ParseDecl.cpp revision 239f07384fe5e7194e780d98a17553084efeeb44
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31Parser::TypeTy *Parser::ParseTypeName() {
32  // Parse the common declaration-specifiers piece.
33  DeclSpec DS;
34  ParseSpecifierQualifierList(DS);
35
36  // Parse the abstract-declarator, if present.
37  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
38  ParseDeclarator(DeclaratorInfo);
39
40  return Actions.ActOnTypeName(CurScope, DeclaratorInfo).Val;
41}
42
43/// ParseAttributes - Parse a non-empty attributes list.
44///
45/// [GNU] attributes:
46///         attribute
47///         attributes attribute
48///
49/// [GNU]  attribute:
50///          '__attribute__' '(' '(' attribute-list ')' ')'
51///
52/// [GNU]  attribute-list:
53///          attrib
54///          attribute_list ',' attrib
55///
56/// [GNU]  attrib:
57///          empty
58///          attrib-name
59///          attrib-name '(' identifier ')'
60///          attrib-name '(' identifier ',' nonempty-expr-list ')'
61///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
62///
63/// [GNU]  attrib-name:
64///          identifier
65///          typespec
66///          typequal
67///          storageclass
68///
69/// FIXME: The GCC grammar/code for this construct implies we need two
70/// token lookahead. Comment from gcc: "If they start with an identifier
71/// which is followed by a comma or close parenthesis, then the arguments
72/// start with that identifier; otherwise they are an expression list."
73///
74/// At the moment, I am not doing 2 token lookahead. I am also unaware of
75/// any attributes that don't work (based on my limited testing). Most
76/// attributes are very simple in practice. Until we find a bug, I don't see
77/// a pressing need to implement the 2 token lookahead.
78
79AttributeList *Parser::ParseAttributes() {
80  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
81
82  AttributeList *CurrAttr = 0;
83
84  while (Tok.is(tok::kw___attribute)) {
85    ConsumeToken();
86    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
87                         "attribute")) {
88      SkipUntil(tok::r_paren, true); // skip until ) or ;
89      return CurrAttr;
90    }
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
96    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
97           Tok.is(tok::comma)) {
98
99      if (Tok.is(tok::comma)) {
100        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
101        ConsumeToken();
102        continue;
103      }
104      // we have an identifier or declaration specifier (const, int, etc.)
105      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
106      SourceLocation AttrNameLoc = ConsumeToken();
107
108      // check if we have a "paramterized" attribute
109      if (Tok.is(tok::l_paren)) {
110        ConsumeParen(); // ignore the left paren loc for now
111
112        if (Tok.is(tok::identifier)) {
113          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
114          SourceLocation ParmLoc = ConsumeToken();
115
116          if (Tok.is(tok::r_paren)) {
117            // __attribute__(( mode(byte) ))
118            ConsumeParen(); // ignore the right paren loc for now
119            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
120                                         ParmName, ParmLoc, 0, 0, CurrAttr);
121          } else if (Tok.is(tok::comma)) {
122            ConsumeToken();
123            // __attribute__(( format(printf, 1, 2) ))
124            ExprVector ArgExprs(Actions);
125            bool ArgExprsOk = true;
126
127            // now parse the non-empty comma separated list of expressions
128            while (1) {
129              OwningExprResult ArgExpr(ParseAssignmentExpression());
130              if (ArgExpr.isInvalid()) {
131                ArgExprsOk = false;
132                SkipUntil(tok::r_paren);
133                break;
134              } else {
135                ArgExprs.push_back(ArgExpr.release());
136              }
137              if (Tok.isNot(tok::comma))
138                break;
139              ConsumeToken(); // Eat the comma, move to the next argument
140            }
141            if (ArgExprsOk && Tok.is(tok::r_paren)) {
142              ConsumeParen(); // ignore the right paren loc for now
143              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
144                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
145            }
146          }
147        } else { // not an identifier
148          // parse a possibly empty comma separated list of expressions
149          if (Tok.is(tok::r_paren)) {
150            // __attribute__(( nonnull() ))
151            ConsumeParen(); // ignore the right paren loc for now
152            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
153                                         0, SourceLocation(), 0, 0, CurrAttr);
154          } else {
155            // __attribute__(( aligned(16) ))
156            ExprVector ArgExprs(Actions);
157            bool ArgExprsOk = true;
158
159            // now parse the list of expressions
160            while (1) {
161              OwningExprResult ArgExpr(ParseAssignmentExpression());
162              if (ArgExpr.isInvalid()) {
163                ArgExprsOk = false;
164                SkipUntil(tok::r_paren);
165                break;
166              } else {
167                ArgExprs.push_back(ArgExpr.release());
168              }
169              if (Tok.isNot(tok::comma))
170                break;
171              ConsumeToken(); // Eat the comma, move to the next argument
172            }
173            // Match the ')'.
174            if (ArgExprsOk && Tok.is(tok::r_paren)) {
175              ConsumeParen(); // ignore the right paren loc for now
176              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
177                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
178                           CurrAttr);
179            }
180          }
181        }
182      } else {
183        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
184                                     0, SourceLocation(), 0, 0, CurrAttr);
185      }
186    }
187    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
188      SkipUntil(tok::r_paren, false);
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191  }
192  return CurrAttr;
193}
194
195/// FuzzyParseMicrosoftDeclSpec. When -fms-extensions is enabled, this
196/// routine is called to skip/ignore tokens that comprise the MS declspec.
197void Parser::FuzzyParseMicrosoftDeclSpec() {
198  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
199  ConsumeToken();
200  if (Tok.is(tok::l_paren)) {
201    unsigned short savedParenCount = ParenCount;
202    do {
203      ConsumeAnyToken();
204    } while (ParenCount > savedParenCount && Tok.isNot(tok::eof));
205  }
206  return;
207}
208
209/// ParseDeclaration - Parse a full 'declaration', which consists of
210/// declaration-specifiers, some number of declarators, and a semicolon.
211/// 'Context' should be a Declarator::TheContext value.
212///
213///       declaration: [C99 6.7]
214///         block-declaration ->
215///           simple-declaration
216///           others                   [FIXME]
217/// [C++]   template-declaration
218/// [C++]   namespace-definition
219///         others... [FIXME]
220///
221Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
222  switch (Tok.getKind()) {
223  case tok::kw_export:
224  case tok::kw_template:
225    return ParseTemplateDeclaration(Context);
226  case tok::kw_namespace:
227    return ParseNamespace(Context);
228  default:
229    return ParseSimpleDeclaration(Context);
230  }
231}
232
233///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
234///         declaration-specifiers init-declarator-list[opt] ';'
235///[C90/C++]init-declarator-list ';'                             [TODO]
236/// [OMP]   threadprivate-directive                              [TODO]
237Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
238  // Parse the common declaration-specifiers piece.
239  DeclSpec DS;
240  ParseDeclarationSpecifiers(DS);
241
242  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
243  // declaration-specifiers init-declarator-list[opt] ';'
244  if (Tok.is(tok::semi)) {
245    ConsumeToken();
246    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
247  }
248
249  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
250  ParseDeclarator(DeclaratorInfo);
251
252  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
253}
254
255
256/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
257/// parsing 'declaration-specifiers declarator'.  This method is split out this
258/// way to handle the ambiguity between top-level function-definitions and
259/// declarations.
260///
261///       init-declarator-list: [C99 6.7]
262///         init-declarator
263///         init-declarator-list ',' init-declarator
264///       init-declarator: [C99 6.7]
265///         declarator
266///         declarator '=' initializer
267/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
268/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
269/// [C++]   declarator initializer[opt]
270///
271/// [C++] initializer:
272/// [C++]   '=' initializer-clause
273/// [C++]   '(' expression-list ')'
274///
275Parser::DeclTy *Parser::
276ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
277
278  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
279  // that they can be chained properly if the actions want this.
280  Parser::DeclTy *LastDeclInGroup = 0;
281
282  // At this point, we know that it is not a function definition.  Parse the
283  // rest of the init-declarator-list.
284  while (1) {
285    // If a simple-asm-expr is present, parse it.
286    if (Tok.is(tok::kw_asm)) {
287      OwningExprResult AsmLabel(ParseSimpleAsm());
288      if (AsmLabel.isInvalid()) {
289        SkipUntil(tok::semi);
290        return 0;
291      }
292
293      D.setAsmLabel(AsmLabel.release());
294    }
295
296    // If attributes are present, parse them.
297    if (Tok.is(tok::kw___attribute))
298      D.AddAttributes(ParseAttributes());
299
300    // Inform the current actions module that we just parsed this declarator.
301    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
302
303    // Parse declarator '=' initializer.
