SemaAccess.cpp revision b2d899e9ae8a48c4057a48664213948934b877fa
1//===---- SemaAccess.cpp - C++ Access Control -------------------*- C++ -*-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file provides Sema routines for C++ access control semantics.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/DelayedDiagnostic.h"
16#include "clang/Sema/Initialization.h"
17#include "clang/Sema/Lookup.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/CXXInheritance.h"
20#include "clang/AST/DeclCXX.h"
21#include "clang/AST/DeclFriend.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DependentDiagnostic.h"
24#include "clang/AST/ExprCXX.h"
25
26using namespace clang;
27using namespace sema;
28
29/// A copy of Sema's enum without AR_delayed.
30enum AccessResult {
31  AR_accessible,
32  AR_inaccessible,
33  AR_dependent
34};
35
36/// SetMemberAccessSpecifier - Set the access specifier of a member.
37/// Returns true on error (when the previous member decl access specifier
38/// is different from the new member decl access specifier).
39bool Sema::SetMemberAccessSpecifier(NamedDecl *MemberDecl,
40                                    NamedDecl *PrevMemberDecl,
41                                    AccessSpecifier LexicalAS) {
42  if (!PrevMemberDecl) {
43    // Use the lexical access specifier.
44    MemberDecl->setAccess(LexicalAS);
45    return false;
46  }
47
48  // C++ [class.access.spec]p3: When a member is redeclared its access
49  // specifier must be same as its initial declaration.
50  if (LexicalAS != AS_none && LexicalAS != PrevMemberDecl->getAccess()) {
51    Diag(MemberDecl->getLocation(),
52         diag::err_class_redeclared_with_different_access)
53      << MemberDecl << LexicalAS;
54    Diag(PrevMemberDecl->getLocation(), diag::note_previous_access_declaration)
55      << PrevMemberDecl << PrevMemberDecl->getAccess();
56
57    MemberDecl->setAccess(LexicalAS);
58    return true;
59  }
60
61  MemberDecl->setAccess(PrevMemberDecl->getAccess());
62  return false;
63}
64
65static CXXRecordDecl *FindDeclaringClass(NamedDecl *D) {
66  DeclContext *DC = D->getDeclContext();
67
68  // This can only happen at top: enum decls only "publish" their
69  // immediate members.
70  if (isa<EnumDecl>(DC))
71    DC = cast<EnumDecl>(DC)->getDeclContext();
72
73  CXXRecordDecl *DeclaringClass = cast<CXXRecordDecl>(DC);
74  while (DeclaringClass->isAnonymousStructOrUnion())
75    DeclaringClass = cast<CXXRecordDecl>(DeclaringClass->getDeclContext());
76  return DeclaringClass;
77}
78
79namespace {
80struct EffectiveContext {
81  EffectiveContext() : Inner(0), Dependent(false) {}
82
83  explicit EffectiveContext(DeclContext *DC)
84    : Inner(DC),
85      Dependent(DC->isDependentContext()) {
86
87    // C++ [class.access.nest]p1:
88    //   A nested class is a member and as such has the same access
89    //   rights as any other member.
90    // C++ [class.access]p2:
91    //   A member of a class can also access all the names to which
92    //   the class has access.  A local class of a member function
93    //   may access the same names that the member function itself
94    //   may access.
95    // This almost implies that the privileges of nesting are transitive.
96    // Technically it says nothing about the local classes of non-member
97    // functions (which can gain privileges through friendship), but we
98    // take that as an oversight.
99    while (true) {
100      if (isa<CXXRecordDecl>(DC)) {
101        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC)->getCanonicalDecl();
102        Records.push_back(Record);
103        DC = Record->getDeclContext();
104      } else if (isa<FunctionDecl>(DC)) {
105        FunctionDecl *Function = cast<FunctionDecl>(DC)->getCanonicalDecl();
106        Functions.push_back(Function);
107
108        if (Function->getFriendObjectKind())
109          DC = Function->getLexicalDeclContext();
110        else
111          DC = Function->getDeclContext();
112      } else if (DC->isFileContext()) {
113        break;
114      } else {
115        DC = DC->getParent();
116      }
117    }
118  }
119
120  bool isDependent() const { return Dependent; }
121
122  bool includesClass(const CXXRecordDecl *R) const {
123    R = R->getCanonicalDecl();
124    return std::find(Records.begin(), Records.end(), R)
125             != Records.end();
126  }
127
128  /// Retrieves the innermost "useful" context.  Can be null if we're
129  /// doing access-control without privileges.
130  DeclContext *getInnerContext() const {
131    return Inner;
132  }
133
134  typedef SmallVectorImpl<CXXRecordDecl*>::const_iterator record_iterator;
135
136  DeclContext *Inner;
137  SmallVector<FunctionDecl*, 4> Functions;
138  SmallVector<CXXRecordDecl*, 4> Records;
139  bool Dependent;
140};
141
142/// Like sema::AccessedEntity, but kindly lets us scribble all over
143/// it.
144struct AccessTarget : public AccessedEntity {
145  AccessTarget(const AccessedEntity &Entity)
146    : AccessedEntity(Entity) {
147    initialize();
148  }
149
150  AccessTarget(ASTContext &Context,
151               MemberNonce _,
152               CXXRecordDecl *NamingClass,
153               DeclAccessPair FoundDecl,
154               QualType BaseObjectType)
155    : AccessedEntity(Context, Member, NamingClass, FoundDecl, BaseObjectType) {
156    initialize();
157  }
158
159  AccessTarget(ASTContext &Context,
160               BaseNonce _,
161               CXXRecordDecl *BaseClass,
162               CXXRecordDecl *DerivedClass,
163               AccessSpecifier Access)
164    : AccessedEntity(Context, Base, BaseClass, DerivedClass, Access) {
165    initialize();
166  }
167
168  bool isInstanceMember() const {
169    return (isMemberAccess() && getTargetDecl()->isCXXInstanceMember());
170  }
171
172  bool hasInstanceContext() const {
173    return HasInstanceContext;
174  }
175
176  class SavedInstanceContext {
177  public:
178    ~SavedInstanceContext() {
179      Target.HasInstanceContext = Has;
180    }
181
182  private:
183    friend struct AccessTarget;
184    explicit SavedInstanceContext(AccessTarget &Target)
185      : Target(Target), Has(Target.HasInstanceContext) {}
186    AccessTarget &Target;
187    bool Has;
188  };
189
190  SavedInstanceContext saveInstanceContext() {
191    return SavedInstanceContext(*this);
192  }
193
194  void suppressInstanceContext() {
195    HasInstanceContext = false;
196  }
197
198  const CXXRecordDecl *resolveInstanceContext(Sema &S) const {
199    assert(HasInstanceContext);
200    if (CalculatedInstanceContext)
201      return InstanceContext;
202
203    CalculatedInstanceContext = true;
204    DeclContext *IC = S.computeDeclContext(getBaseObjectType());
205    InstanceContext = (IC ? cast<CXXRecordDecl>(IC)->getCanonicalDecl() : 0);
206    return InstanceContext;
207  }
208
209  const CXXRecordDecl *getDeclaringClass() const {
210    return DeclaringClass;
211  }
212
213private:
214  void initialize() {
215    HasInstanceContext = (isMemberAccess() &&
216                          !getBaseObjectType().isNull() &&
217                          getTargetDecl()->isCXXInstanceMember());
218    CalculatedInstanceContext = false;
219    InstanceContext = 0;
220
221    if (isMemberAccess())
222      DeclaringClass = FindDeclaringClass(getTargetDecl());
223    else
224      DeclaringClass = getBaseClass();
225    DeclaringClass = DeclaringClass->getCanonicalDecl();
226  }
227
228  bool HasInstanceContext : 1;
229  mutable bool CalculatedInstanceContext : 1;
230  mutable const CXXRecordDecl *InstanceContext;
231  const CXXRecordDecl *DeclaringClass;
232};
233
234}
235
236/// Checks whether one class might instantiate to the other.
237static bool MightInstantiateTo(const CXXRecordDecl *From,
238                               const CXXRecordDecl *To) {
239  // Declaration names are always preserved by instantiation.
240  if (From->getDeclName() != To->getDeclName())
241    return false;
242
243  const DeclContext *FromDC = From->getDeclContext()->getPrimaryContext();
244  const DeclContext *ToDC = To->getDeclContext()->getPrimaryContext();
245  if (FromDC == ToDC) return true;
246  if (FromDC->isFileContext() || ToDC->isFileContext()) return false;
247
248  // Be conservative.
249  return true;
250}
251
252/// Checks whether one class is derived from another, inclusively.
253/// Properly indicates when it couldn't be determined due to
254/// dependence.
255///
256/// This should probably be donated to AST or at least Sema.
