ParseExprCXX.cpp revision 2edf0a2520313cde900799b1eb9bd11c9c776afe
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Basic/PrettyStackTrace.h"
18#include "clang/Lex/LiteralSupport.h"
19#include "clang/Sema/DeclSpec.h"
20#include "clang/Sema/Scope.h"
21#include "clang/Sema/ParsedTemplate.h"
22#include "llvm/Support/ErrorHandling.h"
23
24using namespace clang;
25
26static int SelectDigraphErrorMessage(tok::TokenKind Kind) {
27  switch (Kind) {
28    case tok::kw_template:         return 0;
29    case tok::kw_const_cast:       return 1;
30    case tok::kw_dynamic_cast:     return 2;
31    case tok::kw_reinterpret_cast: return 3;
32    case tok::kw_static_cast:      return 4;
33    default:
34      llvm_unreachable("Unknown type for digraph error message.");
35  }
36}
37
38// Are the two tokens adjacent in the same source file?
39bool Parser::areTokensAdjacent(const Token &First, const Token &Second) {
40  SourceManager &SM = PP.getSourceManager();
41  SourceLocation FirstLoc = SM.getSpellingLoc(First.getLocation());
42  SourceLocation FirstEnd = FirstLoc.getLocWithOffset(First.getLength());
43  return FirstEnd == SM.getSpellingLoc(Second.getLocation());
44}
45
46// Suggest fixit for "<::" after a cast.
47static void FixDigraph(Parser &P, Preprocessor &PP, Token &DigraphToken,
48                       Token &ColonToken, tok::TokenKind Kind, bool AtDigraph) {
49  // Pull '<:' and ':' off token stream.
50  if (!AtDigraph)
51    PP.Lex(DigraphToken);
52  PP.Lex(ColonToken);
53
54  SourceRange Range;
55  Range.setBegin(DigraphToken.getLocation());
56  Range.setEnd(ColonToken.getLocation());
57  P.Diag(DigraphToken.getLocation(), diag::err_missing_whitespace_digraph)
58      << SelectDigraphErrorMessage(Kind)
59      << FixItHint::CreateReplacement(Range, "< ::");
60
61  // Update token information to reflect their change in token type.
62  ColonToken.setKind(tok::coloncolon);
63  ColonToken.setLocation(ColonToken.getLocation().getLocWithOffset(-1));
64  ColonToken.setLength(2);
65  DigraphToken.setKind(tok::less);
66  DigraphToken.setLength(1);
67
68  // Push new tokens back to token stream.
69  PP.EnterToken(ColonToken);
70  if (!AtDigraph)
71    PP.EnterToken(DigraphToken);
72}
73
74// Check for '<::' which should be '< ::' instead of '[:' when following
75// a template name.
76void Parser::CheckForTemplateAndDigraph(Token &Next, ParsedType ObjectType,
77                                        bool EnteringContext,
78                                        IdentifierInfo &II, CXXScopeSpec &SS) {
79  if (!Next.is(tok::l_square) || Next.getLength() != 2)
80    return;
81
82  Token SecondToken = GetLookAheadToken(2);
83  if (!SecondToken.is(tok::colon) || !areTokensAdjacent(Next, SecondToken))
84    return;
85
86  TemplateTy Template;
87  UnqualifiedId TemplateName;
88  TemplateName.setIdentifier(&II, Tok.getLocation());
89  bool MemberOfUnknownSpecialization;
90  if (!Actions.isTemplateName(getCurScope(), SS, /*hasTemplateKeyword=*/false,
91                              TemplateName, ObjectType, EnteringContext,
92                              Template, MemberOfUnknownSpecialization))
93    return;
94
95  FixDigraph(*this, PP, Next, SecondToken, tok::kw_template,
96             /*AtDigraph*/false);
97}
98
99/// \brief Parse global scope or nested-name-specifier if present.
100///
101/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
102/// may be preceded by '::'). Note that this routine will not parse ::new or
103/// ::delete; it will just leave them in the token stream.
104///
105///       '::'[opt] nested-name-specifier
106///       '::'
107///
108///       nested-name-specifier:
109///         type-name '::'
110///         namespace-name '::'
111///         nested-name-specifier identifier '::'
112///         nested-name-specifier 'template'[opt] simple-template-id '::'
113///
114///
115/// \param SS the scope specifier that will be set to the parsed
116/// nested-name-specifier (or empty)
117///
118/// \param ObjectType if this nested-name-specifier is being parsed following
119/// the "." or "->" of a member access expression, this parameter provides the
120/// type of the object whose members are being accessed.
121///
122/// \param EnteringContext whether we will be entering into the context of
123/// the nested-name-specifier after parsing it.
124///
125/// \param MayBePseudoDestructor When non-NULL, points to a flag that
126/// indicates whether this nested-name-specifier may be part of a
127/// pseudo-destructor name. In this case, the flag will be set false
128/// if we don't actually end up parsing a destructor name. Moreorover,
129/// if we do end up determining that we are parsing a destructor name,
130/// the last component of the nested-name-specifier is not parsed as
131/// part of the scope specifier.
132
133/// member access expression, e.g., the \p T:: in \p p->T::m.
134///
135/// \returns true if there was an error parsing a scope specifier
136bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
137                                            ParsedType ObjectType,
138                                            bool EnteringContext,
139                                            bool *MayBePseudoDestructor,
140                                            bool IsTypename) {
141  assert(getLangOpts().CPlusPlus &&
142         "Call sites of this function should be guarded by checking for C++");
143
144  if (Tok.is(tok::annot_cxxscope)) {
145    Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
146                                                 Tok.getAnnotationRange(),
147                                                 SS);
148    ConsumeToken();
149    return false;
150  }
151
152  bool HasScopeSpecifier = false;
153
154  if (Tok.is(tok::coloncolon)) {
155    // ::new and ::delete aren't nested-name-specifiers.
156    tok::TokenKind NextKind = NextToken().getKind();
157    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
158      return false;
159
160    // '::' - Global scope qualifier.
161    if (Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), ConsumeToken(), SS))
162      return true;
163
164    HasScopeSpecifier = true;
165  }
166
167  bool CheckForDestructor = false;
168  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
169    CheckForDestructor = true;
170    *MayBePseudoDestructor = false;
171  }
172
173  if (Tok.is(tok::kw_decltype) || Tok.is(tok::annot_decltype)) {
174    DeclSpec DS(AttrFactory);
175    SourceLocation DeclLoc = Tok.getLocation();
176    SourceLocation EndLoc  = ParseDecltypeSpecifier(DS);
177    if (Tok.isNot(tok::coloncolon)) {
178      AnnotateExistingDecltypeSpecifier(DS, DeclLoc, EndLoc);
179      return false;
180    }
181
182    SourceLocation CCLoc = ConsumeToken();
183    if (Actions.ActOnCXXNestedNameSpecifierDecltype(SS, DS, CCLoc))
184      SS.SetInvalid(SourceRange(DeclLoc, CCLoc));
185
186    HasScopeSpecifier = true;
187  }
188
189  while (true) {
190    if (HasScopeSpecifier) {
191      // C++ [basic.lookup.classref]p5:
192      //   If the qualified-id has the form
193      //
194      //       ::class-name-or-namespace-name::...
195      //
196      //   the class-name-or-namespace-name is looked up in global scope as a
197      //   class-name or namespace-name.
198      //
199      // To implement this, we clear out the object type as soon as we've
200      // seen a leading '::' or part of a nested-name-specifier.
201      ObjectType = ParsedType();
202
203      if (Tok.is(tok::code_completion)) {
204        // Code completion for a nested-name-specifier, where the code
205        // code completion token follows the '::'.
206        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
207        // Include code completion token into the range of the scope otherwise
208        // when we try to annotate the scope tokens the dangling code completion
209        // token will cause assertion in
210        // Preprocessor::AnnotatePreviousCachedTokens.
211        SS.setEndLoc(Tok.getLocation());
212        cutOffParsing();
213        return true;
214      }
215    }
216
217    // nested-name-specifier:
218    //   nested-name-specifier 'template'[opt] simple-template-id '::'
219
220    // Parse the optional 'template' keyword, then make sure we have
221    // 'identifier <' after it.
222    if (Tok.is(tok::kw_template)) {
223      // If we don't have a scope specifier or an object type, this isn't a
224      // nested-name-specifier, since they aren't allowed to start with
225      // 'template'.
226      if (!HasScopeSpecifier && !ObjectType)
227        break;
228
229      TentativeParsingAction TPA(*this);
230      SourceLocation TemplateKWLoc = ConsumeToken();
231
232      UnqualifiedId TemplateName;
233      if (Tok.is(tok::identifier)) {
234        // Consume the identifier.
235        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
236        ConsumeToken();
237      } else if (Tok.is(tok::kw_operator)) {
238        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
239                                       TemplateName)) {
240          TPA.Commit();
241          break;
242        }
243
244        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
245            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
246          Diag(TemplateName.getSourceRange().getBegin(),
247               diag::err_id_after_template_in_nested_name_spec)
248            << TemplateName.getSourceRange();
249          TPA.Commit();
250          break;
251        }
252      } else {
253        TPA.Revert();
254        break;
255      }
256
257      // If the next token is not '<', we have a qualified-id that refers
258      // to a template name, such as T::template apply, but is not a
259      // template-id.
260      if (Tok.isNot(tok::less)) {
261        TPA.Revert();
262        break;
263      }
264
265      // Commit to parsing the template-id.
266      TPA.Commit();
267      TemplateTy Template;
268      if (TemplateNameKind TNK
269          = Actions.ActOnDependentTemplateName(getCurScope(),
270                                               SS, TemplateKWLoc, TemplateName,
271                                               ObjectType, EnteringContext,
272                                               Template)) {
273        if (AnnotateTemplateIdToken(Template, TNK, SS, TemplateKWLoc,
274                                    TemplateName, false))
275          return true;
276      } else
277        return true;
278
279      continue;
280    }
281
282    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
283      // We have
284      //
285      //   simple-template-id '::'
286      //
287      // So we need to check whether the simple-template-id is of the
288      // right kind (it should name a type or be dependent), and then
289      // convert it into a type within the nested-name-specifier.
290      TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
291      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
292        *MayBePseudoDestructor = true;
293        return false;
294      }
295
296      // Consume the template-id token.
297      ConsumeToken();
298
299      assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
300      SourceLocation CCLoc = ConsumeToken();
301
302      HasScopeSpecifier = true;
303
304      ASTTemplateArgsPtr TemplateArgsPtr(Actions,
305                                         TemplateId->getTemplateArgs(),
306                                         TemplateId->NumArgs);
307
308      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(),
309                                              SS,
310                                              TemplateId->TemplateKWLoc,
311                                              TemplateId->Template,
312                                              TemplateId->TemplateNameLoc,
313                                              TemplateId->LAngleLoc,
314                                              TemplateArgsPtr,
315                                              TemplateId->RAngleLoc,
316                                              CCLoc,
317                                              EnteringContext)) {
318        SourceLocation StartLoc
319          = SS.getBeginLoc().isValid()? SS.getBeginLoc()
320                                      : TemplateId->TemplateNameLoc;
321        SS.SetInvalid(SourceRange(StartLoc, CCLoc));
322      }
323
324      continue;
325    }
326
327
328    // The rest of the nested-name-specifier possibilities start with
329    // tok::identifier.
330    if (Tok.isNot(tok::identifier))
331      break;
332
333    IdentifierInfo &II = *Tok.getIdentifierInfo();
334
335    // nested-name-specifier:
336    //   type-name '::'
337    //   namespace-name '::'
338    //   nested-name-specifier identifier '::'
339    Token Next = NextToken();
340
341    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
342    // and emit a fixit hint for it.
343    if (Next.is(tok::colon) && !ColonIsSacred) {
344      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II,
345                                            Tok.getLocation(),
346                                            Next.getLocation(), ObjectType,
347                                            EnteringContext) &&
348          // If the token after the colon isn't an identifier, it's still an
349          // error, but they probably meant something else strange so don't
350          // recover like this.
351          PP.LookAhead(1).is(tok::identifier)) {
352        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
353          << FixItHint::CreateReplacement(Next.getLocation(), "::");
354
355        // Recover as if the user wrote '::'.
356        Next.setKind(tok::coloncolon);
357      }
358    }
359
360    if (Next.is(tok::coloncolon)) {
361      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
362          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
363                                                II, ObjectType)) {
364        *MayBePseudoDestructor = true;
365        return false;
366      }
367
368      // We have an identifier followed by a '::'. Lookup this name
369      // as the name in a nested-name-specifier.
