SemaDecl.cpp revision 0757c8ccb79210ce1f22142851cdcbf6e42a71d6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/Analysis/PathSensitive/AnalysisContext.h"
18#include "clang/AST/APValue.h"
19#include "clang/AST/ASTConsumer.h"
20#include "clang/AST/ASTContext.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclTemplate.h"
23#include "clang/AST/ExprCXX.h"
24#include "clang/AST/StmtCXX.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Parse/ParseDiagnostic.h"
27#include "clang/Parse/Template.h"
28#include "clang/Basic/PartialDiagnostic.h"
29#include "clang/Basic/SourceManager.h"
30#include "clang/Basic/TargetInfo.h"
31// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
32#include "clang/Lex/Preprocessor.h"
33#include "clang/Lex/HeaderSearch.h"
34#include "llvm/ADT/Triple.h"
35#include <algorithm>
36#include <cstring>
37#include <functional>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName,
67                                TypeTy *ObjectTypePtr) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isSet()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return 0;
90
91        // We know from the grammar that this name refers to a type, so build a
92        // TypenameType node to describe the type.
93        // FIXME: Record somewhere that this TypenameType node has no "typename"
94        // keyword associated with it.
95        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
96                                 II, SS->getRange()).getAsOpaquePtr();
97      }
98
99      return 0;
100    }
101
102    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
103      return 0;
104  }
105
106  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
107  // lookup for class-names.
108  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
109                                      LookupOrdinaryName;
110  LookupResult Result(*this, &II, NameLoc, Kind);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::NotFoundInCurrentInstantiation:
136  case LookupResult::FoundOverloaded:
137  case LookupResult::FoundUnresolvedValue:
138    return 0;
139
140  case LookupResult::Ambiguous:
141    // Recover from type-hiding ambiguities by hiding the type.  We'll
142    // do the lookup again when looking for an object, and we can
143    // diagnose the error then.  If we don't do this, then the error
144    // about hiding the type will be immediately followed by an error
145    // that only makes sense if the identifier was treated like a type.
146    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
147      Result.suppressDiagnostics();
148      return 0;
149    }
150
151    // Look to see if we have a type anywhere in the list of results.
152    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
153         Res != ResEnd; ++Res) {
154      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
155        if (!IIDecl ||
156            (*Res)->getLocation().getRawEncoding() <
157              IIDecl->getLocation().getRawEncoding())
158          IIDecl = *Res;
159      }
160    }
161
162    if (!IIDecl) {
163      // None of the entities we found is a type, so there is no way
164      // to even assume that the result is a type. In this case, don't
165      // complain about the ambiguity. The parser will either try to
166      // perform this lookup again (e.g., as an object name), which
167      // will produce the ambiguity, or will complain that it expected
168      // a type name.
169      Result.suppressDiagnostics();
170      return 0;
171    }
172
173    // We found a type within the ambiguous lookup; diagnose the
174    // ambiguity and then return that type. This might be the right
175    // answer, or it might not be, but it suppresses any attempt to
176    // perform the name lookup again.
177    break;
178
179  case LookupResult::Found:
180    IIDecl = Result.getFoundDecl();
181    break;
182  }
183
184  assert(IIDecl && "Didn't find decl");
185
186  QualType T;
187  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
188    DiagnoseUseOfDecl(IIDecl, NameLoc);
189
190    // C++ [temp.local]p2:
191    //   Within the scope of a class template specialization or
192    //   partial specialization, when the injected-class-name is
193    //   not followed by a <, it is equivalent to the
194    //   injected-class-name followed by the template-argument s
195    //   of the class template specialization or partial
196    //   specialization enclosed in <>.
197    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
198      if (RD->isInjectedClassName())
199        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
200          T = Template->getInjectedClassNameType(Context);
201
202    if (T.isNull())
203      T = Context.getTypeDeclType(TD);
204
205    if (SS)
206      T = getQualifiedNameType(*SS, T);
207
208  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
209    T = Context.getObjCInterfaceType(IDecl);
210  } else if (UnresolvedUsingTypenameDecl *UUDecl =
211               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
212    // FIXME: preserve source structure information.
213    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
214  } else {
215    // If it's not plausibly a type, suppress diagnostics.
216    Result.suppressDiagnostics();
217    return 0;
218  }
219
220  return T.getAsOpaquePtr();
221}
222
223/// isTagName() - This method is called *for error recovery purposes only*
224/// to determine if the specified name is a valid tag name ("struct foo").  If
225/// so, this returns the TST for the tag corresponding to it (TST_enum,
226/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
227/// where the user forgot to specify the tag.
228DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
229  // Do a tag name lookup in this scope.
230  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
231  LookupName(R, S, false);
232  R.suppressDiagnostics();
233  if (R.getResultKind() == LookupResult::Found)
234    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
235      switch (TD->getTagKind()) {
236      case TagDecl::TK_struct: return DeclSpec::TST_struct;
237      case TagDecl::TK_union:  return DeclSpec::TST_union;
238      case TagDecl::TK_class:  return DeclSpec::TST_class;
239      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
240      }
241    }
242
243  return DeclSpec::TST_unspecified;
244}
245
246bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
247                                   SourceLocation IILoc,
248                                   Scope *S,
249                                   const CXXScopeSpec *SS,
250                                   TypeTy *&SuggestedType) {
251  // We don't have anything to suggest (yet).
252  SuggestedType = 0;
253
254  // There may have been a typo in the name of the type. Look up typo
255  // results, in case we have something that we can suggest.
256  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
257                      NotForRedeclaration);
258
259  // FIXME: It would be nice if we could correct for typos in built-in
260  // names, such as "itn" for "int".
261
262  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
263    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
264    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
265        !Result->isInvalidDecl()) {
266      // We found a similarly-named type or interface; suggest that.
267      if (!SS || !SS->isSet())
268        Diag(IILoc, diag::err_unknown_typename_suggest)
269          << &II << Lookup.getLookupName()
270          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
271                                                     Result->getNameAsString());
272      else if (DeclContext *DC = computeDeclContext(*SS, false))
273        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
274          << &II << DC << Lookup.getLookupName() << SS->getRange()
275          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
276                                                     Result->getNameAsString());
277      else
278        llvm_unreachable("could not have corrected a typo here");
279
280      Diag(Result->getLocation(), diag::note_previous_decl)
281        << Result->getDeclName();
282
283      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
284      return true;
285    }
286  }
287
288  // FIXME: Should we move the logic that tries to recover from a missing tag
289  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
290
291  if (!SS || (!SS->isSet() && !SS->isInvalid()))
292    Diag(IILoc, diag::err_unknown_typename) << &II;
293  else if (DeclContext *DC = computeDeclContext(*SS, false))
294    Diag(IILoc, diag::err_typename_nested_not_found)
295      << &II << DC << SS->getRange();
296  else if (isDependentScopeSpecifier(*SS)) {
297    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
298      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
299      << SourceRange(SS->getRange().getBegin(), IILoc)
300      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
301                                               "typename ");
302    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
303  } else {
304    assert(SS && SS->isInvalid() &&
305           "Invalid scope specifier has already been diagnosed");
306  }
307
308  return true;
309}
310
311// Determines the context to return to after temporarily entering a
312// context.  This depends in an unnecessarily complicated way on the
313// exact ordering of callbacks from the parser.
314DeclContext *Sema::getContainingDC(DeclContext *DC) {
315
316  // Functions defined inline within classes aren't parsed until we've
317  // finished parsing the top-level class, so the top-level class is
318  // the context we'll need to return to.
319  if (isa<FunctionDecl>(DC)) {
320    DC = DC->getLexicalParent();
321
322    // A function not defined within a class will always return to its
323    // lexical context.
324    if (!isa<CXXRecordDecl>(DC))
325      return DC;
326
327    // A C++ inline method/friend is parsed *after* the topmost class
328    // it was declared in is fully parsed ("complete");  the topmost
329    // class is the context we need to return to.
330    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
331      DC = RD;
332
333    // Return the declaration context of the topmost class the inline method is
334    // declared in.
335    return DC;
336  }
337
338  if (isa<ObjCMethodDecl>(DC))
339    return Context.getTranslationUnitDecl();
340
341  return DC->getLexicalParent();
342}
343
344void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
345  assert(getContainingDC(DC) == CurContext &&
346      "The next DeclContext should be lexically contained in the current one.");
347  CurContext = DC;
348  S->setEntity(DC);
349}
350
351void Sema::PopDeclContext() {
352  assert(CurContext && "DeclContext imbalance!");
353
354  CurContext = getContainingDC(CurContext);
355}
356
357/// EnterDeclaratorContext - Used when we must lookup names in the context
358/// of a declarator's nested name specifier.
359///
360void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
361  // C++0x [basic.lookup.unqual]p13:
362  //   A name used in the definition of a static data member of class
363  //   X (after the qualified-id of the static member) is looked up as
364  //   if the name was used in a member function of X.
365  // C++0x [basic.lookup.unqual]p14:
366  //   If a variable member of a namespace is defined outside of the
367  //   scope of its namespace then any name used in the definition of
368  //   the variable member (after the declarator-id) is looked up as
369  //   if the definition of the variable member occurred in its
370  //   namespace.
371  // Both of these imply that we should push a scope whose context
372  // is the semantic context of the declaration.  We can't use
373  // PushDeclContext here because that context is not necessarily
374  // lexically contained in the current context.  Fortunately,
375  // the containing scope should have the appropriate information.
376
377  assert(!S->getEntity() && "scope already has entity");
378
379#ifndef NDEBUG
380  Scope *Ancestor = S->getParent();
381  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
382  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
383#endif
384
385  CurContext = DC;
386  S->setEntity(DC);
387}
388
389void Sema::ExitDeclaratorContext(Scope *S) {
390  assert(S->getEntity() == CurContext && "Context imbalance!");
391
392  // Switch back to the lexical context.  The safety of this is
393  // enforced by an assert in EnterDeclaratorContext.
394  Scope *Ancestor = S->getParent();
395  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
396  CurContext = (DeclContext*) Ancestor->getEntity();
397
398  // We don't need to do anything with the scope, which is going to
399  // disappear.
400}
401
402/// \brief Determine whether we allow overloading of the function
403/// PrevDecl with another declaration.
404///
405/// This routine determines whether overloading is possible, not
406/// whether some new function is actually an overload. It will return
407/// true in C++ (where we can always provide overloads) or, as an
408/// extension, in C when the previous function is already an
409/// overloaded function declaration or has the "overloadable"
410/// attribute.
411static bool AllowOverloadingOfFunction(LookupResult &Previous,
412                                       ASTContext &Context) {
413  if (Context.getLangOptions().CPlusPlus)
414    return true;
415
416  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
417    return true;
418
419  return (Previous.getResultKind() == LookupResult::Found
420          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
421}
422
423/// Add this decl to the scope shadowed decl chains.
424void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
425  // Move up the scope chain until we find the nearest enclosing
426  // non-transparent context. The declaration will be introduced into this
427  // scope.
428  while (S->getEntity() &&
429         ((DeclContext *)S->getEntity())->isTransparentContext())
430    S = S->getParent();
431
432  // Add scoped declarations into their context, so that they can be
433  // found later. Declarations without a context won't be inserted
434  // into any context.
435  if (AddToContext)
436    CurContext->addDecl(D);
437
438  // Out-of-line function and variable definitions should not be pushed into
439  // scope.
440  if ((isa<FunctionTemplateDecl>(D) &&
441       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
442      (isa<FunctionDecl>(D) &&
443       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
444        cast<FunctionDecl>(D)->isOutOfLine())) ||
445      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
446    return;
447
448  // If this replaces anything in the current scope,
449  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
450                               IEnd = IdResolver.end();
451  for (; I != IEnd; ++I) {
452    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
453      S->RemoveDecl(DeclPtrTy::make(*I));
454      IdResolver.RemoveDecl(*I);
455
456      // Should only need to replace one decl.
457      break;
458    }
459  }
460
461  S->AddDecl(DeclPtrTy::make(D));
462  IdResolver.AddDecl(D);
463}
464
465bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
466  return IdResolver.isDeclInScope(D, Ctx, Context, S);
467}
468
469static bool isOutOfScopePreviousDeclaration(NamedDecl *,
470                                            DeclContext*,
471                                            ASTContext&);
472
473/// Filters out lookup results that don't fall within the given scope
474/// as determined by isDeclInScope.
475static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
476                                 DeclContext *Ctx, Scope *S,
477                                 bool ConsiderLinkage) {
478  LookupResult::Filter F = R.makeFilter();
479  while (F.hasNext()) {
480    NamedDecl *D = F.next();
481
482    if (SemaRef.isDeclInScope(D, Ctx, S))
483      continue;
484
485    if (ConsiderLinkage &&
486        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
487      continue;
488
489    F.erase();
490  }
491
492  F.done();
493}
494
495static bool isUsingDecl(NamedDecl *D) {
496  return isa<UsingShadowDecl>(D) ||
497         isa<UnresolvedUsingTypenameDecl>(D) ||
498         isa<UnresolvedUsingValueDecl>(D);
499}
500
501/// Removes using shadow declarations from the lookup results.
502static void RemoveUsingDecls(LookupResult &R) {
503  LookupResult::Filter F = R.makeFilter();
504  while (F.hasNext())
505    if (isUsingDecl(F.next()))
506      F.erase();
507
508  F.done();
509}
510
511static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
512  if (D->isUsed() || D->hasAttr<UnusedAttr>())
513    return false;
514
515  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
516    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
517      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
518        if (!RD->hasTrivialConstructor())
519          return false;
520        if (!RD->hasTrivialDestructor())
521          return false;
522      }
523    }
524  }
525
526  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
527          !isa<ImplicitParamDecl>(D) &&
528          D->getDeclContext()->isFunctionOrMethod());
529}
530
531void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
532  if (S->decl_empty()) return;
533  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
534         "Scope shouldn't contain decls!");
535
536  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
537       I != E; ++I) {
538    Decl *TmpD = (*I).getAs<Decl>();
539    assert(TmpD && "This decl didn't get pushed??");
540
541    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
542    NamedDecl *D = cast<NamedDecl>(TmpD);
543
544    if (!D->getDeclName()) continue;
545
546    // Diagnose unused variables in this scope.
547    if (ShouldDiagnoseUnusedDecl(D))
548      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
549
550    // Remove this name from our lexical scope.
551    IdResolver.RemoveDecl(D);
552  }
553}
554
555/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
556/// return 0 if one not found.
557///
558/// \param Id the name of the Objective-C class we're looking for. If
559/// typo-correction fixes this name, the Id will be updated
560/// to the fixed name.
561///
562/// \param RecoverLoc if provided, this routine will attempt to
563/// recover from a typo in the name of an existing Objective-C class
564/// and, if successful, will return the lookup that results from
565/// typo-correction.
566ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
567                                              SourceLocation RecoverLoc) {
568  // The third "scope" argument is 0 since we aren't enabling lazy built-in
569  // creation from this context.
570  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
571
572  if (!IDecl && !RecoverLoc.isInvalid()) {
573    // Perform typo correction at the given location, but only if we
574    // find an Objective-C class name.
575    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
576    if (CorrectTypo(R, TUScope, 0) &&
577        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
578      Diag(RecoverLoc, diag::err_undef_interface_suggest)
579        << Id << IDecl->getDeclName()
580        << CodeModificationHint::CreateReplacement(RecoverLoc,
581                                                   IDecl->getNameAsString());
582      Diag(IDecl->getLocation(), diag::note_previous_decl)
583        << IDecl->getDeclName();
584
585      Id = IDecl->getIdentifier();
586    }
587  }
588
589  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
590}
591
592/// getNonFieldDeclScope - Retrieves the innermost scope, starting
593/// from S, where a non-field would be declared. This routine copes
594/// with the difference between C and C++ scoping rules in structs and
595/// unions. For example, the following code is well-formed in C but
596/// ill-formed in C++:
597/// @code
598/// struct S6 {
599///   enum { BAR } e;
600/// };
601///
602/// void test_S6() {
603///   struct S6 a;
604///   a.e = BAR;
605/// }
606/// @endcode
607/// For the declaration of BAR, this routine will return a different
608/// scope. The scope S will be the scope of the unnamed enumeration
609/// within S6. In C++, this routine will return the scope associated
610/// with S6, because the enumeration's scope is a transparent
611/// context but structures can contain non-field names. In C, this
612/// routine will return the translation unit scope, since the
613/// enumeration's scope is a transparent context and structures cannot
614/// contain non-field names.
615Scope *Sema::getNonFieldDeclScope(Scope *S) {
616  while (((S->getFlags() & Scope::DeclScope) == 0) ||
617         (S->getEntity() &&
618          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
619         (S->isClassScope() && !getLangOptions().CPlusPlus))
620    S = S->getParent();
621  return S;
622}
623
624void Sema::InitBuiltinVaListType() {
625  if (!Context.getBuiltinVaListType().isNull())
626    return;
627
628  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
629  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
630  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
631  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
632}
633
634/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
635/// file scope.  lazily create a decl for it. ForRedeclaration is true
636/// if we're creating this built-in in anticipation of redeclaring the
637/// built-in.
638NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
639                                     Scope *S, bool ForRedeclaration,
640                                     SourceLocation Loc) {
641  Builtin::ID BID = (Builtin::ID)bid;
642
643  if (Context.BuiltinInfo.hasVAListUse(BID))
644    InitBuiltinVaListType();
645
646  ASTContext::GetBuiltinTypeError Error;
647  QualType R = Context.GetBuiltinType(BID, Error);
648  switch (Error) {
649  case ASTContext::GE_None:
650    // Okay
651    break;
652
653  case ASTContext::GE_Missing_stdio:
654    if (ForRedeclaration)
655      Diag(Loc, diag::err_implicit_decl_requires_stdio)
656        << Context.BuiltinInfo.GetName(BID);
657    return 0;
658
659  case ASTContext::GE_Missing_setjmp:
660    if (ForRedeclaration)
661      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
662        << Context.BuiltinInfo.GetName(BID);
663    return 0;
664  }
665
666  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
667    Diag(Loc, diag::ext_implicit_lib_function_decl)
668      << Context.BuiltinInfo.GetName(BID)
669      << R;
670    if (Context.BuiltinInfo.getHeaderName(BID) &&
671        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
672          != Diagnostic::Ignored)
673      Diag(Loc, diag::note_please_include_header)
674        << Context.BuiltinInfo.getHeaderName(BID)
675        << Context.BuiltinInfo.GetName(BID);
676  }
677
678  FunctionDecl *New = FunctionDecl::Create(Context,
679                                           Context.getTranslationUnitDecl(),
680                                           Loc, II, R, /*TInfo=*/0,
681                                           FunctionDecl::Extern, false,
682                                           /*hasPrototype=*/true);
683  New->setImplicit();
684
685  // Create Decl objects for each parameter, adding them to the
686  // FunctionDecl.
687  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
688    llvm::SmallVector<ParmVarDecl*, 16> Params;
689    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
690      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
691                                           FT->getArgType(i), /*TInfo=*/0,
692                                           VarDecl::None, 0));
693    New->setParams(Context, Params.data(), Params.size());
694  }
695
696  AddKnownFunctionAttributes(New);
697
698  // TUScope is the translation-unit scope to insert this function into.
699  // FIXME: This is hideous. We need to teach PushOnScopeChains to
700  // relate Scopes to DeclContexts, and probably eliminate CurContext
701  // entirely, but we're not there yet.
702  DeclContext *SavedContext = CurContext;
703  CurContext = Context.getTranslationUnitDecl();
704  PushOnScopeChains(New, TUScope);
705  CurContext = SavedContext;
706  return New;
707}
708
709/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
710/// same name and scope as a previous declaration 'Old'.  Figure out
711/// how to resolve this situation, merging decls or emitting
712/// diagnostics as appropriate. If there was an error, set New to be invalid.
