ParseDecl.cpp revision 239a53edc946f3756635b2d230f62ed43dbbbef7
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Action::TypeResult Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  if (DeclaratorInfo.getInvalidType())
41    return true;
42
43  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
44}
45
46/// ParseAttributes - Parse a non-empty attributes list.
47///
48/// [GNU] attributes:
49///         attribute
50///         attributes attribute
51///
52/// [GNU]  attribute:
53///          '__attribute__' '(' '(' attribute-list ')' ')'
54///
55/// [GNU]  attribute-list:
56///          attrib
57///          attribute_list ',' attrib
58///
59/// [GNU]  attrib:
60///          empty
61///          attrib-name
62///          attrib-name '(' identifier ')'
63///          attrib-name '(' identifier ',' nonempty-expr-list ')'
64///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
65///
66/// [GNU]  attrib-name:
67///          identifier
68///          typespec
69///          typequal
70///          storageclass
71///
72/// FIXME: The GCC grammar/code for this construct implies we need two
73/// token lookahead. Comment from gcc: "If they start with an identifier
74/// which is followed by a comma or close parenthesis, then the arguments
75/// start with that identifier; otherwise they are an expression list."
76///
77/// At the moment, I am not doing 2 token lookahead. I am also unaware of
78/// any attributes that don't work (based on my limited testing). Most
79/// attributes are very simple in practice. Until we find a bug, I don't see
80/// a pressing need to implement the 2 token lookahead.
81
82AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
83  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
84
85  AttributeList *CurrAttr = 0;
86
87  while (Tok.is(tok::kw___attribute)) {
88    ConsumeToken();
89    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
90                         "attribute")) {
91      SkipUntil(tok::r_paren, true); // skip until ) or ;
92      return CurrAttr;
93    }
94    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
95      SkipUntil(tok::r_paren, true); // skip until ) or ;
96      return CurrAttr;
97    }
98    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
99    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
100           Tok.is(tok::comma)) {
101
102      if (Tok.is(tok::comma)) {
103        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
104        ConsumeToken();
105        continue;
106      }
107      // we have an identifier or declaration specifier (const, int, etc.)
108      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
109      SourceLocation AttrNameLoc = ConsumeToken();
110
111      // check if we have a "paramterized" attribute
112      if (Tok.is(tok::l_paren)) {
113        ConsumeParen(); // ignore the left paren loc for now
114
115        if (Tok.is(tok::identifier)) {
116          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
117          SourceLocation ParmLoc = ConsumeToken();
118
119          if (Tok.is(tok::r_paren)) {
120            // __attribute__(( mode(byte) ))
121            ConsumeParen(); // ignore the right paren loc for now
122            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
123                                         ParmName, ParmLoc, 0, 0, CurrAttr);
124          } else if (Tok.is(tok::comma)) {
125            ConsumeToken();
126            // __attribute__(( format(printf, 1, 2) ))
127            ExprVector ArgExprs(Actions);
128            bool ArgExprsOk = true;
129
130            // now parse the non-empty comma separated list of expressions
131            while (1) {
132              OwningExprResult ArgExpr(ParseAssignmentExpression());
133              if (ArgExpr.isInvalid()) {
134                ArgExprsOk = false;
135                SkipUntil(tok::r_paren);
136                break;
137              } else {
138                ArgExprs.push_back(ArgExpr.release());
139              }
140              if (Tok.isNot(tok::comma))
141                break;
142              ConsumeToken(); // Eat the comma, move to the next argument
143            }
144            if (ArgExprsOk && Tok.is(tok::r_paren)) {
145              ConsumeParen(); // ignore the right paren loc for now
146              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
147                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
148            }
149          }
150        } else { // not an identifier
151          // parse a possibly empty comma separated list of expressions
152          if (Tok.is(tok::r_paren)) {
153            // __attribute__(( nonnull() ))
154            ConsumeParen(); // ignore the right paren loc for now
155            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
156                                         0, SourceLocation(), 0, 0, CurrAttr);
157          } else {
158            // __attribute__(( aligned(16) ))
159            ExprVector ArgExprs(Actions);
160            bool ArgExprsOk = true;
161
162            // now parse the list of expressions
163            while (1) {
164              OwningExprResult ArgExpr(ParseAssignmentExpression());
165              if (ArgExpr.isInvalid()) {
166                ArgExprsOk = false;
167                SkipUntil(tok::r_paren);
168                break;
169              } else {
170                ArgExprs.push_back(ArgExpr.release());
171              }
172              if (Tok.isNot(tok::comma))
173                break;
174              ConsumeToken(); // Eat the comma, move to the next argument
175            }
176            // Match the ')'.
177            if (ArgExprsOk && Tok.is(tok::r_paren)) {
178              ConsumeParen(); // ignore the right paren loc for now
179              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
180                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
181                           CurrAttr);
182            }
183          }
184        }
185      } else {
186        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
187                                     0, SourceLocation(), 0, 0, CurrAttr);
188      }
189    }
190    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
191      SkipUntil(tok::r_paren, false);
192    SourceLocation Loc = Tok.getLocation();;
193    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
194      SkipUntil(tok::r_paren, false);
195    }
196    if (EndLoc)
197      *EndLoc = Loc;
198  }
199  return CurrAttr;
200}
201
202/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
203/// routine is called to skip/ignore tokens that comprise the MS declspec.
204void Parser::FuzzyParseMicrosoftDeclSpec() {
205  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
206  ConsumeToken();
207  if (Tok.is(tok::l_paren)) {
208    unsigned short savedParenCount = ParenCount;
209    do {
210      ConsumeAnyToken();
211    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
212  }
213  return;
214}
215
216/// ParseDeclaration - Parse a full 'declaration', which consists of
217/// declaration-specifiers, some number of declarators, and a semicolon.
218/// 'Context' should be a Declarator::TheContext value.
219///
220///       declaration: [C99 6.7]
221///         block-declaration ->
222///           simple-declaration
223///           others                   [FIXME]
224/// [C++]   template-declaration
225/// [C++]   namespace-definition
226/// [C++]   using-directive
227/// [C++]   using-declaration [TODO]
228/// [C++0x] static_assert-declaration
229///         others... [FIXME]
230///
231Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
232  switch (Tok.getKind()) {
233  case tok::kw_export:
234  case tok::kw_template:
235    return ParseTemplateDeclarationOrSpecialization(Context);
236  case tok::kw_namespace:
237    return ParseNamespace(Context);
238  case tok::kw_using:
239    return ParseUsingDirectiveOrDeclaration(Context);
240  case tok::kw_static_assert:
241    return ParseStaticAssertDeclaration();
242  default:
243    return ParseSimpleDeclaration(Context);
244  }
245}
246
247///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
248///         declaration-specifiers init-declarator-list[opt] ';'
249///[C90/C++]init-declarator-list ';'                             [TODO]
250/// [OMP]   threadprivate-directive                              [TODO]
251Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
252  // Parse the common declaration-specifiers piece.
253  DeclSpec DS;
254  ParseDeclarationSpecifiers(DS);
255
256  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
257  // declaration-specifiers init-declarator-list[opt] ';'
258  if (Tok.is(tok::semi)) {
259    ConsumeToken();
260    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
261  }
262
263  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
264  ParseDeclarator(DeclaratorInfo);
265
266  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
267}
268
269
270/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
271/// parsing 'declaration-specifiers declarator'.  This method is split out this
272/// way to handle the ambiguity between top-level function-definitions and
273/// declarations.
274///
275///       init-declarator-list: [C99 6.7]
276///         init-declarator
277///         init-declarator-list ',' init-declarator
278///       init-declarator: [C99 6.7]
279///         declarator
280///         declarator '=' initializer
281/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
282/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
283/// [C++]   declarator initializer[opt]
284///
285/// [C++] initializer:
286/// [C++]   '=' initializer-clause
287/// [C++]   '(' expression-list ')'
288/// [C++0x] '=' 'default'                                                [TODO]
289/// [C++0x] '=' 'delete'
290///
291/// According to the standard grammar, =default and =delete are function
292/// definitions, but that definitely doesn't fit with the parser here.
293///
294Parser::DeclTy *Parser::
295ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
296
297  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
298  // that they can be chained properly if the actions want this.
299  Parser::DeclTy *LastDeclInGroup = 0;
300
301  // At this point, we know that it is not a function definition.  Parse the
302  // rest of the init-declarator-list.
303  while (1) {
304    // If a simple-asm-expr is present, parse it.
305    if (Tok.is(tok::kw_asm)) {
306      SourceLocation Loc;
307      OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
308      if (AsmLabel.isInvalid()) {
309        SkipUntil(tok::semi);
310        return 0;
311      }
312
313      D.setAsmLabel(AsmLabel.release());
314      D.SetRangeEnd(Loc);
315    }
316
317    // If attributes are present, parse them.
318    if (Tok.is(tok::kw___attribute)) {
319      SourceLocation Loc;
320      AttributeList *AttrList = ParseAttributes(&Loc);
321      D.AddAttributes(AttrList, Loc);
322    }
323
324    // Inform the current actions module that we just parsed this declarator.
325    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
326
327    // Parse declarator '=' initializer.
328    if (Tok.is(tok::equal)) {
329      ConsumeToken();
330      if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
331        SourceLocation DelLoc = ConsumeToken();
332        Actions.SetDeclDeleted(LastDeclInGroup, DelLoc);
333      } else {
334        OwningExprResult Init(ParseInitializer());
335        if (Init.isInvalid()) {
336          SkipUntil(tok::semi);
337          return 0;
338        }
339        Actions.AddInitializerToDecl(LastDeclInGroup, move(Init));
340      }
341    } else if (Tok.is(tok::l_paren)) {
342      // Parse C++ direct initializer: '(' expression-list ')'
343      SourceLocation LParenLoc = ConsumeParen();
344      ExprVector Exprs(Actions);
345      CommaLocsTy CommaLocs;
346
347      bool InvalidExpr = false;
348      if (ParseExpressionList(Exprs, CommaLocs)) {
349        SkipUntil(tok::r_paren);
350        InvalidExpr = true;
351      }
352      // Match the ')'.
