SemaCXXScopeSpec.cpp revision 95aafb2453e1fecec8dcfd9e125cd78277f45859
1//===--- SemaCXXScopeSpec.cpp - Semantic Analysis for C++ scope specifiers-===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements C++ semantic analysis for scope specifiers.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Lookup.h"
16#include "clang/AST/ASTContext.h"
17#include "clang/AST/DeclTemplate.h"
18#include "clang/AST/ExprCXX.h"
19#include "clang/AST/NestedNameSpecifier.h"
20#include "clang/Basic/PartialDiagnostic.h"
21#include "clang/Sema/DeclSpec.h"
22#include "TypeLocBuilder.h"
23#include "llvm/ADT/STLExtras.h"
24#include "llvm/Support/raw_ostream.h"
25using namespace clang;
26
27/// \brief Find the current instantiation that associated with the given type.
28static CXXRecordDecl *getCurrentInstantiationOf(QualType T,
29                                                DeclContext *CurContext) {
30  if (T.isNull())
31    return 0;
32
33  const Type *Ty = T->getCanonicalTypeInternal().getTypePtr();
34  if (const RecordType *RecordTy = dyn_cast<RecordType>(Ty)) {
35    CXXRecordDecl *Record = cast<CXXRecordDecl>(RecordTy->getDecl());
36    if (!T->isDependentType())
37      return Record;
38
39    // This may be a member of a class template or class template partial
40    // specialization. If it's part of the current semantic context, then it's
41    // an injected-class-name;
42    for (; !CurContext->isFileContext(); CurContext = CurContext->getParent())
43      if (CurContext->Equals(Record))
44        return Record;
45
46    return 0;
47  } else if (isa<InjectedClassNameType>(Ty))
48    return cast<InjectedClassNameType>(Ty)->getDecl();
49  else
50    return 0;
51}
52
53/// \brief Compute the DeclContext that is associated with the given type.
54///
55/// \param T the type for which we are attempting to find a DeclContext.
56///
57/// \returns the declaration context represented by the type T,
58/// or NULL if the declaration context cannot be computed (e.g., because it is
59/// dependent and not the current instantiation).
60DeclContext *Sema::computeDeclContext(QualType T) {
61  if (!T->isDependentType())
62    if (const TagType *Tag = T->getAs<TagType>())
63      return Tag->getDecl();
64
65  return ::getCurrentInstantiationOf(T, CurContext);
66}
67
68/// \brief Compute the DeclContext that is associated with the given
69/// scope specifier.
70///
71/// \param SS the C++ scope specifier as it appears in the source
72///
73/// \param EnteringContext when true, we will be entering the context of
74/// this scope specifier, so we can retrieve the declaration context of a
75/// class template or class template partial specialization even if it is
76/// not the current instantiation.
77///
78/// \returns the declaration context represented by the scope specifier @p SS,
79/// or NULL if the declaration context cannot be computed (e.g., because it is
80/// dependent and not the current instantiation).
81DeclContext *Sema::computeDeclContext(const CXXScopeSpec &SS,
82                                      bool EnteringContext) {
83  if (!SS.isSet() || SS.isInvalid())
84    return 0;
85
86  NestedNameSpecifier *NNS
87    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
88  if (NNS->isDependent()) {
89    // If this nested-name-specifier refers to the current
90    // instantiation, return its DeclContext.
91    if (CXXRecordDecl *Record = getCurrentInstantiationOf(NNS))
92      return Record;
93
94    if (EnteringContext) {
95      const Type *NNSType = NNS->getAsType();
96      if (!NNSType) {
97        return 0;
98      }
99
100      // Look through type alias templates, per C++0x [temp.dep.type]p1.
101      NNSType = Context.getCanonicalType(NNSType);
102      if (const TemplateSpecializationType *SpecType
103            = NNSType->getAs<TemplateSpecializationType>()) {
104        // We are entering the context of the nested name specifier, so try to
105        // match the nested name specifier to either a primary class template
106        // or a class template partial specialization.
107        if (ClassTemplateDecl *ClassTemplate
108              = dyn_cast_or_null<ClassTemplateDecl>(
109                            SpecType->getTemplateName().getAsTemplateDecl())) {
110          QualType ContextType
111            = Context.getCanonicalType(QualType(SpecType, 0));
112
113          // If the type of the nested name specifier is the same as the
114          // injected class name of the named class template, we're entering
115          // into that class template definition.
116          QualType Injected
117            = ClassTemplate->getInjectedClassNameSpecialization();
118          if (Context.hasSameType(Injected, ContextType))
119            return ClassTemplate->getTemplatedDecl();
120
121          // If the type of the nested name specifier is the same as the
122          // type of one of the class template's class template partial
123          // specializations, we're entering into the definition of that
124          // class template partial specialization.
