ParseDecl.cpp revision ab4c91c708ca0c7d80f513af74926271e25b2f56
1//===--- ParseDecl.cpp - Declaration Parsing ------------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/Parser.h"
15#include "clang/Basic/Diagnostic.h"
16#include "clang/Parse/Scope.h"
17#include "ExtensionRAIIObject.h"
18#include "AstGuard.h"
19#include "llvm/ADT/SmallSet.h"
20using namespace clang;
21
22//===----------------------------------------------------------------------===//
23// C99 6.7: Declarations.
24//===----------------------------------------------------------------------===//
25
26/// ParseTypeName
27///       type-name: [C99 6.7.6]
28///         specifier-qualifier-list abstract-declarator[opt]
29///
30/// Called type-id in C++.
31/// CXXNewMode is a special flag used by the parser of C++ new-expressions. It
32/// is simply passed on to ActOnTypeName.
33Parser::TypeTy *Parser::ParseTypeName(bool CXXNewMode) {
34  // Parse the common declaration-specifiers piece.
35  DeclSpec DS;
36  ParseSpecifierQualifierList(DS);
37
38  // Parse the abstract-declarator, if present.
39  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
40  ParseDeclarator(DeclaratorInfo);
41
42  return Actions.ActOnTypeName(CurScope, DeclaratorInfo, CXXNewMode).Val;
43}
44
45/// ParseAttributes - Parse a non-empty attributes list.
46///
47/// [GNU] attributes:
48///         attribute
49///         attributes attribute
50///
51/// [GNU]  attribute:
52///          '__attribute__' '(' '(' attribute-list ')' ')'
53///
54/// [GNU]  attribute-list:
55///          attrib
56///          attribute_list ',' attrib
57///
58/// [GNU]  attrib:
59///          empty
60///          attrib-name
61///          attrib-name '(' identifier ')'
62///          attrib-name '(' identifier ',' nonempty-expr-list ')'
63///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
64///
65/// [GNU]  attrib-name:
66///          identifier
67///          typespec
68///          typequal
69///          storageclass
70///
71/// FIXME: The GCC grammar/code for this construct implies we need two
72/// token lookahead. Comment from gcc: "If they start with an identifier
73/// which is followed by a comma or close parenthesis, then the arguments
74/// start with that identifier; otherwise they are an expression list."
75///
76/// At the moment, I am not doing 2 token lookahead. I am also unaware of
77/// any attributes that don't work (based on my limited testing). Most
78/// attributes are very simple in practice. Until we find a bug, I don't see
79/// a pressing need to implement the 2 token lookahead.
80
81AttributeList *Parser::ParseAttributes() {
82  assert(Tok.is(tok::kw___attribute) && "Not an attribute list!");
83
84  AttributeList *CurrAttr = 0;
85
86  while (Tok.is(tok::kw___attribute)) {
87    ConsumeToken();
88    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
89                         "attribute")) {
90      SkipUntil(tok::r_paren, true); // skip until ) or ;
91      return CurrAttr;
92    }
93    if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
94      SkipUntil(tok::r_paren, true); // skip until ) or ;
95      return CurrAttr;
96    }
97    // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
98    while (Tok.is(tok::identifier) || isDeclarationSpecifier() ||
99           Tok.is(tok::comma)) {
100
101      if (Tok.is(tok::comma)) {
102        // allows for empty/non-empty attributes. ((__vector_size__(16),,,,))
103        ConsumeToken();
104        continue;
105      }
106      // we have an identifier or declaration specifier (const, int, etc.)
107      IdentifierInfo *AttrName = Tok.getIdentifierInfo();
108      SourceLocation AttrNameLoc = ConsumeToken();
109
110      // check if we have a "paramterized" attribute
111      if (Tok.is(tok::l_paren)) {
112        ConsumeParen(); // ignore the left paren loc for now
113
114        if (Tok.is(tok::identifier)) {
115          IdentifierInfo *ParmName = Tok.getIdentifierInfo();
116          SourceLocation ParmLoc = ConsumeToken();
117
118          if (Tok.is(tok::r_paren)) {
119            // __attribute__(( mode(byte) ))
120            ConsumeParen(); // ignore the right paren loc for now
121            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
122                                         ParmName, ParmLoc, 0, 0, CurrAttr);
123          } else if (Tok.is(tok::comma)) {
124            ConsumeToken();
125            // __attribute__(( format(printf, 1, 2) ))
126            ExprVector ArgExprs(Actions);
127            bool ArgExprsOk = true;
128
129            // now parse the non-empty comma separated list of expressions
130            while (1) {
131              ExprResult ArgExpr = ParseAssignmentExpression();
132              if (ArgExpr.isInvalid) {
133                ArgExprsOk = false;
134                SkipUntil(tok::r_paren);
135                break;
136              } else {
137                ArgExprs.push_back(ArgExpr.Val);
138              }
139              if (Tok.isNot(tok::comma))
140                break;
141              ConsumeToken(); // Eat the comma, move to the next argument
142            }
143            if (ArgExprsOk && Tok.is(tok::r_paren)) {
144              ConsumeParen(); // ignore the right paren loc for now
145              CurrAttr = new AttributeList(AttrName, AttrNameLoc, ParmName,
146                           ParmLoc, ArgExprs.take(), ArgExprs.size(), CurrAttr);
147            }
148          }
149        } else { // not an identifier
150          // parse a possibly empty comma separated list of expressions
151          if (Tok.is(tok::r_paren)) {
152            // __attribute__(( nonnull() ))
153            ConsumeParen(); // ignore the right paren loc for now
154            CurrAttr = new AttributeList(AttrName, AttrNameLoc,
155                                         0, SourceLocation(), 0, 0, CurrAttr);
156          } else {
157            // __attribute__(( aligned(16) ))
158            ExprVector ArgExprs(Actions);
159            bool ArgExprsOk = true;
160
161            // now parse the list of expressions
162            while (1) {
163              ExprResult ArgExpr = ParseAssignmentExpression();
164              if (ArgExpr.isInvalid) {
165                ArgExprsOk = false;
166                SkipUntil(tok::r_paren);
167                break;
168              } else {
169                ArgExprs.push_back(ArgExpr.Val);
170              }
171              if (Tok.isNot(tok::comma))
172                break;
173              ConsumeToken(); // Eat the comma, move to the next argument
174            }
175            // Match the ')'.
176            if (ArgExprsOk && Tok.is(tok::r_paren)) {
177              ConsumeParen(); // ignore the right paren loc for now
178              CurrAttr = new AttributeList(AttrName, AttrNameLoc, 0,
179                           SourceLocation(), ArgExprs.take(), ArgExprs.size(),
180                           CurrAttr);
181            }
182          }
183        }
184      } else {
185        CurrAttr = new AttributeList(AttrName, AttrNameLoc,
186                                     0, SourceLocation(), 0, 0, CurrAttr);
187      }
188    }
189    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
190      SkipUntil(tok::r_paren, false);
191    if (ExpectAndConsume(tok::r_paren, diag::err_expected_rparen))
192      SkipUntil(tok::r_paren, false);
193  }
194  return CurrAttr;
195}
196
197/// ParseDeclaration - Parse a full 'declaration', which consists of
198/// declaration-specifiers, some number of declarators, and a semicolon.
199/// 'Context' should be a Declarator::TheContext value.
200///
201///       declaration: [C99 6.7]
202///         block-declaration ->
203///           simple-declaration
204///           others                   [FIXME]
205/// [C++]   namespace-definition
206///         others... [FIXME]
207///
208Parser::DeclTy *Parser::ParseDeclaration(unsigned Context) {
209  switch (Tok.getKind()) {
210  case tok::kw_namespace:
211    return ParseNamespace(Context);
212  default:
213    return ParseSimpleDeclaration(Context);
214  }
215}
216
217///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
218///         declaration-specifiers init-declarator-list[opt] ';'
219///[C90/C++]init-declarator-list ';'                             [TODO]
220/// [OMP]   threadprivate-directive                              [TODO]
221Parser::DeclTy *Parser::ParseSimpleDeclaration(unsigned Context) {
222  // Parse the common declaration-specifiers piece.
223  DeclSpec DS;
224  ParseDeclarationSpecifiers(DS);
225
226  // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
227  // declaration-specifiers init-declarator-list[opt] ';'
228  if (Tok.is(tok::semi)) {
229    ConsumeToken();
230    return Actions.ParsedFreeStandingDeclSpec(CurScope, DS);
231  }
232
233  Declarator DeclaratorInfo(DS, (Declarator::TheContext)Context);
234  ParseDeclarator(DeclaratorInfo);
235
236  return ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
237}
238
239
240/// ParseInitDeclaratorListAfterFirstDeclarator - Parse 'declaration' after
241/// parsing 'declaration-specifiers declarator'.  This method is split out this
242/// way to handle the ambiguity between top-level function-definitions and
243/// declarations.
244///
245///       init-declarator-list: [C99 6.7]
246///         init-declarator
247///         init-declarator-list ',' init-declarator
248///       init-declarator: [C99 6.7]
249///         declarator
250///         declarator '=' initializer
251/// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
252/// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
253/// [C++]   declarator initializer[opt]
254///
255/// [C++] initializer:
256/// [C++]   '=' initializer-clause
257/// [C++]   '(' expression-list ')'
258///
259Parser::DeclTy *Parser::
260ParseInitDeclaratorListAfterFirstDeclarator(Declarator &D) {
261
262  // Declarators may be grouped together ("int X, *Y, Z();").  Provide info so
263  // that they can be chained properly if the actions want this.