257static AccessResult IsDerivedFromInclusive(const CXXRecordDecl *Derived,
258                                           const CXXRecordDecl *Target) {
259  assert(Derived->getCanonicalDecl() == Derived);
260  assert(Target->getCanonicalDecl() == Target);
261
262  if (Derived == Target) return AR_accessible;
263
264  bool CheckDependent = Derived->isDependentContext();
265  if (CheckDependent && MightInstantiateTo(Derived, Target))
266    return AR_dependent;
267
268  AccessResult OnFailure = AR_inaccessible;
269  SmallVector<const CXXRecordDecl*, 8> Queue; // actually a stack
270
271  while (true) {
272    if (Derived->isDependentContext() && !Derived->hasDefinition())
273      return AR_dependent;
274
275    for (CXXRecordDecl::base_class_const_iterator
276           I = Derived->bases_begin(), E = Derived->bases_end(); I != E; ++I) {
277
278      const CXXRecordDecl *RD;
279
280      QualType T = I->getType();
281      if (const RecordType *RT = T->getAs<RecordType>()) {
282        RD = cast<CXXRecordDecl>(RT->getDecl());
283      } else if (const InjectedClassNameType *IT
284                   = T->getAs<InjectedClassNameType>()) {
285        RD = IT->getDecl();
286      } else {
287        assert(T->isDependentType() && "non-dependent base wasn't a record?");
288        OnFailure = AR_dependent;
289        continue;
290      }
291
292      RD = RD->getCanonicalDecl();
293      if (RD == Target) return AR_accessible;
294      if (CheckDependent && MightInstantiateTo(RD, Target))
295        OnFailure = AR_dependent;
296
297      Queue.push_back(RD);
298    }
299
300    if (Queue.empty()) break;
301
302    Derived = Queue.back();
303    Queue.pop_back();
304  }
305
306  return OnFailure;
307}
308
309
310static bool MightInstantiateTo(Sema &S, DeclContext *Context,
311                               DeclContext *Friend) {
312  if (Friend == Context)
313    return true;
314
315  assert(!Friend->isDependentContext() &&
316         "can't handle friends with dependent contexts here");
317
318  if (!Context->isDependentContext())
319    return false;
320
321  if (Friend->isFileContext())
322    return false;
323
324  // TODO: this is very conservative
325  return true;
326}
327
328// Asks whether the type in 'context' can ever instantiate to the type
329// in 'friend'.
330static bool MightInstantiateTo(Sema &S, CanQualType Context, CanQualType Friend) {
331  if (Friend == Context)
332    return true;
333
334  if (!Friend->isDependentType() && !Context->isDependentType())
335    return false;
336
337  // TODO: this is very conservative.
338  return true;
339}
340
341static bool MightInstantiateTo(Sema &S,
342                               FunctionDecl *Context,
343                               FunctionDecl *Friend) {
344  if (Context->getDeclName() != Friend->getDeclName())
345    return false;
346
347  if (!MightInstantiateTo(S,
348                          Context->getDeclContext(),
349                          Friend->getDeclContext()))
350    return false;
351
352  CanQual<FunctionProtoType> FriendTy
353    = S.Context.getCanonicalType(Friend->getType())
354         ->getAs<FunctionProtoType>();
355  CanQual<FunctionProtoType> ContextTy
356    = S.Context.getCanonicalType(Context->getType())
357         ->getAs<FunctionProtoType>();
358
359  // There isn't any way that I know of to add qualifiers
360  // during instantiation.
361  if (FriendTy.getQualifiers() != ContextTy.getQualifiers())
362    return false;
363
364  if (FriendTy->getNumArgs() != ContextTy->getNumArgs())
365    return false;
366
367  if (!MightInstantiateTo(S,
368                          ContextTy->getResultType(),
369                          FriendTy->getResultType()))
370    return false;
371
372  for (unsigned I = 0, E = FriendTy->getNumArgs(); I != E; ++I)
373    if (!MightInstantiateTo(S,
374                            ContextTy->getArgType(I),
375                            FriendTy->getArgType(I)))
376      return false;
377
378  return true;
379}
380
381static bool MightInstantiateTo(Sema &S,
382                               FunctionTemplateDecl *Context,
383                               FunctionTemplateDecl *Friend) {
384  return MightInstantiateTo(S,
385                            Context->getTemplatedDecl(),
386                            Friend->getTemplatedDecl());
387}
388
389static AccessResult MatchesFriend(Sema &S,
390                                  const EffectiveContext &EC,
391                                  const CXXRecordDecl *Friend) {
392  if (EC.includesClass(Friend))
393    return AR_accessible;
394
395  if (EC.isDependent()) {
396    CanQualType FriendTy
397      = S.Context.getCanonicalType(S.Context.getTypeDeclType(Friend));
398
399    for (EffectiveContext::record_iterator
400           I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
401      CanQualType ContextTy
402        = S.Context.getCanonicalType(S.Context.getTypeDeclType(*I));
403      if (MightInstantiateTo(S, ContextTy, FriendTy))
404        return AR_dependent;
405    }
406  }
407
408  return AR_inaccessible;
409}
410
411static AccessResult MatchesFriend(Sema &S,
412                                  const EffectiveContext &EC,
413                                  CanQualType Friend) {
414  if (const RecordType *RT = Friend->getAs<RecordType>())
415    return MatchesFriend(S, EC, cast<CXXRecordDecl>(RT->getDecl()));
416
417  // TODO: we can do better than this
418  if (Friend->isDependentType())
419    return AR_dependent;
420
421  return AR_inaccessible;
422}
423
424/// Determines whether the given friend class template matches
425/// anything in the effective context.
426static AccessResult MatchesFriend(Sema &S,
427                                  const EffectiveContext &EC,
428                                  ClassTemplateDecl *Friend) {
429  AccessResult OnFailure = AR_inaccessible;
430
431  // Check whether the friend is the template of a class in the
432  // context chain.
433  for (SmallVectorImpl<CXXRecordDecl*>::const_iterator
434         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
435    CXXRecordDecl *Record = *I;
436
437    // Figure out whether the current class has a template:
438    ClassTemplateDecl *CTD;
439
440    // A specialization of the template...
441    if (isa<ClassTemplateSpecializationDecl>(Record)) {
442      CTD = cast<ClassTemplateSpecializationDecl>(Record)
443        ->getSpecializedTemplate();
444
445    // ... or the template pattern itself.
446    } else {
447      CTD = Record->getDescribedClassTemplate();
448      if (!CTD) continue;
449    }
450
451    // It's a match.
452    if (Friend == CTD->getCanonicalDecl())
453      return AR_accessible;
454
455    // If the context isn't dependent, it can't be a dependent match.
456    if (!EC.isDependent())
457      continue;
458
459    // If the template names don't match, it can't be a dependent
460    // match.
461    if (CTD->getDeclName() != Friend->getDeclName())
462      continue;
463
464    // If the class's context can't instantiate to the friend's
465    // context, it can't be a dependent match.
466    if (!MightInstantiateTo(S, CTD->getDeclContext(),
467                            Friend->getDeclContext()))
468      continue;
469
470    // Otherwise, it's a dependent match.
471    OnFailure = AR_dependent;
472  }
473
474  return OnFailure;
475}
476
477/// Determines whether the given friend function matches anything in
478/// the effective context.
479static AccessResult MatchesFriend(Sema &S,
480                                  const EffectiveContext &EC,
481                                  FunctionDecl *Friend) {
482  AccessResult OnFailure = AR_inaccessible;
483
484  for (SmallVectorImpl<FunctionDecl*>::const_iterator
485         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
486    if (Friend == *I)
487      return AR_accessible;
488
489    if (EC.isDependent() && MightInstantiateTo(S, *I, Friend))
490      OnFailure = AR_dependent;
491  }
492
493  return OnFailure;
494}
495
496/// Determines whether the given friend function template matches
497/// anything in the effective context.
498static AccessResult MatchesFriend(Sema &S,
499                                  const EffectiveContext &EC,
500                                  FunctionTemplateDecl *Friend) {
501  if (EC.Functions.empty()) return AR_inaccessible;
502
503  AccessResult OnFailure = AR_inaccessible;
504
505  for (SmallVectorImpl<FunctionDecl*>::const_iterator
506         I = EC.Functions.begin(), E = EC.Functions.end(); I != E; ++I) {
507
508    FunctionTemplateDecl *FTD = (*I)->getPrimaryTemplate();
509    if (!FTD)
510      FTD = (*I)->getDescribedFunctionTemplate();
511    if (!FTD)
512      continue;
513
514    FTD = FTD->getCanonicalDecl();
515
516    if (Friend == FTD)
517      return AR_accessible;
518
519    if (EC.isDependent() && MightInstantiateTo(S, FTD, Friend))
520      OnFailure = AR_dependent;
521  }
522
523  return OnFailure;
524}
525
526/// Determines whether the given friend declaration matches anything
527/// in the effective context.
528static AccessResult MatchesFriend(Sema &S,
529                                  const EffectiveContext &EC,
530                                  FriendDecl *FriendD) {
531  // Whitelist accesses if there's an invalid or unsupported friend
532  // declaration.