125          if (ClassTemplatePartialSpecializationDecl *PartialSpec
126                = ClassTemplate->findPartialSpecialization(ContextType))
127            return PartialSpec;
128        }
129      } else if (const RecordType *RecordT = NNSType->getAs<RecordType>()) {
130        // The nested name specifier refers to a member of a class template.
131        return RecordT->getDecl();
132      }
133    }
134
135    return 0;
136  }
137
138  switch (NNS->getKind()) {
139  case NestedNameSpecifier::Identifier:
140    llvm_unreachable("Dependent nested-name-specifier has no DeclContext");
141
142  case NestedNameSpecifier::Namespace:
143    return NNS->getAsNamespace();
144
145  case NestedNameSpecifier::NamespaceAlias:
146    return NNS->getAsNamespaceAlias()->getNamespace();
147
148  case NestedNameSpecifier::TypeSpec:
149  case NestedNameSpecifier::TypeSpecWithTemplate: {
150    const TagType *Tag = NNS->getAsType()->getAs<TagType>();
151    assert(Tag && "Non-tag type in nested-name-specifier");
152    return Tag->getDecl();
153  } break;
154
155  case NestedNameSpecifier::Global:
156    return Context.getTranslationUnitDecl();
157  }
158
159  // Required to silence a GCC warning.
160  return 0;
161}
162
163bool Sema::isDependentScopeSpecifier(const CXXScopeSpec &SS) {
164  if (!SS.isSet() || SS.isInvalid())
165    return false;
166
167  NestedNameSpecifier *NNS
168    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
169  return NNS->isDependent();
170}
171
172// \brief Determine whether this C++ scope specifier refers to an
173// unknown specialization, i.e., a dependent type that is not the
174// current instantiation.
175bool Sema::isUnknownSpecialization(const CXXScopeSpec &SS) {
176  if (!isDependentScopeSpecifier(SS))
177    return false;
178
179  NestedNameSpecifier *NNS
180    = static_cast<NestedNameSpecifier *>(SS.getScopeRep());
181  return getCurrentInstantiationOf(NNS) == 0;
182}
183
184/// \brief If the given nested name specifier refers to the current
185/// instantiation, return the declaration that corresponds to that
186/// current instantiation (C++0x [temp.dep.type]p1).
187///
188/// \param NNS a dependent nested name specifier.
189CXXRecordDecl *Sema::getCurrentInstantiationOf(NestedNameSpecifier *NNS) {
190  assert(getLangOptions().CPlusPlus && "Only callable in C++");
191  assert(NNS->isDependent() && "Only dependent nested-name-specifier allowed");
192
193  if (!NNS->getAsType())
194    return 0;
195
196  QualType T = QualType(NNS->getAsType(), 0);
197  return ::getCurrentInstantiationOf(T, CurContext);
198}
199
200/// \brief Require that the context specified by SS be complete.
201///
202/// If SS refers to a type, this routine checks whether the type is
203/// complete enough (or can be made complete enough) for name lookup
204/// into the DeclContext. A type that is not yet completed can be
205/// considered "complete enough" if it is a class/struct/union/enum
206/// that is currently being defined. Or, if we have a type that names
207/// a class template specialization that is not a complete type, we
208/// will attempt to instantiate that class template.
209bool Sema::RequireCompleteDeclContext(CXXScopeSpec &SS,
210                                      DeclContext *DC) {
211  assert(DC != 0 && "given null context");
212
213  if (TagDecl *tag = dyn_cast<TagDecl>(DC)) {
214    // If this is a dependent type, then we consider it complete.
215    if (tag->isDependentContext())
216      return false;
217
218    // If we're currently defining this type, then lookup into the
219    // type is okay: don't complain that it isn't complete yet.
220    QualType type = Context.getTypeDeclType(tag);
221    const TagType *tagType = type->getAs<TagType>();
222    if (tagType && tagType->isBeingDefined())
223      return false;
224
225    SourceLocation loc = SS.getLastQualifierNameLoc();
226    if (loc.isInvalid()) loc = SS.getRange().getBegin();
227
228    // The type must be complete.
229    if (RequireCompleteType(loc, type,
230                            PDiag(diag::err_incomplete_nested_name_spec)
231                              << SS.getRange())) {
232      SS.SetInvalid(SS.getRange());
233      return true;
234    }
235
236    // Fixed enum types are complete, but they aren't valid as scopes
237    // until we see a definition, so awkwardly pull out this special
238    // case.