370      SourceLocation IdLoc = ConsumeToken();
371      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
372             "NextToken() not working properly!");
373      SourceLocation CCLoc = ConsumeToken();
374
375      HasScopeSpecifier = true;
376      if (Actions.ActOnCXXNestedNameSpecifier(getCurScope(), II, IdLoc, CCLoc,
377                                              ObjectType, EnteringContext, SS))
378        SS.SetInvalid(SourceRange(IdLoc, CCLoc));
379
380      continue;
381    }
382
383    CheckForTemplateAndDigraph(Next, ObjectType, EnteringContext, II, SS);
384
385    // nested-name-specifier:
386    //   type-name '<'
387    if (Next.is(tok::less)) {
388      TemplateTy Template;
389      UnqualifiedId TemplateName;
390      TemplateName.setIdentifier(&II, Tok.getLocation());
391      bool MemberOfUnknownSpecialization;
392      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
393                                              /*hasTemplateKeyword=*/false,
394                                                        TemplateName,
395                                                        ObjectType,
396                                                        EnteringContext,
397                                                        Template,
398                                              MemberOfUnknownSpecialization)) {
399        // We have found a template name, so annotate this token
400        // with a template-id annotation. We do not permit the
401        // template-id to be translated into a type annotation,
402        // because some clients (e.g., the parsing of class template
403        // specializations) still want to see the original template-id
404        // token.
405        ConsumeToken();
406        if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
407                                    TemplateName, false))
408          return true;
409        continue;
410      }
411
412      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
413          (IsTypename || IsTemplateArgumentList(1))) {
414        // We have something like t::getAs<T>, where getAs is a
415        // member of an unknown specialization. However, this will only
416        // parse correctly as a template, so suggest the keyword 'template'
417        // before 'getAs' and treat this as a dependent template name.
418        unsigned DiagID = diag::err_missing_dependent_template_keyword;
419        if (getLangOpts().MicrosoftExt)
420          DiagID = diag::warn_missing_dependent_template_keyword;
421
422        Diag(Tok.getLocation(), DiagID)
423          << II.getName()
424          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
425
426        if (TemplateNameKind TNK
427              = Actions.ActOnDependentTemplateName(getCurScope(),
428                                                   SS, SourceLocation(),
429                                                   TemplateName, ObjectType,
430                                                   EnteringContext, Template)) {
431          // Consume the identifier.
432          ConsumeToken();
433          if (AnnotateTemplateIdToken(Template, TNK, SS, SourceLocation(),
434                                      TemplateName, false))
435            return true;
436        }
437        else
438          return true;
439
440        continue;
441      }
442    }
443
444    // We don't have any tokens that form the beginning of a
445    // nested-name-specifier, so we're done.
446    break;
447  }
448
449  // Even if we didn't see any pieces of a nested-name-specifier, we
450  // still check whether there is a tilde in this position, which
451  // indicates a potential pseudo-destructor.
452  if (CheckForDestructor && Tok.is(tok::tilde))
453    *MayBePseudoDestructor = true;
454
455  return false;
456}
457
458/// ParseCXXIdExpression - Handle id-expression.
459///
460///       id-expression:
461///         unqualified-id
462///         qualified-id
463///
464///       qualified-id:
465///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
466///         '::' identifier
467///         '::' operator-function-id
468///         '::' template-id
469///
470/// NOTE: The standard specifies that, for qualified-id, the parser does not
471/// expect:
472///
473///   '::' conversion-function-id
474///   '::' '~' class-name
475///
476/// This may cause a slight inconsistency on diagnostics:
477///
478/// class C {};
479/// namespace A {}
480/// void f() {
481///   :: A :: ~ C(); // Some Sema error about using destructor with a
482///                  // namespace.
483///   :: ~ C(); // Some Parser error like 'unexpected ~'.
484/// }
485///
486/// We simplify the parser a bit and make it work like:
487///
488///       qualified-id:
489///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
490///         '::' unqualified-id
491///
492/// That way Sema can handle and report similar errors for namespaces and the
493/// global scope.
494///
495/// The isAddressOfOperand parameter indicates that this id-expression is a
496/// direct operand of the address-of operator. This is, besides member contexts,
497/// the only place where a qualified-id naming a non-static class member may
498/// appear.
499///
500ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
501  // qualified-id:
502  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
503  //   '::' unqualified-id
504  //
505  CXXScopeSpec SS;
506  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), /*EnteringContext=*/false);
507
508  SourceLocation TemplateKWLoc;
509  UnqualifiedId Name;
510  if (ParseUnqualifiedId(SS,
511                         /*EnteringContext=*/false,
512                         /*AllowDestructorName=*/false,
513                         /*AllowConstructorName=*/false,
514                         /*ObjectType=*/ ParsedType(),
515                         TemplateKWLoc,
516                         Name))
517    return ExprError();
518
519  // This is only the direct operand of an & operator if it is not
520  // followed by a postfix-expression suffix.
521  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
522    isAddressOfOperand = false;
523
524  return Actions.ActOnIdExpression(getCurScope(), SS, TemplateKWLoc, Name,
525                                   Tok.is(tok::l_paren), isAddressOfOperand);
526}
527
528/// ParseLambdaExpression - Parse a C++0x lambda expression.
529///
530///       lambda-expression:
531///         lambda-introducer lambda-declarator[opt] compound-statement
532///
533///       lambda-introducer:
534///         '[' lambda-capture[opt] ']'
535///
536///       lambda-capture:
537///         capture-default
538///         capture-list
539///         capture-default ',' capture-list
540///
541///       capture-default:
542///         '&'
543///         '='
544///
545///       capture-list:
546///         capture
547///         capture-list ',' capture
548///
549///       capture:
550///         identifier
551///         '&' identifier
552///         'this'
553///
554///       lambda-declarator:
555///         '(' parameter-declaration-clause ')' attribute-specifier[opt]
556///           'mutable'[opt] exception-specification[opt]
557///           trailing-return-type[opt]
558///
559ExprResult Parser::ParseLambdaExpression() {
560  // Parse lambda-introducer.
561  LambdaIntroducer Intro;
562
563  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
564  if (DiagID) {
565    Diag(Tok, DiagID.getValue());
566    SkipUntil(tok::r_square);
567    SkipUntil(tok::l_brace);
568    SkipUntil(tok::r_brace);
569    return ExprError();
570  }
571
572  return ParseLambdaExpressionAfterIntroducer(Intro);
573}
574
575/// TryParseLambdaExpression - Use lookahead and potentially tentative
576/// parsing to determine if we are looking at a C++0x lambda expression, and parse
577/// it if we are.
578///
579/// If we are not looking at a lambda expression, returns ExprError().
580ExprResult Parser::TryParseLambdaExpression() {
581  assert(getLangOpts().CPlusPlus0x
582         && Tok.is(tok::l_square)
583         && "Not at the start of a possible lambda expression.");
584
585  const Token Next = NextToken(), After = GetLookAheadToken(2);
586
587  // If lookahead indicates this is a lambda...
588  if (Next.is(tok::r_square) ||     // []
589      Next.is(tok::equal) ||        // [=
590      (Next.is(tok::amp) &&         // [&] or [&,
591       (After.is(tok::r_square) ||
592        After.is(tok::comma))) ||
593      (Next.is(tok::identifier) &&  // [identifier]
594       After.is(tok::r_square))) {
595    return ParseLambdaExpression();
596  }
597
598  // If lookahead indicates an ObjC message send...
599  // [identifier identifier
600  if (Next.is(tok::identifier) && After.is(tok::identifier)) {
601    return ExprEmpty();
602  }
603
604  // Here, we're stuck: lambda introducers and Objective-C message sends are
605  // unambiguous, but it requires arbitrary lookhead.  [a,b,c,d,e,f,g] is a
606  // lambda, and [a,b,c,d,e,f,g h] is a Objective-C message send.  Instead of
607  // writing two routines to parse a lambda introducer, just try to parse
608  // a lambda introducer first, and fall back if that fails.
609  // (TryParseLambdaIntroducer never produces any diagnostic output.)
610  LambdaIntroducer Intro;
611  if (TryParseLambdaIntroducer(Intro))
612    return ExprEmpty();
613  return ParseLambdaExpressionAfterIntroducer(Intro);
614}
615
616/// ParseLambdaExpression - Parse a lambda introducer.
617///
618/// Returns a DiagnosticID if it hit something unexpected.
619llvm::Optional<unsigned> Parser::ParseLambdaIntroducer(LambdaIntroducer &Intro){
620  typedef llvm::Optional<unsigned> DiagResult;
621
622  assert(Tok.is(tok::l_square) && "Lambda expressions begin with '['.");
623  BalancedDelimiterTracker T(*this, tok::l_square);
624  T.consumeOpen();
625
626  Intro.Range.setBegin(T.getOpenLocation());
627
628  bool first = true;
629
630  // Parse capture-default.
631  if (Tok.is(tok::amp) &&
632      (NextToken().is(tok::comma) || NextToken().is(tok::r_square))) {
633    Intro.Default = LCD_ByRef;
634    Intro.DefaultLoc = ConsumeToken();
635    first = false;
636  } else if (Tok.is(tok::equal)) {
637    Intro.Default = LCD_ByCopy;
638    Intro.DefaultLoc = ConsumeToken();
639    first = false;
640  }
641
642  while (Tok.isNot(tok::r_square)) {
643    if (!first) {
644      if (Tok.isNot(tok::comma)) {
645        if (Tok.is(tok::code_completion)) {
646          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
647                                               /*AfterAmpersand=*/false);
648          ConsumeCodeCompletionToken();
649          break;
650        }
651
652        return DiagResult(diag::err_expected_comma_or_rsquare);
653      }
654      ConsumeToken();
655    }
656
657    if (Tok.is(tok::code_completion)) {
658      // If we're in Objective-C++ and we have a bare '[', then this is more
659      // likely to be a message receiver.
660      if (getLangOpts().ObjC1 && first)
661        Actions.CodeCompleteObjCMessageReceiver(getCurScope());
662      else
663        Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
664                                             /*AfterAmpersand=*/false);
665      ConsumeCodeCompletionToken();
666      break;
667    }
668
669    first = false;
670
671    // Parse capture.
672    LambdaCaptureKind Kind = LCK_ByCopy;
673    SourceLocation Loc;
674    IdentifierInfo* Id = 0;
675    SourceLocation EllipsisLoc;
676
677    if (Tok.is(tok::kw_this)) {
678      Kind = LCK_This;
679      Loc = ConsumeToken();
680    } else {
681      if (Tok.is(tok::amp)) {
682        Kind = LCK_ByRef;
683        ConsumeToken();
684
685        if (Tok.is(tok::code_completion)) {
686          Actions.CodeCompleteLambdaIntroducer(getCurScope(), Intro,
687                                               /*AfterAmpersand=*/true);
688          ConsumeCodeCompletionToken();
689          break;
690        }
691      }
692
693      if (Tok.is(tok::identifier)) {
694        Id = Tok.getIdentifierInfo();
695        Loc = ConsumeToken();
696
697        if (Tok.is(tok::ellipsis))
698          EllipsisLoc = ConsumeToken();
699      } else if (Tok.is(tok::kw_this)) {
700        // FIXME: If we want to suggest a fixit here, will need to return more
701        // than just DiagnosticID. Perhaps full DiagnosticBuilder that can be
702        // Clear()ed to prevent emission in case of tentative parsing?
703        return DiagResult(diag::err_this_captured_by_reference);
704      } else {
705        return DiagResult(diag::err_expected_capture);
706      }
707    }
708
709    Intro.addCapture(Kind, Loc, Id, EllipsisLoc);
710  }
711
712  T.consumeClose();
713  Intro.Range.setEnd(T.getCloseLocation());
714
715  return DiagResult();
716}
717
718/// TryParseLambdaIntroducer - Tentatively parse a lambda introducer.
719///
720/// Returns true if it hit something unexpected.
721bool Parser::TryParseLambdaIntroducer(LambdaIntroducer &Intro) {
722  TentativeParsingAction PA(*this);
723
724  llvm::Optional<unsigned> DiagID(ParseLambdaIntroducer(Intro));
725
726  if (DiagID) {
727    PA.Revert();
728    return true;
729  }
730
731  PA.Commit();
732  return false;
733}
734
735/// ParseLambdaExpressionAfterIntroducer - Parse the rest of a lambda
736/// expression.
