ParseExprCXX.cpp revision 483b9f3bc05c5409e2c6643f1c9d91e21c8ff9d2
1//===--- ParseExprCXX.cpp - C++ Expression Parsing ------------------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the Expression parsing implementation for C++.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Parse/ParseDiagnostic.h"
15#include "clang/Parse/Parser.h"
16#include "RAIIObjectsForParser.h"
17#include "clang/Sema/DeclSpec.h"
18#include "clang/Sema/ParsedTemplate.h"
19#include "llvm/Support/ErrorHandling.h"
20
21using namespace clang;
22
23/// \brief Parse global scope or nested-name-specifier if present.
24///
25/// Parses a C++ global scope specifier ('::') or nested-name-specifier (which
26/// may be preceded by '::'). Note that this routine will not parse ::new or
27/// ::delete; it will just leave them in the token stream.
28///
29///       '::'[opt] nested-name-specifier
30///       '::'
31///
32///       nested-name-specifier:
33///         type-name '::'
34///         namespace-name '::'
35///         nested-name-specifier identifier '::'
36///         nested-name-specifier 'template'[opt] simple-template-id '::'
37///
38///
39/// \param SS the scope specifier that will be set to the parsed
40/// nested-name-specifier (or empty)
41///
42/// \param ObjectType if this nested-name-specifier is being parsed following
43/// the "." or "->" of a member access expression, this parameter provides the
44/// type of the object whose members are being accessed.
45///
46/// \param EnteringContext whether we will be entering into the context of
47/// the nested-name-specifier after parsing it.
48///
49/// \param MayBePseudoDestructor When non-NULL, points to a flag that
50/// indicates whether this nested-name-specifier may be part of a
51/// pseudo-destructor name. In this case, the flag will be set false
52/// if we don't actually end up parsing a destructor name. Moreorover,
53/// if we do end up determining that we are parsing a destructor name,
54/// the last component of the nested-name-specifier is not parsed as
55/// part of the scope specifier.
56
57/// member access expression, e.g., the \p T:: in \p p->T::m.
58///
59/// \returns true if there was an error parsing a scope specifier
60bool Parser::ParseOptionalCXXScopeSpecifier(CXXScopeSpec &SS,
61                                            ParsedType ObjectType,
62                                            bool EnteringContext,
63                                            bool *MayBePseudoDestructor) {
64  assert(getLang().CPlusPlus &&
65         "Call sites of this function should be guarded by checking for C++");
66
67  if (Tok.is(tok::annot_cxxscope)) {
68    SS.setScopeRep(static_cast<NestedNameSpecifier*>(Tok.getAnnotationValue()));
69    SS.setRange(Tok.getAnnotationRange());
70    ConsumeToken();
71    return false;
72  }
73
74  bool HasScopeSpecifier = false;
75
76  if (Tok.is(tok::coloncolon)) {
77    // ::new and ::delete aren't nested-name-specifiers.
78    tok::TokenKind NextKind = NextToken().getKind();
79    if (NextKind == tok::kw_new || NextKind == tok::kw_delete)
80      return false;
81
82    // '::' - Global scope qualifier.
83    SourceLocation CCLoc = ConsumeToken();
84    SS.setBeginLoc(CCLoc);
85    SS.setScopeRep(Actions.ActOnCXXGlobalScopeSpecifier(getCurScope(), CCLoc));
86    SS.setEndLoc(CCLoc);
87    HasScopeSpecifier = true;
88  }
89
90  bool CheckForDestructor = false;
91  if (MayBePseudoDestructor && *MayBePseudoDestructor) {
92    CheckForDestructor = true;
93    *MayBePseudoDestructor = false;
94  }
95
96  while (true) {
97    if (HasScopeSpecifier) {
98      // C++ [basic.lookup.classref]p5:
99      //   If the qualified-id has the form
100      //
101      //       ::class-name-or-namespace-name::...
102      //
103      //   the class-name-or-namespace-name is looked up in global scope as a
104      //   class-name or namespace-name.
105      //
106      // To implement this, we clear out the object type as soon as we've
107      // seen a leading '::' or part of a nested-name-specifier.
108      ObjectType = ParsedType();
109
110      if (Tok.is(tok::code_completion)) {
111        // Code completion for a nested-name-specifier, where the code
112        // code completion token follows the '::'.
113        Actions.CodeCompleteQualifiedId(getCurScope(), SS, EnteringContext);
114        ConsumeCodeCompletionToken();
115      }
116    }
117
118    // nested-name-specifier:
119    //   nested-name-specifier 'template'[opt] simple-template-id '::'
120
121    // Parse the optional 'template' keyword, then make sure we have
122    // 'identifier <' after it.
123    if (Tok.is(tok::kw_template)) {
124      // If we don't have a scope specifier or an object type, this isn't a
125      // nested-name-specifier, since they aren't allowed to start with
126      // 'template'.
127      if (!HasScopeSpecifier && !ObjectType)
128        break;
129
130      TentativeParsingAction TPA(*this);
131      SourceLocation TemplateKWLoc = ConsumeToken();
132
133      UnqualifiedId TemplateName;
134      if (Tok.is(tok::identifier)) {
135        // Consume the identifier.
136        TemplateName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
137        ConsumeToken();
138      } else if (Tok.is(tok::kw_operator)) {
139        if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType,
140                                       TemplateName)) {
141          TPA.Commit();
142          break;
143        }
144
145        if (TemplateName.getKind() != UnqualifiedId::IK_OperatorFunctionId &&
146            TemplateName.getKind() != UnqualifiedId::IK_LiteralOperatorId) {
147          Diag(TemplateName.getSourceRange().getBegin(),
148               diag::err_id_after_template_in_nested_name_spec)
149            << TemplateName.getSourceRange();
150          TPA.Commit();
151          break;
152        }
153      } else {
154        TPA.Revert();
155        break;
156      }
157
158      // If the next token is not '<', we have a qualified-id that refers
159      // to a template name, such as T::template apply, but is not a
160      // template-id.
161      if (Tok.isNot(tok::less)) {
162        TPA.Revert();
163        break;
164      }
165
166      // Commit to parsing the template-id.
167      TPA.Commit();
168      TemplateTy Template;
169      if (TemplateNameKind TNK = Actions.ActOnDependentTemplateName(getCurScope(),
170                                                                TemplateKWLoc,
171                                                                    SS,
172                                                                  TemplateName,
173                                                                    ObjectType,
174                                                                EnteringContext,
175                                                                    Template)) {
176        if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
177                                    TemplateKWLoc, false))
178          return true;
179      } else
180        return true;
181
182      continue;
183    }
184
185    if (Tok.is(tok::annot_template_id) && NextToken().is(tok::coloncolon)) {
186      // We have
187      //
188      //   simple-template-id '::'
189      //
190      // So we need to check whether the simple-template-id is of the
191      // right kind (it should name a type or be dependent), and then
192      // convert it into a type within the nested-name-specifier.
193      TemplateIdAnnotation *TemplateId
194        = static_cast<TemplateIdAnnotation *>(Tok.getAnnotationValue());
195      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde)) {
196        *MayBePseudoDestructor = true;
197        return false;
198      }
199
200      if (TemplateId->Kind == TNK_Type_template ||
201          TemplateId->Kind == TNK_Dependent_template_name) {
202        AnnotateTemplateIdTokenAsType(&SS);
203
204        assert(Tok.is(tok::annot_typename) &&
205               "AnnotateTemplateIdTokenAsType isn't working");
206        Token TypeToken = Tok;
207        ConsumeToken();
208        assert(Tok.is(tok::coloncolon) && "NextToken() not working properly!");
209        SourceLocation CCLoc = ConsumeToken();
210
211        if (!HasScopeSpecifier) {
212          SS.setBeginLoc(TypeToken.getLocation());
213          HasScopeSpecifier = true;
214        }
215
216        if (ParsedType T = getTypeAnnotation(TypeToken)) {
217          CXXScopeTy *Scope =
218            Actions.ActOnCXXNestedNameSpecifier(getCurScope(), SS, T,
219                                                TypeToken.getAnnotationRange(),
220                                                CCLoc);
221          SS.setScopeRep(Scope);
222        } else
223          SS.setScopeRep(0);
224        SS.setEndLoc(CCLoc);
225        continue;
226      }
227
228      assert(false && "FIXME: Only type template names supported here");
229    }
230
231
232    // The rest of the nested-name-specifier possibilities start with
233    // tok::identifier.
234    if (Tok.isNot(tok::identifier))
235      break;
236
237    IdentifierInfo &II = *Tok.getIdentifierInfo();
238
239    // nested-name-specifier:
240    //   type-name '::'
241    //   namespace-name '::'
242    //   nested-name-specifier identifier '::'
243    Token Next = NextToken();
244
245    // If we get foo:bar, this is almost certainly a typo for foo::bar.  Recover
246    // and emit a fixit hint for it.
247    if (Next.is(tok::colon) && !ColonIsSacred) {
248      if (Actions.IsInvalidUnlessNestedName(getCurScope(), SS, II, ObjectType,
249                                            EnteringContext) &&
250          // If the token after the colon isn't an identifier, it's still an
251          // error, but they probably meant something else strange so don't
252          // recover like this.
253          PP.LookAhead(1).is(tok::identifier)) {
254        Diag(Next, diag::err_unexected_colon_in_nested_name_spec)
255          << FixItHint::CreateReplacement(Next.getLocation(), "::");
256
257        // Recover as if the user wrote '::'.
258        Next.setKind(tok::coloncolon);
259      }
260    }
261
262    if (Next.is(tok::coloncolon)) {
263      if (CheckForDestructor && GetLookAheadToken(2).is(tok::tilde) &&
264          !Actions.isNonTypeNestedNameSpecifier(getCurScope(), SS, Tok.getLocation(),
265                                                II, ObjectType)) {
266        *MayBePseudoDestructor = true;
267        return false;
268      }
269
270      // We have an identifier followed by a '::'. Lookup this name
271      // as the name in a nested-name-specifier.