304    if (Tok.is(tok::equal)) {
305      ConsumeToken();
306      OwningExprResult Init(ParseInitializer());
307      if (Init.isInvalid()) {
308        SkipUntil(tok::semi);
309        return 0;
310      }
311      Actions.AddInitializerToDecl(LastDeclInGroup, move_convert(Init));
312    } else if (Tok.is(tok::l_paren)) {
313      // Parse C++ direct initializer: '(' expression-list ')'
314      SourceLocation LParenLoc = ConsumeParen();
315      ExprVector Exprs(Actions);
316      CommaLocsTy CommaLocs;
317
318      bool InvalidExpr = false;
319      if (ParseExpressionList(Exprs, CommaLocs)) {
320        SkipUntil(tok::r_paren);
321        InvalidExpr = true;
322      }
323      // Match the ')'.
324      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
325
326      if (!InvalidExpr) {
327        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
328               "Unexpected number of commas!");
329        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
330                                              Exprs.take(), Exprs.size(),
331                                              &CommaLocs[0], RParenLoc);
332      }
333    } else {
334      Actions.ActOnUninitializedDecl(LastDeclInGroup);
335    }
336
337    // If we don't have a comma, it is either the end of the list (a ';') or an
338    // error, bail out.
339    if (Tok.isNot(tok::comma))
340      break;
341
342    // Consume the comma.
343    ConsumeToken();
344
345    // Parse the next declarator.
346    D.clear();
347
348    // Accept attributes in an init-declarator.  In the first declarator in a
349    // declaration, these would be part of the declspec.  In subsequent
350    // declarators, they become part of the declarator itself, so that they
351    // don't apply to declarators after *this* one.  Examples:
352    //    short __attribute__((common)) var;    -> declspec
353    //    short var __attribute__((common));    -> declarator
354    //    short x, __attribute__((common)) var;    -> declarator
355    if (Tok.is(tok::kw___attribute))
356      D.AddAttributes(ParseAttributes());
357
358    ParseDeclarator(D);
359  }
360
361  if (Tok.is(tok::semi)) {
362    ConsumeToken();
363    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
364  }
365  // If this is an ObjC2 for-each loop, this is a successful declarator
366  // parse.  The syntax for these looks like:
367  // 'for' '(' declaration 'in' expr ')' statement
368  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
369    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
370  }
371  Diag(Tok, diag::err_parse_error);
372  // Skip to end of block or statement
373  SkipUntil(tok::r_brace, true, true);
374  if (Tok.is(tok::semi))
375    ConsumeToken();
376  return 0;
377}
378
379/// ParseSpecifierQualifierList
380///        specifier-qualifier-list:
381///          type-specifier specifier-qualifier-list[opt]
382///          type-qualifier specifier-qualifier-list[opt]
383/// [GNU]    attributes     specifier-qualifier-list[opt]
384///
385void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
386  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
387  /// parse declaration-specifiers and complain about extra stuff.
388  ParseDeclarationSpecifiers(DS);
389
390  // Validate declspec for type-name.
391  unsigned Specs = DS.getParsedSpecifiers();
392  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
393    Diag(Tok, diag::err_typename_requires_specqual);
394
395  // Issue diagnostic and remove storage class if present.
396  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
397    if (DS.getStorageClassSpecLoc().isValid())
398      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
399    else
400      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
401    DS.ClearStorageClassSpecs();
402  }
403
404  // Issue diagnostic and remove function specfier if present.
405  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
406    if (DS.isInlineSpecified())
407      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
408    if (DS.isVirtualSpecified())
409      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
410    if (DS.isExplicitSpecified())
411      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
412    DS.ClearFunctionSpecs();
413  }
414}
415
416/// ParseDeclarationSpecifiers
417///       declaration-specifiers: [C99 6.7]
418///         storage-class-specifier declaration-specifiers[opt]
419///         type-specifier declaration-specifiers[opt]
420/// [C99]   function-specifier declaration-specifiers[opt]
421/// [GNU]   attributes declaration-specifiers[opt]
422///
423///       storage-class-specifier: [C99 6.7.1]
424///         'typedef'
425///         'extern'
426///         'static'
427///         'auto'
428///         'register'
429/// [C++]   'mutable'
430/// [GNU]   '__thread'
431///       function-specifier: [C99 6.7.4]
432/// [C99]   'inline'
433/// [C++]   'virtual'
434/// [C++]   'explicit'
435///
436void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
437                                        TemplateParameterLists *TemplateParams)
438{
439  DS.SetRangeStart(Tok.getLocation());
440  while (1) {
441    int isInvalid = false;
442    const char *PrevSpec = 0;
443    SourceLocation Loc = Tok.getLocation();
444
445    // Only annotate C++ scope. Allow class-name as an identifier in case
446    // it's a constructor.
447    if (getLang().CPlusPlus)
448      TryAnnotateCXXScopeToken();
449
450    switch (Tok.getKind()) {
451    default:
452      // Try to parse a type-specifier; if we found one, continue. If it's not
453      // a type, this falls through.
454      if (MaybeParseTypeSpecifier(DS, isInvalid, PrevSpec, TemplateParams)) {
455        continue;
456      }
457
458    DoneWithDeclSpec:
459      // If this is not a declaration specifier token, we're done reading decl
460      // specifiers.  First verify that DeclSpec's are consistent.
461      DS.Finish(Diags, PP.getSourceManager(), getLang());
462      return;
463
464    case tok::annot_cxxscope: {
465      if (DS.hasTypeSpecifier())
466        goto DoneWithDeclSpec;
467
468      // We are looking for a qualified typename.
469      if (NextToken().isNot(tok::identifier))
470        goto DoneWithDeclSpec;
471
472      CXXScopeSpec SS;
473      SS.setScopeRep(Tok.getAnnotationValue());
474      SS.setRange(Tok.getAnnotationRange());
475
476      // If the next token is the name of the class type that the C++ scope
477      // denotes, followed by a '(', then this is a constructor declaration.
478      // We're done with the decl-specifiers.
479      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
480                                     CurScope, &SS) &&
481          GetLookAheadToken(2).is(tok::l_paren))
482        goto DoneWithDeclSpec;
483
484      TypeTy *TypeRep = Actions.isTypeName(*NextToken().getIdentifierInfo(),
485                                           CurScope, &SS);
486      if (TypeRep == 0)
487        goto DoneWithDeclSpec;
488
489      ConsumeToken(); // The C++ scope.
490
491      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
492                                     TypeRep);
493      if (isInvalid)
494        break;
495
496      DS.SetRangeEnd(Tok.getLocation());
497      ConsumeToken(); // The typename.
498
499      continue;
500    }
501
502      // typedef-name
503    case tok::identifier: {
504      // This identifier can only be a typedef name if we haven't already seen
505      // a type-specifier.  Without this check we misparse:
506      //  typedef int X; struct Y { short X; };  as 'short int'.
507      if (DS.hasTypeSpecifier())
508        goto DoneWithDeclSpec;
509
510      // It has to be available as a typedef too!
511      TypeTy *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope);
512      if (TypeRep == 0)
513        goto DoneWithDeclSpec;
514
515      // C++: If the identifier is actually the name of the class type
516      // being defined and the next token is a '(', then this is a
517      // constructor declaration. We're done with the decl-specifiers
518      // and will treat this token as an identifier.
519      if (getLang().CPlusPlus &&
520          CurScope->isCXXClassScope() &&
521          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
522          NextToken().getKind() == tok::l_paren)
523        goto DoneWithDeclSpec;
524
525      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
526                                     TypeRep);
527      if (isInvalid)
528        break;
529
530      DS.SetRangeEnd(Tok.getLocation());
531      ConsumeToken(); // The identifier
532
533      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
534      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
535      // Objective-C interface.  If we don't have Objective-C or a '<', this is
536      // just a normal reference to a typedef name.
537      if (!Tok.is(tok::less) || !getLang().ObjC1)
538        continue;
539
540      SourceLocation EndProtoLoc;
541      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
542      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
543      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
544
545      DS.SetRangeEnd(EndProtoLoc);
546
547      // Need to support trailing type qualifiers (e.g. "id<p> const").
548      // If a type specifier follows, it will be diagnosed elsewhere.
549      continue;
550    }
551    // GNU attributes support.
552    case tok::kw___attribute:
553      DS.AddAttributes(ParseAttributes());
554      continue;
555
556    // Microsoft declspec support.
557    case tok::kw___declspec:
558      if (!PP.getLangOptions().Microsoft)
559        goto DoneWithDeclSpec;
560      FuzzyParseMicrosoftDeclSpec();
561      continue;
562
563    // Microsoft single token adornments.
564    case tok::kw___cdecl:
565    case tok::kw___stdcall:
566    case tok::kw___fastcall:
567      if (!PP.getLangOptions().Microsoft)
568        goto DoneWithDeclSpec;
569      // Just ignore it.