737ExprResult Parser::ParseLambdaExpressionAfterIntroducer(
738                     LambdaIntroducer &Intro) {
739  SourceLocation LambdaBeginLoc = Intro.Range.getBegin();
740  Diag(LambdaBeginLoc, diag::warn_cxx98_compat_lambda);
741
742  PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), LambdaBeginLoc,
743                                "lambda expression parsing");
744
745  // Parse lambda-declarator[opt].
746  DeclSpec DS(AttrFactory);
747  Declarator D(DS, Declarator::LambdaExprContext);
748
749  if (Tok.is(tok::l_paren)) {
750    ParseScope PrototypeScope(this,
751                              Scope::FunctionPrototypeScope |
752                              Scope::DeclScope);
753
754    SourceLocation DeclLoc, DeclEndLoc;
755    BalancedDelimiterTracker T(*this, tok::l_paren);
756    T.consumeOpen();
757    DeclLoc = T.getOpenLocation();
758
759    // Parse parameter-declaration-clause.
760    ParsedAttributes Attr(AttrFactory);
761    llvm::SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
762    SourceLocation EllipsisLoc;
763
764    if (Tok.isNot(tok::r_paren))
765      ParseParameterDeclarationClause(D, Attr, ParamInfo, EllipsisLoc);
766
767    T.consumeClose();
768    DeclEndLoc = T.getCloseLocation();
769
770    // Parse 'mutable'[opt].
771    SourceLocation MutableLoc;
772    if (Tok.is(tok::kw_mutable)) {
773      MutableLoc = ConsumeToken();
774      DeclEndLoc = MutableLoc;
775    }
776
777    // Parse exception-specification[opt].
778    ExceptionSpecificationType ESpecType = EST_None;
779    SourceRange ESpecRange;
780    llvm::SmallVector<ParsedType, 2> DynamicExceptions;
781    llvm::SmallVector<SourceRange, 2> DynamicExceptionRanges;
782    ExprResult NoexceptExpr;
783    ESpecType = tryParseExceptionSpecification(ESpecRange,
784                                               DynamicExceptions,
785                                               DynamicExceptionRanges,
786                                               NoexceptExpr);
787
788    if (ESpecType != EST_None)
789      DeclEndLoc = ESpecRange.getEnd();
790
791    // Parse attribute-specifier[opt].
792    MaybeParseCXX0XAttributes(Attr, &DeclEndLoc);
793
794    // Parse trailing-return-type[opt].
795    TypeResult TrailingReturnType;
796    if (Tok.is(tok::arrow)) {
797      SourceRange Range;
798      TrailingReturnType = ParseTrailingReturnType(Range);
799      if (Range.getEnd().isValid())
800        DeclEndLoc = Range.getEnd();
801    }
802
803    PrototypeScope.Exit();
804
805    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
806                                           /*isVariadic=*/EllipsisLoc.isValid(),
807                                           EllipsisLoc,
808                                           ParamInfo.data(), ParamInfo.size(),
809                                           DS.getTypeQualifiers(),
810                                           /*RefQualifierIsLValueRef=*/true,
811                                           /*RefQualifierLoc=*/SourceLocation(),
812                                         /*ConstQualifierLoc=*/SourceLocation(),
813                                      /*VolatileQualifierLoc=*/SourceLocation(),
814                                           MutableLoc,
815                                           ESpecType, ESpecRange.getBegin(),
816                                           DynamicExceptions.data(),
817                                           DynamicExceptionRanges.data(),
818                                           DynamicExceptions.size(),
819                                           NoexceptExpr.isUsable() ?
820                                             NoexceptExpr.get() : 0,
821                                           DeclLoc, DeclEndLoc, D,
822                                           TrailingReturnType),
823                  Attr, DeclEndLoc);
824  } else if (Tok.is(tok::kw_mutable) || Tok.is(tok::arrow)) {
825    // It's common to forget that one needs '()' before 'mutable' or the
826    // result type. Deal with this.
827    Diag(Tok, diag::err_lambda_missing_parens)
828      << Tok.is(tok::arrow)
829      << FixItHint::CreateInsertion(Tok.getLocation(), "() ");
830    SourceLocation DeclLoc = Tok.getLocation();
831    SourceLocation DeclEndLoc = DeclLoc;
832
833    // Parse 'mutable', if it's there.
834    SourceLocation MutableLoc;
835    if (Tok.is(tok::kw_mutable)) {
836      MutableLoc = ConsumeToken();
837      DeclEndLoc = MutableLoc;
838    }
839
840    // Parse the return type, if there is one.
841    TypeResult TrailingReturnType;
842    if (Tok.is(tok::arrow)) {
843      SourceRange Range;
844      TrailingReturnType = ParseTrailingReturnType(Range);
845      if (Range.getEnd().isValid())
846        DeclEndLoc = Range.getEnd();
847    }
848
849    ParsedAttributes Attr(AttrFactory);
850    D.AddTypeInfo(DeclaratorChunk::getFunction(/*hasProto=*/true,
851                     /*isVariadic=*/false,
852                     /*EllipsisLoc=*/SourceLocation(),
853                     /*Params=*/0, /*NumParams=*/0,
854                     /*TypeQuals=*/0,
855                     /*RefQualifierIsLValueRef=*/true,
856                     /*RefQualifierLoc=*/SourceLocation(),
857                     /*ConstQualifierLoc=*/SourceLocation(),
858                     /*VolatileQualifierLoc=*/SourceLocation(),
859                     MutableLoc,
860                     EST_None,
861                     /*ESpecLoc=*/SourceLocation(),
862                     /*Exceptions=*/0,
863                     /*ExceptionRanges=*/0,
864                     /*NumExceptions=*/0,
865                     /*NoexceptExpr=*/0,
866                     DeclLoc, DeclEndLoc, D,
867                     TrailingReturnType),
868                  Attr, DeclEndLoc);
869  }
870
871
872  // FIXME: Rename BlockScope -> ClosureScope if we decide to continue using
873  // it.
874  unsigned ScopeFlags = Scope::BlockScope | Scope::FnScope | Scope::DeclScope;
875  ParseScope BodyScope(this, ScopeFlags);
876
877  Actions.ActOnStartOfLambdaDefinition(Intro, D, getCurScope());
878
879  // Parse compound-statement.
880  if (!Tok.is(tok::l_brace)) {
881    Diag(Tok, diag::err_expected_lambda_body);
882    Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
883    return ExprError();
884  }
885
886  StmtResult Stmt(ParseCompoundStatementBody());
887  BodyScope.Exit();
888
889  if (!Stmt.isInvalid())
890    return Actions.ActOnLambdaExpr(LambdaBeginLoc, Stmt.take(), getCurScope());
891
892  Actions.ActOnLambdaError(LambdaBeginLoc, getCurScope());
893  return ExprError();
894}
895
896/// ParseCXXCasts - This handles the various ways to cast expressions to another
897/// type.
898///
899///       postfix-expression: [C++ 5.2p1]
900///         'dynamic_cast' '<' type-name '>' '(' expression ')'
901///         'static_cast' '<' type-name '>' '(' expression ')'
902///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
903///         'const_cast' '<' type-name '>' '(' expression ')'
904///
905ExprResult Parser::ParseCXXCasts() {
906  tok::TokenKind Kind = Tok.getKind();
907  const char *CastName = 0;     // For error messages
908
909  switch (Kind) {
910  default: llvm_unreachable("Unknown C++ cast!");
911  case tok::kw_const_cast:       CastName = "const_cast";       break;
912  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
913  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
914  case tok::kw_static_cast:      CastName = "static_cast";      break;
915  }
916
917  SourceLocation OpLoc = ConsumeToken();
918  SourceLocation LAngleBracketLoc = Tok.getLocation();
919
920  // Check for "<::" which is parsed as "[:".  If found, fix token stream,
921  // diagnose error, suggest fix, and recover parsing.
922  Token Next = NextToken();
923  if (Tok.is(tok::l_square) && Tok.getLength() == 2 && Next.is(tok::colon) &&
924      areTokensAdjacent(Tok, Next))
925    FixDigraph(*this, PP, Tok, Next, Kind, /*AtDigraph*/true);
926
927  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
928    return ExprError();
929
930  // Parse the common declaration-specifiers piece.
931  DeclSpec DS(AttrFactory);
932  ParseSpecifierQualifierList(DS);
933
934  // Parse the abstract-declarator, if present.
935  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
936  ParseDeclarator(DeclaratorInfo);
937
938  SourceLocation RAngleBracketLoc = Tok.getLocation();
939
940  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
941    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
942
943  SourceLocation LParenLoc, RParenLoc;
944  BalancedDelimiterTracker T(*this, tok::l_paren);
945
946  if (T.expectAndConsume(diag::err_expected_lparen_after, CastName))
947    return ExprError();
948
949  ExprResult Result = ParseExpression();
950
951  // Match the ')'.
952  T.consumeClose();
953
954  if (!Result.isInvalid() && !DeclaratorInfo.isInvalidType())
955    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
956                                       LAngleBracketLoc, DeclaratorInfo,
957                                       RAngleBracketLoc,
958                                       T.getOpenLocation(), Result.take(),
959                                       T.getCloseLocation());
960
961  return move(Result);
962}
963
964/// ParseCXXTypeid - This handles the C++ typeid expression.
965///
966///       postfix-expression: [C++ 5.2p1]
967///         'typeid' '(' expression ')'
968///         'typeid' '(' type-id ')'
969///
970ExprResult Parser::ParseCXXTypeid() {
971  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
972
973  SourceLocation OpLoc = ConsumeToken();
974  SourceLocation LParenLoc, RParenLoc;
975  BalancedDelimiterTracker T(*this, tok::l_paren);
976
977  // typeid expressions are always parenthesized.
978  if (T.expectAndConsume(diag::err_expected_lparen_after, "typeid"))
979    return ExprError();
980  LParenLoc = T.getOpenLocation();
981
982  ExprResult Result;
983
984  if (isTypeIdInParens()) {
985    TypeResult Ty = ParseTypeName();
986
987    // Match the ')'.
988    T.consumeClose();
989    RParenLoc = T.getCloseLocation();
990    if (Ty.isInvalid() || RParenLoc.isInvalid())
991      return ExprError();
992
993    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
994                                    Ty.get().getAsOpaquePtr(), RParenLoc);
995  } else {
996    // C++0x [expr.typeid]p3:
997    //   When typeid is applied to an expression other than an lvalue of a
998    //   polymorphic class type [...] The expression is an unevaluated
999    //   operand (Clause 5).
1000    //
1001    // Note that we can't tell whether the expression is an lvalue of a
1002    // polymorphic class type until after we've parsed the expression; we
1003    // speculatively assume the subexpression is unevaluated, and fix it up
1004    // later.
1005    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1006    Result = ParseExpression();
1007
1008    // Match the ')'.
1009    if (Result.isInvalid())
1010      SkipUntil(tok::r_paren);
1011    else {
1012      T.consumeClose();
1013      RParenLoc = T.getCloseLocation();
1014      if (RParenLoc.isInvalid())
1015        return ExprError();
1016
1017      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
1018                                      Result.release(), RParenLoc);
1019    }
1020  }
1021
1022  return move(Result);
1023}
1024
1025/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
1026///
1027///         '__uuidof' '(' expression ')'
1028///         '__uuidof' '(' type-id ')'
1029///
1030ExprResult Parser::ParseCXXUuidof() {
1031  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
1032
1033  SourceLocation OpLoc = ConsumeToken();
1034  BalancedDelimiterTracker T(*this, tok::l_paren);
1035
1036  // __uuidof expressions are always parenthesized.
1037  if (T.expectAndConsume(diag::err_expected_lparen_after, "__uuidof"))
1038    return ExprError();
1039
1040  ExprResult Result;
1041
1042  if (isTypeIdInParens()) {
1043    TypeResult Ty = ParseTypeName();
1044
1045    // Match the ')'.
1046    T.consumeClose();
1047
1048    if (Ty.isInvalid())
1049      return ExprError();
1050
1051    Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(), /*isType=*/true,
1052                                    Ty.get().getAsOpaquePtr(),
1053                                    T.getCloseLocation());
1054  } else {
1055    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
1056    Result = ParseExpression();
1057
1058    // Match the ')'.
1059    if (Result.isInvalid())
1060      SkipUntil(tok::r_paren);
1061    else {
1062      T.consumeClose();
1063
1064      Result = Actions.ActOnCXXUuidof(OpLoc, T.getOpenLocation(),
1065                                      /*isType=*/false,
1066                                      Result.release(), T.getCloseLocation());
1067    }
1068  }
1069
1070  return move(Result);
1071}
1072
1073/// \brief Parse a C++ pseudo-destructor expression after the base,
1074/// . or -> operator, and nested-name-specifier have already been
1075/// parsed.