272      SourceLocation IdLoc = ConsumeToken();
273      assert((Tok.is(tok::coloncolon) || Tok.is(tok::colon)) &&
274             "NextToken() not working properly!");
275      SourceLocation CCLoc = ConsumeToken();
276
277      if (!HasScopeSpecifier) {
278        SS.setBeginLoc(IdLoc);
279        HasScopeSpecifier = true;
280      }
281
282      if (!SS.isInvalid())
283        SS.setScopeRep(
284            Actions.ActOnCXXNestedNameSpecifier(getCurScope(), SS, IdLoc, CCLoc, II,
285                                                ObjectType, EnteringContext));
286      SS.setEndLoc(CCLoc);
287      continue;
288    }
289
290    // nested-name-specifier:
291    //   type-name '<'
292    if (Next.is(tok::less)) {
293      TemplateTy Template;
294      UnqualifiedId TemplateName;
295      TemplateName.setIdentifier(&II, Tok.getLocation());
296      bool MemberOfUnknownSpecialization;
297      if (TemplateNameKind TNK = Actions.isTemplateName(getCurScope(), SS,
298                                              /*hasTemplateKeyword=*/false,
299                                                        TemplateName,
300                                                        ObjectType,
301                                                        EnteringContext,
302                                                        Template,
303                                              MemberOfUnknownSpecialization)) {
304        // We have found a template name, so annotate this this token
305        // with a template-id annotation. We do not permit the
306        // template-id to be translated into a type annotation,
307        // because some clients (e.g., the parsing of class template
308        // specializations) still want to see the original template-id
309        // token.
310        ConsumeToken();
311        if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
312                                    SourceLocation(), false))
313          return true;
314        continue;
315      }
316
317      if (MemberOfUnknownSpecialization && (ObjectType || SS.isSet()) &&
318          IsTemplateArgumentList(1)) {
319        // We have something like t::getAs<T>, where getAs is a
320        // member of an unknown specialization. However, this will only
321        // parse correctly as a template, so suggest the keyword 'template'
322        // before 'getAs' and treat this as a dependent template name.
323        Diag(Tok.getLocation(), diag::err_missing_dependent_template_keyword)
324          << II.getName()
325          << FixItHint::CreateInsertion(Tok.getLocation(), "template ");
326
327        if (TemplateNameKind TNK
328              = Actions.ActOnDependentTemplateName(getCurScope(),
329                                                   Tok.getLocation(), SS,
330                                                   TemplateName, ObjectType,
331                                                   EnteringContext, Template)) {
332          // Consume the identifier.
333          ConsumeToken();
334          if (AnnotateTemplateIdToken(Template, TNK, &SS, TemplateName,
335                                      SourceLocation(), false))
336            return true;
337        }
338        else
339          return true;
340
341        continue;
342      }
343    }
344
345    // We don't have any tokens that form the beginning of a
346    // nested-name-specifier, so we're done.
347    break;
348  }
349
350  // Even if we didn't see any pieces of a nested-name-specifier, we
351  // still check whether there is a tilde in this position, which
352  // indicates a potential pseudo-destructor.
353  if (CheckForDestructor && Tok.is(tok::tilde))
354    *MayBePseudoDestructor = true;
355
356  return false;
357}
358
359/// ParseCXXIdExpression - Handle id-expression.
360///
361///       id-expression:
362///         unqualified-id
363///         qualified-id
364///
365///       qualified-id:
366///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
367///         '::' identifier
368///         '::' operator-function-id
369///         '::' template-id
370///
371/// NOTE: The standard specifies that, for qualified-id, the parser does not
372/// expect:
373///
374///   '::' conversion-function-id
375///   '::' '~' class-name
376///
377/// This may cause a slight inconsistency on diagnostics:
378///
379/// class C {};
380/// namespace A {}
381/// void f() {
382///   :: A :: ~ C(); // Some Sema error about using destructor with a
383///                  // namespace.
384///   :: ~ C(); // Some Parser error like 'unexpected ~'.
385/// }
386///
387/// We simplify the parser a bit and make it work like:
388///
389///       qualified-id:
390///         '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
391///         '::' unqualified-id
392///
393/// That way Sema can handle and report similar errors for namespaces and the
394/// global scope.
395///
396/// The isAddressOfOperand parameter indicates that this id-expression is a
397/// direct operand of the address-of operator. This is, besides member contexts,
398/// the only place where a qualified-id naming a non-static class member may
399/// appear.
400///
401ExprResult Parser::ParseCXXIdExpression(bool isAddressOfOperand) {
402  // qualified-id:
403  //   '::'[opt] nested-name-specifier 'template'[opt] unqualified-id
404  //   '::' unqualified-id
405  //
406  CXXScopeSpec SS;
407  ParseOptionalCXXScopeSpecifier(SS, ParsedType(), false);
408
409  UnqualifiedId Name;
410  if (ParseUnqualifiedId(SS,
411                         /*EnteringContext=*/false,
412                         /*AllowDestructorName=*/false,
413                         /*AllowConstructorName=*/false,
414                         /*ObjectType=*/ ParsedType(),
415                         Name))
416    return ExprError();
417
418  // This is only the direct operand of an & operator if it is not
419  // followed by a postfix-expression suffix.
420  if (isAddressOfOperand && isPostfixExpressionSuffixStart())
421    isAddressOfOperand = false;
422
423  return Actions.ActOnIdExpression(getCurScope(), SS, Name, Tok.is(tok::l_paren),
424                                   isAddressOfOperand);
425
426}
427
428/// ParseCXXCasts - This handles the various ways to cast expressions to another
429/// type.
430///
431///       postfix-expression: [C++ 5.2p1]
432///         'dynamic_cast' '<' type-name '>' '(' expression ')'
433///         'static_cast' '<' type-name '>' '(' expression ')'
434///         'reinterpret_cast' '<' type-name '>' '(' expression ')'
435///         'const_cast' '<' type-name '>' '(' expression ')'
436///
437ExprResult Parser::ParseCXXCasts() {
438  tok::TokenKind Kind = Tok.getKind();
439  const char *CastName = 0;     // For error messages
440
441  switch (Kind) {
442  default: assert(0 && "Unknown C++ cast!"); abort();
443  case tok::kw_const_cast:       CastName = "const_cast";       break;
444  case tok::kw_dynamic_cast:     CastName = "dynamic_cast";     break;
445  case tok::kw_reinterpret_cast: CastName = "reinterpret_cast"; break;
446  case tok::kw_static_cast:      CastName = "static_cast";      break;
447  }
448
449  SourceLocation OpLoc = ConsumeToken();
450  SourceLocation LAngleBracketLoc = Tok.getLocation();
451
452  if (ExpectAndConsume(tok::less, diag::err_expected_less_after, CastName))
453    return ExprError();
454
455  TypeResult CastTy = ParseTypeName();
456  SourceLocation RAngleBracketLoc = Tok.getLocation();
457
458  if (ExpectAndConsume(tok::greater, diag::err_expected_greater))
459    return ExprError(Diag(LAngleBracketLoc, diag::note_matching) << "<");
460
461  SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
462
463  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, CastName))
464    return ExprError();
465
466  ExprResult Result = ParseExpression();
467
468  // Match the ')'.
469  RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
470
471  if (!Result.isInvalid() && !CastTy.isInvalid())
472    Result = Actions.ActOnCXXNamedCast(OpLoc, Kind,
473                                       LAngleBracketLoc, CastTy.get(),
474                                       RAngleBracketLoc,
475                                       LParenLoc, Result.take(), RParenLoc);
476
477  return move(Result);
478}
479
480/// ParseCXXTypeid - This handles the C++ typeid expression.
481///
482///       postfix-expression: [C++ 5.2p1]
483///         'typeid' '(' expression ')'
484///         'typeid' '(' type-id ')'
485///
486ExprResult Parser::ParseCXXTypeid() {
487  assert(Tok.is(tok::kw_typeid) && "Not 'typeid'!");
488
489  SourceLocation OpLoc = ConsumeToken();
490  SourceLocation LParenLoc = Tok.getLocation();
491  SourceLocation RParenLoc;
492
493  // typeid expressions are always parenthesized.
494  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
495      "typeid"))
496    return ExprError();
497
498  ExprResult Result;
499
500  if (isTypeIdInParens()) {
501    TypeResult Ty = ParseTypeName();
502
503    // Match the ')'.
504    RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
505
506    if (Ty.isInvalid() || RParenLoc.isInvalid())
507      return ExprError();
508
509    Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/true,
510                                    Ty.get().getAsOpaquePtr(), RParenLoc);
511  } else {
512    // C++0x [expr.typeid]p3:
513    //   When typeid is applied to an expression other than an lvalue of a
514    //   polymorphic class type [...] The expression is an unevaluated
515    //   operand (Clause 5).
516    //
517    // Note that we can't tell whether the expression is an lvalue of a
518    // polymorphic class type until after we've parsed the expression, so
519    // we the expression is potentially potentially evaluated.
520    EnterExpressionEvaluationContext Unevaluated(Actions,
521                                       Sema::PotentiallyPotentiallyEvaluated);
522    Result = ParseExpression();
523
524    // Match the ')'.
525    if (Result.isInvalid())
526      SkipUntil(tok::r_paren);
527    else {
528      RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
529      if (RParenLoc.isInvalid())
530        return ExprError();
531
532      Result = Actions.ActOnCXXTypeid(OpLoc, LParenLoc, /*isType=*/false,
533                                      Result.release(), RParenLoc);
534    }
535  }
536
537  return move(Result);
538}
539
540/// ParseCXXUuidof - This handles the Microsoft C++ __uuidof expression.
