SemaDecl.cpp revision 06284c1dc56caed19850bc3766c89f51763724c3
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/Triple.h"
43#include <algorithm>
44#include <cstring>
45#include <functional>
46using namespace clang;
47using namespace sema;
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
50  if (OwnedType) {
51    Decl *Group[2] = { OwnedType, Ptr };
52    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
53  }
54
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                             Scope *S, CXXScopeSpec *SS,
71                             bool isClassName, bool HasTrailingDot,
72                             ParsedType ObjectTypePtr,
73                             bool WantNontrivialTypeSourceInfo,
74                             IdentifierInfo **CorrectedII) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149    if (CorrectedII) {
150      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
151                                              Kind, S, SS, 0, false,
152                                              Sema::CTC_Type);
153      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
154      TemplateTy Template;
155      bool MemberOfUnknownSpecialization;
156      UnqualifiedId TemplateName;
157      TemplateName.setIdentifier(NewII, NameLoc);
158      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
159      CXXScopeSpec NewSS, *NewSSPtr = SS;
160      if (SS && NNS) {
161        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
162        NewSSPtr = &NewSS;
163      }
164      if (Correction && (NNS || NewII != &II) &&
165          // Ignore a correction to a template type as the to-be-corrected
166          // identifier is not a template (typo correction for template names
167          // is handled elsewhere).
168          !(getLangOptions().CPlusPlus && NewSSPtr &&
169            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
170                           false, Template, MemberOfUnknownSpecialization))) {
171        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
172                                    isClassName, HasTrailingDot, ObjectTypePtr,
173                                    WantNontrivialTypeSourceInfo);
174        if (Ty) {
175          std::string CorrectedStr(Correction.getAsString(getLangOptions()));
176          std::string CorrectedQuotedStr(
177              Correction.getQuoted(getLangOptions()));
178          Diag(NameLoc, diag::err_unknown_typename_suggest)
179              << Result.getLookupName() << CorrectedQuotedStr
180              << FixItHint::CreateReplacement(SourceRange(NameLoc),
181                                              CorrectedStr);
182          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
183            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
184              << CorrectedQuotedStr;
185
186          if (SS && NNS)
187            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
188          *CorrectedII = NewII;
189          return Ty;
190        }
191      }
192    }
193    // If typo correction failed or was not performed, fall through
194  case LookupResult::FoundOverloaded:
195  case LookupResult::FoundUnresolvedValue:
196    Result.suppressDiagnostics();
197    return ParsedType();
198
199  case LookupResult::Ambiguous:
200    // Recover from type-hiding ambiguities by hiding the type.  We'll
201    // do the lookup again when looking for an object, and we can
202    // diagnose the error then.  If we don't do this, then the error
203    // about hiding the type will be immediately followed by an error
204    // that only makes sense if the identifier was treated like a type.
205    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
206      Result.suppressDiagnostics();
207      return ParsedType();
208    }
209
210    // Look to see if we have a type anywhere in the list of results.
211    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
212         Res != ResEnd; ++Res) {
213      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
214        if (!IIDecl ||
215            (*Res)->getLocation().getRawEncoding() <
216              IIDecl->getLocation().getRawEncoding())
217          IIDecl = *Res;
218      }
219    }
220
221    if (!IIDecl) {
222      // None of the entities we found is a type, so there is no way
223      // to even assume that the result is a type. In this case, don't
224      // complain about the ambiguity. The parser will either try to
225      // perform this lookup again (e.g., as an object name), which
226      // will produce the ambiguity, or will complain that it expected
227      // a type name.
228      Result.suppressDiagnostics();
229      return ParsedType();
230    }
231
232    // We found a type within the ambiguous lookup; diagnose the
233    // ambiguity and then return that type. This might be the right
234    // answer, or it might not be, but it suppresses any attempt to
235    // perform the name lookup again.
236    break;
237
238  case LookupResult::Found:
239    IIDecl = Result.getFoundDecl();
240    break;
241  }
242
243  assert(IIDecl && "Didn't find decl");
244
245  QualType T;
246  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
247    DiagnoseUseOfDecl(IIDecl, NameLoc);
248
249    if (T.isNull())
250      T = Context.getTypeDeclType(TD);
251
252    if (SS && SS->isNotEmpty()) {
253      if (WantNontrivialTypeSourceInfo) {
254        // Construct a type with type-source information.
255        TypeLocBuilder Builder;
256        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
257
258        T = getElaboratedType(ETK_None, *SS, T);
259        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
260        ElabTL.setKeywordLoc(SourceLocation());
261        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
262        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
263      } else {
264        T = getElaboratedType(ETK_None, *SS, T);
265      }
266    }
267  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
268    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
269    if (!HasTrailingDot)
270      T = Context.getObjCInterfaceType(IDecl);
271  }
272
273  if (T.isNull()) {
274    // If it's not plausibly a type, suppress diagnostics.
275    Result.suppressDiagnostics();
276    return ParsedType();
277  }
278  return ParsedType::make(T);
279}
280
281/// isTagName() - This method is called *for error recovery purposes only*
282/// to determine if the specified name is a valid tag name ("struct foo").  If
283/// so, this returns the TST for the tag corresponding to it (TST_enum,
284/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
285/// where the user forgot to specify the tag.
286DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
287  // Do a tag name lookup in this scope.
288  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
289  LookupName(R, S, false);
290  R.suppressDiagnostics();
291  if (R.getResultKind() == LookupResult::Found)
292    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
293      switch (TD->getTagKind()) {
294      default:         return DeclSpec::TST_unspecified;
295      case TTK_Struct: return DeclSpec::TST_struct;
296      case TTK_Union:  return DeclSpec::TST_union;
297      case TTK_Class:  return DeclSpec::TST_class;
298      case TTK_Enum:   return DeclSpec::TST_enum;
299      }
300    }
301
302  return DeclSpec::TST_unspecified;
303}
304
305/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
306/// if a CXXScopeSpec's type is equal to the type of one of the base classes
307/// then downgrade the missing typename error to a warning.
308/// This is needed for MSVC compatibility; Example:
309/// @code
310/// template<class T> class A {
311/// public:
312///   typedef int TYPE;
313/// };
314/// template<class T> class B : public A<T> {
315/// public:
316///   A<T>::TYPE a; // no typename required because A<T> is a base class.
317/// };
318/// @endcode
319bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
320  if (CurContext->isRecord()) {
321    const Type *Ty = SS->getScopeRep()->getAsType();
322
323    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
324    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
325          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
326      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
327        return true;
328    return S->isFunctionPrototypeScope();
329  }
330  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
331}
332
333bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
334                                   SourceLocation IILoc,
335                                   Scope *S,
336                                   CXXScopeSpec *SS,
337                                   ParsedType &SuggestedType) {
338  // We don't have anything to suggest (yet).
339  SuggestedType = ParsedType();
340
341  // There may have been a typo in the name of the type. Look up typo
342  // results, in case we have something that we can suggest.
343  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
344                                             LookupOrdinaryName, S, SS, NULL,
345                                             false, CTC_Type)) {
346    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
347    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
348
349    if (Corrected.isKeyword()) {
350      // We corrected to a keyword.
351      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
352      Diag(IILoc, diag::err_unknown_typename_suggest)
353        << &II << CorrectedQuotedStr;
354      return true;
355    } else {
356      NamedDecl *Result = Corrected.getCorrectionDecl();
357      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
358          !Result->isInvalidDecl()) {
359        // We found a similarly-named type or interface; suggest that.
360        if (!SS || !SS->isSet())
361          Diag(IILoc, diag::err_unknown_typename_suggest)
362            << &II << CorrectedQuotedStr
363            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
364        else if (DeclContext *DC = computeDeclContext(*SS, false))
365          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
366            << &II << DC << CorrectedQuotedStr << SS->getRange()
367            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
368        else
369          llvm_unreachable("could not have corrected a typo here");
370
371        Diag(Result->getLocation(), diag::note_previous_decl)
372          << CorrectedQuotedStr;
373
374        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
375                                    false, false, ParsedType(),
376                                    /*NonTrivialTypeSourceInfo=*/true);
377        return true;
378      }
379    }
380  }
381
382  if (getLangOptions().CPlusPlus) {
383    // See if II is a class template that the user forgot to pass arguments to.
384    UnqualifiedId Name;
385    Name.setIdentifier(&II, IILoc);
386    CXXScopeSpec EmptySS;
387    TemplateTy TemplateResult;
388    bool MemberOfUnknownSpecialization;
389    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
390                       Name, ParsedType(), true, TemplateResult,
391                       MemberOfUnknownSpecialization) == TNK_Type_template) {
392      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
393      Diag(IILoc, diag::err_template_missing_args) << TplName;
394      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
395        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
396          << TplDecl->getTemplateParameters()->getSourceRange();
397      }
398      return true;
399    }
400  }
401
402  // FIXME: Should we move the logic that tries to recover from a missing tag
403  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
404
405  if (!SS || (!SS->isSet() && !SS->isInvalid()))
406    Diag(IILoc, diag::err_unknown_typename) << &II;
407  else if (DeclContext *DC = computeDeclContext(*SS, false))
408    Diag(IILoc, diag::err_typename_nested_not_found)
409      << &II << DC << SS->getRange();
410  else if (isDependentScopeSpecifier(*SS)) {
411    unsigned DiagID = diag::err_typename_missing;
412    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
413      DiagID = diag::warn_typename_missing;
414
415    Diag(SS->getRange().getBegin(), DiagID)
416      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
417      << SourceRange(SS->getRange().getBegin(), IILoc)
418      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
419    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
420                                                                         .get();
421  } else {
422    assert(SS && SS->isInvalid() &&
423           "Invalid scope specifier has already been diagnosed");
424  }
425
426  return true;
427}
428
429/// \brief Determine whether the given result set contains either a type name
430/// or
431static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
432  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
433                       NextToken.is(tok::less);
434
435  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
436    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
437      return true;
438
439    if (CheckTemplate && isa<TemplateDecl>(*I))
440      return true;
441  }
442
443  return false;
444}
445
446Sema::NameClassification Sema::ClassifyName(Scope *S,
447                                            CXXScopeSpec &SS,
448                                            IdentifierInfo *&Name,
449                                            SourceLocation NameLoc,
450                                            const Token &NextToken) {
451  DeclarationNameInfo NameInfo(Name, NameLoc);
452  ObjCMethodDecl *CurMethod = getCurMethodDecl();
453
454  if (NextToken.is(tok::coloncolon)) {
455    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
456                                QualType(), false, SS, 0, false);
457
458  }
459
460  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
461  LookupParsedName(Result, S, &SS, !CurMethod);
462
463  // Perform lookup for Objective-C instance variables (including automatically
464  // synthesized instance variables), if we're in an Objective-C method.
465  // FIXME: This lookup really, really needs to be folded in to the normal
466  // unqualified lookup mechanism.
467  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
468    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
469    if (E.get() || E.isInvalid())
470      return E;
471  }
472
473  bool SecondTry = false;
474  bool IsFilteredTemplateName = false;
475
476Corrected:
477  switch (Result.getResultKind()) {
478  case LookupResult::NotFound:
479    // If an unqualified-id is followed by a '(', then we have a function
480    // call.
481    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
482      // In C++, this is an ADL-only call.
483      // FIXME: Reference?
484      if (getLangOptions().CPlusPlus)
485        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
486
487      // C90 6.3.2.2:
488      //   If the expression that precedes the parenthesized argument list in a
489      //   function call consists solely of an identifier, and if no
490      //   declaration is visible for this identifier, the identifier is
491      //   implicitly declared exactly as if, in the innermost block containing
492      //   the function call, the declaration
493      //
494      //     extern int identifier ();
495      //
496      //   appeared.
497      //
498      // We also allow this in C99 as an extension.
499      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
500        Result.addDecl(D);
501        Result.resolveKind();
502        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
503      }
504    }
505
506    // In C, we first see whether there is a tag type by the same name, in
507    // which case it's likely that the user just forget to write "enum",
508    // "struct", or "union".
509    if (!getLangOptions().CPlusPlus && !SecondTry) {
510      Result.clear(LookupTagName);
511      LookupParsedName(Result, S, &SS);
512      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
513        const char *TagName = 0;
514        const char *FixItTagName = 0;
515        switch (Tag->getTagKind()) {
516          case TTK_Class:
517            TagName = "class";
518            FixItTagName = "class ";
519            break;
520
521          case TTK_Enum:
522            TagName = "enum";
523            FixItTagName = "enum ";
524            break;
525
526          case TTK_Struct:
527            TagName = "struct";
528            FixItTagName = "struct ";
529            break;
530
531          case TTK_Union:
532            TagName = "union";
533            FixItTagName = "union ";
534            break;
535        }
536
537        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
538          << Name << TagName << getLangOptions().CPlusPlus
539          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
540        break;
541      }
542
543      Result.clear(LookupOrdinaryName);
544    }
545
546    // Perform typo correction to determine if there is another name that is
547    // close to this name.
548    if (!SecondTry) {
549      SecondTry = true;
550      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
551                                                 Result.getLookupKind(), S,
552                                                 &SS)) {
553        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
554        unsigned QualifiedDiag = diag::err_no_member_suggest;
555        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
556        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
557
558        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
559        NamedDecl *UnderlyingFirstDecl
560          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
561        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
562            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
563          UnqualifiedDiag = diag::err_no_template_suggest;
564          QualifiedDiag = diag::err_no_member_template_suggest;
565        } else if (UnderlyingFirstDecl &&
566                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
567                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
568                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
569           UnqualifiedDiag = diag::err_unknown_typename_suggest;
570           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
571         }
572
573        if (SS.isEmpty())
574          Diag(NameLoc, UnqualifiedDiag)
575            << Name << CorrectedQuotedStr
576            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
577        else
578          Diag(NameLoc, QualifiedDiag)
579            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
580            << SS.getRange()
581            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
582
583        // Update the name, so that the caller has the new name.
584        Name = Corrected.getCorrectionAsIdentifierInfo();
585
586        // Also update the LookupResult...
587        // FIXME: This should probably go away at some point
588        Result.clear();
589        Result.setLookupName(Corrected.getCorrection());
590        if (FirstDecl) Result.addDecl(FirstDecl);
591
592        // Typo correction corrected to a keyword.
593        if (Corrected.isKeyword())
594          return Corrected.getCorrectionAsIdentifierInfo();
595
596        if (FirstDecl)
597          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
598            << CorrectedQuotedStr;
599
600        // If we found an Objective-C instance variable, let
601        // LookupInObjCMethod build the appropriate expression to
602        // reference the ivar.
603        // FIXME: This is a gross hack.
604        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
605          Result.clear();
606          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
607          return move(E);
608        }
609
610        goto Corrected;
611      }
612    }
613
614    // We failed to correct; just fall through and let the parser deal with it.
615    Result.suppressDiagnostics();
616    return NameClassification::Unknown();
617
618  case LookupResult::NotFoundInCurrentInstantiation:
619    // We performed name lookup into the current instantiation, and there were
620    // dependent bases, so we treat this result the same way as any other
621    // dependent nested-name-specifier.
622
623    // C++ [temp.res]p2:
624    //   A name used in a template declaration or definition and that is
625    //   dependent on a template-parameter is assumed not to name a type
626    //   unless the applicable name lookup finds a type name or the name is
627    //   qualified by the keyword typename.
628    //
629    // FIXME: If the next token is '<', we might want to ask the parser to
630    // perform some heroics to see if we actually have a
631    // template-argument-list, which would indicate a missing 'template'
632    // keyword here.
633    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
634
635  case LookupResult::Found:
636  case LookupResult::FoundOverloaded:
637  case LookupResult::FoundUnresolvedValue:
638    break;
639
640  case LookupResult::Ambiguous:
641    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
642        hasAnyAcceptableTemplateNames(Result)) {
643      // C++ [temp.local]p3:
644      //   A lookup that finds an injected-class-name (10.2) can result in an
645      //   ambiguity in certain cases (for example, if it is found in more than
646      //   one base class). If all of the injected-class-names that are found
647      //   refer to specializations of the same class template, and if the name
648      //   is followed by a template-argument-list, the reference refers to the
649      //   class template itself and not a specialization thereof, and is not
650      //   ambiguous.
651      //
652      // This filtering can make an ambiguous result into an unambiguous one,
653      // so try again after filtering out template names.
654      FilterAcceptableTemplateNames(Result);
655      if (!Result.isAmbiguous()) {
656        IsFilteredTemplateName = true;
657        break;
658      }
659    }
660
661    // Diagnose the ambiguity and return an error.
662    return NameClassification::Error();
663  }
664
665  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
666      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
667    // C++ [temp.names]p3:
668    //   After name lookup (3.4) finds that a name is a template-name or that
669    //   an operator-function-id or a literal- operator-id refers to a set of
670    //   overloaded functions any member of which is a function template if
671    //   this is followed by a <, the < is always taken as the delimiter of a
672    //   template-argument-list and never as the less-than operator.
673    if (!IsFilteredTemplateName)
674      FilterAcceptableTemplateNames(Result);
675
676    if (!Result.empty()) {
677      bool IsFunctionTemplate;
678      TemplateName Template;
679      if (Result.end() - Result.begin() > 1) {
680        IsFunctionTemplate = true;
681        Template = Context.getOverloadedTemplateName(Result.begin(),
682                                                     Result.end());
683      } else {
684        TemplateDecl *TD
685          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
686        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
687
688        if (SS.isSet() && !SS.isInvalid())
689          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
690                                                    /*TemplateKeyword=*/false,
691                                                      TD);
692        else
693          Template = TemplateName(TD);
694      }
695
696      if (IsFunctionTemplate) {
697        // Function templates always go through overload resolution, at which
698        // point we'll perform the various checks (e.g., accessibility) we need
699        // to based on which function we selected.
700        Result.suppressDiagnostics();
701
702        return NameClassification::FunctionTemplate(Template);
703      }
704
705      return NameClassification::TypeTemplate(Template);
706    }
707  }
708
709  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
710  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
711    DiagnoseUseOfDecl(Type, NameLoc);
712    QualType T = Context.getTypeDeclType(Type);
713    return ParsedType::make(T);
714  }
715
716  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
717  if (!Class) {
718    // FIXME: It's unfortunate that we don't have a Type node for handling this.
719    if (ObjCCompatibleAliasDecl *Alias
720                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
721      Class = Alias->getClassInterface();
722  }
723
724  if (Class) {
725    DiagnoseUseOfDecl(Class, NameLoc);
726
727    if (NextToken.is(tok::period)) {
728      // Interface. <something> is parsed as a property reference expression.
729      // Just return "unknown" as a fall-through for now.
730      Result.suppressDiagnostics();
731      return NameClassification::Unknown();
732    }
733
734    QualType T = Context.getObjCInterfaceType(Class);
735    return ParsedType::make(T);
736  }
737
738  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
739    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
740
741  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
742  return BuildDeclarationNameExpr(SS, Result, ADL);
743}
744
745// Determines the context to return to after temporarily entering a
746// context.  This depends in an unnecessarily complicated way on the
747// exact ordering of callbacks from the parser.
748DeclContext *Sema::getContainingDC(DeclContext *DC) {
749
750  // Functions defined inline within classes aren't parsed until we've
751  // finished parsing the top-level class, so the top-level class is
752  // the context we'll need to return to.
753  if (isa<FunctionDecl>(DC)) {
754    DC = DC->getLexicalParent();
755
756    // A function not defined within a class will always return to its
757    // lexical context.
758    if (!isa<CXXRecordDecl>(DC))
759      return DC;
760
761    // A C++ inline method/friend is parsed *after* the topmost class
762    // it was declared in is fully parsed ("complete");  the topmost
763    // class is the context we need to return to.
764    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
765      DC = RD;
766
767    // Return the declaration context of the topmost class the inline method is
768    // declared in.
769    return DC;
770  }
771
772  return DC->getLexicalParent();
773}
774
775void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
776  assert(getContainingDC(DC) == CurContext &&
777      "The next DeclContext should be lexically contained in the current one.");
778  CurContext = DC;
779  S->setEntity(DC);
780}
781
782void Sema::PopDeclContext() {
783  assert(CurContext && "DeclContext imbalance!");
784
785  CurContext = getContainingDC(CurContext);
786  assert(CurContext && "Popped translation unit!");
787}
788
789/// EnterDeclaratorContext - Used when we must lookup names in the context
790/// of a declarator's nested name specifier.
791///
792void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
793  // C++0x [basic.lookup.unqual]p13:
794  //   A name used in the definition of a static data member of class
795  //   X (after the qualified-id of the static member) is looked up as
796  //   if the name was used in a member function of X.
797  // C++0x [basic.lookup.unqual]p14:
798  //   If a variable member of a namespace is defined outside of the
799  //   scope of its namespace then any name used in the definition of
800  //   the variable member (after the declarator-id) is looked up as
801  //   if the definition of the variable member occurred in its
802  //   namespace.
803  // Both of these imply that we should push a scope whose context
804  // is the semantic context of the declaration.  We can't use
805  // PushDeclContext here because that context is not necessarily
806  // lexically contained in the current context.  Fortunately,
807  // the containing scope should have the appropriate information.
808
809  assert(!S->getEntity() && "scope already has entity");
810
811#ifndef NDEBUG
812  Scope *Ancestor = S->getParent();
813  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
814  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
815#endif
816
817  CurContext = DC;
818  S->setEntity(DC);
819}
820
821void Sema::ExitDeclaratorContext(Scope *S) {
822  assert(S->getEntity() == CurContext && "Context imbalance!");
823
824  // Switch back to the lexical context.  The safety of this is
825  // enforced by an assert in EnterDeclaratorContext.
826  Scope *Ancestor = S->getParent();
827  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
828  CurContext = (DeclContext*) Ancestor->getEntity();
829
830  // We don't need to do anything with the scope, which is going to
831  // disappear.
832}
833
834
835void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
836  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
837  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
838    // We assume that the caller has already called
839    // ActOnReenterTemplateScope
840    FD = TFD->getTemplatedDecl();
841  }
842  if (!FD)
843    return;
844
845  PushDeclContext(S, FD);
846  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
847    ParmVarDecl *Param = FD->getParamDecl(P);
848    // If the parameter has an identifier, then add it to the scope
849    if (Param->getIdentifier()) {
850      S->AddDecl(Param);
851      IdResolver.AddDecl(Param);
852    }
853  }
854}
855
856
857/// \brief Determine whether we allow overloading of the function
858/// PrevDecl with another declaration.
859///
860/// This routine determines whether overloading is possible, not
861/// whether some new function is actually an overload. It will return
862/// true in C++ (where we can always provide overloads) or, as an
863/// extension, in C when the previous function is already an
864/// overloaded function declaration or has the "overloadable"
865/// attribute.
866static bool AllowOverloadingOfFunction(LookupResult &Previous,
867                                       ASTContext &Context) {
868  if (Context.getLangOptions().CPlusPlus)
869    return true;
870
871  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
872    return true;
873
874  return (Previous.getResultKind() == LookupResult::Found
875          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
876}
877
878/// Add this decl to the scope shadowed decl chains.
879void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
880  // Move up the scope chain until we find the nearest enclosing
881  // non-transparent context. The declaration will be introduced into this
882  // scope.
883  while (S->getEntity() &&
884         ((DeclContext *)S->getEntity())->isTransparentContext())
885    S = S->getParent();
886
887  // Add scoped declarations into their context, so that they can be
888  // found later. Declarations without a context won't be inserted
889  // into any context.
890  if (AddToContext)
891    CurContext->addDecl(D);
892
893  // Out-of-line definitions shouldn't be pushed into scope in C++.
894  // Out-of-line variable and function definitions shouldn't even in C.
895  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
896      D->isOutOfLine() &&
897      !D->getDeclContext()->getRedeclContext()->Equals(
898        D->getLexicalDeclContext()->getRedeclContext()))
899    return;
900
901  // Template instantiations should also not be pushed into scope.
902  if (isa<FunctionDecl>(D) &&
903      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
904    return;
905
906  // If this replaces anything in the current scope,
907  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
908                               IEnd = IdResolver.end();
909  for (; I != IEnd; ++I) {
910    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
911      S->RemoveDecl(*I);
912      IdResolver.RemoveDecl(*I);
913
914      // Should only need to replace one decl.
915      break;
916    }
917  }
918
919  S->AddDecl(D);
920
921  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
922    // Implicitly-generated labels may end up getting generated in an order that
923    // isn't strictly lexical, which breaks name lookup. Be careful to insert
924    // the label at the appropriate place in the identifier chain.
925    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
926      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
927      if (IDC == CurContext) {
928        if (!S->isDeclScope(*I))
929          continue;
930      } else if (IDC->Encloses(CurContext))
931        break;
932    }
933
934    IdResolver.InsertDeclAfter(I, D);
935  } else {
936    IdResolver.AddDecl(D);
937  }
938}
939
940void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
941  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
942    TUScope->AddDecl(D);
943}
944
945bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
946                         bool ExplicitInstantiationOrSpecialization) {
947  return IdResolver.isDeclInScope(D, Ctx, Context, S,
948                                  ExplicitInstantiationOrSpecialization);
949}
950
951Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
952  DeclContext *TargetDC = DC->getPrimaryContext();
953  do {
954    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
955      if (ScopeDC->getPrimaryContext() == TargetDC)
956        return S;
957  } while ((S = S->getParent()));
958
959  return 0;
960}
961
962static bool isOutOfScopePreviousDeclaration(NamedDecl *,
963                                            DeclContext*,
964                                            ASTContext&);
965
966/// Filters out lookup results that don't fall within the given scope
967/// as determined by isDeclInScope.
968void Sema::FilterLookupForScope(LookupResult &R,
969                                DeclContext *Ctx, Scope *S,
970                                bool ConsiderLinkage,
971                                bool ExplicitInstantiationOrSpecialization) {
972  LookupResult::Filter F = R.makeFilter();
973  while (F.hasNext()) {
974    NamedDecl *D = F.next();
975
976    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
977      continue;
978
979    if (ConsiderLinkage &&
980        isOutOfScopePreviousDeclaration(D, Ctx, Context))
981      continue;
982
983    F.erase();
984  }
985
986  F.done();
987}
988
989static bool isUsingDecl(NamedDecl *D) {
990  return isa<UsingShadowDecl>(D) ||
991         isa<UnresolvedUsingTypenameDecl>(D) ||
992         isa<UnresolvedUsingValueDecl>(D);
993}
994
995/// Removes using shadow declarations from the lookup results.
996static void RemoveUsingDecls(LookupResult &R) {
997  LookupResult::Filter F = R.makeFilter();
998  while (F.hasNext())
999    if (isUsingDecl(F.next()))
1000      F.erase();
1001
1002  F.done();
1003}
1004
1005/// \brief Check for this common pattern:
1006/// @code
1007/// class S {
1008///   S(const S&); // DO NOT IMPLEMENT
1009///   void operator=(const S&); // DO NOT IMPLEMENT
1010/// };
1011/// @endcode
1012static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1013  // FIXME: Should check for private access too but access is set after we get
1014  // the decl here.
1015  if (D->doesThisDeclarationHaveABody())
1016    return false;
1017
1018  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1019    return CD->isCopyConstructor();
1020  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1021    return Method->isCopyAssignmentOperator();
1022  return false;
1023}
1024
1025bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1026  assert(D);
1027
1028  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1029    return false;
1030
1031  // Ignore class templates.
1032  if (D->getDeclContext()->isDependentContext() ||
1033      D->getLexicalDeclContext()->isDependentContext())
1034    return false;
1035
1036  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1037    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1038      return false;
1039
1040    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1041      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1042        return false;
1043    } else {
1044      // 'static inline' functions are used in headers; don't warn.
1045      if (FD->getStorageClass() == SC_Static &&
1046          FD->isInlineSpecified())
1047        return false;
1048    }
1049
1050    if (FD->doesThisDeclarationHaveABody() &&
1051        Context.DeclMustBeEmitted(FD))
1052      return false;
1053  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1054    if (!VD->isFileVarDecl() ||
1055        VD->getType().isConstant(Context) ||
1056        Context.DeclMustBeEmitted(VD))
1057      return false;
1058
1059    if (VD->isStaticDataMember() &&
1060        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1061      return false;
1062
1063  } else {
1064    return false;
1065  }
1066
1067  // Only warn for unused decls internal to the translation unit.
1068  if (D->getLinkage() == ExternalLinkage)
1069    return false;
1070
1071  return true;
1072}
1073
1074void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1075  if (!D)
1076    return;
1077
1078  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1079    const FunctionDecl *First = FD->getFirstDeclaration();
1080    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1081      return; // First should already be in the vector.
1082  }
1083
1084  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1085    const VarDecl *First = VD->getFirstDeclaration();
1086    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1087      return; // First should already be in the vector.
1088  }
1089
1090   if (ShouldWarnIfUnusedFileScopedDecl(D))
1091     UnusedFileScopedDecls.push_back(D);
1092 }
1093
1094static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1095  if (D->isInvalidDecl())
1096    return false;
1097
1098  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1099    return false;
1100
1101  if (isa<LabelDecl>(D))
1102    return true;
1103
1104  // White-list anything that isn't a local variable.
1105  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1106      !D->getDeclContext()->isFunctionOrMethod())
1107    return false;
1108
1109  // Types of valid local variables should be complete, so this should succeed.
1110  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1111
1112    // White-list anything with an __attribute__((unused)) type.
1113    QualType Ty = VD->getType();
1114
1115    // Only look at the outermost level of typedef.
1116    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1117      if (TT->getDecl()->hasAttr<UnusedAttr>())
1118        return false;
1119    }
1120
1121    // If we failed to complete the type for some reason, or if the type is
1122    // dependent, don't diagnose the variable.
1123    if (Ty->isIncompleteType() || Ty->isDependentType())
1124      return false;
1125
1126    if (const TagType *TT = Ty->getAs<TagType>()) {
1127      const TagDecl *Tag = TT->getDecl();
1128      if (Tag->hasAttr<UnusedAttr>())
1129        return false;
1130
1131      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1132        if (!RD->hasTrivialDestructor())
1133          return false;
1134
1135        if (const Expr *Init = VD->getInit()) {
1136          const CXXConstructExpr *Construct =
1137            dyn_cast<CXXConstructExpr>(Init);
1138          if (Construct && !Construct->isElidable()) {
1139            CXXConstructorDecl *CD = Construct->getConstructor();
1140            if (!CD->isTrivial())
1141              return false;
1142          }
1143        }
1144      }
1145    }
1146
1147    // TODO: __attribute__((unused)) templates?
1148  }
1149
1150  return true;
1151}
1152
1153static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1154                                     FixItHint &Hint) {
1155  if (isa<LabelDecl>(D)) {
1156    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1157                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1158    if (AfterColon.isInvalid())
1159      return;
1160    Hint = FixItHint::CreateRemoval(CharSourceRange::
1161                                    getCharRange(D->getLocStart(), AfterColon));
1162  }
1163  return;
1164}
1165
1166/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1167/// unless they are marked attr(unused).
1168void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1169  FixItHint Hint;
1170  if (!ShouldDiagnoseUnusedDecl(D))
1171    return;
1172
1173  GenerateFixForUnusedDecl(D, Context, Hint);
1174
1175  unsigned DiagID;
1176  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1177    DiagID = diag::warn_unused_exception_param;
1178  else if (isa<LabelDecl>(D))
1179    DiagID = diag::warn_unused_label;
1180  else
1181    DiagID = diag::warn_unused_variable;
1182
1183  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1184}
1185
1186static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1187  // Verify that we have no forward references left.  If so, there was a goto
1188  // or address of a label taken, but no definition of it.  Label fwd
1189  // definitions are indicated with a null substmt.
1190  if (L->getStmt() == 0)
1191    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1192}
1193
1194void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1195  if (S->decl_empty()) return;
1196  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1197         "Scope shouldn't contain decls!");
1198
1199  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1200       I != E; ++I) {
1201    Decl *TmpD = (*I);
1202    assert(TmpD && "This decl didn't get pushed??");
1203
1204    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1205    NamedDecl *D = cast<NamedDecl>(TmpD);
1206
1207    if (!D->getDeclName()) continue;
1208
1209    // Diagnose unused variables in this scope.
1210    if (!S->hasErrorOccurred())
1211      DiagnoseUnusedDecl(D);
1212
1213    // If this was a forward reference to a label, verify it was defined.
1214    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1215      CheckPoppedLabel(LD, *this);
1216
1217    // Remove this name from our lexical scope.
1218    IdResolver.RemoveDecl(D);
1219  }
1220}
1221
1222/// \brief Look for an Objective-C class in the translation unit.
1223///
1224/// \param Id The name of the Objective-C class we're looking for. If
1225/// typo-correction fixes this name, the Id will be updated
1226/// to the fixed name.
1227///
1228/// \param IdLoc The location of the name in the translation unit.
1229///
1230/// \param TypoCorrection If true, this routine will attempt typo correction
1231/// if there is no class with the given name.
1232///
1233/// \returns The declaration of the named Objective-C class, or NULL if the
1234/// class could not be found.
1235ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1236                                              SourceLocation IdLoc,
1237                                              bool DoTypoCorrection) {
1238  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1239  // creation from this context.
1240  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1241
1242  if (!IDecl && DoTypoCorrection) {
1243    // Perform typo correction at the given location, but only if we
1244    // find an Objective-C class name.
1245    TypoCorrection C;
1246    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1247                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1248        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1249      Diag(IdLoc, diag::err_undef_interface_suggest)
1250        << Id << IDecl->getDeclName()
1251        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1252      Diag(IDecl->getLocation(), diag::note_previous_decl)
1253        << IDecl->getDeclName();
1254
1255      Id = IDecl->getIdentifier();
1256    }
1257  }
1258
1259  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1260}
1261
1262/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1263/// from S, where a non-field would be declared. This routine copes
1264/// with the difference between C and C++ scoping rules in structs and
1265/// unions. For example, the following code is well-formed in C but
1266/// ill-formed in C++:
1267/// @code
1268/// struct S6 {
1269///   enum { BAR } e;
1270/// };
1271///
1272/// void test_S6() {
1273///   struct S6 a;
1274///   a.e = BAR;
1275/// }
1276/// @endcode
1277/// For the declaration of BAR, this routine will return a different
1278/// scope. The scope S will be the scope of the unnamed enumeration
1279/// within S6. In C++, this routine will return the scope associated
1280/// with S6, because the enumeration's scope is a transparent
1281/// context but structures can contain non-field names. In C, this
1282/// routine will return the translation unit scope, since the
1283/// enumeration's scope is a transparent context and structures cannot
1284/// contain non-field names.
1285Scope *Sema::getNonFieldDeclScope(Scope *S) {
1286  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1287         (S->getEntity() &&
1288          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1289         (S->isClassScope() && !getLangOptions().CPlusPlus))
1290    S = S->getParent();
1291  return S;
1292}
1293
1294/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1295/// file scope.  lazily create a decl for it. ForRedeclaration is true
1296/// if we're creating this built-in in anticipation of redeclaring the
1297/// built-in.
1298NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1299                                     Scope *S, bool ForRedeclaration,
1300                                     SourceLocation Loc) {
1301  Builtin::ID BID = (Builtin::ID)bid;
1302
1303  ASTContext::GetBuiltinTypeError Error;
1304  QualType R = Context.GetBuiltinType(BID, Error);
1305  switch (Error) {
1306  case ASTContext::GE_None:
1307    // Okay
1308    break;
1309
1310  case ASTContext::GE_Missing_stdio:
1311    if (ForRedeclaration)
1312      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1313        << Context.BuiltinInfo.GetName(BID);
1314    return 0;
1315
1316  case ASTContext::GE_Missing_setjmp:
1317    if (ForRedeclaration)
1318      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1319        << Context.BuiltinInfo.GetName(BID);
1320    return 0;
1321
1322  case ASTContext::GE_Missing_ucontext:
1323    if (ForRedeclaration)
1324      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1325        << Context.BuiltinInfo.GetName(BID);
1326    return 0;
1327  }
1328
1329  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1330    Diag(Loc, diag::ext_implicit_lib_function_decl)
1331      << Context.BuiltinInfo.GetName(BID)
1332      << R;
1333    if (Context.BuiltinInfo.getHeaderName(BID) &&
1334        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1335          != DiagnosticsEngine::Ignored)
1336      Diag(Loc, diag::note_please_include_header)
1337        << Context.BuiltinInfo.getHeaderName(BID)
1338        << Context.BuiltinInfo.GetName(BID);
1339  }
1340
1341  FunctionDecl *New = FunctionDecl::Create(Context,
1342                                           Context.getTranslationUnitDecl(),
1343                                           Loc, Loc, II, R, /*TInfo=*/0,
1344                                           SC_Extern,
1345                                           SC_None, false,
1346                                           /*hasPrototype=*/true);
1347  New->setImplicit();
1348
1349  // Create Decl objects for each parameter, adding them to the
1350  // FunctionDecl.
1351  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1352    SmallVector<ParmVarDecl*, 16> Params;
1353    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1354      ParmVarDecl *parm =
1355        ParmVarDecl::Create(Context, New, SourceLocation(),
1356                            SourceLocation(), 0,
1357                            FT->getArgType(i), /*TInfo=*/0,
1358                            SC_None, SC_None, 0);
1359      parm->setScopeInfo(0, i);
1360      Params.push_back(parm);
1361    }
1362    New->setParams(Params);
1363  }
1364
1365  AddKnownFunctionAttributes(New);
1366
1367  // TUScope is the translation-unit scope to insert this function into.
1368  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1369  // relate Scopes to DeclContexts, and probably eliminate CurContext
1370  // entirely, but we're not there yet.
1371  DeclContext *SavedContext = CurContext;
1372  CurContext = Context.getTranslationUnitDecl();
1373  PushOnScopeChains(New, TUScope);
1374  CurContext = SavedContext;
1375  return New;
1376}
1377
1378bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1379  QualType OldType;
1380  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1381    OldType = OldTypedef->getUnderlyingType();
1382  else
1383    OldType = Context.getTypeDeclType(Old);
1384  QualType NewType = New->getUnderlyingType();
1385
1386  if (OldType != NewType &&
1387      !OldType->isDependentType() &&
1388      !NewType->isDependentType() &&
1389      !Context.hasSameType(OldType, NewType)) {
1390    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1391    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1392      << Kind << NewType << OldType;
1393    if (Old->getLocation().isValid())
1394      Diag(Old->getLocation(), diag::note_previous_definition);
1395    New->setInvalidDecl();
1396    return true;
1397  }
1398  return false;
1399}
1400
1401/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1402/// same name and scope as a previous declaration 'Old'.  Figure out
1403/// how to resolve this situation, merging decls or emitting
1404/// diagnostics as appropriate. If there was an error, set New to be invalid.
1405///
1406void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1407  // If the new decl is known invalid already, don't bother doing any
1408  // merging checks.
1409  if (New->isInvalidDecl()) return;
1410
1411  // Allow multiple definitions for ObjC built-in typedefs.
1412  // FIXME: Verify the underlying types are equivalent!
1413  if (getLangOptions().ObjC1) {
1414    const IdentifierInfo *TypeID = New->getIdentifier();
1415    switch (TypeID->getLength()) {
1416    default: break;
1417    case 2:
1418      if (!TypeID->isStr("id"))
1419        break;
1420      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1421      // Install the built-in type for 'id', ignoring the current definition.
1422      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1423      return;
1424    case 5:
1425      if (!TypeID->isStr("Class"))
1426        break;
1427      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1428      // Install the built-in type for 'Class', ignoring the current definition.
1429      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1430      return;
1431    case 3:
1432      if (!TypeID->isStr("SEL"))
1433        break;
1434      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1435      // Install the built-in type for 'SEL', ignoring the current definition.
1436      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1437      return;
1438    }
1439    // Fall through - the typedef name was not a builtin type.
1440  }
1441
1442  // Verify the old decl was also a type.
1443  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1444  if (!Old) {
1445    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1446      << New->getDeclName();
1447
1448    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1449    if (OldD->getLocation().isValid())
1450      Diag(OldD->getLocation(), diag::note_previous_definition);
1451
1452    return New->setInvalidDecl();
1453  }
1454
1455  // If the old declaration is invalid, just give up here.
