SemaDecl.cpp revision 023df37c27ee8035664fb62f206ca58f4e2a169d
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isCopyConstructor())
1509      return Sema::CXXCopyConstructor;
1510
1511    return Sema::CXXConstructor;
1512  }
1513
1514  if (isa<CXXDestructorDecl>(MD))
1515    return Sema::CXXDestructor;
1516
1517  assert(MD->isCopyAssignmentOperator() &&
1518         "Must have copy assignment operator");
1519  return Sema::CXXCopyAssignment;
1520}
1521
1522/// canRedefineFunction - checks if a function can be redefined. Currently,
1523/// only extern inline functions can be redefined, and even then only in
1524/// GNU89 mode.
1525static bool canRedefineFunction(const FunctionDecl *FD,
1526                                const LangOptions& LangOpts) {
1527  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1528          FD->isInlineSpecified() &&
1529          FD->getStorageClass() == SC_Extern);
1530}
1531
1532/// MergeFunctionDecl - We just parsed a function 'New' from
1533/// declarator D which has the same name and scope as a previous
1534/// declaration 'Old'.  Figure out how to resolve this situation,
1535/// merging decls or emitting diagnostics as appropriate.
1536///
1537/// In C++, New and Old must be declarations that are not
1538/// overloaded. Use IsOverload to determine whether New and Old are
1539/// overloaded, and to select the Old declaration that New should be
1540/// merged with.
1541///
1542/// Returns true if there was an error, false otherwise.
1543bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1544  // Verify the old decl was also a function.
1545  FunctionDecl *Old = 0;
1546  if (FunctionTemplateDecl *OldFunctionTemplate
1547        = dyn_cast<FunctionTemplateDecl>(OldD))
1548    Old = OldFunctionTemplate->getTemplatedDecl();
1549  else
1550    Old = dyn_cast<FunctionDecl>(OldD);
1551  if (!Old) {
1552    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1553      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1554      Diag(Shadow->getTargetDecl()->getLocation(),
1555           diag::note_using_decl_target);
1556      Diag(Shadow->getUsingDecl()->getLocation(),
1557           diag::note_using_decl) << 0;
1558      return true;
1559    }
1560
1561    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1562      << New->getDeclName();
1563    Diag(OldD->getLocation(), diag::note_previous_definition);
1564    return true;
1565  }
1566
1567  // Determine whether the previous declaration was a definition,
1568  // implicit declaration, or a declaration.
1569  diag::kind PrevDiag;
1570  if (Old->isThisDeclarationADefinition())
1571    PrevDiag = diag::note_previous_definition;
1572  else if (Old->isImplicit())
1573    PrevDiag = diag::note_previous_implicit_declaration;
1574  else
1575    PrevDiag = diag::note_previous_declaration;
1576
1577  QualType OldQType = Context.getCanonicalType(Old->getType());
1578  QualType NewQType = Context.getCanonicalType(New->getType());
1579
1580  // Don't complain about this if we're in GNU89 mode and the old function
1581  // is an extern inline function.
1582  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1583      New->getStorageClass() == SC_Static &&
1584      Old->getStorageClass() != SC_Static &&
1585      !canRedefineFunction(Old, getLangOptions())) {
1586    if (getLangOptions().Microsoft) {
1587      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1588      Diag(Old->getLocation(), PrevDiag);
1589    } else {
1590      Diag(New->getLocation(), diag::err_static_non_static) << New;
1591      Diag(Old->getLocation(), PrevDiag);
1592      return true;
1593    }
1594  }
1595
1596  // If a function is first declared with a calling convention, but is
1597  // later declared or defined without one, the second decl assumes the
1598  // calling convention of the first.
1599  //
1600  // For the new decl, we have to look at the NON-canonical type to tell the
1601  // difference between a function that really doesn't have a calling
1602  // convention and one that is declared cdecl. That's because in
1603  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1604  // because it is the default calling convention.
1605  //
1606  // Note also that we DO NOT return at this point, because we still have
1607  // other tests to run.
1608  const FunctionType *OldType = cast<FunctionType>(OldQType);
1609  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1610  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1611  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1612  bool RequiresAdjustment = false;
1613  if (OldTypeInfo.getCC() != CC_Default &&
1614      NewTypeInfo.getCC() == CC_Default) {
1615    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1616    RequiresAdjustment = true;
1617  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1618                                     NewTypeInfo.getCC())) {
1619    // Calling conventions really aren't compatible, so complain.
1620    Diag(New->getLocation(), diag::err_cconv_change)
1621      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1622      << (OldTypeInfo.getCC() == CC_Default)
1623      << (OldTypeInfo.getCC() == CC_Default ? "" :
1624          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1625    Diag(Old->getLocation(), diag::note_previous_declaration);
1626    return true;
1627  }
1628
1629  // FIXME: diagnose the other way around?
1630  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1631    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1632    RequiresAdjustment = true;
1633  }
1634
1635  // Merge regparm attribute.
1636  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1637      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1638    if (NewTypeInfo.getHasRegParm()) {
1639      Diag(New->getLocation(), diag::err_regparm_mismatch)
1640        << NewType->getRegParmType()
1641        << OldType->getRegParmType();
1642      Diag(Old->getLocation(), diag::note_previous_declaration);
1643      return true;
1644    }
1645
1646    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1647    RequiresAdjustment = true;
1648  }
1649
1650  if (RequiresAdjustment) {
1651    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1652    New->setType(QualType(NewType, 0));
1653    NewQType = Context.getCanonicalType(New->getType());
1654  }
1655
1656  if (getLangOptions().CPlusPlus) {
1657    // (C++98 13.1p2):
1658    //   Certain function declarations cannot be overloaded:
1659    //     -- Function declarations that differ only in the return type
1660    //        cannot be overloaded.
1661    QualType OldReturnType = OldType->getResultType();
1662    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1663    QualType ResQT;
1664    if (OldReturnType != NewReturnType) {
1665      if (NewReturnType->isObjCObjectPointerType()
1666          && OldReturnType->isObjCObjectPointerType())
1667        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1668      if (ResQT.isNull()) {
1669        if (New->isCXXClassMember() && New->isOutOfLine())
1670          Diag(New->getLocation(),
1671               diag::err_member_def_does_not_match_ret_type) << New;
1672        else
1673          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1674        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1675        return true;
1676      }
1677      else
1678        NewQType = ResQT;
1679    }
1680
1681    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1682    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1683    if (OldMethod && NewMethod) {
1684      // Preserve triviality.
1685      NewMethod->setTrivial(OldMethod->isTrivial());
1686
1687      bool isFriend = NewMethod->getFriendObjectKind();
1688
1689      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1690        //    -- Member function declarations with the same name and the
1691        //       same parameter types cannot be overloaded if any of them
1692        //       is a static member function declaration.
1693        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1694          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1695          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1696          return true;
1697        }
1698
1699        // C++ [class.mem]p1:
1700        //   [...] A member shall not be declared twice in the
1701        //   member-specification, except that a nested class or member
1702        //   class template can be declared and then later defined.
1703        unsigned NewDiag;
1704        if (isa<CXXConstructorDecl>(OldMethod))
1705          NewDiag = diag::err_constructor_redeclared;
1706        else if (isa<CXXDestructorDecl>(NewMethod))
1707          NewDiag = diag::err_destructor_redeclared;
1708        else if (isa<CXXConversionDecl>(NewMethod))
1709          NewDiag = diag::err_conv_function_redeclared;
1710        else
1711          NewDiag = diag::err_member_redeclared;
1712
1713        Diag(New->getLocation(), NewDiag);
1714        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1715
1716      // Complain if this is an explicit declaration of a special
1717      // member that was initially declared implicitly.
1718      //
1719      // As an exception, it's okay to befriend such methods in order
1720      // to permit the implicit constructor/destructor/operator calls.
1721      } else if (OldMethod->isImplicit()) {
1722        if (isFriend) {
1723          NewMethod->setImplicit();
1724        } else {
1725          Diag(NewMethod->getLocation(),
1726               diag::err_definition_of_implicitly_declared_member)
1727            << New << getSpecialMember(OldMethod);
1728          return true;
1729        }
1730      }
1731    }
1732
1733    // (C++98 8.3.5p3):
1734    //   All declarations for a function shall agree exactly in both the
1735    //   return type and the parameter-type-list.
1736    // We also want to respect all the extended bits except noreturn.
1737
1738    // noreturn should now match unless the old type info didn't have it.
1739    QualType OldQTypeForComparison = OldQType;
1740    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1741      assert(OldQType == QualType(OldType, 0));
1742      const FunctionType *OldTypeForComparison
1743        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1744      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1745      assert(OldQTypeForComparison.isCanonical());
1746    }
1747
1748    if (OldQTypeForComparison == NewQType)
1749      return MergeCompatibleFunctionDecls(New, Old);
1750
1751    // Fall through for conflicting redeclarations and redefinitions.
1752  }
1753
1754  // C: Function types need to be compatible, not identical. This handles
1755  // duplicate function decls like "void f(int); void f(enum X);" properly.
1756  if (!getLangOptions().CPlusPlus &&
1757      Context.typesAreCompatible(OldQType, NewQType)) {
1758    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1759    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1760    const FunctionProtoType *OldProto = 0;
1761    if (isa<FunctionNoProtoType>(NewFuncType) &&
1762        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1763      // The old declaration provided a function prototype, but the
1764      // new declaration does not. Merge in the prototype.
1765      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1766      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1767                                                 OldProto->arg_type_end());
1768      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1769                                         ParamTypes.data(), ParamTypes.size(),
1770                                         OldProto->getExtProtoInfo());
1771      New->setType(NewQType);
1772      New->setHasInheritedPrototype();
1773
1774      // Synthesize a parameter for each argument type.
1775      llvm::SmallVector<ParmVarDecl*, 16> Params;
1776      for (FunctionProtoType::arg_type_iterator
1777             ParamType = OldProto->arg_type_begin(),
1778             ParamEnd = OldProto->arg_type_end();
1779           ParamType != ParamEnd; ++ParamType) {
1780        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1781                                                 SourceLocation(),
1782                                                 SourceLocation(), 0,
1783                                                 *ParamType, /*TInfo=*/0,
1784                                                 SC_None, SC_None,
1785                                                 0);
1786        Param->setScopeInfo(0, Params.size());
1787        Param->setImplicit();
1788        Params.push_back(Param);
1789      }
1790
1791      New->setParams(Params.data(), Params.size());
1792    }
1793
1794    return MergeCompatibleFunctionDecls(New, Old);
1795  }
1796
1797  // GNU C permits a K&R definition to follow a prototype declaration
1798  // if the declared types of the parameters in the K&R definition
1799  // match the types in the prototype declaration, even when the
1800  // promoted types of the parameters from the K&R definition differ
1801  // from the types in the prototype. GCC then keeps the types from
1802  // the prototype.
1803  //
1804  // If a variadic prototype is followed by a non-variadic K&R definition,
1805  // the K&R definition becomes variadic.  This is sort of an edge case, but
1806  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1807  // C99 6.9.1p8.
1808  if (!getLangOptions().CPlusPlus &&
1809      Old->hasPrototype() && !New->hasPrototype() &&
1810      New->getType()->getAs<FunctionProtoType>() &&
1811      Old->getNumParams() == New->getNumParams()) {
1812    llvm::SmallVector<QualType, 16> ArgTypes;
1813    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1814    const FunctionProtoType *OldProto
1815      = Old->getType()->getAs<FunctionProtoType>();
1816    const FunctionProtoType *NewProto
1817      = New->getType()->getAs<FunctionProtoType>();
1818
1819    // Determine whether this is the GNU C extension.
1820    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1821                                               NewProto->getResultType());
1822    bool LooseCompatible = !MergedReturn.isNull();
1823    for (unsigned Idx = 0, End = Old->getNumParams();
1824         LooseCompatible && Idx != End; ++Idx) {
1825      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1826      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1827      if (Context.typesAreCompatible(OldParm->getType(),
1828                                     NewProto->getArgType(Idx))) {
1829        ArgTypes.push_back(NewParm->getType());
1830      } else if (Context.typesAreCompatible(OldParm->getType(),
1831                                            NewParm->getType(),
1832                                            /*CompareUnqualified=*/true)) {
1833        GNUCompatibleParamWarning Warn
1834          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1835        Warnings.push_back(Warn);
1836        ArgTypes.push_back(NewParm->getType());
1837      } else
1838        LooseCompatible = false;
1839    }
1840
1841    if (LooseCompatible) {
1842      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1843        Diag(Warnings[Warn].NewParm->getLocation(),
1844             diag::ext_param_promoted_not_compatible_with_prototype)
1845          << Warnings[Warn].PromotedType
1846          << Warnings[Warn].OldParm->getType();
1847        if (Warnings[Warn].OldParm->getLocation().isValid())
1848          Diag(Warnings[Warn].OldParm->getLocation(),
1849               diag::note_previous_declaration);
1850      }
1851
1852      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1853                                           ArgTypes.size(),
1854                                           OldProto->getExtProtoInfo()));
1855      return MergeCompatibleFunctionDecls(New, Old);
1856    }
1857
1858    // Fall through to diagnose conflicting types.
1859  }
1860
1861  // A function that has already been declared has been redeclared or defined
1862  // with a different type- show appropriate diagnostic
1863  if (unsigned BuiltinID = Old->getBuiltinID()) {
1864    // The user has declared a builtin function with an incompatible
1865    // signature.
1866    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1867      // The function the user is redeclaring is a library-defined
1868      // function like 'malloc' or 'printf'. Warn about the
1869      // redeclaration, then pretend that we don't know about this
1870      // library built-in.
1871      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1872      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1873        << Old << Old->getType();
1874      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1875      Old->setInvalidDecl();
1876      return false;
1877    }
1878
1879    PrevDiag = diag::note_previous_builtin_declaration;
1880  }
1881
1882  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1883  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1884  return true;
1885}
1886
1887/// \brief Completes the merge of two function declarations that are
1888/// known to be compatible.
1889///
1890/// This routine handles the merging of attributes and other
1891/// properties of function declarations form the old declaration to
1892/// the new declaration, once we know that New is in fact a
1893/// redeclaration of Old.
1894///
1895/// \returns false
1896bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1897  // Merge the attributes
1898  mergeDeclAttributes(New, Old, Context);
1899
1900  // Merge the storage class.
1901  if (Old->getStorageClass() != SC_Extern &&
1902      Old->getStorageClass() != SC_None)
1903    New->setStorageClass(Old->getStorageClass());
1904
1905  // Merge "pure" flag.
1906  if (Old->isPure())
1907    New->setPure();
1908
1909  // Merge attributes from the parameters.  These can mismatch with K&R
1910  // declarations.
1911  if (New->getNumParams() == Old->getNumParams())
1912    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1913      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1914                               Context);
1915
1916  if (getLangOptions().CPlusPlus)
1917    return MergeCXXFunctionDecl(New, Old);
1918
1919  return false;
1920}
1921
1922void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1923                                const ObjCMethodDecl *oldMethod) {
1924  // Merge the attributes.
1925  mergeDeclAttributes(newMethod, oldMethod, Context);
1926
1927  // Merge attributes from the parameters.
1928  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1929         ni = newMethod->param_begin(), ne = newMethod->param_end();
1930       ni != ne; ++ni, ++oi)
1931    mergeParamDeclAttributes(*ni, *oi, Context);
1932}
1933
1934/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1935/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1936/// emitting diagnostics as appropriate.
1937///
1938/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1939/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1940/// check them before the initializer is attached.
1941///
1942void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1943  if (New->isInvalidDecl() || Old->isInvalidDecl())
1944    return;
1945
1946  QualType MergedT;
1947  if (getLangOptions().CPlusPlus) {
1948    AutoType *AT = New->getType()->getContainedAutoType();
1949    if (AT && !AT->isDeduced()) {
1950      // We don't know what the new type is until the initializer is attached.
1951      return;
1952    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1953      // These could still be something that needs exception specs checked.
1954      return MergeVarDeclExceptionSpecs(New, Old);
1955    }
1956    // C++ [basic.link]p10:
1957    //   [...] the types specified by all declarations referring to a given
1958    //   object or function shall be identical, except that declarations for an
1959    //   array object can specify array types that differ by the presence or
1960    //   absence of a major array bound (8.3.4).
1961    else if (Old->getType()->isIncompleteArrayType() &&
1962             New->getType()->isArrayType()) {
1963      CanQual<ArrayType> OldArray
1964        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1965      CanQual<ArrayType> NewArray
1966        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1967      if (OldArray->getElementType() == NewArray->getElementType())
1968        MergedT = New->getType();
1969    } else if (Old->getType()->isArrayType() &&
1970             New->getType()->isIncompleteArrayType()) {
1971      CanQual<ArrayType> OldArray
1972        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1973      CanQual<ArrayType> NewArray
1974        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1975      if (OldArray->getElementType() == NewArray->getElementType())
1976        MergedT = Old->getType();
1977    } else if (New->getType()->isObjCObjectPointerType()
1978               && Old->getType()->isObjCObjectPointerType()) {
1979        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1980                                                        Old->getType());
1981    }
1982  } else {
1983    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1984  }
1985  if (MergedT.isNull()) {
1986    Diag(New->getLocation(), diag::err_redefinition_different_type)
1987      << New->getDeclName();
1988    Diag(Old->getLocation(), diag::note_previous_definition);
1989    return New->setInvalidDecl();
1990  }
1991  New->setType(MergedT);
1992}
1993
1994/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1995/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1996/// situation, merging decls or emitting diagnostics as appropriate.
1997///
1998/// Tentative definition rules (C99 6.9.2p2) are checked by
1999/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2000/// definitions here, since the initializer hasn't been attached.
2001///
2002void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2003  // If the new decl is already invalid, don't do any other checking.
2004  if (New->isInvalidDecl())
2005    return;
2006
2007  // Verify the old decl was also a variable.
2008  VarDecl *Old = 0;
2009  if (!Previous.isSingleResult() ||
2010      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2011    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2012      << New->getDeclName();
2013    Diag(Previous.getRepresentativeDecl()->getLocation(),
2014         diag::note_previous_definition);
2015    return New->setInvalidDecl();
2016  }
2017
2018  // C++ [class.mem]p1:
2019  //   A member shall not be declared twice in the member-specification [...]
2020  //
2021  // Here, we need only consider static data members.
2022  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2023    Diag(New->getLocation(), diag::err_duplicate_member)
2024      << New->getIdentifier();
2025    Diag(Old->getLocation(), diag::note_previous_declaration);
2026    New->setInvalidDecl();
2027  }
2028
2029  mergeDeclAttributes(New, Old, Context);
2030
2031  // Merge the types.
2032  MergeVarDeclTypes(New, Old);
2033  if (New->isInvalidDecl())
2034    return;
2035
2036  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2037  if (New->getStorageClass() == SC_Static &&
2038      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2039    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2040    Diag(Old->getLocation(), diag::note_previous_definition);
2041    return New->setInvalidDecl();
2042  }
2043  // C99 6.2.2p4:
2044  //   For an identifier declared with the storage-class specifier
2045  //   extern in a scope in which a prior declaration of that
2046  //   identifier is visible,23) if the prior declaration specifies
2047  //   internal or external linkage, the linkage of the identifier at
2048  //   the later declaration is the same as the linkage specified at
2049  //   the prior declaration. If no prior declaration is visible, or
2050  //   if the prior declaration specifies no linkage, then the
2051  //   identifier has external linkage.
2052  if (New->hasExternalStorage() && Old->hasLinkage())
2053    /* Okay */;
2054  else if (New->getStorageClass() != SC_Static &&
2055           Old->getStorageClass() == SC_Static) {
2056    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2057    Diag(Old->getLocation(), diag::note_previous_definition);
2058    return New->setInvalidDecl();
2059  }
2060
2061  // Check if extern is followed by non-extern and vice-versa.
2062  if (New->hasExternalStorage() &&
2063      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2064    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2065    Diag(Old->getLocation(), diag::note_previous_definition);
2066    return New->setInvalidDecl();
2067  }
2068  if (Old->hasExternalStorage() &&
2069      !New->hasLinkage() && New->isLocalVarDecl()) {
2070    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2071    Diag(Old->getLocation(), diag::note_previous_definition);
2072    return New->setInvalidDecl();
2073  }
2074
2075  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2076
2077  // FIXME: The test for external storage here seems wrong? We still
2078  // need to check for mismatches.
2079  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2080      // Don't complain about out-of-line definitions of static members.
2081      !(Old->getLexicalDeclContext()->isRecord() &&
2082        !New->getLexicalDeclContext()->isRecord())) {
2083    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2084    Diag(Old->getLocation(), diag::note_previous_definition);
2085    return New->setInvalidDecl();
2086  }
2087
2088  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2089    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2090    Diag(Old->getLocation(), diag::note_previous_definition);
2091  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2092    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2093    Diag(Old->getLocation(), diag::note_previous_definition);
2094  }
2095
2096  // C++ doesn't have tentative definitions, so go right ahead and check here.
2097  const VarDecl *Def;
2098  if (getLangOptions().CPlusPlus &&
2099      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2100      (Def = Old->getDefinition())) {
2101    Diag(New->getLocation(), diag::err_redefinition)
2102      << New->getDeclName();
2103    Diag(Def->getLocation(), diag::note_previous_definition);
2104    New->setInvalidDecl();
2105    return;
2106  }
2107  // c99 6.2.2 P4.
2108  // For an identifier declared with the storage-class specifier extern in a
2109  // scope in which a prior declaration of that identifier is visible, if
2110  // the prior declaration specifies internal or external linkage, the linkage
2111  // of the identifier at the later declaration is the same as the linkage
2112  // specified at the prior declaration.
2113  // FIXME. revisit this code.
2114  if (New->hasExternalStorage() &&
2115      Old->getLinkage() == InternalLinkage &&
2116      New->getDeclContext() == Old->getDeclContext())
2117    New->setStorageClass(Old->getStorageClass());
2118
2119  // Keep a chain of previous declarations.
2120  New->setPreviousDeclaration(Old);
2121
2122  // Inherit access appropriately.
2123  New->setAccess(Old->getAccess());
2124}
2125
2126/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2127/// no declarator (e.g. "struct foo;") is parsed.
2128Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2129                                       DeclSpec &DS) {
2130  return ParsedFreeStandingDeclSpec(S, AS, DS,
2131                                    MultiTemplateParamsArg(*this, 0, 0));
2132}
2133
2134/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2135/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2136/// parameters to cope with template friend declarations.
2137Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2138                                       DeclSpec &DS,
2139                                       MultiTemplateParamsArg TemplateParams) {
2140  Decl *TagD = 0;
2141  TagDecl *Tag = 0;
2142  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2143      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2144      DS.getTypeSpecType() == DeclSpec::TST_union ||
2145      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2146    TagD = DS.getRepAsDecl();
2147
2148    if (!TagD) // We probably had an error
2149      return 0;
2150
2151    // Note that the above type specs guarantee that the
2152    // type rep is a Decl, whereas in many of the others
2153    // it's a Type.
2154    Tag = dyn_cast<TagDecl>(TagD);
2155  }
2156
2157  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2158    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2159    // or incomplete types shall not be restrict-qualified."
2160    if (TypeQuals & DeclSpec::TQ_restrict)
2161      Diag(DS.getRestrictSpecLoc(),
2162           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2163           << DS.getSourceRange();
2164  }
2165
2166  if (DS.isFriendSpecified()) {
2167    // If we're dealing with a decl but not a TagDecl, assume that
2168    // whatever routines created it handled the friendship aspect.
2169    if (TagD && !Tag)
2170      return 0;
2171    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2172  }
2173
2174  // Track whether we warned about the fact that there aren't any
2175  // declarators.
2176  bool emittedWarning = false;
2177
2178  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2179    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2180
2181    if (!Record->getDeclName() && Record->isDefinition() &&
2182        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2183      if (getLangOptions().CPlusPlus ||
2184          Record->getDeclContext()->isRecord())
2185        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2186
2187      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2188        << DS.getSourceRange();
2189      emittedWarning = true;
2190    }
2191  }
2192
2193  // Check for Microsoft C extension: anonymous struct.
2194  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2195      CurContext->isRecord() &&
2196      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2197    // Handle 2 kinds of anonymous struct:
2198    //   struct STRUCT;
2199    // and
2200    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2201    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2202    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2203        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2204         DS.getRepAsType().get()->isStructureType())) {
2205      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2206        << DS.getSourceRange();
2207      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2208    }
2209  }
2210
2211  if (getLangOptions().CPlusPlus &&
2212      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2213    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2214      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2215          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2216        Diag(Enum->getLocation(), diag::ext_no_declarators)
2217          << DS.getSourceRange();
2218        emittedWarning = true;
2219      }
2220
2221  // Skip all the checks below if we have a type error.
2222  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2223
2224  if (!DS.isMissingDeclaratorOk()) {
2225    // Warn about typedefs of enums without names, since this is an
2226    // extension in both Microsoft and GNU.
2227    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2228        Tag && isa<EnumDecl>(Tag)) {
2229      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2230        << DS.getSourceRange();
2231      return Tag;
2232    }
2233
2234    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2235      << DS.getSourceRange();
2236    emittedWarning = true;
2237  }
2238
2239  // We're going to complain about a bunch of spurious specifiers;
2240  // only do this if we're declaring a tag, because otherwise we
2241  // should be getting diag::ext_no_declarators.
2242  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2243    return TagD;
2244
2245  // Note that a linkage-specification sets a storage class, but
2246  // 'extern "C" struct foo;' is actually valid and not theoretically
2247  // useless.
2248  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2249    if (!DS.isExternInLinkageSpec())
2250      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2251        << DeclSpec::getSpecifierName(scs);
2252
2253  if (DS.isThreadSpecified())
2254    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2255  if (DS.getTypeQualifiers()) {
2256    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2257      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2258    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2259      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2260    // Restrict is covered above.
2261  }
2262  if (DS.isInlineSpecified())
2263    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2264  if (DS.isVirtualSpecified())
2265    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2266  if (DS.isExplicitSpecified())
2267    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2268
2269  // FIXME: Warn on useless attributes
2270
2271  return TagD;
2272}
2273
2274/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2275/// builds a statement for it and returns it so it is evaluated.
2276StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2277  StmtResult R;
2278  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2279    Expr *Exp = DS.getRepAsExpr();
2280    QualType Ty = Exp->getType();
2281    if (Ty->isPointerType()) {
2282      do
2283        Ty = Ty->getAs<PointerType>()->getPointeeType();
2284      while (Ty->isPointerType());
2285    }
2286    if (Ty->isVariableArrayType()) {
2287      R = ActOnExprStmt(MakeFullExpr(Exp));
2288    }
2289  }
2290  return R;
2291}
2292
2293/// We are trying to inject an anonymous member into the given scope;
2294/// check if there's an existing declaration that can't be overloaded.
2295///
2296/// \return true if this is a forbidden redeclaration
2297static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2298                                         Scope *S,
2299                                         DeclContext *Owner,
2300                                         DeclarationName Name,
2301                                         SourceLocation NameLoc,
2302                                         unsigned diagnostic) {
2303  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2304                 Sema::ForRedeclaration);
2305  if (!SemaRef.LookupName(R, S)) return false;
2306
2307  if (R.getAsSingle<TagDecl>())
2308    return false;
2309
2310  // Pick a representative declaration.
2311  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2312  assert(PrevDecl && "Expected a non-null Decl");
2313
2314  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2315    return false;
2316
2317  SemaRef.Diag(NameLoc, diagnostic) << Name;
2318  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2319
2320  return true;
2321}
2322
2323/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2324/// anonymous struct or union AnonRecord into the owning context Owner
2325/// and scope S. This routine will be invoked just after we realize
2326/// that an unnamed union or struct is actually an anonymous union or
2327/// struct, e.g.,
2328///
2329/// @code
2330/// union {
2331///   int i;
2332///   float f;
2333/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2334///    // f into the surrounding scope.x
2335/// @endcode
2336///
2337/// This routine is recursive, injecting the names of nested anonymous
2338/// structs/unions into the owning context and scope as well.
2339static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2340                                                DeclContext *Owner,
2341                                                RecordDecl *AnonRecord,
2342                                                AccessSpecifier AS,
2343                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2344                                                      bool MSAnonStruct) {
2345  unsigned diagKind
2346    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2347                            : diag::err_anonymous_struct_member_redecl;
2348
2349  bool Invalid = false;
2350
2351  // Look every FieldDecl and IndirectFieldDecl with a name.
2352  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2353                               DEnd = AnonRecord->decls_end();
2354       D != DEnd; ++D) {
2355    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2356        cast<NamedDecl>(*D)->getDeclName()) {
2357      ValueDecl *VD = cast<ValueDecl>(*D);
2358      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2359                                       VD->getLocation(), diagKind)) {
2360        // C++ [class.union]p2:
2361        //   The names of the members of an anonymous union shall be
2362        //   distinct from the names of any other entity in the
2363        //   scope in which the anonymous union is declared.
2364        Invalid = true;
2365      } else {
2366        // C++ [class.union]p2:
2367        //   For the purpose of name lookup, after the anonymous union
2368        //   definition, the members of the anonymous union are
2369        //   considered to have been defined in the scope in which the
2370        //   anonymous union is declared.
2371        unsigned OldChainingSize = Chaining.size();
2372        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2373          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2374               PE = IF->chain_end(); PI != PE; ++PI)
2375            Chaining.push_back(*PI);
2376        else
2377          Chaining.push_back(VD);
2378
2379        assert(Chaining.size() >= 2);
2380        NamedDecl **NamedChain =
2381          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2382        for (unsigned i = 0; i < Chaining.size(); i++)
2383          NamedChain[i] = Chaining[i];
2384
2385        IndirectFieldDecl* IndirectField =
2386          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2387                                    VD->getIdentifier(), VD->getType(),
2388                                    NamedChain, Chaining.size());
2389
2390        IndirectField->setAccess(AS);
2391        IndirectField->setImplicit();
2392        SemaRef.PushOnScopeChains(IndirectField, S);
2393
2394        // That includes picking up the appropriate access specifier.