541///
542///         '__uuidof' '(' expression ')'
543///         '__uuidof' '(' type-id ')'
544///
545ExprResult Parser::ParseCXXUuidof() {
546  assert(Tok.is(tok::kw___uuidof) && "Not '__uuidof'!");
547
548  SourceLocation OpLoc = ConsumeToken();
549  SourceLocation LParenLoc = Tok.getLocation();
550  SourceLocation RParenLoc;
551
552  // __uuidof expressions are always parenthesized.
553  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
554      "__uuidof"))
555    return ExprError();
556
557  ExprResult Result;
558
559  if (isTypeIdInParens()) {
560    TypeResult Ty = ParseTypeName();
561
562    // Match the ')'.
563    RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
564
565    if (Ty.isInvalid())
566      return ExprError();
567
568    Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/true,
569                                    Ty.get().getAsOpaquePtr(), RParenLoc);
570  } else {
571    EnterExpressionEvaluationContext Unevaluated(Actions, Sema::Unevaluated);
572    Result = ParseExpression();
573
574    // Match the ')'.
575    if (Result.isInvalid())
576      SkipUntil(tok::r_paren);
577    else {
578      RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
579
580      Result = Actions.ActOnCXXUuidof(OpLoc, LParenLoc, /*isType=*/false,
581                                      Result.release(), RParenLoc);
582    }
583  }
584
585  return move(Result);
586}
587
588/// \brief Parse a C++ pseudo-destructor expression after the base,
589/// . or -> operator, and nested-name-specifier have already been
590/// parsed.
591///
592///       postfix-expression: [C++ 5.2]
593///         postfix-expression . pseudo-destructor-name
594///         postfix-expression -> pseudo-destructor-name
595///
596///       pseudo-destructor-name:
597///         ::[opt] nested-name-specifier[opt] type-name :: ~type-name
598///         ::[opt] nested-name-specifier template simple-template-id ::
599///                 ~type-name
600///         ::[opt] nested-name-specifier[opt] ~type-name
601///
602ExprResult
603Parser::ParseCXXPseudoDestructor(ExprArg Base, SourceLocation OpLoc,
604                                 tok::TokenKind OpKind,
605                                 CXXScopeSpec &SS,
606                                 ParsedType ObjectType) {
607  // We're parsing either a pseudo-destructor-name or a dependent
608  // member access that has the same form as a
609  // pseudo-destructor-name. We parse both in the same way and let
610  // the action model sort them out.
611  //
612  // Note that the ::[opt] nested-name-specifier[opt] has already
613  // been parsed, and if there was a simple-template-id, it has
614  // been coalesced into a template-id annotation token.
615  UnqualifiedId FirstTypeName;
616  SourceLocation CCLoc;
617  if (Tok.is(tok::identifier)) {
618    FirstTypeName.setIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
619    ConsumeToken();
620    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
621    CCLoc = ConsumeToken();
622  } else if (Tok.is(tok::annot_template_id)) {
623    FirstTypeName.setTemplateId(
624                              (TemplateIdAnnotation *)Tok.getAnnotationValue());
625    ConsumeToken();
626    assert(Tok.is(tok::coloncolon) &&"ParseOptionalCXXScopeSpecifier fail");
627    CCLoc = ConsumeToken();
628  } else {
629    FirstTypeName.setIdentifier(0, SourceLocation());
630  }
631
632  // Parse the tilde.
633  assert(Tok.is(tok::tilde) && "ParseOptionalCXXScopeSpecifier fail");
634  SourceLocation TildeLoc = ConsumeToken();
635  if (!Tok.is(tok::identifier)) {
636    Diag(Tok, diag::err_destructor_tilde_identifier);
637    return ExprError();
638  }
639
640  // Parse the second type.
641  UnqualifiedId SecondTypeName;
642  IdentifierInfo *Name = Tok.getIdentifierInfo();
643  SourceLocation NameLoc = ConsumeToken();
644  SecondTypeName.setIdentifier(Name, NameLoc);
645
646  // If there is a '<', the second type name is a template-id. Parse
647  // it as such.
648  if (Tok.is(tok::less) &&
649      ParseUnqualifiedIdTemplateId(SS, Name, NameLoc, false, ObjectType,
650                                   SecondTypeName, /*AssumeTemplateName=*/true,
651                                   /*TemplateKWLoc*/SourceLocation()))
652    return ExprError();
653
654  return Actions.ActOnPseudoDestructorExpr(getCurScope(), Base,
655                                           OpLoc, OpKind,
656                                           SS, FirstTypeName, CCLoc,
657                                           TildeLoc, SecondTypeName,
658                                           Tok.is(tok::l_paren));
659}
660
661/// ParseCXXBoolLiteral - This handles the C++ Boolean literals.
662///
663///       boolean-literal: [C++ 2.13.5]
664///         'true'
665///         'false'
666ExprResult Parser::ParseCXXBoolLiteral() {
667  tok::TokenKind Kind = Tok.getKind();
668  return Actions.ActOnCXXBoolLiteral(ConsumeToken(), Kind);
669}
670
671/// ParseThrowExpression - This handles the C++ throw expression.
672///
673///       throw-expression: [C++ 15]
674///         'throw' assignment-expression[opt]
675ExprResult Parser::ParseThrowExpression() {
676  assert(Tok.is(tok::kw_throw) && "Not throw!");
677  SourceLocation ThrowLoc = ConsumeToken();           // Eat the throw token.
678
679  // If the current token isn't the start of an assignment-expression,
680  // then the expression is not present.  This handles things like:
681  //   "C ? throw : (void)42", which is crazy but legal.
682  switch (Tok.getKind()) {  // FIXME: move this predicate somewhere common.
683  case tok::semi:
684  case tok::r_paren:
685  case tok::r_square:
686  case tok::r_brace:
687  case tok::colon:
688  case tok::comma:
689    return Actions.ActOnCXXThrow(ThrowLoc, 0);
690
691  default:
692    ExprResult Expr(ParseAssignmentExpression());
693    if (Expr.isInvalid()) return move(Expr);
694    return Actions.ActOnCXXThrow(ThrowLoc, Expr.take());
695  }
696}
697
698/// ParseCXXThis - This handles the C++ 'this' pointer.
699///
700/// C++ 9.3.2: In the body of a non-static member function, the keyword this is
701/// a non-lvalue expression whose value is the address of the object for which
702/// the function is called.
703ExprResult Parser::ParseCXXThis() {
704  assert(Tok.is(tok::kw_this) && "Not 'this'!");
705  SourceLocation ThisLoc = ConsumeToken();
706  return Actions.ActOnCXXThis(ThisLoc);
707}
708
709/// ParseCXXTypeConstructExpression - Parse construction of a specified type.
710/// Can be interpreted either as function-style casting ("int(x)")
711/// or class type construction ("ClassType(x,y,z)")
712/// or creation of a value-initialized type ("int()").
713///
714///       postfix-expression: [C++ 5.2p1]
715///         simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
716///         typename-specifier '(' expression-list[opt] ')'         [TODO]
717///
718ExprResult
719Parser::ParseCXXTypeConstructExpression(const DeclSpec &DS) {
720  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
721  ParsedType TypeRep = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo).get();
722
723  assert(Tok.is(tok::l_paren) && "Expected '('!");
724  GreaterThanIsOperatorScope G(GreaterThanIsOperator, true);
725
726  SourceLocation LParenLoc = ConsumeParen();
727
728  ExprVector Exprs(Actions);
729  CommaLocsTy CommaLocs;
730
731  if (Tok.isNot(tok::r_paren)) {
732    if (ParseExpressionList(Exprs, CommaLocs)) {
733      SkipUntil(tok::r_paren);
734      return ExprError();
735    }
736  }
737
738  // Match the ')'.
739  SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
740
741  // TypeRep could be null, if it references an invalid typedef.
742  if (!TypeRep)
743    return ExprError();
744
745  assert((Exprs.size() == 0 || Exprs.size()-1 == CommaLocs.size())&&
746         "Unexpected number of commas!");
747  return Actions.ActOnCXXTypeConstructExpr(TypeRep, LParenLoc, move_arg(Exprs),
748                                           RParenLoc);
749}
750
751/// ParseCXXCondition - if/switch/while condition expression.
752///
753///       condition:
754///         expression
755///         type-specifier-seq declarator '=' assignment-expression
756/// [GNU]   type-specifier-seq declarator simple-asm-expr[opt] attributes[opt]
757///             '=' assignment-expression
758///
759/// \param ExprResult if the condition was parsed as an expression, the
760/// parsed expression.
761///
762/// \param DeclResult if the condition was parsed as a declaration, the
763/// parsed declaration.
764///
765/// \param Loc The location of the start of the statement that requires this
766/// condition, e.g., the "for" in a for loop.
767///
768/// \param ConvertToBoolean Whether the condition expression should be
769/// converted to a boolean value.
770///
771/// \returns true if there was a parsing, false otherwise.
772bool Parser::ParseCXXCondition(ExprResult &ExprOut,
773                               Decl *&DeclOut,
774                               SourceLocation Loc,
775                               bool ConvertToBoolean) {
776  if (Tok.is(tok::code_completion)) {
777    Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Condition);
778    ConsumeCodeCompletionToken();
779  }
780
781  if (!isCXXConditionDeclaration()) {
782    // Parse the expression.
783    ExprOut = ParseExpression(); // expression
784    DeclOut = 0;
785    if (ExprOut.isInvalid())
786      return true;
787
788    // If required, convert to a boolean value.