1456  if (Old->isInvalidDecl())
1457    return New->setInvalidDecl();
1458
1459  // If the typedef types are not identical, reject them in all languages and
1460  // with any extensions enabled.
1461  if (isIncompatibleTypedef(Old, New))
1462    return;
1463
1464  // The types match.  Link up the redeclaration chain if the old
1465  // declaration was a typedef.
1466  // FIXME: this is a potential source of weirdness if the type
1467  // spellings don't match exactly.
1468  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1469    New->setPreviousDeclaration(Typedef);
1470
1471  if (getLangOptions().MicrosoftExt)
1472    return;
1473
1474  if (getLangOptions().CPlusPlus) {
1475    // C++ [dcl.typedef]p2:
1476    //   In a given non-class scope, a typedef specifier can be used to
1477    //   redefine the name of any type declared in that scope to refer
1478    //   to the type to which it already refers.
1479    if (!isa<CXXRecordDecl>(CurContext))
1480      return;
1481
1482    // C++0x [dcl.typedef]p4:
1483    //   In a given class scope, a typedef specifier can be used to redefine
1484    //   any class-name declared in that scope that is not also a typedef-name
1485    //   to refer to the type to which it already refers.
1486    //
1487    // This wording came in via DR424, which was a correction to the
1488    // wording in DR56, which accidentally banned code like:
1489    //
1490    //   struct S {
1491    //     typedef struct A { } A;
1492    //   };
1493    //
1494    // in the C++03 standard. We implement the C++0x semantics, which
1495    // allow the above but disallow
1496    //
1497    //   struct S {
1498    //     typedef int I;
1499    //     typedef int I;
1500    //   };
1501    //
1502    // since that was the intent of DR56.
1503    if (!isa<TypedefNameDecl>(Old))
1504      return;
1505
1506    Diag(New->getLocation(), diag::err_redefinition)
1507      << New->getDeclName();
1508    Diag(Old->getLocation(), diag::note_previous_definition);
1509    return New->setInvalidDecl();
1510  }
1511
1512  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1513  // is normally mapped to an error, but can be controlled with
1514  // -Wtypedef-redefinition.  If either the original or the redefinition is
1515  // in a system header, don't emit this for compatibility with GCC.
1516  if (getDiagnostics().getSuppressSystemWarnings() &&
1517      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1518       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1519    return;
1520
1521  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1522    << New->getDeclName();
1523  Diag(Old->getLocation(), diag::note_previous_definition);
1524  return;
1525}
1526
1527/// DeclhasAttr - returns true if decl Declaration already has the target
1528/// attribute.
1529static bool
1530DeclHasAttr(const Decl *D, const Attr *A) {
1531  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1532  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1533  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1534    if ((*i)->getKind() == A->getKind()) {
1535      if (Ann) {
1536        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1537          return true;
1538        continue;
1539      }
1540      // FIXME: Don't hardcode this check
1541      if (OA && isa<OwnershipAttr>(*i))
1542        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1543      return true;
1544    }
1545
1546  return false;
1547}
1548
1549/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1550void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1551                               bool MergeDeprecation) {
1552  if (!Old->hasAttrs())
1553    return;
1554
1555  bool foundAny = New->hasAttrs();
1556
1557  // Ensure that any moving of objects within the allocated map is done before
1558  // we process them.
1559  if (!foundAny) New->setAttrs(AttrVec());
1560
1561  for (specific_attr_iterator<InheritableAttr>
1562         i = Old->specific_attr_begin<InheritableAttr>(),
1563         e = Old->specific_attr_end<InheritableAttr>();
1564       i != e; ++i) {
1565    // Ignore deprecated/unavailable/availability attributes if requested.
1566    if (!MergeDeprecation &&
1567        (isa<DeprecatedAttr>(*i) ||
1568         isa<UnavailableAttr>(*i) ||
1569         isa<AvailabilityAttr>(*i)))
1570      continue;
1571
1572    if (!DeclHasAttr(New, *i)) {
1573      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1574      newAttr->setInherited(true);
1575      New->addAttr(newAttr);
1576      foundAny = true;
1577    }
1578  }
1579
1580  if (!foundAny) New->dropAttrs();
1581}
1582
1583/// mergeParamDeclAttributes - Copy attributes from the old parameter
1584/// to the new one.
1585static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1586                                     const ParmVarDecl *oldDecl,
1587                                     ASTContext &C) {
1588  if (!oldDecl->hasAttrs())
1589    return;
1590
1591  bool foundAny = newDecl->hasAttrs();
1592
1593  // Ensure that any moving of objects within the allocated map is
1594  // done before we process them.
1595  if (!foundAny) newDecl->setAttrs(AttrVec());
1596
1597  for (specific_attr_iterator<InheritableParamAttr>
1598       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1599       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1600    if (!DeclHasAttr(newDecl, *i)) {
1601      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1602      newAttr->setInherited(true);
1603      newDecl->addAttr(newAttr);
1604      foundAny = true;
1605    }
1606  }
1607
1608  if (!foundAny) newDecl->dropAttrs();
1609}
1610
1611namespace {
1612
1613/// Used in MergeFunctionDecl to keep track of function parameters in
1614/// C.
1615struct GNUCompatibleParamWarning {
1616  ParmVarDecl *OldParm;
1617  ParmVarDecl *NewParm;
1618  QualType PromotedType;
1619};
1620
1621}
1622
1623/// getSpecialMember - get the special member enum for a method.
1624Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1625  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1626    if (Ctor->isDefaultConstructor())
1627      return Sema::CXXDefaultConstructor;
1628
1629    if (Ctor->isCopyConstructor())
1630      return Sema::CXXCopyConstructor;
1631
1632    if (Ctor->isMoveConstructor())
1633      return Sema::CXXMoveConstructor;
1634  } else if (isa<CXXDestructorDecl>(MD)) {
1635    return Sema::CXXDestructor;
1636  } else if (MD->isCopyAssignmentOperator()) {
1637    return Sema::CXXCopyAssignment;
1638  } else if (MD->isMoveAssignmentOperator()) {
1639    return Sema::CXXMoveAssignment;
1640  }
1641
1642  return Sema::CXXInvalid;
1643}
1644
1645/// canRedefineFunction - checks if a function can be redefined. Currently,
1646/// only extern inline functions can be redefined, and even then only in
1647/// GNU89 mode.
1648static bool canRedefineFunction(const FunctionDecl *FD,
1649                                const LangOptions& LangOpts) {
1650  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1651          !LangOpts.CPlusPlus &&
1652          FD->isInlineSpecified() &&
1653          FD->getStorageClass() == SC_Extern);
1654}
1655
1656/// MergeFunctionDecl - We just parsed a function 'New' from
1657/// declarator D which has the same name and scope as a previous
1658/// declaration 'Old'.  Figure out how to resolve this situation,
1659/// merging decls or emitting diagnostics as appropriate.
1660///
1661/// In C++, New and Old must be declarations that are not
1662/// overloaded. Use IsOverload to determine whether New and Old are
1663/// overloaded, and to select the Old declaration that New should be
1664/// merged with.
1665///
1666/// Returns true if there was an error, false otherwise.
1667bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1668  // Verify the old decl was also a function.
1669  FunctionDecl *Old = 0;
1670  if (FunctionTemplateDecl *OldFunctionTemplate
1671        = dyn_cast<FunctionTemplateDecl>(OldD))
1672    Old = OldFunctionTemplate->getTemplatedDecl();
1673  else
1674    Old = dyn_cast<FunctionDecl>(OldD);
1675  if (!Old) {
1676    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1677      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1678      Diag(Shadow->getTargetDecl()->getLocation(),
1679           diag::note_using_decl_target);
1680      Diag(Shadow->getUsingDecl()->getLocation(),
1681           diag::note_using_decl) << 0;
1682      return true;
1683    }
1684
1685    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1686      << New->getDeclName();
1687    Diag(OldD->getLocation(), diag::note_previous_definition);
1688    return true;
1689  }
1690
1691  // Determine whether the previous declaration was a definition,
1692  // implicit declaration, or a declaration.
1693  diag::kind PrevDiag;
1694  if (Old->isThisDeclarationADefinition())
1695    PrevDiag = diag::note_previous_definition;
1696  else if (Old->isImplicit())
1697    PrevDiag = diag::note_previous_implicit_declaration;
1698  else
1699    PrevDiag = diag::note_previous_declaration;
1700
1701  QualType OldQType = Context.getCanonicalType(Old->getType());
1702  QualType NewQType = Context.getCanonicalType(New->getType());
1703
1704  // Don't complain about this if we're in GNU89 mode and the old function
1705  // is an extern inline function.
1706  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1707      New->getStorageClass() == SC_Static &&
1708      Old->getStorageClass() != SC_Static &&
1709      !canRedefineFunction(Old, getLangOptions())) {
1710    if (getLangOptions().MicrosoftExt) {
1711      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1712      Diag(Old->getLocation(), PrevDiag);
1713    } else {
1714      Diag(New->getLocation(), diag::err_static_non_static) << New;
1715      Diag(Old->getLocation(), PrevDiag);
1716      return true;
1717    }
1718  }
1719
1720  // If a function is first declared with a calling convention, but is
1721  // later declared or defined without one, the second decl assumes the
1722  // calling convention of the first.
1723  //
1724  // For the new decl, we have to look at the NON-canonical type to tell the
1725  // difference between a function that really doesn't have a calling
1726  // convention and one that is declared cdecl. That's because in
1727  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1728  // because it is the default calling convention.
1729  //
1730  // Note also that we DO NOT return at this point, because we still have
1731  // other tests to run.
1732  const FunctionType *OldType = cast<FunctionType>(OldQType);
1733  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1734  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1735  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1736  bool RequiresAdjustment = false;
1737  if (OldTypeInfo.getCC() != CC_Default &&
1738      NewTypeInfo.getCC() == CC_Default) {
1739    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1740    RequiresAdjustment = true;
1741  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1742                                     NewTypeInfo.getCC())) {
1743    // Calling conventions really aren't compatible, so complain.
1744    Diag(New->getLocation(), diag::err_cconv_change)
1745      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1746      << (OldTypeInfo.getCC() == CC_Default)
1747      << (OldTypeInfo.getCC() == CC_Default ? "" :
1748          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1749    Diag(Old->getLocation(), diag::note_previous_declaration);
1750    return true;
1751  }
1752
1753  // FIXME: diagnose the other way around?
1754  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1755    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1756    RequiresAdjustment = true;
1757  }
1758
1759  // Merge regparm attribute.
1760  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1761      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1762    if (NewTypeInfo.getHasRegParm()) {
1763      Diag(New->getLocation(), diag::err_regparm_mismatch)
1764        << NewType->getRegParmType()
1765        << OldType->getRegParmType();
1766      Diag(Old->getLocation(), diag::note_previous_declaration);
1767      return true;
1768    }
1769
1770    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1771    RequiresAdjustment = true;
1772  }
1773
1774  // Merge ns_returns_retained attribute.
1775  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1776    if (NewTypeInfo.getProducesResult()) {
1777      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1778      Diag(Old->getLocation(), diag::note_previous_declaration);
1779      return true;
1780    }
1781
1782    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1783    RequiresAdjustment = true;
1784  }
1785
1786  if (RequiresAdjustment) {
1787    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1788    New->setType(QualType(NewType, 0));
1789    NewQType = Context.getCanonicalType(New->getType());
1790  }
1791
1792  if (getLangOptions().CPlusPlus) {
1793    // (C++98 13.1p2):
1794    //   Certain function declarations cannot be overloaded:
1795    //     -- Function declarations that differ only in the return type
1796    //        cannot be overloaded.
1797    QualType OldReturnType = OldType->getResultType();
1798    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1799    QualType ResQT;
1800    if (OldReturnType != NewReturnType) {
1801      if (NewReturnType->isObjCObjectPointerType()
1802          && OldReturnType->isObjCObjectPointerType())
1803        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1804      if (ResQT.isNull()) {
1805        if (New->isCXXClassMember() && New->isOutOfLine())
1806          Diag(New->getLocation(),
1807               diag::err_member_def_does_not_match_ret_type) << New;
1808        else
1809          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1810        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1811        return true;
1812      }
1813      else
1814        NewQType = ResQT;
1815    }
1816
1817    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1818    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1819    if (OldMethod && NewMethod) {
1820      // Preserve triviality.
1821      NewMethod->setTrivial(OldMethod->isTrivial());
1822
1823      // MSVC allows explicit template specialization at class scope:
1824      // 2 CXMethodDecls referring to the same function will be injected.
1825      // We don't want a redeclartion error.
1826      bool IsClassScopeExplicitSpecialization =
1827                              OldMethod->isFunctionTemplateSpecialization() &&
1828                              NewMethod->isFunctionTemplateSpecialization();
1829      bool isFriend = NewMethod->getFriendObjectKind();
1830
1831      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1832          !IsClassScopeExplicitSpecialization) {
1833        //    -- Member function declarations with the same name and the
1834        //       same parameter types cannot be overloaded if any of them
1835        //       is a static member function declaration.
1836        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1837          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1838          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1839          return true;
1840        }
1841
1842        // C++ [class.mem]p1:
1843        //   [...] A member shall not be declared twice in the
1844        //   member-specification, except that a nested class or member
1845        //   class template can be declared and then later defined.
1846        unsigned NewDiag;
1847        if (isa<CXXConstructorDecl>(OldMethod))
1848          NewDiag = diag::err_constructor_redeclared;
1849        else if (isa<CXXDestructorDecl>(NewMethod))
1850          NewDiag = diag::err_destructor_redeclared;
1851        else if (isa<CXXConversionDecl>(NewMethod))
1852          NewDiag = diag::err_conv_function_redeclared;
1853        else
1854          NewDiag = diag::err_member_redeclared;
1855
1856        Diag(New->getLocation(), NewDiag);
1857        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1858
1859      // Complain if this is an explicit declaration of a special
1860      // member that was initially declared implicitly.
1861      //
1862      // As an exception, it's okay to befriend such methods in order
1863      // to permit the implicit constructor/destructor/operator calls.
1864      } else if (OldMethod->isImplicit()) {
1865        if (isFriend) {
1866          NewMethod->setImplicit();
1867        } else {
1868          Diag(NewMethod->getLocation(),
1869               diag::err_definition_of_implicitly_declared_member)
1870            << New << getSpecialMember(OldMethod);
1871          return true;
1872        }
1873      } else if (OldMethod->isExplicitlyDefaulted()) {
1874        Diag(NewMethod->getLocation(),
1875             diag::err_definition_of_explicitly_defaulted_member)
1876          << getSpecialMember(OldMethod);
1877        return true;
1878      }
1879    }
1880
1881    // (C++98 8.3.5p3):
1882    //   All declarations for a function shall agree exactly in both the
1883    //   return type and the parameter-type-list.
1884    // We also want to respect all the extended bits except noreturn.
1885
1886    // noreturn should now match unless the old type info didn't have it.
1887    QualType OldQTypeForComparison = OldQType;
1888    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1889      assert(OldQType == QualType(OldType, 0));
1890      const FunctionType *OldTypeForComparison
1891        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1892      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1893      assert(OldQTypeForComparison.isCanonical());
1894    }
1895
1896    if (OldQTypeForComparison == NewQType)
1897      return MergeCompatibleFunctionDecls(New, Old);
1898
1899    // Fall through for conflicting redeclarations and redefinitions.
1900  }
1901
1902  // C: Function types need to be compatible, not identical. This handles
1903  // duplicate function decls like "void f(int); void f(enum X);" properly.
1904  if (!getLangOptions().CPlusPlus &&
1905      Context.typesAreCompatible(OldQType, NewQType)) {
1906    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1907    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1908    const FunctionProtoType *OldProto = 0;
1909    if (isa<FunctionNoProtoType>(NewFuncType) &&
1910        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1911      // The old declaration provided a function prototype, but the
1912      // new declaration does not. Merge in the prototype.
1913      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1914      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1915                                                 OldProto->arg_type_end());
1916      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1917                                         ParamTypes.data(), ParamTypes.size(),
1918                                         OldProto->getExtProtoInfo());
1919      New->setType(NewQType);
1920      New->setHasInheritedPrototype();
1921
1922      // Synthesize a parameter for each argument type.
1923      SmallVector<ParmVarDecl*, 16> Params;
1924      for (FunctionProtoType::arg_type_iterator
1925             ParamType = OldProto->arg_type_begin(),
1926             ParamEnd = OldProto->arg_type_end();
1927           ParamType != ParamEnd; ++ParamType) {
1928        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1929                                                 SourceLocation(),
1930                                                 SourceLocation(), 0,
1931                                                 *ParamType, /*TInfo=*/0,
1932                                                 SC_None, SC_None,
1933                                                 0);
1934        Param->setScopeInfo(0, Params.size());
1935        Param->setImplicit();
1936        Params.push_back(Param);
1937      }
1938
1939      New->setParams(Params);
1940    }
1941
1942    return MergeCompatibleFunctionDecls(New, Old);
1943  }
1944
1945  // GNU C permits a K&R definition to follow a prototype declaration
1946  // if the declared types of the parameters in the K&R definition
1947  // match the types in the prototype declaration, even when the
1948  // promoted types of the parameters from the K&R definition differ
1949  // from the types in the prototype. GCC then keeps the types from
1950  // the prototype.
1951  //
1952  // If a variadic prototype is followed by a non-variadic K&R definition,
1953  // the K&R definition becomes variadic.  This is sort of an edge case, but
1954  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1955  // C99 6.9.1p8.
1956  if (!getLangOptions().CPlusPlus &&
1957      Old->hasPrototype() && !New->hasPrototype() &&
1958      New->getType()->getAs<FunctionProtoType>() &&
1959      Old->getNumParams() == New->getNumParams()) {
1960    SmallVector<QualType, 16> ArgTypes;
1961    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1962    const FunctionProtoType *OldProto
1963      = Old->getType()->getAs<FunctionProtoType>();
1964    const FunctionProtoType *NewProto
1965      = New->getType()->getAs<FunctionProtoType>();
1966
1967    // Determine whether this is the GNU C extension.
1968    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1969                                               NewProto->getResultType());
1970    bool LooseCompatible = !MergedReturn.isNull();
1971    for (unsigned Idx = 0, End = Old->getNumParams();
1972         LooseCompatible && Idx != End; ++Idx) {
1973      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1974      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1975      if (Context.typesAreCompatible(OldParm->getType(),
1976                                     NewProto->getArgType(Idx))) {
1977        ArgTypes.push_back(NewParm->getType());
1978      } else if (Context.typesAreCompatible(OldParm->getType(),
1979                                            NewParm->getType(),
1980                                            /*CompareUnqualified=*/true)) {
1981        GNUCompatibleParamWarning Warn
1982          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1983        Warnings.push_back(Warn);
1984        ArgTypes.push_back(NewParm->getType());
1985      } else
1986        LooseCompatible = false;
1987    }
1988
1989    if (LooseCompatible) {
1990      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1991        Diag(Warnings[Warn].NewParm->getLocation(),
1992             diag::ext_param_promoted_not_compatible_with_prototype)
1993          << Warnings[Warn].PromotedType
1994          << Warnings[Warn].OldParm->getType();
1995        if (Warnings[Warn].OldParm->getLocation().isValid())
1996          Diag(Warnings[Warn].OldParm->getLocation(),
1997               diag::note_previous_declaration);
1998      }
1999
2000      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2001                                           ArgTypes.size(),
2002                                           OldProto->getExtProtoInfo()));
2003      return MergeCompatibleFunctionDecls(New, Old);
2004    }
2005
2006    // Fall through to diagnose conflicting types.
2007  }
2008
2009  // A function that has already been declared has been redeclared or defined
2010  // with a different type- show appropriate diagnostic
2011  if (unsigned BuiltinID = Old->getBuiltinID()) {
2012    // The user has declared a builtin function with an incompatible
2013    // signature.
2014    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2015      // The function the user is redeclaring is a library-defined
2016      // function like 'malloc' or 'printf'. Warn about the
2017      // redeclaration, then pretend that we don't know about this
2018      // library built-in.
2019      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2020      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2021        << Old << Old->getType();
2022      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2023      Old->setInvalidDecl();
2024      return false;
2025    }
2026
2027    PrevDiag = diag::note_previous_builtin_declaration;
2028  }
2029
2030  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2031  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2032  return true;
2033}
2034
2035/// \brief Completes the merge of two function declarations that are
2036/// known to be compatible.
2037///
2038/// This routine handles the merging of attributes and other
2039/// properties of function declarations form the old declaration to
2040/// the new declaration, once we know that New is in fact a
2041/// redeclaration of Old.
2042///
2043/// \returns false
2044bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
2045  // Merge the attributes
2046  mergeDeclAttributes(New, Old);
2047
2048  // Merge the storage class.
2049  if (Old->getStorageClass() != SC_Extern &&
2050      Old->getStorageClass() != SC_None)
2051    New->setStorageClass(Old->getStorageClass());
2052
2053  // Merge "pure" flag.
2054  if (Old->isPure())
2055    New->setPure();
2056
2057  // Merge attributes from the parameters.  These can mismatch with K&R
2058  // declarations.
2059  if (New->getNumParams() == Old->getNumParams())
2060    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2061      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2062                               Context);
2063
2064  if (getLangOptions().CPlusPlus)
2065    return MergeCXXFunctionDecl(New, Old);
2066
2067  return false;
2068}
2069
2070
2071void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2072                                ObjCMethodDecl *oldMethod) {
2073  // We don't want to merge unavailable and deprecated attributes
2074  // except from interface to implementation.
2075  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2076
2077  // Merge the attributes.
2078  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2079
2080  // Merge attributes from the parameters.
2081  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2082  for (ObjCMethodDecl::param_iterator
2083         ni = newMethod->param_begin(), ne = newMethod->param_end();
2084       ni != ne; ++ni, ++oi)
2085    mergeParamDeclAttributes(*ni, *oi, Context);
2086
2087  CheckObjCMethodOverride(newMethod, oldMethod, true);
2088}
2089
2090/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2091/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2092/// emitting diagnostics as appropriate.
2093///
2094/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2095/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2096/// check them before the initializer is attached.
2097///
2098void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2099  if (New->isInvalidDecl() || Old->isInvalidDecl())
2100    return;
2101
2102  QualType MergedT;
2103  if (getLangOptions().CPlusPlus) {
2104    AutoType *AT = New->getType()->getContainedAutoType();
2105    if (AT && !AT->isDeduced()) {
2106      // We don't know what the new type is until the initializer is attached.
2107      return;
2108    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2109      // These could still be something that needs exception specs checked.
2110      return MergeVarDeclExceptionSpecs(New, Old);
2111    }
2112    // C++ [basic.link]p10:
2113    //   [...] the types specified by all declarations referring to a given
2114    //   object or function shall be identical, except that declarations for an
2115    //   array object can specify array types that differ by the presence or
2116    //   absence of a major array bound (8.3.4).
2117    else if (Old->getType()->isIncompleteArrayType() &&
2118             New->getType()->isArrayType()) {
2119      CanQual<ArrayType> OldArray
2120        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2121      CanQual<ArrayType> NewArray
2122        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2123      if (OldArray->getElementType() == NewArray->getElementType())
2124        MergedT = New->getType();
2125    } else if (Old->getType()->isArrayType() &&
2126             New->getType()->isIncompleteArrayType()) {
2127      CanQual<ArrayType> OldArray
2128        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2129      CanQual<ArrayType> NewArray
2130        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2131      if (OldArray->getElementType() == NewArray->getElementType())
2132        MergedT = Old->getType();
2133    } else if (New->getType()->isObjCObjectPointerType()
2134               && Old->getType()->isObjCObjectPointerType()) {
2135        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2136                                                        Old->getType());
2137    }
2138  } else {
2139    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2140  }
2141  if (MergedT.isNull()) {
2142    Diag(New->getLocation(), diag::err_redefinition_different_type)
2143      << New->getDeclName();
2144    Diag(Old->getLocation(), diag::note_previous_definition);
2145    return New->setInvalidDecl();
2146  }
2147  New->setType(MergedT);
2148}
2149
2150/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2151/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2152/// situation, merging decls or emitting diagnostics as appropriate.
2153///
2154/// Tentative definition rules (C99 6.9.2p2) are checked by
2155/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2156/// definitions here, since the initializer hasn't been attached.
2157///
2158void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2159  // If the new decl is already invalid, don't do any other checking.
2160  if (New->isInvalidDecl())
2161    return;
2162
2163  // Verify the old decl was also a variable.
2164  VarDecl *Old = 0;
2165  if (!Previous.isSingleResult() ||
2166      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2167    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2168      << New->getDeclName();
2169    Diag(Previous.getRepresentativeDecl()->getLocation(),
2170         diag::note_previous_definition);
2171    return New->setInvalidDecl();
2172  }
2173
2174  // C++ [class.mem]p1:
2175  //   A member shall not be declared twice in the member-specification [...]
2176  //
2177  // Here, we need only consider static data members.
2178  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2179    Diag(New->getLocation(), diag::err_duplicate_member)
2180      << New->getIdentifier();
2181    Diag(Old->getLocation(), diag::note_previous_declaration);
2182    New->setInvalidDecl();
2183  }
2184
2185  mergeDeclAttributes(New, Old);
2186  // Warn if an already-declared variable is made a weak_import in a subsequent
2187  // declaration
2188  if (New->getAttr<WeakImportAttr>() &&
2189      Old->getStorageClass() == SC_None &&
2190      !Old->getAttr<WeakImportAttr>()) {
2191    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193    // Remove weak_import attribute on new declaration.
2194    New->dropAttr<WeakImportAttr>();
2195  }
2196
2197  // Merge the types.
2198  MergeVarDeclTypes(New, Old);
2199  if (New->isInvalidDecl())
2200    return;
2201
2202  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2203  if (New->getStorageClass() == SC_Static &&
2204      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2205    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2206    Diag(Old->getLocation(), diag::note_previous_definition);
2207    return New->setInvalidDecl();
2208  }
2209  // C99 6.2.2p4:
2210  //   For an identifier declared with the storage-class specifier
2211  //   extern in a scope in which a prior declaration of that
2212  //   identifier is visible,23) if the prior declaration specifies
2213  //   internal or external linkage, the linkage of the identifier at
2214  //   the later declaration is the same as the linkage specified at
2215  //   the prior declaration. If no prior declaration is visible, or
2216  //   if the prior declaration specifies no linkage, then the
2217  //   identifier has external linkage.
2218  if (New->hasExternalStorage() && Old->hasLinkage())
2219    /* Okay */;
2220  else if (New->getStorageClass() != SC_Static &&
2221           Old->getStorageClass() == SC_Static) {
2222    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2223    Diag(Old->getLocation(), diag::note_previous_definition);
2224    return New->setInvalidDecl();
2225  }
2226
2227  // Check if extern is followed by non-extern and vice-versa.
2228  if (New->hasExternalStorage() &&
2229      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2230    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2231    Diag(Old->getLocation(), diag::note_previous_definition);
2232    return New->setInvalidDecl();
2233  }
2234  if (Old->hasExternalStorage() &&
2235      !New->hasLinkage() && New->isLocalVarDecl()) {
2236    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2237    Diag(Old->getLocation(), diag::note_previous_definition);
2238    return New->setInvalidDecl();
2239  }
2240
2241  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2242
2243  // FIXME: The test for external storage here seems wrong? We still
2244  // need to check for mismatches.
2245  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2246      // Don't complain about out-of-line definitions of static members.
2247      !(Old->getLexicalDeclContext()->isRecord() &&
2248        !New->getLexicalDeclContext()->isRecord())) {
2249    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2250    Diag(Old->getLocation(), diag::note_previous_definition);
2251    return New->setInvalidDecl();
2252  }
2253
2254  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2255    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2256    Diag(Old->getLocation(), diag::note_previous_definition);
2257  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2258    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2259    Diag(Old->getLocation(), diag::note_previous_definition);
2260  }
2261
2262  // C++ doesn't have tentative definitions, so go right ahead and check here.
2263  const VarDecl *Def;
2264  if (getLangOptions().CPlusPlus &&
2265      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2266      (Def = Old->getDefinition())) {
2267    Diag(New->getLocation(), diag::err_redefinition)
2268      << New->getDeclName();
2269    Diag(Def->getLocation(), diag::note_previous_definition);
2270    New->setInvalidDecl();
2271    return;
2272  }
2273  // c99 6.2.2 P4.
2274  // For an identifier declared with the storage-class specifier extern in a
2275  // scope in which a prior declaration of that identifier is visible, if
2276  // the prior declaration specifies internal or external linkage, the linkage
2277  // of the identifier at the later declaration is the same as the linkage
2278  // specified at the prior declaration.
2279  // FIXME. revisit this code.
2280  if (New->hasExternalStorage() &&
2281      Old->getLinkage() == InternalLinkage &&
2282      New->getDeclContext() == Old->getDeclContext())
2283    New->setStorageClass(Old->getStorageClass());
2284
2285  // Keep a chain of previous declarations.
2286  New->setPreviousDeclaration(Old);
2287
2288  // Inherit access appropriately.
2289  New->setAccess(Old->getAccess());
2290}
2291
2292/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2293/// no declarator (e.g. "struct foo;") is parsed.
2294Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2295                                       DeclSpec &DS) {
2296  return ParsedFreeStandingDeclSpec(S, AS, DS,
2297                                    MultiTemplateParamsArg(*this, 0, 0));
2298}
2299
2300/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2301/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2302/// parameters to cope with template friend declarations.
2303Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2304                                       DeclSpec &DS,
2305                                       MultiTemplateParamsArg TemplateParams) {
2306  Decl *TagD = 0;
2307  TagDecl *Tag = 0;
2308  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2309      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2310      DS.getTypeSpecType() == DeclSpec::TST_union ||
2311      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2312    TagD = DS.getRepAsDecl();
2313
2314    if (!TagD) // We probably had an error
2315      return 0;
2316
2317    // Note that the above type specs guarantee that the
2318    // type rep is a Decl, whereas in many of the others
2319    // it's a Type.
2320    if (isa<TagDecl>(TagD))
2321      Tag = cast<TagDecl>(TagD);
2322    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2323      Tag = CTD->getTemplatedDecl();
2324  }
2325
2326  if (Tag)
2327    Tag->setFreeStanding();
2328
2329  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2330    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2331    // or incomplete types shall not be restrict-qualified."
2332    if (TypeQuals & DeclSpec::TQ_restrict)
2333      Diag(DS.getRestrictSpecLoc(),
2334           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2335           << DS.getSourceRange();
2336  }
2337
2338  if (DS.isConstexprSpecified()) {
2339    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2340    // and definitions of functions and variables.
2341    if (Tag)
2342      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2343        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2344            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2345            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2346    else
2347      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2348    // Don't emit warnings after this error.
2349    return TagD;
2350  }
2351
2352  if (DS.isFriendSpecified()) {
2353    // If we're dealing with a decl but not a TagDecl, assume that
2354    // whatever routines created it handled the friendship aspect.
2355    if (TagD && !Tag)
2356      return 0;
2357    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2358  }
2359
2360  // Track whether we warned about the fact that there aren't any
2361  // declarators.
2362  bool emittedWarning = false;
2363
2364  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2365    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2366        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2367      if (getLangOptions().CPlusPlus ||
2368          Record->getDeclContext()->isRecord())
2369        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2370
2371      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2372        << DS.getSourceRange();
2373      emittedWarning = true;
2374    }
2375  }
2376
2377  // Check for Microsoft C extension: anonymous struct.
2378  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2379      CurContext->isRecord() &&
2380      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2381    // Handle 2 kinds of anonymous struct:
2382    //   struct STRUCT;
2383    // and
2384    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2385    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2386    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2387        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2388         DS.getRepAsType().get()->isStructureType())) {
2389      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2390        << DS.getSourceRange();
2391      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2392    }
2393  }
2394
2395  if (getLangOptions().CPlusPlus &&
2396      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2397    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2398      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2399          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2400        Diag(Enum->getLocation(), diag::ext_no_declarators)
2401          << DS.getSourceRange();
2402        emittedWarning = true;
2403      }
2404
2405  // Skip all the checks below if we have a type error.
2406  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2407
2408  if (!DS.isMissingDeclaratorOk()) {
2409    // Warn about typedefs of enums without names, since this is an
2410    // extension in both Microsoft and GNU.
2411    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2412        Tag && isa<EnumDecl>(Tag)) {
2413      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2414        << DS.getSourceRange();
2415      return Tag;
2416    }
2417
2418    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2419      << DS.getSourceRange();
2420    emittedWarning = true;
2421  }
2422
2423  // We're going to complain about a bunch of spurious specifiers;
2424  // only do this if we're declaring a tag, because otherwise we
2425  // should be getting diag::ext_no_declarators.
2426  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2427    return TagD;
2428
2429  // Note that a linkage-specification sets a storage class, but
2430  // 'extern "C" struct foo;' is actually valid and not theoretically
2431  // useless.
2432  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2433    if (!DS.isExternInLinkageSpec())
2434      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2435        << DeclSpec::getSpecifierName(scs);
2436
2437  if (DS.isThreadSpecified())
2438    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2439  if (DS.getTypeQualifiers()) {
2440    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2441      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2442    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2443      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2444    // Restrict is covered above.
2445  }
2446  if (DS.isInlineSpecified())
2447    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2448  if (DS.isVirtualSpecified())
2449    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2450  if (DS.isExplicitSpecified())
2451    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2452
2453  if (DS.isModulePrivateSpecified() &&
2454      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2455    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2456      << Tag->getTagKind()
2457      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2458
2459  // Warn about ignored type attributes, for example:
2460  // __attribute__((aligned)) struct A;
2461  // Attributes should be placed after tag to apply to type declaration.
2462  if (!DS.getAttributes().empty()) {
2463    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2464    if (TypeSpecType == DeclSpec::TST_class ||
2465        TypeSpecType == DeclSpec::TST_struct ||
2466        TypeSpecType == DeclSpec::TST_union ||
2467        TypeSpecType == DeclSpec::TST_enum) {
2468      AttributeList* attrs = DS.getAttributes().getList();
2469      while (attrs) {
2470        Diag(attrs->getScopeLoc(),
2471             diag::warn_declspec_attribute_ignored)
2472        << attrs->getName()
2473        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2474            TypeSpecType == DeclSpec::TST_struct ? 1 :
2475            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2476        attrs = attrs->getNext();
2477      }
2478    }
2479  }
2480
2481  return TagD;
2482}
2483
2484/// We are trying to inject an anonymous member into the given scope;
2485/// check if there's an existing declaration that can't be overloaded.
2486///
2487/// \return true if this is a forbidden redeclaration
2488static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2489                                         Scope *S,
2490                                         DeclContext *Owner,
2491                                         DeclarationName Name,
2492                                         SourceLocation NameLoc,
2493                                         unsigned diagnostic) {
2494  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2495                 Sema::ForRedeclaration);
2496  if (!SemaRef.LookupName(R, S)) return false;
2497
2498  if (R.getAsSingle<TagDecl>())
2499    return false;
2500
2501  // Pick a representative declaration.
2502  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2503  assert(PrevDecl && "Expected a non-null Decl");
2504
2505  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2506    return false;
2507
2508  SemaRef.Diag(NameLoc, diagnostic) << Name;
2509  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2510
2511  return true;
2512}
2513
2514/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2515/// anonymous struct or union AnonRecord into the owning context Owner
2516/// and scope S. This routine will be invoked just after we realize
2517/// that an unnamed union or struct is actually an anonymous union or
2518/// struct, e.g.,
2519///
2520/// @code
2521/// union {
2522///   int i;
2523///   float f;
2524/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2525///    // f into the surrounding scope.x
2526/// @endcode
2527///
2528/// This routine is recursive, injecting the names of nested anonymous
2529/// structs/unions into the owning context and scope as well.
2530static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2531                                                DeclContext *Owner,
2532                                                RecordDecl *AnonRecord,
2533                                                AccessSpecifier AS,
2534                              SmallVector<NamedDecl*, 2> &Chaining,
2535                                                      bool MSAnonStruct) {
2536  unsigned diagKind
2537    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2538                            : diag::err_anonymous_struct_member_redecl;
2539
2540  bool Invalid = false;
2541
2542  // Look every FieldDecl and IndirectFieldDecl with a name.
2543  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2544                               DEnd = AnonRecord->decls_end();
2545       D != DEnd; ++D) {
2546    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2547        cast<NamedDecl>(*D)->getDeclName()) {
2548      ValueDecl *VD = cast<ValueDecl>(*D);
2549      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2550                                       VD->getLocation(), diagKind)) {
2551        // C++ [class.union]p2:
2552        //   The names of the members of an anonymous union shall be
2553        //   distinct from the names of any other entity in the
2554        //   scope in which the anonymous union is declared.
2555        Invalid = true;
2556      } else {
2557        // C++ [class.union]p2:
2558        //   For the purpose of name lookup, after the anonymous union
2559        //   definition, the members of the anonymous union are
2560        //   considered to have been defined in the scope in which the
2561        //   anonymous union is declared.
2562        unsigned OldChainingSize = Chaining.size();
2563        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2564          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2565               PE = IF->chain_end(); PI != PE; ++PI)
2566            Chaining.push_back(*PI);
2567        else
2568          Chaining.push_back(VD);
2569
2570        assert(Chaining.size() >= 2);
2571        NamedDecl **NamedChain =
2572          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2573        for (unsigned i = 0; i < Chaining.size(); i++)
2574          NamedChain[i] = Chaining[i];
2575
2576        IndirectFieldDecl* IndirectField =
2577          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2578                                    VD->getIdentifier(), VD->getType(),
2579                                    NamedChain, Chaining.size());
2580
2581        IndirectField->setAccess(AS);
2582        IndirectField->setImplicit();
2583        SemaRef.PushOnScopeChains(IndirectField, S);
2584
2585        // That includes picking up the appropriate access specifier.
2586        if (AS != AS_none) IndirectField->setAccess(AS);
2587
2588        Chaining.resize(OldChainingSize);
2589      }
2590    }
2591  }
2592
2593  return Invalid;
2594}
2595
2596/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2597/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2598/// illegal input values are mapped to SC_None.
2599static StorageClass
2600StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2601  switch (StorageClassSpec) {
2602  case DeclSpec::SCS_unspecified:    return SC_None;
2603  case DeclSpec::SCS_extern:         return SC_Extern;
2604  case DeclSpec::SCS_static:         return SC_Static;
2605  case DeclSpec::SCS_auto:           return SC_Auto;
2606  case DeclSpec::SCS_register:       return SC_Register;
2607  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2608    // Illegal SCSs map to None: error reporting is up to the caller.
2609  case DeclSpec::SCS_mutable:        // Fall through.
2610  case DeclSpec::SCS_typedef:        return SC_None;
2611  }
2612  llvm_unreachable("unknown storage class specifier");
2613}
2614
2615/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2616/// a StorageClass. Any error reporting is up to the caller:
2617/// illegal input values are mapped to SC_None.
2618static StorageClass
2619StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2620  switch (StorageClassSpec) {
2621  case DeclSpec::SCS_unspecified:    return SC_None;
2622  case DeclSpec::SCS_extern:         return SC_Extern;
2623  case DeclSpec::SCS_static:         return SC_Static;
2624  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2625    // Illegal SCSs map to None: error reporting is up to the caller.
2626  case DeclSpec::SCS_auto:           // Fall through.
2627  case DeclSpec::SCS_mutable:        // Fall through.
2628  case DeclSpec::SCS_register:       // Fall through.
2629  case DeclSpec::SCS_typedef:        return SC_None;
2630  }
2631  llvm_unreachable("unknown storage class specifier");
2632}
2633
2634/// BuildAnonymousStructOrUnion - Handle the declaration of an
2635/// anonymous structure or union. Anonymous unions are a C++ feature
2636/// (C++ [class.union]) and a GNU C extension; anonymous structures
2637/// are a GNU C and GNU C++ extension.
2638Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2639                                             AccessSpecifier AS,
2640                                             RecordDecl *Record) {
2641  DeclContext *Owner = Record->getDeclContext();
2642
2643  // Diagnose whether this anonymous struct/union is an extension.
