SemaDecl.cpp revision 074149e11baf5f7db12f84efd5c34ba6e35d5cdf
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31
32using namespace clang;
33
34Sema::TypeTy *Sema::isTypeName(IdentifierInfo &II, Scope *S,
35                               const CXXScopeSpec *SS) {
36  DeclContext *DC = 0;
37  if (SS) {
38    if (SS->isInvalid())
39      return 0;
40    DC = static_cast<DeclContext*>(SS->getScopeRep());
41  }
42  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, DC, false);
43
44  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
45                 isa<ObjCInterfaceDecl>(IIDecl) ||
46                 isa<TagDecl>(IIDecl) ||
47		 isa<TemplateTypeParmDecl>(IIDecl)))
48    return IIDecl;
49  return 0;
50}
51
52DeclContext *Sema::getContainingDC(DeclContext *DC) {
53  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
54    // A C++ out-of-line method will return to the file declaration context.
55    if (MD->isOutOfLineDefinition())
56      return MD->getLexicalDeclContext();
57
58    // A C++ inline method is parsed *after* the topmost class it was declared in
59    // is fully parsed (it's "complete").
60    // The parsing of a C++ inline method happens at the declaration context of
61    // the topmost (non-nested) class it is lexically declared in.
62    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
63    DC = MD->getParent();
64    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
65      DC = RD;
66
67    // Return the declaration context of the topmost class the inline method is
68    // declared in.
69    return DC;
70  }
71
72  if (isa<ObjCMethodDecl>(DC))
73    return Context.getTranslationUnitDecl();
74
75  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(DC))
76    return SD->getLexicalDeclContext();
77
78  return DC->getLexicalParent();
79}
80
81void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
82  assert(getContainingDC(DC) == CurContext &&
83      "The next DeclContext should be lexically contained in the current one.");
84  CurContext = DC;
85  S->setEntity(DC);
86}
87
88void Sema::PopDeclContext() {
89  assert(CurContext && "DeclContext imbalance!");
90
91  CurContext = getContainingDC(CurContext);
92}
93
94/// Add this decl to the scope shadowed decl chains.
95void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
96  // Move up the scope chain until we find the nearest enclosing
97  // non-transparent context. The declaration will be introduced into this
98  // scope.
99  while (S->getEntity() &&
100         ((DeclContext *)S->getEntity())->isTransparentContext())
101    S = S->getParent();
102
103  S->AddDecl(D);
104
105  // Add scoped declarations into their context, so that they can be
106  // found later. Declarations without a context won't be inserted
107  // into any context.
108  if (ScopedDecl *SD = dyn_cast<ScopedDecl>(D))
109    CurContext->addDecl(Context, SD);
110
111  // C++ [basic.scope]p4:
112  //   -- exactly one declaration shall declare a class name or
113  //   enumeration name that is not a typedef name and the other
114  //   declarations shall all refer to the same object or
115  //   enumerator, or all refer to functions and function templates;
116  //   in this case the class name or enumeration name is hidden.
117  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
118    // We are pushing the name of a tag (enum or class).
119    if (CurContext == TD->getDeclContext()) {
120      // We're pushing the tag into the current context, which might
121      // require some reshuffling in the identifier resolver.
122      IdentifierResolver::iterator
123        I = IdResolver.begin(TD->getDeclName(), CurContext,
124                             false/*LookInParentCtx*/),
125        IEnd = IdResolver.end();
126      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
127        NamedDecl *PrevDecl = *I;
128        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
129             PrevDecl = *I, ++I) {
130          if (TD->declarationReplaces(*I)) {
131            // This is a redeclaration. Remove it from the chain and
132            // break out, so that we'll add in the shadowed
133            // declaration.
134            S->RemoveDecl(*I);
135            if (PrevDecl == *I) {
136              IdResolver.RemoveDecl(*I);
137              IdResolver.AddDecl(TD);
138              return;
139            } else {
140              IdResolver.RemoveDecl(*I);
141              break;
142            }
143          }
144        }
145
146        // There is already a declaration with the same name in the same
147        // scope, which is not a tag declaration. It must be found
148        // before we find the new declaration, so insert the new
149        // declaration at the end of the chain.
150        IdResolver.AddShadowedDecl(TD, PrevDecl);
151
152        return;
153      }
154    }
155  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
156    // We are pushing the name of a function, which might be an
157    // overloaded name.
158    FunctionDecl *FD = cast<FunctionDecl>(D);
159    DeclContext *DC = FD->getDeclContext();
160    while (DC->isTransparentContext())
161      DC = DC->getParent();
162    IdentifierResolver::iterator Redecl
163      = std::find_if(IdResolver.begin(FD->getDeclName(), DC,
164                                      false/*LookInParentCtx*/),
165                     IdResolver.end(),
166                     std::bind1st(std::mem_fun(&ScopedDecl::declarationReplaces),
167                                  FD));
168    if (Redecl != IdResolver.end()) {
169      // There is already a declaration of a function on our
170      // IdResolver chain. Replace it with this declaration.
171      S->RemoveDecl(*Redecl);
172      IdResolver.RemoveDecl(*Redecl);
173    }
174  }
175
176  IdResolver.AddDecl(D);
177}
178
179void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
180  if (S->decl_empty()) return;
181  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
182	 "Scope shouldn't contain decls!");
183
184  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
185       I != E; ++I) {
186    Decl *TmpD = static_cast<Decl*>(*I);
187    assert(TmpD && "This decl didn't get pushed??");
188
189    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
190    NamedDecl *D = cast<NamedDecl>(TmpD);
191
192    if (!D->getDeclName()) continue;
193
194    // Remove this name from our lexical scope.
195    IdResolver.RemoveDecl(D);
196  }
197}
198
199/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
200/// return 0 if one not found.
201ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
202  // The third "scope" argument is 0 since we aren't enabling lazy built-in
203  // creation from this context.
204  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
205
206  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
207}
208
209/// MaybeConstructOverloadSet - Name lookup has determined that the
210/// elements in [I, IEnd) have the name that we are looking for, and
211/// *I is a match for the namespace. This routine returns an
212/// appropriate Decl for name lookup, which may either be *I or an
213/// OverloadeFunctionDecl that represents the overloaded functions in
214/// [I, IEnd).
215///
216/// The existance of this routine is temporary; LookupDecl should
217/// probably be able to return multiple results, to deal with cases of
218/// ambiguity and overloaded functions without needing to create a
219/// Decl node.
220template<typename DeclIterator>
221static Decl *
222MaybeConstructOverloadSet(ASTContext &Context,
223                          DeclIterator I, DeclIterator IEnd) {
224  assert(I != IEnd && "Iterator range cannot be empty");
225  assert(!isa<OverloadedFunctionDecl>(*I) &&
226         "Cannot have an overloaded function");
227
228  if (isa<FunctionDecl>(*I)) {
229    // If we found a function, there might be more functions. If
230    // so, collect them into an overload set.
231    DeclIterator Last = I;
232    OverloadedFunctionDecl *Ovl = 0;
233    for (++Last; Last != IEnd && isa<FunctionDecl>(*Last); ++Last) {
234      if (!Ovl) {
235        // FIXME: We leak this overload set. Eventually, we want to
236        // stop building the declarations for these overload sets, so
237        // there will be nothing to leak.
238        Ovl = OverloadedFunctionDecl::Create(Context,
239                                         cast<ScopedDecl>(*I)->getDeclContext(),
240                                             (*I)->getDeclName());
241        Ovl->addOverload(cast<FunctionDecl>(*I));
242      }
243      Ovl->addOverload(cast<FunctionDecl>(*Last));
244    }
245
246    // If we had more than one function, we built an overload
247    // set. Return it.
248    if (Ovl)
249      return Ovl;
250  }
251
252  return *I;
253}
254
255/// LookupDecl - Look up the inner-most declaration in the specified
256/// namespace. NamespaceNameOnly - during lookup only namespace names
257/// are considered as required in C++ [basic.lookup.udir] 3.4.6.p1
258/// 'When looking up a namespace-name in a using-directive or
259/// namespace-alias-definition, only namespace names are considered.'
260Decl *Sema::LookupDecl(DeclarationName Name, unsigned NSI, Scope *S,
261                       const DeclContext *LookupCtx,
262                       bool enableLazyBuiltinCreation,
263                       bool LookInParent,
264                       bool NamespaceNameOnly) {
265  if (!Name) return 0;
266  unsigned NS = NSI;
267  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
268    NS |= Decl::IDNS_Tag;
269
270  if (LookupCtx == 0 &&
271      (!getLangOptions().CPlusPlus || (NS == Decl::IDNS_Label))) {
272    // Unqualified name lookup in C/Objective-C and name lookup for
273    // labels in C++ is purely lexical, so search in the
274    // declarations attached to the name.
275    assert(!LookupCtx && "Can't perform qualified name lookup here");
276    assert(!NamespaceNameOnly && "Can't perform namespace name lookup here");
277    IdentifierResolver::iterator I
278      = IdResolver.begin(Name, CurContext, LookInParent);
279
280    // Scan up the scope chain looking for a decl that matches this
281    // identifier that is in the appropriate namespace.  This search
282    // should not take long, as shadowing of names is uncommon, and
283    // deep shadowing is extremely uncommon.
284    for (; I != IdResolver.end(); ++I)
285      if ((*I)->getIdentifierNamespace() & NS)
286        return *I;
287  } else if (LookupCtx) {
288    // Perform qualified name lookup into the LookupCtx.
289    // FIXME: Will need to look into base classes and such.
290    DeclContext::lookup_const_iterator I, E;
291    for (llvm::tie(I, E) = LookupCtx->lookup(Context, Name); I != E; ++I)
292      if ((*I)->getIdentifierNamespace() & NS) {
293        if (NamespaceNameOnly && !isa<NamespaceDecl>(*I)) {
294          // Skip non-namespace name.
295        } else {
296          return MaybeConstructOverloadSet(Context, I, E);
297        }
298      }
299  } else {
300    // Name lookup for ordinary names and tag names in C++ requires
301    // looking into scopes that aren't strictly lexical, and
302    // therefore we walk through the context as well as walking
303    // through the scopes.
304    IdentifierResolver::iterator
305      I = IdResolver.begin(Name, CurContext, true/*LookInParentCtx*/),
306      IEnd = IdResolver.end();
307    for (; S; S = S->getParent()) {
308      // Check whether the IdResolver has anything in this scope.
309      // FIXME: The isDeclScope check could be expensive. Can we do better?
310      for (; I != IEnd && S->isDeclScope(*I); ++I) {
311        if ((*I)->getIdentifierNamespace() & NS) {
312          if (NamespaceNameOnly && !isa<NamespaceDecl>(*I)) {
313            // Skip non-namespace name.
314          } else {
315            // We found something. Look for anything else in our scope
316            // with this same name and in an acceptable identifier
317            // namespace, so that we can construct an overload set if we
318            // need to.
319            IdentifierResolver::iterator LastI = I;
320            for (++LastI; LastI != IEnd; ++LastI) {
321              if (((*LastI)->getIdentifierNamespace() & NS) == 0 ||
322                  !S->isDeclScope(*LastI))
323                break;
324            }
325            return MaybeConstructOverloadSet(Context, I, LastI);
326          }
327        }
328      }
329
330      // If there is an entity associated with this scope, it's a
331      // DeclContext. We might need to perform qualified lookup into
332      // it.
333      DeclContext *Ctx = static_cast<DeclContext *>(S->getEntity());
334      while (Ctx && Ctx->isFunctionOrMethod())
335        Ctx = Ctx->getParent();
336      while (Ctx && (Ctx->isNamespace() || Ctx->isCXXRecord())) {
337        // Look for declarations of this name in this scope.
338        DeclContext::lookup_const_iterator I, E;
339        for (llvm::tie(I, E) = Ctx->lookup(Context, Name); I != E; ++I) {
340          // FIXME: Cache this result in the IdResolver
341          if ((*I)->getIdentifierNamespace() & NS) {
342            if (NamespaceNameOnly && !isa<NamespaceDecl>(*I)) {}
343            else return MaybeConstructOverloadSet(Context, I, E);
344          }
345        }
346
347        Ctx = Ctx->getParent();
348      }
349
350      if (!LookInParent && !Ctx->isTransparentContext())
351        return 0;
352    }
353  }
354
355  // If we didn't find a use of this identifier, and if the identifier
356  // corresponds to a compiler builtin, create the decl object for the builtin
357  // now, injecting it into translation unit scope, and return it.
358  if (NS & Decl::IDNS_Ordinary) {
359    IdentifierInfo *II = Name.getAsIdentifierInfo();
360    if (enableLazyBuiltinCreation && II &&
361        (LookupCtx == 0 || isa<TranslationUnitDecl>(LookupCtx))) {
362      // If this is a builtin on this (or all) targets, create the decl.
363      if (unsigned BuiltinID = II->getBuiltinID())
364        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
365    }
366    if (getLangOptions().ObjC1 && II) {
367      // @interface and @compatibility_alias introduce typedef-like names.
368      // Unlike typedef's, they can only be introduced at file-scope (and are
369      // therefore not scoped decls). They can, however, be shadowed by
370      // other names in IDNS_Ordinary.
371      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
372      if (IDI != ObjCInterfaceDecls.end())
373        return IDI->second;
374      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
375      if (I != ObjCAliasDecls.end())
376        return I->second->getClassInterface();
377    }
378  }
379  return 0;
380}
381
382void Sema::InitBuiltinVaListType() {
383  if (!Context.getBuiltinVaListType().isNull())
384    return;
385
386  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
387  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
388  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
389  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
390}
391
392/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
393/// lazily create a decl for it.
394ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
395                                      Scope *S) {
396  Builtin::ID BID = (Builtin::ID)bid;
397
398  if (Context.BuiltinInfo.hasVAListUse(BID))
399    InitBuiltinVaListType();
400
401  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
402  FunctionDecl *New = FunctionDecl::Create(Context,
403                                           Context.getTranslationUnitDecl(),
404                                           SourceLocation(), II, R,
405                                           FunctionDecl::Extern, false, 0);
406
407  // Create Decl objects for each parameter, adding them to the
408  // FunctionDecl.
409  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
410    llvm::SmallVector<ParmVarDecl*, 16> Params;
411    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
412      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
413                                           FT->getArgType(i), VarDecl::None, 0,
414                                           0));
415    New->setParams(&Params[0], Params.size());
416  }
417
418
419
420  // TUScope is the translation-unit scope to insert this function into.
421  PushOnScopeChains(New, TUScope);
422  return New;
423}
424
425/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
426/// everything from the standard library is defined.
427NamespaceDecl *Sema::GetStdNamespace() {
428  if (!StdNamespace) {
429    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
430    DeclContext *Global = Context.getTranslationUnitDecl();
431    Decl *Std = LookupDecl(StdIdent, Decl::IDNS_Tag | Decl::IDNS_Ordinary,
432                           0, Global, /*enableLazyBuiltinCreation=*/false);
433    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
434  }
435  return StdNamespace;
436}
437
438/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
439/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
440/// situation, merging decls or emitting diagnostics as appropriate.