789    if (ConvertToBoolean)
790      ExprOut
791        = Actions.ActOnBooleanCondition(getCurScope(), Loc, ExprOut.get());
792    return ExprOut.isInvalid();
793  }
794
795  // type-specifier-seq
796  DeclSpec DS;
797  ParseSpecifierQualifierList(DS);
798
799  // declarator
800  Declarator DeclaratorInfo(DS, Declarator::ConditionContext);
801  ParseDeclarator(DeclaratorInfo);
802
803  // simple-asm-expr[opt]
804  if (Tok.is(tok::kw_asm)) {
805    SourceLocation Loc;
806    ExprResult AsmLabel(ParseSimpleAsm(&Loc));
807    if (AsmLabel.isInvalid()) {
808      SkipUntil(tok::semi);
809      return true;
810    }
811    DeclaratorInfo.setAsmLabel(AsmLabel.release());
812    DeclaratorInfo.SetRangeEnd(Loc);
813  }
814
815  // If attributes are present, parse them.
816  MaybeParseGNUAttributes(DeclaratorInfo);
817
818  // Type-check the declaration itself.
819  DeclResult Dcl = Actions.ActOnCXXConditionDeclaration(getCurScope(),
820                                                        DeclaratorInfo);
821  DeclOut = Dcl.get();
822  ExprOut = ExprError();
823
824  // '=' assignment-expression
825  if (isTokenEqualOrMistypedEqualEqual(
826                               diag::err_invalid_equalequal_after_declarator)) {
827    ConsumeToken();
828    ExprResult AssignExpr(ParseAssignmentExpression());
829    if (!AssignExpr.isInvalid())
830      Actions.AddInitializerToDecl(DeclOut, AssignExpr.take(), false,
831                                   DS.getTypeSpecType() == DeclSpec::TST_auto);
832  } else {
833    // FIXME: C++0x allows a braced-init-list
834    Diag(Tok, diag::err_expected_equal_after_declarator);
835  }
836
837  // FIXME: Build a reference to this declaration? Convert it to bool?
838  // (This is currently handled by Sema).
839
840  Actions.FinalizeDeclaration(DeclOut);
841
842  return false;
843}
844
845/// \brief Determine whether the current token starts a C++
846/// simple-type-specifier.
847bool Parser::isCXXSimpleTypeSpecifier() const {
848  switch (Tok.getKind()) {
849  case tok::annot_typename:
850  case tok::kw_short:
851  case tok::kw_long:
852  case tok::kw_signed:
853  case tok::kw_unsigned:
854  case tok::kw_void:
855  case tok::kw_char:
856  case tok::kw_int:
857  case tok::kw_float:
858  case tok::kw_double:
859  case tok::kw_wchar_t:
860  case tok::kw_char16_t:
861  case tok::kw_char32_t:
862  case tok::kw_bool:
863    // FIXME: C++0x decltype support.
864  // GNU typeof support.
865  case tok::kw_typeof:
866    return true;
867
868  default:
869    break;
870  }
871
872  return false;
873}
874
875/// ParseCXXSimpleTypeSpecifier - [C++ 7.1.5.2] Simple type specifiers.
876/// This should only be called when the current token is known to be part of
877/// simple-type-specifier.
878///
879///       simple-type-specifier:
880///         '::'[opt] nested-name-specifier[opt] type-name
881///         '::'[opt] nested-name-specifier 'template' simple-template-id [TODO]
882///         char
883///         wchar_t
884///         bool
885///         short
886///         int
887///         long
888///         signed
889///         unsigned
890///         float
891///         double
892///         void
893/// [GNU]   typeof-specifier
894/// [C++0x] auto               [TODO]
895///
896///       type-name:
897///         class-name
898///         enum-name
899///         typedef-name
900///
901void Parser::ParseCXXSimpleTypeSpecifier(DeclSpec &DS) {
902  DS.SetRangeStart(Tok.getLocation());
903  const char *PrevSpec;
904  unsigned DiagID;
905  SourceLocation Loc = Tok.getLocation();
906
907  switch (Tok.getKind()) {
908  case tok::identifier:   // foo::bar
909  case tok::coloncolon:   // ::foo::bar
910    assert(0 && "Annotation token should already be formed!");
911  default:
912    assert(0 && "Not a simple-type-specifier token!");
913    abort();
914
915  // type-name
916  case tok::annot_typename: {
917    if (getTypeAnnotation(Tok))
918      DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID,
919                         getTypeAnnotation(Tok));
920    else
921      DS.SetTypeSpecError();
922
923    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
924    ConsumeToken();
925
926    // Objective-C supports syntax of the form 'id<proto1,proto2>' where 'id'
927    // is a specific typedef and 'itf<proto1,proto2>' where 'itf' is an
928    // Objective-C interface.  If we don't have Objective-C or a '<', this is
929    // just a normal reference to a typedef name.
930    if (Tok.is(tok::less) && getLang().ObjC1)
931      ParseObjCProtocolQualifiers(DS);
932
933    DS.Finish(Diags, PP);
934    return;
935  }
936
937  // builtin types
938  case tok::kw_short:
939    DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, DiagID);
940    break;
941  case tok::kw_long:
942    DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, DiagID);
943    break;
944  case tok::kw_signed:
945    DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, DiagID);
946    break;
947  case tok::kw_unsigned:
948    DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, DiagID);
949    break;
950  case tok::kw_void:
951    DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, DiagID);
952    break;
953  case tok::kw_char:
954    DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, DiagID);
955    break;
956  case tok::kw_int:
957    DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, DiagID);
958    break;
959  case tok::kw_float:
960    DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, DiagID);
961    break;
962  case tok::kw_double:
963    DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, DiagID);
964    break;
965  case tok::kw_wchar_t:
966    DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, DiagID);
967    break;
968  case tok::kw_char16_t:
969    DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, DiagID);
970    break;
971  case tok::kw_char32_t:
972    DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, DiagID);
973    break;
974  case tok::kw_bool:
975    DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, DiagID);
976    break;
977
978    // FIXME: C++0x decltype support.
979  // GNU typeof support.
980  case tok::kw_typeof:
981    ParseTypeofSpecifier(DS);
982    DS.Finish(Diags, PP);
983    return;
984  }
985  if (Tok.is(tok::annot_typename))
986    DS.SetRangeEnd(Tok.getAnnotationEndLoc());
987  else
988    DS.SetRangeEnd(Tok.getLocation());
989  ConsumeToken();
990  DS.Finish(Diags, PP);
991}
992
993/// ParseCXXTypeSpecifierSeq - Parse a C++ type-specifier-seq (C++
994/// [dcl.name]), which is a non-empty sequence of type-specifiers,
995/// e.g., "const short int". Note that the DeclSpec is *not* finished
996/// by parsing the type-specifier-seq, because these sequences are
997/// typically followed by some form of declarator. Returns true and
998/// emits diagnostics if this is not a type-specifier-seq, false
999/// otherwise.
1000///
1001///   type-specifier-seq: [C++ 8.1]
1002///     type-specifier type-specifier-seq[opt]
1003///
1004bool Parser::ParseCXXTypeSpecifierSeq(DeclSpec &DS) {
1005  DS.SetRangeStart(Tok.getLocation());
1006  const char *PrevSpec = 0;
1007  unsigned DiagID;
1008  bool isInvalid = 0;
1009
1010  // Parse one or more of the type specifiers.
1011  if (!ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1012      ParsedTemplateInfo(), /*SuppressDeclarations*/true)) {
1013    Diag(Tok, diag::err_expected_type);
1014    return true;
1015  }
1016
1017  while (ParseOptionalTypeSpecifier(DS, isInvalid, PrevSpec, DiagID,
1018         ParsedTemplateInfo(), /*SuppressDeclarations*/true))
1019  {}
1020
1021  DS.Finish(Diags, PP);
1022  return false;
1023}
1024
1025/// \brief Finish parsing a C++ unqualified-id that is a template-id of
1026/// some form.
1027///
1028/// This routine is invoked when a '<' is encountered after an identifier or
1029/// operator-function-id is parsed by \c ParseUnqualifiedId() to determine
1030/// whether the unqualified-id is actually a template-id. This routine will
1031/// then parse the template arguments and form the appropriate template-id to
1032/// return to the caller.
1033///
1034/// \param SS the nested-name-specifier that precedes this template-id, if
1035/// we're actually parsing a qualified-id.
1036///
1037/// \param Name for constructor and destructor names, this is the actual
1038/// identifier that may be a template-name.
1039///
1040/// \param NameLoc the location of the class-name in a constructor or
1041/// destructor.
1042///
1043/// \param EnteringContext whether we're entering the scope of the
1044/// nested-name-specifier.
1045///
1046/// \param ObjectType if this unqualified-id occurs within a member access
1047/// expression, the type of the base object whose member is being accessed.
1048///
1049/// \param Id as input, describes the template-name or operator-function-id
1050/// that precedes the '<'. If template arguments were parsed successfully,
1051/// will be updated with the template-id.
1052///
1053/// \param AssumeTemplateId When true, this routine will assume that the name
1054/// refers to a template without performing name lookup to verify.
1055///
1056/// \returns true if a parse error occurred, false otherwise.
1057bool Parser::ParseUnqualifiedIdTemplateId(CXXScopeSpec &SS,
1058                                          IdentifierInfo *Name,
1059                                          SourceLocation NameLoc,
1060                                          bool EnteringContext,
1061                                          ParsedType ObjectType,
1062                                          UnqualifiedId &Id,
1063                                          bool AssumeTemplateId,
1064                                          SourceLocation TemplateKWLoc) {
1065  assert((AssumeTemplateId || Tok.is(tok::less)) &&
1066         "Expected '<' to finish parsing a template-id");
1067
1068  TemplateTy Template;
1069  TemplateNameKind TNK = TNK_Non_template;
1070  switch (Id.getKind()) {
1071  case UnqualifiedId::IK_Identifier:
1072  case UnqualifiedId::IK_OperatorFunctionId:
1073  case UnqualifiedId::IK_LiteralOperatorId:
1074    if (AssumeTemplateId) {
1075      TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1076                                               Id, ObjectType, EnteringContext,
1077                                               Template);
1078      if (TNK == TNK_Non_template)
1079        return true;
1080    } else {
1081      bool MemberOfUnknownSpecialization;
1082      TNK = Actions.isTemplateName(getCurScope(), SS,
1083                                   TemplateKWLoc.isValid(), Id,
1084                                   ObjectType, EnteringContext, Template,
1085                                   MemberOfUnknownSpecialization);
1086
1087      if (TNK == TNK_Non_template && MemberOfUnknownSpecialization &&
1088          ObjectType && IsTemplateArgumentList()) {
1089        // We have something like t->getAs<T>(), where getAs is a
1090        // member of an unknown specialization. However, this will only
1091        // parse correctly as a template, so suggest the keyword 'template'
1092        // before 'getAs' and treat this as a dependent template name.