533  if (FriendD->isInvalidDecl() || FriendD->isUnsupportedFriend())
534    return AR_accessible;
535
536  if (TypeSourceInfo *T = FriendD->getFriendType())
537    return MatchesFriend(S, EC, T->getType()->getCanonicalTypeUnqualified());
538
539  NamedDecl *Friend
540    = cast<NamedDecl>(FriendD->getFriendDecl()->getCanonicalDecl());
541
542  // FIXME: declarations with dependent or templated scope.
543
544  if (isa<ClassTemplateDecl>(Friend))
545    return MatchesFriend(S, EC, cast<ClassTemplateDecl>(Friend));
546
547  if (isa<FunctionTemplateDecl>(Friend))
548    return MatchesFriend(S, EC, cast<FunctionTemplateDecl>(Friend));
549
550  if (isa<CXXRecordDecl>(Friend))
551    return MatchesFriend(S, EC, cast<CXXRecordDecl>(Friend));
552
553  assert(isa<FunctionDecl>(Friend) && "unknown friend decl kind");
554  return MatchesFriend(S, EC, cast<FunctionDecl>(Friend));
555}
556
557static AccessResult GetFriendKind(Sema &S,
558                                  const EffectiveContext &EC,
559                                  const CXXRecordDecl *Class) {
560  AccessResult OnFailure = AR_inaccessible;
561
562  // Okay, check friends.
563  for (CXXRecordDecl::friend_iterator I = Class->friend_begin(),
564         E = Class->friend_end(); I != E; ++I) {
565    FriendDecl *Friend = *I;
566
567    switch (MatchesFriend(S, EC, Friend)) {
568    case AR_accessible:
569      return AR_accessible;
570
571    case AR_inaccessible:
572      continue;
573
574    case AR_dependent:
575      OnFailure = AR_dependent;
576      break;
577    }
578  }
579
580  // That's it, give up.
581  return OnFailure;
582}
583
584namespace {
585
586/// A helper class for checking for a friend which will grant access
587/// to a protected instance member.
588struct ProtectedFriendContext {
589  Sema &S;
590  const EffectiveContext &EC;
591  const CXXRecordDecl *NamingClass;
592  bool CheckDependent;
593  bool EverDependent;
594
595  /// The path down to the current base class.
596  SmallVector<const CXXRecordDecl*, 20> CurPath;
597
598  ProtectedFriendContext(Sema &S, const EffectiveContext &EC,
599                         const CXXRecordDecl *InstanceContext,
600                         const CXXRecordDecl *NamingClass)
601    : S(S), EC(EC), NamingClass(NamingClass),
602      CheckDependent(InstanceContext->isDependentContext() ||
603                     NamingClass->isDependentContext()),
604      EverDependent(false) {}
605
606  /// Check classes in the current path for friendship, starting at
607  /// the given index.
608  bool checkFriendshipAlongPath(unsigned I) {
609    assert(I < CurPath.size());
610    for (unsigned E = CurPath.size(); I != E; ++I) {
611      switch (GetFriendKind(S, EC, CurPath[I])) {
612      case AR_accessible:   return true;
613      case AR_inaccessible: continue;
614      case AR_dependent:    EverDependent = true; continue;
615      }
616    }
617    return false;
618  }
619
620  /// Perform a search starting at the given class.
621  ///
622  /// PrivateDepth is the index of the last (least derived) class
623  /// along the current path such that a notional public member of
624  /// the final class in the path would have access in that class.
625  bool findFriendship(const CXXRecordDecl *Cur, unsigned PrivateDepth) {
626    // If we ever reach the naming class, check the current path for
627    // friendship.  We can also stop recursing because we obviously
628    // won't find the naming class there again.
629    if (Cur == NamingClass)
630      return checkFriendshipAlongPath(PrivateDepth);
631
632    if (CheckDependent && MightInstantiateTo(Cur, NamingClass))
633      EverDependent = true;
634
635    // Recurse into the base classes.
636    for (CXXRecordDecl::base_class_const_iterator
637           I = Cur->bases_begin(), E = Cur->bases_end(); I != E; ++I) {
638
639      // If this is private inheritance, then a public member of the
640      // base will not have any access in classes derived from Cur.
641      unsigned BasePrivateDepth = PrivateDepth;
642      if (I->getAccessSpecifier() == AS_private)
643        BasePrivateDepth = CurPath.size() - 1;
644
645      const CXXRecordDecl *RD;
646
647      QualType T = I->getType();
648      if (const RecordType *RT = T->getAs<RecordType>()) {
649        RD = cast<CXXRecordDecl>(RT->getDecl());
650      } else if (const InjectedClassNameType *IT
651                   = T->getAs<InjectedClassNameType>()) {
652        RD = IT->getDecl();
653      } else {
654        assert(T->isDependentType() && "non-dependent base wasn't a record?");
655        EverDependent = true;
656        continue;
657      }
658
659      // Recurse.  We don't need to clean up if this returns true.
660      CurPath.push_back(RD);
661      if (findFriendship(RD->getCanonicalDecl(), BasePrivateDepth))
662        return true;
663      CurPath.pop_back();
664    }
665
666    return false;
667  }
668
669  bool findFriendship(const CXXRecordDecl *Cur) {
670    assert(CurPath.empty());
671    CurPath.push_back(Cur);
672    return findFriendship(Cur, 0);
673  }
674};
675}
676
677/// Search for a class P that EC is a friend of, under the constraint
678///   InstanceContext <= P
679/// if InstanceContext exists, or else
680///   NamingClass <= P
681/// and with the additional restriction that a protected member of
682/// NamingClass would have some natural access in P, which implicitly
683/// imposes the constraint that P <= NamingClass.
684///
685/// This isn't quite the condition laid out in the standard.
686/// Instead of saying that a notional protected member of NamingClass
687/// would have to have some natural access in P, it says the actual
688/// target has to have some natural access in P, which opens up the
689/// possibility that the target (which is not necessarily a member
690/// of NamingClass) might be more accessible along some path not
691/// passing through it.  That's really a bad idea, though, because it
692/// introduces two problems:
693///   - Most importantly, it breaks encapsulation because you can
694///     access a forbidden base class's members by directly subclassing
695///     it elsewhere.
696///   - It also makes access substantially harder to compute because it
697///     breaks the hill-climbing algorithm: knowing that the target is
698///     accessible in some base class would no longer let you change
699///     the question solely to whether the base class is accessible,
700///     because the original target might have been more accessible
701///     because of crazy subclassing.
702/// So we don't implement that.
703static AccessResult GetProtectedFriendKind(Sema &S, const EffectiveContext &EC,
704                                           const CXXRecordDecl *InstanceContext,
705                                           const CXXRecordDecl *NamingClass) {
706  assert(InstanceContext == 0 ||
707         InstanceContext->getCanonicalDecl() == InstanceContext);
708  assert(NamingClass->getCanonicalDecl() == NamingClass);
709
710  // If we don't have an instance context, our constraints give us
711  // that NamingClass <= P <= NamingClass, i.e. P == NamingClass.
712  // This is just the usual friendship check.
713  if (!InstanceContext) return GetFriendKind(S, EC, NamingClass);
714
715  ProtectedFriendContext PRC(S, EC, InstanceContext, NamingClass);
716  if (PRC.findFriendship(InstanceContext)) return AR_accessible;
717  if (PRC.EverDependent) return AR_dependent;
718  return AR_inaccessible;
719}
720
721static AccessResult HasAccess(Sema &S,
722                              const EffectiveContext &EC,
723                              const CXXRecordDecl *NamingClass,
724                              AccessSpecifier Access,
725                              const AccessTarget &Target) {
726  assert(NamingClass->getCanonicalDecl() == NamingClass &&
727         "declaration should be canonicalized before being passed here");
728
729  if (Access == AS_public) return AR_accessible;
730  assert(Access == AS_private || Access == AS_protected);
731
732  AccessResult OnFailure = AR_inaccessible;
733
734  for (EffectiveContext::record_iterator
735         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
736    // All the declarations in EC have been canonicalized, so pointer
737    // equality from this point on will work fine.
738    const CXXRecordDecl *ECRecord = *I;
739
740    // [B2] and [M2]
741    if (Access == AS_private) {
742      if (ECRecord == NamingClass)
743        return AR_accessible;
744
745      if (EC.isDependent() && MightInstantiateTo(ECRecord, NamingClass))
746        OnFailure = AR_dependent;
747
748    // [B3] and [M3]
749    } else {
750      assert(Access == AS_protected);
751      switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
752      case AR_accessible: break;
753      case AR_inaccessible: continue;
754      case AR_dependent: OnFailure = AR_dependent; continue;
755      }
756
757      // C++ [class.protected]p1:
758      //   An additional access check beyond those described earlier in
759      //   [class.access] is applied when a non-static data member or
760      //   non-static member function is a protected member of its naming
761      //   class.  As described earlier, access to a protected member is
762      //   granted because the reference occurs in a friend or member of
763      //   some class C.  If the access is to form a pointer to member,
764      //   the nested-name-specifier shall name C or a class derived from
765      //   C. All other accesses involve a (possibly implicit) object
766      //   expression. In this case, the class of the object expression
767      //   shall be C or a class derived from C.
