scoped_ptr.h revision 3345a6884c488ff3a535c2c9acdd33d74b37e311
1// Copyright (c) 2006-2008 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5// Scopers help you manage ownership of a pointer, helping you easily manage the
6// a pointer within a scope, and automatically destroying the pointer at the
7// end of a scope.  There are two main classes you will use, which correspond
8// to the operators new/delete and new[]/delete[].
9//
10// Example usage (scoped_ptr):
11//   {
12//     scoped_ptr<Foo> foo(new Foo("wee"));
13//   }  // foo goes out of scope, releasing the pointer with it.
14//
15//   {
16//     scoped_ptr<Foo> foo;          // No pointer managed.
17//     foo.reset(new Foo("wee"));    // Now a pointer is managed.
18//     foo.reset(new Foo("wee2"));   // Foo("wee") was destroyed.
19//     foo.reset(new Foo("wee3"));   // Foo("wee2") was destroyed.
20//     foo->Method();                // Foo::Method() called.
21//     foo.get()->Method();          // Foo::Method() called.
22//     SomeFunc(foo.release());      // SomeFunc takes ownership, foo no longer
23//                                   // manages a pointer.
24//     foo.reset(new Foo("wee4"));   // foo manages a pointer again.
25//     foo.reset();                  // Foo("wee4") destroyed, foo no longer
26//                                   // manages a pointer.
27//   }  // foo wasn't managing a pointer, so nothing was destroyed.
28//
29// Example usage (scoped_array):
30//   {
31//     scoped_array<Foo> foo(new Foo[100]);
32//     foo.get()->Method();  // Foo::Method on the 0th element.
33//     foo[10].Method();     // Foo::Method on the 10th element.
34//   }
35
36#ifndef BASE_SCOPED_PTR_H_
37#define BASE_SCOPED_PTR_H_
38#pragma once
39
40// This is an implementation designed to match the anticipated future TR2
41// implementation of the scoped_ptr class, and its closely-related brethren,
42// scoped_array, scoped_ptr_malloc.
43
44#include <assert.h>
45#include <stdlib.h>
46#include <cstddef>
47
48#include "base/compiler_specific.h"
49
50// A scoped_ptr<T> is like a T*, except that the destructor of scoped_ptr<T>
51// automatically deletes the pointer it holds (if any).
52// That is, scoped_ptr<T> owns the T object that it points to.
53// Like a T*, a scoped_ptr<T> may hold either NULL or a pointer to a T object.
54// Also like T*, scoped_ptr<T> is thread-compatible, and once you
55// dereference it, you get the threadsafety guarantees of T.
56//
57// The size of a scoped_ptr is small:
58// sizeof(scoped_ptr<C>) == sizeof(C*)
59template <class C>
60class scoped_ptr {
61 public:
62
63  // The element type
64  typedef C element_type;
65
66  // Constructor.  Defaults to initializing with NULL.
67  // There is no way to create an uninitialized scoped_ptr.
68  // The input parameter must be allocated with new.
69  explicit scoped_ptr(C* p = NULL) : ptr_(p) { }
70
71  // Destructor.  If there is a C object, delete it.
72  // We don't need to test ptr_ == NULL because C++ does that for us.
73  ~scoped_ptr() {
74    enum { type_must_be_complete = sizeof(C) };
75    delete ptr_;
76  }
77
78  // Reset.  Deletes the current owned object, if any.
79  // Then takes ownership of a new object, if given.
80  // this->reset(this->get()) works.
81  void reset(C* p = NULL) {
82    if (p != ptr_) {
83      enum { type_must_be_complete = sizeof(C) };
84      delete ptr_;
85      ptr_ = p;
86    }
87  }
88
89  // Accessors to get the owned object.
90  // operator* and operator-> will assert() if there is no current object.
91  C& operator*() const {
92    assert(ptr_ != NULL);
93    return *ptr_;
94  }
95  C* operator->() const  {
96    assert(ptr_ != NULL);
97    return ptr_;
98  }
99  C* get() const { return ptr_; }
100
101  // Comparison operators.
102  // These return whether two scoped_ptr refer to the same object, not just to
103  // two different but equal objects.
104  bool operator==(C* p) const { return ptr_ == p; }
105  bool operator!=(C* p) const { return ptr_ != p; }
106
107  // Swap two scoped pointers.
108  void swap(scoped_ptr& p2) {
109    C* tmp = ptr_;
110    ptr_ = p2.ptr_;
111    p2.ptr_ = tmp;
112  }
113
114  // Release a pointer.