441///
442TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
443  // Allow multiple definitions for ObjC built-in typedefs.
444  // FIXME: Verify the underlying types are equivalent!
445  if (getLangOptions().ObjC1) {
446    const IdentifierInfo *TypeID = New->getIdentifier();
447    switch (TypeID->getLength()) {
448    default: break;
449    case 2:
450      if (!TypeID->isStr("id"))
451        break;
452      Context.setObjCIdType(New);
453      return New;
454    case 5:
455      if (!TypeID->isStr("Class"))
456        break;
457      Context.setObjCClassType(New);
458      return New;
459    case 3:
460      if (!TypeID->isStr("SEL"))
461        break;
462      Context.setObjCSelType(New);
463      return New;
464    case 8:
465      if (!TypeID->isStr("Protocol"))
466        break;
467      Context.setObjCProtoType(New->getUnderlyingType());
468      return New;
469    }
470    // Fall through - the typedef name was not a builtin type.
471  }
472  // Verify the old decl was also a typedef.
473  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
474  if (!Old) {
475    Diag(New->getLocation(), diag::err_redefinition_different_kind)
476      << New->getDeclName();
477    Diag(OldD->getLocation(), diag::note_previous_definition);
478    return New;
479  }
480
481  // If the typedef types are not identical, reject them in all languages and
482  // with any extensions enabled.
483  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
484      Context.getCanonicalType(Old->getUnderlyingType()) !=
485      Context.getCanonicalType(New->getUnderlyingType())) {
486    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
487      << New->getUnderlyingType() << Old->getUnderlyingType();
488    Diag(Old->getLocation(), diag::note_previous_definition);
489    return Old;
490  }
491
492  if (getLangOptions().Microsoft) return New;
493
494  // C++ [dcl.typedef]p2:
495  //   In a given non-class scope, a typedef specifier can be used to
496  //   redefine the name of any type declared in that scope to refer
497  //   to the type to which it already refers.
498  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
499    return New;
500
501  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
502  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
503  // *either* declaration is in a system header. The code below implements
504  // this adhoc compatibility rule. FIXME: The following code will not
505  // work properly when compiling ".i" files (containing preprocessed output).
506  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
507    SourceManager &SrcMgr = Context.getSourceManager();
508    if (SrcMgr.isInSystemHeader(Old->getLocation()))
509      return New;
510    if (SrcMgr.isInSystemHeader(New->getLocation()))
511      return New;
512  }
513
514  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
515  Diag(Old->getLocation(), diag::note_previous_definition);
516  return New;
517}
518
519/// DeclhasAttr - returns true if decl Declaration already has the target
520/// attribute.
521static bool DeclHasAttr(const Decl *decl, const Attr *target) {
522  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
523    if (attr->getKind() == target->getKind())
524      return true;
525
526  return false;
527}
528
529/// MergeAttributes - append attributes from the Old decl to the New one.
530static void MergeAttributes(Decl *New, Decl *Old) {
531  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
532
533  while (attr) {
534     tmp = attr;
535     attr = attr->getNext();
536
537    if (!DeclHasAttr(New, tmp)) {
538       tmp->setInherited(true);
539       New->addAttr(tmp);
540    } else {
541       tmp->setNext(0);
542       delete(tmp);
543    }
544  }
545
546  Old->invalidateAttrs();
547}
548
549/// MergeFunctionDecl - We just parsed a function 'New' from
550/// declarator D which has the same name and scope as a previous
551/// declaration 'Old'.  Figure out how to resolve this situation,
552/// merging decls or emitting diagnostics as appropriate.
553/// Redeclaration will be set true if this New is a redeclaration OldD.
554///
555/// In C++, New and Old must be declarations that are not
556/// overloaded. Use IsOverload to determine whether New and Old are
557/// overloaded, and to select the Old declaration that New should be
558/// merged with.
559FunctionDecl *
560Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
561  assert(!isa<OverloadedFunctionDecl>(OldD) &&
562         "Cannot merge with an overloaded function declaration");
563
564  Redeclaration = false;
565  // Verify the old decl was also a function.
566  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
567  if (!Old) {
568    Diag(New->getLocation(), diag::err_redefinition_different_kind)
569      << New->getDeclName();
570    Diag(OldD->getLocation(), diag::note_previous_definition);
571    return New;
572  }
573
574  // Determine whether the previous declaration was a definition,
575  // implicit declaration, or a declaration.
576  diag::kind PrevDiag;
577  if (Old->isThisDeclarationADefinition())
578    PrevDiag = diag::note_previous_definition;
579  else if (Old->isImplicit())
580    PrevDiag = diag::note_previous_implicit_declaration;
581  else
582    PrevDiag = diag::note_previous_declaration;
583
584  QualType OldQType = Context.getCanonicalType(Old->getType());
585  QualType NewQType = Context.getCanonicalType(New->getType());
586
587  if (getLangOptions().CPlusPlus) {
588    // (C++98 13.1p2):
589    //   Certain function declarations cannot be overloaded:
590    //     -- Function declarations that differ only in the return type
591    //        cannot be overloaded.
592    QualType OldReturnType
593      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
594    QualType NewReturnType
595      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
596    if (OldReturnType != NewReturnType) {
597      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
598      Diag(Old->getLocation(), PrevDiag);
599      Redeclaration = true;
600      return New;
601    }
602
603    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
604    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
605    if (OldMethod && NewMethod) {
606      //    -- Member function declarations with the same name and the
607      //       same parameter types cannot be overloaded if any of them
608      //       is a static member function declaration.
609      if (OldMethod->isStatic() || NewMethod->isStatic()) {
610        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
611        Diag(Old->getLocation(), PrevDiag);
612        return New;
613      }
614
615      // C++ [class.mem]p1:
616      //   [...] A member shall not be declared twice in the
617      //   member-specification, except that a nested class or member
618      //   class template can be declared and then later defined.
619      if (OldMethod->getLexicalDeclContext() ==
620            NewMethod->getLexicalDeclContext()) {
621        unsigned NewDiag;
622        if (isa<CXXConstructorDecl>(OldMethod))
623          NewDiag = diag::err_constructor_redeclared;
624        else if (isa<CXXDestructorDecl>(NewMethod))
625          NewDiag = diag::err_destructor_redeclared;
626        else if (isa<CXXConversionDecl>(NewMethod))
627          NewDiag = diag::err_conv_function_redeclared;
628        else
629          NewDiag = diag::err_member_redeclared;
630
631        Diag(New->getLocation(), NewDiag);
632        Diag(Old->getLocation(), PrevDiag);
633      }
634    }
635
636    // (C++98 8.3.5p3):
637    //   All declarations for a function shall agree exactly in both the
638    //   return type and the parameter-type-list.
639    if (OldQType == NewQType) {
640      // We have a redeclaration.
641      MergeAttributes(New, Old);
642      Redeclaration = true;
643      return MergeCXXFunctionDecl(New, Old);
644    }
645
646    // Fall through for conflicting redeclarations and redefinitions.
647  }
648
649  // C: Function types need to be compatible, not identical. This handles
650  // duplicate function decls like "void f(int); void f(enum X);" properly.
651  if (!getLangOptions().CPlusPlus &&
652      Context.typesAreCompatible(OldQType, NewQType)) {
653    MergeAttributes(New, Old);
654    Redeclaration = true;
655    return New;
656  }
657
658  // A function that has already been declared has been redeclared or defined
659  // with a different type- show appropriate diagnostic
660
661  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
662  // TODO: This is totally simplistic.  It should handle merging functions
663  // together etc, merging extern int X; int X; ...
664  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
665  Diag(Old->getLocation(), PrevDiag);
666  return New;
667}
668
669/// Predicate for C "tentative" external object definitions (C99 6.9.2).
670static bool isTentativeDefinition(VarDecl *VD) {
671  if (VD->isFileVarDecl())
672    return (!VD->getInit() &&
673            (VD->getStorageClass() == VarDecl::None ||
674             VD->getStorageClass() == VarDecl::Static));
675  return false;
676}
677
678/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
679/// when dealing with C "tentative" external object definitions (C99 6.9.2).
680void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
681  bool VDIsTentative = isTentativeDefinition(VD);
682  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
683
684  // FIXME: I don't this will actually see all of the
685  // redefinitions. Can't we check this property on-the-fly?
686  for (IdentifierResolver::iterator
687       I = IdResolver.begin(VD->getIdentifier(),
688                            VD->getDeclContext(), false/*LookInParentCtx*/),
689       E = IdResolver.end(); I != E; ++I) {
690    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
691      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
692
693      // Handle the following case:
694      //   int a[10];
695      //   int a[];   - the code below makes sure we set the correct type.
696      //   int a[11]; - this is an error, size isn't 10.
697      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
698          OldDecl->getType()->isConstantArrayType())
699        VD->setType(OldDecl->getType());
700
701      // Check for "tentative" definitions. We can't accomplish this in
702      // MergeVarDecl since the initializer hasn't been attached.
703      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
704        continue;
705
706      // Handle __private_extern__ just like extern.
707      if (OldDecl->getStorageClass() != VarDecl::Extern &&
708          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
709          VD->getStorageClass() != VarDecl::Extern &&
710          VD->getStorageClass() != VarDecl::PrivateExtern) {
711        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
712        Diag(OldDecl->getLocation(), diag::note_previous_definition);
713      }
714    }
715  }
716}
717
718/// MergeVarDecl - We just parsed a variable 'New' which has the same name
719/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
720/// situation, merging decls or emitting diagnostics as appropriate.
721///
722/// Tentative definition rules (C99 6.9.2p2) are checked by
723/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
724/// definitions here, since the initializer hasn't been attached.
725///
726VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
727  // Verify the old decl was also a variable.
728  VarDecl *Old = dyn_cast<VarDecl>(OldD);
729  if (!Old) {
730    Diag(New->getLocation(), diag::err_redefinition_different_kind)
731      << New->getDeclName();
732    Diag(OldD->getLocation(), diag::note_previous_definition);
733    return New;
734  }
735
736  MergeAttributes(New, Old);
737
738  // Verify the types match.
739  QualType OldCType = Context.getCanonicalType(Old->getType());
740  QualType NewCType = Context.getCanonicalType(New->getType());
741  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
742    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
743    Diag(Old->getLocation(), diag::note_previous_definition);
744    return New;
745  }
746  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
747  if (New->getStorageClass() == VarDecl::Static &&
748      (Old->getStorageClass() == VarDecl::None ||
749       Old->getStorageClass() == VarDecl::Extern)) {
750    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
751    Diag(Old->getLocation(), diag::note_previous_definition);
752    return New;
753  }
754  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
755  if (New->getStorageClass() != VarDecl::Static &&
756      Old->getStorageClass() == VarDecl::Static) {
757    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
758    Diag(Old->getLocation(), diag::note_previous_definition);
759    return New;
760  }
761  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
762  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
763    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
764    Diag(Old->getLocation(), diag::note_previous_definition);
765  }
766  return New;
767}
768
769/// CheckParmsForFunctionDef - Check that the parameters of the given
770/// function are appropriate for the definition of a function. This
771/// takes care of any checks that cannot be performed on the
772/// declaration itself, e.g., that the types of each of the function
773/// parameters are complete.
774bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
775  bool HasInvalidParm = false;
776  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
777    ParmVarDecl *Param = FD->getParamDecl(p);
778
779    // C99 6.7.5.3p4: the parameters in a parameter type list in a
780    // function declarator that is part of a function definition of
781    // that function shall not have incomplete type.
782    if (Param->getType()->isIncompleteType() &&
783        !Param->isInvalidDecl()) {
784      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type)
785        << Param->getType();
786      Param->setInvalidDecl();
787      HasInvalidParm = true;
788    }
789
790    // C99 6.9.1p5: If the declarator includes a parameter type list, the
791    // declaration of each parameter shall include an identifier.
792    if (Param->getIdentifier() == 0 && !getLangOptions().CPlusPlus)
793      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
794  }
795
796  return HasInvalidParm;
797}
798
799/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
800/// no declarator (e.g. "struct foo;") is parsed.
801Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
802  // FIXME: Isn't that more of a parser diagnostic than a sema diagnostic?
803  if (!DS.isMissingDeclaratorOk()) {
804    // FIXME: This diagnostic is emitted even when various previous
805    // errors occurred (see e.g. test/Sema/decl-invalid.c). However,
806    // DeclSpec has no means of communicating this information, and the
807    // responsible parser functions are quite far apart.
808    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
809      << DS.getSourceRange();
810    return 0;
811  }
812
813  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
814}
815
816bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
817  // Get the type before calling CheckSingleAssignmentConstraints(), since
818  // it can promote the expression.
819  QualType InitType = Init->getType();
820
821  if (getLangOptions().CPlusPlus)
822    return PerformCopyInitialization(Init, DeclType, "initializing");
823
824  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
825  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
826                                  InitType, Init, "initializing");
827}
828
829bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
830  const ArrayType *AT = Context.getAsArrayType(DeclT);
831
832  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
833    // C99 6.7.8p14. We have an array of character type with unknown size
834    // being initialized to a string literal.
835    llvm::APSInt ConstVal(32);
836    ConstVal = strLiteral->getByteLength() + 1;
837    // Return a new array type (C99 6.7.8p22).
838    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
839                                         ArrayType::Normal, 0);
840  } else {
841    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
842    // C99 6.7.8p14. We have an array of character type with known size.
843    // FIXME: Avoid truncation for 64-bit length strings.
844    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
845      Diag(strLiteral->getSourceRange().getBegin(),
846           diag::warn_initializer_string_for_char_array_too_long)
847        << strLiteral->getSourceRange();
848  }
849  // Set type from "char *" to "constant array of char".
850  strLiteral->setType(DeclT);
851  // For now, we always return false (meaning success).
852  return false;
853}
854
855StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
856  const ArrayType *AT = Context.getAsArrayType(DeclType);
857  if (AT && AT->getElementType()->isCharType()) {
858    return dyn_cast<StringLiteral>(Init);
859  }
860  return 0;
861}
862
863bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
864                                 SourceLocation InitLoc,
865                                 DeclarationName InitEntity) {
866  if (DeclType->isDependentType() || Init->isTypeDependent())
867    return false;
868
869  // C++ [dcl.init.ref]p1:
870  //   A variable declared to be a T&, that is "reference to type T"
871  //   (8.3.2), shall be initialized by an object, or function, of
872  //   type T or by an object that can be converted into a T.
873  if (DeclType->isReferenceType())
874    return CheckReferenceInit(Init, DeclType);
875
876  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
877  // of unknown size ("[]") or an object type that is not a variable array type.
