SemaAccess.cpp revision aa56a66abb61e9f42b48ae88e43328aba10c9148
1//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ access control semantics.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DependentDiagnostic.h"
23#include "clang/AST/ExprCXX.h"
24
25using namespace clang;
26using namespace sema;
27
28/// A copy of Sema's enum without AR_delayed.
29enum AccessResult {
30  AR_accessible,
31  AR_inaccessible,
32  AR_dependent
33};
34
35/// SetMemberAccessSpecifier - Set the access specifier of a member.
36/// Returns true on error (when the previous member decl access specifier
37/// is different from the new member decl access specifier).
38bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
39                                    NamedDecl *PrevMemberDecl,
40                                    AccessSpecifier LexicalAS) {
41  if (!PrevMemberDecl) {
42    // Use the lexical access specifier.
43    MemberDecl->setAccess(LexicalAS);
44    return false;
45  }
46
47  // C++ [class.access.spec]p3: When a member is redeclared its access
48  // specifier must be same as its initial declaration.
49  if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
50    Diag(MemberDecl->getLocation(),
51         diag::err_class_redeclared_with_different_access)
52      << MemberDecl << LexicalAS;
53    Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
54      << PrevMemberDecl << PrevMemberDecl->getAccess();
55
56    MemberDecl->setAccess(LexicalAS);
57    return true;
58  }
59
60  MemberDecl->setAccess(PrevMemberDecl->getAccess());
61  return false;
62}
63
64static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
65  DeclContext *DC = D->getDeclContext();
66
67  // This can only happen at top: enum decls only "publish" their
68  // immediate members.
69  if (isa<EnumDecl>(DC))
70    DC = cast<EnumDecl>(DC)->getDeclContext();
71
72  CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
73  while (DeclaringClass->isAnonymousStructOrUnion())
74    DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
75  return DeclaringClass;
76}
77
78namespace {
79struct EffectiveContext {
80  EffectiveContext() : Inner(0), Dependent(false) {}
81
82  explicit EffectiveContext(DeclContext *DC)
83    : Inner(DC),
84      Dependent(DC->isDependentContext()) {
85
86    // C++ [class.access.nest]p1:
87    //   A nested class is a member and as such has the same access
88    //   rights as any other member.
89    // C++ [class.access]p2:
90    //   A member of a class can also access all the names to which
91    //   the class has access.  A local class of a member function
92    //   may access the same names that the member function itself
93    //   may access.
94    // This almost implies that the privileges of nesting are transitive.
95    // Technically it says nothing about the local classes of non-member
96    // functions (which can gain privileges through friendship), but we
97    // take that as an oversight.
98    while (true) {
99      if (isa<CXXRecordDecl>(DC)) {
100        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
101        Records.push_back(Record);
102        DC = Record->getDeclContext();
103      } else if (isa<FunctionDecl>(DC)) {
104        FunctionDecl *Function = cast<FunctionDecl>(DC)->getCanonicalDecl();
105        Functions.push_back(Function);
106        DC = Function->getDeclContext();
107      } else if (DC->isFileContext()) {
108        break;
109      } else {
110        DC = DC->getParent();
111      }
112    }
113  }
114
115  bool isDependent() const { return Dependent; }
116
117  bool includesClass(const CXXRecordDecl *R) const {
118    R = R->getCanonicalDecl();
119    return std::find(Records.begin(), Records.end(), R)
120             != Records.end();
121  }
122
123  /// Retrieves the innermost "useful" context.  Can be null if we're
124  /// doing access-control without privileges.
125  DeclContext *getInnerContext() const {
126    return Inner;
127  }
128
129  typedef llvm::SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
130
131  DeclContext *Inner;
132  llvm::SmallVector<FunctionDecl*, 4> Functions;
133  llvm::SmallVector<CXXRecordDecl*, 4> Records;
134  bool Dependent;
135};
136
137/// Like sema:;AccessedEntity, but kindly lets us scribble all over
138/// it.
139struct AccessTarget : public AccessedEntity {
140  AccessTarget(const AccessedEntity &Entity)
141    : AccessedEntity(Entity) {
142    initialize();
143  }
144
145  AccessTarget(ASTContext &Context,
146               MemberNonce _,
147               CXXRecordDecl *NamingClass,
148               DeclAccessPair FoundDecl,
149               QualType BaseObjectType)
150    : AccessedEntity(Context, Member, NamingClass, FoundDecl, BaseObjectType) {
151    initialize();
152  }
153
154  AccessTarget(ASTContext &Context,
155               BaseNonce _,
156               CXXRecordDecl *BaseClass,
157               CXXRecordDecl *DerivedClass,
158               AccessSpecifier Access)
159    : AccessedEntity(Context, Base, BaseClass, DerivedClass, Access) {
160    initialize();
161  }
162
163  bool hasInstanceContext() const {
164    return HasInstanceContext;
165  }
166
167  class SavedInstanceContext {
168  public:
169    ~SavedInstanceContext() {
170      Target.HasInstanceContext = Has;
171    }
172
173  private:
174    friend struct AccessTarget;
175    explicit SavedInstanceContext(AccessTarget &Target)
176      : Target(Target), Has(Target.HasInstanceContext) {}
177    AccessTarget &Target;
178    bool Has;
179  };
180
181  SavedInstanceContext saveInstanceContext() {
182    return SavedInstanceContext(*this);
183  }
184
185  void suppressInstanceContext() {
186    HasInstanceContext = false;
187  }
188
189  const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
190    assert(HasInstanceContext);
191    if (CalculatedInstanceContext)
192      return InstanceContext;
193
194    CalculatedInstanceContext = true;
195    DeclContext *IC = S.computeDeclContext(getBaseObjectType());
196    InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
197    return InstanceContext;
198  }
199
200  const CXXRecordDecl *getDeclaringClass() const {
201    return DeclaringClass;
202  }
203
204private:
205  void initialize() {
206    HasInstanceContext = (isMemberAccess() &&
207                          !getBaseObjectType().isNull() &&
208                          getTargetDecl()->isCXXInstanceMember());
209    CalculatedInstanceContext = false;
210    InstanceContext = 0;
211
212    if (isMemberAccess())
213      DeclaringClass = FindDeclaringClass(getTargetDecl());
214    else
215      DeclaringClass = getBaseClass();
216    DeclaringClass = DeclaringClass->getCanonicalDecl();
217  }
218
219  bool HasInstanceContext : 1;
220  mutable bool CalculatedInstanceContext : 1;
221  mutable const CXXRecordDecl *InstanceContext;
222  const CXXRecordDecl *DeclaringClass;
223};
224
225}
226
227/// Checks whether one class might instantiate to the other.
