waitable_event_posix.cc revision 3f50c38dc070f4bb515c1b64450dae14f316474e
1// Copyright (c) 2011 The Chromium Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style license that can be
3// found in the LICENSE file.
4
5#include "base/synchronization/waitable_event.h"
6
7#include "base/synchronization/condition_variable.h"
8#include "base/synchronization/lock.h"
9#include "base/message_loop.h"
10
11// -----------------------------------------------------------------------------
12// A WaitableEvent on POSIX is implemented as a wait-list. Currently we don't
13// support cross-process events (where one process can signal an event which
14// others are waiting on). Because of this, we can avoid having one thread per
15// listener in several cases.
16//
17// The WaitableEvent maintains a list of waiters, protected by a lock. Each
18// waiter is either an async wait, in which case we have a Task and the
19// MessageLoop to run it on, or a blocking wait, in which case we have the
20// condition variable to signal.
21//
22// Waiting involves grabbing the lock and adding oneself to the wait list. Async
23// waits can be canceled, which means grabbing the lock and removing oneself
24// from the list.
25//
26// Waiting on multiple events is handled by adding a single, synchronous wait to
27// the wait-list of many events. An event passes a pointer to itself when
28// firing a waiter and so we can store that pointer to find out which event
29// triggered.
30// -----------------------------------------------------------------------------
31
32namespace base {
33
34// -----------------------------------------------------------------------------
35// This is just an abstract base class for waking the two types of waiters
36// -----------------------------------------------------------------------------
37WaitableEvent::WaitableEvent(bool manual_reset, bool initially_signaled)
38    : kernel_(new WaitableEventKernel(manual_reset, initially_signaled)) {
39}
40
41WaitableEvent::~WaitableEvent() {
42}
43
44void WaitableEvent::Reset() {
45  base::AutoLock locked(kernel_->lock_);
46  kernel_->signaled_ = false;
47}
48
49void WaitableEvent::Signal() {
50  base::AutoLock locked(kernel_->lock_);
51
52  if (kernel_->signaled_)
53    return;
54
55  if (kernel_->manual_reset_) {
56    SignalAll();
57    kernel_->signaled_ = true;
58  } else {
59    // In the case of auto reset, if no waiters were woken, we remain
60    // signaled.
61    if (!SignalOne())
62      kernel_->signaled_ = true;
63  }
64}
65
66bool WaitableEvent::IsSignaled() {
67  base::AutoLock locked(kernel_->lock_);
68
69  const bool result = kernel_->signaled_;
70  if (result && !kernel_->manual_reset_)
71    kernel_->signaled_ = false;
72  return result;
73}
74
75// -----------------------------------------------------------------------------
76// Synchronous waits
77
78// -----------------------------------------------------------------------------
79// This is a synchronous waiter. The thread is waiting on the given condition
80// variable and the fired flag in this object.
81// -----------------------------------------------------------------------------
82class SyncWaiter : public WaitableEvent::Waiter {
83 public:
84  SyncWaiter()
85      : fired_(false),
86        signaling_event_(NULL),
87        lock_(),
88        cv_(&lock_) {
89  }
90
91  bool Fire(WaitableEvent* signaling_event) {
92    base::AutoLock locked(lock_);
93
94    if (fired_)
95      return false;
96
97    fired_ = true;
98    signaling_event_ = signaling_event;
99
100    cv_.Broadcast();
101
102    // Unlike AsyncWaiter objects, SyncWaiter objects are stack-allocated on
103    // the blocking thread's stack.  There is no |delete this;| in Fire.  The
104    // SyncWaiter object is destroyed when it goes out of scope.
105
106    return true;
107  }
108
109  WaitableEvent* signaling_event() const {
110    return signaling_event_;
111  }
112
113  // ---------------------------------------------------------------------------
114  // These waiters are always stack allocated and don't delete themselves. Thus
115  // there's no problem and the ABA tag is the same as the object pointer.
116  // ---------------------------------------------------------------------------
117  bool Compare(void* tag) {
118    return this == tag;
119  }
120
121  // ---------------------------------------------------------------------------
122  // Called with lock held.
123  // ---------------------------------------------------------------------------
124  bool fired() const {
125    return fired_;
126  }
127
128  // ---------------------------------------------------------------------------
129  // During a TimedWait, we need a way to make sure that an auto-reset
130  // WaitableEvent doesn't think that this event has been signaled between
131  // unlocking it and removing it from the wait-list. Called with lock held.