2644  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2645    Diag(Record->getLocation(), diag::ext_anonymous_union);
2646  else if (!Record->isUnion())
2647    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2648
2649  // C and C++ require different kinds of checks for anonymous
2650  // structs/unions.
2651  bool Invalid = false;
2652  if (getLangOptions().CPlusPlus) {
2653    const char* PrevSpec = 0;
2654    unsigned DiagID;
2655    if (Record->isUnion()) {
2656      // C++ [class.union]p6:
2657      //   Anonymous unions declared in a named namespace or in the
2658      //   global namespace shall be declared static.
2659      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2660          (isa<TranslationUnitDecl>(Owner) ||
2661           (isa<NamespaceDecl>(Owner) &&
2662            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2663        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2664          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2665
2666        // Recover by adding 'static'.
2667        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2668                               PrevSpec, DiagID);
2669      }
2670      // C++ [class.union]p6:
2671      //   A storage class is not allowed in a declaration of an
2672      //   anonymous union in a class scope.
2673      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2674               isa<RecordDecl>(Owner)) {
2675        Diag(DS.getStorageClassSpecLoc(),
2676             diag::err_anonymous_union_with_storage_spec)
2677          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2678
2679        // Recover by removing the storage specifier.
2680        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2681                               SourceLocation(),
2682                               PrevSpec, DiagID);
2683      }
2684    }
2685
2686    // Ignore const/volatile/restrict qualifiers.
2687    if (DS.getTypeQualifiers()) {
2688      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2689        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2690          << Record->isUnion() << 0
2691          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2692      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2693        Diag(DS.getVolatileSpecLoc(),
2694             diag::ext_anonymous_struct_union_qualified)
2695          << Record->isUnion() << 1
2696          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2697      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2698        Diag(DS.getRestrictSpecLoc(),
2699             diag::ext_anonymous_struct_union_qualified)
2700          << Record->isUnion() << 2
2701          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2702
2703      DS.ClearTypeQualifiers();
2704    }
2705
2706    // C++ [class.union]p2:
2707    //   The member-specification of an anonymous union shall only
2708    //   define non-static data members. [Note: nested types and
2709    //   functions cannot be declared within an anonymous union. ]
2710    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2711                                 MemEnd = Record->decls_end();
2712         Mem != MemEnd; ++Mem) {
2713      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2714        // C++ [class.union]p3:
2715        //   An anonymous union shall not have private or protected
2716        //   members (clause 11).
2717        assert(FD->getAccess() != AS_none);
2718        if (FD->getAccess() != AS_public) {
2719          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2720            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2721          Invalid = true;
2722        }
2723
2724        // C++ [class.union]p1
2725        //   An object of a class with a non-trivial constructor, a non-trivial
2726        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2727        //   assignment operator cannot be a member of a union, nor can an
2728        //   array of such objects.
2729        if (CheckNontrivialField(FD))
2730          Invalid = true;
2731      } else if ((*Mem)->isImplicit()) {
2732        // Any implicit members are fine.
2733      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2734        // This is a type that showed up in an
2735        // elaborated-type-specifier inside the anonymous struct or
2736        // union, but which actually declares a type outside of the
2737        // anonymous struct or union. It's okay.
2738      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2739        if (!MemRecord->isAnonymousStructOrUnion() &&
2740            MemRecord->getDeclName()) {
2741          // Visual C++ allows type definition in anonymous struct or union.
2742          if (getLangOptions().MicrosoftExt)
2743            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2744              << (int)Record->isUnion();
2745          else {
2746            // This is a nested type declaration.
2747            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2748              << (int)Record->isUnion();
2749            Invalid = true;
2750          }
2751        }
2752      } else if (isa<AccessSpecDecl>(*Mem)) {
2753        // Any access specifier is fine.
2754      } else {
2755        // We have something that isn't a non-static data
2756        // member. Complain about it.
2757        unsigned DK = diag::err_anonymous_record_bad_member;
2758        if (isa<TypeDecl>(*Mem))
2759          DK = diag::err_anonymous_record_with_type;
2760        else if (isa<FunctionDecl>(*Mem))
2761          DK = diag::err_anonymous_record_with_function;
2762        else if (isa<VarDecl>(*Mem))
2763          DK = diag::err_anonymous_record_with_static;
2764
2765        // Visual C++ allows type definition in anonymous struct or union.
2766        if (getLangOptions().MicrosoftExt &&
2767            DK == diag::err_anonymous_record_with_type)
2768          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2769            << (int)Record->isUnion();
2770        else {
2771          Diag((*Mem)->getLocation(), DK)
2772              << (int)Record->isUnion();
2773          Invalid = true;
2774        }
2775      }
2776    }
2777  }
2778
2779  if (!Record->isUnion() && !Owner->isRecord()) {
2780    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2781      << (int)getLangOptions().CPlusPlus;
2782    Invalid = true;
2783  }
2784
2785  // Mock up a declarator.
2786  Declarator Dc(DS, Declarator::MemberContext);
2787  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2788  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2789
2790  // Create a declaration for this anonymous struct/union.
2791  NamedDecl *Anon = 0;
2792  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2793    Anon = FieldDecl::Create(Context, OwningClass,
2794                             DS.getSourceRange().getBegin(),
2795                             Record->getLocation(),
2796                             /*IdentifierInfo=*/0,
2797                             Context.getTypeDeclType(Record),
2798                             TInfo,
2799                             /*BitWidth=*/0, /*Mutable=*/false,
2800                             /*HasInit=*/false);
2801    Anon->setAccess(AS);
2802    if (getLangOptions().CPlusPlus)
2803      FieldCollector->Add(cast<FieldDecl>(Anon));
2804  } else {
2805    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2806    assert(SCSpec != DeclSpec::SCS_typedef &&
2807           "Parser allowed 'typedef' as storage class VarDecl.");
2808    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2809    if (SCSpec == DeclSpec::SCS_mutable) {
2810      // mutable can only appear on non-static class members, so it's always
2811      // an error here
2812      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2813      Invalid = true;
2814      SC = SC_None;
2815    }
2816    SCSpec = DS.getStorageClassSpecAsWritten();
2817    VarDecl::StorageClass SCAsWritten
2818      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2819
2820    Anon = VarDecl::Create(Context, Owner,
2821                           DS.getSourceRange().getBegin(),
2822                           Record->getLocation(), /*IdentifierInfo=*/0,
2823                           Context.getTypeDeclType(Record),
2824                           TInfo, SC, SCAsWritten);
2825
2826    // Default-initialize the implicit variable. This initialization will be
2827    // trivial in almost all cases, except if a union member has an in-class
2828    // initializer:
2829    //   union { int n = 0; };
2830    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2831  }
2832  Anon->setImplicit();
2833
2834  // Add the anonymous struct/union object to the current
2835  // context. We'll be referencing this object when we refer to one of
2836  // its members.
2837  Owner->addDecl(Anon);
2838
2839  // Inject the members of the anonymous struct/union into the owning
2840  // context and into the identifier resolver chain for name lookup
2841  // purposes.
2842  SmallVector<NamedDecl*, 2> Chain;
2843  Chain.push_back(Anon);
2844
2845  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2846                                          Chain, false))
2847    Invalid = true;
2848
2849  // Mark this as an anonymous struct/union type. Note that we do not
2850  // do this until after we have already checked and injected the
2851  // members of this anonymous struct/union type, because otherwise
2852  // the members could be injected twice: once by DeclContext when it
2853  // builds its lookup table, and once by
2854  // InjectAnonymousStructOrUnionMembers.
2855  Record->setAnonymousStructOrUnion(true);
2856
2857  if (Invalid)
2858    Anon->setInvalidDecl();
2859
2860  return Anon;
2861}
2862
2863/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2864/// Microsoft C anonymous structure.
2865/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2866/// Example:
2867///
2868/// struct A { int a; };
2869/// struct B { struct A; int b; };
2870///
2871/// void foo() {
2872///   B var;
2873///   var.a = 3;
2874/// }
2875///
2876Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2877                                           RecordDecl *Record) {
2878
2879  // If there is no Record, get the record via the typedef.
2880  if (!Record)
2881    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2882
2883  // Mock up a declarator.
2884  Declarator Dc(DS, Declarator::TypeNameContext);
2885  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2886  assert(TInfo && "couldn't build declarator info for anonymous struct");
2887
2888  // Create a declaration for this anonymous struct.
2889  NamedDecl* Anon = FieldDecl::Create(Context,
2890                             cast<RecordDecl>(CurContext),
2891                             DS.getSourceRange().getBegin(),
2892                             DS.getSourceRange().getBegin(),
2893                             /*IdentifierInfo=*/0,
2894                             Context.getTypeDeclType(Record),
2895                             TInfo,
2896                             /*BitWidth=*/0, /*Mutable=*/false,
2897                             /*HasInit=*/false);
2898  Anon->setImplicit();
2899
2900  // Add the anonymous struct object to the current context.
2901  CurContext->addDecl(Anon);
2902
2903  // Inject the members of the anonymous struct into the current
2904  // context and into the identifier resolver chain for name lookup
2905  // purposes.
2906  SmallVector<NamedDecl*, 2> Chain;
2907  Chain.push_back(Anon);
2908
2909  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2910                                          Record->getDefinition(),
2911                                          AS_none, Chain, true))
2912    Anon->setInvalidDecl();
2913
2914  return Anon;
2915}
2916
2917/// GetNameForDeclarator - Determine the full declaration name for the
2918/// given Declarator.
2919DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2920  return GetNameFromUnqualifiedId(D.getName());
2921}
2922
2923/// \brief Retrieves the declaration name from a parsed unqualified-id.
2924DeclarationNameInfo
2925Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2926  DeclarationNameInfo NameInfo;
2927  NameInfo.setLoc(Name.StartLocation);
2928
2929  switch (Name.getKind()) {
2930
2931  case UnqualifiedId::IK_ImplicitSelfParam:
2932  case UnqualifiedId::IK_Identifier:
2933    NameInfo.setName(Name.Identifier);
2934    NameInfo.setLoc(Name.StartLocation);
2935    return NameInfo;
2936
2937  case UnqualifiedId::IK_OperatorFunctionId:
2938    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2939                                           Name.OperatorFunctionId.Operator));
2940    NameInfo.setLoc(Name.StartLocation);
2941    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2942      = Name.OperatorFunctionId.SymbolLocations[0];
2943    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2944      = Name.EndLocation.getRawEncoding();
2945    return NameInfo;
2946
2947  case UnqualifiedId::IK_LiteralOperatorId:
2948    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2949                                                           Name.Identifier));
2950    NameInfo.setLoc(Name.StartLocation);
2951    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2952    return NameInfo;
2953
2954  case UnqualifiedId::IK_ConversionFunctionId: {
2955    TypeSourceInfo *TInfo;
2956    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2957    if (Ty.isNull())
2958      return DeclarationNameInfo();
2959    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2960                                               Context.getCanonicalType(Ty)));
2961    NameInfo.setLoc(Name.StartLocation);
2962    NameInfo.setNamedTypeInfo(TInfo);
2963    return NameInfo;
2964  }
2965
2966  case UnqualifiedId::IK_ConstructorName: {
2967    TypeSourceInfo *TInfo;
2968    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2969    if (Ty.isNull())
2970      return DeclarationNameInfo();
2971    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2972                                              Context.getCanonicalType(Ty)));
2973    NameInfo.setLoc(Name.StartLocation);
2974    NameInfo.setNamedTypeInfo(TInfo);
2975    return NameInfo;
2976  }
2977
2978  case UnqualifiedId::IK_ConstructorTemplateId: {
2979    // In well-formed code, we can only have a constructor
2980    // template-id that refers to the current context, so go there
2981    // to find the actual type being constructed.
2982    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2983    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2984      return DeclarationNameInfo();
2985
2986    // Determine the type of the class being constructed.
2987    QualType CurClassType = Context.getTypeDeclType(CurClass);
2988
2989    // FIXME: Check two things: that the template-id names the same type as
2990    // CurClassType, and that the template-id does not occur when the name
2991    // was qualified.
2992
2993    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2994                                    Context.getCanonicalType(CurClassType)));
2995    NameInfo.setLoc(Name.StartLocation);
2996    // FIXME: should we retrieve TypeSourceInfo?
2997    NameInfo.setNamedTypeInfo(0);
2998    return NameInfo;
2999  }
3000
3001  case UnqualifiedId::IK_DestructorName: {
3002    TypeSourceInfo *TInfo;
3003    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3004    if (Ty.isNull())
3005      return DeclarationNameInfo();
3006    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3007                                              Context.getCanonicalType(Ty)));
3008    NameInfo.setLoc(Name.StartLocation);
3009    NameInfo.setNamedTypeInfo(TInfo);
3010    return NameInfo;
3011  }
3012
3013  case UnqualifiedId::IK_TemplateId: {
3014    TemplateName TName = Name.TemplateId->Template.get();
3015    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3016    return Context.getNameForTemplate(TName, TNameLoc);
3017  }
3018
3019  } // switch (Name.getKind())
3020
3021  llvm_unreachable("Unknown name kind");
3022}
3023
3024static QualType getCoreType(QualType Ty) {
3025  do {
3026    if (Ty->isPointerType() || Ty->isReferenceType())
3027      Ty = Ty->getPointeeType();
3028    else if (Ty->isArrayType())
3029      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3030    else
3031      return Ty.withoutLocalFastQualifiers();
3032  } while (true);
3033}
3034
3035/// hasSimilarParameters - Determine whether the C++ functions Declaration
3036/// and Definition have "nearly" matching parameters. This heuristic is
3037/// used to improve diagnostics in the case where an out-of-line function
3038/// definition doesn't match any declaration within the class or namespace.
3039/// Also sets Params to the list of indices to the parameters that differ
3040/// between the declaration and the definition. If hasSimilarParameters
3041/// returns true and Params is empty, then all of the parameters match.
3042static bool hasSimilarParameters(ASTContext &Context,
3043                                     FunctionDecl *Declaration,
3044                                     FunctionDecl *Definition,
3045                                     llvm::SmallVectorImpl<unsigned> &Params) {
3046  Params.clear();
3047  if (Declaration->param_size() != Definition->param_size())
3048    return false;
3049  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3050    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3051    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3052
3053    // The parameter types are identical
3054    if (Context.hasSameType(DefParamTy, DeclParamTy))
3055      continue;
3056
3057    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3058    QualType DefParamBaseTy = getCoreType(DefParamTy);
3059    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3060    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3061
3062    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3063        (DeclTyName && DeclTyName == DefTyName))
3064      Params.push_back(Idx);
3065    else  // The two parameters aren't even close
3066      return false;
3067  }
3068
3069  return true;
3070}
3071
3072/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3073/// declarator needs to be rebuilt in the current instantiation.
3074/// Any bits of declarator which appear before the name are valid for
3075/// consideration here.  That's specifically the type in the decl spec
3076/// and the base type in any member-pointer chunks.
3077static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3078                                                    DeclarationName Name) {
3079  // The types we specifically need to rebuild are:
3080  //   - typenames, typeofs, and decltypes
3081  //   - types which will become injected class names
3082  // Of course, we also need to rebuild any type referencing such a
3083  // type.  It's safest to just say "dependent", but we call out a
3084  // few cases here.
3085
3086  DeclSpec &DS = D.getMutableDeclSpec();
3087  switch (DS.getTypeSpecType()) {
3088  case DeclSpec::TST_typename:
3089  case DeclSpec::TST_typeofType:
3090  case DeclSpec::TST_decltype:
3091  case DeclSpec::TST_underlyingType:
3092  case DeclSpec::TST_atomic: {
3093    // Grab the type from the parser.
3094    TypeSourceInfo *TSI = 0;
3095    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3096    if (T.isNull() || !T->isDependentType()) break;
3097
3098    // Make sure there's a type source info.  This isn't really much
3099    // of a waste; most dependent types should have type source info
3100    // attached already.
3101    if (!TSI)
3102      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3103
3104    // Rebuild the type in the current instantiation.
3105    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3106    if (!TSI) return true;
3107
3108    // Store the new type back in the decl spec.
3109    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3110    DS.UpdateTypeRep(LocType);
3111    break;
3112  }
3113
3114  case DeclSpec::TST_typeofExpr: {
3115    Expr *E = DS.getRepAsExpr();
3116    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3117    if (Result.isInvalid()) return true;
3118    DS.UpdateExprRep(Result.get());
3119    break;
3120  }
3121
3122  default:
3123    // Nothing to do for these decl specs.
3124    break;
3125  }
3126
3127  // It doesn't matter what order we do this in.
3128  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3129    DeclaratorChunk &Chunk = D.getTypeObject(I);
3130
3131    // The only type information in the declarator which can come
3132    // before the declaration name is the base type of a member
3133    // pointer.
3134    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3135      continue;
3136
3137    // Rebuild the scope specifier in-place.
3138    CXXScopeSpec &SS = Chunk.Mem.Scope();
3139    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3140      return true;
3141  }
3142
3143  return false;
3144}
3145
3146Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3147  D.setFunctionDefinitionKind(FDK_Declaration);
3148  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3149
3150  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3151      Dcl->getDeclContext()->isFileContext())
3152    Dcl->setTopLevelDeclInObjCContainer();
3153
3154  return Dcl;
3155}
3156
3157/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3158///   If T is the name of a class, then each of the following shall have a
3159///   name different from T:
3160///     - every static data member of class T;
3161///     - every member function of class T
3162///     - every member of class T that is itself a type;
3163/// \returns true if the declaration name violates these rules.
3164bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3165                                   DeclarationNameInfo NameInfo) {
3166  DeclarationName Name = NameInfo.getName();
3167
3168  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3169    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3170      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3171      return true;
3172    }
3173
3174  return false;
3175}
3176
3177Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3178                             MultiTemplateParamsArg TemplateParamLists) {
3179  // TODO: consider using NameInfo for diagnostic.
3180  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3181  DeclarationName Name = NameInfo.getName();
3182
3183  // All of these full declarators require an identifier.  If it doesn't have
3184  // one, the ParsedFreeStandingDeclSpec action should be used.
3185  if (!Name) {
3186    if (!D.isInvalidType())  // Reject this if we think it is valid.
3187      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3188           diag::err_declarator_need_ident)
3189        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3190    return 0;
3191  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3192    return 0;
3193
3194  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3195  // we find one that is.
3196  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3197         (S->getFlags() & Scope::TemplateParamScope) != 0)
3198    S = S->getParent();
3199
3200  DeclContext *DC = CurContext;
3201  if (D.getCXXScopeSpec().isInvalid())
3202    D.setInvalidType();
3203  else if (D.getCXXScopeSpec().isSet()) {
3204    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3205                                        UPPC_DeclarationQualifier))
3206      return 0;
3207
3208    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3209    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3210    if (!DC) {
3211      // If we could not compute the declaration context, it's because the
3212      // declaration context is dependent but does not refer to a class,
3213      // class template, or class template partial specialization. Complain
3214      // and return early, to avoid the coming semantic disaster.
3215      Diag(D.getIdentifierLoc(),
3216           diag::err_template_qualified_declarator_no_match)
3217        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3218        << D.getCXXScopeSpec().getRange();
3219      return 0;
3220    }
3221    bool IsDependentContext = DC->isDependentContext();
3222
3223    if (!IsDependentContext &&
3224        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3225      return 0;
3226
3227    if (isa<CXXRecordDecl>(DC)) {
3228      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3229        Diag(D.getIdentifierLoc(),
3230             diag::err_member_def_undefined_record)
3231          << Name << DC << D.getCXXScopeSpec().getRange();
3232        D.setInvalidType();
3233      } else if (isa<CXXRecordDecl>(CurContext) &&
3234                 !D.getDeclSpec().isFriendSpecified()) {
3235        // The user provided a superfluous scope specifier inside a class
3236        // definition:
3237        //
3238        // class X {
3239        //   void X::f();
3240        // };
3241        if (CurContext->Equals(DC)) {
3242          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3243            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3244        } else {
3245          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3246            << Name << D.getCXXScopeSpec().getRange();
3247
3248          // C++ constructors and destructors with incorrect scopes can break
3249          // our AST invariants by having the wrong underlying types. If
3250          // that's the case, then drop this declaration entirely.
3251          if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3252               Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3253              !Context.hasSameType(Name.getCXXNameType(),
3254                 Context.getTypeDeclType(cast<CXXRecordDecl>(CurContext))))
3255            return 0;
3256        }
3257
3258        // Pretend that this qualifier was not here.
3259        D.getCXXScopeSpec().clear();
3260      }
3261    }
3262
3263    // Check whether we need to rebuild the type of the given
3264    // declaration in the current instantiation.
3265    if (EnteringContext && IsDependentContext &&
3266        TemplateParamLists.size() != 0) {
3267      ContextRAII SavedContext(*this, DC);
3268      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3269        D.setInvalidType();
3270    }
3271  }
3272
3273  if (DiagnoseClassNameShadow(DC, NameInfo))
3274    // If this is a typedef, we'll end up spewing multiple diagnostics.
3275    // Just return early; it's safer.
3276    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3277      return 0;
3278
3279  NamedDecl *New;
3280
3281  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3282  QualType R = TInfo->getType();
3283
3284  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3285                                      UPPC_DeclarationType))
3286    D.setInvalidType();
3287
3288  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3289                        ForRedeclaration);
3290
3291  // See if this is a redefinition of a variable in the same scope.
3292  if (!D.getCXXScopeSpec().isSet()) {
3293    bool IsLinkageLookup = false;
3294
3295    // If the declaration we're planning to build will be a function
3296    // or object with linkage, then look for another declaration with
3297    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3298    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3299      /* Do nothing*/;
3300    else if (R->isFunctionType()) {
3301      if (CurContext->isFunctionOrMethod() ||
3302          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3303        IsLinkageLookup = true;
3304    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3305      IsLinkageLookup = true;
3306    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3307             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3308      IsLinkageLookup = true;
3309
3310    if (IsLinkageLookup)
3311      Previous.clear(LookupRedeclarationWithLinkage);
3312
3313    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3314  } else { // Something like "int foo::x;"
3315    LookupQualifiedName(Previous, DC);
3316
3317    // Don't consider using declarations as previous declarations for
3318    // out-of-line members.
3319    RemoveUsingDecls(Previous);
3320
3321    // C++ 7.3.1.2p2:
3322    // Members (including explicit specializations of templates) of a named
3323    // namespace can also be defined outside that namespace by explicit
3324    // qualification of the name being defined, provided that the entity being
3325    // defined was already declared in the namespace and the definition appears
3326    // after the point of declaration in a namespace that encloses the
3327    // declarations namespace.
3328    //
3329    // Note that we only check the context at this point. We don't yet
3330    // have enough information to make sure that PrevDecl is actually
3331    // the declaration we want to match. For example, given:
3332    //
3333    //   class X {
3334    //     void f();
3335    //     void f(float);
3336    //   };
3337    //
3338    //   void X::f(int) { } // ill-formed
3339    //
3340    // In this case, PrevDecl will point to the overload set
3341    // containing the two f's declared in X, but neither of them
3342    // matches.
3343
3344    // First check whether we named the global scope.
3345    if (isa<TranslationUnitDecl>(DC)) {
3346      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3347        << Name << D.getCXXScopeSpec().getRange();
3348    } else {
3349      DeclContext *Cur = CurContext;
3350      while (isa<LinkageSpecDecl>(Cur))
3351        Cur = Cur->getParent();
3352      if (!Cur->Encloses(DC)) {
3353        // The qualifying scope doesn't enclose the original declaration.
3354        // Emit diagnostic based on current scope.
3355        SourceLocation L = D.getIdentifierLoc();
3356        SourceRange R = D.getCXXScopeSpec().getRange();
3357        if (isa<FunctionDecl>(Cur))
3358          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3359        else
3360          Diag(L, diag::err_invalid_declarator_scope)
3361            << Name << cast<NamedDecl>(DC) << R;
3362        D.setInvalidType();
3363      }
3364
3365      // C++11 8.3p1:
3366      // ... "The nested-name-specifier of the qualified declarator-id shall
3367      // not begin with a decltype-specifer"
3368      NestedNameSpecifierLoc SpecLoc =
3369            D.getCXXScopeSpec().getWithLocInContext(Context);
3370      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3371                        "NestedNameSpecifierLoc");
3372      while (SpecLoc.getPrefix())
3373        SpecLoc = SpecLoc.getPrefix();
3374      if (dyn_cast_or_null<DecltypeType>(
3375            SpecLoc.getNestedNameSpecifier()->getAsType()))
3376        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3377          << SpecLoc.getTypeLoc().getSourceRange();
3378    }
3379  }
3380
3381  if (Previous.isSingleResult() &&
3382      Previous.getFoundDecl()->isTemplateParameter()) {
3383    // Maybe we will complain about the shadowed template parameter.
3384    if (!D.isInvalidType())
3385      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3386                                      Previous.getFoundDecl());
3387
3388    // Just pretend that we didn't see the previous declaration.
3389    Previous.clear();
3390  }
3391
3392  // In C++, the previous declaration we find might be a tag type
3393  // (class or enum). In this case, the new declaration will hide the
3394  // tag type. Note that this does does not apply if we're declaring a
3395  // typedef (C++ [dcl.typedef]p4).
3396  if (Previous.isSingleTagDecl() &&
3397      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3398    Previous.clear();
3399
3400  bool AddToScope = true;
3401  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3402    if (TemplateParamLists.size()) {
3403      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3404      return 0;
3405    }
3406
3407    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3408  } else if (R->isFunctionType()) {
3409    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3410                                  move(TemplateParamLists),
3411                                  AddToScope);
3412  } else {
3413    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3414                                  move(TemplateParamLists));
3415  }
3416
3417  if (New == 0)
3418    return 0;
3419
3420  // If this has an identifier and is not an invalid redeclaration or
3421  // function template specialization, add it to the scope stack.
3422  if (New->getDeclName() && AddToScope &&
3423       !(D.isRedeclaration() && New->isInvalidDecl()))
3424    PushOnScopeChains(New, S);
3425
3426  return New;
3427}
3428
3429/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3430/// types into constant array types in certain situations which would otherwise
3431/// be errors (for GCC compatibility).
3432static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3433                                                    ASTContext &Context,
3434                                                    bool &SizeIsNegative,
3435                                                    llvm::APSInt &Oversized) {
3436  // This method tries to turn a variable array into a constant
3437  // array even when the size isn't an ICE.  This is necessary
3438  // for compatibility with code that depends on gcc's buggy
3439  // constant expression folding, like struct {char x[(int)(char*)2];}
3440  SizeIsNegative = false;
3441  Oversized = 0;
3442
3443  if (T->isDependentType())
3444    return QualType();
3445
3446  QualifierCollector Qs;
3447  const Type *Ty = Qs.strip(T);
3448
3449  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3450    QualType Pointee = PTy->getPointeeType();
3451    QualType FixedType =
3452        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3453                                            Oversized);
3454    if (FixedType.isNull()) return FixedType;
3455    FixedType = Context.getPointerType(FixedType);
3456    return Qs.apply(Context, FixedType);
3457  }
3458  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3459    QualType Inner = PTy->getInnerType();
3460    QualType FixedType =
3461        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3462                                            Oversized);
3463    if (FixedType.isNull()) return FixedType;
3464    FixedType = Context.getParenType(FixedType);
3465    return Qs.apply(Context, FixedType);
3466  }
3467
3468  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3469  if (!VLATy)
3470    return QualType();
3471  // FIXME: We should probably handle this case
3472  if (VLATy->getElementType()->isVariablyModifiedType())
3473    return QualType();
3474
3475  llvm::APSInt Res;
3476  if (!VLATy->getSizeExpr() ||
3477      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3478    return QualType();
3479
3480  // Check whether the array size is negative.
3481  if (Res.isSigned() && Res.isNegative()) {
3482    SizeIsNegative = true;
3483    return QualType();
3484  }
3485
3486  // Check whether the array is too large to be addressed.
3487  unsigned ActiveSizeBits
3488    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3489                                              Res);
3490  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3491    Oversized = Res;
3492    return QualType();
3493  }
3494
3495  return Context.getConstantArrayType(VLATy->getElementType(),
3496                                      Res, ArrayType::Normal, 0);
3497}
3498
3499/// \brief Register the given locally-scoped external C declaration so
3500/// that it can be found later for redeclarations
3501void
3502Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3503                                       const LookupResult &Previous,
3504                                       Scope *S) {
3505  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3506         "Decl is not a locally-scoped decl!");
3507  // Note that we have a locally-scoped external with this name.
3508  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3509
3510  if (!Previous.isSingleResult())
3511    return;
3512
3513  NamedDecl *PrevDecl = Previous.getFoundDecl();
3514
3515  // If there was a previous declaration of this variable, it may be
3516  // in our identifier chain. Update the identifier chain with the new
3517  // declaration.
3518  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3519    // The previous declaration was found on the identifer resolver
3520    // chain, so remove it from its scope.
3521
3522    if (S->isDeclScope(PrevDecl)) {
3523      // Special case for redeclarations in the SAME scope.
3524      // Because this declaration is going to be added to the identifier chain
3525      // later, we should temporarily take it OFF the chain.
3526      IdResolver.RemoveDecl(ND);
3527
3528    } else {
3529      // Find the scope for the original declaration.
3530      while (S && !S->isDeclScope(PrevDecl))
3531        S = S->getParent();
3532    }
3533
3534    if (S)
3535      S->RemoveDecl(PrevDecl);
3536  }
3537}
3538
3539llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3540Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3541  if (ExternalSource) {
3542    // Load locally-scoped external decls from the external source.
3543    SmallVector<NamedDecl *, 4> Decls;
3544    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3545    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3546      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3547        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3548      if (Pos == LocallyScopedExternalDecls.end())
3549        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3550    }
3551  }
3552
3553  return LocallyScopedExternalDecls.find(Name);
3554}
3555
3556/// \brief Diagnose function specifiers on a declaration of an identifier that
3557/// does not identify a function.
3558void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3559  // FIXME: We should probably indicate the identifier in question to avoid
3560  // confusion for constructs like "inline int a(), b;"
3561  if (D.getDeclSpec().isInlineSpecified())
3562    Diag(D.getDeclSpec().getInlineSpecLoc(),
3563         diag::err_inline_non_function);
3564
3565  if (D.getDeclSpec().isVirtualSpecified())
3566    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3567         diag::err_virtual_non_function);
3568
3569  if (D.getDeclSpec().isExplicitSpecified())
3570    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3571         diag::err_explicit_non_function);
3572}
3573
3574NamedDecl*
3575Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3576                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3577  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3578  if (D.getCXXScopeSpec().isSet()) {
3579    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3580      << D.getCXXScopeSpec().getRange();
3581    D.setInvalidType();
3582    // Pretend we didn't see the scope specifier.
3583    DC = CurContext;
3584    Previous.clear();
3585  }
3586
3587  if (getLangOptions().CPlusPlus) {
3588    // Check that there are no default arguments (C++ only).
3589    CheckExtraCXXDefaultArguments(D);
3590  }
3591
3592  DiagnoseFunctionSpecifiers(D);
3593
3594  if (D.getDeclSpec().isThreadSpecified())
3595    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3596  if (D.getDeclSpec().isConstexprSpecified())
3597    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3598      << 1;
3599
3600  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3601    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3602      << D.getName().getSourceRange();
3603    return 0;
3604  }
3605
3606  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3607  if (!NewTD) return 0;
3608
3609  // Handle attributes prior to checking for duplicates in MergeVarDecl
3610  ProcessDeclAttributes(S, NewTD, D);
3611
3612  CheckTypedefForVariablyModifiedType(S, NewTD);
3613
3614  bool Redeclaration = D.isRedeclaration();
3615  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3616  D.setRedeclaration(Redeclaration);
3617  return ND;
3618}
3619
3620void
3621Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3622  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3623  // then it shall have block scope.
3624  // Note that variably modified types must be fixed before merging the decl so
3625  // that redeclarations will match.
3626  QualType T = NewTD->getUnderlyingType();
3627  if (T->isVariablyModifiedType()) {
3628    getCurFunction()->setHasBranchProtectedScope();
3629
3630    if (S->getFnParent() == 0) {
3631      bool SizeIsNegative;
3632      llvm::APSInt Oversized;
3633      QualType FixedTy =
3634          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3635                                              Oversized);
3636      if (!FixedTy.isNull()) {
3637        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3638        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3639      } else {
3640        if (SizeIsNegative)
3641          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3642        else if (T->isVariableArrayType())
3643          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3644        else if (Oversized.getBoolValue())
3645          Diag(NewTD->getLocation(), diag::err_array_too_large)
3646            << Oversized.toString(10);
3647        else
3648          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3649        NewTD->setInvalidDecl();
3650      }
3651    }
3652  }
3653}
3654
3655
3656/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3657/// declares a typedef-name, either using the 'typedef' type specifier or via
3658/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3659NamedDecl*
3660Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3661                           LookupResult &Previous, bool &Redeclaration) {
3662  // Merge the decl with the existing one if appropriate. If the decl is
3663  // in an outer scope, it isn't the same thing.
3664  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3665                       /*ExplicitInstantiationOrSpecialization=*/false);
3666  if (!Previous.empty()) {
3667    Redeclaration = true;
3668    MergeTypedefNameDecl(NewTD, Previous);
3669  }
3670
3671  // If this is the C FILE type, notify the AST context.
3672  if (IdentifierInfo *II = NewTD->getIdentifier())
3673    if (!NewTD->isInvalidDecl() &&
3674        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3675      if (II->isStr("FILE"))
3676        Context.setFILEDecl(NewTD);
3677      else if (II->isStr("jmp_buf"))
3678        Context.setjmp_bufDecl(NewTD);
3679      else if (II->isStr("sigjmp_buf"))
3680        Context.setsigjmp_bufDecl(NewTD);
3681      else if (II->isStr("ucontext_t"))
3682        Context.setucontext_tDecl(NewTD);
3683      else if (II->isStr("__builtin_va_list"))
3684        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3685    }
3686
3687  return NewTD;
3688}
3689
3690/// \brief Determines whether the given declaration is an out-of-scope
3691/// previous declaration.
3692///
3693/// This routine should be invoked when name lookup has found a
3694/// previous declaration (PrevDecl) that is not in the scope where a
3695/// new declaration by the same name is being introduced. If the new
3696/// declaration occurs in a local scope, previous declarations with
3697/// linkage may still be considered previous declarations (C99
3698/// 6.2.2p4-5, C++ [basic.link]p6).
3699///
3700/// \param PrevDecl the previous declaration found by name
3701/// lookup
3702///
3703/// \param DC the context in which the new declaration is being
3704/// declared.
3705///
3706/// \returns true if PrevDecl is an out-of-scope previous declaration
3707/// for a new delcaration with the same name.
3708static bool
3709isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3710                                ASTContext &Context) {
3711  if (!PrevDecl)
3712    return false;
3713
3714  if (!PrevDecl->hasLinkage())
3715    return false;
3716
3717  if (Context.getLangOptions().CPlusPlus) {
3718    // C++ [basic.link]p6:
3719    //   If there is a visible declaration of an entity with linkage
3720    //   having the same name and type, ignoring entities declared
3721    //   outside the innermost enclosing namespace scope, the block
3722    //   scope declaration declares that same entity and receives the
3723    //   linkage of the previous declaration.
3724    DeclContext *OuterContext = DC->getRedeclContext();
3725    if (!OuterContext->isFunctionOrMethod())
3726      // This rule only applies to block-scope declarations.
3727      return false;
3728
3729    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3730    if (PrevOuterContext->isRecord())
3731      // We found a member function: ignore it.
3732      return false;
3733
3734    // Find the innermost enclosing namespace for the new and
3735    // previous declarations.
3736    OuterContext = OuterContext->getEnclosingNamespaceContext();
3737    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3738
3739    // The previous declaration is in a different namespace, so it
3740    // isn't the same function.
3741    if (!OuterContext->Equals(PrevOuterContext))
3742      return false;
3743  }
3744
3745  return true;
3746}
3747
3748static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3749  CXXScopeSpec &SS = D.getCXXScopeSpec();
3750  if (!SS.isSet()) return;
3751  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3752}
3753
3754bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3755  QualType type = decl->getType();
3756  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3757  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3758    // Various kinds of declaration aren't allowed to be __autoreleasing.
3759    unsigned kind = -1U;
3760    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3761      if (var->hasAttr<BlocksAttr>())
3762        kind = 0; // __block
3763      else if (!var->hasLocalStorage())
3764        kind = 1; // global
3765    } else if (isa<ObjCIvarDecl>(decl)) {
3766      kind = 3; // ivar
3767    } else if (isa<FieldDecl>(decl)) {
3768      kind = 2; // field
3769    }
3770
3771    if (kind != -1U) {
3772      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3773        << kind;
3774    }
3775  } else if (lifetime == Qualifiers::OCL_None) {
3776    // Try to infer lifetime.
3777    if (!type->isObjCLifetimeType())
3778      return false;
3779
3780    lifetime = type->getObjCARCImplicitLifetime();
3781    type = Context.getLifetimeQualifiedType(type, lifetime);
3782    decl->setType(type);
3783  }
3784
3785  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3786    // Thread-local variables cannot have lifetime.
3787    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3788        var->isThreadSpecified()) {
3789      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3790        << var->getType();
3791      return true;
3792    }
3793  }
3794
3795  return false;
3796}
3797
3798NamedDecl*
3799Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3800                              TypeSourceInfo *TInfo, LookupResult &Previous,
3801                              MultiTemplateParamsArg TemplateParamLists) {
3802  QualType R = TInfo->getType();
3803  DeclarationName Name = GetNameForDeclarator(D).getName();
3804
3805  // Check that there are no default arguments (C++ only).
3806  if (getLangOptions().CPlusPlus)
3807    CheckExtraCXXDefaultArguments(D);
3808
3809  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3810  assert(SCSpec != DeclSpec::SCS_typedef &&
3811         "Parser allowed 'typedef' as storage class VarDecl.");
3812  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3813  if (SCSpec == DeclSpec::SCS_mutable) {
3814    // mutable can only appear on non-static class members, so it's always
3815    // an error here
3816    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3817    D.setInvalidType();
3818    SC = SC_None;
3819  }
3820  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3821  VarDecl::StorageClass SCAsWritten
3822    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3823
3824  IdentifierInfo *II = Name.getAsIdentifierInfo();
3825  if (!II) {
3826    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3827      << Name;
3828    return 0;
3829  }
3830
3831  DiagnoseFunctionSpecifiers(D);
3832
3833  if (!DC->isRecord() && S->getFnParent() == 0) {
3834    // C99 6.9p2: The storage-class specifiers auto and register shall not
3835    // appear in the declaration specifiers in an external declaration.
3836    if (SC == SC_Auto || SC == SC_Register) {
3837
3838      // If this is a register variable with an asm label specified, then this
3839      // is a GNU extension.
3840      if (SC == SC_Register && D.getAsmLabel())
3841        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3842      else
3843        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3844      D.setInvalidType();
3845    }
3846  }
3847
3848  if (getLangOptions().OpenCL) {
3849    // Set up the special work-group-local storage class for variables in the
3850    // OpenCL __local address space.
3851    if (R.getAddressSpace() == LangAS::opencl_local)
3852      SC = SC_OpenCLWorkGroupLocal;
3853  }
3854
3855  bool isExplicitSpecialization = false;
3856  VarDecl *NewVD;
3857  if (!getLangOptions().CPlusPlus) {
3858    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3859                            D.getIdentifierLoc(), II,
3860                            R, TInfo, SC, SCAsWritten);
3861
3862    if (D.isInvalidType())
3863      NewVD->setInvalidDecl();
3864  } else {
3865    if (DC->isRecord() && !CurContext->isRecord()) {
3866      // This is an out-of-line definition of a static data member.
3867      if (SC == SC_Static) {
3868        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3869             diag::err_static_out_of_line)
3870          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3871      } else if (SC == SC_None)
3872        SC = SC_Static;
3873    }
3874    if (SC == SC_Static) {
3875      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3876        if (RD->isLocalClass())
3877          Diag(D.getIdentifierLoc(),
3878               diag::err_static_data_member_not_allowed_in_local_class)
3879            << Name << RD->getDeclName();
3880
3881        // C++ [class.union]p1: If a union contains a static data member,
3882        // the program is ill-formed.