353      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
354
355      if (!InvalidExpr) {
356        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
357               "Unexpected number of commas!");
358        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
359                                              move_arg(Exprs),
360                                              &CommaLocs[0], RParenLoc);
361      }
362    } else {
363      Actions.ActOnUninitializedDecl(LastDeclInGroup);
364    }
365
366    // If we don't have a comma, it is either the end of the list (a ';') or an
367    // error, bail out.
368    if (Tok.isNot(tok::comma))
369      break;
370
371    // Consume the comma.
372    ConsumeToken();
373
374    // Parse the next declarator.
375    D.clear();
376
377    // Accept attributes in an init-declarator.  In the first declarator in a
378    // declaration, these would be part of the declspec.  In subsequent
379    // declarators, they become part of the declarator itself, so that they
380    // don't apply to declarators after *this* one.  Examples:
381    //    short __attribute__((common)) var;    -> declspec
382    //    short var __attribute__((common));    -> declarator
383    //    short x, __attribute__((common)) var;    -> declarator
384    if (Tok.is(tok::kw___attribute)) {
385      SourceLocation Loc;
386      AttributeList *AttrList = ParseAttributes(&Loc);
387      D.AddAttributes(AttrList, Loc);
388    }
389
390    ParseDeclarator(D);
391  }
392
393  if (Tok.is(tok::semi)) {
394    ConsumeToken();
395    // for(is key; in keys) is error.
396    if (D.getContext() == Declarator::ForContext && isTokIdentifier_in()) {
397      Diag(Tok, diag::err_parse_error);
398      return 0;
399    }
400    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
401  }
402
403  // If this is an ObjC2 for-each loop, this is a successful declarator
404  // parse.  The syntax for these looks like:
405  // 'for' '(' declaration 'in' expr ')' statement
406  if (D.getContext() == Declarator::ForContext && isTokIdentifier_in())
407    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
408
409  Diag(Tok, diag::err_parse_error);
410  // Skip to end of block or statement
411  SkipUntil(tok::r_brace, true, true);
412  if (Tok.is(tok::semi))
413    ConsumeToken();
414  return 0;
415}
416
417/// ParseSpecifierQualifierList
418///        specifier-qualifier-list:
419///          type-specifier specifier-qualifier-list[opt]
420///          type-qualifier specifier-qualifier-list[opt]
421/// [GNU]    attributes     specifier-qualifier-list[opt]
422///
423void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
424  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
425  /// parse declaration-specifiers and complain about extra stuff.
426  ParseDeclarationSpecifiers(DS);
427
428  // Validate declspec for type-name.
429  unsigned Specs = DS.getParsedSpecifiers();
430  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
431    Diag(Tok, diag::err_typename_requires_specqual);
432
433  // Issue diagnostic and remove storage class if present.
434  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
435    if (DS.getStorageClassSpecLoc().isValid())
436      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
437    else
438      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
439    DS.ClearStorageClassSpecs();
440  }
441
442  // Issue diagnostic and remove function specfier if present.
443  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
444    if (DS.isInlineSpecified())
445      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
446    if (DS.isVirtualSpecified())
447      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
448    if (DS.isExplicitSpecified())
449      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
450    DS.ClearFunctionSpecs();
451  }
452}
453
454/// ParseDeclarationSpecifiers
455///       declaration-specifiers: [C99 6.7]
456///         storage-class-specifier declaration-specifiers[opt]
457///         type-specifier declaration-specifiers[opt]
458/// [C99]   function-specifier declaration-specifiers[opt]
459/// [GNU]   attributes declaration-specifiers[opt]
460///
461///       storage-class-specifier: [C99 6.7.1]
462///         'typedef'
463///         'extern'
464///         'static'
465///         'auto'
466///         'register'
467/// [C++]   'mutable'
468/// [GNU]   '__thread'
469///       function-specifier: [C99 6.7.4]
470/// [C99]   'inline'
471/// [C++]   'virtual'
472/// [C++]   'explicit'
473///
474void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
475                                        TemplateParameterLists *TemplateParams,
476                                        AccessSpecifier AS){
477  DS.SetRangeStart(Tok.getLocation());
478  while (1) {
479    int isInvalid = false;
480    const char *PrevSpec = 0;
481    SourceLocation Loc = Tok.getLocation();
482
483    switch (Tok.getKind()) {
484    default:
485    DoneWithDeclSpec:
486      // If this is not a declaration specifier token, we're done reading decl
487      // specifiers.  First verify that DeclSpec's are consistent.
488      DS.Finish(Diags, PP.getSourceManager(), getLang());
489      return;
490
491    case tok::coloncolon: // ::foo::bar
492      // Annotate C++ scope specifiers.  If we get one, loop.
493      if (TryAnnotateCXXScopeToken())
494        continue;
495      goto DoneWithDeclSpec;
496
497    case tok::annot_cxxscope: {
498      if (DS.hasTypeSpecifier())
499        goto DoneWithDeclSpec;
500
501      // We are looking for a qualified typename.
502      Token Next = NextToken();
503      if (Next.is(tok::annot_template_id) &&
504          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
505          ->Kind == TNK_Class_template) {
506        // We have a qualified template-id, e.g., N::A<int>
507        CXXScopeSpec SS;
508        ParseOptionalCXXScopeSpecifier(SS);
509        assert(Tok.is(tok::annot_template_id) &&
510               "ParseOptionalCXXScopeSpecifier not working");
511        AnnotateTemplateIdTokenAsType(&SS);
512        continue;
513      }
514
515      if (Next.isNot(tok::identifier))
516        goto DoneWithDeclSpec;
517
518      CXXScopeSpec SS;
519      SS.setScopeRep(Tok.getAnnotationValue());
520      SS.setRange(Tok.getAnnotationRange());
521
522      // If the next token is the name of the class type that the C++ scope
523      // denotes, followed by a '(', then this is a constructor declaration.
524      // We're done with the decl-specifiers.
525      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
526                                     CurScope, &SS) &&
527          GetLookAheadToken(2).is(tok::l_paren))
528        goto DoneWithDeclSpec;
529
530      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
531                                            Next.getLocation(), CurScope, &SS);
532
533      if (TypeRep == 0)
534        goto DoneWithDeclSpec;
535
536      ConsumeToken(); // The C++ scope.
537
538      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
539                                     TypeRep);
540      if (isInvalid)
541        break;
542
543      DS.SetRangeEnd(Tok.getLocation());
544      ConsumeToken(); // The typename.
545
546      continue;
547    }
548
549    case tok::annot_typename: {
550      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
551                                     Tok.getAnnotationValue());
552      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
553      ConsumeToken(); // The typename
554
555      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
556      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
557      // Objective-C interface.  If we don't have Objective-C or a '<', this is
558      // just a normal reference to a typedef name.
559      if (!Tok.is(tok::less) || !getLang().ObjC1)
560        continue;
561
562      SourceLocation EndProtoLoc;
563      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
564      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
565      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
566
567      DS.SetRangeEnd(EndProtoLoc);
568      continue;
569    }
570
571      // typedef-name
572    case tok::identifier: {
573      // In C++, check to see if this is a scope specifier like foo::bar::, if
574      // so handle it as such.  This is important for ctor parsing.
575      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
576        continue;
577
578      // This identifier can only be a typedef name if we haven't already seen
579      // a type-specifier.  Without this check we misparse:
580      //  typedef int X; struct Y { short X; };  as 'short int'.
581      if (DS.hasTypeSpecifier())
582        goto DoneWithDeclSpec;
583
584      // It has to be available as a typedef too!
585      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
586                                            Tok.getLocation(), CurScope);
587
588      if (TypeRep == 0)
589        goto DoneWithDeclSpec;
590
591      // C++: If the identifier is actually the name of the class type
592      // being defined and the next token is a '(', then this is a
593      // constructor declaration. We're done with the decl-specifiers
594      // and will treat this token as an identifier.
595      if (getLang().CPlusPlus &&
596          CurScope->isClassScope() &&
597          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
598          NextToken().getKind() == tok::l_paren)
599        goto DoneWithDeclSpec;
600
601      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
602                                     TypeRep);
603      if (isInvalid)
604        break;
605
606      DS.SetRangeEnd(Tok.getLocation());
607      ConsumeToken(); // The identifier
608
609      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
610      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
611      // Objective-C interface.  If we don't have Objective-C or a '<', this is
612      // just a normal reference to a typedef name.
613      if (!Tok.is(tok::less) || !getLang().ObjC1)
614        continue;
615
616      SourceLocation EndProtoLoc;
617      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
618      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
619      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
620
621      DS.SetRangeEnd(EndProtoLoc);
622
623      // Need to support trailing type qualifiers (e.g. "id<p> const").
624      // If a type specifier follows, it will be diagnosed elsewhere.
625      continue;
626    }
627
628      // type-name
629    case tok::annot_template_id: {
630      TemplateIdAnnotation *TemplateId
631        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
632      if (TemplateId->Kind != TNK_Class_template) {
633        // This template-id does not refer to a type name, so we're
634        // done with the type-specifiers.
635        goto DoneWithDeclSpec;
636      }
637
638      // Turn the template-id annotation token into a type annotation
639      // token, then try again to parse it as a type-specifier.
640      if (AnnotateTemplateIdTokenAsType())
641        DS.SetTypeSpecError();
642
643      continue;
644    }
645
646    // GNU attributes support.
647    case tok::kw___attribute:
648      DS.AddAttributes(ParseAttributes());
649      continue;
650
651    // Microsoft declspec support.
652    case tok::kw___declspec:
653      if (!PP.getLangOptions().Microsoft)
654        goto DoneWithDeclSpec;
655      FuzzyParseMicrosoftDeclSpec();
656      continue;
657
658    // Microsoft single token adornments.