239    if (const EnumType *enumType = dyn_cast_or_null<EnumType>(tagType)) {
240      if (!enumType->getDecl()->isCompleteDefinition()) {
241        Diag(loc, diag::err_incomplete_nested_name_spec)
242          << type << SS.getRange();
243        SS.SetInvalid(SS.getRange());
244        return true;
245      }
246    }
247  }
248
249  return false;
250}
251
252bool Sema::ActOnCXXGlobalScopeSpecifier(Scope *S, SourceLocation CCLoc,
253                                        CXXScopeSpec &SS) {
254  SS.MakeGlobal(Context, CCLoc);
255  return false;
256}
257
258/// \brief Determines whether the given declaration is an valid acceptable
259/// result for name lookup of a nested-name-specifier.
260bool Sema::isAcceptableNestedNameSpecifier(NamedDecl *SD) {
261  if (!SD)
262    return false;
263
264  // Namespace and namespace aliases are fine.
265  if (isa<NamespaceDecl>(SD) || isa<NamespaceAliasDecl>(SD))
266    return true;
267
268  if (!isa<TypeDecl>(SD))
269    return false;
270
271  // Determine whether we have a class (or, in C++11, an enum) or
272  // a typedef thereof. If so, build the nested-name-specifier.
273  QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
274  if (T->isDependentType())
275    return true;
276  else if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(SD)) {
277    if (TD->getUnderlyingType()->isRecordType() ||
278        (Context.getLangOptions().CPlusPlus0x &&
279         TD->getUnderlyingType()->isEnumeralType()))
280      return true;
281  } else if (isa<RecordDecl>(SD) ||
282             (Context.getLangOptions().CPlusPlus0x && isa<EnumDecl>(SD)))
283    return true;
284
285  return false;
286}
287
288/// \brief If the given nested-name-specifier begins with a bare identifier
289/// (e.g., Base::), perform name lookup for that identifier as a
290/// nested-name-specifier within the given scope, and return the result of that
291/// name lookup.
292NamedDecl *Sema::FindFirstQualifierInScope(Scope *S, NestedNameSpecifier *NNS) {
293  if (!S || !NNS)
294    return 0;
295
296  while (NNS->getPrefix())
297    NNS = NNS->getPrefix();
298
299  if (NNS->getKind() != NestedNameSpecifier::Identifier)
300    return 0;
301
302  LookupResult Found(*this, NNS->getAsIdentifier(), SourceLocation(),
303                     LookupNestedNameSpecifierName);
304  LookupName(Found, S);
305  assert(!Found.isAmbiguous() && "Cannot handle ambiguities here yet");
306
307  if (!Found.isSingleResult())
308    return 0;
309
310  NamedDecl *Result = Found.getFoundDecl();
311  if (isAcceptableNestedNameSpecifier(Result))
312    return Result;
313
314  return 0;
315}
316
317bool Sema::isNonTypeNestedNameSpecifier(Scope *S, CXXScopeSpec &SS,
318                                        SourceLocation IdLoc,
319                                        IdentifierInfo &II,
320                                        ParsedType ObjectTypePtr) {
321  QualType ObjectType = GetTypeFromParser(ObjectTypePtr);
322  LookupResult Found(*this, &II, IdLoc, LookupNestedNameSpecifierName);
323
324  // Determine where to perform name lookup
325  DeclContext *LookupCtx = 0;
326  bool isDependent = false;
327  if (!ObjectType.isNull()) {
328    // This nested-name-specifier occurs in a member access expression, e.g.,
329    // x->B::f, and we are looking into the type of the object.
330    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
331    LookupCtx = computeDeclContext(ObjectType);
332    isDependent = ObjectType->isDependentType();
333  } else if (SS.isSet()) {
334    // This nested-name-specifier occurs after another nested-name-specifier,
335    // so long into the context associated with the prior nested-name-specifier.
336    LookupCtx = computeDeclContext(SS, false);
337    isDependent = isDependentScopeSpecifier(SS);
338    Found.setContextRange(SS.getRange());
339  }
340
341  if (LookupCtx) {
342    // Perform "qualified" name lookup into the declaration context we
343    // computed, which is either the type of the base of a member access
344    // expression or the declaration context associated with a prior
345    // nested-name-specifier.
346
347    // The declaration context must be complete.
348    if (!LookupCtx->isDependentContext() &&
349        RequireCompleteDeclContext(SS, LookupCtx))
350      return false;
351
352    LookupQualifiedName(Found, LookupCtx);
353  } else if (isDependent) {
354    return false;
355  } else {
356    LookupName(Found, S);
357  }
358  Found.suppressDiagnostics();
359
360  if (NamedDecl *ND = Found.getAsSingle<NamedDecl>())
361    return isa<NamespaceDecl>(ND) || isa<NamespaceAliasDecl>(ND);
362
363  return false;
364}
365
366/// \brief Build a new nested-name-specifier for "identifier::", as described
367/// by ActOnCXXNestedNameSpecifier.
