ParseDecl.cpp revision 82bf01061b97404fed8c422fc0eda0a380689cc9
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Parse/ParseDiagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "llvm/ADT/SmallSet.h"
19using namespace clang;
20
21//===----------------------------------------------------------------------===//
22// C99 6.7: Declarations.
23//===----------------------------------------------------------------------===//
24
25/// ParseTypeName
26///       type-name: [C99 6.7.6]
27///         specifier-qualifier-list abstract-declarator[opt]
28///
29/// Called type-id in C++.
30Action::TypeResult Parser::ParseTypeName(SourceRange *Range) {
31  // Parse the common declaration-specifiers piece.
32  DeclSpec DS;
33  ParseSpecifierQualifierList(DS);
34
35  // Parse the abstract-declarator, if present.
36  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
37  ParseDeclarator(DeclaratorInfo);
38  if (Range)
39    *Range = DeclaratorInfo.getSourceRange();
40
41  if (DeclaratorInfo.isInvalidType())
42    return true;
43
44  return Actions.ActOnTypeName(CurScope, DeclaratorInfo);
45}
46
47/// ParseAttributes - Parse a non-empty attributes list.
48///
49/// [GNU] attributes:
50///         attribute
51///         attributes attribute
52///
53/// [GNU]  attribute:
54///          '__attribute__' '(' '(' attribute-list ')' ')'
55///
56/// [GNU]  attribute-list:
57///          attrib
58///          attribute_list ',' attrib
59///
60/// [GNU]  attrib:
61///          empty
62///          attrib-name
63///          attrib-name '(' identifier ')'
64///          attrib-name '(' identifier ',' nonempty-expr-list ')'
65///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
66///
67/// [GNU]  attrib-name:
68///          identifier
69///          typespec
70///          typequal
71///          storageclass
72///
73/// FIXME: The GCC grammar/code for this construct implies we need two
74/// token lookahead. Comment from gcc: "If they start with an identifier
75/// which is followed by a comma or close parenthesis, then the arguments
76/// start with that identifier; otherwise they are an expression list."
77///
78/// At the moment, I am not doing 2 token lookahead. I am also unaware of
79/// any attributes that don't work (based on my limited testing). Most
80/// attributes are very simple in practice. Until we find a bug, I don't see
81/// a pressing need to implement the 2 token lookahead.
82
83AttributeList *Parser::ParseAttributes(SourceLocation *EndLoc) {
84  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
85
86  AttributeList *CurrAttr = 0;
87
88  while (Tok.is(tok::kw___attribute)) {
89    ConsumeToken();
90    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
91                         "attribute")) {
92      SkipUntil(tok::r_paren, true); // skip until ) or ;
93      return CurrAttr;
94    }
95    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
96      SkipUntil(tok::r_paren, true); // skip until ) or ;
97      return CurrAttr;
98    }
99    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
100    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
101           Tok.is(tok::comma)) {
102
103      if (Tok.is(tok::comma)) {
104        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
105        ConsumeToken();
106        continue;
107      }
108      // we have an identifier or declaration specifier (const, int, etc.)
109      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
110      SourceLocation AttrNameLoc = ConsumeToken();
111
112      // check if we have a "paramterized" attribute
113      if (Tok.is(tok::l_paren)) {
114        ConsumeParen(); // ignore the left paren loc for now
115
116        if (Tok.is(tok::identifier)) {
117          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
118          SourceLocation ParmLoc = ConsumeToken();
119
120          if (Tok.is(tok::r_paren)) {
121            // __attribute__(( mode(byte) ))
122            ConsumeParen(); // ignore the right paren loc for now
123            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
124                                         ParmName, ParmLoc, 0, 0, CurrAttr);
125          } else if (Tok.is(tok::comma)) {
126            ConsumeToken();
127            // __attribute__(( format(printf, 1, 2) ))
128            ExprVector ArgExprs(Actions);
129            bool ArgExprsOk = true;
130
131            // now parse the non-empty comma separated list of expressions
132            while (1) {
133              OwningExprResult ArgExpr(ParseAssignmentExpression());
134              if (ArgExpr.isInvalid()) {
135                ArgExprsOk = false;
136                SkipUntil(tok::r_paren);
137                break;
138              } else {
139                ArgExprs.push_back(ArgExpr.release());
140              }
141              if (Tok.isNot(tok::comma))
142                break;
143              ConsumeToken(); // Eat the comma, move to the next argument
144            }
145            if (ArgExprsOk && Tok.is(tok::r_paren)) {
146              ConsumeParen(); // ignore the right paren loc for now
147              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
148                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
149            }
150          }
151        } else { // not an identifier
152          switch (Tok.getKind()) {
153          case tok::r_paren:
154          // parse a possibly empty comma separated list of expressions
155            // __attribute__(( nonnull() ))
156            ConsumeParen(); // ignore the right paren loc for now
157            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
158                                         0, SourceLocation(), 0, 0, CurrAttr);
159            break;
160          case tok::kw_char:
161          case tok::kw_wchar_t:
162          case tok::kw_char16_t:
163          case tok::kw_char32_t:
164          case tok::kw_bool:
165          case tok::kw_short:
166          case tok::kw_int:
167          case tok::kw_long:
168          case tok::kw_signed:
169          case tok::kw_unsigned:
170          case tok::kw_float:
171          case tok::kw_double:
172          case tok::kw_void:
173          case tok::kw_typeof:
174            // If it's a builtin type name, eat it and expect a rparen
175            // __attribute__(( vec_type_hint(char) ))
176            ConsumeToken();
177            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
178                                         0, SourceLocation(), 0, 0, CurrAttr);
179            if (Tok.is(tok::r_paren))
180              ConsumeParen();
181            break;
182          default:
183            // __attribute__(( aligned(16) ))
184            ExprVector ArgExprs(Actions);
185            bool ArgExprsOk = true;
186
187            // now parse the list of expressions
188            while (1) {
189              OwningExprResult ArgExpr(ParseAssignmentExpression());
190              if (ArgExpr.isInvalid()) {
191                ArgExprsOk = false;
192                SkipUntil(tok::r_paren);
193                break;
194              } else {
195                ArgExprs.push_back(ArgExpr.release());
196              }
197              if (Tok.isNot(tok::comma))
198                break;
199              ConsumeToken(); // Eat the comma, move to the next argument
200            }
201            // Match the ')'.
202            if (ArgExprsOk && Tok.is(tok::r_paren)) {
203              ConsumeParen(); // ignore the right paren loc for now
204              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
205                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
206                           CurrAttr);
207            }
208            break;
209          }
210        }
211      } else {
212        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
213                                     0, SourceLocation(), 0, 0, CurrAttr);
214      }
215    }
216    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
217      SkipUntil(tok::r_paren, false);
218    SourceLocation Loc = Tok.getLocation();;
219    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen)) {
220      SkipUntil(tok::r_paren, false);
221    }
222    if (EndLoc)
223      *EndLoc = Loc;
224  }
225  return CurrAttr;
226}
227
228/// ParseMicrosoftDeclSpec - Parse an __declspec construct
229///
230/// [MS] decl-specifier:
231///             __declspec ( extended-decl-modifier-seq )
232///
233/// [MS] extended-decl-modifier-seq:
234///             extended-decl-modifier[opt]
235///             extended-decl-modifier extended-decl-modifier-seq
236
237AttributeList* Parser::ParseMicrosoftDeclSpec(AttributeList *CurrAttr) {
238  assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
239
240  ConsumeToken();
241  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
242                       "declspec")) {
243    SkipUntil(tok::r_paren, true); // skip until ) or ;
244    return CurrAttr;
245  }
246  while (Tok.getIdentifierInfo()) {
247    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
248    SourceLocation AttrNameLoc = ConsumeToken();
249    if (Tok.is(tok::l_paren)) {
250      ConsumeParen();
251      // FIXME: This doesn't parse __declspec(property(get=get_func_name))
252      // correctly.
253      OwningExprResult ArgExpr(ParseAssignmentExpression());
254      if (!ArgExpr.isInvalid()) {
255        ExprTy* ExprList = ArgExpr.take();
256        CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
257                                     SourceLocation(), &ExprList, 1,
258                                     CurrAttr, true);
259      }
260      if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
261        SkipUntil(tok::r_paren, false);
262    } else {
263      CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0, SourceLocation(),
264                                   0, 0, CurrAttr, true);
265    }
266  }
267  if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
268    SkipUntil(tok::r_paren, false);
269  return CurrAttr;
270}
271
272AttributeList* Parser::ParseMicrosoftTypeAttributes(AttributeList *CurrAttr) {
273  // Treat these like attributes
274  // FIXME: Allow Sema to distinguish between these and real attributes!
275  while (Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___stdcall) ||
276         Tok.is(tok::kw___cdecl)    || Tok.is(tok::kw___ptr64) ||
277         Tok.is(tok::kw___w64)) {
278    IdentifierInfo *AttrName = Tok.getIdentifierInfo();
279    SourceLocation AttrNameLoc = ConsumeToken();
280    if (Tok.is(tok::kw___ptr64) || Tok.is(tok::kw___w64))
281      // FIXME: Support these properly!
282      continue;
283    CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
284                                 SourceLocation(), 0, 0, CurrAttr, true);
285  }
286  return CurrAttr;
287}
288
289/// ParseDeclaration - Parse a full 'declaration', which consists of
290/// declaration-specifiers, some number of declarators, and a semicolon.
291/// 'Context' should be a Declarator::TheContext value.  This returns the
292/// location of the semicolon in DeclEnd.
293///
294///       declaration: [C99 6.7]
295///         block-declaration ->
296///           simple-declaration
297///           others                   [FIXME]
298/// [C++]   template-declaration
299/// [C++]   namespace-definition
300/// [C++]   using-directive
301/// [C++]   using-declaration
302/// [C++0x] static_assert-declaration
303///         others... [FIXME]
304///
305Parser::DeclGroupPtrTy Parser::ParseDeclaration(unsigned Context,
306                                                SourceLocation &DeclEnd) {
307  DeclPtrTy SingleDecl;
308  switch (Tok.getKind()) {
309  case tok::kw_template:
310  case tok::kw_export:
311    SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd);
312    break;
313  case tok::kw_namespace:
314    SingleDecl = ParseNamespace(Context, DeclEnd);
315    break;
316  case tok::kw_using:
317    SingleDecl = ParseUsingDirectiveOrDeclaration(Context, DeclEnd);
318    break;
319  case tok::kw_static_assert:
320    SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
321    break;
322  default:
323    return ParseSimpleDeclaration(Context, DeclEnd);
324  }
325
326  // This routine returns a DeclGroup, if the thing we parsed only contains a
327  // single decl, convert it now.
328  return Actions.ConvertDeclToDeclGroup(SingleDecl);
329}
330
331///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
332///         declaration-specifiers init-declarator-list[opt] ';'
333///[C90/C++]init-declarator-list ';'                             [TODO]
334/// [OMP]   threadprivate-directive                              [TODO]
335///
336/// If RequireSemi is false, this does not check for a ';' at the end of the
337/// declaration.
338Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(unsigned Context,
339                                                      SourceLocation &DeclEnd,
340                                                      bool RequireSemi) {
341  // Parse the common declaration-specifiers piece.
342  DeclSpec DS;
343  ParseDeclarationSpecifiers(DS);
344
345  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
346  // declaration-specifiers init-declarator-list[opt] ';'
347  if (Tok.is(tok::semi)) {
348    ConsumeToken();
349    DeclPtrTy TheDecl = Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
350    return Actions.ConvertDeclToDeclGroup(TheDecl);
351  }
352
353  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
354  ParseDeclarator(DeclaratorInfo);
355
356  DeclGroupPtrTy DG =
357    ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
358
359  DeclEnd = Tok.getLocation();
360
361  // If the client wants to check what comes after the declaration, just return
362  // immediately without checking anything!
363  if (!RequireSemi) return DG;
364
365  if (Tok.is(tok::semi)) {
366    ConsumeToken();
367    return DG;
368  }
369
370  Diag(Tok, diag::err_expected_semi_declaration);
371  // Skip to end of block or statement
372  SkipUntil(tok::r_brace, true, true);
373  if (Tok.is(tok::semi))
374    ConsumeToken();
375  return DG;
376}
377
378/// \brief Parse 'declaration' after parsing 'declaration-specifiers
379/// declarator'. This method parses the remainder of the declaration
380/// (including any attributes or initializer, among other things) and
381/// finalizes the declaration.
382///
383///       init-declarator: [C99 6.7]
384///         declarator
385///         declarator '=' initializer
386/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
387/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
388/// [C++]   declarator initializer[opt]
389///
390/// [C++] initializer:
391/// [C++]   '=' initializer-clause
392/// [C++]   '(' expression-list ')'
393/// [C++0x] '=' 'default'                                                [TODO]
394/// [C++0x] '=' 'delete'
395///
396/// According to the standard grammar, =default and =delete are function
397/// definitions, but that definitely doesn't fit with the parser here.