132  // ---------------------------------------------------------------------------
133  void Disable() {
134    fired_ = true;
135  }
136
137  base::Lock* lock() {
138    return &lock_;
139  }
140
141  base::ConditionVariable* cv() {
142    return &cv_;
143  }
144
145 private:
146  bool fired_;
147  WaitableEvent* signaling_event_;  // The WaitableEvent which woke us
148  base::Lock lock_;
149  base::ConditionVariable cv_;
150};
151
152bool WaitableEvent::TimedWait(const TimeDelta& max_time) {
153  const Time end_time(Time::Now() + max_time);
154  const bool finite_time = max_time.ToInternalValue() >= 0;
155
156  kernel_->lock_.Acquire();
157    if (kernel_->signaled_) {
158      if (!kernel_->manual_reset_) {
159        // In this case we were signaled when we had no waiters. Now that
160        // someone has waited upon us, we can automatically reset.
161        kernel_->signaled_ = false;
162      }
163
164      kernel_->lock_.Release();
165      return true;
166    }
167
168    SyncWaiter sw;
169    sw.lock()->Acquire();
170
171    Enqueue(&sw);
172  kernel_->lock_.Release();
173  // We are violating locking order here by holding the SyncWaiter lock but not
174  // the WaitableEvent lock. However, this is safe because we don't lock @lock_
175  // again before unlocking it.
176
177  for (;;) {
178    const Time current_time(Time::Now());
179
180    if (sw.fired() || (finite_time && current_time >= end_time)) {
181      const bool return_value = sw.fired();
182
183      // We can't acquire @lock_ before releasing the SyncWaiter lock (because
184      // of locking order), however, in between the two a signal could be fired
185      // and @sw would accept it, however we will still return false, so the
186      // signal would be lost on an auto-reset WaitableEvent. Thus we call
187      // Disable which makes sw::Fire return false.
188      sw.Disable();
189      sw.lock()->Release();
190
191      kernel_->lock_.Acquire();
192        kernel_->Dequeue(&sw, &sw);
193      kernel_->lock_.Release();
194
195      return return_value;
196    }
197
198    if (finite_time) {
199      const TimeDelta max_wait(end_time - current_time);
200      sw.cv()->TimedWait(max_wait);
201    } else {
202      sw.cv()->Wait();
203    }
204  }
205}
206
207bool WaitableEvent::Wait() {
208  return TimedWait(TimeDelta::FromSeconds(-1));
209}
210
211// -----------------------------------------------------------------------------
212
213
214// -----------------------------------------------------------------------------
215// Synchronous waiting on multiple objects.
216
217static bool  // StrictWeakOrdering
218cmp_fst_addr(const std::pair<WaitableEvent*, unsigned> &a,
219             const std::pair<WaitableEvent*, unsigned> &b) {
220  return a.first < b.first;
221}
222
223// static
224size_t WaitableEvent::WaitMany(WaitableEvent** raw_waitables,
225                               size_t count) {
226  DCHECK(count) << "Cannot wait on no events";
227
228  // We need to acquire the locks in a globally consistent order. Thus we sort
229  // the array of waitables by address. We actually sort a pairs so that we can
230  // map back to the original index values later.
231  std::vector<std::pair<WaitableEvent*, size_t> > waitables;
232  waitables.reserve(count);
233  for (size_t i = 0; i < count; ++i)
234    waitables.push_back(std::make_pair(raw_waitables[i], i));
235
236  DCHECK_EQ(count, waitables.size());
237
238  sort(waitables.begin(), waitables.end(), cmp_fst_addr);
239
240  // The set of waitables must be distinct. Since we have just sorted by
241  // address, we can check this cheaply by comparing pairs of consecutive
242  // elements.
243  for (size_t i = 0; i < waitables.size() - 1; ++i) {
244    DCHECK(waitables[i].first != waitables[i+1].first);
245  }
246
247  SyncWaiter sw;
248
249  const size_t r = EnqueueMany(&waitables[0], count, &sw);
250  if (r) {
251    // One of the events is already signaled. The SyncWaiter has not been
252    // enqueued anywhere. EnqueueMany returns the count of remaining waitables
253    // when the signaled one was seen, so the index of the signaled event is
254    // @count - @r.
255    return waitables[count - r].second;
256  }
257
258  // At this point, we hold the locks on all the WaitableEvents and we have
259  // enqueued our waiter in them all.
260  sw.lock()->Acquire();
261    // Release the WaitableEvent locks in the reverse order
262    for (size_t i = 0; i < count; ++i) {
263      waitables[count - (1 + i)].first->kernel_->lock_.Release();
264    }
265
266    for (;;) {
267      if (sw.fired())
268        break;
269
270      sw.cv()->Wait();
271    }
272  sw.lock()->Release();
273
274  // The address of the WaitableEvent which fired is stored in the SyncWaiter.