368///
369/// This routine differs only slightly from ActOnCXXNestedNameSpecifier, in
370/// that it contains an extra parameter \p ScopeLookupResult, which provides
371/// the result of name lookup within the scope of the nested-name-specifier
372/// that was computed at template definition time.
373///
374/// If ErrorRecoveryLookup is true, then this call is used to improve error
375/// recovery.  This means that it should not emit diagnostics, it should
376/// just return true on failure.  It also means it should only return a valid
377/// scope if it *knows* that the result is correct.  It should not return in a
378/// dependent context, for example. Nor will it extend \p SS with the scope
379/// specifier.
380bool Sema::BuildCXXNestedNameSpecifier(Scope *S,
381                                       IdentifierInfo &Identifier,
382                                       SourceLocation IdentifierLoc,
383                                       SourceLocation CCLoc,
384                                       QualType ObjectType,
385                                       bool EnteringContext,
386                                       CXXScopeSpec &SS,
387                                       NamedDecl *ScopeLookupResult,
388                                       bool ErrorRecoveryLookup) {
389  LookupResult Found(*this, &Identifier, IdentifierLoc,
390                     LookupNestedNameSpecifierName);
391
392  // Determine where to perform name lookup
393  DeclContext *LookupCtx = 0;
394  bool isDependent = false;
395  if (!ObjectType.isNull()) {
396    // This nested-name-specifier occurs in a member access expression, e.g.,
397    // x->B::f, and we are looking into the type of the object.
398    assert(!SS.isSet() && "ObjectType and scope specifier cannot coexist");
399    LookupCtx = computeDeclContext(ObjectType);
400    isDependent = ObjectType->isDependentType();
401  } else if (SS.isSet()) {
402    // This nested-name-specifier occurs after another nested-name-specifier,
403    // so look into the context associated with the prior nested-name-specifier.
404    LookupCtx = computeDeclContext(SS, EnteringContext);
405    isDependent = isDependentScopeSpecifier(SS);
406    Found.setContextRange(SS.getRange());
407  }
408
409
410  bool ObjectTypeSearchedInScope = false;
411  if (LookupCtx) {
412    // Perform "qualified" name lookup into the declaration context we
413    // computed, which is either the type of the base of a member access
414    // expression or the declaration context associated with a prior
415    // nested-name-specifier.
416
417    // The declaration context must be complete.
418    if (!LookupCtx->isDependentContext() &&
419        RequireCompleteDeclContext(SS, LookupCtx))
420      return true;
421
422    LookupQualifiedName(Found, LookupCtx);
423
424    if (!ObjectType.isNull() && Found.empty()) {
425      // C++ [basic.lookup.classref]p4:
426      //   If the id-expression in a class member access is a qualified-id of
427      //   the form
428      //
429      //        class-name-or-namespace-name::...
430      //
431      //   the class-name-or-namespace-name following the . or -> operator is
432      //   looked up both in the context of the entire postfix-expression and in
433      //   the scope of the class of the object expression. If the name is found
434      //   only in the scope of the class of the object expression, the name
435      //   shall refer to a class-name. If the name is found only in the
436      //   context of the entire postfix-expression, the name shall refer to a
437      //   class-name or namespace-name. [...]
438      //
439      // Qualified name lookup into a class will not find a namespace-name,
440      // so we do not need to diagnose that case specifically. However,
441      // this qualified name lookup may find nothing. In that case, perform
442      // unqualified name lookup in the given scope (if available) or
443      // reconstruct the result from when name lookup was performed at template
444      // definition time.
445      if (S)
446        LookupName(Found, S);
447      else if (ScopeLookupResult)
448        Found.addDecl(ScopeLookupResult);
449
450      ObjectTypeSearchedInScope = true;
451    }
452  } else if (!isDependent) {
453    // Perform unqualified name lookup in the current scope.
454    LookupName(Found, S);
455  }
456
457  // If we performed lookup into a dependent context and did not find anything,
458  // that's fine: just build a dependent nested-name-specifier.
459  if (Found.empty() && isDependent &&
460      !(LookupCtx && LookupCtx->isRecord() &&
461        (!cast<CXXRecordDecl>(LookupCtx)->hasDefinition() ||
462         !cast<CXXRecordDecl>(LookupCtx)->hasAnyDependentBases()))) {
463    // Don't speculate if we're just trying to improve error recovery.
464    if (ErrorRecoveryLookup)
465      return true;
466
467    // We were not able to compute the declaration context for a dependent
468    // base object type or prior nested-name-specifier, so this
469    // nested-name-specifier refers to an unknown specialization. Just build
470    // a dependent nested-name-specifier.
471    SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
472    return false;
473  }
474
475  // FIXME: Deal with ambiguities cleanly.