570      break;
571
572    // storage-class-specifier
573    case tok::kw_typedef:
574      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
575      break;
576    case tok::kw_extern:
577      if (DS.isThreadSpecified())
578        Diag(Tok, diag::ext_thread_before) << "extern";
579      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
580      break;
581    case tok::kw___private_extern__:
582      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
583                                         PrevSpec);
584      break;
585    case tok::kw_static:
586      if (DS.isThreadSpecified())
587        Diag(Tok, diag::ext_thread_before) << "static";
588      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
589      break;
590    case tok::kw_auto:
591      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
592      break;
593    case tok::kw_register:
594      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
595      break;
596    case tok::kw_mutable:
597      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
598      break;
599    case tok::kw___thread:
600      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
601      break;
602
603      continue;
604
605    // function-specifier
606    case tok::kw_inline:
607      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
608      break;
609
610    case tok::kw_virtual:
611      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
612      break;
613
614    case tok::kw_explicit:
615      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
616      break;
617
618    case tok::less:
619      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
620      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
621      // but we support it.
622      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
623        goto DoneWithDeclSpec;
624
625      {
626        SourceLocation EndProtoLoc;
627        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
628        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
629        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
630        DS.SetRangeEnd(EndProtoLoc);
631
632        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
633          << SourceRange(Loc, EndProtoLoc);
634        // Need to support trailing type qualifiers (e.g. "id<p> const").
635        // If a type specifier follows, it will be diagnosed elsewhere.
636        continue;
637      }
638    }
639    // If the specifier combination wasn't legal, issue a diagnostic.
640    if (isInvalid) {
641      assert(PrevSpec && "Method did not return previous specifier!");
642      // Pick between error or extwarn.
643      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
644                                       : diag::ext_duplicate_declspec;
645      Diag(Tok, DiagID) << PrevSpec;
646    }
647    DS.SetRangeEnd(Tok.getLocation());
648    ConsumeToken();
649  }
650}
651
652/// MaybeParseTypeSpecifier - Try to parse a single type-specifier. We
653/// primarily follow the C++ grammar with additions for C99 and GNU,
654/// which together subsume the C grammar. Note that the C++
655/// type-specifier also includes the C type-qualifier (for const,
656/// volatile, and C99 restrict). Returns true if a type-specifier was
657/// found (and parsed), false otherwise.
658///
659///       type-specifier: [C++ 7.1.5]
660///         simple-type-specifier
661///         class-specifier
662///         enum-specifier
663///         elaborated-type-specifier  [TODO]
664///         cv-qualifier
665///
666///       cv-qualifier: [C++ 7.1.5.1]
667///         'const'
668///         'volatile'
669/// [C99]   'restrict'
670///
671///       simple-type-specifier: [ C++ 7.1.5.2]
672///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
673///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
674///         'char'
675///         'wchar_t'
676///         'bool'
677///         'short'
678///         'int'
679///         'long'
680///         'signed'
681///         'unsigned'
682///         'float'
683///         'double'
684///         'void'
685/// [C99]   '_Bool'
686/// [C99]   '_Complex'
687/// [C99]   '_Imaginary'  // Removed in TC2?
688/// [GNU]   '_Decimal32'
689/// [GNU]   '_Decimal64'
690/// [GNU]   '_Decimal128'
691/// [GNU]   typeof-specifier
692/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
693/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
694bool Parser::MaybeParseTypeSpecifier(DeclSpec &DS, int& isInvalid,
695                                     const char *&PrevSpec,
696                                     TemplateParameterLists *TemplateParams) {
697  // Annotate typenames and C++ scope specifiers.
698  TryAnnotateTypeOrScopeToken();
699
700  SourceLocation Loc = Tok.getLocation();
701
702  switch (Tok.getKind()) {
703  // simple-type-specifier:
704  case tok::annot_qualtypename: {
705    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
706                                   Tok.getAnnotationValue());
707    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
708    ConsumeToken(); // The typename
709
710    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
711    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
712    // Objective-C interface.  If we don't have Objective-C or a '<', this is
713    // just a normal reference to a typedef name.
714    if (!Tok.is(tok::less) || !getLang().ObjC1)
715      return true;
716
717    SourceLocation EndProtoLoc;
718    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
719    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
720    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
721
722    DS.SetRangeEnd(EndProtoLoc);
723    return true;
724  }
725
726  case tok::kw_short:
727    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
728    break;
729  case tok::kw_long:
730    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
731      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
732    else
733      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
734    break;
735  case tok::kw_signed:
736    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
737    break;
738  case tok::kw_unsigned:
739    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
740    break;
741  case tok::kw__Complex:
742    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
743    break;
744  case tok::kw__Imaginary:
745    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
746    break;
747  case tok::kw_void:
748    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
749    break;
750  case tok::kw_char:
751    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
752    break;
753  case tok::kw_int:
754    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
755    break;
756  case tok::kw_float:
757    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
758    break;
759  case tok::kw_double:
760    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
761    break;
762  case tok::kw_wchar_t:
763    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
764    break;
765  case tok::kw_bool:
766  case tok::kw__Bool:
767    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
768    break;
769  case tok::kw__Decimal32:
770    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
771    break;
772  case tok::kw__Decimal64:
773    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
774    break;
775  case tok::kw__Decimal128:
776    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
777    break;
778
779  // class-specifier:
780  case tok::kw_class:
781  case tok::kw_struct:
782  case tok::kw_union:
783    ParseClassSpecifier(DS, TemplateParams);
784    return true;
785
786  // enum-specifier:
787  case tok::kw_enum:
788    ParseEnumSpecifier(DS);
789    return true;
790
791  // cv-qualifier:
792  case tok::kw_const:
793    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
794                               getLang())*2;
795    break;
796  case tok::kw_volatile:
797    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
798                               getLang())*2;
799    break;
800  case tok::kw_restrict:
801    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
802                               getLang())*2;
803    break;
804
805  // GNU typeof support.
806  case tok::kw_typeof:
807    ParseTypeofSpecifier(DS);
808    return true;
809
810  case tok::kw___cdecl:
811  case tok::kw___stdcall:
812  case tok::kw___fastcall:
813    return PP.getLangOptions().Microsoft;
814
815  default:
816    // Not a type-specifier; do nothing.
817    return false;
818  }
819
820  // If the specifier combination wasn't legal, issue a diagnostic.
821  if (isInvalid) {
822    assert(PrevSpec && "Method did not return previous specifier!");
823    // Pick between error or extwarn.
824    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
825                                     : diag::ext_duplicate_declspec;
826    Diag(Tok, DiagID) << PrevSpec;
827  }
828  DS.SetRangeEnd(Tok.getLocation());
829  ConsumeToken(); // whatever we parsed above.
830  return true;
831}
832
833/// ParseStructDeclaration - Parse a struct declaration without the terminating
834/// semicolon.
835///
836///       struct-declaration:
837///         specifier-qualifier-list struct-declarator-list
838/// [GNU]   __extension__ struct-declaration
839/// [GNU]   specifier-qualifier-list
840///       struct-declarator-list:
841///         struct-declarator
842///         struct-declarator-list ',' struct-declarator
843/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
844///       struct-declarator:
845///         declarator
846/// [GNU]   declarator attributes[opt]
847///         declarator[opt] ':' constant-expression
848/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
849///
850void Parser::
851ParseStructDeclaration(DeclSpec &DS,
852                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
853  if (Tok.is(tok::kw___extension__)) {
854    // __extension__ silences extension warnings in the subexpression.
855    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
856    ConsumeToken();
857    return ParseStructDeclaration(DS, Fields);
858  }
859
860  // Parse the common specifier-qualifiers-list piece.
861  SourceLocation DSStart = Tok.getLocation();
862  ParseSpecifierQualifierList(DS);
863
864  // If there are no declarators, issue a warning.
865  if (Tok.is(tok::semi)) {
866    Diag(DSStart, diag::w_no_declarators);
867    return;
868  }
869
870  // Read struct-declarators until we find the semicolon.
871  Fields.push_back(FieldDeclarator(DS));
872  while (1) {
873    FieldDeclarator &DeclaratorInfo = Fields.back();
874
875    /// struct-declarator: declarator
876    /// struct-declarator: declarator[opt] ':' constant-expression
877    if (Tok.isNot(tok::colon))
878      ParseDeclarator(DeclaratorInfo.D);
879
880    if (Tok.is(tok::colon)) {
881      ConsumeToken();
882      OwningExprResult Res(ParseConstantExpression());
883      if (Res.isInvalid())
884        SkipUntil(tok::semi, true, true);
885      else
886        DeclaratorInfo.BitfieldSize = Res.release();
887    }
888
889    // If attributes exist after the declarator, parse them.
890    if (Tok.is(tok::kw___attribute))
891      DeclaratorInfo.D.AddAttributes(ParseAttributes());
892
893    // If we don't have a comma, it is either the end of the list (a ';')
894    // or an error, bail out.
