waitable_event_posix.cc revision 28480d4f48373da735986b2a75e099d3cfddab3e
1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/synchronization/waitable_event.h"
6
7#include "base/synchronization/condition_variable.h"
8#include "base/synchronization/lock.h"
9#include "base/message_loop.h"
10
11// -----------------------------------------------------------------------------
12// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
13// support cross-process events (where one process can signal an event which
14// others are waiting on). Because of this, we can avoid having one thread per
15// listener in several cases.
16//
17// The WaitableEvent maintains a list of waiters, protected by a lock. Each
18// waiter is either an async wait, in which case we have a Task and the
19// MessageLoop to run it on, or a blocking wait, in which case we have the
20// condition variable to signal.
21//
22// Waiting involves grabbing the lock and adding oneself to the wait list. Async
23// waits can be canceled, which means grabbing the lock and removing oneself
24// from the list.
25//
26// Waiting on multiple events is handled by adding a single, synchronous wait to
27// the wait-list of many events. An event passes a pointer to itself when
28// firing a waiter and so we can store that pointer to find out which event
29// triggered.
30// -----------------------------------------------------------------------------
31
32namespace base {
33
34// -----------------------------------------------------------------------------
35// This is just an abstract base class for waking the two types of waiters
36// -----------------------------------------------------------------------------
37WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
38    : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
39}
40
41WaitableEvent::~WaitableEvent() {
42}
43
44void WaitableEvent::Reset() {
45  base::AutoLock locked(kernel_->lock_);
46  kernel_->signaled_ = false;
47}
48
49void WaitableEvent::Signal() {
50  base::AutoLock locked(kernel_->lock_);
51
52  if (kernel_->signaled_)
53    return;
54
55  if (kernel_->manual_reset_) {
56    SignalAll();
57    kernel_->signaled_ = true;
58  } else {
59    // In the case of auto reset, if no waiters were woken, we remain
60    // signaled.
61    if (!SignalOne())
62      kernel_->signaled_ = true;
63  }
64}
65
66bool WaitableEvent::IsSignaled() {
67  base::AutoLock locked(kernel_->lock_);
68
69  const bool result = kernel_->signaled_;
70  if (result && !kernel_->manual_reset_)
71    kernel_->signaled_ = false;
72  return result;
73}
74
75// -----------------------------------------------------------------------------
76// Synchronous waits
77
78// -----------------------------------------------------------------------------
79// This is a synchronous waiter. The thread is waiting on the given condition
80// variable and the fired flag in this object.
81// -----------------------------------------------------------------------------
82class SyncWaiter : public WaitableEvent::Waiter {
83 public:
84  SyncWaiter()
85      : fired_(false),
86        signaling_event_(NULL),
87        lock_(),
88        cv_(&lock_) {
89  }
90
91  bool Fire(WaitableEvent* signaling_event) {
92    base::AutoLock locked(lock_);
93
94    if (fired_)
95      return false;
96
97    fired_ = true;
98    signaling_event_ = signaling_event;
99
100    cv_.Broadcast();
101
102    // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
103    // the blocking thread's stack.  There is no |delete this;| in Fire.  The
104    // SyncWaiter object is destroyed when it goes out of scope.
105
106    return true;
107  }
108
109  WaitableEvent* signaling_event() const {
110    return signaling_event_;
111  }
112
113  // ---------------------------------------------------------------------------
114  // These waiters are always stack allocated and don't delete themselves. Thus
115  // there's no problem and the ABA tag is the same as the object pointer.
116  // ---------------------------------------------------------------------------
117  bool Compare(void* tag) {
118    return this == tag;
119  }
120
121  // ---------------------------------------------------------------------------
122  // Called with lock held.
123  // ---------------------------------------------------------------------------
124  bool fired() const {
125    return fired_;
126  }
127
128  // ---------------------------------------------------------------------------
129  // During a TimedWait, we need a way to make sure that an auto-reset
130  // WaitableEvent doesn't think that this event has been signaled between
131  // unlocking it and removing it from the wait-list. Called with lock held.