476
477  if (Found.empty() && !ErrorRecoveryLookup) {
478    // We haven't found anything, and we're not recovering from a
479    // different kind of error, so look for typos.
480    DeclarationName Name = Found.getLookupName();
481    TypoCorrection Corrected;
482    Found.clear();
483    if ((Corrected = CorrectTypo(Found.getLookupNameInfo(),
484                                 Found.getLookupKind(), S, &SS, LookupCtx,
485                                 EnteringContext, CTC_NoKeywords)) &&
486        isAcceptableNestedNameSpecifier(Corrected.getCorrectionDecl())) {
487      std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
488      std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
489      if (LookupCtx)
490        Diag(Found.getNameLoc(), diag::err_no_member_suggest)
491          << Name << LookupCtx << CorrectedQuotedStr << SS.getRange()
492          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
493      else
494        Diag(Found.getNameLoc(), diag::err_undeclared_var_use_suggest)
495          << Name << CorrectedQuotedStr
496          << FixItHint::CreateReplacement(Found.getNameLoc(), CorrectedStr);
497
498      if (NamedDecl *ND = Corrected.getCorrectionDecl()) {
499        Diag(ND->getLocation(), diag::note_previous_decl) << CorrectedQuotedStr;
500        Found.addDecl(ND);
501      }
502      Found.setLookupName(Corrected.getCorrection());
503    } else {
504      Found.setLookupName(&Identifier);
505    }
506  }
507
508  NamedDecl *SD = Found.getAsSingle<NamedDecl>();
509  if (isAcceptableNestedNameSpecifier(SD)) {
510    if (!ObjectType.isNull() && !ObjectTypeSearchedInScope) {
511      // C++ [basic.lookup.classref]p4:
512      //   [...] If the name is found in both contexts, the
513      //   class-name-or-namespace-name shall refer to the same entity.
514      //
515      // We already found the name in the scope of the object. Now, look
516      // into the current scope (the scope of the postfix-expression) to
517      // see if we can find the same name there. As above, if there is no
518      // scope, reconstruct the result from the template instantiation itself.
519      NamedDecl *OuterDecl;
520      if (S) {
521        LookupResult FoundOuter(*this, &Identifier, IdentifierLoc,
522                                LookupNestedNameSpecifierName);
523        LookupName(FoundOuter, S);
524        OuterDecl = FoundOuter.getAsSingle<NamedDecl>();
525      } else
526        OuterDecl = ScopeLookupResult;
527
528      if (isAcceptableNestedNameSpecifier(OuterDecl) &&
529          OuterDecl->getCanonicalDecl() != SD->getCanonicalDecl() &&
530          (!isa<TypeDecl>(OuterDecl) || !isa<TypeDecl>(SD) ||
531           !Context.hasSameType(
532                            Context.getTypeDeclType(cast<TypeDecl>(OuterDecl)),
533                               Context.getTypeDeclType(cast<TypeDecl>(SD))))) {
534         if (ErrorRecoveryLookup)
535           return true;
536
537         Diag(IdentifierLoc,
538              diag::err_nested_name_member_ref_lookup_ambiguous)
539           << &Identifier;
540         Diag(SD->getLocation(), diag::note_ambig_member_ref_object_type)
541           << ObjectType;
542         Diag(OuterDecl->getLocation(), diag::note_ambig_member_ref_scope);
543
544         // Fall through so that we'll pick the name we found in the object
545         // type, since that's probably what the user wanted anyway.
546       }
547    }
548
549    // If we're just performing this lookup for error-recovery purposes,
550    // don't extend the nested-name-specifier. Just return now.