264  Parser::DeclTy *LastDeclInGroup = 0;
265
266  // At this point, we know that it is not a function definition.  Parse the
267  // rest of the init-declarator-list.
268  while (1) {
269    // If a simple-asm-expr is present, parse it.
270    if (Tok.is(tok::kw_asm)) {
271      ExprResult AsmLabel = ParseSimpleAsm();
272      if (AsmLabel.isInvalid) {
273        SkipUntil(tok::semi);
274        return 0;
275      }
276
277      D.setAsmLabel(AsmLabel.Val);
278    }
279
280    // If attributes are present, parse them.
281    if (Tok.is(tok::kw___attribute))
282      D.AddAttributes(ParseAttributes());
283
284    // Inform the current actions module that we just parsed this declarator.
285    LastDeclInGroup = Actions.ActOnDeclarator(CurScope, D, LastDeclInGroup);
286
287    // Parse declarator '=' initializer.
288    if (Tok.is(tok::equal)) {
289      ConsumeToken();
290      ExprResult Init = ParseInitializer();
291      if (Init.isInvalid) {
292        SkipUntil(tok::semi);
293        return 0;
294      }
295      Actions.AddInitializerToDecl(LastDeclInGroup, Init.Val);
296    } else if (Tok.is(tok::l_paren)) {
297      // Parse C++ direct initializer: '(' expression-list ')'
298      SourceLocation LParenLoc = ConsumeParen();
299      ExprVector Exprs(Actions);
300      CommaLocsTy CommaLocs;
301
302      bool InvalidExpr = false;
303      if (ParseExpressionList(Exprs, CommaLocs)) {
304        SkipUntil(tok::r_paren);
305        InvalidExpr = true;
306      }
307      // Match the ')'.
308      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
309
310      if (!InvalidExpr) {
311        assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() &&
312               "Unexpected number of commas!");
313        Actions.AddCXXDirectInitializerToDecl(LastDeclInGroup, LParenLoc,
314                                              Exprs.take(), Exprs.size(),
315                                              &CommaLocs[0], RParenLoc);
316      }
317    } else {
318      Actions.ActOnUninitializedDecl(LastDeclInGroup);
319    }
320
321    // If we don't have a comma, it is either the end of the list (a ';') or an
322    // error, bail out.
323    if (Tok.isNot(tok::comma))
324      break;
325
326    // Consume the comma.
327    ConsumeToken();
328
329    // Parse the next declarator.
330    D.clear();
331
332    // Accept attributes in an init-declarator.  In the first declarator in a
333    // declaration, these would be part of the declspec.  In subsequent
334    // declarators, they become part of the declarator itself, so that they
335    // don't apply to declarators after *this* one.  Examples:
336    //    short __attribute__((common)) var;    -> declspec
337    //    short var __attribute__((common));    -> declarator
338    //    short x, __attribute__((common)) var;    -> declarator
339    if (Tok.is(tok::kw___attribute))
340      D.AddAttributes(ParseAttributes());
341
342    ParseDeclarator(D);
343  }
344
345  if (Tok.is(tok::semi)) {
346    ConsumeToken();
347    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
348  }
349  // If this is an ObjC2 for-each loop, this is a successful declarator
350  // parse.  The syntax for these looks like:
351  // 'for' '(' declaration 'in' expr ')' statement
352  if (D.getContext()  == Declarator::ForContext && isTokIdentifier_in()) {
353    return Actions.FinalizeDeclaratorGroup(CurScope, LastDeclInGroup);
354  }
355  Diag(Tok, diag::err_parse_error);
356  // Skip to end of block or statement
357  SkipUntil(tok::r_brace, true, true);
358  if (Tok.is(tok::semi))
359    ConsumeToken();
360  return 0;
361}
362
363/// ParseSpecifierQualifierList
364///        specifier-qualifier-list:
365///          type-specifier specifier-qualifier-list[opt]
366///          type-qualifier specifier-qualifier-list[opt]
367/// [GNU]    attributes     specifier-qualifier-list[opt]
368///
369void Parser::ParseSpecifierQualifierList(DeclSpec &DS) {
370  /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
371  /// parse declaration-specifiers and complain about extra stuff.
372  ParseDeclarationSpecifiers(DS);
373
374  // Validate declspec for type-name.
375  unsigned Specs = DS.getParsedSpecifiers();
376  if (Specs == DeclSpec::PQ_None && !DS.getNumProtocolQualifiers())
377    Diag(Tok, diag::err_typename_requires_specqual);
378
379  // Issue diagnostic and remove storage class if present.
380  if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
381    if (DS.getStorageClassSpecLoc().isValid())
382      Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
383    else
384      Diag(DS.getThreadSpecLoc(), diag::err_typename_invalid_storageclass);
385    DS.ClearStorageClassSpecs();
386  }
387
388  // Issue diagnostic and remove function specfier if present.
389  if (Specs & DeclSpec::PQ_FunctionSpecifier) {
390    if (DS.isInlineSpecified())
391      Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
392    if (DS.isVirtualSpecified())
393      Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
394    if (DS.isExplicitSpecified())
395      Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
396    DS.ClearFunctionSpecs();
397  }
398}
399
400/// ParseDeclarationSpecifiers
401///       declaration-specifiers: [C99 6.7]
402///         storage-class-specifier declaration-specifiers[opt]
403///         type-specifier declaration-specifiers[opt]
404/// [C99]   function-specifier declaration-specifiers[opt]
405/// [GNU]   attributes declaration-specifiers[opt]
406///
407///       storage-class-specifier: [C99 6.7.1]
408///         'typedef'
409///         'extern'
410///         'static'
411///         'auto'
412///         'register'
413/// [C++]   'mutable'
414/// [GNU]   '__thread'
415///       function-specifier: [C99 6.7.4]
416/// [C99]   'inline'
417/// [C++]   'virtual'
418/// [C++]   'explicit'
419///
420void Parser::ParseDeclarationSpecifiers(DeclSpec &DS) {
421  DS.SetRangeStart(Tok.getLocation());
422  while (1) {
423    int isInvalid = false;
424    const char *PrevSpec = 0;
425    SourceLocation Loc = Tok.getLocation();
426
427    // Only annotate C++ scope. Allow class-name as an identifier in case
428    // it's a constructor.
429    if (getLang().CPlusPlus)
430      TryAnnotateScopeToken();
431
432    switch (Tok.getKind()) {
433    default:
434      // Try to parse a type-specifier; if we found one, continue.
435      if (MaybeParseTypeSpecifier(DS, isInvalid, PrevSpec))
436        continue;
437
438    DoneWithDeclSpec:
439      // If this is not a declaration specifier token, we're done reading decl
440      // specifiers.  First verify that DeclSpec's are consistent.
441      DS.Finish(Diags, PP.getSourceManager(), getLang());
442      return;
443
444    case tok::annot_cxxscope: {
445      if (DS.hasTypeSpecifier())
446        goto DoneWithDeclSpec;
447
448      // We are looking for a qualified typename.
449      if (NextToken().isNot(tok::identifier))
450        goto DoneWithDeclSpec;
451
452      CXXScopeSpec SS;
453      SS.setScopeRep(Tok.getAnnotationValue());
454      SS.setRange(Tok.getAnnotationRange());
455
456      // If the next token is the name of the class type that the C++ scope
457      // denotes, followed by a '(', then this is a constructor declaration.
458      // We're done with the decl-specifiers.
459      if (Actions.isCurrentClassName(*NextToken().getIdentifierInfo(),
460                                     CurScope, &SS) &&
461          GetLookAheadToken(2).is(tok::l_paren))
462        goto DoneWithDeclSpec;
463
464      TypeTy *TypeRep = Actions.isTypeName(*NextToken().getIdentifierInfo(),
465                                           CurScope, &SS);
466      if (TypeRep == 0)
467        goto DoneWithDeclSpec;
468
469      ConsumeToken(); // The C++ scope.
470
471      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
472                                     TypeRep);
473      if (isInvalid)
474        break;
475
476      DS.SetRangeEnd(Tok.getLocation());
477      ConsumeToken(); // The typename.
478
479      continue;
480    }
481
482      // typedef-name
483    case tok::identifier: {
484      // This identifier can only be a typedef name if we haven't already seen
485      // a type-specifier.  Without this check we misparse:
486      //  typedef int X; struct Y { short X; };  as 'short int'.
487      if (DS.hasTypeSpecifier())
488        goto DoneWithDeclSpec;
489
490      // It has to be available as a typedef too!
491      TypeTy *TypeRep = Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope);
492      if (TypeRep == 0)
493        goto DoneWithDeclSpec;
494
495      // C++: If the identifier is actually the name of the class type
496      // being defined and the next token is a '(', then this is a
497      // constructor declaration. We're done with the decl-specifiers
498      // and will treat this token as an identifier.
499      if (getLang().CPlusPlus &&
500          CurScope->isCXXClassScope() &&
501          Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope) &&
502          NextToken().getKind() == tok::l_paren)
503        goto DoneWithDeclSpec;
504
505      isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
506                                     TypeRep);
507      if (isInvalid)
508        break;
509
510      DS.SetRangeEnd(Tok.getLocation());
511      ConsumeToken(); // The identifier
512
513      // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
514      // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
515      // Objective-C interface.  If we don't have Objective-C or a '<', this is
516      // just a normal reference to a typedef name.