1093        std::string Name;
1094        if (Id.getKind() == UnqualifiedId::IK_Identifier)
1095          Name = Id.Identifier->getName();
1096        else {
1097          Name = "operator ";
1098          if (Id.getKind() == UnqualifiedId::IK_OperatorFunctionId)
1099            Name += getOperatorSpelling(Id.OperatorFunctionId.Operator);
1100          else
1101            Name += Id.Identifier->getName();
1102        }
1103        Diag(Id.StartLocation, diag::err_missing_dependent_template_keyword)
1104          << Name
1105          << FixItHint::CreateInsertion(Id.StartLocation, "template ");
1106        TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc,
1107                                                 SS, Id, ObjectType,
1108                                                 EnteringContext, Template);
1109        if (TNK == TNK_Non_template)
1110          return true;
1111      }
1112    }
1113    break;
1114
1115  case UnqualifiedId::IK_ConstructorName: {
1116    UnqualifiedId TemplateName;
1117    bool MemberOfUnknownSpecialization;
1118    TemplateName.setIdentifier(Name, NameLoc);
1119    TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1120                                 TemplateName, ObjectType,
1121                                 EnteringContext, Template,
1122                                 MemberOfUnknownSpecialization);
1123    break;
1124  }
1125
1126  case UnqualifiedId::IK_DestructorName: {
1127    UnqualifiedId TemplateName;
1128    bool MemberOfUnknownSpecialization;
1129    TemplateName.setIdentifier(Name, NameLoc);
1130    if (ObjectType) {
1131      TNK = Actions.ActOnDependentTemplateName(getCurScope(), TemplateKWLoc, SS,
1132                                               TemplateName, ObjectType,
1133                                               EnteringContext, Template);
1134      if (TNK == TNK_Non_template)
1135        return true;
1136    } else {
1137      TNK = Actions.isTemplateName(getCurScope(), SS, TemplateKWLoc.isValid(),
1138                                   TemplateName, ObjectType,
1139                                   EnteringContext, Template,
1140                                   MemberOfUnknownSpecialization);
1141
1142      if (TNK == TNK_Non_template && !Id.DestructorName.get()) {
1143        Diag(NameLoc, diag::err_destructor_template_id)
1144          << Name << SS.getRange();
1145        return true;
1146      }
1147    }
1148    break;
1149  }
1150
1151  default:
1152    return false;
1153  }
1154
1155  if (TNK == TNK_Non_template)
1156    return false;
1157
1158  // Parse the enclosed template argument list.
1159  SourceLocation LAngleLoc, RAngleLoc;
1160  TemplateArgList TemplateArgs;
1161  if (Tok.is(tok::less) &&
1162      ParseTemplateIdAfterTemplateName(Template, Id.StartLocation,
1163                                       &SS, true, LAngleLoc,
1164                                       TemplateArgs,
1165                                       RAngleLoc))
1166    return true;
1167
1168  if (Id.getKind() == UnqualifiedId::IK_Identifier ||
1169      Id.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1170      Id.getKind() == UnqualifiedId::IK_LiteralOperatorId) {
1171    // Form a parsed representation of the template-id to be stored in the
1172    // UnqualifiedId.
1173    TemplateIdAnnotation *TemplateId
1174      = TemplateIdAnnotation::Allocate(TemplateArgs.size());
1175
1176    if (Id.getKind() == UnqualifiedId::IK_Identifier) {
1177      TemplateId->Name = Id.Identifier;
1178      TemplateId->Operator = OO_None;
1179      TemplateId->TemplateNameLoc = Id.StartLocation;
1180    } else {
1181      TemplateId->Name = 0;
1182      TemplateId->Operator = Id.OperatorFunctionId.Operator;
1183      TemplateId->TemplateNameLoc = Id.StartLocation;
1184    }
1185
1186    TemplateId->Template = Template;
1187    TemplateId->Kind = TNK;
1188    TemplateId->LAngleLoc = LAngleLoc;
1189    TemplateId->RAngleLoc = RAngleLoc;
1190    ParsedTemplateArgument *Args = TemplateId->getTemplateArgs();
1191    for (unsigned Arg = 0, ArgEnd = TemplateArgs.size();
1192         Arg != ArgEnd; ++Arg)
1193      Args[Arg] = TemplateArgs[Arg];
1194
1195    Id.setTemplateId(TemplateId);
1196    return false;
1197  }
1198
1199  // Bundle the template arguments together.
1200  ASTTemplateArgsPtr TemplateArgsPtr(Actions, TemplateArgs.data(),
1201                                     TemplateArgs.size());
1202
1203  // Constructor and destructor names.
1204  TypeResult Type
1205    = Actions.ActOnTemplateIdType(Template, NameLoc,
1206                                  LAngleLoc, TemplateArgsPtr,
1207                                  RAngleLoc);
1208  if (Type.isInvalid())
1209    return true;
1210
1211  if (Id.getKind() == UnqualifiedId::IK_ConstructorName)
1212    Id.setConstructorName(Type.get(), NameLoc, RAngleLoc);
1213  else
1214    Id.setDestructorName(Id.StartLocation, Type.get(), RAngleLoc);
1215
1216  return false;
1217}
1218
1219/// \brief Parse an operator-function-id or conversion-function-id as part
1220/// of a C++ unqualified-id.
1221///
1222/// This routine is responsible only for parsing the operator-function-id or
1223/// conversion-function-id; it does not handle template arguments in any way.
1224///
1225/// \code
1226///       operator-function-id: [C++ 13.5]
1227///         'operator' operator
1228///
1229///       operator: one of
1230///            new   delete  new[]   delete[]
1231///            +     -    *  /    %  ^    &   |   ~
1232///            !     =    <  >    += -=   *=  /=  %=
1233///            ^=    &=   |= <<   >> >>= <<=  ==  !=
1234///            <=    >=   && ||   ++ --   ,   ->* ->
1235///            ()    []
1236///
1237///       conversion-function-id: [C++ 12.3.2]
1238///         operator conversion-type-id
1239///
1240///       conversion-type-id:
1241///         type-specifier-seq conversion-declarator[opt]
1242///
1243///       conversion-declarator:
1244///         ptr-operator conversion-declarator[opt]
1245/// \endcode
1246///
1247/// \param The nested-name-specifier that preceded this unqualified-id. If
1248/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1249///
1250/// \param EnteringContext whether we are entering the scope of the
1251/// nested-name-specifier.
1252///
1253/// \param ObjectType if this unqualified-id occurs within a member access
1254/// expression, the type of the base object whose member is being accessed.
1255///
1256/// \param Result on a successful parse, contains the parsed unqualified-id.
1257///
1258/// \returns true if parsing fails, false otherwise.
1259bool Parser::ParseUnqualifiedIdOperator(CXXScopeSpec &SS, bool EnteringContext,
1260                                        ParsedType ObjectType,
1261                                        UnqualifiedId &Result) {
1262  assert(Tok.is(tok::kw_operator) && "Expected 'operator' keyword");
1263
1264  // Consume the 'operator' keyword.
1265  SourceLocation KeywordLoc = ConsumeToken();
1266
1267  // Determine what kind of operator name we have.
1268  unsigned SymbolIdx = 0;
1269  SourceLocation SymbolLocations[3];
1270  OverloadedOperatorKind Op = OO_None;
1271  switch (Tok.getKind()) {
1272    case tok::kw_new:
1273    case tok::kw_delete: {
1274      bool isNew = Tok.getKind() == tok::kw_new;
1275      // Consume the 'new' or 'delete'.
1276      SymbolLocations[SymbolIdx++] = ConsumeToken();
1277      if (Tok.is(tok::l_square)) {
1278        // Consume the '['.
1279        SourceLocation LBracketLoc = ConsumeBracket();
1280        // Consume the ']'.
1281        SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1282                                                         LBracketLoc);
1283        if (RBracketLoc.isInvalid())
1284          return true;
1285
1286        SymbolLocations[SymbolIdx++] = LBracketLoc;
1287        SymbolLocations[SymbolIdx++] = RBracketLoc;
1288        Op = isNew? OO_Array_New : OO_Array_Delete;
1289      } else {
1290        Op = isNew? OO_New : OO_Delete;
1291      }
1292      break;
1293    }
1294
1295#define OVERLOADED_OPERATOR(Name,Spelling,Token,Unary,Binary,MemberOnly) \
1296    case tok::Token:                                                     \
1297      SymbolLocations[SymbolIdx++] = ConsumeToken();                     \
1298      Op = OO_##Name;                                                    \
1299      break;
1300#define OVERLOADED_OPERATOR_MULTI(Name,Spelling,Unary,Binary,MemberOnly)
1301#include "clang/Basic/OperatorKinds.def"
1302
1303    case tok::l_paren: {
1304      // Consume the '('.
1305      SourceLocation LParenLoc = ConsumeParen();
1306      // Consume the ')'.
1307      SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren,
1308                                                     LParenLoc);
1309      if (RParenLoc.isInvalid())
1310        return true;
1311
1312      SymbolLocations[SymbolIdx++] = LParenLoc;
1313      SymbolLocations[SymbolIdx++] = RParenLoc;
1314      Op = OO_Call;
1315      break;
1316    }
1317
1318    case tok::l_square: {
1319      // Consume the '['.