1076///
1077///       postfix-expression: [C++ 5.2]
1078///         postfix-expression . pseudo-destructor-name
1079///         postfix-expression -> pseudo-destructor-name
1080///
1081///       pseudo-destructor-name:
1082///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
1083///         ::[opt] nested-name-specifier template simple-template-id ::
1084///                 ~type-name
1085///         ::[opt] nested-name-specifier[opt] ~type-name
1086///
1087ExprResult
1088Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
1089                                 tok::TokenKind OpKind,
1090                                 CXXScopeSpec &SS,
1091                                 ParsedType ObjectType) {
1092  // We're parsing either a pseudo-destructor-name or a dependent
1093  // member access that has the same form as a
1094  // pseudo-destructor-name. We parse both in the same way and let
1095  // the action model sort them out.
1096  //
1097  // Note that the ::[opt] nested-name-specifier[opt] has already
1098  // been parsed, and if there was a simple-template-id, it has
1099  // been coalesced into a template-id annotation token.
1100  UnqualifiedId FirstTypeName;
1101  SourceLocation CCLoc;
1102  if (Tok.is(tok::identifier)) {
1103    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
1104    ConsumeToken();
1105    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1106    CCLoc = ConsumeToken();
1107  } else if (Tok.is(tok::annot_template_id)) {
1108    // FIXME: retrieve TemplateKWLoc from template-id annotation and
1109    // store it in the pseudo-dtor node (to be used when instantiating it).
1110    FirstTypeName.setTemplateId(
1111                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
1112    ConsumeToken();
1113    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
1114    CCLoc = ConsumeToken();
1115  } else {
1116    FirstTypeName.setIdentifier(0, SourceLocation());
1117  }
1118
1119  // Parse the tilde.
1120  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
1121  SourceLocation TildeLoc = ConsumeToken();
1122
1123  if (Tok.is(tok::kw_decltype) && !FirstTypeName.isValid() && SS.isEmpty()) {
1124    DeclSpec DS(AttrFactory);
1125    ParseDecltypeSpecifier(DS);
1126    if (DS.getTypeSpecType() == TST_error)
1127      return ExprError();
1128    return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base, OpLoc,
1129                                             OpKind, TildeLoc, DS,
1130                                             Tok.is(tok::l_paren));
1131  }
1132
1133  if (!Tok.is(tok::identifier)) {
1134    Diag(Tok, diag::err_destructor_tilde_identifier);
1135    return ExprError();
1136  }
1137
1138  // Parse the second type.
1139  UnqualifiedId SecondTypeName;
1140  IdentifierInfo *Name = Tok.getIdentifierInfo();
1141  SourceLocation NameLoc = ConsumeToken();
1142  SecondTypeName.setIdentifier(Name, NameLoc);
1143
1144  // If there is a '<', the second type name is a template-id. Parse
1145  // it as such.
1146  if (Tok.is(tok::less) &&
1147      ParseUnqualifiedIdTemplateId(SS, SourceLocation(),
1148                                   Name, NameLoc,
1149                                   false, ObjectType, SecondTypeName,
1150                                   /*AssumeTemplateName=*/true))
1151    return ExprError();
1152
1153  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
1154                                           OpLoc, OpKind,
1155                                           SS, FirstTypeName, CCLoc,
1156                                           TildeLoc, SecondTypeName,
1157                                           Tok.is(tok::l_paren));
1158}
1159
1160/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
1161///
1162///       boolean-literal: [C++ 2.13.5]
1163///         'true'
1164///         'false'
1165ExprResult Parser::ParseCXXBoolLiteral() {
1166  tok::TokenKind Kind = Tok.getKind();
1167  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
1168}
1169
1170/// ParseThrowExpression - This handles the C++ throw expression.
1171///
1172///       throw-expression: [C++ 15]
1173///         'throw' assignment-expression[opt]
1174ExprResult Parser::ParseThrowExpression() {
1175  assert(Tok.is(tok::kw_throw) && "Not throw!");
1176  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
1177
1178  // If the current token isn't the start of an assignment-expression,
1179  // then the expression is not present.  This handles things like:
1180  //   "C ? throw : (void)42", which is crazy but legal.
1181  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
1182  case tok::semi:
1183  case tok::r_paren:
1184  case tok::r_square:
1185  case tok::r_brace:
1186  case tok::colon:
1187  case tok::comma:
1188    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, 0);
1189
1190  default:
1191    ExprResult Expr(ParseAssignmentExpression());
1192    if (Expr.isInvalid()) return move(Expr);
1193    return Actions.ActOnCXXThrow(getCurScope(), ThrowLoc, Expr.take());
1194  }
1195}
1196
1197/// ParseCXXThis - This handles the C++ 'this' pointer.
1198///
1199/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
1200/// a non-lvalue expression whose value is the address of the object for which
1201/// the function is called.
1202ExprResult Parser::ParseCXXThis() {
1203  assert(Tok.is(tok::kw_this) && "Not 'this'!");
1204  SourceLocation ThisLoc = ConsumeToken();
1205  return Actions.ActOnCXXThis(ThisLoc);
1206}
1207
1208/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
1209/// Can be interpreted either as function-style casting ("int(x)")
1210/// or class type construction ("ClassType(x,y,z)")
1211/// or creation of a value-initialized type ("int()").
1212/// See [C++ 5.2.3].
1213///
1214///       postfix-expression: [C++ 5.2p1]
1215///         simple-type-specifier '(' expression-list[opt] ')'
1216/// [C++0x] simple-type-specifier braced-init-list
1217///         typename-specifier '(' expression-list[opt] ')'
1218/// [C++0x] typename-specifier braced-init-list
1219///
1220ExprResult
1221Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
1222  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1223  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
1224
1225  assert((Tok.is(tok::l_paren) ||
1226          (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)))
1227         && "Expected '(' or '{'!");
1228
1229  if (Tok.is(tok::l_brace)) {
1230    ExprResult Init = ParseBraceInitializer();
1231    if (Init.isInvalid())
1232      return Init;
1233    Expr *InitList = Init.take();
1234    return Actions.ActOnCXXTypeConstructExpr(TypeRep, SourceLocation(),
1235                                             MultiExprArg(&InitList, 1),
1236                                             SourceLocation());
1237  } else {
1238    BalancedDelimiterTracker T(*this, tok::l_paren);
1239    T.consumeOpen();
1240
1241    ExprVector Exprs(Actions);
1242    CommaLocsTy CommaLocs;
1243
1244    if (Tok.isNot(tok::r_paren)) {
1245      if (ParseExpressionList(Exprs, CommaLocs)) {
1246        SkipUntil(tok::r_paren);
1247        return ExprError();
1248      }
1249    }
1250
1251    // Match the ')'.
1252    T.consumeClose();
1253
1254    // TypeRep could be null, if it references an invalid typedef.
1255    if (!TypeRep)
1256      return ExprError();
1257
1258    assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
1259           "Unexpected number of commas!");
1260    return Actions.ActOnCXXTypeConstructExpr(TypeRep, T.getOpenLocation(),
1261                                             move_arg(Exprs),
1262                                             T.getCloseLocation());
1263  }
1264}
1265
1266/// ParseCXXCondition - if/switch/while condition expression.
1267///
1268///       condition:
1269///         expression
1270///         type-specifier-seq declarator '=' assignment-expression
1271/// [C++11] type-specifier-seq declarator '=' initializer-clause
1272/// [C++11] type-specifier-seq declarator braced-init-list
1273/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
1274///             '=' assignment-expression
1275///
1276/// \param ExprResult if the condition was parsed as an expression, the
1277/// parsed expression.
1278///
1279/// \param DeclResult if the condition was parsed as a declaration, the
1280/// parsed declaration.
1281///
1282/// \param Loc The location of the start of the statement that requires this
1283/// condition, e.g., the "for" in a for loop.
1284///
1285/// \param ConvertToBoolean Whether the condition expression should be
1286/// converted to a boolean value.
1287///
1288/// \returns true if there was a parsing, false otherwise.
1289bool Parser::ParseCXXCondition(ExprResult &ExprOut,
1290                               Decl *&DeclOut,
1291                               SourceLocation Loc,
1292                               bool ConvertToBoolean) {
1293  if (Tok.is(tok::code_completion)) {
1294    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
1295    cutOffParsing();
1296    return true;
1297  }
1298
1299  ParsedAttributesWithRange attrs(AttrFactory);
1300  MaybeParseCXX0XAttributes(attrs);
1301
1302  if (!isCXXConditionDeclaration()) {
1303    ProhibitAttributes(attrs);
1304
1305    // Parse the expression.
1306    ExprOut = ParseExpression(); // expression
1307    DeclOut = 0;
1308    if (ExprOut.isInvalid())
1309      return true;
1310
1311    // If required, convert to a boolean value.
1312    if (ConvertToBoolean)
1313      ExprOut
1314        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
1315    return ExprOut.isInvalid();
1316  }
1317
1318  // type-specifier-seq
1319  DeclSpec DS(AttrFactory);
1320  ParseSpecifierQualifierList(DS);
1321
1322  // declarator
1323  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
1324  ParseDeclarator(DeclaratorInfo);
1325
1326  // simple-asm-expr[opt]
1327  if (Tok.is(tok::kw_asm)) {
1328    SourceLocation Loc;
1329    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
1330    if (AsmLabel.isInvalid()) {
1331      SkipUntil(tok::semi);
1332      return true;
1333    }
1334    DeclaratorInfo.setAsmLabel(AsmLabel.release());
1335    DeclaratorInfo.SetRangeEnd(Loc);
1336  }
1337
1338  // If attributes are present, parse them.
1339  MaybeParseGNUAttributes(DeclaratorInfo);
1340
1341  // Type-check the declaration itself.
1342  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
1343                                                        DeclaratorInfo);
1344  DeclOut = Dcl.get();
1345  ExprOut = ExprError();
1346
1347  // '=' assignment-expression
1348  // If a '==' or '+=' is found, suggest a fixit to '='.
1349  bool CopyInitialization = isTokenEqualOrEqualTypo();
1350  if (CopyInitialization)
1351    ConsumeToken();
1352
1353  ExprResult InitExpr = ExprError();
1354  if (getLangOpts().CPlusPlus0x && Tok.is(tok::l_brace)) {
1355    Diag(Tok.getLocation(),
1356         diag::warn_cxx98_compat_generalized_initializer_lists);
1357    InitExpr = ParseBraceInitializer();
1358  } else if (CopyInitialization) {
1359    InitExpr = ParseAssignmentExpression();
1360  } else if (Tok.is(tok::l_paren)) {
1361    // This was probably an attempt to initialize the variable.
1362    SourceLocation LParen = ConsumeParen(), RParen = LParen;
1363    if (SkipUntil(tok::r_paren, true, /*DontConsume=*/true))
1364      RParen = ConsumeParen();
1365    Diag(DeclOut ? DeclOut->getLocation() : LParen,
1366         diag::err_expected_init_in_condition_lparen)
1367      << SourceRange(LParen, RParen);
1368  } else {
1369    Diag(DeclOut ? DeclOut->getLocation() : Tok.getLocation(),
1370         diag::err_expected_init_in_condition);
1371  }
1372
1373  if (!InitExpr.isInvalid())
1374    Actions.AddInitializerToDecl(DeclOut, InitExpr.take(), !CopyInitialization,
1375                                 DS.getTypeSpecType() == DeclSpec::TST_auto);
1376
1377  // FIXME: Build a reference to this declaration? Convert it to bool?
1378  // (This is currently handled by Sema).
1379
1380  Actions.FinalizeDeclaration(DeclOut);
1381
1382  return false;
1383}
1384
1385/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
1386/// This should only be called when the current token is known to be part of
1387/// simple-type-specifier.