878  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
879    return Diag(InitLoc,  diag::err_variable_object_no_init)
880      << VAT->getSizeExpr()->getSourceRange();
881
882  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
883  if (!InitList) {
884    // FIXME: Handle wide strings
885    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
886      return CheckStringLiteralInit(strLiteral, DeclType);
887
888    // C++ [dcl.init]p14:
889    //   -- If the destination type is a (possibly cv-qualified) class
890    //      type:
891    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
892      QualType DeclTypeC = Context.getCanonicalType(DeclType);
893      QualType InitTypeC = Context.getCanonicalType(Init->getType());
894
895      //   -- If the initialization is direct-initialization, or if it is
896      //      copy-initialization where the cv-unqualified version of the
897      //      source type is the same class as, or a derived class of, the
898      //      class of the destination, constructors are considered.
899      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
900          IsDerivedFrom(InitTypeC, DeclTypeC)) {
901        CXXConstructorDecl *Constructor
902          = PerformInitializationByConstructor(DeclType, &Init, 1,
903                                               InitLoc, Init->getSourceRange(),
904                                               InitEntity, IK_Copy);
905        return Constructor == 0;
906      }
907
908      //   -- Otherwise (i.e., for the remaining copy-initialization
909      //      cases), user-defined conversion sequences that can
910      //      convert from the source type to the destination type or
911      //      (when a conversion function is used) to a derived class
912      //      thereof are enumerated as described in 13.3.1.4, and the
913      //      best one is chosen through overload resolution
914      //      (13.3). If the conversion cannot be done or is
915      //      ambiguous, the initialization is ill-formed. The
916      //      function selected is called with the initializer
917      //      expression as its argument; if the function is a
918      //      constructor, the call initializes a temporary of the
919      //      destination type.
920      // FIXME: We're pretending to do copy elision here; return to
921      // this when we have ASTs for such things.
922      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
923        return false;
924
925      if (InitEntity)
926        return Diag(InitLoc, diag::err_cannot_initialize_decl)
927          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
928          << Init->getType() << Init->getSourceRange();
929      else
930        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
931          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
932          << Init->getType() << Init->getSourceRange();
933    }
934
935    // C99 6.7.8p16.
936    if (DeclType->isArrayType())
937      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
938        << Init->getSourceRange();
939
940    return CheckSingleInitializer(Init, DeclType);
941  } else if (getLangOptions().CPlusPlus) {
942    // C++ [dcl.init]p14:
943    //   [...] If the class is an aggregate (8.5.1), and the initializer
944    //   is a brace-enclosed list, see 8.5.1.
945    //
946    // Note: 8.5.1 is handled below; here, we diagnose the case where
947    // we have an initializer list and a destination type that is not
948    // an aggregate.
949    // FIXME: In C++0x, this is yet another form of initialization.
950    if (const RecordType *ClassRec = DeclType->getAsRecordType()) {
951      const CXXRecordDecl *ClassDecl = cast<CXXRecordDecl>(ClassRec->getDecl());
952      if (!ClassDecl->isAggregate())
953        return Diag(InitLoc, diag::err_init_non_aggr_init_list)
954           << DeclType << Init->getSourceRange();
955    }
956  }
957
958  InitListChecker CheckInitList(this, InitList, DeclType);
959  return CheckInitList.HadError();
960}
961
962/// GetNameForDeclarator - Determine the full declaration name for the
963/// given Declarator.
964DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
965  switch (D.getKind()) {
966  case Declarator::DK_Abstract:
967    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
968    return DeclarationName();
969
970  case Declarator::DK_Normal:
971    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
972    return DeclarationName(D.getIdentifier());
973
974  case Declarator::DK_Constructor: {
975    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
976    Ty = Context.getCanonicalType(Ty);
977    return Context.DeclarationNames.getCXXConstructorName(Ty);
978  }
979
980  case Declarator::DK_Destructor: {
981    QualType Ty = Context.getTypeDeclType((TypeDecl *)D.getDeclaratorIdType());
982    Ty = Context.getCanonicalType(Ty);
983    return Context.DeclarationNames.getCXXDestructorName(Ty);
984  }
985
986  case Declarator::DK_Conversion: {
987    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
988    Ty = Context.getCanonicalType(Ty);
989    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
990  }
991
992  case Declarator::DK_Operator:
993    assert(D.getIdentifier() == 0 && "operator names have no identifier");
994    return Context.DeclarationNames.getCXXOperatorName(
995                                                D.getOverloadedOperator());
996  }
997
998  assert(false && "Unknown name kind");
999  return DeclarationName();
1000}
1001
1002/// isNearlyMatchingMemberFunction - Determine whether the C++ member
1003/// functions Declaration and Definition are "nearly" matching. This
1004/// heuristic is used to improve diagnostics in the case where an
1005/// out-of-line member function definition doesn't match any
1006/// declaration within the class.
1007static bool isNearlyMatchingMemberFunction(ASTContext &Context,
1008                                           FunctionDecl *Declaration,
1009                                           FunctionDecl *Definition) {
1010  if (Declaration->param_size() != Definition->param_size())
1011    return false;
1012  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1013    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1014    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1015
1016    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1017    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1018    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1019      return false;
1020  }
1021
1022  return true;
1023}
1024
1025Sema::DeclTy *
1026Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1027                      bool IsFunctionDefinition) {
1028  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
1029  DeclarationName Name = GetNameForDeclarator(D);
1030
1031  // All of these full declarators require an identifier.  If it doesn't have
1032  // one, the ParsedFreeStandingDeclSpec action should be used.
1033  if (!Name) {
1034    if (!D.getInvalidType())  // Reject this if we think it is valid.
1035      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1036           diag::err_declarator_need_ident)
1037        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1038    return 0;
1039  }
1040
1041  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1042  // we find one that is.
1043  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1044        (S->getFlags() & Scope::TemplateParamScope) != 0)
1045    S = S->getParent();
1046
1047  DeclContext *DC;
1048  Decl *PrevDecl;
1049  ScopedDecl *New;
1050  bool InvalidDecl = false;
1051
1052  // See if this is a redefinition of a variable in the same scope.
1053  if (!D.getCXXScopeSpec().isSet()) {
1054    DC = CurContext;
1055    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S);
1056  } else { // Something like "int foo::x;"
1057    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1058    PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1059
1060    // C++ 7.3.1.2p2:
1061    // Members (including explicit specializations of templates) of a named
1062    // namespace can also be defined outside that namespace by explicit
1063    // qualification of the name being defined, provided that the entity being
1064    // defined was already declared in the namespace and the definition appears
1065    // after the point of declaration in a namespace that encloses the
1066    // declarations namespace.
1067    //
1068    // Note that we only check the context at this point. We don't yet
1069    // have enough information to make sure that PrevDecl is actually
1070    // the declaration we want to match. For example, given:
1071    //
1072    //   class X {
1073    //     void f();
1074    //     void f(float);
1075    //   };
1076    //
1077    //   void X::f(int) { } // ill-formed
1078    //
1079    // In this case, PrevDecl will point to the overload set
1080    // containing the two f's declared in X, but neither of them
1081    // matches.
1082    if (!CurContext->Encloses(DC)) {
1083      // The qualifying scope doesn't enclose the original declaration.
1084      // Emit diagnostic based on current scope.
1085      SourceLocation L = D.getIdentifierLoc();
1086      SourceRange R = D.getCXXScopeSpec().getRange();
1087      if (isa<FunctionDecl>(CurContext)) {
1088        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1089      } else {
1090        Diag(L, diag::err_invalid_declarator_scope)
1091          << Name << cast<NamedDecl>(DC)->getDeclName() << R;
1092      }
1093      InvalidDecl = true;
1094    }
1095  }
1096
1097  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1098    // Maybe we will complain about the shadowed template parameter.
1099    InvalidDecl = InvalidDecl
1100      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1101    // Just pretend that we didn't see the previous declaration.
1102    PrevDecl = 0;
1103  }
1104
1105  // In C++, the previous declaration we find might be a tag type
1106  // (class or enum). In this case, the new declaration will hide the
1107  // tag type.
1108  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
1109    PrevDecl = 0;
1110
1111  QualType R = GetTypeForDeclarator(D, S);
1112  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1113
1114  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1115    // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1116    if (D.getCXXScopeSpec().isSet()) {
1117      Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1118        << D.getCXXScopeSpec().getRange();
1119      InvalidDecl = true;
1120      // Pretend we didn't see the scope specifier.
1121      DC = 0;
1122    }
1123
1124    // Check that there are no default arguments (C++ only).
1125    if (getLangOptions().CPlusPlus)
1126      CheckExtraCXXDefaultArguments(D);
1127
1128    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1129    if (!NewTD) return 0;
1130
1131    // Handle attributes prior to checking for duplicates in MergeVarDecl
1132    ProcessDeclAttributes(NewTD, D);
1133    // Merge the decl with the existing one if appropriate. If the decl is
1134    // in an outer scope, it isn't the same thing.
1135    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1136      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
1137      if (NewTD == 0) return 0;
1138    }
1139    New = NewTD;
1140    if (S->getFnParent() == 0) {
1141      // C99 6.7.7p2: If a typedef name specifies a variably modified type
1142      // then it shall have block scope.
1143      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1144        if (NewTD->getUnderlyingType()->isVariableArrayType())
1145          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1146        else
1147          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1148
1149        InvalidDecl = true;
1150      }
1151    }
1152  } else if (R.getTypePtr()->isFunctionType()) {
1153    FunctionDecl::StorageClass SC = FunctionDecl::None;
1154    switch (D.getDeclSpec().getStorageClassSpec()) {
1155      default: assert(0 && "Unknown storage class!");
1156      case DeclSpec::SCS_auto:
1157      case DeclSpec::SCS_register:
1158      case DeclSpec::SCS_mutable:
1159        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1160        InvalidDecl = true;
1161        break;
1162      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1163      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1164      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1165      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1166    }
1167
1168    bool isInline = D.getDeclSpec().isInlineSpecified();
1169    // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1170    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1171
1172    FunctionDecl *NewFD;
1173    if (D.getKind() == Declarator::DK_Constructor) {
1174      // This is a C++ constructor declaration.
1175      assert(DC->isCXXRecord() &&
1176             "Constructors can only be declared in a member context");
1177
1178      InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1179
1180      // Create the new declaration
1181      NewFD = CXXConstructorDecl::Create(Context,
1182                                         cast<CXXRecordDecl>(DC),
1183                                         D.getIdentifierLoc(), Name, R,
1184                                         isExplicit, isInline,
1185                                         /*isImplicitlyDeclared=*/false);
1186
1187      if (InvalidDecl)
1188        NewFD->setInvalidDecl();
1189    } else if (D.getKind() == Declarator::DK_Destructor) {
1190      // This is a C++ destructor declaration.
1191      if (DC->isCXXRecord()) {
1192        InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1193
1194        NewFD = CXXDestructorDecl::Create(Context,
1195                                          cast<CXXRecordDecl>(DC),
1196                                          D.getIdentifierLoc(), Name, R,
1197                                          isInline,
1198                                          /*isImplicitlyDeclared=*/false);
1199
1200        if (InvalidDecl)
1201          NewFD->setInvalidDecl();
1202      } else {
1203        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1204
1205        // Create a FunctionDecl to satisfy the function definition parsing
1206        // code path.
1207        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1208                                     Name, R, SC, isInline, LastDeclarator,
1209                                     // FIXME: Move to DeclGroup...
1210                                   D.getDeclSpec().getSourceRange().getBegin());
1211        InvalidDecl = true;
1212        NewFD->setInvalidDecl();
1213      }
1214    } else if (D.getKind() == Declarator::DK_Conversion) {
1215      if (!DC->isCXXRecord()) {
1216        Diag(D.getIdentifierLoc(),
1217             diag::err_conv_function_not_member);
1218        return 0;
1219      } else {
1220        InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1221
1222        NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1223                                          D.getIdentifierLoc(), Name, R,
1224                                          isInline, isExplicit);
1225
1226        if (InvalidDecl)
1227          NewFD->setInvalidDecl();
1228      }
1229    } else if (DC->isCXXRecord()) {
1230      // This is a C++ method declaration.
1231      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1232                                    D.getIdentifierLoc(), Name, R,
1233                                    (SC == FunctionDecl::Static), isInline,
1234                                    LastDeclarator);
1235    } else {
1236      NewFD = FunctionDecl::Create(Context, DC,
1237                                   D.getIdentifierLoc(),
1238                                   Name, R, SC, isInline, LastDeclarator,
1239                                   // FIXME: Move to DeclGroup...
1240                                   D.getDeclSpec().getSourceRange().getBegin());
1241    }
1242
1243    // Set the lexical context. If the declarator has a C++
1244    // scope specifier, the lexical context will be different
1245    // from the semantic context.
1246    NewFD->setLexicalDeclContext(CurContext);
1247
1248    // Handle GNU asm-label extension (encoded as an attribute).
1249    if (Expr *E = (Expr*) D.getAsmLabel()) {
1250      // The parser guarantees this is a string.
1251      StringLiteral *SE = cast<StringLiteral>(E);
1252      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1253                                                  SE->getByteLength())));
1254    }
1255
1256    // Copy the parameter declarations from the declarator D to
1257    // the function declaration NewFD, if they are available.
1258    if (D.getNumTypeObjects() > 0) {
1259      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1260
1261      // Create Decl objects for each parameter, adding them to the
1262      // FunctionDecl.
1263      llvm::SmallVector<ParmVarDecl*, 16> Params;
1264
1265      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1266      // function that takes no arguments, not a function that takes a
1267      // single void argument.
1268      // We let through "const void" here because Sema::GetTypeForDeclarator
1269      // already checks for that case.
1270      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1271          FTI.ArgInfo[0].Param &&
1272          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1273        // empty arg list, don't push any params.
1274        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1275
1276        // In C++, the empty parameter-type-list must be spelled "void"; a
1277        // typedef of void is not permitted.
1278        if (getLangOptions().CPlusPlus &&
1279            Param->getType().getUnqualifiedType() != Context.VoidTy) {
1280          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1281        }
1282      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1283        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1284          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1285      }
1286
1287      NewFD->setParams(&Params[0], Params.size());
1288    } else if (R->getAsTypedefType()) {
1289      // When we're declaring a function with a typedef, as in the
1290      // following example, we'll need to synthesize (unnamed)
1291      // parameters for use in the declaration.
1292      //
1293      // @code
1294      // typedef void fn(int);
1295      // fn f;
1296      // @endcode
1297      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1298      if (!FT) {
1299        // This is a typedef of a function with no prototype, so we
1300        // don't need to do anything.
1301      } else if ((FT->getNumArgs() == 0) ||
1302          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1303           FT->getArgType(0)->isVoidType())) {
1304        // This is a zero-argument function. We don't need to do anything.
1305      } else {
1306        // Synthesize a parameter for each argument type.