1320      SourceLocation LBracketLoc = ConsumeBracket();
1321      // Consume the ']'.
1322      SourceLocation RBracketLoc = MatchRHSPunctuation(tok::r_square,
1323                                                       LBracketLoc);
1324      if (RBracketLoc.isInvalid())
1325        return true;
1326
1327      SymbolLocations[SymbolIdx++] = LBracketLoc;
1328      SymbolLocations[SymbolIdx++] = RBracketLoc;
1329      Op = OO_Subscript;
1330      break;
1331    }
1332
1333    case tok::code_completion: {
1334      // Code completion for the operator name.
1335      Actions.CodeCompleteOperatorName(getCurScope());
1336
1337      // Consume the operator token.
1338      ConsumeCodeCompletionToken();
1339
1340      // Don't try to parse any further.
1341      return true;
1342    }
1343
1344    default:
1345      break;
1346  }
1347
1348  if (Op != OO_None) {
1349    // We have parsed an operator-function-id.
1350    Result.setOperatorFunctionId(KeywordLoc, Op, SymbolLocations);
1351    return false;
1352  }
1353
1354  // Parse a literal-operator-id.
1355  //
1356  //   literal-operator-id: [C++0x 13.5.8]
1357  //     operator "" identifier
1358
1359  if (getLang().CPlusPlus0x && Tok.is(tok::string_literal)) {
1360    if (Tok.getLength() != 2)
1361      Diag(Tok.getLocation(), diag::err_operator_string_not_empty);
1362    ConsumeStringToken();
1363
1364    if (Tok.isNot(tok::identifier)) {
1365      Diag(Tok.getLocation(), diag::err_expected_ident);
1366      return true;
1367    }
1368
1369    IdentifierInfo *II = Tok.getIdentifierInfo();
1370    Result.setLiteralOperatorId(II, KeywordLoc, ConsumeToken());
1371    return false;
1372  }
1373
1374  // Parse a conversion-function-id.
1375  //
1376  //   conversion-function-id: [C++ 12.3.2]
1377  //     operator conversion-type-id
1378  //
1379  //   conversion-type-id:
1380  //     type-specifier-seq conversion-declarator[opt]
1381  //
1382  //   conversion-declarator:
1383  //     ptr-operator conversion-declarator[opt]
1384
1385  // Parse the type-specifier-seq.
1386  DeclSpec DS;
1387  if (ParseCXXTypeSpecifierSeq(DS)) // FIXME: ObjectType?
1388    return true;
1389
1390  // Parse the conversion-declarator, which is merely a sequence of
1391  // ptr-operators.
1392  Declarator D(DS, Declarator::TypeNameContext);
1393  ParseDeclaratorInternal(D, /*DirectDeclParser=*/0);
1394
1395  // Finish up the type.
1396  TypeResult Ty = Actions.ActOnTypeName(getCurScope(), D);
1397  if (Ty.isInvalid())
1398    return true;
1399
1400  // Note that this is a conversion-function-id.
1401  Result.setConversionFunctionId(KeywordLoc, Ty.get(),
1402                                 D.getSourceRange().getEnd());
1403  return false;
1404}
1405
1406/// \brief Parse a C++ unqualified-id (or a C identifier), which describes the
1407/// name of an entity.
1408///
1409/// \code
1410///       unqualified-id: [C++ expr.prim.general]
1411///         identifier
1412///         operator-function-id
1413///         conversion-function-id
1414/// [C++0x] literal-operator-id [TODO]
1415///         ~ class-name
1416///         template-id
1417///
1418/// \endcode
1419///
1420/// \param The nested-name-specifier that preceded this unqualified-id. If
1421/// non-empty, then we are parsing the unqualified-id of a qualified-id.
1422///
1423/// \param EnteringContext whether we are entering the scope of the
1424/// nested-name-specifier.
1425///
1426/// \param AllowDestructorName whether we allow parsing of a destructor name.
1427///
1428/// \param AllowConstructorName whether we allow parsing a constructor name.
1429///
1430/// \param ObjectType if this unqualified-id occurs within a member access
1431/// expression, the type of the base object whose member is being accessed.
1432///
1433/// \param Result on a successful parse, contains the parsed unqualified-id.
1434///
1435/// \returns true if parsing fails, false otherwise.
1436bool Parser::ParseUnqualifiedId(CXXScopeSpec &SS, bool EnteringContext,
1437                                bool AllowDestructorName,
1438                                bool AllowConstructorName,
1439                                ParsedType ObjectType,
1440                                UnqualifiedId &Result) {
1441
1442  // Handle 'A::template B'. This is for template-ids which have not
1443  // already been annotated by ParseOptionalCXXScopeSpecifier().
1444  bool TemplateSpecified = false;
1445  SourceLocation TemplateKWLoc;
1446  if (getLang().CPlusPlus && Tok.is(tok::kw_template) &&
1447      (ObjectType || SS.isSet())) {
1448    TemplateSpecified = true;
1449    TemplateKWLoc = ConsumeToken();
1450  }
1451
1452  // unqualified-id:
1453  //   identifier
1454  //   template-id (when it hasn't already been annotated)
1455  if (Tok.is(tok::identifier)) {
1456    // Consume the identifier.
1457    IdentifierInfo *Id = Tok.getIdentifierInfo();
1458    SourceLocation IdLoc = ConsumeToken();
1459
1460    if (!getLang().CPlusPlus) {
1461      // If we're not in C++, only identifiers matter. Record the
1462      // identifier and return.
1463      Result.setIdentifier(Id, IdLoc);
1464      return false;
1465    }
1466
1467    if (AllowConstructorName &&
1468        Actions.isCurrentClassName(*Id, getCurScope(), &SS)) {
1469      // We have parsed a constructor name.
1470      Result.setConstructorName(Actions.getTypeName(*Id, IdLoc, getCurScope(),
1471                                                    &SS, false),
1472                                IdLoc, IdLoc);
1473    } else {
1474      // We have parsed an identifier.
1475      Result.setIdentifier(Id, IdLoc);
1476    }
1477
1478    // If the next token is a '<', we may have a template.
1479    if (TemplateSpecified || Tok.is(tok::less))
1480      return ParseUnqualifiedIdTemplateId(SS, Id, IdLoc, EnteringContext,
1481                                          ObjectType, Result,
1482                                          TemplateSpecified, TemplateKWLoc);
1483
1484    return false;
1485  }
1486
1487  // unqualified-id:
1488  //   template-id (already parsed and annotated)
1489  if (Tok.is(tok::annot_template_id)) {
1490    TemplateIdAnnotation *TemplateId
1491      = static_cast<TemplateIdAnnotation*>(Tok.getAnnotationValue());
1492
1493    // If the template-name names the current class, then this is a constructor
1494    if (AllowConstructorName && TemplateId->Name &&
1495        Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS)) {
1496      if (SS.isSet()) {
1497        // C++ [class.qual]p2 specifies that a qualified template-name
1498        // is taken as the constructor name where a constructor can be
1499        // declared. Thus, the template arguments are extraneous, so
1500        // complain about them and remove them entirely.
1501        Diag(TemplateId->TemplateNameLoc,
1502             diag::err_out_of_line_constructor_template_id)
1503          << TemplateId->Name
1504          << FixItHint::CreateRemoval(
1505                    SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc));
1506        Result.setConstructorName(Actions.getTypeName(*TemplateId->Name,
1507                                                  TemplateId->TemplateNameLoc,
1508                                                      getCurScope(),
1509                                                      &SS, false),
1510                                  TemplateId->TemplateNameLoc,
1511                                  TemplateId->RAngleLoc);
1512        TemplateId->Destroy();
1513        ConsumeToken();
1514        return false;
1515      }
1516
1517      Result.setConstructorTemplateId(TemplateId);
1518      ConsumeToken();
1519      return false;
1520    }
1521
1522    // We have already parsed a template-id; consume the annotation token as
1523    // our unqualified-id.
1524    Result.setTemplateId(TemplateId);
1525    ConsumeToken();
1526    return false;
1527  }
1528
1529  // unqualified-id:
1530  //   operator-function-id
1531  //   conversion-function-id
1532  if (Tok.is(tok::kw_operator)) {
1533    if (ParseUnqualifiedIdOperator(SS, EnteringContext, ObjectType, Result))
1534      return true;
1535
1536    // If we have an operator-function-id or a literal-operator-id and the next
1537    // token is a '<', we may have a
1538    //
1539    //   template-id:
1540    //     operator-function-id < template-argument-list[opt] >
1541    if ((Result.getKind() == UnqualifiedId::IK_OperatorFunctionId ||
1542         Result.getKind() == UnqualifiedId::IK_LiteralOperatorId) &&
1543        (TemplateSpecified || Tok.is(tok::less)))
1544      return ParseUnqualifiedIdTemplateId(SS, 0, SourceLocation(),
1545                                          EnteringContext, ObjectType,
1546                                          Result,
1547                                          TemplateSpecified, TemplateKWLoc);
1548
1549    return false;
1550  }
1551
1552  if (getLang().CPlusPlus &&
1553      (AllowDestructorName || SS.isSet()) && Tok.is(tok::tilde)) {
1554    // C++ [expr.unary.op]p10:
1555    //   There is an ambiguity in the unary-expression ~X(), where X is a
1556    //   class-name. The ambiguity is resolved in favor of treating ~ as a
1557    //    unary complement rather than treating ~X as referring to a destructor.
1558
1559    // Parse the '~'.
1560    SourceLocation TildeLoc = ConsumeToken();
1561
1562    // Parse the class-name.
1563    if (Tok.isNot(tok::identifier)) {
1564      Diag(Tok, diag::err_destructor_tilde_identifier);
1565      return true;
1566    }
1567
1568    // Parse the class-name (or template-name in a simple-template-id).