713///
714void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
715  // If the new decl is known invalid already, don't bother doing any
716  // merging checks.
717  if (New->isInvalidDecl()) return;
718
719  // Allow multiple definitions for ObjC built-in typedefs.
720  // FIXME: Verify the underlying types are equivalent!
721  if (getLangOptions().ObjC1) {
722    const IdentifierInfo *TypeID = New->getIdentifier();
723    switch (TypeID->getLength()) {
724    default: break;
725    case 2:
726      if (!TypeID->isStr("id"))
727        break;
728      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
729      // Install the built-in type for 'id', ignoring the current definition.
730      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
731      return;
732    case 5:
733      if (!TypeID->isStr("Class"))
734        break;
735      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
736      // Install the built-in type for 'Class', ignoring the current definition.
737      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
738      return;
739    case 3:
740      if (!TypeID->isStr("SEL"))
741        break;
742      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
743      // Install the built-in type for 'SEL', ignoring the current definition.
744      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
745      return;
746    case 8:
747      if (!TypeID->isStr("Protocol"))
748        break;
749      Context.setObjCProtoType(New->getUnderlyingType());
750      return;
751    }
752    // Fall through - the typedef name was not a builtin type.
753  }
754
755  // Verify the old decl was also a type.
756  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
757  if (!Old) {
758    Diag(New->getLocation(), diag::err_redefinition_different_kind)
759      << New->getDeclName();
760
761    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
762    if (OldD->getLocation().isValid())
763      Diag(OldD->getLocation(), diag::note_previous_definition);
764
765    return New->setInvalidDecl();
766  }
767
768  // If the old declaration is invalid, just give up here.
769  if (Old->isInvalidDecl())
770    return New->setInvalidDecl();
771
772  // Determine the "old" type we'll use for checking and diagnostics.
773  QualType OldType;
774  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
775    OldType = OldTypedef->getUnderlyingType();
776  else
777    OldType = Context.getTypeDeclType(Old);
778
779  // If the typedef types are not identical, reject them in all languages and
780  // with any extensions enabled.
781
782  if (OldType != New->getUnderlyingType() &&
783      Context.getCanonicalType(OldType) !=
784      Context.getCanonicalType(New->getUnderlyingType())) {
785    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
786      << New->getUnderlyingType() << OldType;
787    if (Old->getLocation().isValid())
788      Diag(Old->getLocation(), diag::note_previous_definition);
789    return New->setInvalidDecl();
790  }
791
792  // The types match.  Link up the redeclaration chain if the old
793  // declaration was a typedef.
794  // FIXME: this is a potential source of wierdness if the type
795  // spellings don't match exactly.
796  if (isa<TypedefDecl>(Old))
797    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
798
799  if (getLangOptions().Microsoft)
800    return;
801
802  if (getLangOptions().CPlusPlus) {
803    // C++ [dcl.typedef]p2:
804    //   In a given non-class scope, a typedef specifier can be used to
805    //   redefine the name of any type declared in that scope to refer
806    //   to the type to which it already refers.
807    if (!isa<CXXRecordDecl>(CurContext))
808      return;
809
810    // C++0x [dcl.typedef]p4:
811    //   In a given class scope, a typedef specifier can be used to redefine
812    //   any class-name declared in that scope that is not also a typedef-name
813    //   to refer to the type to which it already refers.
814    //
815    // This wording came in via DR424, which was a correction to the
816    // wording in DR56, which accidentally banned code like:
817    //
818    //   struct S {
819    //     typedef struct A { } A;
820    //   };
821    //
822    // in the C++03 standard. We implement the C++0x semantics, which
823    // allow the above but disallow
824    //
825    //   struct S {
826    //     typedef int I;
827    //     typedef int I;
828    //   };
829    //
830    // since that was the intent of DR56.
831    if (!isa<TypedefDecl >(Old))
832      return;
833
834    Diag(New->getLocation(), diag::err_redefinition)
835      << New->getDeclName();
836    Diag(Old->getLocation(), diag::note_previous_definition);
837    return New->setInvalidDecl();
838  }
839
840  // If we have a redefinition of a typedef in C, emit a warning.  This warning
841  // is normally mapped to an error, but can be controlled with
842  // -Wtypedef-redefinition.  If either the original or the redefinition is
843  // in a system header, don't emit this for compatibility with GCC.
844  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
845      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
846       Context.getSourceManager().isInSystemHeader(New->getLocation())))
847    return;
848
849  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
850    << New->getDeclName();
851  Diag(Old->getLocation(), diag::note_previous_definition);
852  return;
853}
854
855/// DeclhasAttr - returns true if decl Declaration already has the target
856/// attribute.
857static bool
858DeclHasAttr(const Decl *decl, const Attr *target) {
859  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
860    if (attr->getKind() == target->getKind())
861      return true;
862
863  return false;
864}
865
866/// MergeAttributes - append attributes from the Old decl to the New one.
867static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
868  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
869    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
870      Attr *NewAttr = attr->clone(C);
871      NewAttr->setInherited(true);
872      New->addAttr(NewAttr);
873    }
874  }
875}
876
877/// Used in MergeFunctionDecl to keep track of function parameters in
878/// C.
879struct GNUCompatibleParamWarning {
880  ParmVarDecl *OldParm;
881  ParmVarDecl *NewParm;
882  QualType PromotedType;
883};
884
885
886/// getSpecialMember - get the special member enum for a method.
887static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
888                                               const CXXMethodDecl *MD) {
889  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
890    if (Ctor->isDefaultConstructor())
891      return Sema::CXXDefaultConstructor;
892    if (Ctor->isCopyConstructor())
893      return Sema::CXXCopyConstructor;
894  }
895
896  if (isa<CXXDestructorDecl>(MD))
897    return Sema::CXXDestructor;
898
899  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
900  return Sema::CXXCopyAssignment;
901}
902
903/// MergeFunctionDecl - We just parsed a function 'New' from
904/// declarator D which has the same name and scope as a previous
905/// declaration 'Old'.  Figure out how to resolve this situation,
906/// merging decls or emitting diagnostics as appropriate.
907///
908/// In C++, New and Old must be declarations that are not
909/// overloaded. Use IsOverload to determine whether New and Old are
910/// overloaded, and to select the Old declaration that New should be
911/// merged with.
912///
913/// Returns true if there was an error, false otherwise.
914bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
915  // Verify the old decl was also a function.
916  FunctionDecl *Old = 0;
917  if (FunctionTemplateDecl *OldFunctionTemplate
918        = dyn_cast<FunctionTemplateDecl>(OldD))
919    Old = OldFunctionTemplate->getTemplatedDecl();
920  else
921    Old = dyn_cast<FunctionDecl>(OldD);
922  if (!Old) {
923    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
924      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
925      Diag(Shadow->getTargetDecl()->getLocation(),
926           diag::note_using_decl_target);
927      Diag(Shadow->getUsingDecl()->getLocation(),
928           diag::note_using_decl) << 0;
929      return true;
930    }
931
932    Diag(New->getLocation(), diag::err_redefinition_different_kind)
933      << New->getDeclName();
934    Diag(OldD->getLocation(), diag::note_previous_definition);
935    return true;
936  }
937
938  // Determine whether the previous declaration was a definition,
939  // implicit declaration, or a declaration.
940  diag::kind PrevDiag;
941  if (Old->isThisDeclarationADefinition())
942    PrevDiag = diag::note_previous_definition;
943  else if (Old->isImplicit())
944    PrevDiag = diag::note_previous_implicit_declaration;
945  else
946    PrevDiag = diag::note_previous_declaration;
947
948  QualType OldQType = Context.getCanonicalType(Old->getType());
949  QualType NewQType = Context.getCanonicalType(New->getType());
950
951  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
952      New->getStorageClass() == FunctionDecl::Static &&
953      Old->getStorageClass() != FunctionDecl::Static) {
954    Diag(New->getLocation(), diag::err_static_non_static)
955      << New;
956    Diag(Old->getLocation(), PrevDiag);
957    return true;
958  }
959
960  if (getLangOptions().CPlusPlus) {
961    // (C++98 13.1p2):
962    //   Certain function declarations cannot be overloaded:
963    //     -- Function declarations that differ only in the return type
964    //        cannot be overloaded.
965    QualType OldReturnType
966      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
967    QualType NewReturnType
968      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
969    if (OldReturnType != NewReturnType) {
970      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
971      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
972      return true;
973    }
974
975    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
976    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
977    if (OldMethod && NewMethod) {
978      if (!NewMethod->getFriendObjectKind() &&
979          NewMethod->getLexicalDeclContext()->isRecord()) {
980        //    -- Member function declarations with the same name and the
981        //       same parameter types cannot be overloaded if any of them
982        //       is a static member function declaration.
983        if (OldMethod->isStatic() || NewMethod->isStatic()) {
984          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
985          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
986          return true;
987        }
988
989        // C++ [class.mem]p1:
990        //   [...] A member shall not be declared twice in the
991        //   member-specification, except that a nested class or member
992        //   class template can be declared and then later defined.
993        unsigned NewDiag;
994        if (isa<CXXConstructorDecl>(OldMethod))
995          NewDiag = diag::err_constructor_redeclared;
996        else if (isa<CXXDestructorDecl>(NewMethod))
997          NewDiag = diag::err_destructor_redeclared;
998        else if (isa<CXXConversionDecl>(NewMethod))
999          NewDiag = diag::err_conv_function_redeclared;
1000        else
1001          NewDiag = diag::err_member_redeclared;
1002
1003        Diag(New->getLocation(), NewDiag);
1004        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1005      } else {
1006        if (OldMethod->isImplicit()) {
1007          Diag(NewMethod->getLocation(),
1008               diag::err_definition_of_implicitly_declared_member)
1009          << New << getSpecialMember(Context, OldMethod);
1010
1011          Diag(OldMethod->getLocation(),
1012               diag::note_previous_implicit_declaration);
1013          return true;
1014        }
1015      }
1016    }
1017
1018    // (C++98 8.3.5p3):
1019    //   All declarations for a function shall agree exactly in both the
1020    //   return type and the parameter-type-list.
1021    // attributes should be ignored when comparing.
1022    if (Context.getNoReturnType(OldQType, false) ==
1023        Context.getNoReturnType(NewQType, false))
1024      return MergeCompatibleFunctionDecls(New, Old);
1025
1026    // Fall through for conflicting redeclarations and redefinitions.
1027  }
1028
1029  // C: Function types need to be compatible, not identical. This handles
1030  // duplicate function decls like "void f(int); void f(enum X);" properly.
1031  if (!getLangOptions().CPlusPlus &&
1032      Context.typesAreCompatible(OldQType, NewQType)) {
1033    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1034    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1035    const FunctionProtoType *OldProto = 0;
1036    if (isa<FunctionNoProtoType>(NewFuncType) &&
1037        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1038      // The old declaration provided a function prototype, but the
1039      // new declaration does not. Merge in the prototype.
1040      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1041      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1042                                                 OldProto->arg_type_end());
1043      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1044                                         ParamTypes.data(), ParamTypes.size(),
1045                                         OldProto->isVariadic(),
1046                                         OldProto->getTypeQuals());
1047      New->setType(NewQType);
1048      New->setHasInheritedPrototype();
1049
1050      // Synthesize a parameter for each argument type.
1051      llvm::SmallVector<ParmVarDecl*, 16> Params;
1052      for (FunctionProtoType::arg_type_iterator
1053             ParamType = OldProto->arg_type_begin(),
1054             ParamEnd = OldProto->arg_type_end();
1055           ParamType != ParamEnd; ++ParamType) {
1056        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1057                                                 SourceLocation(), 0,
1058                                                 *ParamType, /*TInfo=*/0,
1059                                                 VarDecl::None, 0);
1060        Param->setImplicit();
1061        Params.push_back(Param);
1062      }
1063
1064      New->setParams(Context, Params.data(), Params.size());
1065    }
1066
1067    return MergeCompatibleFunctionDecls(New, Old);
1068  }
1069
1070  // GNU C permits a K&R definition to follow a prototype declaration
1071  // if the declared types of the parameters in the K&R definition
1072  // match the types in the prototype declaration, even when the
1073  // promoted types of the parameters from the K&R definition differ
1074  // from the types in the prototype. GCC then keeps the types from
1075  // the prototype.
1076  //
1077  // If a variadic prototype is followed by a non-variadic K&R definition,
1078  // the K&R definition becomes variadic.  This is sort of an edge case, but
1079  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1080  // C99 6.9.1p8.
1081  if (!getLangOptions().CPlusPlus &&
1082      Old->hasPrototype() && !New->hasPrototype() &&
1083      New->getType()->getAs<FunctionProtoType>() &&
1084      Old->getNumParams() == New->getNumParams()) {
1085    llvm::SmallVector<QualType, 16> ArgTypes;
1086    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1087    const FunctionProtoType *OldProto
1088      = Old->getType()->getAs<FunctionProtoType>();
1089    const FunctionProtoType *NewProto
1090      = New->getType()->getAs<FunctionProtoType>();
1091
1092    // Determine whether this is the GNU C extension.
1093    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1094                                               NewProto->getResultType());
1095    bool LooseCompatible = !MergedReturn.isNull();
1096    for (unsigned Idx = 0, End = Old->getNumParams();
1097         LooseCompatible && Idx != End; ++Idx) {
1098      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1099      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1100      if (Context.typesAreCompatible(OldParm->getType(),
1101                                     NewProto->getArgType(Idx))) {
1102        ArgTypes.push_back(NewParm->getType());
1103      } else if (Context.typesAreCompatible(OldParm->getType(),
1104                                            NewParm->getType())) {
1105        GNUCompatibleParamWarning Warn
1106          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1107        Warnings.push_back(Warn);
1108        ArgTypes.push_back(NewParm->getType());
1109      } else
1110        LooseCompatible = false;
1111    }
1112
1113    if (LooseCompatible) {
1114      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1115        Diag(Warnings[Warn].NewParm->getLocation(),
1116             diag::ext_param_promoted_not_compatible_with_prototype)
1117          << Warnings[Warn].PromotedType
1118          << Warnings[Warn].OldParm->getType();
1119        Diag(Warnings[Warn].OldParm->getLocation(),
1120             diag::note_previous_declaration);
1121      }
1122
1123      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1124                                           ArgTypes.size(),
1125                                           OldProto->isVariadic(), 0));
1126      return MergeCompatibleFunctionDecls(New, Old);
1127    }
1128
1129    // Fall through to diagnose conflicting types.
1130  }
1131
1132  // A function that has already been declared has been redeclared or defined
1133  // with a different type- show appropriate diagnostic
1134  if (unsigned BuiltinID = Old->getBuiltinID()) {
1135    // The user has declared a builtin function with an incompatible
1136    // signature.
1137    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1138      // The function the user is redeclaring is a library-defined
1139      // function like 'malloc' or 'printf'. Warn about the
1140      // redeclaration, then pretend that we don't know about this
1141      // library built-in.
1142      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1143      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1144        << Old << Old->getType();
1145      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1146      Old->setInvalidDecl();
1147      return false;
1148    }
1149
1150    PrevDiag = diag::note_previous_builtin_declaration;
1151  }
1152
1153  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1154  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1155  return true;
1156}
1157
1158/// \brief Completes the merge of two function declarations that are
1159/// known to be compatible.
1160///
1161/// This routine handles the merging of attributes and other
1162/// properties of function declarations form the old declaration to
1163/// the new declaration, once we know that New is in fact a
1164/// redeclaration of Old.
1165///
1166/// \returns false
1167bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1168  // Merge the attributes
1169  MergeAttributes(New, Old, Context);
1170
1171  // Merge the storage class.
1172  if (Old->getStorageClass() != FunctionDecl::Extern &&
1173      Old->getStorageClass() != FunctionDecl::None)
1174    New->setStorageClass(Old->getStorageClass());
1175
1176  // Merge "pure" flag.
1177  if (Old->isPure())
1178    New->setPure();
1179
1180  // Merge the "deleted" flag.
1181  if (Old->isDeleted())
1182    New->setDeleted();
1183
1184  if (getLangOptions().CPlusPlus)
1185    return MergeCXXFunctionDecl(New, Old);
1186
1187  return false;
1188}
1189
1190/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1191/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1192/// situation, merging decls or emitting diagnostics as appropriate.
1193///
1194/// Tentative definition rules (C99 6.9.2p2) are checked by
1195/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1196/// definitions here, since the initializer hasn't been attached.
1197///
1198void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1199  // If the new decl is already invalid, don't do any other checking.
1200  if (New->isInvalidDecl())
1201    return;
1202
1203  // Verify the old decl was also a variable.
1204  VarDecl *Old = 0;
1205  if (!Previous.isSingleResult() ||
1206      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1207    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1208      << New->getDeclName();
1209    Diag(Previous.getRepresentativeDecl()->getLocation(),
1210         diag::note_previous_definition);
1211    return New->setInvalidDecl();
1212  }
1213
1214  MergeAttributes(New, Old, Context);
1215
1216  // Merge the types
1217  QualType MergedT;
1218  if (getLangOptions().CPlusPlus) {
1219    if (Context.hasSameType(New->getType(), Old->getType()))
1220      MergedT = New->getType();
1221    // C++ [basic.link]p10:
1222    //   [...] the types specified by all declarations referring to a given
1223    //   object or function shall be identical, except that declarations for an
1224    //   array object can specify array types that differ by the presence or
1225    //   absence of a major array bound (8.3.4).
1226    else if (Old->getType()->isIncompleteArrayType() &&
1227             New->getType()->isArrayType()) {
1228      CanQual<ArrayType> OldArray
1229        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1230      CanQual<ArrayType> NewArray
1231        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1232      if (OldArray->getElementType() == NewArray->getElementType())
1233        MergedT = New->getType();
1234    } else if (Old->getType()->isArrayType() &&
1235             New->getType()->isIncompleteArrayType()) {
1236      CanQual<ArrayType> OldArray
1237        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1238      CanQual<ArrayType> NewArray
1239        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1240      if (OldArray->getElementType() == NewArray->getElementType())
1241        MergedT = Old->getType();
1242    }
1243  } else {
1244    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1245  }
1246  if (MergedT.isNull()) {
1247    Diag(New->getLocation(), diag::err_redefinition_different_type)
1248      << New->getDeclName();
1249    Diag(Old->getLocation(), diag::note_previous_definition);
1250    return New->setInvalidDecl();
1251  }
1252  New->setType(MergedT);
1253
1254  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1255  if (New->getStorageClass() == VarDecl::Static &&
1256      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1257    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1258    Diag(Old->getLocation(), diag::note_previous_definition);
1259    return New->setInvalidDecl();
1260  }
1261  // C99 6.2.2p4:
1262  //   For an identifier declared with the storage-class specifier
1263  //   extern in a scope in which a prior declaration of that
1264  //   identifier is visible,23) if the prior declaration specifies
1265  //   internal or external linkage, the linkage of the identifier at
1266  //   the later declaration is the same as the linkage specified at
1267  //   the prior declaration. If no prior declaration is visible, or
1268  //   if the prior declaration specifies no linkage, then the
1269  //   identifier has external linkage.
1270  if (New->hasExternalStorage() && Old->hasLinkage())
1271    /* Okay */;
1272  else if (New->getStorageClass() != VarDecl::Static &&
1273           Old->getStorageClass() == VarDecl::Static) {
1274    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1275    Diag(Old->getLocation(), diag::note_previous_definition);
1276    return New->setInvalidDecl();
1277  }
1278
1279  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1280
1281  // FIXME: The test for external storage here seems wrong? We still
1282  // need to check for mismatches.