517      if (!Tok.is(tok::less) || !getLang().ObjC1)
518        continue;
519
520      SourceLocation EndProtoLoc;
521      llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
522      ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
523      DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
524
525      DS.SetRangeEnd(EndProtoLoc);
526
527      // Need to support trailing type qualifiers (e.g. "id<p> const").
528      // If a type specifier follows, it will be diagnosed elsewhere.
529      continue;
530    }
531    // GNU attributes support.
532    case tok::kw___attribute:
533      DS.AddAttributes(ParseAttributes());
534      continue;
535
536    // storage-class-specifier
537    case tok::kw_typedef:
538      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_typedef, Loc, PrevSpec);
539      break;
540    case tok::kw_extern:
541      if (DS.isThreadSpecified())
542        Diag(Tok, diag::ext_thread_before) << "extern";
543      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_extern, Loc, PrevSpec);
544      break;
545    case tok::kw___private_extern__:
546      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_private_extern, Loc,
547                                         PrevSpec);
548      break;
549    case tok::kw_static:
550      if (DS.isThreadSpecified())
551        Diag(Tok, diag::ext_thread_before) << "static";
552      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_static, Loc, PrevSpec);
553      break;
554    case tok::kw_auto:
555      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_auto, Loc, PrevSpec);
556      break;
557    case tok::kw_register:
558      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_register, Loc, PrevSpec);
559      break;
560    case tok::kw_mutable:
561      isInvalid = DS.SetStorageClassSpec(DeclSpec::SCS_mutable, Loc, PrevSpec);
562      break;
563    case tok::kw___thread:
564      isInvalid = DS.SetStorageClassSpecThread(Loc, PrevSpec)*2;
565      break;
566
567      continue;
568
569    // function-specifier
570    case tok::kw_inline:
571      isInvalid = DS.SetFunctionSpecInline(Loc, PrevSpec);
572      break;
573
574    case tok::kw_virtual:
575      isInvalid = DS.SetFunctionSpecVirtual(Loc, PrevSpec);
576      break;
577
578    case tok::kw_explicit:
579      isInvalid = DS.SetFunctionSpecExplicit(Loc, PrevSpec);
580      break;
581
582    case tok::less:
583      // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
584      // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
585      // but we support it.
586      if (DS.hasTypeSpecifier() || !getLang().ObjC1)
587        goto DoneWithDeclSpec;
588
589      {
590        SourceLocation EndProtoLoc;
591        llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
592        ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
593        DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
594        DS.SetRangeEnd(EndProtoLoc);
595
596        Diag(Loc, diag::warn_objc_protocol_qualifier_missing_id)
597          << SourceRange(Loc, EndProtoLoc);
598        // Need to support trailing type qualifiers (e.g. "id<p> const").
599        // If a type specifier follows, it will be diagnosed elsewhere.
600        continue;
601      }
602    }
603    // If the specifier combination wasn't legal, issue a diagnostic.
604    if (isInvalid) {
605      assert(PrevSpec && "Method did not return previous specifier!");
606      // Pick between error or extwarn.
607      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
608                                       : diag::ext_duplicate_declspec;
609      Diag(Tok, DiagID) << PrevSpec;
610    }
611    DS.SetRangeEnd(Tok.getLocation());
612    ConsumeToken();
613  }
614}
615/// MaybeParseTypeSpecifier - Try to parse a single type-specifier. We
616/// primarily follow the C++ grammar with additions for C99 and GNU,
617/// which together subsume the C grammar. Note that the C++
618/// type-specifier also includes the C type-qualifier (for const,
619/// volatile, and C99 restrict). Returns true if a type-specifier was
620/// found (and parsed), false otherwise.
621///
622///       type-specifier: [C++ 7.1.5]
623///         simple-type-specifier
624///         class-specifier
625///         enum-specifier
626///         elaborated-type-specifier  [TODO]
627///         cv-qualifier
628///
629///       cv-qualifier: [C++ 7.1.5.1]
630///         'const'
631///         'volatile'
632/// [C99]   'restrict'
633///
634///       simple-type-specifier: [ C++ 7.1.5.2]
635///         '::'[opt] nested-name-specifier[opt] type-name [TODO]
636///         '::'[opt] nested-name-specifier 'template' template-id [TODO]
637///         'char'
638///         'wchar_t'
639///         'bool'
640///         'short'
641///         'int'
642///         'long'
643///         'signed'
644///         'unsigned'
645///         'float'
646///         'double'
647///         'void'
648/// [C99]   '_Bool'
649/// [C99]   '_Complex'
650/// [C99]   '_Imaginary'  // Removed in TC2?
651/// [GNU]   '_Decimal32'
652/// [GNU]   '_Decimal64'
653/// [GNU]   '_Decimal128'
654/// [GNU]   typeof-specifier
655/// [OBJC]  class-name objc-protocol-refs[opt]    [TODO]
656/// [OBJC]  typedef-name objc-protocol-refs[opt]  [TODO]
657bool Parser::MaybeParseTypeSpecifier(DeclSpec &DS, int& isInvalid,
658                                     const char *&PrevSpec) {
659  // Annotate typenames and C++ scope specifiers.
660  TryAnnotateTypeOrScopeToken();
661
662  SourceLocation Loc = Tok.getLocation();
663
664  switch (Tok.getKind()) {
665  // simple-type-specifier:
666  case tok::annot_qualtypename: {
667    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef, Loc, PrevSpec,
668                                   Tok.getAnnotationValue());
669    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
670    ConsumeToken(); // The typename
671
672    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
673    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
674    // Objective-C interface.  If we don't have Objective-C or a '<', this is
675    // just a normal reference to a typedef name.
676    if (!Tok.is(tok::less) || !getLang().ObjC1)
677      return true;
678
679    SourceLocation EndProtoLoc;
680    llvm::SmallVector<DeclTy *, 8> ProtocolDecl;
681    ParseObjCProtocolReferences(ProtocolDecl, false, EndProtoLoc);
682    DS.setProtocolQualifiers(&ProtocolDecl[0], ProtocolDecl.size());
683
684    DS.SetRangeEnd(EndProtoLoc);
685    return true;
686  }
687
688  case tok::kw_short:
689    isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec);
690    break;
691  case tok::kw_long:
692    if (DS.getTypeSpecWidth() != DeclSpec::TSW_long)
693      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec);
694    else
695      isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec);
696    break;
697  case tok::kw_signed:
698    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec);
699    break;
700  case tok::kw_unsigned:
701    isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec);
702    break;
703  case tok::kw__Complex:
704    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec);
705    break;
706  case tok::kw__Imaginary:
707    isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec);
708    break;
709  case tok::kw_void:
710    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec);
711    break;
712  case tok::kw_char:
713    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec);
714    break;
715  case tok::kw_int:
716    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec);
717    break;
718  case tok::kw_float:
719    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec);
720    break;
721  case tok::kw_double:
722    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec);
723    break;
724  case tok::kw_wchar_t:
725    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec);
726    break;
727  case tok::kw_bool:
728  case tok::kw__Bool:
729    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec);
730    break;
731  case tok::kw__Decimal32:
732    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec);
733    break;
734  case tok::kw__Decimal64:
735    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec);
736    break;
737  case tok::kw__Decimal128:
738    isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec);
739    break;
740
741  // class-specifier:
742  case tok::kw_class:
743  case tok::kw_struct:
744  case tok::kw_union:
745    ParseClassSpecifier(DS);
746    return true;
747
748  // enum-specifier:
749  case tok::kw_enum:
750    ParseEnumSpecifier(DS);
751    return true;
752
753  // cv-qualifier:
754  case tok::kw_const:
755    isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
756                               getLang())*2;
757    break;
758  case tok::kw_volatile:
759    isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
760                               getLang())*2;
761    break;
762  case tok::kw_restrict:
763    isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
764                               getLang())*2;
765    break;
766
767  // GNU typeof support.
768  case tok::kw_typeof:
769    ParseTypeofSpecifier(DS);
770    return true;
771
772  default:
773    // Not a type-specifier; do nothing.
774    return false;
775  }
776
777  // If the specifier combination wasn't legal, issue a diagnostic.
778  if (isInvalid) {
779    assert(PrevSpec && "Method did not return previous specifier!");
780    // Pick between error or extwarn.
781    unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
782                                     : diag::ext_duplicate_declspec;
783    Diag(Tok, DiagID) << PrevSpec;
784  }
785  DS.SetRangeEnd(Tok.getLocation());
786  ConsumeToken(); // whatever we parsed above.
787  return true;
788}
789
790/// ParseStructDeclaration - Parse a struct declaration without the terminating
791/// semicolon.
792///
793///       struct-declaration:
794///         specifier-qualifier-list struct-declarator-list
795/// [GNU]   __extension__ struct-declaration
796/// [GNU]   specifier-qualifier-list
797///       struct-declarator-list:
798///         struct-declarator
799///         struct-declarator-list ',' struct-declarator
800/// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
801///       struct-declarator:
802///         declarator
803/// [GNU]   declarator attributes[opt]
804///         declarator[opt] ':' constant-expression
805/// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
806///
807void Parser::
808ParseStructDeclaration(DeclSpec &DS,
809                       llvm::SmallVectorImpl<FieldDeclarator> &Fields) {
810  if (Tok.is(tok::kw___extension__)) {
811    // __extension__ silences extension warnings in the subexpression.