768      //
769      // We interpret this as a restriction on [M3].
770
771      // In this part of the code, 'C' is just our context class ECRecord.
772
773      // These rules are different if we don't have an instance context.
774      if (!Target.hasInstanceContext()) {
775        // If it's not an instance member, these restrictions don't apply.
776        if (!Target.isInstanceMember()) return AR_accessible;
777
778        // If it's an instance member, use the pointer-to-member rule
779        // that the naming class has to be derived from the effective
780        // context.
781
782        // Emulate a MSVC bug where the creation of pointer-to-member
783        // to protected member of base class is allowed but only from
784        // a static function.
785        if (S.getLangOpts().MicrosoftMode && !EC.Functions.empty() &&
786            EC.Functions.front()->getStorageClass() == SC_Static)
787           return AR_accessible;
788
789        // Despite the standard's confident wording, there is a case
790        // where you can have an instance member that's neither in a
791        // pointer-to-member expression nor in a member access:  when
792        // it names a field in an unevaluated context that can't be an
793        // implicit member.  Pending clarification, we just apply the
794        // same naming-class restriction here.
795        //   FIXME: we're probably not correctly adding the
796        //   protected-member restriction when we retroactively convert
797        //   an expression to being evaluated.
798
799        // We know that ECRecord derives from NamingClass.  The
800        // restriction says to check whether NamingClass derives from
801        // ECRecord, but that's not really necessary: two distinct
802        // classes can't be recursively derived from each other.  So
803        // along this path, we just need to check whether the classes
804        // are equal.
805        if (NamingClass == ECRecord) return AR_accessible;
806
807        // Otherwise, this context class tells us nothing;  on to the next.
808        continue;
809      }
810
811      assert(Target.isInstanceMember());
812
813      const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
814      if (!InstanceContext) {
815        OnFailure = AR_dependent;
816        continue;
817      }
818
819      switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
820      case AR_accessible: return AR_accessible;
821      case AR_inaccessible: continue;
822      case AR_dependent: OnFailure = AR_dependent; continue;
823      }
824    }
825  }
826
827  // [M3] and [B3] say that, if the target is protected in N, we grant
828  // access if the access occurs in a friend or member of some class P
829  // that's a subclass of N and where the target has some natural
830  // access in P.  The 'member' aspect is easy to handle because P
831  // would necessarily be one of the effective-context records, and we
832  // address that above.  The 'friend' aspect is completely ridiculous
833  // to implement because there are no restrictions at all on P
834  // *unless* the [class.protected] restriction applies.  If it does,
835  // however, we should ignore whether the naming class is a friend,
836  // and instead rely on whether any potential P is a friend.
837  if (Access == AS_protected && Target.isInstanceMember()) {
838    // Compute the instance context if possible.
839    const CXXRecordDecl *InstanceContext = 0;
840    if (Target.hasInstanceContext()) {
841      InstanceContext = Target.resolveInstanceContext(S);
842      if (!InstanceContext) return AR_dependent;
843    }
844
845    switch (GetProtectedFriendKind(S, EC, InstanceContext, NamingClass)) {
846    case AR_accessible: return AR_accessible;
847    case AR_inaccessible: return OnFailure;
848    case AR_dependent: return AR_dependent;
849    }
850    llvm_unreachable("impossible friendship kind");
851  }
852
853  switch (GetFriendKind(S, EC, NamingClass)) {
854  case AR_accessible: return AR_accessible;
855  case AR_inaccessible: return OnFailure;
856  case AR_dependent: return AR_dependent;
857  }
858
859  // Silence bogus warnings
860  llvm_unreachable("impossible friendship kind");
861}
862
863/// Finds the best path from the naming class to the declaring class,
864/// taking friend declarations into account.
865///
866/// C++0x [class.access.base]p5:
867///   A member m is accessible at the point R when named in class N if
868///   [M1] m as a member of N is public, or
869///   [M2] m as a member of N is private, and R occurs in a member or
870///        friend of class N, or
871///   [M3] m as a member of N is protected, and R occurs in a member or
872///        friend of class N, or in a member or friend of a class P
873///        derived from N, where m as a member of P is public, private,
874///        or protected, or
875///   [M4] there exists a base class B of N that is accessible at R, and
876///        m is accessible at R when named in class B.
877///
878/// C++0x [class.access.base]p4:
879///   A base class B of N is accessible at R, if
880///   [B1] an invented public member of B would be a public member of N, or
881///   [B2] R occurs in a member or friend of class N, and an invented public
882///        member of B would be a private or protected member of N, or
883///   [B3] R occurs in a member or friend of a class P derived from N, and an
884///        invented public member of B would be a private or protected member
885///        of P, or
886///   [B4] there exists a class S such that B is a base class of S accessible
887///        at R and S is a base class of N accessible at R.
888///
889/// Along a single inheritance path we can restate both of these
890/// iteratively:
891///
892/// First, we note that M1-4 are equivalent to B1-4 if the member is
893/// treated as a notional base of its declaring class with inheritance
894/// access equivalent to the member's access.  Therefore we need only
895/// ask whether a class B is accessible from a class N in context R.
896///
897/// Let B_1 .. B_n be the inheritance path in question (i.e. where
898/// B_1 = N, B_n = B, and for all i, B_{i+1} is a direct base class of
899/// B_i).  For i in 1..n, we will calculate ACAB(i), the access to the
900/// closest accessible base in the path:
901///   Access(a, b) = (* access on the base specifier from a to b *)
902///   Merge(a, forbidden) = forbidden
903///   Merge(a, private) = forbidden
904///   Merge(a, b) = min(a,b)
905///   Accessible(c, forbidden) = false
906///   Accessible(c, private) = (R is c) || IsFriend(c, R)
907///   Accessible(c, protected) = (R derived from c) || IsFriend(c, R)
908///   Accessible(c, public) = true
909///   ACAB(n) = public
910///   ACAB(i) =
911///     let AccessToBase = Merge(Access(B_i, B_{i+1}), ACAB(i+1)) in
912///     if Accessible(B_i, AccessToBase) then public else AccessToBase
913///
914/// B is an accessible base of N at R iff ACAB(1) = public.
915///
916/// \param FinalAccess the access of the "final step", or AS_public if
917///   there is no final step.
918/// \return null if friendship is dependent
919static CXXBasePath *FindBestPath(Sema &S,
920                                 const EffectiveContext &EC,
921                                 AccessTarget &Target,
922                                 AccessSpecifier FinalAccess,
923                                 CXXBasePaths &Paths) {
924  // Derive the paths to the desired base.
925  const CXXRecordDecl *Derived = Target.getNamingClass();
926  const CXXRecordDecl *Base = Target.getDeclaringClass();
927
928  // FIXME: fail correctly when there are dependent paths.
929  bool isDerived = Derived->isDerivedFrom(const_cast<CXXRecordDecl*>(Base),
930                                          Paths);
931  assert(isDerived && "derived class not actually derived from base");
932  (void) isDerived;
933
934  CXXBasePath *BestPath = 0;
935
936  assert(FinalAccess != AS_none && "forbidden access after declaring class");
937
938  bool AnyDependent = false;
939
940  // Derive the friend-modified access along each path.
941  for (CXXBasePaths::paths_iterator PI = Paths.begin(), PE = Paths.end();
942         PI != PE; ++PI) {
943    AccessTarget::SavedInstanceContext _ = Target.saveInstanceContext();
944
945    // Walk through the path backwards.
946    AccessSpecifier PathAccess = FinalAccess;
947    CXXBasePath::iterator I = PI->end(), E = PI->begin();
948    while (I != E) {
949      --I;
950
951      assert(PathAccess != AS_none);
952
953      // If the declaration is a private member of a base class, there
954      // is no level of friendship in derived classes that can make it
955      // accessible.
956      if (PathAccess == AS_private) {
957        PathAccess = AS_none;
958        break;
959      }
960
961      const CXXRecordDecl *NC = I->Class->getCanonicalDecl();
962
963      AccessSpecifier BaseAccess = I->Base->getAccessSpecifier();
964      PathAccess = std::max(PathAccess, BaseAccess);
965
966      switch (HasAccess(S, EC, NC, PathAccess, Target)) {
967      case AR_inaccessible: break;
968      case AR_accessible:
969        PathAccess = AS_public;
970
971        // Future tests are not against members and so do not have
972        // instance context.
973        Target.suppressInstanceContext();
974        break;
975      case AR_dependent:
976        AnyDependent = true;
977        goto Next;
978      }
979    }
980
981    // Note that we modify the path's Access field to the
982    // friend-modified access.
983    if (BestPath == 0 || PathAccess < BestPath->Access) {
984      BestPath = &*PI;
985      BestPath->Access = PathAccess;
986
987      // Short-circuit if we found a public path.
988      if (BestPath->Access == AS_public)
989        return BestPath;
990    }
991
992  Next: ;
993  }
994
995  assert((!BestPath || BestPath->Access != AS_public) &&
996         "fell out of loop with public path");
997
998  // We didn't find a public path, but at least one path was subject
999  // to dependent friendship, so delay the check.
