ParseDeclCXX.cpp revision 7fe3878a36750515fb9772414ecb2489cf149d19
1//===--- ParseDeclCXX.cpp - C++ Declaration Parsing -----------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements the C++ Declaration portions of the Parser interfaces.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Basic/OperatorKinds.h"
15#include "clang/Parse/Parser.h"
16#include "clang/Parse/ParseDiagnostic.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ParsedTemplate.h"
20#include "clang/Sema/PrettyDeclStackTrace.h"
21#include "RAIIObjectsForParser.h"
22using namespace clang;
23
24/// ParseNamespace - We know that the current token is a namespace keyword. This
25/// may either be a top level namespace or a block-level namespace alias. If
26/// there was an inline keyword, it has already been parsed.
27///
28///       namespace-definition: [C++ 7.3: basic.namespace]
29///         named-namespace-definition
30///         unnamed-namespace-definition
31///
32///       unnamed-namespace-definition:
33///         'inline'[opt] 'namespace' attributes[opt] '{' namespace-body '}'
34///
35///       named-namespace-definition:
36///         original-namespace-definition
37///         extension-namespace-definition
38///
39///       original-namespace-definition:
40///         'inline'[opt] 'namespace' identifier attributes[opt]
41///             '{' namespace-body '}'
42///
43///       extension-namespace-definition:
44///         'inline'[opt] 'namespace' original-namespace-name
45///             '{' namespace-body '}'
46///
47///       namespace-alias-definition:  [C++ 7.3.2: namespace.alias]
48///         'namespace' identifier '=' qualified-namespace-specifier ';'
49///
50Decl *Parser::ParseNamespace(unsigned Context,
51                             SourceLocation &DeclEnd,
52                             SourceLocation InlineLoc) {
53  assert(Tok.is(tok::kw_namespace) && "Not a namespace!");
54  SourceLocation NamespaceLoc = ConsumeToken();  // eat the 'namespace'.
55  ObjCDeclContextSwitch ObjCDC(*this);
56
57  if (Tok.is(tok::code_completion)) {
58    Actions.CodeCompleteNamespaceDecl(getCurScope());
59    cutOffParsing();
60    return 0;
61  }
62
63  SourceLocation IdentLoc;
64  IdentifierInfo *Ident = 0;
65  std::vector<SourceLocation> ExtraIdentLoc;
66  std::vector<IdentifierInfo*> ExtraIdent;
67  std::vector<SourceLocation> ExtraNamespaceLoc;
68
69  Token attrTok;
70
71  if (Tok.is(tok::identifier)) {
72    Ident = Tok.getIdentifierInfo();
73    IdentLoc = ConsumeToken();  // eat the identifier.
74    while (Tok.is(tok::coloncolon) && NextToken().is(tok::identifier)) {
75      ExtraNamespaceLoc.push_back(ConsumeToken());
76      ExtraIdent.push_back(Tok.getIdentifierInfo());
77      ExtraIdentLoc.push_back(ConsumeToken());
78    }
79  }
80
81  // Read label attributes, if present.
82  ParsedAttributes attrs(AttrFactory);
83  if (Tok.is(tok::kw___attribute)) {
84    attrTok = Tok;
85    ParseGNUAttributes(attrs);
86  }
87
88  if (Tok.is(tok::equal)) {
89    if (!attrs.empty())
90      Diag(attrTok, diag::err_unexpected_namespace_attributes_alias);
91    if (InlineLoc.isValid())
92      Diag(InlineLoc, diag::err_inline_namespace_alias)
93          << FixItHint::CreateRemoval(InlineLoc);
94    return ParseNamespaceAlias(NamespaceLoc, IdentLoc, Ident, DeclEnd);
95  }
96
97
98  BalancedDelimiterTracker T(*this, tok::l_brace);
99  if (T.consumeOpen()) {
100    if (!ExtraIdent.empty()) {
101      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
102          << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
103    }
104    Diag(Tok, Ident ? diag::err_expected_lbrace :
105         diag::err_expected_ident_lbrace);
106    return 0;
107  }
108
109  if (getCurScope()->isClassScope() || getCurScope()->isTemplateParamScope() ||
110      getCurScope()->isInObjcMethodScope() || getCurScope()->getBlockParent() ||
111      getCurScope()->getFnParent()) {
112    if (!ExtraIdent.empty()) {
113      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
114          << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
115    }
116    Diag(T.getOpenLocation(), diag::err_namespace_nonnamespace_scope);
117    SkipUntil(tok::r_brace, false);
118    return 0;
119  }
120
121  if (!ExtraIdent.empty()) {
122    TentativeParsingAction TPA(*this);
123    SkipUntil(tok::r_brace, /*StopAtSemi*/false, /*DontConsume*/true);
124    Token rBraceToken = Tok;
125    TPA.Revert();
126
127    if (!rBraceToken.is(tok::r_brace)) {
128      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
129          << SourceRange(ExtraNamespaceLoc.front(), ExtraIdentLoc.back());
130    } else {
131      std::string NamespaceFix;
132      for (std::vector<IdentifierInfo*>::iterator I = ExtraIdent.begin(),
133           E = ExtraIdent.end(); I != E; ++I) {
134        NamespaceFix += " { namespace ";
135        NamespaceFix += (*I)->getName();
136      }
137
138      std::string RBraces;
139      for (unsigned i = 0, e = ExtraIdent.size(); i != e; ++i)
140        RBraces +=  "} ";
141
142      Diag(ExtraNamespaceLoc[0], diag::err_nested_namespaces_with_double_colon)
143          << FixItHint::CreateReplacement(SourceRange(ExtraNamespaceLoc.front(),
144                                                      ExtraIdentLoc.back()),
145                                          NamespaceFix)
146          << FixItHint::CreateInsertion(rBraceToken.getLocation(), RBraces);
147    }
148  }
149
150  // If we're still good, complain about inline namespaces in non-C++0x now.
151  if (InlineLoc.isValid())
152    Diag(InlineLoc, getLang().CPlusPlus0x ?
153         diag::warn_cxx98_compat_inline_namespace : diag::ext_inline_namespace);
154
155  // Enter a scope for the namespace.
156  ParseScope NamespaceScope(this, Scope::DeclScope);
157
158  Decl *NamespcDecl =
159    Actions.ActOnStartNamespaceDef(getCurScope(), InlineLoc, NamespaceLoc,
160                                   IdentLoc, Ident, T.getOpenLocation(),
161                                   attrs.getList());
162
163  PrettyDeclStackTraceEntry CrashInfo(Actions, NamespcDecl, NamespaceLoc,
164                                      "parsing namespace");
165
166  // Parse the contents of the namespace.  This includes parsing recovery on
167  // any improperly nested namespaces.
168  ParseInnerNamespace(ExtraIdentLoc, ExtraIdent, ExtraNamespaceLoc, 0,
169                      InlineLoc, attrs, T);
170
171  // Leave the namespace scope.
172  NamespaceScope.Exit();
173
174  DeclEnd = T.getCloseLocation();
175  Actions.ActOnFinishNamespaceDef(NamespcDecl, DeclEnd);
176
177  return NamespcDecl;
178}
179
180/// ParseInnerNamespace - Parse the contents of a namespace.
181void Parser::ParseInnerNamespace(std::vector<SourceLocation>& IdentLoc,
182                                 std::vector<IdentifierInfo*>& Ident,
183                                 std::vector<SourceLocation>& NamespaceLoc,
184                                 unsigned int index, SourceLocation& InlineLoc,
185                                 ParsedAttributes& attrs,
186                                 BalancedDelimiterTracker &Tracker) {
187  if (index == Ident.size()) {
188    while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
189      ParsedAttributesWithRange attrs(AttrFactory);
190      MaybeParseCXX0XAttributes(attrs);
191      MaybeParseMicrosoftAttributes(attrs);
192      ParseExternalDeclaration(attrs);
193    }
194
195    // The caller is what called check -- we are simply calling
196    // the close for it.
197    Tracker.consumeClose();
198
199    return;
200  }
201
202  // Parse improperly nested namespaces.
203  ParseScope NamespaceScope(this, Scope::DeclScope);
204  Decl *NamespcDecl =
205    Actions.ActOnStartNamespaceDef(getCurScope(), SourceLocation(),
206                                   NamespaceLoc[index], IdentLoc[index],
207                                   Ident[index], Tracker.getOpenLocation(),
208                                   attrs.getList());
209
210  ParseInnerNamespace(IdentLoc, Ident, NamespaceLoc, ++index, InlineLoc,
211                      attrs, Tracker);
212
213  NamespaceScope.Exit();
214
215  Actions.ActOnFinishNamespaceDef(NamespcDecl, Tracker.getCloseLocation());
216}
217
218/// ParseNamespaceAlias - Parse the part after the '=' in a namespace
219/// alias definition.
220///
221Decl *Parser::ParseNamespaceAlias(SourceLocation NamespaceLoc,
222                                  SourceLocation AliasLoc,
223                                  IdentifierInfo *Alias,
224                                  SourceLocation &DeclEnd) {
225  assert(Tok.is(tok::equal) && "Not equal token");
226
227  ConsumeToken(); // eat the '='.
228
229  if (Tok.is(tok::code_completion)) {
230    Actions.CodeCompleteNamespaceAliasDecl(getCurScope());
231    cutOffParsing();
232    return 0;
233  }
234
235  CXXScopeSpec SS;
236  // Parse (optional) nested-name-specifier.
237  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
238
239  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
240    Diag(Tok, diag::err_expected_namespace_name);
241    // Skip to end of the definition and eat the ';'.
242    SkipUntil(tok::semi);
243    return 0;
244  }
245
246  // Parse identifier.
247  IdentifierInfo *Ident = Tok.getIdentifierInfo();
248  SourceLocation IdentLoc = ConsumeToken();
249
250  // Eat the ';'.
251  DeclEnd = Tok.getLocation();
252  ExpectAndConsume(tok::semi, diag::err_expected_semi_after_namespace_name,
253                   "", tok::semi);
254
255  return Actions.ActOnNamespaceAliasDef(getCurScope(), NamespaceLoc, AliasLoc, Alias,
256                                        SS, IdentLoc, Ident);
257}
258
259/// ParseLinkage - We know that the current token is a string_literal
260/// and just before that, that extern was seen.
261///
262///       linkage-specification: [C++ 7.5p2: dcl.link]
263///         'extern' string-literal '{' declaration-seq[opt] '}'
264///         'extern' string-literal declaration
265///
266Decl *Parser::ParseLinkage(ParsingDeclSpec &DS, unsigned Context) {
267  assert(Tok.is(tok::string_literal) && "Not a string literal!");
268  llvm::SmallString<8> LangBuffer;
269  bool Invalid = false;
270  StringRef Lang = PP.getSpelling(Tok, LangBuffer, &Invalid);
271  if (Invalid)
272    return 0;
273
274  SourceLocation Loc = ConsumeStringToken();
275
276  ParseScope LinkageScope(this, Scope::DeclScope);
277  Decl *LinkageSpec
278    = Actions.ActOnStartLinkageSpecification(getCurScope(),
279                                             DS.getSourceRange().getBegin(),
280                                             Loc, Lang,
281                                      Tok.is(tok::l_brace) ? Tok.getLocation()
282                                                           : SourceLocation());
283
284  ParsedAttributesWithRange attrs(AttrFactory);
285  MaybeParseCXX0XAttributes(attrs);
286  MaybeParseMicrosoftAttributes(attrs);
287
288  if (Tok.isNot(tok::l_brace)) {
289    // Reset the source range in DS, as the leading "extern"
290    // does not really belong to the inner declaration ...
291    DS.SetRangeStart(SourceLocation());
292    DS.SetRangeEnd(SourceLocation());
293    // ... but anyway remember that such an "extern" was seen.
294    DS.setExternInLinkageSpec(true);
295    ParseExternalDeclaration(attrs, &DS);
296    return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
297                                                   SourceLocation());
298  }
299
300  DS.abort();
301
302  ProhibitAttributes(attrs);
303
304  BalancedDelimiterTracker T(*this, tok::l_brace);
305  T.consumeOpen();
306  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
307    ParsedAttributesWithRange attrs(AttrFactory);
308    MaybeParseCXX0XAttributes(attrs);
309    MaybeParseMicrosoftAttributes(attrs);
310    ParseExternalDeclaration(attrs);
311  }
312
313  T.consumeClose();
314  return Actions.ActOnFinishLinkageSpecification(getCurScope(), LinkageSpec,
315                                                 T.getCloseLocation());
316}
317
318/// ParseUsingDirectiveOrDeclaration - Parse C++ using using-declaration or
319/// using-directive. Assumes that current token is 'using'.
320Decl *Parser::ParseUsingDirectiveOrDeclaration(unsigned Context,
321                                         const ParsedTemplateInfo &TemplateInfo,
322                                               SourceLocation &DeclEnd,
323                                             ParsedAttributesWithRange &attrs,
324                                               Decl **OwnedType) {
325  assert(Tok.is(tok::kw_using) && "Not using token");
326  ObjCDeclContextSwitch ObjCDC(*this);
327
328  // Eat 'using'.
329  SourceLocation UsingLoc = ConsumeToken();
330
331  if (Tok.is(tok::code_completion)) {
332    Actions.CodeCompleteUsing(getCurScope());
333    cutOffParsing();
334    return 0;
335  }
336
337  // 'using namespace' means this is a using-directive.
338  if (Tok.is(tok::kw_namespace)) {
339    // Template parameters are always an error here.
340    if (TemplateInfo.Kind) {
341      SourceRange R = TemplateInfo.getSourceRange();
342      Diag(UsingLoc, diag::err_templated_using_directive)
343        << R << FixItHint::CreateRemoval(R);
344    }
345
346    return ParseUsingDirective(Context, UsingLoc, DeclEnd, attrs);
347  }
348
349  // Otherwise, it must be a using-declaration or an alias-declaration.
350
351  // Using declarations can't have attributes.
352  ProhibitAttributes(attrs);
353
354  return ParseUsingDeclaration(Context, TemplateInfo, UsingLoc, DeclEnd,
355                                    AS_none, OwnedType);
356}
357
358/// ParseUsingDirective - Parse C++ using-directive, assumes
359/// that current token is 'namespace' and 'using' was already parsed.