1283  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1284      // Don't complain about out-of-line definitions of static members.
1285      !(Old->getLexicalDeclContext()->isRecord() &&
1286        !New->getLexicalDeclContext()->isRecord())) {
1287    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1288    Diag(Old->getLocation(), diag::note_previous_definition);
1289    return New->setInvalidDecl();
1290  }
1291
1292  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1293    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1294    Diag(Old->getLocation(), diag::note_previous_definition);
1295  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1296    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1297    Diag(Old->getLocation(), diag::note_previous_definition);
1298  }
1299
1300  // Keep a chain of previous declarations.
1301  New->setPreviousDeclaration(Old);
1302
1303  // Inherit access appropriately.
1304  New->setAccess(Old->getAccess());
1305}
1306
1307/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1308/// no declarator (e.g. "struct foo;") is parsed.
1309Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1310  // FIXME: Error on auto/register at file scope
1311  // FIXME: Error on inline/virtual/explicit
1312  // FIXME: Warn on useless __thread
1313  // FIXME: Warn on useless const/volatile
1314  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1315  // FIXME: Warn on useless attributes
1316  Decl *TagD = 0;
1317  TagDecl *Tag = 0;
1318  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1319      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1320      DS.getTypeSpecType() == DeclSpec::TST_union ||
1321      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1322    TagD = static_cast<Decl *>(DS.getTypeRep());
1323
1324    if (!TagD) // We probably had an error
1325      return DeclPtrTy();
1326
1327    // Note that the above type specs guarantee that the
1328    // type rep is a Decl, whereas in many of the others
1329    // it's a Type.
1330    Tag = dyn_cast<TagDecl>(TagD);
1331  }
1332
1333  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1334    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1335    // or incomplete types shall not be restrict-qualified."
1336    if (TypeQuals & DeclSpec::TQ_restrict)
1337      Diag(DS.getRestrictSpecLoc(),
1338           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1339           << DS.getSourceRange();
1340  }
1341
1342  if (DS.isFriendSpecified()) {
1343    // If we're dealing with a class template decl, assume that the
1344    // template routines are handling it.
1345    if (TagD && isa<ClassTemplateDecl>(TagD))
1346      return DeclPtrTy();
1347    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1348  }
1349
1350  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1351    // If there are attributes in the DeclSpec, apply them to the record.
1352    if (const AttributeList *AL = DS.getAttributes())
1353      ProcessDeclAttributeList(S, Record, AL);
1354
1355    if (!Record->getDeclName() && Record->isDefinition() &&
1356        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1357      if (getLangOptions().CPlusPlus ||
1358          Record->getDeclContext()->isRecord())
1359        return BuildAnonymousStructOrUnion(S, DS, Record);
1360
1361      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1362        << DS.getSourceRange();
1363    }
1364
1365    // Microsoft allows unnamed struct/union fields. Don't complain
1366    // about them.
1367    // FIXME: Should we support Microsoft's extensions in this area?
1368    if (Record->getDeclName() && getLangOptions().Microsoft)
1369      return DeclPtrTy::make(Tag);
1370  }
1371
1372  if (!DS.isMissingDeclaratorOk() &&
1373      DS.getTypeSpecType() != DeclSpec::TST_error) {
1374    // Warn about typedefs of enums without names, since this is an
1375    // extension in both Microsoft an GNU.
1376    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1377        Tag && isa<EnumDecl>(Tag)) {
1378      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1379        << DS.getSourceRange();
1380      return DeclPtrTy::make(Tag);
1381    }
1382
1383    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1384      << DS.getSourceRange();
1385    return DeclPtrTy();
1386  }
1387
1388  return DeclPtrTy::make(Tag);
1389}
1390
1391/// We are trying to inject an anonymous member into the given scope;
1392/// check if there's an existing declaration that can't be overloaded.
1393///
1394/// \return true if this is a forbidden redeclaration
1395static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1396                                         Scope *S,
1397                                         DeclContext *Owner,
1398                                         DeclarationName Name,
1399                                         SourceLocation NameLoc,
1400                                         unsigned diagnostic) {
1401  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1402                 Sema::ForRedeclaration);
1403  if (!SemaRef.LookupName(R, S)) return false;
1404
1405  if (R.getAsSingle<TagDecl>())
1406    return false;
1407
1408  // Pick a representative declaration.
1409  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1410  if (PrevDecl && Owner->isRecord()) {
1411    RecordDecl *Record = cast<RecordDecl>(Owner);
1412    if (!SemaRef.isDeclInScope(PrevDecl, Record, S))
1413      return false;
1414  }
1415
1416  SemaRef.Diag(NameLoc, diagnostic) << Name;
1417  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1418
1419  return true;
1420}
1421
1422/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1423/// anonymous struct or union AnonRecord into the owning context Owner
1424/// and scope S. This routine will be invoked just after we realize
1425/// that an unnamed union or struct is actually an anonymous union or
1426/// struct, e.g.,
1427///
1428/// @code
1429/// union {
1430///   int i;
1431///   float f;
1432/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1433///    // f into the surrounding scope.x
1434/// @endcode
1435///
1436/// This routine is recursive, injecting the names of nested anonymous
1437/// structs/unions into the owning context and scope as well.
1438bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1439                                               RecordDecl *AnonRecord) {
1440  unsigned diagKind
1441    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1442                            : diag::err_anonymous_struct_member_redecl;
1443
1444  bool Invalid = false;
1445  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1446                               FEnd = AnonRecord->field_end();
1447       F != FEnd; ++F) {
1448    if ((*F)->getDeclName()) {
1449      if (CheckAnonMemberRedeclaration(*this, S, Owner, (*F)->getDeclName(),
1450                                       (*F)->getLocation(), diagKind)) {
1451        // C++ [class.union]p2:
1452        //   The names of the members of an anonymous union shall be
1453        //   distinct from the names of any other entity in the
1454        //   scope in which the anonymous union is declared.
1455        Invalid = true;
1456      } else {
1457        // C++ [class.union]p2:
1458        //   For the purpose of name lookup, after the anonymous union
1459        //   definition, the members of the anonymous union are
1460        //   considered to have been defined in the scope in which the
1461        //   anonymous union is declared.
1462        Owner->makeDeclVisibleInContext(*F);
1463        S->AddDecl(DeclPtrTy::make(*F));
1464        IdResolver.AddDecl(*F);
1465      }
1466    } else if (const RecordType *InnerRecordType
1467                 = (*F)->getType()->getAs<RecordType>()) {
1468      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1469      if (InnerRecord->isAnonymousStructOrUnion())
1470        Invalid = Invalid ||
1471          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1472    }
1473  }
1474
1475  return Invalid;
1476}
1477
1478/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1479/// anonymous structure or union. Anonymous unions are a C++ feature
1480/// (C++ [class.union]) and a GNU C extension; anonymous structures
1481/// are a GNU C and GNU C++ extension.
1482Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1483                                                  RecordDecl *Record) {
1484  DeclContext *Owner = Record->getDeclContext();
1485
1486  // Diagnose whether this anonymous struct/union is an extension.
1487  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1488    Diag(Record->getLocation(), diag::ext_anonymous_union);
1489  else if (!Record->isUnion())
1490    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1491
1492  // C and C++ require different kinds of checks for anonymous
1493  // structs/unions.
1494  bool Invalid = false;
1495  if (getLangOptions().CPlusPlus) {
1496    const char* PrevSpec = 0;
1497    unsigned DiagID;
1498    // C++ [class.union]p3:
1499    //   Anonymous unions declared in a named namespace or in the
1500    //   global namespace shall be declared static.
1501    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1502        (isa<TranslationUnitDecl>(Owner) ||
1503         (isa<NamespaceDecl>(Owner) &&
1504          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1505      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1506      Invalid = true;
1507
1508      // Recover by adding 'static'.
1509      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1510                             PrevSpec, DiagID);
1511    }
1512    // C++ [class.union]p3:
1513    //   A storage class is not allowed in a declaration of an
1514    //   anonymous union in a class scope.
1515    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1516             isa<RecordDecl>(Owner)) {
1517      Diag(DS.getStorageClassSpecLoc(),
1518           diag::err_anonymous_union_with_storage_spec);
1519      Invalid = true;
1520
1521      // Recover by removing the storage specifier.
1522      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1523                             PrevSpec, DiagID);
1524    }
1525
1526    // C++ [class.union]p2:
1527    //   The member-specification of an anonymous union shall only
1528    //   define non-static data members. [Note: nested types and
1529    //   functions cannot be declared within an anonymous union. ]
1530    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1531                                 MemEnd = Record->decls_end();
1532         Mem != MemEnd; ++Mem) {
1533      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1534        // C++ [class.union]p3:
1535        //   An anonymous union shall not have private or protected
1536        //   members (clause 11).
1537        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1538          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1539            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1540          Invalid = true;
1541        }
1542      } else if ((*Mem)->isImplicit()) {
1543        // Any implicit members are fine.
1544      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1545        // This is a type that showed up in an
1546        // elaborated-type-specifier inside the anonymous struct or
1547        // union, but which actually declares a type outside of the
1548        // anonymous struct or union. It's okay.
1549      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1550        if (!MemRecord->isAnonymousStructOrUnion() &&
1551            MemRecord->getDeclName()) {
1552          // This is a nested type declaration.
1553          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1554            << (int)Record->isUnion();
1555          Invalid = true;
1556        }
1557      } else {
1558        // We have something that isn't a non-static data
1559        // member. Complain about it.
1560        unsigned DK = diag::err_anonymous_record_bad_member;
1561        if (isa<TypeDecl>(*Mem))
1562          DK = diag::err_anonymous_record_with_type;
1563        else if (isa<FunctionDecl>(*Mem))
1564          DK = diag::err_anonymous_record_with_function;
1565        else if (isa<VarDecl>(*Mem))
1566          DK = diag::err_anonymous_record_with_static;
1567        Diag((*Mem)->getLocation(), DK)
1568            << (int)Record->isUnion();
1569          Invalid = true;
1570      }
1571    }
1572  }
1573
1574  if (!Record->isUnion() && !Owner->isRecord()) {
1575    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1576      << (int)getLangOptions().CPlusPlus;
1577    Invalid = true;
1578  }
1579
1580  // Mock up a declarator.
1581  Declarator Dc(DS, Declarator::TypeNameContext);
1582  TypeSourceInfo *TInfo = 0;
1583  GetTypeForDeclarator(Dc, S, &TInfo);
1584  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1585
1586  // Create a declaration for this anonymous struct/union.
1587  NamedDecl *Anon = 0;
1588  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1589    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1590                             /*IdentifierInfo=*/0,
1591                             Context.getTypeDeclType(Record),
1592                             TInfo,
1593                             /*BitWidth=*/0, /*Mutable=*/false);
1594    Anon->setAccess(AS_public);
1595    if (getLangOptions().CPlusPlus)
1596      FieldCollector->Add(cast<FieldDecl>(Anon));
1597  } else {
1598    VarDecl::StorageClass SC;
1599    switch (DS.getStorageClassSpec()) {
1600    default: assert(0 && "Unknown storage class!");
1601    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1602    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1603    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1604    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1605    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1606    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1607    case DeclSpec::SCS_mutable:
1608      // mutable can only appear on non-static class members, so it's always
1609      // an error here
1610      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1611      Invalid = true;
1612      SC = VarDecl::None;
1613      break;
1614    }
1615
1616    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1617                           /*IdentifierInfo=*/0,
1618                           Context.getTypeDeclType(Record),
1619                           TInfo,
1620                           SC);
1621  }
1622  Anon->setImplicit();
1623
1624  // Add the anonymous struct/union object to the current
1625  // context. We'll be referencing this object when we refer to one of
1626  // its members.
1627  Owner->addDecl(Anon);
1628
1629  // Inject the members of the anonymous struct/union into the owning
1630  // context and into the identifier resolver chain for name lookup
1631  // purposes.
1632  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1633    Invalid = true;
1634
1635  // Mark this as an anonymous struct/union type. Note that we do not
1636  // do this until after we have already checked and injected the
1637  // members of this anonymous struct/union type, because otherwise
1638  // the members could be injected twice: once by DeclContext when it
1639  // builds its lookup table, and once by
1640  // InjectAnonymousStructOrUnionMembers.
1641  Record->setAnonymousStructOrUnion(true);
1642
1643  if (Invalid)
1644    Anon->setInvalidDecl();
1645
1646  return DeclPtrTy::make(Anon);
1647}
1648
1649
1650/// GetNameForDeclarator - Determine the full declaration name for the
1651/// given Declarator.
1652DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1653  return GetNameFromUnqualifiedId(D.getName());
1654}
1655
1656/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1657DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1658  switch (Name.getKind()) {
1659    case UnqualifiedId::IK_Identifier:
1660      return DeclarationName(Name.Identifier);
1661
1662    case UnqualifiedId::IK_OperatorFunctionId:
1663      return Context.DeclarationNames.getCXXOperatorName(
1664                                              Name.OperatorFunctionId.Operator);
1665
1666    case UnqualifiedId::IK_LiteralOperatorId:
1667      return Context.DeclarationNames.getCXXLiteralOperatorName(
1668                                                               Name.Identifier);
1669
1670    case UnqualifiedId::IK_ConversionFunctionId: {
1671      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1672      if (Ty.isNull())
1673        return DeclarationName();
1674
1675      return Context.DeclarationNames.getCXXConversionFunctionName(
1676                                                  Context.getCanonicalType(Ty));
1677    }
1678
1679    case UnqualifiedId::IK_ConstructorName: {
1680      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1681      if (Ty.isNull())
1682        return DeclarationName();
1683
1684      return Context.DeclarationNames.getCXXConstructorName(
1685                                                  Context.getCanonicalType(Ty));
1686    }
1687
1688    case UnqualifiedId::IK_ConstructorTemplateId: {
1689      // In well-formed code, we can only have a constructor
1690      // template-id that refers to the current context, so go there
1691      // to find the actual type being constructed.
1692      CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
1693      if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
1694        return DeclarationName();
1695
1696      // Determine the type of the class being constructed.
1697      QualType CurClassType;
1698      if (ClassTemplateDecl *ClassTemplate
1699            = CurClass->getDescribedClassTemplate())
1700        CurClassType = ClassTemplate->getInjectedClassNameType(Context);
1701      else
1702        CurClassType = Context.getTypeDeclType(CurClass);
1703
1704      // FIXME: Check two things: that the template-id names the same type as
1705      // CurClassType, and that the template-id does not occur when the name
1706      // was qualified.
1707
1708      return Context.DeclarationNames.getCXXConstructorName(
1709                                       Context.getCanonicalType(CurClassType));
1710    }
1711
1712    case UnqualifiedId::IK_DestructorName: {
1713      QualType Ty = GetTypeFromParser(Name.DestructorName);
1714      if (Ty.isNull())
1715        return DeclarationName();
1716
1717      return Context.DeclarationNames.getCXXDestructorName(
1718                                                           Context.getCanonicalType(Ty));
1719    }
1720
1721    case UnqualifiedId::IK_TemplateId: {
1722      TemplateName TName
1723        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1724      return Context.getNameForTemplate(TName);
1725    }
1726  }
1727
1728  assert(false && "Unknown name kind");
1729  return DeclarationName();
1730}
1731
1732/// isNearlyMatchingFunction - Determine whether the C++ functions
1733/// Declaration and Definition are "nearly" matching. This heuristic
1734/// is used to improve diagnostics in the case where an out-of-line
1735/// function definition doesn't match any declaration within
1736/// the class or namespace.
1737static bool isNearlyMatchingFunction(ASTContext &Context,
1738                                     FunctionDecl *Declaration,
1739                                     FunctionDecl *Definition) {
1740  if (Declaration->param_size() != Definition->param_size())
1741    return false;
1742  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1743    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1744    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1745
1746    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1747                                        DefParamTy.getNonReferenceType()))
1748      return false;
1749  }
1750
1751  return true;
1752}
1753
1754Sema::DeclPtrTy
1755Sema::HandleDeclarator(Scope *S, Declarator &D,
1756                       MultiTemplateParamsArg TemplateParamLists,
1757                       bool IsFunctionDefinition) {
1758  DeclarationName Name = GetNameForDeclarator(D);
1759
1760  // All of these full declarators require an identifier.  If it doesn't have
1761  // one, the ParsedFreeStandingDeclSpec action should be used.
1762  if (!Name) {
1763    if (!D.isInvalidType())  // Reject this if we think it is valid.
1764      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1765           diag::err_declarator_need_ident)
1766        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1767    return DeclPtrTy();
1768  }
1769
1770  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1771  // we find one that is.
1772  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1773         (S->getFlags() & Scope::TemplateParamScope) != 0)
1774    S = S->getParent();
1775
1776  // If this is an out-of-line definition of a member of a class template
1777  // or class template partial specialization, we may need to rebuild the
1778  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1779  // for more information.
1780  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1781  // handle expressions properly.
1782  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1783  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1784      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1785      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1786       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1787       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1788       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1789    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1790      // FIXME: Preserve type source info.
1791      QualType T = GetTypeFromParser(DS.getTypeRep());
1792
1793      DeclContext *SavedContext = CurContext;
1794      CurContext = DC;
1795      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1796      CurContext = SavedContext;
1797
1798      if (T.isNull())
1799        return DeclPtrTy();
1800      DS.UpdateTypeRep(T.getAsOpaquePtr());
1801    }
1802  }
1803
1804  DeclContext *DC;
1805  NamedDecl *New;
1806
1807  TypeSourceInfo *TInfo = 0;
1808  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1809
1810  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1811                        ForRedeclaration);
1812
1813  // See if this is a redefinition of a variable in the same scope.
1814  if (D.getCXXScopeSpec().isInvalid()) {
1815    DC = CurContext;
1816    D.setInvalidType();
1817  } else if (!D.getCXXScopeSpec().isSet()) {
1818    bool IsLinkageLookup = false;
1819
1820    // If the declaration we're planning to build will be a function
1821    // or object with linkage, then look for another declaration with
1822    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1823    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1824      /* Do nothing*/;
1825    else if (R->isFunctionType()) {
1826      if (CurContext->isFunctionOrMethod() ||
1827          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1828        IsLinkageLookup = true;
1829    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1830      IsLinkageLookup = true;
1831    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1832             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1833      IsLinkageLookup = true;
1834
1835    if (IsLinkageLookup)
1836      Previous.clear(LookupRedeclarationWithLinkage);
1837
1838    DC = CurContext;
1839    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1840  } else { // Something like "int foo::x;"
1841    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1842
1843    if (!DC) {
1844      // If we could not compute the declaration context, it's because the
1845      // declaration context is dependent but does not refer to a class,
1846      // class template, or class template partial specialization. Complain
1847      // and return early, to avoid the coming semantic disaster.
1848      Diag(D.getIdentifierLoc(),
1849           diag::err_template_qualified_declarator_no_match)
1850        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1851        << D.getCXXScopeSpec().getRange();
1852      return DeclPtrTy();
1853    }
1854
1855    if (!DC->isDependentContext() &&
1856        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1857      return DeclPtrTy();
1858
1859    LookupQualifiedName(Previous, DC);
1860
1861    // Don't consider using declarations as previous declarations for
1862    // out-of-line members.
1863    RemoveUsingDecls(Previous);
1864
1865    // C++ 7.3.1.2p2:
1866    // Members (including explicit specializations of templates) of a named
1867    // namespace can also be defined outside that namespace by explicit
1868    // qualification of the name being defined, provided that the entity being
1869    // defined was already declared in the namespace and the definition appears
1870    // after the point of declaration in a namespace that encloses the
1871    // declarations namespace.