2395        if (AS != AS_none) IndirectField->setAccess(AS);
2396
2397        Chaining.resize(OldChainingSize);
2398      }
2399    }
2400  }
2401
2402  return Invalid;
2403}
2404
2405/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2406/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2407/// illegal input values are mapped to SC_None.
2408static StorageClass
2409StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2410  switch (StorageClassSpec) {
2411  case DeclSpec::SCS_unspecified:    return SC_None;
2412  case DeclSpec::SCS_extern:         return SC_Extern;
2413  case DeclSpec::SCS_static:         return SC_Static;
2414  case DeclSpec::SCS_auto:           return SC_Auto;
2415  case DeclSpec::SCS_register:       return SC_Register;
2416  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2417    // Illegal SCSs map to None: error reporting is up to the caller.
2418  case DeclSpec::SCS_mutable:        // Fall through.
2419  case DeclSpec::SCS_typedef:        return SC_None;
2420  }
2421  llvm_unreachable("unknown storage class specifier");
2422}
2423
2424/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2425/// a StorageClass. Any error reporting is up to the caller:
2426/// illegal input values are mapped to SC_None.
2427static StorageClass
2428StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2429  switch (StorageClassSpec) {
2430  case DeclSpec::SCS_unspecified:    return SC_None;
2431  case DeclSpec::SCS_extern:         return SC_Extern;
2432  case DeclSpec::SCS_static:         return SC_Static;
2433  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2434    // Illegal SCSs map to None: error reporting is up to the caller.
2435  case DeclSpec::SCS_auto:           // Fall through.
2436  case DeclSpec::SCS_mutable:        // Fall through.
2437  case DeclSpec::SCS_register:       // Fall through.
2438  case DeclSpec::SCS_typedef:        return SC_None;
2439  }
2440  llvm_unreachable("unknown storage class specifier");
2441}
2442
2443/// BuildAnonymousStructOrUnion - Handle the declaration of an
2444/// anonymous structure or union. Anonymous unions are a C++ feature
2445/// (C++ [class.union]) and a GNU C extension; anonymous structures
2446/// are a GNU C and GNU C++ extension.
2447Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2448                                             AccessSpecifier AS,
2449                                             RecordDecl *Record) {
2450  DeclContext *Owner = Record->getDeclContext();
2451
2452  // Diagnose whether this anonymous struct/union is an extension.
2453  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2454    Diag(Record->getLocation(), diag::ext_anonymous_union);
2455  else if (!Record->isUnion())
2456    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2457
2458  // C and C++ require different kinds of checks for anonymous
2459  // structs/unions.
2460  bool Invalid = false;
2461  if (getLangOptions().CPlusPlus) {
2462    const char* PrevSpec = 0;
2463    unsigned DiagID;
2464    // C++ [class.union]p3:
2465    //   Anonymous unions declared in a named namespace or in the
2466    //   global namespace shall be declared static.
2467    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2468        (isa<TranslationUnitDecl>(Owner) ||
2469         (isa<NamespaceDecl>(Owner) &&
2470          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2471      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2472      Invalid = true;
2473
2474      // Recover by adding 'static'.
2475      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2476                             PrevSpec, DiagID, getLangOptions());
2477    }
2478    // C++ [class.union]p3:
2479    //   A storage class is not allowed in a declaration of an
2480    //   anonymous union in a class scope.
2481    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2482             isa<RecordDecl>(Owner)) {
2483      Diag(DS.getStorageClassSpecLoc(),
2484           diag::err_anonymous_union_with_storage_spec);
2485      Invalid = true;
2486
2487      // Recover by removing the storage specifier.
2488      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2489                             PrevSpec, DiagID, getLangOptions());
2490    }
2491
2492    // C++ [class.union]p2:
2493    //   The member-specification of an anonymous union shall only
2494    //   define non-static data members. [Note: nested types and
2495    //   functions cannot be declared within an anonymous union. ]
2496    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2497                                 MemEnd = Record->decls_end();
2498         Mem != MemEnd; ++Mem) {
2499      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2500        // C++ [class.union]p3:
2501        //   An anonymous union shall not have private or protected
2502        //   members (clause 11).
2503        assert(FD->getAccess() != AS_none);
2504        if (FD->getAccess() != AS_public) {
2505          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2506            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2507          Invalid = true;
2508        }
2509
2510        if (CheckNontrivialField(FD))
2511          Invalid = true;
2512      } else if ((*Mem)->isImplicit()) {
2513        // Any implicit members are fine.
2514      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2515        // This is a type that showed up in an
2516        // elaborated-type-specifier inside the anonymous struct or
2517        // union, but which actually declares a type outside of the
2518        // anonymous struct or union. It's okay.
2519      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2520        if (!MemRecord->isAnonymousStructOrUnion() &&
2521            MemRecord->getDeclName()) {
2522          // Visual C++ allows type definition in anonymous struct or union.
2523          if (getLangOptions().Microsoft)
2524            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2525              << (int)Record->isUnion();
2526          else {
2527            // This is a nested type declaration.
2528            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2529              << (int)Record->isUnion();
2530            Invalid = true;
2531          }
2532        }
2533      } else if (isa<AccessSpecDecl>(*Mem)) {
2534        // Any access specifier is fine.
2535      } else {
2536        // We have something that isn't a non-static data
2537        // member. Complain about it.
2538        unsigned DK = diag::err_anonymous_record_bad_member;
2539        if (isa<TypeDecl>(*Mem))
2540          DK = diag::err_anonymous_record_with_type;
2541        else if (isa<FunctionDecl>(*Mem))
2542          DK = diag::err_anonymous_record_with_function;
2543        else if (isa<VarDecl>(*Mem))
2544          DK = diag::err_anonymous_record_with_static;
2545
2546        // Visual C++ allows type definition in anonymous struct or union.
2547        if (getLangOptions().Microsoft &&
2548            DK == diag::err_anonymous_record_with_type)
2549          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2550            << (int)Record->isUnion();
2551        else {
2552          Diag((*Mem)->getLocation(), DK)
2553              << (int)Record->isUnion();
2554          Invalid = true;
2555        }
2556      }
2557    }
2558  }
2559
2560  if (!Record->isUnion() && !Owner->isRecord()) {
2561    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2562      << (int)getLangOptions().CPlusPlus;
2563    Invalid = true;
2564  }
2565
2566  // Mock up a declarator.
2567  Declarator Dc(DS, Declarator::TypeNameContext);
2568  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2569  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2570
2571  // Create a declaration for this anonymous struct/union.
2572  NamedDecl *Anon = 0;
2573  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2574    Anon = FieldDecl::Create(Context, OwningClass,
2575                             DS.getSourceRange().getBegin(),
2576                             Record->getLocation(),
2577                             /*IdentifierInfo=*/0,
2578                             Context.getTypeDeclType(Record),
2579                             TInfo,
2580                             /*BitWidth=*/0, /*Mutable=*/false);
2581    Anon->setAccess(AS);
2582    if (getLangOptions().CPlusPlus)
2583      FieldCollector->Add(cast<FieldDecl>(Anon));
2584  } else {
2585    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2586    assert(SCSpec != DeclSpec::SCS_typedef &&
2587           "Parser allowed 'typedef' as storage class VarDecl.");
2588    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2589    if (SCSpec == DeclSpec::SCS_mutable) {
2590      // mutable can only appear on non-static class members, so it's always
2591      // an error here
2592      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2593      Invalid = true;
2594      SC = SC_None;
2595    }
2596    SCSpec = DS.getStorageClassSpecAsWritten();
2597    VarDecl::StorageClass SCAsWritten
2598      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2599
2600    Anon = VarDecl::Create(Context, Owner,
2601                           DS.getSourceRange().getBegin(),
2602                           Record->getLocation(), /*IdentifierInfo=*/0,
2603                           Context.getTypeDeclType(Record),
2604                           TInfo, SC, SCAsWritten);
2605  }
2606  Anon->setImplicit();
2607
2608  // Add the anonymous struct/union object to the current
2609  // context. We'll be referencing this object when we refer to one of
2610  // its members.
2611  Owner->addDecl(Anon);
2612
2613  // Inject the members of the anonymous struct/union into the owning
2614  // context and into the identifier resolver chain for name lookup
2615  // purposes.
2616  llvm::SmallVector<NamedDecl*, 2> Chain;
2617  Chain.push_back(Anon);
2618
2619  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2620                                          Chain, false))
2621    Invalid = true;
2622
2623  // Mark this as an anonymous struct/union type. Note that we do not
2624  // do this until after we have already checked and injected the
2625  // members of this anonymous struct/union type, because otherwise
2626  // the members could be injected twice: once by DeclContext when it
2627  // builds its lookup table, and once by
2628  // InjectAnonymousStructOrUnionMembers.
2629  Record->setAnonymousStructOrUnion(true);
2630
2631  if (Invalid)
2632    Anon->setInvalidDecl();
2633
2634  return Anon;
2635}
2636
2637/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2638/// Microsoft C anonymous structure.
2639/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2640/// Example:
2641///
2642/// struct A { int a; };
2643/// struct B { struct A; int b; };
2644///
2645/// void foo() {
2646///   B var;
2647///   var.a = 3;
2648/// }
2649///
2650Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2651                                           RecordDecl *Record) {
2652
2653  // If there is no Record, get the record via the typedef.
2654  if (!Record)
2655    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2656
2657  // Mock up a declarator.
2658  Declarator Dc(DS, Declarator::TypeNameContext);
2659  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2660  assert(TInfo && "couldn't build declarator info for anonymous struct");
2661
2662  // Create a declaration for this anonymous struct.
2663  NamedDecl* Anon = FieldDecl::Create(Context,
2664                             cast<RecordDecl>(CurContext),
2665                             DS.getSourceRange().getBegin(),
2666                             DS.getSourceRange().getBegin(),
2667                             /*IdentifierInfo=*/0,
2668                             Context.getTypeDeclType(Record),
2669                             TInfo,
2670                             /*BitWidth=*/0, /*Mutable=*/false);
2671  Anon->setImplicit();
2672
2673  // Add the anonymous struct object to the current context.
2674  CurContext->addDecl(Anon);
2675
2676  // Inject the members of the anonymous struct into the current
2677  // context and into the identifier resolver chain for name lookup
2678  // purposes.
2679  llvm::SmallVector<NamedDecl*, 2> Chain;
2680  Chain.push_back(Anon);
2681
2682  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2683                                          Record->getDefinition(),
2684                                          AS_none, Chain, true))
2685    Anon->setInvalidDecl();
2686
2687  return Anon;
2688}
2689
2690/// GetNameForDeclarator - Determine the full declaration name for the
2691/// given Declarator.
2692DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2693  return GetNameFromUnqualifiedId(D.getName());
2694}
2695
2696/// \brief Retrieves the declaration name from a parsed unqualified-id.
2697DeclarationNameInfo
2698Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2699  DeclarationNameInfo NameInfo;
2700  NameInfo.setLoc(Name.StartLocation);
2701
2702  switch (Name.getKind()) {
2703
2704  case UnqualifiedId::IK_Identifier:
2705    NameInfo.setName(Name.Identifier);
2706    NameInfo.setLoc(Name.StartLocation);
2707    return NameInfo;
2708
2709  case UnqualifiedId::IK_OperatorFunctionId:
2710    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2711                                           Name.OperatorFunctionId.Operator));
2712    NameInfo.setLoc(Name.StartLocation);
2713    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2714      = Name.OperatorFunctionId.SymbolLocations[0];
2715    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2716      = Name.EndLocation.getRawEncoding();
2717    return NameInfo;
2718
2719  case UnqualifiedId::IK_LiteralOperatorId:
2720    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2721                                                           Name.Identifier));
2722    NameInfo.setLoc(Name.StartLocation);
2723    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2724    return NameInfo;
2725
2726  case UnqualifiedId::IK_ConversionFunctionId: {
2727    TypeSourceInfo *TInfo;
2728    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2729    if (Ty.isNull())
2730      return DeclarationNameInfo();
2731    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2732                                               Context.getCanonicalType(Ty)));
2733    NameInfo.setLoc(Name.StartLocation);
2734    NameInfo.setNamedTypeInfo(TInfo);
2735    return NameInfo;
2736  }
2737
2738  case UnqualifiedId::IK_ConstructorName: {
2739    TypeSourceInfo *TInfo;
2740    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2741    if (Ty.isNull())
2742      return DeclarationNameInfo();
2743    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2744                                              Context.getCanonicalType(Ty)));
2745    NameInfo.setLoc(Name.StartLocation);
2746    NameInfo.setNamedTypeInfo(TInfo);
2747    return NameInfo;
2748  }
2749
2750  case UnqualifiedId::IK_ConstructorTemplateId: {
2751    // In well-formed code, we can only have a constructor
2752    // template-id that refers to the current context, so go there
2753    // to find the actual type being constructed.
2754    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2755    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2756      return DeclarationNameInfo();
2757
2758    // Determine the type of the class being constructed.
2759    QualType CurClassType = Context.getTypeDeclType(CurClass);
2760
2761    // FIXME: Check two things: that the template-id names the same type as
2762    // CurClassType, and that the template-id does not occur when the name
2763    // was qualified.
2764
2765    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2766                                    Context.getCanonicalType(CurClassType)));
2767    NameInfo.setLoc(Name.StartLocation);
2768    // FIXME: should we retrieve TypeSourceInfo?
2769    NameInfo.setNamedTypeInfo(0);
2770    return NameInfo;
2771  }
2772
2773  case UnqualifiedId::IK_DestructorName: {
2774    TypeSourceInfo *TInfo;
2775    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2776    if (Ty.isNull())
2777      return DeclarationNameInfo();
2778    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2779                                              Context.getCanonicalType(Ty)));
2780    NameInfo.setLoc(Name.StartLocation);
2781    NameInfo.setNamedTypeInfo(TInfo);
2782    return NameInfo;
2783  }
2784
2785  case UnqualifiedId::IK_TemplateId: {
2786    TemplateName TName = Name.TemplateId->Template.get();
2787    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2788    return Context.getNameForTemplate(TName, TNameLoc);
2789  }
2790
2791  } // switch (Name.getKind())
2792
2793  assert(false && "Unknown name kind");
2794  return DeclarationNameInfo();
2795}
2796
2797/// isNearlyMatchingFunction - Determine whether the C++ functions
2798/// Declaration and Definition are "nearly" matching. This heuristic
2799/// is used to improve diagnostics in the case where an out-of-line
2800/// function definition doesn't match any declaration within
2801/// the class or namespace.
2802static bool isNearlyMatchingFunction(ASTContext &Context,
2803                                     FunctionDecl *Declaration,
2804                                     FunctionDecl *Definition) {
2805  if (Declaration->param_size() != Definition->param_size())
2806    return false;
2807  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2808    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2809    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2810
2811    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2812                                        DefParamTy.getNonReferenceType()))
2813      return false;
2814  }
2815
2816  return true;
2817}
2818
2819/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2820/// declarator needs to be rebuilt in the current instantiation.
2821/// Any bits of declarator which appear before the name are valid for
2822/// consideration here.  That's specifically the type in the decl spec
2823/// and the base type in any member-pointer chunks.
2824static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2825                                                    DeclarationName Name) {
2826  // The types we specifically need to rebuild are:
2827  //   - typenames, typeofs, and decltypes
2828  //   - types which will become injected class names
2829  // Of course, we also need to rebuild any type referencing such a
2830  // type.  It's safest to just say "dependent", but we call out a
2831  // few cases here.
2832
2833  DeclSpec &DS = D.getMutableDeclSpec();
2834  switch (DS.getTypeSpecType()) {
2835  case DeclSpec::TST_typename:
2836  case DeclSpec::TST_typeofType:
2837  case DeclSpec::TST_decltype: {
2838    // Grab the type from the parser.
2839    TypeSourceInfo *TSI = 0;
2840    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2841    if (T.isNull() || !T->isDependentType()) break;
2842
2843    // Make sure there's a type source info.  This isn't really much
2844    // of a waste; most dependent types should have type source info
2845    // attached already.
2846    if (!TSI)
2847      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2848
2849    // Rebuild the type in the current instantiation.
2850    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2851    if (!TSI) return true;
2852
2853    // Store the new type back in the decl spec.
2854    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2855    DS.UpdateTypeRep(LocType);
2856    break;
2857  }
2858
2859  case DeclSpec::TST_typeofExpr: {
2860    Expr *E = DS.getRepAsExpr();
2861    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2862    if (Result.isInvalid()) return true;
2863    DS.UpdateExprRep(Result.get());
2864    break;
2865  }
2866
2867  default:
2868    // Nothing to do for these decl specs.
2869    break;
2870  }
2871
2872  // It doesn't matter what order we do this in.
2873  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2874    DeclaratorChunk &Chunk = D.getTypeObject(I);
2875
2876    // The only type information in the declarator which can come
2877    // before the declaration name is the base type of a member
2878    // pointer.
2879    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2880      continue;
2881
2882    // Rebuild the scope specifier in-place.
2883    CXXScopeSpec &SS = Chunk.Mem.Scope();
2884    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2885      return true;
2886  }
2887
2888  return false;
2889}
2890
2891Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2892  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2893}
2894
2895/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2896///   If T is the name of a class, then each of the following shall have a
2897///   name different from T:
2898///     - every static data member of class T;
2899///     - every member function of class T
2900///     - every member of class T that is itself a type;
2901/// \returns true if the declaration name violates these rules.
2902bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2903                                   DeclarationNameInfo NameInfo) {
2904  DeclarationName Name = NameInfo.getName();
2905
2906  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2907    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2908      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2909      return true;
2910    }
2911
2912  return false;
2913}
2914
2915Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2916                             MultiTemplateParamsArg TemplateParamLists,
2917                             bool IsFunctionDefinition,
2918                             SourceLocation DefaultLoc) {
2919  // TODO: consider using NameInfo for diagnostic.
2920  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2921  DeclarationName Name = NameInfo.getName();
2922
2923  // All of these full declarators require an identifier.  If it doesn't have
2924  // one, the ParsedFreeStandingDeclSpec action should be used.
2925  if (!Name) {
2926    if (!D.isInvalidType())  // Reject this if we think it is valid.
2927      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2928           diag::err_declarator_need_ident)
2929        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2930    return 0;
2931  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2932    return 0;
2933
2934  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2935  // we find one that is.
2936  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2937         (S->getFlags() & Scope::TemplateParamScope) != 0)
2938    S = S->getParent();
2939
2940  DeclContext *DC = CurContext;
2941  if (D.getCXXScopeSpec().isInvalid())
2942    D.setInvalidType();
2943  else if (D.getCXXScopeSpec().isSet()) {
2944    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2945                                        UPPC_DeclarationQualifier))
2946      return 0;
2947
2948    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2949    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2950    if (!DC) {
2951      // If we could not compute the declaration context, it's because the
2952      // declaration context is dependent but does not refer to a class,
2953      // class template, or class template partial specialization. Complain
2954      // and return early, to avoid the coming semantic disaster.
2955      Diag(D.getIdentifierLoc(),
2956           diag::err_template_qualified_declarator_no_match)
2957        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2958        << D.getCXXScopeSpec().getRange();
2959      return 0;
2960    }
2961    bool IsDependentContext = DC->isDependentContext();
2962
2963    if (!IsDependentContext &&
2964        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2965      return 0;
2966
2967    if (isa<CXXRecordDecl>(DC)) {
2968      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2969        Diag(D.getIdentifierLoc(),
2970             diag::err_member_def_undefined_record)
2971          << Name << DC << D.getCXXScopeSpec().getRange();
2972        D.setInvalidType();
2973      } else if (isa<CXXRecordDecl>(CurContext) &&
2974                 !D.getDeclSpec().isFriendSpecified()) {
2975        // The user provided a superfluous scope specifier inside a class
2976        // definition:
2977        //
2978        // class X {
2979        //   void X::f();
2980        // };
2981        if (CurContext->Equals(DC))
2982          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2983            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2984        else
2985          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2986            << Name << D.getCXXScopeSpec().getRange();
2987
2988        // Pretend that this qualifier was not here.
2989        D.getCXXScopeSpec().clear();
2990      }
2991    }
2992
2993    // Check whether we need to rebuild the type of the given
2994    // declaration in the current instantiation.
2995    if (EnteringContext && IsDependentContext &&
2996        TemplateParamLists.size() != 0) {
2997      ContextRAII SavedContext(*this, DC);
2998      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2999        D.setInvalidType();
3000    }
3001  }
3002
3003  if (DiagnoseClassNameShadow(DC, NameInfo))
3004    // If this is a typedef, we'll end up spewing multiple diagnostics.
3005    // Just return early; it's safer.
3006    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3007      return 0;
3008
3009  NamedDecl *New;
3010
3011  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3012  QualType R = TInfo->getType();
3013
3014  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3015                                      UPPC_DeclarationType))
3016    D.setInvalidType();
3017
3018  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3019                        ForRedeclaration);
3020
3021  // See if this is a redefinition of a variable in the same scope.
3022  if (!D.getCXXScopeSpec().isSet()) {
3023    bool IsLinkageLookup = false;
3024
3025    // If the declaration we're planning to build will be a function
3026    // or object with linkage, then look for another declaration with
3027    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3028    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3029      /* Do nothing*/;
3030    else if (R->isFunctionType()) {
3031      if (CurContext->isFunctionOrMethod() ||
3032          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3033        IsLinkageLookup = true;
3034    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3035      IsLinkageLookup = true;
3036    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3037             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3038      IsLinkageLookup = true;
3039
3040    if (IsLinkageLookup)
3041      Previous.clear(LookupRedeclarationWithLinkage);
3042
3043    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3044  } else { // Something like "int foo::x;"
3045    LookupQualifiedName(Previous, DC);
3046
3047    // Don't consider using declarations as previous declarations for
3048    // out-of-line members.
3049    RemoveUsingDecls(Previous);
3050
3051    // C++ 7.3.1.2p2:
3052    // Members (including explicit specializations of templates) of a named
3053    // namespace can also be defined outside that namespace by explicit
3054    // qualification of the name being defined, provided that the entity being
3055    // defined was already declared in the namespace and the definition appears
3056    // after the point of declaration in a namespace that encloses the
3057    // declarations namespace.
3058    //
3059    // Note that we only check the context at this point. We don't yet
3060    // have enough information to make sure that PrevDecl is actually
3061    // the declaration we want to match. For example, given:
3062    //
3063    //   class X {
3064    //     void f();
3065    //     void f(float);
3066    //   };
3067    //
3068    //   void X::f(int) { } // ill-formed
3069    //
3070    // In this case, PrevDecl will point to the overload set
3071    // containing the two f's declared in X, but neither of them
3072    // matches.
3073
3074    // First check whether we named the global scope.
3075    if (isa<TranslationUnitDecl>(DC)) {
3076      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3077        << Name << D.getCXXScopeSpec().getRange();
3078    } else {
3079      DeclContext *Cur = CurContext;
3080      while (isa<LinkageSpecDecl>(Cur))
3081        Cur = Cur->getParent();
3082      if (!Cur->Encloses(DC)) {
3083        // The qualifying scope doesn't enclose the original declaration.
3084        // Emit diagnostic based on current scope.
3085        SourceLocation L = D.getIdentifierLoc();
3086        SourceRange R = D.getCXXScopeSpec().getRange();
3087        if (isa<FunctionDecl>(Cur))
3088          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3089        else
3090          Diag(L, diag::err_invalid_declarator_scope)
3091            << Name << cast<NamedDecl>(DC) << R;
3092        D.setInvalidType();
3093      }
3094    }
3095  }
3096
3097  if (Previous.isSingleResult() &&
3098      Previous.getFoundDecl()->isTemplateParameter()) {
3099    // Maybe we will complain about the shadowed template parameter.
3100    if (!D.isInvalidType())
3101      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3102                                          Previous.getFoundDecl()))
3103        D.setInvalidType();
3104
3105    // Just pretend that we didn't see the previous declaration.
3106    Previous.clear();
3107  }
3108
3109  // In C++, the previous declaration we find might be a tag type
3110  // (class or enum). In this case, the new declaration will hide the
3111  // tag type. Note that this does does not apply if we're declaring a
3112  // typedef (C++ [dcl.typedef]p4).
3113  if (Previous.isSingleTagDecl() &&
3114      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3115    Previous.clear();
3116
3117  bool Redeclaration = false;
3118  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3119    if (DefaultLoc.isValid())
3120      Diag(DefaultLoc, diag::err_default_special_members);
3121
3122    if (TemplateParamLists.size()) {
3123      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3124      return 0;
3125    }
3126
3127    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3128  } else if (R->isFunctionType()) {
3129    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3130                                  move(TemplateParamLists),
3131                                  IsFunctionDefinition, Redeclaration,
3132                                  DefaultLoc);
3133  } else {
3134    assert(!DefaultLoc.isValid() && "We should have caught this in a caller");
3135    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3136                                  move(TemplateParamLists),
3137                                  Redeclaration);
3138  }
3139
3140  if (New == 0)
3141    return 0;
3142
3143  // If this has an identifier and is not an invalid redeclaration or
3144  // function template specialization, add it to the scope stack.
3145  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3146    PushOnScopeChains(New, S);
3147
3148  return New;
3149}
3150
3151/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3152/// types into constant array types in certain situations which would otherwise
3153/// be errors (for GCC compatibility).
3154static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3155                                                    ASTContext &Context,
3156                                                    bool &SizeIsNegative,
3157                                                    llvm::APSInt &Oversized) {
3158  // This method tries to turn a variable array into a constant
3159  // array even when the size isn't an ICE.  This is necessary
3160  // for compatibility with code that depends on gcc's buggy
3161  // constant expression folding, like struct {char x[(int)(char*)2];}
3162  SizeIsNegative = false;
3163  Oversized = 0;
3164
3165  if (T->isDependentType())
3166    return QualType();
3167
3168  QualifierCollector Qs;
3169  const Type *Ty = Qs.strip(T);
3170
3171  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3172    QualType Pointee = PTy->getPointeeType();
3173    QualType FixedType =
3174        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3175                                            Oversized);
3176    if (FixedType.isNull()) return FixedType;
3177    FixedType = Context.getPointerType(FixedType);
3178    return Qs.apply(Context, FixedType);
3179  }
3180  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3181    QualType Inner = PTy->getInnerType();
3182    QualType FixedType =
3183        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3184                                            Oversized);
3185    if (FixedType.isNull()) return FixedType;
3186    FixedType = Context.getParenType(FixedType);
3187    return Qs.apply(Context, FixedType);
3188  }
3189
3190  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3191  if (!VLATy)
3192    return QualType();
3193  // FIXME: We should probably handle this case
3194  if (VLATy->getElementType()->isVariablyModifiedType())
3195    return QualType();
3196
3197  Expr::EvalResult EvalResult;
3198  if (!VLATy->getSizeExpr() ||
3199      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3200      !EvalResult.Val.isInt())
3201    return QualType();
3202
3203  // Check whether the array size is negative.
3204  llvm::APSInt &Res = EvalResult.Val.getInt();
3205  if (Res.isSigned() && Res.isNegative()) {
3206    SizeIsNegative = true;
3207    return QualType();
3208  }
3209
3210  // Check whether the array is too large to be addressed.
3211  unsigned ActiveSizeBits
3212    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3213                                              Res);
3214  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3215    Oversized = Res;
3216    return QualType();
3217  }
3218
3219  return Context.getConstantArrayType(VLATy->getElementType(),
3220                                      Res, ArrayType::Normal, 0);
3221}
3222
3223/// \brief Register the given locally-scoped external C declaration so
3224/// that it can be found later for redeclarations
3225void
3226Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3227                                       const LookupResult &Previous,
3228                                       Scope *S) {
3229  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3230         "Decl is not a locally-scoped decl!");
3231  // Note that we have a locally-scoped external with this name.
3232  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3233
3234  if (!Previous.isSingleResult())
3235    return;
3236
3237  NamedDecl *PrevDecl = Previous.getFoundDecl();
3238
3239  // If there was a previous declaration of this variable, it may be
3240  // in our identifier chain. Update the identifier chain with the new
3241  // declaration.
3242  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3243    // The previous declaration was found on the identifer resolver
3244    // chain, so remove it from its scope.
3245    while (S && !S->isDeclScope(PrevDecl))
3246      S = S->getParent();
3247
3248    if (S)
3249      S->RemoveDecl(PrevDecl);
3250  }
3251}
3252
3253/// \brief Diagnose function specifiers on a declaration of an identifier that
3254/// does not identify a function.
3255void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3256  // FIXME: We should probably indicate the identifier in question to avoid
3257  // confusion for constructs like "inline int a(), b;"
3258  if (D.getDeclSpec().isInlineSpecified())
3259    Diag(D.getDeclSpec().getInlineSpecLoc(),
3260         diag::err_inline_non_function);
3261
3262  if (D.getDeclSpec().isVirtualSpecified())
3263    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3264         diag::err_virtual_non_function);
3265
3266  if (D.getDeclSpec().isExplicitSpecified())
3267    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3268         diag::err_explicit_non_function);
3269}
3270
3271NamedDecl*
3272Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3273                             QualType R,  TypeSourceInfo *TInfo,
3274                             LookupResult &Previous, bool &Redeclaration) {
3275  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3276  if (D.getCXXScopeSpec().isSet()) {
3277    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3278      << D.getCXXScopeSpec().getRange();
3279    D.setInvalidType();
3280    // Pretend we didn't see the scope specifier.