3883        //
3884        // We also disallow static data members in anonymous structs.
3885        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3886          Diag(D.getIdentifierLoc(),
3887               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3888            << Name << RD->isUnion();
3889      }
3890    }
3891
3892    // Match up the template parameter lists with the scope specifier, then
3893    // determine whether we have a template or a template specialization.
3894    isExplicitSpecialization = false;
3895    bool Invalid = false;
3896    if (TemplateParameterList *TemplateParams
3897        = MatchTemplateParametersToScopeSpecifier(
3898                                  D.getDeclSpec().getSourceRange().getBegin(),
3899                                                  D.getIdentifierLoc(),
3900                                                  D.getCXXScopeSpec(),
3901                                                  TemplateParamLists.get(),
3902                                                  TemplateParamLists.size(),
3903                                                  /*never a friend*/ false,
3904                                                  isExplicitSpecialization,
3905                                                  Invalid)) {
3906      if (TemplateParams->size() > 0) {
3907        // There is no such thing as a variable template.
3908        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3909          << II
3910          << SourceRange(TemplateParams->getTemplateLoc(),
3911                         TemplateParams->getRAngleLoc());
3912        return 0;
3913      } else {
3914        // There is an extraneous 'template<>' for this variable. Complain
3915        // about it, but allow the declaration of the variable.
3916        Diag(TemplateParams->getTemplateLoc(),
3917             diag::err_template_variable_noparams)
3918          << II
3919          << SourceRange(TemplateParams->getTemplateLoc(),
3920                         TemplateParams->getRAngleLoc());
3921      }
3922    }
3923
3924    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3925                            D.getIdentifierLoc(), II,
3926                            R, TInfo, SC, SCAsWritten);
3927
3928    // If this decl has an auto type in need of deduction, make a note of the
3929    // Decl so we can diagnose uses of it in its own initializer.
3930    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3931        R->getContainedAutoType())
3932      ParsingInitForAutoVars.insert(NewVD);
3933
3934    if (D.isInvalidType() || Invalid)
3935      NewVD->setInvalidDecl();
3936
3937    SetNestedNameSpecifier(NewVD, D);
3938
3939    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3940      NewVD->setTemplateParameterListsInfo(Context,
3941                                           TemplateParamLists.size(),
3942                                           TemplateParamLists.release());
3943    }
3944
3945    if (D.getDeclSpec().isConstexprSpecified())
3946      NewVD->setConstexpr(true);
3947  }
3948
3949  // Set the lexical context. If the declarator has a C++ scope specifier, the
3950  // lexical context will be different from the semantic context.
3951  NewVD->setLexicalDeclContext(CurContext);
3952
3953  if (D.getDeclSpec().isThreadSpecified()) {
3954    if (NewVD->hasLocalStorage())
3955      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3956    else if (!Context.getTargetInfo().isTLSSupported())
3957      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3958    else
3959      NewVD->setThreadSpecified(true);
3960  }
3961
3962  if (D.getDeclSpec().isModulePrivateSpecified()) {
3963    if (isExplicitSpecialization)
3964      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3965        << 2
3966        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3967    else if (NewVD->hasLocalStorage())
3968      Diag(NewVD->getLocation(), diag::err_module_private_local)
3969        << 0 << NewVD->getDeclName()
3970        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3971        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3972    else
3973      NewVD->setModulePrivate();
3974  }
3975
3976  // Handle attributes prior to checking for duplicates in MergeVarDecl
3977  ProcessDeclAttributes(S, NewVD, D);
3978
3979  // In auto-retain/release, infer strong retension for variables of
3980  // retainable type.
3981  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3982    NewVD->setInvalidDecl();
3983
3984  // Handle GNU asm-label extension (encoded as an attribute).
3985  if (Expr *E = (Expr*)D.getAsmLabel()) {
3986    // The parser guarantees this is a string.
3987    StringLiteral *SE = cast<StringLiteral>(E);
3988    StringRef Label = SE->getString();
3989    if (S->getFnParent() != 0) {
3990      switch (SC) {
3991      case SC_None:
3992      case SC_Auto:
3993        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3994        break;
3995      case SC_Register:
3996        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3997          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3998        break;
3999      case SC_Static:
4000      case SC_Extern:
4001      case SC_PrivateExtern:
4002      case SC_OpenCLWorkGroupLocal:
4003        break;
4004      }
4005    }
4006
4007    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4008                                                Context, Label));
4009  }
4010
4011  // Diagnose shadowed variables before filtering for scope.
4012  if (!D.getCXXScopeSpec().isSet())
4013    CheckShadow(S, NewVD, Previous);
4014
4015  // Don't consider existing declarations that are in a different
4016  // scope and are out-of-semantic-context declarations (if the new
4017  // declaration has linkage).
4018  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4019                       isExplicitSpecialization);
4020
4021  if (!getLangOptions().CPlusPlus) {
4022    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4023  } else {
4024    // Merge the decl with the existing one if appropriate.
4025    if (!Previous.empty()) {
4026      if (Previous.isSingleResult() &&
4027          isa<FieldDecl>(Previous.getFoundDecl()) &&
4028          D.getCXXScopeSpec().isSet()) {
4029        // The user tried to define a non-static data member
4030        // out-of-line (C++ [dcl.meaning]p1).
4031        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4032          << D.getCXXScopeSpec().getRange();
4033        Previous.clear();
4034        NewVD->setInvalidDecl();
4035      }
4036    } else if (D.getCXXScopeSpec().isSet()) {
4037      // No previous declaration in the qualifying scope.
4038      Diag(D.getIdentifierLoc(), diag::err_no_member)
4039        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4040        << D.getCXXScopeSpec().getRange();
4041      NewVD->setInvalidDecl();
4042    }
4043
4044    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4045
4046    // This is an explicit specialization of a static data member. Check it.
4047    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4048        CheckMemberSpecialization(NewVD, Previous))
4049      NewVD->setInvalidDecl();
4050  }
4051
4052  // attributes declared post-definition are currently ignored
4053  // FIXME: This should be handled in attribute merging, not
4054  // here.
4055  if (Previous.isSingleResult()) {
4056    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4057    if (Def && (Def = Def->getDefinition()) &&
4058        Def != NewVD && D.hasAttributes()) {
4059      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4060      Diag(Def->getLocation(), diag::note_previous_definition);
4061    }
4062  }
4063
4064  // If this is a locally-scoped extern C variable, update the map of
4065  // such variables.
4066  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4067      !NewVD->isInvalidDecl())
4068    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4069
4070  // If there's a #pragma GCC visibility in scope, and this isn't a class
4071  // member, set the visibility of this variable.
4072  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4073    AddPushedVisibilityAttribute(NewVD);
4074
4075  MarkUnusedFileScopedDecl(NewVD);
4076
4077  return NewVD;
4078}
4079
4080/// \brief Diagnose variable or built-in function shadowing.  Implements
4081/// -Wshadow.
4082///
4083/// This method is called whenever a VarDecl is added to a "useful"
4084/// scope.
4085///
4086/// \param S the scope in which the shadowing name is being declared
4087/// \param R the lookup of the name
4088///
4089void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4090  // Return if warning is ignored.
4091  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4092        DiagnosticsEngine::Ignored)
4093    return;
4094
4095  // Don't diagnose declarations at file scope.
4096  if (D->hasGlobalStorage())
4097    return;
4098
4099  DeclContext *NewDC = D->getDeclContext();
4100
4101  // Only diagnose if we're shadowing an unambiguous field or variable.
4102  if (R.getResultKind() != LookupResult::Found)
4103    return;
4104
4105  NamedDecl* ShadowedDecl = R.getFoundDecl();
4106  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4107    return;
4108
4109  // Fields are not shadowed by variables in C++ static methods.
4110  if (isa<FieldDecl>(ShadowedDecl))
4111    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4112      if (MD->isStatic())
4113        return;
4114
4115  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4116    if (shadowedVar->isExternC()) {
4117      // For shadowing external vars, make sure that we point to the global
4118      // declaration, not a locally scoped extern declaration.
4119      for (VarDecl::redecl_iterator
4120             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4121           I != E; ++I)
4122        if (I->isFileVarDecl()) {
4123          ShadowedDecl = *I;
4124          break;
4125        }
4126    }
4127
4128  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4129
4130  // Only warn about certain kinds of shadowing for class members.
4131  if (NewDC && NewDC->isRecord()) {
4132    // In particular, don't warn about shadowing non-class members.
4133    if (!OldDC->isRecord())
4134      return;
4135
4136    // TODO: should we warn about static data members shadowing
4137    // static data members from base classes?
4138
4139    // TODO: don't diagnose for inaccessible shadowed members.
4140    // This is hard to do perfectly because we might friend the
4141    // shadowing context, but that's just a false negative.
4142  }
4143
4144  // Determine what kind of declaration we're shadowing.
4145  unsigned Kind;
4146  if (isa<RecordDecl>(OldDC)) {
4147    if (isa<FieldDecl>(ShadowedDecl))
4148      Kind = 3; // field
4149    else
4150      Kind = 2; // static data member
4151  } else if (OldDC->isFileContext())
4152    Kind = 1; // global
4153  else
4154    Kind = 0; // local
4155
4156  DeclarationName Name = R.getLookupName();
4157
4158  // Emit warning and note.
4159  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4160  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4161}
4162
4163/// \brief Check -Wshadow without the advantage of a previous lookup.
4164void Sema::CheckShadow(Scope *S, VarDecl *D) {
4165  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4166        DiagnosticsEngine::Ignored)
4167    return;
4168
4169  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4170                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4171  LookupName(R, S);
4172  CheckShadow(S, D, R);
4173}
4174
4175/// \brief Perform semantic checking on a newly-created variable
4176/// declaration.
4177///
4178/// This routine performs all of the type-checking required for a
4179/// variable declaration once it has been built. It is used both to
4180/// check variables after they have been parsed and their declarators
4181/// have been translated into a declaration, and to check variables
4182/// that have been instantiated from a template.
4183///
4184/// Sets NewVD->isInvalidDecl() if an error was encountered.
4185///
4186/// Returns true if the variable declaration is a redeclaration.
4187bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4188                                    LookupResult &Previous) {
4189  // If the decl is already known invalid, don't check it.
4190  if (NewVD->isInvalidDecl())
4191    return false;
4192
4193  QualType T = NewVD->getType();
4194
4195  if (T->isObjCObjectType()) {
4196    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4197      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4198    T = Context.getObjCObjectPointerType(T);
4199    NewVD->setType(T);
4200  }
4201
4202  // Emit an error if an address space was applied to decl with local storage.
4203  // This includes arrays of objects with address space qualifiers, but not
4204  // automatic variables that point to other address spaces.
4205  // ISO/IEC TR 18037 S5.1.2
4206  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4207    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4208    NewVD->setInvalidDecl();
4209    return false;
4210  }
4211
4212  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4213      && !NewVD->hasAttr<BlocksAttr>()) {
4214    if (getLangOptions().getGC() != LangOptions::NonGC)
4215      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4216    else
4217      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4218  }
4219
4220  bool isVM = T->isVariablyModifiedType();
4221  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4222      NewVD->hasAttr<BlocksAttr>())
4223    getCurFunction()->setHasBranchProtectedScope();
4224
4225  if ((isVM && NewVD->hasLinkage()) ||
4226      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4227    bool SizeIsNegative;
4228    llvm::APSInt Oversized;
4229    QualType FixedTy =
4230        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4231                                            Oversized);
4232
4233    if (FixedTy.isNull() && T->isVariableArrayType()) {
4234      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4235      // FIXME: This won't give the correct result for
4236      // int a[10][n];
4237      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4238
4239      if (NewVD->isFileVarDecl())
4240        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4241        << SizeRange;
4242      else if (NewVD->getStorageClass() == SC_Static)
4243        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4244        << SizeRange;
4245      else
4246        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4247        << SizeRange;
4248      NewVD->setInvalidDecl();
4249      return false;
4250    }
4251
4252    if (FixedTy.isNull()) {
4253      if (NewVD->isFileVarDecl())
4254        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4255      else
4256        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4257      NewVD->setInvalidDecl();
4258      return false;
4259    }
4260
4261    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4262    NewVD->setType(FixedTy);
4263  }
4264
4265  if (Previous.empty() && NewVD->isExternC()) {
4266    // Since we did not find anything by this name and we're declaring
4267    // an extern "C" variable, look for a non-visible extern "C"
4268    // declaration with the same name.
4269    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4270      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4271    if (Pos != LocallyScopedExternalDecls.end())
4272      Previous.addDecl(Pos->second);
4273  }
4274
4275  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4276    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4277      << T;
4278    NewVD->setInvalidDecl();
4279    return false;
4280  }
4281
4282  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4283    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4284    NewVD->setInvalidDecl();
4285    return false;
4286  }
4287
4288  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4289    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4290    NewVD->setInvalidDecl();
4291    return false;
4292  }
4293
4294  // Function pointers and references cannot have qualified function type, only
4295  // function pointer-to-members can do that.
4296  QualType Pointee;
4297  unsigned PtrOrRef = 0;
4298  if (const PointerType *Ptr = T->getAs<PointerType>())
4299    Pointee = Ptr->getPointeeType();
4300  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4301    Pointee = Ref->getPointeeType();
4302    PtrOrRef = 1;
4303  }
4304  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4305      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4306    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4307        << PtrOrRef;
4308    NewVD->setInvalidDecl();
4309    return false;
4310  }
4311
4312  if (!Previous.empty()) {
4313    MergeVarDecl(NewVD, Previous);
4314    return true;
4315  }
4316  return false;
4317}
4318
4319/// \brief Data used with FindOverriddenMethod
4320struct FindOverriddenMethodData {
4321  Sema *S;
4322  CXXMethodDecl *Method;
4323};
4324
4325/// \brief Member lookup function that determines whether a given C++
4326/// method overrides a method in a base class, to be used with
4327/// CXXRecordDecl::lookupInBases().
4328static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4329                                 CXXBasePath &Path,
4330                                 void *UserData) {
4331  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4332
4333  FindOverriddenMethodData *Data
4334    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4335
4336  DeclarationName Name = Data->Method->getDeclName();
4337
4338  // FIXME: Do we care about other names here too?
4339  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4340    // We really want to find the base class destructor here.
4341    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4342    CanQualType CT = Data->S->Context.getCanonicalType(T);
4343
4344    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4345  }
4346
4347  for (Path.Decls = BaseRecord->lookup(Name);
4348       Path.Decls.first != Path.Decls.second;
4349       ++Path.Decls.first) {
4350    NamedDecl *D = *Path.Decls.first;
4351    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4352      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4353        return true;
4354    }
4355  }
4356
4357  return false;
4358}
4359
4360/// AddOverriddenMethods - See if a method overrides any in the base classes,
4361/// and if so, check that it's a valid override and remember it.
4362bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4363  // Look for virtual methods in base classes that this method might override.
4364  CXXBasePaths Paths;
4365  FindOverriddenMethodData Data;
4366  Data.Method = MD;
4367  Data.S = this;
4368  bool AddedAny = false;
4369  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4370    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4371         E = Paths.found_decls_end(); I != E; ++I) {
4372      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4373        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4374        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4375            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4376            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4377          AddedAny = true;
4378        }
4379      }
4380    }
4381  }
4382
4383  return AddedAny;
4384}
4385
4386namespace {
4387  // Struct for holding all of the extra arguments needed by
4388  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4389  struct ActOnFDArgs {
4390    Scope *S;
4391    Declarator &D;
4392    MultiTemplateParamsArg TemplateParamLists;
4393    bool AddToScope;
4394  };
4395}
4396
4397/// \brief Generate diagnostics for an invalid function redeclaration.
4398///
4399/// This routine handles generating the diagnostic messages for an invalid
4400/// function redeclaration, including finding possible similar declarations
4401/// or performing typo correction if there are no previous declarations with
4402/// the same name.
4403///
4404/// Returns a NamedDecl iff typo correction was performed and substituting in
4405/// the new declaration name does not cause new errors.
4406static NamedDecl* DiagnoseInvalidRedeclaration(
4407    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4408    ActOnFDArgs &ExtraArgs) {
4409  NamedDecl *Result = NULL;
4410  DeclarationName Name = NewFD->getDeclName();
4411  DeclContext *NewDC = NewFD->getDeclContext();
4412  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4413                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4414  llvm::SmallVector<unsigned, 1> MismatchedParams;
4415  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4416  TypoCorrection Correction;
4417  bool isFriendDecl = (SemaRef.getLangOptions().CPlusPlus &&
4418                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4419  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4420                                  : diag::err_member_def_does_not_match;
4421
4422  NewFD->setInvalidDecl();
4423  SemaRef.LookupQualifiedName(Prev, NewDC);
4424  assert(!Prev.isAmbiguous() &&
4425         "Cannot have an ambiguity in previous-declaration lookup");
4426  if (!Prev.empty()) {
4427    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4428         Func != FuncEnd; ++Func) {
4429      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4430      if (FD &&
4431          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4432        // Add 1 to the index so that 0 can mean the mismatch didn't
4433        // involve a parameter
4434        unsigned ParamNum =
4435            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4436        NearMatches.push_back(std::make_pair(FD, ParamNum));
4437      }
4438    }
4439  // If the qualified name lookup yielded nothing, try typo correction
4440  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4441                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4442             Correction.getCorrection() != Name) {
4443    // Trap errors.
4444    Sema::SFINAETrap Trap(SemaRef);
4445
4446    // Set up everything for the call to ActOnFunctionDeclarator
4447    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4448                              ExtraArgs.D.getIdentifierLoc());
4449    Previous.clear();
4450    Previous.setLookupName(Correction.getCorrection());
4451    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4452                                    CDeclEnd = Correction.end();
4453         CDecl != CDeclEnd; ++CDecl) {
4454      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4455      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4456                                     MismatchedParams)) {
4457        Previous.addDecl(FD);
4458      }
4459    }
4460    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4461    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4462    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4463    // eliminate the need for the parameter pack ExtraArgs.
4464    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4465                                             NewFD->getDeclContext(),
4466                                             NewFD->getTypeSourceInfo(),
4467                                             Previous,
4468                                             ExtraArgs.TemplateParamLists,
4469                                             ExtraArgs.AddToScope);
4470    if (Trap.hasErrorOccurred()) {
4471      // Pretend the typo correction never occurred
4472      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4473                                ExtraArgs.D.getIdentifierLoc());
4474      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4475      Previous.clear();
4476      Previous.setLookupName(Name);
4477      Result = NULL;
4478    } else {
4479      for (LookupResult::iterator Func = Previous.begin(),
4480                               FuncEnd = Previous.end();
4481           Func != FuncEnd; ++Func) {
4482        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4483          NearMatches.push_back(std::make_pair(FD, 0));
4484      }
4485    }
4486    if (NearMatches.empty()) {
4487      // Ignore the correction if it didn't yield any close FunctionDecl matches
4488      Correction = TypoCorrection();
4489    } else {
4490      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4491                             : diag::err_member_def_does_not_match_suggest;
4492    }
4493  }
4494
4495  if (Correction)
4496    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4497        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOptions())
4498        << FixItHint::CreateReplacement(
4499            NewFD->getLocation(),
4500            Correction.getAsString(SemaRef.getLangOptions()));
4501  else
4502    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4503        << Name << NewDC << NewFD->getLocation();
4504
4505  bool NewFDisConst = false;
4506  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4507    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4508
4509  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4510       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4511       NearMatch != NearMatchEnd; ++NearMatch) {
4512    FunctionDecl *FD = NearMatch->first;
4513    bool FDisConst = false;
4514    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4515      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4516
4517    if (unsigned Idx = NearMatch->second) {
4518      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4519      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4520             diag::note_member_def_close_param_match)
4521          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4522    } else if (Correction) {
4523      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4524          << Correction.getQuoted(SemaRef.getLangOptions());
4525    } else if (FDisConst != NewFDisConst) {
4526      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4527          << NewFDisConst << FD->getSourceRange().getEnd();
4528    } else
4529      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4530  }
4531  return Result;
4532}
4533
4534static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4535                                                          Declarator &D) {
4536  switch (D.getDeclSpec().getStorageClassSpec()) {
4537  default: llvm_unreachable("Unknown storage class!");
4538  case DeclSpec::SCS_auto:
4539  case DeclSpec::SCS_register:
4540  case DeclSpec::SCS_mutable:
4541    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4542                 diag::err_typecheck_sclass_func);
4543    D.setInvalidType();
4544    break;
4545  case DeclSpec::SCS_unspecified: break;
4546  case DeclSpec::SCS_extern: return SC_Extern;
4547  case DeclSpec::SCS_static: {
4548    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4549      // C99 6.7.1p5:
4550      //   The declaration of an identifier for a function that has
4551      //   block scope shall have no explicit storage-class specifier
4552      //   other than extern
4553      // See also (C++ [dcl.stc]p4).
4554      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4555                   diag::err_static_block_func);
4556      break;
4557    } else
4558      return SC_Static;
4559  }
4560  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4561  }
4562
4563  // No explicit storage class has already been returned
4564  return SC_None;
4565}
4566
4567static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4568                                           DeclContext *DC, QualType &R,
4569                                           TypeSourceInfo *TInfo,
4570                                           FunctionDecl::StorageClass SC,
4571                                           bool &IsVirtualOkay) {
4572  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4573  DeclarationName Name = NameInfo.getName();
4574
4575  FunctionDecl *NewFD = 0;
4576  bool isInline = D.getDeclSpec().isInlineSpecified();
4577  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4578  FunctionDecl::StorageClass SCAsWritten
4579    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4580
4581  if (!SemaRef.getLangOptions().CPlusPlus) {
4582    // Determine whether the function was written with a
4583    // prototype. This true when:
4584    //   - there is a prototype in the declarator, or
4585    //   - the type R of the function is some kind of typedef or other reference
4586    //     to a type name (which eventually refers to a function type).
4587    bool HasPrototype =
4588      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4589      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4590
4591    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4592                                 D.getSourceRange().getBegin(), NameInfo, R,
4593                                 TInfo, SC, SCAsWritten, isInline,
4594                                 HasPrototype);
4595    if (D.isInvalidType())
4596      NewFD->setInvalidDecl();
4597
4598    // Set the lexical context.
4599    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4600
4601    return NewFD;
4602  }
4603
4604  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4605  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4606
4607  // Check that the return type is not an abstract class type.
4608  // For record types, this is done by the AbstractClassUsageDiagnoser once
4609  // the class has been completely parsed.
4610  if (!DC->isRecord() &&
4611      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4612                                     R->getAs<FunctionType>()->getResultType(),
4613                                     diag::err_abstract_type_in_decl,
4614                                     SemaRef.AbstractReturnType))
4615    D.setInvalidType();
4616
4617  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4618    // This is a C++ constructor declaration.
4619    assert(DC->isRecord() &&
4620           "Constructors can only be declared in a member context");
4621
4622    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4623    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4624                                      D.getSourceRange().getBegin(), NameInfo,
4625                                      R, TInfo, isExplicit, isInline,
4626                                      /*isImplicitlyDeclared=*/false,
4627                                      isConstexpr);
4628
4629  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4630    // This is a C++ destructor declaration.
4631    if (DC->isRecord()) {
4632      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4633      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4634      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4635                                        SemaRef.Context, Record,
4636                                        D.getSourceRange().getBegin(),
4637                                        NameInfo, R, TInfo, isInline,
4638                                        /*isImplicitlyDeclared=*/false);
4639
4640      // If the class is complete, then we now create the implicit exception
4641      // specification. If the class is incomplete or dependent, we can't do
4642      // it yet.
4643      if (SemaRef.getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4644          Record->getDefinition() && !Record->isBeingDefined() &&
4645          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4646        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4647      }
4648
4649      IsVirtualOkay = true;
4650      return NewDD;
4651
4652    } else {
4653      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4654      D.setInvalidType();
4655
4656      // Create a FunctionDecl to satisfy the function definition parsing
4657      // code path.
4658      return FunctionDecl::Create(SemaRef.Context, DC,
4659                                  D.getSourceRange().getBegin(),
4660                                  D.getIdentifierLoc(), Name, R, TInfo,
4661                                  SC, SCAsWritten, isInline,
4662                                  /*hasPrototype=*/true, isConstexpr);
4663    }
4664
4665  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4666    if (!DC->isRecord()) {
4667      SemaRef.Diag(D.getIdentifierLoc(),
4668           diag::err_conv_function_not_member);
4669      return 0;
4670    }
4671
4672    SemaRef.CheckConversionDeclarator(D, R, SC);
4673    IsVirtualOkay = true;
4674    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4675                                     D.getSourceRange().getBegin(), NameInfo,
4676                                     R, TInfo, isInline, isExplicit,
4677                                     isConstexpr, SourceLocation());
4678
4679  } else if (DC->isRecord()) {
4680    // If the name of the function is the same as the name of the record,
4681    // then this must be an invalid constructor that has a return type.
4682    // (The parser checks for a return type and makes the declarator a
4683    // constructor if it has no return type).
4684    if (Name.getAsIdentifierInfo() &&
4685        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4686      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4687        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4688        << SourceRange(D.getIdentifierLoc());
4689      return 0;
4690    }
4691
4692    bool isStatic = SC == SC_Static;
4693
4694    // [class.free]p1:
4695    // Any allocation function for a class T is a static member
4696    // (even if not explicitly declared static).
4697    if (Name.getCXXOverloadedOperator() == OO_New ||
4698        Name.getCXXOverloadedOperator() == OO_Array_New)
4699      isStatic = true;
4700
4701    // [class.free]p6 Any deallocation function for a class X is a static member
4702    // (even if not explicitly declared static).
4703    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4704        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4705      isStatic = true;
4706
4707    IsVirtualOkay = !isStatic;
4708
4709    // This is a C++ method declaration.
4710    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4711                                 D.getSourceRange().getBegin(), NameInfo, R,
4712                                 TInfo, isStatic, SCAsWritten, isInline,
4713                                 isConstexpr, SourceLocation());
4714
4715  } else {
4716    // Determine whether the function was written with a
4717    // prototype. This true when:
4718    //   - we're in C++ (where every function has a prototype),
4719    return FunctionDecl::Create(SemaRef.Context, DC,
4720                                D.getSourceRange().getBegin(),
4721                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4722                                true/*HasPrototype*/, isConstexpr);
4723  }
4724}
4725
4726NamedDecl*
4727Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4728                              TypeSourceInfo *TInfo, LookupResult &Previous,
4729                              MultiTemplateParamsArg TemplateParamLists,
4730                              bool &AddToScope) {
4731  QualType R = TInfo->getType();
4732
4733  assert(R.getTypePtr()->isFunctionType());
4734
4735  // TODO: consider using NameInfo for diagnostic.
4736  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4737  DeclarationName Name = NameInfo.getName();
4738  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4739
4740  if (D.getDeclSpec().isThreadSpecified())
4741    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4742
4743  // Do not allow returning a objc interface by-value.
4744  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4745    Diag(D.getIdentifierLoc(),
4746         diag::err_object_cannot_be_passed_returned_by_value) << 0
4747    << R->getAs<FunctionType>()->getResultType()
4748    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4749
4750    QualType T = R->getAs<FunctionType>()->getResultType();
4751    T = Context.getObjCObjectPointerType(T);
4752    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4753      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4754      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4755                                  FPT->getNumArgs(), EPI);
4756    }
4757    else if (isa<FunctionNoProtoType>(R))
4758      R = Context.getFunctionNoProtoType(T);
4759  }
4760
4761  bool isFriend = false;
4762  FunctionTemplateDecl *FunctionTemplate = 0;
4763  bool isExplicitSpecialization = false;
4764  bool isFunctionTemplateSpecialization = false;
4765  bool isDependentClassScopeExplicitSpecialization = false;
4766  bool isVirtualOkay = false;
4767
4768  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4769                                              isVirtualOkay);
4770  if (!NewFD) return 0;
4771
4772  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4773    NewFD->setTopLevelDeclInObjCContainer();
4774
4775  if (getLangOptions().CPlusPlus) {
4776    bool isInline = D.getDeclSpec().isInlineSpecified();
4777    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4778    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4779    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4780    isFriend = D.getDeclSpec().isFriendSpecified();
4781    if (isFriend && !isInline && D.isFunctionDefinition()) {
4782      // C++ [class.friend]p5
4783      //   A function can be defined in a friend declaration of a
4784      //   class . . . . Such a function is implicitly inline.
4785      NewFD->setImplicitlyInline();
4786    }
4787
4788    SetNestedNameSpecifier(NewFD, D);
4789    isExplicitSpecialization = false;
4790    isFunctionTemplateSpecialization = false;
4791    if (D.isInvalidType())
4792      NewFD->setInvalidDecl();
4793
4794    // Set the lexical context. If the declarator has a C++
4795    // scope specifier, or is the object of a friend declaration, the
4796    // lexical context will be different from the semantic context.
4797    NewFD->setLexicalDeclContext(CurContext);
4798
4799    // Match up the template parameter lists with the scope specifier, then
4800    // determine whether we have a template or a template specialization.
4801    bool Invalid = false;
4802    if (TemplateParameterList *TemplateParams
4803          = MatchTemplateParametersToScopeSpecifier(
4804                                  D.getDeclSpec().getSourceRange().getBegin(),
4805                                  D.getIdentifierLoc(),
4806                                  D.getCXXScopeSpec(),
4807                                  TemplateParamLists.get(),
4808                                  TemplateParamLists.size(),
4809                                  isFriend,
4810                                  isExplicitSpecialization,
4811                                  Invalid)) {
4812      if (TemplateParams->size() > 0) {
4813        // This is a function template
4814
4815        // Check that we can declare a template here.
4816        if (CheckTemplateDeclScope(S, TemplateParams))
4817          return 0;
4818
4819        // A destructor cannot be a template.
4820        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4821          Diag(NewFD->getLocation(), diag::err_destructor_template);
4822          return 0;
4823        }
4824
4825        // If we're adding a template to a dependent context, we may need to
4826        // rebuilding some of the types used within the template parameter list,
4827        // now that we know what the current instantiation is.
4828        if (DC->isDependentContext()) {
4829          ContextRAII SavedContext(*this, DC);
4830          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4831            Invalid = true;
4832        }
4833
4834
4835        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4836                                                        NewFD->getLocation(),
4837                                                        Name, TemplateParams,
4838                                                        NewFD);
4839        FunctionTemplate->setLexicalDeclContext(CurContext);
4840        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4841
4842        // For source fidelity, store the other template param lists.
4843        if (TemplateParamLists.size() > 1) {
4844          NewFD->setTemplateParameterListsInfo(Context,
4845                                               TemplateParamLists.size() - 1,
4846                                               TemplateParamLists.release());
4847        }
4848      } else {
4849        // This is a function template specialization.
4850        isFunctionTemplateSpecialization = true;
4851        // For source fidelity, store all the template param lists.
4852        NewFD->setTemplateParameterListsInfo(Context,
4853                                             TemplateParamLists.size(),
4854                                             TemplateParamLists.release());
4855
4856        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4857        if (isFriend) {
4858          // We want to remove the "template<>", found here.
4859          SourceRange RemoveRange = TemplateParams->getSourceRange();
4860
4861          // If we remove the template<> and the name is not a
4862          // template-id, we're actually silently creating a problem:
4863          // the friend declaration will refer to an untemplated decl,
4864          // and clearly the user wants a template specialization.  So
4865          // we need to insert '<>' after the name.
4866          SourceLocation InsertLoc;
4867          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4868            InsertLoc = D.getName().getSourceRange().getEnd();
4869            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4870          }
4871
4872          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4873            << Name << RemoveRange
4874            << FixItHint::CreateRemoval(RemoveRange)
4875            << FixItHint::CreateInsertion(InsertLoc, "<>");
4876        }
4877      }
4878    }
4879    else {
4880      // All template param lists were matched against the scope specifier:
4881      // this is NOT (an explicit specialization of) a template.
4882      if (TemplateParamLists.size() > 0)
4883        // For source fidelity, store all the template param lists.
4884        NewFD->setTemplateParameterListsInfo(Context,
4885                                             TemplateParamLists.size(),
4886                                             TemplateParamLists.release());
4887    }
4888
4889    if (Invalid) {
4890      NewFD->setInvalidDecl();
4891      if (FunctionTemplate)
4892        FunctionTemplate->setInvalidDecl();
4893    }
4894
4895    // If we see "T var();" at block scope, where T is a class type, it is
4896    // probably an attempt to initialize a variable, not a function declaration.
4897    // We don't catch this case earlier, since there is no ambiguity here.
4898    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
4899        CurContext->isFunctionOrMethod() &&
4900        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
4901        D.getDeclSpec().getStorageClassSpecAsWritten()
4902          == DeclSpec::SCS_unspecified) {
4903      QualType T = R->getAs<FunctionType>()->getResultType();
4904      DeclaratorChunk &C = D.getTypeObject(0);
4905      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
4906          !C.Fun.TrailingReturnType &&
4907          C.Fun.getExceptionSpecType() == EST_None) {
4908        Diag(C.Loc, diag::warn_empty_parens_are_function_decl)
4909          << SourceRange(C.Loc, C.EndLoc);
4910      }
4911    }
4912
4913    // C++ [dcl.fct.spec]p5:
4914    //   The virtual specifier shall only be used in declarations of
4915    //   nonstatic class member functions that appear within a
4916    //   member-specification of a class declaration; see 10.3.
4917    //
4918    if (isVirtual && !NewFD->isInvalidDecl()) {
4919      if (!isVirtualOkay) {
4920        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4921             diag::err_virtual_non_function);
4922      } else if (!CurContext->isRecord()) {
4923        // 'virtual' was specified outside of the class.
4924        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4925             diag::err_virtual_out_of_class)
4926          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4927      } else if (NewFD->getDescribedFunctionTemplate()) {
4928        // C++ [temp.mem]p3:
4929        //  A member function template shall not be virtual.
4930        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4931             diag::err_virtual_member_function_template)
4932          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4933      } else {
4934        // Okay: Add virtual to the method.
4935        NewFD->setVirtualAsWritten(true);
4936      }
4937    }
4938
4939    // C++ [dcl.fct.spec]p3:
4940    //  The inline specifier shall not appear on a block scope function
4941    //  declaration.
4942    if (isInline && !NewFD->isInvalidDecl()) {
4943      if (CurContext->isFunctionOrMethod()) {
4944        // 'inline' is not allowed on block scope function declaration.
4945        Diag(D.getDeclSpec().getInlineSpecLoc(),
4946             diag::err_inline_declaration_block_scope) << Name
4947          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4948      }
4949    }
4950
4951    // C++ [dcl.fct.spec]p6:
4952    //  The explicit specifier shall be used only in the declaration of a
4953    //  constructor or conversion function within its class definition;
4954    //  see 12.3.1 and 12.3.2.
4955    if (isExplicit && !NewFD->isInvalidDecl()) {
4956      if (!CurContext->isRecord()) {
4957        // 'explicit' was specified outside of the class.
4958        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4959             diag::err_explicit_out_of_class)
4960          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4961      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4962                 !isa<CXXConversionDecl>(NewFD)) {
4963        // 'explicit' was specified on a function that wasn't a constructor
4964        // or conversion function.
4965        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4966             diag::err_explicit_non_ctor_or_conv_function)
4967          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4968      }
4969    }
4970
4971    if (isConstexpr) {
4972      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4973      // are implicitly inline.
4974      NewFD->setImplicitlyInline();
4975
4976      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4977      // be either constructors or to return a literal type. Therefore,
4978      // destructors cannot be declared constexpr.
4979      if (isa<CXXDestructorDecl>(NewFD))
4980        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4981    }
4982
4983    // If __module_private__ was specified, mark the function accordingly.
4984    if (D.getDeclSpec().isModulePrivateSpecified()) {
4985      if (isFunctionTemplateSpecialization) {
4986        SourceLocation ModulePrivateLoc
4987          = D.getDeclSpec().getModulePrivateSpecLoc();
4988        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4989          << 0
4990          << FixItHint::CreateRemoval(ModulePrivateLoc);
4991      } else {
4992        NewFD->setModulePrivate();
4993        if (FunctionTemplate)
4994          FunctionTemplate->setModulePrivate();
4995      }
4996    }
4997
4998    if (isFriend) {
4999      // For now, claim that the objects have no previous declaration.
5000      if (FunctionTemplate) {
5001        FunctionTemplate->setObjectOfFriendDecl(false);
5002        FunctionTemplate->setAccess(AS_public);
5003      }
5004      NewFD->setObjectOfFriendDecl(false);
5005      NewFD->setAccess(AS_public);
5006    }
5007
5008    // If a function is defined as defaulted or deleted, mark it as such now.
5009    switch (D.getFunctionDefinitionKind()) {
5010      case FDK_Declaration:
5011      case FDK_Definition:
5012        break;
5013
5014      case FDK_Defaulted:
5015        NewFD->setDefaulted();
5016        break;
5017
5018      case FDK_Deleted:
5019        NewFD->setDeletedAsWritten();
5020        break;
5021    }
5022
5023    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5024        D.isFunctionDefinition()) {
5025      // C++ [class.mfct]p2:
5026      //   A member function may be defined (8.4) in its class definition, in
5027      //   which case it is an inline member function (7.1.2)
5028      NewFD->setImplicitlyInline();
5029    }
5030
5031    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5032        !CurContext->isRecord()) {
5033      // C++ [class.static]p1:
5034      //   A data or function member of a class may be declared static
5035      //   in a class definition, in which case it is a static member of
5036      //   the class.
5037
5038      // Complain about the 'static' specifier if it's on an out-of-line
5039      // member function definition.
5040      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5041           diag::err_static_out_of_line)
5042        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5043    }
5044  }
5045
5046  // Filter out previous declarations that don't match the scope.
5047  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5048                       isExplicitSpecialization ||
5049                       isFunctionTemplateSpecialization);
5050
5051  // Handle GNU asm-label extension (encoded as an attribute).
5052  if (Expr *E = (Expr*) D.getAsmLabel()) {
5053    // The parser guarantees this is a string.
5054    StringLiteral *SE = cast<StringLiteral>(E);
5055    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5056                                                SE->getString()));
5057  }
5058
5059  // Copy the parameter declarations from the declarator D to the function
5060  // declaration NewFD, if they are available.  First scavenge them into Params.
5061  SmallVector<ParmVarDecl*, 16> Params;
5062  if (D.isFunctionDeclarator()) {
5063    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5064
5065    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5066    // function that takes no arguments, not a function that takes a
5067    // single void argument.
5068    // We let through "const void" here because Sema::GetTypeForDeclarator
5069    // already checks for that case.
5070    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5071        FTI.ArgInfo[0].Param &&
5072        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5073      // Empty arg list, don't push any params.
5074      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5075
5076      // In C++, the empty parameter-type-list must be spelled "void"; a
5077      // typedef of void is not permitted.
5078      if (getLangOptions().CPlusPlus &&
5079          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5080        bool IsTypeAlias = false;
5081        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5082          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5083        else if (const TemplateSpecializationType *TST =
5084                   Param->getType()->getAs<TemplateSpecializationType>())
5085          IsTypeAlias = TST->isTypeAlias();
5086        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5087          << IsTypeAlias;
5088      }
5089    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5090      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5091        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5092        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5093        Param->setDeclContext(NewFD);
5094        Params.push_back(Param);
5095
5096        if (Param->isInvalidDecl())
5097          NewFD->setInvalidDecl();
5098      }
5099    }
5100
5101  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5102    // When we're declaring a function with a typedef, typeof, etc as in the
5103    // following example, we'll need to synthesize (unnamed)
5104    // parameters for use in the declaration.
5105    //
5106    // @code
5107    // typedef void fn(int);
5108    // fn f;
5109    // @endcode
5110
5111    // Synthesize a parameter for each argument type.
