LiteralSupport.cpp revision 6ea623823f8532670480425b573f35115404b4a0
15f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
25f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
35f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//                     The LLVM Compiler Infrastructure
45f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
55f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer// This file is distributed under the University of Illinois Open Source
65f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer// License. See LICENSE.TXT for details.
75f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
85f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//===----------------------------------------------------------------------===//
95f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
105f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer// This file implements the NumericLiteralParser, CharLiteralParser, and
115f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer// StringLiteralParser interfaces.
125f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//
135f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer//===----------------------------------------------------------------------===//
145f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
155f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer#include "clang/Lex/LiteralSupport.h"
165f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer#include "clang/Lex/Preprocessor.h"
175f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer#include "clang/Basic/Diagnostic.h"
185f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer#include "clang/Basic/SourceManager.h"
19464175bba1318bef7905122e9fda20cff926df78Chris Lattner#include "clang/Basic/TargetInfo.h"
20464175bba1318bef7905122e9fda20cff926df78Chris Lattner#include "llvm/ADT/StringExtras.h"
21464175bba1318bef7905122e9fda20cff926df78Chris Lattnerusing namespace clang;
225f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
235f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer/// HexDigitValue - Return the value of the specified hex digit, or -1 if it's
245f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer/// not valid.
255f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencerstatic int HexDigitValue(char C) {
265f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  if (C >= '0' && C <= '9') return C-'0';
275f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  if (C >= 'a' && C <= 'f') return C-'a'+10;
285f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  if (C >= 'A' && C <= 'F') return C-'A'+10;
295f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  return -1;
305f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer}
315f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
325f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer/// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
335f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer/// either a character or a string literal.
345f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencerstatic unsigned ProcessCharEscape(const char *&ThisTokBuf,
355f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer                                  const char *ThisTokEnd, bool &HadError,
365f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer                                  SourceLocation Loc, bool IsWide,
375f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer                                  Preprocessor &PP) {
38464175bba1318bef7905122e9fda20cff926df78Chris Lattner  // Skip the '\' char.
395f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  ++ThisTokBuf;
405f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
415f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  // We know that this character can't be off the end of the buffer, because
425f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  // that would have been \", which would not have been the end of string.
435f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  unsigned ResultChar = *ThisTokBuf++;
445f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  switch (ResultChar) {
455f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  // These map to themselves.
465f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case '\\': case '\'': case '"': case '?': break;
475f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
485f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    // These have fixed mappings.
495f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case 'a':
505f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    // TODO: K&R: the meaning of '\\a' is different in traditional C
515f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 7;
525f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
535f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case 'b':
545f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 8;
555f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
565f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case 'e':
575f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    PP.Diag(Loc, diag::ext_nonstandard_escape, "e");
585f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 27;
595f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
60d2d2a11a91d7ddf468bfb70f66362d24806ed601Chris Lattner  case 'f':
61464175bba1318bef7905122e9fda20cff926df78Chris Lattner    ResultChar = 12;
62464175bba1318bef7905122e9fda20cff926df78Chris Lattner    break;
63464175bba1318bef7905122e9fda20cff926df78Chris Lattner  case 'n':
64d2d2a11a91d7ddf468bfb70f66362d24806ed601Chris Lattner    ResultChar = 10;
655f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
665f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case 'r':
675f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 13;
685f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
695f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case 't':
705f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 9;
715f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
725f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case 'v':
735f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 11;
745f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
755f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
765f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    //case 'u': case 'U':  // FIXME: UCNs.
775f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case 'x': { // Hex escape.
785f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 0;
795f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    if (ThisTokBuf == ThisTokEnd || !isxdigit(*ThisTokBuf)) {
805f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      PP.Diag(Loc, diag::err_hex_escape_no_digits);
815f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      HadError = 1;
8273322924127c873c13101b705dd823f5539ffa5fSteve Naroff      break;
8373322924127c873c13101b705dd823f5539ffa5fSteve Naroff    }
8473322924127c873c13101b705dd823f5539ffa5fSteve Naroff
8573322924127c873c13101b705dd823f5539ffa5fSteve Naroff    // Hex escapes are a maximal series of hex digits.