3281    DC = CurContext;
3282    Previous.clear();
3283  }
3284
3285  if (getLangOptions().CPlusPlus) {
3286    // Check that there are no default arguments (C++ only).
3287    CheckExtraCXXDefaultArguments(D);
3288  }
3289
3290  DiagnoseFunctionSpecifiers(D);
3291
3292  if (D.getDeclSpec().isThreadSpecified())
3293    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3294
3295  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3296    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3297      << D.getName().getSourceRange();
3298    return 0;
3299  }
3300
3301  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3302  if (!NewTD) return 0;
3303
3304  // Handle attributes prior to checking for duplicates in MergeVarDecl
3305  ProcessDeclAttributes(S, NewTD, D);
3306
3307  CheckTypedefForVariablyModifiedType(S, NewTD);
3308
3309  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3310}
3311
3312void
3313Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3314  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3315  // then it shall have block scope.
3316  // Note that variably modified types must be fixed before merging the decl so
3317  // that redeclarations will match.
3318  QualType T = NewTD->getUnderlyingType();
3319  if (T->isVariablyModifiedType()) {
3320    getCurFunction()->setHasBranchProtectedScope();
3321
3322    if (S->getFnParent() == 0) {
3323      bool SizeIsNegative;
3324      llvm::APSInt Oversized;
3325      QualType FixedTy =
3326          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3327                                              Oversized);
3328      if (!FixedTy.isNull()) {
3329        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3330        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3331      } else {
3332        if (SizeIsNegative)
3333          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3334        else if (T->isVariableArrayType())
3335          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3336        else if (Oversized.getBoolValue())
3337          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3338        else
3339          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3340        NewTD->setInvalidDecl();
3341      }
3342    }
3343  }
3344}
3345
3346
3347/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3348/// declares a typedef-name, either using the 'typedef' type specifier or via
3349/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3350NamedDecl*
3351Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3352                           LookupResult &Previous, bool &Redeclaration) {
3353  // Merge the decl with the existing one if appropriate. If the decl is
3354  // in an outer scope, it isn't the same thing.
3355  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3356                       /*ExplicitInstantiationOrSpecialization=*/false);
3357  if (!Previous.empty()) {
3358    Redeclaration = true;
3359    MergeTypedefNameDecl(NewTD, Previous);
3360  }
3361
3362  // If this is the C FILE type, notify the AST context.
3363  if (IdentifierInfo *II = NewTD->getIdentifier())
3364    if (!NewTD->isInvalidDecl() &&
3365        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3366      if (II->isStr("FILE"))
3367        Context.setFILEDecl(NewTD);
3368      else if (II->isStr("jmp_buf"))
3369        Context.setjmp_bufDecl(NewTD);
3370      else if (II->isStr("sigjmp_buf"))
3371        Context.setsigjmp_bufDecl(NewTD);
3372      else if (II->isStr("__builtin_va_list"))
3373        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3374    }
3375
3376  return NewTD;
3377}
3378
3379/// \brief Determines whether the given declaration is an out-of-scope
3380/// previous declaration.
3381///
3382/// This routine should be invoked when name lookup has found a
3383/// previous declaration (PrevDecl) that is not in the scope where a
3384/// new declaration by the same name is being introduced. If the new
3385/// declaration occurs in a local scope, previous declarations with
3386/// linkage may still be considered previous declarations (C99
3387/// 6.2.2p4-5, C++ [basic.link]p6).
3388///
3389/// \param PrevDecl the previous declaration found by name
3390/// lookup
3391///
3392/// \param DC the context in which the new declaration is being
3393/// declared.
3394///
3395/// \returns true if PrevDecl is an out-of-scope previous declaration
3396/// for a new delcaration with the same name.
3397static bool
3398isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3399                                ASTContext &Context) {
3400  if (!PrevDecl)
3401    return false;
3402
3403  if (!PrevDecl->hasLinkage())
3404    return false;
3405
3406  if (Context.getLangOptions().CPlusPlus) {
3407    // C++ [basic.link]p6:
3408    //   If there is a visible declaration of an entity with linkage
3409    //   having the same name and type, ignoring entities declared
3410    //   outside the innermost enclosing namespace scope, the block
3411    //   scope declaration declares that same entity and receives the
3412    //   linkage of the previous declaration.
3413    DeclContext *OuterContext = DC->getRedeclContext();
3414    if (!OuterContext->isFunctionOrMethod())
3415      // This rule only applies to block-scope declarations.
3416      return false;
3417
3418    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3419    if (PrevOuterContext->isRecord())
3420      // We found a member function: ignore it.
3421      return false;
3422
3423    // Find the innermost enclosing namespace for the new and
3424    // previous declarations.
3425    OuterContext = OuterContext->getEnclosingNamespaceContext();
3426    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3427
3428    // The previous declaration is in a different namespace, so it
3429    // isn't the same function.
3430    if (!OuterContext->Equals(PrevOuterContext))
3431      return false;
3432  }
3433
3434  return true;
3435}
3436
3437static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3438  CXXScopeSpec &SS = D.getCXXScopeSpec();
3439  if (!SS.isSet()) return;
3440  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3441}
3442
3443NamedDecl*
3444Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3445                              QualType R, TypeSourceInfo *TInfo,
3446                              LookupResult &Previous,
3447                              MultiTemplateParamsArg TemplateParamLists,
3448                              bool &Redeclaration) {
3449  DeclarationName Name = GetNameForDeclarator(D).getName();
3450
3451  // Check that there are no default arguments (C++ only).
3452  if (getLangOptions().CPlusPlus)
3453    CheckExtraCXXDefaultArguments(D);
3454
3455  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3456  assert(SCSpec != DeclSpec::SCS_typedef &&
3457         "Parser allowed 'typedef' as storage class VarDecl.");
3458  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3459  if (SCSpec == DeclSpec::SCS_mutable) {
3460    // mutable can only appear on non-static class members, so it's always
3461    // an error here
3462    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3463    D.setInvalidType();
3464    SC = SC_None;
3465  }
3466  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3467  VarDecl::StorageClass SCAsWritten
3468    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3469
3470  IdentifierInfo *II = Name.getAsIdentifierInfo();
3471  if (!II) {
3472    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3473      << Name.getAsString();
3474    return 0;
3475  }
3476
3477  DiagnoseFunctionSpecifiers(D);
3478
3479  if (!DC->isRecord() && S->getFnParent() == 0) {
3480    // C99 6.9p2: The storage-class specifiers auto and register shall not
3481    // appear in the declaration specifiers in an external declaration.
3482    if (SC == SC_Auto || SC == SC_Register) {
3483
3484      // If this is a register variable with an asm label specified, then this
3485      // is a GNU extension.
3486      if (SC == SC_Register && D.getAsmLabel())
3487        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3488      else
3489        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3490      D.setInvalidType();
3491    }
3492  }
3493
3494  bool isExplicitSpecialization = false;
3495  VarDecl *NewVD;
3496  if (!getLangOptions().CPlusPlus) {
3497    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3498                            D.getIdentifierLoc(), II,
3499                            R, TInfo, SC, SCAsWritten);
3500
3501    if (D.isInvalidType())
3502      NewVD->setInvalidDecl();
3503  } else {
3504    if (DC->isRecord() && !CurContext->isRecord()) {
3505      // This is an out-of-line definition of a static data member.
3506      if (SC == SC_Static) {
3507        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3508             diag::err_static_out_of_line)
3509          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3510      } else if (SC == SC_None)
3511        SC = SC_Static;
3512    }
3513    if (SC == SC_Static) {
3514      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3515        if (RD->isLocalClass())
3516          Diag(D.getIdentifierLoc(),
3517               diag::err_static_data_member_not_allowed_in_local_class)
3518            << Name << RD->getDeclName();
3519
3520        // C++ [class.union]p1: If a union contains a static data member,
3521        // the program is ill-formed.
3522        //
3523        // We also disallow static data members in anonymous structs.
3524        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3525          Diag(D.getIdentifierLoc(),
3526               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3527            << Name << RD->isUnion();
3528      }
3529    }
3530
3531    // Match up the template parameter lists with the scope specifier, then
3532    // determine whether we have a template or a template specialization.
3533    isExplicitSpecialization = false;
3534    bool Invalid = false;
3535    if (TemplateParameterList *TemplateParams
3536        = MatchTemplateParametersToScopeSpecifier(
3537                                                  D.getDeclSpec().getSourceRange().getBegin(),
3538                                                  D.getCXXScopeSpec(),
3539                                                  TemplateParamLists.get(),
3540                                                  TemplateParamLists.size(),
3541                                                  /*never a friend*/ false,
3542                                                  isExplicitSpecialization,
3543                                                  Invalid)) {
3544      if (TemplateParams->size() > 0) {
3545        // There is no such thing as a variable template.
3546        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3547          << II
3548          << SourceRange(TemplateParams->getTemplateLoc(),
3549                         TemplateParams->getRAngleLoc());
3550        return 0;
3551      } else {
3552        // There is an extraneous 'template<>' for this variable. Complain
3553        // about it, but allow the declaration of the variable.
3554        Diag(TemplateParams->getTemplateLoc(),
3555             diag::err_template_variable_noparams)
3556          << II
3557          << SourceRange(TemplateParams->getTemplateLoc(),
3558                         TemplateParams->getRAngleLoc());
3559        isExplicitSpecialization = true;
3560      }
3561    }
3562
3563    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3564                            D.getIdentifierLoc(), II,
3565                            R, TInfo, SC, SCAsWritten);
3566
3567    // If this decl has an auto type in need of deduction, make a note of the
3568    // Decl so we can diagnose uses of it in its own initializer.
3569    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3570        R->getContainedAutoType())
3571      ParsingInitForAutoVars.insert(NewVD);
3572
3573    if (D.isInvalidType() || Invalid)
3574      NewVD->setInvalidDecl();
3575
3576    SetNestedNameSpecifier(NewVD, D);
3577
3578    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3579      NewVD->setTemplateParameterListsInfo(Context,
3580                                           TemplateParamLists.size(),
3581                                           TemplateParamLists.release());
3582    }
3583  }
3584
3585  if (D.getDeclSpec().isThreadSpecified()) {
3586    if (NewVD->hasLocalStorage())
3587      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3588    else if (!Context.Target.isTLSSupported())
3589      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3590    else
3591      NewVD->setThreadSpecified(true);
3592  }
3593
3594  // Set the lexical context. If the declarator has a C++ scope specifier, the
3595  // lexical context will be different from the semantic context.
3596  NewVD->setLexicalDeclContext(CurContext);
3597
3598  // Handle attributes prior to checking for duplicates in MergeVarDecl
3599  ProcessDeclAttributes(S, NewVD, D);
3600
3601  // Handle GNU asm-label extension (encoded as an attribute).
3602  if (Expr *E = (Expr*)D.getAsmLabel()) {
3603    // The parser guarantees this is a string.
3604    StringLiteral *SE = cast<StringLiteral>(E);
3605    llvm::StringRef Label = SE->getString();
3606    if (S->getFnParent() != 0) {
3607      switch (SC) {
3608      case SC_None:
3609      case SC_Auto:
3610        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3611        break;
3612      case SC_Register:
3613        if (!Context.Target.isValidGCCRegisterName(Label))
3614          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3615        break;
3616      case SC_Static:
3617      case SC_Extern:
3618      case SC_PrivateExtern:
3619        break;
3620      }
3621    }
3622
3623    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3624                                                Context, Label));
3625  }
3626
3627  // Diagnose shadowed variables before filtering for scope.
3628  if (!D.getCXXScopeSpec().isSet())
3629    CheckShadow(S, NewVD, Previous);
3630
3631  // Don't consider existing declarations that are in a different
3632  // scope and are out-of-semantic-context declarations (if the new
3633  // declaration has linkage).
3634  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3635                       isExplicitSpecialization);
3636
3637  if (!getLangOptions().CPlusPlus)
3638    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3639  else {
3640    // Merge the decl with the existing one if appropriate.
3641    if (!Previous.empty()) {
3642      if (Previous.isSingleResult() &&
3643          isa<FieldDecl>(Previous.getFoundDecl()) &&
3644          D.getCXXScopeSpec().isSet()) {
3645        // The user tried to define a non-static data member
3646        // out-of-line (C++ [dcl.meaning]p1).
3647        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3648          << D.getCXXScopeSpec().getRange();
3649        Previous.clear();
3650        NewVD->setInvalidDecl();
3651      }
3652    } else if (D.getCXXScopeSpec().isSet()) {
3653      // No previous declaration in the qualifying scope.
3654      Diag(D.getIdentifierLoc(), diag::err_no_member)
3655        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3656        << D.getCXXScopeSpec().getRange();
3657      NewVD->setInvalidDecl();
3658    }
3659
3660    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3661
3662    // This is an explicit specialization of a static data member. Check it.
3663    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3664        CheckMemberSpecialization(NewVD, Previous))
3665      NewVD->setInvalidDecl();
3666  }
3667
3668  // attributes declared post-definition are currently ignored
3669  // FIXME: This should be handled in attribute merging, not
3670  // here.
3671  if (Previous.isSingleResult()) {
3672    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3673    if (Def && (Def = Def->getDefinition()) &&
3674        Def != NewVD && D.hasAttributes()) {
3675      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3676      Diag(Def->getLocation(), diag::note_previous_definition);
3677    }
3678  }
3679
3680  // If this is a locally-scoped extern C variable, update the map of
3681  // such variables.
3682  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3683      !NewVD->isInvalidDecl())
3684    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3685
3686  // If there's a #pragma GCC visibility in scope, and this isn't a class
3687  // member, set the visibility of this variable.
3688  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3689    AddPushedVisibilityAttribute(NewVD);
3690
3691  MarkUnusedFileScopedDecl(NewVD);
3692
3693  return NewVD;
3694}
3695
3696/// \brief Diagnose variable or built-in function shadowing.  Implements
3697/// -Wshadow.
3698///
3699/// This method is called whenever a VarDecl is added to a "useful"
3700/// scope.
3701///
3702/// \param S the scope in which the shadowing name is being declared
3703/// \param R the lookup of the name
3704///
3705void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3706  // Return if warning is ignored.
3707  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3708        Diagnostic::Ignored)
3709    return;
3710
3711  // Don't diagnose declarations at file scope.
3712  if (D->hasGlobalStorage())
3713    return;
3714
3715  DeclContext *NewDC = D->getDeclContext();
3716
3717  // Only diagnose if we're shadowing an unambiguous field or variable.
3718  if (R.getResultKind() != LookupResult::Found)
3719    return;
3720
3721  NamedDecl* ShadowedDecl = R.getFoundDecl();
3722  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3723    return;
3724
3725  // Fields are not shadowed by variables in C++ static methods.
3726  if (isa<FieldDecl>(ShadowedDecl))
3727    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3728      if (MD->isStatic())
3729        return;
3730
3731  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3732    if (shadowedVar->isExternC()) {
3733      // For shadowing external vars, make sure that we point to the global
3734      // declaration, not a locally scoped extern declaration.
3735      for (VarDecl::redecl_iterator
3736             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3737           I != E; ++I)
3738        if (I->isFileVarDecl()) {
3739          ShadowedDecl = *I;
3740          break;
3741        }
3742    }
3743
3744  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3745
3746  // Only warn about certain kinds of shadowing for class members.
3747  if (NewDC && NewDC->isRecord()) {
3748    // In particular, don't warn about shadowing non-class members.
3749    if (!OldDC->isRecord())
3750      return;
3751
3752    // TODO: should we warn about static data members shadowing
3753    // static data members from base classes?
3754
3755    // TODO: don't diagnose for inaccessible shadowed members.
3756    // This is hard to do perfectly because we might friend the
3757    // shadowing context, but that's just a false negative.
3758  }
3759
3760  // Determine what kind of declaration we're shadowing.
3761  unsigned Kind;
3762  if (isa<RecordDecl>(OldDC)) {
3763    if (isa<FieldDecl>(ShadowedDecl))
3764      Kind = 3; // field
3765    else
3766      Kind = 2; // static data member
3767  } else if (OldDC->isFileContext())
3768    Kind = 1; // global
3769  else
3770    Kind = 0; // local
3771
3772  DeclarationName Name = R.getLookupName();
3773
3774  // Emit warning and note.
3775  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3776  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3777}
3778
3779/// \brief Check -Wshadow without the advantage of a previous lookup.
3780void Sema::CheckShadow(Scope *S, VarDecl *D) {
3781  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3782        Diagnostic::Ignored)
3783    return;
3784
3785  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3786                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3787  LookupName(R, S);
3788  CheckShadow(S, D, R);
3789}
3790
3791/// \brief Perform semantic checking on a newly-created variable
3792/// declaration.
3793///
3794/// This routine performs all of the type-checking required for a
3795/// variable declaration once it has been built. It is used both to
3796/// check variables after they have been parsed and their declarators
3797/// have been translated into a declaration, and to check variables
3798/// that have been instantiated from a template.
3799///
3800/// Sets NewVD->isInvalidDecl() if an error was encountered.
3801void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3802                                    LookupResult &Previous,
3803                                    bool &Redeclaration) {
3804  // If the decl is already known invalid, don't check it.
3805  if (NewVD->isInvalidDecl())
3806    return;
3807
3808  QualType T = NewVD->getType();
3809
3810  if (T->isObjCObjectType()) {
3811    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3812    return NewVD->setInvalidDecl();
3813  }
3814
3815  // Emit an error if an address space was applied to decl with local storage.
3816  // This includes arrays of objects with address space qualifiers, but not
3817  // automatic variables that point to other address spaces.
3818  // ISO/IEC TR 18037 S5.1.2
3819  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3820    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3821    return NewVD->setInvalidDecl();
3822  }
3823
3824  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3825      && !NewVD->hasAttr<BlocksAttr>())
3826    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3827
3828  bool isVM = T->isVariablyModifiedType();
3829  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3830      NewVD->hasAttr<BlocksAttr>())
3831    getCurFunction()->setHasBranchProtectedScope();
3832
3833  if ((isVM && NewVD->hasLinkage()) ||
3834      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3835    bool SizeIsNegative;
3836    llvm::APSInt Oversized;
3837    QualType FixedTy =
3838        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3839                                            Oversized);
3840
3841    if (FixedTy.isNull() && T->isVariableArrayType()) {
3842      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3843      // FIXME: This won't give the correct result for
3844      // int a[10][n];
3845      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3846
3847      if (NewVD->isFileVarDecl())
3848        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3849        << SizeRange;
3850      else if (NewVD->getStorageClass() == SC_Static)
3851        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3852        << SizeRange;
3853      else
3854        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3855        << SizeRange;
3856      return NewVD->setInvalidDecl();
3857    }
3858
3859    if (FixedTy.isNull()) {
3860      if (NewVD->isFileVarDecl())
3861        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3862      else
3863        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3864      return NewVD->setInvalidDecl();
3865    }
3866
3867    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3868    NewVD->setType(FixedTy);
3869  }
3870
3871  if (Previous.empty() && NewVD->isExternC()) {
3872    // Since we did not find anything by this name and we're declaring
3873    // an extern "C" variable, look for a non-visible extern "C"
3874    // declaration with the same name.
3875    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3876      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3877    if (Pos != LocallyScopedExternalDecls.end())
3878      Previous.addDecl(Pos->second);
3879  }
3880
3881  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3882    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3883      << T;
3884    return NewVD->setInvalidDecl();
3885  }
3886
3887  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3888    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3889    return NewVD->setInvalidDecl();
3890  }
3891
3892  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3893    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3894    return NewVD->setInvalidDecl();
3895  }
3896
3897  // Function pointers and references cannot have qualified function type, only
3898  // function pointer-to-members can do that.
3899  QualType Pointee;
3900  unsigned PtrOrRef = 0;
3901  if (const PointerType *Ptr = T->getAs<PointerType>())
3902    Pointee = Ptr->getPointeeType();
3903  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3904    Pointee = Ref->getPointeeType();
3905    PtrOrRef = 1;
3906  }
3907  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3908      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3909    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3910        << PtrOrRef;
3911    return NewVD->setInvalidDecl();
3912  }
3913
3914  if (!Previous.empty()) {
3915    Redeclaration = true;
3916    MergeVarDecl(NewVD, Previous);
3917  }
3918}
3919
3920/// \brief Data used with FindOverriddenMethod
3921struct FindOverriddenMethodData {
3922  Sema *S;
3923  CXXMethodDecl *Method;
3924};
3925
3926/// \brief Member lookup function that determines whether a given C++
3927/// method overrides a method in a base class, to be used with
3928/// CXXRecordDecl::lookupInBases().
3929static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3930                                 CXXBasePath &Path,
3931                                 void *UserData) {
3932  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3933
3934  FindOverriddenMethodData *Data
3935    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3936
3937  DeclarationName Name = Data->Method->getDeclName();
3938
3939  // FIXME: Do we care about other names here too?
3940  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3941    // We really want to find the base class destructor here.
3942    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3943    CanQualType CT = Data->S->Context.getCanonicalType(T);
3944
3945    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3946  }
3947
3948  for (Path.Decls = BaseRecord->lookup(Name);
3949       Path.Decls.first != Path.Decls.second;
3950       ++Path.Decls.first) {
3951    NamedDecl *D = *Path.Decls.first;
3952    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3953      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3954        return true;
3955    }
3956  }
3957
3958  return false;
3959}
3960
3961/// AddOverriddenMethods - See if a method overrides any in the base classes,
3962/// and if so, check that it's a valid override and remember it.
3963bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3964  // Look for virtual methods in base classes that this method might override.
3965  CXXBasePaths Paths;
3966  FindOverriddenMethodData Data;
3967  Data.Method = MD;
3968  Data.S = this;
3969  bool AddedAny = false;
3970  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3971    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3972         E = Paths.found_decls_end(); I != E; ++I) {
3973      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3974        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3975            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3976            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3977          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3978          AddedAny = true;
3979        }
3980      }
3981    }
3982  }
3983
3984  return AddedAny;
3985}
3986
3987static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3988  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3989                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3990  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3991  assert(!Prev.isAmbiguous() &&
3992         "Cannot have an ambiguity in previous-declaration lookup");
3993  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3994       Func != FuncEnd; ++Func) {
3995    if (isa<FunctionDecl>(*Func) &&
3996        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3997      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3998  }
3999}
4000
4001NamedDecl*
4002Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4003                              QualType R, TypeSourceInfo *TInfo,
4004                              LookupResult &Previous,
4005                              MultiTemplateParamsArg TemplateParamLists,
4006                              bool IsFunctionDefinition, bool &Redeclaration,
4007                              SourceLocation DefaultLoc) {
4008  assert(R.getTypePtr()->isFunctionType());
4009
4010  // TODO: consider using NameInfo for diagnostic.
4011  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4012  DeclarationName Name = NameInfo.getName();
4013  FunctionDecl::StorageClass SC = SC_None;
4014  switch (D.getDeclSpec().getStorageClassSpec()) {
4015  default: assert(0 && "Unknown storage class!");
4016  case DeclSpec::SCS_auto:
4017  case DeclSpec::SCS_register:
4018  case DeclSpec::SCS_mutable:
4019    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4020         diag::err_typecheck_sclass_func);
4021    D.setInvalidType();
4022    break;
4023  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4024  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4025  case DeclSpec::SCS_static: {
4026    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4027      // C99 6.7.1p5:
4028      //   The declaration of an identifier for a function that has
4029      //   block scope shall have no explicit storage-class specifier
4030      //   other than extern
4031      // See also (C++ [dcl.stc]p4).
4032      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4033           diag::err_static_block_func);
4034      SC = SC_None;
4035    } else
4036      SC = SC_Static;
4037    break;
4038  }
4039  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4040  }
4041
4042  if (D.getDeclSpec().isThreadSpecified())
4043    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4044
4045  // Do not allow returning a objc interface by-value.
4046  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4047    Diag(D.getIdentifierLoc(),
4048         diag::err_object_cannot_be_passed_returned_by_value) << 0
4049    << R->getAs<FunctionType>()->getResultType();
4050    D.setInvalidType();
4051  }
4052
4053  FunctionDecl *NewFD;
4054  bool isInline = D.getDeclSpec().isInlineSpecified();
4055  bool isFriend = false;
4056  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4057  FunctionDecl::StorageClass SCAsWritten
4058    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4059  FunctionTemplateDecl *FunctionTemplate = 0;
4060  bool isExplicitSpecialization = false;
4061  bool isFunctionTemplateSpecialization = false;
4062
4063  if (!getLangOptions().CPlusPlus) {
4064    assert(!DefaultLoc.isValid() && "Defaulted functions are a C++ feature");
4065
4066    // Determine whether the function was written with a
4067    // prototype. This true when:
4068    //   - there is a prototype in the declarator, or
4069    //   - the type R of the function is some kind of typedef or other reference
4070    //     to a type name (which eventually refers to a function type).
4071    bool HasPrototype =
4072    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4073    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4074
4075    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4076                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4077                                 HasPrototype);
4078    if (D.isInvalidType())
4079      NewFD->setInvalidDecl();
4080
4081    // Set the lexical context.
4082    NewFD->setLexicalDeclContext(CurContext);
4083    // Filter out previous declarations that don't match the scope.
4084    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4085                         /*ExplicitInstantiationOrSpecialization=*/false);
4086  } else {
4087    isFriend = D.getDeclSpec().isFriendSpecified();
4088    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4089    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4090    bool isVirtualOkay = false;
4091
4092    // Check that the return type is not an abstract class type.
4093    // For record types, this is done by the AbstractClassUsageDiagnoser once
4094    // the class has been completely parsed.
4095    if (!DC->isRecord() &&
4096      RequireNonAbstractType(D.getIdentifierLoc(),
4097                             R->getAs<FunctionType>()->getResultType(),
4098                             diag::err_abstract_type_in_decl,
4099                             AbstractReturnType))
4100      D.setInvalidType();
4101
4102    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4103      // This is a C++ constructor declaration.
4104      assert(DC->isRecord() &&
4105             "Constructors can only be declared in a member context");
4106
4107      R = CheckConstructorDeclarator(D, R, SC);
4108
4109      // Create the new declaration
4110      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4111                                         Context,
4112                                         cast<CXXRecordDecl>(DC),
4113                                         D.getSourceRange().getBegin(),
4114                                         NameInfo, R, TInfo,
4115                                         isExplicit, isInline,
4116                                         /*isImplicitlyDeclared=*/false);
4117
4118      NewFD = NewCD;
4119
4120      if (DefaultLoc.isValid()) {
4121        if (NewCD->isDefaultConstructor() ||
4122            NewCD->isCopyOrMoveConstructor()) {
4123          NewFD->setDefaulted();
4124          NewFD->setExplicitlyDefaulted();
4125        } else {
4126          Diag(DefaultLoc, diag::err_default_special_members);
4127        }
4128      }
4129    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4130      // This is a C++ destructor declaration.
4131      if (DC->isRecord()) {
4132        R = CheckDestructorDeclarator(D, R, SC);
4133
4134        NewFD = CXXDestructorDecl::Create(Context,
4135                                          cast<CXXRecordDecl>(DC),
4136                                          D.getSourceRange().getBegin(),
4137                                          NameInfo, R, TInfo,
4138                                          isInline,
4139                                          /*isImplicitlyDeclared=*/false);
4140        isVirtualOkay = true;
4141
4142        if (DefaultLoc.isValid()) {
4143          NewFD->setDefaulted();
4144          NewFD->setExplicitlyDefaulted();
4145        }
4146      } else {
4147        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4148
4149        // Create a FunctionDecl to satisfy the function definition parsing
4150        // code path.
4151        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4152                                     D.getIdentifierLoc(), Name, R, TInfo,
4153                                     SC, SCAsWritten, isInline,
4154                                     /*hasPrototype=*/true);
4155        D.setInvalidType();
4156      }
4157    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4158      if (!DC->isRecord()) {
4159        Diag(D.getIdentifierLoc(),
4160             diag::err_conv_function_not_member);
4161        return 0;
4162      }
4163
4164      if (DefaultLoc.isValid())
4165        Diag(DefaultLoc, diag::err_default_special_members);
4166
4167      CheckConversionDeclarator(D, R, SC);
4168      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4169                                        D.getSourceRange().getBegin(),
4170                                        NameInfo, R, TInfo,
4171                                        isInline, isExplicit,
4172                                        SourceLocation());
4173
4174      isVirtualOkay = true;
4175    } else if (DC->isRecord()) {
4176      // If the of the function is the same as the name of the record, then this
4177      // must be an invalid constructor that has a return type.
4178      // (The parser checks for a return type and makes the declarator a
4179      // constructor if it has no return type).
4180      // must have an invalid constructor that has a return type
4181      if (Name.getAsIdentifierInfo() &&
4182          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4183        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4184          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4185          << SourceRange(D.getIdentifierLoc());
4186        return 0;
4187      }
4188
4189      bool isStatic = SC == SC_Static;
4190
4191      // [class.free]p1:
4192      // Any allocation function for a class T is a static member
4193      // (even if not explicitly declared static).
4194      if (Name.getCXXOverloadedOperator() == OO_New ||
4195          Name.getCXXOverloadedOperator() == OO_Array_New)
4196        isStatic = true;
4197
4198      // [class.free]p6 Any deallocation function for a class X is a static member
4199      // (even if not explicitly declared static).
4200      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4201          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4202        isStatic = true;
4203
4204      // This is a C++ method declaration.