1307        llvm::SmallVector<ParmVarDecl*, 16> Params;
1308        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1309             ArgType != FT->arg_type_end(); ++ArgType) {
1310          Params.push_back(ParmVarDecl::Create(Context, DC,
1311                                               SourceLocation(), 0,
1312                                               *ArgType, VarDecl::None,
1313                                               0, 0));
1314        }
1315
1316        NewFD->setParams(&Params[0], Params.size());
1317      }
1318    }
1319
1320    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1321      InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1322    else if (isa<CXXDestructorDecl>(NewFD))
1323      cast<CXXRecordDecl>(NewFD->getParent())->setUserDeclaredDestructor(true);
1324    else if (CXXConversionDecl *Conversion = dyn_cast<CXXConversionDecl>(NewFD))
1325      ActOnConversionDeclarator(Conversion);
1326
1327    // Extra checking for C++ overloaded operators (C++ [over.oper]).
1328    if (NewFD->isOverloadedOperator() &&
1329        CheckOverloadedOperatorDeclaration(NewFD))
1330      NewFD->setInvalidDecl();
1331
1332    // Merge the decl with the existing one if appropriate. Since C functions
1333    // are in a flat namespace, make sure we consider decls in outer scopes.
1334    if (PrevDecl &&
1335        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1336      bool Redeclaration = false;
1337
1338      // If C++, determine whether NewFD is an overload of PrevDecl or
1339      // a declaration that requires merging. If it's an overload,
1340      // there's no more work to do here; we'll just add the new
1341      // function to the scope.
1342      OverloadedFunctionDecl::function_iterator MatchedDecl;
1343      if (!getLangOptions().CPlusPlus ||
1344          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1345        Decl *OldDecl = PrevDecl;
1346
1347        // If PrevDecl was an overloaded function, extract the
1348        // FunctionDecl that matched.
1349        if (isa<OverloadedFunctionDecl>(PrevDecl))
1350          OldDecl = *MatchedDecl;
1351
1352        // NewFD and PrevDecl represent declarations that need to be
1353        // merged.
1354        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
1355
1356        if (NewFD == 0) return 0;
1357        if (Redeclaration) {
1358          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1359
1360          // An out-of-line member function declaration must also be a
1361          // definition (C++ [dcl.meaning]p1).
1362          if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1363              !InvalidDecl) {
1364            Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1365              << D.getCXXScopeSpec().getRange();
1366            NewFD->setInvalidDecl();
1367          }
1368        }
1369      }
1370
1371      if (!Redeclaration && D.getCXXScopeSpec().isSet()) {
1372        // The user tried to provide an out-of-line definition for a
1373        // member function, but there was no such member function
1374        // declared (C++ [class.mfct]p2). For example:
1375        //
1376        // class X {
1377        //   void f() const;
1378        // };
1379        //
1380        // void X::f() { } // ill-formed
1381        //
1382        // Complain about this problem, and attempt to suggest close
1383        // matches (e.g., those that differ only in cv-qualifiers and
1384        // whether the parameter types are references).
1385        Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1386          << cast<CXXRecordDecl>(DC)->getDeclName()
1387          << D.getCXXScopeSpec().getRange();
1388        InvalidDecl = true;
1389
1390        PrevDecl = LookupDecl(Name, Decl::IDNS_Ordinary, S, DC);
1391        if (!PrevDecl) {
1392          // Nothing to suggest.
1393        } else if (OverloadedFunctionDecl *Ovl
1394                   = dyn_cast<OverloadedFunctionDecl>(PrevDecl)) {
1395          for (OverloadedFunctionDecl::function_iterator
1396                 Func = Ovl->function_begin(),
1397                 FuncEnd = Ovl->function_end();
1398               Func != FuncEnd; ++Func) {
1399            if (isNearlyMatchingMemberFunction(Context, *Func, NewFD))
1400              Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1401
1402          }
1403        } else if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(PrevDecl)) {
1404          // Suggest this no matter how mismatched it is; it's the only
1405          // thing we have.
1406          unsigned diag;
1407          if (isNearlyMatchingMemberFunction(Context, Method, NewFD))
1408            diag = diag::note_member_def_close_match;
1409          else if (Method->getBody())
1410            diag = diag::note_previous_definition;
1411          else
1412            diag = diag::note_previous_declaration;
1413          Diag(Method->getLocation(), diag);
1414        }
1415
1416        PrevDecl = 0;
1417      }
1418    }
1419    // Handle attributes. We need to have merged decls when handling attributes
1420    // (for example to check for conflicts, etc).
1421    ProcessDeclAttributes(NewFD, D);
1422    New = NewFD;
1423
1424    if (getLangOptions().CPlusPlus) {
1425      // In C++, check default arguments now that we have merged decls.
1426      CheckCXXDefaultArguments(NewFD);
1427
1428      // An out-of-line member function declaration must also be a
1429      // definition (C++ [dcl.meaning]p1).
1430      if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1431        Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1432          << D.getCXXScopeSpec().getRange();
1433        InvalidDecl = true;
1434      }
1435    }
1436  } else {
1437    // Check that there are no default arguments (C++ only).
1438    if (getLangOptions().CPlusPlus)
1439      CheckExtraCXXDefaultArguments(D);
1440
1441    if (R.getTypePtr()->isObjCInterfaceType()) {
1442      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1443        << D.getIdentifier();
1444      InvalidDecl = true;
1445    }
1446
1447    VarDecl *NewVD;
1448    VarDecl::StorageClass SC;
1449    switch (D.getDeclSpec().getStorageClassSpec()) {
1450    default: assert(0 && "Unknown storage class!");
1451    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1452    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1453    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1454    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1455    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1456    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1457    case DeclSpec::SCS_mutable:
1458      // mutable can only appear on non-static class members, so it's always
1459      // an error here
1460      Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1461      InvalidDecl = true;
1462      SC = VarDecl::None;
1463      break;
1464    }
1465
1466    IdentifierInfo *II = Name.getAsIdentifierInfo();
1467    if (!II) {
1468      Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1469       << Name.getAsString();
1470      return 0;
1471    }
1472
1473    if (DC->isCXXRecord()) {
1474      // This is a static data member for a C++ class.
1475      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1476                                      D.getIdentifierLoc(), II,
1477                                      R, LastDeclarator);
1478    } else {
1479      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1480      if (S->getFnParent() == 0) {
1481        // C99 6.9p2: The storage-class specifiers auto and register shall not
1482        // appear in the declaration specifiers in an external declaration.
1483        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1484          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1485          InvalidDecl = true;
1486        }
1487      }
1488      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1489                              II, R, SC, LastDeclarator,
1490                              // FIXME: Move to DeclGroup...
1491                              D.getDeclSpec().getSourceRange().getBegin());
1492      NewVD->setThreadSpecified(ThreadSpecified);
1493    }
1494    // Handle attributes prior to checking for duplicates in MergeVarDecl
1495    ProcessDeclAttributes(NewVD, D);
1496
1497    // Handle GNU asm-label extension (encoded as an attribute).
1498    if (Expr *E = (Expr*) D.getAsmLabel()) {
1499      // The parser guarantees this is a string.
1500      StringLiteral *SE = cast<StringLiteral>(E);
1501      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1502                                                  SE->getByteLength())));
1503    }
1504
1505    // Emit an error if an address space was applied to decl with local storage.
1506    // This includes arrays of objects with address space qualifiers, but not
1507    // automatic variables that point to other address spaces.
1508    // ISO/IEC TR 18037 S5.1.2
1509    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1510      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1511      InvalidDecl = true;
1512    }
1513    // Merge the decl with the existing one if appropriate. If the decl is
1514    // in an outer scope, it isn't the same thing.
1515    if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1516      if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1517        // The user tried to define a non-static data member
1518        // out-of-line (C++ [dcl.meaning]p1).
1519        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1520          << D.getCXXScopeSpec().getRange();
1521        NewVD->Destroy(Context);
1522        return 0;
1523      }
1524
1525      NewVD = MergeVarDecl(NewVD, PrevDecl);
1526      if (NewVD == 0) return 0;
1527
1528      if (D.getCXXScopeSpec().isSet()) {
1529        // No previous declaration in the qualifying scope.
1530        Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1531          << Name << D.getCXXScopeSpec().getRange();
1532        InvalidDecl = true;
1533      }
1534    }
1535    New = NewVD;
1536  }
1537
1538  // Set the lexical context. If the declarator has a C++ scope specifier, the
1539  // lexical context will be different from the semantic context.
1540  New->setLexicalDeclContext(CurContext);
1541
1542  // If this has an identifier, add it to the scope stack.
1543  if (Name)
1544    PushOnScopeChains(New, S);
1545  // If any semantic error occurred, mark the decl as invalid.
1546  if (D.getInvalidType() || InvalidDecl)
1547    New->setInvalidDecl();
1548
1549  return New;
1550}
1551
1552void Sema::InitializerElementNotConstant(const Expr *Init) {
1553  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1554    << Init->getSourceRange();
1555}
1556
1557bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1558  switch (Init->getStmtClass()) {
1559  default:
1560    InitializerElementNotConstant(Init);
1561    return true;
1562  case Expr::ParenExprClass: {
1563    const ParenExpr* PE = cast<ParenExpr>(Init);
1564    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1565  }
1566  case Expr::CompoundLiteralExprClass:
1567    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1568  case Expr::DeclRefExprClass: {
1569    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1570    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1571      if (VD->hasGlobalStorage())
1572        return false;
1573      InitializerElementNotConstant(Init);
1574      return true;
1575    }
1576    if (isa<FunctionDecl>(D))
1577      return false;
1578    InitializerElementNotConstant(Init);
1579    return true;
1580  }
1581  case Expr::MemberExprClass: {
1582    const MemberExpr *M = cast<MemberExpr>(Init);
1583    if (M->isArrow())
1584      return CheckAddressConstantExpression(M->getBase());
1585    return CheckAddressConstantExpressionLValue(M->getBase());
1586  }
1587  case Expr::ArraySubscriptExprClass: {
1588    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1589    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1590    return CheckAddressConstantExpression(ASE->getBase()) ||
1591           CheckArithmeticConstantExpression(ASE->getIdx());
1592  }
1593  case Expr::StringLiteralClass:
1594  case Expr::PredefinedExprClass:
1595    return false;
1596  case Expr::UnaryOperatorClass: {
1597    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1598
1599    // C99 6.6p9
1600    if (Exp->getOpcode() == UnaryOperator::Deref)
1601      return CheckAddressConstantExpression(Exp->getSubExpr());
1602
1603    InitializerElementNotConstant(Init);
1604    return true;
1605  }
1606  }
1607}
1608
1609bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1610  switch (Init->getStmtClass()) {
1611  default:
1612    InitializerElementNotConstant(Init);
1613    return true;
1614  case Expr::ParenExprClass:
1615    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1616  case Expr::StringLiteralClass:
1617  case Expr::ObjCStringLiteralClass:
1618    return false;
1619  case Expr::CallExprClass:
1620  case Expr::CXXOperatorCallExprClass:
1621    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1622    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1623           Builtin::BI__builtin___CFStringMakeConstantString)
1624      return false;
1625
1626    InitializerElementNotConstant(Init);
1627    return true;
1628
1629  case Expr::UnaryOperatorClass: {
1630    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1631
1632    // C99 6.6p9
1633    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1634      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1635
1636    if (Exp->getOpcode() == UnaryOperator::Extension)
1637      return CheckAddressConstantExpression(Exp->getSubExpr());
1638
1639    InitializerElementNotConstant(Init);
1640    return true;
1641  }
1642  case Expr::BinaryOperatorClass: {
1643    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1644    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1645
1646    Expr *PExp = Exp->getLHS();
1647    Expr *IExp = Exp->getRHS();
1648    if (IExp->getType()->isPointerType())
1649      std::swap(PExp, IExp);
1650
1651    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1652    return CheckAddressConstantExpression(PExp) ||
1653           CheckArithmeticConstantExpression(IExp);
1654  }
1655  case Expr::ImplicitCastExprClass:
1656  case Expr::CStyleCastExprClass: {
1657    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1658    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1659      // Check for implicit promotion
1660      if (SubExpr->getType()->isFunctionType() ||
1661          SubExpr->getType()->isArrayType())
1662        return CheckAddressConstantExpressionLValue(SubExpr);
1663    }
1664
1665    // Check for pointer->pointer cast
1666    if (SubExpr->getType()->isPointerType())
1667      return CheckAddressConstantExpression(SubExpr);
1668
1669    if (SubExpr->getType()->isIntegralType()) {
1670      // Check for the special-case of a pointer->int->pointer cast;
1671      // this isn't standard, but some code requires it. See
1672      // PR2720 for an example.
1673      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1674        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1675          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1676          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1677          if (IntWidth >= PointerWidth) {
1678            return CheckAddressConstantExpression(SubCast->getSubExpr());
1679          }
1680        }
1681      }
1682    }
1683    if (SubExpr->getType()->isArithmeticType()) {
1684      return CheckArithmeticConstantExpression(SubExpr);
1685    }
1686
1687    InitializerElementNotConstant(Init);
1688    return true;
1689  }
1690  case Expr::ConditionalOperatorClass: {
1691    // FIXME: Should we pedwarn here?
1692    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1693    if (!Exp->getCond()->getType()->isArithmeticType()) {
1694      InitializerElementNotConstant(Init);
1695      return true;
1696    }
1697    if (CheckArithmeticConstantExpression(Exp->getCond()))
1698      return true;
1699    if (Exp->getLHS() &&
1700        CheckAddressConstantExpression(Exp->getLHS()))
1701      return true;
1702    return CheckAddressConstantExpression(Exp->getRHS());
1703  }
1704  case Expr::AddrLabelExprClass:
1705    return false;
1706  }
1707}
1708
1709static const Expr* FindExpressionBaseAddress(const Expr* E);
1710
1711static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1712  switch (E->getStmtClass()) {
1713  default:
1714    return E;
1715  case Expr::ParenExprClass: {
1716    const ParenExpr* PE = cast<ParenExpr>(E);
1717    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1718  }
1719  case Expr::MemberExprClass: {
1720    const MemberExpr *M = cast<MemberExpr>(E);
1721    if (M->isArrow())
1722      return FindExpressionBaseAddress(M->getBase());
1723    return FindExpressionBaseAddressLValue(M->getBase());
1724  }
1725  case Expr::ArraySubscriptExprClass: {
1726    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1727    return FindExpressionBaseAddress(ASE->getBase());
1728  }
1729  case Expr::UnaryOperatorClass: {
1730    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1731
1732    if (Exp->getOpcode() == UnaryOperator::Deref)
1733      return FindExpressionBaseAddress(Exp->getSubExpr());
1734
1735    return E;
1736  }
1737  }
1738}
1739
1740static const Expr* FindExpressionBaseAddress(const Expr* E) {
1741  switch (E->getStmtClass()) {
1742  default:
1743    return E;
1744  case Expr::ParenExprClass: {
1745    const ParenExpr* PE = cast<ParenExpr>(E);
1746    return FindExpressionBaseAddress(PE->getSubExpr());
1747  }
1748  case Expr::UnaryOperatorClass: {
1749    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1750
1751    // C99 6.6p9
1752    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1753      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1754
1755    if (Exp->getOpcode() == UnaryOperator::Extension)
1756      return FindExpressionBaseAddress(Exp->getSubExpr());
1757
1758    return E;
1759  }
1760  case Expr::BinaryOperatorClass: {
1761    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1762
1763    Expr *PExp = Exp->getLHS();
1764    Expr *IExp = Exp->getRHS();
1765    if (IExp->getType()->isPointerType())
1766      std::swap(PExp, IExp);
1767
1768    return FindExpressionBaseAddress(PExp);
1769  }
1770  case Expr::ImplicitCastExprClass: {
1771    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1772
1773    // Check for implicit promotion
1774    if (SubExpr->getType()->isFunctionType() ||
1775        SubExpr->getType()->isArrayType())
1776      return FindExpressionBaseAddressLValue(SubExpr);
1777
1778    // Check for pointer->pointer cast
1779    if (SubExpr->getType()->isPointerType())
1780      return FindExpressionBaseAddress(SubExpr);
1781
1782    // We assume that we have an arithmetic expression here;
1783    // if we don't, we'll figure it out later
1784    return 0;
1785  }
1786  case Expr::CStyleCastExprClass: {
1787    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1788
1789    // Check for pointer->pointer cast
1790    if (SubExpr->getType()->isPointerType())
1791      return FindExpressionBaseAddress(SubExpr);
1792
1793    // We assume that we have an arithmetic expression here;
1794    // if we don't, we'll figure it out later
1795    return 0;
1796  }
1797  }
1798}
1799
1800bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1801  switch (Init->getStmtClass()) {
1802  default:
1803    InitializerElementNotConstant(Init);
1804    return true;
1805  case Expr::ParenExprClass: {
1806    const ParenExpr* PE = cast<ParenExpr>(Init);
1807    return CheckArithmeticConstantExpression(PE->getSubExpr());
1808  }
1809  case Expr::FloatingLiteralClass:
1810  case Expr::IntegerLiteralClass:
1811  case Expr::CharacterLiteralClass:
1812  case Expr::ImaginaryLiteralClass:
1813  case Expr::TypesCompatibleExprClass:
1814  case Expr::CXXBoolLiteralExprClass:
1815    return false;
1816  case Expr::CallExprClass:
1817  case Expr::CXXOperatorCallExprClass: {
1818    const CallExpr *CE = cast<CallExpr>(Init);
1819
1820    // Allow any constant foldable calls to builtins.