895    if (Tok.isNot(tok::comma))
896      return;
897
898    // Consume the comma.
899    ConsumeToken();
900
901    // Parse the next declarator.
902    Fields.push_back(FieldDeclarator(DS));
903
904    // Attributes are only allowed on the second declarator.
905    if (Tok.is(tok::kw___attribute))
906      Fields.back().D.AddAttributes(ParseAttributes());
907  }
908}
909
910/// ParseStructUnionBody
911///       struct-contents:
912///         struct-declaration-list
913/// [EXT]   empty
914/// [GNU]   "struct-declaration-list" without terminatoring ';'
915///       struct-declaration-list:
916///         struct-declaration
917///         struct-declaration-list struct-declaration
918/// [OBC]   '@' 'defs' '(' class-name ')'
919///
920void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
921                                  unsigned TagType, DeclTy *TagDecl) {
922  SourceLocation LBraceLoc = ConsumeBrace();
923
924  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
925  // C++.
926  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
927    Diag(Tok, diag::ext_empty_struct_union_enum)
928      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
929
930  llvm::SmallVector<DeclTy*, 32> FieldDecls;
931  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
932
933  // While we still have something to read, read the declarations in the struct.
934  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
935    // Each iteration of this loop reads one struct-declaration.
936
937    // Check for extraneous top-level semicolon.
938    if (Tok.is(tok::semi)) {
939      Diag(Tok, diag::ext_extra_struct_semi);
940      ConsumeToken();
941      continue;
942    }
943
944    // Parse all the comma separated declarators.
945    DeclSpec DS;
946    FieldDeclarators.clear();
947    if (!Tok.is(tok::at)) {
948      ParseStructDeclaration(DS, FieldDeclarators);
949
950      // Convert them all to fields.
951      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
952        FieldDeclarator &FD = FieldDeclarators[i];
953        // Install the declarator into the current TagDecl.
954        DeclTy *Field = Actions.ActOnField(CurScope, TagDecl,
955                                           DS.getSourceRange().getBegin(),
956                                           FD.D, FD.BitfieldSize);
957        FieldDecls.push_back(Field);
958      }
959    } else { // Handle @defs
960      ConsumeToken();
961      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
962        Diag(Tok, diag::err_unexpected_at);
963        SkipUntil(tok::semi, true, true);
964        continue;
965      }
966      ConsumeToken();
967      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
968      if (!Tok.is(tok::identifier)) {
969        Diag(Tok, diag::err_expected_ident);
970        SkipUntil(tok::semi, true, true);
971        continue;
972      }
973      llvm::SmallVector<DeclTy*, 16> Fields;
974      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
975                        Tok.getIdentifierInfo(), Fields);
976      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
977      ConsumeToken();
978      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
979    }
980
981    if (Tok.is(tok::semi)) {
982      ConsumeToken();
983    } else if (Tok.is(tok::r_brace)) {
984      Diag(Tok, diag::ext_expected_semi_decl_list);
985      break;
986    } else {
987      Diag(Tok, diag::err_expected_semi_decl_list);
988      // Skip to end of block or statement
989      SkipUntil(tok::r_brace, true, true);
990    }
991  }
992
993  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
994
995  AttributeList *AttrList = 0;
996  // If attributes exist after struct contents, parse them.
997  if (Tok.is(tok::kw___attribute))
998    AttrList = ParseAttributes();
999
1000  Actions.ActOnFields(CurScope,
1001                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
1002                      LBraceLoc, RBraceLoc,
1003                      AttrList);
1004}
1005
1006
1007/// ParseEnumSpecifier
1008///       enum-specifier: [C99 6.7.2.2]
1009///         'enum' identifier[opt] '{' enumerator-list '}'
1010///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1011/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1012///                                                 '}' attributes[opt]
1013///         'enum' identifier
1014/// [GNU]   'enum' attributes[opt] identifier
1015///
1016/// [C++] elaborated-type-specifier:
1017/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1018///
1019void Parser::ParseEnumSpecifier(DeclSpec &DS) {
1020  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
1021  SourceLocation StartLoc = ConsumeToken();
1022
1023  // Parse the tag portion of this.
1024
1025  AttributeList *Attr = 0;
1026  // If attributes exist after tag, parse them.
1027  if (Tok.is(tok::kw___attribute))
1028    Attr = ParseAttributes();
1029
1030  CXXScopeSpec SS;
1031  if (getLang().CPlusPlus && MaybeParseCXXScopeSpecifier(SS)) {
1032    if (Tok.isNot(tok::identifier)) {
1033      Diag(Tok, diag::err_expected_ident);
1034      if (Tok.isNot(tok::l_brace)) {
1035        // Has no name and is not a definition.
1036        // Skip the rest of this declarator, up until the comma or semicolon.
1037        SkipUntil(tok::comma, true);
1038        return;
1039      }
1040    }
1041  }
1042
1043  // Must have either 'enum name' or 'enum {...}'.
1044  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1045    Diag(Tok, diag::err_expected_ident_lbrace);
1046
1047    // Skip the rest of this declarator, up until the comma or semicolon.
1048    SkipUntil(tok::comma, true);
1049    return;
1050  }
1051
1052  // If an identifier is present, consume and remember it.
1053  IdentifierInfo *Name = 0;
1054  SourceLocation NameLoc;
1055  if (Tok.is(tok::identifier)) {
1056    Name = Tok.getIdentifierInfo();
1057    NameLoc = ConsumeToken();
1058  }
1059
1060  // There are three options here.  If we have 'enum foo;', then this is a
1061  // forward declaration.  If we have 'enum foo {...' then this is a
1062  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1063  //
1064  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1065  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1066  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1067  //
1068  Action::TagKind TK;
1069  if (Tok.is(tok::l_brace))
1070    TK = Action::TK_Definition;
1071  else if (Tok.is(tok::semi))
1072    TK = Action::TK_Declaration;
1073  else
1074    TK = Action::TK_Reference;
1075  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1076                                     SS, Name, NameLoc, Attr,
1077                                     Action::MultiTemplateParamsArg(Actions));
1078
1079  if (Tok.is(tok::l_brace))
1080    ParseEnumBody(StartLoc, TagDecl);
1081
1082  // TODO: semantic analysis on the declspec for enums.
1083  const char *PrevSpec = 0;
1084  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1085    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1086}
1087
1088/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1089///       enumerator-list:
1090///         enumerator
1091///         enumerator-list ',' enumerator
1092///       enumerator:
1093///         enumeration-constant
1094///         enumeration-constant '=' constant-expression
1095///       enumeration-constant:
1096///         identifier
1097///
1098void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1099  SourceLocation LBraceLoc = ConsumeBrace();
1100
1101  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1102  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1103    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1104
1105  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1106
1107  DeclTy *LastEnumConstDecl = 0;
1108
1109  // Parse the enumerator-list.
1110  while (Tok.is(tok::identifier)) {
1111    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1112    SourceLocation IdentLoc = ConsumeToken();
1113
1114    SourceLocation EqualLoc;
1115    OwningExprResult AssignedVal(Actions);
1116    if (Tok.is(tok::equal)) {
1117      EqualLoc = ConsumeToken();
1118      AssignedVal = ParseConstantExpression();
1119      if (AssignedVal.isInvalid())
1120        SkipUntil(tok::comma, tok::r_brace, true, true);
1121    }
1122
1123    // Install the enumerator constant into EnumDecl.
1124    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1125                                                      LastEnumConstDecl,
1126                                                      IdentLoc, Ident,
1127                                                      EqualLoc,
1128                                                      AssignedVal.release());
1129    EnumConstantDecls.push_back(EnumConstDecl);
1130    LastEnumConstDecl = EnumConstDecl;
1131
1132    if (Tok.isNot(tok::comma))
1133      break;
1134    SourceLocation CommaLoc = ConsumeToken();
1135
1136    if (Tok.isNot(tok::identifier) && !getLang().C99)
1137      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1138  }
1139
1140  // Eat the }.
1141  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1142
1143  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1144                        EnumConstantDecls.size());
1145
1146  DeclTy *AttrList = 0;
1147  // If attributes exist after the identifier list, parse them.
1148  if (Tok.is(tok::kw___attribute))
1149    AttrList = ParseAttributes(); // FIXME: where do they do?
1150}
1151
1152/// isTypeSpecifierQualifier - Return true if the current token could be the
1153/// start of a type-qualifier-list.
1154bool Parser::isTypeQualifier() const {
1155  switch (Tok.getKind()) {
1156  default: return false;
1157    // type-qualifier
1158  case tok::kw_const:
1159  case tok::kw_volatile:
1160  case tok::kw_restrict:
1161    return true;
1162  }
1163}
1164
1165/// isTypeSpecifierQualifier - Return true if the current token could be the
1166/// start of a specifier-qualifier-list.