4205      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4206                                               Context, cast<CXXRecordDecl>(DC),
4207                                               D.getSourceRange().getBegin(),
4208                                               NameInfo, R, TInfo,
4209                                               isStatic, SCAsWritten, isInline,
4210                                               SourceLocation());
4211      NewFD = NewMD;
4212
4213      isVirtualOkay = !isStatic;
4214
4215      if (DefaultLoc.isValid()) {
4216        if (NewMD->isCopyAssignmentOperator() /* ||
4217            NewMD->isMoveAssignmentOperator() */) {
4218          NewFD->setDefaulted();
4219          NewFD->setExplicitlyDefaulted();
4220        } else {
4221          Diag(DefaultLoc, diag::err_default_special_members);
4222        }
4223      }
4224    } else {
4225      if (DefaultLoc.isValid())
4226        Diag(DefaultLoc, diag::err_default_special_members);
4227
4228      // Determine whether the function was written with a
4229      // prototype. This true when:
4230      //   - we're in C++ (where every function has a prototype),
4231      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4232                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4233                                   true/*HasPrototype*/);
4234    }
4235
4236    if (isFriend && !isInline && IsFunctionDefinition) {
4237      // C++ [class.friend]p5
4238      //   A function can be defined in a friend declaration of a
4239      //   class . . . . Such a function is implicitly inline.
4240      NewFD->setImplicitlyInline();
4241    }
4242
4243    SetNestedNameSpecifier(NewFD, D);
4244    isExplicitSpecialization = false;
4245    isFunctionTemplateSpecialization = false;
4246    if (D.isInvalidType())
4247      NewFD->setInvalidDecl();
4248
4249    // Set the lexical context. If the declarator has a C++
4250    // scope specifier, or is the object of a friend declaration, the
4251    // lexical context will be different from the semantic context.
4252    NewFD->setLexicalDeclContext(CurContext);
4253
4254    // Match up the template parameter lists with the scope specifier, then
4255    // determine whether we have a template or a template specialization.
4256    bool Invalid = false;
4257    if (TemplateParameterList *TemplateParams
4258          = MatchTemplateParametersToScopeSpecifier(
4259                                  D.getDeclSpec().getSourceRange().getBegin(),
4260                                  D.getCXXScopeSpec(),
4261                                  TemplateParamLists.get(),
4262                                  TemplateParamLists.size(),
4263                                  isFriend,
4264                                  isExplicitSpecialization,
4265                                  Invalid)) {
4266      if (TemplateParams->size() > 0) {
4267        // This is a function template
4268
4269        // Check that we can declare a template here.
4270        if (CheckTemplateDeclScope(S, TemplateParams))
4271          return 0;
4272
4273        // A destructor cannot be a template.
4274        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4275          Diag(NewFD->getLocation(), diag::err_destructor_template);
4276          return 0;
4277        }
4278
4279        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4280                                                        NewFD->getLocation(),
4281                                                        Name, TemplateParams,
4282                                                        NewFD);
4283        FunctionTemplate->setLexicalDeclContext(CurContext);
4284        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4285
4286        // For source fidelity, store the other template param lists.
4287        if (TemplateParamLists.size() > 1) {
4288          NewFD->setTemplateParameterListsInfo(Context,
4289                                               TemplateParamLists.size() - 1,
4290                                               TemplateParamLists.release());
4291        }
4292      } else {
4293        // This is a function template specialization.
4294        isFunctionTemplateSpecialization = true;
4295        // For source fidelity, store all the template param lists.
4296        NewFD->setTemplateParameterListsInfo(Context,
4297                                             TemplateParamLists.size(),
4298                                             TemplateParamLists.release());
4299
4300        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4301        if (isFriend) {
4302          // We want to remove the "template<>", found here.
4303          SourceRange RemoveRange = TemplateParams->getSourceRange();
4304
4305          // If we remove the template<> and the name is not a
4306          // template-id, we're actually silently creating a problem:
4307          // the friend declaration will refer to an untemplated decl,
4308          // and clearly the user wants a template specialization.  So
4309          // we need to insert '<>' after the name.
4310          SourceLocation InsertLoc;
4311          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4312            InsertLoc = D.getName().getSourceRange().getEnd();
4313            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4314          }
4315
4316          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4317            << Name << RemoveRange
4318            << FixItHint::CreateRemoval(RemoveRange)
4319            << FixItHint::CreateInsertion(InsertLoc, "<>");
4320        }
4321      }
4322    }
4323    else {
4324      // All template param lists were matched against the scope specifier:
4325      // this is NOT (an explicit specialization of) a template.
4326      if (TemplateParamLists.size() > 0)
4327        // For source fidelity, store all the template param lists.
4328        NewFD->setTemplateParameterListsInfo(Context,
4329                                             TemplateParamLists.size(),
4330                                             TemplateParamLists.release());
4331    }
4332
4333    if (Invalid) {
4334      NewFD->setInvalidDecl();
4335      if (FunctionTemplate)
4336        FunctionTemplate->setInvalidDecl();
4337    }
4338
4339    // C++ [dcl.fct.spec]p5:
4340    //   The virtual specifier shall only be used in declarations of
4341    //   nonstatic class member functions that appear within a
4342    //   member-specification of a class declaration; see 10.3.
4343    //
4344    if (isVirtual && !NewFD->isInvalidDecl()) {
4345      if (!isVirtualOkay) {
4346        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4347             diag::err_virtual_non_function);
4348      } else if (!CurContext->isRecord()) {
4349        // 'virtual' was specified outside of the class.
4350        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4351             diag::err_virtual_out_of_class)
4352          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4353      } else if (NewFD->getDescribedFunctionTemplate()) {
4354        // C++ [temp.mem]p3:
4355        //  A member function template shall not be virtual.
4356        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4357             diag::err_virtual_member_function_template)
4358          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4359      } else {
4360        // Okay: Add virtual to the method.
4361        NewFD->setVirtualAsWritten(true);
4362      }
4363    }
4364
4365    // C++ [dcl.fct.spec]p3:
4366    //  The inline specifier shall not appear on a block scope function declaration.
4367    if (isInline && !NewFD->isInvalidDecl()) {
4368      if (CurContext->isFunctionOrMethod()) {
4369        // 'inline' is not allowed on block scope function declaration.
4370        Diag(D.getDeclSpec().getInlineSpecLoc(),
4371             diag::err_inline_declaration_block_scope) << Name
4372          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4373      }
4374    }
4375
4376    // C++ [dcl.fct.spec]p6:
4377    //  The explicit specifier shall be used only in the declaration of a
4378    //  constructor or conversion function within its class definition; see 12.3.1
4379    //  and 12.3.2.
4380    if (isExplicit && !NewFD->isInvalidDecl()) {
4381      if (!CurContext->isRecord()) {
4382        // 'explicit' was specified outside of the class.
4383        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4384             diag::err_explicit_out_of_class)
4385          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4386      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4387                 !isa<CXXConversionDecl>(NewFD)) {
4388        // 'explicit' was specified on a function that wasn't a constructor
4389        // or conversion function.
4390        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4391             diag::err_explicit_non_ctor_or_conv_function)
4392          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4393      }
4394    }
4395
4396    // Filter out previous declarations that don't match the scope.
4397    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4398                         isExplicitSpecialization ||
4399                         isFunctionTemplateSpecialization);
4400
4401    if (isFriend) {
4402      // For now, claim that the objects have no previous declaration.
4403      if (FunctionTemplate) {
4404        FunctionTemplate->setObjectOfFriendDecl(false);
4405        FunctionTemplate->setAccess(AS_public);
4406      }
4407      NewFD->setObjectOfFriendDecl(false);
4408      NewFD->setAccess(AS_public);
4409    }
4410
4411    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4412      // A method is implicitly inline if it's defined in its class
4413      // definition.
4414      NewFD->setImplicitlyInline();
4415    }
4416
4417    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4418        !CurContext->isRecord()) {
4419      // C++ [class.static]p1:
4420      //   A data or function member of a class may be declared static
4421      //   in a class definition, in which case it is a static member of
4422      //   the class.
4423
4424      // Complain about the 'static' specifier if it's on an out-of-line
4425      // member function definition.
4426      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4427           diag::err_static_out_of_line)
4428        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4429    }
4430  }
4431
4432  // Handle GNU asm-label extension (encoded as an attribute).
4433  if (Expr *E = (Expr*) D.getAsmLabel()) {
4434    // The parser guarantees this is a string.
4435    StringLiteral *SE = cast<StringLiteral>(E);
4436    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4437                                                SE->getString()));
4438  }
4439
4440  // Copy the parameter declarations from the declarator D to the function
4441  // declaration NewFD, if they are available.  First scavenge them into Params.
4442  llvm::SmallVector<ParmVarDecl*, 16> Params;
4443  if (D.isFunctionDeclarator()) {
4444    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4445
4446    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4447    // function that takes no arguments, not a function that takes a
4448    // single void argument.
4449    // We let through "const void" here because Sema::GetTypeForDeclarator
4450    // already checks for that case.
4451    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4452        FTI.ArgInfo[0].Param &&
4453        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4454      // Empty arg list, don't push any params.
4455      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4456
4457      // In C++, the empty parameter-type-list must be spelled "void"; a
4458      // typedef of void is not permitted.
4459      if (getLangOptions().CPlusPlus &&
4460          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4461        bool IsTypeAlias = false;
4462        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4463          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4464        else if (const TemplateSpecializationType *TST =
4465                   Param->getType()->getAs<TemplateSpecializationType>())
4466          IsTypeAlias = TST->isTypeAlias();
4467        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4468          << IsTypeAlias;
4469      }
4470    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4471      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4472        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4473        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4474        Param->setDeclContext(NewFD);
4475        Params.push_back(Param);
4476
4477        if (Param->isInvalidDecl())
4478          NewFD->setInvalidDecl();
4479      }
4480    }
4481
4482  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4483    // When we're declaring a function with a typedef, typeof, etc as in the
4484    // following example, we'll need to synthesize (unnamed)
4485    // parameters for use in the declaration.
4486    //
4487    // @code
4488    // typedef void fn(int);
4489    // fn f;
4490    // @endcode
4491
4492    // Synthesize a parameter for each argument type.
4493    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4494         AE = FT->arg_type_end(); AI != AE; ++AI) {
4495      ParmVarDecl *Param =
4496        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4497      Param->setScopeInfo(0, Params.size());
4498      Params.push_back(Param);
4499    }
4500  } else {
4501    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4502           "Should not need args for typedef of non-prototype fn");
4503  }
4504  // Finally, we know we have the right number of parameters, install them.
4505  NewFD->setParams(Params.data(), Params.size());
4506
4507  // Process the non-inheritable attributes on this declaration.
4508  ProcessDeclAttributes(S, NewFD, D,
4509                        /*NonInheritable=*/true, /*Inheritable=*/false);
4510
4511  if (!getLangOptions().CPlusPlus) {
4512    // Perform semantic checking on the function declaration.
4513    bool isExplctSpecialization=false;
4514    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4515                             Redeclaration);
4516    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4517            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4518           "previous declaration set still overloaded");
4519  } else {
4520    // If the declarator is a template-id, translate the parser's template
4521    // argument list into our AST format.
4522    bool HasExplicitTemplateArgs = false;
4523    TemplateArgumentListInfo TemplateArgs;
4524    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4525      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4526      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4527      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4528      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4529                                         TemplateId->getTemplateArgs(),
4530                                         TemplateId->NumArgs);
4531      translateTemplateArguments(TemplateArgsPtr,
4532                                 TemplateArgs);
4533      TemplateArgsPtr.release();
4534
4535      HasExplicitTemplateArgs = true;
4536
4537      if (FunctionTemplate) {
4538        // Function template with explicit template arguments.
4539        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4540          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4541
4542        HasExplicitTemplateArgs = false;
4543      } else if (!isFunctionTemplateSpecialization &&
4544                 !D.getDeclSpec().isFriendSpecified()) {
4545        // We have encountered something that the user meant to be a
4546        // specialization (because it has explicitly-specified template
4547        // arguments) but that was not introduced with a "template<>" (or had
4548        // too few of them).
4549        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4550          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4551          << FixItHint::CreateInsertion(
4552                                        D.getDeclSpec().getSourceRange().getBegin(),
4553                                                  "template<> ");
4554        isFunctionTemplateSpecialization = true;
4555      } else {
4556        // "friend void foo<>(int);" is an implicit specialization decl.
4557        isFunctionTemplateSpecialization = true;
4558      }
4559    } else if (isFriend && isFunctionTemplateSpecialization) {
4560      // This combination is only possible in a recovery case;  the user
4561      // wrote something like:
4562      //   template <> friend void foo(int);
4563      // which we're recovering from as if the user had written:
4564      //   friend void foo<>(int);
4565      // Go ahead and fake up a template id.
4566      HasExplicitTemplateArgs = true;
4567        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4568      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4569    }
4570
4571    // If it's a friend (and only if it's a friend), it's possible
4572    // that either the specialized function type or the specialized
4573    // template is dependent, and therefore matching will fail.  In
4574    // this case, don't check the specialization yet.
4575    if (isFunctionTemplateSpecialization && isFriend &&
4576        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4577      assert(HasExplicitTemplateArgs &&
4578             "friend function specialization without template args");
4579      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4580                                                       Previous))
4581        NewFD->setInvalidDecl();
4582    } else if (isFunctionTemplateSpecialization) {
4583      if (CurContext->isDependentContext() && CurContext->isRecord()
4584          && !isFriend) {
4585        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4586          << NewFD->getDeclName();
4587        NewFD->setInvalidDecl();
4588        return 0;
4589      } else if (CheckFunctionTemplateSpecialization(NewFD,
4590                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4591                                                     Previous))
4592        NewFD->setInvalidDecl();
4593    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4594      if (CheckMemberSpecialization(NewFD, Previous))
4595          NewFD->setInvalidDecl();
4596    }
4597
4598    // Perform semantic checking on the function declaration.
4599    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4600                             Redeclaration);
4601
4602    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4603            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4604           "previous declaration set still overloaded");
4605
4606    NamedDecl *PrincipalDecl = (FunctionTemplate
4607                                ? cast<NamedDecl>(FunctionTemplate)
4608                                : NewFD);
4609
4610    if (isFriend && Redeclaration) {
4611      AccessSpecifier Access = AS_public;
4612      if (!NewFD->isInvalidDecl())
4613        Access = NewFD->getPreviousDeclaration()->getAccess();
4614
4615      NewFD->setAccess(Access);
4616      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4617
4618      PrincipalDecl->setObjectOfFriendDecl(true);
4619    }
4620
4621    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4622        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4623      PrincipalDecl->setNonMemberOperator();
4624
4625    // If we have a function template, check the template parameter
4626    // list. This will check and merge default template arguments.
4627    if (FunctionTemplate) {
4628      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4629      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4630                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4631                            D.getDeclSpec().isFriendSpecified()
4632                              ? (IsFunctionDefinition
4633                                   ? TPC_FriendFunctionTemplateDefinition
4634                                   : TPC_FriendFunctionTemplate)
4635                              : (D.getCXXScopeSpec().isSet() &&
4636                                 DC && DC->isRecord() &&
4637                                 DC->isDependentContext())
4638                                  ? TPC_ClassTemplateMember
4639                                  : TPC_FunctionTemplate);
4640    }
4641
4642    if (NewFD->isInvalidDecl()) {
4643      // Ignore all the rest of this.
4644    } else if (!Redeclaration) {
4645      // Fake up an access specifier if it's supposed to be a class member.
4646      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4647        NewFD->setAccess(AS_public);
4648
4649      // Qualified decls generally require a previous declaration.
4650      if (D.getCXXScopeSpec().isSet()) {
4651        // ...with the major exception of templated-scope or
4652        // dependent-scope friend declarations.
4653
4654        // TODO: we currently also suppress this check in dependent
4655        // contexts because (1) the parameter depth will be off when
4656        // matching friend templates and (2) we might actually be
4657        // selecting a friend based on a dependent factor.  But there
4658        // are situations where these conditions don't apply and we
4659        // can actually do this check immediately.
4660        if (isFriend &&
4661            (TemplateParamLists.size() ||
4662             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4663             CurContext->isDependentContext())) {
4664              // ignore these
4665            } else {
4666              // The user tried to provide an out-of-line definition for a
4667              // function that is a member of a class or namespace, but there
4668              // was no such member function declared (C++ [class.mfct]p2,
4669              // C++ [namespace.memdef]p2). For example:
4670              //
4671              // class X {
4672              //   void f() const;
4673              // };
4674              //
4675              // void X::f() { } // ill-formed
4676              //
4677              // Complain about this problem, and attempt to suggest close
4678              // matches (e.g., those that differ only in cv-qualifiers and
4679              // whether the parameter types are references).
4680              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4681              << Name << DC << D.getCXXScopeSpec().getRange();
4682              NewFD->setInvalidDecl();
4683
4684              DiagnoseInvalidRedeclaration(*this, NewFD);
4685            }
4686
4687        // Unqualified local friend declarations are required to resolve
4688        // to something.
4689        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4690          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4691          NewFD->setInvalidDecl();
4692          DiagnoseInvalidRedeclaration(*this, NewFD);
4693        }
4694
4695    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4696               !isFriend && !isFunctionTemplateSpecialization &&
4697               !isExplicitSpecialization) {
4698      // An out-of-line member function declaration must also be a
4699      // definition (C++ [dcl.meaning]p1).
4700      // Note that this is not the case for explicit specializations of
4701      // function templates or member functions of class templates, per
4702      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4703      // for compatibility with old SWIG code which likes to generate them.
4704      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4705        << D.getCXXScopeSpec().getRange();
4706    }
4707  }
4708
4709
4710  // Handle attributes. We need to have merged decls when handling attributes
4711  // (for example to check for conflicts, etc).
4712  // FIXME: This needs to happen before we merge declarations. Then,
4713  // let attribute merging cope with attribute conflicts.
4714  ProcessDeclAttributes(S, NewFD, D,
4715                        /*NonInheritable=*/false, /*Inheritable=*/true);
4716
4717  // attributes declared post-definition are currently ignored
4718  // FIXME: This should happen during attribute merging
4719  if (Redeclaration && Previous.isSingleResult()) {
4720    const FunctionDecl *Def;
4721    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4722    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4723      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4724      Diag(Def->getLocation(), diag::note_previous_definition);
4725    }
4726  }
4727
4728  AddKnownFunctionAttributes(NewFD);
4729
4730  if (NewFD->hasAttr<OverloadableAttr>() &&
4731      !NewFD->getType()->getAs<FunctionProtoType>()) {
4732    Diag(NewFD->getLocation(),
4733         diag::err_attribute_overloadable_no_prototype)
4734      << NewFD;
4735
4736    // Turn this into a variadic function with no parameters.
4737    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4738    FunctionProtoType::ExtProtoInfo EPI;
4739    EPI.Variadic = true;
4740    EPI.ExtInfo = FT->getExtInfo();
4741
4742    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4743    NewFD->setType(R);
4744  }
4745
4746  // If there's a #pragma GCC visibility in scope, and this isn't a class
4747  // member, set the visibility of this function.
4748  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4749    AddPushedVisibilityAttribute(NewFD);
4750
4751  // If this is a locally-scoped extern C function, update the
4752  // map of such names.
4753  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4754      && !NewFD->isInvalidDecl())
4755    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4756
4757  // Set this FunctionDecl's range up to the right paren.
4758  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4759
4760  if (getLangOptions().CPlusPlus) {
4761    if (FunctionTemplate) {
4762      if (NewFD->isInvalidDecl())
4763        FunctionTemplate->setInvalidDecl();
4764      return FunctionTemplate;
4765    }
4766  }
4767
4768  MarkUnusedFileScopedDecl(NewFD);
4769
4770  if (getLangOptions().CUDA)
4771    if (IdentifierInfo *II = NewFD->getIdentifier())
4772      if (!NewFD->isInvalidDecl() &&
4773          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4774        if (II->isStr("cudaConfigureCall")) {
4775          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4776            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4777
4778          Context.setcudaConfigureCallDecl(NewFD);
4779        }
4780      }
4781
4782  return NewFD;
4783}
4784
4785/// \brief Perform semantic checking of a new function declaration.
4786///
4787/// Performs semantic analysis of the new function declaration
4788/// NewFD. This routine performs all semantic checking that does not
4789/// require the actual declarator involved in the declaration, and is
4790/// used both for the declaration of functions as they are parsed
4791/// (called via ActOnDeclarator) and for the declaration of functions
4792/// that have been instantiated via C++ template instantiation (called
4793/// via InstantiateDecl).
4794///
4795/// \param IsExplicitSpecialiation whether this new function declaration is
4796/// an explicit specialization of the previous declaration.
4797///
4798/// This sets NewFD->isInvalidDecl() to true if there was an error.
4799void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4800                                    LookupResult &Previous,
4801                                    bool IsExplicitSpecialization,
4802                                    bool &Redeclaration) {
4803  // If NewFD is already known erroneous, don't do any of this checking.
4804  if (NewFD->isInvalidDecl()) {
4805    // If this is a class member, mark the class invalid immediately.
4806    // This avoids some consistency errors later.
4807    if (isa<CXXMethodDecl>(NewFD))
4808      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4809
4810    return;
4811  }
4812
4813  if (NewFD->getResultType()->isVariablyModifiedType()) {
4814    // Functions returning a variably modified type violate C99 6.7.5.2p2
4815    // because all functions have linkage.
4816    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4817    return NewFD->setInvalidDecl();
4818  }
4819
4820  if (NewFD->isMain())
4821    CheckMain(NewFD);
4822
4823  // Check for a previous declaration of this name.
4824  if (Previous.empty() && NewFD->isExternC()) {
4825    // Since we did not find anything by this name and we're declaring
4826    // an extern "C" function, look for a non-visible extern "C"
4827    // declaration with the same name.
4828    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4829      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4830    if (Pos != LocallyScopedExternalDecls.end())
4831      Previous.addDecl(Pos->second);
4832  }
4833
4834  // Merge or overload the declaration with an existing declaration of
4835  // the same name, if appropriate.
4836  if (!Previous.empty()) {
4837    // Determine whether NewFD is an overload of PrevDecl or
4838    // a declaration that requires merging. If it's an overload,
4839    // there's no more work to do here; we'll just add the new
4840    // function to the scope.
4841
4842    NamedDecl *OldDecl = 0;
4843    if (!AllowOverloadingOfFunction(Previous, Context)) {
4844      Redeclaration = true;
4845      OldDecl = Previous.getFoundDecl();
4846    } else {
4847      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4848                            /*NewIsUsingDecl*/ false)) {
4849      case Ovl_Match:
4850        Redeclaration = true;
4851        break;
4852
4853      case Ovl_NonFunction:
4854        Redeclaration = true;
4855        break;
4856
4857      case Ovl_Overload:
4858        Redeclaration = false;
4859        break;
4860      }
4861
4862      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4863        // If a function name is overloadable in C, then every function
4864        // with that name must be marked "overloadable".
4865        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4866          << Redeclaration << NewFD;
4867        NamedDecl *OverloadedDecl = 0;
4868        if (Redeclaration)
4869          OverloadedDecl = OldDecl;
4870        else if (!Previous.empty())
4871          OverloadedDecl = Previous.getRepresentativeDecl();
4872        if (OverloadedDecl)
4873          Diag(OverloadedDecl->getLocation(),
4874               diag::note_attribute_overloadable_prev_overload);
4875        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4876                                                        Context));
4877      }
4878    }
4879
4880    if (Redeclaration) {
4881      // NewFD and OldDecl represent declarations that need to be
4882      // merged.
4883      if (MergeFunctionDecl(NewFD, OldDecl))
4884        return NewFD->setInvalidDecl();
4885
4886      Previous.clear();
4887      Previous.addDecl(OldDecl);
4888
4889      if (FunctionTemplateDecl *OldTemplateDecl
4890                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4891        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4892        FunctionTemplateDecl *NewTemplateDecl
4893          = NewFD->getDescribedFunctionTemplate();
4894        assert(NewTemplateDecl && "Template/non-template mismatch");
4895        if (CXXMethodDecl *Method
4896              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4897          Method->setAccess(OldTemplateDecl->getAccess());
4898          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4899        }
4900
4901        // If this is an explicit specialization of a member that is a function
4902        // template, mark it as a member specialization.
4903        if (IsExplicitSpecialization &&
4904            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4905          NewTemplateDecl->setMemberSpecialization();
4906          assert(OldTemplateDecl->isMemberSpecialization());
4907        }
4908      } else {
4909        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4910          NewFD->setAccess(OldDecl->getAccess());
4911        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4912      }
4913    }
4914  }
4915
4916  // Semantic checking for this function declaration (in isolation).
4917  if (getLangOptions().CPlusPlus) {
4918    // C++-specific checks.
4919    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4920      CheckConstructor(Constructor);
4921    } else if (CXXDestructorDecl *Destructor =
4922                dyn_cast<CXXDestructorDecl>(NewFD)) {
4923      CXXRecordDecl *Record = Destructor->getParent();
4924      QualType ClassType = Context.getTypeDeclType(Record);
4925
4926      // FIXME: Shouldn't we be able to perform this check even when the class
4927      // type is dependent? Both gcc and edg can handle that.
4928      if (!ClassType->isDependentType()) {
4929        DeclarationName Name
4930          = Context.DeclarationNames.getCXXDestructorName(
4931                                        Context.getCanonicalType(ClassType));
4932        if (NewFD->getDeclName() != Name) {
4933          Diag(NewFD->getLocation(), diag::err_destructor_name);
4934          return NewFD->setInvalidDecl();
4935        }
4936      }
4937    } else if (CXXConversionDecl *Conversion
4938               = dyn_cast<CXXConversionDecl>(NewFD)) {
4939      ActOnConversionDeclarator(Conversion);
4940    }
4941
4942    // Find any virtual functions that this function overrides.
4943    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4944      if (!Method->isFunctionTemplateSpecialization() &&
4945          !Method->getDescribedFunctionTemplate()) {
4946        if (AddOverriddenMethods(Method->getParent(), Method)) {
4947          // If the function was marked as "static", we have a problem.
4948          if (NewFD->getStorageClass() == SC_Static) {
4949            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4950              << NewFD->getDeclName();
4951            for (CXXMethodDecl::method_iterator
4952                      Overridden = Method->begin_overridden_methods(),
4953                   OverriddenEnd = Method->end_overridden_methods();
4954                 Overridden != OverriddenEnd;
4955                 ++Overridden) {
4956              Diag((*Overridden)->getLocation(),
4957                   diag::note_overridden_virtual_function);
4958            }
4959          }
4960        }
4961      }
4962    }
4963
4964    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4965    if (NewFD->isOverloadedOperator() &&
4966        CheckOverloadedOperatorDeclaration(NewFD))
4967      return NewFD->setInvalidDecl();
4968
4969    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4970    if (NewFD->getLiteralIdentifier() &&
4971        CheckLiteralOperatorDeclaration(NewFD))
4972      return NewFD->setInvalidDecl();
4973
4974    // In C++, check default arguments now that we have merged decls. Unless
4975    // the lexical context is the class, because in this case this is done
4976    // during delayed parsing anyway.
4977    if (!CurContext->isRecord())
4978      CheckCXXDefaultArguments(NewFD);
4979
4980    // If this function declares a builtin function, check the type of this
4981    // declaration against the expected type for the builtin.
4982    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4983      ASTContext::GetBuiltinTypeError Error;
4984      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4985      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4986        // The type of this function differs from the type of the builtin,
4987        // so forget about the builtin entirely.
4988        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4989      }
4990    }
4991  }
4992}
4993
4994void Sema::CheckMain(FunctionDecl* FD) {
4995  // C++ [basic.start.main]p3:  A program that declares main to be inline
4996  //   or static is ill-formed.
4997  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4998  //   shall not appear in a declaration of main.
4999  // static main is not an error under C99, but we should warn about it.
5000  bool isInline = FD->isInlineSpecified();
5001  bool isStatic = FD->getStorageClass() == SC_Static;
5002  if (isInline || isStatic) {
5003    unsigned diagID = diag::warn_unusual_main_decl;
5004    if (isInline || getLangOptions().CPlusPlus)
5005      diagID = diag::err_unusual_main_decl;
5006
5007    int which = isStatic + (isInline << 1) - 1;
5008    Diag(FD->getLocation(), diagID) << which;
5009  }
5010
5011  QualType T = FD->getType();
5012  assert(T->isFunctionType() && "function decl is not of function type");
5013  const FunctionType* FT = T->getAs<FunctionType>();
5014
5015  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5016    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5017    FD->setInvalidDecl(true);
5018  }
5019
5020  // Treat protoless main() as nullary.
5021  if (isa<FunctionNoProtoType>(FT)) return;
5022
5023  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5024  unsigned nparams = FTP->getNumArgs();
5025  assert(FD->getNumParams() == nparams);
5026
5027  bool HasExtraParameters = (nparams > 3);
5028
5029  // Darwin passes an undocumented fourth argument of type char**.  If
5030  // other platforms start sprouting these, the logic below will start
5031  // getting shifty.
5032  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5033    HasExtraParameters = false;
5034
5035  if (HasExtraParameters) {
5036    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5037    FD->setInvalidDecl(true);
5038    nparams = 3;
5039  }
5040
5041  // FIXME: a lot of the following diagnostics would be improved
5042  // if we had some location information about types.
5043
5044  QualType CharPP =
5045    Context.getPointerType(Context.getPointerType(Context.CharTy));
5046  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5047
5048  for (unsigned i = 0; i < nparams; ++i) {
5049    QualType AT = FTP->getArgType(i);
5050
5051    bool mismatch = true;
5052
5053    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5054      mismatch = false;
5055    else if (Expected[i] == CharPP) {
5056      // As an extension, the following forms are okay:
5057      //   char const **
5058      //   char const * const *
5059      //   char * const *
5060
5061      QualifierCollector qs;
5062      const PointerType* PT;
5063      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5064          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5065          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5066        qs.removeConst();
5067        mismatch = !qs.empty();
5068      }
5069    }
5070
5071    if (mismatch) {
5072      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5073      // TODO: suggest replacing given type with expected type
5074      FD->setInvalidDecl(true);
5075    }
5076  }
5077
5078  if (nparams == 1 && !FD->isInvalidDecl()) {
5079    Diag(FD->getLocation(), diag::warn_main_one_arg);
5080  }
5081
5082  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5083    Diag(FD->getLocation(), diag::err_main_template_decl);
5084    FD->setInvalidDecl();
5085  }
5086}
5087
5088bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5089  // FIXME: Need strict checking.  In C89, we need to check for
5090  // any assignment, increment, decrement, function-calls, or
5091  // commas outside of a sizeof.  In C99, it's the same list,
5092  // except that the aforementioned are allowed in unevaluated
5093  // expressions.  Everything else falls under the
5094  // "may accept other forms of constant expressions" exception.