360///
361///       using-directive: [C++ 7.3.p4: namespace.udir]
362///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
363///                 namespace-name ;
364/// [GNU] using-directive:
365///        'using' 'namespace' ::[opt] nested-name-specifier[opt]
366///                 namespace-name attributes[opt] ;
367///
368Decl *Parser::ParseUsingDirective(unsigned Context,
369                                  SourceLocation UsingLoc,
370                                  SourceLocation &DeclEnd,
371                                  ParsedAttributes &attrs) {
372  assert(Tok.is(tok::kw_namespace) && "Not 'namespace' token");
373
374  // Eat 'namespace'.
375  SourceLocation NamespcLoc = ConsumeToken();
376
377  if (Tok.is(tok::code_completion)) {
378    Actions.CodeCompleteUsingDirective(getCurScope());
379    cutOffParsing();
380    return 0;
381  }
382
383  CXXScopeSpec SS;
384  // Parse (optional) nested-name-specifier.
385  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
386
387  IdentifierInfo *NamespcName = 0;
388  SourceLocation IdentLoc = SourceLocation();
389
390  // Parse namespace-name.
391  if (SS.isInvalid() || Tok.isNot(tok::identifier)) {
392    Diag(Tok, diag::err_expected_namespace_name);
393    // If there was invalid namespace name, skip to end of decl, and eat ';'.
394    SkipUntil(tok::semi);
395    // FIXME: Are there cases, when we would like to call ActOnUsingDirective?
396    return 0;
397  }
398
399  // Parse identifier.
400  NamespcName = Tok.getIdentifierInfo();
401  IdentLoc = ConsumeToken();
402
403  // Parse (optional) attributes (most likely GNU strong-using extension).
404  bool GNUAttr = false;
405  if (Tok.is(tok::kw___attribute)) {
406    GNUAttr = true;
407    ParseGNUAttributes(attrs);
408  }
409
410  // Eat ';'.
411  DeclEnd = Tok.getLocation();
412  ExpectAndConsume(tok::semi,
413                   GNUAttr ? diag::err_expected_semi_after_attribute_list
414                           : diag::err_expected_semi_after_namespace_name,
415                   "", tok::semi);
416
417  return Actions.ActOnUsingDirective(getCurScope(), UsingLoc, NamespcLoc, SS,
418                                     IdentLoc, NamespcName, attrs.getList());
419}
420
421/// ParseUsingDeclaration - Parse C++ using-declaration or alias-declaration.
422/// Assumes that 'using' was already seen.
423///
424///     using-declaration: [C++ 7.3.p3: namespace.udecl]
425///       'using' 'typename'[opt] ::[opt] nested-name-specifier
426///               unqualified-id
427///       'using' :: unqualified-id
428///
429///     alias-declaration: C++0x [decl.typedef]p2
430///       'using' identifier = type-id ;
431///
432Decl *Parser::ParseUsingDeclaration(unsigned Context,
433                                    const ParsedTemplateInfo &TemplateInfo,
434                                    SourceLocation UsingLoc,
435                                    SourceLocation &DeclEnd,
436                                    AccessSpecifier AS,
437                                    Decl **OwnedType) {
438  CXXScopeSpec SS;
439  SourceLocation TypenameLoc;
440  bool IsTypeName;
441
442  // Ignore optional 'typename'.
443  // FIXME: This is wrong; we should parse this as a typename-specifier.
444  if (Tok.is(tok::kw_typename)) {
445    TypenameLoc = Tok.getLocation();
446    ConsumeToken();
447    IsTypeName = true;
448  }
449  else
450    IsTypeName = false;
451
452  // Parse nested-name-specifier.
453  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
454
455  // Check nested-name specifier.
456  if (SS.isInvalid()) {
457    SkipUntil(tok::semi);
458    return 0;
459  }
460
461  // Parse the unqualified-id. We allow parsing of both constructor and
462  // destructor names and allow the action module to diagnose any semantic
463  // errors.
464  UnqualifiedId Name;
465  if (ParseUnqualifiedId(SS,
466                         /*EnteringContext=*/false,
467                         /*AllowDestructorName=*/true,
468                         /*AllowConstructorName=*/true,
469                         ParsedType(),
470                         Name)) {
471    SkipUntil(tok::semi);
472    return 0;
473  }
474
475  ParsedAttributes attrs(AttrFactory);
476
477  // Maybe this is an alias-declaration.
478  bool IsAliasDecl = Tok.is(tok::equal);
479  TypeResult TypeAlias;
480  if (IsAliasDecl) {
481    // TODO: Attribute support. C++0x attributes may appear before the equals.
482    // Where can GNU attributes appear?
483    ConsumeToken();
484
485    Diag(Tok.getLocation(), getLang().CPlusPlus0x ?
486         diag::warn_cxx98_compat_alias_declaration :
487         diag::ext_alias_declaration);
488
489    // Type alias templates cannot be specialized.
490    int SpecKind = -1;
491    if (TemplateInfo.Kind == ParsedTemplateInfo::Template &&
492        Name.getKind() == UnqualifiedId::IK_TemplateId)
493      SpecKind = 0;
494    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization)
495      SpecKind = 1;
496    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
497      SpecKind = 2;
498    if (SpecKind != -1) {
499      SourceRange Range;
500      if (SpecKind == 0)
501        Range = SourceRange(Name.TemplateId->LAngleLoc,
502                            Name.TemplateId->RAngleLoc);
503      else
504        Range = TemplateInfo.getSourceRange();
505      Diag(Range.getBegin(), diag::err_alias_declaration_specialization)
506        << SpecKind << Range;
507      SkipUntil(tok::semi);
508      return 0;
509    }
510
511    // Name must be an identifier.
512    if (Name.getKind() != UnqualifiedId::IK_Identifier) {
513      Diag(Name.StartLocation, diag::err_alias_declaration_not_identifier);
514      // No removal fixit: can't recover from this.
515      SkipUntil(tok::semi);
516      return 0;
517    } else if (IsTypeName)
518      Diag(TypenameLoc, diag::err_alias_declaration_not_identifier)
519        << FixItHint::CreateRemoval(SourceRange(TypenameLoc,
520                             SS.isNotEmpty() ? SS.getEndLoc() : TypenameLoc));
521    else if (SS.isNotEmpty())
522      Diag(SS.getBeginLoc(), diag::err_alias_declaration_not_identifier)
523        << FixItHint::CreateRemoval(SS.getRange());
524
525    TypeAlias = ParseTypeName(0, TemplateInfo.Kind ?
526                              Declarator::AliasTemplateContext :
527                              Declarator::AliasDeclContext, AS, OwnedType);
528  } else
529    // Parse (optional) attributes (most likely GNU strong-using extension).
530    MaybeParseGNUAttributes(attrs);
531
532  // Eat ';'.
533  DeclEnd = Tok.getLocation();
534  ExpectAndConsume(tok::semi, diag::err_expected_semi_after,
535                   !attrs.empty() ? "attributes list" :
536                   IsAliasDecl ? "alias declaration" : "using declaration",
537                   tok::semi);
538
539  // Diagnose an attempt to declare a templated using-declaration.
540  // In C++0x, alias-declarations can be templates:
541  //   template <...> using id = type;
542  if (TemplateInfo.Kind && !IsAliasDecl) {
543    SourceRange R = TemplateInfo.getSourceRange();
544    Diag(UsingLoc, diag::err_templated_using_declaration)
545      << R << FixItHint::CreateRemoval(R);
546
547    // Unfortunately, we have to bail out instead of recovering by
548    // ignoring the parameters, just in case the nested name specifier
549    // depends on the parameters.
550    return 0;
551  }
552
553  // "typename" keyword is allowed for identifiers only,
554  // because it may be a type definition.
555  if (IsTypeName && Name.getKind() != UnqualifiedId::IK_Identifier) {
556    Diag(Name.getSourceRange().getBegin(), diag::err_typename_identifiers_only)
557      << FixItHint::CreateRemoval(SourceRange(TypenameLoc));
558    // Proceed parsing, but reset the IsTypeName flag.
559    IsTypeName = false;
560  }
561
562  if (IsAliasDecl) {
563    TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
564    MultiTemplateParamsArg TemplateParamsArg(Actions,
565      TemplateParams ? TemplateParams->data() : 0,
566      TemplateParams ? TemplateParams->size() : 0);
567    return Actions.ActOnAliasDeclaration(getCurScope(), AS, TemplateParamsArg,
568                                         UsingLoc, Name, TypeAlias);
569  }
570
571  return Actions.ActOnUsingDeclaration(getCurScope(), AS, true, UsingLoc, SS,
572                                       Name, attrs.getList(),
573                                       IsTypeName, TypenameLoc);
574}
575
576/// ParseStaticAssertDeclaration - Parse C++0x or C1X static_assert-declaration.
577///
578/// [C++0x] static_assert-declaration:
579///           static_assert ( constant-expression  ,  string-literal  ) ;
580///
581/// [C1X]   static_assert-declaration:
582///           _Static_assert ( constant-expression  ,  string-literal  ) ;
583///
584Decl *Parser::ParseStaticAssertDeclaration(SourceLocation &DeclEnd){
585  assert((Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) &&
586         "Not a static_assert declaration");
587
588  if (Tok.is(tok::kw__Static_assert) && !getLang().C1X)
589    Diag(Tok, diag::ext_c1x_static_assert);
590  if (Tok.is(tok::kw_static_assert))
591    Diag(Tok, diag::warn_cxx98_compat_static_assert);
592
593  SourceLocation StaticAssertLoc = ConsumeToken();
594
595  BalancedDelimiterTracker T(*this, tok::l_paren);
596  if (T.consumeOpen()) {
597    Diag(Tok, diag::err_expected_lparen);
598    return 0;
599  }
600
601  ExprResult AssertExpr(ParseConstantExpression());
602  if (AssertExpr.isInvalid()) {
603    SkipUntil(tok::semi);
604    return 0;
605  }
606
607  if (ExpectAndConsume(tok::comma, diag::err_expected_comma, "", tok::semi))
608    return 0;
609
610  if (Tok.isNot(tok::string_literal)) {
611    Diag(Tok, diag::err_expected_string_literal);
612    SkipUntil(tok::semi);
613    return 0;
614  }
615
616  ExprResult AssertMessage(ParseStringLiteralExpression());
617  if (AssertMessage.isInvalid())
618    return 0;
619
620  T.consumeClose();
621
622  DeclEnd = Tok.getLocation();
623  ExpectAndConsumeSemi(diag::err_expected_semi_after_static_assert);
624
625  return Actions.ActOnStaticAssertDeclaration(StaticAssertLoc,
626                                              AssertExpr.take(),
627                                              AssertMessage.take(),
628                                              T.getCloseLocation());
629}
630
631/// ParseDecltypeSpecifier - Parse a C++0x decltype specifier.
632///
633/// 'decltype' ( expression )
634///
635void Parser::ParseDecltypeSpecifier(DeclSpec &DS) {
636  assert(Tok.is(tok::kw_decltype) && "Not a decltype specifier");
637
638  SourceLocation StartLoc = ConsumeToken();
639  BalancedDelimiterTracker T(*this, tok::l_paren);
640  if (T.expectAndConsume(diag::err_expected_lparen_after,
641                       "decltype", tok::r_paren)) {
642    return;
643  }
644
645  // Parse the expression
646
647  // C++0x [dcl.type.simple]p4:
648  //   The operand of the decltype specifier is an unevaluated operand.
649  EnterExpressionEvaluationContext Unevaluated(Actions,
650                                               Sema::Unevaluated);
651  ExprResult Result = ParseExpression();
652  if (Result.isInvalid()) {
653    SkipUntil(tok::r_paren);
654    return;
655  }
656
657  // Match the ')'
658  T.consumeClose();
659  if (T.getCloseLocation().isInvalid())
660    return;
661
662  const char *PrevSpec = 0;
663  unsigned DiagID;
664  // Check for duplicate type specifiers (e.g. "int decltype(a)").
665  if (DS.SetTypeSpecType(DeclSpec::TST_decltype, StartLoc, PrevSpec,
666                         DiagID, Result.release()))
667    Diag(StartLoc, DiagID) << PrevSpec;
668}
669
670void Parser::ParseUnderlyingTypeSpecifier(DeclSpec &DS) {
671  assert(Tok.is(tok::kw___underlying_type) &&
672         "Not an underlying type specifier");
673
674  SourceLocation StartLoc = ConsumeToken();
675  BalancedDelimiterTracker T(*this, tok::l_paren);
676  if (T.expectAndConsume(diag::err_expected_lparen_after,
677                       "__underlying_type", tok::r_paren)) {
678    return;
679  }
680
681  TypeResult Result = ParseTypeName();
682  if (Result.isInvalid()) {
683    SkipUntil(tok::r_paren);
684    return;
685  }
686
687  // Match the ')'
688  T.consumeClose();
689  if (T.getCloseLocation().isInvalid())
690    return;
691
692  const char *PrevSpec = 0;
693  unsigned DiagID;
694  if (DS.SetTypeSpecType(DeclSpec::TST_underlyingType, StartLoc, PrevSpec,
695                         DiagID, Result.release()))
696    Diag(StartLoc, DiagID) << PrevSpec;
697}
698
699/// ParseBaseTypeSpecifier - Parse a C++ base-type-specifier which is either a
700/// class name or decltype-specifier. Note that we only check that the result
701/// names a type; semantic analysis will need to verify that the type names a
702/// class. The result is either a type or null, depending on whether a type
703/// name was found.
704///
705///       base-type-specifier: [C++ 10.1]
706///         class-or-decltype
707///       class-or-decltype: [C++ 10.1]
708///         nested-name-specifier[opt] class-name
709///         decltype-specifier
710///       class-name: [C++ 9.1]
711///         identifier
712///         simple-template-id
713///
714Parser::TypeResult Parser::ParseBaseTypeSpecifier(SourceLocation &BaseLoc,
715                                                  SourceLocation &EndLocation) {
716  // Ignore attempts to use typename
717  if (Tok.is(tok::kw_typename)) {
718    Diag(Tok, diag::err_expected_class_name_not_template)
719      << FixItHint::CreateRemoval(Tok.getLocation());
720    ConsumeToken();
721  }
722
723  // Parse optional nested-name-specifier
724  CXXScopeSpec SS;
725  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
726
727  BaseLoc = Tok.getLocation();
728
729  // Parse decltype-specifier
730  if (Tok.is(tok::kw_decltype)) {
731    if (SS.isNotEmpty())
732      Diag(SS.getBeginLoc(), diag::err_unexpected_scope_on_base_decltype)
733        << FixItHint::CreateRemoval(SS.getRange());
734    // Fake up a Declarator to use with ActOnTypeName.