228static bool MightInstantiateTo(const CXXRecordDecl *From,
229                               const CXXRecordDecl *To) {
230  // Declaration names are always preserved by instantiation.
231  if (From->getDeclName() != To->getDeclName())
232    return false;
233
234  const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
235  const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
236  if (FromDC == ToDC) return true;
237  if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
238
239  // Be conservative.
240  return true;
241}
242
243/// Checks whether one class is derived from another, inclusively.
244/// Properly indicates when it couldn't be determined due to
245/// dependence.
246///
247/// This should probably be donated to AST or at least Sema.
248static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
249                                           const CXXRecordDecl *Target) {
250  assert(Derived->getCanonicalDecl() == Derived);
251  assert(Target->getCanonicalDecl() == Target);
252
253  if (Derived == Target) return AR_accessible;
254
255  bool CheckDependent = Derived->isDependentContext();
256  if (CheckDependent && MightInstantiateTo(Derived, Target))
257    return AR_dependent;
258
259  AccessResult OnFailure = AR_inaccessible;
260  llvm::SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
261
262  while (true) {
263    for (CXXRecordDecl::base_class_const_iterator
264           I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
265
266      const CXXRecordDecl *RD;
267
268      QualType T = I->getType();
269      if (const RecordType *RT = T->getAs<RecordType>()) {
270        RD = cast<CXXRecordDecl>(RT->getDecl());
271      } else if (const InjectedClassNameType *IT
272                   = T->getAs<InjectedClassNameType>()) {
273        RD = IT->getDecl();
274      } else {
275        assert(T->isDependentType() && "non-dependent base wasn't a record?");
276        OnFailure = AR_dependent;
277        continue;
278      }
279
280      RD = RD->getCanonicalDecl();
281      if (RD == Target) return AR_accessible;
282      if (CheckDependent && MightInstantiateTo(RD, Target))
283        OnFailure = AR_dependent;
284
285      Queue.push_back(RD);
286    }
287
288    if (Queue.empty()) break;
289
290    Derived = Queue.back();
291    Queue.pop_back();
292  }
293
294  return OnFailure;
295}
296
297
298static bool MightInstantiateTo(Sema &S, DeclContext *Context,
299                               DeclContext *Friend) {
300  if (Friend == Context)
301    return true;
302
303  assert(!Friend->isDependentContext() &&
304         "can't handle friends with dependent contexts here");
305
306  if (!Context->isDependentContext())
307    return false;
308
309  if (Friend->isFileContext())
310    return false;
311
312  // TODO: this is very conservative
313  return true;
314}
315
316// Asks whether the type in 'context' can ever instantiate to the type
317// in 'friend'.
318static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
319  if (Friend == Context)
320    return true;
321
322  if (!Friend->isDependentType() && !Context->isDependentType())
323    return false;
324
325  // TODO: this is very conservative.
326  return true;
327}
328
329static bool MightInstantiateTo(Sema &S,
330                               FunctionDecl *Context,
331                               FunctionDecl *Friend) {
332  if (Context->getDeclName() != Friend->getDeclName())
333    return false;
334
335  if (!MightInstantiateTo(S,
336                          Context->getDeclContext(),
337                          Friend->getDeclContext()))
338    return false;
339
340  CanQual<FunctionProtoType> FriendTy
341    = S.Context.getCanonicalType(Friend->getType())
342         ->getAs<FunctionProtoType>();
343  CanQual<FunctionProtoType> ContextTy
344    = S.Context.getCanonicalType(Context->getType())
345         ->getAs<FunctionProtoType>();
346
347  // There isn't any way that I know of to add qualifiers
348  // during instantiation.
349  if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
350    return false;
351
352  if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
353    return false;
354
355  if (!MightInstantiateTo(S,
356                          ContextTy->getResultType(),
357                          FriendTy->getResultType()))
358    return false;
359
360  for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
361    if (!MightInstantiateTo(S,
362                            ContextTy->getArgType(I),
363                            FriendTy->getArgType(I)))
364      return false;
365
366  return true;
367}
368
369static bool MightInstantiateTo(Sema &S,
370                               FunctionTemplateDecl *Context,
371                               FunctionTemplateDecl *Friend) {
372  return MightInstantiateTo(S,
373                            Context->getTemplatedDecl(),
374                            Friend->getTemplatedDecl());
375}
376
377static AccessResult MatchesFriend(Sema &S,
378                                  const EffectiveContext &EC,
379                                  const CXXRecordDecl *Friend) {
380  if (EC.includesClass(Friend))
381    return AR_accessible;
382
383  if (EC.isDependent()) {
384    CanQualType FriendTy
385      = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
386
387    for (EffectiveContext::record_iterator
388           I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
389      CanQualType ContextTy
390        = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
391      if (MightInstantiateTo(S, ContextTy, FriendTy))
392        return AR_dependent;
393    }
394  }
395
396  return AR_inaccessible;
397}
398
399static AccessResult MatchesFriend(Sema &S,
400                                  const EffectiveContext &EC,
401                                  CanQualType Friend) {
402  if (const RecordType *RT = Friend->getAs<RecordType>())
403    return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
404
405  // TODO: we can do better than this
406  if (Friend->isDependentType())
407    return AR_dependent;
408
409  return AR_inaccessible;
410}
411
412/// Determines whether the given friend class template matches
413/// anything in the effective context.
414static AccessResult MatchesFriend(Sema &S,
415                                  const EffectiveContext &EC,
416                                  ClassTemplateDecl *Friend) {
417  AccessResult OnFailure = AR_inaccessible;
418
419  // Check whether the friend is the template of a class in the
420  // context chain.
421  for (llvm::SmallVectorImpl<CXXRecordDecl*>::const_iterator
422         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
423    CXXRecordDecl *Record = *I;
424
425    // Figure out whether the current class has a template:
426    ClassTemplateDecl *CTD;
427
428    // A specialization of the template...
429    if (isa<ClassTemplateSpecializationDecl>(Record)) {
430      CTD = cast<ClassTemplateSpecializationDecl>(Record)
431        ->getSpecializedTemplate();
432
433    // ... or the template pattern itself.
434    } else {
435      CTD = Record->getDescribedClassTemplate();
436      if (!CTD) continue;
437    }
438
439    // It's a match.
440    if (Friend == CTD->getCanonicalDecl())
441      return AR_accessible;
442
443    // If the context isn't dependent, it can't be a dependent match.
444    if (!EC.isDependent())
445      continue;
446
447    // If the template names don't match, it can't be a dependent
448    // match.  This isn't true in C++0x because of template aliases.