5095  // (We never end up here for C++, so the constant expression
5096  // rules there don't matter.)
5097  if (Init->isConstantInitializer(Context, false))
5098    return false;
5099  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5100    << Init->getSourceRange();
5101  return true;
5102}
5103
5104namespace {
5105  // Visits an initialization expression to see if OrigDecl is evaluated in
5106  // its own initialization and throws a warning if it does.
5107  class SelfReferenceChecker
5108      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5109    Sema &S;
5110    Decl *OrigDecl;
5111
5112  public:
5113    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5114
5115    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5116                                                    S(S), OrigDecl(OrigDecl) { }
5117
5118    void VisitExpr(Expr *E) {
5119      if (isa<ObjCMessageExpr>(*E)) return;
5120      Inherited::VisitExpr(E);
5121    }
5122
5123    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5124      CheckForSelfReference(E);
5125      Inherited::VisitImplicitCastExpr(E);
5126    }
5127
5128    void CheckForSelfReference(ImplicitCastExpr *E) {
5129      if (E->getCastKind() != CK_LValueToRValue) return;
5130      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5131      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5132      if (!DRE) return;
5133      Decl* ReferenceDecl = DRE->getDecl();
5134      if (OrigDecl != ReferenceDecl) return;
5135      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5136                          Sema::NotForRedeclaration);
5137      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5138        << Result.getLookupName() << OrigDecl->getLocation()
5139        << SubExpr->getSourceRange();
5140    }
5141  };
5142}
5143
5144/// AddInitializerToDecl - Adds the initializer Init to the
5145/// declaration dcl. If DirectInit is true, this is C++ direct
5146/// initialization rather than copy initialization.
5147void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5148                                bool DirectInit, bool TypeMayContainAuto) {
5149  // If there is no declaration, there was an error parsing it.  Just ignore
5150  // the initializer.
5151  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5152    return;
5153
5154  // Check for self-references within variable initializers.
5155  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5156    // Variables declared within a function/method body are handled
5157    // by a dataflow analysis.
5158    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5159      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5160  }
5161  else {
5162    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5163  }
5164
5165  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5166    // With declarators parsed the way they are, the parser cannot
5167    // distinguish between a normal initializer and a pure-specifier.
5168    // Thus this grotesque test.
5169    IntegerLiteral *IL;
5170    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5171        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5172      CheckPureMethod(Method, Init->getSourceRange());
5173    else {
5174      Diag(Method->getLocation(), diag::err_member_function_initialization)
5175        << Method->getDeclName() << Init->getSourceRange();
5176      Method->setInvalidDecl();
5177    }
5178    return;
5179  }
5180
5181  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5182  if (!VDecl) {
5183    if (getLangOptions().CPlusPlus &&
5184        RealDecl->getLexicalDeclContext()->isRecord() &&
5185        isa<NamedDecl>(RealDecl))
5186      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5187    else
5188      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5189    RealDecl->setInvalidDecl();
5190    return;
5191  }
5192
5193  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5194  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5195    TypeSourceInfo *DeducedType = 0;
5196    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5197      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5198        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5199        << Init->getSourceRange();
5200    if (!DeducedType) {
5201      RealDecl->setInvalidDecl();
5202      return;
5203    }
5204    VDecl->setTypeSourceInfo(DeducedType);
5205    VDecl->setType(DeducedType->getType());
5206
5207    // If this is a redeclaration, check that the type we just deduced matches
5208    // the previously declared type.
5209    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5210      MergeVarDeclTypes(VDecl, Old);
5211  }
5212
5213
5214  // A definition must end up with a complete type, which means it must be
5215  // complete with the restriction that an array type might be completed by the
5216  // initializer; note that later code assumes this restriction.
5217  QualType BaseDeclType = VDecl->getType();
5218  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5219    BaseDeclType = Array->getElementType();
5220  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5221                          diag::err_typecheck_decl_incomplete_type)) {
5222    RealDecl->setInvalidDecl();
5223    return;
5224  }
5225
5226  // The variable can not have an abstract class type.
5227  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5228                             diag::err_abstract_type_in_decl,
5229                             AbstractVariableType))
5230    VDecl->setInvalidDecl();
5231
5232  const VarDecl *Def;
5233  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5234    Diag(VDecl->getLocation(), diag::err_redefinition)
5235      << VDecl->getDeclName();
5236    Diag(Def->getLocation(), diag::note_previous_definition);
5237    VDecl->setInvalidDecl();
5238    return;
5239  }
5240
5241  const VarDecl* PrevInit = 0;
5242  if (getLangOptions().CPlusPlus) {
5243    // C++ [class.static.data]p4
5244    //   If a static data member is of const integral or const
5245    //   enumeration type, its declaration in the class definition can
5246    //   specify a constant-initializer which shall be an integral
5247    //   constant expression (5.19). In that case, the member can appear
5248    //   in integral constant expressions. The member shall still be
5249    //   defined in a namespace scope if it is used in the program and the
5250    //   namespace scope definition shall not contain an initializer.
5251    //
5252    // We already performed a redefinition check above, but for static
5253    // data members we also need to check whether there was an in-class
5254    // declaration with an initializer.
5255    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5256      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5257      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5258      return;
5259    }
5260
5261    if (VDecl->hasLocalStorage())
5262      getCurFunction()->setHasBranchProtectedScope();
5263
5264    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5265      VDecl->setInvalidDecl();
5266      return;
5267    }
5268  }
5269
5270  // Capture the variable that is being initialized and the style of
5271  // initialization.
5272  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5273
5274  // FIXME: Poor source location information.
5275  InitializationKind Kind
5276    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5277                                                   Init->getLocStart(),
5278                                                   Init->getLocEnd())
5279                : InitializationKind::CreateCopy(VDecl->getLocation(),
5280                                                 Init->getLocStart());
5281
5282  // Get the decls type and save a reference for later, since
5283  // CheckInitializerTypes may change it.
5284  QualType DclT = VDecl->getType(), SavT = DclT;
5285  if (VDecl->isLocalVarDecl()) {
5286    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5287      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5288      VDecl->setInvalidDecl();
5289    } else if (!VDecl->isInvalidDecl()) {
5290      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5291      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5292                                                MultiExprArg(*this, &Init, 1),
5293                                                &DclT);
5294      if (Result.isInvalid()) {
5295        VDecl->setInvalidDecl();
5296        return;
5297      }
5298
5299      Init = Result.takeAs<Expr>();
5300
5301      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5302      // Don't check invalid declarations to avoid emitting useless diagnostics.
5303      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5304        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5305          CheckForConstantInitializer(Init, DclT);
5306      }
5307    }
5308  } else if (VDecl->isStaticDataMember() &&
5309             VDecl->getLexicalDeclContext()->isRecord()) {
5310    // This is an in-class initialization for a static data member, e.g.,
5311    //
5312    // struct S {
5313    //   static const int value = 17;
5314    // };
5315
5316    // Try to perform the initialization regardless.
5317    if (!VDecl->isInvalidDecl()) {
5318      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5319      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5320                                          MultiExprArg(*this, &Init, 1),
5321                                          &DclT);
5322      if (Result.isInvalid()) {
5323        VDecl->setInvalidDecl();
5324        return;
5325      }
5326
5327      Init = Result.takeAs<Expr>();
5328    }
5329
5330    // C++ [class.mem]p4:
5331    //   A member-declarator can contain a constant-initializer only
5332    //   if it declares a static member (9.4) of const integral or
5333    //   const enumeration type, see 9.4.2.
5334    QualType T = VDecl->getType();
5335
5336    // Do nothing on dependent types.
5337    if (T->isDependentType()) {
5338
5339    // Require constness.
5340    } else if (!T.isConstQualified()) {
5341      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5342        << Init->getSourceRange();
5343      VDecl->setInvalidDecl();
5344
5345    // We allow integer constant expressions in all cases.
5346    } else if (T->isIntegralOrEnumerationType()) {
5347      if (!Init->isValueDependent()) {
5348        // Check whether the expression is a constant expression.
5349        llvm::APSInt Value;
5350        SourceLocation Loc;
5351        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5352          Diag(Loc, diag::err_in_class_initializer_non_constant)
5353            << Init->getSourceRange();
5354          VDecl->setInvalidDecl();
5355        }
5356      }
5357
5358    // We allow floating-point constants as an extension in C++03, and
5359    // C++0x has far more complicated rules that we don't really
5360    // implement fully.
5361    } else {
5362      bool Allowed = false;
5363      if (getLangOptions().CPlusPlus0x) {
5364        Allowed = T->isLiteralType();
5365      } else if (T->isFloatingType()) { // also permits complex, which is ok
5366        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5367          << T << Init->getSourceRange();
5368        Allowed = true;
5369      }
5370
5371      if (!Allowed) {
5372        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5373          << T << Init->getSourceRange();
5374        VDecl->setInvalidDecl();
5375
5376      // TODO: there are probably expressions that pass here that shouldn't.
5377      } else if (!Init->isValueDependent() &&
5378                 !Init->isConstantInitializer(Context, false)) {
5379        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5380          << Init->getSourceRange();
5381        VDecl->setInvalidDecl();
5382      }
5383    }
5384  } else if (VDecl->isFileVarDecl()) {
5385    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5386        (!getLangOptions().CPlusPlus ||
5387         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5388      Diag(VDecl->getLocation(), diag::warn_extern_init);
5389    if (!VDecl->isInvalidDecl()) {
5390      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5391      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5392                                                MultiExprArg(*this, &Init, 1),
5393                                                &DclT);
5394      if (Result.isInvalid()) {
5395        VDecl->setInvalidDecl();
5396        return;
5397      }
5398
5399      Init = Result.takeAs<Expr>();
5400    }
5401
5402    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5403    // Don't check invalid declarations to avoid emitting useless diagnostics.
5404    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5405      // C99 6.7.8p4. All file scoped initializers need to be constant.
5406      CheckForConstantInitializer(Init, DclT);
5407    }
5408  }
5409  // If the type changed, it means we had an incomplete type that was
5410  // completed by the initializer. For example:
5411  //   int ary[] = { 1, 3, 5 };
5412  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5413  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5414    VDecl->setType(DclT);
5415    Init->setType(DclT);
5416  }
5417
5418
5419  // If this variable is a local declaration with record type, make sure it
5420  // doesn't have a flexible member initialization.  We only support this as a
5421  // global/static definition.
5422  if (VDecl->hasLocalStorage())
5423    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5424      if (RT->getDecl()->hasFlexibleArrayMember()) {
5425        // Check whether the initializer tries to initialize the flexible
5426        // array member itself to anything other than an empty initializer list.
5427        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5428          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5429                                         RT->getDecl()->field_end()) - 1;
5430          if (Index < ILE->getNumInits() &&
5431              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5432                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5433            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5434            VDecl->setInvalidDecl();
5435          }
5436        }
5437      }
5438
5439  // Check any implicit conversions within the expression.
5440  CheckImplicitConversions(Init, VDecl->getLocation());
5441
5442  Init = MaybeCreateExprWithCleanups(Init);
5443  // Attach the initializer to the decl.
5444  VDecl->setInit(Init);
5445
5446  CheckCompleteVariableDeclaration(VDecl);
5447}
5448
5449/// ActOnInitializerError - Given that there was an error parsing an
5450/// initializer for the given declaration, try to return to some form
5451/// of sanity.
5452void Sema::ActOnInitializerError(Decl *D) {
5453  // Our main concern here is re-establishing invariants like "a
5454  // variable's type is either dependent or complete".
5455  if (!D || D->isInvalidDecl()) return;
5456
5457  VarDecl *VD = dyn_cast<VarDecl>(D);
5458  if (!VD) return;
5459
5460  // Auto types are meaningless if we can't make sense of the initializer.
5461  if (ParsingInitForAutoVars.count(D)) {
5462    D->setInvalidDecl();
5463    return;
5464  }
5465
5466  QualType Ty = VD->getType();
5467  if (Ty->isDependentType()) return;
5468
5469  // Require a complete type.
5470  if (RequireCompleteType(VD->getLocation(),
5471                          Context.getBaseElementType(Ty),
5472                          diag::err_typecheck_decl_incomplete_type)) {
5473    VD->setInvalidDecl();
5474    return;
5475  }
5476
5477  // Require an abstract type.
5478  if (RequireNonAbstractType(VD->getLocation(), Ty,
5479                             diag::err_abstract_type_in_decl,
5480                             AbstractVariableType)) {
5481    VD->setInvalidDecl();
5482    return;
5483  }
5484
5485  // Don't bother complaining about constructors or destructors,
5486  // though.
5487}
5488
5489void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5490                                  bool TypeMayContainAuto) {
5491  // If there is no declaration, there was an error parsing it. Just ignore it.
5492  if (RealDecl == 0)
5493    return;
5494
5495  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5496    QualType Type = Var->getType();
5497
5498    // C++0x [dcl.spec.auto]p3
5499    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5500      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5501        << Var->getDeclName() << Type;
5502      Var->setInvalidDecl();
5503      return;
5504    }
5505
5506    switch (Var->isThisDeclarationADefinition()) {
5507    case VarDecl::Definition:
5508      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5509        break;
5510
5511      // We have an out-of-line definition of a static data member
5512      // that has an in-class initializer, so we type-check this like
5513      // a declaration.
5514      //
5515      // Fall through
5516
5517    case VarDecl::DeclarationOnly:
5518      // It's only a declaration.
5519
5520      // Block scope. C99 6.7p7: If an identifier for an object is
5521      // declared with no linkage (C99 6.2.2p6), the type for the
5522      // object shall be complete.
5523      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5524          !Var->getLinkage() && !Var->isInvalidDecl() &&
5525          RequireCompleteType(Var->getLocation(), Type,
5526                              diag::err_typecheck_decl_incomplete_type))
5527        Var->setInvalidDecl();
5528
5529      // Make sure that the type is not abstract.
5530      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5531          RequireNonAbstractType(Var->getLocation(), Type,
5532                                 diag::err_abstract_type_in_decl,
5533                                 AbstractVariableType))
5534        Var->setInvalidDecl();
5535      return;
5536
5537    case VarDecl::TentativeDefinition:
5538      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5539      // object that has file scope without an initializer, and without a
5540      // storage-class specifier or with the storage-class specifier "static",
5541      // constitutes a tentative definition. Note: A tentative definition with
5542      // external linkage is valid (C99 6.2.2p5).
5543      if (!Var->isInvalidDecl()) {
5544        if (const IncompleteArrayType *ArrayT
5545                                    = Context.getAsIncompleteArrayType(Type)) {
5546          if (RequireCompleteType(Var->getLocation(),
5547                                  ArrayT->getElementType(),
5548                                  diag::err_illegal_decl_array_incomplete_type))
5549            Var->setInvalidDecl();
5550        } else if (Var->getStorageClass() == SC_Static) {
5551          // C99 6.9.2p3: If the declaration of an identifier for an object is
5552          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5553          // declared type shall not be an incomplete type.
5554          // NOTE: code such as the following
5555          //     static struct s;
5556          //     struct s { int a; };
5557          // is accepted by gcc. Hence here we issue a warning instead of
5558          // an error and we do not invalidate the static declaration.
5559          // NOTE: to avoid multiple warnings, only check the first declaration.
5560          if (Var->getPreviousDeclaration() == 0)
5561            RequireCompleteType(Var->getLocation(), Type,
5562                                diag::ext_typecheck_decl_incomplete_type);
5563        }
5564      }
5565
5566      // Record the tentative definition; we're done.
5567      if (!Var->isInvalidDecl())
5568        TentativeDefinitions.push_back(Var);
5569      return;
5570    }
5571
5572    // Provide a specific diagnostic for uninitialized variable
5573    // definitions with incomplete array type.
5574    if (Type->isIncompleteArrayType()) {
5575      Diag(Var->getLocation(),
5576           diag::err_typecheck_incomplete_array_needs_initializer);
5577      Var->setInvalidDecl();
5578      return;
5579    }
5580
5581    // Provide a specific diagnostic for uninitialized variable
5582    // definitions with reference type.
5583    if (Type->isReferenceType()) {
5584      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5585        << Var->getDeclName()
5586        << SourceRange(Var->getLocation(), Var->getLocation());
5587      Var->setInvalidDecl();
5588      return;
5589    }
5590
5591    // Do not attempt to type-check the default initializer for a
5592    // variable with dependent type.
5593    if (Type->isDependentType())
5594      return;
5595
5596    if (Var->isInvalidDecl())
5597      return;
5598
5599    if (RequireCompleteType(Var->getLocation(),
5600                            Context.getBaseElementType(Type),
5601                            diag::err_typecheck_decl_incomplete_type)) {
5602      Var->setInvalidDecl();
5603      return;
5604    }
5605
5606    // The variable can not have an abstract class type.
5607    if (RequireNonAbstractType(Var->getLocation(), Type,
5608                               diag::err_abstract_type_in_decl,
5609                               AbstractVariableType)) {
5610      Var->setInvalidDecl();
5611      return;
5612    }
5613
5614    const RecordType *Record
5615      = Context.getBaseElementType(Type)->getAs<RecordType>();
5616    if (Record && getLangOptions().CPlusPlus &&
5617        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5618      // C++03 [dcl.init]p9:
5619      //   If no initializer is specified for an object, and the
5620      //   object is of (possibly cv-qualified) non-POD class type (or
5621      //   array thereof), the object shall be default-initialized; if
5622      //   the object is of const-qualified type, the underlying class
5623      //   type shall have a user-declared default
5624      //   constructor. Otherwise, if no initializer is specified for
5625      //   a non- static object, the object and its subobjects, if
5626      //   any, have an indeterminate initial value); if the object
5627      //   or any of its subobjects are of const-qualified type, the
5628      //   program is ill-formed.
5629    } else {
5630      // Check for jumps past the implicit initializer.  C++0x
5631      // clarifies that this applies to a "variable with automatic
5632      // storage duration", not a "local variable".
5633      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5634        getCurFunction()->setHasBranchProtectedScope();
5635
5636      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5637      InitializationKind Kind
5638        = InitializationKind::CreateDefault(Var->getLocation());
5639
5640      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5641      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5642                                        MultiExprArg(*this, 0, 0));
5643      if (Init.isInvalid())
5644        Var->setInvalidDecl();
5645      else if (Init.get())
5646        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5647    }
5648
5649    CheckCompleteVariableDeclaration(Var);
5650  }
5651}
5652
5653void Sema::ActOnCXXForRangeDecl(Decl *D) {
5654  VarDecl *VD = dyn_cast<VarDecl>(D);
5655  if (!VD) {
5656    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5657    D->setInvalidDecl();
5658    return;
5659  }
5660
5661  VD->setCXXForRangeDecl(true);
5662
5663  // for-range-declaration cannot be given a storage class specifier.
5664  int Error = -1;
5665  switch (VD->getStorageClassAsWritten()) {
5666  case SC_None:
5667    break;
5668  case SC_Extern:
5669    Error = 0;
5670    break;
5671  case SC_Static:
5672    Error = 1;
5673    break;
5674  case SC_PrivateExtern:
5675    Error = 2;
5676    break;
5677  case SC_Auto:
5678    Error = 3;
5679    break;
5680  case SC_Register:
5681    Error = 4;
5682    break;
5683  }
5684  // FIXME: constexpr isn't allowed here.
5685  //if (DS.isConstexprSpecified())
5686  //  Error = 5;
5687  if (Error != -1) {
5688    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5689      << VD->getDeclName() << Error;
5690    D->setInvalidDecl();
5691  }
5692}
5693
5694void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5695  if (var->isInvalidDecl()) return;
5696
5697  // All the following checks are C++ only.
5698  if (!getLangOptions().CPlusPlus) return;
5699
5700  QualType baseType = Context.getBaseElementType(var->getType());
5701  if (baseType->isDependentType()) return;
5702
5703  // __block variables might require us to capture a copy-initializer.
5704  if (var->hasAttr<BlocksAttr>()) {
5705    // It's currently invalid to ever have a __block variable with an
5706    // array type; should we diagnose that here?
5707
5708    // Regardless, we don't want to ignore array nesting when
5709    // constructing this copy.
5710    QualType type = var->getType();
5711
5712    if (type->isStructureOrClassType()) {
5713      SourceLocation poi = var->getLocation();
5714      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5715      ExprResult result =
5716        PerformCopyInitialization(
5717                        InitializedEntity::InitializeBlock(poi, type, false),
5718                                  poi, Owned(varRef));
5719      if (!result.isInvalid()) {
5720        result = MaybeCreateExprWithCleanups(result);
5721        Expr *init = result.takeAs<Expr>();
5722        Context.setBlockVarCopyInits(var, init);
5723      }
5724    }
5725  }
5726
5727  // Check for global constructors.
5728  if (!var->getDeclContext()->isDependentContext() &&
5729      var->hasGlobalStorage() &&
5730      !var->isStaticLocal() &&
5731      var->getInit() &&
5732      !var->getInit()->isConstantInitializer(Context,
5733                                             baseType->isReferenceType()))
5734    Diag(var->getLocation(), diag::warn_global_constructor)
5735      << var->getInit()->getSourceRange();
5736
5737  // Require the destructor.
5738  if (const RecordType *recordType = baseType->getAs<RecordType>())
5739    FinalizeVarWithDestructor(var, recordType);
5740}
5741
5742/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5743/// any semantic actions necessary after any initializer has been attached.
5744void
5745Sema::FinalizeDeclaration(Decl *ThisDecl) {
5746  // Note that we are no longer parsing the initializer for this declaration.
5747  ParsingInitForAutoVars.erase(ThisDecl);
5748}
5749
5750Sema::DeclGroupPtrTy
5751Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5752                              Decl **Group, unsigned NumDecls) {
5753  llvm::SmallVector<Decl*, 8> Decls;
5754
5755  if (DS.isTypeSpecOwned())
5756    Decls.push_back(DS.getRepAsDecl());
5757
5758  for (unsigned i = 0; i != NumDecls; ++i)
5759    if (Decl *D = Group[i])
5760      Decls.push_back(D);
5761
5762  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5763                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5764}
5765
5766/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5767/// group, performing any necessary semantic checking.
5768Sema::DeclGroupPtrTy
5769Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5770                           bool TypeMayContainAuto) {
5771  // C++0x [dcl.spec.auto]p7:
5772  //   If the type deduced for the template parameter U is not the same in each
5773  //   deduction, the program is ill-formed.
5774  // FIXME: When initializer-list support is added, a distinction is needed
5775  // between the deduced type U and the deduced type which 'auto' stands for.
5776  //   auto a = 0, b = { 1, 2, 3 };
5777  // is legal because the deduced type U is 'int' in both cases.
5778  if (TypeMayContainAuto && NumDecls > 1) {
5779    QualType Deduced;
5780    CanQualType DeducedCanon;
5781    VarDecl *DeducedDecl = 0;
5782    for (unsigned i = 0; i != NumDecls; ++i) {
5783      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5784        AutoType *AT = D->getType()->getContainedAutoType();
5785        // Don't reissue diagnostics when instantiating a template.
5786        if (AT && D->isInvalidDecl())
5787          break;
5788        if (AT && AT->isDeduced()) {
5789          QualType U = AT->getDeducedType();
5790          CanQualType UCanon = Context.getCanonicalType(U);
5791          if (Deduced.isNull()) {
5792            Deduced = U;
5793            DeducedCanon = UCanon;
5794            DeducedDecl = D;
5795          } else if (DeducedCanon != UCanon) {
5796            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5797                 diag::err_auto_different_deductions)
5798              << Deduced << DeducedDecl->getDeclName()
5799              << U << D->getDeclName()
5800              << DeducedDecl->getInit()->getSourceRange()
5801              << D->getInit()->getSourceRange();
5802            D->setInvalidDecl();
5803            break;
5804          }
5805        }
5806      }
5807    }
5808  }
5809
5810  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5811}
5812
5813
5814/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5815/// to introduce parameters into function prototype scope.
5816Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5817  const DeclSpec &DS = D.getDeclSpec();
5818
5819  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5820  VarDecl::StorageClass StorageClass = SC_None;
5821  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5822  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5823    StorageClass = SC_Register;
5824    StorageClassAsWritten = SC_Register;
5825  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5826    Diag(DS.getStorageClassSpecLoc(),
5827         diag::err_invalid_storage_class_in_func_decl);
5828    D.getMutableDeclSpec().ClearStorageClassSpecs();
5829  }
5830
5831  if (D.getDeclSpec().isThreadSpecified())
5832    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5833
5834  DiagnoseFunctionSpecifiers(D);
5835
5836  TagDecl *OwnedDecl = 0;
5837  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5838  QualType parmDeclType = TInfo->getType();
5839
5840  if (getLangOptions().CPlusPlus) {
5841    // Check that there are no default arguments inside the type of this
5842    // parameter.
5843    CheckExtraCXXDefaultArguments(D);
5844
5845    if (OwnedDecl && OwnedDecl->isDefinition()) {
5846      // C++ [dcl.fct]p6:
5847      //   Types shall not be defined in return or parameter types.
5848      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5849        << Context.getTypeDeclType(OwnedDecl);
5850    }
5851
5852    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5853    if (D.getCXXScopeSpec().isSet()) {
5854      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5855        << D.getCXXScopeSpec().getRange();
5856      D.getCXXScopeSpec().clear();
5857    }
5858  }
5859
5860  // Ensure we have a valid name
5861  IdentifierInfo *II = 0;
5862  if (D.hasName()) {
5863    II = D.getIdentifier();
5864    if (!II) {
5865      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5866        << GetNameForDeclarator(D).getName().getAsString();
5867      D.setInvalidType(true);
5868    }
5869  }
5870
5871  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5872  if (II) {
5873    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5874                   ForRedeclaration);
5875    LookupName(R, S);
5876    if (R.isSingleResult()) {
5877      NamedDecl *PrevDecl = R.getFoundDecl();
5878      if (PrevDecl->isTemplateParameter()) {
5879        // Maybe we will complain about the shadowed template parameter.
5880        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5881        // Just pretend that we didn't see the previous declaration.
5882        PrevDecl = 0;
5883      } else if (S->isDeclScope(PrevDecl)) {
5884        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5885        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5886
5887        // Recover by removing the name
5888        II = 0;
5889        D.SetIdentifier(0, D.getIdentifierLoc());
5890        D.setInvalidType(true);
5891      }
5892    }
5893  }
5894
5895  // Temporarily put parameter variables in the translation unit, not
5896  // the enclosing context.  This prevents them from accidentally
5897  // looking like class members in C++.
5898  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5899                                    D.getSourceRange().getBegin(),
5900                                    D.getIdentifierLoc(), II,
5901                                    parmDeclType, TInfo,
5902                                    StorageClass, StorageClassAsWritten);
5903
5904  if (D.isInvalidType())
5905    New->setInvalidDecl();
5906
5907  assert(S->isFunctionPrototypeScope());
5908  assert(S->getFunctionPrototypeDepth() >= 1);
5909  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5910                    S->getNextFunctionPrototypeIndex());
5911
5912  // Add the parameter declaration into this scope.
5913  S->AddDecl(New);
5914  if (II)
5915    IdResolver.AddDecl(New);
5916
5917  ProcessDeclAttributes(S, New, D);
5918
5919  if (New->hasAttr<BlocksAttr>()) {
5920    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5921  }
5922  return New;
5923}
5924
5925/// \brief Synthesizes a variable for a parameter arising from a
5926/// typedef.
5927ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5928                                              SourceLocation Loc,
5929                                              QualType T) {
5930  /* FIXME: setting StartLoc == Loc.
5931     Would it be worth to modify callers so as to provide proper source
5932     location for the unnamed parameters, embedding the parameter's type? */
5933  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5934                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5935                                           SC_None, SC_None, 0);
5936  Param->setImplicit();
5937  return Param;
5938}
5939
5940void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5941                                    ParmVarDecl * const *ParamEnd) {
5942  // Don't diagnose unused-parameter errors in template instantiations; we
5943  // will already have done so in the template itself.
5944  if (!ActiveTemplateInstantiations.empty())
5945    return;
5946
5947  for (; Param != ParamEnd; ++Param) {
5948    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5949        !(*Param)->hasAttr<UnusedAttr>()) {
5950      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5951        << (*Param)->getDeclName();
5952    }
5953  }
5954}
5955
5956void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5957                                                  ParmVarDecl * const *ParamEnd,
5958                                                  QualType ReturnTy,
5959                                                  NamedDecl *D) {
5960  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5961    return;
5962
5963  // Warn if the return value is pass-by-value and larger than the specified
5964  // threshold.
5965  if (ReturnTy->isPODType()) {
5966    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5967    if (Size > LangOpts.NumLargeByValueCopy)
5968      Diag(D->getLocation(), diag::warn_return_value_size)
5969          << D->getDeclName() << Size;
5970  }
5971
5972  // Warn if any parameter is pass-by-value and larger than the specified
5973  // threshold.