812    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
813    ConsumeToken();
814    return ParseStructDeclaration(DS, Fields);
815  }
816
817  // Parse the common specifier-qualifiers-list piece.
818  SourceLocation DSStart = Tok.getLocation();
819  ParseSpecifierQualifierList(DS);
820
821  // If there are no declarators, issue a warning.
822  if (Tok.is(tok::semi)) {
823    Diag(DSStart, diag::w_no_declarators);
824    return;
825  }
826
827  // Read struct-declarators until we find the semicolon.
828  Fields.push_back(FieldDeclarator(DS));
829  while (1) {
830    FieldDeclarator &DeclaratorInfo = Fields.back();
831
832    /// struct-declarator: declarator
833    /// struct-declarator: declarator[opt] ':' constant-expression
834    if (Tok.isNot(tok::colon))
835      ParseDeclarator(DeclaratorInfo.D);
836
837    if (Tok.is(tok::colon)) {
838      ConsumeToken();
839      ExprResult Res = ParseConstantExpression();
840      if (Res.isInvalid)
841        SkipUntil(tok::semi, true, true);
842      else
843        DeclaratorInfo.BitfieldSize = Res.Val;
844    }
845
846    // If attributes exist after the declarator, parse them.
847    if (Tok.is(tok::kw___attribute))
848      DeclaratorInfo.D.AddAttributes(ParseAttributes());
849
850    // If we don't have a comma, it is either the end of the list (a ';')
851    // or an error, bail out.
852    if (Tok.isNot(tok::comma))
853      return;
854
855    // Consume the comma.
856    ConsumeToken();
857
858    // Parse the next declarator.
859    Fields.push_back(FieldDeclarator(DS));
860
861    // Attributes are only allowed on the second declarator.
862    if (Tok.is(tok::kw___attribute))
863      Fields.back().D.AddAttributes(ParseAttributes());
864  }
865}
866
867/// ParseStructUnionBody
868///       struct-contents:
869///         struct-declaration-list
870/// [EXT]   empty
871/// [GNU]   "struct-declaration-list" without terminatoring ';'
872///       struct-declaration-list:
873///         struct-declaration
874///         struct-declaration-list struct-declaration
875/// [OBC]   '@' 'defs' '(' class-name ')'
876///
877void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
878                                  unsigned TagType, DeclTy *TagDecl) {
879  SourceLocation LBraceLoc = ConsumeBrace();
880
881  // Empty structs are an extension in C (C99 6.7.2.1p7), but are allowed in
882  // C++.
883  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
884    Diag(Tok, diag::ext_empty_struct_union_enum)
885      << DeclSpec::getSpecifierName((DeclSpec::TST)TagType);
886
887  llvm::SmallVector<DeclTy*, 32> FieldDecls;
888  llvm::SmallVector<FieldDeclarator, 8> FieldDeclarators;
889
890  // While we still have something to read, read the declarations in the struct.
891  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
892    // Each iteration of this loop reads one struct-declaration.
893
894    // Check for extraneous top-level semicolon.
895    if (Tok.is(tok::semi)) {
896      Diag(Tok, diag::ext_extra_struct_semi);
897      ConsumeToken();
898      continue;
899    }
900
901    // Parse all the comma separated declarators.
902    DeclSpec DS;
903    FieldDeclarators.clear();
904    if (!Tok.is(tok::at)) {
905      ParseStructDeclaration(DS, FieldDeclarators);
906
907      // Convert them all to fields.
908      for (unsigned i = 0, e = FieldDeclarators.size(); i != e; ++i) {
909        FieldDeclarator &FD = FieldDeclarators[i];
910        // Install the declarator into the current TagDecl.
911        DeclTy *Field = Actions.ActOnField(CurScope,
912                                           DS.getSourceRange().getBegin(),
913                                           FD.D, FD.BitfieldSize);
914        FieldDecls.push_back(Field);
915      }
916    } else { // Handle @defs
917      ConsumeToken();
918      if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
919        Diag(Tok, diag::err_unexpected_at);
920        SkipUntil(tok::semi, true, true);
921        continue;
922      }
923      ConsumeToken();
924      ExpectAndConsume(tok::l_paren, diag::err_expected_lparen);
925      if (!Tok.is(tok::identifier)) {
926        Diag(Tok, diag::err_expected_ident);
927        SkipUntil(tok::semi, true, true);
928        continue;
929      }
930      llvm::SmallVector<DeclTy*, 16> Fields;
931      Actions.ActOnDefs(CurScope, Tok.getLocation(), Tok.getIdentifierInfo(),
932          Fields);
933      FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end());
934      ConsumeToken();
935      ExpectAndConsume(tok::r_paren, diag::err_expected_rparen);
936    }
937
938    if (Tok.is(tok::semi)) {
939      ConsumeToken();
940    } else if (Tok.is(tok::r_brace)) {
941      Diag(Tok, diag::ext_expected_semi_decl_list);
942      break;
943    } else {
944      Diag(Tok, diag::err_expected_semi_decl_list);
945      // Skip to end of block or statement
946      SkipUntil(tok::r_brace, true, true);
947    }
948  }
949
950  SourceLocation RBraceLoc = MatchRHSPunctuation(tok::r_brace, LBraceLoc);
951
952  AttributeList *AttrList = 0;
953  // If attributes exist after struct contents, parse them.
954  if (Tok.is(tok::kw___attribute))
955    AttrList = ParseAttributes();
956
957  Actions.ActOnFields(CurScope,
958                      RecordLoc,TagDecl,&FieldDecls[0],FieldDecls.size(),
959                      LBraceLoc, RBraceLoc,
960                      AttrList);
961}
962
963
964/// ParseEnumSpecifier
965///       enum-specifier: [C99 6.7.2.2]
966///         'enum' identifier[opt] '{' enumerator-list '}'
967///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
968/// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
969///                                                 '}' attributes[opt]
970///         'enum' identifier
971/// [GNU]   'enum' attributes[opt] identifier
972///
973/// [C++] elaborated-type-specifier:
974/// [C++]   'enum' '::'[opt] nested-name-specifier[opt] identifier
975///
976void Parser::ParseEnumSpecifier(DeclSpec &DS) {
977  assert(Tok.is(tok::kw_enum) && "Not an enum specifier");
978  SourceLocation StartLoc = ConsumeToken();
979
980  // Parse the tag portion of this.
981
982  AttributeList *Attr = 0;
983  // If attributes exist after tag, parse them.
984  if (Tok.is(tok::kw___attribute))
985    Attr = ParseAttributes();
986
987  CXXScopeSpec SS;
988  if (isTokenCXXScopeSpecifier()) {
989    ParseCXXScopeSpecifier(SS);
990    if (Tok.isNot(tok::identifier)) {
991      Diag(Tok, diag::err_expected_ident);
992      if (Tok.isNot(tok::l_brace)) {
993        // Has no name and is not a definition.
994        // Skip the rest of this declarator, up until the comma or semicolon.
995        SkipUntil(tok::comma, true);
996        return;
997      }
998    }
999  }
1000
1001  // Must have either 'enum name' or 'enum {...}'.
1002  if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace)) {
1003    Diag(Tok, diag::err_expected_ident_lbrace);
1004
1005    // Skip the rest of this declarator, up until the comma or semicolon.
1006    SkipUntil(tok::comma, true);
1007    return;
1008  }
1009
1010  // If an identifier is present, consume and remember it.
1011  IdentifierInfo *Name = 0;
1012  SourceLocation NameLoc;
1013  if (Tok.is(tok::identifier)) {
1014    Name = Tok.getIdentifierInfo();
1015    NameLoc = ConsumeToken();
1016  }
1017
1018  // There are three options here.  If we have 'enum foo;', then this is a
1019  // forward declaration.  If we have 'enum foo {...' then this is a
1020  // definition. Otherwise we have something like 'enum foo xyz', a reference.
1021  //
1022  // This is needed to handle stuff like this right (C99 6.7.2.3p11):
1023  // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
1024  // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
1025  //
1026  Action::TagKind TK;
1027  if (Tok.is(tok::l_brace))
1028    TK = Action::TK_Definition;
1029  else if (Tok.is(tok::semi))
1030    TK = Action::TK_Declaration;
1031  else
1032    TK = Action::TK_Reference;
1033  DeclTy *TagDecl = Actions.ActOnTag(CurScope, DeclSpec::TST_enum, TK, StartLoc,
1034                                     SS, Name, NameLoc, Attr);
1035
1036  if (Tok.is(tok::l_brace))
1037    ParseEnumBody(StartLoc, TagDecl);
1038
1039  // TODO: semantic analysis on the declspec for enums.
1040  const char *PrevSpec = 0;
1041  if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, PrevSpec, TagDecl))
1042    Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1043}
1044
1045/// ParseEnumBody - Parse a {} enclosed enumerator-list.
1046///       enumerator-list:
1047///         enumerator
1048///         enumerator-list ',' enumerator
1049///       enumerator:
1050///         enumeration-constant
1051///         enumeration-constant '=' constant-expression
1052///       enumeration-constant:
1053///         identifier
1054///
1055void Parser::ParseEnumBody(SourceLocation StartLoc, DeclTy *EnumDecl) {
1056  SourceLocation LBraceLoc = ConsumeBrace();
1057
1058  // C does not allow an empty enumerator-list, C++ does [dcl.enum].