659    case tok::kw___forceinline:
660    case tok::kw___w64:
661    case tok::kw___cdecl:
662    case tok::kw___stdcall:
663    case tok::kw___fastcall:
664      if (!PP.getLangOptions().Microsoft)
665        goto DoneWithDeclSpec;
666      // Just ignore it.
667      break;
668
669    // storage-class-specifier
670    case tok::kw_typedef:
671      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
672      break;
673    case tok::kw_extern:
674      if (DS.isThreadSpecified())
675        Diag(Tok, diag::ext_thread_before) << "extern";
676      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
677      break;
678    case tok::kw___private_extern__:
679      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
680                                         PrevSpec);
681      break;
682    case tok::kw_static:
683      if (DS.isThreadSpecified())
684        Diag(Tok, diag::ext_thread_before) << "static";
685      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
686      break;
687    case tok::kw_auto:
688      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
689      break;
690    case tok::kw_register:
691      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
692      break;
693    case tok::kw_mutable:
694      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
695      break;
696    case tok::kw___thread:
697      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
698      break;
699
700      continue;
701
702    // function-specifier
703    case tok::kw_inline:
704      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
705      break;
706    case tok::kw_virtual:
707      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
708      break;
709    case tok::kw_explicit:
710      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
711      break;
712
713    // type-specifier
714    case tok::kw_short:
715      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
716      break;
717    case tok::kw_long:
718      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
719        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
720      else
721        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
722      break;
723    case tok::kw_signed:
724      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
725      break;
726    case tok::kw_unsigned:
727      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
728      break;
729    case tok::kw__Complex:
730      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
731      break;
732    case tok::kw__Imaginary:
733      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
734      break;
735    case tok::kw_void:
736      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
737      break;
738    case tok::kw_char:
739      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
740      break;
741    case tok::kw_int:
742      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
743      break;
744    case tok::kw_float:
745      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
746      break;
747    case tok::kw_double:
748      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
749      break;
750    case tok::kw_wchar_t:
751      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
752      break;
753    case tok::kw_bool:
754    case tok::kw__Bool:
755      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
756      break;
757    case tok::kw__Decimal32:
758      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
759      break;
760    case tok::kw__Decimal64:
761      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
762      break;
763    case tok::kw__Decimal128:
764      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
765      break;
766
767    // class-specifier:
768    case tok::kw_class:
769    case tok::kw_struct:
770    case tok::kw_union:
771      ParseClassSpecifier(DS, TemplateParams, AS);
772      continue;
773
774    // enum-specifier:
775    case tok::kw_enum:
776      ParseEnumSpecifier(DS, AS);
777      continue;
778
779    // cv-qualifier:
780    case tok::kw_const:
781      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec,getLang())*2;
782      break;
783    case tok::kw_volatile:
784      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
785                                 getLang())*2;
786      break;
787    case tok::kw_restrict:
788      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
789                                 getLang())*2;
790      break;
791
792    // C++ typename-specifier:
793    case tok::kw_typename:
794      if (TryAnnotateTypeOrScopeToken())
795        continue;
796      break;
797
798    // GNU typeof support.
799    case tok::kw_typeof:
800      ParseTypeofSpecifier(DS);
801      continue;
802
803    case tok::less:
804      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
805      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
806      // but we support it.
807      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
808        goto DoneWithDeclSpec;
809
810      {
811        SourceLocation EndProtoLoc;
812        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
813        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
814        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
815        DS.SetRangeEnd(EndProtoLoc);
816
817        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
818          << SourceRange(Loc, EndProtoLoc);
819        // Need to support trailing type qualifiers (e.g. "id<p> const").
820        // If a type specifier follows, it will be diagnosed elsewhere.
821        continue;
822      }
823    }
824    // If the specifier combination wasn't legal, issue a diagnostic.
825    if (isInvalid) {
826      assert(PrevSpec && "Method did not return previous specifier!");
827      // Pick between error or extwarn.
828      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
829                                       : diag::ext_duplicate_declspec;
830      Diag(Tok, DiagID) << PrevSpec;
831    }
832    DS.SetRangeEnd(Tok.getLocation());
833    ConsumeToken();
834  }
835}
836
837/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
838/// primarily follow the C++ grammar with additions for C99 and GNU,
839/// which together subsume the C grammar. Note that the C++
840/// type-specifier also includes the C type-qualifier (for const,
841/// volatile, and C99 restrict). Returns true if a type-specifier was
842/// found (and parsed), false otherwise.
843///
844///       type-specifier: [C++ 7.1.5]
845///         simple-type-specifier
846///         class-specifier
847///         enum-specifier
848///         elaborated-type-specifier  [TODO]
849///         cv-qualifier
850///
851///       cv-qualifier: [C++ 7.1.5.1]
852///         'const'
853///         'volatile'
854/// [C99]   'restrict'
855///
856///       simple-type-specifier: [ C++ 7.1.5.2]
857///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
858///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
859///         'char'
860///         'wchar_t'
861///         'bool'
862///         'short'
863///         'int'
864///         'long'
865///         'signed'
866///         'unsigned'
867///         'float'
868///         'double'
869///         'void'
870/// [C99]   '_Bool'
871/// [C99]   '_Complex'
872/// [C99]   '_Imaginary'  // Removed in TC2?
873/// [GNU]   '_Decimal32'
874/// [GNU]   '_Decimal64'
875/// [GNU]   '_Decimal128'
876/// [GNU]   typeof-specifier
877/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
878/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
879bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, int& isInvalid,
880                                        const char *&PrevSpec,
881                                        TemplateParameterLists *TemplateParams){
882  SourceLocation Loc = Tok.getLocation();
883
884  switch (Tok.getKind()) {
885  case tok::identifier:   // foo::bar
886  case tok::kw_typename:  // typename foo::bar
887    // Annotate typenames and C++ scope specifiers.  If we get one, just
888    // recurse to handle whatever we get.
889    if (TryAnnotateTypeOrScopeToken())
890      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
891    // Otherwise, not a type specifier.
892    return false;
893  case tok::coloncolon:   // ::foo::bar
894    if (NextToken().is(tok::kw_new) ||    // ::new
895        NextToken().is(tok::kw_delete))   // ::delete
896      return false;
897
898    // Annotate typenames and C++ scope specifiers.  If we get one, just
899    // recurse to handle whatever we get.
900    if (TryAnnotateTypeOrScopeToken())
901      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec,TemplateParams);
902    // Otherwise, not a type specifier.
903    return false;
904
905  // simple-type-specifier:
906  case tok::annot_typename: {
907    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
908                                   Tok.getAnnotationValue());
909    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
910    ConsumeToken(); // The typename
911
912    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
913    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
914    // Objective-C interface.  If we don't have Objective-C or a '<', this is
915    // just a normal reference to a typedef name.
916    if (!Tok.is(tok::less) || !getLang().ObjC1)
917      return true;
918
919    SourceLocation EndProtoLoc;
920    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
921    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
922    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
923
924    DS.SetRangeEnd(EndProtoLoc);
925    return true;
926  }
927
928  case tok::kw_short:
929    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
930    break;
931  case tok::kw_long:
932    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
933      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
934    else
935      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
936    break;
937  case tok::kw_signed:
938    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
939    break;
940  case tok::kw_unsigned:
941    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
942    break;
943  case tok::kw__Complex:
944    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
945    break;
946  case tok::kw__Imaginary:
947    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
948    break;
949  case tok::kw_void:
950    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
951    break;
952  case tok::kw_char:
953    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
954    break;
955  case tok::kw_int:
956    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
957    break;
958  case tok::kw_float:
959    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
960    break;
961  case tok::kw_double:
962    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
963    break;
964  case tok::kw_wchar_t:
965    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
966    break;
967  case tok::kw_bool:
968  case tok::kw__Bool:
969    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
970    break;
971  case tok::kw__Decimal32:
972    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
973    break;
974  case tok::kw__Decimal64:
975    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
976    break;
977  case tok::kw__Decimal128:
978    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
979    break;
980
981  // class-specifier:
982  case tok::kw_class:
983  case tok::kw_struct:
984  case tok::kw_union:
985    ParseClassSpecifier(DS, TemplateParams);
986    return true;
987
988  // enum-specifier:
989  case tok::kw_enum:
990    ParseEnumSpecifier(DS);
991    return true;
992
993  // cv-qualifier:
994  case tok::kw_const:
995    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
996                               getLang())*2;
997    break;
998  case tok::kw_volatile:
999    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1000                               getLang())*2;
1001    break;
1002  case tok::kw_restrict:
1003    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1004                               getLang())*2;
1005    break;
1006
1007  // GNU typeof support.
1008  case tok::kw_typeof:
1009    ParseTypeofSpecifier(DS);
1010    return true;
1011
1012  case tok::kw___cdecl:
1013  case tok::kw___stdcall:
1014  case tok::kw___fastcall:
1015    if (!PP.getLangOptions().Microsoft) return false;
1016    ConsumeToken();
1017    return true;
1018
1019  default:
1020    // Not a type-specifier; do nothing.
1021    return false;
1022  }
1023
1024  // If the specifier combination wasn't legal, issue a diagnostic.
1025  if (isInvalid) {
1026    assert(PrevSpec && "Method did not return previous specifier!");
1027    // Pick between error or extwarn.
1028    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1029                                     : diag::ext_duplicate_declspec;
1030    Diag(Tok, DiagID) << PrevSpec;
1031  }
1032  DS.SetRangeEnd(Tok.getLocation());
1033  ConsumeToken(); // whatever we parsed above.
1034  return true;
1035}
1036
1037/// ParseStructDeclaration - Parse a struct declaration without the terminating
1038/// semicolon.