735    DeclSpec DS(AttrFactory);
736
737    ParseDecltypeSpecifier(DS);
738    EndLocation = DS.getSourceRange().getEnd();
739
740    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
741    return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
742  }
743
744  // Check whether we have a template-id that names a type.
745  if (Tok.is(tok::annot_template_id)) {
746    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
747    if (TemplateId->Kind == TNK_Type_template ||
748        TemplateId->Kind == TNK_Dependent_template_name) {
749      AnnotateTemplateIdTokenAsType();
750
751      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
752      ParsedType Type = getTypeAnnotation(Tok);
753      EndLocation = Tok.getAnnotationEndLoc();
754      ConsumeToken();
755
756      if (Type)
757        return Type;
758      return true;
759    }
760
761    // Fall through to produce an error below.
762  }
763
764  if (Tok.isNot(tok::identifier)) {
765    Diag(Tok, diag::err_expected_class_name);
766    return true;
767  }
768
769  IdentifierInfo *Id = Tok.getIdentifierInfo();
770  SourceLocation IdLoc = ConsumeToken();
771
772  if (Tok.is(tok::less)) {
773    // It looks the user intended to write a template-id here, but the
774    // template-name was wrong. Try to fix that.
775    TemplateNameKind TNK = TNK_Type_template;
776    TemplateTy Template;
777    if (!Actions.DiagnoseUnknownTemplateName(*Id, IdLoc, getCurScope(),
778                                             &SS, Template, TNK)) {
779      Diag(IdLoc, diag::err_unknown_template_name)
780        << Id;
781    }
782
783    if (!Template)
784      return true;
785
786    // Form the template name
787    UnqualifiedId TemplateName;
788    TemplateName.setIdentifier(Id, IdLoc);
789
790    // Parse the full template-id, then turn it into a type.
791    if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateName,
792                                SourceLocation(), true))
793      return true;
794    if (TNK == TNK_Dependent_template_name)
795      AnnotateTemplateIdTokenAsType();
796
797    // If we didn't end up with a typename token, there's nothing more we
798    // can do.
799    if (Tok.isNot(tok::annot_typename))
800      return true;
801
802    // Retrieve the type from the annotation token, consume that token, and
803    // return.
804    EndLocation = Tok.getAnnotationEndLoc();
805    ParsedType Type = getTypeAnnotation(Tok);
806    ConsumeToken();
807    return Type;
808  }
809
810  // We have an identifier; check whether it is actually a type.
811  ParsedType Type = Actions.getTypeName(*Id, IdLoc, getCurScope(), &SS, true,
812                                        false, ParsedType(),
813                                        /*NonTrivialTypeSourceInfo=*/true);
814  if (!Type) {
815    Diag(IdLoc, diag::err_expected_class_name);
816    return true;
817  }
818
819  // Consume the identifier.
820  EndLocation = IdLoc;
821
822  // Fake up a Declarator to use with ActOnTypeName.
823  DeclSpec DS(AttrFactory);
824  DS.SetRangeStart(IdLoc);
825  DS.SetRangeEnd(EndLocation);
826  DS.getTypeSpecScope() = SS;
827
828  const char *PrevSpec = 0;
829  unsigned DiagID;
830  DS.SetTypeSpecType(TST_typename, IdLoc, PrevSpec, DiagID, Type);
831
832  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
833  return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
834}
835
836/// ParseClassSpecifier - Parse a C++ class-specifier [C++ class] or
837/// elaborated-type-specifier [C++ dcl.type.elab]; we can't tell which
838/// until we reach the start of a definition or see a token that
839/// cannot start a definition. If SuppressDeclarations is true, we do know.
840///
841///       class-specifier: [C++ class]
842///         class-head '{' member-specification[opt] '}'
843///         class-head '{' member-specification[opt] '}' attributes[opt]
844///       class-head:
845///         class-key identifier[opt] base-clause[opt]
846///         class-key nested-name-specifier identifier base-clause[opt]
847///         class-key nested-name-specifier[opt] simple-template-id
848///                          base-clause[opt]
849/// [GNU]   class-key attributes[opt] identifier[opt] base-clause[opt]
850/// [GNU]   class-key attributes[opt] nested-name-specifier
851///                          identifier base-clause[opt]
852/// [GNU]   class-key attributes[opt] nested-name-specifier[opt]
853///                          simple-template-id base-clause[opt]
854///       class-key:
855///         'class'
856///         'struct'
857///         'union'
858///
859///       elaborated-type-specifier: [C++ dcl.type.elab]
860///         class-key ::[opt] nested-name-specifier[opt] identifier
861///         class-key ::[opt] nested-name-specifier[opt] 'template'[opt]
862///                          simple-template-id
863///
864///  Note that the C++ class-specifier and elaborated-type-specifier,
865///  together, subsume the C99 struct-or-union-specifier:
866///
867///       struct-or-union-specifier: [C99 6.7.2.1]
868///         struct-or-union identifier[opt] '{' struct-contents '}'
869///         struct-or-union identifier
870/// [GNU]   struct-or-union attributes[opt] identifier[opt] '{' struct-contents
871///                                                         '}' attributes[opt]
872/// [GNU]   struct-or-union attributes[opt] identifier
873///       struct-or-union:
874///         'struct'
875///         'union'
876void Parser::ParseClassSpecifier(tok::TokenKind TagTokKind,
877                                 SourceLocation StartLoc, DeclSpec &DS,
878                                 const ParsedTemplateInfo &TemplateInfo,
879                                 AccessSpecifier AS, bool SuppressDeclarations){
880  DeclSpec::TST TagType;
881  if (TagTokKind == tok::kw_struct)
882    TagType = DeclSpec::TST_struct;
883  else if (TagTokKind == tok::kw_class)
884    TagType = DeclSpec::TST_class;
885  else {
886    assert(TagTokKind == tok::kw_union && "Not a class specifier");
887    TagType = DeclSpec::TST_union;
888  }
889
890  if (Tok.is(tok::code_completion)) {
891    // Code completion for a struct, class, or union name.
892    Actions.CodeCompleteTag(getCurScope(), TagType);
893    return cutOffParsing();
894  }
895
896  // C++03 [temp.explicit] 14.7.2/8:
897  //   The usual access checking rules do not apply to names used to specify
898  //   explicit instantiations.
899  //
900  // As an extension we do not perform access checking on the names used to
901  // specify explicit specializations either. This is important to allow
902  // specializing traits classes for private types.
903  bool SuppressingAccessChecks = false;
904  if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
905      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization) {
906    Actions.ActOnStartSuppressingAccessChecks();
907    SuppressingAccessChecks = true;
908  }
909
910  ParsedAttributes attrs(AttrFactory);
911  // If attributes exist after tag, parse them.
912  if (Tok.is(tok::kw___attribute))
913    ParseGNUAttributes(attrs);
914
915  // If declspecs exist after tag, parse them.
916  while (Tok.is(tok::kw___declspec))
917    ParseMicrosoftDeclSpec(attrs);
918
919  // If C++0x attributes exist here, parse them.
920  // FIXME: Are we consistent with the ordering of parsing of different
921  // styles of attributes?
922  MaybeParseCXX0XAttributes(attrs);
923
924  if (TagType == DeclSpec::TST_struct &&
925      !Tok.is(tok::identifier) &&
926      Tok.getIdentifierInfo() &&
927      (Tok.is(tok::kw___is_arithmetic) ||
928       Tok.is(tok::kw___is_convertible) ||
929       Tok.is(tok::kw___is_empty) ||
930       Tok.is(tok::kw___is_floating_point) ||
931       Tok.is(tok::kw___is_function) ||
932       Tok.is(tok::kw___is_fundamental) ||
933       Tok.is(tok::kw___is_integral) ||
934       Tok.is(tok::kw___is_member_function_pointer) ||
935       Tok.is(tok::kw___is_member_pointer) ||
936       Tok.is(tok::kw___is_pod) ||
937       Tok.is(tok::kw___is_pointer) ||
938       Tok.is(tok::kw___is_same) ||
939       Tok.is(tok::kw___is_scalar) ||
940       Tok.is(tok::kw___is_signed) ||
941       Tok.is(tok::kw___is_unsigned) ||
942       Tok.is(tok::kw___is_void))) {
943    // GNU libstdc++ 4.2 and libc++ use certain intrinsic names as the
944    // name of struct templates, but some are keywords in GCC >= 4.3
945    // and Clang. Therefore, when we see the token sequence "struct
946    // X", make X into a normal identifier rather than a keyword, to
947    // allow libstdc++ 4.2 and libc++ to work properly.
948    Tok.getIdentifierInfo()->RevertTokenIDToIdentifier();
949    Tok.setKind(tok::identifier);
950  }
951
952  // Parse the (optional) nested-name-specifier.
953  CXXScopeSpec &SS = DS.getTypeSpecScope();
954  if (getLang().CPlusPlus) {
955    // "FOO : BAR" is not a potential typo for "FOO::BAR".
956    ColonProtectionRAIIObject X(*this);
957
958    if (ParseOptionalCXXScopeSpecifier(SS, ParsedType(), true))
959      DS.SetTypeSpecError();
960    if (SS.isSet())
961      if (Tok.isNot(tok::identifier) && Tok.isNot(tok::annot_template_id))
962        Diag(Tok, diag::err_expected_ident);
963  }
964
965  TemplateParameterLists *TemplateParams = TemplateInfo.TemplateParams;
966
967  // Parse the (optional) class name or simple-template-id.
968  IdentifierInfo *Name = 0;
969  SourceLocation NameLoc;
970  TemplateIdAnnotation *TemplateId = 0;
971  if (Tok.is(tok::identifier)) {
972    Name = Tok.getIdentifierInfo();
973    NameLoc = ConsumeToken();
974
975    if (Tok.is(tok::less) && getLang().CPlusPlus) {
976      // The name was supposed to refer to a template, but didn't.
977      // Eat the template argument list and try to continue parsing this as
978      // a class (or template thereof).
979      TemplateArgList TemplateArgs;
980      SourceLocation LAngleLoc, RAngleLoc;
981      if (ParseTemplateIdAfterTemplateName(TemplateTy(), NameLoc, SS,
982                                           true, LAngleLoc,
983                                           TemplateArgs, RAngleLoc)) {
984        // We couldn't parse the template argument list at all, so don't
985        // try to give any location information for the list.
986        LAngleLoc = RAngleLoc = SourceLocation();
987      }
988
989      Diag(NameLoc, diag::err_explicit_spec_non_template)
990        << (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation)
991        << (TagType == DeclSpec::TST_class? 0
992            : TagType == DeclSpec::TST_struct? 1
993            : 2)
994        << Name
995        << SourceRange(LAngleLoc, RAngleLoc);
996
997      // Strip off the last template parameter list if it was empty, since
998      // we've removed its template argument list.
999      if (TemplateParams && TemplateInfo.LastParameterListWasEmpty) {
1000        if (TemplateParams && TemplateParams->size() > 1) {
1001          TemplateParams->pop_back();
1002        } else {
1003          TemplateParams = 0;
1004          const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
1005            = ParsedTemplateInfo::NonTemplate;
1006        }
1007      } else if (TemplateInfo.Kind
1008                                == ParsedTemplateInfo::ExplicitInstantiation) {
1009        // Pretend this is just a forward declaration.
1010        TemplateParams = 0;
1011        const_cast<ParsedTemplateInfo&>(TemplateInfo).Kind
1012          = ParsedTemplateInfo::NonTemplate;
1013        const_cast<ParsedTemplateInfo&>(TemplateInfo).TemplateLoc
1014          = SourceLocation();
1015        const_cast<ParsedTemplateInfo&>(TemplateInfo).ExternLoc
1016          = SourceLocation();
1017      }
1018    }
1019  } else if (Tok.is(tok::annot_template_id)) {
1020    TemplateId = takeTemplateIdAnnotation(Tok);
1021    NameLoc = ConsumeToken();
1022
1023    if (TemplateId->Kind != TNK_Type_template &&
1024        TemplateId->Kind != TNK_Dependent_template_name) {
1025      // The template-name in the simple-template-id refers to
1026      // something other than a class template. Give an appropriate
1027      // error message and skip to the ';'.
1028      SourceRange Range(NameLoc);
1029      if (SS.isNotEmpty())
1030        Range.setBegin(SS.getBeginLoc());
1031
1032      Diag(TemplateId->LAngleLoc, diag::err_template_spec_syntax_non_template)
1033        << Name << static_cast<int>(TemplateId->Kind) << Range;
1034
1035      DS.SetTypeSpecError();
1036      SkipUntil(tok::semi, false, true);
1037      if (SuppressingAccessChecks)
1038        Actions.ActOnStopSuppressingAccessChecks();
1039
1040      return;
1041    }
1042  }
1043
1044  // As soon as we're finished parsing the class's template-id, turn access
1045  // checking back on.
1046  if (SuppressingAccessChecks)
1047    Actions.ActOnStopSuppressingAccessChecks();
1048
1049  // There are four options here.  If we have 'struct foo;', then this
1050  // is either a forward declaration or a friend declaration, which
1051  // have to be treated differently.  If we have 'struct foo {...',
1052  // 'struct foo :...' or 'struct foo final[opt]' then this is a
1053  // definition. Otherwise we have something like 'struct foo xyz', a reference.
1054  // However, in some contexts, things look like declarations but are just
1055  // references, e.g.
1056  // new struct s;
1057  // or
1058  // &T::operator struct s;
1059  // For these, SuppressDeclarations is true.
1060  Sema::TagUseKind TUK;
1061  if (SuppressDeclarations)
1062    TUK = Sema::TUK_Reference;
1063  else if (Tok.is(tok::l_brace) ||
1064           (getLang().CPlusPlus && Tok.is(tok::colon)) ||
1065           isCXX0XFinalKeyword()) {
1066    if (DS.isFriendSpecified()) {
1067      // C++ [class.friend]p2:
1068      //   A class shall not be defined in a friend declaration.
1069      Diag(Tok.getLocation(), diag::err_friend_decl_defines_class)
1070        << SourceRange(DS.getFriendSpecLoc());
1071
1072      // Skip everything up to the semicolon, so that this looks like a proper
1073      // friend class (or template thereof) declaration.
1074      SkipUntil(tok::semi, true, true);
1075      TUK = Sema::TUK_Friend;
1076    } else {
1077      // Okay, this is a class definition.