115  // The return value is the current pointer held by this object.
116  // If this object holds a NULL pointer, the return value is NULL.
117  // After this operation, this object will hold a NULL pointer,
118  // and will not own the object any more.
119  C* release() WARN_UNUSED_RESULT {
120    C* retVal = ptr_;
121    ptr_ = NULL;
122    return retVal;
123  }
124
125 private:
126  C* ptr_;
127
128  // Forbid comparison of scoped_ptr types.  If C2 != C, it totally doesn't
129  // make sense, and if C2 == C, it still doesn't make sense because you should
130  // never have the same object owned by two different scoped_ptrs.
131  template <class C2> bool operator==(scoped_ptr<C2> const& p2) const;
132  template <class C2> bool operator!=(scoped_ptr<C2> const& p2) const;
133
134  // Disallow evil constructors
135  scoped_ptr(const scoped_ptr&);
136  void operator=(const scoped_ptr&);
137};
138
139// Free functions
140template <class C>
141void swap(scoped_ptr<C>& p1, scoped_ptr<C>& p2) {
142  p1.swap(p2);
143}
144
145template <class C>
146bool operator==(C* p1, const scoped_ptr<C>& p2) {
147  return p1 == p2.get();
148}
149
150template <class C>
151bool operator!=(C* p1, const scoped_ptr<C>& p2) {
152  return p1 != p2.get();
153}
154
155// scoped_array<C> is like scoped_ptr<C>, except that the caller must allocate
156// with new [] and the destructor deletes objects with delete [].
157//
158// As with scoped_ptr<C>, a scoped_array<C> either points to an object
159// or is NULL.  A scoped_array<C> owns the object that it points to.
160// scoped_array<T> is thread-compatible, and once you index into it,
161// the returned objects have only the threadsafety guarantees of T.
162//
163// Size: sizeof(scoped_array<C>) == sizeof(C*)
164template <class C>
165class scoped_array {
166 public:
167
168  // The element type
169  typedef C element_type;
170
171  // Constructor.  Defaults to intializing with NULL.
172  // There is no way to create an uninitialized scoped_array.
173  // The input parameter must be allocated with new [].
174  explicit scoped_array(C* p = NULL) : array_(p) { }
175
176  // Destructor.  If there is a C object, delete it.
177  // We don't need to test ptr_ == NULL because C++ does that for us.
178  ~scoped_array() {
179    enum { type_must_be_complete = sizeof(C) };
180    delete[] array_;
181  }
182
183  // Reset.  Deletes the current owned object, if any.
184  // Then takes ownership of a new object, if given.
185  // this->reset(this->get()) works.
186  void reset(C* p = NULL) {
187    if (p != array_) {
188      enum { type_must_be_complete = sizeof(C) };
189      delete[] array_;
190      array_ = p;
191    }
192  }
193
194  // Get one element of the current object.
195  // Will assert() if there is no current object, or index i is negative.
196  C& operator[](std::ptrdiff_t i) const {
197    assert(i >= 0);
198    assert(array_ != NULL);
199    return array_[i];
200  }
201
202  // Get a pointer to the zeroth element of the current object.
203  // If there is no current object, return NULL.
204  C* get() const {
205    return array_;
206  }
207
208  // Comparison operators.
209  // These return whether two scoped_array refer to the same object, not just to
210  // two different but equal objects.
211  bool operator==(C* p) const { return array_ == p; }
212  bool operator!=(C* p) const { return array_ != p; }
213
214  // Swap two scoped arrays.
215  void swap(scoped_array& p2) {
216    C* tmp = array_;
217    array_ = p2.array_;
218    p2.array_ = tmp;
219  }
220
221  // Release an array.
222  // The return value is the current pointer held by this object.
223  // If this object holds a NULL pointer, the return value is NULL.
224  // After this operation, this object will hold a NULL pointer,
225  // and will not own the object any more.
226  C* release() WARN_UNUSED_RESULT {
227    C* retVal = array_;
228    array_ = NULL;
229    return retVal;
230  }
231
232 private:
233  C* array_;
234
235  // Forbid comparison of different scoped_array types.