398///
399Parser::DeclPtrTy Parser::ParseDeclarationAfterDeclarator(Declarator &D,
400                                     const ParsedTemplateInfo &TemplateInfo) {
401  // If a simple-asm-expr is present, parse it.
402  if (Tok.is(tok::kw_asm)) {
403    SourceLocation Loc;
404    OwningExprResult AsmLabel(ParseSimpleAsm(&Loc));
405    if (AsmLabel.isInvalid()) {
406      SkipUntil(tok::semi, true, true);
407      return DeclPtrTy();
408    }
409
410    D.setAsmLabel(AsmLabel.release());
411    D.SetRangeEnd(Loc);
412  }
413
414  // If attributes are present, parse them.
415  if (Tok.is(tok::kw___attribute)) {
416    SourceLocation Loc;
417    AttributeList *AttrList = ParseAttributes(&Loc);
418    D.AddAttributes(AttrList, Loc);
419  }
420
421  // Inform the current actions module that we just parsed this declarator.
422  DeclPtrTy ThisDecl = TemplateInfo.TemplateParams?
423      Actions.ActOnTemplateDeclarator(CurScope,
424                             Action::MultiTemplateParamsArg(Actions,
425                                          TemplateInfo.TemplateParams->data(),
426                                          TemplateInfo.TemplateParams->size()),
427                                    D)
428    : Actions.ActOnDeclarator(CurScope, D);
429
430  // Parse declarator '=' initializer.
431  if (Tok.is(tok::equal)) {
432    ConsumeToken();
433    if (getLang().CPlusPlus0x && Tok.is(tok::kw_delete)) {
434      SourceLocation DelLoc = ConsumeToken();
435      Actions.SetDeclDeleted(ThisDecl, DelLoc);
436    } else {
437      if (getLang().CPlusPlus)
438        Actions.ActOnCXXEnterDeclInitializer(CurScope, ThisDecl);
439
440      OwningExprResult Init(ParseInitializer());
441
442      if (getLang().CPlusPlus)
443        Actions.ActOnCXXExitDeclInitializer(CurScope, ThisDecl);
444
445      if (Init.isInvalid()) {
446        SkipUntil(tok::semi, true, true);
447        return DeclPtrTy();
448      }
449      Actions.AddInitializerToDecl(ThisDecl, move(Init));
450    }
451  } else if (Tok.is(tok::l_paren)) {
452    // Parse C++ direct initializer: '(' expression-list ')'
453    SourceLocation LParenLoc = ConsumeParen();
454    ExprVector Exprs(Actions);
455    CommaLocsTy CommaLocs;
456
457    if (ParseExpressionList(Exprs, CommaLocs)) {
458      SkipUntil(tok::r_paren);
459    } else {
460      // Match the ')'.
461      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
462
463      assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
464             "Unexpected number of commas!");
465      Actions.AddCXXDirectInitializerToDecl(ThisDecl, LParenLoc,
466                                            move_arg(Exprs),
467                                            CommaLocs.data(), RParenLoc);
468    }
469  } else {
470    bool TypeContainsUndeducedAuto =
471      D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto;
472    Actions.ActOnUninitializedDecl(ThisDecl, TypeContainsUndeducedAuto);
473  }
474
475  return ThisDecl;
476}
477
478/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
479/// parsing 'declaration-specifiers declarator'.  This method is split out this
480/// way to handle the ambiguity between top-level function-definitions and
481/// declarations.
482///
483///       init-declarator-list: [C99 6.7]
484///         init-declarator
485///         init-declarator-list ',' init-declarator
486///
487/// According to the standard grammar, =default and =delete are function
488/// definitions, but that definitely doesn't fit with the parser here.
489///
490Parser::DeclGroupPtrTy Parser::
491ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
492  // Declarators may be grouped together ("int X, *Y, Z();"). Remember the decls
493  // that we parse together here.
494  llvm::SmallVector<DeclPtrTy, 8> DeclsInGroup;
495
496  // At this point, we know that it is not a function definition.  Parse the
497  // rest of the init-declarator-list.
498  while (1) {
499    DeclPtrTy ThisDecl = ParseDeclarationAfterDeclarator(D);
500    if (ThisDecl.get())
501      DeclsInGroup.push_back(ThisDecl);
502
503    // If we don't have a comma, it is either the end of the list (a ';') or an
504    // error, bail out.
505    if (Tok.isNot(tok::comma))
506      break;
507
508    // Consume the comma.
509    ConsumeToken();
510
511    // Parse the next declarator.
512    D.clear();
513
514    // Accept attributes in an init-declarator.  In the first declarator in a
515    // declaration, these would be part of the declspec.  In subsequent
516    // declarators, they become part of the declarator itself, so that they
517    // don't apply to declarators after *this* one.  Examples:
518    //    short __attribute__((common)) var;    -> declspec
519    //    short var __attribute__((common));    -> declarator
520    //    short x, __attribute__((common)) var;    -> declarator
521    if (Tok.is(tok::kw___attribute)) {
522      SourceLocation Loc;
523      AttributeList *AttrList = ParseAttributes(&Loc);
524      D.AddAttributes(AttrList, Loc);
525    }
526
527    ParseDeclarator(D);
528  }
529
530  return Actions.FinalizeDeclaratorGroup(CurScope, D.getDeclSpec(),
531                                         DeclsInGroup.data(),
532                                         DeclsInGroup.size());
533}
534
535/// ParseSpecifierQualifierList
536///        specifier-qualifier-list:
537///          type-specifier specifier-qualifier-list[opt]
538///          type-qualifier specifier-qualifier-list[opt]
539/// [GNU]    attributes     specifier-qualifier-list[opt]
540///
541void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
542  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
543  /// parse declaration-specifiers and complain about extra stuff.
544  ParseDeclarationSpecifiers(DS);
545
546  // Validate declspec for type-name.
547  unsigned Specs = DS.getParsedSpecifiers();
548  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers() &&
549      !DS.getAttributes())
550    Diag(Tok, diag::err_typename_requires_specqual);
551
552  // Issue diagnostic and remove storage class if present.
553  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
554    if (DS.getStorageClassSpecLoc().isValid())
555      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
556    else
557      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
558    DS.ClearStorageClassSpecs();
559  }
560
561  // Issue diagnostic and remove function specfier if present.
562  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
563    if (DS.isInlineSpecified())
564      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
565    if (DS.isVirtualSpecified())
566      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
567    if (DS.isExplicitSpecified())
568      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
569    DS.ClearFunctionSpecs();
570  }
571}
572
573/// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
574/// specified token is valid after the identifier in a declarator which
575/// immediately follows the declspec.  For example, these things are valid:
576///
577///      int x   [             4];         // direct-declarator
578///      int x   (             int y);     // direct-declarator
579///  int(int x   )                         // direct-declarator
580///      int x   ;                         // simple-declaration
581///      int x   =             17;         // init-declarator-list
582///      int x   ,             y;          // init-declarator-list
583///      int x   __asm__       ("foo");    // init-declarator-list
584///      int x   :             4;          // struct-declarator
585///      int x   {             5};         // C++'0x unified initializers
586///
587/// This is not, because 'x' does not immediately follow the declspec (though
588/// ')' happens to be valid anyway).
589///    int (x)
590///
591static bool isValidAfterIdentifierInDeclarator(const Token &T) {
592  return T.is(tok::l_square) || T.is(tok::l_paren) || T.is(tok::r_paren) ||
593         T.is(tok::semi) || T.is(tok::comma) || T.is(tok::equal) ||
594         T.is(tok::kw_asm) || T.is(tok::l_brace) || T.is(tok::colon);
595}
596
597
598/// ParseImplicitInt - This method is called when we have an non-typename
599/// identifier in a declspec (which normally terminates the decl spec) when
600/// the declspec has no type specifier.  In this case, the declspec is either
601/// malformed or is "implicit int" (in K&R and C89).
602///
603/// This method handles diagnosing this prettily and returns false if the
604/// declspec is done being processed.  If it recovers and thinks there may be
605/// other pieces of declspec after it, it returns true.
606///
607bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
608                              const ParsedTemplateInfo &TemplateInfo,
609                              AccessSpecifier AS) {
610  assert(Tok.is(tok::identifier) && "should have identifier");
611
612  SourceLocation Loc = Tok.getLocation();
613  // If we see an identifier that is not a type name, we normally would
614  // parse it as the identifer being declared.  However, when a typename
615  // is typo'd or the definition is not included, this will incorrectly
616  // parse the typename as the identifier name and fall over misparsing
617  // later parts of the diagnostic.
618  //
619  // As such, we try to do some look-ahead in cases where this would
620  // otherwise be an "implicit-int" case to see if this is invalid.  For
621  // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
622  // an identifier with implicit int, we'd get a parse error because the
623  // next token is obviously invalid for a type.  Parse these as a case
624  // with an invalid type specifier.
625  assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
626
627  // Since we know that this either implicit int (which is rare) or an
628  // error, we'd do lookahead to try to do better recovery.
629  if (isValidAfterIdentifierInDeclarator(NextToken())) {
630    // If this token is valid for implicit int, e.g. "static x = 4", then
631    // we just avoid eating the identifier, so it will be parsed as the
632    // identifier in the declarator.
633    return false;
634  }
635
636  // Otherwise, if we don't consume this token, we are going to emit an
637  // error anyway.  Try to recover from various common problems.  Check
638  // to see if this was a reference to a tag name without a tag specified.
639  // This is a common problem in C (saying 'foo' instead of 'struct foo').
640  //
641  // C++ doesn't need this, and isTagName doesn't take SS.
642  if (SS == 0) {
643    const char *TagName = 0;
644    tok::TokenKind TagKind = tok::unknown;
645
646    switch (Actions.isTagName(*Tok.getIdentifierInfo(), CurScope)) {
647      default: break;
648      case DeclSpec::TST_enum:  TagName="enum"  ;TagKind=tok::kw_enum  ;break;
649      case DeclSpec::TST_union: TagName="union" ;TagKind=tok::kw_union ;break;
650      case DeclSpec::TST_struct:TagName="struct";TagKind=tok::kw_struct;break;
651      case DeclSpec::TST_class: TagName="class" ;TagKind=tok::kw_class ;break;
652    }
653
654    if (TagName) {
655      Diag(Loc, diag::err_use_of_tag_name_without_tag)
656        << Tok.getIdentifierInfo() << TagName
657        << CodeModificationHint::CreateInsertion(Tok.getLocation(),TagName);
658
659      // Parse this as a tag as if the missing tag were present.
660      if (TagKind == tok::kw_enum)
661        ParseEnumSpecifier(Loc, DS, AS);
662      else
663        ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS);
664      return true;
665    }
666  }
667
668  // Since this is almost certainly an invalid type name, emit a
669  // diagnostic that says it, eat the token, and mark the declspec as
670  // invalid.
671  SourceRange R;
672  if (SS) R = SS->getRange();
673
674  Diag(Loc, diag::err_unknown_typename) << Tok.getIdentifierInfo() << R;
675  const char *PrevSpec;
676  unsigned DiagID;
677  DS.SetTypeSpecType(DeclSpec::TST_error, Loc, PrevSpec, DiagID);
678  DS.SetRangeEnd(Tok.getLocation());
679  ConsumeToken();
680
681  // TODO: Could inject an invalid typedef decl in an enclosing scope to
682  // avoid rippling error messages on subsequent uses of the same type,
683  // could be useful if #include was forgotten.
684  return false;
685}
686
687/// ParseDeclarationSpecifiers
688///       declaration-specifiers: [C99 6.7]
689///         storage-class-specifier declaration-specifiers[opt]
690///         type-specifier declaration-specifiers[opt]
691/// [C99]   function-specifier declaration-specifiers[opt]
692/// [GNU]   attributes declaration-specifiers[opt]
693///
694///       storage-class-specifier: [C99 6.7.1]
695///         'typedef'
696///         'extern'
697///         'static'
698///         'auto'
699///         'register'
700/// [C++]   'mutable'
701/// [GNU]   '__thread'
702///       function-specifier: [C99 6.7.4]
703/// [C99]   'inline'
704/// [C++]   'virtual'
705/// [C++]   'explicit'
706///       'friend': [C++ dcl.friend]
707
708///
709void Parser::ParseDeclarationSpecifiers(DeclSpec &DS,
710                                        const ParsedTemplateInfo &TemplateInfo,
711                                        AccessSpecifier AS,
712                                        DeclSpecContext DSContext) {
713  DS.SetRangeStart(Tok.getLocation());
714  while (1) {
715    bool isInvalid = false;
716    const char *PrevSpec = 0;
717    unsigned DiagID = 0;
718
719    SourceLocation Loc = Tok.getLocation();
720
721    switch (Tok.getKind()) {
722    default:
723    DoneWithDeclSpec:
724      // If this is not a declaration specifier token, we're done reading decl
725      // specifiers.  First verify that DeclSpec's are consistent.