1078      TUK = Sema::TUK_Definition;
1079    }
1080  } else if (Tok.is(tok::semi))
1081    TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
1082  else
1083    TUK = Sema::TUK_Reference;
1084
1085  if (!Name && !TemplateId && (DS.getTypeSpecType() == DeclSpec::TST_error ||
1086                               TUK != Sema::TUK_Definition)) {
1087    if (DS.getTypeSpecType() != DeclSpec::TST_error) {
1088      // We have a declaration or reference to an anonymous class.
1089      Diag(StartLoc, diag::err_anon_type_definition)
1090        << DeclSpec::getSpecifierName(TagType);
1091    }
1092
1093    SkipUntil(tok::comma, true);
1094    return;
1095  }
1096
1097  // Create the tag portion of the class or class template.
1098  DeclResult TagOrTempResult = true; // invalid
1099  TypeResult TypeResult = true; // invalid
1100
1101  bool Owned = false;
1102  if (TemplateId) {
1103    // Explicit specialization, class template partial specialization,
1104    // or explicit instantiation.
1105    ASTTemplateArgsPtr TemplateArgsPtr(Actions,
1106                                       TemplateId->getTemplateArgs(),
1107                                       TemplateId->NumArgs);
1108    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1109        TUK == Sema::TUK_Declaration) {
1110      // This is an explicit instantiation of a class template.
1111      TagOrTempResult
1112        = Actions.ActOnExplicitInstantiation(getCurScope(),
1113                                             TemplateInfo.ExternLoc,
1114                                             TemplateInfo.TemplateLoc,
1115                                             TagType,
1116                                             StartLoc,
1117                                             SS,
1118                                             TemplateId->Template,
1119                                             TemplateId->TemplateNameLoc,
1120                                             TemplateId->LAngleLoc,
1121                                             TemplateArgsPtr,
1122                                             TemplateId->RAngleLoc,
1123                                             attrs.getList());
1124
1125    // Friend template-ids are treated as references unless
1126    // they have template headers, in which case they're ill-formed
1127    // (FIXME: "template <class T> friend class A<T>::B<int>;").
1128    // We diagnose this error in ActOnClassTemplateSpecialization.
1129    } else if (TUK == Sema::TUK_Reference ||
1130               (TUK == Sema::TUK_Friend &&
1131                TemplateInfo.Kind == ParsedTemplateInfo::NonTemplate)) {
1132      TypeResult = Actions.ActOnTagTemplateIdType(TUK, TagType,
1133                                                  StartLoc,
1134                                                  TemplateId->SS,
1135                                                  TemplateId->Template,
1136                                                  TemplateId->TemplateNameLoc,
1137                                                  TemplateId->LAngleLoc,
1138                                                  TemplateArgsPtr,
1139                                                  TemplateId->RAngleLoc);
1140    } else {
1141      // This is an explicit specialization or a class template
1142      // partial specialization.
1143      TemplateParameterLists FakedParamLists;
1144
1145      if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
1146        // This looks like an explicit instantiation, because we have
1147        // something like
1148        //
1149        //   template class Foo<X>
1150        //
1151        // but it actually has a definition. Most likely, this was
1152        // meant to be an explicit specialization, but the user forgot
1153        // the '<>' after 'template'.
1154        assert(TUK == Sema::TUK_Definition && "Expected a definition here");
1155
1156        SourceLocation LAngleLoc
1157          = PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
1158        Diag(TemplateId->TemplateNameLoc,
1159             diag::err_explicit_instantiation_with_definition)
1160          << SourceRange(TemplateInfo.TemplateLoc)
1161          << FixItHint::CreateInsertion(LAngleLoc, "<>");
1162
1163        // Create a fake template parameter list that contains only
1164        // "template<>", so that we treat this construct as a class
1165        // template specialization.
1166        FakedParamLists.push_back(
1167          Actions.ActOnTemplateParameterList(0, SourceLocation(),
1168                                             TemplateInfo.TemplateLoc,
1169                                             LAngleLoc,
1170                                             0, 0,
1171                                             LAngleLoc));
1172        TemplateParams = &FakedParamLists;
1173      }
1174
1175      // Build the class template specialization.
1176      TagOrTempResult
1177        = Actions.ActOnClassTemplateSpecialization(getCurScope(), TagType, TUK,
1178                       StartLoc, DS.getModulePrivateSpecLoc(), SS,
1179                       TemplateId->Template,
1180                       TemplateId->TemplateNameLoc,
1181                       TemplateId->LAngleLoc,
1182                       TemplateArgsPtr,
1183                       TemplateId->RAngleLoc,
1184                       attrs.getList(),
1185                       MultiTemplateParamsArg(Actions,
1186                                    TemplateParams? &(*TemplateParams)[0] : 0,
1187                                 TemplateParams? TemplateParams->size() : 0));
1188    }
1189  } else if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1190             TUK == Sema::TUK_Declaration) {
1191    // Explicit instantiation of a member of a class template
1192    // specialization, e.g.,
1193    //
1194    //   template struct Outer<int>::Inner;
1195    //
1196    TagOrTempResult
1197      = Actions.ActOnExplicitInstantiation(getCurScope(),
1198                                           TemplateInfo.ExternLoc,
1199                                           TemplateInfo.TemplateLoc,
1200                                           TagType, StartLoc, SS, Name,
1201                                           NameLoc, attrs.getList());
1202  } else if (TUK == Sema::TUK_Friend &&
1203             TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) {
1204    TagOrTempResult =
1205      Actions.ActOnTemplatedFriendTag(getCurScope(), DS.getFriendSpecLoc(),
1206                                      TagType, StartLoc, SS,
1207                                      Name, NameLoc, attrs.getList(),
1208                                      MultiTemplateParamsArg(Actions,
1209                                    TemplateParams? &(*TemplateParams)[0] : 0,
1210                                 TemplateParams? TemplateParams->size() : 0));
1211  } else {
1212    if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation &&
1213        TUK == Sema::TUK_Definition) {
1214      // FIXME: Diagnose this particular error.
1215    }
1216
1217    bool IsDependent = false;
1218
1219    // Don't pass down template parameter lists if this is just a tag
1220    // reference.  For example, we don't need the template parameters here:
1221    //   template <class T> class A *makeA(T t);
1222    MultiTemplateParamsArg TParams;
1223    if (TUK != Sema::TUK_Reference && TemplateParams)
1224      TParams =
1225        MultiTemplateParamsArg(&(*TemplateParams)[0], TemplateParams->size());
1226
1227    // Declaration or definition of a class type
1228    TagOrTempResult = Actions.ActOnTag(getCurScope(), TagType, TUK, StartLoc,
1229                                       SS, Name, NameLoc, attrs.getList(), AS,
1230                                       DS.getModulePrivateSpecLoc(),
1231                                       TParams, Owned, IsDependent, false,
1232                                       false, clang::TypeResult());
1233
1234    // If ActOnTag said the type was dependent, try again with the
1235    // less common call.
1236    if (IsDependent) {
1237      assert(TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend);
1238      TypeResult = Actions.ActOnDependentTag(getCurScope(), TagType, TUK,
1239                                             SS, Name, StartLoc, NameLoc);
1240    }
1241  }
1242
1243  // If there is a body, parse it and inform the actions module.
1244  if (TUK == Sema::TUK_Definition) {
1245    assert(Tok.is(tok::l_brace) ||
1246           (getLang().CPlusPlus && Tok.is(tok::colon)) ||
1247           isCXX0XFinalKeyword());
1248    if (getLang().CPlusPlus)
1249      ParseCXXMemberSpecification(StartLoc, TagType, TagOrTempResult.get());
1250    else
1251      ParseStructUnionBody(StartLoc, TagType, TagOrTempResult.get());
1252  }
1253
1254  const char *PrevSpec = 0;
1255  unsigned DiagID;
1256  bool Result;
1257  if (!TypeResult.isInvalid()) {
1258    Result = DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
1259                                NameLoc.isValid() ? NameLoc : StartLoc,
1260                                PrevSpec, DiagID, TypeResult.get());
1261  } else if (!TagOrTempResult.isInvalid()) {
1262    Result = DS.SetTypeSpecType(TagType, StartLoc,
1263                                NameLoc.isValid() ? NameLoc : StartLoc,
1264                                PrevSpec, DiagID, TagOrTempResult.get(), Owned);
1265  } else {
1266    DS.SetTypeSpecError();
1267    return;
1268  }
1269
1270  if (Result)
1271    Diag(StartLoc, DiagID) << PrevSpec;
1272
1273  // At this point, we've successfully parsed a class-specifier in 'definition'
1274  // form (e.g. "struct foo { int x; }".  While we could just return here, we're
1275  // going to look at what comes after it to improve error recovery.  If an
1276  // impossible token occurs next, we assume that the programmer forgot a ; at
1277  // the end of the declaration and recover that way.
1278  //
1279  // This switch enumerates the valid "follow" set for definition.
1280  if (TUK == Sema::TUK_Definition) {
1281    bool ExpectedSemi = true;
1282    switch (Tok.getKind()) {
1283    default: break;
1284    case tok::semi:               // struct foo {...} ;
1285    case tok::star:               // struct foo {...} *         P;
1286    case tok::amp:                // struct foo {...} &         R = ...
1287    case tok::identifier:         // struct foo {...} V         ;
1288    case tok::r_paren:            //(struct foo {...} )         {4}
1289    case tok::annot_cxxscope:     // struct foo {...} a::       b;
1290    case tok::annot_typename:     // struct foo {...} a         ::b;
1291    case tok::annot_template_id:  // struct foo {...} a<int>    ::b;
1292    case tok::l_paren:            // struct foo {...} (         x);
1293    case tok::comma:              // __builtin_offsetof(struct foo{...} ,
1294      ExpectedSemi = false;
1295      break;
1296    // Type qualifiers
1297    case tok::kw_const:           // struct foo {...} const     x;
1298    case tok::kw_volatile:        // struct foo {...} volatile  x;
1299    case tok::kw_restrict:        // struct foo {...} restrict  x;
1300    case tok::kw_inline:          // struct foo {...} inline    foo() {};
1301    // Storage-class specifiers
1302    case tok::kw_static:          // struct foo {...} static    x;
1303    case tok::kw_extern:          // struct foo {...} extern    x;
1304    case tok::kw_typedef:         // struct foo {...} typedef   x;
1305    case tok::kw_register:        // struct foo {...} register  x;
1306    case tok::kw_auto:            // struct foo {...} auto      x;
1307    case tok::kw_mutable:         // struct foo {...} mutable   x;
1308    case tok::kw_constexpr:       // struct foo {...} constexpr x;
1309      // As shown above, type qualifiers and storage class specifiers absolutely
1310      // can occur after class specifiers according to the grammar.  However,
1311      // almost no one actually writes code like this.  If we see one of these,
1312      // it is much more likely that someone missed a semi colon and the
1313      // type/storage class specifier we're seeing is part of the *next*
1314      // intended declaration, as in:
1315      //
1316      //   struct foo { ... }
1317      //   typedef int X;
1318      //
1319      // We'd really like to emit a missing semicolon error instead of emitting
1320      // an error on the 'int' saying that you can't have two type specifiers in
1321      // the same declaration of X.  Because of this, we look ahead past this
1322      // token to see if it's a type specifier.  If so, we know the code is
1323      // otherwise invalid, so we can produce the expected semi error.
1324      if (!isKnownToBeTypeSpecifier(NextToken()))
1325        ExpectedSemi = false;
1326      break;
1327
1328    case tok::r_brace:  // struct bar { struct foo {...} }
1329      // Missing ';' at end of struct is accepted as an extension in C mode.
1330      if (!getLang().CPlusPlus)
1331        ExpectedSemi = false;
1332      break;
1333    }
1334
1335    // C++ [temp]p3 In a template-declaration which defines a class, no
1336    // declarator is permitted.
1337    if (TemplateInfo.Kind)
1338      ExpectedSemi = true;
1339
1340    if (ExpectedSemi) {
1341      ExpectAndConsume(tok::semi, diag::err_expected_semi_after_tagdecl,
1342                       TagType == DeclSpec::TST_class ? "class"
1343                       : TagType == DeclSpec::TST_struct? "struct" : "union");
1344      // Push this token back into the preprocessor and change our current token
1345      // to ';' so that the rest of the code recovers as though there were an
1346      // ';' after the definition.
1347      PP.EnterToken(Tok);
1348      Tok.setKind(tok::semi);
1349    }
1350  }
1351}
1352
1353/// ParseBaseClause - Parse the base-clause of a C++ class [C++ class.derived].
1354///
1355///       base-clause : [C++ class.derived]
1356///         ':' base-specifier-list
1357///       base-specifier-list:
1358///         base-specifier '...'[opt]
1359///         base-specifier-list ',' base-specifier '...'[opt]
1360void Parser::ParseBaseClause(Decl *ClassDecl) {
1361  assert(Tok.is(tok::colon) && "Not a base clause");
1362  ConsumeToken();
1363
1364  // Build up an array of parsed base specifiers.
1365  SmallVector<CXXBaseSpecifier *, 8> BaseInfo;
1366
1367  while (true) {
1368    // Parse a base-specifier.
1369    BaseResult Result = ParseBaseSpecifier(ClassDecl);
1370    if (Result.isInvalid()) {
1371      // Skip the rest of this base specifier, up until the comma or
1372      // opening brace.
1373      SkipUntil(tok::comma, tok::l_brace, true, true);
1374    } else {
1375      // Add this to our array of base specifiers.
1376      BaseInfo.push_back(Result.get());
1377    }
1378
1379    // If the next token is a comma, consume it and keep reading
1380    // base-specifiers.
1381    if (Tok.isNot(tok::comma)) break;
1382
1383    // Consume the comma.
1384    ConsumeToken();
1385  }
1386
1387  // Attach the base specifiers
1388  Actions.ActOnBaseSpecifiers(ClassDecl, BaseInfo.data(), BaseInfo.size());
1389}
1390
1391/// ParseBaseSpecifier - Parse a C++ base-specifier. A base-specifier is
1392/// one entry in the base class list of a class specifier, for example:
1393///    class foo : public bar, virtual private baz {
1394/// 'public bar' and 'virtual private baz' are each base-specifiers.
1395///
1396///       base-specifier: [C++ class.derived]
1397///         ::[opt] nested-name-specifier[opt] class-name
1398///         'virtual' access-specifier[opt] ::[opt] nested-name-specifier[opt]
1399///                        base-type-specifier
1400///         access-specifier 'virtual'[opt] ::[opt] nested-name-specifier[opt]
1401///                        base-type-specifier
1402Parser::BaseResult Parser::ParseBaseSpecifier(Decl *ClassDecl) {
1403  bool IsVirtual = false;
1404  SourceLocation StartLoc = Tok.getLocation();
1405
1406  // Parse the 'virtual' keyword.