1167bool Parser::isTypeSpecifierQualifier() {
1168  // Annotate typenames and C++ scope specifiers.
1169  TryAnnotateTypeOrScopeToken();
1170
1171  switch (Tok.getKind()) {
1172  default: return false;
1173    // GNU attributes support.
1174  case tok::kw___attribute:
1175    // GNU typeof support.
1176  case tok::kw_typeof:
1177
1178    // type-specifiers
1179  case tok::kw_short:
1180  case tok::kw_long:
1181  case tok::kw_signed:
1182  case tok::kw_unsigned:
1183  case tok::kw__Complex:
1184  case tok::kw__Imaginary:
1185  case tok::kw_void:
1186  case tok::kw_char:
1187  case tok::kw_wchar_t:
1188  case tok::kw_int:
1189  case tok::kw_float:
1190  case tok::kw_double:
1191  case tok::kw_bool:
1192  case tok::kw__Bool:
1193  case tok::kw__Decimal32:
1194  case tok::kw__Decimal64:
1195  case tok::kw__Decimal128:
1196
1197    // struct-or-union-specifier (C99) or class-specifier (C++)
1198  case tok::kw_class:
1199  case tok::kw_struct:
1200  case tok::kw_union:
1201    // enum-specifier
1202  case tok::kw_enum:
1203
1204    // type-qualifier
1205  case tok::kw_const:
1206  case tok::kw_volatile:
1207  case tok::kw_restrict:
1208
1209    // typedef-name
1210  case tok::annot_qualtypename:
1211    return true;
1212
1213    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1214  case tok::less:
1215    return getLang().ObjC1;
1216
1217  case tok::kw___cdecl:
1218  case tok::kw___stdcall:
1219  case tok::kw___fastcall:
1220    return PP.getLangOptions().Microsoft;
1221  }
1222}
1223
1224/// isDeclarationSpecifier() - Return true if the current token is part of a
1225/// declaration specifier.
1226bool Parser::isDeclarationSpecifier() {
1227  // Annotate typenames and C++ scope specifiers.
1228  TryAnnotateTypeOrScopeToken();
1229
1230  switch (Tok.getKind()) {
1231  default: return false;
1232    // storage-class-specifier
1233  case tok::kw_typedef:
1234  case tok::kw_extern:
1235  case tok::kw___private_extern__:
1236  case tok::kw_static:
1237  case tok::kw_auto:
1238  case tok::kw_register:
1239  case tok::kw___thread:
1240
1241    // type-specifiers
1242  case tok::kw_short:
1243  case tok::kw_long:
1244  case tok::kw_signed:
1245  case tok::kw_unsigned:
1246  case tok::kw__Complex:
1247  case tok::kw__Imaginary:
1248  case tok::kw_void:
1249  case tok::kw_char:
1250  case tok::kw_wchar_t:
1251  case tok::kw_int:
1252  case tok::kw_float:
1253  case tok::kw_double:
1254  case tok::kw_bool:
1255  case tok::kw__Bool:
1256  case tok::kw__Decimal32:
1257  case tok::kw__Decimal64:
1258  case tok::kw__Decimal128:
1259
1260    // struct-or-union-specifier (C99) or class-specifier (C++)
1261  case tok::kw_class:
1262  case tok::kw_struct:
1263  case tok::kw_union:
1264    // enum-specifier
1265  case tok::kw_enum:
1266
1267    // type-qualifier
1268  case tok::kw_const:
1269  case tok::kw_volatile:
1270  case tok::kw_restrict:
1271
1272    // function-specifier
1273  case tok::kw_inline:
1274  case tok::kw_virtual:
1275  case tok::kw_explicit:
1276
1277    // typedef-name
1278  case tok::annot_qualtypename:
1279
1280    // GNU typeof support.
1281  case tok::kw_typeof:
1282
1283    // GNU attributes.
1284  case tok::kw___attribute:
1285    return true;
1286
1287    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1288  case tok::less:
1289    return getLang().ObjC1;
1290
1291  case tok::kw___cdecl:
1292  case tok::kw___stdcall:
1293  case tok::kw___fastcall:
1294    return PP.getLangOptions().Microsoft;
1295  }
1296}
1297
1298
1299/// ParseTypeQualifierListOpt
1300///       type-qualifier-list: [C99 6.7.5]
1301///         type-qualifier
1302/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1303///         type-qualifier-list type-qualifier
1304/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1305///
1306void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1307  while (1) {
1308    int isInvalid = false;
1309    const char *PrevSpec = 0;
1310    SourceLocation Loc = Tok.getLocation();
1311
1312    switch (Tok.getKind()) {
1313    case tok::kw_const:
1314      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1315                                 getLang())*2;
1316      break;
1317    case tok::kw_volatile:
1318      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1319                                 getLang())*2;
1320      break;
1321    case tok::kw_restrict:
1322      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1323                                 getLang())*2;
1324      break;
1325    case tok::kw___cdecl:
1326    case tok::kw___stdcall:
1327    case tok::kw___fastcall:
1328      if (!PP.getLangOptions().Microsoft)
1329        goto DoneWithTypeQuals;
1330      // Just ignore it.
1331      break;
1332    case tok::kw___attribute:
1333      if (AttributesAllowed) {
1334        DS.AddAttributes(ParseAttributes());
1335        continue; // do *not* consume the next token!
1336      }
1337      // otherwise, FALL THROUGH!
1338    default:
1339      DoneWithTypeQuals:
1340      // If this is not a type-qualifier token, we're done reading type
1341      // qualifiers.  First verify that DeclSpec's are consistent.
1342      DS.Finish(Diags, PP.getSourceManager(), getLang());
1343      return;
1344    }
1345
1346    // If the specifier combination wasn't legal, issue a diagnostic.
1347    if (isInvalid) {
1348      assert(PrevSpec && "Method did not return previous specifier!");
1349      // Pick between error or extwarn.
1350      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1351                                      : diag::ext_duplicate_declspec;
1352      Diag(Tok, DiagID) << PrevSpec;
1353    }
1354    ConsumeToken();
1355  }
1356}
1357
1358
1359/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1360///
1361void Parser::ParseDeclarator(Declarator &D) {
1362  /// This implements the 'declarator' production in the C grammar, then checks
1363  /// for well-formedness and issues diagnostics.
1364  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1365}
1366
1367/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1368/// is parsed by the function passed to it. Pass null, and the direct-declarator
1369/// isn't parsed at all, making this function effectively parse the C++
1370/// ptr-operator production.
1371///
1372///       declarator: [C99 6.7.5]
1373///         pointer[opt] direct-declarator
1374/// [C++]   '&' declarator [C++ 8p4, dcl.decl]
1375/// [GNU]   '&' restrict[opt] attributes[opt] declarator
1376///
1377///       pointer: [C99 6.7.5]
1378///         '*' type-qualifier-list[opt]
1379///         '*' type-qualifier-list[opt] pointer
1380///
1381///       ptr-operator:
1382///         '*' cv-qualifier-seq[opt]
1383///         '&'
1384/// [GNU]   '&' restrict[opt] attributes[opt]
1385///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] [TODO]
1386void Parser::ParseDeclaratorInternal(Declarator &D,
1387                                     DirectDeclParseFunction DirectDeclParser) {
1388  tok::TokenKind Kind = Tok.getKind();
1389
1390  // Not a pointer, C++ reference, or block.
1391  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1392      (Kind != tok::caret || !getLang().Blocks)) {
1393    if (DirectDeclParser)
1394      (this->*DirectDeclParser)(D);
1395    return;
1396  }
1397
1398  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1399  SourceLocation Loc = ConsumeToken();  // Eat the * or &.
1400
1401  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1402    // Is a pointer.
1403    DeclSpec DS;
1404
1405    ParseTypeQualifierListOpt(DS);
1406
1407    // Recursively parse the declarator.
1408    ParseDeclaratorInternal(D, DirectDeclParser);
1409    if (Kind == tok::star)
1410      // Remember that we parsed a pointer type, and remember the type-quals.
1411      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1412                                                DS.TakeAttributes()));
1413    else
1414      // Remember that we parsed a Block type, and remember the type-quals.
1415      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1416                                                     Loc));
1417  } else {
1418    // Is a reference
1419    DeclSpec DS;
1420
1421    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1422    // cv-qualifiers are introduced through the use of a typedef or of a
1423    // template type argument, in which case the cv-qualifiers are ignored.
1424    //
1425    // [GNU] Retricted references are allowed.
1426    // [GNU] Attributes on references are allowed.
1427    ParseTypeQualifierListOpt(DS);
1428
1429    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1430      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1431        Diag(DS.getConstSpecLoc(),
1432             diag::err_invalid_reference_qualifier_application) << "const";
1433      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1434        Diag(DS.getVolatileSpecLoc(),
1435             diag::err_invalid_reference_qualifier_application) << "volatile";
1436    }
1437
1438    // Recursively parse the declarator.