1059  if (Tok.is(tok::r_brace) && !getLang().CPlusPlus)
1060    Diag(Tok, diag::ext_empty_struct_union_enum) << "enum";
1061
1062  llvm::SmallVector<DeclTy*, 32> EnumConstantDecls;
1063
1064  DeclTy *LastEnumConstDecl = 0;
1065
1066  // Parse the enumerator-list.
1067  while (Tok.is(tok::identifier)) {
1068    IdentifierInfo *Ident = Tok.getIdentifierInfo();
1069    SourceLocation IdentLoc = ConsumeToken();
1070
1071    SourceLocation EqualLoc;
1072    ExprTy *AssignedVal = 0;
1073    if (Tok.is(tok::equal)) {
1074      EqualLoc = ConsumeToken();
1075      ExprResult Res = ParseConstantExpression();
1076      if (Res.isInvalid)
1077        SkipUntil(tok::comma, tok::r_brace, true, true);
1078      else
1079        AssignedVal = Res.Val;
1080    }
1081
1082    // Install the enumerator constant into EnumDecl.
1083    DeclTy *EnumConstDecl = Actions.ActOnEnumConstant(CurScope, EnumDecl,
1084                                                      LastEnumConstDecl,
1085                                                      IdentLoc, Ident,
1086                                                      EqualLoc, AssignedVal);
1087    EnumConstantDecls.push_back(EnumConstDecl);
1088    LastEnumConstDecl = EnumConstDecl;
1089
1090    if (Tok.isNot(tok::comma))
1091      break;
1092    SourceLocation CommaLoc = ConsumeToken();
1093
1094    if (Tok.isNot(tok::identifier) && !getLang().C99)
1095      Diag(CommaLoc, diag::ext_c99_enumerator_list_comma);
1096  }
1097
1098  // Eat the }.
1099  MatchRHSPunctuation(tok::r_brace, LBraceLoc);
1100
1101  Actions.ActOnEnumBody(StartLoc, EnumDecl, &EnumConstantDecls[0],
1102                        EnumConstantDecls.size());
1103
1104  DeclTy *AttrList = 0;
1105  // If attributes exist after the identifier list, parse them.
1106  if (Tok.is(tok::kw___attribute))
1107    AttrList = ParseAttributes(); // FIXME: where do they do?
1108}
1109
1110/// isTypeSpecifierQualifier - Return true if the current token could be the
1111/// start of a type-qualifier-list.
1112bool Parser::isTypeQualifier() const {
1113  switch (Tok.getKind()) {
1114  default: return false;
1115    // type-qualifier
1116  case tok::kw_const:
1117  case tok::kw_volatile:
1118  case tok::kw_restrict:
1119    return true;
1120  }
1121}
1122
1123/// isTypeSpecifierQualifier - Return true if the current token could be the
1124/// start of a specifier-qualifier-list.
1125bool Parser::isTypeSpecifierQualifier() {
1126  // Annotate typenames and C++ scope specifiers.
1127  TryAnnotateTypeOrScopeToken();
1128
1129  switch (Tok.getKind()) {
1130  default: return false;
1131    // GNU attributes support.
1132  case tok::kw___attribute:
1133    // GNU typeof support.
1134  case tok::kw_typeof:
1135
1136    // type-specifiers
1137  case tok::kw_short:
1138  case tok::kw_long:
1139  case tok::kw_signed:
1140  case tok::kw_unsigned:
1141  case tok::kw__Complex:
1142  case tok::kw__Imaginary:
1143  case tok::kw_void:
1144  case tok::kw_char:
1145  case tok::kw_wchar_t:
1146  case tok::kw_int:
1147  case tok::kw_float:
1148  case tok::kw_double:
1149  case tok::kw_bool:
1150  case tok::kw__Bool:
1151  case tok::kw__Decimal32:
1152  case tok::kw__Decimal64:
1153  case tok::kw__Decimal128:
1154
1155    // struct-or-union-specifier (C99) or class-specifier (C++)
1156  case tok::kw_class:
1157  case tok::kw_struct:
1158  case tok::kw_union:
1159    // enum-specifier
1160  case tok::kw_enum:
1161
1162    // type-qualifier
1163  case tok::kw_const:
1164  case tok::kw_volatile:
1165  case tok::kw_restrict:
1166
1167    // typedef-name
1168  case tok::annot_qualtypename:
1169    return true;
1170
1171    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1172  case tok::less:
1173    return getLang().ObjC1;
1174  }
1175}
1176
1177/// isDeclarationSpecifier() - Return true if the current token is part of a
1178/// declaration specifier.
1179bool Parser::isDeclarationSpecifier() {
1180  // Annotate typenames and C++ scope specifiers.
1181  TryAnnotateTypeOrScopeToken();
1182
1183  switch (Tok.getKind()) {
1184  default: return false;
1185    // storage-class-specifier
1186  case tok::kw_typedef:
1187  case tok::kw_extern:
1188  case tok::kw___private_extern__:
1189  case tok::kw_static:
1190  case tok::kw_auto:
1191  case tok::kw_register:
1192  case tok::kw___thread:
1193
1194    // type-specifiers
1195  case tok::kw_short:
1196  case tok::kw_long:
1197  case tok::kw_signed:
1198  case tok::kw_unsigned:
1199  case tok::kw__Complex:
1200  case tok::kw__Imaginary:
1201  case tok::kw_void:
1202  case tok::kw_char:
1203  case tok::kw_wchar_t:
1204  case tok::kw_int:
1205  case tok::kw_float:
1206  case tok::kw_double:
1207  case tok::kw_bool:
1208  case tok::kw__Bool:
1209  case tok::kw__Decimal32:
1210  case tok::kw__Decimal64:
1211  case tok::kw__Decimal128:
1212
1213    // struct-or-union-specifier (C99) or class-specifier (C++)
1214  case tok::kw_class:
1215  case tok::kw_struct:
1216  case tok::kw_union:
1217    // enum-specifier
1218  case tok::kw_enum:
1219
1220    // type-qualifier
1221  case tok::kw_const:
1222  case tok::kw_volatile:
1223  case tok::kw_restrict:
1224
1225    // function-specifier
1226  case tok::kw_inline:
1227  case tok::kw_virtual:
1228  case tok::kw_explicit:
1229
1230    // typedef-name
1231  case tok::annot_qualtypename:
1232
1233    // GNU typeof support.
1234  case tok::kw_typeof:
1235
1236    // GNU attributes.
1237  case tok::kw___attribute:
1238    return true;
1239
1240    // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
1241  case tok::less:
1242    return getLang().ObjC1;
1243  }
1244}
1245
1246
1247/// ParseTypeQualifierListOpt
1248///       type-qualifier-list: [C99 6.7.5]
1249///         type-qualifier
1250/// [GNU]   attributes
1251///         type-qualifier-list type-qualifier
1252/// [GNU]   type-qualifier-list attributes
1253///
1254void Parser::ParseTypeQualifierListOpt(DeclSpec &DS) {
1255  while (1) {
1256    int isInvalid = false;
1257    const char *PrevSpec = 0;
1258    SourceLocation Loc = Tok.getLocation();
1259
1260    switch (Tok.getKind()) {
1261    default:
1262      // If this is not a type-qualifier token, we're done reading type
1263      // qualifiers.  First verify that DeclSpec's are consistent.
1264      DS.Finish(Diags, PP.getSourceManager(), getLang());
1265      return;
1266    case tok::kw_const:
1267      isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec,
1268                                 getLang())*2;
1269      break;
1270    case tok::kw_volatile:
1271      isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec,
1272                                 getLang())*2;
1273      break;
1274    case tok::kw_restrict:
1275      isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec,
1276                                 getLang())*2;
1277      break;
1278    case tok::kw___attribute:
1279      DS.AddAttributes(ParseAttributes());
1280      continue; // do *not* consume the next token!
1281    }
1282
1283    // If the specifier combination wasn't legal, issue a diagnostic.
1284    if (isInvalid) {
1285      assert(PrevSpec && "Method did not return previous specifier!");
1286      // Pick between error or extwarn.
1287      unsigned DiagID = isInvalid == 1 ? diag::err_invalid_decl_spec_combination
1288                                      : diag::ext_duplicate_declspec;
1289      Diag(Tok, DiagID) << PrevSpec;
1290    }
1291    ConsumeToken();
1292  }
1293}
1294
1295
1296/// ParseDeclarator - Parse and verify a newly-initialized declarator.
1297///
1298void Parser::ParseDeclarator(Declarator &D) {
1299  /// This implements the 'declarator' production in the C grammar, then checks
1300  /// for well-formedness and issues diagnostics.
1301  ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1302}
1303
1304/// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
1305/// is parsed by the function passed to it. Pass null, and the direct-declarator
1306/// isn't parsed at all, making this function effectively parse the C++
1307/// ptr-operator production.
1308///
1309///       declarator: [C99 6.7.5]
1310///         pointer[opt] direct-declarator
1311/// [C++]   '&' declarator [C++ 8p4, dcl.decl]
1312/// [GNU]   '&' restrict[opt] attributes[opt] declarator
1313///
1314///       pointer: [C99 6.7.5]
1315///         '*' type-qualifier-list[opt]
1316///         '*' type-qualifier-list[opt] pointer
1317///
1318///       ptr-operator:
1319///         '*' cv-qualifier-seq[opt]
1320///         '&'
1321/// [GNU]   '&' restrict[opt] attributes[opt]
1322///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] [TODO]
1323void Parser::ParseDeclaratorInternal(Declarator &D,
1324                                     DirectDeclParseFunction DirectDeclParser) {
1325  tok::TokenKind Kind = Tok.getKind();
1326
1327  // Not a pointer, C++ reference, or block.