1388///
1389///       simple-type-specifier:
1390///         '::'[opt] nested-name-specifier[opt] type-name
1391///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
1392///         char
1393///         wchar_t
1394///         bool
1395///         short
1396///         int
1397///         long
1398///         signed
1399///         unsigned
1400///         float
1401///         double
1402///         void
1403/// [GNU]   typeof-specifier
1404/// [C++0x] auto               [TODO]
1405///
1406///       type-name:
1407///         class-name
1408///         enum-name
1409///         typedef-name
1410///
1411void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
1412  DS.SetRangeStart(Tok.getLocation());
1413  const char *PrevSpec;
1414  unsigned DiagID;
1415  SourceLocation Loc = Tok.getLocation();
1416
1417  switch (Tok.getKind()) {
1418  case tok::identifier:   // foo::bar
1419  case tok::coloncolon:   // ::foo::bar
1420    llvm_unreachable("Annotation token should already be formed!");
1421  default:
1422    llvm_unreachable("Not a simple-type-specifier token!");
1423
1424  // type-name
1425  case tok::annot_typename: {
1426    if (getTypeAnnotation(Tok))
1427      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
1428                         getTypeAnnotation(Tok));
1429    else
1430      DS.SetTypeSpecError();
1431
1432    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1433    ConsumeToken();
1434
1435    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
1436    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
1437    // Objective-C interface.  If we don't have Objective-C or a '<', this is
1438    // just a normal reference to a typedef name.
1439    if (Tok.is(tok::less) && getLangOpts().ObjC1)
1440      ParseObjCProtocolQualifiers(DS);
1441
1442    DS.Finish(Diags, PP);
1443    return;
1444  }
1445
1446  // builtin types
1447  case tok::kw_short:
1448    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
1449    break;
1450  case tok::kw_long:
1451    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
1452    break;
1453  case tok::kw___int64:
1454    DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, DiagID);
1455    break;
1456  case tok::kw_signed:
1457    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
1458    break;
1459  case tok::kw_unsigned:
1460    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
1461    break;
1462  case tok::kw_void:
1463    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
1464    break;
1465  case tok::kw_char:
1466    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
1467    break;
1468  case tok::kw_int:
1469    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
1470    break;
1471  case tok::kw___int128:
1472    DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, DiagID);
1473    break;
1474  case tok::kw_half:
1475    DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, DiagID);
1476    break;
1477  case tok::kw_float:
1478    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
1479    break;
1480  case tok::kw_double:
1481    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
1482    break;
1483  case tok::kw_wchar_t:
1484    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
1485    break;
1486  case tok::kw_char16_t:
1487    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
1488    break;
1489  case tok::kw_char32_t:
1490    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
1491    break;
1492  case tok::kw_bool:
1493    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
1494    break;
1495  case tok::annot_decltype:
1496  case tok::kw_decltype:
1497    DS.SetRangeEnd(ParseDecltypeSpecifier(DS));
1498    return DS.Finish(Diags, PP);
1499
1500  // GNU typeof support.
1501  case tok::kw_typeof:
1502    ParseTypeofSpecifier(DS);
1503    DS.Finish(Diags, PP);
1504    return;
1505  }
1506  if (Tok.is(tok::annot_typename))
1507    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
1508  else
1509    DS.SetRangeEnd(Tok.getLocation());
1510  ConsumeToken();
1511  DS.Finish(Diags, PP);
1512}
1513
1514/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
1515/// [dcl.name]), which is a non-empty sequence of type-specifiers,
1516/// e.g., "const short int". Note that the DeclSpec is *not* finished
1517/// by parsing the type-specifier-seq, because these sequences are
1518/// typically followed by some form of declarator. Returns true and
1519/// emits diagnostics if this is not a type-specifier-seq, false
1520/// otherwise.
1521///
1522///   type-specifier-seq: [C++ 8.1]
1523///     type-specifier type-specifier-seq[opt]
1524///
1525bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1526  ParseSpecifierQualifierList(DS, AS_none, DSC_type_specifier);
1527  DS.Finish(Diags, PP);
1528  return false;
1529}
1530
1531/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1532/// some form.
1533///
1534/// This routine is invoked when a '<' is encountered after an identifier or
1535/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1536/// whether the unqualified-id is actually a template-id. This routine will
1537/// then parse the template arguments and form the appropriate template-id to
1538/// return to the caller.
1539///
1540/// \param SS the nested-name-specifier that precedes this template-id, if
1541/// we're actually parsing a qualified-id.
1542///
1543/// \param Name for constructor and destructor names, this is the actual
1544/// identifier that may be a template-name.
1545///
1546/// \param NameLoc the location of the class-name in a constructor or
1547/// destructor.
1548///
1549/// \param EnteringContext whether we're entering the scope of the
1550/// nested-name-specifier.
1551///
1552/// \param ObjectType if this unqualified-id occurs within a member access
1553/// expression, the type of the base object whose member is being accessed.
1554///
1555/// \param Id as input, describes the template-name or operator-function-id
1556/// that precedes the '<'. If template arguments were parsed successfully,
1557/// will be updated with the template-id.
1558///
1559/// \param AssumeTemplateId When true, this routine will assume that the name
1560/// refers to a template without performing name lookup to verify.
1561///
1562/// \returns true if a parse error occurred, false otherwise.
1563bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1564                                          SourceLocation TemplateKWLoc,
1565                                          IdentifierInfo *Name,
1566                                          SourceLocation NameLoc,
1567                                          bool EnteringContext,
1568                                          ParsedType ObjectType,
1569                                          UnqualifiedId &Id,
1570                                          bool AssumeTemplateId) {
1571  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1572         "Expected '<' to finish parsing a template-id");
1573
1574  TemplateTy Template;
1575  TemplateNameKind TNK = TNK_Non_template;
1576  switch (Id.getKind()) {
1577  case UnqualifiedId::IK_Identifier:
1578  case UnqualifiedId::IK_OperatorFunctionId:
1579  case UnqualifiedId::IK_LiteralOperatorId:
1580    if (AssumeTemplateId) {
1581      TNK = Actions.ActOnDependentTemplateName(getCurScope(), SS, TemplateKWLoc,
1582                                               Id, ObjectType, EnteringContext,
1583                                               Template);
1584      if (TNK == TNK_Non_template)
1585        return true;
1586    } else {
1587      bool MemberOfUnknownSpecialization;
1588      TNK = Actions.isTemplateName(getCurScope(), SS,
1589                                   TemplateKWLoc.isValid(), Id,
1590                                   ObjectType, EnteringContext, Template,
1591                                   MemberOfUnknownSpecialization);
1592
1593      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1594          ObjectType && IsTemplateArgumentList()) {
1595        // We have something like t->getAs<T>(), where getAs is a
1596        // member of an unknown specialization. However, this will only
1597        // parse correctly as a template, so suggest the keyword 'template'
1598        // before 'getAs' and treat this as a dependent template name.
1599        std::string Name;
1600        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1601          Name = Id.Identifier->getName();
1602        else {
1603          Name = "operator ";
1604          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1605            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1606          else
1607            Name += Id.Identifier->getName();
1608        }
1609        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1610          << Name
1611          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1612        TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1613                                                 SS, TemplateKWLoc, Id,
1614                                                 ObjectType, EnteringContext,
1615                                                 Template);
1616        if (TNK == TNK_Non_template)
1617          return true;
1618      }
1619    }
1620    break;
1621
1622  case UnqualifiedId::IK_ConstructorName: {
1623    UnqualifiedId TemplateName;
1624    bool MemberOfUnknownSpecialization;
1625    TemplateName.setIdentifier(Name, NameLoc);
1626    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1627                                 TemplateName, ObjectType,
1628                                 EnteringContext, Template,
1629                                 MemberOfUnknownSpecialization);
1630    break;
1631  }
1632
1633  case UnqualifiedId::IK_DestructorName: {
1634    UnqualifiedId TemplateName;
1635    bool MemberOfUnknownSpecialization;
1636    TemplateName.setIdentifier(Name, NameLoc);
1637    if (ObjectType) {
1638      TNK = Actions.ActOnDependentTemplateName(getCurScope(),
1639                                               SS, TemplateKWLoc, TemplateName,
1640                                               ObjectType, EnteringContext,
1641                                               Template);
1642      if (TNK == TNK_Non_template)
1643        return true;
1644    } else {
1645      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1646                                   TemplateName, ObjectType,
1647                                   EnteringContext, Template,
1648                                   MemberOfUnknownSpecialization);
1649
1650      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1651        Diag(NameLoc, diag::err_destructor_template_id)
1652          << Name << SS.getRange();
1653        return true;
1654      }
1655    }
1656    break;
1657  }
1658
1659  default:
1660    return false;
1661  }
1662
1663  if (TNK == TNK_Non_template)
1664    return false;
1665
1666  // Parse the enclosed template argument list.
1667  SourceLocation LAngleLoc, RAngleLoc;
1668  TemplateArgList TemplateArgs;
1669  if (Tok.is(tok::less) &&
1670      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1671                                       SS, true, LAngleLoc,
1672                                       TemplateArgs,
1673                                       RAngleLoc))
1674    return true;
1675
1676  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1677      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1678      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1679    // Form a parsed representation of the template-id to be stored in the
1680    // UnqualifiedId.
1681    TemplateIdAnnotation *TemplateId
1682      = TemplateIdAnnotation::Allocate(TemplateArgs.size(), TemplateIds);
1683
1684    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1685      TemplateId->Name = Id.Identifier;
1686      TemplateId->Operator = OO_None;
1687      TemplateId->TemplateNameLoc = Id.StartLocation;
1688    } else {
1689      TemplateId->Name = 0;
1690      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1691      TemplateId->TemplateNameLoc = Id.StartLocation;
1692    }
1693
1694    TemplateId->SS = SS;
1695    TemplateId->TemplateKWLoc = TemplateKWLoc;
1696    TemplateId->Template = Template;
1697    TemplateId->Kind = TNK;
1698    TemplateId->LAngleLoc = LAngleLoc;
1699    TemplateId->RAngleLoc = RAngleLoc;
1700    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1701    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1702         Arg != ArgEnd; ++Arg)
1703      Args[Arg] = TemplateArgs[Arg];
1704
1705    Id.setTemplateId(TemplateId);
1706    return false;
1707  }
1708
1709  // Bundle the template arguments together.
1710  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1711                                     TemplateArgs.size());
1712
1713  // Constructor and destructor names.
1714  TypeResult Type
1715    = Actions.ActOnTemplateIdType(SS, TemplateKWLoc,
1716                                  Template, NameLoc,
1717                                  LAngleLoc, TemplateArgsPtr, RAngleLoc,
1718                                  /*IsCtorOrDtorName=*/true);
1719  if (Type.isInvalid())
1720    return true;
1721
1722  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1723    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1724  else
1725    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1726
1727  return false;
1728}
1729
1730/// \brief Parse an operator-function-id or conversion-function-id as part
1731/// of a C++ unqualified-id.
1732///
1733/// This routine is responsible only for parsing the operator-function-id or
1734/// conversion-function-id; it does not handle template arguments in any way.
1735///
1736/// \code
1737///       operator-function-id: [C++ 13.5]
1738///         'operator' operator
1739///
1740///       operator: one of
1741///            new   delete  new[]   delete[]
1742///            +     -    *  /    %  ^    &   |   ~
1743///            !     =    <  >    += -=   *=  /=  %=
1744///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1745///            <=    >=   && ||   ++ --   ,   ->* ->
1746///            ()    []
1747///
1748///       conversion-function-id: [C++ 12.3.2]
1749///         operator conversion-type-id
1750///
1751///       conversion-type-id:
1752///         type-specifier-seq conversion-declarator[opt]
1753///
1754///       conversion-declarator:
1755///         ptr-operator conversion-declarator[opt]
1756/// \endcode
1757///
1758/// \param The nested-name-specifier that preceded this unqualified-id. If
1759/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1760///
1761/// \param EnteringContext whether we are entering the scope of the
1762/// nested-name-specifier.
1763///
1764/// \param ObjectType if this unqualified-id occurs within a member access
1765/// expression, the type of the base object whose member is being accessed.
1766///
1767/// \param Result on a successful parse, contains the parsed unqualified-id.
1768///
1769/// \returns true if parsing fails, false otherwise.
1770bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1771                                        ParsedType ObjectType,
1772                                        UnqualifiedId &Result) {
1773  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1774
1775  // Consume the 'operator' keyword.
1776  SourceLocation KeywordLoc = ConsumeToken();
1777
1778  // Determine what kind of operator name we have.
1779  unsigned SymbolIdx = 0;
1780  SourceLocation SymbolLocations[3];
1781  OverloadedOperatorKind Op = OO_None;
1782  switch (Tok.getKind()) {
1783    case tok::kw_new:
1784    case tok::kw_delete: {
1785      bool isNew = Tok.getKind() == tok::kw_new;
1786      // Consume the 'new' or 'delete'.
1787      SymbolLocations[SymbolIdx++] = ConsumeToken();
1788      // Check for array new/delete.
1789      if (Tok.is(tok::l_square) &&
1790          (!getLangOpts().CPlusPlus0x || NextToken().isNot(tok::l_square))) {
1791        // Consume the '[' and ']'.