449    if (!S.LangOpts.CPlusPlus0x && CTD->getDeclName() != Friend->getDeclName())
450      continue;
451
452    // If the class's context can't instantiate to the friend's
453    // context, it can't be a dependent match.
454    if (!MightInstantiateTo(S, CTD->getDeclContext(),
455                            Friend->getDeclContext()))
456      continue;
457
458    // Otherwise, it's a dependent match.
459    OnFailure = AR_dependent;
460  }
461
462  return OnFailure;
463}
464
465/// Determines whether the given friend function matches anything in
466/// the effective context.
467static AccessResult MatchesFriend(Sema &S,
468                                  const EffectiveContext &EC,
469                                  FunctionDecl *Friend) {
470  AccessResult OnFailure = AR_inaccessible;
471
472  for (llvm::SmallVectorImpl<FunctionDecl*>::const_iterator
473         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
474    if (Friend == *I)
475      return AR_accessible;
476
477    if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
478      OnFailure = AR_dependent;
479  }
480
481  return OnFailure;
482}
483
484/// Determines whether the given friend function template matches
485/// anything in the effective context.
486static AccessResult MatchesFriend(Sema &S,
487                                  const EffectiveContext &EC,
488                                  FunctionTemplateDecl *Friend) {
489  if (EC.Functions.empty()) return AR_inaccessible;
490
491  AccessResult OnFailure = AR_inaccessible;
492
493  for (llvm::SmallVectorImpl<FunctionDecl*>::const_iterator
494         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
495
496    FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
497    if (!FTD)
498      FTD = (*I)->getDescribedFunctionTemplate();
499    if (!FTD)
500      continue;
501
502    FTD = FTD->getCanonicalDecl();
503
504    if (Friend == FTD)
505      return AR_accessible;
506
507    if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
508      OnFailure = AR_dependent;
509  }
510
511  return OnFailure;
512}
513
514/// Determines whether the given friend declaration matches anything
515/// in the effective context.
516static AccessResult MatchesFriend(Sema &S,
517                                  const EffectiveContext &EC,
518                                  FriendDecl *FriendD) {
519  // Whitelist accesses if there's an invalid or unsupported friend
520  // declaration.
521  if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
522    return AR_accessible;
523
524  if (TypeSourceInfo *T = FriendD->getFriendType())
525    return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
526
527  NamedDecl *Friend
528    = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
529
530  // FIXME: declarations with dependent or templated scope.
531
532  if (isa<ClassTemplateDecl>(Friend))
533    return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
534
535  if (isa<FunctionTemplateDecl>(Friend))
536    return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
537
538  if (isa<CXXRecordDecl>(Friend))
539    return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
540
541  assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
542  return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
543}
544
545static AccessResult GetFriendKind(Sema &S,
546                                  const EffectiveContext &EC,
547                                  const CXXRecordDecl *Class) {
548  AccessResult OnFailure = AR_inaccessible;
549
550  // Okay, check friends.
551  for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
552         E = Class->friend_end(); I != E; ++I) {
553    FriendDecl *Friend = *I;
554
555    switch (MatchesFriend(S, EC, Friend)) {
556    case AR_accessible:
557      return AR_accessible;
558
559    case AR_inaccessible:
560      continue;
561
562    case AR_dependent:
563      OnFailure = AR_dependent;
564      break;
565    }
566  }
567
568  // That's it, give up.
569  return OnFailure;
570}
571
572namespace {
573
574/// A helper class for checking for a friend which will grant access
575/// to a protected instance member.
576struct ProtectedFriendContext {
577  Sema &S;
578  const EffectiveContext &EC;
579  const CXXRecordDecl *NamingClass;
580  bool CheckDependent;
581  bool EverDependent;
582
583  /// The path down to the current base class.
584  llvm::SmallVector<const CXXRecordDecl*, 20> CurPath;
585
586  ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
587                         const CXXRecordDecl *InstanceContext,
588                         const CXXRecordDecl *NamingClass)
589    : S(S), EC(EC), NamingClass(NamingClass),
590      CheckDependent(InstanceContext->isDependentContext() ||
591                     NamingClass->isDependentContext()),
592      EverDependent(false) {}
593
594  /// Check classes in the current path for friendship, starting at
595  /// the given index.
596  bool checkFriendshipAlongPath(unsigned I) {
597    assert(I < CurPath.size());
598    for (unsigned E = CurPath.size(); I != E; ++I) {
599      switch (GetFriendKind(S, EC, CurPath[I])) {
600      case AR_accessible:   return true;
601      case AR_inaccessible: continue;
602      case AR_dependent:    EverDependent = true; continue;
603      }
604    }
605    return false;
606  }
607
608  /// Perform a search starting at the given class.
609  ///
610  /// PrivateDepth is the index of the last (least derived) class
611  /// along the current path such that a notional public member of
612  /// the final class in the path would have access in that class.
613  bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
614    // If we ever reach the naming class, check the current path for
615    // friendship.  We can also stop recursing because we obviously
616    // won't find the naming class there again.
617    if (Cur == NamingClass)
618      return checkFriendshipAlongPath(PrivateDepth);
619
620    if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
621      EverDependent = true;
622
623    // Recurse into the base classes.
624    for (CXXRecordDecl::base_class_const_iterator
625           I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
626
627      // If this is private inheritance, then a public member of the
628      // base will not have any access in classes derived from Cur.
629      unsigned BasePrivateDepth = PrivateDepth;
630      if (I->getAccessSpecifier() == AS_private)
631        BasePrivateDepth = CurPath.size() - 1;
632
633      const CXXRecordDecl *RD;
634
635      QualType T = I->getType();
636      if (const RecordType *RT = T->getAs<RecordType>()) {
637        RD = cast<CXXRecordDecl>(RT->getDecl());
638      } else if (const InjectedClassNameType *IT
639                   = T->getAs<InjectedClassNameType>()) {
640        RD = IT->getDecl();
641      } else {
642        assert(T->isDependentType() && "non-dependent base wasn't a record?");
643        EverDependent = true;
644        continue;
645      }
646
647      // Recurse.  We don't need to clean up if this returns true.
648      CurPath.push_back(RD);
649      if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
650        return true;
651      CurPath.pop_back();
652    }
653
654    return false;
655  }
656
657  bool findFriendship(const CXXRecordDecl *Cur) {
658    assert(CurPath.empty());
659    CurPath.push_back(Cur);
660    return findFriendship(Cur, 0);
661  }
662};
663}
664
665/// Search for a class P that EC is a friend of, under the constraint
666///   InstanceContext <= P <= NamingClass
667/// and with the additional restriction that a protected member of
668/// NamingClass would have some natural access in P.
