ParseDecl.cpp revision 7f040a9d817cd1c72b565e92abff473510bf9e1d
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Sema/Scope.h"
17#include "clang/Sema/ParsedTemplate.h"
18#include "clang/Sema/PrettyDeclStackTrace.h"
19#include "RAIIObjectsForParser.h"
20#include "llvm/ADT/SmallSet.h"
21using namespace clang;
22
23//===----------------------------------------------------------------------===//
24// C99 6.7: Declarations.
25//===----------------------------------------------------------------------===//
26
27/// ParseTypeName
28///       type-name: [C99 6.7.6]
29///         specifier-qualifier-list abstract-declarator[opt]
30///
31/// Called type-id in C++.
32TypeResult Parser::ParseTypeName(SourceRange *Range) {
33  // Parse the common declaration-specifiers piece.
34  DeclSpec DS;
35  ParseSpecifierQualifierList(DS);
36
37  // Parse the abstract-declarator, if present.
38  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
39  ParseDeclarator(DeclaratorInfo);
40  if (Range)
41    *Range = DeclaratorInfo.getSourceRange();
42
43  if (DeclaratorInfo.isInvalidType())
44    return true;
45
46  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
47}
48
49/// ParseGNUAttributes - Parse a non-empty attributes list.
50///
51/// [GNU] attributes:
52///         attribute
53///         attributes attribute
54///
55/// [GNU]  attribute:
56///          '__attribute__' '(' '(' attribute-list ')' ')'
57///
58/// [GNU]  attribute-list:
59///          attrib
60///          attribute_list ',' attrib
61///
62/// [GNU]  attrib:
63///          empty
64///          attrib-name
65///          attrib-name '(' identifier ')'
66///          attrib-name '(' identifier ',' nonempty-expr-list ')'
67///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
68///
69/// [GNU]  attrib-name:
70///          identifier
71///          typespec
72///          typequal
73///          storageclass
74///
75/// FIXME: The GCC grammar/code for this construct implies we need two
76/// token lookahead. Comment from gcc: "If they start with an identifier
77/// which is followed by a comma or close parenthesis, then the arguments
78/// start with that identifier; otherwise they are an expression list."
79///
80/// At the moment, I am not doing 2 token lookahead. I am also unaware of
81/// any attributes that don't work (based on my limited testing). Most
82/// attributes are very simple in practice. Until we find a bug, I don't see
83/// a pressing need to implement the 2 token lookahead.
84
85void Parser::ParseGNUAttributes(ParsedAttributes &attrs,
86                                SourceLocation *endLoc) {
87  assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
88
89  while (Tok.is(tok::kw___attribute)) {
90    ConsumeToken();
91    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
92                         "attribute")) {
93      SkipUntil(tok::r_paren, true); // skip until ) or ;
94      return;
95    }
96    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
97      SkipUntil(tok::r_paren, true); // skip until ) or ;
98      return;
99    }
100    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
101    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
102           Tok.is(tok::comma)) {
103
104      if (Tok.is(tok::comma)) {
105        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
106        ConsumeToken();
107        continue;
108      }
109      // we have an identifier or declaration specifier (const, int, etc.)
110      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
111      SourceLocation AttrNameLoc = ConsumeToken();
112
113      // check if we have a "parameterized" attribute
114      if (Tok.is(tok::l_paren)) {
115        ConsumeParen(); // ignore the left paren loc for now
116
117        if (Tok.is(tok::identifier)) {
118          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
119          SourceLocation ParmLoc = ConsumeToken();
120
121          if (Tok.is(tok::r_paren)) {
122            // __attribute__(( mode(byte) ))
123            ConsumeParen(); // ignore the right paren loc for now
124            attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
125                                         ParmName, ParmLoc, 0, 0));
126          } else if (Tok.is(tok::comma)) {
127            ConsumeToken();
128            // __attribute__(( format(printf, 1, 2) ))
129            ExprVector ArgExprs(Actions);
130            bool ArgExprsOk = true;
131
132            // now parse the non-empty comma separated list of expressions
133            while (1) {
134              ExprResult ArgExpr(ParseAssignmentExpression());
135              if (ArgExpr.isInvalid()) {
136                ArgExprsOk = false;
137                SkipUntil(tok::r_paren);
138                break;
139              } else {
140                ArgExprs.push_back(ArgExpr.release());
141              }
142              if (Tok.isNot(tok::comma))
143                break;
144              ConsumeToken(); // Eat the comma, move to the next argument
145            }
146            if (ArgExprsOk && Tok.is(tok::r_paren)) {
147              ConsumeParen(); // ignore the right paren loc for now
148              attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0,
149                                           AttrNameLoc, ParmName, ParmLoc,
150                                           ArgExprs.take(), ArgExprs.size()));
151            }
152          }
153        } else { // not an identifier
154          switch (Tok.getKind()) {
155          case tok::r_paren:
156          // parse a possibly empty comma separated list of expressions
157            // __attribute__(( nonnull() ))
158            ConsumeParen(); // ignore the right paren loc for now
159            attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
160                                         0, SourceLocation(), 0, 0));
161            break;
162          case tok::kw_char:
163          case tok::kw_wchar_t:
164          case tok::kw_char16_t:
165          case tok::kw_char32_t:
166          case tok::kw_bool:
167          case tok::kw_short:
168          case tok::kw_int:
169          case tok::kw_long:
170          case tok::kw_signed:
171          case tok::kw_unsigned:
172          case tok::kw_float:
173          case tok::kw_double:
174          case tok::kw_void:
175          case tok::kw_typeof: {
176            AttributeList *attr
177                     = AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
178                                          0, SourceLocation(), 0, 0);
179            attrs.add(attr);
180            if (attr->getKind() == AttributeList::AT_IBOutletCollection)
181              Diag(Tok, diag::err_iboutletcollection_builtintype);
182            // If it's a builtin type name, eat it and expect a rparen
183            // __attribute__(( vec_type_hint(char) ))
184            ConsumeToken();
185            if (Tok.is(tok::r_paren))
186              ConsumeParen();
187            break;
188          }
189          default:
190            // __attribute__(( aligned(16) ))
191            ExprVector ArgExprs(Actions);
192            bool ArgExprsOk = true;
193
194            // now parse the list of expressions
195            while (1) {
196              ExprResult ArgExpr(ParseAssignmentExpression());
197              if (ArgExpr.isInvalid()) {
198                ArgExprsOk = false;
199                SkipUntil(tok::r_paren);
200                break;
201              } else {
202                ArgExprs.push_back(ArgExpr.release());
203              }
204              if (Tok.isNot(tok::comma))
205                break;
206              ConsumeToken(); // Eat the comma, move to the next argument
207            }
208            // Match the ')'.
209            if (ArgExprsOk && Tok.is(tok::r_paren)) {
210              ConsumeParen(); // ignore the right paren loc for now
211              attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0,
212                                           AttrNameLoc, 0, SourceLocation(),
213                                           ArgExprs.take(), ArgExprs.size()));
214            }
215            break;
216          }
217        }
218      } else {
219        attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
220                                     0, SourceLocation(), 0, 0));
221      }
222    }
223    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
224      SkipUntil(tok::r_paren, false);
225    SourceLocation Loc = Tok.getLocation();
226    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
227      SkipUntil(tok::r_paren, false);
228    }
229    if (endLoc)
230      *endLoc = Loc;
231  }
232}
233
234/// ParseMicrosoftDeclSpec - Parse an __declspec construct
235///
236/// [MS] decl-specifier:
237///             __declspec ( extended-decl-modifier-seq )
238///
239/// [MS] extended-decl-modifier-seq:
240///             extended-decl-modifier[opt]
241///             extended-decl-modifier extended-decl-modifier-seq
242
243void Parser::ParseMicrosoftDeclSpec(ParsedAttributes &attrs) {
244  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
245
246  ConsumeToken();
247  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
248                       "declspec")) {
249    SkipUntil(tok::r_paren, true); // skip until ) or ;
250    return;
251  }
252  while (Tok.getIdentifierInfo()) {
253    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
254    SourceLocation AttrNameLoc = ConsumeToken();
255    if (Tok.is(tok::l_paren)) {
256      ConsumeParen();
257      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
258      // correctly.
259      ExprResult ArgExpr(ParseAssignmentExpression());
260      if (!ArgExpr.isInvalid()) {
261        Expr *ExprList = ArgExpr.take();
262        attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
263                                     SourceLocation(), &ExprList, 1, true));
264      }
265      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
266        SkipUntil(tok::r_paren, false);
267    } else {
268      attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc,
269                                   0, SourceLocation(), 0, 0, true));
270    }
271  }
272  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
273    SkipUntil(tok::r_paren, false);
274  return;
275}
276
277void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
278  // Treat these like attributes
279  // FIXME: Allow Sema to distinguish between these and real attributes!
280  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
281         Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___cdecl)   ||
282         Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64)) {
283    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
284    SourceLocation AttrNameLoc = ConsumeToken();
285    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
286      // FIXME: Support these properly!
287      continue;
288    attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
289                                 SourceLocation(), 0, 0, true));
290  }
291}
292
293void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
294  // Treat these like attributes
295  while (Tok.is(tok::kw___pascal)) {
296    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
297    SourceLocation AttrNameLoc = ConsumeToken();
298    attrs.add(AttrFactory.Create(AttrName, AttrNameLoc, 0, AttrNameLoc, 0,
299                                 SourceLocation(), 0, 0, true));
300  }
301}
302
303void Parser::DiagnoseProhibitedAttributes(ParsedAttributesWithRange &attrs) {
304  Diag(attrs.Range.getBegin(), diag::err_attributes_not_allowed)
305    << attrs.Range;
306}
307
308/// ParseDeclaration - Parse a full 'declaration', which consists of
309/// declaration-specifiers, some number of declarators, and a semicolon.
310/// 'Context' should be a Declarator::TheContext value.  This returns the
311/// location of the semicolon in DeclEnd.
312///
313///       declaration: [C99 6.7]
314///         block-declaration ->
315///           simple-declaration
316///           others                   [FIXME]
317/// [C++]   template-declaration
318/// [C++]   namespace-definition
319/// [C++]   using-directive
320/// [C++]   using-declaration
321/// [C++0x] static_assert-declaration
322///         others... [FIXME]
323///
324Parser::DeclGroupPtrTy Parser::ParseDeclaration(StmtVector &Stmts,
325                                                unsigned Context,
326                                                SourceLocation &DeclEnd,
327                                          ParsedAttributesWithRange &attrs) {
328  ParenBraceBracketBalancer BalancerRAIIObj(*this);
329
330  Decl *SingleDecl = 0;
331  switch (Tok.getKind()) {
332  case tok::kw_template:
333  case tok::kw_export:
334    ProhibitAttributes(attrs);
335    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
336    break;
337  case tok::kw_inline:
338    // Could be the start of an inline namespace. Allowed as an ext in C++03.
339    if (getLang().CPlusPlus && NextToken().is(tok::kw_namespace)) {
340      ProhibitAttributes(attrs);
341      SourceLocation InlineLoc = ConsumeToken();
342      SingleDecl = ParseNamespace(Context, DeclEnd, InlineLoc);
343      break;
344    }
345    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs,
346                                  true);
347  case tok::kw_namespace:
348    ProhibitAttributes(attrs);
349    SingleDecl = ParseNamespace(Context, DeclEnd);
350    break;
351  case tok::kw_using:
352    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
353                                                  DeclEnd, attrs);
354    break;
355  case tok::kw_static_assert:
356    ProhibitAttributes(attrs);
357    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
358    break;
359  default:
360    return ParseSimpleDeclaration(Stmts, Context, DeclEnd, attrs, true);
361  }
362
363  // This routine returns a DeclGroup, if the thing we parsed only contains a
364  // single decl, convert it now.
365  return Actions.ConvertDeclToDeclGroup(SingleDecl);
366}
367
368///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
369///         declaration-specifiers init-declarator-list[opt] ';'
370///[C90/C++]init-declarator-list ';'                             [TODO]
371/// [OMP]   threadprivate-directive                              [TODO]
372///
373/// If RequireSemi is false, this does not check for a ';' at the end of the
374/// declaration.  If it is true, it checks for and eats it.
375Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(StmtVector &Stmts,
376                                                      unsigned Context,
377                                                      SourceLocation &DeclEnd,
378                                                      ParsedAttributes &attrs,
379                                                      bool RequireSemi) {
380  // Parse the common declaration-specifiers piece.
381  ParsingDeclSpec DS(*this);
382  DS.takeAttributesFrom(attrs);
383  ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none,
384                            getDeclSpecContextFromDeclaratorContext(Context));
385  StmtResult R = Actions.ActOnVlaStmt(DS);
386  if (R.isUsable())
387    Stmts.push_back(R.release());
388
389  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
390  // declaration-specifiers init-declarator-list[opt] ';'
391  if (Tok.is(tok::semi)) {
392    if (RequireSemi) ConsumeToken();
393    Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none,
394                                                           DS);
395    DS.complete(TheDecl);
396    return Actions.ConvertDeclToDeclGroup(TheDecl);
397  }
398
399  return ParseDeclGroup(DS, Context, /*FunctionDefs=*/ false, &DeclEnd);
400}
401
402/// ParseDeclGroup - Having concluded that this is either a function
403/// definition or a group of object declarations, actually parse the
404/// result.
405Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
406                                              unsigned Context,
407                                              bool AllowFunctionDefinitions,
408                                              SourceLocation *DeclEnd) {
409  // Parse the first declarator.
410  ParsingDeclarator D(*this, DS, static_cast<Declarator::TheContext>(Context));
411  ParseDeclarator(D);
412
413  // Bail out if the first declarator didn't seem well-formed.
414  if (!D.hasName() && !D.mayOmitIdentifier()) {
415    // Skip until ; or }.
416    SkipUntil(tok::r_brace, true, true);
417    if (Tok.is(tok::semi))
418      ConsumeToken();
419    return DeclGroupPtrTy();
420  }
421
422  // Check to see if we have a function *definition* which must have a body.
423  if (AllowFunctionDefinitions && D.isFunctionDeclarator() &&
424      // Look at the next token to make sure that this isn't a function
425      // declaration.  We have to check this because __attribute__ might be the
426      // start of a function definition in GCC-extended K&R C.
427      !isDeclarationAfterDeclarator()) {
428
429    if (isStartOfFunctionDefinition(D)) {
430      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
431        Diag(Tok, diag::err_function_declared_typedef);
432
433        // Recover by treating the 'typedef' as spurious.
434        DS.ClearStorageClassSpecs();
435      }
436
437      Decl *TheDecl = ParseFunctionDefinition(D);
438      return Actions.ConvertDeclToDeclGroup(TheDecl);
439    }
440
441    if (isDeclarationSpecifier()) {
442      // If there is an invalid declaration specifier right after the function
443      // prototype, then we must be in a missing semicolon case where this isn't
444      // actually a body.  Just fall through into the code that handles it as a
445      // prototype, and let the top-level code handle the erroneous declspec
446      // where it would otherwise expect a comma or semicolon.
447    } else {
448      Diag(Tok, diag::err_expected_fn_body);
449      SkipUntil(tok::semi);
450      return DeclGroupPtrTy();
451    }
452  }
453
454  llvm::SmallVector<Decl *, 8> DeclsInGroup;
455  Decl *FirstDecl = ParseDeclarationAfterDeclarator(D);
456  D.complete(FirstDecl);
457  if (FirstDecl)
458    DeclsInGroup.push_back(FirstDecl);
459
460  // If we don't have a comma, it is either the end of the list (a ';') or an
461  // error, bail out.
462  while (Tok.is(tok::comma)) {
463    // Consume the comma.
464    ConsumeToken();
465
466    // Parse the next declarator.