8673322924127c873c13101b705dd823f5539ffa5fSteve Naroff    bool Overflow = false;
8773322924127c873c13101b705dd823f5539ffa5fSteve Naroff    for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
8873322924127c873c13101b705dd823f5539ffa5fSteve Naroff      int CharVal = HexDigitValue(ThisTokBuf[0]);
895f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      if (CharVal == -1) break;
905f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      Overflow |= (ResultChar & 0xF0000000) ? true : false;  // About to shift out a digit?
915f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      ResultChar <<= 4;
925f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      ResultChar |= CharVal;
935f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    }
945f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
955f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    // See if any bits will be truncated when evaluated as a character.
965f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
975f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
985f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
995f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      Overflow = true;
1005f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer      ResultChar &= ~0U >> (32-CharWidth);
1015f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    }
1025f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
103d1861fd633d5096a00777c918eb8575ea7162fe7Steve Naroff    // Check for overflow.
104d1861fd633d5096a00777c918eb8575ea7162fe7Steve Naroff    if (Overflow)   // Too many digits to fit in
105d1861fd633d5096a00777c918eb8575ea7162fe7Steve Naroff      PP.Diag(Loc, diag::warn_hex_escape_too_large);
106d1861fd633d5096a00777c918eb8575ea7162fe7Steve Naroff    break;
1075f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  }
1085f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case '0': case '1': case '2': case '3':
1095f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  case '4': case '5': case '6': case '7': {
1105f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    // Octal escapes.
1115f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    --ThisTokBuf;
1125f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    ResultChar = 0;
1135f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
1145f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    // Octal escapes are a series of octal digits with maximum length 3.
1158b9023ba35a86838789e2c9034a6128728c547aaChris Lattner    // "\0123" is a two digit sequence equal to "\012" "3".
1168b9023ba35a86838789e2c9034a6128728c547aaChris Lattner    unsigned NumDigits = 0;
1178b9023ba35a86838789e2c9034a6128728c547aaChris Lattner    do {
1188b9023ba35a86838789e2c9034a6128728c547aaChris Lattner      ResultChar <<= 3;
119464175bba1318bef7905122e9fda20cff926df78Chris Lattner      ResultChar |= *ThisTokBuf++ - '0';
120464175bba1318bef7905122e9fda20cff926df78Chris Lattner      ++NumDigits;
121464175bba1318bef7905122e9fda20cff926df78Chris Lattner    } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
122464175bba1318bef7905122e9fda20cff926df78Chris Lattner             ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
123464175bba1318bef7905122e9fda20cff926df78Chris Lattner
124464175bba1318bef7905122e9fda20cff926df78Chris Lattner    // Check for overflow.  Reject '\777', but not L'\777'.
125464175bba1318bef7905122e9fda20cff926df78Chris Lattner    unsigned CharWidth = PP.getTargetInfo().getCharWidth(IsWide);
126464175bba1318bef7905122e9fda20cff926df78Chris Lattner
127464175bba1318bef7905122e9fda20cff926df78Chris Lattner    if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
128464175bba1318bef7905122e9fda20cff926df78Chris Lattner      PP.Diag(Loc, diag::warn_octal_escape_too_large);
129464175bba1318bef7905122e9fda20cff926df78Chris Lattner      ResultChar &= ~0U >> (32-CharWidth);
130464175bba1318bef7905122e9fda20cff926df78Chris Lattner    }
131464175bba1318bef7905122e9fda20cff926df78Chris Lattner    break;
132464175bba1318bef7905122e9fda20cff926df78Chris Lattner  }
133464175bba1318bef7905122e9fda20cff926df78Chris Lattner
134464175bba1318bef7905122e9fda20cff926df78Chris Lattner    // Otherwise, these are not valid escapes.