5112    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5113         AE = FT->arg_type_end(); AI != AE; ++AI) {
5114      ParmVarDecl *Param =
5115        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5116      Param->setScopeInfo(0, Params.size());
5117      Params.push_back(Param);
5118    }
5119  } else {
5120    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5121           "Should not need args for typedef of non-prototype fn");
5122  }
5123
5124  // Finally, we know we have the right number of parameters, install them.
5125  NewFD->setParams(Params);
5126
5127  // Process the non-inheritable attributes on this declaration.
5128  ProcessDeclAttributes(S, NewFD, D,
5129                        /*NonInheritable=*/true, /*Inheritable=*/false);
5130
5131  if (!getLangOptions().CPlusPlus) {
5132    // Perform semantic checking on the function declaration.
5133    bool isExplicitSpecialization=false;
5134    if (!NewFD->isInvalidDecl()) {
5135      if (NewFD->getResultType()->isVariablyModifiedType()) {
5136        // Functions returning a variably modified type violate C99 6.7.5.2p2
5137        // because all functions have linkage.
5138        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5139        NewFD->setInvalidDecl();
5140      } else {
5141        if (NewFD->isMain())
5142          CheckMain(NewFD, D.getDeclSpec());
5143        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5144                                                    isExplicitSpecialization));
5145      }
5146    }
5147    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5148            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5149           "previous declaration set still overloaded");
5150  } else {
5151    // If the declarator is a template-id, translate the parser's template
5152    // argument list into our AST format.
5153    bool HasExplicitTemplateArgs = false;
5154    TemplateArgumentListInfo TemplateArgs;
5155    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5156      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5157      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5158      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5159      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5160                                         TemplateId->getTemplateArgs(),
5161                                         TemplateId->NumArgs);
5162      translateTemplateArguments(TemplateArgsPtr,
5163                                 TemplateArgs);
5164      TemplateArgsPtr.release();
5165
5166      HasExplicitTemplateArgs = true;
5167
5168      if (NewFD->isInvalidDecl()) {
5169        HasExplicitTemplateArgs = false;
5170      } else if (FunctionTemplate) {
5171        // Function template with explicit template arguments.
5172        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5173          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5174
5175        HasExplicitTemplateArgs = false;
5176      } else if (!isFunctionTemplateSpecialization &&
5177                 !D.getDeclSpec().isFriendSpecified()) {
5178        // We have encountered something that the user meant to be a
5179        // specialization (because it has explicitly-specified template
5180        // arguments) but that was not introduced with a "template<>" (or had
5181        // too few of them).
5182        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5183          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5184          << FixItHint::CreateInsertion(
5185                                    D.getDeclSpec().getSourceRange().getBegin(),
5186                                        "template<> ");
5187        isFunctionTemplateSpecialization = true;
5188      } else {
5189        // "friend void foo<>(int);" is an implicit specialization decl.
5190        isFunctionTemplateSpecialization = true;
5191      }
5192    } else if (isFriend && isFunctionTemplateSpecialization) {
5193      // This combination is only possible in a recovery case;  the user
5194      // wrote something like:
5195      //   template <> friend void foo(int);
5196      // which we're recovering from as if the user had written:
5197      //   friend void foo<>(int);
5198      // Go ahead and fake up a template id.
5199      HasExplicitTemplateArgs = true;
5200        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5201      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5202    }
5203
5204    // If it's a friend (and only if it's a friend), it's possible
5205    // that either the specialized function type or the specialized
5206    // template is dependent, and therefore matching will fail.  In
5207    // this case, don't check the specialization yet.
5208    bool InstantiationDependent = false;
5209    if (isFunctionTemplateSpecialization && isFriend &&
5210        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5211         TemplateSpecializationType::anyDependentTemplateArguments(
5212            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5213            InstantiationDependent))) {
5214      assert(HasExplicitTemplateArgs &&
5215             "friend function specialization without template args");
5216      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5217                                                       Previous))
5218        NewFD->setInvalidDecl();
5219    } else if (isFunctionTemplateSpecialization) {
5220      if (CurContext->isDependentContext() && CurContext->isRecord()
5221          && !isFriend) {
5222        isDependentClassScopeExplicitSpecialization = true;
5223        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5224          diag::ext_function_specialization_in_class :
5225          diag::err_function_specialization_in_class)
5226          << NewFD->getDeclName();
5227      } else if (CheckFunctionTemplateSpecialization(NewFD,
5228                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5229                                                     Previous))
5230        NewFD->setInvalidDecl();
5231
5232      // C++ [dcl.stc]p1:
5233      //   A storage-class-specifier shall not be specified in an explicit
5234      //   specialization (14.7.3)
5235      if (SC != SC_None) {
5236        if (SC != NewFD->getStorageClass())
5237          Diag(NewFD->getLocation(),
5238               diag::err_explicit_specialization_inconsistent_storage_class)
5239            << SC
5240            << FixItHint::CreateRemoval(
5241                                      D.getDeclSpec().getStorageClassSpecLoc());
5242
5243        else
5244          Diag(NewFD->getLocation(),
5245               diag::ext_explicit_specialization_storage_class)
5246            << FixItHint::CreateRemoval(
5247                                      D.getDeclSpec().getStorageClassSpecLoc());
5248      }
5249
5250    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5251      if (CheckMemberSpecialization(NewFD, Previous))
5252          NewFD->setInvalidDecl();
5253    }
5254
5255    // Perform semantic checking on the function declaration.
5256    if (!isDependentClassScopeExplicitSpecialization) {
5257      if (NewFD->isInvalidDecl()) {
5258        // If this is a class member, mark the class invalid immediately.
5259        // This avoids some consistency errors later.
5260        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5261          methodDecl->getParent()->setInvalidDecl();
5262      } else {
5263        if (NewFD->isMain())
5264          CheckMain(NewFD, D.getDeclSpec());
5265        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5266                                                    isExplicitSpecialization));
5267      }
5268    }
5269
5270    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5271            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5272           "previous declaration set still overloaded");
5273
5274    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5275        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5276      NewFD->setInvalidDecl();
5277
5278    NamedDecl *PrincipalDecl = (FunctionTemplate
5279                                ? cast<NamedDecl>(FunctionTemplate)
5280                                : NewFD);
5281
5282    if (isFriend && D.isRedeclaration()) {
5283      AccessSpecifier Access = AS_public;
5284      if (!NewFD->isInvalidDecl())
5285        Access = NewFD->getPreviousDeclaration()->getAccess();
5286
5287      NewFD->setAccess(Access);
5288      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5289
5290      PrincipalDecl->setObjectOfFriendDecl(true);
5291    }
5292
5293    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5294        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5295      PrincipalDecl->setNonMemberOperator();
5296
5297    // If we have a function template, check the template parameter
5298    // list. This will check and merge default template arguments.
5299    if (FunctionTemplate) {
5300      FunctionTemplateDecl *PrevTemplate =
5301                                     FunctionTemplate->getPreviousDeclaration();
5302      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5303                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5304                            D.getDeclSpec().isFriendSpecified()
5305                              ? (D.isFunctionDefinition()
5306                                   ? TPC_FriendFunctionTemplateDefinition
5307                                   : TPC_FriendFunctionTemplate)
5308                              : (D.getCXXScopeSpec().isSet() &&
5309                                 DC && DC->isRecord() &&
5310                                 DC->isDependentContext())
5311                                  ? TPC_ClassTemplateMember
5312                                  : TPC_FunctionTemplate);
5313    }
5314
5315    if (NewFD->isInvalidDecl()) {
5316      // Ignore all the rest of this.
5317    } else if (!D.isRedeclaration()) {
5318      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5319                                       AddToScope };
5320      // Fake up an access specifier if it's supposed to be a class member.
5321      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5322        NewFD->setAccess(AS_public);
5323
5324      // Qualified decls generally require a previous declaration.
5325      if (D.getCXXScopeSpec().isSet()) {
5326        // ...with the major exception of templated-scope or
5327        // dependent-scope friend declarations.
5328
5329        // TODO: we currently also suppress this check in dependent
5330        // contexts because (1) the parameter depth will be off when
5331        // matching friend templates and (2) we might actually be
5332        // selecting a friend based on a dependent factor.  But there
5333        // are situations where these conditions don't apply and we
5334        // can actually do this check immediately.
5335        if (isFriend &&
5336            (TemplateParamLists.size() ||
5337             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5338             CurContext->isDependentContext())) {
5339          // ignore these
5340        } else {
5341          // The user tried to provide an out-of-line definition for a
5342          // function that is a member of a class or namespace, but there
5343          // was no such member function declared (C++ [class.mfct]p2,
5344          // C++ [namespace.memdef]p2). For example:
5345          //
5346          // class X {
5347          //   void f() const;
5348          // };
5349          //
5350          // void X::f() { } // ill-formed
5351          //
5352          // Complain about this problem, and attempt to suggest close
5353          // matches (e.g., those that differ only in cv-qualifiers and
5354          // whether the parameter types are references).
5355
5356          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5357                                                               NewFD,
5358                                                               ExtraArgs)) {
5359            AddToScope = ExtraArgs.AddToScope;
5360            return Result;
5361          }
5362        }
5363
5364        // Unqualified local friend declarations are required to resolve
5365        // to something.
5366      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5367        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5368                                                             NewFD,
5369                                                             ExtraArgs)) {
5370          AddToScope = ExtraArgs.AddToScope;
5371          return Result;
5372        }
5373      }
5374
5375    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5376               !isFriend && !isFunctionTemplateSpecialization &&
5377               !isExplicitSpecialization) {
5378      // An out-of-line member function declaration must also be a
5379      // definition (C++ [dcl.meaning]p1).
5380      // Note that this is not the case for explicit specializations of
5381      // function templates or member functions of class templates, per
5382      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5383      // extension for compatibility with old SWIG code which likes to
5384      // generate them.
5385      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5386        << D.getCXXScopeSpec().getRange();
5387    }
5388  }
5389
5390
5391  // Handle attributes. We need to have merged decls when handling attributes
5392  // (for example to check for conflicts, etc).
5393  // FIXME: This needs to happen before we merge declarations. Then,
5394  // let attribute merging cope with attribute conflicts.
5395  ProcessDeclAttributes(S, NewFD, D,
5396                        /*NonInheritable=*/false, /*Inheritable=*/true);
5397
5398  // attributes declared post-definition are currently ignored
5399  // FIXME: This should happen during attribute merging
5400  if (D.isRedeclaration() && Previous.isSingleResult()) {
5401    const FunctionDecl *Def;
5402    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5403    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5404      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5405      Diag(Def->getLocation(), diag::note_previous_definition);
5406    }
5407  }
5408
5409  AddKnownFunctionAttributes(NewFD);
5410
5411  if (NewFD->hasAttr<OverloadableAttr>() &&
5412      !NewFD->getType()->getAs<FunctionProtoType>()) {
5413    Diag(NewFD->getLocation(),
5414         diag::err_attribute_overloadable_no_prototype)
5415      << NewFD;
5416
5417    // Turn this into a variadic function with no parameters.
5418    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5419    FunctionProtoType::ExtProtoInfo EPI;
5420    EPI.Variadic = true;
5421    EPI.ExtInfo = FT->getExtInfo();
5422
5423    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5424    NewFD->setType(R);
5425  }
5426
5427  // If there's a #pragma GCC visibility in scope, and this isn't a class
5428  // member, set the visibility of this function.
5429  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5430    AddPushedVisibilityAttribute(NewFD);
5431
5432  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5433  // marking the function.
5434  AddCFAuditedAttribute(NewFD);
5435
5436  // If this is a locally-scoped extern C function, update the
5437  // map of such names.
5438  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5439      && !NewFD->isInvalidDecl())
5440    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5441
5442  // Set this FunctionDecl's range up to the right paren.
5443  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5444
5445  if (getLangOptions().CPlusPlus) {
5446    if (FunctionTemplate) {
5447      if (NewFD->isInvalidDecl())
5448        FunctionTemplate->setInvalidDecl();
5449      return FunctionTemplate;
5450    }
5451  }
5452
5453  MarkUnusedFileScopedDecl(NewFD);
5454
5455  if (getLangOptions().CUDA)
5456    if (IdentifierInfo *II = NewFD->getIdentifier())
5457      if (!NewFD->isInvalidDecl() &&
5458          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5459        if (II->isStr("cudaConfigureCall")) {
5460          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5461            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5462
5463          Context.setcudaConfigureCallDecl(NewFD);
5464        }
5465      }
5466
5467  // Here we have an function template explicit specialization at class scope.
5468  // The actually specialization will be postponed to template instatiation
5469  // time via the ClassScopeFunctionSpecializationDecl node.
5470  if (isDependentClassScopeExplicitSpecialization) {
5471    ClassScopeFunctionSpecializationDecl *NewSpec =
5472                         ClassScopeFunctionSpecializationDecl::Create(
5473                                Context, CurContext,  SourceLocation(),
5474                                cast<CXXMethodDecl>(NewFD));
5475    CurContext->addDecl(NewSpec);
5476    AddToScope = false;
5477  }
5478
5479  return NewFD;
5480}
5481
5482/// \brief Perform semantic checking of a new function declaration.
5483///
5484/// Performs semantic analysis of the new function declaration
5485/// NewFD. This routine performs all semantic checking that does not
5486/// require the actual declarator involved in the declaration, and is
5487/// used both for the declaration of functions as they are parsed
5488/// (called via ActOnDeclarator) and for the declaration of functions
5489/// that have been instantiated via C++ template instantiation (called
5490/// via InstantiateDecl).
5491///
5492/// \param IsExplicitSpecialiation whether this new function declaration is
5493/// an explicit specialization of the previous declaration.
5494///
5495/// This sets NewFD->isInvalidDecl() to true if there was an error.
5496///
5497/// Returns true if the function declaration is a redeclaration.
5498bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5499                                    LookupResult &Previous,
5500                                    bool IsExplicitSpecialization) {
5501  assert(!NewFD->getResultType()->isVariablyModifiedType()
5502         && "Variably modified return types are not handled here");
5503
5504  // Check for a previous declaration of this name.
5505  if (Previous.empty() && NewFD->isExternC()) {
5506    // Since we did not find anything by this name and we're declaring
5507    // an extern "C" function, look for a non-visible extern "C"
5508    // declaration with the same name.
5509    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5510      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5511    if (Pos != LocallyScopedExternalDecls.end())
5512      Previous.addDecl(Pos->second);
5513  }
5514
5515  bool Redeclaration = false;
5516
5517  // Merge or overload the declaration with an existing declaration of
5518  // the same name, if appropriate.
5519  if (!Previous.empty()) {
5520    // Determine whether NewFD is an overload of PrevDecl or
5521    // a declaration that requires merging. If it's an overload,
5522    // there's no more work to do here; we'll just add the new
5523    // function to the scope.
5524
5525    NamedDecl *OldDecl = 0;
5526    if (!AllowOverloadingOfFunction(Previous, Context)) {
5527      Redeclaration = true;
5528      OldDecl = Previous.getFoundDecl();
5529    } else {
5530      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5531                            /*NewIsUsingDecl*/ false)) {
5532      case Ovl_Match:
5533        Redeclaration = true;
5534        break;
5535
5536      case Ovl_NonFunction:
5537        Redeclaration = true;
5538        break;
5539
5540      case Ovl_Overload:
5541        Redeclaration = false;
5542        break;
5543      }
5544
5545      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5546        // If a function name is overloadable in C, then every function
5547        // with that name must be marked "overloadable".
5548        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5549          << Redeclaration << NewFD;
5550        NamedDecl *OverloadedDecl = 0;
5551        if (Redeclaration)
5552          OverloadedDecl = OldDecl;
5553        else if (!Previous.empty())
5554          OverloadedDecl = Previous.getRepresentativeDecl();
5555        if (OverloadedDecl)
5556          Diag(OverloadedDecl->getLocation(),
5557               diag::note_attribute_overloadable_prev_overload);
5558        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5559                                                        Context));
5560      }
5561    }
5562
5563    if (Redeclaration) {
5564      // NewFD and OldDecl represent declarations that need to be
5565      // merged.
5566      if (MergeFunctionDecl(NewFD, OldDecl)) {
5567        NewFD->setInvalidDecl();
5568        return Redeclaration;
5569      }
5570
5571      Previous.clear();
5572      Previous.addDecl(OldDecl);
5573
5574      if (FunctionTemplateDecl *OldTemplateDecl
5575                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5576        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5577        FunctionTemplateDecl *NewTemplateDecl
5578          = NewFD->getDescribedFunctionTemplate();
5579        assert(NewTemplateDecl && "Template/non-template mismatch");
5580        if (CXXMethodDecl *Method
5581              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5582          Method->setAccess(OldTemplateDecl->getAccess());
5583          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5584        }
5585
5586        // If this is an explicit specialization of a member that is a function
5587        // template, mark it as a member specialization.
5588        if (IsExplicitSpecialization &&
5589            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5590          NewTemplateDecl->setMemberSpecialization();
5591          assert(OldTemplateDecl->isMemberSpecialization());
5592        }
5593
5594      } else {
5595        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5596          NewFD->setAccess(OldDecl->getAccess());
5597        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5598      }
5599    }
5600  }
5601
5602  // Semantic checking for this function declaration (in isolation).
5603  if (getLangOptions().CPlusPlus) {
5604    // C++-specific checks.
5605    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5606      CheckConstructor(Constructor);
5607    } else if (CXXDestructorDecl *Destructor =
5608                dyn_cast<CXXDestructorDecl>(NewFD)) {
5609      CXXRecordDecl *Record = Destructor->getParent();
5610      QualType ClassType = Context.getTypeDeclType(Record);
5611
5612      // FIXME: Shouldn't we be able to perform this check even when the class
5613      // type is dependent? Both gcc and edg can handle that.
5614      if (!ClassType->isDependentType()) {
5615        DeclarationName Name
5616          = Context.DeclarationNames.getCXXDestructorName(
5617                                        Context.getCanonicalType(ClassType));
5618        if (NewFD->getDeclName() != Name) {
5619          Diag(NewFD->getLocation(), diag::err_destructor_name);
5620          NewFD->setInvalidDecl();
5621          return Redeclaration;
5622        }
5623      }
5624    } else if (CXXConversionDecl *Conversion
5625               = dyn_cast<CXXConversionDecl>(NewFD)) {
5626      ActOnConversionDeclarator(Conversion);
5627    }
5628
5629    // Find any virtual functions that this function overrides.
5630    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5631      if (!Method->isFunctionTemplateSpecialization() &&
5632          !Method->getDescribedFunctionTemplate()) {
5633        if (AddOverriddenMethods(Method->getParent(), Method)) {
5634          // If the function was marked as "static", we have a problem.
5635          if (NewFD->getStorageClass() == SC_Static) {
5636            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5637              << NewFD->getDeclName();
5638            for (CXXMethodDecl::method_iterator
5639                      Overridden = Method->begin_overridden_methods(),
5640                   OverriddenEnd = Method->end_overridden_methods();
5641                 Overridden != OverriddenEnd;
5642                 ++Overridden) {
5643              Diag((*Overridden)->getLocation(),
5644                   diag::note_overridden_virtual_function);
5645            }
5646          }
5647        }
5648      }
5649    }
5650
5651    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5652    if (NewFD->isOverloadedOperator() &&
5653        CheckOverloadedOperatorDeclaration(NewFD)) {
5654      NewFD->setInvalidDecl();
5655      return Redeclaration;
5656    }
5657
5658    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5659    if (NewFD->getLiteralIdentifier() &&
5660        CheckLiteralOperatorDeclaration(NewFD)) {
5661      NewFD->setInvalidDecl();
5662      return Redeclaration;
5663    }
5664
5665    // In C++, check default arguments now that we have merged decls. Unless
5666    // the lexical context is the class, because in this case this is done
5667    // during delayed parsing anyway.
5668    if (!CurContext->isRecord())
5669      CheckCXXDefaultArguments(NewFD);
5670
5671    // If this function declares a builtin function, check the type of this
5672    // declaration against the expected type for the builtin.
5673    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5674      ASTContext::GetBuiltinTypeError Error;
5675      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5676      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5677        // The type of this function differs from the type of the builtin,
5678        // so forget about the builtin entirely.
5679        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5680      }
5681    }
5682  }
5683  return Redeclaration;
5684}
5685
5686void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5687  // C++ [basic.start.main]p3:  A program that declares main to be inline
5688  //   or static is ill-formed.
5689  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5690  //   shall not appear in a declaration of main.
5691  // static main is not an error under C99, but we should warn about it.
5692  if (FD->getStorageClass() == SC_Static)
5693    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5694         ? diag::err_static_main : diag::warn_static_main)
5695      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5696  if (FD->isInlineSpecified())
5697    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5698      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5699
5700  QualType T = FD->getType();
5701  assert(T->isFunctionType() && "function decl is not of function type");
5702  const FunctionType* FT = T->getAs<FunctionType>();
5703
5704  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5705    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5706    FD->setInvalidDecl(true);
5707  }
5708
5709  // Treat protoless main() as nullary.
5710  if (isa<FunctionNoProtoType>(FT)) return;
5711
5712  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5713  unsigned nparams = FTP->getNumArgs();
5714  assert(FD->getNumParams() == nparams);
5715
5716  bool HasExtraParameters = (nparams > 3);
5717
5718  // Darwin passes an undocumented fourth argument of type char**.  If
5719  // other platforms start sprouting these, the logic below will start
5720  // getting shifty.
5721  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5722    HasExtraParameters = false;
5723
5724  if (HasExtraParameters) {
5725    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5726    FD->setInvalidDecl(true);
5727    nparams = 3;
5728  }
5729
5730  // FIXME: a lot of the following diagnostics would be improved
5731  // if we had some location information about types.
5732
5733  QualType CharPP =
5734    Context.getPointerType(Context.getPointerType(Context.CharTy));
5735  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5736
5737  for (unsigned i = 0; i < nparams; ++i) {
5738    QualType AT = FTP->getArgType(i);
5739
5740    bool mismatch = true;
5741
5742    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5743      mismatch = false;
5744    else if (Expected[i] == CharPP) {
5745      // As an extension, the following forms are okay:
5746      //   char const **
5747      //   char const * const *
5748      //   char * const *
5749
5750      QualifierCollector qs;
5751      const PointerType* PT;
5752      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5753          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5754          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5755        qs.removeConst();
5756        mismatch = !qs.empty();
5757      }
5758    }
5759
5760    if (mismatch) {
5761      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5762      // TODO: suggest replacing given type with expected type
5763      FD->setInvalidDecl(true);
5764    }
5765  }
5766
5767  if (nparams == 1 && !FD->isInvalidDecl()) {
5768    Diag(FD->getLocation(), diag::warn_main_one_arg);
5769  }
5770
5771  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5772    Diag(FD->getLocation(), diag::err_main_template_decl);
5773    FD->setInvalidDecl();
5774  }
5775}
5776
5777bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5778  // FIXME: Need strict checking.  In C89, we need to check for
5779  // any assignment, increment, decrement, function-calls, or
5780  // commas outside of a sizeof.  In C99, it's the same list,
5781  // except that the aforementioned are allowed in unevaluated
5782  // expressions.  Everything else falls under the
5783  // "may accept other forms of constant expressions" exception.
5784  // (We never end up here for C++, so the constant expression
5785  // rules there don't matter.)
5786  if (Init->isConstantInitializer(Context, false))
5787    return false;
5788  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5789    << Init->getSourceRange();
5790  return true;
5791}
5792
5793namespace {
5794  // Visits an initialization expression to see if OrigDecl is evaluated in
5795  // its own initialization and throws a warning if it does.
5796  class SelfReferenceChecker
5797      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5798    Sema &S;
5799    Decl *OrigDecl;
5800    bool isRecordType;
5801    bool isPODType;
5802
5803  public:
5804    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5805
5806    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5807                                                    S(S), OrigDecl(OrigDecl) {
5808      isPODType = false;
5809      isRecordType = false;
5810      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5811        isPODType = VD->getType().isPODType(S.Context);
5812        isRecordType = VD->getType()->isRecordType();
5813      }
5814    }
5815
5816    void VisitExpr(Expr *E) {
5817      if (isa<ObjCMessageExpr>(*E)) return;
5818      if (isRecordType) {
5819        Expr *expr = E;
5820        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5821          ValueDecl *VD = ME->getMemberDecl();
5822          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5823          expr = ME->getBase();
5824        }
5825        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5826          HandleDeclRefExpr(DRE);
5827          return;
5828        }
5829      }
5830      Inherited::VisitExpr(E);
5831    }
5832
5833    void VisitMemberExpr(MemberExpr *E) {
5834      if (E->getType()->canDecayToPointerType()) return;
5835      if (isa<FieldDecl>(E->getMemberDecl()))
5836        if (DeclRefExpr *DRE
5837              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5838          HandleDeclRefExpr(DRE);
5839          return;
5840        }
5841      Inherited::VisitMemberExpr(E);
5842    }
5843
5844    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5845      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5846          (isRecordType && E->getCastKind() == CK_NoOp)) {
5847        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5848        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5849          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5850        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5851          HandleDeclRefExpr(DRE);
5852          return;
5853        }
5854      }
5855      Inherited::VisitImplicitCastExpr(E);
5856    }
5857
5858    void VisitUnaryOperator(UnaryOperator *E) {
5859      // For POD record types, addresses of its own members are well-defined.
5860      if (isRecordType && isPODType) return;
5861      Inherited::VisitUnaryOperator(E);
5862    }
5863
5864    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5865      Decl* ReferenceDecl = DRE->getDecl();
5866      if (OrigDecl != ReferenceDecl) return;
5867      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5868                          Sema::NotForRedeclaration);
5869      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5870                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5871                              << Result.getLookupName()
5872                              << OrigDecl->getLocation()
5873                              << DRE->getSourceRange());
5874    }
5875  };
5876}
5877
5878/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5879void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5880  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5881}
5882
5883/// AddInitializerToDecl - Adds the initializer Init to the
5884/// declaration dcl. If DirectInit is true, this is C++ direct
5885/// initialization rather than copy initialization.
5886void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5887                                bool DirectInit, bool TypeMayContainAuto) {
5888  // If there is no declaration, there was an error parsing it.  Just ignore
5889  // the initializer.
5890  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5891    return;
5892
5893  // Check for self-references within variable initializers.
5894  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5895    // Variables declared within a function/method body are handled
5896    // by a dataflow analysis.
5897    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5898      CheckSelfReference(RealDecl, Init);
5899  }
5900  else {
5901    CheckSelfReference(RealDecl, Init);
5902  }
5903
5904  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5905    // With declarators parsed the way they are, the parser cannot
5906    // distinguish between a normal initializer and a pure-specifier.
5907    // Thus this grotesque test.
5908    IntegerLiteral *IL;
5909    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5910        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5911      CheckPureMethod(Method, Init->getSourceRange());
5912    else {
5913      Diag(Method->getLocation(), diag::err_member_function_initialization)
5914        << Method->getDeclName() << Init->getSourceRange();
5915      Method->setInvalidDecl();
5916    }
5917    return;
5918  }
5919
5920  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5921  if (!VDecl) {
5922    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5923    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5924    RealDecl->setInvalidDecl();
5925    return;
5926  }
5927
5928  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5929  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5930    TypeSourceInfo *DeducedType = 0;
5931    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5932      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5933        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5934        << Init->getSourceRange();
5935    if (!DeducedType) {
5936      RealDecl->setInvalidDecl();
5937      return;
5938    }
5939    VDecl->setTypeSourceInfo(DeducedType);
5940    VDecl->setType(DeducedType->getType());
5941
5942    // In ARC, infer lifetime.
5943    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5944      VDecl->setInvalidDecl();
5945
5946    // If this is a redeclaration, check that the type we just deduced matches
5947    // the previously declared type.
5948    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5949      MergeVarDeclTypes(VDecl, Old);
5950  }
5951
5952  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
5953    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
5954    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5955    VDecl->setInvalidDecl();
5956    return;
5957  }
5958
5959
5960  // A definition must end up with a complete type, which means it must be
5961  // complete with the restriction that an array type might be completed by the
5962  // initializer; note that later code assumes this restriction.
5963  QualType BaseDeclType = VDecl->getType();
5964  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5965    BaseDeclType = Array->getElementType();
5966  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5967                          diag::err_typecheck_decl_incomplete_type)) {
5968    RealDecl->setInvalidDecl();
5969    return;
5970  }
5971
5972  // The variable can not have an abstract class type.
5973  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5974                             diag::err_abstract_type_in_decl,
5975                             AbstractVariableType))
5976    VDecl->setInvalidDecl();
5977
5978  const VarDecl *Def;
5979  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5980    Diag(VDecl->getLocation(), diag::err_redefinition)
5981      << VDecl->getDeclName();
5982    Diag(Def->getLocation(), diag::note_previous_definition);
5983    VDecl->setInvalidDecl();
5984    return;
5985  }
5986
5987  const VarDecl* PrevInit = 0;
5988  if (getLangOptions().CPlusPlus) {
5989    // C++ [class.static.data]p4
5990    //   If a static data member is of const integral or const
5991    //   enumeration type, its declaration in the class definition can
5992    //   specify a constant-initializer which shall be an integral
5993    //   constant expression (5.19). In that case, the member can appear
5994    //   in integral constant expressions. The member shall still be
5995    //   defined in a namespace scope if it is used in the program and the
5996    //   namespace scope definition shall not contain an initializer.
5997    //
5998    // We already performed a redefinition check above, but for static
5999    // data members we also need to check whether there was an in-class
6000    // declaration with an initializer.
6001    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6002      Diag(VDecl->getLocation(), diag::err_redefinition)
6003        << VDecl->getDeclName();
6004      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6005      return;
6006    }
6007
6008    if (VDecl->hasLocalStorage())
6009      getCurFunction()->setHasBranchProtectedScope();
6010
6011    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6012      VDecl->setInvalidDecl();
6013      return;
6014    }
6015  }
6016
6017  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6018  // a kernel function cannot be initialized."
6019  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6020    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6021    VDecl->setInvalidDecl();
6022    return;
6023  }
6024
6025  // Get the decls type and save a reference for later, since
6026  // CheckInitializerTypes may change it.
6027  QualType DclT = VDecl->getType(), SavT = DclT;
6028
6029  // Perform the initialization.
6030  if (!VDecl->isInvalidDecl()) {
6031    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6032    InitializationKind Kind
6033      = DirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6034                                                      Init->getLocStart(),
6035                                                      Init->getLocEnd())
6036                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6037                                                    Init->getLocStart());
6038
6039    InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6040    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6041                                              MultiExprArg(*this, &Init, 1),
6042                                              &DclT);
6043    if (Result.isInvalid()) {
6044      VDecl->setInvalidDecl();
6045      return;
6046    }
6047
6048    Init = Result.takeAs<Expr>();
6049  }
6050
6051  // If the type changed, it means we had an incomplete type that was
6052  // completed by the initializer. For example:
6053  //   int ary[] = { 1, 3, 5 };
6054  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6055  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6056    VDecl->setType(DclT);
6057    Init->setType(DclT.getNonReferenceType());
6058  }
6059
6060  // Check any implicit conversions within the expression.
6061  CheckImplicitConversions(Init, VDecl->getLocation());
6062
6063  if (!VDecl->isInvalidDecl())
6064    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6065
6066  Init = MaybeCreateExprWithCleanups(Init);
6067  // Attach the initializer to the decl.
6068  VDecl->setInit(Init);
6069
6070  if (VDecl->isLocalVarDecl()) {
6071    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6072    // static storage duration shall be constant expressions or string literals.
6073    // C++ does not have this restriction.
6074    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl() &&
6075        VDecl->getStorageClass() == SC_Static)
6076      CheckForConstantInitializer(Init, DclT);
6077  } else if (VDecl->isStaticDataMember() &&
6078             VDecl->getLexicalDeclContext()->isRecord()) {
6079    // This is an in-class initialization for a static data member, e.g.,
6080    //
6081    // struct S {
6082    //   static const int value = 17;
6083    // };
6084
6085    // C++ [class.mem]p4:
6086    //   A member-declarator can contain a constant-initializer only
6087    //   if it declares a static member (9.4) of const integral or
6088    //   const enumeration type, see 9.4.2.
6089    //
6090    // C++11 [class.static.data]p3:
6091    //   If a non-volatile const static data member is of integral or
6092    //   enumeration type, its declaration in the class definition can
6093    //   specify a brace-or-equal-initializer in which every initalizer-clause
6094    //   that is an assignment-expression is a constant expression. A static
6095    //   data member of literal type can be declared in the class definition
6096    //   with the constexpr specifier; if so, its declaration shall specify a
6097    //   brace-or-equal-initializer in which every initializer-clause that is
6098    //   an assignment-expression is a constant expression.
6099
6100    // Do nothing on dependent types.
6101    if (DclT->isDependentType()) {
6102
6103    // Allow any 'static constexpr' members, whether or not they are of literal
6104    // type. We separately check that the initializer is a constant expression,
6105    // which implicitly requires the member to be of literal type.
6106    } else if (VDecl->isConstexpr()) {
6107
6108    // Require constness.
6109    } else if (!DclT.isConstQualified()) {
6110      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6111        << Init->getSourceRange();
6112      VDecl->setInvalidDecl();
6113
6114    // We allow integer constant expressions in all cases.
6115    } else if (DclT->isIntegralOrEnumerationType()) {
6116      // Check whether the expression is a constant expression.
6117      SourceLocation Loc;
6118      if (getLangOptions().CPlusPlus0x && DclT.isVolatileQualified())
6119        // In C++11, a non-constexpr const static data member with an
6120        // in-class initializer cannot be volatile.
6121        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6122      else if (Init->isValueDependent())
6123        ; // Nothing to check.
6124      else if (Init->isIntegerConstantExpr(Context, &Loc))
6125        ; // Ok, it's an ICE!
6126      else if (Init->isEvaluatable(Context)) {
6127        // If we can constant fold the initializer through heroics, accept it,
6128        // but report this as a use of an extension for -pedantic.
6129        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6130          << Init->getSourceRange();
6131      } else {
6132        // Otherwise, this is some crazy unknown case.  Report the issue at the
6133        // location provided by the isIntegerConstantExpr failed check.
6134        Diag(Loc, diag::err_in_class_initializer_non_constant)
6135          << Init->getSourceRange();
6136        VDecl->setInvalidDecl();
6137      }
6138
6139    // We allow foldable floating-point constants as an extension.
6140    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6141      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6142        << DclT << Init->getSourceRange();
6143      if (getLangOptions().CPlusPlus0x)
6144        Diag(VDecl->getLocation(),
6145             diag::note_in_class_initializer_float_type_constexpr)
6146          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6147
6148      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6149        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6150          << Init->getSourceRange();
6151        VDecl->setInvalidDecl();
6152      }
6153
6154    // Suggest adding 'constexpr' in C++11 for literal types.
6155    } else if (getLangOptions().CPlusPlus0x && DclT->isLiteralType()) {
6156      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6157        << DclT << Init->getSourceRange()
6158        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6159      VDecl->setConstexpr(true);
6160
6161    } else {
6162      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6163        << DclT << Init->getSourceRange();
6164      VDecl->setInvalidDecl();
6165    }
6166  } else if (VDecl->isFileVarDecl()) {
6167    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6168        (!getLangOptions().CPlusPlus ||
6169         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6170      Diag(VDecl->getLocation(), diag::warn_extern_init);
6171
6172    // C99 6.7.8p4. All file scoped initializers need to be constant.
6173    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl())
6174      CheckForConstantInitializer(Init, DclT);
6175  }
6176
6177  CheckCompleteVariableDeclaration(VDecl);
6178}
6179
6180/// ActOnInitializerError - Given that there was an error parsing an
6181/// initializer for the given declaration, try to return to some form
6182/// of sanity.
6183void Sema::ActOnInitializerError(Decl *D) {
6184  // Our main concern here is re-establishing invariants like "a
6185  // variable's type is either dependent or complete".
6186  if (!D || D->isInvalidDecl()) return;
6187
6188  VarDecl *VD = dyn_cast<VarDecl>(D);
6189  if (!VD) return;
6190
6191  // Auto types are meaningless if we can't make sense of the initializer.
6192  if (ParsingInitForAutoVars.count(D)) {
6193    D->setInvalidDecl();
6194    return;
6195  }
6196
6197  QualType Ty = VD->getType();
6198  if (Ty->isDependentType()) return;
6199
6200  // Require a complete type.
6201  if (RequireCompleteType(VD->getLocation(),
6202                          Context.getBaseElementType(Ty),
6203                          diag::err_typecheck_decl_incomplete_type)) {
6204    VD->setInvalidDecl();
6205    return;
6206  }
6207
6208  // Require an abstract type.
6209  if (RequireNonAbstractType(VD->getLocation(), Ty,
6210                             diag::err_abstract_type_in_decl,
6211                             AbstractVariableType)) {
6212    VD->setInvalidDecl();
6213    return;
6214  }
6215
6216  // Don't bother complaining about constructors or destructors,
6217  // though.
6218}
6219
6220void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6221                                  bool TypeMayContainAuto) {
6222  // If there is no declaration, there was an error parsing it. Just ignore it.
6223  if (RealDecl == 0)
6224    return;
6225
6226  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6227    QualType Type = Var->getType();
6228
6229    // C++11 [dcl.spec.auto]p3
6230    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6231      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6232        << Var->getDeclName() << Type;
6233      Var->setInvalidDecl();
6234      return;
6235    }
6236
6237    // C++11 [class.static.data]p3: A static data member can be declared with
6238    // the constexpr specifier; if so, its declaration shall specify
6239    // a brace-or-equal-initializer.
6240    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6241    // the definition of a variable [...] or the declaration of a static data
6242    // member.
6243    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6244      if (Var->isStaticDataMember())
6245        Diag(Var->getLocation(),
6246             diag::err_constexpr_static_mem_var_requires_init)
6247          << Var->getDeclName();
6248      else
6249        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6250      Var->setInvalidDecl();
6251      return;
6252    }
6253
6254    switch (Var->isThisDeclarationADefinition()) {
6255    case VarDecl::Definition:
6256      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6257        break;
6258
6259      // We have an out-of-line definition of a static data member
6260      // that has an in-class initializer, so we type-check this like
6261      // a declaration.
6262      //
6263      // Fall through
6264
6265    case VarDecl::DeclarationOnly:
6266      // It's only a declaration.
6267
6268      // Block scope. C99 6.7p7: If an identifier for an object is
6269      // declared with no linkage (C99 6.2.2p6), the type for the
6270      // object shall be complete.
6271      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6272          !Var->getLinkage() && !Var->isInvalidDecl() &&
6273          RequireCompleteType(Var->getLocation(), Type,
6274                              diag::err_typecheck_decl_incomplete_type))
6275        Var->setInvalidDecl();
6276
6277      // Make sure that the type is not abstract.
6278      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6279          RequireNonAbstractType(Var->getLocation(), Type,
6280                                 diag::err_abstract_type_in_decl,
6281                                 AbstractVariableType))
6282        Var->setInvalidDecl();
6283      return;
6284
6285    case VarDecl::TentativeDefinition:
6286      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6287      // object that has file scope without an initializer, and without a
6288      // storage-class specifier or with the storage-class specifier "static",
6289      // constitutes a tentative definition. Note: A tentative definition with
6290      // external linkage is valid (C99 6.2.2p5).
6291      if (!Var->isInvalidDecl()) {
6292        if (const IncompleteArrayType *ArrayT
6293                                    = Context.getAsIncompleteArrayType(Type)) {
6294          if (RequireCompleteType(Var->getLocation(),
6295                                  ArrayT->getElementType(),
6296                                  diag::err_illegal_decl_array_incomplete_type))
6297            Var->setInvalidDecl();
6298        } else if (Var->getStorageClass() == SC_Static) {
6299          // C99 6.9.2p3: If the declaration of an identifier for an object is
6300          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6301          // declared type shall not be an incomplete type.
6302          // NOTE: code such as the following
6303          //     static struct s;
6304          //     struct s { int a; };
6305          // is accepted by gcc. Hence here we issue a warning instead of
6306          // an error and we do not invalidate the static declaration.
6307          // NOTE: to avoid multiple warnings, only check the first declaration.