1039///
1040///       struct-declaration:
1041///         specifier-qualifier-list struct-declarator-list
1042/// [GNU]   __extension__ struct-declaration
1043/// [GNU]   specifier-qualifier-list
1044///       struct-declarator-list:
1045///         struct-declarator
1046///         struct-declarator-list ',' struct-declarator
1047/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1048///       struct-declarator:
1049///         declarator
1050/// [GNU]   declarator attributes[opt]
1051///         declarator[opt] ':' constant-expression
1052/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1053///
1054void Parser::
1055ParseStructDeclaration(DeclSpec &DS,
1056                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1057  if (Tok.is(tok::kw___extension__)) {
1058    // __extension__ silences extension warnings in the subexpression.
1059    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1060    ConsumeToken();
1061    return ParseStructDeclaration(DS, Fields);
1062  }
1063
1064  // Parse the common specifier-qualifiers-list piece.
1065  SourceLocation DSStart = Tok.getLocation();
1066  ParseSpecifierQualifierList(DS);
1067
1068  // If there are no declarators, this is a free-standing declaration
1069  // specifier. Let the actions module cope with it.
1070  if (Tok.is(tok::semi)) {
1071    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1072    return;
1073  }
1074
1075  // Read struct-declarators until we find the semicolon.
1076  Fields.push_back(FieldDeclarator(DS));
1077  while (1) {
1078    FieldDeclarator &DeclaratorInfo = Fields.back();
1079
1080    /// struct-declarator: declarator
1081    /// struct-declarator: declarator[opt] ':' constant-expression
1082    if (Tok.isNot(tok::colon))
1083      ParseDeclarator(DeclaratorInfo.D);
1084
1085    if (Tok.is(tok::colon)) {
1086      ConsumeToken();
1087      OwningExprResult Res(ParseConstantExpression());
1088      if (Res.isInvalid())
1089        SkipUntil(tok::semi, true, true);
1090      else
1091        DeclaratorInfo.BitfieldSize = Res.release();
1092    }
1093
1094    // If attributes exist after the declarator, parse them.
1095    if (Tok.is(tok::kw___attribute)) {
1096      SourceLocation Loc;
1097      AttributeList *AttrList = ParseAttributes(&Loc);
1098      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1099    }
1100
1101    // If we don't have a comma, it is either the end of the list (a ';')
1102    // or an error, bail out.
1103    if (Tok.isNot(tok::comma))
1104      return;
1105
1106    // Consume the comma.
1107    ConsumeToken();
1108
1109    // Parse the next declarator.
1110    Fields.push_back(FieldDeclarator(DS));
1111
1112    // Attributes are only allowed on the second declarator.
1113    if (Tok.is(tok::kw___attribute)) {
1114      SourceLocation Loc;
1115      AttributeList *AttrList = ParseAttributes(&Loc);
1116      Fields.back().D.AddAttributes(AttrList, Loc);
1117    }
1118  }
1119}
1120
1121/// ParseStructUnionBody
1122///       struct-contents:
1123///         struct-declaration-list
1124/// [EXT]   empty
1125/// [GNU]   "struct-declaration-list" without terminatoring ';'
1126///       struct-declaration-list:
1127///         struct-declaration
1128///         struct-declaration-list struct-declaration
1129/// [OBC]   '@' 'defs' '(' class-name ')'
1130///
1131void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1132                                  unsigned TagType, DeclTy *TagDecl) {
1133  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1134                                        PP.getSourceManager(),
1135                                        "parsing struct/union body");
1136
1137  SourceLocation LBraceLoc = ConsumeBrace();
1138
1139  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1140  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1141
1142  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1143  // C++.
1144  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1145    Diag(Tok, diag::ext_empty_struct_union_enum)
1146      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1147
1148  llvm::SmallVector<DeclTy*, 32> FieldDecls;
1149  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1150
1151  // While we still have something to read, read the declarations in the struct.
1152  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1153    // Each iteration of this loop reads one struct-declaration.
1154
1155    // Check for extraneous top-level semicolon.
1156    if (Tok.is(tok::semi)) {
1157      Diag(Tok, diag::ext_extra_struct_semi);
1158      ConsumeToken();
1159      continue;
1160    }
1161
1162    // Parse all the comma separated declarators.
1163    DeclSpec DS;
1164    FieldDeclarators.clear();
1165    if (!Tok.is(tok::at)) {
1166      ParseStructDeclaration(DS, FieldDeclarators);
1167
1168      // Convert them all to fields.
1169      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1170        FieldDeclarator &FD = FieldDeclarators[i];
1171        // Install the declarator into the current TagDecl.
1172        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
1173                                           DS.getSourceRange().getBegin(),
1174                                           FD.D, FD.BitfieldSize);
1175        FieldDecls.push_back(Field);
1176      }
1177    } else { // Handle @defs
1178      ConsumeToken();
1179      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1180        Diag(Tok, diag::err_unexpected_at);
1181        SkipUntil(tok::semi, true, true);
1182        continue;
1183      }
1184      ConsumeToken();
1185      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1186      if (!Tok.is(tok::identifier)) {
1187        Diag(Tok, diag::err_expected_ident);
1188        SkipUntil(tok::semi, true, true);
1189        continue;
1190      }
1191      llvm::SmallVector<DeclTy*, 16> Fields;
1192      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1193                        Tok.getIdentifierInfo(), Fields);
1194      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1195      ConsumeToken();
1196      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1197    }
1198
1199    if (Tok.is(tok::semi)) {
1200      ConsumeToken();
1201    } else if (Tok.is(tok::r_brace)) {
1202      Diag(Tok, diag::ext_expected_semi_decl_list);
1203      break;
1204    } else {
1205      Diag(Tok, diag::err_expected_semi_decl_list);
1206      // Skip to end of block or statement
1207      SkipUntil(tok::r_brace, true, true);
1208    }
1209  }
1210
1211  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1212
1213  AttributeList *AttrList = 0;
1214  // If attributes exist after struct contents, parse them.
1215  if (Tok.is(tok::kw___attribute))
1216    AttrList = ParseAttributes();
1217
1218  Actions.ActOnFields(CurScope,
1219                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1220                      LBraceLoc, RBraceLoc,
1221                      AttrList);
1222  StructScope.Exit();
1223  Actions.ActOnTagFinishDefinition(CurScope, TagDecl);
1224}
1225
1226
1227/// ParseEnumSpecifier
1228///       enum-specifier: [C99 6.7.2.2]
1229///         'enum' identifier[opt] '{' enumerator-list '}'
1230///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1231/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1232///                                                 '}' attributes[opt]
1233///         'enum' identifier
1234/// [GNU]   'enum' attributes[opt] identifier
1235///
1236/// [C++] elaborated-type-specifier:
1237/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1238///
1239void Parser::ParseEnumSpecifier(DeclSpec &DS, AccessSpecifier AS) {
1240  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1241  SourceLocation StartLoc = ConsumeToken();
1242
1243  // Parse the tag portion of this.
1244
1245  AttributeList *Attr = 0;
1246  // If attributes exist after tag, parse them.
1247  if (Tok.is(tok::kw___attribute))
1248    Attr = ParseAttributes();
1249
1250  CXXScopeSpec SS;
1251  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1252    if (Tok.isNot(tok::identifier)) {
1253      Diag(Tok, diag::err_expected_ident);
1254      if (Tok.isNot(tok::l_brace)) {
1255        // Has no name and is not a definition.
1256        // Skip the rest of this declarator, up until the comma or semicolon.
1257        SkipUntil(tok::comma, true);
1258        return;
1259      }
1260    }
1261  }
1262
1263  // Must have either 'enum name' or 'enum {...}'.
1264  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1265    Diag(Tok, diag::err_expected_ident_lbrace);
1266
1267    // Skip the rest of this declarator, up until the comma or semicolon.
1268    SkipUntil(tok::comma, true);
1269    return;
1270  }
1271
1272  // If an identifier is present, consume and remember it.
1273  IdentifierInfo *Name = 0;
1274  SourceLocation NameLoc;
1275  if (Tok.is(tok::identifier)) {
1276    Name = Tok.getIdentifierInfo();
1277    NameLoc = ConsumeToken();
1278  }
1279
1280  // There are three options here.  If we have 'enum foo;', then this is a
1281  // forward declaration.  If we have 'enum foo {...' then this is a
1282  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1283  //
1284  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1285  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1286  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1287  //
1288  Action::TagKind TK;
1289  if (Tok.is(tok::l_brace))
1290    TK = Action::TK_Definition;
1291  else if (Tok.is(tok::semi))
1292    TK = Action::TK_Declaration;
1293  else
1294    TK = Action::TK_Reference;
1295  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1296                                     SS, Name, NameLoc, Attr, AS);
1297
1298  if (Tok.is(tok::l_brace))
1299    ParseEnumBody(StartLoc, TagDecl);
1300
1301  // TODO: semantic analysis on the declspec for enums.
1302  const char *PrevSpec = 0;
1303  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1304    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1305}
1306
1307/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1308///       enumerator-list:
1309///         enumerator
1310///         enumerator-list ',' enumerator
1311///       enumerator:
1312///         enumeration-constant
1313///         enumeration-constant '=' constant-expression
1314///       enumeration-constant:
1315///         identifier
1316///
1317void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1318  // Enter the scope of the enum body and start the definition.
1319  ParseScope EnumScope(this, Scope::DeclScope);
1320  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1321
1322  SourceLocation LBraceLoc = ConsumeBrace();
1323
1324  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1325  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1326    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1327
1328  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1329
1330  DeclTy *LastEnumConstDecl = 0;
1331
1332  // Parse the enumerator-list.
1333  while (Tok.is(tok::identifier)) {
1334    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1335    SourceLocation IdentLoc = ConsumeToken();
1336
1337    SourceLocation EqualLoc;
1338    OwningExprResult AssignedVal(Actions);
1339    if (Tok.is(tok::equal)) {
1340      EqualLoc = ConsumeToken();
1341      AssignedVal = ParseConstantExpression();
1342      if (AssignedVal.isInvalid())
1343        SkipUntil(tok::comma, tok::r_brace, true, true);
1344    }
1345
1346    // Install the enumerator constant into EnumDecl.