135464175bba1318bef7905122e9fda20cff926df78Chris Lattner  case '(': case '{': case '[': case '%':
136464175bba1318bef7905122e9fda20cff926df78Chris Lattner    // GCC accepts these as extensions.  We warn about them as such though.
137464175bba1318bef7905122e9fda20cff926df78Chris Lattner    if (!PP.getLangOptions().NoExtensions) {
138464175bba1318bef7905122e9fda20cff926df78Chris Lattner      PP.Diag(Loc, diag::ext_nonstandard_escape,
139464175bba1318bef7905122e9fda20cff926df78Chris Lattner              std::string()+(char)ResultChar);
140464175bba1318bef7905122e9fda20cff926df78Chris Lattner      break;
141464175bba1318bef7905122e9fda20cff926df78Chris Lattner    }
142464175bba1318bef7905122e9fda20cff926df78Chris Lattner    // FALL THROUGH.
143464175bba1318bef7905122e9fda20cff926df78Chris Lattner  default:
144464175bba1318bef7905122e9fda20cff926df78Chris Lattner    if (isgraph(ThisTokBuf[0])) {
145464175bba1318bef7905122e9fda20cff926df78Chris Lattner      PP.Diag(Loc, diag::ext_unknown_escape, std::string()+(char)ResultChar);
146464175bba1318bef7905122e9fda20cff926df78Chris Lattner    } else {
147464175bba1318bef7905122e9fda20cff926df78Chris Lattner      PP.Diag(Loc, diag::ext_unknown_escape, "x"+llvm::utohexstr(ResultChar));
1485f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    }
1495f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer    break;
1505f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer  }
1515f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
152464175bba1318bef7905122e9fda20cff926df78Chris Lattner  return ResultChar;
153464175bba1318bef7905122e9fda20cff926df78Chris Lattner}
154464175bba1318bef7905122e9fda20cff926df78Chris Lattner
1555f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
1565f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer
157464175bba1318bef7905122e9fda20cff926df78Chris Lattner
158464175bba1318bef7905122e9fda20cff926df78Chris Lattner///       integer-constant: [C99 6.4.4.1]
1595f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         decimal-constant integer-suffix
1605f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         octal-constant integer-suffix
161464175bba1318bef7905122e9fda20cff926df78Chris Lattner///         hexadecimal-constant integer-suffix
162464175bba1318bef7905122e9fda20cff926df78Chris Lattner///       decimal-constant:
1635f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         nonzero-digit
1645f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         decimal-constant digit
1655f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///       octal-constant:
1665f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         0
1675f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         octal-constant octal-digit
1685f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///       hexadecimal-constant:
1695f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         hexadecimal-prefix hexadecimal-digit
1705f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         hexadecimal-constant hexadecimal-digit
1715f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///       hexadecimal-prefix: one of
1725f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         0x 0X
1735f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///       integer-suffix:
1745f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         unsigned-suffix [long-suffix]
1755f016e2cb5d11daeb237544de1c5d59f20fe1a6eReid Spencer///         unsigned-suffix [long-long-suffix]
176///         long-suffix [unsigned-suffix]
177///         long-long-suffix [unsigned-sufix]
178///       nonzero-digit:
179///         1 2 3 4 5 6 7 8 9
180///       octal-digit:
181///         0 1 2 3 4 5 6 7
182///       hexadecimal-digit:
183///         0 1 2 3 4 5 6 7 8 9
184///         a b c d e f
185///         A B C D E F
186///       unsigned-suffix: one of
187///         u U
188///       long-suffix: one of
189///         l L
190///       long-long-suffix: one of
191///         ll LL
192///
193///       floating-constant: [C99 6.4.4.2]
194///         TODO: add rules...