6308          if (Var->getPreviousDeclaration() == 0)
6309            RequireCompleteType(Var->getLocation(), Type,
6310                                diag::ext_typecheck_decl_incomplete_type);
6311        }
6312      }
6313
6314      // Record the tentative definition; we're done.
6315      if (!Var->isInvalidDecl())
6316        TentativeDefinitions.push_back(Var);
6317      return;
6318    }
6319
6320    // Provide a specific diagnostic for uninitialized variable
6321    // definitions with incomplete array type.
6322    if (Type->isIncompleteArrayType()) {
6323      Diag(Var->getLocation(),
6324           diag::err_typecheck_incomplete_array_needs_initializer);
6325      Var->setInvalidDecl();
6326      return;
6327    }
6328
6329    // Provide a specific diagnostic for uninitialized variable
6330    // definitions with reference type.
6331    if (Type->isReferenceType()) {
6332      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6333        << Var->getDeclName()
6334        << SourceRange(Var->getLocation(), Var->getLocation());
6335      Var->setInvalidDecl();
6336      return;
6337    }
6338
6339    // Do not attempt to type-check the default initializer for a
6340    // variable with dependent type.
6341    if (Type->isDependentType())
6342      return;
6343
6344    if (Var->isInvalidDecl())
6345      return;
6346
6347    if (RequireCompleteType(Var->getLocation(),
6348                            Context.getBaseElementType(Type),
6349                            diag::err_typecheck_decl_incomplete_type)) {
6350      Var->setInvalidDecl();
6351      return;
6352    }
6353
6354    // The variable can not have an abstract class type.
6355    if (RequireNonAbstractType(Var->getLocation(), Type,
6356                               diag::err_abstract_type_in_decl,
6357                               AbstractVariableType)) {
6358      Var->setInvalidDecl();
6359      return;
6360    }
6361
6362    // Check for jumps past the implicit initializer.  C++0x
6363    // clarifies that this applies to a "variable with automatic
6364    // storage duration", not a "local variable".
6365    // C++11 [stmt.dcl]p3
6366    //   A program that jumps from a point where a variable with automatic
6367    //   storage duration is not in scope to a point where it is in scope is
6368    //   ill-formed unless the variable has scalar type, class type with a
6369    //   trivial default constructor and a trivial destructor, a cv-qualified
6370    //   version of one of these types, or an array of one of the preceding
6371    //   types and is declared without an initializer.
6372    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6373      if (const RecordType *Record
6374            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6375        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6376        // Mark the function for further checking even if the looser rules of
6377        // C++11 do not require such checks, so that we can diagnose
6378        // incompatibilities with C++98.
6379        if (!CXXRecord->isPOD())
6380          getCurFunction()->setHasBranchProtectedScope();
6381      }
6382    }
6383
6384    // C++03 [dcl.init]p9:
6385    //   If no initializer is specified for an object, and the
6386    //   object is of (possibly cv-qualified) non-POD class type (or
6387    //   array thereof), the object shall be default-initialized; if
6388    //   the object is of const-qualified type, the underlying class
6389    //   type shall have a user-declared default
6390    //   constructor. Otherwise, if no initializer is specified for
6391    //   a non- static object, the object and its subobjects, if
6392    //   any, have an indeterminate initial value); if the object
6393    //   or any of its subobjects are of const-qualified type, the
6394    //   program is ill-formed.
6395    // C++0x [dcl.init]p11:
6396    //   If no initializer is specified for an object, the object is
6397    //   default-initialized; [...].
6398    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6399    InitializationKind Kind
6400      = InitializationKind::CreateDefault(Var->getLocation());
6401
6402    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6403    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6404                                      MultiExprArg(*this, 0, 0));
6405    if (Init.isInvalid())
6406      Var->setInvalidDecl();
6407    else if (Init.get())
6408      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6409
6410    CheckCompleteVariableDeclaration(Var);
6411  }
6412}
6413
6414void Sema::ActOnCXXForRangeDecl(Decl *D) {
6415  VarDecl *VD = dyn_cast<VarDecl>(D);
6416  if (!VD) {
6417    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6418    D->setInvalidDecl();
6419    return;
6420  }
6421
6422  VD->setCXXForRangeDecl(true);
6423
6424  // for-range-declaration cannot be given a storage class specifier.
6425  int Error = -1;
6426  switch (VD->getStorageClassAsWritten()) {
6427  case SC_None:
6428    break;
6429  case SC_Extern:
6430    Error = 0;
6431    break;
6432  case SC_Static:
6433    Error = 1;
6434    break;
6435  case SC_PrivateExtern:
6436    Error = 2;
6437    break;
6438  case SC_Auto:
6439    Error = 3;
6440    break;
6441  case SC_Register:
6442    Error = 4;
6443    break;
6444  case SC_OpenCLWorkGroupLocal:
6445    llvm_unreachable("Unexpected storage class");
6446  }
6447  if (VD->isConstexpr())
6448    Error = 5;
6449  if (Error != -1) {
6450    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6451      << VD->getDeclName() << Error;
6452    D->setInvalidDecl();
6453  }
6454}
6455
6456void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6457  if (var->isInvalidDecl()) return;
6458
6459  // In ARC, don't allow jumps past the implicit initialization of a
6460  // local retaining variable.
6461  if (getLangOptions().ObjCAutoRefCount &&
6462      var->hasLocalStorage()) {
6463    switch (var->getType().getObjCLifetime()) {
6464    case Qualifiers::OCL_None:
6465    case Qualifiers::OCL_ExplicitNone:
6466    case Qualifiers::OCL_Autoreleasing:
6467      break;
6468
6469    case Qualifiers::OCL_Weak:
6470    case Qualifiers::OCL_Strong:
6471      getCurFunction()->setHasBranchProtectedScope();
6472      break;
6473    }
6474  }
6475
6476  // All the following checks are C++ only.
6477  if (!getLangOptions().CPlusPlus) return;
6478
6479  QualType baseType = Context.getBaseElementType(var->getType());
6480  if (baseType->isDependentType()) return;
6481
6482  // __block variables might require us to capture a copy-initializer.
6483  if (var->hasAttr<BlocksAttr>()) {
6484    // It's currently invalid to ever have a __block variable with an
6485    // array type; should we diagnose that here?
6486
6487    // Regardless, we don't want to ignore array nesting when
6488    // constructing this copy.
6489    QualType type = var->getType();
6490
6491    if (type->isStructureOrClassType()) {
6492      SourceLocation poi = var->getLocation();
6493      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6494      ExprResult result =
6495        PerformCopyInitialization(
6496                        InitializedEntity::InitializeBlock(poi, type, false),
6497                                  poi, Owned(varRef));
6498      if (!result.isInvalid()) {
6499        result = MaybeCreateExprWithCleanups(result);
6500        Expr *init = result.takeAs<Expr>();
6501        Context.setBlockVarCopyInits(var, init);
6502      }
6503    }
6504  }
6505
6506  Expr *Init = var->getInit();
6507  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6508
6509  if (!var->getDeclContext()->isDependentContext() && Init) {
6510    if (IsGlobal && !var->isConstexpr() &&
6511        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6512                                            var->getLocation())
6513          != DiagnosticsEngine::Ignored &&
6514        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6515      Diag(var->getLocation(), diag::warn_global_constructor)
6516        << Init->getSourceRange();
6517
6518    if (var->isConstexpr()) {
6519      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6520      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6521        SourceLocation DiagLoc = var->getLocation();
6522        // If the note doesn't add any useful information other than a source
6523        // location, fold it into the primary diagnostic.
6524        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6525              diag::note_invalid_subexpr_in_const_expr) {
6526          DiagLoc = Notes[0].first;
6527          Notes.clear();
6528        }
6529        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6530          << var << Init->getSourceRange();
6531        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6532          Diag(Notes[I].first, Notes[I].second);
6533      }
6534    } else if (var->isUsableInConstantExpressions()) {
6535      // Check whether the initializer of a const variable of integral or
6536      // enumeration type is an ICE now, since we can't tell whether it was
6537      // initialized by a constant expression if we check later.
6538      var->checkInitIsICE();
6539    }
6540  }
6541
6542  // Require the destructor.
6543  if (const RecordType *recordType = baseType->getAs<RecordType>())
6544    FinalizeVarWithDestructor(var, recordType);
6545}
6546
6547/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6548/// any semantic actions necessary after any initializer has been attached.
6549void
6550Sema::FinalizeDeclaration(Decl *ThisDecl) {
6551  // Note that we are no longer parsing the initializer for this declaration.
6552  ParsingInitForAutoVars.erase(ThisDecl);
6553}
6554
6555Sema::DeclGroupPtrTy
6556Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6557                              Decl **Group, unsigned NumDecls) {
6558  SmallVector<Decl*, 8> Decls;
6559
6560  if (DS.isTypeSpecOwned())
6561    Decls.push_back(DS.getRepAsDecl());
6562
6563  for (unsigned i = 0; i != NumDecls; ++i)
6564    if (Decl *D = Group[i])
6565      Decls.push_back(D);
6566
6567  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6568                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6569}
6570
6571/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6572/// group, performing any necessary semantic checking.
6573Sema::DeclGroupPtrTy
6574Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6575                           bool TypeMayContainAuto) {
6576  // C++0x [dcl.spec.auto]p7:
6577  //   If the type deduced for the template parameter U is not the same in each
6578  //   deduction, the program is ill-formed.
6579  // FIXME: When initializer-list support is added, a distinction is needed
6580  // between the deduced type U and the deduced type which 'auto' stands for.
6581  //   auto a = 0, b = { 1, 2, 3 };
6582  // is legal because the deduced type U is 'int' in both cases.
6583  if (TypeMayContainAuto && NumDecls > 1) {
6584    QualType Deduced;
6585    CanQualType DeducedCanon;
6586    VarDecl *DeducedDecl = 0;
6587    for (unsigned i = 0; i != NumDecls; ++i) {
6588      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6589        AutoType *AT = D->getType()->getContainedAutoType();
6590        // Don't reissue diagnostics when instantiating a template.
6591        if (AT && D->isInvalidDecl())
6592          break;
6593        if (AT && AT->isDeduced()) {
6594          QualType U = AT->getDeducedType();
6595          CanQualType UCanon = Context.getCanonicalType(U);
6596          if (Deduced.isNull()) {
6597            Deduced = U;
6598            DeducedCanon = UCanon;
6599            DeducedDecl = D;
6600          } else if (DeducedCanon != UCanon) {
6601            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6602                 diag::err_auto_different_deductions)
6603              << Deduced << DeducedDecl->getDeclName()
6604              << U << D->getDeclName()
6605              << DeducedDecl->getInit()->getSourceRange()
6606              << D->getInit()->getSourceRange();
6607            D->setInvalidDecl();
6608            break;
6609          }
6610        }
6611      }
6612    }
6613  }
6614
6615  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6616}
6617
6618
6619/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6620/// to introduce parameters into function prototype scope.
6621Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6622  const DeclSpec &DS = D.getDeclSpec();
6623
6624  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6625  // C++03 [dcl.stc]p2 also permits 'auto'.
6626  VarDecl::StorageClass StorageClass = SC_None;
6627  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6628  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6629    StorageClass = SC_Register;
6630    StorageClassAsWritten = SC_Register;
6631  } else if (getLangOptions().CPlusPlus &&
6632             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6633    StorageClass = SC_Auto;
6634    StorageClassAsWritten = SC_Auto;
6635  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6636    Diag(DS.getStorageClassSpecLoc(),
6637         diag::err_invalid_storage_class_in_func_decl);
6638    D.getMutableDeclSpec().ClearStorageClassSpecs();
6639  }
6640
6641  if (D.getDeclSpec().isThreadSpecified())
6642    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6643  if (D.getDeclSpec().isConstexprSpecified())
6644    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6645      << 0;
6646
6647  DiagnoseFunctionSpecifiers(D);
6648
6649  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6650  QualType parmDeclType = TInfo->getType();
6651
6652  if (getLangOptions().CPlusPlus) {
6653    // Check that there are no default arguments inside the type of this
6654    // parameter.
6655    CheckExtraCXXDefaultArguments(D);
6656
6657    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6658    if (D.getCXXScopeSpec().isSet()) {
6659      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6660        << D.getCXXScopeSpec().getRange();
6661      D.getCXXScopeSpec().clear();
6662    }
6663  }
6664
6665  // Ensure we have a valid name
6666  IdentifierInfo *II = 0;
6667  if (D.hasName()) {
6668    II = D.getIdentifier();
6669    if (!II) {
6670      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6671        << GetNameForDeclarator(D).getName().getAsString();
6672      D.setInvalidType(true);
6673    }
6674  }
6675
6676  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6677  if (II) {
6678    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6679                   ForRedeclaration);
6680    LookupName(R, S);
6681    if (R.isSingleResult()) {
6682      NamedDecl *PrevDecl = R.getFoundDecl();
6683      if (PrevDecl->isTemplateParameter()) {
6684        // Maybe we will complain about the shadowed template parameter.
6685        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6686        // Just pretend that we didn't see the previous declaration.
6687        PrevDecl = 0;
6688      } else if (S->isDeclScope(PrevDecl)) {
6689        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6690        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6691
6692        // Recover by removing the name
6693        II = 0;
6694        D.SetIdentifier(0, D.getIdentifierLoc());
6695        D.setInvalidType(true);
6696      }
6697    }
6698  }
6699
6700  // Temporarily put parameter variables in the translation unit, not
6701  // the enclosing context.  This prevents them from accidentally
6702  // looking like class members in C++.
6703  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6704                                    D.getSourceRange().getBegin(),
6705                                    D.getIdentifierLoc(), II,
6706                                    parmDeclType, TInfo,
6707                                    StorageClass, StorageClassAsWritten);
6708
6709  if (D.isInvalidType())
6710    New->setInvalidDecl();
6711
6712  assert(S->isFunctionPrototypeScope());
6713  assert(S->getFunctionPrototypeDepth() >= 1);
6714  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6715                    S->getNextFunctionPrototypeIndex());
6716
6717  // Add the parameter declaration into this scope.
6718  S->AddDecl(New);
6719  if (II)
6720    IdResolver.AddDecl(New);
6721
6722  ProcessDeclAttributes(S, New, D);
6723
6724  if (D.getDeclSpec().isModulePrivateSpecified())
6725    Diag(New->getLocation(), diag::err_module_private_local)
6726      << 1 << New->getDeclName()
6727      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6728      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6729
6730  if (New->hasAttr<BlocksAttr>()) {
6731    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6732  }
6733  return New;
6734}
6735
6736/// \brief Synthesizes a variable for a parameter arising from a
6737/// typedef.
6738ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6739                                              SourceLocation Loc,
6740                                              QualType T) {
6741  /* FIXME: setting StartLoc == Loc.
6742     Would it be worth to modify callers so as to provide proper source
6743     location for the unnamed parameters, embedding the parameter's type? */
6744  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6745                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6746                                           SC_None, SC_None, 0);
6747  Param->setImplicit();
6748  return Param;
6749}
6750
6751void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6752                                    ParmVarDecl * const *ParamEnd) {
6753  // Don't diagnose unused-parameter errors in template instantiations; we
6754  // will already have done so in the template itself.
6755  if (!ActiveTemplateInstantiations.empty())
6756    return;
6757
6758  for (; Param != ParamEnd; ++Param) {
6759    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6760        !(*Param)->hasAttr<UnusedAttr>()) {
6761      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6762        << (*Param)->getDeclName();
6763    }
6764  }
6765}
6766
6767void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6768                                                  ParmVarDecl * const *ParamEnd,
6769                                                  QualType ReturnTy,
6770                                                  NamedDecl *D) {
6771  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6772    return;
6773
6774  // Warn if the return value is pass-by-value and larger than the specified
6775  // threshold.
6776  if (ReturnTy.isPODType(Context)) {
6777    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6778    if (Size > LangOpts.NumLargeByValueCopy)
6779      Diag(D->getLocation(), diag::warn_return_value_size)
6780          << D->getDeclName() << Size;
6781  }
6782
6783  // Warn if any parameter is pass-by-value and larger than the specified
6784  // threshold.
6785  for (; Param != ParamEnd; ++Param) {
6786    QualType T = (*Param)->getType();
6787    if (!T.isPODType(Context))
6788      continue;
6789    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6790    if (Size > LangOpts.NumLargeByValueCopy)
6791      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6792          << (*Param)->getDeclName() << Size;
6793  }
6794}
6795
6796ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6797                                  SourceLocation NameLoc, IdentifierInfo *Name,
6798                                  QualType T, TypeSourceInfo *TSInfo,
6799                                  VarDecl::StorageClass StorageClass,
6800                                  VarDecl::StorageClass StorageClassAsWritten) {
6801  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6802  if (getLangOptions().ObjCAutoRefCount &&
6803      T.getObjCLifetime() == Qualifiers::OCL_None &&
6804      T->isObjCLifetimeType()) {
6805
6806    Qualifiers::ObjCLifetime lifetime;
6807
6808    // Special cases for arrays:
6809    //   - if it's const, use __unsafe_unretained
6810    //   - otherwise, it's an error
6811    if (T->isArrayType()) {
6812      if (!T.isConstQualified()) {
6813        DelayedDiagnostics.add(
6814            sema::DelayedDiagnostic::makeForbiddenType(
6815            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6816      }
6817      lifetime = Qualifiers::OCL_ExplicitNone;
6818    } else {
6819      lifetime = T->getObjCARCImplicitLifetime();
6820    }
6821    T = Context.getLifetimeQualifiedType(T, lifetime);
6822  }
6823
6824  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6825                                         Context.getAdjustedParameterType(T),
6826                                         TSInfo,
6827                                         StorageClass, StorageClassAsWritten,
6828                                         0);
6829
6830  // Parameters can not be abstract class types.
6831  // For record types, this is done by the AbstractClassUsageDiagnoser once
6832  // the class has been completely parsed.
6833  if (!CurContext->isRecord() &&
6834      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6835                             AbstractParamType))
6836    New->setInvalidDecl();
6837
6838  // Parameter declarators cannot be interface types. All ObjC objects are
6839  // passed by reference.
6840  if (T->isObjCObjectType()) {
6841    Diag(NameLoc,
6842         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6843      << FixItHint::CreateInsertion(NameLoc, "*");
6844    T = Context.getObjCObjectPointerType(T);
6845    New->setType(T);
6846  }
6847
6848  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6849  // duration shall not be qualified by an address-space qualifier."
6850  // Since all parameters have automatic store duration, they can not have
6851  // an address space.
6852  if (T.getAddressSpace() != 0) {
6853    Diag(NameLoc, diag::err_arg_with_address_space);
6854    New->setInvalidDecl();
6855  }
6856
6857  return New;
6858}
6859
6860void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6861                                           SourceLocation LocAfterDecls) {
6862  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6863
6864  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6865  // for a K&R function.
6866  if (!FTI.hasPrototype) {
6867    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6868      --i;
6869      if (FTI.ArgInfo[i].Param == 0) {
6870        llvm::SmallString<256> Code;
6871        llvm::raw_svector_ostream(Code) << "  int "
6872                                        << FTI.ArgInfo[i].Ident->getName()
6873                                        << ";\n";
6874        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6875          << FTI.ArgInfo[i].Ident
6876          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6877
6878        // Implicitly declare the argument as type 'int' for lack of a better
6879        // type.
6880        AttributeFactory attrs;
6881        DeclSpec DS(attrs);
6882        const char* PrevSpec; // unused
6883        unsigned DiagID; // unused
6884        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6885                           PrevSpec, DiagID);
6886        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6887        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6888        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6889      }
6890    }
6891  }
6892}
6893
6894Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6895                                         Declarator &D) {
6896  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6897  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6898  Scope *ParentScope = FnBodyScope->getParent();
6899
6900  D.setFunctionDefinitionKind(FDK_Definition);
6901  Decl *DP = HandleDeclarator(ParentScope, D,
6902                              MultiTemplateParamsArg(*this));
6903  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6904}
6905
6906static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6907  // Don't warn about invalid declarations.
6908  if (FD->isInvalidDecl())
6909    return false;
6910
6911  // Or declarations that aren't global.
6912  if (!FD->isGlobal())
6913    return false;
6914
6915  // Don't warn about C++ member functions.
6916  if (isa<CXXMethodDecl>(FD))
6917    return false;
6918
6919  // Don't warn about 'main'.
6920  if (FD->isMain())
6921    return false;
6922
6923  // Don't warn about inline functions.
6924  if (FD->isInlined())
6925    return false;
6926
6927  // Don't warn about function templates.
6928  if (FD->getDescribedFunctionTemplate())
6929    return false;
6930
6931  // Don't warn about function template specializations.
6932  if (FD->isFunctionTemplateSpecialization())
6933    return false;
6934
6935  bool MissingPrototype = true;
6936  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6937       Prev; Prev = Prev->getPreviousDeclaration()) {
6938    // Ignore any declarations that occur in function or method
6939    // scope, because they aren't visible from the header.
6940    if (Prev->getDeclContext()->isFunctionOrMethod())
6941      continue;
6942
6943    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6944    break;
6945  }
6946
6947  return MissingPrototype;
6948}
6949
6950void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6951  // Don't complain if we're in GNU89 mode and the previous definition
6952  // was an extern inline function.
6953  const FunctionDecl *Definition;
6954  if (FD->isDefined(Definition) &&
6955      !canRedefineFunction(Definition, getLangOptions())) {
6956    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6957        Definition->getStorageClass() == SC_Extern)
6958      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6959        << FD->getDeclName() << getLangOptions().CPlusPlus;
6960    else
6961      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6962    Diag(Definition->getLocation(), diag::note_previous_definition);
6963  }
6964}
6965
6966Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6967  // Clear the last template instantiation error context.
6968  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6969
6970  if (!D)
6971    return D;
6972  FunctionDecl *FD = 0;
6973
6974  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6975    FD = FunTmpl->getTemplatedDecl();
6976  else
6977    FD = cast<FunctionDecl>(D);
6978
6979  // Enter a new function scope
6980  PushFunctionScope();
6981
6982  // See if this is a redefinition.
6983  if (!FD->isLateTemplateParsed())
6984    CheckForFunctionRedefinition(FD);
6985
6986  // Builtin functions cannot be defined.
6987  if (unsigned BuiltinID = FD->getBuiltinID()) {
6988    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6989      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6990      FD->setInvalidDecl();
6991    }
6992  }
6993
6994  // The return type of a function definition must be complete
6995  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6996  QualType ResultType = FD->getResultType();
6997  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6998      !FD->isInvalidDecl() &&
6999      RequireCompleteType(FD->getLocation(), ResultType,
7000                          diag::err_func_def_incomplete_result))
7001    FD->setInvalidDecl();
7002
7003  // GNU warning -Wmissing-prototypes:
7004  //   Warn if a global function is defined without a previous
7005  //   prototype declaration. This warning is issued even if the
7006  //   definition itself provides a prototype. The aim is to detect
7007  //   global functions that fail to be declared in header files.
7008  if (ShouldWarnAboutMissingPrototype(FD))
7009    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7010
7011  if (FnBodyScope)
7012    PushDeclContext(FnBodyScope, FD);
7013
7014  // Check the validity of our function parameters
7015  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7016                           /*CheckParameterNames=*/true);
7017
7018  // Introduce our parameters into the function scope
7019  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7020    ParmVarDecl *Param = FD->getParamDecl(p);
7021    Param->setOwningFunction(FD);
7022
7023    // If this has an identifier, add it to the scope stack.
7024    if (Param->getIdentifier() && FnBodyScope) {
7025      CheckShadow(FnBodyScope, Param);
7026
7027      PushOnScopeChains(Param, FnBodyScope);
7028    }
7029  }
7030
7031  // Checking attributes of current function definition
7032  // dllimport attribute.
7033  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7034  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7035    // dllimport attribute cannot be directly applied to definition.
7036    // Microsoft accepts dllimport for functions defined within class scope.
7037    if (!DA->isInherited() &&
7038        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7039      Diag(FD->getLocation(),
7040           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7041        << "dllimport";
7042      FD->setInvalidDecl();
7043      return FD;
7044    }
7045
7046    // Visual C++ appears to not think this is an issue, so only issue
7047    // a warning when Microsoft extensions are disabled.
7048    if (!LangOpts.MicrosoftExt) {
7049      // If a symbol previously declared dllimport is later defined, the
7050      // attribute is ignored in subsequent references, and a warning is
7051      // emitted.
7052      Diag(FD->getLocation(),
7053           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7054        << FD->getName() << "dllimport";
7055    }
7056  }
7057  return FD;
7058}
7059
7060/// \brief Given the set of return statements within a function body,
7061/// compute the variables that are subject to the named return value
7062/// optimization.
7063///
7064/// Each of the variables that is subject to the named return value
7065/// optimization will be marked as NRVO variables in the AST, and any
7066/// return statement that has a marked NRVO variable as its NRVO candidate can
7067/// use the named return value optimization.
7068///
7069/// This function applies a very simplistic algorithm for NRVO: if every return
7070/// statement in the function has the same NRVO candidate, that candidate is
7071/// the NRVO variable.
7072///
7073/// FIXME: Employ a smarter algorithm that accounts for multiple return
7074/// statements and the lifetimes of the NRVO candidates. We should be able to
7075/// find a maximal set of NRVO variables.
7076void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7077  ReturnStmt **Returns = Scope->Returns.data();
7078
7079  const VarDecl *NRVOCandidate = 0;
7080  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7081    if (!Returns[I]->getNRVOCandidate())
7082      return;
7083
7084    if (!NRVOCandidate)
7085      NRVOCandidate = Returns[I]->getNRVOCandidate();
7086    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7087      return;
7088  }
7089
7090  if (NRVOCandidate)
7091    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7092}
7093
7094Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7095  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7096}
7097
7098Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7099                                    bool IsInstantiation) {
7100  FunctionDecl *FD = 0;
7101  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7102  if (FunTmpl)
7103    FD = FunTmpl->getTemplatedDecl();
7104  else
7105    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7106
7107  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7108  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7109
7110  if (FD) {
7111    FD->setBody(Body);
7112    if (FD->isMain()) {
7113      // C and C++ allow for main to automagically return 0.
7114      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
7115      FD->setHasImplicitReturnZero(true);
7116      WP.disableCheckFallThrough();
7117    } else if (FD->hasAttr<NakedAttr>()) {
7118      // If the function is marked 'naked', don't complain about missing return
7119      // statements.
7120      WP.disableCheckFallThrough();
7121    }
7122
7123    // MSVC permits the use of pure specifier (=0) on function definition,
7124    // defined at class scope, warn about this non standard construct.
7125    if (getLangOptions().MicrosoftExt && FD->isPure())
7126      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7127
7128    if (!FD->isInvalidDecl()) {
7129      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7130      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7131                                             FD->getResultType(), FD);
7132
7133      // If this is a constructor, we need a vtable.
7134      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7135        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7136
7137      computeNRVO(Body, getCurFunction());
7138    }
7139
7140    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7141  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7142    assert(MD == getCurMethodDecl() && "Method parsing confused");
7143    MD->setBody(Body);
7144    if (Body)
7145      MD->setEndLoc(Body->getLocEnd());
7146    if (!MD->isInvalidDecl()) {
7147      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7148      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7149                                             MD->getResultType(), MD);
7150
7151      if (Body)
7152        computeNRVO(Body, getCurFunction());
7153    }
7154    if (ObjCShouldCallSuperDealloc) {
7155      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7156      ObjCShouldCallSuperDealloc = false;
7157    }
7158    if (ObjCShouldCallSuperFinalize) {
7159      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7160      ObjCShouldCallSuperFinalize = false;
7161    }
7162  } else {
7163    return 0;
7164  }
7165
7166  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7167         "ObjC methods, which should have been handled in the block above.");
7168  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7169         "ObjC methods, which should have been handled in the block above.");
7170
7171  // Verify and clean out per-function state.
7172  if (Body) {
7173    // C++ constructors that have function-try-blocks can't have return
7174    // statements in the handlers of that block. (C++ [except.handle]p14)
7175    // Verify this.
7176    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7177      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7178
7179    // Verify that gotos and switch cases don't jump into scopes illegally.
7180    if (getCurFunction()->NeedsScopeChecking() &&
7181        !dcl->isInvalidDecl() &&
7182        !hasAnyUnrecoverableErrorsInThisFunction())
7183      DiagnoseInvalidJumps(Body);
7184
7185    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7186      if (!Destructor->getParent()->isDependentType())
7187        CheckDestructor(Destructor);
7188
7189      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7190                                             Destructor->getParent());
7191    }
7192
7193    // If any errors have occurred, clear out any temporaries that may have
7194    // been leftover. This ensures that these temporaries won't be picked up for
7195    // deletion in some later function.
7196    if (PP.getDiagnostics().hasErrorOccurred() ||
7197        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7198      DiscardCleanupsInEvaluationContext();
7199    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7200      // Since the body is valid, issue any analysis-based warnings that are
7201      // enabled.
7202      ActivePolicy = &WP;
7203    }
7204
7205    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7206        !CheckConstexprFunctionBody(FD, Body))
7207      FD->setInvalidDecl();
7208
7209    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7210    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7211  }
7212
7213  if (!IsInstantiation)
7214    PopDeclContext();
7215
7216  PopFunctionScopeInfo(ActivePolicy, dcl);
7217
7218  // If any errors have occurred, clear out any temporaries that may have
7219  // been leftover. This ensures that these temporaries won't be picked up for
7220  // deletion in some later function.
7221  if (getDiagnostics().hasErrorOccurred()) {
7222    DiscardCleanupsInEvaluationContext();
7223  }
7224
7225  return dcl;
7226}
7227
7228
7229/// When we finish delayed parsing of an attribute, we must attach it to the
7230/// relevant Decl.
7231void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7232                                       ParsedAttributes &Attrs) {
7233  ProcessDeclAttributeList(S, D, Attrs.getList());
7234}
7235
7236
7237/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7238/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7239NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7240                                          IdentifierInfo &II, Scope *S) {
7241  // Before we produce a declaration for an implicitly defined
7242  // function, see whether there was a locally-scoped declaration of
7243  // this name as a function or variable. If so, use that
7244  // (non-visible) declaration, and complain about it.
7245  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7246    = findLocallyScopedExternalDecl(&II);
7247  if (Pos != LocallyScopedExternalDecls.end()) {
7248    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7249    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7250    return Pos->second;
7251  }
7252
7253  // Extension in C99.  Legal in C90, but warn about it.
7254  unsigned diag_id;
7255  if (II.getName().startswith("__builtin_"))
7256    diag_id = diag::err_builtin_unknown;
7257  else if (getLangOptions().C99)
7258    diag_id = diag::ext_implicit_function_decl;
7259  else
7260    diag_id = diag::warn_implicit_function_decl;
7261  Diag(Loc, diag_id) << &II;
7262
7263  // Because typo correction is expensive, only do it if the implicit
7264  // function declaration is going to be treated as an error.
7265  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7266    TypoCorrection Corrected;
7267    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7268                                      LookupOrdinaryName, S, 0))) {
7269      NamedDecl *Decl = Corrected.getCorrectionDecl();
7270      if (FunctionDecl *Func = dyn_cast_or_null<FunctionDecl>(Decl)) {
7271        std::string CorrectedStr = Corrected.getAsString(getLangOptions());
7272        std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOptions());
7273
7274        Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7275            << FixItHint::CreateReplacement(Loc, CorrectedStr);
7276
7277        if (Func->getLocation().isValid()
7278            && !II.getName().startswith("__builtin_"))
7279          Diag(Func->getLocation(), diag::note_previous_decl)
7280              << CorrectedQuotedStr;
7281      }
7282    }
7283  }
7284
7285  // Set a Declarator for the implicit definition: int foo();
7286  const char *Dummy;
7287  AttributeFactory attrFactory;
7288  DeclSpec DS(attrFactory);
7289  unsigned DiagID;
7290  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7291  (void)Error; // Silence warning.
7292  assert(!Error && "Error setting up implicit decl!");
7293  Declarator D(DS, Declarator::BlockContext);
7294  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7295                                             0, 0, true, SourceLocation(),
7296                                             SourceLocation(), SourceLocation(),
7297                                             SourceLocation(),
7298                                             EST_None, SourceLocation(),
7299                                             0, 0, 0, 0, Loc, Loc, D),
7300                DS.getAttributes(),
7301                SourceLocation());
7302  D.SetIdentifier(&II, Loc);
7303
7304  // Insert this function into translation-unit scope.
7305
7306  DeclContext *PrevDC = CurContext;
7307  CurContext = Context.getTranslationUnitDecl();
7308
7309  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7310  FD->setImplicit();
7311
7312  CurContext = PrevDC;
7313
7314  AddKnownFunctionAttributes(FD);
7315
7316  return FD;
7317}
7318
7319/// \brief Adds any function attributes that we know a priori based on
7320/// the declaration of this function.
7321///
7322/// These attributes can apply both to implicitly-declared builtins
7323/// (like __builtin___printf_chk) or to library-declared functions
7324/// like NSLog or printf.
7325///
7326/// We need to check for duplicate attributes both here and where user-written
7327/// attributes are applied to declarations.
7328void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7329  if (FD->isInvalidDecl())
7330    return;
7331
7332  // If this is a built-in function, map its builtin attributes to
7333  // actual attributes.
7334  if (unsigned BuiltinID = FD->getBuiltinID()) {
7335    // Handle printf-formatting attributes.
7336    unsigned FormatIdx;
7337    bool HasVAListArg;
7338    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7339      if (!FD->getAttr<FormatAttr>())
7340        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7341                                                "printf", FormatIdx+1,
7342                                               HasVAListArg ? 0 : FormatIdx+2));
7343    }
7344    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7345                                             HasVAListArg)) {
7346     if (!FD->getAttr<FormatAttr>())
7347       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7348                                              "scanf", FormatIdx+1,
7349                                              HasVAListArg ? 0 : FormatIdx+2));
7350    }
7351
7352    // Mark const if we don't care about errno and that is the only
7353    // thing preventing the function from being const. This allows
7354    // IRgen to use LLVM intrinsics for such functions.
7355    if (!getLangOptions().MathErrno &&
7356        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7357      if (!FD->getAttr<ConstAttr>())
7358        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7359    }
7360
7361    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7362        !FD->getAttr<ReturnsTwiceAttr>())
7363      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7364    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7365      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7366    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7367      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7368  }
7369
7370  IdentifierInfo *Name = FD->getIdentifier();
7371  if (!Name)
7372    return;
7373  if ((!getLangOptions().CPlusPlus &&
7374       FD->getDeclContext()->isTranslationUnit()) ||
7375      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7376       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7377       LinkageSpecDecl::lang_c)) {
7378    // Okay: this could be a libc/libm/Objective-C function we know
7379    // about.
7380  } else
7381    return;
7382
7383  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7384    // FIXME: NSLog and NSLogv should be target specific
7385    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7386      // FIXME: We known better than our headers.
7387      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7388    } else
7389      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7390                                             "printf", 1,
7391                                             Name->isStr("NSLogv") ? 0 : 2));
7392  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7393    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7394    // target-specific builtins, perhaps?
7395    if (!FD->getAttr<FormatAttr>())
7396      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7397                                             "printf", 2,
7398                                             Name->isStr("vasprintf") ? 0 : 3));
7399  }
7400}
7401
7402TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7403                                    TypeSourceInfo *TInfo) {
7404  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7405  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7406
7407  if (!TInfo) {
7408    assert(D.isInvalidType() && "no declarator info for valid type");
7409    TInfo = Context.getTrivialTypeSourceInfo(T);
7410  }
7411
7412  // Scope manipulation handled by caller.
7413  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7414                                           D.getSourceRange().getBegin(),
7415                                           D.getIdentifierLoc(),
7416                                           D.getIdentifier(),
7417                                           TInfo);
7418
7419  // Bail out immediately if we have an invalid declaration.
7420  if (D.isInvalidType()) {
7421    NewTD->setInvalidDecl();
7422    return NewTD;
7423  }
7424
7425  if (D.getDeclSpec().isModulePrivateSpecified()) {
7426    if (CurContext->isFunctionOrMethod())
7427      Diag(NewTD->getLocation(), diag::err_module_private_local)
7428        << 2 << NewTD->getDeclName()
7429        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7430        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7431    else
7432      NewTD->setModulePrivate();
7433  }
7434
7435  // C++ [dcl.typedef]p8:
7436  //   If the typedef declaration defines an unnamed class (or
7437  //   enum), the first typedef-name declared by the declaration
7438  //   to be that class type (or enum type) is used to denote the
7439  //   class type (or enum type) for linkage purposes only.
7440  // We need to check whether the type was declared in the declaration.
7441  switch (D.getDeclSpec().getTypeSpecType()) {
7442  case TST_enum:
7443  case TST_struct:
7444  case TST_union:
7445  case TST_class: {
7446    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7447
7448    // Do nothing if the tag is not anonymous or already has an
7449    // associated typedef (from an earlier typedef in this decl group).
7450    if (tagFromDeclSpec->getIdentifier()) break;
7451    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7452
7453    // A well-formed anonymous tag must always be a TUK_Definition.
7454    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7455
7456    // The type must match the tag exactly;  no qualifiers allowed.
7457    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7458      break;
7459
7460    // Otherwise, set this is the anon-decl typedef for the tag.
7461    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7462    break;
7463  }
7464
7465  default:
7466    break;
7467  }
7468
7469  return NewTD;
7470}
7471
7472
7473/// \brief Determine whether a tag with a given kind is acceptable
7474/// as a redeclaration of the given tag declaration.
7475///
7476/// \returns true if the new tag kind is acceptable, false otherwise.
7477bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7478                                        TagTypeKind NewTag, bool isDefinition,
7479                                        SourceLocation NewTagLoc,
7480                                        const IdentifierInfo &Name) {
7481  // C++ [dcl.type.elab]p3:
7482  //   The class-key or enum keyword present in the
7483  //   elaborated-type-specifier shall agree in kind with the
7484  //   declaration to which the name in the elaborated-type-specifier
7485  //   refers. This rule also applies to the form of
7486  //   elaborated-type-specifier that declares a class-name or
7487  //   friend class since it can be construed as referring to the
7488  //   definition of the class. Thus, in any
7489  //   elaborated-type-specifier, the enum keyword shall be used to
7490  //   refer to an enumeration (7.2), the union class-key shall be
7491  //   used to refer to a union (clause 9), and either the class or
7492  //   struct class-key shall be used to refer to a class (clause 9)
7493  //   declared using the class or struct class-key.
7494  TagTypeKind OldTag = Previous->getTagKind();
7495  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7496    if (OldTag == NewTag)
7497      return true;
7498
7499  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7500      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7501    // Warn about the struct/class tag mismatch.
7502    bool isTemplate = false;
7503    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7504      isTemplate = Record->getDescribedClassTemplate();
7505
7506    if (!ActiveTemplateInstantiations.empty()) {
7507      // In a template instantiation, do not offer fix-its for tag mismatches
7508      // since they usually mess up the template instead of fixing the problem.
7509      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7510        << (NewTag == TTK_Class) << isTemplate << &Name;
7511      return true;
7512    }
7513
7514    if (isDefinition) {
7515      // On definitions, check previous tags and issue a fix-it for each
7516      // one that doesn't match the current tag.
7517      if (Previous->getDefinition()) {
7518        // Don't suggest fix-its for redefinitions.
7519        return true;
7520      }
7521
7522      bool previousMismatch = false;
7523      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7524           E(Previous->redecls_end()); I != E; ++I) {
7525        if (I->getTagKind() != NewTag) {
7526          if (!previousMismatch) {
7527            previousMismatch = true;
7528            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7529              << (NewTag == TTK_Class) << isTemplate << &Name;
7530          }
7531          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7532            << (NewTag == TTK_Class)
7533            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7534                                            NewTag == TTK_Class?
7535                                            "class" : "struct");
7536        }
7537      }
7538      return true;
7539    }
7540
7541    // Check for a previous definition.  If current tag and definition
7542    // are same type, do nothing.  If no definition, but disagree with
7543    // with previous tag type, give a warning, but no fix-it.
7544    const TagDecl *Redecl = Previous->getDefinition() ?