1439    ParseDeclaratorInternal(D, DirectDeclParser);
1440
1441    if (D.getNumTypeObjects() > 0) {
1442      // C++ [dcl.ref]p4: There shall be no references to references.
1443      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1444      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1445        if (const IdentifierInfo *II = D.getIdentifier())
1446          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1447           << II;
1448        else
1449          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1450            << "type name";
1451
1452        // Once we've complained about the reference-to-reference, we
1453        // can go ahead and build the (technically ill-formed)
1454        // declarator: reference collapsing will take care of it.
1455      }
1456    }
1457
1458    // Remember that we parsed a reference type. It doesn't have type-quals.
1459    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1460                                                DS.TakeAttributes()));
1461  }
1462}
1463
1464/// ParseDirectDeclarator
1465///       direct-declarator: [C99 6.7.5]
1466/// [C99]   identifier
1467///         '(' declarator ')'
1468/// [GNU]   '(' attributes declarator ')'
1469/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1470/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1471/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1472/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1473/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1474///         direct-declarator '(' parameter-type-list ')'
1475///         direct-declarator '(' identifier-list[opt] ')'
1476/// [GNU]   direct-declarator '(' parameter-forward-declarations
1477///                    parameter-type-list[opt] ')'
1478/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1479///                    cv-qualifier-seq[opt] exception-specification[opt]
1480/// [C++]   declarator-id
1481///
1482///       declarator-id: [C++ 8]
1483///         id-expression
1484///         '::'[opt] nested-name-specifier[opt] type-name
1485///
1486///       id-expression: [C++ 5.1]
1487///         unqualified-id
1488///         qualified-id            [TODO]
1489///
1490///       unqualified-id: [C++ 5.1]
1491///         identifier
1492///         operator-function-id
1493///         conversion-function-id  [TODO]
1494///          '~' class-name
1495///         template-id             [TODO]
1496///
1497void Parser::ParseDirectDeclarator(Declarator &D) {
1498  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
1499
1500  if (getLang().CPlusPlus) {
1501    if (D.mayHaveIdentifier()) {
1502      bool afterCXXScope = MaybeParseCXXScopeSpecifier(D.getCXXScopeSpec());
1503      if (afterCXXScope) {
1504        // Change the declaration context for name lookup, until this function
1505        // is exited (and the declarator has been parsed).
1506        DeclScopeObj.EnterDeclaratorScope();
1507      }
1508
1509      if (Tok.is(tok::identifier)) {
1510        assert(Tok.getIdentifierInfo() && "Not an identifier?");
1511
1512        // If this identifier is followed by a '<', we may have a template-id.
1513        DeclTy *Template;
1514        if (getLang().CPlusPlus && NextToken().is(tok::less) &&
1515            (Template = Actions.isTemplateName(*Tok.getIdentifierInfo(),
1516                                               CurScope))) {
1517          IdentifierInfo *II = Tok.getIdentifierInfo();
1518          AnnotateTemplateIdToken(Template, 0);
1519          // FIXME: Set the declarator to a template-id. How? I don't
1520          // know... for now, just use the identifier.
1521          D.SetIdentifier(II, Tok.getLocation());
1522        }
1523        // If this identifier is the name of the current class, it's a
1524        // constructor name.
1525        else if (getLang().CPlusPlus &&
1526                 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope))
1527          D.setConstructor(Actions.isTypeName(*Tok.getIdentifierInfo(),
1528                                              CurScope),
1529                           Tok.getLocation());
1530        // This is a normal identifier.
1531        else
1532          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1533        ConsumeToken();
1534        goto PastIdentifier;
1535      }
1536
1537      if (Tok.is(tok::tilde)) {
1538        // This should be a C++ destructor.
1539        SourceLocation TildeLoc = ConsumeToken();
1540        if (Tok.is(tok::identifier)) {
1541          if (TypeTy *Type = ParseClassName())
1542            D.setDestructor(Type, TildeLoc);
1543          else
1544            D.SetIdentifier(0, TildeLoc);
1545        } else {
1546          Diag(Tok, diag::err_expected_class_name);
1547          D.SetIdentifier(0, TildeLoc);
1548        }
1549        goto PastIdentifier;
1550      }
1551
1552      // If we reached this point, token is not identifier and not '~'.
1553
1554      if (afterCXXScope) {
1555        Diag(Tok, diag::err_expected_unqualified_id);
1556        D.SetIdentifier(0, Tok.getLocation());
1557        D.setInvalidType(true);
1558        goto PastIdentifier;
1559      }
1560    }
1561
1562    if (Tok.is(tok::kw_operator)) {
1563      SourceLocation OperatorLoc = Tok.getLocation();
1564
1565      // First try the name of an overloaded operator
1566      if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) {
1567        D.setOverloadedOperator(Op, OperatorLoc);
1568      } else {
1569        // This must be a conversion function (C++ [class.conv.fct]).
1570        if (TypeTy *ConvType = ParseConversionFunctionId())
1571          D.setConversionFunction(ConvType, OperatorLoc);
1572        else
1573          D.SetIdentifier(0, Tok.getLocation());
1574      }
1575      goto PastIdentifier;
1576    }
1577  }
1578
1579  // If we reached this point, we are either in C/ObjC or the token didn't
1580  // satisfy any of the C++-specific checks.
1581
1582  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1583    assert(!getLang().CPlusPlus &&
1584           "There's a C++-specific check for tok::identifier above");
1585    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1586    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1587    ConsumeToken();
1588  } else if (Tok.is(tok::l_paren)) {
1589    // direct-declarator: '(' declarator ')'
1590    // direct-declarator: '(' attributes declarator ')'
1591    // Example: 'char (*X)'   or 'int (*XX)(void)'
1592    ParseParenDeclarator(D);
1593  } else if (D.mayOmitIdentifier()) {
1594    // This could be something simple like "int" (in which case the declarator
1595    // portion is empty), if an abstract-declarator is allowed.
1596    D.SetIdentifier(0, Tok.getLocation());
1597  } else {
1598    if (getLang().CPlusPlus)
1599      Diag(Tok, diag::err_expected_unqualified_id);
1600    else
1601      Diag(Tok, diag::err_expected_ident_lparen);
1602    D.SetIdentifier(0, Tok.getLocation());
1603    D.setInvalidType(true);
1604  }
1605
1606 PastIdentifier:
1607  assert(D.isPastIdentifier() &&
1608         "Haven't past the location of the identifier yet?");
1609
1610  while (1) {
1611    if (Tok.is(tok::l_paren)) {
1612      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1613      // In such a case, check if we actually have a function declarator; if it
1614      // is not, the declarator has been fully parsed.
1615      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1616        // When not in file scope, warn for ambiguous function declarators, just
1617        // in case the author intended it as a variable definition.
1618        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1619        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1620          break;
1621      }
1622      ParseFunctionDeclarator(ConsumeParen(), D);
1623    } else if (Tok.is(tok::l_square)) {
1624      ParseBracketDeclarator(D);
1625    } else {
1626      break;
1627    }
1628  }
1629}
1630
1631/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1632/// only called before the identifier, so these are most likely just grouping
1633/// parens for precedence.  If we find that these are actually function
1634/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1635///
1636///       direct-declarator:
1637///         '(' declarator ')'
1638/// [GNU]   '(' attributes declarator ')'
1639///         direct-declarator '(' parameter-type-list ')'
1640///         direct-declarator '(' identifier-list[opt] ')'
1641/// [GNU]   direct-declarator '(' parameter-forward-declarations
1642///                    parameter-type-list[opt] ')'
1643///
1644void Parser::ParseParenDeclarator(Declarator &D) {
1645  SourceLocation StartLoc = ConsumeParen();
1646  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1647
1648  // Eat any attributes before we look at whether this is a grouping or function
1649  // declarator paren.  If this is a grouping paren, the attribute applies to
1650  // the type being built up, for example:
1651  //     int (__attribute__(()) *x)(long y)
1652  // If this ends up not being a grouping paren, the attribute applies to the
1653  // first argument, for example:
1654  //     int (__attribute__(()) int x)
1655  // In either case, we need to eat any attributes to be able to determine what
1656  // sort of paren this is.
1657  //
1658  AttributeList *AttrList = 0;
1659  bool RequiresArg = false;
1660  if (Tok.is(tok::kw___attribute)) {
1661    AttrList = ParseAttributes();
1662
1663    // We require that the argument list (if this is a non-grouping paren) be
1664    // present even if the attribute list was empty.
1665    RequiresArg = true;
1666  }
1667  // Eat any Microsoft extensions.