1792        BalancedDelimiterTracker T(*this, tok::l_square);
1793        T.consumeOpen();
1794        T.consumeClose();
1795        if (T.getCloseLocation().isInvalid())
1796          return true;
1797
1798        SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1799        SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1800        Op = isNew? OO_Array_New : OO_Array_Delete;
1801      } else {
1802        Op = isNew? OO_New : OO_Delete;
1803      }
1804      break;
1805    }
1806
1807#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1808    case tok::Token:                                                     \
1809      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1810      Op = OO_##Name;                                                    \
1811      break;
1812#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1813#include "clang/Basic/OperatorKinds.def"
1814
1815    case tok::l_paren: {
1816      // Consume the '(' and ')'.
1817      BalancedDelimiterTracker T(*this, tok::l_paren);
1818      T.consumeOpen();
1819      T.consumeClose();
1820      if (T.getCloseLocation().isInvalid())
1821        return true;
1822
1823      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1824      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1825      Op = OO_Call;
1826      break;
1827    }
1828
1829    case tok::l_square: {
1830      // Consume the '[' and ']'.
1831      BalancedDelimiterTracker T(*this, tok::l_square);
1832      T.consumeOpen();
1833      T.consumeClose();
1834      if (T.getCloseLocation().isInvalid())
1835        return true;
1836
1837      SymbolLocations[SymbolIdx++] = T.getOpenLocation();
1838      SymbolLocations[SymbolIdx++] = T.getCloseLocation();
1839      Op = OO_Subscript;
1840      break;
1841    }
1842
1843    case tok::code_completion: {
1844      // Code completion for the operator name.
1845      Actions.CodeCompleteOperatorName(getCurScope());
1846      cutOffParsing();
1847      // Don't try to parse any further.
1848      return true;
1849    }
1850
1851    default:
1852      break;
1853  }
1854
1855  if (Op != OO_None) {
1856    // We have parsed an operator-function-id.
1857    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1858    return false;
1859  }
1860
1861  // Parse a literal-operator-id.
1862  //
1863  //   literal-operator-id: [C++0x 13.5.8]
1864  //     operator "" identifier
1865
1866  if (getLangOpts().CPlusPlus0x && isTokenStringLiteral()) {
1867    Diag(Tok.getLocation(), diag::warn_cxx98_compat_literal_operator);
1868
1869    SourceLocation DiagLoc;
1870    unsigned DiagId = 0;
1871
1872    // We're past translation phase 6, so perform string literal concatenation
1873    // before checking for "".
1874    llvm::SmallVector<Token, 4> Toks;
1875    llvm::SmallVector<SourceLocation, 4> TokLocs;
1876    while (isTokenStringLiteral()) {
1877      if (!Tok.is(tok::string_literal) && !DiagId) {
1878        DiagLoc = Tok.getLocation();
1879        DiagId = diag::err_literal_operator_string_prefix;
1880      }
1881      Toks.push_back(Tok);
1882      TokLocs.push_back(ConsumeStringToken());
1883    }
1884
1885    StringLiteralParser Literal(Toks.data(), Toks.size(), PP);
1886    if (Literal.hadError)
1887      return true;
1888
1889    // Grab the literal operator's suffix, which will be either the next token
1890    // or a ud-suffix from the string literal.
1891    IdentifierInfo *II = 0;
1892    SourceLocation SuffixLoc;
1893    if (!Literal.getUDSuffix().empty()) {
1894      II = &PP.getIdentifierTable().get(Literal.getUDSuffix());
1895      SuffixLoc =
1896        Lexer::AdvanceToTokenCharacter(TokLocs[Literal.getUDSuffixToken()],
1897                                       Literal.getUDSuffixOffset(),
1898                                       PP.getSourceManager(), getLangOpts());
1899      // This form is not permitted by the standard (yet).
1900      DiagLoc = SuffixLoc;
1901      DiagId = diag::err_literal_operator_missing_space;
1902    } else if (Tok.is(tok::identifier)) {
1903      II = Tok.getIdentifierInfo();
1904      SuffixLoc = ConsumeToken();
1905      TokLocs.push_back(SuffixLoc);
1906    } else {
1907      Diag(Tok.getLocation(), diag::err_expected_ident);
1908      return true;
1909    }
1910
1911    // The string literal must be empty.
1912    if (!Literal.GetString().empty() || Literal.Pascal) {
1913      DiagLoc = TokLocs.front();
1914      DiagId = diag::err_literal_operator_string_not_empty;
1915    }
1916
1917    if (DiagId) {
1918      // This isn't a valid literal-operator-id, but we think we know
1919      // what the user meant. Tell them what they should have written.
1920      llvm::SmallString<32> Str;
1921      Str += "\"\" ";
1922      Str += II->getName();
1923      Diag(DiagLoc, DiagId) << FixItHint::CreateReplacement(
1924          SourceRange(TokLocs.front(), TokLocs.back()), Str);
1925    }
1926
1927    Result.setLiteralOperatorId(II, KeywordLoc, SuffixLoc);
1928    return false;
1929  }
1930
1931  // Parse a conversion-function-id.
1932  //
1933  //   conversion-function-id: [C++ 12.3.2]
1934  //     operator conversion-type-id
1935  //
1936  //   conversion-type-id:
1937  //     type-specifier-seq conversion-declarator[opt]
1938  //
1939  //   conversion-declarator:
1940  //     ptr-operator conversion-declarator[opt]
1941
1942  // Parse the type-specifier-seq.
1943  DeclSpec DS(AttrFactory);
1944  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1945    return true;
1946
1947  // Parse the conversion-declarator, which is merely a sequence of
1948  // ptr-operators.
1949  Declarator D(DS, Declarator::TypeNameContext);
1950  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1951
1952  // Finish up the type.
1953  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1954  if (Ty.isInvalid())
1955    return true;
1956
1957  // Note that this is a conversion-function-id.
1958  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1959                                 D.getSourceRange().getEnd());
1960  return false;
1961}
1962
1963/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1964/// name of an entity.
1965///
1966/// \code
1967///       unqualified-id: [C++ expr.prim.general]
1968///         identifier
1969///         operator-function-id
1970///         conversion-function-id
1971/// [C++0x] literal-operator-id [TODO]
1972///         ~ class-name
1973///         template-id
1974///
1975/// \endcode
1976///
1977/// \param The nested-name-specifier that preceded this unqualified-id. If
1978/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1979///
1980/// \param EnteringContext whether we are entering the scope of the
1981/// nested-name-specifier.
1982///
1983/// \param AllowDestructorName whether we allow parsing of a destructor name.
1984///
1985/// \param AllowConstructorName whether we allow parsing a constructor name.
1986///
1987/// \param ObjectType if this unqualified-id occurs within a member access
1988/// expression, the type of the base object whose member is being accessed.
1989///
1990/// \param Result on a successful parse, contains the parsed unqualified-id.
1991///
1992/// \returns true if parsing fails, false otherwise.
1993bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1994                                bool AllowDestructorName,
1995                                bool AllowConstructorName,
1996                                ParsedType ObjectType,
1997                                SourceLocation& TemplateKWLoc,
1998                                UnqualifiedId &Result) {
1999
2000  // Handle 'A::template B'. This is for template-ids which have not
2001  // already been annotated by ParseOptionalCXXScopeSpecifier().
2002  bool TemplateSpecified = false;
2003  if (getLangOpts().CPlusPlus && Tok.is(tok::kw_template) &&
2004      (ObjectType || SS.isSet())) {
2005    TemplateSpecified = true;
2006    TemplateKWLoc = ConsumeToken();
2007  }
2008
2009  // unqualified-id:
2010  //   identifier
2011  //   template-id (when it hasn't already been annotated)
2012  if (Tok.is(tok::identifier)) {
2013    // Consume the identifier.
2014    IdentifierInfo *Id = Tok.getIdentifierInfo();
2015    SourceLocation IdLoc = ConsumeToken();
2016
2017    if (!getLangOpts().CPlusPlus) {
2018      // If we're not in C++, only identifiers matter. Record the
2019      // identifier and return.
2020      Result.setIdentifier(Id, IdLoc);
2021      return false;
2022    }
2023
2024    if (AllowConstructorName &&
2025        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
2026      // We have parsed a constructor name.
2027      ParsedType Ty = Actions.getTypeName(*Id, IdLoc, getCurScope(),
2028                                          &SS, false, false,
2029                                          ParsedType(),
2030                                          /*IsCtorOrDtorName=*/true,
2031                                          /*NonTrivialTypeSourceInfo=*/true);
2032      Result.setConstructorName(Ty, IdLoc, IdLoc);
2033    } else {
2034      // We have parsed an identifier.
2035      Result.setIdentifier(Id, IdLoc);
2036    }
2037
2038    // If the next token is a '<', we may have a template.
2039    if (TemplateSpecified || Tok.is(tok::less))
2040      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc, Id, IdLoc,
2041                                          EnteringContext, ObjectType,
2042                                          Result, TemplateSpecified);
2043
2044    return false;
2045  }
2046
2047  // unqualified-id:
2048  //   template-id (already parsed and annotated)
2049  if (Tok.is(tok::annot_template_id)) {
2050    TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
2051
2052    // If the template-name names the current class, then this is a constructor
2053    if (AllowConstructorName && TemplateId->Name &&
2054        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
2055      if (SS.isSet()) {
2056        // C++ [class.qual]p2 specifies that a qualified template-name
2057        // is taken as the constructor name where a constructor can be
2058        // declared. Thus, the template arguments are extraneous, so
2059        // complain about them and remove them entirely.
2060        Diag(TemplateId->TemplateNameLoc,
2061             diag::err_out_of_line_constructor_template_id)
2062          << TemplateId->Name
2063          << FixItHint::CreateRemoval(
2064                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
2065        ParsedType Ty = Actions.getTypeName(*TemplateId->Name,
2066                                            TemplateId->TemplateNameLoc,
2067                                            getCurScope(),
2068                                            &SS, false, false,
2069                                            ParsedType(),
2070                                            /*IsCtorOrDtorName=*/true,
2071                                            /*NontrivialTypeSourceInfo=*/true);
2072        Result.setConstructorName(Ty, TemplateId->TemplateNameLoc,
2073                                  TemplateId->RAngleLoc);
2074        ConsumeToken();
2075        return false;
2076      }
2077
2078      Result.setConstructorTemplateId(TemplateId);
2079      ConsumeToken();
2080      return false;
2081    }
2082
2083    // We have already parsed a template-id; consume the annotation token as
2084    // our unqualified-id.
2085    Result.setTemplateId(TemplateId);
2086    TemplateKWLoc = TemplateId->TemplateKWLoc;
2087    ConsumeToken();
2088    return false;
2089  }
2090
2091  // unqualified-id:
2092  //   operator-function-id
2093  //   conversion-function-id
2094  if (Tok.is(tok::kw_operator)) {
2095    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
2096      return true;
2097
2098    // If we have an operator-function-id or a literal-operator-id and the next
2099    // token is a '<', we may have a
2100    //
2101    //   template-id:
2102    //     operator-function-id < template-argument-list[opt] >
2103    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
2104         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
2105        (TemplateSpecified || Tok.is(tok::less)))
2106      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2107                                          0, SourceLocation(),
2108                                          EnteringContext, ObjectType,
2109                                          Result, TemplateSpecified);
2110
2111    return false;
2112  }
2113
2114  if (getLangOpts().CPlusPlus &&
2115      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
2116    // C++ [expr.unary.op]p10:
2117    //   There is an ambiguity in the unary-expression ~X(), where X is a
2118    //   class-name. The ambiguity is resolved in favor of treating ~ as a
2119    //    unary complement rather than treating ~X as referring to a destructor.
2120
2121    // Parse the '~'.
2122    SourceLocation TildeLoc = ConsumeToken();
2123
2124    if (SS.isEmpty() && Tok.is(tok::kw_decltype)) {
2125      DeclSpec DS(AttrFactory);
2126      SourceLocation EndLoc = ParseDecltypeSpecifier(DS);
2127      if (ParsedType Type = Actions.getDestructorType(DS, ObjectType)) {
2128        Result.setDestructorName(TildeLoc, Type, EndLoc);
2129        return false;
2130      }
2131      return true;
2132    }
2133
2134    // Parse the class-name.
2135    if (Tok.isNot(tok::identifier)) {
2136      Diag(Tok, diag::err_destructor_tilde_identifier);
2137      return true;
2138    }
2139
2140    // Parse the class-name (or template-name in a simple-template-id).