195///
196NumericLiteralParser::
197NumericLiteralParser(const char *begin, const char *end,
198                     SourceLocation TokLoc, Preprocessor &pp)
199  : PP(pp), ThisTokBegin(begin), ThisTokEnd(end) {
200  s = DigitsBegin = begin;
201  saw_exponent = false;
202  saw_period = false;
203  isLong = false;
204  isUnsigned = false;
205  isLongLong = false;
206  isFloat = false;
207  isImaginary = false;
208  hadError = false;
209
210  if (*s == '0') { // parse radix
211    ParseNumberStartingWithZero(TokLoc);
212    if (hadError)
213      return;
214  } else { // the first digit is non-zero
215    radix = 10;
216    s = SkipDigits(s);
217    if (s == ThisTokEnd) {
218      // Done.
219    } else if (isxdigit(*s) && !(*s == 'e' || *s == 'E')) {
220      Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
221           diag::err_invalid_decimal_digit, std::string(s, s+1));
222      return;
223    } else if (*s == '.') {
224      s++;
225      saw_period = true;
226      s = SkipDigits(s);
227    }
228    if (*s == 'e' || *s == 'E') { // exponent
229      const char *Exponent = s;
230      s++;
231      saw_exponent = true;
232      if (*s == '+' || *s == '-')  s++; // sign
233      const char *first_non_digit = SkipDigits(s);
234      if (first_non_digit != s) {
235        s = first_non_digit;
236      } else {
237        Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-begin),
238             diag::err_exponent_has_no_digits);
239        return;
240      }
241    }
242  }
243
244  SuffixBegin = s;
245
246  // Parse the suffix.  At this point we can classify whether we have an FP or
247  // integer constant.
248  bool isFPConstant = isFloatingLiteral();
249
250  // Loop over all of the characters of the suffix.  If we see something bad,
251  // we break out of the loop.
252  for (; s != ThisTokEnd; ++s) {
253    switch (*s) {
254    case 'f':      // FP Suffix for "float"
255    case 'F':
256      if (!isFPConstant) break;  // Error for integer constant.
257      if (isFloat || isLong) break; // FF, LF invalid.
258      isFloat = true;
259      continue;  // Success.
260    case 'u':
261    case 'U':
262      if (isFPConstant) break;  // Error for floating constant.
263      if (isUnsigned) break;    // Cannot be repeated.
264      isUnsigned = true;
265      continue;  // Success.
266    case 'l':
267    case 'L':
268      if (isLong || isLongLong) break;  // Cannot be repeated.
269      if (isFloat) break;               // LF invalid.
270
271      // Check for long long.  The L's need to be adjacent and the same case.
272      if (s+1 != ThisTokEnd && s[1] == s[0]) {
273        if (isFPConstant) break;        // long long invalid for floats.
274        isLongLong = true;
275        ++s;  // Eat both of them.
276      } else {
277        isLong = true;
278      }
279      continue;  // Success.
280    case 'i':
281      if (PP.getLangOptions().Microsoft) {
282        // Allow i8, i16, i32, i64, and i128.
283        if (++s == ThisTokEnd) break;
284        switch (*s) {
285          case '8':
286            s++; // i8 suffix
287            break;
288          case '1':
289            if (++s == ThisTokEnd) break;
290            if (*s == '6') s++; // i16 suffix
291            else if (*s == '2') {
292              if (++s == ThisTokEnd) break;
293              if (*s == '8') s++; // i128 suffix
294            }
295            break;
296          case '3':
297            if (++s == ThisTokEnd) break;
298            if (*s == '2') s++; // i32 suffix
299            break;
300          case '6':
301            if (++s == ThisTokEnd) break;
302            if (*s == '4') s++; // i64 suffix
303            break;
304          default:
305            break;
306        }
307        break;
308      }
309      // fall through.
310    case 'I':
311    case 'j':
312    case 'J':
313      if (isImaginary) break;   // Cannot be repeated.
314      PP.Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
315              diag::ext_imaginary_constant);
316      isImaginary = true;
317      continue;  // Success.
318    }
319    // If we reached here, there was an error.
320    break;
321  }
322
323  // Report an error if there are any.