7545                            Previous->getDefinition() : Previous;
7546    if (Redecl->getTagKind() == NewTag) {
7547      return true;
7548    }
7549
7550    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7551      << (NewTag == TTK_Class)
7552      << isTemplate << &Name;
7553    Diag(Redecl->getLocation(), diag::note_previous_use);
7554
7555    // If there is a previous defintion, suggest a fix-it.
7556    if (Previous->getDefinition()) {
7557        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7558          << (Redecl->getTagKind() == TTK_Class)
7559          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7560                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7561    }
7562
7563    return true;
7564  }
7565  return false;
7566}
7567
7568/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7569/// former case, Name will be non-null.  In the later case, Name will be null.
7570/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7571/// reference/declaration/definition of a tag.
7572Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7573                     SourceLocation KWLoc, CXXScopeSpec &SS,
7574                     IdentifierInfo *Name, SourceLocation NameLoc,
7575                     AttributeList *Attr, AccessSpecifier AS,
7576                     SourceLocation ModulePrivateLoc,
7577                     MultiTemplateParamsArg TemplateParameterLists,
7578                     bool &OwnedDecl, bool &IsDependent,
7579                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7580                     TypeResult UnderlyingType) {
7581  // If this is not a definition, it must have a name.
7582  assert((Name != 0 || TUK == TUK_Definition) &&
7583         "Nameless record must be a definition!");
7584  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7585
7586  OwnedDecl = false;
7587  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7588
7589  // FIXME: Check explicit specializations more carefully.
7590  bool isExplicitSpecialization = false;
7591  bool Invalid = false;
7592
7593  // We only need to do this matching if we have template parameters
7594  // or a scope specifier, which also conveniently avoids this work
7595  // for non-C++ cases.
7596  if (TemplateParameterLists.size() > 0 ||
7597      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7598    if (TemplateParameterList *TemplateParams
7599          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7600                                                TemplateParameterLists.get(),
7601                                                TemplateParameterLists.size(),
7602                                                    TUK == TUK_Friend,
7603                                                    isExplicitSpecialization,
7604                                                    Invalid)) {
7605      if (TemplateParams->size() > 0) {
7606        // This is a declaration or definition of a class template (which may
7607        // be a member of another template).
7608
7609        if (Invalid)
7610          return 0;
7611
7612        OwnedDecl = false;
7613        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7614                                               SS, Name, NameLoc, Attr,
7615                                               TemplateParams, AS,
7616                                               ModulePrivateLoc,
7617                                           TemplateParameterLists.size() - 1,
7618                 (TemplateParameterList**) TemplateParameterLists.release());
7619        return Result.get();
7620      } else {
7621        // The "template<>" header is extraneous.
7622        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7623          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7624        isExplicitSpecialization = true;
7625      }
7626    }
7627  }
7628
7629  // Figure out the underlying type if this a enum declaration. We need to do
7630  // this early, because it's needed to detect if this is an incompatible
7631  // redeclaration.
7632  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7633
7634  if (Kind == TTK_Enum) {
7635    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7636      // No underlying type explicitly specified, or we failed to parse the
7637      // type, default to int.
7638      EnumUnderlying = Context.IntTy.getTypePtr();
7639    else if (UnderlyingType.get()) {
7640      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7641      // integral type; any cv-qualification is ignored.
7642      TypeSourceInfo *TI = 0;
7643      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7644      EnumUnderlying = TI;
7645
7646      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7647
7648      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7649        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7650          << T;
7651        // Recover by falling back to int.
7652        EnumUnderlying = Context.IntTy.getTypePtr();
7653      }
7654
7655      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7656                                          UPPC_FixedUnderlyingType))
7657        EnumUnderlying = Context.IntTy.getTypePtr();
7658
7659    } else if (getLangOptions().MicrosoftExt)
7660      // Microsoft enums are always of int type.
7661      EnumUnderlying = Context.IntTy.getTypePtr();
7662  }
7663
7664  DeclContext *SearchDC = CurContext;
7665  DeclContext *DC = CurContext;
7666  bool isStdBadAlloc = false;
7667
7668  RedeclarationKind Redecl = ForRedeclaration;
7669  if (TUK == TUK_Friend || TUK == TUK_Reference)
7670    Redecl = NotForRedeclaration;
7671
7672  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7673
7674  if (Name && SS.isNotEmpty()) {
7675    // We have a nested-name tag ('struct foo::bar').
7676
7677    // Check for invalid 'foo::'.
7678    if (SS.isInvalid()) {
7679      Name = 0;
7680      goto CreateNewDecl;
7681    }
7682
7683    // If this is a friend or a reference to a class in a dependent
7684    // context, don't try to make a decl for it.
7685    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7686      DC = computeDeclContext(SS, false);
7687      if (!DC) {
7688        IsDependent = true;
7689        return 0;
7690      }
7691    } else {
7692      DC = computeDeclContext(SS, true);
7693      if (!DC) {
7694        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7695          << SS.getRange();
7696        return 0;
7697      }
7698    }
7699
7700    if (RequireCompleteDeclContext(SS, DC))
7701      return 0;
7702
7703    SearchDC = DC;
7704    // Look-up name inside 'foo::'.
7705    LookupQualifiedName(Previous, DC);
7706
7707    if (Previous.isAmbiguous())
7708      return 0;
7709
7710    if (Previous.empty()) {
7711      // Name lookup did not find anything. However, if the
7712      // nested-name-specifier refers to the current instantiation,
7713      // and that current instantiation has any dependent base
7714      // classes, we might find something at instantiation time: treat
7715      // this as a dependent elaborated-type-specifier.
7716      // But this only makes any sense for reference-like lookups.
7717      if (Previous.wasNotFoundInCurrentInstantiation() &&
7718          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7719        IsDependent = true;
7720        return 0;
7721      }
7722
7723      // A tag 'foo::bar' must already exist.
7724      Diag(NameLoc, diag::err_not_tag_in_scope)
7725        << Kind << Name << DC << SS.getRange();
7726      Name = 0;
7727      Invalid = true;
7728      goto CreateNewDecl;
7729    }
7730  } else if (Name) {
7731    // If this is a named struct, check to see if there was a previous forward
7732    // declaration or definition.
7733    // FIXME: We're looking into outer scopes here, even when we
7734    // shouldn't be. Doing so can result in ambiguities that we
7735    // shouldn't be diagnosing.
7736    LookupName(Previous, S);
7737
7738    if (Previous.isAmbiguous() &&
7739        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7740      LookupResult::Filter F = Previous.makeFilter();
7741      while (F.hasNext()) {
7742        NamedDecl *ND = F.next();
7743        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7744          F.erase();
7745      }
7746      F.done();
7747    }
7748
7749    // Note:  there used to be some attempt at recovery here.
7750    if (Previous.isAmbiguous())
7751      return 0;
7752
7753    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7754      // FIXME: This makes sure that we ignore the contexts associated
7755      // with C structs, unions, and enums when looking for a matching
7756      // tag declaration or definition. See the similar lookup tweak
7757      // in Sema::LookupName; is there a better way to deal with this?
7758      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7759        SearchDC = SearchDC->getParent();
7760    }
7761  } else if (S->isFunctionPrototypeScope()) {
7762    // If this is an enum declaration in function prototype scope, set its
7763    // initial context to the translation unit.
7764    SearchDC = Context.getTranslationUnitDecl();
7765  }
7766
7767  if (Previous.isSingleResult() &&
7768      Previous.getFoundDecl()->isTemplateParameter()) {
7769    // Maybe we will complain about the shadowed template parameter.
7770    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7771    // Just pretend that we didn't see the previous declaration.
7772    Previous.clear();
7773  }
7774
7775  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7776      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7777    // This is a declaration of or a reference to "std::bad_alloc".
7778    isStdBadAlloc = true;
7779
7780    if (Previous.empty() && StdBadAlloc) {
7781      // std::bad_alloc has been implicitly declared (but made invisible to
7782      // name lookup). Fill in this implicit declaration as the previous
7783      // declaration, so that the declarations get chained appropriately.
7784      Previous.addDecl(getStdBadAlloc());
7785    }
7786  }
7787
7788  // If we didn't find a previous declaration, and this is a reference
7789  // (or friend reference), move to the correct scope.  In C++, we
7790  // also need to do a redeclaration lookup there, just in case
7791  // there's a shadow friend decl.
7792  if (Name && Previous.empty() &&
7793      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7794    if (Invalid) goto CreateNewDecl;
7795    assert(SS.isEmpty());
7796
7797    if (TUK == TUK_Reference) {
7798      // C++ [basic.scope.pdecl]p5:
7799      //   -- for an elaborated-type-specifier of the form
7800      //
7801      //          class-key identifier
7802      //
7803      //      if the elaborated-type-specifier is used in the
7804      //      decl-specifier-seq or parameter-declaration-clause of a
7805      //      function defined in namespace scope, the identifier is
7806      //      declared as a class-name in the namespace that contains
7807      //      the declaration; otherwise, except as a friend
7808      //      declaration, the identifier is declared in the smallest
7809      //      non-class, non-function-prototype scope that contains the
7810      //      declaration.
7811      //
7812      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7813      // C structs and unions.
7814      //
7815      // It is an error in C++ to declare (rather than define) an enum
7816      // type, including via an elaborated type specifier.  We'll
7817      // diagnose that later; for now, declare the enum in the same
7818      // scope as we would have picked for any other tag type.
7819      //
7820      // GNU C also supports this behavior as part of its incomplete
7821      // enum types extension, while GNU C++ does not.
7822      //
7823      // Find the context where we'll be declaring the tag.
7824      // FIXME: We would like to maintain the current DeclContext as the
7825      // lexical context,
7826      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7827        SearchDC = SearchDC->getParent();
7828
7829      // Find the scope where we'll be declaring the tag.
7830      while (S->isClassScope() ||
7831             (getLangOptions().CPlusPlus &&
7832              S->isFunctionPrototypeScope()) ||
7833             ((S->getFlags() & Scope::DeclScope) == 0) ||
7834             (S->getEntity() &&
7835              ((DeclContext *)S->getEntity())->isTransparentContext()))
7836        S = S->getParent();
7837    } else {
7838      assert(TUK == TUK_Friend);
7839      // C++ [namespace.memdef]p3:
7840      //   If a friend declaration in a non-local class first declares a
7841      //   class or function, the friend class or function is a member of
7842      //   the innermost enclosing namespace.
7843      SearchDC = SearchDC->getEnclosingNamespaceContext();
7844    }
7845
7846    // In C++, we need to do a redeclaration lookup to properly
7847    // diagnose some problems.
7848    if (getLangOptions().CPlusPlus) {
7849      Previous.setRedeclarationKind(ForRedeclaration);
7850      LookupQualifiedName(Previous, SearchDC);
7851    }
7852  }
7853
7854  if (!Previous.empty()) {
7855    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7856
7857    // It's okay to have a tag decl in the same scope as a typedef
7858    // which hides a tag decl in the same scope.  Finding this
7859    // insanity with a redeclaration lookup can only actually happen
7860    // in C++.
7861    //
7862    // This is also okay for elaborated-type-specifiers, which is
7863    // technically forbidden by the current standard but which is
7864    // okay according to the likely resolution of an open issue;
7865    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7866    if (getLangOptions().CPlusPlus) {
7867      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7868        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7869          TagDecl *Tag = TT->getDecl();
7870          if (Tag->getDeclName() == Name &&
7871              Tag->getDeclContext()->getRedeclContext()
7872                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7873            PrevDecl = Tag;
7874            Previous.clear();
7875            Previous.addDecl(Tag);
7876            Previous.resolveKind();
7877          }
7878        }
7879      }
7880    }
7881
7882    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7883      // If this is a use of a previous tag, or if the tag is already declared
7884      // in the same scope (so that the definition/declaration completes or
7885      // rementions the tag), reuse the decl.
7886      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7887          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7888        // Make sure that this wasn't declared as an enum and now used as a
7889        // struct or something similar.
7890        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7891                                          TUK == TUK_Definition, KWLoc,
7892                                          *Name)) {
7893          bool SafeToContinue
7894            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7895               Kind != TTK_Enum);
7896          if (SafeToContinue)
7897            Diag(KWLoc, diag::err_use_with_wrong_tag)
7898              << Name
7899              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7900                                              PrevTagDecl->getKindName());
7901          else
7902            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7903          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7904
7905          if (SafeToContinue)
7906            Kind = PrevTagDecl->getTagKind();
7907          else {
7908            // Recover by making this an anonymous redefinition.
7909            Name = 0;
7910            Previous.clear();
7911            Invalid = true;
7912          }
7913        }
7914
7915        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7916          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7917
7918          // All conflicts with previous declarations are recovered by
7919          // returning the previous declaration.
7920          if (ScopedEnum != PrevEnum->isScoped()) {
7921            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7922              << PrevEnum->isScoped();
7923            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7924            return PrevTagDecl;
7925          }
7926          else if (EnumUnderlying && PrevEnum->isFixed()) {
7927            QualType T;
7928            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7929                T = TI->getType();
7930            else
7931                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7932
7933            if (!Context.hasSameUnqualifiedType(T,
7934                                                PrevEnum->getIntegerType())) {
7935              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7936                   diag::err_enum_redeclare_type_mismatch)
7937                << T
7938                << PrevEnum->getIntegerType();
7939              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7940              return PrevTagDecl;
7941            }
7942          }
7943          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7944            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7945              << PrevEnum->isFixed();
7946            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7947            return PrevTagDecl;
7948          }
7949        }
7950
7951        if (!Invalid) {
7952          // If this is a use, just return the declaration we found.
7953
7954          // FIXME: In the future, return a variant or some other clue
7955          // for the consumer of this Decl to know it doesn't own it.
7956          // For our current ASTs this shouldn't be a problem, but will
7957          // need to be changed with DeclGroups.
7958          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7959               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7960            return PrevTagDecl;
7961
7962          // Diagnose attempts to redefine a tag.
7963          if (TUK == TUK_Definition) {
7964            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7965              // If we're defining a specialization and the previous definition
7966              // is from an implicit instantiation, don't emit an error
7967              // here; we'll catch this in the general case below.
7968              if (!isExplicitSpecialization ||
7969                  !isa<CXXRecordDecl>(Def) ||
7970                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7971                                               == TSK_ExplicitSpecialization) {
7972                Diag(NameLoc, diag::err_redefinition) << Name;
7973                Diag(Def->getLocation(), diag::note_previous_definition);
7974                // If this is a redefinition, recover by making this
7975                // struct be anonymous, which will make any later
7976                // references get the previous definition.
7977                Name = 0;
7978                Previous.clear();
7979                Invalid = true;
7980              }
7981            } else {
7982              // If the type is currently being defined, complain
7983              // about a nested redefinition.
7984              const TagType *Tag
7985                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7986              if (Tag->isBeingDefined()) {
7987                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7988                Diag(PrevTagDecl->getLocation(),
7989                     diag::note_previous_definition);
7990                Name = 0;
7991                Previous.clear();
7992                Invalid = true;
7993              }
7994            }
7995
7996            // Okay, this is definition of a previously declared or referenced
7997            // tag PrevDecl. We're going to create a new Decl for it.
7998          }
7999        }
8000        // If we get here we have (another) forward declaration or we
8001        // have a definition.  Just create a new decl.
8002
8003      } else {
8004        // If we get here, this is a definition of a new tag type in a nested
8005        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8006        // new decl/type.  We set PrevDecl to NULL so that the entities
8007        // have distinct types.
8008        Previous.clear();
8009      }
8010      // If we get here, we're going to create a new Decl. If PrevDecl
8011      // is non-NULL, it's a definition of the tag declared by
8012      // PrevDecl. If it's NULL, we have a new definition.
8013
8014
8015    // Otherwise, PrevDecl is not a tag, but was found with tag
8016    // lookup.  This is only actually possible in C++, where a few
8017    // things like templates still live in the tag namespace.
8018    } else {
8019      // Use a better diagnostic if an elaborated-type-specifier
8020      // found the wrong kind of type on the first
8021      // (non-redeclaration) lookup.
8022      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8023          !Previous.isForRedeclaration()) {
8024        unsigned Kind = 0;
8025        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8026        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8027        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8028        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8029        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8030        Invalid = true;
8031
8032      // Otherwise, only diagnose if the declaration is in scope.
8033      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8034                                isExplicitSpecialization)) {
8035        // do nothing
8036
8037      // Diagnose implicit declarations introduced by elaborated types.
8038      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8039        unsigned Kind = 0;
8040        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8041        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8042        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8043        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8044        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8045        Invalid = true;
8046
8047      // Otherwise it's a declaration.  Call out a particularly common
8048      // case here.
8049      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8050        unsigned Kind = 0;
8051        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8052        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8053          << Name << Kind << TND->getUnderlyingType();
8054        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8055        Invalid = true;
8056
8057      // Otherwise, diagnose.
8058      } else {
8059        // The tag name clashes with something else in the target scope,
8060        // issue an error and recover by making this tag be anonymous.
8061        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8062        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8063        Name = 0;
8064        Invalid = true;
8065      }
8066
8067      // The existing declaration isn't relevant to us; we're in a
8068      // new scope, so clear out the previous declaration.
8069      Previous.clear();
8070    }
8071  }
8072
8073CreateNewDecl:
8074
8075  TagDecl *PrevDecl = 0;
8076  if (Previous.isSingleResult())
8077    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8078
8079  // If there is an identifier, use the location of the identifier as the
8080  // location of the decl, otherwise use the location of the struct/union
8081  // keyword.
8082  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8083
8084  // Otherwise, create a new declaration. If there is a previous
8085  // declaration of the same entity, the two will be linked via
8086  // PrevDecl.
8087  TagDecl *New;
8088
8089  bool IsForwardReference = false;
8090  if (Kind == TTK_Enum) {
8091    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8092    // enum X { A, B, C } D;    D should chain to X.
8093    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8094                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8095                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8096    // If this is an undefined enum, warn.
8097    if (TUK != TUK_Definition && !Invalid) {
8098      TagDecl *Def;
8099      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8100        // C++0x: 7.2p2: opaque-enum-declaration.
8101        // Conflicts are diagnosed above. Do nothing.
8102      }
8103      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8104        Diag(Loc, diag::ext_forward_ref_enum_def)
8105          << New;
8106        Diag(Def->getLocation(), diag::note_previous_definition);
8107      } else {
8108        unsigned DiagID = diag::ext_forward_ref_enum;
8109        if (getLangOptions().MicrosoftExt)
8110          DiagID = diag::ext_ms_forward_ref_enum;
8111        else if (getLangOptions().CPlusPlus)
8112          DiagID = diag::err_forward_ref_enum;
8113        Diag(Loc, DiagID);
8114
8115        // If this is a forward-declared reference to an enumeration, make a
8116        // note of it; we won't actually be introducing the declaration into
8117        // the declaration context.
8118        if (TUK == TUK_Reference)
8119          IsForwardReference = true;
8120      }
8121    }
8122
8123    if (EnumUnderlying) {
8124      EnumDecl *ED = cast<EnumDecl>(New);
8125      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8126        ED->setIntegerTypeSourceInfo(TI);
8127      else
8128        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8129      ED->setPromotionType(ED->getIntegerType());
8130    }
8131
8132  } else {
8133    // struct/union/class
8134
8135    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8136    // struct X { int A; } D;    D should chain to X.
8137    if (getLangOptions().CPlusPlus) {
8138      // FIXME: Look for a way to use RecordDecl for simple structs.
8139      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8140                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8141
8142      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8143        StdBadAlloc = cast<CXXRecordDecl>(New);
8144    } else
8145      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8146                               cast_or_null<RecordDecl>(PrevDecl));
8147  }
8148
8149  // Maybe add qualifier info.
8150  if (SS.isNotEmpty()) {
8151    if (SS.isSet()) {
8152      New->setQualifierInfo(SS.getWithLocInContext(Context));
8153      if (TemplateParameterLists.size() > 0) {
8154        New->setTemplateParameterListsInfo(Context,
8155                                           TemplateParameterLists.size(),
8156                    (TemplateParameterList**) TemplateParameterLists.release());
8157      }
8158    }
8159    else
8160      Invalid = true;
8161  }
8162
8163  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8164    // Add alignment attributes if necessary; these attributes are checked when
8165    // the ASTContext lays out the structure.
8166    //
8167    // It is important for implementing the correct semantics that this
8168    // happen here (in act on tag decl). The #pragma pack stack is
8169    // maintained as a result of parser callbacks which can occur at
8170    // many points during the parsing of a struct declaration (because
8171    // the #pragma tokens are effectively skipped over during the
8172    // parsing of the struct).
8173    AddAlignmentAttributesForRecord(RD);
8174
8175    AddMsStructLayoutForRecord(RD);
8176  }
8177
8178  if (ModulePrivateLoc.isValid()) {
8179    if (isExplicitSpecialization)
8180      Diag(New->getLocation(), diag::err_module_private_specialization)
8181        << 2
8182        << FixItHint::CreateRemoval(ModulePrivateLoc);
8183    // __module_private__ does not apply to local classes. However, we only
8184    // diagnose this as an error when the declaration specifiers are
8185    // freestanding. Here, we just ignore the __module_private__.
8186    else if (!SearchDC->isFunctionOrMethod())
8187      New->setModulePrivate();
8188  }
8189
8190  // If this is a specialization of a member class (of a class template),
8191  // check the specialization.
8192  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8193    Invalid = true;
8194
8195  if (Invalid)
8196    New->setInvalidDecl();
8197
8198  if (Attr)
8199    ProcessDeclAttributeList(S, New, Attr);
8200
8201  // If we're declaring or defining a tag in function prototype scope
8202  // in C, note that this type can only be used within the function.
8203  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8204    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8205
8206  // Set the lexical context. If the tag has a C++ scope specifier, the
8207  // lexical context will be different from the semantic context.
8208  New->setLexicalDeclContext(CurContext);
8209
8210  // Mark this as a friend decl if applicable.
8211  // In Microsoft mode, a friend declaration also acts as a forward
8212  // declaration so we always pass true to setObjectOfFriendDecl to make
8213  // the tag name visible.
8214  if (TUK == TUK_Friend)
8215    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8216                               getLangOptions().MicrosoftExt);
8217
8218  // Set the access specifier.
8219  if (!Invalid && SearchDC->isRecord())
8220    SetMemberAccessSpecifier(New, PrevDecl, AS);
8221
8222  if (TUK == TUK_Definition)
8223    New->startDefinition();
8224
8225  // If this has an identifier, add it to the scope stack.
8226  if (TUK == TUK_Friend) {
8227    // We might be replacing an existing declaration in the lookup tables;
8228    // if so, borrow its access specifier.
8229    if (PrevDecl)
8230      New->setAccess(PrevDecl->getAccess());
8231
8232    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8233    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8234    if (Name) // can be null along some error paths
8235      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8236        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8237  } else if (Name) {
8238    S = getNonFieldDeclScope(S);
8239    PushOnScopeChains(New, S, !IsForwardReference);
8240    if (IsForwardReference)
8241      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8242
8243  } else {
8244    CurContext->addDecl(New);
8245  }
8246
8247  // If this is the C FILE type, notify the AST context.
8248  if (IdentifierInfo *II = New->getIdentifier())
8249    if (!New->isInvalidDecl() &&
8250        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8251        II->isStr("FILE"))
8252      Context.setFILEDecl(New);
8253
8254  OwnedDecl = true;
8255  return New;
8256}
8257
8258void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8259  AdjustDeclIfTemplate(TagD);
8260  TagDecl *Tag = cast<TagDecl>(TagD);
8261
8262  // Enter the tag context.
8263  PushDeclContext(S, Tag);
8264}
8265
8266Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8267  assert(isa<ObjCContainerDecl>(IDecl) &&
8268         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8269  DeclContext *OCD = cast<DeclContext>(IDecl);
8270  assert(getContainingDC(OCD) == CurContext &&
8271      "The next DeclContext should be lexically contained in the current one.");
8272  CurContext = OCD;
8273  return IDecl;
8274}
8275
8276void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8277                                           SourceLocation FinalLoc,
8278                                           SourceLocation LBraceLoc) {
8279  AdjustDeclIfTemplate(TagD);
8280  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8281
8282  FieldCollector->StartClass();
8283
8284  if (!Record->getIdentifier())
8285    return;
8286
8287  if (FinalLoc.isValid())
8288    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8289
8290  // C++ [class]p2:
8291  //   [...] The class-name is also inserted into the scope of the
8292  //   class itself; this is known as the injected-class-name. For
8293  //   purposes of access checking, the injected-class-name is treated
8294  //   as if it were a public member name.
8295  CXXRecordDecl *InjectedClassName
8296    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8297                            Record->getLocStart(), Record->getLocation(),
8298                            Record->getIdentifier(),
8299                            /*PrevDecl=*/0,
8300                            /*DelayTypeCreation=*/true);
8301  Context.getTypeDeclType(InjectedClassName, Record);
8302  InjectedClassName->setImplicit();
8303  InjectedClassName->setAccess(AS_public);
8304  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8305      InjectedClassName->setDescribedClassTemplate(Template);
8306  PushOnScopeChains(InjectedClassName, S);
8307  assert(InjectedClassName->isInjectedClassName() &&
8308         "Broken injected-class-name");
8309}
8310
8311void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8312                                    SourceLocation RBraceLoc) {
8313  AdjustDeclIfTemplate(TagD);
8314  TagDecl *Tag = cast<TagDecl>(TagD);
8315  Tag->setRBraceLoc(RBraceLoc);
8316
8317  if (isa<CXXRecordDecl>(Tag))
8318    FieldCollector->FinishClass();
8319
8320  // Exit this scope of this tag's definition.
8321  PopDeclContext();
8322
8323  // Notify the consumer that we've defined a tag.
8324  Consumer.HandleTagDeclDefinition(Tag);
8325}
8326
8327void Sema::ActOnObjCContainerFinishDefinition() {
8328  // Exit this scope of this interface definition.
8329  PopDeclContext();
8330}
8331
8332void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8333  assert(DC == CurContext && "Mismatch of container contexts");
8334  OriginalLexicalContext = DC;
8335  ActOnObjCContainerFinishDefinition();
8336}
8337
8338void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8339  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8340  OriginalLexicalContext = 0;
8341}
8342
8343void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8344  AdjustDeclIfTemplate(TagD);
8345  TagDecl *Tag = cast<TagDecl>(TagD);
8346  Tag->setInvalidDecl();
8347
8348  // We're undoing ActOnTagStartDefinition here, not
8349  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8350  // the FieldCollector.
8351
8352  PopDeclContext();
8353}
8354
8355// Note that FieldName may be null for anonymous bitfields.
8356bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8357                          QualType FieldTy, const Expr *BitWidth,
8358                          bool *ZeroWidth) {
8359  // Default to true; that shouldn't confuse checks for emptiness
8360  if (ZeroWidth)
8361    *ZeroWidth = true;
8362
8363  // C99 6.7.2.1p4 - verify the field type.
8364  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8365  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8366    // Handle incomplete types with specific error.
8367    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8368      return true;
8369    if (FieldName)
8370      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8371        << FieldName << FieldTy << BitWidth->getSourceRange();
8372    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8373      << FieldTy << BitWidth->getSourceRange();
8374  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8375                                             UPPC_BitFieldWidth))
8376    return true;
8377
8378  // If the bit-width is type- or value-dependent, don't try to check
8379  // it now.
8380  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8381    return false;
8382
8383  llvm::APSInt Value;
8384  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8385    return true;
8386
8387  if (Value != 0 && ZeroWidth)
8388    *ZeroWidth = false;
8389
8390  // Zero-width bitfield is ok for anonymous field.
8391  if (Value == 0 && FieldName)
8392    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8393
8394  if (Value.isSigned() && Value.isNegative()) {
8395    if (FieldName)
8396      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8397               << FieldName << Value.toString(10);
8398    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8399      << Value.toString(10);
8400  }
8401
8402  if (!FieldTy->isDependentType()) {
8403    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8404    if (Value.getZExtValue() > TypeSize) {
8405      if (!getLangOptions().CPlusPlus) {
8406        if (FieldName)
8407          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8408            << FieldName << (unsigned)Value.getZExtValue()
8409            << (unsigned)TypeSize;
8410
8411        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8412          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8413      }
8414
8415      if (FieldName)
8416        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8417          << FieldName << (unsigned)Value.getZExtValue()
8418          << (unsigned)TypeSize;
8419      else
8420        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8421          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8422    }
8423  }
8424
8425  return false;
8426}
8427
8428/// ActOnField - Each field of a C struct/union is passed into this in order
8429/// to create a FieldDecl object for it.
8430Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8431                       Declarator &D, Expr *BitfieldWidth) {
8432  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8433                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8434                               /*HasInit=*/false, AS_public);
8435  return Res;
8436}
8437
8438/// HandleField - Analyze a field of a C struct or a C++ data member.
8439///
8440FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8441                             SourceLocation DeclStart,
8442                             Declarator &D, Expr *BitWidth, bool HasInit,
8443                             AccessSpecifier AS) {
8444  IdentifierInfo *II = D.getIdentifier();
8445  SourceLocation Loc = DeclStart;
8446  if (II) Loc = D.getIdentifierLoc();
8447
8448  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8449  QualType T = TInfo->getType();
8450  if (getLangOptions().CPlusPlus) {
8451    CheckExtraCXXDefaultArguments(D);
8452
8453    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8454                                        UPPC_DataMemberType)) {
8455      D.setInvalidType();
8456      T = Context.IntTy;
8457      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8458    }
8459  }
8460
8461  DiagnoseFunctionSpecifiers(D);
8462
8463  if (D.getDeclSpec().isThreadSpecified())
8464    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8465  if (D.getDeclSpec().isConstexprSpecified())
8466    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8467      << 2;
8468
8469  // Check to see if this name was declared as a member previously
8470  NamedDecl *PrevDecl = 0;
8471  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8472  LookupName(Previous, S);
8473  switch (Previous.getResultKind()) {
8474    case LookupResult::Found:
8475    case LookupResult::FoundUnresolvedValue:
8476      PrevDecl = Previous.getAsSingle<NamedDecl>();
8477      break;
8478
8479    case LookupResult::FoundOverloaded:
8480      PrevDecl = Previous.getRepresentativeDecl();
8481      break;
8482
8483    case LookupResult::NotFound:
8484    case LookupResult::NotFoundInCurrentInstantiation:
8485    case LookupResult::Ambiguous:
8486      break;
8487  }
8488  Previous.suppressDiagnostics();
8489
8490  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8491    // Maybe we will complain about the shadowed template parameter.
8492    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8493    // Just pretend that we didn't see the previous declaration.
8494    PrevDecl = 0;
8495  }
8496
8497  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8498    PrevDecl = 0;
8499
8500  bool Mutable
8501    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8502  SourceLocation TSSL = D.getSourceRange().getBegin();
8503  FieldDecl *NewFD
8504    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8505                     TSSL, AS, PrevDecl, &D);
8506
8507  if (NewFD->isInvalidDecl())
8508    Record->setInvalidDecl();
8509
8510  if (D.getDeclSpec().isModulePrivateSpecified())
8511    NewFD->setModulePrivate();
8512
8513  if (NewFD->isInvalidDecl() && PrevDecl) {
8514    // Don't introduce NewFD into scope; there's already something
8515    // with the same name in the same scope.
8516  } else if (II) {
8517    PushOnScopeChains(NewFD, S);
8518  } else
8519    Record->addDecl(NewFD);
8520
8521  return NewFD;
8522}
8523
8524/// \brief Build a new FieldDecl and check its well-formedness.
8525///
8526/// This routine builds a new FieldDecl given the fields name, type,
8527/// record, etc. \p PrevDecl should refer to any previous declaration
8528/// with the same name and in the same scope as the field to be
8529/// created.
8530///
8531/// \returns a new FieldDecl.
8532///
8533/// \todo The Declarator argument is a hack. It will be removed once
8534FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8535                                TypeSourceInfo *TInfo,
8536                                RecordDecl *Record, SourceLocation Loc,
8537                                bool Mutable, Expr *BitWidth, bool HasInit,
8538                                SourceLocation TSSL,
8539                                AccessSpecifier AS, NamedDecl *PrevDecl,
8540                                Declarator *D) {
8541  IdentifierInfo *II = Name.getAsIdentifierInfo();
8542  bool InvalidDecl = false;
8543  if (D) InvalidDecl = D->isInvalidType();
8544
8545  // If we receive a broken type, recover by assuming 'int' and
8546  // marking this declaration as invalid.
8547  if (T.isNull()) {
8548    InvalidDecl = true;
8549    T = Context.IntTy;
8550  }
8551
8552  QualType EltTy = Context.getBaseElementType(T);
8553  if (!EltTy->isDependentType() &&
8554      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8555    // Fields of incomplete type force their record to be invalid.
8556    Record->setInvalidDecl();
8557    InvalidDecl = true;
8558  }
8559
8560  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8561  // than a variably modified type.
8562  if (!InvalidDecl && T->isVariablyModifiedType()) {
8563    bool SizeIsNegative;
8564    llvm::APSInt Oversized;
8565    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8566                                                           SizeIsNegative,
8567                                                           Oversized);
8568    if (!FixedTy.isNull()) {
8569      Diag(Loc, diag::warn_illegal_constant_array_size);
8570      T = FixedTy;
8571    } else {
8572      if (SizeIsNegative)
8573        Diag(Loc, diag::err_typecheck_negative_array_size);
8574      else if (Oversized.getBoolValue())
8575        Diag(Loc, diag::err_array_too_large)
8576          << Oversized.toString(10);
8577      else
8578        Diag(Loc, diag::err_typecheck_field_variable_size);
8579      InvalidDecl = true;
8580    }
8581  }
8582
8583  // Fields can not have abstract class types
8584  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8585                                             diag::err_abstract_type_in_decl,
8586                                             AbstractFieldType))
8587    InvalidDecl = true;
8588
8589  bool ZeroWidth = false;
8590  // If this is declared as a bit-field, check the bit-field.
8591  if (!InvalidDecl && BitWidth &&
8592      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8593    InvalidDecl = true;
8594    BitWidth = 0;
8595    ZeroWidth = false;
8596  }
8597
8598  // Check that 'mutable' is consistent with the type of the declaration.
8599  if (!InvalidDecl && Mutable) {
8600    unsigned DiagID = 0;
8601    if (T->isReferenceType())
8602      DiagID = diag::err_mutable_reference;
8603    else if (T.isConstQualified())
8604      DiagID = diag::err_mutable_const;
8605
8606    if (DiagID) {
8607      SourceLocation ErrLoc = Loc;
8608      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8609        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8610      Diag(ErrLoc, DiagID);
8611      Mutable = false;
8612      InvalidDecl = true;
8613    }
8614  }
8615
8616  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8617                                       BitWidth, Mutable, HasInit);
8618  if (InvalidDecl)
8619    NewFD->setInvalidDecl();
8620
8621  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8622    Diag(Loc, diag::err_duplicate_member) << II;
8623    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8624    NewFD->setInvalidDecl();
8625  }
8626
8627  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8628    if (Record->isUnion()) {
8629      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8630        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8631        if (RDecl->getDefinition()) {
8632          // C++ [class.union]p1: An object of a class with a non-trivial
8633          // constructor, a non-trivial copy constructor, a non-trivial
8634          // destructor, or a non-trivial copy assignment operator
8635          // cannot be a member of a union, nor can an array of such
8636          // objects.
8637          if (CheckNontrivialField(NewFD))
8638            NewFD->setInvalidDecl();
8639        }
8640      }
8641
8642      // C++ [class.union]p1: If a union contains a member of reference type,
8643      // the program is ill-formed.
8644      if (EltTy->isReferenceType()) {
8645        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8646          << NewFD->getDeclName() << EltTy;
8647        NewFD->setInvalidDecl();
8648      }
8649    }
8650  }
8651
8652  // FIXME: We need to pass in the attributes given an AST
8653  // representation, not a parser representation.
8654  if (D)
8655    // FIXME: What to pass instead of TUScope?
8656    ProcessDeclAttributes(TUScope, NewFD, *D);
8657
8658  // In auto-retain/release, infer strong retension for fields of
8659  // retainable type.
8660  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8661    NewFD->setInvalidDecl();
8662
8663  if (T.isObjCGCWeak())
8664    Diag(Loc, diag::warn_attribute_weak_on_field);
8665
8666  NewFD->setAccess(AS);
8667  return NewFD;
8668}
8669
8670bool Sema::CheckNontrivialField(FieldDecl *FD) {
8671  assert(FD);
8672  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8673
8674  if (FD->isInvalidDecl())
8675    return true;
8676
8677  QualType EltTy = Context.getBaseElementType(FD->getType());
8678  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8679    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8680    if (RDecl->getDefinition()) {
8681      // We check for copy constructors before constructors
8682      // because otherwise we'll never get complaints about
8683      // copy constructors.
8684
8685      CXXSpecialMember member = CXXInvalid;
8686      if (!RDecl->hasTrivialCopyConstructor())
8687        member = CXXCopyConstructor;
8688      else if (!RDecl->hasTrivialDefaultConstructor())
8689        member = CXXDefaultConstructor;
8690      else if (!RDecl->hasTrivialCopyAssignment())
8691        member = CXXCopyAssignment;
8692      else if (!RDecl->hasTrivialDestructor())
8693        member = CXXDestructor;
8694
8695      if (member != CXXInvalid) {
8696        if (!getLangOptions().CPlusPlus0x &&
8697            getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8698          // Objective-C++ ARC: it is an error to have a non-trivial field of
8699          // a union. However, system headers in Objective-C programs
8700          // occasionally have Objective-C lifetime objects within unions,
8701          // and rather than cause the program to fail, we make those
8702          // members unavailable.
8703          SourceLocation Loc = FD->getLocation();
8704          if (getSourceManager().isInSystemHeader(Loc)) {
8705            if (!FD->hasAttr<UnavailableAttr>())
8706              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8707                                  "this system field has retaining ownership"));
8708            return false;
8709          }
8710        }
8711
8712        Diag(FD->getLocation(), getLangOptions().CPlusPlus0x ?
8713               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
8714               diag::err_illegal_union_or_anon_struct_member)
8715          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8716        DiagnoseNontrivial(RT, member);
8717        return !getLangOptions().CPlusPlus0x;
8718      }
8719    }
8720  }
8721
8722  return false;
8723}
8724
8725/// DiagnoseNontrivial - Given that a class has a non-trivial
8726/// special member, figure out why.
8727void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8728  QualType QT(T, 0U);
8729  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8730
8731  // Check whether the member was user-declared.
8732  switch (member) {
8733  case CXXInvalid:
8734    break;
8735
8736  case CXXDefaultConstructor:
8737    if (RD->hasUserDeclaredConstructor()) {
8738      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8739      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8740        const FunctionDecl *body = 0;
8741        ci->hasBody(body);
8742        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8743          SourceLocation CtorLoc = ci->getLocation();
8744          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8745          return;
8746        }
8747      }
8748
8749      llvm_unreachable("found no user-declared constructors");
8750    }
8751    break;
8752
8753  case CXXCopyConstructor:
8754    if (RD->hasUserDeclaredCopyConstructor()) {
8755      SourceLocation CtorLoc =
8756        RD->getCopyConstructor(0)->getLocation();
8757      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8758      return;
8759    }
8760    break;
8761
8762  case CXXMoveConstructor:
8763    if (RD->hasUserDeclaredMoveConstructor()) {
8764      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8765      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8766      return;
8767    }
8768    break;
8769
8770  case CXXCopyAssignment:
8771    if (RD->hasUserDeclaredCopyAssignment()) {
8772      // FIXME: this should use the location of the copy
8773      // assignment, not the type.
8774      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8775      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8776      return;
8777    }
8778    break;
8779
8780  case CXXMoveAssignment:
8781    if (RD->hasUserDeclaredMoveAssignment()) {
8782      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8783      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8784      return;
8785    }
8786    break;
8787
8788  case CXXDestructor:
8789    if (RD->hasUserDeclaredDestructor()) {
8790      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8791      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8792      return;
8793    }
8794    break;
8795  }
8796
8797  typedef CXXRecordDecl::base_class_iterator base_iter;
8798
8799  // Virtual bases and members inhibit trivial copying/construction,
8800  // but not trivial destruction.