1872    //
1873    // Note that we only check the context at this point. We don't yet
1874    // have enough information to make sure that PrevDecl is actually
1875    // the declaration we want to match. For example, given:
1876    //
1877    //   class X {
1878    //     void f();
1879    //     void f(float);
1880    //   };
1881    //
1882    //   void X::f(int) { } // ill-formed
1883    //
1884    // In this case, PrevDecl will point to the overload set
1885    // containing the two f's declared in X, but neither of them
1886    // matches.
1887
1888    // First check whether we named the global scope.
1889    if (isa<TranslationUnitDecl>(DC)) {
1890      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1891        << Name << D.getCXXScopeSpec().getRange();
1892    } else {
1893      DeclContext *Cur = CurContext;
1894      while (isa<LinkageSpecDecl>(Cur))
1895        Cur = Cur->getParent();
1896      if (!Cur->Encloses(DC)) {
1897        // The qualifying scope doesn't enclose the original declaration.
1898        // Emit diagnostic based on current scope.
1899        SourceLocation L = D.getIdentifierLoc();
1900        SourceRange R = D.getCXXScopeSpec().getRange();
1901        if (isa<FunctionDecl>(Cur))
1902          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1903        else
1904          Diag(L, diag::err_invalid_declarator_scope)
1905            << Name << cast<NamedDecl>(DC) << R;
1906        D.setInvalidType();
1907      }
1908    }
1909  }
1910
1911  if (Previous.isSingleResult() &&
1912      Previous.getFoundDecl()->isTemplateParameter()) {
1913    // Maybe we will complain about the shadowed template parameter.
1914    if (!D.isInvalidType())
1915      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
1916                                          Previous.getFoundDecl()))
1917        D.setInvalidType();
1918
1919    // Just pretend that we didn't see the previous declaration.
1920    Previous.clear();
1921  }
1922
1923  // In C++, the previous declaration we find might be a tag type
1924  // (class or enum). In this case, the new declaration will hide the
1925  // tag type. Note that this does does not apply if we're declaring a
1926  // typedef (C++ [dcl.typedef]p4).
1927  if (Previous.isSingleTagDecl() &&
1928      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1929    Previous.clear();
1930
1931  bool Redeclaration = false;
1932  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1933    if (TemplateParamLists.size()) {
1934      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1935      return DeclPtrTy();
1936    }
1937
1938    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
1939  } else if (R->isFunctionType()) {
1940    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
1941                                  move(TemplateParamLists),
1942                                  IsFunctionDefinition, Redeclaration);
1943  } else {
1944    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
1945                                  move(TemplateParamLists),
1946                                  Redeclaration);
1947  }
1948
1949  if (New == 0)
1950    return DeclPtrTy();
1951
1952  // If this has an identifier and is not an invalid redeclaration or
1953  // function template specialization, add it to the scope stack.
1954  if (Name && !(Redeclaration && New->isInvalidDecl()))
1955    PushOnScopeChains(New, S);
1956
1957  return DeclPtrTy::make(New);
1958}
1959
1960/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1961/// types into constant array types in certain situations which would otherwise
1962/// be errors (for GCC compatibility).
1963static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1964                                                    ASTContext &Context,
1965                                                    bool &SizeIsNegative) {
1966  // This method tries to turn a variable array into a constant
1967  // array even when the size isn't an ICE.  This is necessary
1968  // for compatibility with code that depends on gcc's buggy
1969  // constant expression folding, like struct {char x[(int)(char*)2];}
1970  SizeIsNegative = false;
1971
1972  QualifierCollector Qs;
1973  const Type *Ty = Qs.strip(T);
1974
1975  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1976    QualType Pointee = PTy->getPointeeType();
1977    QualType FixedType =
1978        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1979    if (FixedType.isNull()) return FixedType;
1980    FixedType = Context.getPointerType(FixedType);
1981    return Qs.apply(FixedType);
1982  }
1983
1984  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1985  if (!VLATy)
1986    return QualType();
1987  // FIXME: We should probably handle this case
1988  if (VLATy->getElementType()->isVariablyModifiedType())
1989    return QualType();
1990
1991  Expr::EvalResult EvalResult;
1992  if (!VLATy->getSizeExpr() ||
1993      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1994      !EvalResult.Val.isInt())
1995    return QualType();
1996
1997  llvm::APSInt &Res = EvalResult.Val.getInt();
1998  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1999    // TODO: preserve the size expression in declarator info
2000    return Context.getConstantArrayType(VLATy->getElementType(),
2001                                        Res, ArrayType::Normal, 0);
2002  }
2003
2004  SizeIsNegative = true;
2005  return QualType();
2006}
2007
2008/// \brief Register the given locally-scoped external C declaration so
2009/// that it can be found later for redeclarations
2010void
2011Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2012                                       const LookupResult &Previous,
2013                                       Scope *S) {
2014  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2015         "Decl is not a locally-scoped decl!");
2016  // Note that we have a locally-scoped external with this name.
2017  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2018
2019  if (!Previous.isSingleResult())
2020    return;
2021
2022  NamedDecl *PrevDecl = Previous.getFoundDecl();
2023
2024  // If there was a previous declaration of this variable, it may be
2025  // in our identifier chain. Update the identifier chain with the new
2026  // declaration.
2027  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2028    // The previous declaration was found on the identifer resolver
2029    // chain, so remove it from its scope.
2030    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2031      S = S->getParent();
2032
2033    if (S)
2034      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2035  }
2036}
2037
2038/// \brief Diagnose function specifiers on a declaration of an identifier that
2039/// does not identify a function.
2040void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2041  // FIXME: We should probably indicate the identifier in question to avoid
2042  // confusion for constructs like "inline int a(), b;"
2043  if (D.getDeclSpec().isInlineSpecified())
2044    Diag(D.getDeclSpec().getInlineSpecLoc(),
2045         diag::err_inline_non_function);
2046
2047  if (D.getDeclSpec().isVirtualSpecified())
2048    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2049         diag::err_virtual_non_function);
2050
2051  if (D.getDeclSpec().isExplicitSpecified())
2052    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2053         diag::err_explicit_non_function);
2054}
2055
2056NamedDecl*
2057Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2058                             QualType R,  TypeSourceInfo *TInfo,
2059                             LookupResult &Previous, bool &Redeclaration) {
2060  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2061  if (D.getCXXScopeSpec().isSet()) {
2062    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2063      << D.getCXXScopeSpec().getRange();
2064    D.setInvalidType();
2065    // Pretend we didn't see the scope specifier.
2066    DC = 0;
2067  }
2068
2069  if (getLangOptions().CPlusPlus) {
2070    // Check that there are no default arguments (C++ only).
2071    CheckExtraCXXDefaultArguments(D);
2072  }
2073
2074  DiagnoseFunctionSpecifiers(D);
2075
2076  if (D.getDeclSpec().isThreadSpecified())
2077    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2078
2079  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2080  if (!NewTD) return 0;
2081
2082  // Handle attributes prior to checking for duplicates in MergeVarDecl
2083  ProcessDeclAttributes(S, NewTD, D);
2084
2085  // Merge the decl with the existing one if appropriate. If the decl is
2086  // in an outer scope, it isn't the same thing.
2087  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2088  if (!Previous.empty()) {
2089    Redeclaration = true;
2090    MergeTypeDefDecl(NewTD, Previous);
2091  }
2092
2093  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2094  // then it shall have block scope.
2095  QualType T = NewTD->getUnderlyingType();
2096  if (T->isVariablyModifiedType()) {
2097    CurFunctionNeedsScopeChecking = true;
2098
2099    if (S->getFnParent() == 0) {
2100      bool SizeIsNegative;
2101      QualType FixedTy =
2102          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2103      if (!FixedTy.isNull()) {
2104        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2105        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2106      } else {
2107        if (SizeIsNegative)
2108          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2109        else if (T->isVariableArrayType())
2110          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2111        else
2112          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2113        NewTD->setInvalidDecl();
2114      }
2115    }
2116  }
2117
2118  // If this is the C FILE type, notify the AST context.
2119  if (IdentifierInfo *II = NewTD->getIdentifier())
2120    if (!NewTD->isInvalidDecl() &&
2121        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2122      if (II->isStr("FILE"))
2123        Context.setFILEDecl(NewTD);
2124      else if (II->isStr("jmp_buf"))
2125        Context.setjmp_bufDecl(NewTD);
2126      else if (II->isStr("sigjmp_buf"))
2127        Context.setsigjmp_bufDecl(NewTD);
2128    }
2129
2130  return NewTD;
2131}
2132
2133/// \brief Determines whether the given declaration is an out-of-scope
2134/// previous declaration.
2135///
2136/// This routine should be invoked when name lookup has found a
2137/// previous declaration (PrevDecl) that is not in the scope where a
2138/// new declaration by the same name is being introduced. If the new
2139/// declaration occurs in a local scope, previous declarations with
2140/// linkage may still be considered previous declarations (C99
2141/// 6.2.2p4-5, C++ [basic.link]p6).
2142///
2143/// \param PrevDecl the previous declaration found by name
2144/// lookup
2145///
2146/// \param DC the context in which the new declaration is being
2147/// declared.
2148///
2149/// \returns true if PrevDecl is an out-of-scope previous declaration
2150/// for a new delcaration with the same name.
2151static bool
2152isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2153                                ASTContext &Context) {
2154  if (!PrevDecl)
2155    return 0;
2156
2157  if (!PrevDecl->hasLinkage())
2158    return false;
2159
2160  if (Context.getLangOptions().CPlusPlus) {
2161    // C++ [basic.link]p6:
2162    //   If there is a visible declaration of an entity with linkage
2163    //   having the same name and type, ignoring entities declared
2164    //   outside the innermost enclosing namespace scope, the block
2165    //   scope declaration declares that same entity and receives the
2166    //   linkage of the previous declaration.
2167    DeclContext *OuterContext = DC->getLookupContext();
2168    if (!OuterContext->isFunctionOrMethod())
2169      // This rule only applies to block-scope declarations.
2170      return false;
2171    else {
2172      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2173      if (PrevOuterContext->isRecord())
2174        // We found a member function: ignore it.
2175        return false;
2176      else {
2177        // Find the innermost enclosing namespace for the new and
2178        // previous declarations.
2179        while (!OuterContext->isFileContext())
2180          OuterContext = OuterContext->getParent();
2181        while (!PrevOuterContext->isFileContext())
2182          PrevOuterContext = PrevOuterContext->getParent();
2183
2184        // The previous declaration is in a different namespace, so it
2185        // isn't the same function.
2186        if (OuterContext->getPrimaryContext() !=
2187            PrevOuterContext->getPrimaryContext())
2188          return false;
2189      }
2190    }
2191  }
2192
2193  return true;
2194}
2195
2196NamedDecl*
2197Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2198                              QualType R, TypeSourceInfo *TInfo,
2199                              LookupResult &Previous,
2200                              MultiTemplateParamsArg TemplateParamLists,
2201                              bool &Redeclaration) {
2202  DeclarationName Name = GetNameForDeclarator(D);
2203
2204  // Check that there are no default arguments (C++ only).
2205  if (getLangOptions().CPlusPlus)
2206    CheckExtraCXXDefaultArguments(D);
2207
2208  VarDecl *NewVD;
2209  VarDecl::StorageClass SC;
2210  switch (D.getDeclSpec().getStorageClassSpec()) {
2211  default: assert(0 && "Unknown storage class!");
2212  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2213  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2214  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2215  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2216  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2217  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2218  case DeclSpec::SCS_mutable:
2219    // mutable can only appear on non-static class members, so it's always
2220    // an error here
2221    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2222    D.setInvalidType();
2223    SC = VarDecl::None;
2224    break;
2225  }
2226
2227  IdentifierInfo *II = Name.getAsIdentifierInfo();
2228  if (!II) {
2229    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2230      << Name.getAsString();
2231    return 0;
2232  }
2233
2234  DiagnoseFunctionSpecifiers(D);
2235
2236  if (!DC->isRecord() && S->getFnParent() == 0) {
2237    // C99 6.9p2: The storage-class specifiers auto and register shall not
2238    // appear in the declaration specifiers in an external declaration.
2239    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2240
2241      // If this is a register variable with an asm label specified, then this
2242      // is a GNU extension.
2243      if (SC == VarDecl::Register && D.getAsmLabel())
2244        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2245      else
2246        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2247      D.setInvalidType();
2248    }
2249  }
2250  if (DC->isRecord() && !CurContext->isRecord()) {
2251    // This is an out-of-line definition of a static data member.
2252    if (SC == VarDecl::Static) {
2253      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2254           diag::err_static_out_of_line)
2255        << CodeModificationHint::CreateRemoval(
2256                                      D.getDeclSpec().getStorageClassSpecLoc());
2257    } else if (SC == VarDecl::None)
2258      SC = VarDecl::Static;
2259  }
2260  if (SC == VarDecl::Static) {
2261    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2262      if (RD->isLocalClass())
2263        Diag(D.getIdentifierLoc(),
2264             diag::err_static_data_member_not_allowed_in_local_class)
2265          << Name << RD->getDeclName();
2266    }
2267  }
2268
2269  // Match up the template parameter lists with the scope specifier, then
2270  // determine whether we have a template or a template specialization.
2271  bool isExplicitSpecialization = false;
2272  if (TemplateParameterList *TemplateParams
2273        = MatchTemplateParametersToScopeSpecifier(
2274                                  D.getDeclSpec().getSourceRange().getBegin(),
2275                                                  D.getCXXScopeSpec(),
2276                        (TemplateParameterList**)TemplateParamLists.get(),
2277                                                   TemplateParamLists.size(),
2278                                                  isExplicitSpecialization)) {
2279    if (TemplateParams->size() > 0) {
2280      // There is no such thing as a variable template.
2281      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2282        << II
2283        << SourceRange(TemplateParams->getTemplateLoc(),
2284                       TemplateParams->getRAngleLoc());
2285      return 0;
2286    } else {
2287      // There is an extraneous 'template<>' for this variable. Complain
2288      // about it, but allow the declaration of the variable.
2289      Diag(TemplateParams->getTemplateLoc(),
2290           diag::err_template_variable_noparams)
2291        << II
2292        << SourceRange(TemplateParams->getTemplateLoc(),
2293                       TemplateParams->getRAngleLoc());
2294
2295      isExplicitSpecialization = true;
2296    }
2297  }
2298
2299  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2300                          II, R, TInfo, SC);
2301
2302  if (D.isInvalidType())
2303    NewVD->setInvalidDecl();
2304
2305  if (D.getDeclSpec().isThreadSpecified()) {
2306    if (NewVD->hasLocalStorage())
2307      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2308    else if (!Context.Target.isTLSSupported())
2309      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2310    else
2311      NewVD->setThreadSpecified(true);
2312  }
2313
2314  // Set the lexical context. If the declarator has a C++ scope specifier, the
2315  // lexical context will be different from the semantic context.
2316  NewVD->setLexicalDeclContext(CurContext);
2317
2318  // Handle attributes prior to checking for duplicates in MergeVarDecl
2319  ProcessDeclAttributes(S, NewVD, D);
2320
2321  // Handle GNU asm-label extension (encoded as an attribute).
2322  if (Expr *E = (Expr*) D.getAsmLabel()) {
2323    // The parser guarantees this is a string.
2324    StringLiteral *SE = cast<StringLiteral>(E);
2325    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2326  }
2327
2328  // Don't consider existing declarations that are in a different
2329  // scope and are out-of-semantic-context declarations (if the new
2330  // declaration has linkage).
2331  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2332
2333  // Merge the decl with the existing one if appropriate.
2334  if (!Previous.empty()) {
2335    if (Previous.isSingleResult() &&
2336        isa<FieldDecl>(Previous.getFoundDecl()) &&
2337        D.getCXXScopeSpec().isSet()) {
2338      // The user tried to define a non-static data member
2339      // out-of-line (C++ [dcl.meaning]p1).
2340      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2341        << D.getCXXScopeSpec().getRange();
2342      Previous.clear();
2343      NewVD->setInvalidDecl();
2344    }
2345  } else if (D.getCXXScopeSpec().isSet()) {
2346    // No previous declaration in the qualifying scope.
2347    Diag(D.getIdentifierLoc(), diag::err_no_member)
2348      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2349      << D.getCXXScopeSpec().getRange();
2350    NewVD->setInvalidDecl();
2351  }
2352
2353  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2354
2355  // This is an explicit specialization of a static data member. Check it.
2356  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2357      CheckMemberSpecialization(NewVD, Previous))
2358    NewVD->setInvalidDecl();
2359
2360  // attributes declared post-definition are currently ignored
2361  if (Previous.isSingleResult()) {
2362    const VarDecl *Def = 0;
2363    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2364    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2365      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2366      Diag(Def->getLocation(), diag::note_previous_definition);
2367    }
2368  }
2369
2370  // If this is a locally-scoped extern C variable, update the map of
2371  // such variables.
2372  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2373      !NewVD->isInvalidDecl())
2374    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2375
2376  return NewVD;
2377}
2378
2379/// \brief Perform semantic checking on a newly-created variable
2380/// declaration.
2381///
2382/// This routine performs all of the type-checking required for a
2383/// variable declaration once it has been built. It is used both to
2384/// check variables after they have been parsed and their declarators
2385/// have been translated into a declaration, and to check variables
2386/// that have been instantiated from a template.
2387///
2388/// Sets NewVD->isInvalidDecl() if an error was encountered.
2389void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2390                                    LookupResult &Previous,
2391                                    bool &Redeclaration) {
2392  // If the decl is already known invalid, don't check it.
2393  if (NewVD->isInvalidDecl())
2394    return;
2395
2396  QualType T = NewVD->getType();
2397
2398  if (T->isObjCInterfaceType()) {
2399    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2400    return NewVD->setInvalidDecl();
2401  }
2402
2403  // Emit an error if an address space was applied to decl with local storage.
2404  // This includes arrays of objects with address space qualifiers, but not
2405  // automatic variables that point to other address spaces.
2406  // ISO/IEC TR 18037 S5.1.2
2407  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2408    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2409    return NewVD->setInvalidDecl();
2410  }
2411
2412  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2413      && !NewVD->hasAttr<BlocksAttr>())
2414    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2415
2416  bool isVM = T->isVariablyModifiedType();
2417  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2418      NewVD->hasAttr<BlocksAttr>())
2419    CurFunctionNeedsScopeChecking = true;
2420
2421  if ((isVM && NewVD->hasLinkage()) ||
2422      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2423    bool SizeIsNegative;
2424    QualType FixedTy =
2425        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2426
2427    if (FixedTy.isNull() && T->isVariableArrayType()) {
2428      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2429      // FIXME: This won't give the correct result for
2430      // int a[10][n];
2431      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2432
2433      if (NewVD->isFileVarDecl())
2434        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2435        << SizeRange;
2436      else if (NewVD->getStorageClass() == VarDecl::Static)
2437        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2438        << SizeRange;
2439      else
2440        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2441        << SizeRange;
2442      return NewVD->setInvalidDecl();
2443    }
2444
2445    if (FixedTy.isNull()) {
2446      if (NewVD->isFileVarDecl())
2447        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2448      else
2449        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2450      return NewVD->setInvalidDecl();
2451    }
2452
2453    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2454    NewVD->setType(FixedTy);
2455  }
2456
2457  if (Previous.empty() && NewVD->isExternC()) {
2458    // Since we did not find anything by this name and we're declaring
2459    // an extern "C" variable, look for a non-visible extern "C"
2460    // declaration with the same name.