1407  if (Tok.is(tok::kw_virtual))  {
1408    ConsumeToken();
1409    IsVirtual = true;
1410  }
1411
1412  // Parse an (optional) access specifier.
1413  AccessSpecifier Access = getAccessSpecifierIfPresent();
1414  if (Access != AS_none)
1415    ConsumeToken();
1416
1417  // Parse the 'virtual' keyword (again!), in case it came after the
1418  // access specifier.
1419  if (Tok.is(tok::kw_virtual))  {
1420    SourceLocation VirtualLoc = ConsumeToken();
1421    if (IsVirtual) {
1422      // Complain about duplicate 'virtual'
1423      Diag(VirtualLoc, diag::err_dup_virtual)
1424        << FixItHint::CreateRemoval(VirtualLoc);
1425    }
1426
1427    IsVirtual = true;
1428  }
1429
1430  // Parse the class-name.
1431  SourceLocation EndLocation;
1432  SourceLocation BaseLoc;
1433  TypeResult BaseType = ParseBaseTypeSpecifier(BaseLoc, EndLocation);
1434  if (BaseType.isInvalid())
1435    return true;
1436
1437  // Parse the optional ellipsis (for a pack expansion). The ellipsis is
1438  // actually part of the base-specifier-list grammar productions, but we
1439  // parse it here for convenience.
1440  SourceLocation EllipsisLoc;
1441  if (Tok.is(tok::ellipsis))
1442    EllipsisLoc = ConsumeToken();
1443
1444  // Find the complete source range for the base-specifier.
1445  SourceRange Range(StartLoc, EndLocation);
1446
1447  // Notify semantic analysis that we have parsed a complete
1448  // base-specifier.
1449  return Actions.ActOnBaseSpecifier(ClassDecl, Range, IsVirtual, Access,
1450                                    BaseType.get(), BaseLoc, EllipsisLoc);
1451}
1452
1453/// getAccessSpecifierIfPresent - Determine whether the next token is
1454/// a C++ access-specifier.
1455///
1456///       access-specifier: [C++ class.derived]
1457///         'private'
1458///         'protected'
1459///         'public'
1460AccessSpecifier Parser::getAccessSpecifierIfPresent() const {
1461  switch (Tok.getKind()) {
1462  default: return AS_none;
1463  case tok::kw_private: return AS_private;
1464  case tok::kw_protected: return AS_protected;
1465  case tok::kw_public: return AS_public;
1466  }
1467}
1468
1469void Parser::HandleMemberFunctionDefaultArgs(Declarator& DeclaratorInfo,
1470                                             Decl *ThisDecl) {
1471  // We just declared a member function. If this member function
1472  // has any default arguments, we'll need to parse them later.
1473  LateParsedMethodDeclaration *LateMethod = 0;
1474  DeclaratorChunk::FunctionTypeInfo &FTI
1475    = DeclaratorInfo.getFunctionTypeInfo();
1476  for (unsigned ParamIdx = 0; ParamIdx < FTI.NumArgs; ++ParamIdx) {
1477    if (LateMethod || FTI.ArgInfo[ParamIdx].DefaultArgTokens) {
1478      if (!LateMethod) {
1479        // Push this method onto the stack of late-parsed method
1480        // declarations.
1481        LateMethod = new LateParsedMethodDeclaration(this, ThisDecl);
1482        getCurrentClass().LateParsedDeclarations.push_back(LateMethod);
1483        LateMethod->TemplateScope = getCurScope()->isTemplateParamScope();
1484
1485        // Add all of the parameters prior to this one (they don't
1486        // have default arguments).
1487        LateMethod->DefaultArgs.reserve(FTI.NumArgs);
1488        for (unsigned I = 0; I < ParamIdx; ++I)
1489          LateMethod->DefaultArgs.push_back(
1490                             LateParsedDefaultArgument(FTI.ArgInfo[I].Param));
1491      }
1492
1493      // Add this parameter to the list of parameters (it or may
1494      // not have a default argument).
1495      LateMethod->DefaultArgs.push_back(
1496        LateParsedDefaultArgument(FTI.ArgInfo[ParamIdx].Param,
1497                                  FTI.ArgInfo[ParamIdx].DefaultArgTokens));
1498    }
1499  }
1500}
1501
1502/// isCXX0XVirtSpecifier - Determine whether the next token is a C++0x
1503/// virt-specifier.
1504///
1505///       virt-specifier:
1506///         override
1507///         final
1508VirtSpecifiers::Specifier Parser::isCXX0XVirtSpecifier() const {
1509  if (!getLang().CPlusPlus)
1510    return VirtSpecifiers::VS_None;
1511
1512  if (Tok.is(tok::identifier)) {
1513    IdentifierInfo *II = Tok.getIdentifierInfo();
1514
1515    // Initialize the contextual keywords.
1516    if (!Ident_final) {
1517      Ident_final = &PP.getIdentifierTable().get("final");
1518      Ident_override = &PP.getIdentifierTable().get("override");
1519    }
1520
1521    if (II == Ident_override)
1522      return VirtSpecifiers::VS_Override;
1523
1524    if (II == Ident_final)
1525      return VirtSpecifiers::VS_Final;
1526  }
1527
1528  return VirtSpecifiers::VS_None;
1529}
1530
1531/// ParseOptionalCXX0XVirtSpecifierSeq - Parse a virt-specifier-seq.
1532///
1533///       virt-specifier-seq:
1534///         virt-specifier
1535///         virt-specifier-seq virt-specifier
1536void Parser::ParseOptionalCXX0XVirtSpecifierSeq(VirtSpecifiers &VS) {
1537  while (true) {
1538    VirtSpecifiers::Specifier Specifier = isCXX0XVirtSpecifier();
1539    if (Specifier == VirtSpecifiers::VS_None)
1540      return;
1541
1542    // C++ [class.mem]p8:
1543    //   A virt-specifier-seq shall contain at most one of each virt-specifier.
1544    const char *PrevSpec = 0;
1545    if (VS.SetSpecifier(Specifier, Tok.getLocation(), PrevSpec))
1546      Diag(Tok.getLocation(), diag::err_duplicate_virt_specifier)
1547        << PrevSpec
1548        << FixItHint::CreateRemoval(Tok.getLocation());
1549
1550    Diag(Tok.getLocation(), getLang().CPlusPlus0x ?
1551         diag::warn_cxx98_compat_override_control_keyword :
1552         diag::ext_override_control_keyword)
1553      << VirtSpecifiers::getSpecifierName(Specifier);
1554    ConsumeToken();
1555  }
1556}
1557
1558/// isCXX0XFinalKeyword - Determine whether the next token is a C++0x
1559/// contextual 'final' keyword.
1560bool Parser::isCXX0XFinalKeyword() const {
1561  if (!getLang().CPlusPlus)
1562    return false;
1563
1564  if (!Tok.is(tok::identifier))
1565    return false;
1566
1567  // Initialize the contextual keywords.
1568  if (!Ident_final) {
1569    Ident_final = &PP.getIdentifierTable().get("final");
1570    Ident_override = &PP.getIdentifierTable().get("override");
1571  }
1572
1573  return Tok.getIdentifierInfo() == Ident_final;
1574}
1575
1576/// ParseCXXClassMemberDeclaration - Parse a C++ class member declaration.
1577///
1578///       member-declaration:
1579///         decl-specifier-seq[opt] member-declarator-list[opt] ';'
1580///         function-definition ';'[opt]
1581///         ::[opt] nested-name-specifier template[opt] unqualified-id ';'[TODO]
1582///         using-declaration                                            [TODO]
1583/// [C++0x] static_assert-declaration
1584///         template-declaration
1585/// [GNU]   '__extension__' member-declaration
1586///
1587///       member-declarator-list:
1588///         member-declarator
1589///         member-declarator-list ',' member-declarator
1590///
1591///       member-declarator:
1592///         declarator virt-specifier-seq[opt] pure-specifier[opt]
1593///         declarator constant-initializer[opt]
1594/// [C++11] declarator brace-or-equal-initializer[opt]
1595///         identifier[opt] ':' constant-expression
1596///
1597///       virt-specifier-seq:
1598///         virt-specifier
1599///         virt-specifier-seq virt-specifier
1600///
1601///       virt-specifier:
1602///         override
1603///         final
1604///
1605///       pure-specifier:
1606///         '= 0'
1607///
1608///       constant-initializer:
1609///         '=' constant-expression
1610///
1611void Parser::ParseCXXClassMemberDeclaration(AccessSpecifier AS,
1612                                            AttributeList *AccessAttrs,
1613                                       const ParsedTemplateInfo &TemplateInfo,
1614                                       ParsingDeclRAIIObject *TemplateDiags) {
1615  if (Tok.is(tok::at)) {
1616    if (getLang().ObjC1 && NextToken().isObjCAtKeyword(tok::objc_defs))
1617      Diag(Tok, diag::err_at_defs_cxx);
1618    else
1619      Diag(Tok, diag::err_at_in_class);
1620
1621    ConsumeToken();
1622    SkipUntil(tok::r_brace);
1623    return;
1624  }
1625
1626  // Access declarations.
1627  if (!TemplateInfo.Kind &&
1628      (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) &&
1629      !TryAnnotateCXXScopeToken() &&
1630      Tok.is(tok::annot_cxxscope)) {
1631    bool isAccessDecl = false;
1632    if (NextToken().is(tok::identifier))
1633      isAccessDecl = GetLookAheadToken(2).is(tok::semi);
1634    else
1635      isAccessDecl = NextToken().is(tok::kw_operator);
1636
1637    if (isAccessDecl) {
1638      // Collect the scope specifier token we annotated earlier.
1639      CXXScopeSpec SS;
1640      ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
1641
1642      // Try to parse an unqualified-id.
1643      UnqualifiedId Name;
1644      if (ParseUnqualifiedId(SS, false, true, true, ParsedType(), Name)) {
1645        SkipUntil(tok::semi);
1646        return;
1647      }
1648
1649      // TODO: recover from mistakenly-qualified operator declarations.
1650      if (ExpectAndConsume(tok::semi,
1651                           diag::err_expected_semi_after,
1652                           "access declaration",
1653                           tok::semi))
1654        return;
1655
1656      Actions.ActOnUsingDeclaration(getCurScope(), AS,
1657                                    false, SourceLocation(),
1658                                    SS, Name,
1659                                    /* AttrList */ 0,
1660                                    /* IsTypeName */ false,
1661                                    SourceLocation());
1662      return;
1663    }
1664  }
1665
1666  // static_assert-declaration
1667  if (Tok.is(tok::kw_static_assert) || Tok.is(tok::kw__Static_assert)) {
1668    // FIXME: Check for templates
1669    SourceLocation DeclEnd;
1670    ParseStaticAssertDeclaration(DeclEnd);
1671    return;
1672  }
1673
1674  if (Tok.is(tok::kw_template)) {
1675    assert(!TemplateInfo.TemplateParams &&
1676           "Nested template improperly parsed?");
1677    SourceLocation DeclEnd;
1678    ParseDeclarationStartingWithTemplate(Declarator::MemberContext, DeclEnd,
1679                                         AS, AccessAttrs);
1680    return;
1681  }
1682
1683  // Handle:  member-declaration ::= '__extension__' member-declaration
1684  if (Tok.is(tok::kw___extension__)) {
1685    // __extension__ silences extension warnings in the subexpression.
1686    ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1687    ConsumeToken();
1688    return ParseCXXClassMemberDeclaration(AS, AccessAttrs,
1689                                          TemplateInfo, TemplateDiags);
1690  }
1691
1692  // Don't parse FOO:BAR as if it were a typo for FOO::BAR, in this context it
1693  // is a bitfield.
1694  ColonProtectionRAIIObject X(*this);
1695
1696  ParsedAttributesWithRange attrs(AttrFactory);
1697  // Optional C++0x attribute-specifier
1698  MaybeParseCXX0XAttributes(attrs);
1699  MaybeParseMicrosoftAttributes(attrs);
1700
1701  if (Tok.is(tok::kw_using)) {
1702    ProhibitAttributes(attrs);
1703
1704    // Eat 'using'.
1705    SourceLocation UsingLoc = ConsumeToken();
1706
1707    if (Tok.is(tok::kw_namespace)) {
1708      Diag(UsingLoc, diag::err_using_namespace_in_class);
1709      SkipUntil(tok::semi, true, true);
1710    } else {
1711      SourceLocation DeclEnd;
1712      // Otherwise, it must be a using-declaration or an alias-declaration.
1713      ParseUsingDeclaration(Declarator::MemberContext, TemplateInfo,
1714                            UsingLoc, DeclEnd, AS);
1715    }
1716    return;
1717  }
1718
1719  // decl-specifier-seq:
1720  // Parse the common declaration-specifiers piece.
1721  ParsingDeclSpec DS(*this, TemplateDiags);
1722  DS.takeAttributesFrom(attrs);
1723  ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC_class);
1724
1725  MultiTemplateParamsArg TemplateParams(Actions,
1726      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->data() : 0,
1727      TemplateInfo.TemplateParams? TemplateInfo.TemplateParams->size() : 0);
1728
1729  if (Tok.is(tok::semi)) {
1730    ConsumeToken();
1731    Decl *TheDecl =
1732      Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS, DS, TemplateParams);
1733    DS.complete(TheDecl);
1734    return;
1735  }
1736
1737  ParsingDeclarator DeclaratorInfo(*this, DS, Declarator::MemberContext);
1738  VirtSpecifiers VS;
1739
1740  // Hold late-parsed attributes so we can attach a Decl to them later.
1741  LateParsedAttrList LateParsedAttrs;
1742
1743  SourceLocation EqualLoc;
1744  bool HasInitializer = false;
1745  ExprResult Init;
1746  if (Tok.isNot(tok::colon)) {
1747    // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
1748    ColonProtectionRAIIObject X(*this);
1749
1750    // Parse the first declarator.
1751    ParseDeclarator(DeclaratorInfo);
1752    // Error parsing the declarator?
1753    if (!DeclaratorInfo.hasName()) {
1754      // If so, skip until the semi-colon or a }.
1755      SkipUntil(tok::r_brace, true, true);
1756      if (Tok.is(tok::semi))
1757        ConsumeToken();
1758      return;
1759    }
1760
1761    ParseOptionalCXX0XVirtSpecifierSeq(VS);
1762
1763    // If attributes exist after the declarator, but before an '{', parse them.
1764    MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
1765
1766    // MSVC permits pure specifier on inline functions declared at class scope.