1328  if (Kind != tok::star && (Kind != tok::amp || !getLang().CPlusPlus) &&
1329      (Kind != tok::caret || !getLang().Blocks)) {
1330    if (DirectDeclParser)
1331      (this->*DirectDeclParser)(D);
1332    return;
1333  }
1334
1335  // Otherwise, '*' -> pointer, '^' -> block, '&' -> reference.
1336  SourceLocation Loc = ConsumeToken();  // Eat the * or &.
1337
1338  if (Kind == tok::star || (Kind == tok::caret && getLang().Blocks)) {
1339    // Is a pointer.
1340    DeclSpec DS;
1341
1342    ParseTypeQualifierListOpt(DS);
1343
1344    // Recursively parse the declarator.
1345    ParseDeclaratorInternal(D, DirectDeclParser);
1346    if (Kind == tok::star)
1347      // Remember that we parsed a pointer type, and remember the type-quals.
1348      D.AddTypeInfo(DeclaratorChunk::getPointer(DS.getTypeQualifiers(), Loc,
1349                                                DS.TakeAttributes()));
1350    else
1351      // Remember that we parsed a Block type, and remember the type-quals.
1352      D.AddTypeInfo(DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(),
1353                                                     Loc));
1354  } else {
1355    // Is a reference
1356    DeclSpec DS;
1357
1358    // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
1359    // cv-qualifiers are introduced through the use of a typedef or of a
1360    // template type argument, in which case the cv-qualifiers are ignored.
1361    //
1362    // [GNU] Retricted references are allowed.
1363    // [GNU] Attributes on references are allowed.
1364    ParseTypeQualifierListOpt(DS);
1365
1366    if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
1367      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
1368        Diag(DS.getConstSpecLoc(),
1369             diag::err_invalid_reference_qualifier_application) << "const";
1370      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
1371        Diag(DS.getVolatileSpecLoc(),
1372             diag::err_invalid_reference_qualifier_application) << "volatile";
1373    }
1374
1375    // Recursively parse the declarator.
1376    ParseDeclaratorInternal(D, DirectDeclParser);
1377
1378    if (D.getNumTypeObjects() > 0) {
1379      // C++ [dcl.ref]p4: There shall be no references to references.
1380      DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
1381      if (InnerChunk.Kind == DeclaratorChunk::Reference) {
1382        if (const IdentifierInfo *II = D.getIdentifier())
1383          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1384           << II;
1385        else
1386          Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
1387            << "type name";
1388
1389        // Once we've complained about the reference-to-reference, we
1390        // can go ahead and build the (technically ill-formed)
1391        // declarator: reference collapsing will take care of it.
1392      }
1393    }
1394
1395    // Remember that we parsed a reference type. It doesn't have type-quals.
1396    D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
1397                                                DS.TakeAttributes()));
1398  }
1399}
1400
1401/// ParseDirectDeclarator
1402///       direct-declarator: [C99 6.7.5]
1403/// [C99]   identifier
1404///         '(' declarator ')'
1405/// [GNU]   '(' attributes declarator ')'
1406/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1407/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1408/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1409/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1410/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1411///         direct-declarator '(' parameter-type-list ')'
1412///         direct-declarator '(' identifier-list[opt] ')'
1413/// [GNU]   direct-declarator '(' parameter-forward-declarations
1414///                    parameter-type-list[opt] ')'
1415/// [C++]   direct-declarator '(' parameter-declaration-clause ')'
1416///                    cv-qualifier-seq[opt] exception-specification[opt]
1417/// [C++]   declarator-id
1418///
1419///       declarator-id: [C++ 8]
1420///         id-expression
1421///         '::'[opt] nested-name-specifier[opt] type-name
1422///
1423///       id-expression: [C++ 5.1]
1424///         unqualified-id
1425///         qualified-id            [TODO]
1426///
1427///       unqualified-id: [C++ 5.1]
1428///         identifier
1429///         operator-function-id
1430///         conversion-function-id  [TODO]
1431///          '~' class-name
1432///         template-id             [TODO]
1433///
1434void Parser::ParseDirectDeclarator(Declarator &D) {
1435  CXXScopeSpec &SS = D.getCXXScopeSpec();
1436  DeclaratorScopeObj DeclScopeObj(*this, SS);
1437
1438  if (D.mayHaveIdentifier() && isTokenCXXScopeSpecifier()) {
1439    ParseCXXScopeSpecifier(SS);
1440    // Change the declaration context for name lookup, until this function is
1441    // exited (and the declarator has been parsed).
1442    DeclScopeObj.EnterDeclaratorScope();
1443  }
1444
1445  // Parse the first direct-declarator seen.
1446  if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
1447    assert(Tok.getIdentifierInfo() && "Not an identifier?");
1448    // Determine whether this identifier is a C++ constructor name or
1449    // a normal identifier.
1450    if (getLang().CPlusPlus &&
1451        Actions.isCurrentClassName(*Tok.getIdentifierInfo(), CurScope))
1452      D.setConstructor(Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope),
1453                       Tok.getLocation());
1454    else
1455      D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1456    ConsumeToken();
1457  } else if (getLang().CPlusPlus &&
1458             Tok.is(tok::tilde) && D.mayHaveIdentifier()) {
1459    // This should be a C++ destructor.
1460    SourceLocation TildeLoc = ConsumeToken();
1461    if (Tok.is(tok::identifier)) {
1462      if (TypeTy *Type = ParseClassName())
1463        D.setDestructor(Type, TildeLoc);
1464      else
1465        D.SetIdentifier(0, TildeLoc);
1466    } else {
1467      Diag(Tok, diag::err_expected_class_name);
1468      D.SetIdentifier(0, TildeLoc);
1469    }
1470  } else if (Tok.is(tok::kw_operator)) {
1471    SourceLocation OperatorLoc = Tok.getLocation();
1472
1473    // First try the name of an overloaded operator
1474    if (OverloadedOperatorKind Op = TryParseOperatorFunctionId()) {
1475      D.setOverloadedOperator(Op, OperatorLoc);
1476    } else {
1477      // This must be a conversion function (C++ [class.conv.fct]).
1478      if (TypeTy *ConvType = ParseConversionFunctionId()) {
1479        D.setConversionFunction(ConvType, OperatorLoc);
1480      }
1481    }
1482  } else if (Tok.is(tok::l_paren) && SS.isEmpty()) {
1483    // direct-declarator: '(' declarator ')'
1484    // direct-declarator: '(' attributes declarator ')'
1485    // Example: 'char (*X)'   or 'int (*XX)(void)'
1486    ParseParenDeclarator(D);
1487  } else if (D.mayOmitIdentifier() && SS.isEmpty()) {
1488    // This could be something simple like "int" (in which case the declarator
1489    // portion is empty), if an abstract-declarator is allowed.
1490    D.SetIdentifier(0, Tok.getLocation());
1491  } else {
1492    if (getLang().CPlusPlus)
1493      Diag(Tok, diag::err_expected_unqualified_id);
1494    else
1495      Diag(Tok, diag::err_expected_ident_lparen);
1496    D.SetIdentifier(0, Tok.getLocation());
1497    D.setInvalidType(true);
1498  }
1499
1500  assert(D.isPastIdentifier() &&
1501         "Haven't past the location of the identifier yet?");
1502
1503  while (1) {
1504    if (Tok.is(tok::l_paren)) {
1505      // The paren may be part of a C++ direct initializer, eg. "int x(1);".
1506      // In such a case, check if we actually have a function declarator; if it
1507      // is not, the declarator has been fully parsed.
1508      if (getLang().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
1509        // When not in file scope, warn for ambiguous function declarators, just
1510        // in case the author intended it as a variable definition.
1511        bool warnIfAmbiguous = D.getContext() != Declarator::FileContext;
1512        if (!isCXXFunctionDeclarator(warnIfAmbiguous))
1513          break;
1514      }
1515      ParseFunctionDeclarator(ConsumeParen(), D);
1516    } else if (Tok.is(tok::l_square)) {
1517      ParseBracketDeclarator(D);
1518    } else {
1519      break;
1520    }
1521  }
1522}
1523
1524/// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
1525/// only called before the identifier, so these are most likely just grouping
1526/// parens for precedence.  If we find that these are actually function
1527/// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
1528///
1529///       direct-declarator:
1530///         '(' declarator ')'
1531/// [GNU]   '(' attributes declarator ')'
1532///         direct-declarator '(' parameter-type-list ')'
1533///         direct-declarator '(' identifier-list[opt] ')'
1534/// [GNU]   direct-declarator '(' parameter-forward-declarations
1535///                    parameter-type-list[opt] ')'
1536///
1537void Parser::ParseParenDeclarator(Declarator &D) {
1538  SourceLocation StartLoc = ConsumeParen();
1539  assert(!D.isPastIdentifier() && "Should be called before passing identifier");
1540
1541  // Eat any attributes before we look at whether this is a grouping or function
1542  // declarator paren.  If this is a grouping paren, the attribute applies to
1543  // the type being built up, for example:
1544  //     int (__attribute__(()) *x)(long y)
1545  // If this ends up not being a grouping paren, the attribute applies to the
1546  // first argument, for example:
1547  //     int (__attribute__(()) int x)
1548  // In either case, we need to eat any attributes to be able to determine what
1549  // sort of paren this is.