1000  if (AnyDependent)
1001    return 0;
1002
1003  return BestPath;
1004}
1005
1006/// Given that an entity has protected natural access, check whether
1007/// access might be denied because of the protected member access
1008/// restriction.
1009///
1010/// \return true if a note was emitted
1011static bool TryDiagnoseProtectedAccess(Sema &S, const EffectiveContext &EC,
1012                                       AccessTarget &Target) {
1013  // Only applies to instance accesses.
1014  if (!Target.isInstanceMember())
1015    return false;
1016
1017  assert(Target.isMemberAccess());
1018
1019  const CXXRecordDecl *NamingClass = Target.getNamingClass();
1020  NamingClass = NamingClass->getCanonicalDecl();
1021
1022  for (EffectiveContext::record_iterator
1023         I = EC.Records.begin(), E = EC.Records.end(); I != E; ++I) {
1024    const CXXRecordDecl *ECRecord = *I;
1025    switch (IsDerivedFromInclusive(ECRecord, NamingClass)) {
1026    case AR_accessible: break;
1027    case AR_inaccessible: continue;
1028    case AR_dependent: continue;
1029    }
1030
1031    // The effective context is a subclass of the declaring class.
1032    // Check whether the [class.protected] restriction is limiting
1033    // access.
1034
1035    // To get this exactly right, this might need to be checked more
1036    // holistically;  it's not necessarily the case that gaining
1037    // access here would grant us access overall.
1038
1039    NamedDecl *D = Target.getTargetDecl();
1040
1041    // If we don't have an instance context, [class.protected] says the
1042    // naming class has to equal the context class.
1043    if (!Target.hasInstanceContext()) {
1044      // If it does, the restriction doesn't apply.
1045      if (NamingClass == ECRecord) continue;
1046
1047      // TODO: it would be great to have a fixit here, since this is
1048      // such an obvious error.
1049      S.Diag(D->getLocation(), diag::note_access_protected_restricted_noobject)
1050        << S.Context.getTypeDeclType(ECRecord);
1051      return true;
1052    }
1053
1054    const CXXRecordDecl *InstanceContext = Target.resolveInstanceContext(S);
1055    assert(InstanceContext && "diagnosing dependent access");
1056
1057    switch (IsDerivedFromInclusive(InstanceContext, ECRecord)) {
1058    case AR_accessible: continue;
1059    case AR_dependent: continue;
1060    case AR_inaccessible:
1061      break;
1062    }
1063
1064    // Okay, the restriction seems to be what's limiting us.
1065
1066    // Use a special diagnostic for constructors and destructors.
1067    if (isa<CXXConstructorDecl>(D) || isa<CXXDestructorDecl>(D) ||
1068        (isa<FunctionTemplateDecl>(D) &&
1069         isa<CXXConstructorDecl>(
1070                cast<FunctionTemplateDecl>(D)->getTemplatedDecl()))) {
1071      S.Diag(D->getLocation(), diag::note_access_protected_restricted_ctordtor)
1072        << isa<CXXDestructorDecl>(D);
1073      return true;
1074    }
1075
1076    // Otherwise, use the generic diagnostic.
1077    S.Diag(D->getLocation(), diag::note_access_protected_restricted_object)
1078      << S.Context.getTypeDeclType(ECRecord);
1079    return true;
1080  }
1081
1082  return false;
1083}
1084
1085/// Diagnose the path which caused the given declaration or base class
1086/// to become inaccessible.
1087static void DiagnoseAccessPath(Sema &S,
1088                               const EffectiveContext &EC,
1089                               AccessTarget &Entity) {
1090  AccessSpecifier Access = Entity.getAccess();
1091
1092  NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1093  const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1094
1095  // Easy case: the decl's natural access determined its path access.
1096  // We have to check against AS_private here in case Access is AS_none,
1097  // indicating a non-public member of a private base class.
1098  if (D && (Access == D->getAccess() || D->getAccess() == AS_private)) {
1099    switch (HasAccess(S, EC, DeclaringClass, D->getAccess(), Entity)) {
1100    case AR_inaccessible: {
1101      if (Access == AS_protected &&
1102          TryDiagnoseProtectedAccess(S, EC, Entity))
1103        return;
1104
1105      // Find an original declaration.
1106      while (D->isOutOfLine()) {
1107        NamedDecl *PrevDecl = 0;
1108        if (VarDecl *VD = dyn_cast<VarDecl>(D))
1109          PrevDecl = VD->getPreviousDecl();
1110        else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
1111          PrevDecl = FD->getPreviousDecl();
1112        else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(D))
1113          PrevDecl = TND->getPreviousDecl();
1114        else if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
1115          if (isa<RecordDecl>(D) && cast<RecordDecl>(D)->isInjectedClassName())
1116            break;
1117          PrevDecl = TD->getPreviousDecl();
1118        }
1119        if (!PrevDecl) break;
1120        D = PrevDecl;
1121      }
1122
1123      CXXRecordDecl *DeclaringClass = FindDeclaringClass(D);
1124      Decl *ImmediateChild;
1125      if (D->getDeclContext() == DeclaringClass)
1126        ImmediateChild = D;
1127      else {
1128        DeclContext *DC = D->getDeclContext();
1129        while (DC->getParent() != DeclaringClass)
1130          DC = DC->getParent();
1131        ImmediateChild = cast<Decl>(DC);
1132      }
1133
1134      // Check whether there's an AccessSpecDecl preceding this in the
1135      // chain of the DeclContext.
1136      bool Implicit = true;
1137      for (CXXRecordDecl::decl_iterator
1138             I = DeclaringClass->decls_begin(), E = DeclaringClass->decls_end();
1139           I != E; ++I) {
1140        if (*I == ImmediateChild) break;
1141        if (isa<AccessSpecDecl>(*I)) {
1142          Implicit = false;
1143          break;
1144        }
1145      }
1146
1147      S.Diag(D->getLocation(), diag::note_access_natural)
1148        << (unsigned) (Access == AS_protected)
1149        << Implicit;
1150      return;
1151    }
1152
1153    case AR_accessible: break;
1154
1155    case AR_dependent:
1156      llvm_unreachable("can't diagnose dependent access failures");
1157    }
1158  }
1159
1160  CXXBasePaths Paths;
1161  CXXBasePath &Path = *FindBestPath(S, EC, Entity, AS_public, Paths);
1162
1163  CXXBasePath::iterator I = Path.end(), E = Path.begin();
1164  while (I != E) {
1165    --I;
1166
1167    const CXXBaseSpecifier *BS = I->Base;
1168    AccessSpecifier BaseAccess = BS->getAccessSpecifier();
1169
1170    // If this is public inheritance, or the derived class is a friend,
1171    // skip this step.
1172    if (BaseAccess == AS_public)
1173      continue;
1174
1175    switch (GetFriendKind(S, EC, I->Class)) {
1176    case AR_accessible: continue;
1177    case AR_inaccessible: break;
1178    case AR_dependent:
1179      llvm_unreachable("can't diagnose dependent access failures");
1180    }
1181
1182    // Check whether this base specifier is the tighest point
1183    // constraining access.  We have to check against AS_private for
1184    // the same reasons as above.
1185    if (BaseAccess == AS_private || BaseAccess >= Access) {
1186
1187      // We're constrained by inheritance, but we want to say
1188      // "declared private here" if we're diagnosing a hierarchy
1189      // conversion and this is the final step.
1190      unsigned diagnostic;
1191      if (D) diagnostic = diag::note_access_constrained_by_path;
1192      else if (I + 1 == Path.end()) diagnostic = diag::note_access_natural;
1193      else diagnostic = diag::note_access_constrained_by_path;
1194
1195      S.Diag(BS->getSourceRange().getBegin(), diagnostic)
1196        << BS->getSourceRange()
1197        << (BaseAccess == AS_protected)
1198        << (BS->getAccessSpecifierAsWritten() == AS_none);
1199
1200      if (D)
1201        S.Diag(D->getLocation(), diag::note_field_decl);
1202
1203      return;
1204    }
1205  }
1206
1207  llvm_unreachable("access not apparently constrained by path");
1208}
1209
1210static void DiagnoseBadAccess(Sema &S, SourceLocation Loc,
1211                              const EffectiveContext &EC,
1212                              AccessTarget &Entity) {
1213  const CXXRecordDecl *NamingClass = Entity.getNamingClass();
1214  const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1215  NamedDecl *D = (Entity.isMemberAccess() ? Entity.getTargetDecl() : 0);
1216
1217  S.Diag(Loc, Entity.getDiag())
1218    << (Entity.getAccess() == AS_protected)
1219    << (D ? D->getDeclName() : DeclarationName())
1220    << S.Context.getTypeDeclType(NamingClass)
1221    << S.Context.getTypeDeclType(DeclaringClass);
1222  DiagnoseAccessPath(S, EC, Entity);
1223}
1224
1225/// MSVC has a bug where if during an using declaration name lookup,
1226/// the declaration found is unaccessible (private) and that declaration
1227/// was bring into scope via another using declaration whose target
1228/// declaration is accessible (public) then no error is generated.