551    if (ErrorRecoveryLookup)
552      return false;
553
554    if (NamespaceDecl *Namespace = dyn_cast<NamespaceDecl>(SD)) {
555      SS.Extend(Context, Namespace, IdentifierLoc, CCLoc);
556      return false;
557    }
558
559    if (NamespaceAliasDecl *Alias = dyn_cast<NamespaceAliasDecl>(SD)) {
560      SS.Extend(Context, Alias, IdentifierLoc, CCLoc);
561      return false;
562    }
563
564    QualType T = Context.getTypeDeclType(cast<TypeDecl>(SD));
565    TypeLocBuilder TLB;
566    if (isa<InjectedClassNameType>(T)) {
567      InjectedClassNameTypeLoc InjectedTL
568        = TLB.push<InjectedClassNameTypeLoc>(T);
569      InjectedTL.setNameLoc(IdentifierLoc);
570    } else if (isa<RecordType>(T)) {
571      RecordTypeLoc RecordTL = TLB.push<RecordTypeLoc>(T);
572      RecordTL.setNameLoc(IdentifierLoc);
573    } else if (isa<TypedefType>(T)) {
574      TypedefTypeLoc TypedefTL = TLB.push<TypedefTypeLoc>(T);
575      TypedefTL.setNameLoc(IdentifierLoc);
576    } else if (isa<EnumType>(T)) {
577      EnumTypeLoc EnumTL = TLB.push<EnumTypeLoc>(T);
578      EnumTL.setNameLoc(IdentifierLoc);
579    } else if (isa<TemplateTypeParmType>(T)) {
580      TemplateTypeParmTypeLoc TemplateTypeTL
581        = TLB.push<TemplateTypeParmTypeLoc>(T);
582      TemplateTypeTL.setNameLoc(IdentifierLoc);
583    } else if (isa<UnresolvedUsingType>(T)) {
584      UnresolvedUsingTypeLoc UnresolvedTL
585        = TLB.push<UnresolvedUsingTypeLoc>(T);
586      UnresolvedTL.setNameLoc(IdentifierLoc);
587    } else if (isa<SubstTemplateTypeParmType>(T)) {
588      SubstTemplateTypeParmTypeLoc TL
589        = TLB.push<SubstTemplateTypeParmTypeLoc>(T);
590      TL.setNameLoc(IdentifierLoc);
591    } else if (isa<SubstTemplateTypeParmPackType>(T)) {
592      SubstTemplateTypeParmPackTypeLoc TL
593        = TLB.push<SubstTemplateTypeParmPackTypeLoc>(T);
594      TL.setNameLoc(IdentifierLoc);
595    } else {
596      llvm_unreachable("Unhandled TypeDecl node in nested-name-specifier");
597    }
598
599    if (T->isEnumeralType())
600      Diag(IdentifierLoc, diag::warn_cxx98_compat_enum_nested_name_spec);
601
602    SS.Extend(Context, SourceLocation(), TLB.getTypeLocInContext(Context, T),
603              CCLoc);
604    return false;
605  }
606
607  // Otherwise, we have an error case.  If we don't want diagnostics, just
608  // return an error now.
609  if (ErrorRecoveryLookup)
610    return true;
611
612  // If we didn't find anything during our lookup, try again with
613  // ordinary name lookup, which can help us produce better error
614  // messages.
615  if (Found.empty()) {
616    Found.clear(LookupOrdinaryName);
617    LookupName(Found, S);
618  }
619
620  // In Microsoft mode, if we are within a templated function and we can't
621  // resolve Identifier, then extend the SS with Identifier. This will have
622  // the effect of resolving Identifier during template instantiation.
623  // The goal is to be able to resolve a function call whose
624  // nested-name-specifier is located inside a dependent base class.
625  // Example:
626  //
627  // class C {
628  // public:
629  //    static void foo2() {  }
630  // };
631  // template <class T> class A { public: typedef C D; };
632  //
633  // template <class T> class B : public A<T> {
634  // public:
635  //   void foo() { D::foo2(); }
636  // };
637  if (getLangOptions().MicrosoftExt) {
638    DeclContext *DC = LookupCtx ? LookupCtx : CurContext;
639    if (DC->isDependentContext() && DC->isFunctionOrMethod()) {
640      SS.Extend(Context, &Identifier, IdentifierLoc, CCLoc);
641      return false;
642    }
643  }
644
645  unsigned DiagID;
646  if (!Found.empty())
647    DiagID = diag::err_expected_class_or_namespace;
648  else if (SS.isSet()) {
649    Diag(IdentifierLoc, diag::err_no_member)
650      << &Identifier << LookupCtx << SS.getRange();
651    return true;
652  } else
653    DiagID = diag::err_undeclared_var_use;
654
655  if (SS.isSet())
656    Diag(IdentifierLoc, DiagID) << &Identifier << SS.getRange();
657  else
658    Diag(IdentifierLoc, DiagID) << &Identifier;
659
660  return true;
661}
662
663bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
664                                       IdentifierInfo &Identifier,
665                                       SourceLocation IdentifierLoc,
666                                       SourceLocation CCLoc,
667                                       ParsedType ObjectType,
668                                       bool EnteringContext,
669                                       CXXScopeSpec &SS) {
670  if (SS.isInvalid())
671    return true;
672
673  return BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, CCLoc,
674                                     GetTypeFromParser(ObjectType),
675                                     EnteringContext, SS,
676                                     /*ScopeLookupResult=*/0, false);
677}
678
679/// IsInvalidUnlessNestedName - This method is used for error recovery
680/// purposes to determine whether the specified identifier is only valid as
681/// a nested name specifier, for example a namespace name.  It is
682/// conservatively correct to always return false from this method.
683///
684/// The arguments are the same as those passed to ActOnCXXNestedNameSpecifier.