1767    // Hence check for =0 before checking for function definition.
1768    if (getLang().MicrosoftExt && Tok.is(tok::equal) &&
1769        DeclaratorInfo.isFunctionDeclarator() &&
1770        NextToken().is(tok::numeric_constant)) {
1771      EqualLoc = ConsumeToken();
1772      Init = ParseInitializer();
1773      if (Init.isInvalid())
1774        SkipUntil(tok::comma, true, true);
1775      else
1776        HasInitializer = true;
1777    }
1778
1779    bool IsDefinition = false;
1780    // function-definition:
1781    //
1782    // In C++11, a non-function declarator followed by an open brace is a
1783    // braced-init-list for an in-class member initialization, not an
1784    // erroneous function definition.
1785    if (Tok.is(tok::l_brace) && !getLang().CPlusPlus0x) {
1786      IsDefinition = true;
1787    } else if (DeclaratorInfo.isFunctionDeclarator()) {
1788      if (Tok.is(tok::l_brace) || Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
1789        IsDefinition = true;
1790      } else if (Tok.is(tok::equal)) {
1791        const Token &KW = NextToken();
1792        if (KW.is(tok::kw_default) || KW.is(tok::kw_delete))
1793          IsDefinition = true;
1794      }
1795    }
1796
1797    if (IsDefinition) {
1798      if (!DeclaratorInfo.isFunctionDeclarator()) {
1799        Diag(Tok, diag::err_func_def_no_params);
1800        ConsumeBrace();
1801        SkipUntil(tok::r_brace, true);
1802
1803        // Consume the optional ';'
1804        if (Tok.is(tok::semi))
1805          ConsumeToken();
1806        return;
1807      }
1808
1809      if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
1810        Diag(Tok, diag::err_function_declared_typedef);
1811        // This recovery skips the entire function body. It would be nice
1812        // to simply call ParseCXXInlineMethodDef() below, however Sema
1813        // assumes the declarator represents a function, not a typedef.
1814        ConsumeBrace();
1815        SkipUntil(tok::r_brace, true);
1816
1817        // Consume the optional ';'
1818        if (Tok.is(tok::semi))
1819          ConsumeToken();
1820        return;
1821      }
1822
1823      Decl *FunDecl =
1824        ParseCXXInlineMethodDef(AS, AccessAttrs, DeclaratorInfo, TemplateInfo,
1825                                VS, Init);
1826
1827      for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
1828        LateParsedAttrs[i]->setDecl(FunDecl);
1829      }
1830      LateParsedAttrs.clear();
1831
1832      // Consume the ';' - it's optional unless we have a delete or default
1833      if (Tok.is(tok::semi)) {
1834        ConsumeToken();
1835      }
1836
1837      return;
1838    }
1839  }
1840
1841  // member-declarator-list:
1842  //   member-declarator
1843  //   member-declarator-list ',' member-declarator
1844
1845  SmallVector<Decl *, 8> DeclsInGroup;
1846  ExprResult BitfieldSize;
1847
1848  while (1) {
1849    // member-declarator:
1850    //   declarator pure-specifier[opt]
1851    //   declarator brace-or-equal-initializer[opt]
1852    //   identifier[opt] ':' constant-expression
1853    if (Tok.is(tok::colon)) {
1854      ConsumeToken();
1855      BitfieldSize = ParseConstantExpression();
1856      if (BitfieldSize.isInvalid())
1857        SkipUntil(tok::comma, true, true);
1858    }
1859
1860    // If a simple-asm-expr is present, parse it.
1861    if (Tok.is(tok::kw_asm)) {
1862      SourceLocation Loc;
1863      ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1864      if (AsmLabel.isInvalid())
1865        SkipUntil(tok::comma, true, true);
1866
1867      DeclaratorInfo.setAsmLabel(AsmLabel.release());
1868      DeclaratorInfo.SetRangeEnd(Loc);
1869    }
1870
1871    // If attributes exist after the declarator, parse them.
1872    MaybeParseGNUAttributes(DeclaratorInfo, &LateParsedAttrs);
1873
1874    // FIXME: When g++ adds support for this, we'll need to check whether it
1875    // goes before or after the GNU attributes and __asm__.
1876    ParseOptionalCXX0XVirtSpecifierSeq(VS);
1877
1878    bool HasDeferredInitializer = false;
1879    if ((Tok.is(tok::equal) || Tok.is(tok::l_brace)) && !HasInitializer) {
1880      if (BitfieldSize.get()) {
1881        Diag(Tok, diag::err_bitfield_member_init);
1882        SkipUntil(tok::comma, true, true);
1883      } else {
1884        HasInitializer = true;
1885        HasDeferredInitializer = !DeclaratorInfo.isDeclarationOfFunction() &&
1886          DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1887            != DeclSpec::SCS_static &&
1888          DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1889            != DeclSpec::SCS_typedef;
1890      }
1891    }
1892
1893    // NOTE: If Sema is the Action module and declarator is an instance field,
1894    // this call will *not* return the created decl; It will return null.
1895    // See Sema::ActOnCXXMemberDeclarator for details.
1896
1897    Decl *ThisDecl = 0;
1898    if (DS.isFriendSpecified()) {
1899      // TODO: handle initializers, bitfields, 'delete'
1900      ThisDecl = Actions.ActOnFriendFunctionDecl(getCurScope(), DeclaratorInfo,
1901                                                 move(TemplateParams));
1902    } else {
1903      ThisDecl = Actions.ActOnCXXMemberDeclarator(getCurScope(), AS,
1904                                                  DeclaratorInfo,
1905                                                  move(TemplateParams),
1906                                                  BitfieldSize.release(),
1907                                                  VS, HasDeferredInitializer);
1908      if (AccessAttrs)
1909        Actions.ProcessDeclAttributeList(getCurScope(), ThisDecl, AccessAttrs,
1910                                         false, true);
1911    }
1912
1913    // Set the Decl for any late parsed attributes
1914    for (unsigned i = 0, ni = LateParsedAttrs.size(); i < ni; ++i) {
1915      LateParsedAttrs[i]->setDecl(ThisDecl);
1916    }
1917    LateParsedAttrs.clear();
1918
1919    // Handle the initializer.
1920    if (HasDeferredInitializer) {
1921      // The initializer was deferred; parse it and cache the tokens.
1922      Diag(Tok, getLang().CPlusPlus0x ?
1923           diag::warn_cxx98_compat_nonstatic_member_init :
1924           diag::ext_nonstatic_member_init);
1925
1926      if (DeclaratorInfo.isArrayOfUnknownBound()) {
1927        // C++0x [dcl.array]p3: An array bound may also be omitted when the
1928        // declarator is followed by an initializer.
1929        //
1930        // A brace-or-equal-initializer for a member-declarator is not an
1931        // initializer in the gramamr, so this is ill-formed.
1932        Diag(Tok, diag::err_incomplete_array_member_init);
1933        SkipUntil(tok::comma, true, true);
1934        // Avoid later warnings about a class member of incomplete type.
1935        ThisDecl->setInvalidDecl();
1936      } else
1937        ParseCXXNonStaticMemberInitializer(ThisDecl);
1938    } else if (HasInitializer) {
1939      // Normal initializer.
1940      if (!Init.isUsable())
1941        Init = ParseCXXMemberInitializer(
1942                 DeclaratorInfo.isDeclarationOfFunction(), EqualLoc);
1943
1944      if (Init.isInvalid())
1945        SkipUntil(tok::comma, true, true);
1946      else if (ThisDecl)
1947        Actions.AddInitializerToDecl(ThisDecl, Init.get(), false,
1948                                   DS.getTypeSpecType() == DeclSpec::TST_auto);
1949    } else if (ThisDecl && DS.getStorageClassSpec() == DeclSpec::SCS_static) {
1950      // No initializer.
1951      Actions.ActOnUninitializedDecl(ThisDecl,
1952                                   DS.getTypeSpecType() == DeclSpec::TST_auto);
1953    }
1954
1955    if (ThisDecl) {
1956      Actions.FinalizeDeclaration(ThisDecl);
1957      DeclsInGroup.push_back(ThisDecl);
1958    }
1959
1960    if (DeclaratorInfo.isFunctionDeclarator() &&
1961        DeclaratorInfo.getDeclSpec().getStorageClassSpec()
1962          != DeclSpec::SCS_typedef) {
1963      HandleMemberFunctionDefaultArgs(DeclaratorInfo, ThisDecl);
1964    }
1965
1966    DeclaratorInfo.complete(ThisDecl);
1967
1968    // If we don't have a comma, it is either the end of the list (a ';')
1969    // or an error, bail out.
1970    if (Tok.isNot(tok::comma))
1971      break;
1972
1973    // Consume the comma.
1974    ConsumeToken();
1975
1976    // Parse the next declarator.
1977    DeclaratorInfo.clear();
1978    VS.clear();
1979    BitfieldSize = true;
1980    Init = true;
1981    HasInitializer = false;
1982
1983    // Attributes are only allowed on the second declarator.
1984    MaybeParseGNUAttributes(DeclaratorInfo);
1985
1986    if (Tok.isNot(tok::colon))
1987      ParseDeclarator(DeclaratorInfo);
1988  }
1989
1990  if (ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list)) {
1991    // Skip to end of block or statement.
1992    SkipUntil(tok::r_brace, true, true);
1993    // If we stopped at a ';', eat it.
1994    if (Tok.is(tok::semi)) ConsumeToken();
1995    return;
1996  }
1997
1998  Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup.data(),
1999                                  DeclsInGroup.size());
2000}
2001
2002/// ParseCXXMemberInitializer - Parse the brace-or-equal-initializer or
2003/// pure-specifier. Also detect and reject any attempted defaulted/deleted
2004/// function definition. The location of the '=', if any, will be placed in
2005/// EqualLoc.
2006///
2007///   pure-specifier:
2008///     '= 0'
2009///
2010///   brace-or-equal-initializer:
2011///     '=' initializer-expression
2012///     braced-init-list                       [TODO]
2013///
2014///   initializer-clause:
2015///     assignment-expression
2016///     braced-init-list                       [TODO]
2017///
2018///   defaulted/deleted function-definition:
2019///     '=' 'default'
2020///     '=' 'delete'
2021///
2022/// Prior to C++0x, the assignment-expression in an initializer-clause must
2023/// be a constant-expression.
2024ExprResult Parser::ParseCXXMemberInitializer(bool IsFunction,
2025                                             SourceLocation &EqualLoc) {
2026  assert((Tok.is(tok::equal) || Tok.is(tok::l_brace))
2027         && "Data member initializer not starting with '=' or '{'");
2028
2029  if (Tok.is(tok::equal)) {
2030    EqualLoc = ConsumeToken();
2031    if (Tok.is(tok::kw_delete)) {
2032      // In principle, an initializer of '= delete p;' is legal, but it will
2033      // never type-check. It's better to diagnose it as an ill-formed expression
2034      // than as an ill-formed deleted non-function member.
2035      // An initializer of '= delete p, foo' will never be parsed, because
2036      // a top-level comma always ends the initializer expression.
2037      const Token &Next = NextToken();
2038      if (IsFunction || Next.is(tok::semi) || Next.is(tok::comma) ||
2039           Next.is(tok::eof)) {
2040        if (IsFunction)
2041          Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2042            << 1 /* delete */;
2043        else
2044          Diag(ConsumeToken(), diag::err_deleted_non_function);
2045        return ExprResult();
2046      }
2047    } else if (Tok.is(tok::kw_default)) {
2048      if (IsFunction)
2049        Diag(Tok, diag::err_default_delete_in_multiple_declaration)
2050          << 0 /* default */;
2051      else
2052        Diag(ConsumeToken(), diag::err_default_special_members);
2053      return ExprResult();
2054    }
2055
2056    return ParseInitializer();
2057  } else
2058    return ExprError(Diag(Tok, diag::err_generalized_initializer_lists));
2059}
2060
2061/// ParseCXXMemberSpecification - Parse the class definition.
2062///
2063///       member-specification:
2064///         member-declaration member-specification[opt]
2065///         access-specifier ':' member-specification[opt]
2066///
2067void Parser::ParseCXXMemberSpecification(SourceLocation RecordLoc,
2068                                         unsigned TagType, Decl *TagDecl) {
2069  assert((TagType == DeclSpec::TST_struct ||
2070         TagType == DeclSpec::TST_union  ||
2071         TagType == DeclSpec::TST_class) && "Invalid TagType!");
2072
2073  PrettyDeclStackTraceEntry CrashInfo(Actions, TagDecl, RecordLoc,
2074                                      "parsing struct/union/class body");
2075
2076  // Determine whether this is a non-nested class. Note that local
2077  // classes are *not* considered to be nested classes.
2078  bool NonNestedClass = true;
2079  if (!ClassStack.empty()) {
2080    for (const Scope *S = getCurScope(); S; S = S->getParent()) {
2081      if (S->isClassScope()) {
2082        // We're inside a class scope, so this is a nested class.
2083        NonNestedClass = false;
2084        break;
2085      }
2086
2087      if ((S->getFlags() & Scope::FnScope)) {
2088        // If we're in a function or function template declared in the
2089        // body of a class, then this is a local class rather than a
2090        // nested class.
2091        const Scope *Parent = S->getParent();
2092        if (Parent->isTemplateParamScope())
2093          Parent = Parent->getParent();
2094        if (Parent->isClassScope())
2095          break;
2096      }
2097    }
2098  }
2099
2100  // Enter a scope for the class.
2101  ParseScope ClassScope(this, Scope::ClassScope|Scope::DeclScope);
2102
2103  // Note that we are parsing a new (potentially-nested) class definition.
2104  ParsingClassDefinition ParsingDef(*this, TagDecl, NonNestedClass);
2105
2106  if (TagDecl)
2107    Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
2108
2109  SourceLocation FinalLoc;
2110
2111  // Parse the optional 'final' keyword.