1821    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1822      return false;
1823
1824    InitializerElementNotConstant(Init);
1825    return true;
1826  }
1827  case Expr::DeclRefExprClass: {
1828    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1829    if (isa<EnumConstantDecl>(D))
1830      return false;
1831    InitializerElementNotConstant(Init);
1832    return true;
1833  }
1834  case Expr::CompoundLiteralExprClass:
1835    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1836    // but vectors are allowed to be magic.
1837    if (Init->getType()->isVectorType())
1838      return false;
1839    InitializerElementNotConstant(Init);
1840    return true;
1841  case Expr::UnaryOperatorClass: {
1842    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1843
1844    switch (Exp->getOpcode()) {
1845    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1846    // See C99 6.6p3.
1847    default:
1848      InitializerElementNotConstant(Init);
1849      return true;
1850    case UnaryOperator::OffsetOf:
1851      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1852        return false;
1853      InitializerElementNotConstant(Init);
1854      return true;
1855    case UnaryOperator::Extension:
1856    case UnaryOperator::LNot:
1857    case UnaryOperator::Plus:
1858    case UnaryOperator::Minus:
1859    case UnaryOperator::Not:
1860      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1861    }
1862  }
1863  case Expr::SizeOfAlignOfExprClass: {
1864    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
1865    // Special check for void types, which are allowed as an extension
1866    if (Exp->getTypeOfArgument()->isVoidType())
1867      return false;
1868    // alignof always evaluates to a constant.
1869    // FIXME: is sizeof(int[3.0]) a constant expression?
1870    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
1871      InitializerElementNotConstant(Init);
1872      return true;
1873    }
1874    return false;
1875  }
1876  case Expr::BinaryOperatorClass: {
1877    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1878
1879    if (Exp->getLHS()->getType()->isArithmeticType() &&
1880        Exp->getRHS()->getType()->isArithmeticType()) {
1881      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1882             CheckArithmeticConstantExpression(Exp->getRHS());
1883    }
1884
1885    if (Exp->getLHS()->getType()->isPointerType() &&
1886        Exp->getRHS()->getType()->isPointerType()) {
1887      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1888      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1889
1890      // Only allow a null (constant integer) base; we could
1891      // allow some additional cases if necessary, but this
1892      // is sufficient to cover offsetof-like constructs.
1893      if (!LHSBase && !RHSBase) {
1894        return CheckAddressConstantExpression(Exp->getLHS()) ||
1895               CheckAddressConstantExpression(Exp->getRHS());
1896      }
1897    }
1898
1899    InitializerElementNotConstant(Init);
1900    return true;
1901  }
1902  case Expr::ImplicitCastExprClass:
1903  case Expr::CStyleCastExprClass: {
1904    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1905    if (SubExpr->getType()->isArithmeticType())
1906      return CheckArithmeticConstantExpression(SubExpr);
1907
1908    if (SubExpr->getType()->isPointerType()) {
1909      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1910      // If the pointer has a null base, this is an offsetof-like construct
1911      if (!Base)
1912        return CheckAddressConstantExpression(SubExpr);
1913    }
1914
1915    InitializerElementNotConstant(Init);
1916    return true;
1917  }
1918  case Expr::ConditionalOperatorClass: {
1919    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1920
1921    // If GNU extensions are disabled, we require all operands to be arithmetic
1922    // constant expressions.
1923    if (getLangOptions().NoExtensions) {
1924      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1925          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1926             CheckArithmeticConstantExpression(Exp->getRHS());
1927    }
1928
1929    // Otherwise, we have to emulate some of the behavior of fold here.
1930    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1931    // because it can constant fold things away.  To retain compatibility with
1932    // GCC code, we see if we can fold the condition to a constant (which we
1933    // should always be able to do in theory).  If so, we only require the
1934    // specified arm of the conditional to be a constant.  This is a horrible
1935    // hack, but is require by real world code that uses __builtin_constant_p.
1936    Expr::EvalResult EvalResult;
1937    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
1938        EvalResult.HasSideEffects) {
1939      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
1940      // won't be able to either.  Use it to emit the diagnostic though.
1941      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1942      assert(Res && "Evaluate couldn't evaluate this constant?");
1943      return Res;
1944    }
1945
1946    // Verify that the side following the condition is also a constant.
1947    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1948    if (EvalResult.Val.getInt() == 0)
1949      std::swap(TrueSide, FalseSide);
1950
1951    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1952      return true;
1953
1954    // Okay, the evaluated side evaluates to a constant, so we accept this.
1955    // Check to see if the other side is obviously not a constant.  If so,
1956    // emit a warning that this is a GNU extension.
1957    if (FalseSide && !FalseSide->isEvaluatable(Context))
1958      Diag(Init->getExprLoc(),
1959           diag::ext_typecheck_expression_not_constant_but_accepted)
1960        << FalseSide->getSourceRange();
1961    return false;
1962  }
1963  }
1964}
1965
1966bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1967  Expr::EvalResult Result;
1968
1969  Init = Init->IgnoreParens();
1970
1971  if (Init->Evaluate(Result, Context) && !Result.HasSideEffects)
1972    return false;
1973
1974  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1975  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1976    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1977
1978  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1979    return CheckForConstantInitializer(e->getInitializer(), DclT);
1980
1981  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1982    unsigned numInits = Exp->getNumInits();
1983    for (unsigned i = 0; i < numInits; i++) {
1984      // FIXME: Need to get the type of the declaration for C++,
1985      // because it could be a reference?
1986      if (CheckForConstantInitializer(Exp->getInit(i),
1987                                      Exp->getInit(i)->getType()))
1988        return true;
1989    }
1990    return false;
1991  }
1992
1993  // FIXME: We can probably remove some of this code below, now that
1994  // Expr::Evaluate is doing the heavy lifting for scalars.
1995
1996  if (Init->isNullPointerConstant(Context))
1997    return false;
1998  if (Init->getType()->isArithmeticType()) {
1999    QualType InitTy = Context.getCanonicalType(Init->getType())
2000                             .getUnqualifiedType();
2001    if (InitTy == Context.BoolTy) {
2002      // Special handling for pointers implicitly cast to bool;
2003      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2004      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2005        Expr* SubE = ICE->getSubExpr();
2006        if (SubE->getType()->isPointerType() ||
2007            SubE->getType()->isArrayType() ||
2008            SubE->getType()->isFunctionType()) {
2009          return CheckAddressConstantExpression(Init);
2010        }
2011      }
2012    } else if (InitTy->isIntegralType()) {
2013      Expr* SubE = 0;
2014      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2015        SubE = CE->getSubExpr();
2016      // Special check for pointer cast to int; we allow as an extension
2017      // an address constant cast to an integer if the integer
2018      // is of an appropriate width (this sort of code is apparently used
2019      // in some places).
2020      // FIXME: Add pedwarn?
2021      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2022      if (SubE && (SubE->getType()->isPointerType() ||
2023                   SubE->getType()->isArrayType() ||
2024                   SubE->getType()->isFunctionType())) {
2025        unsigned IntWidth = Context.getTypeSize(Init->getType());
2026        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2027        if (IntWidth >= PointerWidth)
2028          return CheckAddressConstantExpression(Init);
2029      }
2030    }
2031
2032    return CheckArithmeticConstantExpression(Init);
2033  }
2034
2035  if (Init->getType()->isPointerType())
2036    return CheckAddressConstantExpression(Init);
2037
2038  // An array type at the top level that isn't an init-list must
2039  // be a string literal
2040  if (Init->getType()->isArrayType())
2041    return false;
2042
2043  if (Init->getType()->isFunctionType())
2044    return false;
2045
2046  // Allow block exprs at top level.
2047  if (Init->getType()->isBlockPointerType())
2048    return false;
2049
2050  InitializerElementNotConstant(Init);
2051  return true;
2052}
2053
2054void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2055  Decl *RealDecl = static_cast<Decl *>(dcl);
2056  Expr *Init = static_cast<Expr *>(init.release());
2057  assert(Init && "missing initializer");
2058
2059  // If there is no declaration, there was an error parsing it.  Just ignore
2060  // the initializer.
2061  if (RealDecl == 0) {
2062    delete Init;
2063    return;
2064  }
2065
2066  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2067  if (!VDecl) {
2068    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
2069         diag::err_illegal_initializer);
2070    RealDecl->setInvalidDecl();
2071    return;
2072  }
2073  // Get the decls type and save a reference for later, since
2074  // CheckInitializerTypes may change it.
2075  QualType DclT = VDecl->getType(), SavT = DclT;
2076  if (VDecl->isBlockVarDecl()) {
2077    VarDecl::StorageClass SC = VDecl->getStorageClass();
2078    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2079      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2080      VDecl->setInvalidDecl();
2081    } else if (!VDecl->isInvalidDecl()) {
2082      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2083                                VDecl->getDeclName()))
2084        VDecl->setInvalidDecl();
2085
2086      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2087      if (!getLangOptions().CPlusPlus) {
2088        if (SC == VarDecl::Static) // C99 6.7.8p4.
2089          CheckForConstantInitializer(Init, DclT);
2090      }
2091    }
2092  } else if (VDecl->isFileVarDecl()) {
2093    if (VDecl->getStorageClass() == VarDecl::Extern)
2094      Diag(VDecl->getLocation(), diag::warn_extern_init);
2095    if (!VDecl->isInvalidDecl())
2096      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2097                                VDecl->getDeclName()))
2098        VDecl->setInvalidDecl();
2099
2100    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2101    if (!getLangOptions().CPlusPlus) {
2102      // C99 6.7.8p4. All file scoped initializers need to be constant.
2103      CheckForConstantInitializer(Init, DclT);
2104    }
2105  }
2106  // If the type changed, it means we had an incomplete type that was
2107  // completed by the initializer. For example:
2108  //   int ary[] = { 1, 3, 5 };
2109  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2110  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2111    VDecl->setType(DclT);
2112    Init->setType(DclT);
2113  }
2114
2115  // Attach the initializer to the decl.
2116  VDecl->setInit(Init);
2117  return;
2118}
2119
2120void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2121  Decl *RealDecl = static_cast<Decl *>(dcl);
2122
2123  // If there is no declaration, there was an error parsing it. Just ignore it.
2124  if (RealDecl == 0)
2125    return;
2126
2127  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2128    QualType Type = Var->getType();
2129    // C++ [dcl.init.ref]p3:
2130    //   The initializer can be omitted for a reference only in a
2131    //   parameter declaration (8.3.5), in the declaration of a
2132    //   function return type, in the declaration of a class member
2133    //   within its class declaration (9.2), and where the extern
2134    //   specifier is explicitly used.
2135    if (Type->isReferenceType() &&
2136        Var->getStorageClass() != VarDecl::Extern &&
2137        Var->getStorageClass() != VarDecl::PrivateExtern) {
2138      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2139        << Var->getDeclName()
2140        << SourceRange(Var->getLocation(), Var->getLocation());
2141      Var->setInvalidDecl();
2142      return;
2143    }
2144
2145    // C++ [dcl.init]p9:
2146    //
2147    //   If no initializer is specified for an object, and the object
2148    //   is of (possibly cv-qualified) non-POD class type (or array
2149    //   thereof), the object shall be default-initialized; if the
2150    //   object is of const-qualified type, the underlying class type
2151    //   shall have a user-declared default constructor.
2152    if (getLangOptions().CPlusPlus) {
2153      QualType InitType = Type;
2154      if (const ArrayType *Array = Context.getAsArrayType(Type))
2155        InitType = Array->getElementType();
2156      if (Var->getStorageClass() != VarDecl::Extern &&
2157          Var->getStorageClass() != VarDecl::PrivateExtern &&
2158          InitType->isRecordType()) {
2159        const CXXConstructorDecl *Constructor
2160          = PerformInitializationByConstructor(InitType, 0, 0,
2161                                               Var->getLocation(),
2162                                               SourceRange(Var->getLocation(),
2163                                                           Var->getLocation()),
2164                                               Var->getDeclName(),
2165                                               IK_Default);
2166        if (!Constructor)
2167          Var->setInvalidDecl();
2168      }
2169    }
2170
2171#if 0
2172    // FIXME: Temporarily disabled because we are not properly parsing
2173    // linkage specifications on declarations, e.g.,
2174    //
2175    //   extern "C" const CGPoint CGPointerZero;
2176    //
2177    // C++ [dcl.init]p9:
2178    //
2179    //     If no initializer is specified for an object, and the
2180    //     object is of (possibly cv-qualified) non-POD class type (or
2181    //     array thereof), the object shall be default-initialized; if
2182    //     the object is of const-qualified type, the underlying class
2183    //     type shall have a user-declared default
2184    //     constructor. Otherwise, if no initializer is specified for
2185    //     an object, the object and its subobjects, if any, have an
2186    //     indeterminate initial value; if the object or any of its
2187    //     subobjects are of const-qualified type, the program is
2188    //     ill-formed.