5974  for (; Param != ParamEnd; ++Param) {
5975    QualType T = (*Param)->getType();
5976    if (!T->isPODType())
5977      continue;
5978    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5979    if (Size > LangOpts.NumLargeByValueCopy)
5980      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5981          << (*Param)->getDeclName() << Size;
5982  }
5983}
5984
5985ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5986                                  SourceLocation NameLoc, IdentifierInfo *Name,
5987                                  QualType T, TypeSourceInfo *TSInfo,
5988                                  VarDecl::StorageClass StorageClass,
5989                                  VarDecl::StorageClass StorageClassAsWritten) {
5990  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5991                                         adjustParameterType(T), TSInfo,
5992                                         StorageClass, StorageClassAsWritten,
5993                                         0);
5994
5995  // Parameters can not be abstract class types.
5996  // For record types, this is done by the AbstractClassUsageDiagnoser once
5997  // the class has been completely parsed.
5998  if (!CurContext->isRecord() &&
5999      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6000                             AbstractParamType))
6001    New->setInvalidDecl();
6002
6003  // Parameter declarators cannot be interface types. All ObjC objects are
6004  // passed by reference.
6005  if (T->isObjCObjectType()) {
6006    Diag(NameLoc,
6007         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6008    New->setInvalidDecl();
6009  }
6010
6011  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6012  // duration shall not be qualified by an address-space qualifier."
6013  // Since all parameters have automatic store duration, they can not have
6014  // an address space.
6015  if (T.getAddressSpace() != 0) {
6016    Diag(NameLoc, diag::err_arg_with_address_space);
6017    New->setInvalidDecl();
6018  }
6019
6020  return New;
6021}
6022
6023void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6024                                           SourceLocation LocAfterDecls) {
6025  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6026
6027  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6028  // for a K&R function.
6029  if (!FTI.hasPrototype) {
6030    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6031      --i;
6032      if (FTI.ArgInfo[i].Param == 0) {
6033        llvm::SmallString<256> Code;
6034        llvm::raw_svector_ostream(Code) << "  int "
6035                                        << FTI.ArgInfo[i].Ident->getName()
6036                                        << ";\n";
6037        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6038          << FTI.ArgInfo[i].Ident
6039          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6040
6041        // Implicitly declare the argument as type 'int' for lack of a better
6042        // type.
6043        AttributeFactory attrs;
6044        DeclSpec DS(attrs);
6045        const char* PrevSpec; // unused
6046        unsigned DiagID; // unused
6047        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6048                           PrevSpec, DiagID);
6049        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6050        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6051        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6052      }
6053    }
6054  }
6055}
6056
6057Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6058                                         Declarator &D) {
6059  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6060  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6061  Scope *ParentScope = FnBodyScope->getParent();
6062
6063  Decl *DP = HandleDeclarator(ParentScope, D,
6064                              MultiTemplateParamsArg(*this),
6065                              /*IsFunctionDefinition=*/true);
6066  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6067}
6068
6069static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6070  // Don't warn about invalid declarations.
6071  if (FD->isInvalidDecl())
6072    return false;
6073
6074  // Or declarations that aren't global.
6075  if (!FD->isGlobal())
6076    return false;
6077
6078  // Don't warn about C++ member functions.
6079  if (isa<CXXMethodDecl>(FD))
6080    return false;
6081
6082  // Don't warn about 'main'.
6083  if (FD->isMain())
6084    return false;
6085
6086  // Don't warn about inline functions.
6087  if (FD->isInlined())
6088    return false;
6089
6090  // Don't warn about function templates.
6091  if (FD->getDescribedFunctionTemplate())
6092    return false;
6093
6094  // Don't warn about function template specializations.
6095  if (FD->isFunctionTemplateSpecialization())
6096    return false;
6097
6098  bool MissingPrototype = true;
6099  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6100       Prev; Prev = Prev->getPreviousDeclaration()) {
6101    // Ignore any declarations that occur in function or method
6102    // scope, because they aren't visible from the header.
6103    if (Prev->getDeclContext()->isFunctionOrMethod())
6104      continue;
6105
6106    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6107    break;
6108  }
6109
6110  return MissingPrototype;
6111}
6112
6113void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6114  // Don't complain if we're in GNU89 mode and the previous definition
6115  // was an extern inline function.
6116  const FunctionDecl *Definition;
6117  if (FD->isDefined(Definition) &&
6118      !canRedefineFunction(Definition, getLangOptions())) {
6119    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6120        Definition->getStorageClass() == SC_Extern)
6121      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6122        << FD->getDeclName() << getLangOptions().CPlusPlus;
6123    else
6124      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6125    Diag(Definition->getLocation(), diag::note_previous_definition);
6126  }
6127}
6128
6129Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6130  // Clear the last template instantiation error context.
6131  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6132
6133  if (!D)
6134    return D;
6135  FunctionDecl *FD = 0;
6136
6137  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6138    FD = FunTmpl->getTemplatedDecl();
6139  else
6140    FD = cast<FunctionDecl>(D);
6141
6142  // Enter a new function scope
6143  PushFunctionScope();
6144
6145  // See if this is a redefinition.
6146  if (!FD->isLateTemplateParsed())
6147    CheckForFunctionRedefinition(FD);
6148
6149  // Builtin functions cannot be defined.
6150  if (unsigned BuiltinID = FD->getBuiltinID()) {
6151    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6152      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6153      FD->setInvalidDecl();
6154    }
6155  }
6156
6157  // The return type of a function definition must be complete
6158  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6159  QualType ResultType = FD->getResultType();
6160  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6161      !FD->isInvalidDecl() &&
6162      RequireCompleteType(FD->getLocation(), ResultType,
6163                          diag::err_func_def_incomplete_result))
6164    FD->setInvalidDecl();
6165
6166  // GNU warning -Wmissing-prototypes:
6167  //   Warn if a global function is defined without a previous
6168  //   prototype declaration. This warning is issued even if the
6169  //   definition itself provides a prototype. The aim is to detect
6170  //   global functions that fail to be declared in header files.
6171  if (ShouldWarnAboutMissingPrototype(FD))
6172    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6173
6174  if (FnBodyScope)
6175    PushDeclContext(FnBodyScope, FD);
6176
6177  // Check the validity of our function parameters
6178  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6179                           /*CheckParameterNames=*/true);
6180
6181  // Introduce our parameters into the function scope
6182  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6183    ParmVarDecl *Param = FD->getParamDecl(p);
6184    Param->setOwningFunction(FD);
6185
6186    // If this has an identifier, add it to the scope stack.
6187    if (Param->getIdentifier() && FnBodyScope) {
6188      CheckShadow(FnBodyScope, Param);
6189
6190      PushOnScopeChains(Param, FnBodyScope);
6191    }
6192  }
6193
6194  // Checking attributes of current function definition
6195  // dllimport attribute.
6196  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6197  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6198    // dllimport attribute cannot be directly applied to definition.
6199    // Microsoft accepts dllimport for functions defined within class scope.
6200    if (!DA->isInherited() &&
6201        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6202      Diag(FD->getLocation(),
6203           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6204        << "dllimport";
6205      FD->setInvalidDecl();
6206      return FD;
6207    }
6208
6209    // Visual C++ appears to not think this is an issue, so only issue
6210    // a warning when Microsoft extensions are disabled.
6211    if (!LangOpts.Microsoft) {
6212      // If a symbol previously declared dllimport is later defined, the
6213      // attribute is ignored in subsequent references, and a warning is
6214      // emitted.
6215      Diag(FD->getLocation(),
6216           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6217        << FD->getName() << "dllimport";
6218    }
6219  }
6220  return FD;
6221}
6222
6223/// \brief Given the set of return statements within a function body,
6224/// compute the variables that are subject to the named return value
6225/// optimization.
6226///
6227/// Each of the variables that is subject to the named return value
6228/// optimization will be marked as NRVO variables in the AST, and any
6229/// return statement that has a marked NRVO variable as its NRVO candidate can
6230/// use the named return value optimization.
6231///
6232/// This function applies a very simplistic algorithm for NRVO: if every return
6233/// statement in the function has the same NRVO candidate, that candidate is
6234/// the NRVO variable.
6235///
6236/// FIXME: Employ a smarter algorithm that accounts for multiple return
6237/// statements and the lifetimes of the NRVO candidates. We should be able to
6238/// find a maximal set of NRVO variables.
6239static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6240  ReturnStmt **Returns = Scope->Returns.data();
6241
6242  const VarDecl *NRVOCandidate = 0;
6243  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6244    if (!Returns[I]->getNRVOCandidate())
6245      return;
6246
6247    if (!NRVOCandidate)
6248      NRVOCandidate = Returns[I]->getNRVOCandidate();
6249    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6250      return;
6251  }
6252
6253  if (NRVOCandidate)
6254    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6255}
6256
6257Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6258  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6259}
6260
6261Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6262                                    bool IsInstantiation) {
6263  FunctionDecl *FD = 0;
6264  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6265  if (FunTmpl)
6266    FD = FunTmpl->getTemplatedDecl();
6267  else
6268    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6269
6270  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6271  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6272
6273  if (FD) {
6274    FD->setBody(Body);
6275    if (FD->isMain()) {
6276      // C and C++ allow for main to automagically return 0.
6277      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6278      FD->setHasImplicitReturnZero(true);
6279      WP.disableCheckFallThrough();
6280    }
6281
6282    if (!FD->isInvalidDecl()) {
6283      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6284      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6285                                             FD->getResultType(), FD);
6286
6287      // If this is a constructor, we need a vtable.
6288      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6289        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6290
6291      ComputeNRVO(Body, getCurFunction());
6292    }
6293
6294    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6295  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6296    assert(MD == getCurMethodDecl() && "Method parsing confused");
6297    MD->setBody(Body);
6298    if (Body)
6299      MD->setEndLoc(Body->getLocEnd());
6300    if (!MD->isInvalidDecl()) {
6301      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6302      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6303                                             MD->getResultType(), MD);
6304    }
6305  } else {
6306    return 0;
6307  }
6308
6309  // Verify and clean out per-function state.
6310  if (Body) {
6311    // C++ constructors that have function-try-blocks can't have return
6312    // statements in the handlers of that block. (C++ [except.handle]p14)
6313    // Verify this.
6314    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6315      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6316
6317    // Verify that that gotos and switch cases don't jump into scopes illegally.
6318    // Verify that that gotos and switch cases don't jump into scopes illegally.
6319    if (getCurFunction()->NeedsScopeChecking() &&
6320        !dcl->isInvalidDecl() &&
6321        !hasAnyErrorsInThisFunction())
6322      DiagnoseInvalidJumps(Body);
6323
6324    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6325      if (!Destructor->getParent()->isDependentType())
6326        CheckDestructor(Destructor);
6327
6328      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6329                                             Destructor->getParent());
6330    }
6331
6332    // If any errors have occurred, clear out any temporaries that may have
6333    // been leftover. This ensures that these temporaries won't be picked up for
6334    // deletion in some later function.
6335    if (PP.getDiagnostics().hasErrorOccurred() ||
6336        PP.getDiagnostics().getSuppressAllDiagnostics())
6337      ExprTemporaries.clear();
6338    else if (!isa<FunctionTemplateDecl>(dcl)) {
6339      // Since the body is valid, issue any analysis-based warnings that are
6340      // enabled.
6341      ActivePolicy = &WP;
6342    }
6343
6344    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6345  }
6346
6347  if (!IsInstantiation)
6348    PopDeclContext();
6349
6350  PopFunctionOrBlockScope(ActivePolicy, dcl);
6351
6352  // If any errors have occurred, clear out any temporaries that may have
6353  // been leftover. This ensures that these temporaries won't be picked up for
6354  // deletion in some later function.
6355  if (getDiagnostics().hasErrorOccurred())
6356    ExprTemporaries.clear();
6357
6358  return dcl;
6359}
6360
6361/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6362/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6363NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6364                                          IdentifierInfo &II, Scope *S) {
6365  // Before we produce a declaration for an implicitly defined
6366  // function, see whether there was a locally-scoped declaration of
6367  // this name as a function or variable. If so, use that
6368  // (non-visible) declaration, and complain about it.
6369  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6370    = LocallyScopedExternalDecls.find(&II);
6371  if (Pos != LocallyScopedExternalDecls.end()) {
6372    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6373    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6374    return Pos->second;
6375  }
6376
6377  // Extension in C99.  Legal in C90, but warn about it.
6378  if (II.getName().startswith("__builtin_"))
6379    Diag(Loc, diag::warn_builtin_unknown) << &II;
6380  else if (getLangOptions().C99)
6381    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6382  else
6383    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6384
6385  // Set a Declarator for the implicit definition: int foo();
6386  const char *Dummy;
6387  AttributeFactory attrFactory;
6388  DeclSpec DS(attrFactory);
6389  unsigned DiagID;
6390  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6391  (void)Error; // Silence warning.
6392  assert(!Error && "Error setting up implicit decl!");
6393  Declarator D(DS, Declarator::BlockContext);
6394  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6395                                             0, 0, true, SourceLocation(),
6396                                             EST_None, SourceLocation(),
6397                                             0, 0, 0, 0, Loc, Loc, D),
6398                DS.getAttributes(),
6399                SourceLocation());
6400  D.SetIdentifier(&II, Loc);
6401
6402  // Insert this function into translation-unit scope.
6403
6404  DeclContext *PrevDC = CurContext;
6405  CurContext = Context.getTranslationUnitDecl();
6406
6407  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6408  FD->setImplicit();
6409
6410  CurContext = PrevDC;
6411
6412  AddKnownFunctionAttributes(FD);
6413
6414  return FD;
6415}
6416
6417/// \brief Adds any function attributes that we know a priori based on
6418/// the declaration of this function.
6419///
6420/// These attributes can apply both to implicitly-declared builtins
6421/// (like __builtin___printf_chk) or to library-declared functions
6422/// like NSLog or printf.
6423void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6424  if (FD->isInvalidDecl())
6425    return;
6426
6427  // If this is a built-in function, map its builtin attributes to
6428  // actual attributes.
6429  if (unsigned BuiltinID = FD->getBuiltinID()) {
6430    // Handle printf-formatting attributes.
6431    unsigned FormatIdx;
6432    bool HasVAListArg;
6433    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6434      if (!FD->getAttr<FormatAttr>())
6435        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6436                                                "printf", FormatIdx+1,
6437                                               HasVAListArg ? 0 : FormatIdx+2));
6438    }
6439    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6440                                             HasVAListArg)) {
6441     if (!FD->getAttr<FormatAttr>())
6442       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6443                                              "scanf", FormatIdx+1,
6444                                              HasVAListArg ? 0 : FormatIdx+2));
6445    }
6446
6447    // Mark const if we don't care about errno and that is the only
6448    // thing preventing the function from being const. This allows
6449    // IRgen to use LLVM intrinsics for such functions.
6450    if (!getLangOptions().MathErrno &&
6451        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6452      if (!FD->getAttr<ConstAttr>())
6453        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6454    }
6455
6456    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6457      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6458    if (Context.BuiltinInfo.isConst(BuiltinID))
6459      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6460  }
6461
6462  IdentifierInfo *Name = FD->getIdentifier();
6463  if (!Name)
6464    return;
6465  if ((!getLangOptions().CPlusPlus &&
6466       FD->getDeclContext()->isTranslationUnit()) ||
6467      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6468       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6469       LinkageSpecDecl::lang_c)) {
6470    // Okay: this could be a libc/libm/Objective-C function we know
6471    // about.
6472  } else
6473    return;
6474
6475  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6476    // FIXME: NSLog and NSLogv should be target specific
6477    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6478      // FIXME: We known better than our headers.
6479      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6480    } else
6481      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6482                                             "printf", 1,
6483                                             Name->isStr("NSLogv") ? 0 : 2));
6484  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6485    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6486    // target-specific builtins, perhaps?
6487    if (!FD->getAttr<FormatAttr>())
6488      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6489                                             "printf", 2,
6490                                             Name->isStr("vasprintf") ? 0 : 3));
6491  }
6492}
6493
6494TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6495                                    TypeSourceInfo *TInfo) {
6496  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6497  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6498
6499  if (!TInfo) {
6500    assert(D.isInvalidType() && "no declarator info for valid type");
6501    TInfo = Context.getTrivialTypeSourceInfo(T);
6502  }
6503
6504  // Scope manipulation handled by caller.
6505  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6506                                           D.getSourceRange().getBegin(),
6507                                           D.getIdentifierLoc(),
6508                                           D.getIdentifier(),
6509                                           TInfo);
6510
6511  // Bail out immediately if we have an invalid declaration.
6512  if (D.isInvalidType()) {
6513    NewTD->setInvalidDecl();
6514    return NewTD;
6515  }
6516
6517  // C++ [dcl.typedef]p8:
6518  //   If the typedef declaration defines an unnamed class (or
6519  //   enum), the first typedef-name declared by the declaration
6520  //   to be that class type (or enum type) is used to denote the
6521  //   class type (or enum type) for linkage purposes only.
6522  // We need to check whether the type was declared in the declaration.
6523  switch (D.getDeclSpec().getTypeSpecType()) {
6524  case TST_enum:
6525  case TST_struct:
6526  case TST_union:
6527  case TST_class: {
6528    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6529
6530    // Do nothing if the tag is not anonymous or already has an
6531    // associated typedef (from an earlier typedef in this decl group).
6532    if (tagFromDeclSpec->getIdentifier()) break;
6533    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6534
6535    // A well-formed anonymous tag must always be a TUK_Definition.
6536    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6537
6538    // The type must match the tag exactly;  no qualifiers allowed.
6539    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6540      break;
6541
6542    // Otherwise, set this is the anon-decl typedef for the tag.
6543    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6544    break;
6545  }
6546
6547  default:
6548    break;
6549  }
6550
6551  return NewTD;
6552}
6553
6554
6555/// \brief Determine whether a tag with a given kind is acceptable
6556/// as a redeclaration of the given tag declaration.
6557///
6558/// \returns true if the new tag kind is acceptable, false otherwise.
6559bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6560                                        TagTypeKind NewTag,
6561                                        SourceLocation NewTagLoc,
6562                                        const IdentifierInfo &Name) {
6563  // C++ [dcl.type.elab]p3:
6564  //   The class-key or enum keyword present in the
6565  //   elaborated-type-specifier shall agree in kind with the
6566  //   declaration to which the name in the elaborated-type-specifier
6567  //   refers. This rule also applies to the form of
6568  //   elaborated-type-specifier that declares a class-name or
6569  //   friend class since it can be construed as referring to the
6570  //   definition of the class. Thus, in any
6571  //   elaborated-type-specifier, the enum keyword shall be used to
6572  //   refer to an enumeration (7.2), the union class-key shall be
6573  //   used to refer to a union (clause 9), and either the class or
6574  //   struct class-key shall be used to refer to a class (clause 9)
6575  //   declared using the class or struct class-key.
6576  TagTypeKind OldTag = Previous->getTagKind();
6577  if (OldTag == NewTag)
6578    return true;
6579
6580  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6581      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6582    // Warn about the struct/class tag mismatch.
6583    bool isTemplate = false;
6584    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6585      isTemplate = Record->getDescribedClassTemplate();
6586
6587    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6588      << (NewTag == TTK_Class)
6589      << isTemplate << &Name
6590      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6591                              OldTag == TTK_Class? "class" : "struct");
6592    Diag(Previous->getLocation(), diag::note_previous_use);
6593    return true;
6594  }
6595  return false;
6596}
6597
6598/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6599/// former case, Name will be non-null.  In the later case, Name will be null.
6600/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6601/// reference/declaration/definition of a tag.
6602Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6603                     SourceLocation KWLoc, CXXScopeSpec &SS,
6604                     IdentifierInfo *Name, SourceLocation NameLoc,
6605                     AttributeList *Attr, AccessSpecifier AS,
6606                     MultiTemplateParamsArg TemplateParameterLists,
6607                     bool &OwnedDecl, bool &IsDependent,
6608                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6609                     TypeResult UnderlyingType) {
6610  // If this is not a definition, it must have a name.
6611  assert((Name != 0 || TUK == TUK_Definition) &&
6612         "Nameless record must be a definition!");
6613  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6614
6615  OwnedDecl = false;
6616  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6617
6618  // FIXME: Check explicit specializations more carefully.
6619  bool isExplicitSpecialization = false;
6620  bool Invalid = false;
6621
6622  // We only need to do this matching if we have template parameters
6623  // or a scope specifier, which also conveniently avoids this work
6624  // for non-C++ cases.
6625  if (TemplateParameterLists.size() > 0 ||
6626      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6627    if (TemplateParameterList *TemplateParams
6628          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6629                                                TemplateParameterLists.get(),
6630                                                TemplateParameterLists.size(),
6631                                                    TUK == TUK_Friend,
6632                                                    isExplicitSpecialization,
6633                                                    Invalid)) {
6634      if (TemplateParams->size() > 0) {
6635        // This is a declaration or definition of a class template (which may
6636        // be a member of another template).
6637
6638        if (Invalid)
6639          return 0;
6640
6641        OwnedDecl = false;
6642        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6643                                               SS, Name, NameLoc, Attr,
6644                                               TemplateParams, AS,
6645                                           TemplateParameterLists.size() - 1,
6646                 (TemplateParameterList**) TemplateParameterLists.release());
6647        return Result.get();
6648      } else {
6649        // The "template<>" header is extraneous.
6650        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6651          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6652        isExplicitSpecialization = true;
6653      }
6654    }
6655  }
6656
6657  // Figure out the underlying type if this a enum declaration. We need to do
6658  // this early, because it's needed to detect if this is an incompatible
6659  // redeclaration.
6660  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6661
6662  if (Kind == TTK_Enum) {
6663    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6664      // No underlying type explicitly specified, or we failed to parse the
6665      // type, default to int.
6666      EnumUnderlying = Context.IntTy.getTypePtr();
6667    else if (UnderlyingType.get()) {
6668      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6669      // integral type; any cv-qualification is ignored.
6670      TypeSourceInfo *TI = 0;
6671      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6672      EnumUnderlying = TI;
6673
6674      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6675
6676      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6677        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6678          << T;
6679        // Recover by falling back to int.
6680        EnumUnderlying = Context.IntTy.getTypePtr();
6681      }
6682
6683      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6684                                          UPPC_FixedUnderlyingType))
6685        EnumUnderlying = Context.IntTy.getTypePtr();
6686
6687    } else if (getLangOptions().Microsoft)
6688      // Microsoft enums are always of int type.
6689      EnumUnderlying = Context.IntTy.getTypePtr();
6690  }
6691
6692  DeclContext *SearchDC = CurContext;
6693  DeclContext *DC = CurContext;
6694  bool isStdBadAlloc = false;
6695
6696  RedeclarationKind Redecl = ForRedeclaration;
6697  if (TUK == TUK_Friend || TUK == TUK_Reference)
6698    Redecl = NotForRedeclaration;
6699
6700  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6701
6702  if (Name && SS.isNotEmpty()) {
6703    // We have a nested-name tag ('struct foo::bar').
6704
6705    // Check for invalid 'foo::'.
6706    if (SS.isInvalid()) {
6707      Name = 0;
6708      goto CreateNewDecl;
6709    }
6710
6711    // If this is a friend or a reference to a class in a dependent
6712    // context, don't try to make a decl for it.
6713    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6714      DC = computeDeclContext(SS, false);
6715      if (!DC) {
6716        IsDependent = true;
6717        return 0;
6718      }
6719    } else {
6720      DC = computeDeclContext(SS, true);
6721      if (!DC) {
6722        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6723          << SS.getRange();
6724        return 0;
6725      }
6726    }
6727
6728    if (RequireCompleteDeclContext(SS, DC))
6729      return 0;
6730
6731    SearchDC = DC;
6732    // Look-up name inside 'foo::'.
6733    LookupQualifiedName(Previous, DC);
6734
6735    if (Previous.isAmbiguous())
6736      return 0;
6737
6738    if (Previous.empty()) {
6739      // Name lookup did not find anything. However, if the
6740      // nested-name-specifier refers to the current instantiation,
6741      // and that current instantiation has any dependent base
6742      // classes, we might find something at instantiation time: treat
6743      // this as a dependent elaborated-type-specifier.
6744      // But this only makes any sense for reference-like lookups.
6745      if (Previous.wasNotFoundInCurrentInstantiation() &&
6746          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6747        IsDependent = true;
6748        return 0;
6749      }
6750
6751      // A tag 'foo::bar' must already exist.
6752      Diag(NameLoc, diag::err_not_tag_in_scope)
6753        << Kind << Name << DC << SS.getRange();
6754      Name = 0;
6755      Invalid = true;
6756      goto CreateNewDecl;
6757    }
6758  } else if (Name) {
6759    // If this is a named struct, check to see if there was a previous forward
6760    // declaration or definition.
6761    // FIXME: We're looking into outer scopes here, even when we
6762    // shouldn't be. Doing so can result in ambiguities that we
6763    // shouldn't be diagnosing.
6764    LookupName(Previous, S);
6765
6766    if (Previous.isAmbiguous() && TUK == TUK_Definition) {
6767      LookupResult::Filter F = Previous.makeFilter();
6768      while (F.hasNext()) {
6769        NamedDecl *ND = F.next();
6770        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6771          F.erase();
6772      }
6773      F.done();
6774
6775      if (Previous.isAmbiguous())
6776        return 0;
6777    }
6778
6779    // Note:  there used to be some attempt at recovery here.
6780    if (Previous.isAmbiguous())
6781      return 0;
6782
6783    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6784      // FIXME: This makes sure that we ignore the contexts associated
6785      // with C structs, unions, and enums when looking for a matching
6786      // tag declaration or definition. See the similar lookup tweak
6787      // in Sema::LookupName; is there a better way to deal with this?
6788      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6789        SearchDC = SearchDC->getParent();
6790    }
6791  } else if (S->isFunctionPrototypeScope()) {
6792    // If this is an enum declaration in function prototype scope, set its
6793    // initial context to the translation unit.
6794    SearchDC = Context.getTranslationUnitDecl();
6795  }
6796
6797  if (Previous.isSingleResult() &&
6798      Previous.getFoundDecl()->isTemplateParameter()) {
6799    // Maybe we will complain about the shadowed template parameter.
6800    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6801    // Just pretend that we didn't see the previous declaration.
6802    Previous.clear();
6803  }
6804
6805  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6806      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6807    // This is a declaration of or a reference to "std::bad_alloc".
6808    isStdBadAlloc = true;
6809
6810    if (Previous.empty() && StdBadAlloc) {
6811      // std::bad_alloc has been implicitly declared (but made invisible to
6812      // name lookup). Fill in this implicit declaration as the previous
6813      // declaration, so that the declarations get chained appropriately.
6814      Previous.addDecl(getStdBadAlloc());
6815    }
6816  }
6817
6818  // If we didn't find a previous declaration, and this is a reference
6819  // (or friend reference), move to the correct scope.  In C++, we
6820  // also need to do a redeclaration lookup there, just in case
6821  // there's a shadow friend decl.
6822  if (Name && Previous.empty() &&
6823      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6824    if (Invalid) goto CreateNewDecl;
6825    assert(SS.isEmpty());
6826
6827    if (TUK == TUK_Reference) {
6828      // C++ [basic.scope.pdecl]p5:
6829      //   -- for an elaborated-type-specifier of the form
6830      //
6831      //          class-key identifier
6832      //
6833      //      if the elaborated-type-specifier is used in the
6834      //      decl-specifier-seq or parameter-declaration-clause of a
6835      //      function defined in namespace scope, the identifier is
6836      //      declared as a class-name in the namespace that contains
6837      //      the declaration; otherwise, except as a friend
6838      //      declaration, the identifier is declared in the smallest
6839      //      non-class, non-function-prototype scope that contains the
6840      //      declaration.
6841      //
6842      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6843      // C structs and unions.
6844      //
6845      // It is an error in C++ to declare (rather than define) an enum
6846      // type, including via an elaborated type specifier.  We'll
6847      // diagnose that later; for now, declare the enum in the same
6848      // scope as we would have picked for any other tag type.
6849      //
6850      // GNU C also supports this behavior as part of its incomplete
6851      // enum types extension, while GNU C++ does not.
6852      //
6853      // Find the context where we'll be declaring the tag.
6854      // FIXME: We would like to maintain the current DeclContext as the
6855      // lexical context,
6856      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6857        SearchDC = SearchDC->getParent();
6858
6859      // Find the scope where we'll be declaring the tag.
6860      while (S->isClassScope() ||
6861             (getLangOptions().CPlusPlus &&
6862              S->isFunctionPrototypeScope()) ||
6863             ((S->getFlags() & Scope::DeclScope) == 0) ||
6864             (S->getEntity() &&
6865              ((DeclContext *)S->getEntity())->isTransparentContext()))
6866        S = S->getParent();
6867    } else {
6868      assert(TUK == TUK_Friend);
6869      // C++ [namespace.memdef]p3:
6870      //   If a friend declaration in a non-local class first declares a
6871      //   class or function, the friend class or function is a member of
6872      //   the innermost enclosing namespace.
6873      SearchDC = SearchDC->getEnclosingNamespaceContext();
6874    }
6875
6876    // In C++, we need to do a redeclaration lookup to properly
6877    // diagnose some problems.
6878    if (getLangOptions().CPlusPlus) {
6879      Previous.setRedeclarationKind(ForRedeclaration);
6880      LookupQualifiedName(Previous, SearchDC);
6881    }
6882  }
6883
6884  if (!Previous.empty()) {
6885    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6886
6887    // It's okay to have a tag decl in the same scope as a typedef
6888    // which hides a tag decl in the same scope.  Finding this
6889    // insanity with a redeclaration lookup can only actually happen
6890    // in C++.