2461    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2462      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2463    if (Pos != LocallyScopedExternalDecls.end())
2464      Previous.addDecl(Pos->second);
2465  }
2466
2467  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2468    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2469      << T;
2470    return NewVD->setInvalidDecl();
2471  }
2472
2473  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2474    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2475    return NewVD->setInvalidDecl();
2476  }
2477
2478  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2479    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2480    return NewVD->setInvalidDecl();
2481  }
2482
2483  if (!Previous.empty()) {
2484    Redeclaration = true;
2485    MergeVarDecl(NewVD, Previous);
2486  }
2487}
2488
2489/// \brief Data used with FindOverriddenMethod
2490struct FindOverriddenMethodData {
2491  Sema *S;
2492  CXXMethodDecl *Method;
2493};
2494
2495/// \brief Member lookup function that determines whether a given C++
2496/// method overrides a method in a base class, to be used with
2497/// CXXRecordDecl::lookupInBases().
2498static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2499                                 CXXBasePath &Path,
2500                                 void *UserData) {
2501  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2502
2503  FindOverriddenMethodData *Data
2504    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2505
2506  DeclarationName Name = Data->Method->getDeclName();
2507
2508  // FIXME: Do we care about other names here too?
2509  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2510    // We really want to find the base class constructor here.
2511    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2512    CanQualType CT = Data->S->Context.getCanonicalType(T);
2513
2514    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2515  }
2516
2517  for (Path.Decls = BaseRecord->lookup(Name);
2518       Path.Decls.first != Path.Decls.second;
2519       ++Path.Decls.first) {
2520    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2521      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2522        return true;
2523    }
2524  }
2525
2526  return false;
2527}
2528
2529/// AddOverriddenMethods - See if a method overrides any in the base classes,
2530/// and if so, check that it's a valid override and remember it.
2531void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2532  // Look for virtual methods in base classes that this method might override.
2533  CXXBasePaths Paths;
2534  FindOverriddenMethodData Data;
2535  Data.Method = MD;
2536  Data.S = this;
2537  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2538    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2539         E = Paths.found_decls_end(); I != E; ++I) {
2540      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2541        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2542            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2543            !CheckOverridingFunctionAttributes(MD, OldMD))
2544          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2545      }
2546    }
2547  }
2548}
2549
2550NamedDecl*
2551Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2552                              QualType R, TypeSourceInfo *TInfo,
2553                              LookupResult &Previous,
2554                              MultiTemplateParamsArg TemplateParamLists,
2555                              bool IsFunctionDefinition, bool &Redeclaration) {
2556  assert(R.getTypePtr()->isFunctionType());
2557
2558  DeclarationName Name = GetNameForDeclarator(D);
2559  FunctionDecl::StorageClass SC = FunctionDecl::None;
2560  switch (D.getDeclSpec().getStorageClassSpec()) {
2561  default: assert(0 && "Unknown storage class!");
2562  case DeclSpec::SCS_auto:
2563  case DeclSpec::SCS_register:
2564  case DeclSpec::SCS_mutable:
2565    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2566         diag::err_typecheck_sclass_func);
2567    D.setInvalidType();
2568    break;
2569  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2570  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2571  case DeclSpec::SCS_static: {
2572    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2573      // C99 6.7.1p5:
2574      //   The declaration of an identifier for a function that has
2575      //   block scope shall have no explicit storage-class specifier
2576      //   other than extern
2577      // See also (C++ [dcl.stc]p4).
2578      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2579           diag::err_static_block_func);
2580      SC = FunctionDecl::None;
2581    } else
2582      SC = FunctionDecl::Static;
2583    break;
2584  }
2585  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2586  }
2587
2588  if (D.getDeclSpec().isThreadSpecified())
2589    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2590
2591  bool isFriend = D.getDeclSpec().isFriendSpecified();
2592  bool isInline = D.getDeclSpec().isInlineSpecified();
2593  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2594  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2595
2596  // Check that the return type is not an abstract class type.
2597  // For record types, this is done by the AbstractClassUsageDiagnoser once
2598  // the class has been completely parsed.
2599  if (!DC->isRecord() &&
2600      RequireNonAbstractType(D.getIdentifierLoc(),
2601                             R->getAs<FunctionType>()->getResultType(),
2602                             diag::err_abstract_type_in_decl,
2603                             AbstractReturnType))
2604    D.setInvalidType();
2605
2606  // Do not allow returning a objc interface by-value.
2607  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2608    Diag(D.getIdentifierLoc(),
2609         diag::err_object_cannot_be_passed_returned_by_value) << 0
2610      << R->getAs<FunctionType>()->getResultType();
2611    D.setInvalidType();
2612  }
2613
2614  bool isVirtualOkay = false;
2615  FunctionDecl *NewFD;
2616
2617  if (isFriend) {
2618    // C++ [class.friend]p5
2619    //   A function can be defined in a friend declaration of a
2620    //   class . . . . Such a function is implicitly inline.
2621    isInline |= IsFunctionDefinition;
2622  }
2623
2624  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2625    // This is a C++ constructor declaration.
2626    assert(DC->isRecord() &&
2627           "Constructors can only be declared in a member context");
2628
2629    R = CheckConstructorDeclarator(D, R, SC);
2630
2631    // Create the new declaration
2632    NewFD = CXXConstructorDecl::Create(Context,
2633                                       cast<CXXRecordDecl>(DC),
2634                                       D.getIdentifierLoc(), Name, R, TInfo,
2635                                       isExplicit, isInline,
2636                                       /*isImplicitlyDeclared=*/false);
2637  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2638    // This is a C++ destructor declaration.
2639    if (DC->isRecord()) {
2640      R = CheckDestructorDeclarator(D, SC);
2641
2642      NewFD = CXXDestructorDecl::Create(Context,
2643                                        cast<CXXRecordDecl>(DC),
2644                                        D.getIdentifierLoc(), Name, R,
2645                                        isInline,
2646                                        /*isImplicitlyDeclared=*/false);
2647
2648      isVirtualOkay = true;
2649    } else {
2650      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2651
2652      // Create a FunctionDecl to satisfy the function definition parsing
2653      // code path.
2654      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2655                                   Name, R, TInfo, SC, isInline,
2656                                   /*hasPrototype=*/true);
2657      D.setInvalidType();
2658    }
2659  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2660    if (!DC->isRecord()) {
2661      Diag(D.getIdentifierLoc(),
2662           diag::err_conv_function_not_member);
2663      return 0;
2664    }
2665
2666    CheckConversionDeclarator(D, R, SC);
2667    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2668                                      D.getIdentifierLoc(), Name, R, TInfo,
2669                                      isInline, isExplicit);
2670
2671    isVirtualOkay = true;
2672  } else if (DC->isRecord()) {
2673    // If the of the function is the same as the name of the record, then this
2674    // must be an invalid constructor that has a return type.
2675    // (The parser checks for a return type and makes the declarator a
2676    // constructor if it has no return type).
2677    // must have an invalid constructor that has a return type
2678    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2679      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2680        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2681        << SourceRange(D.getIdentifierLoc());
2682      return 0;
2683    }
2684
2685    bool isStatic = SC == FunctionDecl::Static;
2686
2687    // [class.free]p1:
2688    // Any allocation function for a class T is a static member
2689    // (even if not explicitly declared static).
2690    if (Name.getCXXOverloadedOperator() == OO_New ||
2691        Name.getCXXOverloadedOperator() == OO_Array_New)
2692      isStatic = true;
2693
2694    // [class.free]p6 Any deallocation function for a class X is a static member
2695    // (even if not explicitly declared static).
2696    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2697        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2698      isStatic = true;
2699
2700    // This is a C++ method declaration.
2701    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2702                                  D.getIdentifierLoc(), Name, R, TInfo,
2703                                  isStatic, isInline);
2704
2705    isVirtualOkay = !isStatic;
2706  } else {
2707    // Determine whether the function was written with a
2708    // prototype. This true when:
2709    //   - we're in C++ (where every function has a prototype),
2710    //   - there is a prototype in the declarator, or
2711    //   - the type R of the function is some kind of typedef or other reference
2712    //     to a type name (which eventually refers to a function type).
2713    bool HasPrototype =
2714       getLangOptions().CPlusPlus ||
2715       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2716       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2717
2718    NewFD = FunctionDecl::Create(Context, DC,
2719                                 D.getIdentifierLoc(),
2720                                 Name, R, TInfo, SC, isInline, HasPrototype);
2721  }
2722
2723  if (D.isInvalidType())
2724    NewFD->setInvalidDecl();
2725
2726  // Set the lexical context. If the declarator has a C++
2727  // scope specifier, or is the object of a friend declaration, the
2728  // lexical context will be different from the semantic context.
2729  NewFD->setLexicalDeclContext(CurContext);
2730
2731  // Match up the template parameter lists with the scope specifier, then
2732  // determine whether we have a template or a template specialization.
2733  FunctionTemplateDecl *FunctionTemplate = 0;
2734  bool isExplicitSpecialization = false;
2735  bool isFunctionTemplateSpecialization = false;
2736  if (TemplateParameterList *TemplateParams
2737        = MatchTemplateParametersToScopeSpecifier(
2738                                  D.getDeclSpec().getSourceRange().getBegin(),
2739                                  D.getCXXScopeSpec(),
2740                           (TemplateParameterList**)TemplateParamLists.get(),
2741                                                  TemplateParamLists.size(),
2742                                                  isExplicitSpecialization)) {
2743    if (TemplateParams->size() > 0) {
2744      // This is a function template
2745
2746      // Check that we can declare a template here.
2747      if (CheckTemplateDeclScope(S, TemplateParams))
2748        return 0;
2749
2750      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2751                                                      NewFD->getLocation(),
2752                                                      Name, TemplateParams,
2753                                                      NewFD);
2754      FunctionTemplate->setLexicalDeclContext(CurContext);
2755      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2756    } else {
2757      // This is a function template specialization.
2758      isFunctionTemplateSpecialization = true;
2759    }
2760
2761    // FIXME: Free this memory properly.
2762    TemplateParamLists.release();
2763  }
2764
2765  // C++ [dcl.fct.spec]p5:
2766  //   The virtual specifier shall only be used in declarations of
2767  //   nonstatic class member functions that appear within a
2768  //   member-specification of a class declaration; see 10.3.
2769  //
2770  if (isVirtual && !NewFD->isInvalidDecl()) {
2771    if (!isVirtualOkay) {
2772       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2773           diag::err_virtual_non_function);
2774    } else if (!CurContext->isRecord()) {
2775      // 'virtual' was specified outside of the class.
2776      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2777        << CodeModificationHint::CreateRemoval(
2778                                           D.getDeclSpec().getVirtualSpecLoc());
2779    } else {
2780      // Okay: Add virtual to the method.
2781      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2782      CurClass->setMethodAsVirtual(NewFD);
2783    }
2784  }
2785
2786  // C++ [dcl.fct.spec]p6:
2787  //  The explicit specifier shall be used only in the declaration of a
2788  //  constructor or conversion function within its class definition; see 12.3.1
2789  //  and 12.3.2.
2790  if (isExplicit && !NewFD->isInvalidDecl()) {
2791    if (!CurContext->isRecord()) {
2792      // 'explicit' was specified outside of the class.
2793      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2794           diag::err_explicit_out_of_class)
2795        << CodeModificationHint::CreateRemoval(
2796                                          D.getDeclSpec().getExplicitSpecLoc());
2797    } else if (!isa<CXXConstructorDecl>(NewFD) &&
2798               !isa<CXXConversionDecl>(NewFD)) {
2799      // 'explicit' was specified on a function that wasn't a constructor
2800      // or conversion function.
2801      Diag(D.getDeclSpec().getExplicitSpecLoc(),
2802           diag::err_explicit_non_ctor_or_conv_function)
2803        << CodeModificationHint::CreateRemoval(
2804                                          D.getDeclSpec().getExplicitSpecLoc());
2805    }
2806  }
2807
2808  // Filter out previous declarations that don't match the scope.
2809  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2810
2811  if (isFriend) {
2812    // DC is the namespace in which the function is being declared.
2813    assert((DC->isFileContext() || !Previous.empty()) &&
2814           "previously-undeclared friend function being created "
2815           "in a non-namespace context");
2816
2817    if (FunctionTemplate) {
2818      FunctionTemplate->setObjectOfFriendDecl(
2819                                   /* PreviouslyDeclared= */ !Previous.empty());
2820      FunctionTemplate->setAccess(AS_public);
2821    }
2822    else
2823      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2824
2825    NewFD->setAccess(AS_public);
2826  }
2827
2828  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2829      !CurContext->isRecord()) {
2830    // C++ [class.static]p1:
2831    //   A data or function member of a class may be declared static
2832    //   in a class definition, in which case it is a static member of
2833    //   the class.
2834
2835    // Complain about the 'static' specifier if it's on an out-of-line
2836    // member function definition.
2837    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2838         diag::err_static_out_of_line)
2839      << CodeModificationHint::CreateRemoval(
2840                                      D.getDeclSpec().getStorageClassSpecLoc());
2841  }
2842
2843  // Handle GNU asm-label extension (encoded as an attribute).
2844  if (Expr *E = (Expr*) D.getAsmLabel()) {
2845    // The parser guarantees this is a string.
2846    StringLiteral *SE = cast<StringLiteral>(E);
2847    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2848  }
2849
2850  // Copy the parameter declarations from the declarator D to the function
2851  // declaration NewFD, if they are available.  First scavenge them into Params.
2852  llvm::SmallVector<ParmVarDecl*, 16> Params;
2853  if (D.getNumTypeObjects() > 0) {
2854    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2855
2856    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2857    // function that takes no arguments, not a function that takes a
2858    // single void argument.
2859    // We let through "const void" here because Sema::GetTypeForDeclarator
2860    // already checks for that case.
2861    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2862        FTI.ArgInfo[0].Param &&
2863        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2864      // Empty arg list, don't push any params.
2865      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2866
2867      // In C++, the empty parameter-type-list must be spelled "void"; a
2868      // typedef of void is not permitted.
2869      if (getLangOptions().CPlusPlus &&
2870          Param->getType().getUnqualifiedType() != Context.VoidTy)
2871        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2872      // FIXME: Leaks decl?
2873    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2874      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2875        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2876        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2877        Param->setDeclContext(NewFD);
2878        Params.push_back(Param);
2879      }
2880    }
2881
2882  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2883    // When we're declaring a function with a typedef, typeof, etc as in the
2884    // following example, we'll need to synthesize (unnamed)
2885    // parameters for use in the declaration.
2886    //
2887    // @code
2888    // typedef void fn(int);
2889    // fn f;
2890    // @endcode
2891
2892    // Synthesize a parameter for each argument type.
2893    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2894         AE = FT->arg_type_end(); AI != AE; ++AI) {
2895      ParmVarDecl *Param = ParmVarDecl::Create(Context, NewFD,
2896                                               SourceLocation(), 0,
2897                                               *AI, /*TInfo=*/0,
2898                                               VarDecl::None, 0);
2899      Param->setImplicit();
2900      Params.push_back(Param);
2901    }
2902  } else {
2903    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2904           "Should not need args for typedef of non-prototype fn");
2905  }
2906  // Finally, we know we have the right number of parameters, install them.
2907  NewFD->setParams(Context, Params.data(), Params.size());
2908
2909  // If the declarator is a template-id, translate the parser's template
2910  // argument list into our AST format.
2911  bool HasExplicitTemplateArgs = false;
2912  TemplateArgumentListInfo TemplateArgs;
2913  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2914    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2915    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2916    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2917    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2918                                       TemplateId->getTemplateArgs(),
2919                                       TemplateId->NumArgs);
2920    translateTemplateArguments(TemplateArgsPtr,
2921                               TemplateArgs);
2922    TemplateArgsPtr.release();
2923
2924    HasExplicitTemplateArgs = true;
2925
2926    if (FunctionTemplate) {
2927      // FIXME: Diagnose function template with explicit template
2928      // arguments.
2929      HasExplicitTemplateArgs = false;
2930    } else if (!isFunctionTemplateSpecialization &&
2931               !D.getDeclSpec().isFriendSpecified()) {
2932      // We have encountered something that the user meant to be a
2933      // specialization (because it has explicitly-specified template
2934      // arguments) but that was not introduced with a "template<>" (or had
2935      // too few of them).
2936      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2937        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2938        << CodeModificationHint::CreateInsertion(
2939                                   D.getDeclSpec().getSourceRange().getBegin(),
2940                                                 "template<> ");
2941      isFunctionTemplateSpecialization = true;
2942    }
2943  }
2944
2945  if (isFunctionTemplateSpecialization) {
2946      if (CheckFunctionTemplateSpecialization(NewFD,
2947                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
2948                                              Previous))
2949        NewFD->setInvalidDecl();
2950  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
2951             CheckMemberSpecialization(NewFD, Previous))
2952    NewFD->setInvalidDecl();
2953
2954  // Perform semantic checking on the function declaration.
2955  bool OverloadableAttrRequired = false; // FIXME: HACK!
2956  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
2957                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
2958
2959  assert((NewFD->isInvalidDecl() || !Redeclaration ||
2960          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
2961         "previous declaration set still overloaded");
2962
2963  // If we have a function template, check the template parameter
2964  // list. This will check and merge default template arguments.
2965  if (FunctionTemplate) {
2966    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
2967    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
2968                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
2969             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
2970                                                : TPC_FunctionTemplate);
2971  }
2972
2973  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2974    // Fake up an access specifier if it's supposed to be a class member.
2975    if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
2976      NewFD->setAccess(AS_public);
2977
2978    // An out-of-line member function declaration must also be a
2979    // definition (C++ [dcl.meaning]p1).
2980    // Note that this is not the case for explicit specializations of
2981    // function templates or member functions of class templates, per
2982    // C++ [temp.expl.spec]p2.
2983    if (!IsFunctionDefinition && !isFriend &&
2984        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
2985      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2986        << D.getCXXScopeSpec().getRange();
2987      NewFD->setInvalidDecl();
2988    } else if (!Redeclaration &&
2989               !(isFriend && CurContext->isDependentContext())) {
2990      // The user tried to provide an out-of-line definition for a
2991      // function that is a member of a class or namespace, but there
2992      // was no such member function declared (C++ [class.mfct]p2,
2993      // C++ [namespace.memdef]p2). For example:
2994      //
2995      // class X {
2996      //   void f() const;
2997      // };
2998      //
2999      // void X::f() { } // ill-formed
3000      //
3001      // Complain about this problem, and attempt to suggest close
3002      // matches (e.g., those that differ only in cv-qualifiers and
3003      // whether the parameter types are references).
3004      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3005        << Name << DC << D.getCXXScopeSpec().getRange();
3006      NewFD->setInvalidDecl();
3007
3008      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3009                        ForRedeclaration);
3010      LookupQualifiedName(Prev, DC);
3011      assert(!Prev.isAmbiguous() &&
3012             "Cannot have an ambiguity in previous-declaration lookup");
3013      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3014           Func != FuncEnd; ++Func) {
3015        if (isa<FunctionDecl>(*Func) &&
3016            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3017          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3018      }
3019    }
3020  }
3021
3022  // Handle attributes. We need to have merged decls when handling attributes
3023  // (for example to check for conflicts, etc).
3024  // FIXME: This needs to happen before we merge declarations. Then,
3025  // let attribute merging cope with attribute conflicts.
3026  ProcessDeclAttributes(S, NewFD, D);
3027
3028  // attributes declared post-definition are currently ignored
3029  if (Redeclaration && Previous.isSingleResult()) {
3030    const FunctionDecl *Def;
3031    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3032    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3033      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3034      Diag(Def->getLocation(), diag::note_previous_definition);
3035    }
3036  }
3037
3038  AddKnownFunctionAttributes(NewFD);
3039
3040  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3041    // If a function name is overloadable in C, then every function
3042    // with that name must be marked "overloadable".
3043    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3044      << Redeclaration << NewFD;
3045    if (!Previous.empty())
3046      Diag(Previous.getRepresentativeDecl()->getLocation(),
3047           diag::note_attribute_overloadable_prev_overload);
3048    NewFD->addAttr(::new (Context) OverloadableAttr());
3049  }
3050
3051  // If this is a locally-scoped extern C function, update the
3052  // map of such names.