467    D.clear();
468
469    // Accept attributes in an init-declarator.  In the first declarator in a
470    // declaration, these would be part of the declspec.  In subsequent
471    // declarators, they become part of the declarator itself, so that they
472    // don't apply to declarators after *this* one.  Examples:
473    //    short __attribute__((common)) var;    -> declspec
474    //    short var __attribute__((common));    -> declarator
475    //    short x, __attribute__((common)) var;    -> declarator
476    MaybeParseGNUAttributes(D);
477
478    ParseDeclarator(D);
479
480    Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
481    D.complete(ThisDecl);
482    if (ThisDecl)
483      DeclsInGroup.push_back(ThisDecl);
484  }
485
486  if (DeclEnd)
487    *DeclEnd = Tok.getLocation();
488
489  if (Context != Declarator::ForContext &&
490      ExpectAndConsume(tok::semi,
491                       Context == Declarator::FileContext
492                         ? diag::err_invalid_token_after_toplevel_declarator
493                         : diag::err_expected_semi_declaration)) {
494    // Okay, there was no semicolon and one was expected.  If we see a
495    // declaration specifier, just assume it was missing and continue parsing.
496    // Otherwise things are very confused and we skip to recover.
497    if (!isDeclarationSpecifier()) {
498      SkipUntil(tok::r_brace, true, true);
499      if (Tok.is(tok::semi))
500        ConsumeToken();
501    }
502  }
503
504  return Actions.FinalizeDeclaratorGroup(getCurScope(), DS,
505                                         DeclsInGroup.data(),
506                                         DeclsInGroup.size());
507}
508
509/// \brief Parse 'declaration' after parsing 'declaration-specifiers
510/// declarator'. This method parses the remainder of the declaration
511/// (including any attributes or initializer, among other things) and
512/// finalizes the declaration.
513///
514///       init-declarator: [C99 6.7]
515///         declarator
516///         declarator '=' initializer
517/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
518/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
519/// [C++]   declarator initializer[opt]
520///
521/// [C++] initializer:
522/// [C++]   '=' initializer-clause
523/// [C++]   '(' expression-list ')'
524/// [C++0x] '=' 'default'                                                [TODO]
525/// [C++0x] '=' 'delete'
526///
527/// According to the standard grammar, =default and =delete are function
528/// definitions, but that definitely doesn't fit with the parser here.
529///
530Decl *Parser::ParseDeclarationAfterDeclarator(Declarator &D,
531                                     const ParsedTemplateInfo &TemplateInfo) {
532  // If a simple-asm-expr is present, parse it.
533  if (Tok.is(tok::kw_asm)) {
534    SourceLocation Loc;
535    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
536    if (AsmLabel.isInvalid()) {
537      SkipUntil(tok::semi, true, true);
538      return 0;
539    }
540
541    D.setAsmLabel(AsmLabel.release());
542    D.SetRangeEnd(Loc);
543  }
544
545  MaybeParseGNUAttributes(D);
546
547  // Inform the current actions module that we just parsed this declarator.
548  Decl *ThisDecl = 0;
549  switch (TemplateInfo.Kind) {
550  case ParsedTemplateInfo::NonTemplate:
551    ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
552    break;
553
554  case ParsedTemplateInfo::Template:
555  case ParsedTemplateInfo::ExplicitSpecialization:
556    ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
557                             MultiTemplateParamsArg(Actions,
558                                          TemplateInfo.TemplateParams->data(),
559                                          TemplateInfo.TemplateParams->size()),
560                                               D);
561    break;
562
563  case ParsedTemplateInfo::ExplicitInstantiation: {
564    DeclResult ThisRes
565      = Actions.ActOnExplicitInstantiation(getCurScope(),
566                                           TemplateInfo.ExternLoc,
567                                           TemplateInfo.TemplateLoc,
568                                           D);
569    if (ThisRes.isInvalid()) {
570      SkipUntil(tok::semi, true, true);
571      return 0;
572    }
573
574    ThisDecl = ThisRes.get();
575    break;
576    }
577  }
578
579  // Parse declarator '=' initializer.
580  if (isTokenEqualOrMistypedEqualEqual(
581                               diag::err_invalid_equalequal_after_declarator)) {
582    ConsumeToken();
583    if (Tok.is(tok::kw_delete)) {
584      SourceLocation DelLoc = ConsumeToken();
585
586      if (!getLang().CPlusPlus0x)
587        Diag(DelLoc, diag::warn_deleted_function_accepted_as_extension);
588
589      Actions.SetDeclDeleted(ThisDecl, DelLoc);
590    } else {
591      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
592        EnterScope(0);
593        Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
594      }
595
596      if (Tok.is(tok::code_completion)) {
597        Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
598        ConsumeCodeCompletionToken();
599        SkipUntil(tok::comma, true, true);
600        return ThisDecl;
601      }
602
603      ExprResult Init(ParseInitializer());
604
605      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
606        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
607        ExitScope();
608      }
609
610      if (Init.isInvalid()) {
611        SkipUntil(tok::comma, true, true);
612        Actions.ActOnInitializerError(ThisDecl);
613      } else
614        Actions.AddInitializerToDecl(ThisDecl, Init.take());
615    }
616  } else if (Tok.is(tok::l_paren)) {
617    // Parse C++ direct initializer: '(' expression-list ')'
618    SourceLocation LParenLoc = ConsumeParen();
619    ExprVector Exprs(Actions);
620    CommaLocsTy CommaLocs;
621
622    if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
623      EnterScope(0);
624      Actions.ActOnCXXEnterDeclInitializer(getCurScope(), ThisDecl);
625    }
626
627    if (ParseExpressionList(Exprs, CommaLocs)) {
628      SkipUntil(tok::r_paren);
629
630      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
631        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
632        ExitScope();
633      }
634    } else {
635      // Match the ')'.
636      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
637
638      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
639             "Unexpected number of commas!");
640
641      if (getLang().CPlusPlus && D.getCXXScopeSpec().isSet()) {
642        Actions.ActOnCXXExitDeclInitializer(getCurScope(), ThisDecl);
643        ExitScope();
644      }
645
646      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
647                                            move_arg(Exprs),
648                                            RParenLoc);
649    }
650  } else {
651    bool TypeContainsUndeducedAuto =
652      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
653    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
654  }
655
656  return ThisDecl;
657}
658
659/// ParseSpecifierQualifierList
660///        specifier-qualifier-list:
661///          type-specifier specifier-qualifier-list[opt]
662///          type-qualifier specifier-qualifier-list[opt]
663/// [GNU]    attributes     specifier-qualifier-list[opt]
664///
665void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
666  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
667  /// parse declaration-specifiers and complain about extra stuff.
668  ParseDeclarationSpecifiers(DS);
669
670  // Validate declspec for type-name.
671  unsigned Specs = DS.getParsedSpecifiers();
672  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
673      !DS.hasAttributes())
674    Diag(Tok, diag::err_typename_requires_specqual);
675
676  // Issue diagnostic and remove storage class if present.
677  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
678    if (DS.getStorageClassSpecLoc().isValid())
679      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
680    else
681      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
682    DS.ClearStorageClassSpecs();
683  }
684
685  // Issue diagnostic and remove function specfier if present.
686  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
687    if (DS.isInlineSpecified())
688      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
689    if (DS.isVirtualSpecified())
690      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
691    if (DS.isExplicitSpecified())
692      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
693    DS.ClearFunctionSpecs();
694  }
695}
696
697/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
698/// specified token is valid after the identifier in a declarator which
699/// immediately follows the declspec.  For example, these things are valid:
700///
701///      int x   [             4];         // direct-declarator
702///      int x   (             int y);     // direct-declarator
703///  int(int x   )                         // direct-declarator
704///      int x   ;                         // simple-declaration
705///      int x   =             17;         // init-declarator-list
706///      int x   ,             y;          // init-declarator-list
707///      int x   __asm__       ("foo");    // init-declarator-list
708///      int x   :             4;          // struct-declarator
709///      int x   {             5};         // C++'0x unified initializers
710///
711/// This is not, because 'x' does not immediately follow the declspec (though
712/// ')' happens to be valid anyway).
713///    int (x)
714///
715static bool isValidAfterIdentifierInDeclarator(const Token &T) {
716  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
717         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
718         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
719}
720
721
722/// ParseImplicitInt - This method is called when we have an non-typename
723/// identifier in a declspec (which normally terminates the decl spec) when
724/// the declspec has no type specifier.  In this case, the declspec is either
725/// malformed or is "implicit int" (in K&R and C89).
726///
727/// This method handles diagnosing this prettily and returns false if the
728/// declspec is done being processed.  If it recovers and thinks there may be
729/// other pieces of declspec after it, it returns true.
730///
731bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
732                              const ParsedTemplateInfo &TemplateInfo,
733                              AccessSpecifier AS) {
734  assert(Tok.is(tok::identifier) && "should have identifier");
735
736  SourceLocation Loc = Tok.getLocation();
737  // If we see an identifier that is not a type name, we normally would
738  // parse it as the identifer being declared.  However, when a typename
739  // is typo'd or the definition is not included, this will incorrectly
740  // parse the typename as the identifier name and fall over misparsing
741  // later parts of the diagnostic.
742  //
743  // As such, we try to do some look-ahead in cases where this would
744  // otherwise be an "implicit-int" case to see if this is invalid.  For
745  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
746  // an identifier with implicit int, we'd get a parse error because the
747  // next token is obviously invalid for a type.  Parse these as a case
748  // with an invalid type specifier.
749  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
750
751  // Since we know that this either implicit int (which is rare) or an
752  // error, we'd do lookahead to try to do better recovery.
753  if (isValidAfterIdentifierInDeclarator(NextToken())) {
754    // If this token is valid for implicit int, e.g. "static x = 4", then
755    // we just avoid eating the identifier, so it will be parsed as the
756    // identifier in the declarator.
757    return false;
758  }
759
760  // Otherwise, if we don't consume this token, we are going to emit an
761  // error anyway.  Try to recover from various common problems.  Check
762  // to see if this was a reference to a tag name without a tag specified.
763  // This is a common problem in C (saying 'foo' instead of 'struct foo').
764  //
765  // C++ doesn't need this, and isTagName doesn't take SS.
766  if (SS == 0) {
767    const char *TagName = 0;
768    tok::TokenKind TagKind = tok::unknown;
769
770    switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
771      default: break;
772      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
773      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
774      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
775      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
776    }
777
778    if (TagName) {
779      Diag(Loc, diag::err_use_of_tag_name_without_tag)
780        << Tok.getIdentifierInfo() << TagName << getLang().CPlusPlus
781        << FixItHint::CreateInsertion(Tok.getLocation(),TagName);
782
783      // Parse this as a tag as if the missing tag were present.
784      if (TagKind == tok::kw_enum)
785        ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
786      else
787        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
788      return true;
789    }
790  }
791
792  // This is almost certainly an invalid type name. Let the action emit a
793  // diagnostic and attempt to recover.
794  ParsedType T;
795  if (Actions.DiagnoseUnknownTypeName(*Tok.getIdentifierInfo(), Loc,
796                                      getCurScope(), SS, T)) {
797    // The action emitted a diagnostic, so we don't have to.
798    if (T) {
799      // The action has suggested that the type T could be used. Set that as
800      // the type in the declaration specifiers, consume the would-be type
801      // name token, and we're done.
802      const char *PrevSpec;
803      unsigned DiagID;
804      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T);
805      DS.SetRangeEnd(Tok.getLocation());
806      ConsumeToken();
807
808      // There may be other declaration specifiers after this.
809      return true;
810    }
811
812    // Fall through; the action had no suggestion for us.
813  } else {
814    // The action did not emit a diagnostic, so emit one now.
815    SourceRange R;
816    if (SS) R = SS->getRange();
817    Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
818  }
819
820  // Mark this as an error.
821  const char *PrevSpec;
822  unsigned DiagID;
823  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
824  DS.SetRangeEnd(Tok.getLocation());
825  ConsumeToken();
826
827  // TODO: Could inject an invalid typedef decl in an enclosing scope to
828  // avoid rippling error messages on subsequent uses of the same type,
829  // could be useful if #include was forgotten.
830  return false;
831}
832
833/// \brief Determine the declaration specifier context from the declarator
834/// context.
835///
836/// \param Context the declarator context, which is one of the
837/// Declarator::TheContext enumerator values.
838Parser::DeclSpecContext
839Parser::getDeclSpecContextFromDeclaratorContext(unsigned Context) {
840  if (Context == Declarator::MemberContext)
841    return DSC_class;
842  if (Context == Declarator::FileContext)
843    return DSC_top_level;
844  return DSC_normal;
845}
846
847/// ParseDeclarationSpecifiers
848///       declaration-specifiers: [C99 6.7]
849///         storage-class-specifier declaration-specifiers[opt]
850///         type-specifier declaration-specifiers[opt]
851/// [C99]   function-specifier declaration-specifiers[opt]
852/// [GNU]   attributes declaration-specifiers[opt]
853///
854///       storage-class-specifier: [C99 6.7.1]
855///         'typedef'
856///         'extern'
857///         'static'
858///         'auto'
859///         'register'
860/// [C++]   'mutable'
861/// [GNU]   '__thread'
862///       function-specifier: [C99 6.7.4]
863/// [C99]   'inline'
864/// [C++]   'virtual'
865/// [C++]   'explicit'
866///       'friend': [C++ dcl.friend]
867///       'constexpr': [C++0x dcl.constexpr]
868
869///
870void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
871                                        const ParsedTemplateInfo &TemplateInfo,
872                                        AccessSpecifier AS,
873                                        DeclSpecContext DSContext) {
874  DS.SetRangeStart(Tok.getLocation());
875  DS.SetRangeEnd(Tok.getLocation());
876  while (1) {
877    bool isInvalid = false;
878    const char *PrevSpec = 0;
879    unsigned DiagID = 0;
880
881    SourceLocation Loc = Tok.getLocation();
882
883    switch (Tok.getKind()) {
884    default:
885    DoneWithDeclSpec:
886      // If this is not a declaration specifier token, we're done reading decl
887      // specifiers.  First verify that DeclSpec's are consistent.
888      DS.Finish(Diags, PP);
889      return;
890
891    case tok::code_completion: {
892      Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
893      if (DS.hasTypeSpecifier()) {
894        bool AllowNonIdentifiers
895          = (getCurScope()->getFlags() & (Scope::ControlScope |
896                                          Scope::BlockScope |
897                                          Scope::TemplateParamScope |
898                                          Scope::FunctionPrototypeScope |
899                                          Scope::AtCatchScope)) == 0;
900        bool AllowNestedNameSpecifiers
901          = DSContext == DSC_top_level ||
902            (DSContext == DSC_class && DS.isFriendSpecified());
903
904        Actions.CodeCompleteDeclSpec(getCurScope(), DS,
905                                     AllowNonIdentifiers,
906                                     AllowNestedNameSpecifiers);
907        ConsumeCodeCompletionToken();
908        return;
909      }
910
911      if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
912        CCC = DSContext == DSC_class? Sema::PCC_MemberTemplate
913                                    : Sema::PCC_Template;
914      else if (DSContext == DSC_class)
915        CCC = Sema::PCC_Class;
916      else if (ObjCImpDecl)
917        CCC = Sema::PCC_ObjCImplementation;
918
919      Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
920      ConsumeCodeCompletionToken();
921      return;
922    }
923
924    case tok::coloncolon: // ::foo::bar
925      // C++ scope specifier.  Annotate and loop, or bail out on error.
926      if (TryAnnotateCXXScopeToken(true)) {
927        if (!DS.hasTypeSpecifier())
928          DS.SetTypeSpecError();
929        goto DoneWithDeclSpec;
930      }
931      if (Tok.is(tok::coloncolon)) // ::new or ::delete
932        goto DoneWithDeclSpec;
933      continue;
934
935    case tok::annot_cxxscope: {
936      if (DS.hasTypeSpecifier())
937        goto DoneWithDeclSpec;
938
939      CXXScopeSpec SS;
940      SS.setScopeRep((NestedNameSpecifier*) Tok.getAnnotationValue());
941      SS.setRange(Tok.getAnnotationRange());
942
943      // We are looking for a qualified typename.