669///
670/// That second condition isn't actually quite right: the condition in
671/// the standard is whether the target would have some natural access
672/// in P.  The difference is that the target might be more accessible
673/// along some path not passing through NamingClass.  Allowing that
674/// introduces two problems:
675///   - It breaks encapsulation because you can suddenly access a
676///     forbidden base class's members by subclassing it elsewhere.
677///   - It makes access substantially harder to compute because it
678///     breaks the hill-climbing algorithm: knowing that the target is
679///     accessible in some base class would no longer let you change
680///     the question solely to whether the base class is accessible,
681///     because the original target might have been more accessible
682///     because of crazy subclassing.
683/// So we don't implement that.
684static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
685                                           const CXXRecordDecl *InstanceContext,
686                                           const CXXRecordDecl *NamingClass) {
687  assert(InstanceContext->getCanonicalDecl() == InstanceContext);
688  assert(NamingClass->getCanonicalDecl() == NamingClass);
689
690  ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
691  if (PRC.findFriendship(InstanceContext)) return AR_accessible;
692  if (PRC.EverDependent) return AR_dependent;
693  return AR_inaccessible;
694}
695
696static AccessResult HasAccess(Sema &S,
697                              const EffectiveContext &EC,
698                              const CXXRecordDecl *NamingClass,
699                              AccessSpecifier Access,
700                              const AccessTarget &Target) {
701  assert(NamingClass->getCanonicalDecl() == NamingClass &&
702         "declaration should be canonicalized before being passed here");
703
704  if (Access == AS_public) return AR_accessible;
705  assert(Access == AS_private || Access == AS_protected);
706
707  AccessResult OnFailure = AR_inaccessible;
708
709  for (EffectiveContext::record_iterator
710         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
711    // All the declarations in EC have been canonicalized, so pointer
712    // equality from this point on will work fine.
713    const CXXRecordDecl *ECRecord = *I;
714
715    // [B2] and [M2]
716    if (Access == AS_private) {
717      if (ECRecord == NamingClass)
718        return AR_accessible;
719
720      if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
721        OnFailure = AR_dependent;
722
723    // [B3] and [M3]
724    } else {
725      assert(Access == AS_protected);
726      switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
727      case AR_accessible: break;
728      case AR_inaccessible: continue;
729      case AR_dependent: OnFailure = AR_dependent; continue;
730      }
731
732      if (!Target.hasInstanceContext())
733        return AR_accessible;
734
735      const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
736      if (!InstanceContext) {
737        OnFailure = AR_dependent;
738        continue;
739      }
740
741      // C++ [class.protected]p1:
742      //   An additional access check beyond those described earlier in
743      //   [class.access] is applied when a non-static data member or
744      //   non-static member function is a protected member of its naming
745      //   class.  As described earlier, access to a protected member is
746      //   granted because the reference occurs in a friend or member of
747      //   some class C.  If the access is to form a pointer to member,
748      //   the nested-name-specifier shall name C or a class derived from
749      //   C. All other accesses involve a (possibly implicit) object
750      //   expression. In this case, the class of the object expression
751      //   shall be C or a class derived from C.
752      //
753      // We interpret this as a restriction on [M3].  Most of the
754      // conditions are encoded by not having any instance context.
755      switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
756      case AR_accessible: return AR_accessible;
757      case AR_inaccessible: continue;
758      case AR_dependent: OnFailure = AR_dependent; continue;
759      }
760    }
761  }
762
763  // [M3] and [B3] say that, if the target is protected in N, we grant
764  // access if the access occurs in a friend or member of some class P
765  // that's a subclass of N and where the target has some natural
766  // access in P.  The 'member' aspect is easy to handle because P
767  // would necessarily be one of the effective-context records, and we
768  // address that above.  The 'friend' aspect is completely ridiculous
769  // to implement because there are no restrictions at all on P
770  // *unless* the [class.protected] restriction applies.  If it does,
771  // however, we should ignore whether the naming class is a friend,
772  // and instead rely on whether any potential P is a friend.
773  if (Access == AS_protected && Target.hasInstanceContext()) {
774    const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
775    if (!InstanceContext) return AR_dependent;
776    switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
777    case AR_accessible: return AR_accessible;
778    case AR_inaccessible: return OnFailure;
779    case AR_dependent: return AR_dependent;
780    }
781    llvm_unreachable("impossible friendship kind");
782  }
783
784  switch (GetFriendKind(S, EC, NamingClass)) {
785  case AR_accessible: return AR_accessible;
786  case AR_inaccessible: return OnFailure;
787  case AR_dependent: return AR_dependent;
788  }
789
790  // Silence bogus warnings
791  llvm_unreachable("impossible friendship kind");
792  return OnFailure;
793}
794
795/// Finds the best path from the naming class to the declaring class,
796/// taking friend declarations into account.
797///
798/// C++0x [class.access.base]p5:
799///   A member m is accessible at the point R when named in class N if
800///   [M1] m as a member of N is public, or
801///   [M2] m as a member of N is private, and R occurs in a member or
802///        friend of class N, or
803///   [M3] m as a member of N is protected, and R occurs in a member or
804///        friend of class N, or in a member or friend of a class P
805///        derived from N, where m as a member of P is public, private,
806///        or protected, or
807///   [M4] there exists a base class B of N that is accessible at R, and
808///        m is accessible at R when named in class B.
809///
810/// C++0x [class.access.base]p4:
811///   A base class B of N is accessible at R, if
812///   [B1] an invented public member of B would be a public member of N, or
813///   [B2] R occurs in a member or friend of class N, and an invented public
814///        member of B would be a private or protected member of N, or
815///   [B3] R occurs in a member or friend of a class P derived from N, and an
816///        invented public member of B would be a private or protected member
817///        of P, or
818///   [B4] there exists a class S such that B is a base class of S accessible
819///        at R and S is a base class of N accessible at R.
820///
821/// Along a single inheritance path we can restate both of these
822/// iteratively:
823///
824/// First, we note that M1-4 are equivalent to B1-4 if the member is
825/// treated as a notional base of its declaring class with inheritance
826/// access equivalent to the member's access.  Therefore we need only
827/// ask whether a class B is accessible from a class N in context R.
828///
829/// Let B_1 .. B_n be the inheritance path in question (i.e. where
830/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
831/// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
832/// closest accessible base in the path:
833///   Access(a, b) = (* access on the base specifier from a to b *)
834///   Merge(a, forbidden) = forbidden
835///   Merge(a, private) = forbidden
836///   Merge(a, b) = min(a,b)
837///   Accessible(c, forbidden) = false
838///   Accessible(c, private) = (R is c) || IsFriend(c, R)
839///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
840///   Accessible(c, public) = true
841///   ACAB(n) = public
842///   ACAB(i) =
843///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
844///     if Accessible(B_i, AccessToBase) then public else AccessToBase
845///
846/// B is an accessible base of N at R iff ACAB(1) = public.