324  if (s != ThisTokEnd) {
325    Diag(PP.AdvanceToTokenCharacter(TokLoc, s-begin),
326         isFPConstant ? diag::err_invalid_suffix_float_constant :
327                        diag::err_invalid_suffix_integer_constant,
328         std::string(SuffixBegin, ThisTokEnd));
329    return;
330  }
331}
332
333/// ParseNumberStartingWithZero - This method is called when the first character
334/// of the number is found to be a zero.  This means it is either an octal
335/// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
336/// a floating point number (01239.123e4).  Eat the prefix, determining the
337/// radix etc.
338void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
339  assert(s[0] == '0' && "Invalid method call");
340  s++;
341
342  // Handle a hex number like 0x1234.
343  if ((*s == 'x' || *s == 'X') && (isxdigit(s[1]) || s[1] == '.')) {
344    s++;
345    radix = 16;
346    DigitsBegin = s;
347    s = SkipHexDigits(s);
348    if (s == ThisTokEnd) {
349      // Done.
350    } else if (*s == '.') {
351      s++;
352      saw_period = true;
353      s = SkipHexDigits(s);
354    }
355    // A binary exponent can appear with or with a '.'. If dotted, the
356    // binary exponent is required.
357    if (*s == 'p' || *s == 'P') {
358      const char *Exponent = s;
359      s++;
360      saw_exponent = true;
361      if (*s == '+' || *s == '-')  s++; // sign
362      const char *first_non_digit = SkipDigits(s);
363      if (first_non_digit == s) {
364        Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
365             diag::err_exponent_has_no_digits);
366        return;
367      }
368      s = first_non_digit;
369
370      if (!PP.getLangOptions().HexFloats)
371        Diag(TokLoc, diag::ext_hexconstant_invalid);
372    } else if (saw_period) {
373      Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
374           diag::err_hexconstant_requires_exponent);
375    }
376    return;
377  }
378
379  // Handle simple binary numbers 0b01010
380  if (*s == 'b' || *s == 'B') {
381    // 0b101010 is a GCC extension.
382    PP.Diag(TokLoc, diag::ext_binary_literal);
383    ++s;
384    radix = 2;
385    DigitsBegin = s;
386    s = SkipBinaryDigits(s);
387    if (s == ThisTokEnd) {
388      // Done.
389    } else if (isxdigit(*s)) {
390      Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
391           diag::err_invalid_binary_digit, std::string(s, s+1));
392    }
393    // Other suffixes will be diagnosed by the caller.
394    return;
395  }
396
397  // For now, the radix is set to 8. If we discover that we have a
398  // floating point constant, the radix will change to 10. Octal floating
399  // point constants are not permitted (only decimal and hexadecimal).
400  radix = 8;
401  DigitsBegin = s;
402  s = SkipOctalDigits(s);
403  if (s == ThisTokEnd)
404    return; // Done, simple octal number like 01234
405
406  // If we have some other non-octal digit that *is* a decimal digit, see if
407  // this is part of a floating point number like 094.123 or 09e1.
408  if (isdigit(*s)) {
409    const char *EndDecimal = SkipDigits(s);
410    if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
411      s = EndDecimal;
412      radix = 10;
413    }
414  }
415
416  // If we have a hex digit other than 'e' (which denotes a FP exponent) then
417  // the code is using an incorrect base.
418  if (isxdigit(*s) && *s != 'e' && *s != 'E') {
419    Diag(PP.AdvanceToTokenCharacter(TokLoc, s-ThisTokBegin),
420         diag::err_invalid_octal_digit, std::string(s, s+1));
421    return;
422  }
423
424  if (*s == '.') {
425    s++;
426    radix = 10;
427    saw_period = true;
428    s = SkipDigits(s); // Skip suffix.
429  }
430  if (*s == 'e' || *s == 'E') { // exponent
431    const char *Exponent = s;
432    s++;
433    radix = 10;
434    saw_exponent = true;
435    if (*s == '+' || *s == '-')  s++; // sign
436    const char *first_non_digit = SkipDigits(s);
437    if (first_non_digit != s) {
438      s = first_non_digit;
439    } else {
440      Diag(PP.AdvanceToTokenCharacter(TokLoc, Exponent-ThisTokBegin),
441           diag::err_exponent_has_no_digits);
442      return;
443    }
444  }
445}
446
447
448/// GetIntegerValue - Convert this numeric literal value to an APInt that
449/// matches Val's input width.  If there is an overflow, set Val to the low bits
450/// of the result and return true.  Otherwise, return false.
451bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
452  Val = 0;
453  s = DigitsBegin;
454
455  llvm::APInt RadixVal(Val.getBitWidth(), radix);
456  llvm::APInt CharVal(Val.getBitWidth(), 0);
457  llvm::APInt OldVal = Val;
458
459  bool OverflowOccurred = false;
460  while (s < SuffixBegin) {
461    unsigned C = HexDigitValue(*s++);
462
463    // If this letter is out of bound for this radix, reject it.
464    assert(C < radix && "NumericLiteralParser ctor should have rejected this");
465
466    CharVal = C;
467
468    // Add the digit to the value in the appropriate radix.  If adding in digits
469    // made the value smaller, then this overflowed.
470    OldVal = Val;
471
472    // Multiply by radix, did overflow occur on the multiply?
473    Val *= RadixVal;
474    OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
475
476    OldVal = Val;
477    // Add value, did overflow occur on the value?
478    Val += CharVal;
479    OverflowOccurred |= Val.ult(OldVal);
480    OverflowOccurred |= Val.ult(CharVal);
481  }
482  return OverflowOccurred;
483}
484
485llvm::APFloat NumericLiteralParser::
486GetFloatValue(const llvm::fltSemantics &Format, bool* isExact) {
487  using llvm::APFloat;
488
489  llvm::SmallVector<char,256> floatChars;
490  for (unsigned i = 0, n = ThisTokEnd-ThisTokBegin; i != n; ++i)
491    floatChars.push_back(ThisTokBegin[i]);
492
493  floatChars.push_back('\0');
494
495  APFloat V (Format, APFloat::fcZero, false);
496  APFloat::opStatus status;
497
498  status = V.convertFromString(&floatChars[0],APFloat::rmNearestTiesToEven);
499
500  if (isExact)
501    *isExact = status == APFloat::opOK;
502
503  return V;
504}
505
506void NumericLiteralParser::Diag(SourceLocation Loc, unsigned DiagID,
507          const std::string &M) {
508  PP.Diag(Loc, DiagID, M);
509  hadError = true;
510}
511
512
513CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
514                                     SourceLocation Loc, Preprocessor &PP) {
515  // At this point we know that the character matches the regex "L?'.*'".
516  HadError = false;
517  Value = 0;
518
519  // Determine if this is a wide character.
520  IsWide = begin[0] == 'L';
521  if (IsWide) ++begin;
522
523  // Skip over the entry quote.
524  assert(begin[0] == '\'' && "Invalid token lexed");
525  ++begin;
526
527  // FIXME: This assumes that 'int' is 32-bits in overflow calculation, and the
528  // size of "value".
529  assert(PP.getTargetInfo().getIntWidth() == 32 &&
530         "Assumes sizeof(int) == 4 for now");
531  // FIXME: This assumes that wchar_t is 32-bits for now.
532  assert(PP.getTargetInfo().getWCharWidth() == 32 &&
533         "Assumes sizeof(wchar_t) == 4 for now");
534  // FIXME: This extensively assumes that 'char' is 8-bits.
535  assert(PP.getTargetInfo().getCharWidth() == 8 &&
536         "Assumes char is 8 bits");
537
538  bool isFirstChar = true;
539  bool isMultiChar = false;
540  while (begin[0] != '\'') {
541    unsigned ResultChar;
542    if (begin[0] != '\\')     // If this is a normal character, consume it.
543      ResultChar = *begin++;
544    else                      // Otherwise, this is an escape character.
545      ResultChar = ProcessCharEscape(begin, end, HadError, Loc, IsWide, PP);
546
547    // If this is a multi-character constant (e.g. 'abc'), handle it.  These are
548    // implementation defined (C99 6.4.4.4p10).