944      Token Next = NextToken();
945      if (Next.is(tok::annot_template_id) &&
946          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
947            ->Kind == TNK_Type_template) {
948        // We have a qualified template-id, e.g., N::A<int>
949
950        // C++ [class.qual]p2:
951        //   In a lookup in which the constructor is an acceptable lookup
952        //   result and the nested-name-specifier nominates a class C:
953        //
954        //     - if the name specified after the
955        //       nested-name-specifier, when looked up in C, is the
956        //       injected-class-name of C (Clause 9), or
957        //
958        //     - if the name specified after the nested-name-specifier
959        //       is the same as the identifier or the
960        //       simple-template-id's template-name in the last
961        //       component of the nested-name-specifier,
962        //
963        //   the name is instead considered to name the constructor of
964        //   class C.
965        //
966        // Thus, if the template-name is actually the constructor
967        // name, then the code is ill-formed; this interpretation is
968        // reinforced by the NAD status of core issue 635.
969        TemplateIdAnnotation *TemplateId
970          = static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue());
971        if ((DSContext == DSC_top_level ||
972             (DSContext == DSC_class && DS.isFriendSpecified())) &&
973            TemplateId->Name &&
974            Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
975          if (isConstructorDeclarator()) {
976            // The user meant this to be an out-of-line constructor
977            // definition, but template arguments are not allowed
978            // there.  Just allow this as a constructor; we'll
979            // complain about it later.
980            goto DoneWithDeclSpec;
981          }
982
983          // The user meant this to name a type, but it actually names
984          // a constructor with some extraneous template
985          // arguments. Complain, then parse it as a type as the user
986          // intended.
987          Diag(TemplateId->TemplateNameLoc,
988               diag::err_out_of_line_template_id_names_constructor)
989            << TemplateId->Name;
990        }
991
992        DS.getTypeSpecScope() = SS;
993        ConsumeToken(); // The C++ scope.
994        assert(Tok.is(tok::annot_template_id) &&
995               "ParseOptionalCXXScopeSpecifier not working");
996        AnnotateTemplateIdTokenAsType(&SS);
997        continue;
998      }
999
1000      if (Next.is(tok::annot_typename)) {
1001        DS.getTypeSpecScope() = SS;
1002        ConsumeToken(); // The C++ scope.
1003        if (Tok.getAnnotationValue()) {
1004          ParsedType T = getTypeAnnotation(Tok);
1005          isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1006                                         Tok.getAnnotationEndLoc(),
1007                                         PrevSpec, DiagID, T);
1008        }
1009        else
1010          DS.SetTypeSpecError();
1011        DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1012        ConsumeToken(); // The typename
1013      }
1014
1015      if (Next.isNot(tok::identifier))
1016        goto DoneWithDeclSpec;
1017
1018      // If we're in a context where the identifier could be a class name,
1019      // check whether this is a constructor declaration.
1020      if ((DSContext == DSC_top_level ||
1021           (DSContext == DSC_class && DS.isFriendSpecified())) &&
1022          Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
1023                                     &SS)) {
1024        if (isConstructorDeclarator())
1025          goto DoneWithDeclSpec;
1026
1027        // As noted in C++ [class.qual]p2 (cited above), when the name
1028        // of the class is qualified in a context where it could name
1029        // a constructor, its a constructor name. However, we've
1030        // looked at the declarator, and the user probably meant this
1031        // to be a type. Complain that it isn't supposed to be treated
1032        // as a type, then proceed to parse it as a type.
1033        Diag(Next.getLocation(), diag::err_out_of_line_type_names_constructor)
1034          << Next.getIdentifierInfo();
1035      }
1036
1037      ParsedType TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
1038                                               Next.getLocation(),
1039                                               getCurScope(), &SS);
1040
1041      // If the referenced identifier is not a type, then this declspec is
1042      // erroneous: We already checked about that it has no type specifier, and
1043      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
1044      // typename.
1045      if (TypeRep == 0) {
1046        ConsumeToken();   // Eat the scope spec so the identifier is current.
1047        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
1048        goto DoneWithDeclSpec;
1049      }
1050
1051      DS.getTypeSpecScope() = SS;
1052      ConsumeToken(); // The C++ scope.
1053
1054      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1055                                     DiagID, TypeRep);
1056      if (isInvalid)
1057        break;
1058
1059      DS.SetRangeEnd(Tok.getLocation());
1060      ConsumeToken(); // The typename.
1061
1062      continue;
1063    }
1064
1065    case tok::annot_typename: {
1066      if (Tok.getAnnotationValue()) {
1067        ParsedType T = getTypeAnnotation(Tok);
1068        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1069                                       DiagID, T);
1070      } else
1071        DS.SetTypeSpecError();
1072
1073      if (isInvalid)
1074        break;
1075
1076      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1077      ConsumeToken(); // The typename
1078
1079      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1080      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1081      // Objective-C interface.
1082      if (Tok.is(tok::less) && getLang().ObjC1)
1083        ParseObjCProtocolQualifiers(DS);
1084
1085      continue;
1086    }
1087
1088      // typedef-name
1089    case tok::identifier: {
1090      // In C++, check to see if this is a scope specifier like foo::bar::, if
1091      // so handle it as such.  This is important for ctor parsing.
1092      if (getLang().CPlusPlus) {
1093        if (TryAnnotateCXXScopeToken(true)) {
1094          if (!DS.hasTypeSpecifier())
1095            DS.SetTypeSpecError();
1096          goto DoneWithDeclSpec;
1097        }
1098        if (!Tok.is(tok::identifier))
1099          continue;
1100      }
1101
1102      // This identifier can only be a typedef name if we haven't already seen
1103      // a type-specifier.  Without this check we misparse:
1104      //  typedef int X; struct Y { short X; };  as 'short int'.
1105      if (DS.hasTypeSpecifier())
1106        goto DoneWithDeclSpec;
1107
1108      // Check for need to substitute AltiVec keyword tokens.
1109      if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1110        break;
1111
1112      // It has to be available as a typedef too!
1113      ParsedType TypeRep =
1114        Actions.getTypeName(*Tok.getIdentifierInfo(),
1115                            Tok.getLocation(), getCurScope());
1116
1117      // If this is not a typedef name, don't parse it as part of the declspec,
1118      // it must be an implicit int or an error.
1119      if (!TypeRep) {
1120        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
1121        goto DoneWithDeclSpec;
1122      }
1123
1124      // If we're in a context where the identifier could be a class name,
1125      // check whether this is a constructor declaration.
1126      if (getLang().CPlusPlus && DSContext == DSC_class &&
1127          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
1128          isConstructorDeclarator())
1129        goto DoneWithDeclSpec;
1130
1131      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1132                                     DiagID, TypeRep);
1133      if (isInvalid)
1134        break;
1135
1136      DS.SetRangeEnd(Tok.getLocation());
1137      ConsumeToken(); // The identifier
1138
1139      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1140      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1141      // Objective-C interface.
1142      if (Tok.is(tok::less) && getLang().ObjC1)
1143        ParseObjCProtocolQualifiers(DS);
1144
1145      // Need to support trailing type qualifiers (e.g. "id<p> const").
1146      // If a type specifier follows, it will be diagnosed elsewhere.
1147      continue;
1148    }
1149
1150      // type-name
1151    case tok::annot_template_id: {
1152      TemplateIdAnnotation *TemplateId
1153        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
1154      if (TemplateId->Kind != TNK_Type_template) {
1155        // This template-id does not refer to a type name, so we're
1156        // done with the type-specifiers.
1157        goto DoneWithDeclSpec;
1158      }
1159
1160      // If we're in a context where the template-id could be a
1161      // constructor name or specialization, check whether this is a
1162      // constructor declaration.
1163      if (getLang().CPlusPlus && DSContext == DSC_class &&
1164          Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
1165          isConstructorDeclarator())
1166        goto DoneWithDeclSpec;
1167
1168      // Turn the template-id annotation token into a type annotation
1169      // token, then try again to parse it as a type-specifier.
1170      AnnotateTemplateIdTokenAsType();
1171      continue;
1172    }
1173
1174    // GNU attributes support.
1175    case tok::kw___attribute:
1176      ParseGNUAttributes(DS.getAttributes());
1177      continue;
1178
1179    // Microsoft declspec support.
1180    case tok::kw___declspec:
1181      ParseMicrosoftDeclSpec(DS.getAttributes());
1182      continue;
1183
1184    // Microsoft single token adornments.
1185    case tok::kw___forceinline:
1186      // FIXME: Add handling here!
1187      break;
1188
1189    case tok::kw___ptr64:
1190    case tok::kw___w64:
1191    case tok::kw___cdecl:
1192    case tok::kw___stdcall:
1193    case tok::kw___fastcall:
1194    case tok::kw___thiscall:
1195      ParseMicrosoftTypeAttributes(DS.getAttributes());
1196      continue;
1197
1198    // Borland single token adornments.
1199    case tok::kw___pascal:
1200      ParseBorlandTypeAttributes(DS.getAttributes());
1201      continue;
1202
1203    // storage-class-specifier
1204    case tok::kw_typedef:
1205      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
1206                                         DiagID);
1207      break;
1208    case tok::kw_extern:
1209      if (DS.isThreadSpecified())
1210        Diag(Tok, diag::ext_thread_before) << "extern";
1211      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
1212                                         DiagID);
1213      break;
1214    case tok::kw___private_extern__:
1215      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
1216                                         PrevSpec, DiagID);
1217      break;
1218    case tok::kw_static:
1219      if (DS.isThreadSpecified())
1220        Diag(Tok, diag::ext_thread_before) << "static";
1221      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
1222                                         DiagID);
1223      break;
1224    case tok::kw_auto:
1225      if (getLang().CPlusPlus0x)
1226        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
1227                                       DiagID);
1228      else
1229        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
1230                                           DiagID);
1231      break;
1232    case tok::kw_register:
1233      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
1234                                         DiagID);
1235      break;
1236    case tok::kw_mutable:
1237      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
1238                                         DiagID);
1239      break;
1240    case tok::kw___thread:
1241      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
1242      break;
1243
1244    // function-specifier
1245    case tok::kw_inline:
1246      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
1247      break;
1248    case tok::kw_virtual:
1249      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
1250      break;
1251    case tok::kw_explicit:
1252      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
1253      break;
1254
1255    // friend
1256    case tok::kw_friend:
1257      if (DSContext == DSC_class)
1258        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
1259      else {
1260        PrevSpec = ""; // not actually used by the diagnostic
1261        DiagID = diag::err_friend_invalid_in_context;
1262        isInvalid = true;
1263      }
1264      break;
1265
1266    // constexpr
1267    case tok::kw_constexpr:
1268      isInvalid = DS.SetConstexprSpec(Loc, PrevSpec, DiagID);
1269      break;
1270
1271    // type-specifier
1272    case tok::kw_short:
1273      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
1274                                      DiagID);
1275      break;
1276    case tok::kw_long:
1277      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1278        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1279                                        DiagID);
1280      else
1281        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1282                                        DiagID);
1283      break;
1284    case tok::kw_signed:
1285      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
1286                                     DiagID);
1287      break;
1288    case tok::kw_unsigned:
1289      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1290                                     DiagID);
1291      break;
1292    case tok::kw__Complex:
1293      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1294                                        DiagID);
1295      break;
1296    case tok::kw__Imaginary:
1297      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1298                                        DiagID);
1299      break;
1300    case tok::kw_void:
1301      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1302                                     DiagID);
1303      break;
1304    case tok::kw_char:
1305      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1306                                     DiagID);
1307      break;
1308    case tok::kw_int:
1309      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1310                                     DiagID);
1311      break;
1312    case tok::kw_float:
1313      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1314                                     DiagID);
1315      break;
1316    case tok::kw_double:
1317      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1318                                     DiagID);
1319      break;
1320    case tok::kw_wchar_t:
1321      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1322                                     DiagID);
1323      break;
1324    case tok::kw_char16_t:
1325      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1326                                     DiagID);
1327      break;
1328    case tok::kw_char32_t:
1329      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1330                                     DiagID);
1331      break;
1332    case tok::kw_bool:
1333    case tok::kw__Bool:
1334      if (Tok.is(tok::kw_bool) &&
1335          DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
1336          DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1337        PrevSpec = ""; // Not used by the diagnostic.
1338        DiagID = diag::err_bool_redeclaration;
1339        isInvalid = true;
1340      } else {
1341        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1342                                       DiagID);
1343      }
1344      break;
1345    case tok::kw__Decimal32:
1346      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1347                                     DiagID);
1348      break;
1349    case tok::kw__Decimal64:
1350      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1351                                     DiagID);
1352      break;
1353    case tok::kw__Decimal128:
1354      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1355                                     DiagID);
1356      break;
1357    case tok::kw___vector:
1358      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1359      break;
1360    case tok::kw___pixel:
1361      isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1362      break;
1363
1364    // class-specifier:
1365    case tok::kw_class:
1366    case tok::kw_struct:
1367    case tok::kw_union: {
1368      tok::TokenKind Kind = Tok.getKind();
1369      ConsumeToken();
1370      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1371      continue;
1372    }
1373
1374    // enum-specifier:
1375    case tok::kw_enum:
1376      ConsumeToken();
1377      ParseEnumSpecifier(Loc, DS, TemplateInfo, AS);
1378      continue;
1379
1380    // cv-qualifier:
1381    case tok::kw_const:
1382      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1383                                 getLang());
1384      break;
1385    case tok::kw_volatile:
1386      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1387                                 getLang());
1388      break;
1389    case tok::kw_restrict:
1390      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1391                                 getLang());
1392      break;
1393
1394    // C++ typename-specifier:
1395    case tok::kw_typename:
1396      if (TryAnnotateTypeOrScopeToken()) {
1397        DS.SetTypeSpecError();
1398        goto DoneWithDeclSpec;
1399      }
1400      if (!Tok.is(tok::kw_typename))
1401        continue;
1402      break;
1403
1404    // GNU typeof support.
1405    case tok::kw_typeof:
1406      ParseTypeofSpecifier(DS);
1407      continue;
1408
1409    case tok::kw_decltype:
1410      ParseDecltypeSpecifier(DS);
1411      continue;
1412
1413    case tok::less:
1414      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1415      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1416      // but we support it.
1417      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1418        goto DoneWithDeclSpec;
1419
1420      if (!ParseObjCProtocolQualifiers(DS))
1421        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1422          << FixItHint::CreateInsertion(Loc, "id")
1423          << SourceRange(Loc, DS.getSourceRange().getEnd());
1424
1425      // Need to support trailing type qualifiers (e.g. "id<p> const").
1426      // If a type specifier follows, it will be diagnosed elsewhere.
1427      continue;
1428    }
1429    // If the specifier wasn't legal, issue a diagnostic.
1430    if (isInvalid) {
1431      assert(PrevSpec && "Method did not return previous specifier!");
1432      assert(DiagID);
1433
1434      if (DiagID == diag::ext_duplicate_declspec)
1435        Diag(Tok, DiagID)
1436          << PrevSpec << FixItHint::CreateRemoval(Tok.getLocation());
1437      else
1438        Diag(Tok, DiagID) << PrevSpec;
1439    }
1440    DS.SetRangeEnd(Tok.getLocation());
1441    ConsumeToken();
1442  }
1443}
1444
1445/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1446/// primarily follow the C++ grammar with additions for C99 and GNU,
1447/// which together subsume the C grammar. Note that the C++
1448/// type-specifier also includes the C type-qualifier (for const,
1449/// volatile, and C99 restrict). Returns true if a type-specifier was
1450/// found (and parsed), false otherwise.