132  // ---------------------------------------------------------------------------
133  void Disable() {
134    fired_ = true;
135  }
136
137  base::Lock* lock() {
138    return &lock_;
139  }
140
141  base::ConditionVariable* cv() {
142    return &cv_;
143  }
144
145 private:
146  bool fired_;
147  WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
148  base::Lock lock_;
149  base::ConditionVariable cv_;
150};
151
152bool WaitableEvent::Wait() {
153#if defined(ANDROID)
154  // For debugging. See http://b/5244039
155  bool result = TimedWait(TimeDelta::FromSeconds(-1));
156  if (!result) {
157    LOG(INFO) << "TimedWait() with infinite timeout should never fail!";
158  }
159  return result;
160#else
161  return TimedWait(TimeDelta::FromSeconds(-1));
162#endif
163}
164
165bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
166  const Time end_time(Time::Now() + max_time);
167  const bool finite_time = max_time.ToInternalValue() >= 0;
168
169  kernel_->lock_.Acquire();
170    if (kernel_->signaled_) {
171      if (!kernel_->manual_reset_) {
172        // In this case we were signaled when we had no waiters. Now that
173        // someone has waited upon us, we can automatically reset.
174        kernel_->signaled_ = false;
175      }
176
177      kernel_->lock_.Release();
178      return true;
179    }
180
181    SyncWaiter sw;
182    sw.lock()->Acquire();
183
184    Enqueue(&sw);
185  kernel_->lock_.Release();
186  // We are violating locking order here by holding the SyncWaiter lock but not
187  // the WaitableEvent lock. However, this is safe because we don't lock @lock_
188  // again before unlocking it.
189
190  for (;;) {
191    const Time current_time(Time::Now());
192
193    if (sw.fired() || (finite_time && current_time >= end_time)) {
194      const bool return_value = sw.fired();
195
196      // We can't acquire @lock_ before releasing the SyncWaiter lock (because
197      // of locking order), however, in between the two a signal could be fired
198      // and @sw would accept it, however we will still return false, so the
199      // signal would be lost on an auto-reset WaitableEvent. Thus we call
200      // Disable which makes sw::Fire return false.
201      sw.Disable();
202      sw.lock()->Release();
203
204      kernel_->lock_.Acquire();
205        kernel_->Dequeue(&sw, &sw);
206      kernel_->lock_.Release();
207
208      return return_value;
209    }
210
211    if (finite_time) {
212      const TimeDelta max_wait(end_time - current_time);
213      sw.cv()->TimedWait(max_wait);
214    } else {
215      sw.cv()->Wait();
216    }
217  }
218}
219
220// -----------------------------------------------------------------------------
221// Synchronous waiting on multiple objects.
222
223static bool  // StrictWeakOrdering
224cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
225             const std::pair<WaitableEvent*, unsigned> &b) {
226  return a.first < b.first;
227}
228
229// static
230size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
231                               size_t count) {
232  DCHECK(count) << "Cannot wait on no events";
233
234  // We need to acquire the locks in a globally consistent order. Thus we sort
235  // the array of waitables by address. We actually sort a pairs so that we can
236  // map back to the original index values later.
237  std::vector<std::pair<WaitableEvent*, size_t> > waitables;
238  waitables.reserve(count);
239  for (size_t i = 0; i < count; ++i)
240    waitables.push_back(std::make_pair(raw_waitables[i], i));
241
242  DCHECK_EQ(count, waitables.size());
243
244  sort(waitables.begin(), waitables.end(), cmp_fst_addr);
245
246  // The set of waitables must be distinct. Since we have just sorted by
247  // address, we can check this cheaply by comparing pairs of consecutive
248  // elements.
249  for (size_t i = 0; i < waitables.size() - 1; ++i) {
250    DCHECK(waitables[i].first != waitables[i+1].first);
251  }
252
253  SyncWaiter sw;
254
255  const size_t r = EnqueueMany(&waitables[0], count, &sw);
256  if (r) {
257    // One of the events is already signaled. The SyncWaiter has not been
258    // enqueued anywhere. EnqueueMany returns the count of remaining waitables
259    // when the signaled one was seen, so the index of the signaled event is
260    // @count - @r.
261    return waitables[count - r].second;
262  }
263
264  // At this point, we hold the locks on all the WaitableEvents and we have
265  // enqueued our waiter in them all.
266  sw.lock()->Acquire();
267    // Release the WaitableEvent locks in the reverse order
268    for (size_t i = 0; i < count; ++i) {
269      waitables[count - (1 + i)].first->kernel_->lock_.Release();
270    }
271
272    for (;;) {
273      if (sw.fired())
274        break;
275
276      sw.cv()->Wait();
277    }
278  sw.lock()->Release();
279
280  // The address of the WaitableEvent which fired is stored in the SyncWaiter.