2189    //
2190    // This isn't technically an error in C, so we don't diagnose it.
2191    //
2192    // FIXME: Actually perform the POD/user-defined default
2193    // constructor check.
2194    if (getLangOptions().CPlusPlus &&
2195        Context.getCanonicalType(Type).isConstQualified() &&
2196        Var->getStorageClass() != VarDecl::Extern)
2197      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2198        << Var->getName()
2199        << SourceRange(Var->getLocation(), Var->getLocation());
2200#endif
2201  }
2202}
2203
2204/// The declarators are chained together backwards, reverse the list.
2205Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2206  // Often we have single declarators, handle them quickly.
2207  Decl *GroupDecl = static_cast<Decl*>(group);
2208  if (GroupDecl == 0)
2209    return 0;
2210
2211  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
2212  ScopedDecl *NewGroup = 0;
2213  if (Group->getNextDeclarator() == 0)
2214    NewGroup = Group;
2215  else { // reverse the list.
2216    while (Group) {
2217      ScopedDecl *Next = Group->getNextDeclarator();
2218      Group->setNextDeclarator(NewGroup);
2219      NewGroup = Group;
2220      Group = Next;
2221    }
2222  }
2223  // Perform semantic analysis that depends on having fully processed both
2224  // the declarator and initializer.
2225  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2226    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2227    if (!IDecl)
2228      continue;
2229    QualType T = IDecl->getType();
2230
2231    if (T->isVariableArrayType()) {
2232      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2233
2234      // FIXME: This won't give the correct result for
2235      // int a[10][n];
2236      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2237      if (IDecl->isFileVarDecl()) {
2238        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2239          SizeRange;
2240
2241        IDecl->setInvalidDecl();
2242      } else {
2243        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2244        // static storage duration, it shall not have a variable length array.
2245        if (IDecl->getStorageClass() == VarDecl::Static) {
2246          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2247            << SizeRange;
2248          IDecl->setInvalidDecl();
2249        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2250          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2251            << SizeRange;
2252          IDecl->setInvalidDecl();
2253        }
2254      }
2255    } else if (T->isVariablyModifiedType()) {
2256      if (IDecl->isFileVarDecl()) {
2257        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2258        IDecl->setInvalidDecl();
2259      } else {
2260        if (IDecl->getStorageClass() == VarDecl::Extern) {
2261          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2262          IDecl->setInvalidDecl();
2263        }
2264      }
2265    }
2266
2267    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2268    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2269    if (IDecl->isBlockVarDecl() &&
2270        IDecl->getStorageClass() != VarDecl::Extern) {
2271      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2272        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2273        IDecl->setInvalidDecl();
2274      }
2275    }
2276    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2277    // object that has file scope without an initializer, and without a
2278    // storage-class specifier or with the storage-class specifier "static",
2279    // constitutes a tentative definition. Note: A tentative definition with
2280    // external linkage is valid (C99 6.2.2p5).
2281    if (isTentativeDefinition(IDecl)) {
2282      if (T->isIncompleteArrayType()) {
2283        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2284        // array to be completed. Don't issue a diagnostic.
2285      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
2286        // C99 6.9.2p3: If the declaration of an identifier for an object is
2287        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2288        // declared type shall not be an incomplete type.
2289        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)<<T;
2290        IDecl->setInvalidDecl();
2291      }
2292    }
2293    if (IDecl->isFileVarDecl())
2294      CheckForFileScopedRedefinitions(S, IDecl);
2295  }
2296  return NewGroup;
2297}
2298
2299/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2300/// to introduce parameters into function prototype scope.
2301Sema::DeclTy *
2302Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2303  const DeclSpec &DS = D.getDeclSpec();
2304
2305  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2306  VarDecl::StorageClass StorageClass = VarDecl::None;
2307  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2308    StorageClass = VarDecl::Register;
2309  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2310    Diag(DS.getStorageClassSpecLoc(),
2311         diag::err_invalid_storage_class_in_func_decl);
2312    D.getMutableDeclSpec().ClearStorageClassSpecs();
2313  }
2314  if (DS.isThreadSpecified()) {
2315    Diag(DS.getThreadSpecLoc(),
2316         diag::err_invalid_storage_class_in_func_decl);
2317    D.getMutableDeclSpec().ClearStorageClassSpecs();
2318  }
2319
2320  // Check that there are no default arguments inside the type of this
2321  // parameter (C++ only).
2322  if (getLangOptions().CPlusPlus)
2323    CheckExtraCXXDefaultArguments(D);
2324
2325  // In this context, we *do not* check D.getInvalidType(). If the declarator
2326  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2327  // though it will not reflect the user specified type.
2328  QualType parmDeclType = GetTypeForDeclarator(D, S);
2329
2330  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2331
2332  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2333  // Can this happen for params?  We already checked that they don't conflict
2334  // among each other.  Here they can only shadow globals, which is ok.
2335  IdentifierInfo *II = D.getIdentifier();
2336  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
2337    if (PrevDecl->isTemplateParameter()) {
2338      // Maybe we will complain about the shadowed template parameter.
2339      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2340      // Just pretend that we didn't see the previous declaration.
2341      PrevDecl = 0;
2342    } else if (S->isDeclScope(PrevDecl)) {
2343      Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2344
2345      // Recover by removing the name
2346      II = 0;
2347      D.SetIdentifier(0, D.getIdentifierLoc());
2348    }
2349  }
2350
2351  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2352  // Doing the promotion here has a win and a loss. The win is the type for
2353  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2354  // code generator). The loss is the orginal type isn't preserved. For example:
2355  //
2356  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2357  //    int blockvardecl[5];
2358  //    sizeof(parmvardecl);  // size == 4
2359  //    sizeof(blockvardecl); // size == 20
2360  // }
2361  //
2362  // For expressions, all implicit conversions are captured using the
2363  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2364  //
2365  // FIXME: If a source translation tool needs to see the original type, then
2366  // we need to consider storing both types (in ParmVarDecl)...
2367  //
2368  if (parmDeclType->isArrayType()) {
2369    // int x[restrict 4] ->  int *restrict
2370    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2371  } else if (parmDeclType->isFunctionType())
2372    parmDeclType = Context.getPointerType(parmDeclType);
2373
2374  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2375                                         D.getIdentifierLoc(), II,
2376                                         parmDeclType, StorageClass,
2377                                         0, 0);
2378
2379  if (D.getInvalidType())
2380    New->setInvalidDecl();
2381
2382  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2383  if (D.getCXXScopeSpec().isSet()) {
2384    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2385      << D.getCXXScopeSpec().getRange();
2386    New->setInvalidDecl();
2387  }
2388
2389  // Add the parameter declaration into this scope.
2390  S->AddDecl(New);
2391  if (II)
2392    IdResolver.AddDecl(New);
2393
2394  ProcessDeclAttributes(New, D);
2395  return New;
2396
2397}
2398
2399Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2400  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2401  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2402         "Not a function declarator!");
2403  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2404
2405  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2406  // for a K&R function.
2407  if (!FTI.hasPrototype) {
2408    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2409      if (FTI.ArgInfo[i].Param == 0) {
2410        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2411          << FTI.ArgInfo[i].Ident;
2412        // Implicitly declare the argument as type 'int' for lack of a better
2413        // type.
2414        DeclSpec DS;
2415        const char* PrevSpec; // unused
2416        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2417                           PrevSpec);
2418        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2419        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2420        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
2421      }
2422    }
2423  } else {
2424    // FIXME: Diagnose arguments without names in C.
2425  }
2426
2427  Scope *ParentScope = FnBodyScope->getParent();
2428
2429  return ActOnStartOfFunctionDef(FnBodyScope,
2430                                 ActOnDeclarator(ParentScope, D, 0,
2431                                                 /*IsFunctionDefinition=*/true));
2432}
2433
2434Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2435  Decl *decl = static_cast<Decl*>(D);
2436  FunctionDecl *FD = cast<FunctionDecl>(decl);
2437
2438  // See if this is a redefinition.
2439  const FunctionDecl *Definition;
2440  if (FD->getBody(Definition)) {
2441    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2442    Diag(Definition->getLocation(), diag::note_previous_definition);
2443  }
2444
2445  PushDeclContext(FnBodyScope, FD);
2446
2447  // Check the validity of our function parameters
2448  CheckParmsForFunctionDef(FD);
2449
2450  // Introduce our parameters into the function scope
2451  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2452    ParmVarDecl *Param = FD->getParamDecl(p);
2453    // If this has an identifier, add it to the scope stack.
2454    if (Param->getIdentifier())
2455      PushOnScopeChains(Param, FnBodyScope);
2456  }
2457
2458  // Checking attributes of current function definition
2459  // dllimport attribute.
2460  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2461    // dllimport attribute cannot be applied to definition.
2462    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2463      Diag(FD->getLocation(),
2464           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2465        << "dllimport";
2466      FD->setInvalidDecl();
2467      return FD;
2468    } else {
2469      // If a symbol previously declared dllimport is later defined, the
2470      // attribute is ignored in subsequent references, and a warning is
2471      // emitted.
2472      Diag(FD->getLocation(),
2473           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2474        << FD->getNameAsCString() << "dllimport";
2475    }
2476  }
2477  return FD;
2478}
2479
2480Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2481  Decl *dcl = static_cast<Decl *>(D);
2482  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2483  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2484    FD->setBody(Body);
2485    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2486  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2487    MD->setBody((Stmt*)Body);
2488  } else
2489    return 0;
2490  PopDeclContext();
2491  // Verify and clean out per-function state.
2492
2493  // Check goto/label use.
2494  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2495       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2496    // Verify that we have no forward references left.  If so, there was a goto
2497    // or address of a label taken, but no definition of it.  Label fwd
2498    // definitions are indicated with a null substmt.
2499    if (I->second->getSubStmt() == 0) {
2500      LabelStmt *L = I->second;
2501      // Emit error.
2502      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2503
2504      // At this point, we have gotos that use the bogus label.  Stitch it into
2505      // the function body so that they aren't leaked and that the AST is well
2506      // formed.
2507      if (Body) {
2508        L->setSubStmt(new NullStmt(L->getIdentLoc()));
2509        cast<CompoundStmt>(Body)->push_back(L);
2510      } else {
2511        // The whole function wasn't parsed correctly, just delete this.
2512        delete L;
2513      }
2514    }
2515  }
2516  LabelMap.clear();
2517
2518  return D;
2519}
2520
2521/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2522/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2523ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2524                                           IdentifierInfo &II, Scope *S) {
2525  // Extension in C99.  Legal in C90, but warn about it.
2526  if (getLangOptions().C99)
2527    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2528  else
2529    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2530
2531  // FIXME: handle stuff like:
2532  // void foo() { extern float X(); }
2533  // void bar() { X(); }  <-- implicit decl for X in another scope.
2534
2535  // Set a Declarator for the implicit definition: int foo();
2536  const char *Dummy;
2537  DeclSpec DS;
2538  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2539  Error = Error; // Silence warning.
2540  assert(!Error && "Error setting up implicit decl!");
2541  Declarator D(DS, Declarator::BlockContext);
2542  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
2543  D.SetIdentifier(&II, Loc);
2544
2545  // Insert this function into translation-unit scope.
2546
2547  DeclContext *PrevDC = CurContext;
2548  CurContext = Context.getTranslationUnitDecl();
2549
2550  FunctionDecl *FD =
2551    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2552  FD->setImplicit();
2553
2554  CurContext = PrevDC;
2555
2556  return FD;
2557}
2558
2559
2560TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
2561                                    ScopedDecl *LastDeclarator) {
2562  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
2563  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2564
2565  // Scope manipulation handled by caller.
2566  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
2567                                           D.getIdentifierLoc(),
2568                                           D.getIdentifier(),
2569                                           T, LastDeclarator);
2570  if (D.getInvalidType())
2571    NewTD->setInvalidDecl();
2572  return NewTD;
2573}
2574
2575/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2576/// former case, Name will be non-null.  In the later case, Name will be null.
2577/// TagType indicates what kind of tag this is. TK indicates whether this is a
2578/// reference/declaration/definition of a tag.
2579Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2580                             SourceLocation KWLoc, const CXXScopeSpec &SS,
2581                             IdentifierInfo *Name, SourceLocation NameLoc,
2582                             AttributeList *Attr,
2583                             MultiTemplateParamsArg TemplateParameterLists) {
2584  // If this is not a definition, it must have a name.
2585  assert((Name != 0 || TK == TK_Definition) &&
2586         "Nameless record must be a definition!");
2587
2588  TagDecl::TagKind Kind;
2589  switch (TagType) {
2590  default: assert(0 && "Unknown tag type!");
2591  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2592  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2593  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2594  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2595  }
2596
2597  DeclContext *DC = CurContext;
2598  ScopedDecl *PrevDecl = 0;
2599
2600  if (Name && SS.isNotEmpty()) {
2601    // We have a nested-name tag ('struct foo::bar').
2602
2603    // Check for invalid 'foo::'.
2604    if (SS.isInvalid()) {
2605      Name = 0;
2606      goto CreateNewDecl;
2607    }
2608
2609    DC = static_cast<DeclContext*>(SS.getScopeRep());
2610    // Look-up name inside 'foo::'.
2611    PrevDecl = dyn_cast_or_null<TagDecl>(LookupDecl(Name, Decl::IDNS_Tag,S,DC));
2612
2613    // A tag 'foo::bar' must already exist.
2614    if (PrevDecl == 0) {
2615      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
2616      Name = 0;
2617      goto CreateNewDecl;
2618    }
2619  } else {
2620    // If this is a named struct, check to see if there was a previous forward
2621    // declaration or definition.
2622    // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2623    PrevDecl = dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag,S));
2624  }
2625
2626  if (PrevDecl && PrevDecl->isTemplateParameter()) {
2627    // Maybe we will complain about the shadowed template parameter.
2628    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
2629    // Just pretend that we didn't see the previous declaration.
2630    PrevDecl = 0;
2631  }
2632
2633  if (PrevDecl) {
2634    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2635            "unexpected Decl type");
2636    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2637      // If this is a use of a previous tag, or if the tag is already declared
2638      // in the same scope (so that the definition/declaration completes or
2639      // rementions the tag), reuse the decl.
2640      if (TK == TK_Reference || isDeclInScope(PrevDecl, DC, S)) {
2641        // Make sure that this wasn't declared as an enum and now used as a
2642        // struct or something similar.
2643        if (PrevTagDecl->getTagKind() != Kind) {
2644          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
2645          Diag(PrevDecl->getLocation(), diag::note_previous_use);
2646          // Recover by making this an anonymous redefinition.
2647          Name = 0;
2648          PrevDecl = 0;
2649        } else {
2650          // If this is a use, just return the declaration we found.
2651
2652          // FIXME: In the future, return a variant or some other clue
2653          // for the consumer of this Decl to know it doesn't own it.
2654          // For our current ASTs this shouldn't be a problem, but will
2655          // need to be changed with DeclGroups.