1451///
1452///       type-specifier: [C++ 7.1.5]
1453///         simple-type-specifier
1454///         class-specifier
1455///         enum-specifier
1456///         elaborated-type-specifier  [TODO]
1457///         cv-qualifier
1458///
1459///       cv-qualifier: [C++ 7.1.5.1]
1460///         'const'
1461///         'volatile'
1462/// [C99]   'restrict'
1463///
1464///       simple-type-specifier: [ C++ 7.1.5.2]
1465///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1466///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1467///         'char'
1468///         'wchar_t'
1469///         'bool'
1470///         'short'
1471///         'int'
1472///         'long'
1473///         'signed'
1474///         'unsigned'
1475///         'float'
1476///         'double'
1477///         'void'
1478/// [C99]   '_Bool'
1479/// [C99]   '_Complex'
1480/// [C99]   '_Imaginary'  // Removed in TC2?
1481/// [GNU]   '_Decimal32'
1482/// [GNU]   '_Decimal64'
1483/// [GNU]   '_Decimal128'
1484/// [GNU]   typeof-specifier
1485/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1486/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1487/// [C++0x] 'decltype' ( expression )
1488/// [AltiVec] '__vector'
1489bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1490                                        const char *&PrevSpec,
1491                                        unsigned &DiagID,
1492                                        const ParsedTemplateInfo &TemplateInfo,
1493                                        bool SuppressDeclarations) {
1494  SourceLocation Loc = Tok.getLocation();
1495
1496  switch (Tok.getKind()) {
1497  case tok::identifier:   // foo::bar
1498    // If we already have a type specifier, this identifier is not a type.
1499    if (DS.getTypeSpecType() != DeclSpec::TST_unspecified ||
1500        DS.getTypeSpecWidth() != DeclSpec::TSW_unspecified ||
1501        DS.getTypeSpecSign() != DeclSpec::TSS_unspecified)
1502      return false;
1503    // Check for need to substitute AltiVec keyword tokens.
1504    if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
1505      break;
1506    // Fall through.
1507  case tok::kw_typename:  // typename foo::bar
1508    // Annotate typenames and C++ scope specifiers.  If we get one, just
1509    // recurse to handle whatever we get.
1510    if (TryAnnotateTypeOrScopeToken())
1511      return true;
1512    if (Tok.is(tok::identifier))
1513      return false;
1514    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1515                                      TemplateInfo, SuppressDeclarations);
1516  case tok::coloncolon:   // ::foo::bar
1517    if (NextToken().is(tok::kw_new) ||    // ::new
1518        NextToken().is(tok::kw_delete))   // ::delete
1519      return false;
1520
1521    // Annotate typenames and C++ scope specifiers.  If we get one, just
1522    // recurse to handle whatever we get.
1523    if (TryAnnotateTypeOrScopeToken())
1524      return true;
1525    return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1526                                      TemplateInfo, SuppressDeclarations);
1527
1528  // simple-type-specifier:
1529  case tok::annot_typename: {
1530    if (ParsedType T = getTypeAnnotation(Tok)) {
1531      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
1532                                     Tok.getAnnotationEndLoc(), PrevSpec,
1533                                     DiagID, T);
1534    } else
1535      DS.SetTypeSpecError();
1536    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1537    ConsumeToken(); // The typename
1538
1539    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1540    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1541    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1542    // just a normal reference to a typedef name.
1543    if (Tok.is(tok::less) && getLang().ObjC1)
1544      ParseObjCProtocolQualifiers(DS);
1545
1546    return true;
1547  }
1548
1549  case tok::kw_short:
1550    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1551    break;
1552  case tok::kw_long:
1553    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1554      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1555                                      DiagID);
1556    else
1557      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1558                                      DiagID);
1559    break;
1560  case tok::kw_signed:
1561    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1562    break;
1563  case tok::kw_unsigned:
1564    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1565                                   DiagID);
1566    break;
1567  case tok::kw__Complex:
1568    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1569                                      DiagID);
1570    break;
1571  case tok::kw__Imaginary:
1572    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1573                                      DiagID);
1574    break;
1575  case tok::kw_void:
1576    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1577    break;
1578  case tok::kw_char:
1579    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1580    break;
1581  case tok::kw_int:
1582    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1583    break;
1584  case tok::kw_float:
1585    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1586    break;
1587  case tok::kw_double:
1588    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1589    break;
1590  case tok::kw_wchar_t:
1591    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1592    break;
1593  case tok::kw_char16_t:
1594    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1595    break;
1596  case tok::kw_char32_t:
1597    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1598    break;
1599  case tok::kw_bool:
1600  case tok::kw__Bool:
1601    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1602    break;
1603  case tok::kw__Decimal32:
1604    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1605                                   DiagID);
1606    break;
1607  case tok::kw__Decimal64:
1608    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1609                                   DiagID);
1610    break;
1611  case tok::kw__Decimal128:
1612    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1613                                   DiagID);
1614    break;
1615  case tok::kw___vector:
1616    isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
1617    break;
1618  case tok::kw___pixel:
1619    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
1620    break;
1621
1622  // class-specifier:
1623  case tok::kw_class:
1624  case tok::kw_struct:
1625  case tok::kw_union: {
1626    tok::TokenKind Kind = Tok.getKind();
1627    ConsumeToken();
1628    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS_none,
1629                        SuppressDeclarations);
1630    return true;
1631  }
1632
1633  // enum-specifier:
1634  case tok::kw_enum:
1635    ConsumeToken();
1636    ParseEnumSpecifier(Loc, DS, TemplateInfo, AS_none);
1637    return true;
1638
1639  // cv-qualifier:
1640  case tok::kw_const:
1641    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1642                               DiagID, getLang());
1643    break;
1644  case tok::kw_volatile:
1645    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1646                               DiagID, getLang());
1647    break;
1648  case tok::kw_restrict:
1649    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1650                               DiagID, getLang());
1651    break;
1652
1653  // GNU typeof support.
1654  case tok::kw_typeof:
1655    ParseTypeofSpecifier(DS);
1656    return true;
1657
1658  // C++0x decltype support.
1659  case tok::kw_decltype:
1660    ParseDecltypeSpecifier(DS);
1661    return true;
1662
1663  // C++0x auto support.
1664  case tok::kw_auto:
1665    if (!getLang().CPlusPlus0x)
1666      return false;
1667
1668    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1669    break;
1670
1671  case tok::kw___ptr64:
1672  case tok::kw___w64:
1673  case tok::kw___cdecl:
1674  case tok::kw___stdcall:
1675  case tok::kw___fastcall:
1676  case tok::kw___thiscall:
1677    ParseMicrosoftTypeAttributes(DS.getAttributes());
1678    return true;
1679
1680  case tok::kw___pascal:
1681    ParseBorlandTypeAttributes(DS.getAttributes());
1682    return true;
1683
1684  default:
1685    // Not a type-specifier; do nothing.
1686    return false;
1687  }
1688
1689  // If the specifier combination wasn't legal, issue a diagnostic.
1690  if (isInvalid) {
1691    assert(PrevSpec && "Method did not return previous specifier!");
1692    // Pick between error or extwarn.
1693    Diag(Tok, DiagID) << PrevSpec;
1694  }
1695  DS.SetRangeEnd(Tok.getLocation());
1696  ConsumeToken(); // whatever we parsed above.
1697  return true;
1698}
1699
1700/// ParseStructDeclaration - Parse a struct declaration without the terminating
1701/// semicolon.
1702///
1703///       struct-declaration:
1704///         specifier-qualifier-list struct-declarator-list
1705/// [GNU]   __extension__ struct-declaration
1706/// [GNU]   specifier-qualifier-list
1707///       struct-declarator-list:
1708///         struct-declarator
1709///         struct-declarator-list ',' struct-declarator
1710/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1711///       struct-declarator:
1712///         declarator
1713/// [GNU]   declarator attributes[opt]
1714///         declarator[opt] ':' constant-expression
1715/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1716///
1717void Parser::
1718ParseStructDeclaration(DeclSpec &DS, FieldCallback &Fields) {
1719  if (Tok.is(tok::kw___extension__)) {
1720    // __extension__ silences extension warnings in the subexpression.
1721    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1722    ConsumeToken();
1723    return ParseStructDeclaration(DS, Fields);
1724  }
1725
1726  // Parse the common specifier-qualifiers-list piece.
1727  SourceLocation DSStart = Tok.getLocation();
1728  ParseSpecifierQualifierList(DS);
1729
1730  // If there are no declarators, this is a free-standing declaration
1731  // specifier. Let the actions module cope with it.
1732  if (Tok.is(tok::semi)) {
1733    Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, DS);
1734    return;
1735  }
1736
1737  // Read struct-declarators until we find the semicolon.
1738  bool FirstDeclarator = true;
1739  while (1) {
1740    ParsingDeclRAIIObject PD(*this);
1741    FieldDeclarator DeclaratorInfo(DS);
1742
1743    // Attributes are only allowed here on successive declarators.
1744    if (!FirstDeclarator)
1745      MaybeParseGNUAttributes(DeclaratorInfo.D);
1746
1747    /// struct-declarator: declarator
1748    /// struct-declarator: declarator[opt] ':' constant-expression
1749    if (Tok.isNot(tok::colon)) {
1750      // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1751      ColonProtectionRAIIObject X(*this);
1752      ParseDeclarator(DeclaratorInfo.D);
1753    }
1754
1755    if (Tok.is(tok::colon)) {
1756      ConsumeToken();
1757      ExprResult Res(ParseConstantExpression());
1758      if (Res.isInvalid())
1759        SkipUntil(tok::semi, true, true);
1760      else
1761        DeclaratorInfo.BitfieldSize = Res.release();
1762    }
1763
1764    // If attributes exist after the declarator, parse them.
1765    MaybeParseGNUAttributes(DeclaratorInfo.D);
1766
1767    // We're done with this declarator;  invoke the callback.
1768    Decl *D = Fields.invoke(DeclaratorInfo);
1769    PD.complete(D);
1770
1771    // If we don't have a comma, it is either the end of the list (a ';')
1772    // or an error, bail out.
1773    if (Tok.isNot(tok::comma))
1774      return;
1775
1776    // Consume the comma.
1777    ConsumeToken();
1778
1779    FirstDeclarator = false;
1780  }
1781}
1782
1783/// ParseStructUnionBody
1784///       struct-contents:
1785///         struct-declaration-list
1786/// [EXT]   empty
1787/// [GNU]   "struct-declaration-list" without terminatoring ';'
1788///       struct-declaration-list:
1789///         struct-declaration
1790///         struct-declaration-list struct-declaration
1791/// [OBC]   '@' 'defs' '(' class-name ')'
1792///
1793void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1794                                  unsigned TagType, Decl *TagDecl) {
1795  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
1796                                      "parsing struct/union body");
1797
1798  SourceLocation LBraceLoc = ConsumeBrace();
1799
1800  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1801  Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
1802
1803  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1804  // C++.
1805  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1806    Diag(Tok, diag::ext_empty_struct_union)
1807      << (TagType == TST_union);
1808
1809  llvm::SmallVector<Decl *, 32> FieldDecls;
1810
1811  // While we still have something to read, read the declarations in the struct.
1812  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1813    // Each iteration of this loop reads one struct-declaration.
1814
1815    // Check for extraneous top-level semicolon.
1816    if (Tok.is(tok::semi)) {
1817      Diag(Tok, diag::ext_extra_struct_semi)
1818        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
1819        << FixItHint::CreateRemoval(Tok.getLocation());
1820      ConsumeToken();
1821      continue;
1822    }
1823
1824    // Parse all the comma separated declarators.
1825    DeclSpec DS;
1826
1827    if (!Tok.is(tok::at)) {
1828      struct CFieldCallback : FieldCallback {
1829        Parser &P;
1830        Decl *TagDecl;
1831        llvm::SmallVectorImpl<Decl *> &FieldDecls;
1832
1833        CFieldCallback(Parser &P, Decl *TagDecl,
1834                       llvm::SmallVectorImpl<Decl *> &FieldDecls) :
1835          P(P), TagDecl(TagDecl), FieldDecls(FieldDecls) {}
1836
1837        virtual Decl *invoke(FieldDeclarator &FD) {
1838          // Install the declarator into the current TagDecl.
1839          Decl *Field = P.Actions.ActOnField(P.getCurScope(), TagDecl,
1840                              FD.D.getDeclSpec().getSourceRange().getBegin(),
1841                                                 FD.D, FD.BitfieldSize);
1842          FieldDecls.push_back(Field);
1843          return Field;
1844        }
1845      } Callback(*this, TagDecl, FieldDecls);
1846
1847      ParseStructDeclaration(DS, Callback);
1848    } else { // Handle @defs
1849      ConsumeToken();
1850      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1851        Diag(Tok, diag::err_unexpected_at);
1852        SkipUntil(tok::semi, true);
1853        continue;
1854      }
1855      ConsumeToken();
1856      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1857      if (!Tok.is(tok::identifier)) {
1858        Diag(Tok, diag::err_expected_ident);
1859        SkipUntil(tok::semi, true);
1860        continue;
1861      }
1862      llvm::SmallVector<Decl *, 16> Fields;
1863      Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
1864                        Tok.getIdentifierInfo(), Fields);
1865      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1866      ConsumeToken();
1867      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1868    }
1869
1870    if (Tok.is(tok::semi)) {
1871      ConsumeToken();
1872    } else if (Tok.is(tok::r_brace)) {
1873      ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
1874      break;
1875    } else {
1876      ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
1877      // Skip to end of block or statement to avoid ext-warning on extra ';'.
1878      SkipUntil(tok::r_brace, true, true);
1879      // If we stopped at a ';', eat it.
1880      if (Tok.is(tok::semi)) ConsumeToken();
1881    }
1882  }
1883
1884  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1885
1886  ParsedAttributes attrs;
1887  // If attributes exist after struct contents, parse them.
1888  MaybeParseGNUAttributes(attrs);
1889
1890  Actions.ActOnFields(getCurScope(),
1891                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1892                      LBraceLoc, RBraceLoc,
1893                      attrs.getList());
1894  StructScope.Exit();
1895  Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, RBraceLoc);
1896}
1897
1898/// ParseEnumSpecifier
1899///       enum-specifier: [C99 6.7.2.2]
1900///         'enum' identifier[opt] '{' enumerator-list '}'
1901///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1902/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1903///                                                 '}' attributes[opt]
1904///         'enum' identifier
1905/// [GNU]   'enum' attributes[opt] identifier
1906///
1907/// [C++0x] enum-head '{' enumerator-list[opt] '}'
1908/// [C++0x] enum-head '{' enumerator-list ','  '}'
1909///
1910///       enum-head: [C++0x]
1911///         enum-key attributes[opt] identifier[opt] enum-base[opt]
1912///         enum-key attributes[opt] nested-name-specifier identifier enum-base[opt]
1913///
1914///       enum-key: [C++0x]
1915///         'enum'
1916///         'enum' 'class'
1917///         'enum' 'struct'
1918///
1919///       enum-base: [C++0x]
1920///         ':' type-specifier-seq
1921///
1922/// [C++] elaborated-type-specifier:
1923/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1924///
1925void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1926                                const ParsedTemplateInfo &TemplateInfo,
1927                                AccessSpecifier AS) {
1928  // Parse the tag portion of this.
1929  if (Tok.is(tok::code_completion)) {
1930    // Code completion for an enum name.
1931    Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
1932    ConsumeCodeCompletionToken();
1933  }
1934
1935  // If attributes exist after tag, parse them.
1936  ParsedAttributes attrs;
1937  MaybeParseGNUAttributes(attrs);
1938
1939  CXXScopeSpec &SS = DS.getTypeSpecScope();
1940  if (getLang().CPlusPlus) {
1941    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false))
1942      return;
1943
1944    if (SS.isSet() && Tok.isNot(tok::identifier)) {
1945      Diag(Tok, diag::err_expected_ident);
1946      if (Tok.isNot(tok::l_brace)) {
1947        // Has no name and is not a definition.
1948        // Skip the rest of this declarator, up until the comma or semicolon.