1569    IdentifierInfo *ClassName = Tok.getIdentifierInfo();
1570    SourceLocation ClassNameLoc = ConsumeToken();
1571
1572    if (TemplateSpecified || Tok.is(tok::less)) {
1573      Result.setDestructorName(TildeLoc, ParsedType(), ClassNameLoc);
1574      return ParseUnqualifiedIdTemplateId(SS, ClassName, ClassNameLoc,
1575                                          EnteringContext, ObjectType, Result,
1576                                          TemplateSpecified, TemplateKWLoc);
1577    }
1578
1579    // Note that this is a destructor name.
1580    ParsedType Ty = Actions.getDestructorName(TildeLoc, *ClassName,
1581                                              ClassNameLoc, getCurScope(),
1582                                              SS, ObjectType,
1583                                              EnteringContext);
1584    if (!Ty)
1585      return true;
1586
1587    Result.setDestructorName(TildeLoc, Ty, ClassNameLoc);
1588    return false;
1589  }
1590
1591  Diag(Tok, diag::err_expected_unqualified_id)
1592    << getLang().CPlusPlus;
1593  return true;
1594}
1595
1596/// ParseCXXNewExpression - Parse a C++ new-expression. New is used to allocate
1597/// memory in a typesafe manner and call constructors.
1598///
1599/// This method is called to parse the new expression after the optional :: has
1600/// been already parsed.  If the :: was present, "UseGlobal" is true and "Start"
1601/// is its location.  Otherwise, "Start" is the location of the 'new' token.
1602///
1603///        new-expression:
1604///                   '::'[opt] 'new' new-placement[opt] new-type-id
1605///                                     new-initializer[opt]
1606///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1607///                                     new-initializer[opt]
1608///
1609///        new-placement:
1610///                   '(' expression-list ')'
1611///
1612///        new-type-id:
1613///                   type-specifier-seq new-declarator[opt]
1614///
1615///        new-declarator:
1616///                   ptr-operator new-declarator[opt]
1617///                   direct-new-declarator
1618///
1619///        new-initializer:
1620///                   '(' expression-list[opt] ')'
1621/// [C++0x]           braced-init-list                                   [TODO]
1622///
1623ExprResult
1624Parser::ParseCXXNewExpression(bool UseGlobal, SourceLocation Start) {
1625  assert(Tok.is(tok::kw_new) && "expected 'new' token");
1626  ConsumeToken();   // Consume 'new'
1627
1628  // A '(' now can be a new-placement or the '(' wrapping the type-id in the
1629  // second form of new-expression. It can't be a new-type-id.
1630
1631  ExprVector PlacementArgs(Actions);
1632  SourceLocation PlacementLParen, PlacementRParen;
1633
1634  SourceRange TypeIdParens;
1635  DeclSpec DS;
1636  Declarator DeclaratorInfo(DS, Declarator::TypeNameContext);
1637  if (Tok.is(tok::l_paren)) {
1638    // If it turns out to be a placement, we change the type location.
1639    PlacementLParen = ConsumeParen();
1640    if (ParseExpressionListOrTypeId(PlacementArgs, DeclaratorInfo)) {
1641      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1642      return ExprError();
1643    }
1644
1645    PlacementRParen = MatchRHSPunctuation(tok::r_paren, PlacementLParen);
1646    if (PlacementRParen.isInvalid()) {
1647      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1648      return ExprError();
1649    }
1650
1651    if (PlacementArgs.empty()) {
1652      // Reset the placement locations. There was no placement.
1653      TypeIdParens = SourceRange(PlacementLParen, PlacementRParen);
1654      PlacementLParen = PlacementRParen = SourceLocation();
1655    } else {
1656      // We still need the type.
1657      if (Tok.is(tok::l_paren)) {
1658        TypeIdParens.setBegin(ConsumeParen());
1659        ParseSpecifierQualifierList(DS);
1660        DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1661        ParseDeclarator(DeclaratorInfo);
1662        TypeIdParens.setEnd(MatchRHSPunctuation(tok::r_paren,
1663                                                TypeIdParens.getBegin()));
1664      } else {
1665        if (ParseCXXTypeSpecifierSeq(DS))
1666          DeclaratorInfo.setInvalidType(true);
1667        else {
1668          DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1669          ParseDeclaratorInternal(DeclaratorInfo,
1670                                  &Parser::ParseDirectNewDeclarator);
1671        }
1672      }
1673    }
1674  } else {
1675    // A new-type-id is a simplified type-id, where essentially the
1676    // direct-declarator is replaced by a direct-new-declarator.
1677    if (ParseCXXTypeSpecifierSeq(DS))
1678      DeclaratorInfo.setInvalidType(true);
1679    else {
1680      DeclaratorInfo.SetSourceRange(DS.getSourceRange());
1681      ParseDeclaratorInternal(DeclaratorInfo,
1682                              &Parser::ParseDirectNewDeclarator);
1683    }
1684  }
1685  if (DeclaratorInfo.isInvalidType()) {
1686    SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1687    return ExprError();
1688  }
1689
1690  ExprVector ConstructorArgs(Actions);
1691  SourceLocation ConstructorLParen, ConstructorRParen;
1692
1693  if (Tok.is(tok::l_paren)) {
1694    ConstructorLParen = ConsumeParen();
1695    if (Tok.isNot(tok::r_paren)) {
1696      CommaLocsTy CommaLocs;
1697      if (ParseExpressionList(ConstructorArgs, CommaLocs)) {
1698        SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1699        return ExprError();
1700      }
1701    }
1702    ConstructorRParen = MatchRHSPunctuation(tok::r_paren, ConstructorLParen);
1703    if (ConstructorRParen.isInvalid()) {
1704      SkipUntil(tok::semi, /*StopAtSemi=*/true, /*DontConsume=*/true);
1705      return ExprError();
1706    }
1707  }
1708
1709  return Actions.ActOnCXXNew(Start, UseGlobal, PlacementLParen,
1710                             move_arg(PlacementArgs), PlacementRParen,
1711                             TypeIdParens, DeclaratorInfo, ConstructorLParen,
1712                             move_arg(ConstructorArgs), ConstructorRParen);
1713}
1714
1715/// ParseDirectNewDeclarator - Parses a direct-new-declarator. Intended to be
1716/// passed to ParseDeclaratorInternal.
1717///
1718///        direct-new-declarator:
1719///                   '[' expression ']'
1720///                   direct-new-declarator '[' constant-expression ']'
1721///
1722void Parser::ParseDirectNewDeclarator(Declarator &D) {
1723  // Parse the array dimensions.
1724  bool first = true;
1725  while (Tok.is(tok::l_square)) {
1726    SourceLocation LLoc = ConsumeBracket();
1727    ExprResult Size(first ? ParseExpression()
1728                                : ParseConstantExpression());
1729    if (Size.isInvalid()) {
1730      // Recover
1731      SkipUntil(tok::r_square);
1732      return;
1733    }
1734    first = false;
1735
1736    SourceLocation RLoc = MatchRHSPunctuation(tok::r_square, LLoc);
1737    D.AddTypeInfo(DeclaratorChunk::getArray(0, ParsedAttributes(),
1738                                            /*static=*/false, /*star=*/false,
1739                                            Size.release(), LLoc, RLoc),
1740                  RLoc);
1741
1742    if (RLoc.isInvalid())
1743      return;
1744  }
1745}
1746
1747/// ParseExpressionListOrTypeId - Parse either an expression-list or a type-id.
1748/// This ambiguity appears in the syntax of the C++ new operator.
1749///
1750///        new-expression:
1751///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
1752///                                     new-initializer[opt]
1753///
1754///        new-placement:
1755///                   '(' expression-list ')'
1756///
1757bool Parser::ParseExpressionListOrTypeId(
1758                                   llvm::SmallVectorImpl<Expr*> &PlacementArgs,
1759                                         Declarator &D) {
1760  // The '(' was already consumed.
1761  if (isTypeIdInParens()) {
1762    ParseSpecifierQualifierList(D.getMutableDeclSpec());
1763    D.SetSourceRange(D.getDeclSpec().getSourceRange());
1764    ParseDeclarator(D);
1765    return D.isInvalidType();
1766  }
1767
1768  // It's not a type, it has to be an expression list.
1769  // Discard the comma locations - ActOnCXXNew has enough parameters.
1770  CommaLocsTy CommaLocs;
1771  return ParseExpressionList(PlacementArgs, CommaLocs);
1772}
1773
1774/// ParseCXXDeleteExpression - Parse a C++ delete-expression. Delete is used
1775/// to free memory allocated by new.
1776///
1777/// This method is called to parse the 'delete' expression after the optional
1778/// '::' has been already parsed.  If the '::' was present, "UseGlobal" is true
1779/// and "Start" is its location.  Otherwise, "Start" is the location of the
1780/// 'delete' token.
1781///
1782///        delete-expression:
1783///                   '::'[opt] 'delete' cast-expression
1784///                   '::'[opt] 'delete' '[' ']' cast-expression
1785ExprResult
1786Parser::ParseCXXDeleteExpression(bool UseGlobal, SourceLocation Start) {
1787  assert(Tok.is(tok::kw_delete) && "Expected 'delete' keyword");
1788  ConsumeToken(); // Consume 'delete'
1789
1790  // Array delete?