1229/// Example:
1230///   class A {
1231///   public:
1232///     int f();
1233///   };
1234///   class B : public A {
1235///   private:
1236///     using A::f;
1237///   };
1238///   class C : public B {
1239///   private:
1240///     using B::f;
1241///   };
1242///
1243/// Here, B::f is private so this should fail in Standard C++, but
1244/// because B::f refers to A::f which is public MSVC accepts it.
1245static bool IsMicrosoftUsingDeclarationAccessBug(Sema& S,
1246                                                 SourceLocation AccessLoc,
1247                                                 AccessTarget &Entity) {
1248  if (UsingShadowDecl *Shadow =
1249                         dyn_cast<UsingShadowDecl>(Entity.getTargetDecl())) {
1250    const NamedDecl *OrigDecl = Entity.getTargetDecl()->getUnderlyingDecl();
1251    if (Entity.getTargetDecl()->getAccess() == AS_private &&
1252        (OrigDecl->getAccess() == AS_public ||
1253         OrigDecl->getAccess() == AS_protected)) {
1254      S.Diag(AccessLoc, diag::ext_ms_using_declaration_inaccessible)
1255        << Shadow->getUsingDecl()->getQualifiedNameAsString()
1256        << OrigDecl->getQualifiedNameAsString();
1257      return true;
1258    }
1259  }
1260  return false;
1261}
1262
1263/// Determines whether the accessed entity is accessible.  Public members
1264/// have been weeded out by this point.
1265static AccessResult IsAccessible(Sema &S,
1266                                 const EffectiveContext &EC,
1267                                 AccessTarget &Entity) {
1268  // Determine the actual naming class.
1269  CXXRecordDecl *NamingClass = Entity.getNamingClass();
1270  while (NamingClass->isAnonymousStructOrUnion())
1271    NamingClass = cast<CXXRecordDecl>(NamingClass->getParent());
1272  NamingClass = NamingClass->getCanonicalDecl();
1273
1274  AccessSpecifier UnprivilegedAccess = Entity.getAccess();
1275  assert(UnprivilegedAccess != AS_public && "public access not weeded out");
1276
1277  // Before we try to recalculate access paths, try to white-list
1278  // accesses which just trade in on the final step, i.e. accesses
1279  // which don't require [M4] or [B4]. These are by far the most
1280  // common forms of privileged access.
1281  if (UnprivilegedAccess != AS_none) {
1282    switch (HasAccess(S, EC, NamingClass, UnprivilegedAccess, Entity)) {
1283    case AR_dependent:
1284      // This is actually an interesting policy decision.  We don't
1285      // *have* to delay immediately here: we can do the full access
1286      // calculation in the hope that friendship on some intermediate
1287      // class will make the declaration accessible non-dependently.
1288      // But that's not cheap, and odds are very good (note: assertion
1289      // made without data) that the friend declaration will determine
1290      // access.
1291      return AR_dependent;
1292
1293    case AR_accessible: return AR_accessible;
1294    case AR_inaccessible: break;
1295    }
1296  }
1297
1298  AccessTarget::SavedInstanceContext _ = Entity.saveInstanceContext();
1299
1300  // We lower member accesses to base accesses by pretending that the
1301  // member is a base class of its declaring class.
1302  AccessSpecifier FinalAccess;
1303
1304  if (Entity.isMemberAccess()) {
1305    // Determine if the declaration is accessible from EC when named
1306    // in its declaring class.
1307    NamedDecl *Target = Entity.getTargetDecl();
1308    const CXXRecordDecl *DeclaringClass = Entity.getDeclaringClass();
1309
1310    FinalAccess = Target->getAccess();
1311    switch (HasAccess(S, EC, DeclaringClass, FinalAccess, Entity)) {
1312    case AR_accessible:
1313      FinalAccess = AS_public;
1314      break;
1315    case AR_inaccessible: break;
1316    case AR_dependent: return AR_dependent; // see above
1317    }
1318
1319    if (DeclaringClass == NamingClass)
1320      return (FinalAccess == AS_public ? AR_accessible : AR_inaccessible);
1321
1322    Entity.suppressInstanceContext();
1323  } else {
1324    FinalAccess = AS_public;
1325  }
1326
1327  assert(Entity.getDeclaringClass() != NamingClass);
1328
1329  // Append the declaration's access if applicable.
1330  CXXBasePaths Paths;
1331  CXXBasePath *Path = FindBestPath(S, EC, Entity, FinalAccess, Paths);
1332  if (!Path)
1333    return AR_dependent;
1334
1335  assert(Path->Access <= UnprivilegedAccess &&
1336         "access along best path worse than direct?");
1337  if (Path->Access == AS_public)
1338    return AR_accessible;
1339  return AR_inaccessible;
1340}
1341
1342static void DelayDependentAccess(Sema &S,
1343                                 const EffectiveContext &EC,
1344                                 SourceLocation Loc,
1345                                 const AccessTarget &Entity) {
1346  assert(EC.isDependent() && "delaying non-dependent access");
1347  DeclContext *DC = EC.getInnerContext();
1348  assert(DC->isDependentContext() && "delaying non-dependent access");
1349  DependentDiagnostic::Create(S.Context, DC, DependentDiagnostic::Access,
1350                              Loc,
1351                              Entity.isMemberAccess(),
1352                              Entity.getAccess(),
1353                              Entity.getTargetDecl(),
1354                              Entity.getNamingClass(),
1355                              Entity.getBaseObjectType(),
1356                              Entity.getDiag());
1357}
1358
1359/// Checks access to an entity from the given effective context.
1360static AccessResult CheckEffectiveAccess(Sema &S,
1361                                         const EffectiveContext &EC,
1362                                         SourceLocation Loc,
1363                                         AccessTarget &Entity) {
1364  assert(Entity.getAccess() != AS_public && "called for public access!");
1365
1366  if (S.getLangOpts().MicrosoftMode &&
1367      IsMicrosoftUsingDeclarationAccessBug(S, Loc, Entity))
1368    return AR_accessible;
1369
1370  switch (IsAccessible(S, EC, Entity)) {
1371  case AR_dependent:
1372    DelayDependentAccess(S, EC, Loc, Entity);
1373    return AR_dependent;
1374
1375  case AR_inaccessible:
1376    if (!Entity.isQuiet())
1377      DiagnoseBadAccess(S, Loc, EC, Entity);
1378    return AR_inaccessible;
1379
1380  case AR_accessible:
1381    return AR_accessible;
1382  }
1383
1384  // silence unnecessary warning
1385  llvm_unreachable("invalid access result");
1386}
1387
1388static Sema::AccessResult CheckAccess(Sema &S, SourceLocation Loc,
1389                                      AccessTarget &Entity) {
1390  // If the access path is public, it's accessible everywhere.
1391  if (Entity.getAccess() == AS_public)
1392    return Sema::AR_accessible;
1393
1394  if (S.SuppressAccessChecking)
1395    return Sema::AR_accessible;
1396
1397  // If we're currently parsing a declaration, we may need to delay
1398  // access control checking, because our effective context might be
1399  // different based on what the declaration comes out as.
1400  //
1401  // For example, we might be parsing a declaration with a scope
1402  // specifier, like this:
1403  //   A::private_type A::foo() { ... }
1404  //
1405  // Or we might be parsing something that will turn out to be a friend:
1406  //   void foo(A::private_type);
1407  //   void B::foo(A::private_type);
1408  if (S.DelayedDiagnostics.shouldDelayDiagnostics()) {
1409    S.DelayedDiagnostics.add(DelayedDiagnostic::makeAccess(Loc, Entity));
1410    return Sema::AR_delayed;
1411  }
1412
1413  EffectiveContext EC(S.CurContext);
1414  switch (CheckEffectiveAccess(S, EC, Loc, Entity)) {
1415  case AR_accessible: return Sema::AR_accessible;
1416  case AR_inaccessible: return Sema::AR_inaccessible;
1417  case AR_dependent: return Sema::AR_dependent;
1418  }
1419  llvm_unreachable("falling off end");
1420}
1421
1422void Sema::HandleDelayedAccessCheck(DelayedDiagnostic &DD, Decl *decl) {
1423  // Access control for names used in the declarations of functions
1424  // and function templates should normally be evaluated in the context
1425  // of the declaration, just in case it's a friend of something.
1426  // However, this does not apply to local extern declarations.
1427
1428  DeclContext *DC = decl->getDeclContext();
1429  if (FunctionDecl *fn = dyn_cast<FunctionDecl>(decl)) {
1430    if (!DC->isFunctionOrMethod()) DC = fn;
1431  } else if (FunctionTemplateDecl *fnt = dyn_cast<FunctionTemplateDecl>(decl)) {
1432    // Never a local declaration.