1550  //
1551  AttributeList *AttrList = 0;
1552  bool RequiresArg = false;
1553  if (Tok.is(tok::kw___attribute)) {
1554    AttrList = ParseAttributes();
1555
1556    // We require that the argument list (if this is a non-grouping paren) be
1557    // present even if the attribute list was empty.
1558    RequiresArg = true;
1559  }
1560
1561  // If we haven't past the identifier yet (or where the identifier would be
1562  // stored, if this is an abstract declarator), then this is probably just
1563  // grouping parens. However, if this could be an abstract-declarator, then
1564  // this could also be the start of function arguments (consider 'void()').
1565  bool isGrouping;
1566
1567  if (!D.mayOmitIdentifier()) {
1568    // If this can't be an abstract-declarator, this *must* be a grouping
1569    // paren, because we haven't seen the identifier yet.
1570    isGrouping = true;
1571  } else if (Tok.is(tok::r_paren) ||           // 'int()' is a function.
1572             (getLang().CPlusPlus && Tok.is(tok::ellipsis)) || // C++ int(...)
1573             isDeclarationSpecifier()) {       // 'int(int)' is a function.
1574    // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
1575    // considered to be a type, not a K&R identifier-list.
1576    isGrouping = false;
1577  } else {
1578    // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
1579    isGrouping = true;
1580  }
1581
1582  // If this is a grouping paren, handle:
1583  // direct-declarator: '(' declarator ')'
1584  // direct-declarator: '(' attributes declarator ')'
1585  if (isGrouping) {
1586    bool hadGroupingParens = D.hasGroupingParens();
1587    D.setGroupingParens(true);
1588    if (AttrList)
1589      D.AddAttributes(AttrList);
1590
1591    ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
1592    // Match the ')'.
1593    MatchRHSPunctuation(tok::r_paren, StartLoc);
1594
1595    D.setGroupingParens(hadGroupingParens);
1596    return;
1597  }
1598
1599  // Okay, if this wasn't a grouping paren, it must be the start of a function
1600  // argument list.  Recognize that this declarator will never have an
1601  // identifier (and remember where it would have been), then call into
1602  // ParseFunctionDeclarator to handle of argument list.
1603  D.SetIdentifier(0, Tok.getLocation());
1604
1605  ParseFunctionDeclarator(StartLoc, D, AttrList, RequiresArg);
1606}
1607
1608/// ParseFunctionDeclarator - We are after the identifier and have parsed the
1609/// declarator D up to a paren, which indicates that we are parsing function
1610/// arguments.
1611///
1612/// If AttrList is non-null, then the caller parsed those arguments immediately
1613/// after the open paren - they should be considered to be the first argument of
1614/// a parameter.  If RequiresArg is true, then the first argument of the
1615/// function is required to be present and required to not be an identifier
1616/// list.
1617///
1618/// This method also handles this portion of the grammar:
1619///       parameter-type-list: [C99 6.7.5]
1620///         parameter-list
1621///         parameter-list ',' '...'
1622///
1623///       parameter-list: [C99 6.7.5]
1624///         parameter-declaration
1625///         parameter-list ',' parameter-declaration
1626///
1627///       parameter-declaration: [C99 6.7.5]
1628///         declaration-specifiers declarator
1629/// [C++]   declaration-specifiers declarator '=' assignment-expression
1630/// [GNU]   declaration-specifiers declarator attributes
1631///         declaration-specifiers abstract-declarator[opt]
1632/// [C++]   declaration-specifiers abstract-declarator[opt]
1633///           '=' assignment-expression
1634/// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
1635///
1636/// For C++, after the parameter-list, it also parses "cv-qualifier-seq[opt]"
1637/// and "exception-specification[opt]"(TODO).
1638///
1639void Parser::ParseFunctionDeclarator(SourceLocation LParenLoc, Declarator &D,
1640                                     AttributeList *AttrList,
1641                                     bool RequiresArg) {
1642  // lparen is already consumed!
1643  assert(D.isPastIdentifier() && "Should not call before identifier!");
1644
1645  // This parameter list may be empty.
1646  if (Tok.is(tok::r_paren)) {
1647    if (RequiresArg) {
1648      Diag(Tok, diag::err_argument_required_after_attribute);
1649      delete AttrList;
1650    }
1651
1652    ConsumeParen();  // Eat the closing ')'.
1653
1654    // cv-qualifier-seq[opt].
1655    DeclSpec DS;
1656    if (getLang().CPlusPlus) {
1657      ParseTypeQualifierListOpt(DS);
1658
1659      // Parse exception-specification[opt].
1660      if (Tok.is(tok::kw_throw))
1661        ParseExceptionSpecification();
1662    }
1663
1664    // Remember that we parsed a function type, and remember the attributes.
1665    // int() -> no prototype, no '...'.
1666    D.AddTypeInfo(DeclaratorChunk::getFunction(/*prototype*/getLang().CPlusPlus,
1667                                               /*variadic*/ false,
1668                                               /*arglist*/ 0, 0,
1669                                               DS.getTypeQualifiers(),
1670                                               LParenLoc));
1671    return;
1672  }
1673
1674  // Alternatively, this parameter list may be an identifier list form for a
1675  // K&R-style function:  void foo(a,b,c)
1676  if (!getLang().CPlusPlus && Tok.is(tok::identifier) &&
1677      // K&R identifier lists can't have typedefs as identifiers, per
1678      // C99 6.7.5.3p11.
1679      !Actions.isTypeName(*Tok.getIdentifierInfo(), CurScope)) {
1680    if (RequiresArg) {
1681      Diag(Tok, diag::err_argument_required_after_attribute);
1682      delete AttrList;
1683    }
1684
1685    // Identifier list.  Note that '(' identifier-list ')' is only allowed for
1686    // normal declarators, not for abstract-declarators.
1687    return ParseFunctionDeclaratorIdentifierList(LParenLoc, D);
1688  }
1689
1690  // Finally, a normal, non-empty parameter type list.
1691
1692  // Build up an array of information about the parsed arguments.
1693  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1694
1695  // Enter function-declaration scope, limiting any declarators to the
1696  // function prototype scope, including parameter declarators.
1697  EnterScope(Scope::FnScope|Scope::DeclScope);
1698
1699  bool IsVariadic = false;
1700  while (1) {
1701    if (Tok.is(tok::ellipsis)) {
1702      IsVariadic = true;
1703
1704      // Check to see if this is "void(...)" which is not allowed.
1705      if (!getLang().CPlusPlus && ParamInfo.empty()) {
1706        // Otherwise, parse parameter type list.  If it starts with an
1707        // ellipsis,  diagnose the malformed function.
1708        Diag(Tok, diag::err_ellipsis_first_arg);
1709        IsVariadic = false;       // Treat this like 'void()'.
1710      }
1711
1712      ConsumeToken();     // Consume the ellipsis.
1713      break;
1714    }
1715
1716    SourceLocation DSStart = Tok.getLocation();
1717
1718    // Parse the declaration-specifiers.
1719    DeclSpec DS;
1720
1721    // If the caller parsed attributes for the first argument, add them now.
1722    if (AttrList) {
1723      DS.AddAttributes(AttrList);
1724      AttrList = 0;  // Only apply the attributes to the first parameter.
1725    }
1726    ParseDeclarationSpecifiers(DS);
1727
1728    // Parse the declarator.  This is "PrototypeContext", because we must
1729    // accept either 'declarator' or 'abstract-declarator' here.
1730    Declarator ParmDecl(DS, Declarator::PrototypeContext);
1731    ParseDeclarator(ParmDecl);
1732
1733    // Parse GNU attributes, if present.
1734    if (Tok.is(tok::kw___attribute))
1735      ParmDecl.AddAttributes(ParseAttributes());
1736
1737    // Remember this parsed parameter in ParamInfo.
1738    IdentifierInfo *ParmII = ParmDecl.getIdentifier();
1739
1740    // If no parameter was specified, verify that *something* was specified,
1741    // otherwise we have a missing type and identifier.
1742    if (DS.getParsedSpecifiers() == DeclSpec::PQ_None &&
1743        ParmDecl.getIdentifier() == 0 && ParmDecl.getNumTypeObjects() == 0) {
1744      // Completely missing, emit error.
1745      Diag(DSStart, diag::err_missing_param);
1746    } else {
1747      // Otherwise, we have something.  Add it and let semantic analysis try
1748      // to grok it and add the result to the ParamInfo we are building.
1749
1750      // Inform the actions module about the parameter declarator, so it gets
1751      // added to the current scope.
1752      DeclTy *Param = Actions.ActOnParamDeclarator(CurScope, ParmDecl);
1753
1754      // Parse the default argument, if any. We parse the default
1755      // arguments in all dialects; the semantic analysis in
1756      // ActOnParamDefaultArgument will reject the default argument in
1757      // C.
1758      if (Tok.is(tok::equal)) {
1759        SourceLocation EqualLoc = Tok.getLocation();
1760
1761        // Consume the '='.