3053  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3054      && !NewFD->isInvalidDecl())
3055    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3056
3057  // Set this FunctionDecl's range up to the right paren.
3058  NewFD->setLocEnd(D.getSourceRange().getEnd());
3059
3060  if (FunctionTemplate && NewFD->isInvalidDecl())
3061    FunctionTemplate->setInvalidDecl();
3062
3063  if (FunctionTemplate)
3064    return FunctionTemplate;
3065
3066  return NewFD;
3067}
3068
3069/// \brief Perform semantic checking of a new function declaration.
3070///
3071/// Performs semantic analysis of the new function declaration
3072/// NewFD. This routine performs all semantic checking that does not
3073/// require the actual declarator involved in the declaration, and is
3074/// used both for the declaration of functions as they are parsed
3075/// (called via ActOnDeclarator) and for the declaration of functions
3076/// that have been instantiated via C++ template instantiation (called
3077/// via InstantiateDecl).
3078///
3079/// \param IsExplicitSpecialiation whether this new function declaration is
3080/// an explicit specialization of the previous declaration.
3081///
3082/// This sets NewFD->isInvalidDecl() to true if there was an error.
3083void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3084                                    LookupResult &Previous,
3085                                    bool IsExplicitSpecialization,
3086                                    bool &Redeclaration,
3087                                    bool &OverloadableAttrRequired) {
3088  // If NewFD is already known erroneous, don't do any of this checking.
3089  if (NewFD->isInvalidDecl())
3090    return;
3091
3092  if (NewFD->getResultType()->isVariablyModifiedType()) {
3093    // Functions returning a variably modified type violate C99 6.7.5.2p2
3094    // because all functions have linkage.
3095    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3096    return NewFD->setInvalidDecl();
3097  }
3098
3099  if (NewFD->isMain())
3100    CheckMain(NewFD);
3101
3102  // Check for a previous declaration of this name.
3103  if (Previous.empty() && NewFD->isExternC()) {
3104    // Since we did not find anything by this name and we're declaring
3105    // an extern "C" function, look for a non-visible extern "C"
3106    // declaration with the same name.
3107    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3108      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3109    if (Pos != LocallyScopedExternalDecls.end())
3110      Previous.addDecl(Pos->second);
3111  }
3112
3113  // Merge or overload the declaration with an existing declaration of
3114  // the same name, if appropriate.
3115  if (!Previous.empty()) {
3116    // Determine whether NewFD is an overload of PrevDecl or
3117    // a declaration that requires merging. If it's an overload,
3118    // there's no more work to do here; we'll just add the new
3119    // function to the scope.
3120
3121    NamedDecl *OldDecl = 0;
3122    if (!AllowOverloadingOfFunction(Previous, Context)) {
3123      Redeclaration = true;
3124      OldDecl = Previous.getFoundDecl();
3125    } else {
3126      if (!getLangOptions().CPlusPlus) {
3127        OverloadableAttrRequired = true;
3128
3129        // Functions marked "overloadable" must have a prototype (that
3130        // we can't get through declaration merging).
3131        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3132          Diag(NewFD->getLocation(),
3133               diag::err_attribute_overloadable_no_prototype)
3134            << NewFD;
3135          Redeclaration = true;
3136
3137          // Turn this into a variadic function with no parameters.
3138          QualType R = Context.getFunctionType(
3139                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3140                     0, 0, true, 0);
3141          NewFD->setType(R);
3142          return NewFD->setInvalidDecl();
3143        }
3144      }
3145
3146      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3147      case Ovl_Match:
3148        Redeclaration = true;
3149        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3150          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3151          Redeclaration = false;
3152        }
3153        break;
3154
3155      case Ovl_NonFunction:
3156        Redeclaration = true;
3157        break;
3158
3159      case Ovl_Overload:
3160        Redeclaration = false;
3161        break;
3162      }
3163    }
3164
3165    if (Redeclaration) {
3166      // NewFD and OldDecl represent declarations that need to be
3167      // merged.
3168      if (MergeFunctionDecl(NewFD, OldDecl))
3169        return NewFD->setInvalidDecl();
3170
3171      Previous.clear();
3172      Previous.addDecl(OldDecl);
3173
3174      if (FunctionTemplateDecl *OldTemplateDecl
3175                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3176        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3177        FunctionTemplateDecl *NewTemplateDecl
3178          = NewFD->getDescribedFunctionTemplate();
3179        assert(NewTemplateDecl && "Template/non-template mismatch");
3180        if (CXXMethodDecl *Method
3181              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3182          Method->setAccess(OldTemplateDecl->getAccess());
3183          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3184        }
3185
3186        // If this is an explicit specialization of a member that is a function
3187        // template, mark it as a member specialization.
3188        if (IsExplicitSpecialization &&
3189            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3190          NewTemplateDecl->setMemberSpecialization();
3191          assert(OldTemplateDecl->isMemberSpecialization());
3192        }
3193      } else {
3194        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3195          NewFD->setAccess(OldDecl->getAccess());
3196        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3197      }
3198    }
3199  }
3200
3201  // Semantic checking for this function declaration (in isolation).
3202  if (getLangOptions().CPlusPlus) {
3203    // C++-specific checks.
3204    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3205      CheckConstructor(Constructor);
3206    } else if (CXXDestructorDecl *Destructor =
3207                dyn_cast<CXXDestructorDecl>(NewFD)) {
3208      CXXRecordDecl *Record = Destructor->getParent();
3209      QualType ClassType = Context.getTypeDeclType(Record);
3210
3211      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3212      // type is dependent? Both gcc and edg can handle that.
3213      if (!ClassType->isDependentType()) {
3214        DeclarationName Name
3215          = Context.DeclarationNames.getCXXDestructorName(
3216                                        Context.getCanonicalType(ClassType));
3217        if (NewFD->getDeclName() != Name) {
3218          Diag(NewFD->getLocation(), diag::err_destructor_name);
3219          return NewFD->setInvalidDecl();
3220        }
3221      }
3222
3223      Record->setUserDeclaredDestructor(true);
3224      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3225      // user-defined destructor.
3226      Record->setPOD(false);
3227
3228      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3229      // declared destructor.
3230      // FIXME: C++0x: don't do this for "= default" destructors
3231      Record->setHasTrivialDestructor(false);
3232    } else if (CXXConversionDecl *Conversion
3233               = dyn_cast<CXXConversionDecl>(NewFD)) {
3234      ActOnConversionDeclarator(Conversion);
3235    }
3236
3237    // Find any virtual functions that this function overrides.
3238    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3239      if (!Method->isFunctionTemplateSpecialization() &&
3240          !Method->getDescribedFunctionTemplate())
3241        AddOverriddenMethods(Method->getParent(), Method);
3242    }
3243
3244    // Additional checks for the destructor; make sure we do this after we
3245    // figure out whether the destructor is virtual.
3246    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3247      if (!Destructor->getParent()->isDependentType())
3248        CheckDestructor(Destructor);
3249
3250    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3251    if (NewFD->isOverloadedOperator() &&
3252        CheckOverloadedOperatorDeclaration(NewFD))
3253      return NewFD->setInvalidDecl();
3254
3255    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3256    if (NewFD->getLiteralIdentifier() &&
3257        CheckLiteralOperatorDeclaration(NewFD))
3258      return NewFD->setInvalidDecl();
3259
3260    // In C++, check default arguments now that we have merged decls. Unless
3261    // the lexical context is the class, because in this case this is done
3262    // during delayed parsing anyway.
3263    if (!CurContext->isRecord())
3264      CheckCXXDefaultArguments(NewFD);
3265  }
3266}
3267
3268void Sema::CheckMain(FunctionDecl* FD) {
3269  // C++ [basic.start.main]p3:  A program that declares main to be inline
3270  //   or static is ill-formed.
3271  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3272  //   shall not appear in a declaration of main.
3273  // static main is not an error under C99, but we should warn about it.
3274  bool isInline = FD->isInlineSpecified();
3275  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3276  if (isInline || isStatic) {
3277    unsigned diagID = diag::warn_unusual_main_decl;
3278    if (isInline || getLangOptions().CPlusPlus)
3279      diagID = diag::err_unusual_main_decl;
3280
3281    int which = isStatic + (isInline << 1) - 1;
3282    Diag(FD->getLocation(), diagID) << which;
3283  }
3284
3285  QualType T = FD->getType();
3286  assert(T->isFunctionType() && "function decl is not of function type");
3287  const FunctionType* FT = T->getAs<FunctionType>();
3288
3289  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3290    // TODO: add a replacement fixit to turn the return type into 'int'.
3291    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3292    FD->setInvalidDecl(true);
3293  }
3294
3295  // Treat protoless main() as nullary.
3296  if (isa<FunctionNoProtoType>(FT)) return;
3297
3298  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3299  unsigned nparams = FTP->getNumArgs();
3300  assert(FD->getNumParams() == nparams);
3301
3302  bool HasExtraParameters = (nparams > 3);
3303
3304  // Darwin passes an undocumented fourth argument of type char**.  If
3305  // other platforms start sprouting these, the logic below will start
3306  // getting shifty.
3307  if (nparams == 4 &&
3308      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3309    HasExtraParameters = false;
3310
3311  if (HasExtraParameters) {
3312    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3313    FD->setInvalidDecl(true);
3314    nparams = 3;
3315  }
3316
3317  // FIXME: a lot of the following diagnostics would be improved
3318  // if we had some location information about types.
3319
3320  QualType CharPP =
3321    Context.getPointerType(Context.getPointerType(Context.CharTy));
3322  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3323
3324  for (unsigned i = 0; i < nparams; ++i) {
3325    QualType AT = FTP->getArgType(i);
3326
3327    bool mismatch = true;
3328
3329    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3330      mismatch = false;
3331    else if (Expected[i] == CharPP) {
3332      // As an extension, the following forms are okay:
3333      //   char const **
3334      //   char const * const *
3335      //   char * const *
3336
3337      QualifierCollector qs;
3338      const PointerType* PT;
3339      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3340          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3341          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3342        qs.removeConst();
3343        mismatch = !qs.empty();
3344      }
3345    }
3346
3347    if (mismatch) {
3348      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3349      // TODO: suggest replacing given type with expected type
3350      FD->setInvalidDecl(true);
3351    }
3352  }
3353
3354  if (nparams == 1 && !FD->isInvalidDecl()) {
3355    Diag(FD->getLocation(), diag::warn_main_one_arg);
3356  }
3357}
3358
3359bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3360  // FIXME: Need strict checking.  In C89, we need to check for
3361  // any assignment, increment, decrement, function-calls, or
3362  // commas outside of a sizeof.  In C99, it's the same list,
3363  // except that the aforementioned are allowed in unevaluated
3364  // expressions.  Everything else falls under the
3365  // "may accept other forms of constant expressions" exception.
3366  // (We never end up here for C++, so the constant expression
3367  // rules there don't matter.)
3368  if (Init->isConstantInitializer(Context))
3369    return false;
3370  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3371    << Init->getSourceRange();
3372  return true;
3373}
3374
3375void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3376  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3377}
3378
3379/// AddInitializerToDecl - Adds the initializer Init to the
3380/// declaration dcl. If DirectInit is true, this is C++ direct
3381/// initialization rather than copy initialization.
3382void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3383  Decl *RealDecl = dcl.getAs<Decl>();
3384  // If there is no declaration, there was an error parsing it.  Just ignore
3385  // the initializer.
3386  if (RealDecl == 0)
3387    return;
3388
3389  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3390    // With declarators parsed the way they are, the parser cannot
3391    // distinguish between a normal initializer and a pure-specifier.
3392    // Thus this grotesque test.
3393    IntegerLiteral *IL;
3394    Expr *Init = static_cast<Expr *>(init.get());
3395    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3396        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3397      CheckPureMethod(Method, Init->getSourceRange());
3398    else {
3399      Diag(Method->getLocation(), diag::err_member_function_initialization)
3400        << Method->getDeclName() << Init->getSourceRange();
3401      Method->setInvalidDecl();
3402    }
3403    return;
3404  }
3405
3406  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3407  if (!VDecl) {
3408    if (getLangOptions().CPlusPlus &&
3409        RealDecl->getLexicalDeclContext()->isRecord() &&
3410        isa<NamedDecl>(RealDecl))
3411      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3412        << cast<NamedDecl>(RealDecl)->getDeclName();
3413    else
3414      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3415    RealDecl->setInvalidDecl();
3416    return;
3417  }
3418
3419  // A definition must end up with a complete type, which means it must be
3420  // complete with the restriction that an array type might be completed by the
3421  // initializer; note that later code assumes this restriction.
3422  QualType BaseDeclType = VDecl->getType();
3423  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3424    BaseDeclType = Array->getElementType();
3425  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3426                          diag::err_typecheck_decl_incomplete_type)) {
3427    RealDecl->setInvalidDecl();
3428    return;
3429  }
3430
3431  // The variable can not have an abstract class type.
3432  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3433                             diag::err_abstract_type_in_decl,
3434                             AbstractVariableType))
3435    VDecl->setInvalidDecl();
3436
3437  const VarDecl *Def = 0;
3438  if (VDecl->getDefinition(Def)) {
3439    Diag(VDecl->getLocation(), diag::err_redefinition)
3440      << VDecl->getDeclName();
3441    Diag(Def->getLocation(), diag::note_previous_definition);
3442    VDecl->setInvalidDecl();
3443    return;
3444  }
3445
3446  // Take ownership of the expression, now that we're sure we have somewhere
3447  // to put it.
3448  Expr *Init = init.takeAs<Expr>();
3449  assert(Init && "missing initializer");
3450
3451  // Capture the variable that is being initialized and the style of
3452  // initialization.
3453  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3454
3455  // FIXME: Poor source location information.
3456  InitializationKind Kind
3457    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3458                                                   Init->getLocStart(),
3459                                                   Init->getLocEnd())
3460                : InitializationKind::CreateCopy(VDecl->getLocation(),
3461                                                 Init->getLocStart());
3462
3463  // Get the decls type and save a reference for later, since
3464  // CheckInitializerTypes may change it.
3465  QualType DclT = VDecl->getType(), SavT = DclT;
3466  if (VDecl->isBlockVarDecl()) {
3467    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3468      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3469      VDecl->setInvalidDecl();
3470    } else if (!VDecl->isInvalidDecl()) {
3471      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3472      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3473                                          MultiExprArg(*this, (void**)&Init, 1),
3474                                                &DclT);
3475      if (Result.isInvalid()) {
3476        VDecl->setInvalidDecl();
3477        return;
3478      }
3479
3480      Init = Result.takeAs<Expr>();
3481
3482      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3483      // Don't check invalid declarations to avoid emitting useless diagnostics.
3484      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3485        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3486          CheckForConstantInitializer(Init, DclT);
3487      }
3488    }
3489  } else if (VDecl->isStaticDataMember() &&
3490             VDecl->getLexicalDeclContext()->isRecord()) {
3491    // This is an in-class initialization for a static data member, e.g.,
3492    //
3493    // struct S {
3494    //   static const int value = 17;
3495    // };
3496
3497    // Attach the initializer
3498    VDecl->setInit(Context, Init);
3499
3500    // C++ [class.mem]p4:
3501    //   A member-declarator can contain a constant-initializer only
3502    //   if it declares a static member (9.4) of const integral or
3503    //   const enumeration type, see 9.4.2.
3504    QualType T = VDecl->getType();
3505    if (!T->isDependentType() &&
3506        (!Context.getCanonicalType(T).isConstQualified() ||
3507         !T->isIntegralType())) {
3508      Diag(VDecl->getLocation(), diag::err_member_initialization)
3509        << VDecl->getDeclName() << Init->getSourceRange();
3510      VDecl->setInvalidDecl();
3511    } else {
3512      // C++ [class.static.data]p4:
3513      //   If a static data member is of const integral or const
3514      //   enumeration type, its declaration in the class definition
3515      //   can specify a constant-initializer which shall be an
3516      //   integral constant expression (5.19).
3517      if (!Init->isTypeDependent() &&
3518          !Init->getType()->isIntegralType()) {
3519        // We have a non-dependent, non-integral or enumeration type.
3520        Diag(Init->getSourceRange().getBegin(),
3521             diag::err_in_class_initializer_non_integral_type)
3522          << Init->getType() << Init->getSourceRange();
3523        VDecl->setInvalidDecl();
3524      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3525        // Check whether the expression is a constant expression.
3526        llvm::APSInt Value;
3527        SourceLocation Loc;
3528        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3529          Diag(Loc, diag::err_in_class_initializer_non_constant)
3530            << Init->getSourceRange();
3531          VDecl->setInvalidDecl();
3532        } else if (!VDecl->getType()->isDependentType())
3533          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3534      }
3535    }
3536  } else if (VDecl->isFileVarDecl()) {
3537    if (VDecl->getStorageClass() == VarDecl::Extern)
3538      Diag(VDecl->getLocation(), diag::warn_extern_init);
3539    if (!VDecl->isInvalidDecl()) {
3540      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3541      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3542                                          MultiExprArg(*this, (void**)&Init, 1),
3543                                                &DclT);
3544      if (Result.isInvalid()) {
3545        VDecl->setInvalidDecl();
3546        return;
3547      }
3548
3549      Init = Result.takeAs<Expr>();
3550    }
3551
3552    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3553    // Don't check invalid declarations to avoid emitting useless diagnostics.
3554    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3555      // C99 6.7.8p4. All file scoped initializers need to be constant.
3556      CheckForConstantInitializer(Init, DclT);
3557    }
3558  }
3559  // If the type changed, it means we had an incomplete type that was
3560  // completed by the initializer. For example:
3561  //   int ary[] = { 1, 3, 5 };
3562  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3563  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3564    VDecl->setType(DclT);
3565    Init->setType(DclT);
3566  }
3567
3568  Init = MaybeCreateCXXExprWithTemporaries(Init);
3569  // Attach the initializer to the decl.
3570  VDecl->setInit(Context, Init);
3571
3572  // If the previous declaration of VDecl was a tentative definition,
3573  // remove it from the set of tentative definitions.
3574  if (VDecl->getPreviousDeclaration() &&
3575      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3576    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3577    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3578  }
3579
3580  if (getLangOptions().CPlusPlus) {
3581    // Make sure we mark the destructor as used if necessary.
3582    QualType InitType = VDecl->getType();
3583    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3584      InitType = Context.getBaseElementType(Array);
3585    if (InitType->isRecordType())
3586      FinalizeVarWithDestructor(VDecl, InitType);
3587  }
3588
3589  return;
3590}
3591
3592void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3593                                  bool TypeContainsUndeducedAuto) {
3594  Decl *RealDecl = dcl.getAs<Decl>();
3595
3596  // If there is no declaration, there was an error parsing it. Just ignore it.
3597  if (RealDecl == 0)
3598    return;
3599
3600  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3601    QualType Type = Var->getType();
3602
3603    // Record tentative definitions.
3604    if (Var->isTentativeDefinition(Context)) {
3605      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3606        InsertPair =
3607           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3608
3609      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3610      // want the second one in the map.
3611      InsertPair.first->second = Var;
3612
3613      // However, for the list, we don't care about the order, just make sure
3614      // that there are no dupes for a given declaration name.
3615      if (InsertPair.second)
3616        TentativeDefinitionList.push_back(Var->getDeclName());
3617    }
3618
3619    // C++ [dcl.init.ref]p3:
3620    //   The initializer can be omitted for a reference only in a
3621    //   parameter declaration (8.3.5), in the declaration of a
3622    //   function return type, in the declaration of a class member
3623    //   within its class declaration (9.2), and where the extern
3624    //   specifier is explicitly used.