2112  if (getLang().CPlusPlus && Tok.is(tok::identifier)) {
2113    assert(isCXX0XFinalKeyword() && "not a class definition");
2114    FinalLoc = ConsumeToken();
2115
2116    Diag(FinalLoc, getLang().CPlusPlus0x ?
2117         diag::warn_cxx98_compat_override_control_keyword :
2118         diag::ext_override_control_keyword) << "final";
2119  }
2120
2121  if (Tok.is(tok::colon)) {
2122    ParseBaseClause(TagDecl);
2123
2124    if (!Tok.is(tok::l_brace)) {
2125      Diag(Tok, diag::err_expected_lbrace_after_base_specifiers);
2126
2127      if (TagDecl)
2128        Actions.ActOnTagDefinitionError(getCurScope(), TagDecl);
2129      return;
2130    }
2131  }
2132
2133  assert(Tok.is(tok::l_brace));
2134  BalancedDelimiterTracker T(*this, tok::l_brace);
2135  T.consumeOpen();
2136
2137  if (TagDecl)
2138    Actions.ActOnStartCXXMemberDeclarations(getCurScope(), TagDecl, FinalLoc,
2139                                            T.getOpenLocation());
2140
2141  // C++ 11p3: Members of a class defined with the keyword class are private
2142  // by default. Members of a class defined with the keywords struct or union
2143  // are public by default.
2144  AccessSpecifier CurAS;
2145  if (TagType == DeclSpec::TST_class)
2146    CurAS = AS_private;
2147  else
2148    CurAS = AS_public;
2149  ParsedAttributes AccessAttrs(AttrFactory);
2150
2151  if (TagDecl) {
2152    // While we still have something to read, read the member-declarations.
2153    while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2154      // Each iteration of this loop reads one member-declaration.
2155
2156      if (getLang().MicrosoftExt && (Tok.is(tok::kw___if_exists) ||
2157          Tok.is(tok::kw___if_not_exists))) {
2158        ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
2159        continue;
2160      }
2161
2162      // Check for extraneous top-level semicolon.
2163      if (Tok.is(tok::semi)) {
2164        Diag(Tok, diag::ext_extra_struct_semi)
2165          << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2166          << FixItHint::CreateRemoval(Tok.getLocation());
2167        ConsumeToken();
2168        continue;
2169      }
2170
2171      AccessSpecifier AS = getAccessSpecifierIfPresent();
2172      if (AS != AS_none) {
2173        // Current token is a C++ access specifier.
2174        CurAS = AS;
2175        SourceLocation ASLoc = Tok.getLocation();
2176        unsigned TokLength = Tok.getLength();
2177        ConsumeToken();
2178        AccessAttrs.clear();
2179        MaybeParseGNUAttributes(AccessAttrs);
2180
2181        SourceLocation EndLoc;
2182        if (Tok.is(tok::colon)) {
2183          EndLoc = Tok.getLocation();
2184          ConsumeToken();
2185        } else if (Tok.is(tok::semi)) {
2186          EndLoc = Tok.getLocation();
2187          ConsumeToken();
2188          Diag(EndLoc, diag::err_expected_colon)
2189            << FixItHint::CreateReplacement(EndLoc, ":");
2190        } else {
2191          EndLoc = ASLoc.getLocWithOffset(TokLength);
2192          Diag(EndLoc, diag::err_expected_colon)
2193            << FixItHint::CreateInsertion(EndLoc, ":");
2194        }
2195
2196        if (Actions.ActOnAccessSpecifier(AS, ASLoc, EndLoc,
2197                                         AccessAttrs.getList())) {
2198          // found another attribute than only annotations
2199          AccessAttrs.clear();
2200        }
2201
2202        continue;
2203      }
2204
2205      // FIXME: Make sure we don't have a template here.
2206
2207      // Parse all the comma separated declarators.
2208      ParseCXXClassMemberDeclaration(CurAS, AccessAttrs.getList());
2209    }
2210
2211    T.consumeClose();
2212  } else {
2213    SkipUntil(tok::r_brace, false, false);
2214  }
2215
2216  // If attributes exist after class contents, parse them.
2217  ParsedAttributes attrs(AttrFactory);
2218  MaybeParseGNUAttributes(attrs);
2219
2220  if (TagDecl)
2221    Actions.ActOnFinishCXXMemberSpecification(getCurScope(), RecordLoc, TagDecl,
2222                                              T.getOpenLocation(),
2223                                              T.getCloseLocation(),
2224                                              attrs.getList());
2225
2226  // C++0x [class.mem]p2: Within the class member-specification, the class is
2227  // regarded as complete within function bodies, default arguments, exception-
2228  // specifications, and brace-or-equal-initializers for non-static data
2229  // members (including such things in nested classes).
2230  //
2231  // FIXME: Only function bodies and brace-or-equal-initializers are currently
2232  // handled. Fix the others!
2233  if (TagDecl && NonNestedClass) {
2234    // We are not inside a nested class. This class and its nested classes
2235    // are complete and we can parse the delayed portions of method
2236    // declarations and the lexed inline method definitions, along with any
2237    // delayed attributes.
2238    SourceLocation SavedPrevTokLocation = PrevTokLocation;
2239    ParseLexedAttributes(getCurrentClass());
2240    ParseLexedMethodDeclarations(getCurrentClass());
2241    ParseLexedMemberInitializers(getCurrentClass());
2242    ParseLexedMethodDefs(getCurrentClass());
2243    PrevTokLocation = SavedPrevTokLocation;
2244  }
2245
2246  if (TagDecl)
2247    Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl,
2248                                     T.getCloseLocation());
2249
2250  // Leave the class scope.
2251  ParsingDef.Pop();
2252  ClassScope.Exit();
2253}
2254
2255/// ParseConstructorInitializer - Parse a C++ constructor initializer,
2256/// which explicitly initializes the members or base classes of a
2257/// class (C++ [class.base.init]). For example, the three initializers
2258/// after the ':' in the Derived constructor below:
2259///
2260/// @code
2261/// class Base { };
2262/// class Derived : Base {
2263///   int x;
2264///   float f;
2265/// public:
2266///   Derived(float f) : Base(), x(17), f(f) { }
2267/// };
2268/// @endcode
2269///
2270/// [C++]  ctor-initializer:
2271///          ':' mem-initializer-list
2272///
2273/// [C++]  mem-initializer-list:
2274///          mem-initializer ...[opt]
2275///          mem-initializer ...[opt] , mem-initializer-list
2276void Parser::ParseConstructorInitializer(Decl *ConstructorDecl) {
2277  assert(Tok.is(tok::colon) && "Constructor initializer always starts with ':'");
2278
2279  // Poison the SEH identifiers so they are flagged as illegal in constructor initializers
2280  PoisonSEHIdentifiersRAIIObject PoisonSEHIdentifiers(*this, true);
2281  SourceLocation ColonLoc = ConsumeToken();
2282
2283  SmallVector<CXXCtorInitializer*, 4> MemInitializers;
2284  bool AnyErrors = false;
2285
2286  do {
2287    if (Tok.is(tok::code_completion)) {
2288      Actions.CodeCompleteConstructorInitializer(ConstructorDecl,
2289                                                 MemInitializers.data(),
2290                                                 MemInitializers.size());
2291      return cutOffParsing();
2292    } else {
2293      MemInitResult MemInit = ParseMemInitializer(ConstructorDecl);
2294      if (!MemInit.isInvalid())
2295        MemInitializers.push_back(MemInit.get());
2296      else
2297        AnyErrors = true;
2298    }
2299
2300    if (Tok.is(tok::comma))
2301      ConsumeToken();
2302    else if (Tok.is(tok::l_brace))
2303      break;
2304    // If the next token looks like a base or member initializer, assume that
2305    // we're just missing a comma.
2306    else if (Tok.is(tok::identifier) || Tok.is(tok::coloncolon)) {
2307      SourceLocation Loc = PP.getLocForEndOfToken(PrevTokLocation);
2308      Diag(Loc, diag::err_ctor_init_missing_comma)
2309        << FixItHint::CreateInsertion(Loc, ", ");
2310    } else {
2311      // Skip over garbage, until we get to '{'.  Don't eat the '{'.
2312      Diag(Tok.getLocation(), diag::err_expected_lbrace_or_comma);
2313      SkipUntil(tok::l_brace, true, true);
2314      break;
2315    }
2316  } while (true);
2317
2318  Actions.ActOnMemInitializers(ConstructorDecl, ColonLoc,
2319                               MemInitializers.data(), MemInitializers.size(),
2320                               AnyErrors);
2321}
2322
2323/// ParseMemInitializer - Parse a C++ member initializer, which is
2324/// part of a constructor initializer that explicitly initializes one
2325/// member or base class (C++ [class.base.init]). See
2326/// ParseConstructorInitializer for an example.
2327///
2328/// [C++] mem-initializer:
2329///         mem-initializer-id '(' expression-list[opt] ')'
2330/// [C++0x] mem-initializer-id braced-init-list
2331///
2332/// [C++] mem-initializer-id:
2333///         '::'[opt] nested-name-specifier[opt] class-name
2334///         identifier
2335Parser::MemInitResult Parser::ParseMemInitializer(Decl *ConstructorDecl) {
2336  // parse '::'[opt] nested-name-specifier[opt]
2337  CXXScopeSpec SS;
2338  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
2339  ParsedType TemplateTypeTy;
2340  if (Tok.is(tok::annot_template_id)) {
2341    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2342    if (TemplateId->Kind == TNK_Type_template ||
2343        TemplateId->Kind == TNK_Dependent_template_name) {
2344      AnnotateTemplateIdTokenAsType();
2345      assert(Tok.is(tok::annot_typename) && "template-id -> type failed");
2346      TemplateTypeTy = getTypeAnnotation(Tok);
2347    }
2348  }
2349  if (!TemplateTypeTy && Tok.isNot(tok::identifier)) {
2350    Diag(Tok, diag::err_expected_member_or_base_name);
2351    return true;
2352  }
2353
2354  // Get the identifier. This may be a member name or a class name,
2355  // but we'll let the semantic analysis determine which it is.
2356  IdentifierInfo *II = Tok.is(tok::identifier) ? Tok.getIdentifierInfo() : 0;
2357  SourceLocation IdLoc = ConsumeToken();
2358
2359  // Parse the '('.
2360  if (getLang().CPlusPlus0x && Tok.is(tok::l_brace)) {
2361    Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2362
2363    ExprResult InitList = ParseBraceInitializer();
2364    if (InitList.isInvalid())
2365      return true;
2366
2367    SourceLocation EllipsisLoc;
2368    if (Tok.is(tok::ellipsis))
2369      EllipsisLoc = ConsumeToken();
2370
2371    return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
2372                                       TemplateTypeTy, IdLoc, InitList.take(),
2373                                       EllipsisLoc);
2374  } else if(Tok.is(tok::l_paren)) {
2375    BalancedDelimiterTracker T(*this, tok::l_paren);
2376    T.consumeOpen();
2377
2378    // Parse the optional expression-list.
2379    ExprVector ArgExprs(Actions);
2380    CommaLocsTy CommaLocs;
2381    if (Tok.isNot(tok::r_paren) && ParseExpressionList(ArgExprs, CommaLocs)) {
2382      SkipUntil(tok::r_paren);
2383      return true;
2384    }
2385
2386    T.consumeClose();
2387
2388    SourceLocation EllipsisLoc;
2389    if (Tok.is(tok::ellipsis))
2390      EllipsisLoc = ConsumeToken();
2391
2392    return Actions.ActOnMemInitializer(ConstructorDecl, getCurScope(), SS, II,
2393                                       TemplateTypeTy, IdLoc,
2394                                       T.getOpenLocation(), ArgExprs.take(),
2395                                       ArgExprs.size(), T.getCloseLocation(),
2396                                       EllipsisLoc);
2397  }
2398
2399  Diag(Tok, getLang().CPlusPlus0x ? diag::err_expected_lparen_or_lbrace
2400                                  : diag::err_expected_lparen);
2401  return true;
2402}
2403
2404/// \brief Parse a C++ exception-specification if present (C++0x [except.spec]).
2405///
2406///       exception-specification:
2407///         dynamic-exception-specification
2408///         noexcept-specification
2409///
2410///       noexcept-specification:
2411///         'noexcept'
2412///         'noexcept' '(' constant-expression ')'
2413ExceptionSpecificationType
2414Parser::MaybeParseExceptionSpecification(SourceRange &SpecificationRange,
2415                    SmallVectorImpl<ParsedType> &DynamicExceptions,
2416                    SmallVectorImpl<SourceRange> &DynamicExceptionRanges,
2417                    ExprResult &NoexceptExpr) {
2418  ExceptionSpecificationType Result = EST_None;
2419
2420  // See if there's a dynamic specification.
2421  if (Tok.is(tok::kw_throw)) {
2422    Result = ParseDynamicExceptionSpecification(SpecificationRange,
2423                                                DynamicExceptions,
2424                                                DynamicExceptionRanges);
2425    assert(DynamicExceptions.size() == DynamicExceptionRanges.size() &&
2426           "Produced different number of exception types and ranges.");
2427  }
2428
2429  // If there's no noexcept specification, we're done.
2430  if (Tok.isNot(tok::kw_noexcept))
2431    return Result;
2432
2433  Diag(Tok, diag::warn_cxx98_compat_noexcept_decl);
2434
2435  // If we already had a dynamic specification, parse the noexcept for,
2436  // recovery, but emit a diagnostic and don't store the results.
2437  SourceRange NoexceptRange;
2438  ExceptionSpecificationType NoexceptType = EST_None;
2439
2440  SourceLocation KeywordLoc = ConsumeToken();
2441  if (Tok.is(tok::l_paren)) {
2442    // There is an argument.
2443    BalancedDelimiterTracker T(*this, tok::l_paren);
2444    T.consumeOpen();
2445    NoexceptType = EST_ComputedNoexcept;
2446    NoexceptExpr = ParseConstantExpression();
2447    // The argument must be contextually convertible to bool. We use
2448    // ActOnBooleanCondition for this purpose.
2449    if (!NoexceptExpr.isInvalid())
2450      NoexceptExpr = Actions.ActOnBooleanCondition(getCurScope(), KeywordLoc,
2451                                                   NoexceptExpr.get());
2452    T.consumeClose();
2453    NoexceptRange = SourceRange(KeywordLoc, T.getCloseLocation());
2454  } else {
2455    // There is no argument.
2456    NoexceptType = EST_BasicNoexcept;
2457    NoexceptRange = SourceRange(KeywordLoc, KeywordLoc);
2458  }
2459
2460  if (Result == EST_None) {
2461    SpecificationRange = NoexceptRange;
2462    Result = NoexceptType;
2463
2464    // If there's a dynamic specification after a noexcept specification,
2465    // parse that and ignore the results.
2466    if (Tok.is(tok::kw_throw)) {
2467      Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2468      ParseDynamicExceptionSpecification(NoexceptRange, DynamicExceptions,
2469                                         DynamicExceptionRanges);
2470    }
2471  } else {
2472    Diag(Tok.getLocation(), diag::err_dynamic_and_noexcept_specification);
2473  }
2474
2475  return Result;
2476}
2477
2478/// ParseDynamicExceptionSpecification - Parse a C++
2479/// dynamic-exception-specification (C++ [except.spec]).