549    if (!isFirstChar) {
550      // If this is the second character being processed, do special handling.
551      if (!isMultiChar) {
552        isMultiChar = true;
553
554        // Warn about discarding the top bits for multi-char wide-character
555        // constants (L'abcd').
556        if (IsWide)
557          PP.Diag(Loc, diag::warn_extraneous_wide_char_constant);
558      }
559
560      if (IsWide) {
561        // Emulate GCC's (unintentional?) behavior: L'ab' -> L'b'.
562        Value = 0;
563      } else {
564        // Narrow character literals act as though their value is concatenated
565        // in this implementation.
566        if (((Value << 8) >> 8) != Value)
567          PP.Diag(Loc, diag::warn_char_constant_too_large);
568        Value <<= 8;
569      }
570    }
571
572    Value += ResultChar;
573    isFirstChar = false;
574  }
575
576  // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
577  // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
578  // character constants are not sign extended in the this implementation:
579  // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
580  if (!IsWide && !isMultiChar && (Value & 128) &&
581      PP.getTargetInfo().isCharSigned())
582    Value = (signed char)Value;
583}
584
585
586///       string-literal: [C99 6.4.5]
587///          " [s-char-sequence] "
588///         L" [s-char-sequence] "
589///       s-char-sequence:
590///         s-char
591///         s-char-sequence s-char
592///       s-char:
593///         any source character except the double quote ",
594///           backslash \, or newline character
595///         escape-character
596///         universal-character-name
597///       escape-character: [C99 6.4.4.4]
598///         \ escape-code
599///         universal-character-name
600///       escape-code:
601///         character-escape-code
602///         octal-escape-code
603///         hex-escape-code
604///       character-escape-code: one of
605///         n t b r f v a
606///         \ ' " ?
607///       octal-escape-code:
608///         octal-digit
609///         octal-digit octal-digit
610///         octal-digit octal-digit octal-digit
611///       hex-escape-code:
612///         x hex-digit
613///         hex-escape-code hex-digit
614///       universal-character-name:
615///         \u hex-quad
616///         \U hex-quad hex-quad
617///       hex-quad:
618///         hex-digit hex-digit hex-digit hex-digit
619///
620StringLiteralParser::
621StringLiteralParser(const Token *StringToks, unsigned NumStringToks,
622                    Preprocessor &pp, TargetInfo &t)
623  : PP(pp), Target(t) {
624  // Scan all of the string portions, remember the max individual token length,
625  // computing a bound on the concatenated string length, and see whether any
626  // piece is a wide-string.  If any of the string portions is a wide-string
627  // literal, the result is a wide-string literal [C99 6.4.5p4].
628  MaxTokenLength = StringToks[0].getLength();
629  SizeBound = StringToks[0].getLength()-2;  // -2 for "".
630  AnyWide = StringToks[0].is(tok::wide_string_literal);
631
632  hadError = false;
633
634  // Implement Translation Phase #6: concatenation of string literals
635  /// (C99 5.1.1.2p1).  The common case is only one string fragment.
636  for (unsigned i = 1; i != NumStringToks; ++i) {
637    // The string could be shorter than this if it needs cleaning, but this is a
638    // reasonable bound, which is all we need.
639    SizeBound += StringToks[i].getLength()-2;  // -2 for "".
640
641    // Remember maximum string piece length.
642    if (StringToks[i].getLength() > MaxTokenLength)
643      MaxTokenLength = StringToks[i].getLength();
644
645    // Remember if we see any wide strings.
646    AnyWide |= StringToks[i].is(tok::wide_string_literal);
647  }
648
649
650  // Include space for the null terminator.
651  ++SizeBound;
652
653  // TODO: K&R warning: "traditional C rejects string constant concatenation"
654
655  // Get the width in bytes of wchar_t.  If no wchar_t strings are used, do not
656  // query the target.  As such, wchar_tByteWidth is only valid if AnyWide=true.