847///
848/// \param FinalAccess the access of the "final step", or AS_public if
849///   there is no final step.
850/// \return null if friendship is dependent
851static CXXBasePath *FindBestPath(Sema &S,
852                                 const EffectiveContext &EC,
853                                 AccessTarget &Target,
854                                 AccessSpecifier FinalAccess,
855                                 CXXBasePaths &Paths) {
856  // Derive the paths to the desired base.
857  const CXXRecordDecl *Derived = Target.getNamingClass();
858  const CXXRecordDecl *Base = Target.getDeclaringClass();
859
860  // FIXME: fail correctly when there are dependent paths.
861  bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
862                                          Paths);
863  assert(isDerived && "derived class not actually derived from base");
864  (void) isDerived;
865
866  CXXBasePath *BestPath = 0;
867
868  assert(FinalAccess != AS_none && "forbidden access after declaring class");
869
870  bool AnyDependent = false;
871
872  // Derive the friend-modified access along each path.
873  for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
874         PI != PE; ++PI) {
875    AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
876
877    // Walk through the path backwards.
878    AccessSpecifier PathAccess = FinalAccess;
879    CXXBasePath::iterator I = PI->end(), E = PI->begin();
880    while (I != E) {
881      --I;
882
883      assert(PathAccess != AS_none);
884
885      // If the declaration is a private member of a base class, there
886      // is no level of friendship in derived classes that can make it
887      // accessible.
888      if (PathAccess == AS_private) {
889        PathAccess = AS_none;
890        break;
891      }
892
893      const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
894
895      AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
896      PathAccess = std::max(PathAccess, BaseAccess);
897
898      switch (HasAccess(S, EC, NC, PathAccess, Target)) {
899      case AR_inaccessible: break;
900      case AR_accessible:
901        PathAccess = AS_public;
902
903        // Future tests are not against members and so do not have
904        // instance context.
905        Target.suppressInstanceContext();
906        break;
907      case AR_dependent:
908        AnyDependent = true;
909        goto Next;
910      }
911    }
912
913    // Note that we modify the path's Access field to the
914    // friend-modified access.
915    if (BestPath == 0 || PathAccess < BestPath->Access) {
916      BestPath = &*PI;
917      BestPath->Access = PathAccess;
918
919      // Short-circuit if we found a public path.
920      if (BestPath->Access == AS_public)
921        return BestPath;
922    }
923
924  Next: ;
925  }
926
927  assert((!BestPath || BestPath->Access != AS_public) &&
928         "fell out of loop with public path");
929
930  // We didn't find a public path, but at least one path was subject
931  // to dependent friendship, so delay the check.
932  if (AnyDependent)
933    return 0;
934
935  return BestPath;
936}
937
938/// Given that an entity has protected natural access, check whether
939/// access might be denied because of the protected member access
940/// restriction.
941///
942/// \return true if a note was emitted
943static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
944                                       AccessTarget &Target) {
945  // Only applies to instance accesses.
946  if (!Target.hasInstanceContext())
947    return false;
948  assert(Target.isMemberAccess());
949  NamedDecl *D = Target.getTargetDecl();
950
951  const CXXRecordDecl *DeclaringClass = Target.getDeclaringClass();
952  DeclaringClass = DeclaringClass->getCanonicalDecl();
953
954  for (EffectiveContext::record_iterator
955         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
956    const CXXRecordDecl *ECRecord = *I;
957    switch (IsDerivedFromInclusive(ECRecord, DeclaringClass)) {
958    case AR_accessible: break;
959    case AR_inaccessible: continue;
960    case AR_dependent: continue;
961    }
962
963    // The effective context is a subclass of the declaring class.
964    // If that class isn't a superclass of the instance context,
965    // then the [class.protected] restriction applies.
966
967    // To get this exactly right, this might need to be checked more
968    // holistically;  it's not necessarily the case that gaining
969    // access here would grant us access overall.
970
971    const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
972    assert(InstanceContext && "diagnosing dependent access");
973
974    switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
975    case AR_accessible: continue;
976    case AR_dependent: continue;
977    case AR_inaccessible:
978      S.Diag(D->getLocation(), diag::note_access_protected_restricted)
979        << (InstanceContext != Target.getNamingClass()->getCanonicalDecl())
980        << S.Context.getTypeDeclType(InstanceContext)
981        << S.Context.getTypeDeclType(ECRecord);
982      return true;
983    }
984  }
985
986  return false;
987}
988
989/// Diagnose the path which caused the given declaration or base class
990/// to become inaccessible.
991static void DiagnoseAccessPath(Sema &S,
992                               const EffectiveContext &EC,
993                               AccessTarget &Entity) {
994  AccessSpecifier Access = Entity.getAccess();
995  const CXXRecordDecl *NamingClass = Entity.getNamingClass();
996  NamingClass = NamingClass->getCanonicalDecl();
997
998  NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
999  const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1000
1001  // Easy case: the decl's natural access determined its path access.
1002  // We have to check against AS_private here in case Access is AS_none,
1003  // indicating a non-public member of a private base class.
1004  if (D && (Access == D->getAccess() || D->getAccess() == AS_private)) {
1005    switch (HasAccess(S, EC, DeclaringClass, D->getAccess(), Entity)) {
1006    case AR_inaccessible: {
1007      if (Access == AS_protected &&
1008          TryDiagnoseProtectedAccess(S, EC, Entity))
1009        return;
1010
1011      // Find an original declaration.
1012      while (D->isOutOfLine()) {
1013        NamedDecl *PrevDecl = 0;
1014        if (isa<VarDecl>(D))
1015          PrevDecl = cast<VarDecl>(D)->getPreviousDeclaration();
1016        else if (isa<FunctionDecl>(D))
1017          PrevDecl = cast<FunctionDecl>(D)->getPreviousDeclaration();
1018        else if (isa<TypedefDecl>(D))
1019          PrevDecl = cast<TypedefDecl>(D)->getPreviousDeclaration();
1020        else if (isa<TagDecl>(D)) {
1021          if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1022            break;
1023          PrevDecl = cast<TagDecl>(D)->getPreviousDeclaration();
1024        }
1025        if (!PrevDecl) break;
1026        D = PrevDecl;
1027      }
1028
1029      CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1030      Decl *ImmediateChild;
1031      if (D->getDeclContext() == DeclaringClass)
1032        ImmediateChild = D;
1033      else {
1034        DeclContext *DC = D->getDeclContext();
1035        while (DC->getParent() != DeclaringClass)
1036          DC = DC->getParent();
1037        ImmediateChild = cast<Decl>(DC);
1038      }
1039
1040      // Check whether there's an AccessSpecDecl preceding this in the
1041      // chain of the DeclContext.