6891    //
6892    // This is also okay for elaborated-type-specifiers, which is
6893    // technically forbidden by the current standard but which is
6894    // okay according to the likely resolution of an open issue;
6895    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6896    if (getLangOptions().CPlusPlus) {
6897      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6898        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6899          TagDecl *Tag = TT->getDecl();
6900          if (Tag->getDeclName() == Name &&
6901              Tag->getDeclContext()->getRedeclContext()
6902                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6903            PrevDecl = Tag;
6904            Previous.clear();
6905            Previous.addDecl(Tag);
6906            Previous.resolveKind();
6907          }
6908        }
6909      }
6910    }
6911
6912    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6913      // If this is a use of a previous tag, or if the tag is already declared
6914      // in the same scope (so that the definition/declaration completes or
6915      // rementions the tag), reuse the decl.
6916      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6917          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6918        // Make sure that this wasn't declared as an enum and now used as a
6919        // struct or something similar.
6920        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6921          bool SafeToContinue
6922            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6923               Kind != TTK_Enum);
6924          if (SafeToContinue)
6925            Diag(KWLoc, diag::err_use_with_wrong_tag)
6926              << Name
6927              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6928                                              PrevTagDecl->getKindName());
6929          else
6930            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6931          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6932
6933          if (SafeToContinue)
6934            Kind = PrevTagDecl->getTagKind();
6935          else {
6936            // Recover by making this an anonymous redefinition.
6937            Name = 0;
6938            Previous.clear();
6939            Invalid = true;
6940          }
6941        }
6942
6943        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6944          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6945
6946          // All conflicts with previous declarations are recovered by
6947          // returning the previous declaration.
6948          if (ScopedEnum != PrevEnum->isScoped()) {
6949            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6950              << PrevEnum->isScoped();
6951            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6952            return PrevTagDecl;
6953          }
6954          else if (EnumUnderlying && PrevEnum->isFixed()) {
6955            QualType T;
6956            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6957                T = TI->getType();
6958            else
6959                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6960
6961            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6962              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6963                   diag::err_enum_redeclare_type_mismatch)
6964                << T
6965                << PrevEnum->getIntegerType();
6966              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6967              return PrevTagDecl;
6968            }
6969          }
6970          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6971            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6972              << PrevEnum->isFixed();
6973            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6974            return PrevTagDecl;
6975          }
6976        }
6977
6978        if (!Invalid) {
6979          // If this is a use, just return the declaration we found.
6980
6981          // FIXME: In the future, return a variant or some other clue
6982          // for the consumer of this Decl to know it doesn't own it.
6983          // For our current ASTs this shouldn't be a problem, but will
6984          // need to be changed with DeclGroups.
6985          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6986              TUK == TUK_Friend)
6987            return PrevTagDecl;
6988
6989          // Diagnose attempts to redefine a tag.
6990          if (TUK == TUK_Definition) {
6991            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6992              // If we're defining a specialization and the previous definition
6993              // is from an implicit instantiation, don't emit an error
6994              // here; we'll catch this in the general case below.
6995              if (!isExplicitSpecialization ||
6996                  !isa<CXXRecordDecl>(Def) ||
6997                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6998                                               == TSK_ExplicitSpecialization) {
6999                Diag(NameLoc, diag::err_redefinition) << Name;
7000                Diag(Def->getLocation(), diag::note_previous_definition);
7001                // If this is a redefinition, recover by making this
7002                // struct be anonymous, which will make any later
7003                // references get the previous definition.
7004                Name = 0;
7005                Previous.clear();
7006                Invalid = true;
7007              }
7008            } else {
7009              // If the type is currently being defined, complain
7010              // about a nested redefinition.
7011              const TagType *Tag
7012                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7013              if (Tag->isBeingDefined()) {
7014                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7015                Diag(PrevTagDecl->getLocation(),
7016                     diag::note_previous_definition);
7017                Name = 0;
7018                Previous.clear();
7019                Invalid = true;
7020              }
7021            }
7022
7023            // Okay, this is definition of a previously declared or referenced
7024            // tag PrevDecl. We're going to create a new Decl for it.
7025          }
7026        }
7027        // If we get here we have (another) forward declaration or we
7028        // have a definition.  Just create a new decl.
7029
7030      } else {
7031        // If we get here, this is a definition of a new tag type in a nested
7032        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7033        // new decl/type.  We set PrevDecl to NULL so that the entities
7034        // have distinct types.
7035        Previous.clear();
7036      }
7037      // If we get here, we're going to create a new Decl. If PrevDecl
7038      // is non-NULL, it's a definition of the tag declared by
7039      // PrevDecl. If it's NULL, we have a new definition.
7040
7041
7042    // Otherwise, PrevDecl is not a tag, but was found with tag
7043    // lookup.  This is only actually possible in C++, where a few
7044    // things like templates still live in the tag namespace.
7045    } else {
7046      assert(getLangOptions().CPlusPlus);
7047
7048      // Use a better diagnostic if an elaborated-type-specifier
7049      // found the wrong kind of type on the first
7050      // (non-redeclaration) lookup.
7051      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7052          !Previous.isForRedeclaration()) {
7053        unsigned Kind = 0;
7054        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7055        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7056        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7057        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7058        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7059        Invalid = true;
7060
7061      // Otherwise, only diagnose if the declaration is in scope.
7062      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7063                                isExplicitSpecialization)) {
7064        // do nothing
7065
7066      // Diagnose implicit declarations introduced by elaborated types.
7067      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7068        unsigned Kind = 0;
7069        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7070        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7071        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7072        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7073        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7074        Invalid = true;
7075
7076      // Otherwise it's a declaration.  Call out a particularly common
7077      // case here.
7078      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7079        unsigned Kind = 0;
7080        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7081        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7082          << Name << Kind << TND->getUnderlyingType();
7083        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7084        Invalid = true;
7085
7086      // Otherwise, diagnose.
7087      } else {
7088        // The tag name clashes with something else in the target scope,
7089        // issue an error and recover by making this tag be anonymous.
7090        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7091        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7092        Name = 0;
7093        Invalid = true;
7094      }
7095
7096      // The existing declaration isn't relevant to us; we're in a
7097      // new scope, so clear out the previous declaration.
7098      Previous.clear();
7099    }
7100  }
7101
7102CreateNewDecl:
7103
7104  TagDecl *PrevDecl = 0;
7105  if (Previous.isSingleResult())
7106    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7107
7108  // If there is an identifier, use the location of the identifier as the
7109  // location of the decl, otherwise use the location of the struct/union
7110  // keyword.
7111  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7112
7113  // Otherwise, create a new declaration. If there is a previous
7114  // declaration of the same entity, the two will be linked via
7115  // PrevDecl.
7116  TagDecl *New;
7117
7118  bool IsForwardReference = false;
7119  if (Kind == TTK_Enum) {
7120    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7121    // enum X { A, B, C } D;    D should chain to X.
7122    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7123                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7124                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7125    // If this is an undefined enum, warn.
7126    if (TUK != TUK_Definition && !Invalid) {
7127      TagDecl *Def;
7128      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7129        // C++0x: 7.2p2: opaque-enum-declaration.
7130        // Conflicts are diagnosed above. Do nothing.
7131      }
7132      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7133        Diag(Loc, diag::ext_forward_ref_enum_def)
7134          << New;
7135        Diag(Def->getLocation(), diag::note_previous_definition);
7136      } else {
7137        unsigned DiagID = diag::ext_forward_ref_enum;
7138        if (getLangOptions().Microsoft)
7139          DiagID = diag::ext_ms_forward_ref_enum;
7140        else if (getLangOptions().CPlusPlus)
7141          DiagID = diag::err_forward_ref_enum;
7142        Diag(Loc, DiagID);
7143
7144        // If this is a forward-declared reference to an enumeration, make a
7145        // note of it; we won't actually be introducing the declaration into
7146        // the declaration context.
7147        if (TUK == TUK_Reference)
7148          IsForwardReference = true;
7149      }
7150    }
7151
7152    if (EnumUnderlying) {
7153      EnumDecl *ED = cast<EnumDecl>(New);
7154      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7155        ED->setIntegerTypeSourceInfo(TI);
7156      else
7157        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7158      ED->setPromotionType(ED->getIntegerType());
7159    }
7160
7161  } else {
7162    // struct/union/class
7163
7164    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7165    // struct X { int A; } D;    D should chain to X.
7166    if (getLangOptions().CPlusPlus) {
7167      // FIXME: Look for a way to use RecordDecl for simple structs.
7168      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7169                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7170
7171      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7172        StdBadAlloc = cast<CXXRecordDecl>(New);
7173    } else
7174      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7175                               cast_or_null<RecordDecl>(PrevDecl));
7176  }
7177
7178  // Maybe add qualifier info.
7179  if (SS.isNotEmpty()) {
7180    if (SS.isSet()) {
7181      New->setQualifierInfo(SS.getWithLocInContext(Context));
7182      if (TemplateParameterLists.size() > 0) {
7183        New->setTemplateParameterListsInfo(Context,
7184                                           TemplateParameterLists.size(),
7185                    (TemplateParameterList**) TemplateParameterLists.release());
7186      }
7187    }
7188    else
7189      Invalid = true;
7190  }
7191
7192  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7193    // Add alignment attributes if necessary; these attributes are checked when
7194    // the ASTContext lays out the structure.
7195    //
7196    // It is important for implementing the correct semantics that this
7197    // happen here (in act on tag decl). The #pragma pack stack is
7198    // maintained as a result of parser callbacks which can occur at
7199    // many points during the parsing of a struct declaration (because
7200    // the #pragma tokens are effectively skipped over during the
7201    // parsing of the struct).
7202    AddAlignmentAttributesForRecord(RD);
7203
7204    AddMsStructLayoutForRecord(RD);
7205  }
7206
7207  // If this is a specialization of a member class (of a class template),
7208  // check the specialization.
7209  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7210    Invalid = true;
7211
7212  if (Invalid)
7213    New->setInvalidDecl();
7214
7215  if (Attr)
7216    ProcessDeclAttributeList(S, New, Attr);
7217
7218  // If we're declaring or defining a tag in function prototype scope
7219  // in C, note that this type can only be used within the function.
7220  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7221    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7222
7223  // Set the lexical context. If the tag has a C++ scope specifier, the
7224  // lexical context will be different from the semantic context.
7225  New->setLexicalDeclContext(CurContext);
7226
7227  // Mark this as a friend decl if applicable.
7228  if (TUK == TUK_Friend)
7229    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7230
7231  // Set the access specifier.
7232  if (!Invalid && SearchDC->isRecord())
7233    SetMemberAccessSpecifier(New, PrevDecl, AS);
7234
7235  if (TUK == TUK_Definition)
7236    New->startDefinition();
7237
7238  // If this has an identifier, add it to the scope stack.
7239  if (TUK == TUK_Friend) {
7240    // We might be replacing an existing declaration in the lookup tables;
7241    // if so, borrow its access specifier.
7242    if (PrevDecl)
7243      New->setAccess(PrevDecl->getAccess());
7244
7245    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7246    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7247    if (Name) // can be null along some error paths
7248      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7249        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7250  } else if (Name) {
7251    S = getNonFieldDeclScope(S);
7252    PushOnScopeChains(New, S, !IsForwardReference);
7253    if (IsForwardReference)
7254      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7255
7256  } else {
7257    CurContext->addDecl(New);
7258  }
7259
7260  // If this is the C FILE type, notify the AST context.
7261  if (IdentifierInfo *II = New->getIdentifier())
7262    if (!New->isInvalidDecl() &&
7263        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7264        II->isStr("FILE"))
7265      Context.setFILEDecl(New);
7266
7267  OwnedDecl = true;
7268  return New;
7269}
7270
7271void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7272  AdjustDeclIfTemplate(TagD);
7273  TagDecl *Tag = cast<TagDecl>(TagD);
7274
7275  // Enter the tag context.
7276  PushDeclContext(S, Tag);
7277}
7278
7279void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7280                                           SourceLocation FinalLoc,
7281                                           SourceLocation LBraceLoc) {
7282  AdjustDeclIfTemplate(TagD);
7283  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7284
7285  FieldCollector->StartClass();
7286
7287  if (!Record->getIdentifier())
7288    return;
7289
7290  if (FinalLoc.isValid())
7291    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7292
7293  // C++ [class]p2:
7294  //   [...] The class-name is also inserted into the scope of the
7295  //   class itself; this is known as the injected-class-name. For
7296  //   purposes of access checking, the injected-class-name is treated
7297  //   as if it were a public member name.
7298  CXXRecordDecl *InjectedClassName
7299    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7300                            Record->getLocStart(), Record->getLocation(),
7301                            Record->getIdentifier(),
7302                            /*PrevDecl=*/0,
7303                            /*DelayTypeCreation=*/true);
7304  Context.getTypeDeclType(InjectedClassName, Record);
7305  InjectedClassName->setImplicit();
7306  InjectedClassName->setAccess(AS_public);
7307  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7308      InjectedClassName->setDescribedClassTemplate(Template);
7309  PushOnScopeChains(InjectedClassName, S);
7310  assert(InjectedClassName->isInjectedClassName() &&
7311         "Broken injected-class-name");
7312}
7313
7314void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7315                                    SourceLocation RBraceLoc) {
7316  AdjustDeclIfTemplate(TagD);
7317  TagDecl *Tag = cast<TagDecl>(TagD);
7318  Tag->setRBraceLoc(RBraceLoc);
7319
7320  if (isa<CXXRecordDecl>(Tag))
7321    FieldCollector->FinishClass();
7322
7323  // Exit this scope of this tag's definition.
7324  PopDeclContext();
7325
7326  // Notify the consumer that we've defined a tag.
7327  Consumer.HandleTagDeclDefinition(Tag);
7328}
7329
7330void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7331  AdjustDeclIfTemplate(TagD);
7332  TagDecl *Tag = cast<TagDecl>(TagD);
7333  Tag->setInvalidDecl();
7334
7335  // We're undoing ActOnTagStartDefinition here, not
7336  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7337  // the FieldCollector.
7338
7339  PopDeclContext();
7340}
7341
7342// Note that FieldName may be null for anonymous bitfields.
7343bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7344                          QualType FieldTy, const Expr *BitWidth,
7345                          bool *ZeroWidth) {
7346  // Default to true; that shouldn't confuse checks for emptiness
7347  if (ZeroWidth)
7348    *ZeroWidth = true;
7349
7350  // C99 6.7.2.1p4 - verify the field type.
7351  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7352  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7353    // Handle incomplete types with specific error.
7354    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7355      return true;
7356    if (FieldName)
7357      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7358        << FieldName << FieldTy << BitWidth->getSourceRange();
7359    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7360      << FieldTy << BitWidth->getSourceRange();
7361  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7362                                             UPPC_BitFieldWidth))
7363    return true;
7364
7365  // If the bit-width is type- or value-dependent, don't try to check
7366  // it now.
7367  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7368    return false;
7369
7370  llvm::APSInt Value;
7371  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7372    return true;
7373
7374  if (Value != 0 && ZeroWidth)
7375    *ZeroWidth = false;
7376
7377  // Zero-width bitfield is ok for anonymous field.
7378  if (Value == 0 && FieldName)
7379    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7380
7381  if (Value.isSigned() && Value.isNegative()) {
7382    if (FieldName)
7383      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7384               << FieldName << Value.toString(10);
7385    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7386      << Value.toString(10);
7387  }
7388
7389  if (!FieldTy->isDependentType()) {
7390    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7391    if (Value.getZExtValue() > TypeSize) {
7392      if (!getLangOptions().CPlusPlus) {
7393        if (FieldName)
7394          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7395            << FieldName << (unsigned)Value.getZExtValue()
7396            << (unsigned)TypeSize;
7397
7398        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7399          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7400      }
7401
7402      if (FieldName)
7403        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7404          << FieldName << (unsigned)Value.getZExtValue()
7405          << (unsigned)TypeSize;
7406      else
7407        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7408          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7409    }
7410  }
7411
7412  return false;
7413}
7414
7415/// ActOnField - Each field of a struct/union/class is passed into this in order
7416/// to create a FieldDecl object for it.
7417Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7418                                 SourceLocation DeclStart,
7419                                 Declarator &D, ExprTy *BitfieldWidth) {
7420  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7421                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7422                               AS_public);
7423  return Res;
7424}
7425
7426/// HandleField - Analyze a field of a C struct or a C++ data member.
7427///
7428FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7429                             SourceLocation DeclStart,
7430                             Declarator &D, Expr *BitWidth,
7431                             AccessSpecifier AS) {
7432  IdentifierInfo *II = D.getIdentifier();
7433  SourceLocation Loc = DeclStart;
7434  if (II) Loc = D.getIdentifierLoc();
7435
7436  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7437  QualType T = TInfo->getType();
7438  if (getLangOptions().CPlusPlus) {
7439    CheckExtraCXXDefaultArguments(D);
7440
7441    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7442                                        UPPC_DataMemberType)) {
7443      D.setInvalidType();
7444      T = Context.IntTy;
7445      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7446    }
7447  }
7448
7449  DiagnoseFunctionSpecifiers(D);
7450
7451  if (D.getDeclSpec().isThreadSpecified())
7452    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7453
7454  // Check to see if this name was declared as a member previously
7455  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7456  LookupName(Previous, S);
7457  assert((Previous.empty() || Previous.isOverloadedResult() ||
7458          Previous.isSingleResult())
7459    && "Lookup of member name should be either overloaded, single or null");
7460
7461  // If the name is overloaded then get any declaration else get the single result
7462  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7463    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7464
7465  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7466    // Maybe we will complain about the shadowed template parameter.
7467    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7468    // Just pretend that we didn't see the previous declaration.
7469    PrevDecl = 0;
7470  }
7471
7472  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7473    PrevDecl = 0;
7474
7475  bool Mutable
7476    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7477  SourceLocation TSSL = D.getSourceRange().getBegin();
7478  FieldDecl *NewFD
7479    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7480                     AS, PrevDecl, &D);
7481
7482  if (NewFD->isInvalidDecl())
7483    Record->setInvalidDecl();
7484
7485  if (NewFD->isInvalidDecl() && PrevDecl) {
7486    // Don't introduce NewFD into scope; there's already something
7487    // with the same name in the same scope.
7488  } else if (II) {
7489    PushOnScopeChains(NewFD, S);
7490  } else
7491    Record->addDecl(NewFD);
7492
7493  return NewFD;
7494}
7495
7496/// \brief Build a new FieldDecl and check its well-formedness.
7497///
7498/// This routine builds a new FieldDecl given the fields name, type,
7499/// record, etc. \p PrevDecl should refer to any previous declaration
7500/// with the same name and in the same scope as the field to be
7501/// created.
7502///
7503/// \returns a new FieldDecl.
7504///
7505/// \todo The Declarator argument is a hack. It will be removed once
7506FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7507                                TypeSourceInfo *TInfo,
7508                                RecordDecl *Record, SourceLocation Loc,
7509                                bool Mutable, Expr *BitWidth,
7510                                SourceLocation TSSL,
7511                                AccessSpecifier AS, NamedDecl *PrevDecl,
7512                                Declarator *D) {
7513  IdentifierInfo *II = Name.getAsIdentifierInfo();
7514  bool InvalidDecl = false;
7515  if (D) InvalidDecl = D->isInvalidType();
7516
7517  // If we receive a broken type, recover by assuming 'int' and
7518  // marking this declaration as invalid.
7519  if (T.isNull()) {
7520    InvalidDecl = true;
7521    T = Context.IntTy;
7522  }
7523
7524  QualType EltTy = Context.getBaseElementType(T);
7525  if (!EltTy->isDependentType() &&
7526      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7527    // Fields of incomplete type force their record to be invalid.
7528    Record->setInvalidDecl();
7529    InvalidDecl = true;
7530  }
7531
7532  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7533  // than a variably modified type.
7534  if (!InvalidDecl && T->isVariablyModifiedType()) {
7535    bool SizeIsNegative;
7536    llvm::APSInt Oversized;
7537    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7538                                                           SizeIsNegative,
7539                                                           Oversized);
7540    if (!FixedTy.isNull()) {
7541      Diag(Loc, diag::warn_illegal_constant_array_size);
7542      T = FixedTy;
7543    } else {
7544      if (SizeIsNegative)
7545        Diag(Loc, diag::err_typecheck_negative_array_size);
7546      else if (Oversized.getBoolValue())
7547        Diag(Loc, diag::err_array_too_large)
7548          << Oversized.toString(10);
7549      else
7550        Diag(Loc, diag::err_typecheck_field_variable_size);
7551      InvalidDecl = true;
7552    }
7553  }
7554
7555  // Fields can not have abstract class types
7556  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7557                                             diag::err_abstract_type_in_decl,
7558                                             AbstractFieldType))
7559    InvalidDecl = true;
7560
7561  bool ZeroWidth = false;
7562  // If this is declared as a bit-field, check the bit-field.
7563  if (!InvalidDecl && BitWidth &&
7564      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7565    InvalidDecl = true;
7566    BitWidth = 0;
7567    ZeroWidth = false;
7568  }
7569
7570  // Check that 'mutable' is consistent with the type of the declaration.
7571  if (!InvalidDecl && Mutable) {
7572    unsigned DiagID = 0;
7573    if (T->isReferenceType())
7574      DiagID = diag::err_mutable_reference;
7575    else if (T.isConstQualified())
7576      DiagID = diag::err_mutable_const;
7577
7578    if (DiagID) {
7579      SourceLocation ErrLoc = Loc;
7580      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7581        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7582      Diag(ErrLoc, DiagID);
7583      Mutable = false;
7584      InvalidDecl = true;
7585    }
7586  }
7587
7588  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7589                                       BitWidth, Mutable);
7590  if (InvalidDecl)
7591    NewFD->setInvalidDecl();
7592
7593  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7594    Diag(Loc, diag::err_duplicate_member) << II;
7595    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7596    NewFD->setInvalidDecl();
7597  }
7598
7599  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7600    if (Record->isUnion()) {
7601      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7602        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7603        if (RDecl->getDefinition()) {
7604          // C++ [class.union]p1: An object of a class with a non-trivial
7605          // constructor, a non-trivial copy constructor, a non-trivial
7606          // destructor, or a non-trivial copy assignment operator
7607          // cannot be a member of a union, nor can an array of such
7608          // objects.
7609          // TODO: C++0x alters this restriction significantly.
7610          if (CheckNontrivialField(NewFD))
7611            NewFD->setInvalidDecl();
7612        }
7613      }
7614
7615      // C++ [class.union]p1: If a union contains a member of reference type,
7616      // the program is ill-formed.
7617      if (EltTy->isReferenceType()) {
7618        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7619          << NewFD->getDeclName() << EltTy;
7620        NewFD->setInvalidDecl();
7621      }
7622    }
7623  }
7624
7625  // FIXME: We need to pass in the attributes given an AST
7626  // representation, not a parser representation.
7627  if (D)
7628    // FIXME: What to pass instead of TUScope?
7629    ProcessDeclAttributes(TUScope, NewFD, *D);
7630
7631  if (T.isObjCGCWeak())
7632    Diag(Loc, diag::warn_attribute_weak_on_field);
7633
7634  NewFD->setAccess(AS);
7635  return NewFD;
7636}
7637
7638bool Sema::CheckNontrivialField(FieldDecl *FD) {
7639  assert(FD);
7640  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7641
7642  if (FD->isInvalidDecl())
7643    return true;
7644
7645  QualType EltTy = Context.getBaseElementType(FD->getType());
7646  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7647    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7648    if (RDecl->getDefinition()) {
7649      // We check for copy constructors before constructors
7650      // because otherwise we'll never get complaints about
7651      // copy constructors.
7652
7653      CXXSpecialMember member = CXXInvalid;
7654      if (!RDecl->hasTrivialCopyConstructor())
7655        member = CXXCopyConstructor;
7656      else if (!RDecl->hasTrivialDefaultConstructor())
7657        member = CXXConstructor;
7658      else if (!RDecl->hasTrivialCopyAssignment())
7659        member = CXXCopyAssignment;
7660      else if (!RDecl->hasTrivialDestructor())
7661        member = CXXDestructor;
7662
7663      if (member != CXXInvalid) {
7664        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7665              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7666        DiagnoseNontrivial(RT, member);
7667        return true;
7668      }
7669    }
7670  }
7671
7672  return false;
7673}
7674
7675/// DiagnoseNontrivial - Given that a class has a non-trivial
7676/// special member, figure out why.
7677void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7678  QualType QT(T, 0U);
7679  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7680
7681  // Check whether the member was user-declared.
7682  switch (member) {
7683  case CXXInvalid:
7684    break;
7685
7686  case CXXConstructor:
7687    if (RD->hasUserDeclaredConstructor()) {
7688      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7689      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7690        const FunctionDecl *body = 0;
7691        ci->hasBody(body);
7692        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7693          SourceLocation CtorLoc = ci->getLocation();
7694          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7695          return;
7696        }
7697      }
7698
7699      assert(0 && "found no user-declared constructors");
7700      return;
7701    }
7702    break;
7703
7704  case CXXCopyConstructor:
7705    if (RD->hasUserDeclaredCopyConstructor()) {
7706      SourceLocation CtorLoc =
7707        RD->getCopyConstructor(Context, 0)->getLocation();
7708      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7709      return;
7710    }
7711    break;
7712
7713  case CXXCopyAssignment:
7714    if (RD->hasUserDeclaredCopyAssignment()) {
7715      // FIXME: this should use the location of the copy
7716      // assignment, not the type.
7717      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7718      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7719      return;
7720    }
7721    break;
7722
7723  case CXXDestructor:
7724    if (RD->hasUserDeclaredDestructor()) {
7725      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7726      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7727      return;
7728    }
7729    break;
7730  }
7731
7732  typedef CXXRecordDecl::base_class_iterator base_iter;
7733
7734  // Virtual bases and members inhibit trivial copying/construction,
7735  // but not trivial destruction.
7736  if (member != CXXDestructor) {
7737    // Check for virtual bases.  vbases includes indirect virtual bases,
7738    // so we just iterate through the direct bases.
7739    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7740      if (bi->isVirtual()) {
7741        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7742        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7743        return;
7744      }
7745
7746    // Check for virtual methods.
7747    typedef CXXRecordDecl::method_iterator meth_iter;
7748    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7749         ++mi) {
7750      if (mi->isVirtual()) {
7751        SourceLocation MLoc = mi->getSourceRange().getBegin();
7752        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7753        return;
7754      }
7755    }
7756  }
7757
7758  bool (CXXRecordDecl::*hasTrivial)() const;
7759  switch (member) {
7760  case CXXConstructor:
7761    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7762  case CXXCopyConstructor:
7763    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7764  case CXXCopyAssignment:
7765    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7766  case CXXDestructor:
7767    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7768  default:
7769    assert(0 && "unexpected special member"); return;
7770  }
7771
7772  // Check for nontrivial bases (and recurse).
7773  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7774    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7775    assert(BaseRT && "Don't know how to handle dependent bases");
7776    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7777    if (!(BaseRecTy->*hasTrivial)()) {
7778      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7779      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7780      DiagnoseNontrivial(BaseRT, member);
7781      return;
7782    }
7783  }
7784
7785  // Check for nontrivial members (and recurse).
7786  typedef RecordDecl::field_iterator field_iter;
7787  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7788       ++fi) {
7789    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7790    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7791      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7792
7793      if (!(EltRD->*hasTrivial)()) {
7794        SourceLocation FLoc = (*fi)->getLocation();
7795        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7796        DiagnoseNontrivial(EltRT, member);
7797        return;
7798      }
7799    }
7800  }
7801
7802  assert(0 && "found no explanation for non-trivial member");
7803}
7804
7805/// TranslateIvarVisibility - Translate visibility from a token ID to an
7806///  AST enum value.
7807static ObjCIvarDecl::AccessControl
7808TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7809  switch (ivarVisibility) {
7810  default: assert(0 && "Unknown visitibility kind");
7811  case tok::objc_private: return ObjCIvarDecl::Private;
7812  case tok::objc_public: return ObjCIvarDecl::Public;
7813  case tok::objc_protected: return ObjCIvarDecl::Protected;
7814  case tok::objc_package: return ObjCIvarDecl::Package;
7815  }
7816}
7817
7818/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7819/// in order to create an IvarDecl object for it.
7820Decl *Sema::ActOnIvar(Scope *S,
7821                                SourceLocation DeclStart,
7822                                Decl *IntfDecl,
7823                                Declarator &D, ExprTy *BitfieldWidth,
7824                                tok::ObjCKeywordKind Visibility) {
7825
7826  IdentifierInfo *II = D.getIdentifier();
7827  Expr *BitWidth = (Expr*)BitfieldWidth;
7828  SourceLocation Loc = DeclStart;
7829  if (II) Loc = D.getIdentifierLoc();
7830
7831  // FIXME: Unnamed fields can be handled in various different ways, for
7832  // example, unnamed unions inject all members into the struct namespace!
7833
7834  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7835  QualType T = TInfo->getType();
7836
7837  if (BitWidth) {
7838    // 6.7.2.1p3, 6.7.2.1p4
7839    if (VerifyBitField(Loc, II, T, BitWidth)) {
7840      D.setInvalidType();
7841      BitWidth = 0;
7842    }
7843  } else {
7844    // Not a bitfield.
7845
7846    // validate II.
7847
7848  }
7849  if (T->isReferenceType()) {
7850    Diag(Loc, diag::err_ivar_reference_type);
7851    D.setInvalidType();
7852  }
7853  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7854  // than a variably modified type.
7855  else if (T->isVariablyModifiedType()) {
7856    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7857    D.setInvalidType();
7858  }
7859
7860  // Get the visibility (access control) for this ivar.
7861  ObjCIvarDecl::AccessControl ac =
7862    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7863                                        : ObjCIvarDecl::None;
7864  // Must set ivar's DeclContext to its enclosing interface.
7865  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7866  ObjCContainerDecl *EnclosingContext;
7867  if (ObjCImplementationDecl *IMPDecl =
7868      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7869    if (!LangOpts.ObjCNonFragileABI2) {
7870    // Case of ivar declared in an implementation. Context is that of its class.