685bool Sema::IsInvalidUnlessNestedName(Scope *S, CXXScopeSpec &SS,
686                                     IdentifierInfo &Identifier,
687                                     SourceLocation IdentifierLoc,
688                                     SourceLocation ColonLoc,
689                                     ParsedType ObjectType,
690                                     bool EnteringContext) {
691  if (SS.isInvalid())
692    return false;
693
694  return !BuildCXXNestedNameSpecifier(S, Identifier, IdentifierLoc, ColonLoc,
695                                      GetTypeFromParser(ObjectType),
696                                      EnteringContext, SS,
697                                      /*ScopeLookupResult=*/0, true);
698}
699
700bool Sema::ActOnCXXNestedNameSpecifier(Scope *S,
701                                       SourceLocation TemplateLoc,
702                                       CXXScopeSpec &SS,
703                                       TemplateTy Template,
704                                       SourceLocation TemplateNameLoc,
705                                       SourceLocation LAngleLoc,
706                                       ASTTemplateArgsPtr TemplateArgsIn,
707                                       SourceLocation RAngleLoc,
708                                       SourceLocation CCLoc,
709                                       bool EnteringContext) {
710  if (SS.isInvalid())
711    return true;
712
713  // Translate the parser's template argument list in our AST format.
714  TemplateArgumentListInfo TemplateArgs(LAngleLoc, RAngleLoc);
715  translateTemplateArguments(TemplateArgsIn, TemplateArgs);
716
717  if (DependentTemplateName *DTN = Template.get().getAsDependentTemplateName()){
718    // Handle a dependent template specialization for which we cannot resolve
719    // the template name.
720    assert(DTN->getQualifier()
721             == static_cast<NestedNameSpecifier*>(SS.getScopeRep()));
722    QualType T = Context.getDependentTemplateSpecializationType(ETK_None,
723                                                          DTN->getQualifier(),
724                                                          DTN->getIdentifier(),
725                                                                TemplateArgs);
726
727    // Create source-location information for this type.
728    TypeLocBuilder Builder;
729    DependentTemplateSpecializationTypeLoc SpecTL
730      = Builder.push<DependentTemplateSpecializationTypeLoc>(T);
731    SpecTL.setLAngleLoc(LAngleLoc);
732    SpecTL.setRAngleLoc(RAngleLoc);
733    SpecTL.setKeywordLoc(SourceLocation());
734    SpecTL.setNameLoc(TemplateNameLoc);
735    SpecTL.setQualifierLoc(SS.getWithLocInContext(Context));
736    for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
737      SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
738
739    SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
740              CCLoc);
741    return false;
742  }
743
744
745  if (Template.get().getAsOverloadedTemplate() ||
746      isa<FunctionTemplateDecl>(Template.get().getAsTemplateDecl())) {
747    SourceRange R(TemplateNameLoc, RAngleLoc);
748    if (SS.getRange().isValid())
749      R.setBegin(SS.getRange().getBegin());
750
751    Diag(CCLoc, diag::err_non_type_template_in_nested_name_specifier)
752      << Template.get() << R;
753    NoteAllFoundTemplates(Template.get());
754    return true;
755  }
756
757  // We were able to resolve the template name to an actual template.
758  // Build an appropriate nested-name-specifier.
759  QualType T = CheckTemplateIdType(Template.get(), TemplateNameLoc,
760                                   TemplateArgs);
761  if (T.isNull())
762    return true;
763
764  // Alias template specializations can produce types which are not valid
765  // nested name specifiers.
766  if (!T->isDependentType() && !T->getAs<TagType>()) {
767    Diag(TemplateNameLoc, diag::err_nested_name_spec_non_tag) << T;
768    NoteAllFoundTemplates(Template.get());
769    return true;
770  }
771
772  // Provide source-location information for the template specialization
773  // type.