1042      bool Implicit = true;
1043      for (CXXRecordDecl::decl_iterator
1044             I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1045           I != E; ++I) {
1046        if (*I == ImmediateChild) break;
1047        if (isa<AccessSpecDecl>(*I)) {
1048          Implicit = false;
1049          break;
1050        }
1051      }
1052
1053      S.Diag(D->getLocation(), diag::note_access_natural)
1054        << (unsigned) (Access == AS_protected)
1055        << Implicit;
1056      return;
1057    }
1058
1059    case AR_accessible: break;
1060
1061    case AR_dependent:
1062      llvm_unreachable("can't diagnose dependent access failures");
1063      return;
1064    }
1065  }
1066
1067  CXXBasePaths Paths;
1068  CXXBasePath &Path = *FindBestPath(S, EC, Entity, AS_public, Paths);
1069
1070  CXXBasePath::iterator I = Path.end(), E = Path.begin();
1071  while (I != E) {
1072    --I;
1073
1074    const CXXBaseSpecifier *BS = I->Base;
1075    AccessSpecifier BaseAccess = BS->getAccessSpecifier();
1076
1077    // If this is public inheritance, or the derived class is a friend,
1078    // skip this step.
1079    if (BaseAccess == AS_public)
1080      continue;
1081
1082    switch (GetFriendKind(S, EC, I->Class)) {
1083    case AR_accessible: continue;
1084    case AR_inaccessible: break;
1085    case AR_dependent:
1086      llvm_unreachable("can't diagnose dependent access failures");
1087    }
1088
1089    // Check whether this base specifier is the tighest point
1090    // constraining access.  We have to check against AS_private for
1091    // the same reasons as above.
1092    if (BaseAccess == AS_private || BaseAccess >= Access) {
1093
1094      // We're constrained by inheritance, but we want to say
1095      // "declared private here" if we're diagnosing a hierarchy
1096      // conversion and this is the final step.
1097      unsigned diagnostic;
1098      if (D) diagnostic = diag::note_access_constrained_by_path;
1099      else if (I + 1 == Path.end()) diagnostic = diag::note_access_natural;
1100      else diagnostic = diag::note_access_constrained_by_path;
1101
1102      S.Diag(BS->getSourceRange().getBegin(), diagnostic)
1103        << BS->getSourceRange()
1104        << (BaseAccess == AS_protected)
1105        << (BS->getAccessSpecifierAsWritten() == AS_none);
1106
1107      if (D)
1108        S.Diag(D->getLocation(), diag::note_field_decl);
1109
1110      return;
1111    }
1112  }
1113
1114  llvm_unreachable("access not apparently constrained by path");
1115}
1116
1117static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1118                              const EffectiveContext &EC,
1119                              AccessTarget &Entity) {
1120  const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1121  const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1122  NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1123
1124  S.Diag(Loc, Entity.getDiag())
1125    << (Entity.getAccess() == AS_protected)
1126    << (D ? D->getDeclName() : DeclarationName())
1127    << S.Context.getTypeDeclType(NamingClass)
1128    << S.Context.getTypeDeclType(DeclaringClass);
1129  DiagnoseAccessPath(S, EC, Entity);
1130}
1131
1132/// Determines whether the accessed entity is accessible.  Public members
1133/// have been weeded out by this point.
1134static AccessResult IsAccessible(Sema &S,
1135                                 const EffectiveContext &EC,
1136                                 AccessTarget &Entity) {
1137  // Determine the actual naming class.
1138  CXXRecordDecl *NamingClass = Entity.getNamingClass();
1139  while (NamingClass->isAnonymousStructOrUnion())
1140    NamingClass = cast<CXXRecordDecl>(NamingClass->getParent());
1141  NamingClass = NamingClass->getCanonicalDecl();
1142
1143  AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1144  assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1145
1146  // Before we try to recalculate access paths, try to white-list
1147  // accesses which just trade in on the final step, i.e. accesses
1148  // which don't require [M4] or [B4]. These are by far the most
1149  // common forms of privileged access.
1150  if (UnprivilegedAccess != AS_none) {
1151    switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1152    case AR_dependent:
1153      // This is actually an interesting policy decision.  We don't
1154      // *have* to delay immediately here: we can do the full access
1155      // calculation in the hope that friendship on some intermediate
1156      // class will make the declaration accessible non-dependently.
1157      // But that's not cheap, and odds are very good (note: assertion
1158      // made without data) that the friend declaration will determine
1159      // access.
1160      return AR_dependent;
1161
1162    case AR_accessible: return AR_accessible;
1163    case AR_inaccessible: break;
1164    }
1165  }
1166
1167  AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1168
1169  // We lower member accesses to base accesses by pretending that the
1170  // member is a base class of its declaring class.
1171  AccessSpecifier FinalAccess;
1172
1173  if (Entity.isMemberAccess()) {
1174    // Determine if the declaration is accessible from EC when named
1175    // in its declaring class.
1176    NamedDecl *Target = Entity.getTargetDecl();
1177    const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1178
1179    FinalAccess = Target->getAccess();
1180    switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1181    case AR_accessible:
1182      FinalAccess = AS_public;
1183      break;
1184    case AR_inaccessible: break;
1185    case AR_dependent: return AR_dependent; // see above
1186    }
1187
1188    if (DeclaringClass == NamingClass)
1189      return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1190
1191    Entity.suppressInstanceContext();
1192  } else {
1193    FinalAccess = AS_public;
1194  }
1195
1196  assert(Entity.getDeclaringClass() != NamingClass);
1197
1198  // Append the declaration's access if applicable.
1199  CXXBasePaths Paths;
1200  CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1201  if (!Path)
1202    return AR_dependent;
1203
1204  assert(Path->Access <= UnprivilegedAccess &&
1205         "access along best path worse than direct?");
1206  if (Path->Access == AS_public)
1207    return AR_accessible;
1208  return AR_inaccessible;
1209}
1210
1211static void DelayDependentAccess(Sema &S,
1212                                 const EffectiveContext &EC,
1213                                 SourceLocation Loc,
1214                                 const AccessTarget &Entity) {
1215  assert(EC.isDependent() && "delaying non-dependent access");
1216  DeclContext *DC = EC.getInnerContext();
1217  assert(DC->isDependentContext() && "delaying non-dependent access");
1218  DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1219                              Loc,
1220                              Entity.isMemberAccess(),
1221                              Entity.getAccess(),
1222                              Entity.getTargetDecl(),
1223                              Entity.getNamingClass(),
1224                              Entity.getBaseObjectType(),
1225                              Entity.getDiag());
1226}
1227
1228/// Checks access to an entity from the given effective context.