8801  if (member != CXXDestructor) {
8802    // Check for virtual bases.  vbases includes indirect virtual bases,
8803    // so we just iterate through the direct bases.
8804    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8805      if (bi->isVirtual()) {
8806        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8807        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8808        return;
8809      }
8810
8811    // Check for virtual methods.
8812    typedef CXXRecordDecl::method_iterator meth_iter;
8813    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8814         ++mi) {
8815      if (mi->isVirtual()) {
8816        SourceLocation MLoc = mi->getSourceRange().getBegin();
8817        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8818        return;
8819      }
8820    }
8821  }
8822
8823  bool (CXXRecordDecl::*hasTrivial)() const;
8824  switch (member) {
8825  case CXXDefaultConstructor:
8826    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8827  case CXXCopyConstructor:
8828    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8829  case CXXCopyAssignment:
8830    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8831  case CXXDestructor:
8832    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8833  default:
8834    llvm_unreachable("unexpected special member");
8835  }
8836
8837  // Check for nontrivial bases (and recurse).
8838  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8839    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8840    assert(BaseRT && "Don't know how to handle dependent bases");
8841    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8842    if (!(BaseRecTy->*hasTrivial)()) {
8843      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8844      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8845      DiagnoseNontrivial(BaseRT, member);
8846      return;
8847    }
8848  }
8849
8850  // Check for nontrivial members (and recurse).
8851  typedef RecordDecl::field_iterator field_iter;
8852  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8853       ++fi) {
8854    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8855    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8856      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8857
8858      if (!(EltRD->*hasTrivial)()) {
8859        SourceLocation FLoc = (*fi)->getLocation();
8860        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8861        DiagnoseNontrivial(EltRT, member);
8862        return;
8863      }
8864    }
8865
8866    if (EltTy->isObjCLifetimeType()) {
8867      switch (EltTy.getObjCLifetime()) {
8868      case Qualifiers::OCL_None:
8869      case Qualifiers::OCL_ExplicitNone:
8870        break;
8871
8872      case Qualifiers::OCL_Autoreleasing:
8873      case Qualifiers::OCL_Weak:
8874      case Qualifiers::OCL_Strong:
8875        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8876          << QT << EltTy.getObjCLifetime();
8877        return;
8878      }
8879    }
8880  }
8881
8882  llvm_unreachable("found no explanation for non-trivial member");
8883}
8884
8885/// TranslateIvarVisibility - Translate visibility from a token ID to an
8886///  AST enum value.
8887static ObjCIvarDecl::AccessControl
8888TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8889  switch (ivarVisibility) {
8890  default: llvm_unreachable("Unknown visitibility kind");
8891  case tok::objc_private: return ObjCIvarDecl::Private;
8892  case tok::objc_public: return ObjCIvarDecl::Public;
8893  case tok::objc_protected: return ObjCIvarDecl::Protected;
8894  case tok::objc_package: return ObjCIvarDecl::Package;
8895  }
8896}
8897
8898/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8899/// in order to create an IvarDecl object for it.
8900Decl *Sema::ActOnIvar(Scope *S,
8901                                SourceLocation DeclStart,
8902                                Declarator &D, Expr *BitfieldWidth,
8903                                tok::ObjCKeywordKind Visibility) {
8904
8905  IdentifierInfo *II = D.getIdentifier();
8906  Expr *BitWidth = (Expr*)BitfieldWidth;
8907  SourceLocation Loc = DeclStart;
8908  if (II) Loc = D.getIdentifierLoc();
8909
8910  // FIXME: Unnamed fields can be handled in various different ways, for
8911  // example, unnamed unions inject all members into the struct namespace!
8912
8913  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8914  QualType T = TInfo->getType();
8915
8916  if (BitWidth) {
8917    // 6.7.2.1p3, 6.7.2.1p4
8918    if (VerifyBitField(Loc, II, T, BitWidth)) {
8919      D.setInvalidType();
8920      BitWidth = 0;
8921    }
8922  } else {
8923    // Not a bitfield.
8924
8925    // validate II.
8926
8927  }
8928  if (T->isReferenceType()) {
8929    Diag(Loc, diag::err_ivar_reference_type);
8930    D.setInvalidType();
8931  }
8932  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8933  // than a variably modified type.
8934  else if (T->isVariablyModifiedType()) {
8935    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8936    D.setInvalidType();
8937  }
8938
8939  // Get the visibility (access control) for this ivar.
8940  ObjCIvarDecl::AccessControl ac =
8941    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8942                                        : ObjCIvarDecl::None;
8943  // Must set ivar's DeclContext to its enclosing interface.
8944  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8945  ObjCContainerDecl *EnclosingContext;
8946  if (ObjCImplementationDecl *IMPDecl =
8947      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8948    if (!LangOpts.ObjCNonFragileABI2) {
8949    // Case of ivar declared in an implementation. Context is that of its class.
8950      EnclosingContext = IMPDecl->getClassInterface();
8951      assert(EnclosingContext && "Implementation has no class interface!");
8952    }
8953    else
8954      EnclosingContext = EnclosingDecl;
8955  } else {
8956    if (ObjCCategoryDecl *CDecl =
8957        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8958      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8959        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8960        return 0;
8961      }
8962    }
8963    EnclosingContext = EnclosingDecl;
8964  }
8965
8966  // Construct the decl.
8967  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8968                                             DeclStart, Loc, II, T,
8969                                             TInfo, ac, (Expr *)BitfieldWidth);
8970
8971  if (II) {
8972    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8973                                           ForRedeclaration);
8974    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8975        && !isa<TagDecl>(PrevDecl)) {
8976      Diag(Loc, diag::err_duplicate_member) << II;
8977      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8978      NewID->setInvalidDecl();
8979    }
8980  }
8981
8982  // Process attributes attached to the ivar.
8983  ProcessDeclAttributes(S, NewID, D);
8984
8985  if (D.isInvalidType())
8986    NewID->setInvalidDecl();
8987
8988  // In ARC, infer 'retaining' for ivars of retainable type.
8989  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8990    NewID->setInvalidDecl();
8991
8992  if (D.getDeclSpec().isModulePrivateSpecified())
8993    NewID->setModulePrivate();
8994
8995  if (II) {
8996    // FIXME: When interfaces are DeclContexts, we'll need to add
8997    // these to the interface.
8998    S->AddDecl(NewID);
8999    IdResolver.AddDecl(NewID);
9000  }
9001
9002  return NewID;
9003}
9004
9005/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9006/// class and class extensions. For every class @interface and class
9007/// extension @interface, if the last ivar is a bitfield of any type,
9008/// then add an implicit `char :0` ivar to the end of that interface.
9009void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9010                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9011  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9012    return;
9013
9014  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9015  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9016
9017  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9018    return;
9019  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9020  if (!ID) {
9021    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9022      if (!CD->IsClassExtension())
9023        return;
9024    }
9025    // No need to add this to end of @implementation.
9026    else
9027      return;
9028  }
9029  // All conditions are met. Add a new bitfield to the tail end of ivars.
9030  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9031  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9032
9033  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9034                              DeclLoc, DeclLoc, 0,
9035                              Context.CharTy,
9036                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9037                                                               DeclLoc),
9038                              ObjCIvarDecl::Private, BW,
9039                              true);
9040  AllIvarDecls.push_back(Ivar);
9041}
9042
9043void Sema::ActOnFields(Scope* S,
9044                       SourceLocation RecLoc, Decl *EnclosingDecl,
9045                       llvm::ArrayRef<Decl *> Fields,
9046                       SourceLocation LBrac, SourceLocation RBrac,
9047                       AttributeList *Attr) {
9048  assert(EnclosingDecl && "missing record or interface decl");
9049
9050  // If the decl this is being inserted into is invalid, then it may be a
9051  // redeclaration or some other bogus case.  Don't try to add fields to it.
9052  if (EnclosingDecl->isInvalidDecl())
9053    return;
9054
9055  // Verify that all the fields are okay.
9056  unsigned NumNamedMembers = 0;
9057  SmallVector<FieldDecl*, 32> RecFields;
9058
9059  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9060  bool ARCErrReported = false;
9061  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9062       i != end; ++i) {
9063    FieldDecl *FD = cast<FieldDecl>(*i);
9064
9065    // Get the type for the field.
9066    const Type *FDTy = FD->getType().getTypePtr();
9067
9068    if (!FD->isAnonymousStructOrUnion()) {
9069      // Remember all fields written by the user.
9070      RecFields.push_back(FD);
9071    }
9072
9073    // If the field is already invalid for some reason, don't emit more
9074    // diagnostics about it.
9075    if (FD->isInvalidDecl()) {
9076      EnclosingDecl->setInvalidDecl();
9077      continue;
9078    }
9079
9080    // C99 6.7.2.1p2:
9081    //   A structure or union shall not contain a member with
9082    //   incomplete or function type (hence, a structure shall not
9083    //   contain an instance of itself, but may contain a pointer to
9084    //   an instance of itself), except that the last member of a
9085    //   structure with more than one named member may have incomplete
9086    //   array type; such a structure (and any union containing,
9087    //   possibly recursively, a member that is such a structure)
9088    //   shall not be a member of a structure or an element of an
9089    //   array.
9090    if (FDTy->isFunctionType()) {
9091      // Field declared as a function.
9092      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9093        << FD->getDeclName();
9094      FD->setInvalidDecl();
9095      EnclosingDecl->setInvalidDecl();
9096      continue;
9097    } else if (FDTy->isIncompleteArrayType() && Record &&
9098               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9099                ((getLangOptions().MicrosoftExt ||
9100                  getLangOptions().CPlusPlus) &&
9101                 (i + 1 == Fields.end() || Record->isUnion())))) {
9102      // Flexible array member.
9103      // Microsoft and g++ is more permissive regarding flexible array.
9104      // It will accept flexible array in union and also
9105      // as the sole element of a struct/class.
9106      if (getLangOptions().MicrosoftExt) {
9107        if (Record->isUnion())
9108          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9109            << FD->getDeclName();
9110        else if (Fields.size() == 1)
9111          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9112            << FD->getDeclName() << Record->getTagKind();
9113      } else if (getLangOptions().CPlusPlus) {
9114        if (Record->isUnion())
9115          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9116            << FD->getDeclName();
9117        else if (Fields.size() == 1)
9118          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9119            << FD->getDeclName() << Record->getTagKind();
9120      } else if (NumNamedMembers < 1) {
9121        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9122          << FD->getDeclName();
9123        FD->setInvalidDecl();
9124        EnclosingDecl->setInvalidDecl();
9125        continue;
9126      }
9127      if (!FD->getType()->isDependentType() &&
9128          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9129        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9130          << FD->getDeclName() << FD->getType();
9131        FD->setInvalidDecl();
9132        EnclosingDecl->setInvalidDecl();
9133        continue;
9134      }
9135      // Okay, we have a legal flexible array member at the end of the struct.
9136      if (Record)
9137        Record->setHasFlexibleArrayMember(true);
9138    } else if (!FDTy->isDependentType() &&
9139               RequireCompleteType(FD->getLocation(), FD->getType(),
9140                                   diag::err_field_incomplete)) {
9141      // Incomplete type
9142      FD->setInvalidDecl();
9143      EnclosingDecl->setInvalidDecl();
9144      continue;
9145    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9146      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9147        // If this is a member of a union, then entire union becomes "flexible".
9148        if (Record && Record->isUnion()) {
9149          Record->setHasFlexibleArrayMember(true);
9150        } else {
9151          // If this is a struct/class and this is not the last element, reject
9152          // it.  Note that GCC supports variable sized arrays in the middle of
9153          // structures.
9154          if (i + 1 != Fields.end())
9155            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9156              << FD->getDeclName() << FD->getType();
9157          else {
9158            // We support flexible arrays at the end of structs in
9159            // other structs as an extension.
9160            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9161              << FD->getDeclName();
9162            if (Record)
9163              Record->setHasFlexibleArrayMember(true);
9164          }
9165        }
9166      }
9167      if (Record && FDTTy->getDecl()->hasObjectMember())
9168        Record->setHasObjectMember(true);
9169    } else if (FDTy->isObjCObjectType()) {
9170      /// A field cannot be an Objective-c object
9171      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9172        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9173      QualType T = Context.getObjCObjectPointerType(FD->getType());
9174      FD->setType(T);
9175    }
9176    else if (!getLangOptions().CPlusPlus) {
9177      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9178        // It's an error in ARC if a field has lifetime.
9179        // We don't want to report this in a system header, though,
9180        // so we just make the field unavailable.
9181        // FIXME: that's really not sufficient; we need to make the type
9182        // itself invalid to, say, initialize or copy.
9183        QualType T = FD->getType();
9184        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9185        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9186          SourceLocation loc = FD->getLocation();
9187          if (getSourceManager().isInSystemHeader(loc)) {
9188            if (!FD->hasAttr<UnavailableAttr>()) {
9189              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9190                                "this system field has retaining ownership"));
9191            }
9192          } else {
9193            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9194              << T->isBlockPointerType();
9195          }
9196          ARCErrReported = true;
9197        }
9198      }
9199      else if (getLangOptions().ObjC1 &&
9200               getLangOptions().getGC() != LangOptions::NonGC &&
9201               Record && !Record->hasObjectMember()) {
9202        if (FD->getType()->isObjCObjectPointerType() ||
9203            FD->getType().isObjCGCStrong())
9204          Record->setHasObjectMember(true);
9205        else if (Context.getAsArrayType(FD->getType())) {
9206          QualType BaseType = Context.getBaseElementType(FD->getType());
9207          if (BaseType->isRecordType() &&
9208              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9209            Record->setHasObjectMember(true);
9210          else if (BaseType->isObjCObjectPointerType() ||
9211                   BaseType.isObjCGCStrong())
9212                 Record->setHasObjectMember(true);
9213        }
9214      }
9215    }
9216    // Keep track of the number of named members.
9217    if (FD->getIdentifier())
9218      ++NumNamedMembers;
9219  }
9220
9221  // Okay, we successfully defined 'Record'.
9222  if (Record) {
9223    bool Completed = false;
9224    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9225      if (!CXXRecord->isInvalidDecl()) {
9226        // Set access bits correctly on the directly-declared conversions.
9227        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9228        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9229             I != E; ++I)
9230          Convs->setAccess(I, (*I)->getAccess());
9231
9232        if (!CXXRecord->isDependentType()) {
9233          // Objective-C Automatic Reference Counting:
9234          //   If a class has a non-static data member of Objective-C pointer
9235          //   type (or array thereof), it is a non-POD type and its
9236          //   default constructor (if any), copy constructor, copy assignment
9237          //   operator, and destructor are non-trivial.
9238          //
9239          // This rule is also handled by CXXRecordDecl::completeDefinition().
9240          // However, here we check whether this particular class is only
9241          // non-POD because of the presence of an Objective-C pointer member.
9242          // If so, objects of this type cannot be shared between code compiled
9243          // with instant objects and code compiled with manual retain/release.
9244          if (getLangOptions().ObjCAutoRefCount &&
9245              CXXRecord->hasObjectMember() &&
9246              CXXRecord->getLinkage() == ExternalLinkage) {
9247            if (CXXRecord->isPOD()) {
9248              Diag(CXXRecord->getLocation(),
9249                   diag::warn_arc_non_pod_class_with_object_member)
9250               << CXXRecord;
9251            } else {
9252              // FIXME: Fix-Its would be nice here, but finding a good location
9253              // for them is going to be tricky.
9254              if (CXXRecord->hasTrivialCopyConstructor())
9255                Diag(CXXRecord->getLocation(),
9256                     diag::warn_arc_trivial_member_function_with_object_member)
9257                  << CXXRecord << 0;
9258              if (CXXRecord->hasTrivialCopyAssignment())
9259                Diag(CXXRecord->getLocation(),
9260                     diag::warn_arc_trivial_member_function_with_object_member)
9261                << CXXRecord << 1;
9262              if (CXXRecord->hasTrivialDestructor())
9263                Diag(CXXRecord->getLocation(),
9264                     diag::warn_arc_trivial_member_function_with_object_member)
9265                << CXXRecord << 2;
9266            }
9267          }
9268
9269          // Adjust user-defined destructor exception spec.
9270          if (getLangOptions().CPlusPlus0x &&
9271              CXXRecord->hasUserDeclaredDestructor())
9272            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9273
9274          // Add any implicitly-declared members to this class.
9275          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9276
9277          // If we have virtual base classes, we may end up finding multiple
9278          // final overriders for a given virtual function. Check for this
9279          // problem now.
9280          if (CXXRecord->getNumVBases()) {
9281            CXXFinalOverriderMap FinalOverriders;
9282            CXXRecord->getFinalOverriders(FinalOverriders);
9283
9284            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9285                                             MEnd = FinalOverriders.end();
9286                 M != MEnd; ++M) {
9287              for (OverridingMethods::iterator SO = M->second.begin(),
9288                                            SOEnd = M->second.end();
9289                   SO != SOEnd; ++SO) {
9290                assert(SO->second.size() > 0 &&
9291                       "Virtual function without overridding functions?");
9292                if (SO->second.size() == 1)
9293                  continue;
9294
9295                // C++ [class.virtual]p2:
9296                //   In a derived class, if a virtual member function of a base
9297                //   class subobject has more than one final overrider the
9298                //   program is ill-formed.
9299                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9300                  << (NamedDecl *)M->first << Record;
9301                Diag(M->first->getLocation(),
9302                     diag::note_overridden_virtual_function);
9303                for (OverridingMethods::overriding_iterator
9304                          OM = SO->second.begin(),
9305                       OMEnd = SO->second.end();
9306                     OM != OMEnd; ++OM)
9307                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9308                    << (NamedDecl *)M->first << OM->Method->getParent();
9309
9310                Record->setInvalidDecl();
9311              }
9312            }
9313            CXXRecord->completeDefinition(&FinalOverriders);
9314            Completed = true;
9315          }
9316        }
9317      }
9318    }
9319
9320    if (!Completed)
9321      Record->completeDefinition();
9322
9323    // Now that the record is complete, do any delayed exception spec checks
9324    // we were missing.
9325    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9326      const CXXDestructorDecl *Dtor =
9327              DelayedDestructorExceptionSpecChecks.back().first;
9328      if (Dtor->getParent() != Record)
9329        break;
9330
9331      assert(!Dtor->getParent()->isDependentType() &&
9332          "Should not ever add destructors of templates into the list.");
9333      CheckOverridingFunctionExceptionSpec(Dtor,
9334          DelayedDestructorExceptionSpecChecks.back().second);
9335      DelayedDestructorExceptionSpecChecks.pop_back();
9336    }
9337
9338  } else {
9339    ObjCIvarDecl **ClsFields =
9340      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9341    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9342      ID->setEndOfDefinitionLoc(RBrac);
9343      // Add ivar's to class's DeclContext.
9344      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9345        ClsFields[i]->setLexicalDeclContext(ID);
9346        ID->addDecl(ClsFields[i]);
9347      }
9348      // Must enforce the rule that ivars in the base classes may not be
9349      // duplicates.
9350      if (ID->getSuperClass())
9351        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9352    } else if (ObjCImplementationDecl *IMPDecl =
9353                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9354      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9355      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9356        // Ivar declared in @implementation never belongs to the implementation.
9357        // Only it is in implementation's lexical context.
9358        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9359      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9360    } else if (ObjCCategoryDecl *CDecl =
9361                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9362      // case of ivars in class extension; all other cases have been
9363      // reported as errors elsewhere.
9364      // FIXME. Class extension does not have a LocEnd field.
9365      // CDecl->setLocEnd(RBrac);
9366      // Add ivar's to class extension's DeclContext.
9367      // Diagnose redeclaration of private ivars.
9368      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9369      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9370        if (IDecl) {
9371          if (const ObjCIvarDecl *ClsIvar =
9372              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9373            Diag(ClsFields[i]->getLocation(),
9374                 diag::err_duplicate_ivar_declaration);
9375            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9376            continue;
9377          }
9378          for (const ObjCCategoryDecl *ClsExtDecl =
9379                IDecl->getFirstClassExtension();
9380               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9381            if (const ObjCIvarDecl *ClsExtIvar =
9382                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9383              Diag(ClsFields[i]->getLocation(),
9384                   diag::err_duplicate_ivar_declaration);
9385              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9386              continue;
9387            }
9388          }
9389        }
9390        ClsFields[i]->setLexicalDeclContext(CDecl);
9391        CDecl->addDecl(ClsFields[i]);
9392      }
9393    }
9394  }
9395
9396  if (Attr)
9397    ProcessDeclAttributeList(S, Record, Attr);
9398
9399  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9400  // set the visibility of this record.
9401  if (Record && !Record->getDeclContext()->isRecord())
9402    AddPushedVisibilityAttribute(Record);
9403}
9404
9405/// \brief Determine whether the given integral value is representable within
9406/// the given type T.
9407static bool isRepresentableIntegerValue(ASTContext &Context,
9408                                        llvm::APSInt &Value,
9409                                        QualType T) {
9410  assert(T->isIntegralType(Context) && "Integral type required!");
9411  unsigned BitWidth = Context.getIntWidth(T);
9412
9413  if (Value.isUnsigned() || Value.isNonNegative()) {
9414    if (T->isSignedIntegerOrEnumerationType())
9415      --BitWidth;
9416    return Value.getActiveBits() <= BitWidth;
9417  }
9418  return Value.getMinSignedBits() <= BitWidth;
9419}
9420
9421// \brief Given an integral type, return the next larger integral type
9422// (or a NULL type of no such type exists).
9423static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9424  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9425  // enum checking below.
9426  assert(T->isIntegralType(Context) && "Integral type required!");
9427  const unsigned NumTypes = 4;
9428  QualType SignedIntegralTypes[NumTypes] = {
9429    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9430  };
9431  QualType UnsignedIntegralTypes[NumTypes] = {
9432    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9433    Context.UnsignedLongLongTy
9434  };
9435
9436  unsigned BitWidth = Context.getTypeSize(T);
9437  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9438                                                        : UnsignedIntegralTypes;
9439  for (unsigned I = 0; I != NumTypes; ++I)
9440    if (Context.getTypeSize(Types[I]) > BitWidth)
9441      return Types[I];
9442
9443  return QualType();
9444}
9445
9446EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9447                                          EnumConstantDecl *LastEnumConst,
9448                                          SourceLocation IdLoc,
9449                                          IdentifierInfo *Id,
9450                                          Expr *Val) {
9451  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9452  llvm::APSInt EnumVal(IntWidth);
9453  QualType EltTy;
9454
9455  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9456    Val = 0;
9457
9458  if (Val)
9459    Val = DefaultLvalueConversion(Val).take();
9460
9461  if (Val) {
9462    if (Enum->isDependentType() || Val->isTypeDependent())
9463      EltTy = Context.DependentTy;
9464    else {
9465      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9466      SourceLocation ExpLoc;
9467      if (!Val->isValueDependent() &&
9468          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9469        Val = 0;
9470      } else {
9471        if (!getLangOptions().CPlusPlus) {
9472          // C99 6.7.2.2p2:
9473          //   The expression that defines the value of an enumeration constant
9474          //   shall be an integer constant expression that has a value
9475          //   representable as an int.
9476
9477          // Complain if the value is not representable in an int.
9478          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9479            Diag(IdLoc, diag::ext_enum_value_not_int)
9480              << EnumVal.toString(10) << Val->getSourceRange()
9481              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9482          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9483            // Force the type of the expression to 'int'.
9484            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9485          }
9486        }
9487
9488        if (Enum->isFixed()) {
9489          EltTy = Enum->getIntegerType();
9490
9491          // C++0x [dcl.enum]p5:
9492          //   ... if the initializing value of an enumerator cannot be
9493          //   represented by the underlying type, the program is ill-formed.
9494          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9495            if (getLangOptions().MicrosoftExt) {
9496              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9497              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9498            } else
9499              Diag(IdLoc, diag::err_enumerator_too_large)
9500                << EltTy;
9501          } else
9502            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9503        }
9504        else {
9505          // C++0x [dcl.enum]p5:
9506          //   If the underlying type is not fixed, the type of each enumerator
9507          //   is the type of its initializing value:
9508          //     - If an initializer is specified for an enumerator, the
9509          //       initializing value has the same type as the expression.
9510          EltTy = Val->getType();
9511        }
9512      }
9513    }
9514  }
9515
9516  if (!Val) {
9517    if (Enum->isDependentType())
9518      EltTy = Context.DependentTy;
9519    else if (!LastEnumConst) {
9520      // C++0x [dcl.enum]p5:
9521      //   If the underlying type is not fixed, the type of each enumerator
9522      //   is the type of its initializing value:
9523      //     - If no initializer is specified for the first enumerator, the
9524      //       initializing value has an unspecified integral type.
9525      //
9526      // GCC uses 'int' for its unspecified integral type, as does
9527      // C99 6.7.2.2p3.
9528      if (Enum->isFixed()) {
9529        EltTy = Enum->getIntegerType();
9530      }
9531      else {
9532        EltTy = Context.IntTy;
9533      }
9534    } else {
9535      // Assign the last value + 1.
9536      EnumVal = LastEnumConst->getInitVal();
9537      ++EnumVal;
9538      EltTy = LastEnumConst->getType();
9539
9540      // Check for overflow on increment.
9541      if (EnumVal < LastEnumConst->getInitVal()) {
9542        // C++0x [dcl.enum]p5:
9543        //   If the underlying type is not fixed, the type of each enumerator
9544        //   is the type of its initializing value:
9545        //
9546        //     - Otherwise the type of the initializing value is the same as
9547        //       the type of the initializing value of the preceding enumerator
9548        //       unless the incremented value is not representable in that type,
9549        //       in which case the type is an unspecified integral type
9550        //       sufficient to contain the incremented value. If no such type
9551        //       exists, the program is ill-formed.
9552        QualType T = getNextLargerIntegralType(Context, EltTy);
9553        if (T.isNull() || Enum->isFixed()) {
9554          // There is no integral type larger enough to represent this
9555          // value. Complain, then allow the value to wrap around.
9556          EnumVal = LastEnumConst->getInitVal();
9557          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9558          ++EnumVal;
9559          if (Enum->isFixed())
9560            // When the underlying type is fixed, this is ill-formed.
9561            Diag(IdLoc, diag::err_enumerator_wrapped)
9562              << EnumVal.toString(10)
9563              << EltTy;
9564          else
9565            Diag(IdLoc, diag::warn_enumerator_too_large)
9566              << EnumVal.toString(10);
9567        } else {
9568          EltTy = T;
9569        }
9570
9571        // Retrieve the last enumerator's value, extent that type to the
9572        // type that is supposed to be large enough to represent the incremented
9573        // value, then increment.
9574        EnumVal = LastEnumConst->getInitVal();
9575        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9576        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9577        ++EnumVal;
9578
9579        // If we're not in C++, diagnose the overflow of enumerator values,
9580        // which in C99 means that the enumerator value is not representable in
9581        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9582        // permits enumerator values that are representable in some larger
9583        // integral type.
9584        if (!getLangOptions().CPlusPlus && !T.isNull())
9585          Diag(IdLoc, diag::warn_enum_value_overflow);
9586      } else if (!getLangOptions().CPlusPlus &&
9587                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9588        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9589        Diag(IdLoc, diag::ext_enum_value_not_int)
9590          << EnumVal.toString(10) << 1;
9591      }
9592    }
9593  }
9594
9595  if (!EltTy->isDependentType()) {
9596    // Make the enumerator value match the signedness and size of the
9597    // enumerator's type.
9598    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9599    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9600  }
9601
9602  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9603                                  Val, EnumVal);
9604}
9605
9606
9607Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9608                              SourceLocation IdLoc, IdentifierInfo *Id,
9609                              AttributeList *Attr,
9610                              SourceLocation EqualLoc, Expr *val) {
9611  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9612  EnumConstantDecl *LastEnumConst =
9613    cast_or_null<EnumConstantDecl>(lastEnumConst);
9614  Expr *Val = static_cast<Expr*>(val);
9615
9616  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9617  // we find one that is.
9618  S = getNonFieldDeclScope(S);
9619
9620  // Verify that there isn't already something declared with this name in this
9621  // scope.
9622  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9623                                         ForRedeclaration);
9624  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9625    // Maybe we will complain about the shadowed template parameter.
9626    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9627    // Just pretend that we didn't see the previous declaration.
9628    PrevDecl = 0;
9629  }
9630
9631  if (PrevDecl) {
9632    // When in C++, we may get a TagDecl with the same name; in this case the
9633    // enum constant will 'hide' the tag.
9634    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9635           "Received TagDecl when not in C++!");
9636    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9637      if (isa<EnumConstantDecl>(PrevDecl))
9638        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9639      else
9640        Diag(IdLoc, diag::err_redefinition) << Id;
9641      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9642      return 0;
9643    }
9644  }
9645
9646  // C++ [class.mem]p13:
9647  //   If T is the name of a class, then each of the following shall have a
9648  //   name different from T:
9649  //     - every enumerator of every member of class T that is an enumerated
9650  //       type
9651  if (CXXRecordDecl *Record
9652                      = dyn_cast<CXXRecordDecl>(
9653                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9654    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9655      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9656
9657  EnumConstantDecl *New =
9658    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9659
9660  if (New) {
9661    // Process attributes.
9662    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9663
9664    // Register this decl in the current scope stack.
9665    New->setAccess(TheEnumDecl->getAccess());
9666    PushOnScopeChains(New, S);
9667  }
9668
9669  return New;
9670}
9671
9672void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9673                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9674                         Decl **Elements, unsigned NumElements,
9675                         Scope *S, AttributeList *Attr) {
9676  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9677  QualType EnumType = Context.getTypeDeclType(Enum);
9678
9679  if (Attr)
9680    ProcessDeclAttributeList(S, Enum, Attr);
9681
9682  if (Enum->isDependentType()) {
9683    for (unsigned i = 0; i != NumElements; ++i) {
9684      EnumConstantDecl *ECD =
9685        cast_or_null<EnumConstantDecl>(Elements[i]);
9686      if (!ECD) continue;
9687
9688      ECD->setType(EnumType);
9689    }
9690
9691    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9692    return;
9693  }
9694
9695  // TODO: If the result value doesn't fit in an int, it must be a long or long
9696  // long value.  ISO C does not support this, but GCC does as an extension,
9697  // emit a warning.
9698  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9699  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9700  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9701
9702  // Verify that all the values are okay, compute the size of the values, and
9703  // reverse the list.
9704  unsigned NumNegativeBits = 0;
9705  unsigned NumPositiveBits = 0;
9706
9707  // Keep track of whether all elements have type int.
9708  bool AllElementsInt = true;
9709
9710  for (unsigned i = 0; i != NumElements; ++i) {
9711    EnumConstantDecl *ECD =
9712      cast_or_null<EnumConstantDecl>(Elements[i]);
9713    if (!ECD) continue;  // Already issued a diagnostic.
9714
9715    const llvm::APSInt &InitVal = ECD->getInitVal();
9716
9717    // Keep track of the size of positive and negative values.
9718    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9719      NumPositiveBits = std::max(NumPositiveBits,
9720                                 (unsigned)InitVal.getActiveBits());
9721    else
9722      NumNegativeBits = std::max(NumNegativeBits,
9723                                 (unsigned)InitVal.getMinSignedBits());
9724
9725    // Keep track of whether every enum element has type int (very commmon).
9726    if (AllElementsInt)
9727      AllElementsInt = ECD->getType() == Context.IntTy;
9728  }
9729
9730  // Figure out the type that should be used for this enum.
9731  QualType BestType;
9732  unsigned BestWidth;
9733
9734  // C++0x N3000 [conv.prom]p3:
9735  //   An rvalue of an unscoped enumeration type whose underlying
9736  //   type is not fixed can be converted to an rvalue of the first
9737  //   of the following types that can represent all the values of
9738  //   the enumeration: int, unsigned int, long int, unsigned long
9739  //   int, long long int, or unsigned long long int.
9740  // C99 6.4.4.3p2:
9741  //   An identifier declared as an enumeration constant has type int.
9742  // The C99 rule is modified by a gcc extension
9743  QualType BestPromotionType;
9744
9745  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9746  // -fshort-enums is the equivalent to specifying the packed attribute on all
9747  // enum definitions.
9748  if (LangOpts.ShortEnums)
9749    Packed = true;
9750
9751  if (Enum->isFixed()) {
9752    BestType = Enum->getIntegerType();
9753    if (BestType->isPromotableIntegerType())
9754      BestPromotionType = Context.getPromotedIntegerType(BestType);
9755    else
9756      BestPromotionType = BestType;
9757    // We don't need to set BestWidth, because BestType is going to be the type
9758    // of the enumerators, but we do anyway because otherwise some compilers
9759    // warn that it might be used uninitialized.
9760    BestWidth = CharWidth;
9761  }
9762  else if (NumNegativeBits) {
9763    // If there is a negative value, figure out the smallest integer type (of
9764    // int/long/longlong) that fits.
9765    // If it's packed, check also if it fits a char or a short.
9766    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9767      BestType = Context.SignedCharTy;
9768      BestWidth = CharWidth;
9769    } else if (Packed && NumNegativeBits <= ShortWidth &&
9770               NumPositiveBits < ShortWidth) {
9771      BestType = Context.ShortTy;
9772      BestWidth = ShortWidth;
9773    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9774      BestType = Context.IntTy;
9775      BestWidth = IntWidth;
9776    } else {
9777      BestWidth = Context.getTargetInfo().getLongWidth();
9778
9779      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9780        BestType = Context.LongTy;
9781      } else {
9782        BestWidth = Context.getTargetInfo().getLongLongWidth();
9783
9784        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9785          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9786        BestType = Context.LongLongTy;
9787      }
9788    }
9789    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9790  } else {
9791    // If there is no negative value, figure out the smallest type that fits
9792    // all of the enumerator values.
9793    // If it's packed, check also if it fits a char or a short.
9794    if (Packed && NumPositiveBits <= CharWidth) {
9795      BestType = Context.UnsignedCharTy;
9796      BestPromotionType = Context.IntTy;
9797      BestWidth = CharWidth;
9798    } else if (Packed && NumPositiveBits <= ShortWidth) {
9799      BestType = Context.UnsignedShortTy;
9800      BestPromotionType = Context.IntTy;
9801      BestWidth = ShortWidth;
9802    } else if (NumPositiveBits <= IntWidth) {
9803      BestType = Context.UnsignedIntTy;
9804      BestWidth = IntWidth;
9805      BestPromotionType
9806        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9807                           ? Context.UnsignedIntTy : Context.IntTy;
9808    } else if (NumPositiveBits <=
9809               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9810      BestType = Context.UnsignedLongTy;
9811      BestPromotionType
9812        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9813                           ? Context.UnsignedLongTy : Context.LongTy;
9814    } else {
9815      BestWidth = Context.getTargetInfo().getLongLongWidth();
9816      assert(NumPositiveBits <= BestWidth &&
9817             "How could an initializer get larger than ULL?");
9818      BestType = Context.UnsignedLongLongTy;
9819      BestPromotionType
9820        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9821                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9822    }
9823  }
9824
9825  // Loop over all of the enumerator constants, changing their types to match
9826  // the type of the enum if needed.
9827  for (unsigned i = 0; i != NumElements; ++i) {
9828    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9829    if (!ECD) continue;  // Already issued a diagnostic.
9830
9831    // Standard C says the enumerators have int type, but we allow, as an
9832    // extension, the enumerators to be larger than int size.  If each
9833    // enumerator value fits in an int, type it as an int, otherwise type it the
9834    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9835    // that X has type 'int', not 'unsigned'.
9836
9837    // Determine whether the value fits into an int.
9838    llvm::APSInt InitVal = ECD->getInitVal();
9839
9840    // If it fits into an integer type, force it.  Otherwise force it to match
9841    // the enum decl type.
9842    QualType NewTy;
9843    unsigned NewWidth;
9844    bool NewSign;
9845    if (!getLangOptions().CPlusPlus &&
9846        !Enum->isFixed() &&
9847        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9848      NewTy = Context.IntTy;
9849      NewWidth = IntWidth;
9850      NewSign = true;
9851    } else if (ECD->getType() == BestType) {
9852      // Already the right type!
9853      if (getLangOptions().CPlusPlus)
9854        // C++ [dcl.enum]p4: Following the closing brace of an
9855        // enum-specifier, each enumerator has the type of its
9856        // enumeration.
9857        ECD->setType(EnumType);
9858      continue;
9859    } else {
9860      NewTy = BestType;
9861      NewWidth = BestWidth;
9862      NewSign = BestType->isSignedIntegerOrEnumerationType();
9863    }
9864
9865    // Adjust the APSInt value.
9866    InitVal = InitVal.extOrTrunc(NewWidth);
9867    InitVal.setIsSigned(NewSign);
9868    ECD->setInitVal(InitVal);
9869
9870    // Adjust the Expr initializer and type.
9871    if (ECD->getInitExpr() &&
9872        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9873      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9874                                                CK_IntegralCast,
9875                                                ECD->getInitExpr(),
9876                                                /*base paths*/ 0,
9877                                                VK_RValue));
9878    if (getLangOptions().CPlusPlus)
9879      // C++ [dcl.enum]p4: Following the closing brace of an
9880      // enum-specifier, each enumerator has the type of its
9881      // enumeration.
9882      ECD->setType(EnumType);
9883    else
9884      ECD->setType(NewTy);
9885  }
9886
9887  Enum->completeDefinition(BestType, BestPromotionType,
9888                           NumPositiveBits, NumNegativeBits);
9889}
9890
9891Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9892                                  SourceLocation StartLoc,
9893                                  SourceLocation EndLoc) {
9894  StringLiteral *AsmString = cast<StringLiteral>(expr);
9895
9896  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9897                                                   AsmString, StartLoc,
9898                                                   EndLoc);
9899  CurContext->addDecl(New);
9900  return New;
9901}
9902
9903DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
9904                                   SourceLocation ImportLoc,
9905                                   ModuleIdPath Path) {
9906  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
9907                                                Module::AllVisible,
9908                                                /*IsIncludeDirective=*/false);
9909  if (!Mod)
9910    return true;
9911
9912  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
9913  Module *ModCheck = Mod;
9914  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
9915    // If we've run out of module parents, just drop the remaining identifiers.
9916    // We need the length to be consistent.
9917    if (!ModCheck)
9918      break;
9919    ModCheck = ModCheck->Parent;
9920
9921    IdentifierLocs.push_back(Path[I].second);
9922  }
9923
9924  ImportDecl *Import = ImportDecl::Create(Context,
9925                                          Context.getTranslationUnitDecl(),
9926                                          AtLoc.isValid()? AtLoc : ImportLoc,
9927                                          Mod, IdentifierLocs);
9928  Context.getTranslationUnitDecl()->addDecl(Import);
9929  return Import;
9930}
9931
9932void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9933                             SourceLocation PragmaLoc,
9934                             SourceLocation NameLoc) {
9935  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9936
9937  if (PrevDecl) {
9938    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9939  } else {
9940    (void)WeakUndeclaredIdentifiers.insert(
9941      std::pair<IdentifierInfo*,WeakInfo>
9942        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9943  }
9944}
9945
9946void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9947                                IdentifierInfo* AliasName,
9948                                SourceLocation PragmaLoc,
9949                                SourceLocation NameLoc,
9950                                SourceLocation AliasNameLoc) {
9951  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9952                                    LookupOrdinaryName);
9953  WeakInfo W = WeakInfo(Name, NameLoc);
9954
9955  if (PrevDecl) {
9956    if (!PrevDecl->hasAttr<AliasAttr>())
9957      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9958        DeclApplyPragmaWeak(TUScope, ND, W);
9959  } else {
9960    (void)WeakUndeclaredIdentifiers.insert(
9961      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9962  }
9963}
9964
9965Decl *Sema::getObjCDeclContext() const {
9966  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9967}
9968
9969AvailabilityResult Sema::getCurContextAvailability() const {
9970  const Decl *D = cast<Decl>(getCurLexicalContext());
9971  // A category implicitly has the availability of the interface.
9972  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9973    D = CatD->getClassInterface();
9974
9975  return D->getAvailability();
9976}
9977