281  WaitableEvent *const signaled_event = sw.signaling_event();
282  // This will store the index of the raw_waitables which fired.
283  size_t signaled_index = 0;
284
285  // Take the locks of each WaitableEvent in turn (except the signaled one) and
286  // remove our SyncWaiter from the wait-list
287  for (size_t i = 0; i < count; ++i) {
288    if (raw_waitables[i] != signaled_event) {
289      raw_waitables[i]->kernel_->lock_.Acquire();
290        // There's no possible ABA issue with the address of the SyncWaiter here
291        // because it lives on the stack. Thus the tag value is just the pointer
292        // value again.
293        raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
294      raw_waitables[i]->kernel_->lock_.Release();
295    } else {
296      signaled_index = i;
297    }
298  }
299
300  return signaled_index;
301}
302
303// -----------------------------------------------------------------------------
304// If return value == 0:
305//   The locks of the WaitableEvents have been taken in order and the Waiter has
306//   been enqueued in the wait-list of each. None of the WaitableEvents are
307//   currently signaled
308// else:
309//   None of the WaitableEvent locks are held. The Waiter has not been enqueued
310//   in any of them and the return value is the index of the first WaitableEvent
311//   which was signaled, from the end of the array.
312// -----------------------------------------------------------------------------
313// static
314size_t WaitableEvent::EnqueueMany
315    (std::pair<WaitableEvent*, size_t>* waitables,
316     size_t count, Waiter* waiter) {
317  if (!count)
318    return 0;
319
320  waitables[0].first->kernel_->lock_.Acquire();
321    if (waitables[0].first->kernel_->signaled_) {
322      if (!waitables[0].first->kernel_->manual_reset_)
323        waitables[0].first->kernel_->signaled_ = false;
324      waitables[0].first->kernel_->lock_.Release();
325      return count;
326    }
327
328    const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
329    if (r) {
330      waitables[0].first->kernel_->lock_.Release();
331    } else {
332      waitables[0].first->Enqueue(waiter);
333    }
334
335    return r;
336}
337
338// -----------------------------------------------------------------------------
339
340
341// -----------------------------------------------------------------------------
342// Private functions...
343
344WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
345                                                        bool initially_signaled)
346    : manual_reset_(manual_reset),
347      signaled_(initially_signaled) {
348}
349
350WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
351}
352
353// -----------------------------------------------------------------------------
354// Wake all waiting waiters. Called with lock held.
355// -----------------------------------------------------------------------------
356bool WaitableEvent::SignalAll() {
357  bool signaled_at_least_one = false;
358
359  for (std::list<Waiter*>::iterator
360       i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
361    if ((*i)->Fire(this))
362      signaled_at_least_one = true;
363  }
364
365  kernel_->waiters_.clear();
366  return signaled_at_least_one;
367}
368
369// ---------------------------------------------------------------------------
370// Try to wake a single waiter. Return true if one was woken. Called with lock
371// held.
372// ---------------------------------------------------------------------------
373bool WaitableEvent::SignalOne() {
374  for (;;) {
375    if (kernel_->waiters_.empty())
376      return false;
377
378    const bool r = (*kernel_->waiters_.begin())->Fire(this);
379    kernel_->waiters_.pop_front();
380    if (r)
381      return true;
382  }
383}
384
385// -----------------------------------------------------------------------------
386// Add a waiter to the list of those waiting. Called with lock held.
387// -----------------------------------------------------------------------------
388void WaitableEvent::Enqueue(Waiter* waiter) {
389  kernel_->waiters_.push_back(waiter);
390}
391
392// -----------------------------------------------------------------------------
393// Remove a waiter from the list of those waiting. Return true if the waiter was
394// actually removed. Called with lock held.
395// -----------------------------------------------------------------------------
396bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
397  for (std::list<Waiter*>::iterator
398       i = waiters_.begin(); i != waiters_.end(); ++i) {
399    if (*i == waiter && (*i)->Compare(tag)) {
400      waiters_.erase(i);
401      return true;
402    }
403  }
404
405  return false;
406}
407
408// -----------------------------------------------------------------------------
409
410}  // namespace base
411