1433    DC = fnt->getTemplatedDecl();
1434  }
1435
1436  EffectiveContext EC(DC);
1437
1438  AccessTarget Target(DD.getAccessData());
1439
1440  if (CheckEffectiveAccess(*this, EC, DD.Loc, Target) == ::AR_inaccessible)
1441    DD.Triggered = true;
1442}
1443
1444void Sema::HandleDependentAccessCheck(const DependentDiagnostic &DD,
1445                        const MultiLevelTemplateArgumentList &TemplateArgs) {
1446  SourceLocation Loc = DD.getAccessLoc();
1447  AccessSpecifier Access = DD.getAccess();
1448
1449  Decl *NamingD = FindInstantiatedDecl(Loc, DD.getAccessNamingClass(),
1450                                       TemplateArgs);
1451  if (!NamingD) return;
1452  Decl *TargetD = FindInstantiatedDecl(Loc, DD.getAccessTarget(),
1453                                       TemplateArgs);
1454  if (!TargetD) return;
1455
1456  if (DD.isAccessToMember()) {
1457    CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(NamingD);
1458    NamedDecl *TargetDecl = cast<NamedDecl>(TargetD);
1459    QualType BaseObjectType = DD.getAccessBaseObjectType();
1460    if (!BaseObjectType.isNull()) {
1461      BaseObjectType = SubstType(BaseObjectType, TemplateArgs, Loc,
1462                                 DeclarationName());
1463      if (BaseObjectType.isNull()) return;
1464    }
1465
1466    AccessTarget Entity(Context,
1467                        AccessTarget::Member,
1468                        NamingClass,
1469                        DeclAccessPair::make(TargetDecl, Access),
1470                        BaseObjectType);
1471    Entity.setDiag(DD.getDiagnostic());
1472    CheckAccess(*this, Loc, Entity);
1473  } else {
1474    AccessTarget Entity(Context,
1475                        AccessTarget::Base,
1476                        cast<CXXRecordDecl>(TargetD),
1477                        cast<CXXRecordDecl>(NamingD),
1478                        Access);
1479    Entity.setDiag(DD.getDiagnostic());
1480    CheckAccess(*this, Loc, Entity);
1481  }
1482}
1483
1484Sema::AccessResult Sema::CheckUnresolvedLookupAccess(UnresolvedLookupExpr *E,
1485                                                     DeclAccessPair Found) {
1486  if (!getLangOpts().AccessControl ||
1487      !E->getNamingClass() ||
1488      Found.getAccess() == AS_public)
1489    return AR_accessible;
1490
1491  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1492                      Found, QualType());
1493  Entity.setDiag(diag::err_access) << E->getSourceRange();
1494
1495  return CheckAccess(*this, E->getNameLoc(), Entity);
1496}
1497
1498/// Perform access-control checking on a previously-unresolved member
1499/// access which has now been resolved to a member.
1500Sema::AccessResult Sema::CheckUnresolvedMemberAccess(UnresolvedMemberExpr *E,
1501                                                     DeclAccessPair Found) {
1502  if (!getLangOpts().AccessControl ||
1503      Found.getAccess() == AS_public)
1504    return AR_accessible;
1505
1506  QualType BaseType = E->getBaseType();
1507  if (E->isArrow())
1508    BaseType = BaseType->getAs<PointerType>()->getPointeeType();
1509
1510  AccessTarget Entity(Context, AccessTarget::Member, E->getNamingClass(),
1511                      Found, BaseType);
1512  Entity.setDiag(diag::err_access) << E->getSourceRange();
1513
1514  return CheckAccess(*this, E->getMemberLoc(), Entity);
1515}
1516
1517/// Is the given special member function accessible for the purposes of
1518/// deciding whether to define a special member function as deleted?
1519bool Sema::isSpecialMemberAccessibleForDeletion(CXXMethodDecl *decl,
1520                                                AccessSpecifier access,
1521                                                QualType objectType) {
1522  // Fast path.
1523  if (access == AS_public || !getLangOpts().AccessControl) return true;
1524
1525  AccessTarget entity(Context, AccessTarget::Member, decl->getParent(),
1526                      DeclAccessPair::make(decl, access), objectType);
1527
1528  // Suppress diagnostics.
1529  entity.setDiag(PDiag());
1530
1531  switch (CheckAccess(*this, SourceLocation(), entity)) {
1532  case AR_accessible: return true;
1533  case AR_inaccessible: return false;
1534  case AR_dependent: llvm_unreachable("dependent for =delete computation");
1535  case AR_delayed: llvm_unreachable("cannot delay =delete computation");
1536  }
1537  llvm_unreachable("bad access result");
1538}
1539
1540Sema::AccessResult Sema::CheckDestructorAccess(SourceLocation Loc,
1541                                               CXXDestructorDecl *Dtor,
1542                                               const PartialDiagnostic &PDiag,
1543                                               QualType ObjectTy) {
1544  if (!getLangOpts().AccessControl)
1545    return AR_accessible;
1546
1547  // There's never a path involved when checking implicit destructor access.
1548  AccessSpecifier Access = Dtor->getAccess();
1549  if (Access == AS_public)
1550    return AR_accessible;
1551
1552  CXXRecordDecl *NamingClass = Dtor->getParent();
1553  if (ObjectTy.isNull()) ObjectTy = Context.getTypeDeclType(NamingClass);
1554
1555  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1556                      DeclAccessPair::make(Dtor, Access),
1557                      ObjectTy);
1558  Entity.setDiag(PDiag); // TODO: avoid copy
1559
1560  return CheckAccess(*this, Loc, Entity);
1561}
1562
1563/// Checks access to a constructor.
1564Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1565                                                CXXConstructorDecl *Constructor,
1566                                                const InitializedEntity &Entity,
1567                                                AccessSpecifier Access,
1568                                                bool IsCopyBindingRefToTemp) {
1569  if (!getLangOpts().AccessControl || Access == AS_public)
1570    return AR_accessible;
1571
1572  PartialDiagnostic PD(PDiag());
1573  switch (Entity.getKind()) {
1574  default:
1575    PD = PDiag(IsCopyBindingRefToTemp
1576                 ? diag::ext_rvalue_to_reference_access_ctor
1577                 : diag::err_access_ctor);
1578
1579    break;
1580
1581  case InitializedEntity::EK_Base:
1582    PD = PDiag(diag::err_access_base_ctor);
1583    PD << Entity.isInheritedVirtualBase()
1584       << Entity.getBaseSpecifier()->getType() << getSpecialMember(Constructor);
1585    break;
1586
1587  case InitializedEntity::EK_Member: {
1588    const FieldDecl *Field = cast<FieldDecl>(Entity.getDecl());
1589    PD = PDiag(diag::err_access_field_ctor);
1590    PD << Field->getType() << getSpecialMember(Constructor);
1591    break;
1592  }
1593
1594  case InitializedEntity::EK_LambdaCapture: {
1595    const VarDecl *Var = Entity.getCapturedVar();
1596    PD = PDiag(diag::err_access_lambda_capture);
1597    PD << Var->getName() << Entity.getType() << getSpecialMember(Constructor);
1598    break;
1599  }
1600
1601  }
1602
1603  return CheckConstructorAccess(UseLoc, Constructor, Entity, Access, PD);
1604}
1605
1606/// Checks access to a constructor.
1607Sema::AccessResult Sema::CheckConstructorAccess(SourceLocation UseLoc,
1608                                                CXXConstructorDecl *Constructor,
1609                                                const InitializedEntity &Entity,
1610                                                AccessSpecifier Access,
1611                                                const PartialDiagnostic &PD) {
1612  if (!getLangOpts().AccessControl ||
1613      Access == AS_public)
1614    return AR_accessible;
1615
1616  CXXRecordDecl *NamingClass = Constructor->getParent();
1617
1618  // Initializing a base sub-object is an instance method call on an
1619  // object of the derived class.  Otherwise, we have an instance method
1620  // call on an object of the constructed type.
1621  CXXRecordDecl *ObjectClass;
1622  if (Entity.getKind() == InitializedEntity::EK_Base) {
1623    ObjectClass = cast<CXXConstructorDecl>(CurContext)->getParent();
1624  } else {
1625    ObjectClass = NamingClass;
1626  }
1627
1628  AccessTarget AccessEntity(Context, AccessTarget::Member, NamingClass,
1629                            DeclAccessPair::make(Constructor, Access),
1630                            Context.getTypeDeclType(ObjectClass));
1631  AccessEntity.setDiag(PD);
1632
1633  return CheckAccess(*this, UseLoc, AccessEntity);
1634}
1635
1636/// Checks direct (i.e. non-inherited) access to an arbitrary class
1637/// member.
1638Sema::AccessResult Sema::CheckDirectMemberAccess(SourceLocation UseLoc,
1639                                                 NamedDecl *Target,
1640                                           const PartialDiagnostic &Diag) {
1641  AccessSpecifier Access = Target->getAccess();
1642  if (!getLangOpts().AccessControl ||
1643      Access == AS_public)
1644    return AR_accessible;
1645
1646  CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(Target->getDeclContext());
1647  AccessTarget Entity(Context, AccessTarget::Member, NamingClass,
1648                      DeclAccessPair::make(Target, Access),
1649                      QualType());
1650  Entity.setDiag(Diag);
1651  return CheckAccess(*this, UseLoc, Entity);
1652}
1653
1654
1655/// Checks access to an overloaded operator new or delete.