726      DS.Finish(Diags, PP);
727      return;
728
729    case tok::coloncolon: // ::foo::bar
730      // Annotate C++ scope specifiers.  If we get one, loop.
731      if (TryAnnotateCXXScopeToken())
732        continue;
733      goto DoneWithDeclSpec;
734
735    case tok::annot_cxxscope: {
736      if (DS.hasTypeSpecifier())
737        goto DoneWithDeclSpec;
738
739      // We are looking for a qualified typename.
740      Token Next = NextToken();
741      if (Next.is(tok::annot_template_id) &&
742          static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
743            ->Kind == TNK_Type_template) {
744        // We have a qualified template-id, e.g., N::A<int>
745        CXXScopeSpec SS;
746        ParseOptionalCXXScopeSpecifier(SS);
747        assert(Tok.is(tok::annot_template_id) &&
748               "ParseOptionalCXXScopeSpecifier not working");
749        AnnotateTemplateIdTokenAsType(&SS);
750        continue;
751      }
752
753      if (Next.isNot(tok::identifier))
754        goto DoneWithDeclSpec;
755
756      CXXScopeSpec SS;
757      SS.setScopeRep(Tok.getAnnotationValue());
758      SS.setRange(Tok.getAnnotationRange());
759
760      // If the next token is the name of the class type that the C++ scope
761      // denotes, followed by a '(', then this is a constructor declaration.
762      // We're done with the decl-specifiers.
763      if (Actions.isCurrentClassName(*Next.getIdentifierInfo(),
764                                     CurScope, &SS) &&
765          GetLookAheadToken(2).is(tok::l_paren))
766        goto DoneWithDeclSpec;
767
768      TypeTy *TypeRep = Actions.getTypeName(*Next.getIdentifierInfo(),
769                                            Next.getLocation(), CurScope, &SS);
770
771      // If the referenced identifier is not a type, then this declspec is
772      // erroneous: We already checked about that it has no type specifier, and
773      // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
774      // typename.
775      if (TypeRep == 0) {
776        ConsumeToken();   // Eat the scope spec so the identifier is current.
777        if (ParseImplicitInt(DS, &SS, TemplateInfo, AS)) continue;
778        goto DoneWithDeclSpec;
779      }
780
781      ConsumeToken(); // The C++ scope.
782
783      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
784                                     DiagID, TypeRep);
785      if (isInvalid)
786        break;
787
788      DS.SetRangeEnd(Tok.getLocation());
789      ConsumeToken(); // The typename.
790
791      continue;
792    }
793
794    case tok::annot_typename: {
795      if (Tok.getAnnotationValue())
796        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
797                                       DiagID, Tok.getAnnotationValue());
798      else
799        DS.SetTypeSpecError();
800      DS.SetRangeEnd(Tok.getAnnotationEndLoc());
801      ConsumeToken(); // The typename
802
803      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
804      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
805      // Objective-C interface.  If we don't have Objective-C or a '<', this is
806      // just a normal reference to a typedef name.
807      if (!Tok.is(tok::less) || !getLang().ObjC1)
808        continue;
809
810      SourceLocation EndProtoLoc;
811      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
812      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
813      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
814
815      DS.SetRangeEnd(EndProtoLoc);
816      continue;
817    }
818
819      // typedef-name
820    case tok::identifier: {
821      // In C++, check to see if this is a scope specifier like foo::bar::, if
822      // so handle it as such.  This is important for ctor parsing.
823      if (getLang().CPlusPlus && TryAnnotateCXXScopeToken())
824        continue;
825
826      // This identifier can only be a typedef name if we haven't already seen
827      // a type-specifier.  Without this check we misparse:
828      //  typedef int X; struct Y { short X; };  as 'short int'.
829      if (DS.hasTypeSpecifier())
830        goto DoneWithDeclSpec;
831
832      // It has to be available as a typedef too!
833      TypeTy *TypeRep = Actions.getTypeName(*Tok.getIdentifierInfo(),
834                                            Tok.getLocation(), CurScope);
835
836      // If this is not a typedef name, don't parse it as part of the declspec,
837      // it must be an implicit int or an error.
838      if (TypeRep == 0) {
839        if (ParseImplicitInt(DS, 0, TemplateInfo, AS)) continue;
840        goto DoneWithDeclSpec;
841      }
842
843      // C++: If the identifier is actually the name of the class type
844      // being defined and the next token is a '(', then this is a
845      // constructor declaration. We're done with the decl-specifiers
846      // and will treat this token as an identifier.
847      if (getLang().CPlusPlus && CurScope->isClassScope() &&
848          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
849          NextToken().getKind() == tok::l_paren)
850        goto DoneWithDeclSpec;
851
852      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
853                                     DiagID, TypeRep);
854      if (isInvalid)
855        break;
856
857      DS.SetRangeEnd(Tok.getLocation());
858      ConsumeToken(); // The identifier
859
860      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
861      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
862      // Objective-C interface.  If we don't have Objective-C or a '<', this is
863      // just a normal reference to a typedef name.
864      if (!Tok.is(tok::less) || !getLang().ObjC1)
865        continue;
866
867      SourceLocation EndProtoLoc;
868      llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
869      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
870      DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
871
872      DS.SetRangeEnd(EndProtoLoc);
873
874      // Need to support trailing type qualifiers (e.g. "id<p> const").
875      // If a type specifier follows, it will be diagnosed elsewhere.
876      continue;
877    }
878
879      // type-name
880    case tok::annot_template_id: {
881      TemplateIdAnnotation *TemplateId
882        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
883      if (TemplateId->Kind != TNK_Type_template) {
884        // This template-id does not refer to a type name, so we're
885        // done with the type-specifiers.
886        goto DoneWithDeclSpec;
887      }
888
889      // Turn the template-id annotation token into a type annotation
890      // token, then try again to parse it as a type-specifier.
891      AnnotateTemplateIdTokenAsType();
892      continue;
893    }
894
895    // GNU attributes support.
896    case tok::kw___attribute:
897      DS.AddAttributes(ParseAttributes());
898      continue;
899
900    // Microsoft declspec support.
901    case tok::kw___declspec:
902      DS.AddAttributes(ParseMicrosoftDeclSpec());
903      continue;
904
905    // Microsoft single token adornments.
906    case tok::kw___forceinline:
907      // FIXME: Add handling here!
908      break;
909
910    case tok::kw___ptr64:
911    case tok::kw___w64:
912    case tok::kw___cdecl:
913    case tok::kw___stdcall:
914    case tok::kw___fastcall:
915      DS.AddAttributes(ParseMicrosoftTypeAttributes());
916      continue;
917
918    // storage-class-specifier
919    case tok::kw_typedef:
920      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec,
921                                         DiagID);
922      break;
923    case tok::kw_extern:
924      if (DS.isThreadSpecified())
925        Diag(Tok, diag::ext_thread_before) << "extern";
926      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec,
927                                         DiagID);
928      break;
929    case tok::kw___private_extern__:
930      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
931                                         PrevSpec, DiagID);
932      break;
933    case tok::kw_static:
934      if (DS.isThreadSpecified())
935        Diag(Tok, diag::ext_thread_before) << "static";
936      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec,
937                                         DiagID);
938      break;
939    case tok::kw_auto:
940      if (getLang().CPlusPlus0x)
941        isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
942                                       DiagID);
943      else
944        isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec,
945                                           DiagID);
946      break;
947    case tok::kw_register:
948      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec,
949                                         DiagID);
950      break;
951    case tok::kw_mutable:
952      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec,
953                                         DiagID);
954      break;
955    case tok::kw___thread:
956      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec, DiagID);
957      break;
958
959    // function-specifier
960    case tok::kw_inline:
961      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec, DiagID);
962      break;
963    case tok::kw_virtual:
964      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec, DiagID);
965      break;
966    case tok::kw_explicit:
967      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec, DiagID);
968      break;
969
970    // friend
971    case tok::kw_friend:
972      if (DSContext == DSC_class)
973        isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
974      else {
975        PrevSpec = ""; // not actually used by the diagnostic
976        DiagID = diag::err_friend_invalid_in_context;
977        isInvalid = true;
978      }
979      break;
980
981    // type-specifier
982    case tok::kw_short:
983      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec,
984                                      DiagID);
985      break;
986    case tok::kw_long:
987      if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
988        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
989                                        DiagID);
990      else
991        isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
992                                        DiagID);
993      break;
994    case tok::kw_signed:
995      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec,
996                                     DiagID);
997      break;
998    case tok::kw_unsigned:
999      isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1000                                     DiagID);
1001      break;
1002    case tok::kw__Complex:
1003      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1004                                        DiagID);
1005      break;
1006    case tok::kw__Imaginary:
1007      isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1008                                        DiagID);
1009      break;
1010    case tok::kw_void:
1011      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
1012                                     DiagID);
1013      break;
1014    case tok::kw_char:
1015      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
1016                                     DiagID);
1017      break;
1018    case tok::kw_int:
1019      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
1020                                     DiagID);
1021      break;
1022    case tok::kw_float:
1023      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
1024                                     DiagID);
1025      break;
1026    case tok::kw_double:
1027      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
1028                                     DiagID);
1029      break;
1030    case tok::kw_wchar_t:
1031      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
1032                                     DiagID);
1033      break;
1034    case tok::kw_char16_t:
1035      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
1036                                     DiagID);
1037      break;
1038    case tok::kw_char32_t:
1039      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
1040                                     DiagID);
1041      break;
1042    case tok::kw_bool:
1043    case tok::kw__Bool:
1044      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
1045                                     DiagID);
1046      break;
1047    case tok::kw__Decimal32:
1048      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1049                                     DiagID);
1050      break;
1051    case tok::kw__Decimal64:
1052      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1053                                     DiagID);
1054      break;
1055    case tok::kw__Decimal128:
1056      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1057                                     DiagID);
1058      break;
1059
1060    // class-specifier:
1061    case tok::kw_class:
1062    case tok::kw_struct:
1063    case tok::kw_union: {
1064      tok::TokenKind Kind = Tok.getKind();
1065      ConsumeToken();
1066      ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS);
1067      continue;
1068    }
1069
1070    // enum-specifier:
1071    case tok::kw_enum:
1072      ConsumeToken();
1073      ParseEnumSpecifier(Loc, DS, AS);
1074      continue;
1075
1076    // cv-qualifier:
1077    case tok::kw_const:
1078      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
1079                                 getLang());
1080      break;
1081    case tok::kw_volatile:
1082      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1083                                 getLang());
1084      break;
1085    case tok::kw_restrict:
1086      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1087                                 getLang());
1088      break;
1089
1090    // C++ typename-specifier:
1091    case tok::kw_typename:
1092      if (TryAnnotateTypeOrScopeToken())
1093        continue;
1094      break;
1095
1096    // GNU typeof support.
1097    case tok::kw_typeof:
1098      ParseTypeofSpecifier(DS);
1099      continue;
1100
1101    case tok::kw_decltype:
1102      ParseDecltypeSpecifier(DS);
1103      continue;
1104
1105    case tok::less:
1106      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
1107      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
1108      // but we support it.
1109      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
1110        goto DoneWithDeclSpec;
1111
1112      {
1113        SourceLocation EndProtoLoc;
1114        llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1115        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1116        DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
1117        DS.SetRangeEnd(EndProtoLoc);
1118
1119        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
1120          << CodeModificationHint::CreateInsertion(Loc, "id")
1121          << SourceRange(Loc, EndProtoLoc);
1122        // Need to support trailing type qualifiers (e.g. "id<p> const").
1123        // If a type specifier follows, it will be diagnosed elsewhere.
1124        continue;
1125      }
1126    }
1127    // If the specifier wasn't legal, issue a diagnostic.
1128    if (isInvalid) {
1129      assert(PrevSpec && "Method did not return previous specifier!");
1130      assert(DiagID);
1131      Diag(Tok, DiagID) << PrevSpec;
1132    }
1133    DS.SetRangeEnd(Tok.getLocation());
1134    ConsumeToken();
1135  }
1136}
1137
1138/// ParseOptionalTypeSpecifier - Try to parse a single type-specifier. We
1139/// primarily follow the C++ grammar with additions for C99 and GNU,
1140/// which together subsume the C grammar. Note that the C++
1141/// type-specifier also includes the C type-qualifier (for const,
1142/// volatile, and C99 restrict). Returns true if a type-specifier was
1143/// found (and parsed), false otherwise.