657  wchar_tByteWidth = ~0U;
658  if (AnyWide) {
659    wchar_tByteWidth = Target.getWCharWidth();
660    assert((wchar_tByteWidth & 7) == 0 && "Assumes wchar_t is byte multiple!");
661    wchar_tByteWidth /= 8;
662  }
663
664  // The output buffer size needs to be large enough to hold wide characters.
665  // This is a worst-case assumption which basically corresponds to L"" "long".
666  if (AnyWide)
667    SizeBound *= wchar_tByteWidth;
668
669  // Size the temporary buffer to hold the result string data.
670  ResultBuf.resize(SizeBound);
671
672  // Likewise, but for each string piece.
673  llvm::SmallString<512> TokenBuf;
674  TokenBuf.resize(MaxTokenLength);
675
676  // Loop over all the strings, getting their spelling, and expanding them to
677  // wide strings as appropriate.
678  ResultPtr = &ResultBuf[0];   // Next byte to fill in.
679
680  Pascal = false;
681
682  for (unsigned i = 0, e = NumStringToks; i != e; ++i) {
683    const char *ThisTokBuf = &TokenBuf[0];
684    // Get the spelling of the token, which eliminates trigraphs, etc.  We know
685    // that ThisTokBuf points to a buffer that is big enough for the whole token
686    // and 'spelled' tokens can only shrink.
687    unsigned ThisTokLen = PP.getSpelling(StringToks[i], ThisTokBuf);
688    const char *ThisTokEnd = ThisTokBuf+ThisTokLen-1;  // Skip end quote.
689
690    // TODO: Input character set mapping support.
691
692    // Skip L marker for wide strings.
693    bool ThisIsWide = false;
694    if (ThisTokBuf[0] == 'L') {
695      ++ThisTokBuf;
696      ThisIsWide = true;
697    }
698
699    assert(ThisTokBuf[0] == '"' && "Expected quote, lexer broken?");
700    ++ThisTokBuf;
701
702    // Check if this is a pascal string
703    if (pp.getLangOptions().PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
704        ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
705
706      // If the \p sequence is found in the first token, we have a pascal string
707      // Otherwise, if we already have a pascal string, ignore the first \p
708      if (i == 0) {
709        ++ThisTokBuf;
710        Pascal = true;
711      } else if (Pascal)
712        ThisTokBuf += 2;
713    }
714
715    while (ThisTokBuf != ThisTokEnd) {
716      // Is this a span of non-escape characters?
717      if (ThisTokBuf[0] != '\\') {
718        const char *InStart = ThisTokBuf;
719        do {
720          ++ThisTokBuf;
721        } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
722
723        // Copy the character span over.
724        unsigned Len = ThisTokBuf-InStart;
725        if (!AnyWide) {
726          memcpy(ResultPtr, InStart, Len);
727          ResultPtr += Len;
728        } else {
729          // Note: our internal rep of wide char tokens is always little-endian.
730          for (; Len; --Len, ++InStart) {
731            *ResultPtr++ = InStart[0];
732            // Add zeros at the end.
733            for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
734            *ResultPtr++ = 0;
735          }
736        }
737        continue;
738      }
739
740      // Otherwise, this is an escape character.  Process it.
741      unsigned ResultChar = ProcessCharEscape(ThisTokBuf, ThisTokEnd, hadError,
742                                              StringToks[i].getLocation(),
743                                              ThisIsWide, PP);
744
745      // Note: our internal rep of wide char tokens is always little-endian.
746      *ResultPtr++ = ResultChar & 0xFF;
747
748      if (AnyWide) {
749        for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
750          *ResultPtr++ = ResultChar >> i*8;
751      }
752    }
753  }
754
755  // Add zero terminator.
756  *ResultPtr = 0;
757  if (AnyWide) {
758    for (unsigned i = 1, e = wchar_tByteWidth; i != e; ++i)
759    *ResultPtr++ = 0;
760  }
761
762  if (Pascal)
763    ResultBuf[0] = ResultPtr-&ResultBuf[0]-1;
764}
765