2480///
2481///       dynamic-exception-specification:
2482///         'throw' '(' type-id-list [opt] ')'
2483/// [MS]    'throw' '(' '...' ')'
2484///
2485///       type-id-list:
2486///         type-id ... [opt]
2487///         type-id-list ',' type-id ... [opt]
2488///
2489ExceptionSpecificationType Parser::ParseDynamicExceptionSpecification(
2490                                  SourceRange &SpecificationRange,
2491                                  SmallVectorImpl<ParsedType> &Exceptions,
2492                                  SmallVectorImpl<SourceRange> &Ranges) {
2493  assert(Tok.is(tok::kw_throw) && "expected throw");
2494
2495  SpecificationRange.setBegin(ConsumeToken());
2496  BalancedDelimiterTracker T(*this, tok::l_paren);
2497  if (T.consumeOpen()) {
2498    Diag(Tok, diag::err_expected_lparen_after) << "throw";
2499    SpecificationRange.setEnd(SpecificationRange.getBegin());
2500    return EST_DynamicNone;
2501  }
2502
2503  // Parse throw(...), a Microsoft extension that means "this function
2504  // can throw anything".
2505  if (Tok.is(tok::ellipsis)) {
2506    SourceLocation EllipsisLoc = ConsumeToken();
2507    if (!getLang().MicrosoftExt)
2508      Diag(EllipsisLoc, diag::ext_ellipsis_exception_spec);
2509    T.consumeClose();
2510    SpecificationRange.setEnd(T.getCloseLocation());
2511    return EST_MSAny;
2512  }
2513
2514  // Parse the sequence of type-ids.
2515  SourceRange Range;
2516  while (Tok.isNot(tok::r_paren)) {
2517    TypeResult Res(ParseTypeName(&Range));
2518
2519    if (Tok.is(tok::ellipsis)) {
2520      // C++0x [temp.variadic]p5:
2521      //   - In a dynamic-exception-specification (15.4); the pattern is a
2522      //     type-id.
2523      SourceLocation Ellipsis = ConsumeToken();
2524      Range.setEnd(Ellipsis);
2525      if (!Res.isInvalid())
2526        Res = Actions.ActOnPackExpansion(Res.get(), Ellipsis);
2527    }
2528
2529    if (!Res.isInvalid()) {
2530      Exceptions.push_back(Res.get());
2531      Ranges.push_back(Range);
2532    }
2533
2534    if (Tok.is(tok::comma))
2535      ConsumeToken();
2536    else
2537      break;
2538  }
2539
2540  T.consumeClose();
2541  SpecificationRange.setEnd(T.getCloseLocation());
2542  return Exceptions.empty() ? EST_DynamicNone : EST_Dynamic;
2543}
2544
2545/// ParseTrailingReturnType - Parse a trailing return type on a new-style
2546/// function declaration.
2547TypeResult Parser::ParseTrailingReturnType(SourceRange &Range) {
2548  assert(Tok.is(tok::arrow) && "expected arrow");
2549
2550  ConsumeToken();
2551
2552  // FIXME: Need to suppress declarations when parsing this typename.
2553  // Otherwise in this function definition:
2554  //
2555  //   auto f() -> struct X {}
2556  //
2557  // struct X is parsed as class definition because of the trailing
2558  // brace.
2559  return ParseTypeName(&Range);
2560}
2561
2562/// \brief We have just started parsing the definition of a new class,
2563/// so push that class onto our stack of classes that is currently
2564/// being parsed.
2565Sema::ParsingClassState
2566Parser::PushParsingClass(Decl *ClassDecl, bool NonNestedClass) {
2567  assert((NonNestedClass || !ClassStack.empty()) &&
2568         "Nested class without outer class");
2569  ClassStack.push(new ParsingClass(ClassDecl, NonNestedClass));
2570  return Actions.PushParsingClass();
2571}
2572
2573/// \brief Deallocate the given parsed class and all of its nested
2574/// classes.
2575void Parser::DeallocateParsedClasses(Parser::ParsingClass *Class) {
2576  for (unsigned I = 0, N = Class->LateParsedDeclarations.size(); I != N; ++I)
2577    delete Class->LateParsedDeclarations[I];
2578  delete Class;
2579}
2580
2581/// \brief Pop the top class of the stack of classes that are
2582/// currently being parsed.
2583///
2584/// This routine should be called when we have finished parsing the
2585/// definition of a class, but have not yet popped the Scope
2586/// associated with the class's definition.
2587///
2588/// \returns true if the class we've popped is a top-level class,
2589/// false otherwise.
2590void Parser::PopParsingClass(Sema::ParsingClassState state) {
2591  assert(!ClassStack.empty() && "Mismatched push/pop for class parsing");
2592
2593  Actions.PopParsingClass(state);
2594
2595  ParsingClass *Victim = ClassStack.top();
2596  ClassStack.pop();
2597  if (Victim->TopLevelClass) {
2598    // Deallocate all of the nested classes of this class,
2599    // recursively: we don't need to keep any of this information.
2600    DeallocateParsedClasses(Victim);
2601    return;
2602  }
2603  assert(!ClassStack.empty() && "Missing top-level class?");
2604
2605  if (Victim->LateParsedDeclarations.empty()) {
2606    // The victim is a nested class, but we will not need to perform
2607    // any processing after the definition of this class since it has
2608    // no members whose handling was delayed. Therefore, we can just
2609    // remove this nested class.
2610    DeallocateParsedClasses(Victim);
2611    return;
2612  }
2613
2614  // This nested class has some members that will need to be processed
2615  // after the top-level class is completely defined. Therefore, add
2616  // it to the list of nested classes within its parent.
2617  assert(getCurScope()->isClassScope() && "Nested class outside of class scope?");
2618  ClassStack.top()->LateParsedDeclarations.push_back(new LateParsedClass(this, Victim));
2619  Victim->TemplateScope = getCurScope()->getParent()->isTemplateParamScope();
2620}
2621
2622/// ParseCXX0XAttributeSpecifier - Parse a C++0x attribute-specifier. Currently
2623/// only parses standard attributes.
2624///
2625/// [C++0x] attribute-specifier:
2626///         '[' '[' attribute-list ']' ']'
2627///         alignment-specifier
2628///
2629/// [C++0x] attribute-list:
2630///         attribute[opt]
2631///         attribute-list ',' attribute[opt]
2632///
2633/// [C++0x] attribute:
2634///         attribute-token attribute-argument-clause[opt]
2635///
2636/// [C++0x] attribute-token:
2637///         identifier
2638///         attribute-scoped-token
2639///
2640/// [C++0x] attribute-scoped-token:
2641///         attribute-namespace '::' identifier
2642///
2643/// [C++0x] attribute-namespace:
2644///         identifier
2645///
2646/// [C++0x] attribute-argument-clause:
2647///         '(' balanced-token-seq ')'
2648///
2649/// [C++0x] balanced-token-seq:
2650///         balanced-token
2651///         balanced-token-seq balanced-token
2652///
2653/// [C++0x] balanced-token:
2654///         '(' balanced-token-seq ')'
2655///         '[' balanced-token-seq ']'
2656///         '{' balanced-token-seq '}'
2657///         any token but '(', ')', '[', ']', '{', or '}'
2658void Parser::ParseCXX0XAttributeSpecifier(ParsedAttributes &attrs,
2659                                          SourceLocation *endLoc) {
2660  if (Tok.is(tok::kw_alignas)) {
2661    Diag(Tok.getLocation(), diag::warn_cxx98_compat_alignas);
2662    ParseAlignmentSpecifier(attrs, endLoc);
2663    return;
2664  }
2665
2666  assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)
2667      && "Not a C++0x attribute list");
2668
2669  Diag(Tok.getLocation(), diag::warn_cxx98_compat_attribute);
2670
2671  ConsumeBracket();
2672  ConsumeBracket();
2673
2674  if (Tok.is(tok::comma)) {
2675    Diag(Tok.getLocation(), diag::err_expected_ident);
2676    ConsumeToken();
2677  }
2678
2679  while (Tok.is(tok::identifier) || Tok.is(tok::comma)) {
2680    // attribute not present
2681    if (Tok.is(tok::comma)) {
2682      ConsumeToken();
2683      continue;
2684    }
2685
2686    IdentifierInfo *ScopeName = 0, *AttrName = Tok.getIdentifierInfo();
2687    SourceLocation ScopeLoc, AttrLoc = ConsumeToken();
2688
2689    // scoped attribute
2690    if (Tok.is(tok::coloncolon)) {
2691      ConsumeToken();
2692
2693      if (!Tok.is(tok::identifier)) {
2694        Diag(Tok.getLocation(), diag::err_expected_ident);
2695        SkipUntil(tok::r_square, tok::comma, true, true);
2696        continue;
2697      }
2698
2699      ScopeName = AttrName;
2700      ScopeLoc = AttrLoc;
2701
2702      AttrName = Tok.getIdentifierInfo();
2703      AttrLoc = ConsumeToken();
2704    }
2705
2706    bool AttrParsed = false;
2707    // No scoped names are supported; ideally we could put all non-standard
2708    // attributes into namespaces.
2709    if (!ScopeName) {
2710      switch(AttributeList::getKind(AttrName))
2711      {
2712      // No arguments
2713      case AttributeList::AT_carries_dependency:
2714      case AttributeList::AT_noreturn: {
2715        if (Tok.is(tok::l_paren)) {
2716          Diag(Tok.getLocation(), diag::err_cxx0x_attribute_forbids_arguments)
2717            << AttrName->getName();
2718          break;
2719        }
2720
2721        attrs.addNew(AttrName, AttrLoc, 0, AttrLoc, 0,
2722                     SourceLocation(), 0, 0, false, true);
2723        AttrParsed = true;
2724        break;
2725      }
2726
2727      // Silence warnings
2728      default: break;
2729      }
2730    }
2731
2732    // Skip the entire parameter clause, if any
2733    if (!AttrParsed && Tok.is(tok::l_paren)) {
2734      ConsumeParen();
2735      // SkipUntil maintains the balancedness of tokens.
2736      SkipUntil(tok::r_paren, false);
2737    }
2738  }
2739
2740  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2741    SkipUntil(tok::r_square, false);
2742  if (endLoc)
2743    *endLoc = Tok.getLocation();
2744  if (ExpectAndConsume(tok::r_square, diag::err_expected_rsquare))
2745    SkipUntil(tok::r_square, false);
2746}
2747
2748/// ParseCXX0XAttributes - Parse a C++0x attribute-specifier-seq.
2749///
2750/// attribute-specifier-seq:
2751///       attribute-specifier-seq[opt] attribute-specifier
2752void Parser::ParseCXX0XAttributes(ParsedAttributesWithRange &attrs,
2753                                  SourceLocation *endLoc) {
2754  SourceLocation StartLoc = Tok.getLocation(), Loc;
2755  if (!endLoc)
2756    endLoc = &Loc;
2757
2758  do {
2759    ParseCXX0XAttributeSpecifier(attrs, endLoc);
2760  } while (isCXX0XAttributeSpecifier());
2761
2762  attrs.Range = SourceRange(StartLoc, *endLoc);
2763}
2764
2765/// ParseMicrosoftAttributes - Parse a Microsoft attribute [Attr]
2766///
2767/// [MS] ms-attribute:
2768///             '[' token-seq ']'
2769///
2770/// [MS] ms-attribute-seq:
2771///             ms-attribute[opt]
2772///             ms-attribute ms-attribute-seq
2773void Parser::ParseMicrosoftAttributes(ParsedAttributes &attrs,
2774                                      SourceLocation *endLoc) {
2775  assert(Tok.is(tok::l_square) && "Not a Microsoft attribute list");
2776
2777  while (Tok.is(tok::l_square)) {
2778    ConsumeBracket();
2779    SkipUntil(tok::r_square, true, true);
2780    if (endLoc) *endLoc = Tok.getLocation();
2781    ExpectAndConsume(tok::r_square, diag::err_expected_rsquare);
2782  }
2783}
2784
2785void Parser::ParseMicrosoftIfExistsClassDeclaration(DeclSpec::TST TagType,
2786                                                    AccessSpecifier& CurAS) {
2787  IfExistsCondition Result;
2788  if (ParseMicrosoftIfExistsCondition(Result))
2789    return;
2790
2791  BalancedDelimiterTracker Braces(*this, tok::l_brace);
2792  if (Braces.consumeOpen()) {
2793    Diag(Tok, diag::err_expected_lbrace);
2794    return;
2795  }
2796
2797  switch (Result.Behavior) {
2798  case IEB_Parse:
2799    // Parse the declarations below.
2800    break;
2801
2802  case IEB_Dependent:
2803    Diag(Result.KeywordLoc, diag::warn_microsoft_dependent_exists)
2804      << Result.IsIfExists;
2805    // Fall through to skip.
2806
2807  case IEB_Skip:
2808    Braces.skipToEnd();
2809    return;
2810  }
2811
2812  while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
2813    // __if_exists, __if_not_exists can nest.
2814    if ((Tok.is(tok::kw___if_exists) || Tok.is(tok::kw___if_not_exists))) {
2815      ParseMicrosoftIfExistsClassDeclaration((DeclSpec::TST)TagType, CurAS);
2816      continue;
2817    }
2818
2819    // Check for extraneous top-level semicolon.
2820    if (Tok.is(tok::semi)) {
2821      Diag(Tok, diag::ext_extra_struct_semi)
2822        << DeclSpec::getSpecifierName((DeclSpec::TST)TagType)
2823        << FixItHint::CreateRemoval(Tok.getLocation());
2824      ConsumeToken();
2825      continue;
2826    }
2827
2828    AccessSpecifier AS = getAccessSpecifierIfPresent();
2829    if (AS != AS_none) {
2830      // Current token is a C++ access specifier.
2831      CurAS = AS;
2832      SourceLocation ASLoc = Tok.getLocation();
2833      ConsumeToken();
2834      if (Tok.is(tok::colon))
2835        Actions.ActOnAccessSpecifier(AS, ASLoc, Tok.getLocation());
2836      else
2837        Diag(Tok, diag::err_expected_colon);
2838      ConsumeToken();
2839      continue;
2840    }
2841
2842    // Parse all the comma separated declarators.
2843    ParseCXXClassMemberDeclaration(CurAS, 0);
2844  }
2845
2846  Braces.consumeClose();
2847}
2848