1668  if ((Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
1669      (Tok.is(tok::kw___fastcall))) && PP.getLangOptions().Microsoft)
1670    ConsumeToken();
1671
1672  // If we haven't past the identifier yet (or where the identifier would be
1673  // stored, if this is an abstract declarator), then this is probably just
1674  // grouping parens. However, if this could be an abstract-declarator, then
1675  // this could also be the start of function arguments (consider 'void()').
1676  bool isGrouping;
1677
1678  if (!D.mayOmitIdentifier()) {
1679    // If this can't be an abstract-declarator, this *must* be a grouping
1680    // paren, because we haven't seen the identifier yet.
1681    isGrouping = true;
1682  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1683             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1684             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1685    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1686    // considered to be a type, not a K&R identifier-list.
1687    isGrouping = false;
1688  } else {
1689    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1690    isGrouping = true;
1691  }
1692
1693  // If this is a grouping paren, handle:
1694  // direct-declarator: '(' declarator ')'
1695  // direct-declarator: '(' attributes declarator ')'
1696  if (isGrouping) {
1697    bool hadGroupingParens = D.hasGroupingParens();
1698    D.setGroupingParens(true);
1699    if (AttrList)
1700      D.AddAttributes(AttrList);
1701
1702    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1703    // Match the ')'.
1704    MatchRHSPunctuation(tok::r_paren, StartLoc);
1705
1706    D.setGroupingParens(hadGroupingParens);
1707    return;
1708  }
1709
1710  // Okay, if this wasn't a grouping paren, it must be the start of a function
1711  // argument list.  Recognize that this declarator will never have an
1712  // identifier (and remember where it would have been), then call into
1713  // ParseFunctionDeclarator to handle of argument list.
1714  D.SetIdentifier(0, Tok.getLocation());
1715
1716  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
1717}
1718
1719/// ParseFunctionDeclarator - We are after the identifier and have parsed the
1720/// declarator D up to a paren, which indicates that we are parsing function
1721/// arguments.
1722///
1723/// If AttrList is non-null, then the caller parsed those arguments immediately
1724/// after the open paren - they should be considered to be the first argument of
1725/// a parameter.  If RequiresArg is true, then the first argument of the
1726/// function is required to be present and required to not be an identifier
1727/// list.
1728///
1729/// This method also handles this portion of the grammar:
1730///       parameter-type-list: [C99 6.7.5]
1731///         parameter-list
1732///         parameter-list ',' '...'
1733///
1734///       parameter-list: [C99 6.7.5]
1735///         parameter-declaration
1736///         parameter-list ',' parameter-declaration
1737///
1738///       parameter-declaration: [C99 6.7.5]
1739///         declaration-specifiers declarator
1740/// [C++]   declaration-specifiers declarator '=' assignment-expression
1741/// [GNU]   declaration-specifiers declarator attributes
1742///         declaration-specifiers abstract-declarator[opt]
1743/// [C++]   declaration-specifiers abstract-declarator[opt]
1744///           '=' assignment-expression
1745/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
1746///
1747/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
1748/// and "exception-specification[opt]"(TODO).
1749///
1750void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
1751                                     AttributeList *AttrList,
1752                                     bool RequiresArg) {
1753  // lparen is already consumed!
1754  assert(D.isPastIdentifier() && "Should not call before identifier!");
1755
1756  // This parameter list may be empty.
1757  if (Tok.is(tok::r_paren)) {
1758    if (RequiresArg) {
1759      Diag(Tok, diag::err_argument_required_after_attribute);
1760      delete AttrList;
1761    }
1762
1763    ConsumeParen();  // Eat the closing ')'.
1764
1765    // cv-qualifier-seq[opt].
1766    DeclSpec DS;
1767    if (getLang().CPlusPlus) {
1768      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1769
1770      // Parse exception-specification[opt].
1771      if (Tok.is(tok::kw_throw))
1772        ParseExceptionSpecification();
1773    }
1774
1775    // Remember that we parsed a function type, and remember the attributes.
1776    // int() -> no prototype, no '...'.
1777    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
1778                                               /*variadic*/ false,
1779                                               /*arglist*/ 0, 0,
1780                                               DS.getTypeQualifiers(),
1781                                               LParenLoc));
1782    return;
1783  }
1784
1785  // Alternatively, this parameter list may be an identifier list form for a
1786  // K&R-style function:  void foo(a,b,c)
1787  if (!getLang().CPlusPlus && Tok.is(tok::identifier) &&
1788      // K&R identifier lists can't have typedefs as identifiers, per
1789      // C99 6.7.5.3p11.
1790      !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) {
1791    if (RequiresArg) {
1792      Diag(Tok, diag::err_argument_required_after_attribute);
1793      delete AttrList;
1794    }
1795
1796    // Identifier list.  Note that '(' identifier-list ')' is only allowed for
1797    // normal declarators, not for abstract-declarators.
1798    return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
1799  }
1800
1801  // Finally, a normal, non-empty parameter type list.
1802
1803  // Build up an array of information about the parsed arguments.
1804  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1805
1806  // Enter function-declaration scope, limiting any declarators to the
1807  // function prototype scope, including parameter declarators.
1808  ParseScope PrototypeScope(this, Scope::FnScope|Scope::DeclScope);
1809
1810  bool IsVariadic = false;
1811  while (1) {
1812    if (Tok.is(tok::ellipsis)) {
1813      IsVariadic = true;
1814
1815      // Check to see if this is "void(...)" which is not allowed.
1816      if (!getLang().CPlusPlus && ParamInfo.empty()) {
1817        // Otherwise, parse parameter type list.  If it starts with an
1818        // ellipsis,  diagnose the malformed function.
1819        Diag(Tok, diag::err_ellipsis_first_arg);
1820        IsVariadic = false;       // Treat this like 'void()'.
1821      }
1822
1823      ConsumeToken();     // Consume the ellipsis.
1824      break;
1825    }
1826
1827    SourceLocation DSStart = Tok.getLocation();
1828
1829    // Parse the declaration-specifiers.
1830    DeclSpec DS;
1831
1832    // If the caller parsed attributes for the first argument, add them now.
1833    if (AttrList) {
1834      DS.AddAttributes(AttrList);
1835      AttrList = 0;  // Only apply the attributes to the first parameter.
1836    }
1837    ParseDeclarationSpecifiers(DS);
1838
1839    // Parse the declarator.  This is "PrototypeContext", because we must
1840    // accept either 'declarator' or 'abstract-declarator' here.
1841    Declarator ParmDecl(DS, Declarator::PrototypeContext);
1842    ParseDeclarator(ParmDecl);
1843
1844    // Parse GNU attributes, if present.
1845    if (Tok.is(tok::kw___attribute))
1846      ParmDecl.AddAttributes(ParseAttributes());
1847
1848    // Remember this parsed parameter in ParamInfo.
1849    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
1850
1851    // DefArgToks is used when the parsing of default arguments needs
1852    // to be delayed.
1853    CachedTokens *DefArgToks = 0;
1854
1855    // If no parameter was specified, verify that *something* was specified,
1856    // otherwise we have a missing type and identifier.
1857    if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
1858        ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
1859      // Completely missing, emit error.
1860      Diag(DSStart, diag::err_missing_param);
1861    } else {
1862      // Otherwise, we have something.  Add it and let semantic analysis try
1863      // to grok it and add the result to the ParamInfo we are building.
1864
1865      // Inform the actions module about the parameter declarator, so it gets
1866      // added to the current scope.
1867      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
1868
1869      // Parse the default argument, if any. We parse the default
1870      // arguments in all dialects; the semantic analysis in
1871      // ActOnParamDefaultArgument will reject the default argument in
1872      // C.
1873      if (Tok.is(tok::equal)) {
1874        SourceLocation EqualLoc = Tok.getLocation();
1875
1876        // Parse the default argument
1877        if (D.getContext() == Declarator::MemberContext) {
1878          // If we're inside a class definition, cache the tokens
1879          // corresponding to the default argument. We'll actually parse
1880          // them when we see the end of the class definition.
1881          // FIXME: Templates will require something similar.
1882          // FIXME: Can we use a smart pointer for Toks?
1883          DefArgToks = new CachedTokens;
1884
1885          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
1886                                    tok::semi, false)) {
1887            delete DefArgToks;
1888            DefArgToks = 0;
1889            Actions.ActOnParamDefaultArgumentError(Param);
1890          } else
1891            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc);
1892        } else {
1893          // Consume the '='.
1894          ConsumeToken();
1895
1896          OwningExprResult DefArgResult(ParseAssignmentExpression());
1897          if (DefArgResult.isInvalid()) {
1898            Actions.ActOnParamDefaultArgumentError(Param);
1899            SkipUntil(tok::comma, tok::r_paren, true, true);
1900          } else {
1901            // Inform the actions module about the default argument
1902            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
1903                                              DefArgResult.release());
1904          }
1905        }
1906      }
1907
1908      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1909                                          ParmDecl.getIdentifierLoc(), Param,
1910                                          DefArgToks));
1911    }
1912
1913    // If the next token is a comma, consume it and keep reading arguments.