1791  bool ArrayDelete = false;
1792  if (Tok.is(tok::l_square)) {
1793    ArrayDelete = true;
1794    SourceLocation LHS = ConsumeBracket();
1795    SourceLocation RHS = MatchRHSPunctuation(tok::r_square, LHS);
1796    if (RHS.isInvalid())
1797      return ExprError();
1798  }
1799
1800  ExprResult Operand(ParseCastExpression(false));
1801  if (Operand.isInvalid())
1802    return move(Operand);
1803
1804  return Actions.ActOnCXXDelete(Start, UseGlobal, ArrayDelete, Operand.take());
1805}
1806
1807static UnaryTypeTrait UnaryTypeTraitFromTokKind(tok::TokenKind kind) {
1808  switch(kind) {
1809  default: llvm_unreachable("Not a known unary type trait");
1810  case tok::kw___has_nothrow_assign:      return UTT_HasNothrowAssign;
1811  case tok::kw___has_nothrow_copy:        return UTT_HasNothrowCopy;
1812  case tok::kw___has_nothrow_constructor: return UTT_HasNothrowConstructor;
1813  case tok::kw___has_trivial_assign:      return UTT_HasTrivialAssign;
1814  case tok::kw___has_trivial_copy:        return UTT_HasTrivialCopy;
1815  case tok::kw___has_trivial_constructor: return UTT_HasTrivialConstructor;
1816  case tok::kw___has_trivial_destructor:  return UTT_HasTrivialDestructor;
1817  case tok::kw___has_virtual_destructor:  return UTT_HasVirtualDestructor;
1818  case tok::kw___is_abstract:             return UTT_IsAbstract;
1819  case tok::kw___is_class:                return UTT_IsClass;
1820  case tok::kw___is_empty:                return UTT_IsEmpty;
1821  case tok::kw___is_enum:                 return UTT_IsEnum;
1822  case tok::kw___is_pod:                  return UTT_IsPOD;
1823  case tok::kw___is_polymorphic:          return UTT_IsPolymorphic;
1824  case tok::kw___is_union:                return UTT_IsUnion;
1825  case tok::kw___is_literal:              return UTT_IsLiteral;
1826  }
1827}
1828
1829static BinaryTypeTrait BinaryTypeTraitFromTokKind(tok::TokenKind kind) {
1830  switch(kind) {
1831  default: llvm_unreachable("Not a known binary type trait");
1832  case tok::kw___is_base_of:                 return BTT_IsBaseOf;
1833  case tok::kw___builtin_types_compatible_p: return BTT_TypeCompatible;
1834  case tok::kw___is_convertible_to:          return BTT_IsConvertibleTo;
1835  }
1836}
1837
1838/// ParseUnaryTypeTrait - Parse the built-in unary type-trait
1839/// pseudo-functions that allow implementation of the TR1/C++0x type traits
1840/// templates.
1841///
1842///       primary-expression:
1843/// [GNU]             unary-type-trait '(' type-id ')'
1844///
1845ExprResult Parser::ParseUnaryTypeTrait() {
1846  UnaryTypeTrait UTT = UnaryTypeTraitFromTokKind(Tok.getKind());
1847  SourceLocation Loc = ConsumeToken();
1848
1849  SourceLocation LParen = Tok.getLocation();
1850  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1851    return ExprError();
1852
1853  // FIXME: Error reporting absolutely sucks! If the this fails to parse a type
1854  // there will be cryptic errors about mismatched parentheses and missing
1855  // specifiers.
1856  TypeResult Ty = ParseTypeName();
1857
1858  SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1859
1860  if (Ty.isInvalid())
1861    return ExprError();
1862
1863  return Actions.ActOnUnaryTypeTrait(UTT, Loc, Ty.get(), RParen);
1864}
1865
1866/// ParseBinaryTypeTrait - Parse the built-in binary type-trait
1867/// pseudo-functions that allow implementation of the TR1/C++0x type traits
1868/// templates.
1869///
1870///       primary-expression:
1871/// [GNU]             binary-type-trait '(' type-id ',' type-id ')'
1872///
1873ExprResult Parser::ParseBinaryTypeTrait() {
1874  BinaryTypeTrait BTT = BinaryTypeTraitFromTokKind(Tok.getKind());
1875  SourceLocation Loc = ConsumeToken();
1876
1877  SourceLocation LParen = Tok.getLocation();
1878  if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen))
1879    return ExprError();
1880
1881  TypeResult LhsTy = ParseTypeName();
1882  if (LhsTy.isInvalid()) {
1883    SkipUntil(tok::r_paren);
1884    return ExprError();
1885  }
1886
1887  if (ExpectAndConsume(tok::comma, diag::err_expected_comma)) {
1888    SkipUntil(tok::r_paren);
1889    return ExprError();
1890  }
1891
1892  TypeResult RhsTy = ParseTypeName();
1893  if (RhsTy.isInvalid()) {
1894    SkipUntil(tok::r_paren);
1895    return ExprError();
1896  }
1897
1898  SourceLocation RParen = MatchRHSPunctuation(tok::r_paren, LParen);
1899
1900  return Actions.ActOnBinaryTypeTrait(BTT, Loc, LhsTy.get(), RhsTy.get(), RParen);
1901}
1902
1903/// ParseCXXAmbiguousParenExpression - We have parsed the left paren of a
1904/// parenthesized ambiguous type-id. This uses tentative parsing to disambiguate
1905/// based on the context past the parens.
1906ExprResult
1907Parser::ParseCXXAmbiguousParenExpression(ParenParseOption &ExprType,
1908                                         ParsedType &CastTy,
1909                                         SourceLocation LParenLoc,
1910                                         SourceLocation &RParenLoc) {
1911  assert(getLang().CPlusPlus && "Should only be called for C++!");
1912  assert(ExprType == CastExpr && "Compound literals are not ambiguous!");
1913  assert(isTypeIdInParens() && "Not a type-id!");
1914
1915  ExprResult Result(true);
1916  CastTy = ParsedType();
1917
1918  // We need to disambiguate a very ugly part of the C++ syntax:
1919  //
1920  // (T())x;  - type-id
1921  // (T())*x; - type-id
1922  // (T())/x; - expression
1923  // (T());   - expression
1924  //
1925  // The bad news is that we cannot use the specialized tentative parser, since
1926  // it can only verify that the thing inside the parens can be parsed as
1927  // type-id, it is not useful for determining the context past the parens.
1928  //
1929  // The good news is that the parser can disambiguate this part without
1930  // making any unnecessary Action calls.
1931  //
1932  // It uses a scheme similar to parsing inline methods. The parenthesized
1933  // tokens are cached, the context that follows is determined (possibly by
1934  // parsing a cast-expression), and then we re-introduce the cached tokens
1935  // into the token stream and parse them appropriately.
1936
1937  ParenParseOption ParseAs;
1938  CachedTokens Toks;
1939
1940  // Store the tokens of the parentheses. We will parse them after we determine
1941  // the context that follows them.
1942  if (!ConsumeAndStoreUntil(tok::r_paren, Toks)) {
1943    // We didn't find the ')' we expected.
1944    MatchRHSPunctuation(tok::r_paren, LParenLoc);
1945    return ExprError();
1946  }
1947
1948  if (Tok.is(tok::l_brace)) {
1949    ParseAs = CompoundLiteral;
1950  } else {
1951    bool NotCastExpr;
1952    // FIXME: Special-case ++ and --: "(S())++;" is not a cast-expression
1953    if (Tok.is(tok::l_paren) && NextToken().is(tok::r_paren)) {
1954      NotCastExpr = true;
1955    } else {
1956      // Try parsing the cast-expression that may follow.
1957      // If it is not a cast-expression, NotCastExpr will be true and no token
1958      // will be consumed.
1959      Result = ParseCastExpression(false/*isUnaryExpression*/,
1960                                   false/*isAddressofOperand*/,
1961                                   NotCastExpr,
1962                                   ParsedType()/*TypeOfCast*/);
1963    }
1964
1965    // If we parsed a cast-expression, it's really a type-id, otherwise it's
1966    // an expression.
1967    ParseAs = NotCastExpr ? SimpleExpr : CastExpr;
1968  }
1969
1970  // The current token should go after the cached tokens.
1971  Toks.push_back(Tok);
1972  // Re-enter the stored parenthesized tokens into the token stream, so we may
1973  // parse them now.
1974  PP.EnterTokenStream(Toks.data(), Toks.size(),
1975                      true/*DisableMacroExpansion*/, false/*OwnsTokens*/);
1976  // Drop the current token and bring the first cached one. It's the same token
1977  // as when we entered this function.
1978  ConsumeAnyToken();
1979
1980  if (ParseAs >= CompoundLiteral) {
1981    TypeResult Ty = ParseTypeName();
1982
1983    // Match the ')'.
1984    if (Tok.is(tok::r_paren))
1985      RParenLoc = ConsumeParen();
1986    else
1987      MatchRHSPunctuation(tok::r_paren, LParenLoc);
1988
1989    if (ParseAs == CompoundLiteral) {
1990      ExprType = CompoundLiteral;
1991      return ParseCompoundLiteralExpression(Ty.get(), LParenLoc, RParenLoc);
1992    }
1993
1994    // We parsed '(' type-id ')' and the thing after it wasn't a '{'.
1995    assert(ParseAs == CastExpr);
1996
1997    if (Ty.isInvalid())
1998      return ExprError();
1999
2000    CastTy = Ty.get();
2001
2002    // Result is what ParseCastExpression returned earlier.
2003    if (!Result.isInvalid())
2004      Result = Actions.ActOnCastExpr(getCurScope(), LParenLoc, CastTy, RParenLoc,
2005                                     Result.take());
2006    return move(Result);
2007  }
2008
2009  // Not a compound literal, and not followed by a cast-expression.
2010  assert(ParseAs == SimpleExpr);
2011
2012  ExprType = SimpleExpr;
2013  Result = ParseExpression();
2014  if (!Result.isInvalid() && Tok.is(tok::r_paren))
2015    Result = Actions.ActOnParenExpr(LParenLoc, Tok.getLocation(), Result.take());
2016
2017  // Match the ')'.
2018  if (Result.isInvalid()) {
2019    SkipUntil(tok::r_paren);
2020    return ExprError();
2021  }
2022
2023  if (Tok.is(tok::r_paren))
2024    RParenLoc = ConsumeParen();
2025  else
2026    MatchRHSPunctuation(tok::r_paren, LParenLoc);
2027
2028  return move(Result);
2029}
2030