1347    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1348                                                      LastEnumConstDecl,
1349                                                      IdentLoc, Ident,
1350                                                      EqualLoc,
1351                                                      AssignedVal.release());
1352    EnumConstantDecls.push_back(EnumConstDecl);
1353    LastEnumConstDecl = EnumConstDecl;
1354
1355    if (Tok.isNot(tok::comma))
1356      break;
1357    SourceLocation CommaLoc = ConsumeToken();
1358
1359    if (Tok.isNot(tok::identifier) && !getLang().C99)
1360      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1361  }
1362
1363  // Eat the }.
1364  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1365
1366  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1367                        EnumConstantDecls.size());
1368
1369  DeclTy *AttrList = 0;
1370  // If attributes exist after the identifier list, parse them.
1371  if (Tok.is(tok::kw___attribute))
1372    AttrList = ParseAttributes(); // FIXME: where do they do?
1373
1374  EnumScope.Exit();
1375  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl);
1376}
1377
1378/// isTypeSpecifierQualifier - Return true if the current token could be the
1379/// start of a type-qualifier-list.
1380bool Parser::isTypeQualifier() const {
1381  switch (Tok.getKind()) {
1382  default: return false;
1383    // type-qualifier
1384  case tok::kw_const:
1385  case tok::kw_volatile:
1386  case tok::kw_restrict:
1387    return true;
1388  }
1389}
1390
1391/// isTypeSpecifierQualifier - Return true if the current token could be the
1392/// start of a specifier-qualifier-list.
1393bool Parser::isTypeSpecifierQualifier() {
1394  switch (Tok.getKind()) {
1395  default: return false;
1396
1397  case tok::identifier:   // foo::bar
1398  case tok::kw_typename:  // typename T::type
1399    // Annotate typenames and C++ scope specifiers.  If we get one, just
1400    // recurse to handle whatever we get.
1401    if (TryAnnotateTypeOrScopeToken())
1402      return isTypeSpecifierQualifier();
1403    // Otherwise, not a type specifier.
1404    return false;
1405
1406  case tok::coloncolon:   // ::foo::bar
1407    if (NextToken().is(tok::kw_new) ||    // ::new
1408        NextToken().is(tok::kw_delete))   // ::delete
1409      return false;
1410
1411    // Annotate typenames and C++ scope specifiers.  If we get one, just
1412    // recurse to handle whatever we get.
1413    if (TryAnnotateTypeOrScopeToken())
1414      return isTypeSpecifierQualifier();
1415    // Otherwise, not a type specifier.
1416    return false;
1417
1418    // GNU attributes support.
1419  case tok::kw___attribute:
1420    // GNU typeof support.
1421  case tok::kw_typeof:
1422
1423    // type-specifiers
1424  case tok::kw_short:
1425  case tok::kw_long:
1426  case tok::kw_signed:
1427  case tok::kw_unsigned:
1428  case tok::kw__Complex:
1429  case tok::kw__Imaginary:
1430  case tok::kw_void:
1431  case tok::kw_char:
1432  case tok::kw_wchar_t:
1433  case tok::kw_int:
1434  case tok::kw_float:
1435  case tok::kw_double:
1436  case tok::kw_bool:
1437  case tok::kw__Bool:
1438  case tok::kw__Decimal32:
1439  case tok::kw__Decimal64:
1440  case tok::kw__Decimal128:
1441
1442    // struct-or-union-specifier (C99) or class-specifier (C++)
1443  case tok::kw_class:
1444  case tok::kw_struct:
1445  case tok::kw_union:
1446    // enum-specifier
1447  case tok::kw_enum:
1448
1449    // type-qualifier
1450  case tok::kw_const:
1451  case tok::kw_volatile:
1452  case tok::kw_restrict:
1453
1454    // typedef-name
1455  case tok::annot_typename:
1456    return true;
1457
1458    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1459  case tok::less:
1460    return getLang().ObjC1;
1461
1462  case tok::kw___cdecl:
1463  case tok::kw___stdcall:
1464  case tok::kw___fastcall:
1465    return PP.getLangOptions().Microsoft;
1466  }
1467}
1468
1469/// isDeclarationSpecifier() - Return true if the current token is part of a
1470/// declaration specifier.
1471bool Parser::isDeclarationSpecifier() {
1472  switch (Tok.getKind()) {
1473  default: return false;
1474
1475  case tok::identifier:   // foo::bar
1476    // Unfortunate hack to support "Class.factoryMethod" notation.
1477    if (getLang().ObjC1 && NextToken().is(tok::period))
1478      return false;
1479    // Fall through
1480
1481  case tok::kw_typename: // typename T::type
1482    // Annotate typenames and C++ scope specifiers.  If we get one, just
1483    // recurse to handle whatever we get.
1484    if (TryAnnotateTypeOrScopeToken())
1485      return isDeclarationSpecifier();
1486    // Otherwise, not a declaration specifier.
1487    return false;
1488  case tok::coloncolon:   // ::foo::bar
1489    if (NextToken().is(tok::kw_new) ||    // ::new
1490        NextToken().is(tok::kw_delete))   // ::delete
1491      return false;
1492
1493    // Annotate typenames and C++ scope specifiers.  If we get one, just
1494    // recurse to handle whatever we get.
1495    if (TryAnnotateTypeOrScopeToken())
1496      return isDeclarationSpecifier();
1497    // Otherwise, not a declaration specifier.
1498    return false;
1499
1500    // storage-class-specifier
1501  case tok::kw_typedef:
1502  case tok::kw_extern:
1503  case tok::kw___private_extern__:
1504  case tok::kw_static:
1505  case tok::kw_auto:
1506  case tok::kw_register:
1507  case tok::kw___thread:
1508
1509    // type-specifiers
1510  case tok::kw_short:
1511  case tok::kw_long:
1512  case tok::kw_signed:
1513  case tok::kw_unsigned:
1514  case tok::kw__Complex:
1515  case tok::kw__Imaginary:
1516  case tok::kw_void:
1517  case tok::kw_char:
1518  case tok::kw_wchar_t:
1519  case tok::kw_int:
1520  case tok::kw_float:
1521  case tok::kw_double:
1522  case tok::kw_bool:
1523  case tok::kw__Bool:
1524  case tok::kw__Decimal32:
1525  case tok::kw__Decimal64:
1526  case tok::kw__Decimal128:
1527
1528    // struct-or-union-specifier (C99) or class-specifier (C++)
1529  case tok::kw_class:
1530  case tok::kw_struct:
1531  case tok::kw_union:
1532    // enum-specifier
1533  case tok::kw_enum:
1534
1535    // type-qualifier
1536  case tok::kw_const:
1537  case tok::kw_volatile:
1538  case tok::kw_restrict:
1539
1540    // function-specifier
1541  case tok::kw_inline:
1542  case tok::kw_virtual:
1543  case tok::kw_explicit:
1544
1545    // typedef-name
1546  case tok::annot_typename:
1547
1548    // GNU typeof support.
1549  case tok::kw_typeof:
1550
1551    // GNU attributes.
1552  case tok::kw___attribute:
1553    return true;
1554
1555    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1556  case tok::less:
1557    return getLang().ObjC1;
1558
1559  case tok::kw___declspec:
1560  case tok::kw___cdecl:
1561  case tok::kw___stdcall:
1562  case tok::kw___fastcall:
1563    return PP.getLangOptions().Microsoft;
1564  }
1565}
1566
1567
1568/// ParseTypeQualifierListOpt
1569///       type-qualifier-list: [C99 6.7.5]
1570///         type-qualifier
1571/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1572///         type-qualifier-list type-qualifier
1573/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1574///
1575void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1576  while (1) {
1577    int isInvalid = false;
1578    const char *PrevSpec = 0;
1579    SourceLocation Loc = Tok.getLocation();
1580
1581    switch (Tok.getKind()) {
1582    case tok::kw_const:
1583      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1584                                 getLang())*2;
1585      break;
1586    case tok::kw_volatile:
1587      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1588                                 getLang())*2;
1589      break;
1590    case tok::kw_restrict:
1591      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1592                                 getLang())*2;
1593      break;
1594    case tok::kw___ptr64:
1595    case tok::kw___cdecl:
1596    case tok::kw___stdcall:
1597    case tok::kw___fastcall:
1598      if (!PP.getLangOptions().Microsoft)
1599        goto DoneWithTypeQuals;
1600      // Just ignore it.
1601      break;
1602    case tok::kw___attribute:
1603      if (AttributesAllowed) {
1604        DS.AddAttributes(ParseAttributes());
1605        continue; // do *not* consume the next token!
1606      }
1607      // otherwise, FALL THROUGH!
1608    default:
1609      DoneWithTypeQuals:
1610      // If this is not a type-qualifier token, we're done reading type
1611      // qualifiers.  First verify that DeclSpec's are consistent.
1612      DS.Finish(Diags, PP.getSourceManager(), getLang());
1613      return;
1614    }
1615
1616    // If the specifier combination wasn't legal, issue a diagnostic.
1617    if (isInvalid) {
1618      assert(PrevSpec && "Method did not return previous specifier!");
1619      // Pick between error or extwarn.
1620      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1621                                      : diag::ext_duplicate_declspec;
1622      Diag(Tok, DiagID) << PrevSpec;
1623    }
1624    ConsumeToken();
1625  }
1626}
1627
1628
1629/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1630///
1631void Parser::ParseDeclarator(Declarator &D) {
1632  /// This implements the 'declarator' production in the C grammar, then checks
1633  /// for well-formedness and issues diagnostics.
1634  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1635}
1636
1637/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1638/// is parsed by the function passed to it. Pass null, and the direct-declarator
1639/// isn't parsed at all, making this function effectively parse the C++
1640/// ptr-operator production.