3625    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3626      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3627        << Var->getDeclName()
3628        << SourceRange(Var->getLocation(), Var->getLocation());
3629      Var->setInvalidDecl();
3630      return;
3631    }
3632
3633    // C++0x [dcl.spec.auto]p3
3634    if (TypeContainsUndeducedAuto) {
3635      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3636        << Var->getDeclName() << Type;
3637      Var->setInvalidDecl();
3638      return;
3639    }
3640
3641    // An array without size is an incomplete type, and there are no special
3642    // rules in C++ to make such a definition acceptable.
3643    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3644        !Var->hasExternalStorage()) {
3645      Diag(Var->getLocation(),
3646           diag::err_typecheck_incomplete_array_needs_initializer);
3647      Var->setInvalidDecl();
3648      return;
3649    }
3650
3651    // C++ [temp.expl.spec]p15:
3652    //   An explicit specialization of a static data member of a template is a
3653    //   definition if the declaration includes an initializer; otherwise, it
3654    //   is a declaration.
3655    if (Var->isStaticDataMember() &&
3656        Var->getInstantiatedFromStaticDataMember() &&
3657        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3658      return;
3659
3660    // C++ [dcl.init]p9:
3661    //   If no initializer is specified for an object, and the object
3662    //   is of (possibly cv-qualified) non-POD class type (or array
3663    //   thereof), the object shall be default-initialized; if the
3664    //   object is of const-qualified type, the underlying class type
3665    //   shall have a user-declared default constructor.
3666    //
3667    // FIXME: Diagnose the "user-declared default constructor" bit.
3668    if (getLangOptions().CPlusPlus) {
3669      QualType InitType = Type;
3670      if (const ArrayType *Array = Context.getAsArrayType(Type))
3671        InitType = Context.getBaseElementType(Array);
3672      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3673          InitType->isRecordType() && !InitType->isDependentType()) {
3674        if (!RequireCompleteType(Var->getLocation(), InitType,
3675                                 diag::err_invalid_incomplete_type_use)) {
3676          InitializedEntity Entity
3677            = InitializedEntity::InitializeVariable(Var);
3678          InitializationKind Kind
3679            = InitializationKind::CreateDefault(Var->getLocation());
3680
3681          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3682          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3683                                                  MultiExprArg(*this, 0, 0));
3684          if (Init.isInvalid())
3685            Var->setInvalidDecl();
3686          else {
3687            Var->setInit(Context,
3688                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3689            FinalizeVarWithDestructor(Var, InitType);
3690          }
3691        } else {
3692          Var->setInvalidDecl();
3693        }
3694      }
3695
3696      // The variable can not have an abstract class type.
3697      if (RequireNonAbstractType(Var->getLocation(), Type,
3698                                 diag::err_abstract_type_in_decl,
3699                                 AbstractVariableType))
3700        Var->setInvalidDecl();
3701    }
3702
3703#if 0
3704    // FIXME: Temporarily disabled because we are not properly parsing
3705    // linkage specifications on declarations, e.g.,
3706    //
3707    //   extern "C" const CGPoint CGPointerZero;
3708    //
3709    // C++ [dcl.init]p9:
3710    //
3711    //     If no initializer is specified for an object, and the
3712    //     object is of (possibly cv-qualified) non-POD class type (or
3713    //     array thereof), the object shall be default-initialized; if
3714    //     the object is of const-qualified type, the underlying class
3715    //     type shall have a user-declared default
3716    //     constructor. Otherwise, if no initializer is specified for
3717    //     an object, the object and its subobjects, if any, have an
3718    //     indeterminate initial value; if the object or any of its
3719    //     subobjects are of const-qualified type, the program is
3720    //     ill-formed.
3721    //
3722    // This isn't technically an error in C, so we don't diagnose it.
3723    //
3724    // FIXME: Actually perform the POD/user-defined default
3725    // constructor check.
3726    if (getLangOptions().CPlusPlus &&
3727        Context.getCanonicalType(Type).isConstQualified() &&
3728        !Var->hasExternalStorage())
3729      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3730        << Var->getName()
3731        << SourceRange(Var->getLocation(), Var->getLocation());
3732#endif
3733  }
3734}
3735
3736Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3737                                                   DeclPtrTy *Group,
3738                                                   unsigned NumDecls) {
3739  llvm::SmallVector<Decl*, 8> Decls;
3740
3741  if (DS.isTypeSpecOwned())
3742    Decls.push_back((Decl*)DS.getTypeRep());
3743
3744  for (unsigned i = 0; i != NumDecls; ++i)
3745    if (Decl *D = Group[i].getAs<Decl>())
3746      Decls.push_back(D);
3747
3748  // Perform semantic analysis that depends on having fully processed both
3749  // the declarator and initializer.
3750  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3751    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3752    if (!IDecl)
3753      continue;
3754    QualType T = IDecl->getType();
3755
3756    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3757    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3758    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3759      if (T->isDependentType()) {
3760        // If T is dependent, we should not require a complete type.
3761        // (RequireCompleteType shouldn't be called with dependent types.)
3762        // But we still can at least check if we've got an array of unspecified
3763        // size without an initializer.
3764        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3765            !IDecl->getInit()) {
3766          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3767            << T;
3768          IDecl->setInvalidDecl();
3769        }
3770      } else if (!IDecl->isInvalidDecl()) {
3771        // If T is an incomplete array type with an initializer list that is
3772        // dependent on something, its size has not been fixed. We could attempt
3773        // to fix the size for such arrays, but we would still have to check
3774        // here for initializers containing a C++0x vararg expansion, e.g.
3775        // template <typename... Args> void f(Args... args) {
3776        //   int vals[] = { args };
3777        // }
3778        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3779        Expr *Init = IDecl->getInit();
3780        if (IAT && Init &&
3781            (Init->isTypeDependent() || Init->isValueDependent())) {
3782          // Check that the member type of the array is complete, at least.
3783          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3784                                  diag::err_typecheck_decl_incomplete_type))
3785            IDecl->setInvalidDecl();
3786        } else if (RequireCompleteType(IDecl->getLocation(), T,
3787                                      diag::err_typecheck_decl_incomplete_type))
3788          IDecl->setInvalidDecl();
3789      }
3790    }
3791    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3792    // object that has file scope without an initializer, and without a
3793    // storage-class specifier or with the storage-class specifier "static",
3794    // constitutes a tentative definition. Note: A tentative definition with
3795    // external linkage is valid (C99 6.2.2p5).
3796    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3797      if (const IncompleteArrayType *ArrayT
3798          = Context.getAsIncompleteArrayType(T)) {
3799        if (RequireCompleteType(IDecl->getLocation(),
3800                                ArrayT->getElementType(),
3801                                diag::err_illegal_decl_array_incomplete_type))
3802          IDecl->setInvalidDecl();
3803      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3804        // C99 6.9.2p3: If the declaration of an identifier for an object is
3805        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3806        // declared type shall not be an incomplete type.
3807        // NOTE: code such as the following
3808        //     static struct s;
3809        //     struct s { int a; };
3810        // is accepted by gcc. Hence here we issue a warning instead of
3811        // an error and we do not invalidate the static declaration.
3812        // NOTE: to avoid multiple warnings, only check the first declaration.
3813        if (IDecl->getPreviousDeclaration() == 0)
3814          RequireCompleteType(IDecl->getLocation(), T,
3815                              diag::ext_typecheck_decl_incomplete_type);
3816      }
3817    }
3818  }
3819  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3820                                                   Decls.data(), Decls.size()));
3821}
3822
3823
3824/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3825/// to introduce parameters into function prototype scope.
3826Sema::DeclPtrTy
3827Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3828  const DeclSpec &DS = D.getDeclSpec();
3829
3830  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3831  VarDecl::StorageClass StorageClass = VarDecl::None;
3832  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3833    StorageClass = VarDecl::Register;
3834  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3835    Diag(DS.getStorageClassSpecLoc(),
3836         diag::err_invalid_storage_class_in_func_decl);
3837    D.getMutableDeclSpec().ClearStorageClassSpecs();
3838  }
3839
3840  if (D.getDeclSpec().isThreadSpecified())
3841    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3842
3843  DiagnoseFunctionSpecifiers(D);
3844
3845  // Check that there are no default arguments inside the type of this
3846  // parameter (C++ only).
3847  if (getLangOptions().CPlusPlus)
3848    CheckExtraCXXDefaultArguments(D);
3849
3850  TypeSourceInfo *TInfo = 0;
3851  TagDecl *OwnedDecl = 0;
3852  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3853
3854  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3855    // C++ [dcl.fct]p6:
3856    //   Types shall not be defined in return or parameter types.
3857    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3858      << Context.getTypeDeclType(OwnedDecl);
3859  }
3860
3861  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3862  // Can this happen for params?  We already checked that they don't conflict
3863  // among each other.  Here they can only shadow globals, which is ok.
3864  IdentifierInfo *II = D.getIdentifier();
3865  if (II) {
3866    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3867      if (PrevDecl->isTemplateParameter()) {
3868        // Maybe we will complain about the shadowed template parameter.
3869        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3870        // Just pretend that we didn't see the previous declaration.
3871        PrevDecl = 0;
3872      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3873        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3874
3875        // Recover by removing the name
3876        II = 0;
3877        D.SetIdentifier(0, D.getIdentifierLoc());
3878      }
3879    }
3880  }
3881
3882  // Parameters can not be abstract class types.
3883  // For record types, this is done by the AbstractClassUsageDiagnoser once
3884  // the class has been completely parsed.
3885  if (!CurContext->isRecord() &&
3886      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3887                             diag::err_abstract_type_in_decl,
3888                             AbstractParamType))
3889    D.setInvalidType(true);
3890
3891  QualType T = adjustParameterType(parmDeclType);
3892
3893  // Temporarily put parameter variables in the translation unit, not
3894  // the enclosing context.  This prevents them from accidentally
3895  // looking like class members in C++.
3896  DeclContext *DC = Context.getTranslationUnitDecl();
3897
3898  ParmVarDecl *New
3899    = ParmVarDecl::Create(Context, DC, D.getIdentifierLoc(), II,
3900                          T, TInfo, StorageClass, 0);
3901
3902  if (D.isInvalidType())
3903    New->setInvalidDecl();
3904
3905  // Parameter declarators cannot be interface types. All ObjC objects are
3906  // passed by reference.
3907  if (T->isObjCInterfaceType()) {
3908    Diag(D.getIdentifierLoc(),
3909         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3910    New->setInvalidDecl();
3911  }
3912
3913  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3914  if (D.getCXXScopeSpec().isSet()) {
3915    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3916      << D.getCXXScopeSpec().getRange();
3917    New->setInvalidDecl();
3918  }
3919
3920  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3921  // duration shall not be qualified by an address-space qualifier."
3922  // Since all parameters have automatic store duration, they can not have
3923  // an address space.
3924  if (T.getAddressSpace() != 0) {
3925    Diag(D.getIdentifierLoc(),
3926         diag::err_arg_with_address_space);
3927    New->setInvalidDecl();
3928  }
3929
3930
3931  // Add the parameter declaration into this scope.
3932  S->AddDecl(DeclPtrTy::make(New));
3933  if (II)
3934    IdResolver.AddDecl(New);
3935
3936  ProcessDeclAttributes(S, New, D);
3937
3938  if (New->hasAttr<BlocksAttr>()) {
3939    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3940  }
3941  return DeclPtrTy::make(New);
3942}
3943
3944void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3945                                           SourceLocation LocAfterDecls) {
3946  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3947         "Not a function declarator!");
3948  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3949
3950  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3951  // for a K&R function.
3952  if (!FTI.hasPrototype) {
3953    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3954      --i;
3955      if (FTI.ArgInfo[i].Param == 0) {
3956        llvm::SmallString<256> Code;
3957        llvm::raw_svector_ostream(Code) << "  int "
3958                                        << FTI.ArgInfo[i].Ident->getName()
3959                                        << ";\n";
3960        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3961          << FTI.ArgInfo[i].Ident
3962          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
3963
3964        // Implicitly declare the argument as type 'int' for lack of a better
3965        // type.
3966        DeclSpec DS;
3967        const char* PrevSpec; // unused
3968        unsigned DiagID; // unused
3969        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3970                           PrevSpec, DiagID);
3971        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3972        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3973        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3974      }
3975    }
3976  }
3977}
3978
3979Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3980                                              Declarator &D) {
3981  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3982  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3983         "Not a function declarator!");
3984  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3985
3986  if (FTI.hasPrototype) {
3987    // FIXME: Diagnose arguments without names in C.
3988  }
3989
3990  Scope *ParentScope = FnBodyScope->getParent();
3991
3992  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3993                                  MultiTemplateParamsArg(*this),
3994                                  /*IsFunctionDefinition=*/true);
3995  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3996}
3997
3998static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
3999  // Don't warn about invalid declarations.
4000  if (FD->isInvalidDecl())
4001    return false;
4002
4003  // Or declarations that aren't global.
4004  if (!FD->isGlobal())
4005    return false;
4006
4007  // Don't warn about C++ member functions.
4008  if (isa<CXXMethodDecl>(FD))
4009    return false;
4010
4011  // Don't warn about 'main'.
4012  if (FD->isMain())
4013    return false;
4014
4015  // Don't warn about inline functions.
4016  if (FD->isInlineSpecified())
4017    return false;
4018
4019  // Don't warn about function templates.
4020  if (FD->getDescribedFunctionTemplate())
4021    return false;
4022
4023  // Don't warn about function template specializations.
4024  if (FD->isFunctionTemplateSpecialization())
4025    return false;
4026
4027  bool MissingPrototype = true;
4028  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4029       Prev; Prev = Prev->getPreviousDeclaration()) {
4030    // Ignore any declarations that occur in function or method
4031    // scope, because they aren't visible from the header.
4032    if (Prev->getDeclContext()->isFunctionOrMethod())
4033      continue;
4034
4035    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4036    break;
4037  }
4038
4039  return MissingPrototype;
4040}
4041
4042Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4043  // Clear the last template instantiation error context.
4044  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4045
4046  if (!D)
4047    return D;
4048  FunctionDecl *FD = 0;
4049
4050  if (FunctionTemplateDecl *FunTmpl
4051        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4052    FD = FunTmpl->getTemplatedDecl();
4053  else
4054    FD = cast<FunctionDecl>(D.getAs<Decl>());
4055
4056  CurFunctionNeedsScopeChecking = false;
4057
4058  // See if this is a redefinition.
4059  const FunctionDecl *Definition;
4060  if (FD->getBody(Definition)) {
4061    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4062    Diag(Definition->getLocation(), diag::note_previous_definition);
4063  }
4064
4065  // Builtin functions cannot be defined.
4066  if (unsigned BuiltinID = FD->getBuiltinID()) {
4067    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4068      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4069      FD->setInvalidDecl();
4070    }
4071  }
4072
4073  // The return type of a function definition must be complete
4074  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4075  QualType ResultType = FD->getResultType();
4076  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4077      !FD->isInvalidDecl() &&
4078      RequireCompleteType(FD->getLocation(), ResultType,
4079                          diag::err_func_def_incomplete_result))
4080    FD->setInvalidDecl();
4081
4082  // GNU warning -Wmissing-prototypes:
4083  //   Warn if a global function is defined without a previous
4084  //   prototype declaration. This warning is issued even if the
4085  //   definition itself provides a prototype. The aim is to detect
4086  //   global functions that fail to be declared in header files.
4087  if (ShouldWarnAboutMissingPrototype(FD))
4088    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4089
4090  if (FnBodyScope)
4091    PushDeclContext(FnBodyScope, FD);
4092
4093  // Check the validity of our function parameters
4094  CheckParmsForFunctionDef(FD);
4095
4096  // Introduce our parameters into the function scope
4097  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4098    ParmVarDecl *Param = FD->getParamDecl(p);
4099    Param->setOwningFunction(FD);
4100
4101    // If this has an identifier, add it to the scope stack.
4102    if (Param->getIdentifier() && FnBodyScope)
4103      PushOnScopeChains(Param, FnBodyScope);
4104  }
4105
4106  // Checking attributes of current function definition
4107  // dllimport attribute.
4108  if (FD->getAttr<DLLImportAttr>() &&
4109      (!FD->getAttr<DLLExportAttr>())) {
4110    // dllimport attribute cannot be applied to definition.
4111    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4112      Diag(FD->getLocation(),
4113           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4114        << "dllimport";
4115      FD->setInvalidDecl();
4116      return DeclPtrTy::make(FD);
4117    } else {
4118      // If a symbol previously declared dllimport is later defined, the
4119      // attribute is ignored in subsequent references, and a warning is
4120      // emitted.
4121      Diag(FD->getLocation(),
4122           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4123        << FD->getNameAsCString() << "dllimport";
4124    }
4125  }
4126  return DeclPtrTy::make(FD);
4127}
4128
4129Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4130  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4131}
4132
4133Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4134                                              bool IsInstantiation) {
4135  Decl *dcl = D.getAs<Decl>();
4136  Stmt *Body = BodyArg.takeAs<Stmt>();
4137
4138  // Don't generate EH edges for CallExprs as we'd like to avoid the n^2
4139  // explosion for destrutors that can result and the compile time hit.
4140  AnalysisContext AC(dcl, false);
4141  FunctionDecl *FD = 0;
4142  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4143  if (FunTmpl)
4144    FD = FunTmpl->getTemplatedDecl();
4145  else
4146    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4147
4148  if (FD) {
4149    FD->setBody(Body);
4150    if (FD->isMain())
4151      // C and C++ allow for main to automagically return 0.
4152      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4153      FD->setHasImplicitReturnZero(true);
4154    else
4155      CheckFallThroughForFunctionDef(FD, Body, AC);
4156
4157    if (!FD->isInvalidDecl())
4158      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4159
4160    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4161      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4162
4163    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4164  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4165    assert(MD == getCurMethodDecl() && "Method parsing confused");
4166    MD->setBody(Body);
4167    CheckFallThroughForFunctionDef(MD, Body, AC);
4168    MD->setEndLoc(Body->getLocEnd());
4169
4170    if (!MD->isInvalidDecl())
4171      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4172  } else {
4173    Body->Destroy(Context);
4174    return DeclPtrTy();
4175  }
4176  if (!IsInstantiation)
4177    PopDeclContext();
4178
4179  // Verify and clean out per-function state.
4180
4181  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4182
4183  // Check goto/label use.
4184  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4185       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4186    LabelStmt *L = I->second;
4187
4188    // Verify that we have no forward references left.  If so, there was a goto
4189    // or address of a label taken, but no definition of it.  Label fwd
4190    // definitions are indicated with a null substmt.
4191    if (L->getSubStmt() != 0)
4192      continue;
4193
4194    // Emit error.
4195    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4196
4197    // At this point, we have gotos that use the bogus label.  Stitch it into
4198    // the function body so that they aren't leaked and that the AST is well
4199    // formed.
4200    if (Body == 0) {
4201      // The whole function wasn't parsed correctly, just delete this.
4202      L->Destroy(Context);
4203      continue;
4204    }
4205
4206    // Otherwise, the body is valid: we want to stitch the label decl into the
4207    // function somewhere so that it is properly owned and so that the goto
4208    // has a valid target.  Do this by creating a new compound stmt with the
4209    // label in it.
4210
4211    // Give the label a sub-statement.
4212    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4213
4214    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4215                               cast<CXXTryStmt>(Body)->getTryBlock() :
4216                               cast<CompoundStmt>(Body);
4217    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4218    Elements.push_back(L);
4219    Compound->setStmts(Context, &Elements[0], Elements.size());
4220  }
4221  FunctionLabelMap.clear();
4222
4223  if (!Body) return D;
4224
4225  CheckUnreachable(AC);
4226
4227  // Verify that that gotos and switch cases don't jump into scopes illegally.