2141    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
2142    SourceLocation ClassNameLoc = ConsumeToken();
2143
2144    if (TemplateSpecified || Tok.is(tok::less)) {
2145      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
2146      return ParseUnqualifiedIdTemplateId(SS, TemplateKWLoc,
2147                                          ClassName, ClassNameLoc,
2148                                          EnteringContext, ObjectType,
2149                                          Result, TemplateSpecified);
2150    }
2151
2152    // Note that this is a destructor name.
2153    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
2154                                              ClassNameLoc, getCurScope(),
2155                                              SS, ObjectType,
2156                                              EnteringContext);
2157    if (!Ty)
2158      return true;
2159
2160    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
2161    return false;
2162  }
2163
2164  Diag(Tok, diag::err_expected_unqualified_id)
2165    << getLangOpts().CPlusPlus;
2166  return true;
2167}
2168
2169/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
2170/// memory in a typesafe manner and call constructors.
2171///
2172/// This method is called to parse the new expression after the optional :: has
2173/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
2174/// is its location.  Otherwise, "Start" is the location of the 'new' token.
2175///
2176///        new-expression:
2177///                   '::'[opt] 'new' new-placement[opt] new-type-id
2178///                                     new-initializer[opt]
2179///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2180///                                     new-initializer[opt]
2181///
2182///        new-placement:
2183///                   '(' expression-list ')'
2184///
2185///        new-type-id:
2186///                   type-specifier-seq new-declarator[opt]
2187/// [GNU]             attributes type-specifier-seq new-declarator[opt]
2188///
2189///        new-declarator:
2190///                   ptr-operator new-declarator[opt]
2191///                   direct-new-declarator
2192///
2193///        new-initializer:
2194///                   '(' expression-list[opt] ')'
2195/// [C++0x]           braced-init-list
2196///
2197ExprResult
2198Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
2199  assert(Tok.is(tok::kw_new) && "expected 'new' token");
2200  ConsumeToken();   // Consume 'new'
2201
2202  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
2203  // second form of new-expression. It can't be a new-type-id.
2204
2205  ExprVector PlacementArgs(Actions);
2206  SourceLocation PlacementLParen, PlacementRParen;
2207
2208  SourceRange TypeIdParens;
2209  DeclSpec DS(AttrFactory);
2210  Declarator DeclaratorInfo(DS, Declarator::CXXNewContext);
2211  if (Tok.is(tok::l_paren)) {
2212    // If it turns out to be a placement, we change the type location.
2213    BalancedDelimiterTracker T(*this, tok::l_paren);
2214    T.consumeOpen();
2215    PlacementLParen = T.getOpenLocation();
2216    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
2217      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2218      return ExprError();
2219    }
2220
2221    T.consumeClose();
2222    PlacementRParen = T.getCloseLocation();
2223    if (PlacementRParen.isInvalid()) {
2224      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2225      return ExprError();
2226    }
2227
2228    if (PlacementArgs.empty()) {
2229      // Reset the placement locations. There was no placement.
2230      TypeIdParens = T.getRange();
2231      PlacementLParen = PlacementRParen = SourceLocation();
2232    } else {
2233      // We still need the type.
2234      if (Tok.is(tok::l_paren)) {
2235        BalancedDelimiterTracker T(*this, tok::l_paren);
2236        T.consumeOpen();
2237        MaybeParseGNUAttributes(DeclaratorInfo);
2238        ParseSpecifierQualifierList(DS);
2239        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2240        ParseDeclarator(DeclaratorInfo);
2241        T.consumeClose();
2242        TypeIdParens = T.getRange();
2243      } else {
2244        MaybeParseGNUAttributes(DeclaratorInfo);
2245        if (ParseCXXTypeSpecifierSeq(DS))
2246          DeclaratorInfo.setInvalidType(true);
2247        else {
2248          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2249          ParseDeclaratorInternal(DeclaratorInfo,
2250                                  &Parser::ParseDirectNewDeclarator);
2251        }
2252      }
2253    }
2254  } else {
2255    // A new-type-id is a simplified type-id, where essentially the
2256    // direct-declarator is replaced by a direct-new-declarator.
2257    MaybeParseGNUAttributes(DeclaratorInfo);
2258    if (ParseCXXTypeSpecifierSeq(DS))
2259      DeclaratorInfo.setInvalidType(true);
2260    else {
2261      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
2262      ParseDeclaratorInternal(DeclaratorInfo,
2263                              &Parser::ParseDirectNewDeclarator);
2264    }
2265  }
2266  if (DeclaratorInfo.isInvalidType()) {
2267    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2268    return ExprError();
2269  }
2270
2271  ExprResult Initializer;
2272
2273  if (Tok.is(tok::l_paren)) {
2274    SourceLocation ConstructorLParen, ConstructorRParen;
2275    ExprVector ConstructorArgs(Actions);
2276    BalancedDelimiterTracker T(*this, tok::l_paren);
2277    T.consumeOpen();
2278    ConstructorLParen = T.getOpenLocation();
2279    if (Tok.isNot(tok::r_paren)) {
2280      CommaLocsTy CommaLocs;
2281      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
2282        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2283        return ExprError();
2284      }
2285    }
2286    T.consumeClose();
2287    ConstructorRParen = T.getCloseLocation();
2288    if (ConstructorRParen.isInvalid()) {
2289      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
2290      return ExprError();
2291    }
2292    Initializer = Actions.ActOnParenListExpr(ConstructorLParen,
2293                                             ConstructorRParen,
2294                                             move_arg(ConstructorArgs));
2295  } else if (Tok.is(tok::l_brace) && getLangOpts().CPlusPlus0x) {
2296    Diag(Tok.getLocation(),
2297         diag::warn_cxx98_compat_generalized_initializer_lists);
2298    Initializer = ParseBraceInitializer();
2299  }
2300  if (Initializer.isInvalid())
2301    return Initializer;
2302
2303  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
2304                             move_arg(PlacementArgs), PlacementRParen,
2305                             TypeIdParens, DeclaratorInfo, Initializer.take());
2306}
2307
2308/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
2309/// passed to ParseDeclaratorInternal.
2310///
2311///        direct-new-declarator:
2312///                   '[' expression ']'
2313///                   direct-new-declarator '[' constant-expression ']'
2314///
2315void Parser::ParseDirectNewDeclarator(Declarator &D) {
2316  // Parse the array dimensions.
2317  bool first = true;
2318  while (Tok.is(tok::l_square)) {
2319    // An array-size expression can't start with a lambda.
2320    if (CheckProhibitedCXX11Attribute())
2321      continue;
2322
2323    BalancedDelimiterTracker T(*this, tok::l_square);
2324    T.consumeOpen();
2325
2326    ExprResult Size(first ? ParseExpression()
2327                                : ParseConstantExpression());
2328    if (Size.isInvalid()) {
2329      // Recover
2330      SkipUntil(tok::r_square);
2331      return;
2332    }
2333    first = false;
2334
2335    T.consumeClose();
2336
2337    // Attributes here appertain to the array type. C++11 [expr.new]p5.
2338    ParsedAttributes Attrs(AttrFactory);
2339    MaybeParseCXX0XAttributes(Attrs);
2340
2341    D.AddTypeInfo(DeclaratorChunk::getArray(0,
2342                                            /*static=*/false, /*star=*/false,
2343                                            Size.release(),
2344                                            T.getOpenLocation(),
2345                                            T.getCloseLocation()),
2346                  Attrs, T.getCloseLocation());
2347
2348    if (T.getCloseLocation().isInvalid())
2349      return;
2350  }
2351}
2352
2353/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
2354/// This ambiguity appears in the syntax of the C++ new operator.
2355///
2356///        new-expression:
2357///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
2358///                                     new-initializer[opt]
2359///
2360///        new-placement:
2361///                   '(' expression-list ')'
2362///
2363bool Parser::ParseExpressionListOrTypeId(
2364                                   SmallVectorImpl<Expr*> &PlacementArgs,
2365                                         Declarator &D) {
2366  // The '(' was already consumed.
2367  if (isTypeIdInParens()) {
2368    ParseSpecifierQualifierList(D.getMutableDeclSpec());
2369    D.SetSourceRange(D.getDeclSpec().getSourceRange());
2370    ParseDeclarator(D);
2371    return D.isInvalidType();
2372  }
2373
2374  // It's not a type, it has to be an expression list.
2375  // Discard the comma locations - ActOnCXXNew has enough parameters.
2376  CommaLocsTy CommaLocs;
2377  return ParseExpressionList(PlacementArgs, CommaLocs);
2378}
2379
2380/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
2381/// to free memory allocated by new.
2382///
2383/// This method is called to parse the 'delete' expression after the optional
2384/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
2385/// and "Start" is its location.  Otherwise, "Start" is the location of the
2386/// 'delete' token.
2387///
2388///        delete-expression:
2389///                   '::'[opt] 'delete' cast-expression
2390///                   '::'[opt] 'delete' '[' ']' cast-expression
2391ExprResult
2392Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
2393  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
2394  ConsumeToken(); // Consume 'delete'
2395
2396  // Array delete?
2397  bool ArrayDelete = false;
2398  if (Tok.is(tok::l_square) && NextToken().is(tok::r_square)) {
2399    // FIXME: This could be the start of a lambda-expression. We should
2400    // disambiguate this, but that will require arbitrary lookahead if
2401    // the next token is '(':
2402    //   delete [](int*){ /* ... */
2403    ArrayDelete = true;
2404    BalancedDelimiterTracker T(*this, tok::l_square);
2405
2406    T.consumeOpen();
2407    T.consumeClose();
2408    if (T.getCloseLocation().isInvalid())
2409      return ExprError();
2410  }
2411
2412  ExprResult Operand(ParseCastExpression(false));
2413  if (Operand.isInvalid())
2414    return move(Operand);
2415
2416  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
2417}
2418
2419static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
2420  switch(kind) {
2421  default: llvm_unreachable("Not a known unary type trait.");
2422  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
2423  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
2424  case tok::kw___has_nothrow_copy:           return UTT_HasNothrowCopy;
2425  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
2426  case tok::kw___has_trivial_constructor:
2427                                    return UTT_HasTrivialDefaultConstructor;
2428  case tok::kw___has_trivial_copy:           return UTT_HasTrivialCopy;
2429  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
2430  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
2431  case tok::kw___is_abstract:             return UTT_IsAbstract;
2432  case tok::kw___is_arithmetic:              return UTT_IsArithmetic;
2433  case tok::kw___is_array:                   return UTT_IsArray;
2434  case tok::kw___is_class:                return UTT_IsClass;
2435  case tok::kw___is_complete_type:           return UTT_IsCompleteType;
2436  case tok::kw___is_compound:                return UTT_IsCompound;
2437  case tok::kw___is_const:                   return UTT_IsConst;
2438  case tok::kw___is_empty:                return UTT_IsEmpty;
2439  case tok::kw___is_enum:                 return UTT_IsEnum;
2440  case tok::kw___is_final:                 return UTT_IsFinal;
2441  case tok::kw___is_floating_point:          return UTT_IsFloatingPoint;
2442  case tok::kw___is_function:                return UTT_IsFunction;
2443  case tok::kw___is_fundamental:             return UTT_IsFundamental;
2444  case tok::kw___is_integral:                return UTT_IsIntegral;
2445  case tok::kw___is_lvalue_reference:        return UTT_IsLvalueReference;
2446  case tok::kw___is_member_function_pointer: return UTT_IsMemberFunctionPointer;
2447  case tok::kw___is_member_object_pointer:   return UTT_IsMemberObjectPointer;
2448  case tok::kw___is_member_pointer:          return UTT_IsMemberPointer;
2449  case tok::kw___is_object:                  return UTT_IsObject;
2450  case tok::kw___is_literal:              return UTT_IsLiteral;
2451  case tok::kw___is_literal_type:         return UTT_IsLiteral;
2452  case tok::kw___is_pod:                  return UTT_IsPOD;
2453  case tok::kw___is_pointer:                 return UTT_IsPointer;
2454  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
2455  case tok::kw___is_reference:               return UTT_IsReference;
2456  case tok::kw___is_rvalue_reference:        return UTT_IsRvalueReference;
2457  case tok::kw___is_scalar:                  return UTT_IsScalar;
2458  case tok::kw___is_signed:                  return UTT_IsSigned;
2459  case tok::kw___is_standard_layout:         return UTT_IsStandardLayout;
2460  case tok::kw___is_trivial:                 return UTT_IsTrivial;
2461  case tok::kw___is_trivially_copyable:      return UTT_IsTriviallyCopyable;
2462  case tok::kw___is_union:                return UTT_IsUnion;
2463  case tok::kw___is_unsigned:                return UTT_IsUnsigned;
2464  case tok::kw___is_void:                    return UTT_IsVoid;
2465  case tok::kw___is_volatile:                return UTT_IsVolatile;
2466  }
2467}
2468
2469static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
2470  switch(kind) {
2471  default: llvm_unreachable("Not a known binary type trait");
2472  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
2473  case tok::kw___is_convertible:             return BTT_IsConvertible;
2474  case tok::kw___is_same:                    return BTT_IsSame;
2475  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
2476  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
2477  case tok::kw___is_trivially_assignable:    return BTT_IsTriviallyAssignable;
2478  }
2479}
2480
2481static TypeTrait TypeTraitFromTokKind(tok::TokenKind kind) {
2482  switch (kind) {
2483  default: llvm_unreachable("Not a known type trait");
2484  case tok::kw___is_trivially_constructible:
2485    return TT_IsTriviallyConstructible;
2486  }
2487}
2488
2489static ArrayTypeTrait ArrayTypeTraitFromTokKind(tok::TokenKind kind) {
2490  switch(kind) {
2491  default: llvm_unreachable("Not a known binary type trait");
2492  case tok::kw___array_rank:                 return ATT_ArrayRank;
2493  case tok::kw___array_extent:               return ATT_ArrayExtent;
2494  }
2495}
2496
2497static ExpressionTrait ExpressionTraitFromTokKind(tok::TokenKind kind) {
2498  switch(kind) {
2499  default: llvm_unreachable("Not a known unary expression trait.");
2500  case tok::kw___is_lvalue_expr:             return ET_IsLValueExpr;
2501  case tok::kw___is_rvalue_expr:             return ET_IsRValueExpr;
2502  }
2503}
2504
2505/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
2506/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2507/// templates.