774  TypeLocBuilder Builder;
775  TemplateSpecializationTypeLoc SpecTL
776    = Builder.push<TemplateSpecializationTypeLoc>(T);
777
778  SpecTL.setLAngleLoc(LAngleLoc);
779  SpecTL.setRAngleLoc(RAngleLoc);
780  SpecTL.setTemplateNameLoc(TemplateNameLoc);
781  for (unsigned I = 0, N = TemplateArgs.size(); I != N; ++I)
782    SpecTL.setArgLocInfo(I, TemplateArgs[I].getLocInfo());
783
784
785  SS.Extend(Context, TemplateLoc, Builder.getTypeLocInContext(Context, T),
786            CCLoc);
787  return false;
788}
789
790namespace {
791  /// \brief A structure that stores a nested-name-specifier annotation,
792  /// including both the nested-name-specifier
793  struct NestedNameSpecifierAnnotation {
794    NestedNameSpecifier *NNS;
795  };
796}
797
798void *Sema::SaveNestedNameSpecifierAnnotation(CXXScopeSpec &SS) {
799  if (SS.isEmpty() || SS.isInvalid())
800    return 0;
801
802  void *Mem = Context.Allocate((sizeof(NestedNameSpecifierAnnotation) +
803                                                        SS.location_size()),
804                               llvm::alignOf<NestedNameSpecifierAnnotation>());
805  NestedNameSpecifierAnnotation *Annotation
806    = new (Mem) NestedNameSpecifierAnnotation;
807  Annotation->NNS = SS.getScopeRep();
808  memcpy(Annotation + 1, SS.location_data(), SS.location_size());
809  return Annotation;
810}
811
812void Sema::RestoreNestedNameSpecifierAnnotation(void *AnnotationPtr,
813                                                SourceRange AnnotationRange,
814                                                CXXScopeSpec &SS) {
815  if (!AnnotationPtr) {
816    SS.SetInvalid(AnnotationRange);
817    return;
818  }
819
820  NestedNameSpecifierAnnotation *Annotation
821    = static_cast<NestedNameSpecifierAnnotation *>(AnnotationPtr);
822  SS.Adopt(NestedNameSpecifierLoc(Annotation->NNS, Annotation + 1));
823}
824
825bool Sema::ShouldEnterDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
826  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
827
828  NestedNameSpecifier *Qualifier =
829    static_cast<NestedNameSpecifier*>(SS.getScopeRep());
830
831  // There are only two places a well-formed program may qualify a
832  // declarator: first, when defining a namespace or class member
833  // out-of-line, and second, when naming an explicitly-qualified
834  // friend function.  The latter case is governed by
835  // C++03 [basic.lookup.unqual]p10:
836  //   In a friend declaration naming a member function, a name used
837  //   in the function declarator and not part of a template-argument
838  //   in a template-id is first looked up in the scope of the member
839  //   function's class. If it is not found, or if the name is part of
840  //   a template-argument in a template-id, the look up is as
841  //   described for unqualified names in the definition of the class
842  //   granting friendship.
843  // i.e. we don't push a scope unless it's a class member.
844
845  switch (Qualifier->getKind()) {
846  case NestedNameSpecifier::Global:
847  case NestedNameSpecifier::Namespace:
848  case NestedNameSpecifier::NamespaceAlias:
849    // These are always namespace scopes.  We never want to enter a
850    // namespace scope from anything but a file context.
851    return CurContext->getRedeclContext()->isFileContext();
852
853  case NestedNameSpecifier::Identifier:
854  case NestedNameSpecifier::TypeSpec:
855  case NestedNameSpecifier::TypeSpecWithTemplate:
856    // These are never namespace scopes.
857    return true;
858  }
859
860  // Silence bogus warning.
861  return false;
862}
863
864/// ActOnCXXEnterDeclaratorScope - Called when a C++ scope specifier (global
865/// scope or nested-name-specifier) is parsed, part of a declarator-id.
866/// After this method is called, according to [C++ 3.4.3p3], names should be
867/// looked up in the declarator-id's scope, until the declarator is parsed and
868/// ActOnCXXExitDeclaratorScope is called.
869/// The 'SS' should be a non-empty valid CXXScopeSpec.
870bool Sema::ActOnCXXEnterDeclaratorScope(Scope *S, CXXScopeSpec &SS) {
871  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
872
873  if (SS.isInvalid()) return true;
874
875  DeclContext *DC = computeDeclContext(SS, true);
876  if (!DC) return true;
877
878  // Before we enter a declarator's context, we need to make sure that
879  // it is a complete declaration context.
880  if (!DC->isDependentContext() && RequireCompleteDeclContext(SS, DC))
881    return true;
882
883  EnterDeclaratorContext(S, DC);
884
885  // Rebuild the nested name specifier for the new scope.
886  if (DC->isDependentContext())
887    RebuildNestedNameSpecifierInCurrentInstantiation(SS);
888
889  return false;
890}
891
892/// ActOnCXXExitDeclaratorScope - Called when a declarator that previously
893/// invoked ActOnCXXEnterDeclaratorScope(), is finished. 'SS' is the same
894/// CXXScopeSpec that was passed to ActOnCXXEnterDeclaratorScope as well.
895/// Used to indicate that names should revert to being looked up in the
896/// defining scope.
897void Sema::ActOnCXXExitDeclaratorScope(Scope *S, const CXXScopeSpec &SS) {
898  assert(SS.isSet() && "Parser passed invalid CXXScopeSpec.");
899  if (SS.isInvalid())
900    return;
901  assert(!SS.isInvalid() && computeDeclContext(SS, true) &&
902         "exiting declarator scope we never really entered");
903  ExitDeclaratorContext(S);
904}
905