1144///
1145///       type-specifier: [C++ 7.1.5]
1146///         simple-type-specifier
1147///         class-specifier
1148///         enum-specifier
1149///         elaborated-type-specifier  [TODO]
1150///         cv-qualifier
1151///
1152///       cv-qualifier: [C++ 7.1.5.1]
1153///         'const'
1154///         'volatile'
1155/// [C99]   'restrict'
1156///
1157///       simple-type-specifier: [ C++ 7.1.5.2]
1158///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
1159///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
1160///         'char'
1161///         'wchar_t'
1162///         'bool'
1163///         'short'
1164///         'int'
1165///         'long'
1166///         'signed'
1167///         'unsigned'
1168///         'float'
1169///         'double'
1170///         'void'
1171/// [C99]   '_Bool'
1172/// [C99]   '_Complex'
1173/// [C99]   '_Imaginary'  // Removed in TC2?
1174/// [GNU]   '_Decimal32'
1175/// [GNU]   '_Decimal64'
1176/// [GNU]   '_Decimal128'
1177/// [GNU]   typeof-specifier
1178/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
1179/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
1180/// [C++0x] 'decltype' ( expression )
1181bool Parser::ParseOptionalTypeSpecifier(DeclSpec &DS, bool& isInvalid,
1182                                        const char *&PrevSpec,
1183                                        unsigned &DiagID,
1184                                      const ParsedTemplateInfo &TemplateInfo) {
1185  SourceLocation Loc = Tok.getLocation();
1186
1187  switch (Tok.getKind()) {
1188  case tok::identifier:   // foo::bar
1189  case tok::kw_typename:  // typename foo::bar
1190    // Annotate typenames and C++ scope specifiers.  If we get one, just
1191    // recurse to handle whatever we get.
1192    if (TryAnnotateTypeOrScopeToken())
1193      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1194                                        TemplateInfo);
1195    // Otherwise, not a type specifier.
1196    return false;
1197  case tok::coloncolon:   // ::foo::bar
1198    if (NextToken().is(tok::kw_new) ||    // ::new
1199        NextToken().is(tok::kw_delete))   // ::delete
1200      return false;
1201
1202    // Annotate typenames and C++ scope specifiers.  If we get one, just
1203    // recurse to handle whatever we get.
1204    if (TryAnnotateTypeOrScopeToken())
1205      return ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1206                                        TemplateInfo);
1207    // Otherwise, not a type specifier.
1208    return false;
1209
1210  // simple-type-specifier:
1211  case tok::annot_typename: {
1212    if (Tok.getAnnotationValue())
1213      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
1214                                     DiagID, Tok.getAnnotationValue());
1215    else
1216      DS.SetTypeSpecError();
1217    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1218    ConsumeToken(); // The typename
1219
1220    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1221    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1222    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1223    // just a normal reference to a typedef name.
1224    if (!Tok.is(tok::less) || !getLang().ObjC1)
1225      return true;
1226
1227    SourceLocation EndProtoLoc;
1228    llvm::SmallVector<DeclPtrTy, 8> ProtocolDecl;
1229    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
1230    DS.setProtocolQualifiers(ProtocolDecl.data(), ProtocolDecl.size());
1231
1232    DS.SetRangeEnd(EndProtoLoc);
1233    return true;
1234  }
1235
1236  case tok::kw_short:
1237    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1238    break;
1239  case tok::kw_long:
1240    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
1241      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec,
1242                                      DiagID);
1243    else
1244      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec,
1245                                      DiagID);
1246    break;
1247  case tok::kw_signed:
1248    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1249    break;
1250  case tok::kw_unsigned:
1251    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec,
1252                                   DiagID);
1253    break;
1254  case tok::kw__Complex:
1255    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
1256                                      DiagID);
1257    break;
1258  case tok::kw__Imaginary:
1259    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
1260                                      DiagID);
1261    break;
1262  case tok::kw_void:
1263    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1264    break;
1265  case tok::kw_char:
1266    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1267    break;
1268  case tok::kw_int:
1269    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1270    break;
1271  case tok::kw_float:
1272    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1273    break;
1274  case tok::kw_double:
1275    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1276    break;
1277  case tok::kw_wchar_t:
1278    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1279    break;
1280  case tok::kw_char16_t:
1281    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1282    break;
1283  case tok::kw_char32_t:
1284    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1285    break;
1286  case tok::kw_bool:
1287  case tok::kw__Bool:
1288    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1289    break;
1290  case tok::kw__Decimal32:
1291    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
1292                                   DiagID);
1293    break;
1294  case tok::kw__Decimal64:
1295    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
1296                                   DiagID);
1297    break;
1298  case tok::kw__Decimal128:
1299    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
1300                                   DiagID);
1301    break;
1302
1303  // class-specifier:
1304  case tok::kw_class:
1305  case tok::kw_struct:
1306  case tok::kw_union: {
1307    tok::TokenKind Kind = Tok.getKind();
1308    ConsumeToken();
1309    ParseClassSpecifier(Kind, Loc, DS, TemplateInfo);
1310    return true;
1311  }
1312
1313  // enum-specifier:
1314  case tok::kw_enum:
1315    ConsumeToken();
1316    ParseEnumSpecifier(Loc, DS);
1317    return true;
1318
1319  // cv-qualifier:
1320  case tok::kw_const:
1321    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1322                               DiagID, getLang());
1323    break;
1324  case tok::kw_volatile:
1325    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1326                               DiagID, getLang());
1327    break;
1328  case tok::kw_restrict:
1329    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1330                               DiagID, getLang());
1331    break;
1332
1333  // GNU typeof support.
1334  case tok::kw_typeof:
1335    ParseTypeofSpecifier(DS);
1336    return true;
1337
1338  // C++0x decltype support.
1339  case tok::kw_decltype:
1340    ParseDecltypeSpecifier(DS);
1341    return true;
1342
1343  // C++0x auto support.
1344  case tok::kw_auto:
1345    if (!getLang().CPlusPlus0x)
1346      return false;
1347
1348    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, DiagID);
1349    break;
1350  case tok::kw___ptr64:
1351  case tok::kw___w64:
1352  case tok::kw___cdecl:
1353  case tok::kw___stdcall:
1354  case tok::kw___fastcall:
1355    DS.AddAttributes(ParseMicrosoftTypeAttributes());
1356    return true;
1357
1358  default:
1359    // Not a type-specifier; do nothing.
1360    return false;
1361  }
1362
1363  // If the specifier combination wasn't legal, issue a diagnostic.
1364  if (isInvalid) {
1365    assert(PrevSpec && "Method did not return previous specifier!");
1366    // Pick between error or extwarn.
1367    Diag(Tok, DiagID) << PrevSpec;
1368  }
1369  DS.SetRangeEnd(Tok.getLocation());
1370  ConsumeToken(); // whatever we parsed above.
1371  return true;
1372}
1373
1374/// ParseStructDeclaration - Parse a struct declaration without the terminating
1375/// semicolon.
1376///
1377///       struct-declaration:
1378///         specifier-qualifier-list struct-declarator-list
1379/// [GNU]   __extension__ struct-declaration
1380/// [GNU]   specifier-qualifier-list
1381///       struct-declarator-list:
1382///         struct-declarator
1383///         struct-declarator-list ',' struct-declarator
1384/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
1385///       struct-declarator:
1386///         declarator
1387/// [GNU]   declarator attributes[opt]
1388///         declarator[opt] ':' constant-expression
1389/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
1390///
1391void Parser::
1392ParseStructDeclaration(DeclSpec &DS,
1393                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
1394  if (Tok.is(tok::kw___extension__)) {
1395    // __extension__ silences extension warnings in the subexpression.
1396    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1397    ConsumeToken();
1398    return ParseStructDeclaration(DS, Fields);
1399  }
1400
1401  // Parse the common specifier-qualifiers-list piece.
1402  SourceLocation DSStart = Tok.getLocation();
1403  ParseSpecifierQualifierList(DS);
1404
1405  // If there are no declarators, this is a free-standing declaration
1406  // specifier. Let the actions module cope with it.
1407  if (Tok.is(tok::semi)) {
1408    Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
1409    return;
1410  }
1411
1412  // Read struct-declarators until we find the semicolon.
1413  Fields.push_back(FieldDeclarator(DS));
1414  while (1) {
1415    FieldDeclarator &DeclaratorInfo = Fields.back();
1416
1417    /// struct-declarator: declarator
1418    /// struct-declarator: declarator[opt] ':' constant-expression
1419    if (Tok.isNot(tok::colon))
1420      ParseDeclarator(DeclaratorInfo.D);
1421
1422    if (Tok.is(tok::colon)) {
1423      ConsumeToken();
1424      OwningExprResult Res(ParseConstantExpression());
1425      if (Res.isInvalid())
1426        SkipUntil(tok::semi, true, true);
1427      else
1428        DeclaratorInfo.BitfieldSize = Res.release();
1429    }
1430
1431    // If attributes exist after the declarator, parse them.
1432    if (Tok.is(tok::kw___attribute)) {
1433      SourceLocation Loc;
1434      AttributeList *AttrList = ParseAttributes(&Loc);
1435      DeclaratorInfo.D.AddAttributes(AttrList, Loc);
1436    }
1437
1438    // If we don't have a comma, it is either the end of the list (a ';')
1439    // or an error, bail out.
1440    if (Tok.isNot(tok::comma))
1441      return;
1442
1443    // Consume the comma.
1444    ConsumeToken();
1445
1446    // Parse the next declarator.
1447    Fields.push_back(FieldDeclarator(DS));
1448
1449    // Attributes are only allowed on the second declarator.
1450    if (Tok.is(tok::kw___attribute)) {
1451      SourceLocation Loc;
1452      AttributeList *AttrList = ParseAttributes(&Loc);
1453      Fields.back().D.AddAttributes(AttrList, Loc);
1454    }
1455  }
1456}
1457
1458/// ParseStructUnionBody
1459///       struct-contents:
1460///         struct-declaration-list
1461/// [EXT]   empty
1462/// [GNU]   "struct-declaration-list" without terminatoring ';'
1463///       struct-declaration-list:
1464///         struct-declaration
1465///         struct-declaration-list struct-declaration
1466/// [OBC]   '@' 'defs' '(' class-name ')'
1467///
1468void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
1469                                  unsigned TagType, DeclPtrTy TagDecl) {
1470  PrettyStackTraceActionsDecl CrashInfo(TagDecl, RecordLoc, Actions,
1471                                        PP.getSourceManager(),
1472                                        "parsing struct/union body");
1473
1474  SourceLocation LBraceLoc = ConsumeBrace();
1475
1476  ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
1477  Actions.ActOnTagStartDefinition(CurScope, TagDecl);
1478
1479  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
1480  // C++.
1481  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1482    Diag(Tok, diag::ext_empty_struct_union_enum)
1483      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
1484
1485  llvm::SmallVector<DeclPtrTy, 32> FieldDecls;
1486  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
1487
1488  // While we still have something to read, read the declarations in the struct.
1489  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
1490    // Each iteration of this loop reads one struct-declaration.
1491
1492    // Check for extraneous top-level semicolon.
1493    if (Tok.is(tok::semi)) {
1494      Diag(Tok, diag::ext_extra_struct_semi)
1495        << CodeModificationHint::CreateRemoval(SourceRange(Tok.getLocation()));
1496      ConsumeToken();
1497      continue;
1498    }
1499
1500    // Parse all the comma separated declarators.
1501    DeclSpec DS;
1502    FieldDeclarators.clear();
1503    if (!Tok.is(tok::at)) {
1504      ParseStructDeclaration(DS, FieldDeclarators);
1505
1506      // Convert them all to fields.
1507      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
1508        FieldDeclarator &FD = FieldDeclarators[i];
1509        // Install the declarator into the current TagDecl.
1510        DeclPtrTy Field = Actions.ActOnField(CurScope, TagDecl,
1511                                             DS.getSourceRange().getBegin(),
1512                                             FD.D, FD.BitfieldSize);
1513        FieldDecls.push_back(Field);
1514      }
1515    } else { // Handle @defs
1516      ConsumeToken();
1517      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
1518        Diag(Tok, diag::err_unexpected_at);
1519        SkipUntil(tok::semi, true, true);
1520        continue;
1521      }
1522      ConsumeToken();
1523      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
1524      if (!Tok.is(tok::identifier)) {
1525        Diag(Tok, diag::err_expected_ident);
1526        SkipUntil(tok::semi, true, true);
1527        continue;
1528      }
1529      llvm::SmallVector<DeclPtrTy, 16> Fields;
1530      Actions.ActOnDefs(CurScope, TagDecl, Tok.getLocation(),
1531                        Tok.getIdentifierInfo(), Fields);
1532      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
1533      ConsumeToken();
1534      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
1535    }
1536
1537    if (Tok.is(tok::semi)) {
1538      ConsumeToken();
1539    } else if (Tok.is(tok::r_brace)) {
1540      Diag(Tok, diag::ext_expected_semi_decl_list);
1541      break;
1542    } else {
1543      Diag(Tok, diag::err_expected_semi_decl_list);
1544      // Skip to end of block or statement
1545      SkipUntil(tok::r_brace, true, true);
1546    }
1547  }
1548
1549  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1550
1551  AttributeList *AttrList = 0;
1552  // If attributes exist after struct contents, parse them.