2656          if (TK == TK_Reference)
2657            return PrevDecl;
2658
2659          // Diagnose attempts to redefine a tag.
2660          if (TK == TK_Definition) {
2661            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
2662              Diag(NameLoc, diag::err_redefinition) << Name;
2663              Diag(Def->getLocation(), diag::note_previous_definition);
2664              // If this is a redefinition, recover by making this struct be
2665              // anonymous, which will make any later references get the previous
2666              // definition.
2667              Name = 0;
2668              PrevDecl = 0;
2669            }
2670            // Okay, this is definition of a previously declared or referenced
2671            // tag PrevDecl. We're going to create a new Decl for it.
2672          }
2673        }
2674        // If we get here we have (another) forward declaration or we
2675        // have a definition.  Just create a new decl.
2676      } else {
2677        // If we get here, this is a definition of a new tag type in a nested
2678        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2679        // new decl/type.  We set PrevDecl to NULL so that the entities
2680        // have distinct types.
2681        PrevDecl = 0;
2682      }
2683      // If we get here, we're going to create a new Decl. If PrevDecl
2684      // is non-NULL, it's a definition of the tag declared by
2685      // PrevDecl. If it's NULL, we have a new definition.
2686    } else {
2687      // PrevDecl is a namespace.
2688      if (isDeclInScope(PrevDecl, DC, S)) {
2689        // The tag name clashes with a namespace name, issue an error and
2690        // recover by making this tag be anonymous.
2691        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
2692        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
2693        Name = 0;
2694        PrevDecl = 0;
2695      } else {
2696        // The existing declaration isn't relevant to us; we're in a
2697        // new scope, so clear out the previous declaration.
2698        PrevDecl = 0;
2699      }
2700    }
2701  }
2702
2703CreateNewDecl:
2704
2705  // If there is an identifier, use the location of the identifier as the
2706  // location of the decl, otherwise use the location of the struct/union
2707  // keyword.
2708  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2709
2710  // Otherwise, create a new declaration. If there is a previous
2711  // declaration of the same entity, the two will be linked via
2712  // PrevDecl.
2713  TagDecl *New;
2714  if (Kind == TagDecl::TK_enum) {
2715    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2716    // enum X { A, B, C } D;    D should chain to X.
2717    New = EnumDecl::Create(Context, DC, Loc, Name,
2718                           cast_or_null<EnumDecl>(PrevDecl));
2719    // If this is an undefined enum, warn.
2720    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2721  } else {
2722    // struct/union/class
2723
2724    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2725    // struct X { int A; } D;    D should chain to X.
2726    if (getLangOptions().CPlusPlus)
2727      // FIXME: Look for a way to use RecordDecl for simple structs.
2728      New = CXXRecordDecl::Create(Context, Kind, DC, Loc, Name,
2729                                  cast_or_null<CXXRecordDecl>(PrevDecl));
2730    else
2731      New = RecordDecl::Create(Context, Kind, DC, Loc, Name,
2732                               cast_or_null<RecordDecl>(PrevDecl));
2733  }
2734
2735  if (Kind != TagDecl::TK_enum) {
2736    // Handle #pragma pack: if the #pragma pack stack has non-default
2737    // alignment, make up a packed attribute for this decl. These
2738    // attributes are checked when the ASTContext lays out the
2739    // structure.
2740    //
2741    // It is important for implementing the correct semantics that this
2742    // happen here (in act on tag decl). The #pragma pack stack is
2743    // maintained as a result of parser callbacks which can occur at
2744    // many points during the parsing of a struct declaration (because
2745    // the #pragma tokens are effectively skipped over during the
2746    // parsing of the struct).
2747    if (unsigned Alignment = PackContext.getAlignment())
2748      New->addAttr(new PackedAttr(Alignment * 8));
2749  }
2750
2751  if (Attr)
2752    ProcessDeclAttributeList(New, Attr);
2753
2754  // Set the lexical context. If the tag has a C++ scope specifier, the
2755  // lexical context will be different from the semantic context.
2756  New->setLexicalDeclContext(CurContext);
2757
2758  // If this has an identifier, add it to the scope stack.
2759  if (Name) {
2760    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2761    // we find one that is.
2762    while ((S->getFlags() & Scope::DeclScope) == 0)
2763      S = S->getParent();
2764
2765    // Add it to the decl chain.
2766    PushOnScopeChains(New, S);
2767  }
2768
2769  return New;
2770}
2771
2772
2773/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2774/// types into constant array types in certain situations which would otherwise
2775/// be errors (for GCC compatibility).
2776static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2777                                                    ASTContext &Context) {
2778  // This method tries to turn a variable array into a constant
2779  // array even when the size isn't an ICE.  This is necessary
2780  // for compatibility with code that depends on gcc's buggy
2781  // constant expression folding, like struct {char x[(int)(char*)2];}
2782  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2783  if (!VLATy) return QualType();
2784
2785  Expr::EvalResult EvalResult;
2786  if (!VLATy->getSizeExpr() ||
2787      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
2788    return QualType();
2789
2790  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
2791  llvm::APSInt &Res = EvalResult.Val.getInt();
2792  if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2793    return Context.getConstantArrayType(VLATy->getElementType(),
2794                                        Res, ArrayType::Normal, 0);
2795  return QualType();
2796}
2797
2798bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
2799                          QualType FieldTy, const Expr *BitWidth) {
2800  // FIXME: 6.7.2.1p4 - verify the field type.
2801
2802  llvm::APSInt Value;
2803  if (VerifyIntegerConstantExpression(BitWidth, &Value))
2804    return true;
2805
2806  // Zero-width bitfield is ok for anonymous field.
2807  if (Value == 0 && FieldName)
2808    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
2809
2810  if (Value.isNegative())
2811    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
2812
2813  uint64_t TypeSize = Context.getTypeSize(FieldTy);
2814  // FIXME: We won't need the 0 size once we check that the field type is valid.
2815  if (TypeSize && Value.getZExtValue() > TypeSize)
2816    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
2817       << FieldName << (unsigned)TypeSize;
2818
2819  return false;
2820}
2821
2822/// ActOnField - Each field of a struct/union/class is passed into this in order
2823/// to create a FieldDecl object for it.
2824Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
2825                               SourceLocation DeclStart,
2826                               Declarator &D, ExprTy *BitfieldWidth) {
2827  IdentifierInfo *II = D.getIdentifier();
2828  Expr *BitWidth = (Expr*)BitfieldWidth;
2829  SourceLocation Loc = DeclStart;
2830  RecordDecl *Record = (RecordDecl *)TagD;
2831  if (II) Loc = D.getIdentifierLoc();
2832
2833  // FIXME: Unnamed fields can be handled in various different ways, for
2834  // example, unnamed unions inject all members into the struct namespace!
2835
2836  QualType T = GetTypeForDeclarator(D, S);
2837  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2838  bool InvalidDecl = false;
2839
2840  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2841  // than a variably modified type.
2842  if (T->isVariablyModifiedType()) {
2843    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
2844    if (!FixedTy.isNull()) {
2845      Diag(Loc, diag::warn_illegal_constant_array_size);
2846      T = FixedTy;
2847    } else {
2848      Diag(Loc, diag::err_typecheck_field_variable_size);
2849      T = Context.IntTy;
2850      InvalidDecl = true;
2851    }
2852  }
2853
2854  if (BitWidth) {
2855    if (VerifyBitField(Loc, II, T, BitWidth))
2856      InvalidDecl = true;
2857  } else {
2858    // Not a bitfield.
2859
2860    // validate II.
2861
2862  }
2863
2864  // FIXME: Chain fielddecls together.
2865  FieldDecl *NewFD;
2866
2867  // FIXME: We don't want CurContext for C, do we? No, we'll need some
2868  // other way to determine the current RecordDecl.
2869  NewFD = FieldDecl::Create(Context, Record,
2870                            Loc, II, T, BitWidth,
2871                            D.getDeclSpec().getStorageClassSpec() ==
2872                              DeclSpec::SCS_mutable,
2873                            /*PrevDecl=*/0);
2874
2875  if (getLangOptions().CPlusPlus)
2876    CheckExtraCXXDefaultArguments(D);
2877
2878  ProcessDeclAttributes(NewFD, D);
2879
2880  if (D.getInvalidType() || InvalidDecl)
2881    NewFD->setInvalidDecl();
2882
2883  if (II && getLangOptions().CPlusPlus)
2884    PushOnScopeChains(NewFD, S);
2885  else
2886    Record->addDecl(Context, NewFD);
2887
2888  return NewFD;
2889}
2890
2891/// TranslateIvarVisibility - Translate visibility from a token ID to an
2892///  AST enum value.
2893static ObjCIvarDecl::AccessControl
2894TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2895  switch (ivarVisibility) {
2896  default: assert(0 && "Unknown visitibility kind");
2897  case tok::objc_private: return ObjCIvarDecl::Private;
2898  case tok::objc_public: return ObjCIvarDecl::Public;
2899  case tok::objc_protected: return ObjCIvarDecl::Protected;
2900  case tok::objc_package: return ObjCIvarDecl::Package;
2901  }
2902}
2903
2904/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2905/// in order to create an IvarDecl object for it.
2906Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2907                              SourceLocation DeclStart,
2908                              Declarator &D, ExprTy *BitfieldWidth,
2909                              tok::ObjCKeywordKind Visibility) {
2910  IdentifierInfo *II = D.getIdentifier();
2911  Expr *BitWidth = (Expr*)BitfieldWidth;
2912  SourceLocation Loc = DeclStart;
2913  if (II) Loc = D.getIdentifierLoc();
2914
2915  // FIXME: Unnamed fields can be handled in various different ways, for
2916  // example, unnamed unions inject all members into the struct namespace!
2917
2918  QualType T = GetTypeForDeclarator(D, S);
2919  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2920  bool InvalidDecl = false;
2921
2922  if (BitWidth) {
2923    // TODO: Validate.
2924    //printf("WARNING: BITFIELDS IGNORED!\n");
2925
2926    // 6.7.2.1p3
2927    // 6.7.2.1p4
2928
2929  } else {
2930    // Not a bitfield.
2931
2932    // validate II.
2933
2934  }
2935
2936  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2937  // than a variably modified type.
2938  if (T->isVariablyModifiedType()) {
2939    Diag(Loc, diag::err_typecheck_ivar_variable_size);
2940    InvalidDecl = true;
2941  }
2942
2943  // Get the visibility (access control) for this ivar.
2944  ObjCIvarDecl::AccessControl ac =
2945    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2946                                        : ObjCIvarDecl::None;
2947
2948  // Construct the decl.
2949  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2950                                             (Expr *)BitfieldWidth);
2951
2952  // Process attributes attached to the ivar.
2953  ProcessDeclAttributes(NewID, D);
2954
2955  if (D.getInvalidType() || InvalidDecl)
2956    NewID->setInvalidDecl();
2957
2958  return NewID;
2959}
2960
2961void Sema::ActOnFields(Scope* S,
2962                       SourceLocation RecLoc, DeclTy *RecDecl,
2963                       DeclTy **Fields, unsigned NumFields,
2964                       SourceLocation LBrac, SourceLocation RBrac,
2965                       AttributeList *Attr) {
2966  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2967  assert(EnclosingDecl && "missing record or interface decl");
2968  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2969
2970  if (Record)
2971    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2972      // Diagnose code like:
2973      //     struct S { struct S {} X; };
2974      // We discover this when we complete the outer S.  Reject and ignore the
2975      // outer S.
2976      Diag(DefRecord->getLocation(), diag::err_nested_redefinition)
2977        << DefRecord->getDeclName();
2978      Diag(RecLoc, diag::note_previous_definition);
2979      Record->setInvalidDecl();
2980      return;
2981    }
2982
2983  // Verify that all the fields are okay.
2984  unsigned NumNamedMembers = 0;
2985  llvm::SmallVector<FieldDecl*, 32> RecFields;
2986  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2987
2988  for (unsigned i = 0; i != NumFields; ++i) {
2989
2990    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2991    assert(FD && "missing field decl");
2992
2993    // Remember all fields.
2994    RecFields.push_back(FD);
2995
2996    // Get the type for the field.
2997    Type *FDTy = FD->getType().getTypePtr();
2998
2999    // C99 6.7.2.1p2 - A field may not be a function type.
3000    if (FDTy->isFunctionType()) {
3001      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3002        << FD->getDeclName();
3003      FD->setInvalidDecl();
3004      EnclosingDecl->setInvalidDecl();
3005      continue;
3006    }
3007    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3008    if (FDTy->isIncompleteType()) {
3009      if (!Record) {  // Incomplete ivar type is always an error.
3010        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3011        FD->setInvalidDecl();
3012        EnclosingDecl->setInvalidDecl();
3013        continue;
3014      }
3015      if (i != NumFields-1 ||                   // ... that the last member ...
3016          !Record->isStruct() ||  // ... of a structure ...
3017          !FDTy->isArrayType()) {         //... may have incomplete array type.
3018        Diag(FD->getLocation(), diag::err_field_incomplete) <<FD->getDeclName();
3019        FD->setInvalidDecl();
3020        EnclosingDecl->setInvalidDecl();
3021        continue;
3022      }
3023      if (NumNamedMembers < 1) {  //... must have more than named member ...
3024        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3025          << FD->getDeclName();
3026        FD->setInvalidDecl();
3027        EnclosingDecl->setInvalidDecl();
3028        continue;
3029      }
3030      // Okay, we have a legal flexible array member at the end of the struct.
3031      if (Record)
3032        Record->setHasFlexibleArrayMember(true);
3033    }
3034    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3035    /// field of another structure or the element of an array.
3036    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3037      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3038        // If this is a member of a union, then entire union becomes "flexible".
3039        if (Record && Record->isUnion()) {
3040          Record->setHasFlexibleArrayMember(true);
3041        } else {
3042          // If this is a struct/class and this is not the last element, reject
3043          // it.  Note that GCC supports variable sized arrays in the middle of
3044          // structures.
3045          if (i != NumFields-1) {
3046            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3047              << FD->getDeclName();
3048            FD->setInvalidDecl();
3049            EnclosingDecl->setInvalidDecl();
3050            continue;
3051          }
3052          // We support flexible arrays at the end of structs in other structs
3053          // as an extension.
3054          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3055            << FD->getDeclName();
3056          if (Record)
3057            Record->setHasFlexibleArrayMember(true);
3058        }
3059      }
3060    }
3061    /// A field cannot be an Objective-c object
3062    if (FDTy->isObjCInterfaceType()) {
3063      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3064        << FD->getDeclName();
3065      FD->setInvalidDecl();
3066      EnclosingDecl->setInvalidDecl();
3067      continue;
3068    }
3069    // Keep track of the number of named members.
3070    if (IdentifierInfo *II = FD->getIdentifier()) {
3071      // Detect duplicate member names.
3072      if (!FieldIDs.insert(II)) {
3073        Diag(FD->getLocation(), diag::err_duplicate_member) << II;
3074        // Find the previous decl.