7871      EnclosingContext = IMPDecl->getClassInterface();
7872      assert(EnclosingContext && "Implementation has no class interface!");
7873    }
7874    else
7875      EnclosingContext = EnclosingDecl;
7876  } else {
7877    if (ObjCCategoryDecl *CDecl =
7878        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7879      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7880        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7881        return 0;
7882      }
7883    }
7884    EnclosingContext = EnclosingDecl;
7885  }
7886
7887  // Construct the decl.
7888  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7889                                             DeclStart, Loc, II, T,
7890                                             TInfo, ac, (Expr *)BitfieldWidth);
7891
7892  if (II) {
7893    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7894                                           ForRedeclaration);
7895    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7896        && !isa<TagDecl>(PrevDecl)) {
7897      Diag(Loc, diag::err_duplicate_member) << II;
7898      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7899      NewID->setInvalidDecl();
7900    }
7901  }
7902
7903  // Process attributes attached to the ivar.
7904  ProcessDeclAttributes(S, NewID, D);
7905
7906  if (D.isInvalidType())
7907    NewID->setInvalidDecl();
7908
7909  if (II) {
7910    // FIXME: When interfaces are DeclContexts, we'll need to add
7911    // these to the interface.
7912    S->AddDecl(NewID);
7913    IdResolver.AddDecl(NewID);
7914  }
7915
7916  return NewID;
7917}
7918
7919/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7920/// class and class extensions. For every class @interface and class
7921/// extension @interface, if the last ivar is a bitfield of any type,
7922/// then add an implicit `char :0` ivar to the end of that interface.
7923void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7924                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7925  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7926    return;
7927
7928  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7929  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7930
7931  if (!Ivar->isBitField())
7932    return;
7933  uint64_t BitFieldSize =
7934    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7935  if (BitFieldSize == 0)
7936    return;
7937  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7938  if (!ID) {
7939    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7940      if (!CD->IsClassExtension())
7941        return;
7942    }
7943    // No need to add this to end of @implementation.
7944    else
7945      return;
7946  }
7947  // All conditions are met. Add a new bitfield to the tail end of ivars.
7948  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7949  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7950
7951  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7952                              DeclLoc, DeclLoc, 0,
7953                              Context.CharTy,
7954                              Context.CreateTypeSourceInfo(Context.CharTy),
7955                              ObjCIvarDecl::Private, BW,
7956                              true);
7957  AllIvarDecls.push_back(Ivar);
7958}
7959
7960void Sema::ActOnFields(Scope* S,
7961                       SourceLocation RecLoc, Decl *EnclosingDecl,
7962                       Decl **Fields, unsigned NumFields,
7963                       SourceLocation LBrac, SourceLocation RBrac,
7964                       AttributeList *Attr) {
7965  assert(EnclosingDecl && "missing record or interface decl");
7966
7967  // If the decl this is being inserted into is invalid, then it may be a
7968  // redeclaration or some other bogus case.  Don't try to add fields to it.
7969  if (EnclosingDecl->isInvalidDecl()) {
7970    // FIXME: Deallocate fields?
7971    return;
7972  }
7973
7974
7975  // Verify that all the fields are okay.
7976  unsigned NumNamedMembers = 0;
7977  llvm::SmallVector<FieldDecl*, 32> RecFields;
7978
7979  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7980  for (unsigned i = 0; i != NumFields; ++i) {
7981    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7982
7983    // Get the type for the field.
7984    const Type *FDTy = FD->getType().getTypePtr();
7985
7986    if (!FD->isAnonymousStructOrUnion()) {
7987      // Remember all fields written by the user.
7988      RecFields.push_back(FD);
7989    }
7990
7991    // If the field is already invalid for some reason, don't emit more
7992    // diagnostics about it.
7993    if (FD->isInvalidDecl()) {
7994      EnclosingDecl->setInvalidDecl();
7995      continue;
7996    }
7997
7998    // C99 6.7.2.1p2:
7999    //   A structure or union shall not contain a member with
8000    //   incomplete or function type (hence, a structure shall not
8001    //   contain an instance of itself, but may contain a pointer to
8002    //   an instance of itself), except that the last member of a
8003    //   structure with more than one named member may have incomplete
8004    //   array type; such a structure (and any union containing,
8005    //   possibly recursively, a member that is such a structure)
8006    //   shall not be a member of a structure or an element of an
8007    //   array.
8008    if (FDTy->isFunctionType()) {
8009      // Field declared as a function.
8010      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8011        << FD->getDeclName();
8012      FD->setInvalidDecl();
8013      EnclosingDecl->setInvalidDecl();
8014      continue;
8015    } else if (FDTy->isIncompleteArrayType() && Record &&
8016               ((i == NumFields - 1 && !Record->isUnion()) ||
8017                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8018                 (i == NumFields - 1 || Record->isUnion())))) {
8019      // Flexible array member.
8020      // Microsoft and g++ is more permissive regarding flexible array.
8021      // It will accept flexible array in union and also
8022      // as the sole element of a struct/class.
8023      if (getLangOptions().Microsoft) {
8024        if (Record->isUnion())
8025          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8026            << FD->getDeclName();
8027        else if (NumFields == 1)
8028          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8029            << FD->getDeclName() << Record->getTagKind();
8030      } else if (getLangOptions().CPlusPlus) {
8031        if (Record->isUnion())
8032          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8033            << FD->getDeclName();
8034        else if (NumFields == 1)
8035          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8036            << FD->getDeclName() << Record->getTagKind();
8037      } else if (NumNamedMembers < 1) {
8038        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8039          << FD->getDeclName();
8040        FD->setInvalidDecl();
8041        EnclosingDecl->setInvalidDecl();
8042        continue;
8043      }
8044      if (!FD->getType()->isDependentType() &&
8045          !Context.getBaseElementType(FD->getType())->isPODType()) {
8046        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8047          << FD->getDeclName() << FD->getType();
8048        FD->setInvalidDecl();
8049        EnclosingDecl->setInvalidDecl();
8050        continue;
8051      }
8052      // Okay, we have a legal flexible array member at the end of the struct.
8053      if (Record)
8054        Record->setHasFlexibleArrayMember(true);
8055    } else if (!FDTy->isDependentType() &&
8056               RequireCompleteType(FD->getLocation(), FD->getType(),
8057                                   diag::err_field_incomplete)) {
8058      // Incomplete type
8059      FD->setInvalidDecl();
8060      EnclosingDecl->setInvalidDecl();
8061      continue;
8062    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8063      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8064        // If this is a member of a union, then entire union becomes "flexible".
8065        if (Record && Record->isUnion()) {
8066          Record->setHasFlexibleArrayMember(true);
8067        } else {
8068          // If this is a struct/class and this is not the last element, reject
8069          // it.  Note that GCC supports variable sized arrays in the middle of
8070          // structures.
8071          if (i != NumFields-1)
8072            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8073              << FD->getDeclName() << FD->getType();
8074          else {
8075            // We support flexible arrays at the end of structs in
8076            // other structs as an extension.
8077            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8078              << FD->getDeclName();
8079            if (Record)
8080              Record->setHasFlexibleArrayMember(true);
8081          }
8082        }
8083      }
8084      if (Record && FDTTy->getDecl()->hasObjectMember())
8085        Record->setHasObjectMember(true);
8086    } else if (FDTy->isObjCObjectType()) {
8087      /// A field cannot be an Objective-c object
8088      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8089      FD->setInvalidDecl();
8090      EnclosingDecl->setInvalidDecl();
8091      continue;
8092    } else if (getLangOptions().ObjC1 &&
8093               getLangOptions().getGCMode() != LangOptions::NonGC &&
8094               Record &&
8095               (FD->getType()->isObjCObjectPointerType() ||
8096                FD->getType().isObjCGCStrong()))
8097      Record->setHasObjectMember(true);
8098    else if (Context.getAsArrayType(FD->getType())) {
8099      QualType BaseType = Context.getBaseElementType(FD->getType());
8100      if (Record && BaseType->isRecordType() &&
8101          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8102        Record->setHasObjectMember(true);
8103    }
8104    // Keep track of the number of named members.
8105    if (FD->getIdentifier())
8106      ++NumNamedMembers;
8107  }
8108
8109  // Okay, we successfully defined 'Record'.
8110  if (Record) {
8111    bool Completed = false;
8112    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8113      if (!CXXRecord->isInvalidDecl()) {
8114        // Set access bits correctly on the directly-declared conversions.
8115        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8116        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8117             I != E; ++I)
8118          Convs->setAccess(I, (*I)->getAccess());
8119
8120        if (!CXXRecord->isDependentType()) {
8121          // Add any implicitly-declared members to this class.
8122          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8123
8124          // If we have virtual base classes, we may end up finding multiple
8125          // final overriders for a given virtual function. Check for this
8126          // problem now.
8127          if (CXXRecord->getNumVBases()) {
8128            CXXFinalOverriderMap FinalOverriders;
8129            CXXRecord->getFinalOverriders(FinalOverriders);
8130
8131            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8132                                             MEnd = FinalOverriders.end();
8133                 M != MEnd; ++M) {
8134              for (OverridingMethods::iterator SO = M->second.begin(),
8135                                            SOEnd = M->second.end();
8136                   SO != SOEnd; ++SO) {
8137                assert(SO->second.size() > 0 &&
8138                       "Virtual function without overridding functions?");
8139                if (SO->second.size() == 1)
8140                  continue;
8141
8142                // C++ [class.virtual]p2:
8143                //   In a derived class, if a virtual member function of a base
8144                //   class subobject has more than one final overrider the
8145                //   program is ill-formed.
8146                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8147                  << (NamedDecl *)M->first << Record;
8148                Diag(M->first->getLocation(),
8149                     diag::note_overridden_virtual_function);
8150                for (OverridingMethods::overriding_iterator
8151                          OM = SO->second.begin(),
8152                       OMEnd = SO->second.end();
8153                     OM != OMEnd; ++OM)
8154                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8155                    << (NamedDecl *)M->first << OM->Method->getParent();
8156
8157                Record->setInvalidDecl();
8158              }
8159            }
8160            CXXRecord->completeDefinition(&FinalOverriders);
8161            Completed = true;
8162          }
8163        }
8164      }
8165    }
8166
8167    if (!Completed)
8168      Record->completeDefinition();
8169  } else {
8170    ObjCIvarDecl **ClsFields =
8171      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8172    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8173      ID->setLocEnd(RBrac);
8174      // Add ivar's to class's DeclContext.
8175      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8176        ClsFields[i]->setLexicalDeclContext(ID);
8177        ID->addDecl(ClsFields[i]);
8178      }
8179      // Must enforce the rule that ivars in the base classes may not be
8180      // duplicates.
8181      if (ID->getSuperClass())
8182        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8183    } else if (ObjCImplementationDecl *IMPDecl =
8184                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8185      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8186      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8187        // Ivar declared in @implementation never belongs to the implementation.
8188        // Only it is in implementation's lexical context.
8189        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8190      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8191    } else if (ObjCCategoryDecl *CDecl =
8192                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8193      // case of ivars in class extension; all other cases have been
8194      // reported as errors elsewhere.
8195      // FIXME. Class extension does not have a LocEnd field.
8196      // CDecl->setLocEnd(RBrac);
8197      // Add ivar's to class extension's DeclContext.
8198      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8199        ClsFields[i]->setLexicalDeclContext(CDecl);
8200        CDecl->addDecl(ClsFields[i]);
8201      }
8202    }
8203  }
8204
8205  if (Attr)
8206    ProcessDeclAttributeList(S, Record, Attr);
8207
8208  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8209  // set the visibility of this record.
8210  if (Record && !Record->getDeclContext()->isRecord())
8211    AddPushedVisibilityAttribute(Record);
8212}
8213
8214/// \brief Determine whether the given integral value is representable within
8215/// the given type T.
8216static bool isRepresentableIntegerValue(ASTContext &Context,
8217                                        llvm::APSInt &Value,
8218                                        QualType T) {
8219  assert(T->isIntegralType(Context) && "Integral type required!");
8220  unsigned BitWidth = Context.getIntWidth(T);
8221
8222  if (Value.isUnsigned() || Value.isNonNegative()) {
8223    if (T->isSignedIntegerType())
8224      --BitWidth;
8225    return Value.getActiveBits() <= BitWidth;
8226  }
8227  return Value.getMinSignedBits() <= BitWidth;
8228}
8229
8230// \brief Given an integral type, return the next larger integral type
8231// (or a NULL type of no such type exists).
8232static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8233  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8234  // enum checking below.
8235  assert(T->isIntegralType(Context) && "Integral type required!");
8236  const unsigned NumTypes = 4;
8237  QualType SignedIntegralTypes[NumTypes] = {
8238    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8239  };
8240  QualType UnsignedIntegralTypes[NumTypes] = {
8241    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8242    Context.UnsignedLongLongTy
8243  };
8244
8245  unsigned BitWidth = Context.getTypeSize(T);
8246  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8247                                            : UnsignedIntegralTypes;
8248  for (unsigned I = 0; I != NumTypes; ++I)
8249    if (Context.getTypeSize(Types[I]) > BitWidth)
8250      return Types[I];
8251
8252  return QualType();
8253}
8254
8255EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8256                                          EnumConstantDecl *LastEnumConst,
8257                                          SourceLocation IdLoc,
8258                                          IdentifierInfo *Id,
8259                                          Expr *Val) {
8260  unsigned IntWidth = Context.Target.getIntWidth();
8261  llvm::APSInt EnumVal(IntWidth);
8262  QualType EltTy;
8263
8264  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8265    Val = 0;
8266
8267  if (Val) {
8268    if (Enum->isDependentType() || Val->isTypeDependent())
8269      EltTy = Context.DependentTy;
8270    else {
8271      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8272      SourceLocation ExpLoc;
8273      if (!Val->isValueDependent() &&
8274          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8275        Val = 0;
8276      } else {
8277        if (!getLangOptions().CPlusPlus) {
8278          // C99 6.7.2.2p2:
8279          //   The expression that defines the value of an enumeration constant
8280          //   shall be an integer constant expression that has a value
8281          //   representable as an int.
8282
8283          // Complain if the value is not representable in an int.
8284          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8285            Diag(IdLoc, diag::ext_enum_value_not_int)
8286              << EnumVal.toString(10) << Val->getSourceRange()
8287              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8288          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8289            // Force the type of the expression to 'int'.
8290            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8291          }
8292        }
8293
8294        if (Enum->isFixed()) {
8295          EltTy = Enum->getIntegerType();
8296
8297          // C++0x [dcl.enum]p5:
8298          //   ... if the initializing value of an enumerator cannot be
8299          //   represented by the underlying type, the program is ill-formed.
8300          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8301            if (getLangOptions().Microsoft) {
8302              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8303              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8304            } else
8305              Diag(IdLoc, diag::err_enumerator_too_large)
8306                << EltTy;
8307          } else
8308            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8309        }
8310        else {
8311          // C++0x [dcl.enum]p5:
8312          //   If the underlying type is not fixed, the type of each enumerator
8313          //   is the type of its initializing value:
8314          //     - If an initializer is specified for an enumerator, the
8315          //       initializing value has the same type as the expression.
8316          EltTy = Val->getType();
8317        }
8318      }
8319    }
8320  }
8321
8322  if (!Val) {
8323    if (Enum->isDependentType())
8324      EltTy = Context.DependentTy;
8325    else if (!LastEnumConst) {
8326      // C++0x [dcl.enum]p5:
8327      //   If the underlying type is not fixed, the type of each enumerator
8328      //   is the type of its initializing value:
8329      //     - If no initializer is specified for the first enumerator, the
8330      //       initializing value has an unspecified integral type.
8331      //
8332      // GCC uses 'int' for its unspecified integral type, as does
8333      // C99 6.7.2.2p3.
8334      if (Enum->isFixed()) {
8335        EltTy = Enum->getIntegerType();
8336      }
8337      else {
8338        EltTy = Context.IntTy;
8339      }
8340    } else {
8341      // Assign the last value + 1.
8342      EnumVal = LastEnumConst->getInitVal();
8343      ++EnumVal;
8344      EltTy = LastEnumConst->getType();
8345
8346      // Check for overflow on increment.
8347      if (EnumVal < LastEnumConst->getInitVal()) {
8348        // C++0x [dcl.enum]p5:
8349        //   If the underlying type is not fixed, the type of each enumerator
8350        //   is the type of its initializing value:
8351        //
8352        //     - Otherwise the type of the initializing value is the same as
8353        //       the type of the initializing value of the preceding enumerator
8354        //       unless the incremented value is not representable in that type,
8355        //       in which case the type is an unspecified integral type
8356        //       sufficient to contain the incremented value. If no such type
8357        //       exists, the program is ill-formed.
8358        QualType T = getNextLargerIntegralType(Context, EltTy);
8359        if (T.isNull() || Enum->isFixed()) {
8360          // There is no integral type larger enough to represent this
8361          // value. Complain, then allow the value to wrap around.
8362          EnumVal = LastEnumConst->getInitVal();
8363          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8364          ++EnumVal;
8365          if (Enum->isFixed())
8366            // When the underlying type is fixed, this is ill-formed.
8367            Diag(IdLoc, diag::err_enumerator_wrapped)
8368              << EnumVal.toString(10)
8369              << EltTy;
8370          else
8371            Diag(IdLoc, diag::warn_enumerator_too_large)
8372              << EnumVal.toString(10);
8373        } else {
8374          EltTy = T;
8375        }
8376
8377        // Retrieve the last enumerator's value, extent that type to the
8378        // type that is supposed to be large enough to represent the incremented
8379        // value, then increment.
8380        EnumVal = LastEnumConst->getInitVal();
8381        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8382        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8383        ++EnumVal;
8384
8385        // If we're not in C++, diagnose the overflow of enumerator values,
8386        // which in C99 means that the enumerator value is not representable in
8387        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8388        // permits enumerator values that are representable in some larger
8389        // integral type.
8390        if (!getLangOptions().CPlusPlus && !T.isNull())
8391          Diag(IdLoc, diag::warn_enum_value_overflow);
8392      } else if (!getLangOptions().CPlusPlus &&
8393                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8394        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8395        Diag(IdLoc, diag::ext_enum_value_not_int)
8396          << EnumVal.toString(10) << 1;
8397      }
8398    }
8399  }
8400
8401  if (!EltTy->isDependentType()) {
8402    // Make the enumerator value match the signedness and size of the
8403    // enumerator's type.
8404    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8405    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8406  }
8407
8408  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8409                                  Val, EnumVal);
8410}
8411
8412
8413Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8414                              SourceLocation IdLoc, IdentifierInfo *Id,
8415                              AttributeList *Attr,
8416                              SourceLocation EqualLoc, ExprTy *val) {
8417  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8418  EnumConstantDecl *LastEnumConst =
8419    cast_or_null<EnumConstantDecl>(lastEnumConst);
8420  Expr *Val = static_cast<Expr*>(val);
8421
8422  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8423  // we find one that is.
8424  S = getNonFieldDeclScope(S);
8425
8426  // Verify that there isn't already something declared with this name in this
8427  // scope.
8428  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8429                                         ForRedeclaration);
8430  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8431    // Maybe we will complain about the shadowed template parameter.
8432    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8433    // Just pretend that we didn't see the previous declaration.
8434    PrevDecl = 0;
8435  }
8436
8437  if (PrevDecl) {
8438    // When in C++, we may get a TagDecl with the same name; in this case the
8439    // enum constant will 'hide' the tag.
8440    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8441           "Received TagDecl when not in C++!");
8442    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8443      if (isa<EnumConstantDecl>(PrevDecl))
8444        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8445      else
8446        Diag(IdLoc, diag::err_redefinition) << Id;
8447      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8448      return 0;
8449    }
8450  }
8451
8452  // C++ [class.mem]p13:
8453  //   If T is the name of a class, then each of the following shall have a
8454  //   name different from T:
8455  //     - every enumerator of every member of class T that is an enumerated
8456  //       type
8457  if (CXXRecordDecl *Record
8458                      = dyn_cast<CXXRecordDecl>(
8459                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8460    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8461      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8462
8463  EnumConstantDecl *New =
8464    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8465
8466  if (New) {
8467    // Process attributes.
8468    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8469
8470    // Register this decl in the current scope stack.
8471    New->setAccess(TheEnumDecl->getAccess());
8472    PushOnScopeChains(New, S);
8473  }
8474
8475  return New;
8476}
8477
8478void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8479                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8480                         Decl **Elements, unsigned NumElements,
8481                         Scope *S, AttributeList *Attr) {
8482  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8483  QualType EnumType = Context.getTypeDeclType(Enum);
8484
8485  if (Attr)
8486    ProcessDeclAttributeList(S, Enum, Attr);
8487
8488  if (Enum->isDependentType()) {
8489    for (unsigned i = 0; i != NumElements; ++i) {
8490      EnumConstantDecl *ECD =
8491        cast_or_null<EnumConstantDecl>(Elements[i]);
8492      if (!ECD) continue;
8493
8494      ECD->setType(EnumType);
8495    }
8496
8497    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8498    return;
8499  }
8500
8501  // TODO: If the result value doesn't fit in an int, it must be a long or long
8502  // long value.  ISO C does not support this, but GCC does as an extension,
8503  // emit a warning.
8504  unsigned IntWidth = Context.Target.getIntWidth();
8505  unsigned CharWidth = Context.Target.getCharWidth();
8506  unsigned ShortWidth = Context.Target.getShortWidth();
8507
8508  // Verify that all the values are okay, compute the size of the values, and
8509  // reverse the list.
8510  unsigned NumNegativeBits = 0;
8511  unsigned NumPositiveBits = 0;
8512
8513  // Keep track of whether all elements have type int.
8514  bool AllElementsInt = true;
8515
8516  for (unsigned i = 0; i != NumElements; ++i) {
8517    EnumConstantDecl *ECD =
8518      cast_or_null<EnumConstantDecl>(Elements[i]);
8519    if (!ECD) continue;  // Already issued a diagnostic.
8520
8521    const llvm::APSInt &InitVal = ECD->getInitVal();
8522
8523    // Keep track of the size of positive and negative values.
8524    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8525      NumPositiveBits = std::max(NumPositiveBits,
8526                                 (unsigned)InitVal.getActiveBits());
8527    else
8528      NumNegativeBits = std::max(NumNegativeBits,
8529                                 (unsigned)InitVal.getMinSignedBits());
8530
8531    // Keep track of whether every enum element has type int (very commmon).
8532    if (AllElementsInt)
8533      AllElementsInt = ECD->getType() == Context.IntTy;
8534  }
8535
8536  // Figure out the type that should be used for this enum.
8537  QualType BestType;
8538  unsigned BestWidth;
8539
8540  // C++0x N3000 [conv.prom]p3:
8541  //   An rvalue of an unscoped enumeration type whose underlying
8542  //   type is not fixed can be converted to an rvalue of the first
8543  //   of the following types that can represent all the values of
8544  //   the enumeration: int, unsigned int, long int, unsigned long
8545  //   int, long long int, or unsigned long long int.
8546  // C99 6.4.4.3p2:
8547  //   An identifier declared as an enumeration constant has type int.
8548  // The C99 rule is modified by a gcc extension
8549  QualType BestPromotionType;
8550
8551  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8552  // -fshort-enums is the equivalent to specifying the packed attribute on all
8553  // enum definitions.
8554  if (LangOpts.ShortEnums)
8555    Packed = true;
8556
8557  if (Enum->isFixed()) {
8558    BestType = BestPromotionType = Enum->getIntegerType();
8559    // We don't need to set BestWidth, because BestType is going to be the type
8560    // of the enumerators, but we do anyway because otherwise some compilers
8561    // warn that it might be used uninitialized.
8562    BestWidth = CharWidth;
8563  }
8564  else if (NumNegativeBits) {
8565    // If there is a negative value, figure out the smallest integer type (of
8566    // int/long/longlong) that fits.
8567    // If it's packed, check also if it fits a char or a short.
8568    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8569      BestType = Context.SignedCharTy;
8570      BestWidth = CharWidth;
8571    } else if (Packed && NumNegativeBits <= ShortWidth &&
8572               NumPositiveBits < ShortWidth) {
8573      BestType = Context.ShortTy;
8574      BestWidth = ShortWidth;
8575    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8576      BestType = Context.IntTy;
8577      BestWidth = IntWidth;
8578    } else {
8579      BestWidth = Context.Target.getLongWidth();
8580
8581      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8582        BestType = Context.LongTy;
8583      } else {
8584        BestWidth = Context.Target.getLongLongWidth();
8585
8586        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8587          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8588        BestType = Context.LongLongTy;
8589      }
8590    }
8591    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8592  } else {
8593    // If there is no negative value, figure out the smallest type that fits
8594    // all of the enumerator values.
8595    // If it's packed, check also if it fits a char or a short.
8596    if (Packed && NumPositiveBits <= CharWidth) {
8597      BestType = Context.UnsignedCharTy;
8598      BestPromotionType = Context.IntTy;
8599      BestWidth = CharWidth;
8600    } else if (Packed && NumPositiveBits <= ShortWidth) {
8601      BestType = Context.UnsignedShortTy;
8602      BestPromotionType = Context.IntTy;
8603      BestWidth = ShortWidth;
8604    } else if (NumPositiveBits <= IntWidth) {
8605      BestType = Context.UnsignedIntTy;
8606      BestWidth = IntWidth;
8607      BestPromotionType
8608        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8609                           ? Context.UnsignedIntTy : Context.IntTy;
8610    } else if (NumPositiveBits <=
8611               (BestWidth = Context.Target.getLongWidth())) {
8612      BestType = Context.UnsignedLongTy;
8613      BestPromotionType
8614        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8615                           ? Context.UnsignedLongTy : Context.LongTy;
8616    } else {
8617      BestWidth = Context.Target.getLongLongWidth();
8618      assert(NumPositiveBits <= BestWidth &&
8619             "How could an initializer get larger than ULL?");
8620      BestType = Context.UnsignedLongLongTy;
8621      BestPromotionType
8622        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8623                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8624    }
8625  }
8626
8627  // Loop over all of the enumerator constants, changing their types to match
8628  // the type of the enum if needed.
8629  for (unsigned i = 0; i != NumElements; ++i) {
8630    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8631    if (!ECD) continue;  // Already issued a diagnostic.
8632
8633    // Standard C says the enumerators have int type, but we allow, as an
8634    // extension, the enumerators to be larger than int size.  If each
8635    // enumerator value fits in an int, type it as an int, otherwise type it the
8636    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8637    // that X has type 'int', not 'unsigned'.
8638
8639    // Determine whether the value fits into an int.
8640    llvm::APSInt InitVal = ECD->getInitVal();
8641
8642    // If it fits into an integer type, force it.  Otherwise force it to match
8643    // the enum decl type.
8644    QualType NewTy;
8645    unsigned NewWidth;
8646    bool NewSign;
8647    if (!getLangOptions().CPlusPlus &&
8648        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8649      NewTy = Context.IntTy;
8650      NewWidth = IntWidth;
8651      NewSign = true;
8652    } else if (ECD->getType() == BestType) {
8653      // Already the right type!
8654      if (getLangOptions().CPlusPlus)
8655        // C++ [dcl.enum]p4: Following the closing brace of an
8656        // enum-specifier, each enumerator has the type of its
8657        // enumeration.
8658        ECD->setType(EnumType);
8659      continue;
8660    } else {
8661      NewTy = BestType;
8662      NewWidth = BestWidth;
8663      NewSign = BestType->isSignedIntegerType();
8664    }
8665
8666    // Adjust the APSInt value.
8667    InitVal = InitVal.extOrTrunc(NewWidth);
8668    InitVal.setIsSigned(NewSign);
8669    ECD->setInitVal(InitVal);
8670
8671    // Adjust the Expr initializer and type.
8672    if (ECD->getInitExpr() &&
8673	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8674      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8675                                                CK_IntegralCast,
8676                                                ECD->getInitExpr(),
8677                                                /*base paths*/ 0,
8678                                                VK_RValue));
8679    if (getLangOptions().CPlusPlus)
8680      // C++ [dcl.enum]p4: Following the closing brace of an
8681      // enum-specifier, each enumerator has the type of its
8682      // enumeration.
8683      ECD->setType(EnumType);
8684    else
8685      ECD->setType(NewTy);
8686  }
8687
8688  Enum->completeDefinition(BestType, BestPromotionType,
8689                           NumPositiveBits, NumNegativeBits);
8690}
8691
8692Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8693                                  SourceLocation StartLoc,
8694                                  SourceLocation EndLoc) {
8695  StringLiteral *AsmString = cast<StringLiteral>(expr);
8696
8697  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8698                                                   AsmString, StartLoc,
8699                                                   EndLoc);
8700  CurContext->addDecl(New);
8701  return New;
8702}
8703
8704void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8705                             SourceLocation PragmaLoc,
8706                             SourceLocation NameLoc) {
8707  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8708
8709  if (PrevDecl) {
8710    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8711  } else {
8712    (void)WeakUndeclaredIdentifiers.insert(
8713      std::pair<IdentifierInfo*,WeakInfo>
8714        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8715  }
8716}
8717
8718void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8719                                IdentifierInfo* AliasName,
8720                                SourceLocation PragmaLoc,
8721                                SourceLocation NameLoc,
8722                                SourceLocation AliasNameLoc) {
8723  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8724                                    LookupOrdinaryName);
8725  WeakInfo W = WeakInfo(Name, NameLoc);
8726
8727  if (PrevDecl) {
8728    if (!PrevDecl->hasAttr<AliasAttr>())
8729      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8730        DeclApplyPragmaWeak(TUScope, ND, W);
8731  } else {
8732    (void)WeakUndeclaredIdentifiers.insert(
8733      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8734  }
8735}
8736