1762        ConsumeToken();
1763
1764        // Parse the default argument
1765        ExprResult DefArgResult = ParseAssignmentExpression();
1766        if (DefArgResult.isInvalid) {
1767          SkipUntil(tok::comma, tok::r_paren, true, true);
1768        } else {
1769          // Inform the actions module about the default argument
1770          Actions.ActOnParamDefaultArgument(Param, EqualLoc, DefArgResult.Val);
1771        }
1772      }
1773
1774      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1775                             ParmDecl.getIdentifierLoc(), Param));
1776    }
1777
1778    // If the next token is a comma, consume it and keep reading arguments.
1779    if (Tok.isNot(tok::comma)) break;
1780
1781    // Consume the comma.
1782    ConsumeToken();
1783  }
1784
1785  // Leave prototype scope.
1786  ExitScope();
1787
1788  // If we have the closing ')', eat it.
1789  MatchRHSPunctuation(tok::r_paren, LParenLoc);
1790
1791  DeclSpec DS;
1792  if (getLang().CPlusPlus) {
1793    // Parse cv-qualifier-seq[opt].
1794    ParseTypeQualifierListOpt(DS);
1795
1796    // Parse exception-specification[opt].
1797    if (Tok.is(tok::kw_throw))
1798      ParseExceptionSpecification();
1799  }
1800
1801  // Remember that we parsed a function type, and remember the attributes.
1802  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/true, IsVariadic,
1803                                             &ParamInfo[0], ParamInfo.size(),
1804                                             DS.getTypeQualifiers(),
1805                                             LParenLoc));
1806}
1807
1808/// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
1809/// we found a K&R-style identifier list instead of a type argument list.  The
1810/// current token is known to be the first identifier in the list.
1811///
1812///       identifier-list: [C99 6.7.5]
1813///         identifier
1814///         identifier-list ',' identifier
1815///
1816void Parser::ParseFunctionDeclaratorIdentifierList(SourceLocation LParenLoc,
1817                                                   Declarator &D) {
1818  // Build up an array of information about the parsed arguments.
1819  llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
1820  llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
1821
1822  // If there was no identifier specified for the declarator, either we are in
1823  // an abstract-declarator, or we are in a parameter declarator which was found
1824  // to be abstract.  In abstract-declarators, identifier lists are not valid:
1825  // diagnose this.
1826  if (!D.getIdentifier())
1827    Diag(Tok, diag::ext_ident_list_in_param);
1828
1829  // Tok is known to be the first identifier in the list.  Remember this
1830  // identifier in ParamInfo.
1831  ParamsSoFar.insert(Tok.getIdentifierInfo());
1832  ParamInfo.push_back(DeclaratorChunk::ParamInfo(Tok.getIdentifierInfo(),
1833                                                 Tok.getLocation(), 0));
1834
1835  ConsumeToken();  // eat the first identifier.
1836
1837  while (Tok.is(tok::comma)) {
1838    // Eat the comma.
1839    ConsumeToken();
1840
1841    // If this isn't an identifier, report the error and skip until ')'.
1842    if (Tok.isNot(tok::identifier)) {
1843      Diag(Tok, diag::err_expected_ident);
1844      SkipUntil(tok::r_paren);
1845      return;
1846    }
1847
1848    IdentifierInfo *ParmII = Tok.getIdentifierInfo();
1849
1850    // Reject 'typedef int y; int test(x, y)', but continue parsing.
1851    if (Actions.isTypeName(*ParmII, CurScope))
1852      Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
1853
1854    // Verify that the argument identifier has not already been mentioned.
1855    if (!ParamsSoFar.insert(ParmII)) {
1856      Diag(Tok, diag::err_param_redefinition) << ParmII;
1857    } else {
1858      // Remember this identifier in ParamInfo.
1859      ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
1860                                                     Tok.getLocation(), 0));
1861    }
1862
1863    // Eat the identifier.
1864    ConsumeToken();
1865  }
1866
1867  // Remember that we parsed a function type, and remember the attributes.  This
1868  // function type is always a K&R style function type, which is not varargs and
1869  // has no prototype.
1870  D.AddTypeInfo(DeclaratorChunk::getFunction(/*proto*/false, /*varargs*/false,
1871                                             &ParamInfo[0], ParamInfo.size(),
1872                                             /*TypeQuals*/0, LParenLoc));
1873
1874  // If we have the closing ')', eat it and we're done.
1875  MatchRHSPunctuation(tok::r_paren, LParenLoc);
1876}
1877
1878/// [C90]   direct-declarator '[' constant-expression[opt] ']'
1879/// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
1880/// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
1881/// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
1882/// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
1883void Parser::ParseBracketDeclarator(Declarator &D) {
1884  SourceLocation StartLoc = ConsumeBracket();
1885
1886  // If valid, this location is the position where we read the 'static' keyword.
1887  SourceLocation StaticLoc;
1888  if (Tok.is(tok::kw_static))
1889    StaticLoc = ConsumeToken();
1890
1891  // If there is a type-qualifier-list, read it now.
1892  DeclSpec DS;
1893  ParseTypeQualifierListOpt(DS);
1894
1895  // If we haven't already read 'static', check to see if there is one after the
1896  // type-qualifier-list.
1897  if (!StaticLoc.isValid() && Tok.is(tok::kw_static))
1898    StaticLoc = ConsumeToken();
1899
1900  // Handle "direct-declarator [ type-qual-list[opt] * ]".
1901  bool isStar = false;
1902  ExprResult NumElements(false);
1903
1904  // Handle the case where we have '[*]' as the array size.  However, a leading
1905  // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
1906  // the the token after the star is a ']'.  Since stars in arrays are
1907  // infrequent, use of lookahead is not costly here.
1908  if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
1909    ConsumeToken();  // Eat the '*'.
1910
1911    if (StaticLoc.isValid())
1912      Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
1913    StaticLoc = SourceLocation();  // Drop the static.
1914    isStar = true;
1915  } else if (Tok.isNot(tok::r_square)) {
1916    // Parse the assignment-expression now.
1917    NumElements = ParseAssignmentExpression();
1918  }
1919
1920  // If there was an error parsing the assignment-expression, recover.
1921  if (NumElements.isInvalid) {
1922    // If the expression was invalid, skip it.
1923    SkipUntil(tok::r_square);
1924    return;
1925  }
1926
1927  MatchRHSPunctuation(tok::r_square, StartLoc);
1928
1929  // If C99 isn't enabled, emit an ext-warn if the arg list wasn't empty and if
1930  // it was not a constant expression.
1931  if (!getLang().C99) {
1932    // TODO: check C90 array constant exprness.
1933    if (isStar || StaticLoc.isValid() ||
1934        0/*TODO: NumElts is not a C90 constantexpr */)
1935      Diag(StartLoc, diag::ext_c99_array_usage);
1936  }
1937
1938  // Remember that we parsed a pointer type, and remember the type-quals.
1939  D.AddTypeInfo(DeclaratorChunk::getArray(DS.getTypeQualifiers(),
1940                                          StaticLoc.isValid(), isStar,
1941                                          NumElements.Val, StartLoc));
1942}
1943
1944/// [GNU]   typeof-specifier:
1945///           typeof ( expressions )
1946///           typeof ( type-name )
1947/// [GNU/C++] typeof unary-expression
1948///
1949void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
1950  assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier");
1951  const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
1952  SourceLocation StartLoc = ConsumeToken();
1953
1954  if (Tok.isNot(tok::l_paren)) {
1955    if (!getLang().CPlusPlus) {
1956      Diag(Tok, diag::err_expected_lparen_after_id) << BuiltinII;
1957      return;
1958    }
1959
1960    ExprResult Result = ParseCastExpression(true/*isUnaryExpression*/);
1961    if (Result.isInvalid)
1962      return;
1963
1964    const char *PrevSpec = 0;
1965    // Check for duplicate type specifiers.
1966    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
1967                           Result.Val))
1968      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1969
1970    // FIXME: Not accurate, the range gets one token more than it should.
1971    DS.SetRangeEnd(Tok.getLocation());
1972    return;
1973  }
1974
1975  SourceLocation LParenLoc = ConsumeParen(), RParenLoc;
1976
1977  if (isTypeIdInParens()) {
1978    TypeTy *Ty = ParseTypeName();
1979
1980    assert(Ty && "Parser::ParseTypeofSpecifier(): missing type");
1981
1982    if (Tok.isNot(tok::r_paren)) {
1983      MatchRHSPunctuation(tok::r_paren, LParenLoc);
1984      return;
1985    }
1986    RParenLoc = ConsumeParen();
1987    const char *PrevSpec = 0;
1988    // Check for duplicate type specifiers (e.g. "int typeof(int)").
1989    if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, Ty))
1990      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
1991  } else { // we have an expression.
1992    ExprResult Result = ParseExpression();
1993    ExprGuard ResultGuard(Actions, Result);
1994
1995    if (Result.isInvalid || Tok.isNot(tok::r_paren)) {
1996      MatchRHSPunctuation(tok::r_paren, LParenLoc);
1997      return;
1998    }
1999    RParenLoc = ConsumeParen();
2000    const char *PrevSpec = 0;
2001    // Check for duplicate type specifiers (e.g. "int typeof(int)").
2002    if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec,
2003                           ResultGuard.take()))
2004      Diag(StartLoc, diag::err_invalid_decl_spec_combination) << PrevSpec;
2005  }
2006  DS.SetRangeEnd(RParenLoc);
2007}
2008
2009
2010