1641///
1642///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1643/// [C]     pointer[opt] direct-declarator
1644/// [C++]   direct-declarator
1645/// [C++]   ptr-operator declarator
1646///
1647///       pointer: [C99 6.7.5]
1648///         '*' type-qualifier-list[opt]
1649///         '*' type-qualifier-list[opt] pointer
1650///
1651///       ptr-operator:
1652///         '*' cv-qualifier-seq[opt]
1653///         '&'
1654/// [C++0x] '&&'
1655/// [GNU]   '&' restrict[opt] attributes[opt]
1656/// [GNU?]  '&&' restrict[opt] attributes[opt]
1657///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
1658void Parser::ParseDeclaratorInternal(Declarator &D,
1659                                     DirectDeclParseFunction DirectDeclParser) {
1660
1661  // C++ member pointers start with a '::' or a nested-name.
1662  // Member pointers get special handling, since there's no place for the
1663  // scope spec in the generic path below.
1664  if (getLang().CPlusPlus &&
1665      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
1666       Tok.is(tok::annot_cxxscope))) {
1667    CXXScopeSpec SS;
1668    if (ParseOptionalCXXScopeSpecifier(SS)) {
1669      if(Tok.isNot(tok::star)) {
1670        // The scope spec really belongs to the direct-declarator.
1671        D.getCXXScopeSpec() = SS;
1672        if (DirectDeclParser)
1673          (this->*DirectDeclParser)(D);
1674        return;
1675      }
1676
1677      SourceLocation Loc = ConsumeToken();
1678      D.SetRangeEnd(Loc);
1679      DeclSpec DS;
1680      ParseTypeQualifierListOpt(DS);
1681      D.ExtendWithDeclSpec(DS);
1682
1683      // Recurse to parse whatever is left.
1684      ParseDeclaratorInternal(D, DirectDeclParser);
1685
1686      // Sema will have to catch (syntactically invalid) pointers into global
1687      // scope. It has to catch pointers into namespace scope anyway.
1688      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
1689                                                      Loc, DS.TakeAttributes()),
1690                    /* Don't replace range end. */SourceLocation());
1691      return;
1692    }
1693  }
1694
1695  tok::TokenKind Kind = Tok.getKind();
1696  // Not a pointer, C++ reference, or block.
1697  if (Kind != tok::star && Kind != tok::caret &&
1698      (Kind != tok::amp || !getLang().CPlusPlus) &&
1699      // We parse rvalue refs in C++03, because otherwise the errors are scary.
1700      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
1701    if (DirectDeclParser)
1702      (this->*DirectDeclParser)(D);
1703    return;
1704  }
1705
1706  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
1707  // '&&' -> rvalue reference
1708  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
1709  D.SetRangeEnd(Loc);
1710
1711  if (Kind == tok::star || Kind == tok::caret) {
1712    // Is a pointer.
1713    DeclSpec DS;
1714
1715    ParseTypeQualifierListOpt(DS);
1716    D.ExtendWithDeclSpec(DS);
1717
1718    // Recursively parse the declarator.
1719    ParseDeclaratorInternal(D, DirectDeclParser);
1720    if (Kind == tok::star)
1721      // Remember that we parsed a pointer type, and remember the type-quals.
1722      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1723                                                DS.TakeAttributes()),
1724                    SourceLocation());
1725    else
1726      // Remember that we parsed a Block type, and remember the type-quals.
1727      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1728                                                     Loc),
1729                    SourceLocation());
1730  } else {
1731    // Is a reference
1732    DeclSpec DS;
1733
1734    // Complain about rvalue references in C++03, but then go on and build
1735    // the declarator.
1736    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
1737      Diag(Loc, diag::err_rvalue_reference);
1738
1739    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1740    // cv-qualifiers are introduced through the use of a typedef or of a
1741    // template type argument, in which case the cv-qualifiers are ignored.
1742    //
1743    // [GNU] Retricted references are allowed.
1744    // [GNU] Attributes on references are allowed.
1745    ParseTypeQualifierListOpt(DS);
1746    D.ExtendWithDeclSpec(DS);
1747
1748    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1749      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1750        Diag(DS.getConstSpecLoc(),
1751             diag::err_invalid_reference_qualifier_application) << "const";
1752      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1753        Diag(DS.getVolatileSpecLoc(),
1754             diag::err_invalid_reference_qualifier_application) << "volatile";
1755    }
1756
1757    // Recursively parse the declarator.
1758    ParseDeclaratorInternal(D, DirectDeclParser);
1759
1760    if (D.getNumTypeObjects() > 0) {
1761      // C++ [dcl.ref]p4: There shall be no references to references.
1762      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1763      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1764        if (const IdentifierInfo *II = D.getIdentifier())
1765          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1766           << II;
1767        else
1768          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1769            << "type name";
1770
1771        // Once we've complained about the reference-to-reference, we
1772        // can go ahead and build the (technically ill-formed)
1773        // declarator: reference collapsing will take care of it.
1774      }
1775    }
1776
1777    // Remember that we parsed a reference type. It doesn't have type-quals.
1778    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1779                                                DS.TakeAttributes(),
1780                                                Kind == tok::amp),
1781                  SourceLocation());
1782  }
1783}
1784
1785/// ParseDirectDeclarator
1786///       direct-declarator: [C99 6.7.5]
1787/// [C99]   identifier
1788///         '(' declarator ')'
1789/// [GNU]   '(' attributes declarator ')'
1790/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1791/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1792/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1793/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1794/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1795///         direct-declarator '(' parameter-type-list ')'
1796///         direct-declarator '(' identifier-list[opt] ')'
1797/// [GNU]   direct-declarator '(' parameter-forward-declarations
1798///                    parameter-type-list[opt] ')'
1799/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1800///                    cv-qualifier-seq[opt] exception-specification[opt]
1801/// [C++]   declarator-id
1802///
1803///       declarator-id: [C++ 8]
1804///         id-expression
1805///         '::'[opt] nested-name-specifier[opt] type-name
1806///
1807///       id-expression: [C++ 5.1]
1808///         unqualified-id
1809///         qualified-id            [TODO]
1810///
1811///       unqualified-id: [C++ 5.1]
1812///         identifier
1813///         operator-function-id
1814///         conversion-function-id  [TODO]
1815///          '~' class-name
1816///         template-id
1817///
1818void Parser::ParseDirectDeclarator(Declarator &D) {
1819  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1820
1821  if (getLang().CPlusPlus) {
1822    if (D.mayHaveIdentifier()) {
1823      // ParseDeclaratorInternal might already have parsed the scope.
1824      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
1825        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
1826      if (afterCXXScope) {
1827        // Change the declaration context for name lookup, until this function
1828        // is exited (and the declarator has been parsed).
1829        DeclScopeObj.EnterDeclaratorScope();
1830      }
1831
1832      if (Tok.is(tok::identifier)) {
1833        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1834
1835        // If this identifier is the name of the current class, it's a
1836        // constructor name.
1837        if (Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)){
1838          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
1839                                               Tok.getLocation(), CurScope),
1840                           Tok.getLocation());
1841        // This is a normal identifier.
1842        } else
1843          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1844        ConsumeToken();
1845        goto PastIdentifier;
1846      } else if (Tok.is(tok::annot_template_id)) {
1847        TemplateIdAnnotation *TemplateId
1848          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1849
1850        // FIXME: Could this template-id name a constructor?
1851
1852        // FIXME: This is an egregious hack, where we silently ignore
1853        // the specialization (which should be a function template
1854        // specialization name) and use the name instead. This hack
1855        // will go away when we have support for function
1856        // specializations.
1857        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
1858        TemplateId->Destroy();
1859        ConsumeToken();
1860        goto PastIdentifier;
1861      } else if (Tok.is(tok::kw_operator)) {
1862        SourceLocation OperatorLoc = Tok.getLocation();
1863        SourceLocation EndLoc;
1864
1865        // First try the name of an overloaded operator
1866        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
1867          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
1868        } else {
1869          // This must be a conversion function (C++ [class.conv.fct]).
1870          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
1871            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
1872          else {
1873            D.SetIdentifier(0, Tok.getLocation());
1874          }
1875        }
1876        goto PastIdentifier;
1877      } else if (Tok.is(tok::tilde)) {
1878        // This should be a C++ destructor.
1879        SourceLocation TildeLoc = ConsumeToken();
1880        if (Tok.is(tok::identifier)) {
1881          // FIXME: Inaccurate.
1882          SourceLocation NameLoc = Tok.getLocation();
1883          SourceLocation EndLoc;
1884          if (TypeTy *Type = ParseClassName(EndLoc)) {
1885            D.setDestructor(Type, TildeLoc, NameLoc);
1886          } else {
1887            D.SetIdentifier(0, TildeLoc);
1888          }
1889        } else {
1890          Diag(Tok, diag::err_expected_class_name);
1891          D.SetIdentifier(0, TildeLoc);
1892        }
1893        goto PastIdentifier;
1894      }
1895
1896      // If we reached this point, token is not identifier and not '~'.
1897
1898      if (afterCXXScope) {
1899        Diag(Tok, diag::err_expected_unqualified_id);
1900        D.SetIdentifier(0, Tok.getLocation());
1901        D.setInvalidType(true);
1902        goto PastIdentifier;
1903      }
1904    }
1905  }
1906
1907  // If we reached this point, we are either in C/ObjC or the token didn't
1908  // satisfy any of the C++-specific checks.
1909  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1910    assert(!getLang().CPlusPlus &&
1911           "There's a C++-specific check for tok::identifier above");
1912    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1913    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1914    ConsumeToken();
1915  } else if (Tok.is(tok::l_paren)) {
1916    // direct-declarator: '(' declarator ')'
1917    // direct-declarator: '(' attributes declarator ')'
1918    // Example: 'char (*X)'   or 'int (*XX)(void)'
1919    ParseParenDeclarator(D);
1920  } else if (D.mayOmitIdentifier()) {
1921    // This could be something simple like "int" (in which case the declarator
1922    // portion is empty), if an abstract-declarator is allowed.