1949        SkipUntil(tok::comma, true);
1950        return;
1951      }
1952    }
1953  }
1954
1955  bool IsScopedEnum = false;
1956  bool IsScopedUsingClassTag = false;
1957
1958  if (getLang().CPlusPlus0x &&
1959      (Tok.is(tok::kw_class) || Tok.is(tok::kw_struct))) {
1960    IsScopedEnum = true;
1961    IsScopedUsingClassTag = Tok.is(tok::kw_class);
1962    ConsumeToken();
1963  }
1964
1965  // Must have either 'enum name' or 'enum {...}'.
1966  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1967    Diag(Tok, diag::err_expected_ident_lbrace);
1968
1969    // Skip the rest of this declarator, up until the comma or semicolon.
1970    SkipUntil(tok::comma, true);
1971    return;
1972  }
1973
1974  // If an identifier is present, consume and remember it.
1975  IdentifierInfo *Name = 0;
1976  SourceLocation NameLoc;
1977  if (Tok.is(tok::identifier)) {
1978    Name = Tok.getIdentifierInfo();
1979    NameLoc = ConsumeToken();
1980  }
1981
1982  if (!Name && IsScopedEnum) {
1983    // C++0x 7.2p2: The optional identifier shall not be omitted in the
1984    // declaration of a scoped enumeration.
1985    Diag(Tok, diag::err_scoped_enum_missing_identifier);
1986    IsScopedEnum = false;
1987    IsScopedUsingClassTag = false;
1988  }
1989
1990  TypeResult BaseType;
1991
1992  // Parse the fixed underlying type.
1993  if (getLang().CPlusPlus0x && Tok.is(tok::colon)) {
1994    bool PossibleBitfield = false;
1995    if (getCurScope()->getFlags() & Scope::ClassScope) {
1996      // If we're in class scope, this can either be an enum declaration with
1997      // an underlying type, or a declaration of a bitfield member. We try to
1998      // use a simple disambiguation scheme first to catch the common cases
1999      // (integer literal, sizeof); if it's still ambiguous, we then consider
2000      // anything that's a simple-type-specifier followed by '(' as an
2001      // expression. This suffices because function types are not valid
2002      // underlying types anyway.
2003      TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind());
2004      // If the next token starts an expression, we know we're parsing a
2005      // bit-field. This is the common case.
2006      if (TPR == TPResult::True())
2007        PossibleBitfield = true;
2008      // If the next token starts a type-specifier-seq, it may be either a
2009      // a fixed underlying type or the start of a function-style cast in C++;
2010      // lookahead one more token to see if it's obvious that we have a
2011      // fixed underlying type.
2012      else if (TPR == TPResult::False() &&
2013               GetLookAheadToken(2).getKind() == tok::semi) {
2014        // Consume the ':'.
2015        ConsumeToken();
2016      } else {
2017        // We have the start of a type-specifier-seq, so we have to perform
2018        // tentative parsing to determine whether we have an expression or a
2019        // type.
2020        TentativeParsingAction TPA(*this);
2021
2022        // Consume the ':'.
2023        ConsumeToken();
2024
2025        if (isCXXDeclarationSpecifier() != TPResult::True()) {
2026          // We'll parse this as a bitfield later.
2027          PossibleBitfield = true;
2028          TPA.Revert();
2029        } else {
2030          // We have a type-specifier-seq.
2031          TPA.Commit();
2032        }
2033      }
2034    } else {
2035      // Consume the ':'.
2036      ConsumeToken();
2037    }
2038
2039    if (!PossibleBitfield) {
2040      SourceRange Range;
2041      BaseType = ParseTypeName(&Range);
2042    }
2043  }
2044
2045  // There are three options here.  If we have 'enum foo;', then this is a
2046  // forward declaration.  If we have 'enum foo {...' then this is a
2047  // definition. Otherwise we have something like 'enum foo xyz', a reference.
2048  //
2049  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
2050  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
2051  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
2052  //
2053  Sema::TagUseKind TUK;
2054  if (Tok.is(tok::l_brace))
2055    TUK = Sema::TUK_Definition;
2056  else if (Tok.is(tok::semi))
2057    TUK = Sema::TUK_Declaration;
2058  else
2059    TUK = Sema::TUK_Reference;
2060
2061  // enums cannot be templates, although they can be referenced from a
2062  // template.
2063  if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2064      TUK != Sema::TUK_Reference) {
2065    Diag(Tok, diag::err_enum_template);
2066
2067    // Skip the rest of this declarator, up until the comma or semicolon.
2068    SkipUntil(tok::comma, true);
2069    return;
2070  }
2071
2072  bool Owned = false;
2073  bool IsDependent = false;
2074  SourceLocation TSTLoc = NameLoc.isValid()? NameLoc : StartLoc;
2075  const char *PrevSpec = 0;
2076  unsigned DiagID;
2077  Decl *TagDecl = Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK,
2078                                   StartLoc, SS, Name, NameLoc, attrs.getList(),
2079                                   AS,
2080                                   MultiTemplateParamsArg(Actions),
2081                                   Owned, IsDependent, IsScopedEnum,
2082                                   IsScopedUsingClassTag, BaseType);
2083
2084  if (IsDependent) {
2085    // This enum has a dependent nested-name-specifier. Handle it as a
2086    // dependent tag.
2087    if (!Name) {
2088      DS.SetTypeSpecError();
2089      Diag(Tok, diag::err_expected_type_name_after_typename);
2090      return;
2091    }
2092
2093    TypeResult Type = Actions.ActOnDependentTag(getCurScope(), DeclSpec::TST_enum,
2094                                                TUK, SS, Name, StartLoc,
2095                                                NameLoc);
2096    if (Type.isInvalid()) {
2097      DS.SetTypeSpecError();
2098      return;
2099    }
2100
2101    if (DS.SetTypeSpecType(DeclSpec::TST_typename, TSTLoc, PrevSpec, DiagID,
2102                           Type.get()))
2103      Diag(StartLoc, DiagID) << PrevSpec;
2104
2105    return;
2106  }
2107
2108  if (!TagDecl) {
2109    // The action failed to produce an enumeration tag. If this is a
2110    // definition, consume the entire definition.
2111    if (Tok.is(tok::l_brace)) {
2112      ConsumeBrace();
2113      SkipUntil(tok::r_brace);
2114    }
2115
2116    DS.SetTypeSpecError();
2117    return;
2118  }
2119
2120  if (Tok.is(tok::l_brace))
2121    ParseEnumBody(StartLoc, TagDecl);
2122
2123  // FIXME: The DeclSpec should keep the locations of both the keyword
2124  // and the name (if there is one).
2125  if (DS.SetTypeSpecType(DeclSpec::TST_enum, TSTLoc, PrevSpec, DiagID,
2126                         TagDecl, Owned))
2127    Diag(StartLoc, DiagID) << PrevSpec;
2128}
2129
2130/// ParseEnumBody - Parse a {} enclosed enumerator-list.
2131///       enumerator-list:
2132///         enumerator
2133///         enumerator-list ',' enumerator
2134///       enumerator:
2135///         enumeration-constant
2136///         enumeration-constant '=' constant-expression
2137///       enumeration-constant:
2138///         identifier
2139///
2140void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
2141  // Enter the scope of the enum body and start the definition.
2142  ParseScope EnumScope(this, Scope::DeclScope);
2143  Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
2144
2145  SourceLocation LBraceLoc = ConsumeBrace();
2146
2147  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
2148  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
2149    Diag(Tok, diag::error_empty_enum);
2150
2151  llvm::SmallVector<Decl *, 32> EnumConstantDecls;
2152
2153  Decl *LastEnumConstDecl = 0;
2154
2155  // Parse the enumerator-list.
2156  while (Tok.is(tok::identifier)) {
2157    IdentifierInfo *Ident = Tok.getIdentifierInfo();
2158    SourceLocation IdentLoc = ConsumeToken();
2159
2160    // If attributes exist after the enumerator, parse them.
2161    ParsedAttributes attrs;
2162    MaybeParseGNUAttributes(attrs);
2163
2164    SourceLocation EqualLoc;
2165    ExprResult AssignedVal;
2166    if (Tok.is(tok::equal)) {
2167      EqualLoc = ConsumeToken();
2168      AssignedVal = ParseConstantExpression();
2169      if (AssignedVal.isInvalid())
2170        SkipUntil(tok::comma, tok::r_brace, true, true);
2171    }
2172
2173    // Install the enumerator constant into EnumDecl.
2174    Decl *EnumConstDecl = Actions.ActOnEnumConstant(getCurScope(), EnumDecl,
2175                                                    LastEnumConstDecl,
2176                                                    IdentLoc, Ident,
2177                                                    attrs.getList(), EqualLoc,
2178                                                    AssignedVal.release());
2179    EnumConstantDecls.push_back(EnumConstDecl);
2180    LastEnumConstDecl = EnumConstDecl;
2181
2182    if (Tok.is(tok::identifier)) {
2183      // We're missing a comma between enumerators.
2184      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2185      Diag(Loc, diag::err_enumerator_list_missing_comma)
2186        << FixItHint::CreateInsertion(Loc, ", ");
2187      continue;
2188    }
2189
2190    if (Tok.isNot(tok::comma))
2191      break;
2192    SourceLocation CommaLoc = ConsumeToken();
2193
2194    if (Tok.isNot(tok::identifier) &&
2195        !(getLang().C99 || getLang().CPlusPlus0x))
2196      Diag(CommaLoc, diag::ext_enumerator_list_comma)
2197        << getLang().CPlusPlus
2198        << FixItHint::CreateRemoval(CommaLoc);
2199  }
2200
2201  // Eat the }.
2202  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
2203
2204  // If attributes exist after the identifier list, parse them.
2205  ParsedAttributes attrs;
2206  MaybeParseGNUAttributes(attrs);
2207
2208  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
2209                        EnumConstantDecls.data(), EnumConstantDecls.size(),
2210                        getCurScope(), attrs.getList());
2211
2212  EnumScope.Exit();
2213  Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, RBraceLoc);
2214}
2215
2216/// isTypeSpecifierQualifier - Return true if the current token could be the
2217/// start of a type-qualifier-list.
2218bool Parser::isTypeQualifier() const {
2219  switch (Tok.getKind()) {
2220  default: return false;
2221    // type-qualifier
2222  case tok::kw_const:
2223  case tok::kw_volatile:
2224  case tok::kw_restrict:
2225    return true;
2226  }
2227}
2228
2229/// isKnownToBeTypeSpecifier - Return true if we know that the specified token
2230/// is definitely a type-specifier.  Return false if it isn't part of a type
2231/// specifier or if we're not sure.
2232bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
2233  switch (Tok.getKind()) {
2234  default: return false;
2235    // type-specifiers
2236  case tok::kw_short:
2237  case tok::kw_long:
2238  case tok::kw_signed:
2239  case tok::kw_unsigned:
2240  case tok::kw__Complex:
2241  case tok::kw__Imaginary:
2242  case tok::kw_void:
2243  case tok::kw_char:
2244  case tok::kw_wchar_t:
2245  case tok::kw_char16_t:
2246  case tok::kw_char32_t:
2247  case tok::kw_int:
2248  case tok::kw_float:
2249  case tok::kw_double:
2250  case tok::kw_bool:
2251  case tok::kw__Bool:
2252  case tok::kw__Decimal32:
2253  case tok::kw__Decimal64:
2254  case tok::kw__Decimal128:
2255  case tok::kw___vector:
2256
2257    // struct-or-union-specifier (C99) or class-specifier (C++)
2258  case tok::kw_class:
2259  case tok::kw_struct:
2260  case tok::kw_union:
2261    // enum-specifier
2262  case tok::kw_enum:
2263
2264    // typedef-name
2265  case tok::annot_typename:
2266    return true;
2267  }
2268}
2269
2270/// isTypeSpecifierQualifier - Return true if the current token could be the
2271/// start of a specifier-qualifier-list.
2272bool Parser::isTypeSpecifierQualifier() {
2273  switch (Tok.getKind()) {
2274  default: return false;
2275
2276  case tok::identifier:   // foo::bar
2277    if (TryAltiVecVectorToken())
2278      return true;
2279    // Fall through.
2280  case tok::kw_typename:  // typename T::type
2281    // Annotate typenames and C++ scope specifiers.  If we get one, just
2282    // recurse to handle whatever we get.
2283    if (TryAnnotateTypeOrScopeToken())
2284      return true;
2285    if (Tok.is(tok::identifier))
2286      return false;
2287    return isTypeSpecifierQualifier();
2288
2289  case tok::coloncolon:   // ::foo::bar
2290    if (NextToken().is(tok::kw_new) ||    // ::new
2291        NextToken().is(tok::kw_delete))   // ::delete
2292      return false;
2293
2294    if (TryAnnotateTypeOrScopeToken())
2295      return true;
2296    return isTypeSpecifierQualifier();
2297
2298    // GNU attributes support.
2299  case tok::kw___attribute:
2300    // GNU typeof support.
2301  case tok::kw_typeof:
2302
2303    // type-specifiers
2304  case tok::kw_short:
2305  case tok::kw_long:
2306  case tok::kw_signed:
2307  case tok::kw_unsigned:
2308  case tok::kw__Complex:
2309  case tok::kw__Imaginary:
2310  case tok::kw_void:
2311  case tok::kw_char:
2312  case tok::kw_wchar_t:
2313  case tok::kw_char16_t:
2314  case tok::kw_char32_t:
2315  case tok::kw_int:
2316  case tok::kw_float:
2317  case tok::kw_double:
2318  case tok::kw_bool:
2319  case tok::kw__Bool:
2320  case tok::kw__Decimal32:
2321  case tok::kw__Decimal64:
2322  case tok::kw__Decimal128:
2323  case tok::kw___vector:
2324
2325    // struct-or-union-specifier (C99) or class-specifier (C++)
2326  case tok::kw_class:
2327  case tok::kw_struct:
2328  case tok::kw_union:
2329    // enum-specifier
2330  case tok::kw_enum:
2331
2332    // type-qualifier
2333  case tok::kw_const:
2334  case tok::kw_volatile:
2335  case tok::kw_restrict:
2336
2337    // typedef-name
2338  case tok::annot_typename:
2339    return true;
2340
2341    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2342  case tok::less:
2343    return getLang().ObjC1;
2344
2345  case tok::kw___cdecl:
2346  case tok::kw___stdcall:
2347  case tok::kw___fastcall:
2348  case tok::kw___thiscall:
2349  case tok::kw___w64:
2350  case tok::kw___ptr64:
2351  case tok::kw___pascal:
2352    return true;
2353  }
2354}
2355
2356/// isDeclarationSpecifier() - Return true if the current token is part of a
2357/// declaration specifier.
2358///
2359/// \param DisambiguatingWithExpression True to indicate that the purpose of
2360/// this check is to disambiguate between an expression and a declaration.
2361bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) {
2362  switch (Tok.getKind()) {
2363  default: return false;
2364
2365  case tok::identifier:   // foo::bar
2366    // Unfortunate hack to support "Class.factoryMethod" notation.
2367    if (getLang().ObjC1 && NextToken().is(tok::period))
2368      return false;
2369    if (TryAltiVecVectorToken())
2370      return true;
2371    // Fall through.
2372  case tok::kw_typename: // typename T::type
2373    // Annotate typenames and C++ scope specifiers.  If we get one, just
2374    // recurse to handle whatever we get.
2375    if (TryAnnotateTypeOrScopeToken())
2376      return true;
2377    if (Tok.is(tok::identifier))
2378      return false;
2379
2380    // If we're in Objective-C and we have an Objective-C class type followed
2381    // by an identifier and then either ':' or ']', in a place where an
2382    // expression is permitted, then this is probably a class message send
2383    // missing the initial '['. In this case, we won't consider this to be
2384    // the start of a declaration.