2508///
2509///       primary-expression:
2510/// [GNU]             unary-type-trait '(' type-id ')'
2511///
2512ExprResult Parser::ParseUnaryTypeTrait() {
2513  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
2514  SourceLocation Loc = ConsumeToken();
2515
2516  BalancedDelimiterTracker T(*this, tok::l_paren);
2517  if (T.expectAndConsume(diag::err_expected_lparen))
2518    return ExprError();
2519
2520  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
2521  // there will be cryptic errors about mismatched parentheses and missing
2522  // specifiers.
2523  TypeResult Ty = ParseTypeName();
2524
2525  T.consumeClose();
2526
2527  if (Ty.isInvalid())
2528    return ExprError();
2529
2530  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), T.getCloseLocation());
2531}
2532
2533/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
2534/// pseudo-functions that allow implementation of the TR1/C++0x type traits
2535/// templates.
2536///
2537///       primary-expression:
2538/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
2539///
2540ExprResult Parser::ParseBinaryTypeTrait() {
2541  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
2542  SourceLocation Loc = ConsumeToken();
2543
2544  BalancedDelimiterTracker T(*this, tok::l_paren);
2545  if (T.expectAndConsume(diag::err_expected_lparen))
2546    return ExprError();
2547
2548  TypeResult LhsTy = ParseTypeName();
2549  if (LhsTy.isInvalid()) {
2550    SkipUntil(tok::r_paren);
2551    return ExprError();
2552  }
2553
2554  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2555    SkipUntil(tok::r_paren);
2556    return ExprError();
2557  }
2558
2559  TypeResult RhsTy = ParseTypeName();
2560  if (RhsTy.isInvalid()) {
2561    SkipUntil(tok::r_paren);
2562    return ExprError();
2563  }
2564
2565  T.consumeClose();
2566
2567  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(),
2568                                      T.getCloseLocation());
2569}
2570
2571/// \brief Parse the built-in type-trait pseudo-functions that allow
2572/// implementation of the TR1/C++11 type traits templates.
2573///
2574///       primary-expression:
2575///          type-trait '(' type-id-seq ')'
2576///
2577///       type-id-seq:
2578///          type-id ...[opt] type-id-seq[opt]
2579///
2580ExprResult Parser::ParseTypeTrait() {
2581  TypeTrait Kind = TypeTraitFromTokKind(Tok.getKind());
2582  SourceLocation Loc = ConsumeToken();
2583
2584  BalancedDelimiterTracker Parens(*this, tok::l_paren);
2585  if (Parens.expectAndConsume(diag::err_expected_lparen))
2586    return ExprError();
2587
2588  llvm::SmallVector<ParsedType, 2> Args;
2589  do {
2590    // Parse the next type.
2591    TypeResult Ty = ParseTypeName();
2592    if (Ty.isInvalid()) {
2593      Parens.skipToEnd();
2594      return ExprError();
2595    }
2596
2597    // Parse the ellipsis, if present.
2598    if (Tok.is(tok::ellipsis)) {
2599      Ty = Actions.ActOnPackExpansion(Ty.get(), ConsumeToken());
2600      if (Ty.isInvalid()) {
2601        Parens.skipToEnd();
2602        return ExprError();
2603      }
2604    }
2605
2606    // Add this type to the list of arguments.
2607    Args.push_back(Ty.get());
2608
2609    if (Tok.is(tok::comma)) {
2610      ConsumeToken();
2611      continue;
2612    }
2613
2614    break;
2615  } while (true);
2616
2617  if (Parens.consumeClose())
2618    return ExprError();
2619
2620  return Actions.ActOnTypeTrait(Kind, Loc, Args, Parens.getCloseLocation());
2621}
2622
2623/// ParseArrayTypeTrait - Parse the built-in array type-trait
2624/// pseudo-functions.
2625///
2626///       primary-expression:
2627/// [Embarcadero]     '__array_rank' '(' type-id ')'
2628/// [Embarcadero]     '__array_extent' '(' type-id ',' expression ')'
2629///
2630ExprResult Parser::ParseArrayTypeTrait() {
2631  ArrayTypeTrait ATT = ArrayTypeTraitFromTokKind(Tok.getKind());
2632  SourceLocation Loc = ConsumeToken();
2633
2634  BalancedDelimiterTracker T(*this, tok::l_paren);
2635  if (T.expectAndConsume(diag::err_expected_lparen))
2636    return ExprError();
2637
2638  TypeResult Ty = ParseTypeName();
2639  if (Ty.isInvalid()) {
2640    SkipUntil(tok::comma);
2641    SkipUntil(tok::r_paren);
2642    return ExprError();
2643  }
2644
2645  switch (ATT) {
2646  case ATT_ArrayRank: {
2647    T.consumeClose();
2648    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), NULL,
2649                                       T.getCloseLocation());
2650  }
2651  case ATT_ArrayExtent: {
2652    if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
2653      SkipUntil(tok::r_paren);
2654      return ExprError();
2655    }
2656
2657    ExprResult DimExpr = ParseExpression();
2658    T.consumeClose();
2659
2660    return Actions.ActOnArrayTypeTrait(ATT, Loc, Ty.get(), DimExpr.get(),
2661                                       T.getCloseLocation());
2662  }
2663  }
2664  llvm_unreachable("Invalid ArrayTypeTrait!");
2665}
2666
2667/// ParseExpressionTrait - Parse built-in expression-trait
2668/// pseudo-functions like __is_lvalue_expr( xxx ).
2669///
2670///       primary-expression:
2671/// [Embarcadero]     expression-trait '(' expression ')'
2672///
2673ExprResult Parser::ParseExpressionTrait() {
2674  ExpressionTrait ET = ExpressionTraitFromTokKind(Tok.getKind());
2675  SourceLocation Loc = ConsumeToken();
2676
2677  BalancedDelimiterTracker T(*this, tok::l_paren);
2678  if (T.expectAndConsume(diag::err_expected_lparen))
2679    return ExprError();
2680
2681  ExprResult Expr = ParseExpression();
2682
2683  T.consumeClose();
2684
2685  return Actions.ActOnExpressionTrait(ET, Loc, Expr.get(),
2686                                      T.getCloseLocation());
2687}
2688
2689
2690/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
2691/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
2692/// based on the context past the parens.
2693ExprResult
2694Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
2695                                         ParsedType &CastTy,
2696                                         BalancedDelimiterTracker &Tracker) {
2697  assert(getLangOpts().CPlusPlus && "Should only be called for C++!");
2698  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
2699  assert(isTypeIdInParens() && "Not a type-id!");
2700
2701  ExprResult Result(true);
2702  CastTy = ParsedType();
2703
2704  // We need to disambiguate a very ugly part of the C++ syntax:
2705  //
2706  // (T())x;  - type-id
2707  // (T())*x; - type-id
2708  // (T())/x; - expression
2709  // (T());   - expression
2710  //
2711  // The bad news is that we cannot use the specialized tentative parser, since
2712  // it can only verify that the thing inside the parens can be parsed as
2713  // type-id, it is not useful for determining the context past the parens.
2714  //
2715  // The good news is that the parser can disambiguate this part without
2716  // making any unnecessary Action calls.
2717  //
2718  // It uses a scheme similar to parsing inline methods. The parenthesized
2719  // tokens are cached, the context that follows is determined (possibly by
2720  // parsing a cast-expression), and then we re-introduce the cached tokens
2721  // into the token stream and parse them appropriately.
2722
2723  ParenParseOption ParseAs;
2724  CachedTokens Toks;
2725
2726  // Store the tokens of the parentheses. We will parse them after we determine
2727  // the context that follows them.
2728  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
2729    // We didn't find the ')' we expected.
2730    Tracker.consumeClose();
2731    return ExprError();
2732  }
2733
2734  if (Tok.is(tok::l_brace)) {
2735    ParseAs = CompoundLiteral;
2736  } else {
2737    bool NotCastExpr;
2738    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
2739    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
2740      NotCastExpr = true;
2741    } else {
2742      // Try parsing the cast-expression that may follow.
2743      // If it is not a cast-expression, NotCastExpr will be true and no token
2744      // will be consumed.
2745      Result = ParseCastExpression(false/*isUnaryExpression*/,
2746                                   false/*isAddressofOperand*/,
2747                                   NotCastExpr,
2748                                   // type-id has priority.
2749                                   IsTypeCast);
2750    }
2751
2752    // If we parsed a cast-expression, it's really a type-id, otherwise it's
2753    // an expression.
2754    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
2755  }
2756
2757  // The current token should go after the cached tokens.
2758  Toks.push_back(Tok);
2759  // Re-enter the stored parenthesized tokens into the token stream, so we may
2760  // parse them now.
2761  PP.EnterTokenStream(Toks.data(), Toks.size(),
2762                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
2763  // Drop the current token and bring the first cached one. It's the same token
2764  // as when we entered this function.
2765  ConsumeAnyToken();
2766
2767  if (ParseAs >= CompoundLiteral) {
2768    // Parse the type declarator.
2769    DeclSpec DS(AttrFactory);
2770    ParseSpecifierQualifierList(DS);
2771    Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
2772    ParseDeclarator(DeclaratorInfo);
2773
2774    // Match the ')'.
2775    Tracker.consumeClose();
2776
2777    if (ParseAs == CompoundLiteral) {
2778      ExprType = CompoundLiteral;
2779      TypeResult Ty = ParseTypeName();
2780       return ParseCompoundLiteralExpression(Ty.get(),
2781                                            Tracker.getOpenLocation(),
2782                                            Tracker.getCloseLocation());
2783    }
2784
2785    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
2786    assert(ParseAs == CastExpr);
2787
2788    if (DeclaratorInfo.isInvalidType())
2789      return ExprError();
2790
2791    // Result is what ParseCastExpression returned earlier.
2792    if (!Result.isInvalid())
2793      Result = Actions.ActOnCastExpr(getCurScope(), Tracker.getOpenLocation(),
2794                                    DeclaratorInfo, CastTy,
2795                                    Tracker.getCloseLocation(), Result.take());
2796    return move(Result);
2797  }
2798
2799  // Not a compound literal, and not followed by a cast-expression.
2800  assert(ParseAs == SimpleExpr);
2801
2802  ExprType = SimpleExpr;
2803  Result = ParseExpression();
2804  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2805    Result = Actions.ActOnParenExpr(Tracker.getOpenLocation(),
2806                                    Tok.getLocation(), Result.take());
2807
2808  // Match the ')'.
2809  if (Result.isInvalid()) {
2810    SkipUntil(tok::r_paren);
2811    return ExprError();
2812  }
2813
2814  Tracker.consumeClose();
2815  return move(Result);
2816}
2817