1553  if (Tok.is(tok::kw___attribute))
1554    AttrList = ParseAttributes();
1555
1556  Actions.ActOnFields(CurScope,
1557                      RecordLoc, TagDecl, FieldDecls.data(), FieldDecls.size(),
1558                      LBraceLoc, RBraceLoc,
1559                      AttrList);
1560  StructScope.Exit();
1561  Actions.ActOnTagFinishDefinition(CurScope, TagDecl, RBraceLoc);
1562}
1563
1564
1565/// ParseEnumSpecifier
1566///       enum-specifier: [C99 6.7.2.2]
1567///         'enum' identifier[opt] '{' enumerator-list '}'
1568///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
1569/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
1570///                                                 '}' attributes[opt]
1571///         'enum' identifier
1572/// [GNU]   'enum' attributes[opt] identifier
1573///
1574/// [C++] elaborated-type-specifier:
1575/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
1576///
1577void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
1578                                AccessSpecifier AS) {
1579  // Parse the tag portion of this.
1580
1581  AttributeList *Attr = 0;
1582  // If attributes exist after tag, parse them.
1583  if (Tok.is(tok::kw___attribute))
1584    Attr = ParseAttributes();
1585
1586  CXXScopeSpec SS;
1587  if (getLang().CPlusPlus && ParseOptionalCXXScopeSpecifier(SS)) {
1588    if (Tok.isNot(tok::identifier)) {
1589      Diag(Tok, diag::err_expected_ident);
1590      if (Tok.isNot(tok::l_brace)) {
1591        // Has no name and is not a definition.
1592        // Skip the rest of this declarator, up until the comma or semicolon.
1593        SkipUntil(tok::comma, true);
1594        return;
1595      }
1596    }
1597  }
1598
1599  // Must have either 'enum name' or 'enum {...}'.
1600  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1601    Diag(Tok, diag::err_expected_ident_lbrace);
1602
1603    // Skip the rest of this declarator, up until the comma or semicolon.
1604    SkipUntil(tok::comma, true);
1605    return;
1606  }
1607
1608  // If an identifier is present, consume and remember it.
1609  IdentifierInfo *Name = 0;
1610  SourceLocation NameLoc;
1611  if (Tok.is(tok::identifier)) {
1612    Name = Tok.getIdentifierInfo();
1613    NameLoc = ConsumeToken();
1614  }
1615
1616  // There are three options here.  If we have 'enum foo;', then this is a
1617  // forward declaration.  If we have 'enum foo {...' then this is a
1618  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1619  //
1620  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1621  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1622  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1623  //
1624  Action::TagUseKind TUK;
1625  if (Tok.is(tok::l_brace))
1626    TUK = Action::TUK_Definition;
1627  else if (Tok.is(tok::semi))
1628    TUK = Action::TUK_Declaration;
1629  else
1630    TUK = Action::TUK_Reference;
1631  bool Owned = false;
1632  DeclPtrTy TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TUK,
1633                                       StartLoc, SS, Name, NameLoc, Attr, AS,
1634                                       Action::MultiTemplateParamsArg(Actions),
1635                                       Owned);
1636
1637  if (Tok.is(tok::l_brace))
1638    ParseEnumBody(StartLoc, TagDecl);
1639
1640  // TODO: semantic analysis on the declspec for enums.
1641  const char *PrevSpec = 0;
1642  unsigned DiagID;
1643  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, DiagID,
1644                         TagDecl.getAs<void>(), Owned))
1645    Diag(StartLoc, DiagID) << PrevSpec;
1646}
1647
1648/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1649///       enumerator-list:
1650///         enumerator
1651///         enumerator-list ',' enumerator
1652///       enumerator:
1653///         enumeration-constant
1654///         enumeration-constant '=' constant-expression
1655///       enumeration-constant:
1656///         identifier
1657///
1658void Parser::ParseEnumBody(SourceLocation StartLoc, DeclPtrTy EnumDecl) {
1659  // Enter the scope of the enum body and start the definition.
1660  ParseScope EnumScope(this, Scope::DeclScope);
1661  Actions.ActOnTagStartDefinition(CurScope, EnumDecl);
1662
1663  SourceLocation LBraceLoc = ConsumeBrace();
1664
1665  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1666  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1667    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1668
1669  llvm::SmallVector<DeclPtrTy, 32> EnumConstantDecls;
1670
1671  DeclPtrTy LastEnumConstDecl;
1672
1673  // Parse the enumerator-list.
1674  while (Tok.is(tok::identifier)) {
1675    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1676    SourceLocation IdentLoc = ConsumeToken();
1677
1678    SourceLocation EqualLoc;
1679    OwningExprResult AssignedVal(Actions);
1680    if (Tok.is(tok::equal)) {
1681      EqualLoc = ConsumeToken();
1682      AssignedVal = ParseConstantExpression();
1683      if (AssignedVal.isInvalid())
1684        SkipUntil(tok::comma, tok::r_brace, true, true);
1685    }
1686
1687    // Install the enumerator constant into EnumDecl.
1688    DeclPtrTy EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1689                                                        LastEnumConstDecl,
1690                                                        IdentLoc, Ident,
1691                                                        EqualLoc,
1692                                                        AssignedVal.release());
1693    EnumConstantDecls.push_back(EnumConstDecl);
1694    LastEnumConstDecl = EnumConstDecl;
1695
1696    if (Tok.isNot(tok::comma))
1697      break;
1698    SourceLocation CommaLoc = ConsumeToken();
1699
1700    if (Tok.isNot(tok::identifier) &&
1701        !(getLang().C99 || getLang().CPlusPlus0x))
1702      Diag(CommaLoc, diag::ext_enumerator_list_comma)
1703        << getLang().CPlusPlus
1704        << CodeModificationHint::CreateRemoval((SourceRange(CommaLoc)));
1705  }
1706
1707  // Eat the }.
1708  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1709
1710  AttributeList *Attr = 0;
1711  // If attributes exist after the identifier list, parse them.
1712  if (Tok.is(tok::kw___attribute))
1713    Attr = ParseAttributes();
1714
1715  Actions.ActOnEnumBody(StartLoc, LBraceLoc, RBraceLoc, EnumDecl,
1716                        EnumConstantDecls.data(), EnumConstantDecls.size(),
1717                        CurScope, Attr);
1718
1719  EnumScope.Exit();
1720  Actions.ActOnTagFinishDefinition(CurScope, EnumDecl, RBraceLoc);
1721}
1722
1723/// isTypeSpecifierQualifier - Return true if the current token could be the
1724/// start of a type-qualifier-list.
1725bool Parser::isTypeQualifier() const {
1726  switch (Tok.getKind()) {
1727  default: return false;
1728    // type-qualifier
1729  case tok::kw_const:
1730  case tok::kw_volatile:
1731  case tok::kw_restrict:
1732    return true;
1733  }
1734}
1735
1736/// isTypeSpecifierQualifier - Return true if the current token could be the
1737/// start of a specifier-qualifier-list.
1738bool Parser::isTypeSpecifierQualifier() {
1739  switch (Tok.getKind()) {
1740  default: return false;
1741
1742  case tok::identifier:   // foo::bar
1743  case tok::kw_typename:  // typename T::type
1744    // Annotate typenames and C++ scope specifiers.  If we get one, just
1745    // recurse to handle whatever we get.
1746    if (TryAnnotateTypeOrScopeToken())
1747      return isTypeSpecifierQualifier();
1748    // Otherwise, not a type specifier.
1749    return false;
1750
1751  case tok::coloncolon:   // ::foo::bar
1752    if (NextToken().is(tok::kw_new) ||    // ::new
1753        NextToken().is(tok::kw_delete))   // ::delete
1754      return false;
1755
1756    // Annotate typenames and C++ scope specifiers.  If we get one, just
1757    // recurse to handle whatever we get.
1758    if (TryAnnotateTypeOrScopeToken())
1759      return isTypeSpecifierQualifier();
1760    // Otherwise, not a type specifier.
1761    return false;
1762
1763    // GNU attributes support.
1764  case tok::kw___attribute:
1765    // GNU typeof support.
1766  case tok::kw_typeof:
1767
1768    // type-specifiers
1769  case tok::kw_short:
1770  case tok::kw_long:
1771  case tok::kw_signed:
1772  case tok::kw_unsigned:
1773  case tok::kw__Complex:
1774  case tok::kw__Imaginary:
1775  case tok::kw_void:
1776  case tok::kw_char:
1777  case tok::kw_wchar_t:
1778  case tok::kw_char16_t:
1779  case tok::kw_char32_t:
1780  case tok::kw_int:
1781  case tok::kw_float:
1782  case tok::kw_double:
1783  case tok::kw_bool:
1784  case tok::kw__Bool:
1785  case tok::kw__Decimal32:
1786  case tok::kw__Decimal64:
1787  case tok::kw__Decimal128:
1788
1789    // struct-or-union-specifier (C99) or class-specifier (C++)
1790  case tok::kw_class:
1791  case tok::kw_struct:
1792  case tok::kw_union:
1793    // enum-specifier
1794  case tok::kw_enum:
1795
1796    // type-qualifier
1797  case tok::kw_const:
1798  case tok::kw_volatile:
1799  case tok::kw_restrict:
1800
1801    // typedef-name
1802  case tok::annot_typename:
1803    return true;
1804
1805    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1806  case tok::less:
1807    return getLang().ObjC1;
1808
1809  case tok::kw___cdecl:
1810  case tok::kw___stdcall:
1811  case tok::kw___fastcall:
1812  case tok::kw___w64:
1813  case tok::kw___ptr64:
1814    return true;
1815  }
1816}
1817
1818/// isDeclarationSpecifier() - Return true if the current token is part of a
1819/// declaration specifier.
1820bool Parser::isDeclarationSpecifier() {
1821  switch (Tok.getKind()) {
1822  default: return false;
1823
1824  case tok::identifier:   // foo::bar
1825    // Unfortunate hack to support "Class.factoryMethod" notation.
1826    if (getLang().ObjC1 && NextToken().is(tok::period))
1827      return false;
1828    // Fall through
1829
1830  case tok::kw_typename: // typename T::type
1831    // Annotate typenames and C++ scope specifiers.  If we get one, just
1832    // recurse to handle whatever we get.
1833    if (TryAnnotateTypeOrScopeToken())
1834      return isDeclarationSpecifier();
1835    // Otherwise, not a declaration specifier.
1836    return false;
1837  case tok::coloncolon:   // ::foo::bar
1838    if (NextToken().is(tok::kw_new) ||    // ::new
1839        NextToken().is(tok::kw_delete))   // ::delete
1840      return false;
1841
1842    // Annotate typenames and C++ scope specifiers.  If we get one, just
1843    // recurse to handle whatever we get.
1844    if (TryAnnotateTypeOrScopeToken())
1845      return isDeclarationSpecifier();
1846    // Otherwise, not a declaration specifier.
1847    return false;
1848
1849    // storage-class-specifier
1850  case tok::kw_typedef:
1851  case tok::kw_extern:
1852  case tok::kw___private_extern__:
1853  case tok::kw_static:
1854  case tok::kw_auto:
1855  case tok::kw_register:
1856  case tok::kw___thread:
1857
1858    // type-specifiers
1859  case tok::kw_short:
1860  case tok::kw_long:
1861  case tok::kw_signed:
1862  case tok::kw_unsigned:
1863  case tok::kw__Complex:
1864  case tok::kw__Imaginary:
1865  case tok::kw_void:
1866  case tok::kw_char:
1867  case tok::kw_wchar_t:
1868  case tok::kw_char16_t:
1869  case tok::kw_char32_t:
1870
1871  case tok::kw_int:
1872  case tok::kw_float:
1873  case tok::kw_double:
1874  case tok::kw_bool:
1875  case tok::kw__Bool:
1876  case tok::kw__Decimal32:
1877  case tok::kw__Decimal64:
1878  case tok::kw__Decimal128:
1879
1880    // struct-or-union-specifier (C99) or class-specifier (C++)
1881  case tok::kw_class:
1882  case tok::kw_struct:
1883  case tok::kw_union:
1884    // enum-specifier
1885  case tok::kw_enum:
1886
1887    // type-qualifier
1888  case tok::kw_const:
1889  case tok::kw_volatile:
1890  case tok::kw_restrict:
1891
1892    // function-specifier
1893  case tok::kw_inline:
1894  case tok::kw_virtual:
1895  case tok::kw_explicit:
1896
1897    // typedef-name
1898  case tok::annot_typename:
1899
1900    // GNU typeof support.