2385    if (DisambiguatingWithExpression &&
2386        isStartOfObjCClassMessageMissingOpenBracket())
2387      return false;
2388
2389    return isDeclarationSpecifier();
2390
2391  case tok::coloncolon:   // ::foo::bar
2392    if (NextToken().is(tok::kw_new) ||    // ::new
2393        NextToken().is(tok::kw_delete))   // ::delete
2394      return false;
2395
2396    // Annotate typenames and C++ scope specifiers.  If we get one, just
2397    // recurse to handle whatever we get.
2398    if (TryAnnotateTypeOrScopeToken())
2399      return true;
2400    return isDeclarationSpecifier();
2401
2402    // storage-class-specifier
2403  case tok::kw_typedef:
2404  case tok::kw_extern:
2405  case tok::kw___private_extern__:
2406  case tok::kw_static:
2407  case tok::kw_auto:
2408  case tok::kw_register:
2409  case tok::kw___thread:
2410
2411    // type-specifiers
2412  case tok::kw_short:
2413  case tok::kw_long:
2414  case tok::kw_signed:
2415  case tok::kw_unsigned:
2416  case tok::kw__Complex:
2417  case tok::kw__Imaginary:
2418  case tok::kw_void:
2419  case tok::kw_char:
2420  case tok::kw_wchar_t:
2421  case tok::kw_char16_t:
2422  case tok::kw_char32_t:
2423
2424  case tok::kw_int:
2425  case tok::kw_float:
2426  case tok::kw_double:
2427  case tok::kw_bool:
2428  case tok::kw__Bool:
2429  case tok::kw__Decimal32:
2430  case tok::kw__Decimal64:
2431  case tok::kw__Decimal128:
2432  case tok::kw___vector:
2433
2434    // struct-or-union-specifier (C99) or class-specifier (C++)
2435  case tok::kw_class:
2436  case tok::kw_struct:
2437  case tok::kw_union:
2438    // enum-specifier
2439  case tok::kw_enum:
2440
2441    // type-qualifier
2442  case tok::kw_const:
2443  case tok::kw_volatile:
2444  case tok::kw_restrict:
2445
2446    // function-specifier
2447  case tok::kw_inline:
2448  case tok::kw_virtual:
2449  case tok::kw_explicit:
2450
2451    // typedef-name
2452  case tok::annot_typename:
2453
2454    // GNU typeof support.
2455  case tok::kw_typeof:
2456
2457    // GNU attributes.
2458  case tok::kw___attribute:
2459    return true;
2460
2461    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
2462  case tok::less:
2463    return getLang().ObjC1;
2464
2465  case tok::kw___declspec:
2466  case tok::kw___cdecl:
2467  case tok::kw___stdcall:
2468  case tok::kw___fastcall:
2469  case tok::kw___thiscall:
2470  case tok::kw___w64:
2471  case tok::kw___ptr64:
2472  case tok::kw___forceinline:
2473  case tok::kw___pascal:
2474    return true;
2475  }
2476}
2477
2478bool Parser::isConstructorDeclarator() {
2479  TentativeParsingAction TPA(*this);
2480
2481  // Parse the C++ scope specifier.
2482  CXXScopeSpec SS;
2483  if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true)) {
2484    TPA.Revert();
2485    return false;
2486  }
2487
2488  // Parse the constructor name.
2489  if (Tok.is(tok::identifier) || Tok.is(tok::annot_template_id)) {
2490    // We already know that we have a constructor name; just consume
2491    // the token.
2492    ConsumeToken();
2493  } else {
2494    TPA.Revert();
2495    return false;
2496  }
2497
2498  // Current class name must be followed by a left parentheses.
2499  if (Tok.isNot(tok::l_paren)) {
2500    TPA.Revert();
2501    return false;
2502  }
2503  ConsumeParen();
2504
2505  // A right parentheses or ellipsis signals that we have a constructor.
2506  if (Tok.is(tok::r_paren) || Tok.is(tok::ellipsis)) {
2507    TPA.Revert();
2508    return true;
2509  }
2510
2511  // If we need to, enter the specified scope.
2512  DeclaratorScopeObj DeclScopeObj(*this, SS);
2513  if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
2514    DeclScopeObj.EnterDeclaratorScope();
2515
2516  // Check whether the next token(s) are part of a declaration
2517  // specifier, in which case we have the start of a parameter and,
2518  // therefore, we know that this is a constructor.
2519  bool IsConstructor = isDeclarationSpecifier();
2520  TPA.Revert();
2521  return IsConstructor;
2522}
2523
2524/// ParseTypeQualifierListOpt
2525///          type-qualifier-list: [C99 6.7.5]
2526///            type-qualifier
2527/// [vendor]   attributes
2528///              [ only if VendorAttributesAllowed=true ]
2529///            type-qualifier-list type-qualifier
2530/// [vendor]   type-qualifier-list attributes
2531///              [ only if VendorAttributesAllowed=true ]
2532/// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
2533///              [ only if CXX0XAttributesAllowed=true ]
2534/// Note: vendor can be GNU, MS, etc.
2535///
2536void Parser::ParseTypeQualifierListOpt(DeclSpec &DS,
2537                                       bool VendorAttributesAllowed,
2538                                       bool CXX0XAttributesAllowed) {
2539  if (getLang().CPlusPlus0x && isCXX0XAttributeSpecifier()) {
2540    SourceLocation Loc = Tok.getLocation();
2541    ParsedAttributesWithRange attrs;
2542    ParseCXX0XAttributes(attrs);
2543    if (CXX0XAttributesAllowed)
2544      DS.takeAttributesFrom(attrs);
2545    else
2546      Diag(Loc, diag::err_attributes_not_allowed);
2547  }
2548
2549  while (1) {
2550    bool isInvalid = false;
2551    const char *PrevSpec = 0;
2552    unsigned DiagID = 0;
2553    SourceLocation Loc = Tok.getLocation();
2554
2555    switch (Tok.getKind()) {
2556    case tok::code_completion:
2557      Actions.CodeCompleteTypeQualifiers(DS);
2558      ConsumeCodeCompletionToken();
2559      break;
2560
2561    case tok::kw_const:
2562      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
2563                                 getLang());
2564      break;
2565    case tok::kw_volatile:
2566      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
2567                                 getLang());
2568      break;
2569    case tok::kw_restrict:
2570      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
2571                                 getLang());
2572      break;
2573    case tok::kw___w64:
2574    case tok::kw___ptr64:
2575    case tok::kw___cdecl:
2576    case tok::kw___stdcall:
2577    case tok::kw___fastcall:
2578    case tok::kw___thiscall:
2579      if (VendorAttributesAllowed) {
2580        ParseMicrosoftTypeAttributes(DS.getAttributes());
2581        continue;
2582      }
2583      goto DoneWithTypeQuals;
2584    case tok::kw___pascal:
2585      if (VendorAttributesAllowed) {
2586        ParseBorlandTypeAttributes(DS.getAttributes());
2587        continue;
2588      }
2589      goto DoneWithTypeQuals;
2590    case tok::kw___attribute:
2591      if (VendorAttributesAllowed) {
2592        ParseGNUAttributes(DS.getAttributes());
2593        continue; // do *not* consume the next token!
2594      }
2595      // otherwise, FALL THROUGH!
2596    default:
2597      DoneWithTypeQuals:
2598      // If this is not a type-qualifier token, we're done reading type
2599      // qualifiers.  First verify that DeclSpec's are consistent.
2600      DS.Finish(Diags, PP);
2601      return;
2602    }
2603
2604    // If the specifier combination wasn't legal, issue a diagnostic.
2605    if (isInvalid) {
2606      assert(PrevSpec && "Method did not return previous specifier!");
2607      Diag(Tok, DiagID) << PrevSpec;
2608    }
2609    ConsumeToken();
2610  }
2611}
2612
2613
2614/// ParseDeclarator - Parse and verify a newly-initialized declarator.
2615///
2616void Parser::ParseDeclarator(Declarator &D) {
2617  /// This implements the 'declarator' production in the C grammar, then checks
2618  /// for well-formedness and issues diagnostics.
2619  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2620}
2621
2622/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
2623/// is parsed by the function passed to it. Pass null, and the direct-declarator
2624/// isn't parsed at all, making this function effectively parse the C++
2625/// ptr-operator production.
2626///
2627///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
2628/// [C]     pointer[opt] direct-declarator
2629/// [C++]   direct-declarator
2630/// [C++]   ptr-operator declarator
2631///
2632///       pointer: [C99 6.7.5]
2633///         '*' type-qualifier-list[opt]
2634///         '*' type-qualifier-list[opt] pointer
2635///
2636///       ptr-operator:
2637///         '*' cv-qualifier-seq[opt]
2638///         '&'
2639/// [C++0x] '&&'
2640/// [GNU]   '&' restrict[opt] attributes[opt]
2641/// [GNU?]  '&&' restrict[opt] attributes[opt]
2642///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2643void Parser::ParseDeclaratorInternal(Declarator &D,
2644                                     DirectDeclParseFunction DirectDeclParser) {
2645  if (Diags.hasAllExtensionsSilenced())
2646    D.setExtension();
2647
2648  // C++ member pointers start with a '::' or a nested-name.
2649  // Member pointers get special handling, since there's no place for the
2650  // scope spec in the generic path below.
2651  if (getLang().CPlusPlus &&
2652      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2653       Tok.is(tok::annot_cxxscope))) {
2654    CXXScopeSpec SS;
2655    ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true); // ignore fail
2656
2657    if (SS.isNotEmpty()) {
2658      if (Tok.isNot(tok::star)) {
2659        // The scope spec really belongs to the direct-declarator.
2660        D.getCXXScopeSpec() = SS;
2661        if (DirectDeclParser)
2662          (this->*DirectDeclParser)(D);
2663        return;
2664      }
2665
2666      SourceLocation Loc = ConsumeToken();
2667      D.SetRangeEnd(Loc);
2668      DeclSpec DS;
2669      ParseTypeQualifierListOpt(DS);
2670      D.ExtendWithDeclSpec(DS);
2671
2672      // Recurse to parse whatever is left.
2673      ParseDeclaratorInternal(D, DirectDeclParser);
2674
2675      // Sema will have to catch (syntactically invalid) pointers into global
2676      // scope. It has to catch pointers into namespace scope anyway.
2677      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2678                                                      Loc, DS.takeAttributes()),
2679                    /* Don't replace range end. */SourceLocation());
2680      return;
2681    }
2682  }
2683
2684  tok::TokenKind Kind = Tok.getKind();
2685  // Not a pointer, C++ reference, or block.
2686  if (Kind != tok::star && Kind != tok::caret &&
2687      (Kind != tok::amp || !getLang().CPlusPlus) &&
2688      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2689      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2690    if (DirectDeclParser)
2691      (this->*DirectDeclParser)(D);
2692    return;
2693  }
2694
2695  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2696  // '&&' -> rvalue reference
2697  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2698  D.SetRangeEnd(Loc);
2699
2700  if (Kind == tok::star || Kind == tok::caret) {
2701    // Is a pointer.
2702    DeclSpec DS;
2703
2704    ParseTypeQualifierListOpt(DS);
2705    D.ExtendWithDeclSpec(DS);
2706
2707    // Recursively parse the declarator.
2708    ParseDeclaratorInternal(D, DirectDeclParser);
2709    if (Kind == tok::star)
2710      // Remember that we parsed a pointer type, and remember the type-quals.
2711      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2712                                                DS.takeAttributes()),
2713                    SourceLocation());
2714    else
2715      // Remember that we parsed a Block type, and remember the type-quals.
2716      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2717                                                     Loc, DS.takeAttributes()),
2718                    SourceLocation());
2719  } else {
2720    // Is a reference
2721    DeclSpec DS;
2722
2723    // Complain about rvalue references in C++03, but then go on and build
2724    // the declarator.
2725    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2726      Diag(Loc, diag::err_rvalue_reference);
2727
2728    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2729    // cv-qualifiers are introduced through the use of a typedef or of a
2730    // template type argument, in which case the cv-qualifiers are ignored.
2731    //
2732    // [GNU] Retricted references are allowed.
2733    // [GNU] Attributes on references are allowed.
2734    // [C++0x] Attributes on references are not allowed.
2735    ParseTypeQualifierListOpt(DS, true, false);
2736    D.ExtendWithDeclSpec(DS);
2737
2738    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2739      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2740        Diag(DS.getConstSpecLoc(),
2741             diag::err_invalid_reference_qualifier_application) << "const";
2742      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2743        Diag(DS.getVolatileSpecLoc(),
2744             diag::err_invalid_reference_qualifier_application) << "volatile";
2745    }
2746
2747    // Recursively parse the declarator.
2748    ParseDeclaratorInternal(D, DirectDeclParser);
2749
2750    if (D.getNumTypeObjects() > 0) {
2751      // C++ [dcl.ref]p4: There shall be no references to references.
2752      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2753      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2754        if (const IdentifierInfo *II = D.getIdentifier())
2755          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2756           << II;
2757        else
2758          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2759            << "type name";
2760
2761        // Once we've complained about the reference-to-reference, we
2762        // can go ahead and build the (technically ill-formed)
2763        // declarator: reference collapsing will take care of it.
2764      }
2765    }
2766
2767    // Remember that we parsed a reference type. It doesn't have type-quals.
2768    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2769                                                DS.takeAttributes(),
2770                                                Kind == tok::amp),
2771                  SourceLocation());
2772  }
2773}
2774
2775/// ParseDirectDeclarator
2776///       direct-declarator: [C99 6.7.5]
2777/// [C99]   identifier
2778///         '(' declarator ')'
2779/// [GNU]   '(' attributes declarator ')'
2780/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2781/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2782/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2783/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2784/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2785///         direct-declarator '(' parameter-type-list ')'
2786///         direct-declarator '(' identifier-list[opt] ')'
2787/// [GNU]   direct-declarator '(' parameter-forward-declarations
2788///                    parameter-type-list[opt] ')'
2789/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2790///                    cv-qualifier-seq[opt] exception-specification[opt]
2791/// [C++]   declarator-id
2792///
2793///       declarator-id: [C++ 8]
2794///         '...'[opt] id-expression
2795///         '::'[opt] nested-name-specifier[opt] type-name
2796///
2797///       id-expression: [C++ 5.1]
2798///         unqualified-id
2799///         qualified-id
2800///
2801///       unqualified-id: [C++ 5.1]
2802///         identifier
2803///         operator-function-id
2804///         conversion-function-id
2805///          '~' class-name
2806///         template-id
2807///
2808void Parser::ParseDirectDeclarator(Declarator &D) {
2809  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2810
2811  if (getLang().CPlusPlus && D.mayHaveIdentifier()) {
2812    // ParseDeclaratorInternal might already have parsed the scope.
2813    if (D.getCXXScopeSpec().isEmpty()) {
2814      ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), ParsedType(), true);
2815    }
2816
2817    if (D.getCXXScopeSpec().isValid()) {
2818      if (Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2819        // Change the declaration context for name lookup, until this function
2820        // is exited (and the declarator has been parsed).
2821        DeclScopeObj.EnterDeclaratorScope();
2822    }
2823
2824    // C++0x [dcl.fct]p14:
2825    //   There is a syntactic ambiguity when an ellipsis occurs at the end
2826    //   of a parameter-declaration-clause without a preceding comma. In
2827    //   this case, the ellipsis is parsed as part of the
2828    //   abstract-declarator if the type of the parameter names a template
2829    //   parameter pack that has not been expanded; otherwise, it is parsed
2830    //   as part of the parameter-declaration-clause.
2831    if (Tok.is(tok::ellipsis) &&
2832        !((D.getContext() == Declarator::PrototypeContext ||
2833           D.getContext() == Declarator::BlockLiteralContext) &&
2834          getCurScope()->getTemplateParamParent() &&
2835          NextToken().is(tok::r_paren) &&
2836          !Actions.containsUnexpandedParameterPacks(D)))
2837      D.setEllipsisLoc(ConsumeToken());
2838
2839    if (Tok.is(tok::identifier) || Tok.is(tok::kw_operator) ||
2840        Tok.is(tok::annot_template_id) || Tok.is(tok::tilde)) {
2841      // We found something that indicates the start of an unqualified-id.