1229static AccessResult CheckEffectiveAccess(Sema &S,
1230                                         const EffectiveContext &EC,
1231                                         SourceLocation Loc,
1232                                         AccessTarget &Entity) {
1233  assert(Entity.getAccess() != AS_public && "called for public access!");
1234
1235  switch (IsAccessible(S, EC, Entity)) {
1236  case AR_dependent:
1237    DelayDependentAccess(S, EC, Loc, Entity);
1238    return AR_dependent;
1239
1240  case AR_inaccessible:
1241    if (!Entity.isQuiet())
1242      DiagnoseBadAccess(S, Loc, EC, Entity);
1243    return AR_inaccessible;
1244
1245  case AR_accessible:
1246    return AR_accessible;
1247  }
1248
1249  // silence unnecessary warning
1250  llvm_unreachable("invalid access result");
1251  return AR_accessible;
1252}
1253
1254static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1255                                      AccessTarget &Entity) {
1256  // If the access path is public, it's accessible everywhere.
1257  if (Entity.getAccess() == AS_public)
1258    return Sema::AR_accessible;
1259
1260  if (S.SuppressAccessChecking)
1261    return Sema::AR_accessible;
1262
1263  // If we're currently parsing a top-level declaration, delay
1264  // diagnostics.  This is the only case where parsing a declaration
1265  // can actually change our effective context for the purposes of
1266  // access control.
1267  if (S.CurContext->isFileContext() && S.ParsingDeclDepth) {
1268    S.DelayedDiagnostics.push_back(
1269        DelayedDiagnostic::makeAccess(Loc, Entity));
1270    return Sema::AR_delayed;
1271  }
1272
1273  EffectiveContext EC(S.CurContext);
1274  switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1275  case AR_accessible: return Sema::AR_accessible;
1276  case AR_inaccessible: return Sema::AR_inaccessible;
1277  case AR_dependent: return Sema::AR_dependent;
1278  }
1279  llvm_unreachable("falling off end");
1280  return Sema::AR_accessible;
1281}
1282
1283void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *Ctx) {
1284  // Pretend we did this from the context of the newly-parsed
1285  // declaration. If that declaration itself forms a declaration context,
1286  // include it in the effective context so that parameters and return types of
1287  // befriended functions have that function's access priveledges.
1288  DeclContext *DC = Ctx->getDeclContext();
1289  if (isa<FunctionDecl>(Ctx))
1290    DC = cast<DeclContext>(Ctx);
1291  else if (FunctionTemplateDecl *FnTpl = dyn_cast<FunctionTemplateDecl>(Ctx))
1292    DC = cast<DeclContext>(FnTpl->getTemplatedDecl());
1293  EffectiveContext EC(DC);
1294
1295  AccessTarget Target(DD.getAccessData());
1296
1297  if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1298    DD.Triggered = true;
1299}
1300
1301void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1302                        const MultiLevelTemplateArgumentList &TemplateArgs) {
1303  SourceLocation Loc = DD.getAccessLoc();
1304  AccessSpecifier Access = DD.getAccess();
1305
1306  Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1307                                       TemplateArgs);
1308  if (!NamingD) return;
1309  Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1310                                       TemplateArgs);
1311  if (!TargetD) return;
1312
1313  if (DD.isAccessToMember()) {
1314    CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1315    NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1316    QualType BaseObjectType = DD.getAccessBaseObjectType();
1317    if (!BaseObjectType.isNull()) {
1318      BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1319                                 DeclarationName());
1320      if (BaseObjectType.isNull()) return;
1321    }
1322
1323    AccessTarget Entity(Context,
1324                        AccessTarget::Member,
1325                        NamingClass,
1326                        DeclAccessPair::make(TargetDecl, Access),
1327                        BaseObjectType);
1328    Entity.setDiag(DD.getDiagnostic());
1329    CheckAccess(*this, Loc, Entity);
1330  } else {
1331    AccessTarget Entity(Context,
1332                        AccessTarget::Base,
1333                        cast<CXXRecordDecl>(TargetD),
1334                        cast<CXXRecordDecl>(NamingD),
1335                        Access);
1336    Entity.setDiag(DD.getDiagnostic());
1337    CheckAccess(*this, Loc, Entity);
1338  }
1339}
1340
1341Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1342                                                     DeclAccessPair Found) {
1343  if (!getLangOptions().AccessControl ||
1344      !E->getNamingClass() ||
1345      Found.getAccess() == AS_public)
1346    return AR_accessible;
1347
1348  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1349                      Found, QualType());
1350  Entity.setDiag(diag::err_access) << E->getSourceRange();
1351
1352  return CheckAccess(*this, E->getNameLoc(), Entity);
1353}
1354
1355/// Perform access-control checking on a previously-unresolved member
1356/// access which has now been resolved to a member.
1357Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1358                                                     DeclAccessPair Found) {
1359  if (!getLangOptions().AccessControl ||
1360      Found.getAccess() == AS_public)
1361    return AR_accessible;
1362
1363  QualType BaseType = E->getBaseType();
1364  if (E->isArrow())
1365    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1366
1367  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1368                      Found, BaseType);
1369  Entity.setDiag(diag::err_access) << E->getSourceRange();
1370
1371  return CheckAccess(*this, E->getMemberLoc(), Entity);
1372}
1373
1374Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1375                                               CXXDestructorDecl *Dtor,
1376                                               const PartialDiagnostic &PDiag) {
1377  if (!getLangOptions().AccessControl)
1378    return AR_accessible;
1379
1380  // There's never a path involved when checking implicit destructor access.
1381  AccessSpecifier Access = Dtor->getAccess();
1382  if (Access == AS_public)
1383    return AR_accessible;
1384
1385  CXXRecordDecl *NamingClass = Dtor->getParent();
1386  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1387                      DeclAccessPair::make(Dtor, Access),
1388                      QualType());
1389  Entity.setDiag(PDiag); // TODO: avoid copy
1390
1391  return CheckAccess(*this, Loc, Entity);
1392}
1393
1394/// Checks access to a constructor.