1901  case tok::kw_typeof:
1902
1903    // GNU attributes.
1904  case tok::kw___attribute:
1905    return true;
1906
1907    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1908  case tok::less:
1909    return getLang().ObjC1;
1910
1911  case tok::kw___declspec:
1912  case tok::kw___cdecl:
1913  case tok::kw___stdcall:
1914  case tok::kw___fastcall:
1915  case tok::kw___w64:
1916  case tok::kw___ptr64:
1917  case tok::kw___forceinline:
1918    return true;
1919  }
1920}
1921
1922
1923/// ParseTypeQualifierListOpt
1924///       type-qualifier-list: [C99 6.7.5]
1925///         type-qualifier
1926/// [GNU]   attributes                        [ only if AttributesAllowed=true ]
1927///         type-qualifier-list type-qualifier
1928/// [GNU]   type-qualifier-list attributes    [ only if AttributesAllowed=true ]
1929///
1930void Parser::ParseTypeQualifierListOpt(DeclSpec &DS, bool AttributesAllowed) {
1931  while (1) {
1932    bool isInvalid = false;
1933    const char *PrevSpec = 0;
1934    unsigned DiagID = 0;
1935    SourceLocation Loc = Tok.getLocation();
1936
1937    switch (Tok.getKind()) {
1938    case tok::kw_const:
1939      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
1940                                 getLang());
1941      break;
1942    case tok::kw_volatile:
1943      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
1944                                 getLang());
1945      break;
1946    case tok::kw_restrict:
1947      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
1948                                 getLang());
1949      break;
1950    case tok::kw___w64:
1951    case tok::kw___ptr64:
1952    case tok::kw___cdecl:
1953    case tok::kw___stdcall:
1954    case tok::kw___fastcall:
1955      if (AttributesAllowed) {
1956        DS.AddAttributes(ParseMicrosoftTypeAttributes());
1957        continue;
1958      }
1959      goto DoneWithTypeQuals;
1960    case tok::kw___attribute:
1961      if (AttributesAllowed) {
1962        DS.AddAttributes(ParseAttributes());
1963        continue; // do *not* consume the next token!
1964      }
1965      // otherwise, FALL THROUGH!
1966    default:
1967      DoneWithTypeQuals:
1968      // If this is not a type-qualifier token, we're done reading type
1969      // qualifiers.  First verify that DeclSpec's are consistent.
1970      DS.Finish(Diags, PP);
1971      return;
1972    }
1973
1974    // If the specifier combination wasn't legal, issue a diagnostic.
1975    if (isInvalid) {
1976      assert(PrevSpec && "Method did not return previous specifier!");
1977      Diag(Tok, DiagID) << PrevSpec;
1978    }
1979    ConsumeToken();
1980  }
1981}
1982
1983
1984/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1985///
1986void Parser::ParseDeclarator(Declarator &D) {
1987  /// This implements the 'declarator' production in the C grammar, then checks
1988  /// for well-formedness and issues diagnostics.
1989  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1990}
1991
1992/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1993/// is parsed by the function passed to it. Pass null, and the direct-declarator
1994/// isn't parsed at all, making this function effectively parse the C++
1995/// ptr-operator production.
1996///
1997///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
1998/// [C]     pointer[opt] direct-declarator
1999/// [C++]   direct-declarator
2000/// [C++]   ptr-operator declarator
2001///
2002///       pointer: [C99 6.7.5]
2003///         '*' type-qualifier-list[opt]
2004///         '*' type-qualifier-list[opt] pointer
2005///
2006///       ptr-operator:
2007///         '*' cv-qualifier-seq[opt]
2008///         '&'
2009/// [C++0x] '&&'
2010/// [GNU]   '&' restrict[opt] attributes[opt]
2011/// [GNU?]  '&&' restrict[opt] attributes[opt]
2012///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
2013void Parser::ParseDeclaratorInternal(Declarator &D,
2014                                     DirectDeclParseFunction DirectDeclParser) {
2015
2016  // C++ member pointers start with a '::' or a nested-name.
2017  // Member pointers get special handling, since there's no place for the
2018  // scope spec in the generic path below.
2019  if (getLang().CPlusPlus &&
2020      (Tok.is(tok::coloncolon) || Tok.is(tok::identifier) ||
2021       Tok.is(tok::annot_cxxscope))) {
2022    CXXScopeSpec SS;
2023    if (ParseOptionalCXXScopeSpecifier(SS)) {
2024      if(Tok.isNot(tok::star)) {
2025        // The scope spec really belongs to the direct-declarator.
2026        D.getCXXScopeSpec() = SS;
2027        if (DirectDeclParser)
2028          (this->*DirectDeclParser)(D);
2029        return;
2030      }
2031
2032      SourceLocation Loc = ConsumeToken();
2033      D.SetRangeEnd(Loc);
2034      DeclSpec DS;
2035      ParseTypeQualifierListOpt(DS);
2036      D.ExtendWithDeclSpec(DS);
2037
2038      // Recurse to parse whatever is left.
2039      ParseDeclaratorInternal(D, DirectDeclParser);
2040
2041      // Sema will have to catch (syntactically invalid) pointers into global
2042      // scope. It has to catch pointers into namespace scope anyway.
2043      D.AddTypeInfo(DeclaratorChunk::getMemberPointer(SS,DS.getTypeQualifiers(),
2044                                                      Loc, DS.TakeAttributes()),
2045                    /* Don't replace range end. */SourceLocation());
2046      return;
2047    }
2048  }
2049
2050  tok::TokenKind Kind = Tok.getKind();
2051  // Not a pointer, C++ reference, or block.
2052  if (Kind != tok::star && Kind != tok::caret &&
2053      (Kind != tok::amp || !getLang().CPlusPlus) &&
2054      // We parse rvalue refs in C++03, because otherwise the errors are scary.
2055      (Kind != tok::ampamp || !getLang().CPlusPlus)) {
2056    if (DirectDeclParser)
2057      (this->*DirectDeclParser)(D);
2058    return;
2059  }
2060
2061  // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
2062  // '&&' -> rvalue reference
2063  SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
2064  D.SetRangeEnd(Loc);
2065
2066  if (Kind == tok::star || Kind == tok::caret) {
2067    // Is a pointer.
2068    DeclSpec DS;
2069
2070    ParseTypeQualifierListOpt(DS);
2071    D.ExtendWithDeclSpec(DS);
2072
2073    // Recursively parse the declarator.
2074    ParseDeclaratorInternal(D, DirectDeclParser);
2075    if (Kind == tok::star)
2076      // Remember that we parsed a pointer type, and remember the type-quals.
2077      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
2078                                                DS.TakeAttributes()),
2079                    SourceLocation());
2080    else
2081      // Remember that we parsed a Block type, and remember the type-quals.
2082      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
2083                                                     Loc, DS.TakeAttributes()),
2084                    SourceLocation());
2085  } else {
2086    // Is a reference
2087    DeclSpec DS;
2088
2089    // Complain about rvalue references in C++03, but then go on and build
2090    // the declarator.
2091    if (Kind == tok::ampamp && !getLang().CPlusPlus0x)
2092      Diag(Loc, diag::err_rvalue_reference);
2093
2094    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
2095    // cv-qualifiers are introduced through the use of a typedef or of a
2096    // template type argument, in which case the cv-qualifiers are ignored.
2097    //
2098    // [GNU] Retricted references are allowed.
2099    // [GNU] Attributes on references are allowed.
2100    ParseTypeQualifierListOpt(DS);
2101    D.ExtendWithDeclSpec(DS);
2102
2103    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
2104      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2105        Diag(DS.getConstSpecLoc(),
2106             diag::err_invalid_reference_qualifier_application) << "const";
2107      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2108        Diag(DS.getVolatileSpecLoc(),
2109             diag::err_invalid_reference_qualifier_application) << "volatile";
2110    }
2111
2112    // Recursively parse the declarator.
2113    ParseDeclaratorInternal(D, DirectDeclParser);
2114
2115    if (D.getNumTypeObjects() > 0) {
2116      // C++ [dcl.ref]p4: There shall be no references to references.
2117      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
2118      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
2119        if (const IdentifierInfo *II = D.getIdentifier())
2120          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2121           << II;
2122        else
2123          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
2124            << "type name";
2125
2126        // Once we've complained about the reference-to-reference, we
2127        // can go ahead and build the (technically ill-formed)
2128        // declarator: reference collapsing will take care of it.
2129      }
2130    }
2131
2132    // Remember that we parsed a reference type. It doesn't have type-quals.
2133    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
2134                                                DS.TakeAttributes(),
2135                                                Kind == tok::amp),
2136                  SourceLocation());
2137  }
2138}
2139
2140/// ParseDirectDeclarator
2141///       direct-declarator: [C99 6.7.5]
2142/// [C99]   identifier
2143///         '(' declarator ')'
2144/// [GNU]   '(' attributes declarator ')'
2145/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2146/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2147/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2148/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2149/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2150///         direct-declarator '(' parameter-type-list ')'
2151///         direct-declarator '(' identifier-list[opt] ')'
2152/// [GNU]   direct-declarator '(' parameter-forward-declarations
2153///                    parameter-type-list[opt] ')'
2154/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
2155///                    cv-qualifier-seq[opt] exception-specification[opt]
2156/// [C++]   declarator-id
2157///
2158///       declarator-id: [C++ 8]
2159///         id-expression
2160///         '::'[opt] nested-name-specifier[opt] type-name
2161///
2162///       id-expression: [C++ 5.1]
2163///         unqualified-id
2164///         qualified-id            [TODO]
2165///
2166///       unqualified-id: [C++ 5.1]
2167///         identifier
2168///         operator-function-id
2169///         conversion-function-id  [TODO]
2170///          '~' class-name
2171///         template-id
2172///
2173void Parser::ParseDirectDeclarator(Declarator &D) {
2174  DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
2175
2176  if (getLang().CPlusPlus) {
2177    if (D.mayHaveIdentifier()) {
2178      // ParseDeclaratorInternal might already have parsed the scope.
2179      bool afterCXXScope = D.getCXXScopeSpec().isSet() ||
2180        ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec());
2181      if (afterCXXScope) {
2182        // Change the declaration context for name lookup, until this function
2183        // is exited (and the declarator has been parsed).
2184        DeclScopeObj.EnterDeclaratorScope();
2185      }
2186
2187      if (Tok.is(tok::identifier)) {
2188        assert(Tok.getIdentifierInfo() && "Not an identifier?");
2189
2190        // If this identifier is the name of the current class, it's a
2191        // constructor name.
2192        if (!D.getDeclSpec().hasTypeSpecifier() &&
2193            Actions.isCurrentClassName(*Tok.getIdentifierInfo(),CurScope)) {
2194          CXXScopeSpec *SS = afterCXXScope? &D.getCXXScopeSpec() : 0;
2195          D.setConstructor(Actions.getTypeName(*Tok.getIdentifierInfo(),
2196                                               Tok.getLocation(), CurScope, SS),
2197                           Tok.getLocation());
2198        // This is a normal identifier.
2199        } else
2200          D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2201        ConsumeToken();
2202        goto PastIdentifier;
2203      } else if (Tok.is(tok::annot_template_id)) {
2204        TemplateIdAnnotation *TemplateId
2205          = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
2206
2207        // FIXME: Could this template-id name a constructor?
2208
2209        // FIXME: This is an egregious hack, where we silently ignore
2210        // the specialization (which should be a function template
2211        // specialization name) and use the name instead. This hack
2212        // will go away when we have support for function
2213        // specializations.
2214        D.SetIdentifier(TemplateId->Name, Tok.getLocation());
2215        TemplateId->Destroy();
2216        ConsumeToken();
2217        goto PastIdentifier;
2218      } else if (Tok.is(tok::kw_operator)) {
2219        SourceLocation OperatorLoc = Tok.getLocation();
2220        SourceLocation EndLoc;
2221
2222        // First try the name of an overloaded operator
2223        if (OverloadedOperatorKind Op = TryParseOperatorFunctionId(&EndLoc)) {
2224          D.setOverloadedOperator(Op, OperatorLoc, EndLoc);
2225        } else {
2226          // This must be a conversion function (C++ [class.conv.fct]).
2227          if (TypeTy *ConvType = ParseConversionFunctionId(&EndLoc))
2228            D.setConversionFunction(ConvType, OperatorLoc, EndLoc);
2229          else {
2230            D.SetIdentifier(0, Tok.getLocation());
2231          }
2232        }
2233        goto PastIdentifier;
2234      } else if (Tok.is(tok::tilde)) {
2235        // This should be a C++ destructor.
2236        SourceLocation TildeLoc = ConsumeToken();
2237        if (Tok.is(tok::identifier)) {
2238          // FIXME: Inaccurate.