2842      // Parse that unqualified-id.
2843      bool AllowConstructorName;
2844      if (D.getDeclSpec().hasTypeSpecifier())
2845        AllowConstructorName = false;
2846      else if (D.getCXXScopeSpec().isSet())
2847        AllowConstructorName =
2848          (D.getContext() == Declarator::FileContext ||
2849           (D.getContext() == Declarator::MemberContext &&
2850            D.getDeclSpec().isFriendSpecified()));
2851      else
2852        AllowConstructorName = (D.getContext() == Declarator::MemberContext);
2853
2854      if (ParseUnqualifiedId(D.getCXXScopeSpec(),
2855                             /*EnteringContext=*/true,
2856                             /*AllowDestructorName=*/true,
2857                             AllowConstructorName,
2858                             ParsedType(),
2859                             D.getName()) ||
2860          // Once we're past the identifier, if the scope was bad, mark the
2861          // whole declarator bad.
2862          D.getCXXScopeSpec().isInvalid()) {
2863        D.SetIdentifier(0, Tok.getLocation());
2864        D.setInvalidType(true);
2865      } else {
2866        // Parsed the unqualified-id; update range information and move along.
2867        if (D.getSourceRange().getBegin().isInvalid())
2868          D.SetRangeBegin(D.getName().getSourceRange().getBegin());
2869        D.SetRangeEnd(D.getName().getSourceRange().getEnd());
2870      }
2871      goto PastIdentifier;
2872    }
2873  } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2874    assert(!getLang().CPlusPlus &&
2875           "There's a C++-specific check for tok::identifier above");
2876    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2877    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2878    ConsumeToken();
2879    goto PastIdentifier;
2880  }
2881
2882  if (Tok.is(tok::l_paren)) {
2883    // direct-declarator: '(' declarator ')'
2884    // direct-declarator: '(' attributes declarator ')'
2885    // Example: 'char (*X)'   or 'int (*XX)(void)'
2886    ParseParenDeclarator(D);
2887
2888    // If the declarator was parenthesized, we entered the declarator
2889    // scope when parsing the parenthesized declarator, then exited
2890    // the scope already. Re-enter the scope, if we need to.
2891    if (D.getCXXScopeSpec().isSet()) {
2892      // If there was an error parsing parenthesized declarator, declarator
2893      // scope may have been enterred before. Don't do it again.
2894      if (!D.isInvalidType() &&
2895          Actions.ShouldEnterDeclaratorScope(getCurScope(), D.getCXXScopeSpec()))
2896        // Change the declaration context for name lookup, until this function
2897        // is exited (and the declarator has been parsed).
2898        DeclScopeObj.EnterDeclaratorScope();
2899    }
2900  } else if (D.mayOmitIdentifier()) {
2901    // This could be something simple like "int" (in which case the declarator
2902    // portion is empty), if an abstract-declarator is allowed.
2903    D.SetIdentifier(0, Tok.getLocation());
2904  } else {
2905    if (D.getContext() == Declarator::MemberContext)
2906      Diag(Tok, diag::err_expected_member_name_or_semi)
2907        << D.getDeclSpec().getSourceRange();
2908    else if (getLang().CPlusPlus)
2909      Diag(Tok, diag::err_expected_unqualified_id) << getLang().CPlusPlus;
2910    else
2911      Diag(Tok, diag::err_expected_ident_lparen);
2912    D.SetIdentifier(0, Tok.getLocation());
2913    D.setInvalidType(true);
2914  }
2915
2916 PastIdentifier:
2917  assert(D.isPastIdentifier() &&
2918         "Haven't past the location of the identifier yet?");
2919
2920  // Don't parse attributes unless we have an identifier.
2921  if (D.getIdentifier())
2922    MaybeParseCXX0XAttributes(D);
2923
2924  while (1) {
2925    if (Tok.is(tok::l_paren)) {
2926      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2927      // In such a case, check if we actually have a function declarator; if it
2928      // is not, the declarator has been fully parsed.
2929      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2930        // When not in file scope, warn for ambiguous function declarators, just
2931        // in case the author intended it as a variable definition.
2932        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2933        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2934          break;
2935      }
2936      ParsedAttributes attrs;
2937      ParseFunctionDeclarator(ConsumeParen(), D, attrs);
2938    } else if (Tok.is(tok::l_square)) {
2939      ParseBracketDeclarator(D);
2940    } else {
2941      break;
2942    }
2943  }
2944}
2945
2946/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2947/// only called before the identifier, so these are most likely just grouping
2948/// parens for precedence.  If we find that these are actually function
2949/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2950///
2951///       direct-declarator:
2952///         '(' declarator ')'
2953/// [GNU]   '(' attributes declarator ')'
2954///         direct-declarator '(' parameter-type-list ')'
2955///         direct-declarator '(' identifier-list[opt] ')'
2956/// [GNU]   direct-declarator '(' parameter-forward-declarations
2957///                    parameter-type-list[opt] ')'
2958///
2959void Parser::ParseParenDeclarator(Declarator &D) {
2960  SourceLocation StartLoc = ConsumeParen();
2961  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2962
2963  // Eat any attributes before we look at whether this is a grouping or function
2964  // declarator paren.  If this is a grouping paren, the attribute applies to
2965  // the type being built up, for example:
2966  //     int (__attribute__(()) *x)(long y)
2967  // If this ends up not being a grouping paren, the attribute applies to the
2968  // first argument, for example:
2969  //     int (__attribute__(()) int x)
2970  // In either case, we need to eat any attributes to be able to determine what
2971  // sort of paren this is.
2972  //
2973  ParsedAttributes attrs;
2974  bool RequiresArg = false;
2975  if (Tok.is(tok::kw___attribute)) {
2976    ParseGNUAttributes(attrs);
2977
2978    // We require that the argument list (if this is a non-grouping paren) be
2979    // present even if the attribute list was empty.
2980    RequiresArg = true;
2981  }
2982  // Eat any Microsoft extensions.
2983  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2984       Tok.is(tok::kw___thiscall) || Tok.is(tok::kw___fastcall) ||
2985       Tok.is(tok::kw___w64) || Tok.is(tok::kw___ptr64)) {
2986    ParseMicrosoftTypeAttributes(attrs);
2987  }
2988  // Eat any Borland extensions.
2989  if  (Tok.is(tok::kw___pascal))
2990    ParseBorlandTypeAttributes(attrs);
2991
2992  // If we haven't past the identifier yet (or where the identifier would be
2993  // stored, if this is an abstract declarator), then this is probably just
2994  // grouping parens. However, if this could be an abstract-declarator, then
2995  // this could also be the start of function arguments (consider 'void()').
2996  bool isGrouping;
2997
2998  if (!D.mayOmitIdentifier()) {
2999    // If this can't be an abstract-declarator, this *must* be a grouping
3000    // paren, because we haven't seen the identifier yet.
3001    isGrouping = true;
3002  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
3003             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
3004             isDeclarationSpecifier()) {       // 'int(int)' is a function.
3005    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
3006    // considered to be a type, not a K&R identifier-list.
3007    isGrouping = false;
3008  } else {
3009    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
3010    isGrouping = true;
3011  }
3012
3013  // If this is a grouping paren, handle:
3014  // direct-declarator: '(' declarator ')'
3015  // direct-declarator: '(' attributes declarator ')'
3016  if (isGrouping) {
3017    bool hadGroupingParens = D.hasGroupingParens();
3018    D.setGroupingParens(true);
3019    if (!attrs.empty())
3020      D.addAttributes(attrs.getList(), SourceLocation());
3021
3022    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
3023    // Match the ')'.
3024    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_paren, StartLoc);
3025    D.AddTypeInfo(DeclaratorChunk::getParen(StartLoc, EndLoc), EndLoc);
3026
3027    D.setGroupingParens(hadGroupingParens);
3028    return;
3029  }
3030
3031  // Okay, if this wasn't a grouping paren, it must be the start of a function
3032  // argument list.  Recognize that this declarator will never have an
3033  // identifier (and remember where it would have been), then call into
3034  // ParseFunctionDeclarator to handle of argument list.
3035  D.SetIdentifier(0, Tok.getLocation());
3036
3037  ParseFunctionDeclarator(StartLoc, D, attrs, RequiresArg);
3038}
3039
3040/// ParseFunctionDeclarator - We are after the identifier and have parsed the
3041/// declarator D up to a paren, which indicates that we are parsing function
3042/// arguments.
3043///
3044/// If AttrList is non-null, then the caller parsed those arguments immediately
3045/// after the open paren - they should be considered to be the first argument of
3046/// a parameter.  If RequiresArg is true, then the first argument of the
3047/// function is required to be present and required to not be an identifier
3048/// list.
3049///
3050/// This method also handles this portion of the grammar:
3051///       parameter-type-list: [C99 6.7.5]
3052///         parameter-list
3053///         parameter-list ',' '...'
3054/// [C++]   parameter-list '...'
3055///
3056///       parameter-list: [C99 6.7.5]
3057///         parameter-declaration
3058///         parameter-list ',' parameter-declaration
3059///
3060///       parameter-declaration: [C99 6.7.5]
3061///         declaration-specifiers declarator
3062/// [C++]   declaration-specifiers declarator '=' assignment-expression
3063/// [GNU]   declaration-specifiers declarator attributes
3064///         declaration-specifiers abstract-declarator[opt]
3065/// [C++]   declaration-specifiers abstract-declarator[opt]
3066///           '=' assignment-expression
3067/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
3068///
3069/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
3070/// and "exception-specification[opt]".
3071///
3072void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
3073                                     ParsedAttributes &attrs,
3074                                     bool RequiresArg) {
3075  // lparen is already consumed!
3076  assert(D.isPastIdentifier() && "Should not call before identifier!");
3077
3078  ParsedType TrailingReturnType;
3079
3080  // This parameter list may be empty.
3081  if (Tok.is(tok::r_paren)) {
3082    if (RequiresArg)
3083      Diag(Tok, diag::err_argument_required_after_attribute);
3084
3085    SourceLocation RParenLoc = ConsumeParen();  // Eat the closing ')'.
3086    SourceLocation EndLoc = RParenLoc;
3087
3088    // cv-qualifier-seq[opt].
3089    DeclSpec DS;
3090    bool hasExceptionSpec = false;
3091    SourceLocation ThrowLoc;
3092    bool hasAnyExceptionSpec = false;
3093    llvm::SmallVector<ParsedType, 2> Exceptions;
3094    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
3095    if (getLang().CPlusPlus) {
3096      MaybeParseCXX0XAttributes(attrs);
3097
3098      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3099      if (!DS.getSourceRange().getEnd().isInvalid())
3100        EndLoc = DS.getSourceRange().getEnd();
3101
3102      // Parse exception-specification[opt].
3103      if (Tok.is(tok::kw_throw)) {
3104        hasExceptionSpec = true;
3105        ThrowLoc = Tok.getLocation();
3106        ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
3107                                    hasAnyExceptionSpec);
3108        assert(Exceptions.size() == ExceptionRanges.size() &&
3109               "Produced different number of exception types and ranges.");
3110      }
3111
3112      // Parse trailing-return-type.
3113      if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3114        TrailingReturnType = ParseTrailingReturnType().get();
3115      }
3116    }
3117
3118    // Remember that we parsed a function type, and remember the attributes.
3119    // int() -> no prototype, no '...'.
3120    D.AddTypeInfo(DeclaratorChunk::getFunction(attrs,
3121                                               /*prototype*/getLang().CPlusPlus,
3122                                               /*variadic*/ false,
3123                                               SourceLocation(),
3124                                               /*arglist*/ 0, 0,
3125                                               DS.getTypeQualifiers(),
3126                                               hasExceptionSpec, ThrowLoc,
3127                                               hasAnyExceptionSpec,
3128                                               Exceptions.data(),
3129                                               ExceptionRanges.data(),
3130                                               Exceptions.size(),
3131                                               LParenLoc, RParenLoc, D,
3132                                               TrailingReturnType),
3133                  EndLoc);
3134    return;
3135  }
3136
3137  // Alternatively, this parameter list may be an identifier list form for a
3138  // K&R-style function:  void foo(a,b,c)
3139  if (!getLang().CPlusPlus && Tok.is(tok::identifier)
3140      && !TryAltiVecVectorToken()) {
3141    if (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) {
3142      // K&R identifier lists can't have typedefs as identifiers, per
3143      // C99 6.7.5.3p11.
3144      if (RequiresArg)
3145        Diag(Tok, diag::err_argument_required_after_attribute);
3146
3147      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
3148      // normal declarators, not for abstract-declarators.  Get the first
3149      // identifier.
3150      Token FirstTok = Tok;
3151      ConsumeToken();  // eat the first identifier.
3152
3153      // Identifier lists follow a really simple grammar: the identifiers can
3154      // be followed *only* by a ", moreidentifiers" or ")".  However, K&R
3155      // identifier lists are really rare in the brave new modern world, and it
3156      // is very common for someone to typo a type in a non-k&r style list.  If
3157      // we are presented with something like: "void foo(intptr x, float y)",
3158      // we don't want to start parsing the function declarator as though it is
3159      // a K&R style declarator just because intptr is an invalid type.
3160      //
3161      // To handle this, we check to see if the token after the first identifier
3162      // is a "," or ")".  Only if so, do we parse it as an identifier list.
3163      if (Tok.is(tok::comma) || Tok.is(tok::r_paren))
3164        return ParseFunctionDeclaratorIdentifierList(LParenLoc,
3165                                                   FirstTok.getIdentifierInfo(),
3166                                                     FirstTok.getLocation(), D);
3167
3168      // If we get here, the code is invalid.  Push the first identifier back
3169      // into the token stream and parse the first argument as an (invalid)
3170      // normal argument declarator.
3171      PP.EnterToken(Tok);
3172      Tok = FirstTok;
3173    }
3174  }
3175
3176  // Finally, a normal, non-empty parameter type list.
3177
3178  // Build up an array of information about the parsed arguments.
3179  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3180
3181  // Enter function-declaration scope, limiting any declarators to the
3182  // function prototype scope, including parameter declarators.
3183  ParseScope PrototypeScope(this,
3184                            Scope::FunctionPrototypeScope|Scope::DeclScope);
3185
3186  bool IsVariadic = false;
3187  SourceLocation EllipsisLoc;
3188  while (1) {
3189    if (Tok.is(tok::ellipsis)) {
3190      IsVariadic = true;
3191      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3192      break;
3193    }
3194
3195    // Parse the declaration-specifiers.
3196    // Just use the ParsingDeclaration "scope" of the declarator.
3197    DeclSpec DS;
3198
3199    // Skip any Microsoft attributes before a param.
3200    if (getLang().Microsoft && Tok.is(tok::l_square))
3201      ParseMicrosoftAttributes(DS.getAttributes());
3202
3203    SourceLocation DSStart = Tok.getLocation();
3204
3205    // If the caller parsed attributes for the first argument, add them now.
3206    // Take them so that we only apply the attributes to the first parameter.
3207    DS.takeAttributesFrom(attrs);
3208
3209    ParseDeclarationSpecifiers(DS);
3210
3211    // Parse the declarator.  This is "PrototypeContext", because we must
3212    // accept either 'declarator' or 'abstract-declarator' here.
3213    Declarator ParmDecl(DS, Declarator::PrototypeContext);
3214    ParseDeclarator(ParmDecl);
3215
3216    // Parse GNU attributes, if present.
3217    MaybeParseGNUAttributes(ParmDecl);
3218
3219    // Remember this parsed parameter in ParamInfo.
3220    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
3221
3222    // DefArgToks is used when the parsing of default arguments needs
3223    // to be delayed.
3224    CachedTokens *DefArgToks = 0;
3225
3226    // If no parameter was specified, verify that *something* was specified,
3227    // otherwise we have a missing type and identifier.