1923    D.SetIdentifier(0, Tok.getLocation());
1924  } else {
1925    if (D.getContext() == Declarator::MemberContext)
1926      Diag(Tok, diag::err_expected_member_name_or_semi)
1927        << D.getDeclSpec().getSourceRange();
1928    else if (getLang().CPlusPlus)
1929      Diag(Tok, diag::err_expected_unqualified_id);
1930    else
1931      Diag(Tok, diag::err_expected_ident_lparen);
1932    D.SetIdentifier(0, Tok.getLocation());
1933    D.setInvalidType(true);
1934  }
1935
1936 PastIdentifier:
1937  assert(D.isPastIdentifier() &&
1938         "Haven't past the location of the identifier yet?");
1939
1940  while (1) {
1941    if (Tok.is(tok::l_paren)) {
1942      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1943      // In such a case, check if we actually have a function declarator; if it
1944      // is not, the declarator has been fully parsed.
1945      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1946        // When not in file scope, warn for ambiguous function declarators, just
1947        // in case the author intended it as a variable definition.
1948        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1949        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1950          break;
1951      }
1952      ParseFunctionDeclarator(ConsumeParen(), D);
1953    } else if (Tok.is(tok::l_square)) {
1954      ParseBracketDeclarator(D);
1955    } else {
1956      break;
1957    }
1958  }
1959}
1960
1961/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1962/// only called before the identifier, so these are most likely just grouping
1963/// parens for precedence.  If we find that these are actually function
1964/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1965///
1966///       direct-declarator:
1967///         '(' declarator ')'
1968/// [GNU]   '(' attributes declarator ')'
1969///         direct-declarator '(' parameter-type-list ')'
1970///         direct-declarator '(' identifier-list[opt] ')'
1971/// [GNU]   direct-declarator '(' parameter-forward-declarations
1972///                    parameter-type-list[opt] ')'
1973///
1974void Parser::ParseParenDeclarator(Declarator &D) {
1975  SourceLocation StartLoc = ConsumeParen();
1976  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1977
1978  // Eat any attributes before we look at whether this is a grouping or function
1979  // declarator paren.  If this is a grouping paren, the attribute applies to
1980  // the type being built up, for example:
1981  //     int (__attribute__(()) *x)(long y)
1982  // If this ends up not being a grouping paren, the attribute applies to the
1983  // first argument, for example:
1984  //     int (__attribute__(()) int x)
1985  // In either case, we need to eat any attributes to be able to determine what
1986  // sort of paren this is.
1987  //
1988  AttributeList *AttrList = 0;
1989  bool RequiresArg = false;
1990  if (Tok.is(tok::kw___attribute)) {
1991    AttrList = ParseAttributes();
1992
1993    // We require that the argument list (if this is a non-grouping paren) be
1994    // present even if the attribute list was empty.
1995    RequiresArg = true;
1996  }
1997  // Eat any Microsoft extensions.
1998  while ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1999          (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
2000    ConsumeToken();
2001
2002  // If we haven't past the identifier yet (or where the identifier would be
2003  // stored, if this is an abstract declarator), then this is probably just
2004  // grouping parens. However, if this could be an abstract-declarator, then
2005  // this could also be the start of function arguments (consider 'void()').
2006  bool isGrouping;
2007
2008  if (!D.mayOmitIdentifier()) {
2009    // If this can't be an abstract-declarator, this *must* be a grouping
2010    // paren, because we haven't seen the identifier yet.
2011    isGrouping = true;
2012  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2013             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2014             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2015    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2016    // considered to be a type, not a K&R identifier-list.
2017    isGrouping = false;
2018  } else {
2019    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2020    isGrouping = true;
2021  }
2022
2023  // If this is a grouping paren, handle:
2024  // direct-declarator: '(' declarator ')'
2025  // direct-declarator: '(' attributes declarator ')'
2026  if (isGrouping) {
2027    bool hadGroupingParens = D.hasGroupingParens();
2028    D.setGroupingParens(true);
2029    if (AttrList)
2030      D.AddAttributes(AttrList, SourceLocation());
2031
2032    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2033    // Match the ')'.
2034    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2035
2036    D.setGroupingParens(hadGroupingParens);
2037    D.SetRangeEnd(Loc);
2038    return;
2039  }
2040
2041  // Okay, if this wasn't a grouping paren, it must be the start of a function
2042  // argument list.  Recognize that this declarator will never have an
2043  // identifier (and remember where it would have been), then call into
2044  // ParseFunctionDeclarator to handle of argument list.
2045  D.SetIdentifier(0, Tok.getLocation());
2046
2047  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2048}
2049
2050/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2051/// declarator D up to a paren, which indicates that we are parsing function
2052/// arguments.
2053///
2054/// If AttrList is non-null, then the caller parsed those arguments immediately
2055/// after the open paren - they should be considered to be the first argument of
2056/// a parameter.  If RequiresArg is true, then the first argument of the
2057/// function is required to be present and required to not be an identifier
2058/// list.
2059///
2060/// This method also handles this portion of the grammar:
2061///       parameter-type-list: [C99 6.7.5]
2062///         parameter-list
2063///         parameter-list ',' '...'
2064///
2065///       parameter-list: [C99 6.7.5]
2066///         parameter-declaration
2067///         parameter-list ',' parameter-declaration
2068///
2069///       parameter-declaration: [C99 6.7.5]
2070///         declaration-specifiers declarator
2071/// [C++]   declaration-specifiers declarator '=' assignment-expression
2072/// [GNU]   declaration-specifiers declarator attributes
2073///         declaration-specifiers abstract-declarator[opt]
2074/// [C++]   declaration-specifiers abstract-declarator[opt]
2075///           '=' assignment-expression
2076/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2077///
2078/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2079/// and "exception-specification[opt]".
2080///
2081void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2082                                     AttributeList *AttrList,
2083                                     bool RequiresArg) {
2084  // lparen is already consumed!
2085  assert(D.isPastIdentifier() && "Should not call before identifier!");
2086
2087  // This parameter list may be empty.
2088  if (Tok.is(tok::r_paren)) {
2089    if (RequiresArg) {
2090      Diag(Tok, diag::err_argument_required_after_attribute);
2091      delete AttrList;
2092    }
2093
2094    SourceLocation Loc = ConsumeParen();  // Eat the closing ')'.
2095
2096    // cv-qualifier-seq[opt].
2097    DeclSpec DS;
2098    if (getLang().CPlusPlus) {
2099      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2100      if (!DS.getSourceRange().getEnd().isInvalid())
2101        Loc = DS.getSourceRange().getEnd();
2102
2103      // Parse exception-specification[opt].
2104      if (Tok.is(tok::kw_throw))
2105        ParseExceptionSpecification(Loc);
2106    }
2107
2108    // Remember that we parsed a function type, and remember the attributes.
2109    // int() -> no prototype, no '...'.
2110    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2111                                               /*variadic*/ false,
2112                                               SourceLocation(),
2113                                               /*arglist*/ 0, 0,
2114                                               DS.getTypeQualifiers(),
2115                                               LParenLoc, D),
2116                  Loc);
2117    return;
2118  }
2119
2120  // Alternatively, this parameter list may be an identifier list form for a
2121  // K&R-style function:  void foo(a,b,c)
2122  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2123    if (!TryAnnotateTypeOrScopeToken()) {
2124      // K&R identifier lists can't have typedefs as identifiers, per
2125      // C99 6.7.5.3p11.
2126      if (RequiresArg) {
2127        Diag(Tok, diag::err_argument_required_after_attribute);
2128        delete AttrList;
2129      }
2130      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2131      // normal declarators, not for abstract-declarators.
2132      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2133    }
2134  }
2135
2136  // Finally, a normal, non-empty parameter type list.
2137
2138  // Build up an array of information about the parsed arguments.
2139  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2140
2141  // Enter function-declaration scope, limiting any declarators to the
2142  // function prototype scope, including parameter declarators.
2143  ParseScope PrototypeScope(this,
2144                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2145
2146  bool IsVariadic = false;
2147  SourceLocation EllipsisLoc;
2148  while (1) {
2149    if (Tok.is(tok::ellipsis)) {
2150      IsVariadic = true;
2151      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2152      break;
2153    }
2154
2155    SourceLocation DSStart = Tok.getLocation();
2156
2157    // Parse the declaration-specifiers.
2158    DeclSpec DS;
2159
2160    // If the caller parsed attributes for the first argument, add them now.
2161    if (AttrList) {
2162      DS.AddAttributes(AttrList);
2163      AttrList = 0;  // Only apply the attributes to the first parameter.
2164    }
2165    ParseDeclarationSpecifiers(DS);
2166
2167    // Parse the declarator.  This is "PrototypeContext", because we must
2168    // accept either 'declarator' or 'abstract-declarator' here.
2169    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2170    ParseDeclarator(ParmDecl);
2171
2172    // Parse GNU attributes, if present.
2173    if (Tok.is(tok::kw___attribute)) {
2174      SourceLocation Loc;
2175      AttributeList *AttrList = ParseAttributes(&Loc);
2176      ParmDecl.AddAttributes(AttrList, Loc);
2177    }
2178
2179    // Remember this parsed parameter in ParamInfo.
2180    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2181
2182    // DefArgToks is used when the parsing of default arguments needs
2183    // to be delayed.
2184    CachedTokens *DefArgToks = 0;
2185
2186    // If no parameter was specified, verify that *something* was specified,
2187    // otherwise we have a missing type and identifier.
2188    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2189        ParmDecl.getNumTypeObjects() == 0) {
2190      // Completely missing, emit error.
2191      Diag(DSStart, diag::err_missing_param);
2192    } else {
2193      // Otherwise, we have something.  Add it and let semantic analysis try
2194      // to grok it and add the result to the ParamInfo we are building.
2195
2196      // Inform the actions module about the parameter declarator, so it gets
2197      // added to the current scope.