236  template <class C2> bool operator==(scoped_array<C2> const& p2) const;
237  template <class C2> bool operator!=(scoped_array<C2> const& p2) const;
238
239  // Disallow evil constructors
240  scoped_array(const scoped_array&);
241  void operator=(const scoped_array&);
242};
243
244// Free functions
245template <class C>
246void swap(scoped_array<C>& p1, scoped_array<C>& p2) {
247  p1.swap(p2);
248}
249
250template <class C>
251bool operator==(C* p1, const scoped_array<C>& p2) {
252  return p1 == p2.get();
253}
254
255template <class C>
256bool operator!=(C* p1, const scoped_array<C>& p2) {
257  return p1 != p2.get();
258}
259
260// This class wraps the c library function free() in a class that can be
261// passed as a template argument to scoped_ptr_malloc below.
262class ScopedPtrMallocFree {
263 public:
264  inline void operator()(void* x) const {
265    free(x);
266  }
267};
268
269// scoped_ptr_malloc<> is similar to scoped_ptr<>, but it accepts a
270// second template argument, the functor used to free the object.
271
272template<class C, class FreeProc = ScopedPtrMallocFree>
273class scoped_ptr_malloc {
274 public:
275
276  // The element type
277  typedef C element_type;
278
279  // Constructor.  Defaults to initializing with NULL.
280  // There is no way to create an uninitialized scoped_ptr.
281  // The input parameter must be allocated with an allocator that matches the
282  // Free functor.  For the default Free functor, this is malloc, calloc, or
283  // realloc.
284  explicit scoped_ptr_malloc(C* p = NULL): ptr_(p) {}
285
286  // Destructor.  If there is a C object, call the Free functor.
287  ~scoped_ptr_malloc() {
288    free_(ptr_);
289  }
290
291  // Reset.  Calls the Free functor on the current owned object, if any.
292  // Then takes ownership of a new object, if given.
293  // this->reset(this->get()) works.
294  void reset(C* p = NULL) {
295    if (ptr_ != p) {
296      free_(ptr_);
297      ptr_ = p;
298    }
299  }
300
301  // Get the current object.
302  // operator* and operator-> will cause an assert() failure if there is
303  // no current object.
304  C& operator*() const {
305    assert(ptr_ != NULL);
306    return *ptr_;
307  }
308
309  C* operator->() const {
310    assert(ptr_ != NULL);
311    return ptr_;
312  }
313
314  C* get() const {
315    return ptr_;
316  }
317
318  // Comparison operators.
319  // These return whether a scoped_ptr_malloc and a plain pointer refer
320  // to the same object, not just to two different but equal objects.
321  // For compatibility with the boost-derived implementation, these
322  // take non-const arguments.
323  bool operator==(C* p) const {
324    return ptr_ == p;
325  }
326
327  bool operator!=(C* p) const {
328    return ptr_ != p;
329  }
330
331  // Swap two scoped pointers.
332  void swap(scoped_ptr_malloc & b) {
333    C* tmp = b.ptr_;
334    b.ptr_ = ptr_;
335    ptr_ = tmp;
336  }
337
338  // Release a pointer.
339  // The return value is the current pointer held by this object.
340  // If this object holds a NULL pointer, the return value is NULL.
341  // After this operation, this object will hold a NULL pointer,
342  // and will not own the object any more.
343  C* release() WARN_UNUSED_RESULT {
344    C* tmp = ptr_;
345    ptr_ = NULL;
346    return tmp;
347  }
348
349 private:
350  C* ptr_;
351
352  // no reason to use these: each scoped_ptr_malloc should have its own object
353  template <class C2, class GP>
354  bool operator==(scoped_ptr_malloc<C2, GP> const& p) const;
355  template <class C2, class GP>
356  bool operator!=(scoped_ptr_malloc<C2, GP> const& p) const;
357
358  static FreeProc const free_;
359
360  // Disallow evil constructors
361  scoped_ptr_malloc(const scoped_ptr_malloc&);
362  void operator=(const scoped_ptr_malloc&);
363};
364
365template<class C, class FP>
366FP const scoped_ptr_malloc<C, FP>::free_ = FP();
367
368template<class C, class FP> inline
369void swap(scoped_ptr_malloc<C, FP>& a, scoped_ptr_malloc<C, FP>& b) {
370  a.swap(b);
371}
372
373template<class C, class FP> inline
374bool operator==(C* p, const scoped_ptr_malloc<C, FP>& b) {
375  return p == b.get();
376}
377
378template<class C, class FP> inline
379bool operator!=(C* p, const scoped_ptr_malloc<C, FP>& b) {
380  return p != b.get();
381}
382
383#endif  // BASE_SCOPED_PTR_H_
384