3228    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
3229        ParmDecl.getNumTypeObjects() == 0) {
3230      // Completely missing, emit error.
3231      Diag(DSStart, diag::err_missing_param);
3232    } else {
3233      // Otherwise, we have something.  Add it and let semantic analysis try
3234      // to grok it and add the result to the ParamInfo we are building.
3235
3236      // Inform the actions module about the parameter declarator, so it gets
3237      // added to the current scope.
3238      Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDecl);
3239
3240      // Parse the default argument, if any. We parse the default
3241      // arguments in all dialects; the semantic analysis in
3242      // ActOnParamDefaultArgument will reject the default argument in
3243      // C.
3244      if (Tok.is(tok::equal)) {
3245        SourceLocation EqualLoc = Tok.getLocation();
3246
3247        // Parse the default argument
3248        if (D.getContext() == Declarator::MemberContext) {
3249          // If we're inside a class definition, cache the tokens
3250          // corresponding to the default argument. We'll actually parse
3251          // them when we see the end of the class definition.
3252          // FIXME: Templates will require something similar.
3253          // FIXME: Can we use a smart pointer for Toks?
3254          DefArgToks = new CachedTokens;
3255
3256          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
3257                                    /*StopAtSemi=*/true,
3258                                    /*ConsumeFinalToken=*/false)) {
3259            delete DefArgToks;
3260            DefArgToks = 0;
3261            Actions.ActOnParamDefaultArgumentError(Param);
3262          } else {
3263            // Mark the end of the default argument so that we know when to
3264            // stop when we parse it later on.
3265            Token DefArgEnd;
3266            DefArgEnd.startToken();
3267            DefArgEnd.setKind(tok::cxx_defaultarg_end);
3268            DefArgEnd.setLocation(Tok.getLocation());
3269            DefArgToks->push_back(DefArgEnd);
3270            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
3271                                                (*DefArgToks)[1].getLocation());
3272          }
3273        } else {
3274          // Consume the '='.
3275          ConsumeToken();
3276
3277          // The argument isn't actually potentially evaluated unless it is
3278          // used.
3279          EnterExpressionEvaluationContext Eval(Actions,
3280                                              Sema::PotentiallyEvaluatedIfUsed);
3281
3282          ExprResult DefArgResult(ParseAssignmentExpression());
3283          if (DefArgResult.isInvalid()) {
3284            Actions.ActOnParamDefaultArgumentError(Param);
3285            SkipUntil(tok::comma, tok::r_paren, true, true);
3286          } else {
3287            // Inform the actions module about the default argument
3288            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
3289                                              DefArgResult.take());
3290          }
3291        }
3292      }
3293
3294      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3295                                          ParmDecl.getIdentifierLoc(), Param,
3296                                          DefArgToks));
3297    }
3298
3299    // If the next token is a comma, consume it and keep reading arguments.
3300    if (Tok.isNot(tok::comma)) {
3301      if (Tok.is(tok::ellipsis)) {
3302        IsVariadic = true;
3303        EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
3304
3305        if (!getLang().CPlusPlus) {
3306          // We have ellipsis without a preceding ',', which is ill-formed
3307          // in C. Complain and provide the fix.
3308          Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
3309            << FixItHint::CreateInsertion(EllipsisLoc, ", ");
3310        }
3311      }
3312
3313      break;
3314    }
3315
3316    // Consume the comma.
3317    ConsumeToken();
3318  }
3319
3320  // If we have the closing ')', eat it.
3321  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3322  SourceLocation EndLoc = RParenLoc;
3323
3324  DeclSpec DS;
3325  bool hasExceptionSpec = false;
3326  SourceLocation ThrowLoc;
3327  bool hasAnyExceptionSpec = false;
3328  llvm::SmallVector<ParsedType, 2> Exceptions;
3329  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
3330
3331  if (getLang().CPlusPlus) {
3332    MaybeParseCXX0XAttributes(attrs);
3333
3334    // Parse cv-qualifier-seq[opt].
3335    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3336      if (!DS.getSourceRange().getEnd().isInvalid())
3337        EndLoc = DS.getSourceRange().getEnd();
3338
3339    // Parse exception-specification[opt].
3340    if (Tok.is(tok::kw_throw)) {
3341      hasExceptionSpec = true;
3342      ThrowLoc = Tok.getLocation();
3343      ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
3344                                  hasAnyExceptionSpec);
3345      assert(Exceptions.size() == ExceptionRanges.size() &&
3346             "Produced different number of exception types and ranges.");
3347    }
3348
3349    // Parse trailing-return-type.
3350    if (getLang().CPlusPlus0x && Tok.is(tok::arrow)) {
3351      TrailingReturnType = ParseTrailingReturnType().get();
3352    }
3353  }
3354
3355  // FIXME: We should leave the prototype scope before parsing the exception
3356  // specification, and then reenter it when parsing the trailing return type.
3357
3358  // Leave prototype scope.
3359  PrototypeScope.Exit();
3360
3361  // Remember that we parsed a function type, and remember the attributes.
3362  D.AddTypeInfo(DeclaratorChunk::getFunction(attrs,
3363                                             /*proto*/true, IsVariadic,
3364                                             EllipsisLoc,
3365                                             ParamInfo.data(), ParamInfo.size(),
3366                                             DS.getTypeQualifiers(),
3367                                             hasExceptionSpec, ThrowLoc,
3368                                             hasAnyExceptionSpec,
3369                                             Exceptions.data(),
3370                                             ExceptionRanges.data(),
3371                                             Exceptions.size(),
3372                                             LParenLoc, RParenLoc, D,
3373                                             TrailingReturnType),
3374                EndLoc);
3375}
3376
3377/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
3378/// we found a K&R-style identifier list instead of a type argument list.  The
3379/// first identifier has already been consumed, and the current token is the
3380/// token right after it.
3381///
3382///       identifier-list: [C99 6.7.5]
3383///         identifier
3384///         identifier-list ',' identifier
3385///
3386void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
3387                                                   IdentifierInfo *FirstIdent,
3388                                                   SourceLocation FirstIdentLoc,
3389                                                   Declarator &D) {
3390  // Build up an array of information about the parsed arguments.
3391  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
3392  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
3393
3394  // If there was no identifier specified for the declarator, either we are in
3395  // an abstract-declarator, or we are in a parameter declarator which was found
3396  // to be abstract.  In abstract-declarators, identifier lists are not valid:
3397  // diagnose this.
3398  if (!D.getIdentifier())
3399    Diag(FirstIdentLoc, diag::ext_ident_list_in_param);
3400
3401  // The first identifier was already read, and is known to be the first
3402  // identifier in the list.  Remember this identifier in ParamInfo.
3403  ParamsSoFar.insert(FirstIdent);
3404  ParamInfo.push_back(DeclaratorChunk::ParamInfo(FirstIdent, FirstIdentLoc, 0));
3405
3406  while (Tok.is(tok::comma)) {
3407    // Eat the comma.
3408    ConsumeToken();
3409
3410    // If this isn't an identifier, report the error and skip until ')'.
3411    if (Tok.isNot(tok::identifier)) {
3412      Diag(Tok, diag::err_expected_ident);
3413      SkipUntil(tok::r_paren);
3414      return;
3415    }
3416
3417    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
3418
3419    // Reject 'typedef int y; int test(x, y)', but continue parsing.
3420    if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
3421      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
3422
3423    // Verify that the argument identifier has not already been mentioned.
3424    if (!ParamsSoFar.insert(ParmII)) {
3425      Diag(Tok, diag::err_param_redefinition) << ParmII;
3426    } else {
3427      // Remember this identifier in ParamInfo.
3428      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
3429                                                     Tok.getLocation(),
3430                                                     0));
3431    }
3432
3433    // Eat the identifier.
3434    ConsumeToken();
3435  }
3436
3437  // If we have the closing ')', eat it and we're done.
3438  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
3439
3440  // Remember that we parsed a function type, and remember the attributes.  This
3441  // function type is always a K&R style function type, which is not varargs and
3442  // has no prototype.
3443  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
3444                                             /*proto*/false, /*varargs*/false,
3445                                             SourceLocation(),
3446                                             &ParamInfo[0], ParamInfo.size(),
3447                                             /*TypeQuals*/0,
3448                                             /*exception*/false,
3449                                             SourceLocation(), false, 0, 0, 0,
3450                                             LParenLoc, RLoc, D),
3451                RLoc);
3452}
3453
3454/// [C90]   direct-declarator '[' constant-expression[opt] ']'
3455/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
3456/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
3457/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
3458/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
3459void Parser::ParseBracketDeclarator(Declarator &D) {
3460  SourceLocation StartLoc = ConsumeBracket();
3461
3462  // C array syntax has many features, but by-far the most common is [] and [4].
3463  // This code does a fast path to handle some of the most obvious cases.
3464  if (Tok.getKind() == tok::r_square) {
3465    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3466    ParsedAttributes attrs;
3467    MaybeParseCXX0XAttributes(attrs);
3468
3469    // Remember that we parsed the empty array type.
3470    ExprResult NumElements;
3471    D.AddTypeInfo(DeclaratorChunk::getArray(0, attrs, false, false, 0,
3472                                            StartLoc, EndLoc),
3473                  EndLoc);
3474    return;
3475  } else if (Tok.getKind() == tok::numeric_constant &&
3476             GetLookAheadToken(1).is(tok::r_square)) {
3477    // [4] is very common.  Parse the numeric constant expression.
3478    ExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
3479    ConsumeToken();
3480
3481    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3482    ParsedAttributes attrs;
3483    MaybeParseCXX0XAttributes(attrs);
3484
3485    // Remember that we parsed a array type, and remember its features.
3486    D.AddTypeInfo(DeclaratorChunk::getArray(0, attrs, false, 0,
3487                                            ExprRes.release(),
3488                                            StartLoc, EndLoc),
3489                  EndLoc);
3490    return;
3491  }
3492
3493  // If valid, this location is the position where we read the 'static' keyword.
3494  SourceLocation StaticLoc;
3495  if (Tok.is(tok::kw_static))
3496    StaticLoc = ConsumeToken();
3497
3498  // If there is a type-qualifier-list, read it now.
3499  // Type qualifiers in an array subscript are a C99 feature.
3500  DeclSpec DS;
3501  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
3502
3503  // If we haven't already read 'static', check to see if there is one after the
3504  // type-qualifier-list.
3505  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
3506    StaticLoc = ConsumeToken();
3507
3508  // Handle "direct-declarator [ type-qual-list[opt] * ]".
3509  bool isStar = false;
3510  ExprResult NumElements;
3511
3512  // Handle the case where we have '[*]' as the array size.  However, a leading
3513  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
3514  // the the token after the star is a ']'.  Since stars in arrays are
3515  // infrequent, use of lookahead is not costly here.
3516  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
3517    ConsumeToken();  // Eat the '*'.
3518
3519    if (StaticLoc.isValid()) {
3520      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
3521      StaticLoc = SourceLocation();  // Drop the static.
3522    }
3523    isStar = true;
3524  } else if (Tok.isNot(tok::r_square)) {
3525    // Note, in C89, this production uses the constant-expr production instead
3526    // of assignment-expr.  The only difference is that assignment-expr allows
3527    // things like '=' and '*='.  Sema rejects these in C89 mode because they
3528    // are not i-c-e's, so we don't need to distinguish between the two here.
3529
3530    // Parse the constant-expression or assignment-expression now (depending
3531    // on dialect).
3532    if (getLang().CPlusPlus)
3533      NumElements = ParseConstantExpression();
3534    else
3535      NumElements = ParseAssignmentExpression();
3536  }
3537
3538  // If there was an error parsing the assignment-expression, recover.
3539  if (NumElements.isInvalid()) {
3540    D.setInvalidType(true);
3541    // If the expression was invalid, skip it.
3542    SkipUntil(tok::r_square);
3543    return;
3544  }
3545
3546  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
3547
3548  ParsedAttributes attrs;
3549  MaybeParseCXX0XAttributes(attrs);
3550
3551  // Remember that we parsed a array type, and remember its features.
3552  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(), attrs,
3553                                          StaticLoc.isValid(), isStar,
3554                                          NumElements.release(),
3555                                          StartLoc, EndLoc),
3556                EndLoc);
3557}
3558
3559/// [GNU]   typeof-specifier:
3560///           typeof ( expressions )
3561///           typeof ( type-name )
3562/// [GNU/C++] typeof unary-expression
3563///
3564void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
3565  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
3566  Token OpTok = Tok;
3567  SourceLocation StartLoc = ConsumeToken();
3568
3569  const bool hasParens = Tok.is(tok::l_paren);
3570
3571  bool isCastExpr;
3572  ParsedType CastTy;
3573  SourceRange CastRange;
3574  ExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
3575                                                         isCastExpr,
3576                                                         CastTy,
3577                                                         CastRange);
3578  if (hasParens)
3579    DS.setTypeofParensRange(CastRange);
3580
3581  if (CastRange.getEnd().isInvalid())
3582    // FIXME: Not accurate, the range gets one token more than it should.
3583    DS.SetRangeEnd(Tok.getLocation());
3584  else
3585    DS.SetRangeEnd(CastRange.getEnd());
3586
3587  if (isCastExpr) {
3588    if (!CastTy) {
3589      DS.SetTypeSpecError();
3590      return;
3591    }
3592
3593    const char *PrevSpec = 0;
3594    unsigned DiagID;
3595    // Check for duplicate type specifiers (e.g. "int typeof(int)").
3596    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
3597                           DiagID, CastTy))
3598      Diag(StartLoc, DiagID) << PrevSpec;
3599    return;
3600  }
3601
3602  // If we get here, the operand to the typeof was an expresion.
3603  if (Operand.isInvalid()) {
3604    DS.SetTypeSpecError();
3605    return;
3606  }
3607
3608  const char *PrevSpec = 0;
3609  unsigned DiagID;
3610  // Check for duplicate type specifiers (e.g. "int typeof(int)").
3611  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
3612                         DiagID, Operand.get()))
3613    Diag(StartLoc, DiagID) << PrevSpec;
3614}
3615
3616
3617/// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
3618/// from TryAltiVecVectorToken.
3619bool Parser::TryAltiVecVectorTokenOutOfLine() {
3620  Token Next = NextToken();
3621  switch (Next.getKind()) {
3622  default: return false;
3623  case tok::kw_short:
3624  case tok::kw_long:
3625  case tok::kw_signed:
3626  case tok::kw_unsigned:
3627  case tok::kw_void:
3628  case tok::kw_char:
3629  case tok::kw_int:
3630  case tok::kw_float:
3631  case tok::kw_double:
3632  case tok::kw_bool:
3633  case tok::kw___pixel:
3634    Tok.setKind(tok::kw___vector);
3635    return true;
3636  case tok::identifier:
3637    if (Next.getIdentifierInfo() == Ident_pixel) {
3638      Tok.setKind(tok::kw___vector);
3639      return true;
3640    }
3641    return false;
3642  }
3643}
3644
3645bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
3646                                      const char *&PrevSpec, unsigned &DiagID,
3647                                      bool &isInvalid) {
3648  if (Tok.getIdentifierInfo() == Ident_vector) {
3649    Token Next = NextToken();
3650    switch (Next.getKind()) {
3651    case tok::kw_short:
3652    case tok::kw_long:
3653    case tok::kw_signed:
3654    case tok::kw_unsigned:
3655    case tok::kw_void:
3656    case tok::kw_char:
3657    case tok::kw_int:
3658    case tok::kw_float:
3659    case tok::kw_double:
3660    case tok::kw_bool:
3661    case tok::kw___pixel:
3662      isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3663      return true;
3664    case tok::identifier:
3665      if (Next.getIdentifierInfo() == Ident_pixel) {
3666        isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID);
3667        return true;
3668      }
3669      break;
3670    default:
3671      break;
3672    }
3673  } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
3674             DS.isTypeAltiVecVector()) {
3675    isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID);
3676    return true;
3677  }
3678  return false;
3679}
3680
3681