1395Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1396                                                CXXConstructorDecl *Constructor,
1397                                                const InitializedEntity &Entity,
1398                                                AccessSpecifier Access,
1399                                                bool IsCopyBindingRefToTemp) {
1400  if (!getLangOptions().AccessControl ||
1401      Access == AS_public)
1402    return AR_accessible;
1403
1404  CXXRecordDecl *NamingClass = Constructor->getParent();
1405  AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1406                            DeclAccessPair::make(Constructor, Access),
1407                            QualType());
1408  switch (Entity.getKind()) {
1409  default:
1410    AccessEntity.setDiag(IsCopyBindingRefToTemp
1411                         ? diag::ext_rvalue_to_reference_access_ctor
1412                         : diag::err_access_ctor);
1413    break;
1414
1415  case InitializedEntity::EK_Base:
1416    AccessEntity.setDiag(PDiag(diag::err_access_base)
1417                          << Entity.isInheritedVirtualBase()
1418                          << Entity.getBaseSpecifier()->getType()
1419                          << getSpecialMember(Constructor));
1420    break;
1421
1422  case InitializedEntity::EK_Member: {
1423    const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1424    AccessEntity.setDiag(PDiag(diag::err_access_field)
1425                          << Field->getType()
1426                          << getSpecialMember(Constructor));
1427    break;
1428  }
1429
1430  }
1431
1432  return CheckAccess(*this, UseLoc, AccessEntity);
1433}
1434
1435/// Checks direct (i.e. non-inherited) access to an arbitrary class
1436/// member.
1437Sema::AccessResult Sema::CheckDirectMemberAccess(SourceLocation UseLoc,
1438                                                 NamedDecl *Target,
1439                                           const PartialDiagnostic &Diag) {
1440  AccessSpecifier Access = Target->getAccess();
1441  if (!getLangOptions().AccessControl ||
1442      Access == AS_public)
1443    return AR_accessible;
1444
1445  CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Target->getDeclContext());
1446  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1447                      DeclAccessPair::make(Target, Access),
1448                      QualType());
1449  Entity.setDiag(Diag);
1450  return CheckAccess(*this, UseLoc, Entity);
1451}
1452
1453
1454/// Checks access to an overloaded operator new or delete.
1455Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1456                                               SourceRange PlacementRange,
1457                                               CXXRecordDecl *NamingClass,
1458                                               DeclAccessPair Found) {
1459  if (!getLangOptions().AccessControl ||
1460      !NamingClass ||
1461      Found.getAccess() == AS_public)
1462    return AR_accessible;
1463
1464  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1465                      QualType());
1466  Entity.setDiag(diag::err_access)
1467    << PlacementRange;
1468
1469  return CheckAccess(*this, OpLoc, Entity);
1470}
1471
1472/// Checks access to an overloaded member operator, including
1473/// conversion operators.
1474Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1475                                                   Expr *ObjectExpr,
1476                                                   Expr *ArgExpr,
1477                                                   DeclAccessPair Found) {
1478  if (!getLangOptions().AccessControl ||
1479      Found.getAccess() == AS_public)
1480    return AR_accessible;
1481
1482  const RecordType *RT = ObjectExpr->getType()->getAs<RecordType>();
1483  assert(RT && "found member operator but object expr not of record type");
1484  CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1485
1486  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1487                      ObjectExpr->getType());
1488  Entity.setDiag(diag::err_access)
1489    << ObjectExpr->getSourceRange()
1490    << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1491
1492  return CheckAccess(*this, OpLoc, Entity);
1493}
1494
1495Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1496                                                    DeclAccessPair Found) {
1497  if (!getLangOptions().AccessControl ||
1498      Found.getAccess() == AS_none ||
1499      Found.getAccess() == AS_public)
1500    return AR_accessible;
1501
1502  OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1503  CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1504
1505  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1506                      Context.getTypeDeclType(NamingClass));
1507  Entity.setDiag(diag::err_access)
1508    << Ovl->getSourceRange();
1509
1510  return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1511}
1512
1513/// Checks access for a hierarchy conversion.
1514///
1515/// \param IsBaseToDerived whether this is a base-to-derived conversion (true)
1516///     or a derived-to-base conversion (false)
1517/// \param ForceCheck true if this check should be performed even if access
1518///     control is disabled;  some things rely on this for semantics
1519/// \param ForceUnprivileged true if this check should proceed as if the
1520///     context had no special privileges
1521/// \param ADK controls the kind of diagnostics that are used
1522Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1523                                              QualType Base,
1524                                              QualType Derived,
1525                                              const CXXBasePath &Path,
1526                                              unsigned DiagID,
1527                                              bool ForceCheck,
1528                                              bool ForceUnprivileged) {
1529  if (!ForceCheck && !getLangOptions().AccessControl)
1530    return AR_accessible;
1531
1532  if (Path.Access == AS_public)
1533    return AR_accessible;
1534
1535  CXXRecordDecl *BaseD, *DerivedD;
1536  BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1537  DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1538
1539  AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1540                      Path.Access);
1541  if (DiagID)
1542    Entity.setDiag(DiagID) << Derived << Base;
1543
1544  if (ForceUnprivileged) {
1545    switch (CheckEffectiveAccess(*this, EffectiveContext(),
1546                                 AccessLoc, Entity)) {
1547    case ::AR_accessible: return Sema::AR_accessible;
1548    case ::AR_inaccessible: return Sema::AR_inaccessible;
1549    case ::AR_dependent: return Sema::AR_dependent;
1550    }
1551    llvm_unreachable("unexpected result from CheckEffectiveAccess");
1552  }
1553  return CheckAccess(*this, AccessLoc, Entity);
1554}
1555
1556/// Checks access to all the declarations in the given result set.
1557void Sema::CheckLookupAccess(const LookupResult &R) {
1558  assert(getLangOptions().AccessControl
1559         && "performing access check without access control");
1560  assert(R.getNamingClass() && "performing access check without naming class");
1561
1562  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1563    if (I.getAccess() != AS_public) {
1564      AccessTarget Entity(Context, AccessedEntity::Member,
1565                          R.getNamingClass(), I.getPair(),
1566                          R.getBaseObjectType());
1567      Entity.setDiag(diag::err_access);
1568
1569      CheckAccess(*this, R.getNameLoc(), Entity);
1570    }
1571  }
1572}
1573
1574void Sema::ActOnStartSuppressingAccessChecks() {
1575  assert(!SuppressAccessChecking &&
1576         "Tried to start access check suppression when already started.");
1577  SuppressAccessChecking = true;
1578}
1579
1580void Sema::ActOnStopSuppressingAccessChecks() {
1581  assert(SuppressAccessChecking &&
1582         "Tried to stop access check suprression when already stopped.");
1583  SuppressAccessChecking = false;
1584}
1585