2239          SourceLocation NameLoc = Tok.getLocation();
2240          SourceLocation EndLoc;
2241          CXXScopeSpec *SS = afterCXXScope? &D.getCXXScopeSpec() : 0;
2242          TypeResult Type = ParseClassName(EndLoc, SS, true);
2243          if (Type.isInvalid())
2244            D.SetIdentifier(0, TildeLoc);
2245          else
2246            D.setDestructor(Type.get(), TildeLoc, NameLoc);
2247        } else {
2248          Diag(Tok, diag::err_destructor_class_name);
2249          D.SetIdentifier(0, TildeLoc);
2250        }
2251        goto PastIdentifier;
2252      }
2253
2254      // If we reached this point, token is not identifier and not '~'.
2255
2256      if (afterCXXScope) {
2257        Diag(Tok, diag::err_expected_unqualified_id);
2258        D.SetIdentifier(0, Tok.getLocation());
2259        D.setInvalidType(true);
2260        goto PastIdentifier;
2261      }
2262    }
2263  }
2264
2265  // If we reached this point, we are either in C/ObjC or the token didn't
2266  // satisfy any of the C++-specific checks.
2267  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
2268    assert(!getLang().CPlusPlus &&
2269           "There's a C++-specific check for tok::identifier above");
2270    assert(Tok.getIdentifierInfo() && "Not an identifier?");
2271    D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
2272    ConsumeToken();
2273  } else if (Tok.is(tok::l_paren)) {
2274    // direct-declarator: '(' declarator ')'
2275    // direct-declarator: '(' attributes declarator ')'
2276    // Example: 'char (*X)'   or 'int (*XX)(void)'
2277    ParseParenDeclarator(D);
2278  } else if (D.mayOmitIdentifier()) {
2279    // This could be something simple like "int" (in which case the declarator
2280    // portion is empty), if an abstract-declarator is allowed.
2281    D.SetIdentifier(0, Tok.getLocation());
2282  } else {
2283    if (D.getContext() == Declarator::MemberContext)
2284      Diag(Tok, diag::err_expected_member_name_or_semi)
2285        << D.getDeclSpec().getSourceRange();
2286    else if (getLang().CPlusPlus)
2287      Diag(Tok, diag::err_expected_unqualified_id);
2288    else
2289      Diag(Tok, diag::err_expected_ident_lparen);
2290    D.SetIdentifier(0, Tok.getLocation());
2291    D.setInvalidType(true);
2292  }
2293
2294 PastIdentifier:
2295  assert(D.isPastIdentifier() &&
2296         "Haven't past the location of the identifier yet?");
2297
2298  while (1) {
2299    if (Tok.is(tok::l_paren)) {
2300      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
2301      // In such a case, check if we actually have a function declarator; if it
2302      // is not, the declarator has been fully parsed.
2303      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
2304        // When not in file scope, warn for ambiguous function declarators, just
2305        // in case the author intended it as a variable definition.
2306        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
2307        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
2308          break;
2309      }
2310      ParseFunctionDeclarator(ConsumeParen(), D);
2311    } else if (Tok.is(tok::l_square)) {
2312      ParseBracketDeclarator(D);
2313    } else {
2314      break;
2315    }
2316  }
2317}
2318
2319/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
2320/// only called before the identifier, so these are most likely just grouping
2321/// parens for precedence.  If we find that these are actually function
2322/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
2323///
2324///       direct-declarator:
2325///         '(' declarator ')'
2326/// [GNU]   '(' attributes declarator ')'
2327///         direct-declarator '(' parameter-type-list ')'
2328///         direct-declarator '(' identifier-list[opt] ')'
2329/// [GNU]   direct-declarator '(' parameter-forward-declarations
2330///                    parameter-type-list[opt] ')'
2331///
2332void Parser::ParseParenDeclarator(Declarator &D) {
2333  SourceLocation StartLoc = ConsumeParen();
2334  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
2335
2336  // Eat any attributes before we look at whether this is a grouping or function
2337  // declarator paren.  If this is a grouping paren, the attribute applies to
2338  // the type being built up, for example:
2339  //     int (__attribute__(()) *x)(long y)
2340  // If this ends up not being a grouping paren, the attribute applies to the
2341  // first argument, for example:
2342  //     int (__attribute__(()) int x)
2343  // In either case, we need to eat any attributes to be able to determine what
2344  // sort of paren this is.
2345  //
2346  AttributeList *AttrList = 0;
2347  bool RequiresArg = false;
2348  if (Tok.is(tok::kw___attribute)) {
2349    AttrList = ParseAttributes();
2350
2351    // We require that the argument list (if this is a non-grouping paren) be
2352    // present even if the attribute list was empty.
2353    RequiresArg = true;
2354  }
2355  // Eat any Microsoft extensions.
2356  if  (Tok.is(tok::kw___cdecl) || Tok.is(tok::kw___stdcall) ||
2357       Tok.is(tok::kw___fastcall) || Tok.is(tok::kw___w64) ||
2358       Tok.is(tok::kw___ptr64)) {
2359    AttrList = ParseMicrosoftTypeAttributes(AttrList);
2360  }
2361
2362  // If we haven't past the identifier yet (or where the identifier would be
2363  // stored, if this is an abstract declarator), then this is probably just
2364  // grouping parens. However, if this could be an abstract-declarator, then
2365  // this could also be the start of function arguments (consider 'void()').
2366  bool isGrouping;
2367
2368  if (!D.mayOmitIdentifier()) {
2369    // If this can't be an abstract-declarator, this *must* be a grouping
2370    // paren, because we haven't seen the identifier yet.
2371    isGrouping = true;
2372  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
2373             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
2374             isDeclarationSpecifier()) {       // 'int(int)' is a function.
2375    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
2376    // considered to be a type, not a K&R identifier-list.
2377    isGrouping = false;
2378  } else {
2379    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
2380    isGrouping = true;
2381  }
2382
2383  // If this is a grouping paren, handle:
2384  // direct-declarator: '(' declarator ')'
2385  // direct-declarator: '(' attributes declarator ')'
2386  if (isGrouping) {
2387    bool hadGroupingParens = D.hasGroupingParens();
2388    D.setGroupingParens(true);
2389    if (AttrList)
2390      D.AddAttributes(AttrList, SourceLocation());
2391
2392    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
2393    // Match the ')'.
2394    SourceLocation Loc = MatchRHSPunctuation(tok::r_paren, StartLoc);
2395
2396    D.setGroupingParens(hadGroupingParens);
2397    D.SetRangeEnd(Loc);
2398    return;
2399  }
2400
2401  // Okay, if this wasn't a grouping paren, it must be the start of a function
2402  // argument list.  Recognize that this declarator will never have an
2403  // identifier (and remember where it would have been), then call into
2404  // ParseFunctionDeclarator to handle of argument list.
2405  D.SetIdentifier(0, Tok.getLocation());
2406
2407  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
2408}
2409
2410/// ParseFunctionDeclarator - We are after the identifier and have parsed the
2411/// declarator D up to a paren, which indicates that we are parsing function
2412/// arguments.
2413///
2414/// If AttrList is non-null, then the caller parsed those arguments immediately
2415/// after the open paren - they should be considered to be the first argument of
2416/// a parameter.  If RequiresArg is true, then the first argument of the
2417/// function is required to be present and required to not be an identifier
2418/// list.
2419///
2420/// This method also handles this portion of the grammar:
2421///       parameter-type-list: [C99 6.7.5]
2422///         parameter-list
2423///         parameter-list ',' '...'
2424///
2425///       parameter-list: [C99 6.7.5]
2426///         parameter-declaration
2427///         parameter-list ',' parameter-declaration
2428///
2429///       parameter-declaration: [C99 6.7.5]
2430///         declaration-specifiers declarator
2431/// [C++]   declaration-specifiers declarator '=' assignment-expression
2432/// [GNU]   declaration-specifiers declarator attributes
2433///         declaration-specifiers abstract-declarator[opt]
2434/// [C++]   declaration-specifiers abstract-declarator[opt]
2435///           '=' assignment-expression
2436/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
2437///
2438/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
2439/// and "exception-specification[opt]".
2440///
2441void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
2442                                     AttributeList *AttrList,
2443                                     bool RequiresArg) {
2444  // lparen is already consumed!
2445  assert(D.isPastIdentifier() && "Should not call before identifier!");
2446
2447  // This parameter list may be empty.
2448  if (Tok.is(tok::r_paren)) {
2449    if (RequiresArg) {
2450      Diag(Tok, diag::err_argument_required_after_attribute);
2451      delete AttrList;
2452    }
2453
2454    SourceLocation RParenLoc = ConsumeParen();  // Eat the closing ')'.
2455    SourceLocation EndLoc = RParenLoc;
2456
2457    // cv-qualifier-seq[opt].
2458    DeclSpec DS;
2459    bool hasExceptionSpec = false;
2460    SourceLocation ThrowLoc;
2461    bool hasAnyExceptionSpec = false;
2462    llvm::SmallVector<TypeTy*, 2> Exceptions;
2463    llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2464    if (getLang().CPlusPlus) {
2465      ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2466      if (!DS.getSourceRange().getEnd().isInvalid())
2467        EndLoc = DS.getSourceRange().getEnd();
2468
2469      // Parse exception-specification[opt].
2470      if (Tok.is(tok::kw_throw)) {
2471        hasExceptionSpec = true;
2472        ThrowLoc = Tok.getLocation();
2473        ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
2474                                    hasAnyExceptionSpec);
2475        assert(Exceptions.size() == ExceptionRanges.size() &&
2476               "Produced different number of exception types and ranges.");
2477      }
2478    }
2479
2480    // Remember that we parsed a function type, and remember the attributes.
2481    // int() -> no prototype, no '...'.
2482    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
2483                                               /*variadic*/ false,
2484                                               SourceLocation(),
2485                                               /*arglist*/ 0, 0,
2486                                               DS.getTypeQualifiers(),
2487                                               hasExceptionSpec, ThrowLoc,
2488                                               hasAnyExceptionSpec,
2489                                               Exceptions.data(),
2490                                               ExceptionRanges.data(),
2491                                               Exceptions.size(),
2492                                               LParenLoc, RParenLoc, D),
2493                  EndLoc);
2494    return;
2495  }
2496
2497  // Alternatively, this parameter list may be an identifier list form for a
2498  // K&R-style function:  void foo(a,b,c)
2499  if (!getLang().CPlusPlus && Tok.is(tok::identifier)) {
2500    if (!TryAnnotateTypeOrScopeToken()) {
2501      // K&R identifier lists can't have typedefs as identifiers, per
2502      // C99 6.7.5.3p11.
2503      if (RequiresArg) {
2504        Diag(Tok, diag::err_argument_required_after_attribute);
2505        delete AttrList;
2506      }
2507      // Identifier list.  Note that '(' identifier-list ')' is only allowed for
2508      // normal declarators, not for abstract-declarators.
2509      return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
2510    }
2511  }
2512
2513  // Finally, a normal, non-empty parameter type list.
2514
2515  // Build up an array of information about the parsed arguments.
2516  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2517
2518  // Enter function-declaration scope, limiting any declarators to the
2519  // function prototype scope, including parameter declarators.
2520  ParseScope PrototypeScope(this,
2521                            Scope::FunctionPrototypeScope|Scope::DeclScope);
2522
2523  bool IsVariadic = false;
2524  SourceLocation EllipsisLoc;
2525  while (1) {
2526    if (Tok.is(tok::ellipsis)) {
2527      IsVariadic = true;
2528      EllipsisLoc = ConsumeToken();     // Consume the ellipsis.
2529      break;
2530    }
2531
2532    SourceLocation DSStart = Tok.getLocation();
2533
2534    // Parse the declaration-specifiers.
2535    DeclSpec DS;
2536
2537    // If the caller parsed attributes for the first argument, add them now.
2538    if (AttrList) {
2539      DS.AddAttributes(AttrList);
2540      AttrList = 0;  // Only apply the attributes to the first parameter.
2541    }
2542    ParseDeclarationSpecifiers(DS);
2543
2544    // Parse the declarator.  This is "PrototypeContext", because we must
2545    // accept either 'declarator' or 'abstract-declarator' here.
2546    Declarator ParmDecl(DS, Declarator::PrototypeContext);
2547    ParseDeclarator(ParmDecl);
2548
2549    // Parse GNU attributes, if present.
2550    if (Tok.is(tok::kw___attribute)) {
2551      SourceLocation Loc;
2552      AttributeList *AttrList = ParseAttributes(&Loc);
2553      ParmDecl.AddAttributes(AttrList, Loc);
2554    }
2555
2556    // Remember this parsed parameter in ParamInfo.
2557    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
2558
2559    // DefArgToks is used when the parsing of default arguments needs
2560    // to be delayed.