2198      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2199
2200      // Parse the default argument, if any. We parse the default
2201      // arguments in all dialects; the semantic analysis in
2202      // ActOnParamDefaultArgument will reject the default argument in
2203      // C.
2204      if (Tok.is(tok::equal)) {
2205        SourceLocation EqualLoc = Tok.getLocation();
2206
2207        // Parse the default argument
2208        if (D.getContext() == Declarator::MemberContext) {
2209          // If we're inside a class definition, cache the tokens
2210          // corresponding to the default argument. We'll actually parse
2211          // them when we see the end of the class definition.
2212          // FIXME: Templates will require something similar.
2213          // FIXME: Can we use a smart pointer for Toks?
2214          DefArgToks = new CachedTokens;
2215
2216          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2217                                    tok::semi, false)) {
2218            delete DefArgToks;
2219            DefArgToks = 0;
2220            Actions.ActOnParamDefaultArgumentError(Param);
2221          } else
2222            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
2223        } else {
2224          // Consume the '='.
2225          ConsumeToken();
2226
2227          OwningExprResult DefArgResult(ParseAssignmentExpression());
2228          if (DefArgResult.isInvalid()) {
2229            Actions.ActOnParamDefaultArgumentError(Param);
2230            SkipUntil(tok::comma, tok::r_paren, true, true);
2231          } else {
2232            // Inform the actions module about the default argument
2233            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2234                                              move(DefArgResult));
2235          }
2236        }
2237      }
2238
2239      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2240                                          ParmDecl.getIdentifierLoc(), Param,
2241                                          DefArgToks));
2242    }
2243
2244    // If the next token is a comma, consume it and keep reading arguments.
2245    if (Tok.isNot(tok::comma)) break;
2246
2247    // Consume the comma.
2248    ConsumeToken();
2249  }
2250
2251  // Leave prototype scope.
2252  PrototypeScope.Exit();
2253
2254  // If we have the closing ')', eat it.
2255  SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2256
2257  DeclSpec DS;
2258  if (getLang().CPlusPlus) {
2259    // Parse cv-qualifier-seq[opt].
2260    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2261      if (!DS.getSourceRange().getEnd().isInvalid())
2262        Loc = DS.getSourceRange().getEnd();
2263
2264    // Parse exception-specification[opt].
2265    if (Tok.is(tok::kw_throw))
2266      ParseExceptionSpecification(Loc);
2267  }
2268
2269  // Remember that we parsed a function type, and remember the attributes.
2270  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2271                                             EllipsisLoc,
2272                                             &ParamInfo[0], ParamInfo.size(),
2273                                             DS.getTypeQualifiers(),
2274                                             LParenLoc, D),
2275                Loc);
2276}
2277
2278/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2279/// we found a K&R-style identifier list instead of a type argument list.  The
2280/// current token is known to be the first identifier in the list.
2281///
2282///       identifier-list: [C99 6.7.5]
2283///         identifier
2284///         identifier-list ',' identifier
2285///
2286void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2287                                                   Declarator &D) {
2288  // Build up an array of information about the parsed arguments.
2289  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2290  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2291
2292  // If there was no identifier specified for the declarator, either we are in
2293  // an abstract-declarator, or we are in a parameter declarator which was found
2294  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2295  // diagnose this.
2296  if (!D.getIdentifier())
2297    Diag(Tok, diag::ext_ident_list_in_param);
2298
2299  // Tok is known to be the first identifier in the list.  Remember this
2300  // identifier in ParamInfo.
2301  ParamsSoFar.insert(Tok.getIdentifierInfo());
2302  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2303                                                 Tok.getLocation(), 0));
2304
2305  ConsumeToken();  // eat the first identifier.
2306
2307  while (Tok.is(tok::comma)) {
2308    // Eat the comma.
2309    ConsumeToken();
2310
2311    // If this isn't an identifier, report the error and skip until ')'.
2312    if (Tok.isNot(tok::identifier)) {
2313      Diag(Tok, diag::err_expected_ident);
2314      SkipUntil(tok::r_paren);
2315      return;
2316    }
2317
2318    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2319
2320    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2321    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2322      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2323
2324    // Verify that the argument identifier has not already been mentioned.
2325    if (!ParamsSoFar.insert(ParmII)) {
2326      Diag(Tok, diag::err_param_redefinition) << ParmII;
2327    } else {
2328      // Remember this identifier in ParamInfo.
2329      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2330                                                     Tok.getLocation(), 0));
2331    }
2332
2333    // Eat the identifier.
2334    ConsumeToken();
2335  }
2336
2337  // If we have the closing ')', eat it and we're done.
2338  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2339
2340  // Remember that we parsed a function type, and remember the attributes.  This
2341  // function type is always a K&R style function type, which is not varargs and
2342  // has no prototype.
2343  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2344                                             SourceLocation(),
2345                                             &ParamInfo[0], ParamInfo.size(),
2346                                             /*TypeQuals*/0, LParenLoc, D),
2347                RLoc);
2348}
2349
2350/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2351/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2352/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2353/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2354/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2355void Parser::ParseBracketDeclarator(Declarator &D) {
2356  SourceLocation StartLoc = ConsumeBracket();
2357
2358  // C array syntax has many features, but by-far the most common is [] and [4].
2359  // This code does a fast path to handle some of the most obvious cases.
2360  if (Tok.getKind() == tok::r_square) {
2361    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2362    // Remember that we parsed the empty array type.
2363    OwningExprResult NumElements(Actions);
2364    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc),
2365                  EndLoc);
2366    return;
2367  } else if (Tok.getKind() == tok::numeric_constant &&
2368             GetLookAheadToken(1).is(tok::r_square)) {
2369    // [4] is very common.  Parse the numeric constant expression.
2370    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2371    ConsumeToken();
2372
2373    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2374
2375    // If there was an error parsing the assignment-expression, recover.
2376    if (ExprRes.isInvalid())
2377      ExprRes.release();  // Deallocate expr, just use [].
2378
2379    // Remember that we parsed a array type, and remember its features.
2380    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2381                                            ExprRes.release(), StartLoc),
2382                  EndLoc);
2383    return;
2384  }
2385
2386  // If valid, this location is the position where we read the 'static' keyword.
2387  SourceLocation StaticLoc;
2388  if (Tok.is(tok::kw_static))
2389    StaticLoc = ConsumeToken();
2390
2391  // If there is a type-qualifier-list, read it now.
2392  // Type qualifiers in an array subscript are a C99 feature.
2393  DeclSpec DS;
2394  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2395
2396  // If we haven't already read 'static', check to see if there is one after the
2397  // type-qualifier-list.
2398  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2399    StaticLoc = ConsumeToken();
2400
2401  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2402  bool isStar = false;
2403  OwningExprResult NumElements(Actions);
2404
2405  // Handle the case where we have '[*]' as the array size.  However, a leading
2406  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2407  // the the token after the star is a ']'.  Since stars in arrays are
2408  // infrequent, use of lookahead is not costly here.
2409  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2410    ConsumeToken();  // Eat the '*'.
2411
2412    if (StaticLoc.isValid()) {
2413      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2414      StaticLoc = SourceLocation();  // Drop the static.
2415    }
2416    isStar = true;
2417  } else if (Tok.isNot(tok::r_square)) {
2418    // Note, in C89, this production uses the constant-expr production instead
2419    // of assignment-expr.  The only difference is that assignment-expr allows
2420    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2421    // are not i-c-e's, so we don't need to distinguish between the two here.
2422
2423    // Parse the assignment-expression now.
2424    NumElements = ParseAssignmentExpression();
2425  }
2426
2427  // If there was an error parsing the assignment-expression, recover.
2428  if (NumElements.isInvalid()) {
2429    // If the expression was invalid, skip it.
2430    SkipUntil(tok::r_square);
2431    return;
2432  }
2433
2434  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2435
2436  // Remember that we parsed a array type, and remember its features.
2437  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2438                                          StaticLoc.isValid(), isStar,
2439                                          NumElements.release(), StartLoc),
2440                EndLoc);
2441}
2442
2443/// [GNU]   typeof-specifier:
2444///           typeof ( expressions )
2445///           typeof ( type-name )
2446/// [GNU/C++] typeof unary-expression
2447///
2448void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2449  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2450  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2451  SourceLocation StartLoc = ConsumeToken();
2452
2453  if (Tok.isNot(tok::l_paren)) {
2454    if (!getLang().CPlusPlus) {
2455      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2456      return;
2457    }
2458
2459    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2460    if (Result.isInvalid()) {
2461      DS.SetTypeSpecError();
2462      return;
2463    }
2464
2465    const char *PrevSpec = 0;
2466    // Check for duplicate type specifiers.
2467    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2468                           Result.release()))
2469      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2470
2471    // FIXME: Not accurate, the range gets one token more than it should.
2472    DS.SetRangeEnd(Tok.getLocation());
2473    return;
2474  }
2475
2476  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2477
2478  if (isTypeIdInParens()) {
2479    Action::TypeResult Ty = ParseTypeName();
2480
2481    assert((Ty.isInvalid() || Ty.get()) &&
2482           "Parser::ParseTypeofSpecifier(): missing type");
2483
2484    if (Tok.isNot(tok::r_paren)) {
2485      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2486      return;
2487    }
2488    RParenLoc = ConsumeParen();
2489
2490    if (Ty.isInvalid())
2491      DS.SetTypeSpecError();
2492    else {
2493      const char *PrevSpec = 0;
2494      // Check for duplicate type specifiers (e.g. "int typeof(int)").
2495      if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2496                             Ty.get()))
2497        Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2498    }
2499  } else { // we have an expression.
2500    OwningExprResult Result(ParseExpression());
2501
2502    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2503      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2504      DS.SetTypeSpecError();
2505      return;
2506    }
2507    RParenLoc = ConsumeParen();
2508    const char *PrevSpec = 0;
2509    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2510    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2511                           Result.release()))
2512      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2513  }
2514  DS.SetRangeEnd(RParenLoc);
2515}
2516
2517
2518