3075        SourceLocation PrevLoc;
3076        for (unsigned i = 0; ; ++i) {
3077          assert(i != RecFields.size() && "Didn't find previous def!");
3078          if (RecFields[i]->getIdentifier() == II) {
3079            PrevLoc = RecFields[i]->getLocation();
3080            break;
3081          }
3082        }
3083        Diag(PrevLoc, diag::note_previous_definition);
3084        FD->setInvalidDecl();
3085        EnclosingDecl->setInvalidDecl();
3086        continue;
3087      }
3088      ++NumNamedMembers;
3089    }
3090  }
3091
3092  // Okay, we successfully defined 'Record'.
3093  if (Record) {
3094    Record->completeDefinition(Context);
3095    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
3096    // Sema::ActOnFinishCXXClassDef.
3097    if (!isa<CXXRecordDecl>(Record))
3098      Consumer.HandleTagDeclDefinition(Record);
3099  } else {
3100    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3101    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3102      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3103      // Must enforce the rule that ivars in the base classes may not be
3104      // duplicates.
3105      if (ID->getSuperClass()) {
3106        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3107             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3108          ObjCIvarDecl* Ivar = (*IVI);
3109          IdentifierInfo *II = Ivar->getIdentifier();
3110          ObjCIvarDecl* prevIvar = ID->getSuperClass()->FindIvarDeclaration(II);
3111          if (prevIvar) {
3112            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3113            Diag(prevIvar->getLocation(), diag::note_previous_definition);
3114          }
3115        }
3116      }
3117    }
3118    else if (ObjCImplementationDecl *IMPDecl =
3119               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3120      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3121      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3122      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3123    }
3124  }
3125
3126  if (Attr)
3127    ProcessDeclAttributeList(Record, Attr);
3128}
3129
3130void Sema::ActOnEnumStartDefinition(Scope *S, DeclTy *EnumD) {
3131  EnumDecl *Enum = cast_or_null<EnumDecl>((Decl *)EnumD);
3132
3133  if (Enum) {
3134    // Enter the enumeration context.
3135    PushDeclContext(S, Enum);
3136  }
3137}
3138
3139Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3140                                      DeclTy *lastEnumConst,
3141                                      SourceLocation IdLoc, IdentifierInfo *Id,
3142                                      SourceLocation EqualLoc, ExprTy *val) {
3143  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3144  EnumConstantDecl *LastEnumConst =
3145    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3146  Expr *Val = static_cast<Expr*>(val);
3147
3148  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3149  // we find one that is.
3150  while ((S->getFlags() & Scope::DeclScope) == 0)
3151    S = S->getParent();
3152
3153  // Verify that there isn't already something declared with this name in this
3154  // scope.
3155  Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S);
3156  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3157    // Maybe we will complain about the shadowed template parameter.
3158    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3159    // Just pretend that we didn't see the previous declaration.
3160    PrevDecl = 0;
3161  }
3162
3163  if (PrevDecl) {
3164    // When in C++, we may get a TagDecl with the same name; in this case the
3165    // enum constant will 'hide' the tag.
3166    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3167           "Received TagDecl when not in C++!");
3168    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3169      if (isa<EnumConstantDecl>(PrevDecl))
3170        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3171      else
3172        Diag(IdLoc, diag::err_redefinition) << Id;
3173      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3174      delete Val;
3175      return 0;
3176    }
3177  }
3178
3179  llvm::APSInt EnumVal(32);
3180  QualType EltTy;
3181  if (Val) {
3182    // Make sure to promote the operand type to int.
3183    UsualUnaryConversions(Val);
3184
3185    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3186    SourceLocation ExpLoc;
3187    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3188      delete Val;
3189      Val = 0;  // Just forget about it.
3190    } else {
3191      EltTy = Val->getType();
3192    }
3193  }
3194
3195  if (!Val) {
3196    if (LastEnumConst) {
3197      // Assign the last value + 1.
3198      EnumVal = LastEnumConst->getInitVal();
3199      ++EnumVal;
3200
3201      // Check for overflow on increment.
3202      if (EnumVal < LastEnumConst->getInitVal())
3203        Diag(IdLoc, diag::warn_enum_value_overflow);
3204
3205      EltTy = LastEnumConst->getType();
3206    } else {
3207      // First value, set to zero.
3208      EltTy = Context.IntTy;
3209      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3210    }
3211  }
3212
3213  EnumConstantDecl *New =
3214    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3215                             Val, EnumVal,
3216                             LastEnumConst);
3217
3218  // Register this decl in the current scope stack.
3219  PushOnScopeChains(New, S);
3220
3221  // Add this enumerator into the enum itself.
3222  // FIXME: This means that the enumerator is stored in two
3223  // DeclContexts. This is not a long-term solution.
3224  New->setLexicalDeclContext(TheEnumDecl);
3225  TheEnumDecl->addDecl(Context, New, true);
3226  return New;
3227}
3228
3229// FIXME: For consistency with ActOnFields(), we should have the parser
3230// pass in the source location for the left/right braces.
3231void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3232                         DeclTy **Elements, unsigned NumElements) {
3233  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3234  QualType EnumType = Context.getTypeDeclType(Enum);
3235
3236  if (EnumType->getAsEnumType()->getDecl()->isDefinition()) {
3237    EnumDecl *Def = EnumType->getAsEnumType()->getDecl();
3238    // Diagnose code like:
3239    //   enum e0 {
3240    //     E0 = sizeof(enum e0 { E1 })
3241    //   };
3242    Diag(Def->getLocation(), diag::err_nested_redefinition)
3243      << Enum->getDeclName();
3244    Diag(Enum->getLocation(), diag::note_previous_definition);
3245    Enum->setInvalidDecl();
3246    PopDeclContext();
3247    return;
3248  }
3249
3250  // TODO: If the result value doesn't fit in an int, it must be a long or long
3251  // long value.  ISO C does not support this, but GCC does as an extension,
3252  // emit a warning.
3253  unsigned IntWidth = Context.Target.getIntWidth();
3254
3255  // Verify that all the values are okay, compute the size of the values, and
3256  // reverse the list.
3257  unsigned NumNegativeBits = 0;
3258  unsigned NumPositiveBits = 0;
3259
3260  // Keep track of whether all elements have type int.
3261  bool AllElementsInt = true;
3262
3263  EnumConstantDecl *EltList = 0;
3264  for (unsigned i = 0; i != NumElements; ++i) {
3265    EnumConstantDecl *ECD =
3266      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3267    if (!ECD) continue;  // Already issued a diagnostic.
3268
3269    // If the enum value doesn't fit in an int, emit an extension warning.
3270    const llvm::APSInt &InitVal = ECD->getInitVal();
3271    assert(InitVal.getBitWidth() >= IntWidth &&
3272           "Should have promoted value to int");
3273    if (InitVal.getBitWidth() > IntWidth) {
3274      llvm::APSInt V(InitVal);
3275      V.trunc(IntWidth);
3276      V.extend(InitVal.getBitWidth());
3277      if (V != InitVal)
3278        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3279          << InitVal.toString(10);
3280    }
3281
3282    // Keep track of the size of positive and negative values.
3283    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3284      NumPositiveBits = std::max(NumPositiveBits,
3285                                 (unsigned)InitVal.getActiveBits());
3286    else
3287      NumNegativeBits = std::max(NumNegativeBits,
3288                                 (unsigned)InitVal.getMinSignedBits());
3289
3290    // Keep track of whether every enum element has type int (very commmon).
3291    if (AllElementsInt)
3292      AllElementsInt = ECD->getType() == Context.IntTy;
3293
3294    ECD->setNextDeclarator(EltList);
3295    EltList = ECD;
3296  }
3297
3298  // Figure out the type that should be used for this enum.
3299  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3300  QualType BestType;
3301  unsigned BestWidth;
3302
3303  if (NumNegativeBits) {
3304    // If there is a negative value, figure out the smallest integer type (of
3305    // int/long/longlong) that fits.
3306    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3307      BestType = Context.IntTy;
3308      BestWidth = IntWidth;
3309    } else {
3310      BestWidth = Context.Target.getLongWidth();
3311
3312      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3313        BestType = Context.LongTy;
3314      else {
3315        BestWidth = Context.Target.getLongLongWidth();
3316
3317        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3318          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3319        BestType = Context.LongLongTy;
3320      }
3321    }
3322  } else {
3323    // If there is no negative value, figure out which of uint, ulong, ulonglong
3324    // fits.
3325    if (NumPositiveBits <= IntWidth) {
3326      BestType = Context.UnsignedIntTy;
3327      BestWidth = IntWidth;
3328    } else if (NumPositiveBits <=
3329               (BestWidth = Context.Target.getLongWidth())) {
3330      BestType = Context.UnsignedLongTy;
3331    } else {
3332      BestWidth = Context.Target.getLongLongWidth();
3333      assert(NumPositiveBits <= BestWidth &&
3334             "How could an initializer get larger than ULL?");
3335      BestType = Context.UnsignedLongLongTy;
3336    }
3337  }
3338
3339  // Loop over all of the enumerator constants, changing their types to match
3340  // the type of the enum if needed.
3341  for (unsigned i = 0; i != NumElements; ++i) {
3342    EnumConstantDecl *ECD =
3343      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3344    if (!ECD) continue;  // Already issued a diagnostic.
3345
3346    // Standard C says the enumerators have int type, but we allow, as an
3347    // extension, the enumerators to be larger than int size.  If each
3348    // enumerator value fits in an int, type it as an int, otherwise type it the
3349    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3350    // that X has type 'int', not 'unsigned'.
3351    if (ECD->getType() == Context.IntTy) {
3352      // Make sure the init value is signed.
3353      llvm::APSInt IV = ECD->getInitVal();
3354      IV.setIsSigned(true);
3355      ECD->setInitVal(IV);
3356
3357      if (getLangOptions().CPlusPlus)
3358        // C++ [dcl.enum]p4: Following the closing brace of an
3359        // enum-specifier, each enumerator has the type of its
3360        // enumeration.
3361        ECD->setType(EnumType);
3362      continue;  // Already int type.
3363    }
3364
3365    // Determine whether the value fits into an int.
3366    llvm::APSInt InitVal = ECD->getInitVal();
3367    bool FitsInInt;
3368    if (InitVal.isUnsigned() || !InitVal.isNegative())
3369      FitsInInt = InitVal.getActiveBits() < IntWidth;
3370    else
3371      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3372
3373    // If it fits into an integer type, force it.  Otherwise force it to match
3374    // the enum decl type.
3375    QualType NewTy;
3376    unsigned NewWidth;
3377    bool NewSign;
3378    if (FitsInInt) {
3379      NewTy = Context.IntTy;
3380      NewWidth = IntWidth;
3381      NewSign = true;
3382    } else if (ECD->getType() == BestType) {
3383      // Already the right type!
3384      if (getLangOptions().CPlusPlus)
3385        // C++ [dcl.enum]p4: Following the closing brace of an
3386        // enum-specifier, each enumerator has the type of its
3387        // enumeration.
3388        ECD->setType(EnumType);
3389      continue;
3390    } else {
3391      NewTy = BestType;
3392      NewWidth = BestWidth;
3393      NewSign = BestType->isSignedIntegerType();
3394    }
3395
3396    // Adjust the APSInt value.
3397    InitVal.extOrTrunc(NewWidth);
3398    InitVal.setIsSigned(NewSign);
3399    ECD->setInitVal(InitVal);
3400
3401    // Adjust the Expr initializer and type.
3402    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3403                                          /*isLvalue=*/false));
3404    if (getLangOptions().CPlusPlus)
3405      // C++ [dcl.enum]p4: Following the closing brace of an
3406      // enum-specifier, each enumerator has the type of its
3407      // enumeration.
3408      ECD->setType(EnumType);
3409    else
3410      ECD->setType(NewTy);
3411  }
3412
3413  Enum->completeDefinition(Context, BestType);
3414  Consumer.HandleTagDeclDefinition(Enum);
3415
3416  // Leave the context of the enumeration.
3417  PopDeclContext();
3418}
3419
3420Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3421                                          ExprArg expr) {
3422  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3423
3424  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
3425}
3426
3427
3428void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3429                           ExprTy *alignment, SourceLocation PragmaLoc,
3430                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3431  Expr *Alignment = static_cast<Expr *>(alignment);
3432
3433  // If specified then alignment must be a "small" power of two.
3434  unsigned AlignmentVal = 0;
3435  if (Alignment) {
3436    llvm::APSInt Val;
3437    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3438        !Val.isPowerOf2() ||
3439        Val.getZExtValue() > 16) {
3440      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3441      delete Alignment;
3442      return; // Ignore
3443    }
3444
3445    AlignmentVal = (unsigned) Val.getZExtValue();
3446  }
3447
3448  switch (Kind) {
3449  case Action::PPK_Default: // pack([n])
3450    PackContext.setAlignment(AlignmentVal);
3451    break;
3452
3453  case Action::PPK_Show: // pack(show)
3454    // Show the current alignment, making sure to show the right value
3455    // for the default.
3456    AlignmentVal = PackContext.getAlignment();
3457    // FIXME: This should come from the target.
3458    if (AlignmentVal == 0)
3459      AlignmentVal = 8;
3460    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
3461    break;
3462
3463  case Action::PPK_Push: // pack(push [, id] [, [n])
3464    PackContext.push(Name);
3465    // Set the new alignment if specified.
3466    if (Alignment)
3467      PackContext.setAlignment(AlignmentVal);
3468    break;
3469
3470  case Action::PPK_Pop: // pack(pop [, id] [,  n])
3471    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
3472    // "#pragma pack(pop, identifier, n) is undefined"
3473    if (Alignment && Name)
3474      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
3475
3476    // Do the pop.
3477    if (!PackContext.pop(Name)) {
3478      // If a name was specified then failure indicates the name
3479      // wasn't found. Otherwise failure indicates the stack was
3480      // empty.
3481      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
3482        << (Name ? "no record matching name" : "stack empty");
3483
3484      // FIXME: Warn about popping named records as MSVC does.
3485    } else {
3486      // Pop succeeded, set the new alignment if specified.
3487      if (Alignment)
3488        PackContext.setAlignment(AlignmentVal);
3489    }
3490    break;
3491
3492  default:
3493    assert(0 && "Invalid #pragma pack kind.");
3494  }
3495}
3496
3497bool PragmaPackStack::pop(IdentifierInfo *Name) {
3498  if (Stack.empty())
3499    return false;
3500
3501  // If name is empty just pop top.
3502  if (!Name) {
3503    Alignment = Stack.back().first;
3504    Stack.pop_back();
3505    return true;
3506  }
3507
3508  // Otherwise, find the named record.
3509  for (unsigned i = Stack.size(); i != 0; ) {
3510    --i;
3511    if (Stack[i].second == Name) {
3512      // Found it, pop up to and including this record.
3513      Alignment = Stack[i].first;
3514      Stack.erase(Stack.begin() + i, Stack.end());
3515      return true;
3516    }
3517  }
3518
3519  return false;
3520}
3521