1914    if (Tok.isNot(tok::comma)) break;
1915
1916    // Consume the comma.
1917    ConsumeToken();
1918  }
1919
1920  // Leave prototype scope.
1921  PrototypeScope.Exit();
1922
1923  // If we have the closing ')', eat it.
1924  MatchRHSPunctuation(tok::r_paren, LParenLoc);
1925
1926  DeclSpec DS;
1927  if (getLang().CPlusPlus) {
1928    // Parse cv-qualifier-seq[opt].
1929    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
1930
1931    // Parse exception-specification[opt].
1932    if (Tok.is(tok::kw_throw))
1933      ParseExceptionSpecification();
1934  }
1935
1936  // Remember that we parsed a function type, and remember the attributes.
1937  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
1938                                             &ParamInfo[0], ParamInfo.size(),
1939                                             DS.getTypeQualifiers(),
1940                                             LParenLoc));
1941}
1942
1943/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
1944/// we found a K&R-style identifier list instead of a type argument list.  The
1945/// current token is known to be the first identifier in the list.
1946///
1947///       identifier-list: [C99 6.7.5]
1948///         identifier
1949///         identifier-list ',' identifier
1950///
1951void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
1952                                                   Declarator &D) {
1953  // Build up an array of information about the parsed arguments.
1954  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1955  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
1956
1957  // If there was no identifier specified for the declarator, either we are in
1958  // an abstract-declarator, or we are in a parameter declarator which was found
1959  // to be abstract.  In abstract-declarators, identifier lists are not valid:
1960  // diagnose this.
1961  if (!D.getIdentifier())
1962    Diag(Tok, diag::ext_ident_list_in_param);
1963
1964  // Tok is known to be the first identifier in the list.  Remember this
1965  // identifier in ParamInfo.
1966  ParamsSoFar.insert(Tok.getIdentifierInfo());
1967  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
1968                                                 Tok.getLocation(), 0));
1969
1970  ConsumeToken();  // eat the first identifier.
1971
1972  while (Tok.is(tok::comma)) {
1973    // Eat the comma.
1974    ConsumeToken();
1975
1976    // If this isn't an identifier, report the error and skip until ')'.
1977    if (Tok.isNot(tok::identifier)) {
1978      Diag(Tok, diag::err_expected_ident);
1979      SkipUntil(tok::r_paren);
1980      return;
1981    }
1982
1983    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
1984
1985    // Reject 'typedef int y; int test(x, y)', but continue parsing.
1986    if (Actions.isTypeName(*ParmII, CurScope))
1987      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
1988
1989    // Verify that the argument identifier has not already been mentioned.
1990    if (!ParamsSoFar.insert(ParmII)) {
1991      Diag(Tok, diag::err_param_redefinition) << ParmII;
1992    } else {
1993      // Remember this identifier in ParamInfo.
1994      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1995                                                     Tok.getLocation(), 0));
1996    }
1997
1998    // Eat the identifier.
1999    ConsumeToken();
2000  }
2001
2002  // Remember that we parsed a function type, and remember the attributes.  This
2003  // function type is always a K&R style function type, which is not varargs and
2004  // has no prototype.
2005  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2006                                             &ParamInfo[0], ParamInfo.size(),
2007                                             /*TypeQuals*/0, LParenLoc));
2008
2009  // If we have the closing ')', eat it and we're done.
2010  MatchRHSPunctuation(tok::r_paren, LParenLoc);
2011}
2012
2013/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2014/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2015/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2016/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2017/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2018void Parser::ParseBracketDeclarator(Declarator &D) {
2019  SourceLocation StartLoc = ConsumeBracket();
2020
2021  // C array syntax has many features, but by-far the most common is [] and [4].
2022  // This code does a fast path to handle some of the most obvious cases.
2023  if (Tok.getKind() == tok::r_square) {
2024    MatchRHSPunctuation(tok::r_square, StartLoc);
2025    // Remember that we parsed the empty array type.
2026    OwningExprResult NumElements(Actions);
2027    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0, StartLoc));
2028    return;
2029  } else if (Tok.getKind() == tok::numeric_constant &&
2030             GetLookAheadToken(1).is(tok::r_square)) {
2031    // [4] is very common.  Parse the numeric constant expression.
2032    OwningExprResult ExprRes(Actions, Actions.ActOnNumericConstant(Tok));
2033    ConsumeToken();
2034
2035    MatchRHSPunctuation(tok::r_square, StartLoc);
2036
2037    // If there was an error parsing the assignment-expression, recover.
2038    if (ExprRes.isInvalid())
2039      ExprRes.release();  // Deallocate expr, just use [].
2040
2041    // Remember that we parsed a array type, and remember its features.
2042    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0,
2043                                            ExprRes.release(), StartLoc));
2044    return;
2045  }
2046
2047  // If valid, this location is the position where we read the 'static' keyword.
2048  SourceLocation StaticLoc;
2049  if (Tok.is(tok::kw_static))
2050    StaticLoc = ConsumeToken();
2051
2052  // If there is a type-qualifier-list, read it now.
2053  // Type qualifiers in an array subscript are a C99 feature.
2054  DeclSpec DS;
2055  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2056
2057  // If we haven't already read 'static', check to see if there is one after the
2058  // type-qualifier-list.
2059  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2060    StaticLoc = ConsumeToken();
2061
2062  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2063  bool isStar = false;
2064  OwningExprResult NumElements(Actions);
2065
2066  // Handle the case where we have '[*]' as the array size.  However, a leading
2067  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2068  // the the token after the star is a ']'.  Since stars in arrays are
2069  // infrequent, use of lookahead is not costly here.
2070  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2071    ConsumeToken();  // Eat the '*'.
2072
2073    if (StaticLoc.isValid()) {
2074      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2075      StaticLoc = SourceLocation();  // Drop the static.
2076    }
2077    isStar = true;
2078  } else if (Tok.isNot(tok::r_square)) {
2079    // Note, in C89, this production uses the constant-expr production instead
2080    // of assignment-expr.  The only difference is that assignment-expr allows
2081    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2082    // are not i-c-e's, so we don't need to distinguish between the two here.
2083
2084    // Parse the assignment-expression now.
2085    NumElements = ParseAssignmentExpression();
2086  }
2087
2088  // If there was an error parsing the assignment-expression, recover.
2089  if (NumElements.isInvalid()) {
2090    // If the expression was invalid, skip it.
2091    SkipUntil(tok::r_square);
2092    return;
2093  }
2094
2095  MatchRHSPunctuation(tok::r_square, StartLoc);
2096
2097  // Remember that we parsed a array type, and remember its features.
2098  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2099                                          StaticLoc.isValid(), isStar,
2100                                          NumElements.release(), StartLoc));
2101}
2102
2103/// [GNU]   typeof-specifier:
2104///           typeof ( expressions )
2105///           typeof ( type-name )
2106/// [GNU/C++] typeof unary-expression
2107///
2108void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2109  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2110  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2111  SourceLocation StartLoc = ConsumeToken();
2112
2113  if (Tok.isNot(tok::l_paren)) {
2114    if (!getLang().CPlusPlus) {
2115      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
2116      return;
2117    }
2118
2119    OwningExprResult Result(ParseCastExpression(true/*isUnaryExpression*/));
2120    if (Result.isInvalid())
2121      return;
2122
2123    const char *PrevSpec = 0;
2124    // Check for duplicate type specifiers.
2125    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2126                           Result.release()))
2127      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2128
2129    // FIXME: Not accurate, the range gets one token more than it should.
2130    DS.SetRangeEnd(Tok.getLocation());
2131    return;
2132  }
2133
2134  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
2135
2136  if (isTypeIdInParens()) {
2137    TypeTy *Ty = ParseTypeName();
2138
2139    assert(Ty && "Parser::ParseTypeofSpecifier(): missing type");
2140
2141    if (Tok.isNot(tok::r_paren)) {
2142      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2143      return;
2144    }
2145    RParenLoc = ConsumeParen();
2146    const char *PrevSpec = 0;
2147    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2148    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty))
2149      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2150  } else { // we have an expression.
2151    OwningExprResult Result(ParseExpression());
2152
2153    if (Result.isInvalid() || Tok.isNot(tok::r_paren)) {
2154      MatchRHSPunctuation(tok::r_paren, LParenLoc);
2155      return;
2156    }
2157    RParenLoc = ConsumeParen();
2158    const char *PrevSpec = 0;
2159    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2160    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2161                           Result.release()))
2162      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2163  }
2164  DS.SetRangeEnd(RParenLoc);
2165}
2166
2167
2168