1656Sema::AccessResult Sema::CheckAllocationAccess(SourceLocation OpLoc,
1657                                               SourceRange PlacementRange,
1658                                               CXXRecordDecl *NamingClass,
1659                                               DeclAccessPair Found,
1660                                               bool Diagnose) {
1661  if (!getLangOpts().AccessControl ||
1662      !NamingClass ||
1663      Found.getAccess() == AS_public)
1664    return AR_accessible;
1665
1666  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1667                      QualType());
1668  if (Diagnose)
1669    Entity.setDiag(diag::err_access)
1670      << PlacementRange;
1671
1672  return CheckAccess(*this, OpLoc, Entity);
1673}
1674
1675/// Checks access to an overloaded member operator, including
1676/// conversion operators.
1677Sema::AccessResult Sema::CheckMemberOperatorAccess(SourceLocation OpLoc,
1678                                                   Expr *ObjectExpr,
1679                                                   Expr *ArgExpr,
1680                                                   DeclAccessPair Found) {
1681  if (!getLangOpts().AccessControl ||
1682      Found.getAccess() == AS_public)
1683    return AR_accessible;
1684
1685  const RecordType *RT = ObjectExpr->getType()->castAs<RecordType>();
1686  CXXRecordDecl *NamingClass = cast<CXXRecordDecl>(RT->getDecl());
1687
1688  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1689                      ObjectExpr->getType());
1690  Entity.setDiag(diag::err_access)
1691    << ObjectExpr->getSourceRange()
1692    << (ArgExpr ? ArgExpr->getSourceRange() : SourceRange());
1693
1694  return CheckAccess(*this, OpLoc, Entity);
1695}
1696
1697Sema::AccessResult Sema::CheckAddressOfMemberAccess(Expr *OvlExpr,
1698                                                    DeclAccessPair Found) {
1699  if (!getLangOpts().AccessControl ||
1700      Found.getAccess() == AS_none ||
1701      Found.getAccess() == AS_public)
1702    return AR_accessible;
1703
1704  OverloadExpr *Ovl = OverloadExpr::find(OvlExpr).Expression;
1705  CXXRecordDecl *NamingClass = Ovl->getNamingClass();
1706
1707  AccessTarget Entity(Context, AccessTarget::Member, NamingClass, Found,
1708                      /*no instance context*/ QualType());
1709  Entity.setDiag(diag::err_access)
1710    << Ovl->getSourceRange();
1711
1712  return CheckAccess(*this, Ovl->getNameLoc(), Entity);
1713}
1714
1715/// Checks access for a hierarchy conversion.
1716///
1717/// \param IsBaseToDerived whether this is a base-to-derived conversion (true)
1718///     or a derived-to-base conversion (false)
1719/// \param ForceCheck true if this check should be performed even if access
1720///     control is disabled;  some things rely on this for semantics
1721/// \param ForceUnprivileged true if this check should proceed as if the
1722///     context had no special privileges
1723/// \param ADK controls the kind of diagnostics that are used
1724Sema::AccessResult Sema::CheckBaseClassAccess(SourceLocation AccessLoc,
1725                                              QualType Base,
1726                                              QualType Derived,
1727                                              const CXXBasePath &Path,
1728                                              unsigned DiagID,
1729                                              bool ForceCheck,
1730                                              bool ForceUnprivileged) {
1731  if (!ForceCheck && !getLangOpts().AccessControl)
1732    return AR_accessible;
1733
1734  if (Path.Access == AS_public)
1735    return AR_accessible;
1736
1737  CXXRecordDecl *BaseD, *DerivedD;
1738  BaseD = cast<CXXRecordDecl>(Base->getAs<RecordType>()->getDecl());
1739  DerivedD = cast<CXXRecordDecl>(Derived->getAs<RecordType>()->getDecl());
1740
1741  AccessTarget Entity(Context, AccessTarget::Base, BaseD, DerivedD,
1742                      Path.Access);
1743  if (DiagID)
1744    Entity.setDiag(DiagID) << Derived << Base;
1745
1746  if (ForceUnprivileged) {
1747    switch (CheckEffectiveAccess(*this, EffectiveContext(),
1748                                 AccessLoc, Entity)) {
1749    case ::AR_accessible: return Sema::AR_accessible;
1750    case ::AR_inaccessible: return Sema::AR_inaccessible;
1751    case ::AR_dependent: return Sema::AR_dependent;
1752    }
1753    llvm_unreachable("unexpected result from CheckEffectiveAccess");
1754  }
1755  return CheckAccess(*this, AccessLoc, Entity);
1756}
1757
1758/// Checks access to all the declarations in the given result set.
1759void Sema::CheckLookupAccess(const LookupResult &R) {
1760  assert(getLangOpts().AccessControl
1761         && "performing access check without access control");
1762  assert(R.getNamingClass() && "performing access check without naming class");
1763
1764  for (LookupResult::iterator I = R.begin(), E = R.end(); I != E; ++I) {
1765    if (I.getAccess() != AS_public) {
1766      AccessTarget Entity(Context, AccessedEntity::Member,
1767                          R.getNamingClass(), I.getPair(),
1768                          R.getBaseObjectType());
1769      Entity.setDiag(diag::err_access);
1770      CheckAccess(*this, R.getNameLoc(), Entity);
1771    }
1772  }
1773}
1774
1775/// Checks access to Decl from the given class. The check will take access
1776/// specifiers into account, but no member access expressions and such.
1777///
1778/// \param Decl the declaration to check if it can be accessed
1779/// \param Class the class/context from which to start the search
1780/// \return true if the Decl is accessible from the Class, false otherwise.
1781bool Sema::IsSimplyAccessible(NamedDecl *Decl, DeclContext *Ctx) {
1782  if (CXXRecordDecl *Class = dyn_cast<CXXRecordDecl>(Ctx)) {
1783    if (!Decl->isCXXClassMember())
1784      return true;
1785
1786    QualType qType = Class->getTypeForDecl()->getCanonicalTypeInternal();
1787    AccessTarget Entity(Context, AccessedEntity::Member, Class,
1788                        DeclAccessPair::make(Decl, Decl->getAccess()),
1789                        qType);
1790    if (Entity.getAccess() == AS_public)
1791      return true;
1792
1793    EffectiveContext EC(CurContext);
1794    return ::IsAccessible(*this, EC, Entity) != ::AR_inaccessible;
1795  }
1796
1797  if (ObjCIvarDecl *Ivar = dyn_cast<ObjCIvarDecl>(Decl)) {
1798    // @public and @package ivars are always accessible.
1799    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Public ||
1800        Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Package)
1801      return true;
1802
1803
1804
1805    // If we are inside a class or category implementation, determine the
1806    // interface we're in.
1807    ObjCInterfaceDecl *ClassOfMethodDecl = 0;
1808    if (ObjCMethodDecl *MD = getCurMethodDecl())
1809      ClassOfMethodDecl =  MD->getClassInterface();
1810    else if (FunctionDecl *FD = getCurFunctionDecl()) {
1811      if (ObjCImplDecl *Impl
1812            = dyn_cast<ObjCImplDecl>(FD->getLexicalDeclContext())) {
1813        if (ObjCImplementationDecl *IMPD
1814              = dyn_cast<ObjCImplementationDecl>(Impl))
1815          ClassOfMethodDecl = IMPD->getClassInterface();
1816        else if (ObjCCategoryImplDecl* CatImplClass
1817                   = dyn_cast<ObjCCategoryImplDecl>(Impl))
1818          ClassOfMethodDecl = CatImplClass->getClassInterface();
1819      }
1820    }
1821
1822    // If we're not in an interface, this ivar is inaccessible.
1823    if (!ClassOfMethodDecl)
1824      return false;
1825
1826    // If we're inside the same interface that owns the ivar, we're fine.
1827    if (declaresSameEntity(ClassOfMethodDecl, Ivar->getContainingInterface()))
1828      return true;
1829
1830    // If the ivar is private, it's inaccessible.
1831    if (Ivar->getCanonicalAccessControl() == ObjCIvarDecl::Private)
1832      return false;
1833
1834    return Ivar->getContainingInterface()->isSuperClassOf(ClassOfMethodDecl);
1835  }
1836
1837  return true;
1838}
1839
1840void Sema::ActOnStartSuppressingAccessChecks() {
1841  assert(!SuppressAccessChecking &&
1842         "Tried to start access check suppression when already started.");
1843  SuppressAccessChecking = true;
1844}
1845
1846void Sema::ActOnStopSuppressingAccessChecks() {
1847  assert(SuppressAccessChecking &&
1848         "Tried to stop access check suprression when already stopped.");
1849  SuppressAccessChecking = false;
1850}
1851