275  WaitableEvent *const signaled_event = sw.signaling_event();
276  // This will store the index of the raw_waitables which fired.
277  size_t signaled_index = 0;
278
279  // Take the locks of each WaitableEvent in turn (except the signaled one) and
280  // remove our SyncWaiter from the wait-list
281  for (size_t i = 0; i < count; ++i) {
282    if (raw_waitables[i] != signaled_event) {
283      raw_waitables[i]->kernel_->lock_.Acquire();
284        // There's no possible ABA issue with the address of the SyncWaiter here
285        // because it lives on the stack. Thus the tag value is just the pointer
286        // value again.
287        raw_waitables[i]->kernel_->Dequeue(&sw, &sw);
288      raw_waitables[i]->kernel_->lock_.Release();
289    } else {
290      signaled_index = i;
291    }
292  }
293
294  return signaled_index;
295}
296
297// -----------------------------------------------------------------------------
298// If return value == 0:
299//   The locks of the WaitableEvents have been taken in order and the Waiter has
300//   been enqueued in the wait-list of each. None of the WaitableEvents are
301//   currently signaled
302// else:
303//   None of the WaitableEvent locks are held. The Waiter has not been enqueued
304//   in any of them and the return value is the index of the first WaitableEvent
305//   which was signaled, from the end of the array.
306// -----------------------------------------------------------------------------
307// static
308size_t WaitableEvent::EnqueueMany
309    (std::pair<WaitableEvent*, size_t>* waitables,
310     size_t count, Waiter* waiter) {
311  if (!count)
312    return 0;
313
314  waitables[0].first->kernel_->lock_.Acquire();
315    if (waitables[0].first->kernel_->signaled_) {
316      if (!waitables[0].first->kernel_->manual_reset_)
317        waitables[0].first->kernel_->signaled_ = false;
318      waitables[0].first->kernel_->lock_.Release();
319      return count;
320    }
321
322    const size_t r = EnqueueMany(waitables + 1, count - 1, waiter);
323    if (r) {
324      waitables[0].first->kernel_->lock_.Release();
325    } else {
326      waitables[0].first->Enqueue(waiter);
327    }
328
329    return r;
330}
331
332// -----------------------------------------------------------------------------
333
334
335// -----------------------------------------------------------------------------
336// Private functions...
337
338WaitableEvent::WaitableEventKernel::WaitableEventKernel(bool manual_reset,
339                                                        bool initially_signaled)
340    : manual_reset_(manual_reset),
341      signaled_(initially_signaled) {
342}
343
344WaitableEvent::WaitableEventKernel::~WaitableEventKernel() {
345}
346
347// -----------------------------------------------------------------------------
348// Wake all waiting waiters. Called with lock held.
349// -----------------------------------------------------------------------------
350bool WaitableEvent::SignalAll() {
351  bool signaled_at_least_one = false;
352
353  for (std::list<Waiter*>::iterator
354       i = kernel_->waiters_.begin(); i != kernel_->waiters_.end(); ++i) {
355    if ((*i)->Fire(this))
356      signaled_at_least_one = true;
357  }
358
359  kernel_->waiters_.clear();
360  return signaled_at_least_one;
361}
362
363// ---------------------------------------------------------------------------
364// Try to wake a single waiter. Return true if one was woken. Called with lock
365// held.
366// ---------------------------------------------------------------------------
367bool WaitableEvent::SignalOne() {
368  for (;;) {
369    if (kernel_->waiters_.empty())
370      return false;
371
372    const bool r = (*kernel_->waiters_.begin())->Fire(this);
373    kernel_->waiters_.pop_front();
374    if (r)
375      return true;
376  }
377}
378
379// -----------------------------------------------------------------------------
380// Add a waiter to the list of those waiting. Called with lock held.
381// -----------------------------------------------------------------------------
382void WaitableEvent::Enqueue(Waiter* waiter) {
383  kernel_->waiters_.push_back(waiter);
384}
385
386// -----------------------------------------------------------------------------
387// Remove a waiter from the list of those waiting. Return true if the waiter was
388// actually removed. Called with lock held.
389// -----------------------------------------------------------------------------
390bool WaitableEvent::WaitableEventKernel::Dequeue(Waiter* waiter, void* tag) {
391  for (std::list<Waiter*>::iterator
392       i = waiters_.begin(); i != waiters_.end(); ++i) {
393    if (*i == waiter && (*i)->Compare(tag)) {
394      waiters_.erase(i);
395      return true;
396    }
397  }
398
399  return false;
400}
401
402// -----------------------------------------------------------------------------
403
404}  // namespace base
405