD timeout, IOItem* item);
335  bool ProcessInternalIOItem(const IOItem& item);
336
337  // The completion port associated with this thread.
338  ScopedHandle port_;
339  // This list will be empty almost always. It stores IO completions that have
340  // not been delivered yet because somebody was doing cleanup.
341  std::list<IOItem> completed_io_;
342};
343
344}  // namespace base
345
346#endif  // BASE_MESSAGE_PUMP_WIN_H_
347