2561    CachedTokens *DefArgToks = 0;
2562
2563    // If no parameter was specified, verify that *something* was specified,
2564    // otherwise we have a missing type and identifier.
2565    if (DS.isEmpty() && ParmDecl.getIdentifier() == 0 &&
2566        ParmDecl.getNumTypeObjects() == 0) {
2567      // Completely missing, emit error.
2568      Diag(DSStart, diag::err_missing_param);
2569    } else {
2570      // Otherwise, we have something.  Add it and let semantic analysis try
2571      // to grok it and add the result to the ParamInfo we are building.
2572
2573      // Inform the actions module about the parameter declarator, so it gets
2574      // added to the current scope.
2575      DeclPtrTy Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
2576
2577      // Parse the default argument, if any. We parse the default
2578      // arguments in all dialects; the semantic analysis in
2579      // ActOnParamDefaultArgument will reject the default argument in
2580      // C.
2581      if (Tok.is(tok::equal)) {
2582        SourceLocation EqualLoc = Tok.getLocation();
2583
2584        // Parse the default argument
2585        if (D.getContext() == Declarator::MemberContext) {
2586          // If we're inside a class definition, cache the tokens
2587          // corresponding to the default argument. We'll actually parse
2588          // them when we see the end of the class definition.
2589          // FIXME: Templates will require something similar.
2590          // FIXME: Can we use a smart pointer for Toks?
2591          DefArgToks = new CachedTokens;
2592
2593          if (!ConsumeAndStoreUntil(tok::comma, tok::r_paren, *DefArgToks,
2594                                    tok::semi, false)) {
2595            delete DefArgToks;
2596            DefArgToks = 0;
2597            Actions.ActOnParamDefaultArgumentError(Param);
2598          } else
2599            Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
2600                                                (*DefArgToks)[1].getLocation());
2601        } else {
2602          // Consume the '='.
2603          ConsumeToken();
2604
2605          OwningExprResult DefArgResult(ParseAssignmentExpression());
2606          if (DefArgResult.isInvalid()) {
2607            Actions.ActOnParamDefaultArgumentError(Param);
2608            SkipUntil(tok::comma, tok::r_paren, true, true);
2609          } else {
2610            // Inform the actions module about the default argument
2611            Actions.ActOnParamDefaultArgument(Param, EqualLoc,
2612                                              move(DefArgResult));
2613          }
2614        }
2615      }
2616
2617      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2618                                          ParmDecl.getIdentifierLoc(), Param,
2619                                          DefArgToks));
2620    }
2621
2622    // If the next token is a comma, consume it and keep reading arguments.
2623    if (Tok.isNot(tok::comma)) break;
2624
2625    // Consume the comma.
2626    ConsumeToken();
2627  }
2628
2629  // Leave prototype scope.
2630  PrototypeScope.Exit();
2631
2632  // If we have the closing ')', eat it.
2633  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2634  SourceLocation EndLoc = RParenLoc;
2635
2636  DeclSpec DS;
2637  bool hasExceptionSpec = false;
2638  SourceLocation ThrowLoc;
2639  bool hasAnyExceptionSpec = false;
2640  llvm::SmallVector<TypeTy*, 2> Exceptions;
2641  llvm::SmallVector<SourceRange, 2> ExceptionRanges;
2642  if (getLang().CPlusPlus) {
2643    // Parse cv-qualifier-seq[opt].
2644    ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2645      if (!DS.getSourceRange().getEnd().isInvalid())
2646        EndLoc = DS.getSourceRange().getEnd();
2647
2648    // Parse exception-specification[opt].
2649    if (Tok.is(tok::kw_throw)) {
2650      hasExceptionSpec = true;
2651      ThrowLoc = Tok.getLocation();
2652      ParseExceptionSpecification(EndLoc, Exceptions, ExceptionRanges,
2653                                  hasAnyExceptionSpec);
2654      assert(Exceptions.size() == ExceptionRanges.size() &&
2655             "Produced different number of exception types and ranges.");
2656    }
2657  }
2658
2659  // Remember that we parsed a function type, and remember the attributes.
2660  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
2661                                             EllipsisLoc,
2662                                             ParamInfo.data(), ParamInfo.size(),
2663                                             DS.getTypeQualifiers(),
2664                                             hasExceptionSpec, ThrowLoc,
2665                                             hasAnyExceptionSpec,
2666                                             Exceptions.data(),
2667                                             ExceptionRanges.data(),
2668                                             Exceptions.size(),
2669                                             LParenLoc, RParenLoc, D),
2670                EndLoc);
2671}
2672
2673/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
2674/// we found a K&R-style identifier list instead of a type argument list.  The
2675/// current token is known to be the first identifier in the list.
2676///
2677///       identifier-list: [C99 6.7.5]
2678///         identifier
2679///         identifier-list ',' identifier
2680///
2681void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
2682                                                   Declarator &D) {
2683  // Build up an array of information about the parsed arguments.
2684  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
2685  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
2686
2687  // If there was no identifier specified for the declarator, either we are in
2688  // an abstract-declarator, or we are in a parameter declarator which was found
2689  // to be abstract.  In abstract-declarators, identifier lists are not valid:
2690  // diagnose this.
2691  if (!D.getIdentifier())
2692    Diag(Tok, diag::ext_ident_list_in_param);
2693
2694  // Tok is known to be the first identifier in the list.  Remember this
2695  // identifier in ParamInfo.
2696  ParamsSoFar.insert(Tok.getIdentifierInfo());
2697  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
2698                                                 Tok.getLocation(),
2699                                                 DeclPtrTy()));
2700
2701  ConsumeToken();  // eat the first identifier.
2702
2703  while (Tok.is(tok::comma)) {
2704    // Eat the comma.
2705    ConsumeToken();
2706
2707    // If this isn't an identifier, report the error and skip until ')'.
2708    if (Tok.isNot(tok::identifier)) {
2709      Diag(Tok, diag::err_expected_ident);
2710      SkipUntil(tok::r_paren);
2711      return;
2712    }
2713
2714    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
2715
2716    // Reject 'typedef int y; int test(x, y)', but continue parsing.
2717    if (Actions.getTypeName(*ParmII, Tok.getLocation(), CurScope))
2718      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
2719
2720    // Verify that the argument identifier has not already been mentioned.
2721    if (!ParamsSoFar.insert(ParmII)) {
2722      Diag(Tok, diag::err_param_redefinition) << ParmII;
2723    } else {
2724      // Remember this identifier in ParamInfo.
2725      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
2726                                                     Tok.getLocation(),
2727                                                     DeclPtrTy()));
2728    }
2729
2730    // Eat the identifier.
2731    ConsumeToken();
2732  }
2733
2734  // If we have the closing ')', eat it and we're done.
2735  SourceLocation RLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
2736
2737  // Remember that we parsed a function type, and remember the attributes.  This
2738  // function type is always a K&R style function type, which is not varargs and
2739  // has no prototype.
2740  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
2741                                             SourceLocation(),
2742                                             &ParamInfo[0], ParamInfo.size(),
2743                                             /*TypeQuals*/0,
2744                                             /*exception*/false,
2745                                             SourceLocation(), false, 0, 0, 0,
2746                                             LParenLoc, RLoc, D),
2747                RLoc);
2748}
2749
2750/// [C90]   direct-declarator '[' constant-expression[opt] ']'
2751/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
2752/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
2753/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
2754/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
2755void Parser::ParseBracketDeclarator(Declarator &D) {
2756  SourceLocation StartLoc = ConsumeBracket();
2757
2758  // C array syntax has many features, but by-far the most common is [] and [4].
2759  // This code does a fast path to handle some of the most obvious cases.
2760  if (Tok.getKind() == tok::r_square) {
2761    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2762    // Remember that we parsed the empty array type.
2763    OwningExprResult NumElements(Actions);
2764    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, 0,
2765                                            StartLoc, EndLoc),
2766                  EndLoc);
2767    return;
2768  } else if (Tok.getKind() == tok::numeric_constant &&
2769             GetLookAheadToken(1).is(tok::r_square)) {
2770    // [4] is very common.  Parse the numeric constant expression.
2771    OwningExprResult ExprRes(Actions.ActOnNumericConstant(Tok));
2772    ConsumeToken();
2773
2774    SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2775
2776    // If there was an error parsing the assignment-expression, recover.
2777    if (ExprRes.isInvalid())
2778      ExprRes.release();  // Deallocate expr, just use [].
2779
2780    // Remember that we parsed a array type, and remember its features.
2781    D.AddTypeInfo(DeclaratorChunk::getArray(0, false, 0, ExprRes.release(),
2782                                            StartLoc, EndLoc),
2783                  EndLoc);
2784    return;
2785  }
2786
2787  // If valid, this location is the position where we read the 'static' keyword.
2788  SourceLocation StaticLoc;
2789  if (Tok.is(tok::kw_static))
2790    StaticLoc = ConsumeToken();
2791
2792  // If there is a type-qualifier-list, read it now.
2793  // Type qualifiers in an array subscript are a C99 feature.
2794  DeclSpec DS;
2795  ParseTypeQualifierListOpt(DS, false /*no attributes*/);
2796
2797  // If we haven't already read 'static', check to see if there is one after the
2798  // type-qualifier-list.
2799  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
2800    StaticLoc = ConsumeToken();
2801
2802  // Handle "direct-declarator [ type-qual-list[opt] * ]".
2803  bool isStar = false;
2804  OwningExprResult NumElements(Actions);
2805
2806  // Handle the case where we have '[*]' as the array size.  However, a leading
2807  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
2808  // the the token after the star is a ']'.  Since stars in arrays are
2809  // infrequent, use of lookahead is not costly here.
2810  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
2811    ConsumeToken();  // Eat the '*'.
2812
2813    if (StaticLoc.isValid()) {
2814      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
2815      StaticLoc = SourceLocation();  // Drop the static.
2816    }
2817    isStar = true;
2818  } else if (Tok.isNot(tok::r_square)) {
2819    // Note, in C89, this production uses the constant-expr production instead
2820    // of assignment-expr.  The only difference is that assignment-expr allows
2821    // things like '=' and '*='.  Sema rejects these in C89 mode because they
2822    // are not i-c-e's, so we don't need to distinguish between the two here.
2823
2824    // Parse the constant-expression or assignment-expression now (depending
2825    // on dialect).
2826    if (getLang().CPlusPlus)
2827      NumElements = ParseConstantExpression();
2828    else
2829      NumElements = ParseAssignmentExpression();
2830  }
2831
2832  // If there was an error parsing the assignment-expression, recover.
2833  if (NumElements.isInvalid()) {
2834    D.setInvalidType(true);
2835    // If the expression was invalid, skip it.
2836    SkipUntil(tok::r_square);
2837    return;
2838  }
2839
2840  SourceLocation EndLoc = MatchRHSPunctuation(tok::r_square, StartLoc);
2841
2842  // Remember that we parsed a array type, and remember its features.
2843  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
2844                                          StaticLoc.isValid(), isStar,
2845                                          NumElements.release(),
2846                                          StartLoc, EndLoc),
2847                EndLoc);
2848}
2849
2850/// [GNU]   typeof-specifier:
2851///           typeof ( expressions )
2852///           typeof ( type-name )
2853/// [GNU/C++] typeof unary-expression
2854///
2855void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
2856  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
2857  Token OpTok = Tok;
2858  SourceLocation StartLoc = ConsumeToken();
2859
2860  bool isCastExpr;
2861  TypeTy *CastTy;
2862  SourceRange CastRange;
2863  OwningExprResult Operand = ParseExprAfterTypeofSizeofAlignof(OpTok,
2864                                                               isCastExpr,
2865                                                               CastTy,
2866                                                               CastRange);
2867
2868  if (CastRange.getEnd().isInvalid())
2869    // FIXME: Not accurate, the range gets one token more than it should.
2870    DS.SetRangeEnd(Tok.getLocation());
2871  else
2872    DS.SetRangeEnd(CastRange.getEnd());
2873
2874  if (isCastExpr) {
2875    if (!CastTy) {
2876      DS.SetTypeSpecError();
2877      return;
2878    }
2879
2880    const char *PrevSpec = 0;
2881    unsigned DiagID;
2882    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2883    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec,
2884                           DiagID, CastTy))
2885      Diag(StartLoc, DiagID) << PrevSpec;
2886    return;
2887  }
2888
2889  // If we get here, the operand to the typeof was an expresion.
2890  if (Operand.isInvalid()) {
2891    DS.SetTypeSpecError();
2892    return;
2893  }
2894
2895  const char *PrevSpec = 0;
2896  unsigned DiagID;
2897  // Check for duplicate type specifiers (e.g. "int typeof(int)").
2898  if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2899                         DiagID, Operand.release()))
2900    Diag(StartLoc, DiagID) << PrevSpec;
2901}
2902