4228  if (CurFunctionNeedsScopeChecking)
4229    DiagnoseInvalidJumps(Body);
4230
4231  // C++ constructors that have function-try-blocks can't have return
4232  // statements in the handlers of that block. (C++ [except.handle]p14)
4233  // Verify this.
4234  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4235    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4236
4237  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4238    MarkBaseAndMemberDestructorsReferenced(Destructor);
4239
4240  // If any errors have occurred, clear out any temporaries that may have
4241  // been leftover. This ensures that these temporaries won't be picked up for
4242  // deletion in some later function.
4243  if (PP.getDiagnostics().hasErrorOccurred())
4244    ExprTemporaries.clear();
4245
4246  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4247  return D;
4248}
4249
4250/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4251/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4252NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4253                                          IdentifierInfo &II, Scope *S) {
4254  // Before we produce a declaration for an implicitly defined
4255  // function, see whether there was a locally-scoped declaration of
4256  // this name as a function or variable. If so, use that
4257  // (non-visible) declaration, and complain about it.
4258  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4259    = LocallyScopedExternalDecls.find(&II);
4260  if (Pos != LocallyScopedExternalDecls.end()) {
4261    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4262    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4263    return Pos->second;
4264  }
4265
4266  // Extension in C99.  Legal in C90, but warn about it.
4267  if (II.getName().startswith("__builtin_"))
4268    Diag(Loc, diag::warn_builtin_unknown) << &II;
4269  else if (getLangOptions().C99)
4270    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4271  else
4272    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4273
4274  // Set a Declarator for the implicit definition: int foo();
4275  const char *Dummy;
4276  DeclSpec DS;
4277  unsigned DiagID;
4278  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4279  Error = Error; // Silence warning.
4280  assert(!Error && "Error setting up implicit decl!");
4281  Declarator D(DS, Declarator::BlockContext);
4282  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4283                                             0, 0, false, SourceLocation(),
4284                                             false, 0,0,0, Loc, Loc, D),
4285                SourceLocation());
4286  D.SetIdentifier(&II, Loc);
4287
4288  // Insert this function into translation-unit scope.
4289
4290  DeclContext *PrevDC = CurContext;
4291  CurContext = Context.getTranslationUnitDecl();
4292
4293  FunctionDecl *FD =
4294 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4295  FD->setImplicit();
4296
4297  CurContext = PrevDC;
4298
4299  AddKnownFunctionAttributes(FD);
4300
4301  return FD;
4302}
4303
4304/// \brief Adds any function attributes that we know a priori based on
4305/// the declaration of this function.
4306///
4307/// These attributes can apply both to implicitly-declared builtins
4308/// (like __builtin___printf_chk) or to library-declared functions
4309/// like NSLog or printf.
4310void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4311  if (FD->isInvalidDecl())
4312    return;
4313
4314  // If this is a built-in function, map its builtin attributes to
4315  // actual attributes.
4316  if (unsigned BuiltinID = FD->getBuiltinID()) {
4317    // Handle printf-formatting attributes.
4318    unsigned FormatIdx;
4319    bool HasVAListArg;
4320    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4321      if (!FD->getAttr<FormatAttr>())
4322        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4323                                             HasVAListArg ? 0 : FormatIdx + 2));
4324    }
4325
4326    // Mark const if we don't care about errno and that is the only
4327    // thing preventing the function from being const. This allows
4328    // IRgen to use LLVM intrinsics for such functions.
4329    if (!getLangOptions().MathErrno &&
4330        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4331      if (!FD->getAttr<ConstAttr>())
4332        FD->addAttr(::new (Context) ConstAttr());
4333    }
4334
4335    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4336      FD->addAttr(::new (Context) NoReturnAttr());
4337    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4338      FD->addAttr(::new (Context) NoThrowAttr());
4339    if (Context.BuiltinInfo.isConst(BuiltinID))
4340      FD->addAttr(::new (Context) ConstAttr());
4341  }
4342
4343  IdentifierInfo *Name = FD->getIdentifier();
4344  if (!Name)
4345    return;
4346  if ((!getLangOptions().CPlusPlus &&
4347       FD->getDeclContext()->isTranslationUnit()) ||
4348      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4349       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4350       LinkageSpecDecl::lang_c)) {
4351    // Okay: this could be a libc/libm/Objective-C function we know
4352    // about.
4353  } else
4354    return;
4355
4356  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4357    // FIXME: NSLog and NSLogv should be target specific
4358    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4359      // FIXME: We known better than our headers.
4360      const_cast<FormatAttr *>(Format)->setType("printf");
4361    } else
4362      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4363                                             Name->isStr("NSLogv") ? 0 : 2));
4364  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4365    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4366    // target-specific builtins, perhaps?
4367    if (!FD->getAttr<FormatAttr>())
4368      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4369                                             Name->isStr("vasprintf") ? 0 : 3));
4370  }
4371}
4372
4373TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4374                                    TypeSourceInfo *TInfo) {
4375  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4376  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4377
4378  if (!TInfo) {
4379    assert(D.isInvalidType() && "no declarator info for valid type");
4380    TInfo = Context.getTrivialTypeSourceInfo(T);
4381  }
4382
4383  // Scope manipulation handled by caller.
4384  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4385                                           D.getIdentifierLoc(),
4386                                           D.getIdentifier(),
4387                                           TInfo);
4388
4389  if (const TagType *TT = T->getAs<TagType>()) {
4390    TagDecl *TD = TT->getDecl();
4391
4392    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4393    // keep track of the TypedefDecl.
4394    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4395      TD->setTypedefForAnonDecl(NewTD);
4396  }
4397
4398  if (D.isInvalidType())
4399    NewTD->setInvalidDecl();
4400  return NewTD;
4401}
4402
4403
4404/// \brief Determine whether a tag with a given kind is acceptable
4405/// as a redeclaration of the given tag declaration.
4406///
4407/// \returns true if the new tag kind is acceptable, false otherwise.
4408bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4409                                        TagDecl::TagKind NewTag,
4410                                        SourceLocation NewTagLoc,
4411                                        const IdentifierInfo &Name) {
4412  // C++ [dcl.type.elab]p3:
4413  //   The class-key or enum keyword present in the
4414  //   elaborated-type-specifier shall agree in kind with the
4415  //   declaration to which the name in theelaborated-type-specifier
4416  //   refers. This rule also applies to the form of
4417  //   elaborated-type-specifier that declares a class-name or
4418  //   friend class since it can be construed as referring to the
4419  //   definition of the class. Thus, in any
4420  //   elaborated-type-specifier, the enum keyword shall be used to
4421  //   refer to an enumeration (7.2), the union class-keyshall be
4422  //   used to refer to a union (clause 9), and either the class or
4423  //   struct class-key shall be used to refer to a class (clause 9)
4424  //   declared using the class or struct class-key.
4425  TagDecl::TagKind OldTag = Previous->getTagKind();
4426  if (OldTag == NewTag)
4427    return true;
4428
4429  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4430      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4431    // Warn about the struct/class tag mismatch.
4432    bool isTemplate = false;
4433    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4434      isTemplate = Record->getDescribedClassTemplate();
4435
4436    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4437      << (NewTag == TagDecl::TK_class)
4438      << isTemplate << &Name
4439      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4440                              OldTag == TagDecl::TK_class? "class" : "struct");
4441    Diag(Previous->getLocation(), diag::note_previous_use);
4442    return true;
4443  }
4444  return false;
4445}
4446
4447/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4448/// former case, Name will be non-null.  In the later case, Name will be null.
4449/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4450/// reference/declaration/definition of a tag.
4451Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4452                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4453                               IdentifierInfo *Name, SourceLocation NameLoc,
4454                               AttributeList *Attr, AccessSpecifier AS,
4455                               MultiTemplateParamsArg TemplateParameterLists,
4456                               bool &OwnedDecl, bool &IsDependent) {
4457  // If this is not a definition, it must have a name.
4458  assert((Name != 0 || TUK == TUK_Definition) &&
4459         "Nameless record must be a definition!");
4460
4461  OwnedDecl = false;
4462  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4463
4464  // FIXME: Check explicit specializations more carefully.
4465  bool isExplicitSpecialization = false;
4466  if (TUK != TUK_Reference) {
4467    if (TemplateParameterList *TemplateParams
4468          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4469                        (TemplateParameterList**)TemplateParameterLists.get(),
4470                                              TemplateParameterLists.size(),
4471                                                    isExplicitSpecialization)) {
4472      if (TemplateParams->size() > 0) {
4473        // This is a declaration or definition of a class template (which may
4474        // be a member of another template).
4475        OwnedDecl = false;
4476        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4477                                               SS, Name, NameLoc, Attr,
4478                                               TemplateParams,
4479                                               AS);
4480        TemplateParameterLists.release();
4481        return Result.get();
4482      } else {
4483        // The "template<>" header is extraneous.
4484        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4485          << ElaboratedType::getNameForTagKind(Kind) << Name;
4486        isExplicitSpecialization = true;
4487      }
4488    }
4489
4490    TemplateParameterLists.release();
4491  }
4492
4493  DeclContext *SearchDC = CurContext;
4494  DeclContext *DC = CurContext;
4495  bool isStdBadAlloc = false;
4496  bool Invalid = false;
4497
4498  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4499                                                   : NotForRedeclaration);
4500
4501  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4502
4503  if (Name && SS.isNotEmpty()) {
4504    // We have a nested-name tag ('struct foo::bar').
4505
4506    // Check for invalid 'foo::'.
4507    if (SS.isInvalid()) {
4508      Name = 0;
4509      goto CreateNewDecl;
4510    }
4511
4512    // If this is a friend or a reference to a class in a dependent
4513    // context, don't try to make a decl for it.
4514    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4515      DC = computeDeclContext(SS, false);
4516      if (!DC) {
4517        IsDependent = true;
4518        return DeclPtrTy();
4519      }
4520    }
4521
4522    if (RequireCompleteDeclContext(SS))
4523      return DeclPtrTy::make((Decl *)0);
4524
4525    DC = computeDeclContext(SS, true);
4526    SearchDC = DC;
4527    // Look-up name inside 'foo::'.
4528    LookupQualifiedName(Previous, DC);
4529
4530    if (Previous.isAmbiguous())
4531      return DeclPtrTy();
4532
4533    if (Previous.empty()) {
4534      // Name lookup did not find anything. However, if the
4535      // nested-name-specifier refers to the current instantiation,
4536      // and that current instantiation has any dependent base
4537      // classes, we might find something at instantiation time: treat
4538      // this as a dependent elaborated-type-specifier.
4539      if (Previous.wasNotFoundInCurrentInstantiation()) {
4540        IsDependent = true;
4541        return DeclPtrTy();
4542      }
4543
4544      // A tag 'foo::bar' must already exist.
4545      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4546      Name = 0;
4547      Invalid = true;
4548      goto CreateNewDecl;
4549    }
4550  } else if (Name) {
4551    // If this is a named struct, check to see if there was a previous forward
4552    // declaration or definition.
4553    // FIXME: We're looking into outer scopes here, even when we
4554    // shouldn't be. Doing so can result in ambiguities that we
4555    // shouldn't be diagnosing.
4556    LookupName(Previous, S);
4557
4558    // Note:  there used to be some attempt at recovery here.
4559    if (Previous.isAmbiguous())
4560      return DeclPtrTy();
4561
4562    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4563      // FIXME: This makes sure that we ignore the contexts associated
4564      // with C structs, unions, and enums when looking for a matching
4565      // tag declaration or definition. See the similar lookup tweak
4566      // in Sema::LookupName; is there a better way to deal with this?
4567      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4568        SearchDC = SearchDC->getParent();
4569    }
4570  }
4571
4572  if (Previous.isSingleResult() &&
4573      Previous.getFoundDecl()->isTemplateParameter()) {
4574    // Maybe we will complain about the shadowed template parameter.
4575    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4576    // Just pretend that we didn't see the previous declaration.
4577    Previous.clear();
4578  }
4579
4580  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4581      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4582    // This is a declaration of or a reference to "std::bad_alloc".
4583    isStdBadAlloc = true;
4584
4585    if (Previous.empty() && StdBadAlloc) {
4586      // std::bad_alloc has been implicitly declared (but made invisible to
4587      // name lookup). Fill in this implicit declaration as the previous
4588      // declaration, so that the declarations get chained appropriately.
4589      Previous.addDecl(StdBadAlloc);
4590    }
4591  }
4592
4593  if (!Previous.empty()) {
4594    assert(Previous.isSingleResult());
4595    NamedDecl *PrevDecl = Previous.getFoundDecl();
4596    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4597      // If this is a use of a previous tag, or if the tag is already declared
4598      // in the same scope (so that the definition/declaration completes or
4599      // rementions the tag), reuse the decl.
4600      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4601          isDeclInScope(PrevDecl, SearchDC, S)) {
4602        // Make sure that this wasn't declared as an enum and now used as a
4603        // struct or something similar.
4604        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4605          bool SafeToContinue
4606            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4607               Kind != TagDecl::TK_enum);
4608          if (SafeToContinue)
4609            Diag(KWLoc, diag::err_use_with_wrong_tag)
4610              << Name
4611              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4612                                                  PrevTagDecl->getKindName());
4613          else
4614            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4615          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4616
4617          if (SafeToContinue)
4618            Kind = PrevTagDecl->getTagKind();
4619          else {
4620            // Recover by making this an anonymous redefinition.
4621            Name = 0;
4622            Previous.clear();
4623            Invalid = true;
4624          }
4625        }
4626
4627        if (!Invalid) {
4628          // If this is a use, just return the declaration we found.
4629
4630          // FIXME: In the future, return a variant or some other clue
4631          // for the consumer of this Decl to know it doesn't own it.
4632          // For our current ASTs this shouldn't be a problem, but will
4633          // need to be changed with DeclGroups.
4634          if (TUK == TUK_Reference || TUK == TUK_Friend)
4635            return DeclPtrTy::make(PrevTagDecl);
4636
4637          // Diagnose attempts to redefine a tag.
4638          if (TUK == TUK_Definition) {
4639            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4640              // If we're defining a specialization and the previous definition
4641              // is from an implicit instantiation, don't emit an error
4642              // here; we'll catch this in the general case below.
4643              if (!isExplicitSpecialization ||
4644                  !isa<CXXRecordDecl>(Def) ||
4645                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4646                                               == TSK_ExplicitSpecialization) {
4647                Diag(NameLoc, diag::err_redefinition) << Name;
4648                Diag(Def->getLocation(), diag::note_previous_definition);
4649                // If this is a redefinition, recover by making this
4650                // struct be anonymous, which will make any later
4651                // references get the previous definition.
4652                Name = 0;
4653                Previous.clear();
4654                Invalid = true;
4655              }
4656            } else {
4657              // If the type is currently being defined, complain
4658              // about a nested redefinition.
4659              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4660              if (Tag->isBeingDefined()) {
4661                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4662                Diag(PrevTagDecl->getLocation(),
4663                     diag::note_previous_definition);
4664                Name = 0;
4665                Previous.clear();
4666                Invalid = true;
4667              }
4668            }
4669
4670            // Okay, this is definition of a previously declared or referenced
4671            // tag PrevDecl. We're going to create a new Decl for it.
4672          }
4673        }
4674        // If we get here we have (another) forward declaration or we
4675        // have a definition.  Just create a new decl.
4676
4677      } else {
4678        // If we get here, this is a definition of a new tag type in a nested
4679        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4680        // new decl/type.  We set PrevDecl to NULL so that the entities
4681        // have distinct types.
4682        Previous.clear();
4683      }
4684      // If we get here, we're going to create a new Decl. If PrevDecl
4685      // is non-NULL, it's a definition of the tag declared by
4686      // PrevDecl. If it's NULL, we have a new definition.
4687    } else {
4688      // PrevDecl is a namespace, template, or anything else
4689      // that lives in the IDNS_Tag identifier namespace.
4690      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4691        // The tag name clashes with a namespace name, issue an error and
4692        // recover by making this tag be anonymous.
4693        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4694        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4695        Name = 0;
4696        Previous.clear();
4697        Invalid = true;
4698      } else {
4699        // The existing declaration isn't relevant to us; we're in a
4700        // new scope, so clear out the previous declaration.
4701        Previous.clear();
4702      }
4703    }
4704  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4705    // C++ [basic.scope.pdecl]p5:
4706    //   -- for an elaborated-type-specifier of the form
4707    //
4708    //          class-key identifier
4709    //
4710    //      if the elaborated-type-specifier is used in the
4711    //      decl-specifier-seq or parameter-declaration-clause of a
4712    //      function defined in namespace scope, the identifier is
4713    //      declared as a class-name in the namespace that contains
4714    //      the declaration; otherwise, except as a friend
4715    //      declaration, the identifier is declared in the smallest
4716    //      non-class, non-function-prototype scope that contains the
4717    //      declaration.
4718    //
4719    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4720    // C structs and unions.
4721    //
4722    // It is an error in C++ to declare (rather than define) an enum
4723    // type, including via an elaborated type specifier.  We'll
4724    // diagnose that later; for now, declare the enum in the same
4725    // scope as we would have picked for any other tag type.
4726    //
4727    // GNU C also supports this behavior as part of its incomplete
4728    // enum types extension, while GNU C++ does not.
4729    //
4730    // Find the context where we'll be declaring the tag.
4731    // FIXME: We would like to maintain the current DeclContext as the
4732    // lexical context,
4733    while (SearchDC->isRecord())
4734      SearchDC = SearchDC->getParent();
4735
4736    // Find the scope where we'll be declaring the tag.
4737    while (S->isClassScope() ||
4738           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4739           ((S->getFlags() & Scope::DeclScope) == 0) ||
4740           (S->getEntity() &&
4741            ((DeclContext *)S->getEntity())->isTransparentContext()))
4742      S = S->getParent();
4743
4744  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4745    // C++ [namespace.memdef]p3:
4746    //   If a friend declaration in a non-local class first declares a
4747    //   class or function, the friend class or function is a member of
4748    //   the innermost enclosing namespace.
4749    while (!SearchDC->isFileContext())
4750      SearchDC = SearchDC->getParent();
4751
4752    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4753    while (S->getEntity() != SearchDC)
4754      S = S->getParent();
4755  }
4756
4757CreateNewDecl:
4758
4759  TagDecl *PrevDecl = 0;
4760  if (Previous.isSingleResult())
4761    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4762
4763  // If there is an identifier, use the location of the identifier as the
4764  // location of the decl, otherwise use the location of the struct/union
4765  // keyword.
4766  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4767
4768  // Otherwise, create a new declaration. If there is a previous
4769  // declaration of the same entity, the two will be linked via
4770  // PrevDecl.
4771  TagDecl *New;
4772
4773  if (Kind == TagDecl::TK_enum) {
4774    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4775    // enum X { A, B, C } D;    D should chain to X.
4776    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4777                           cast_or_null<EnumDecl>(PrevDecl));
4778    // If this is an undefined enum, warn.
4779    if (TUK != TUK_Definition && !Invalid)  {
4780      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4781                                              : diag::ext_forward_ref_enum;
4782      Diag(Loc, DK);
4783    }
4784  } else {
4785    // struct/union/class
4786
4787    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4788    // struct X { int A; } D;    D should chain to X.
4789    if (getLangOptions().CPlusPlus) {
4790      // FIXME: Look for a way to use RecordDecl for simple structs.
4791      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4792                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4793
4794      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4795        StdBadAlloc = cast<CXXRecordDecl>(New);
4796    } else
4797      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4798                               cast_or_null<RecordDecl>(PrevDecl));
4799  }
4800
4801  if (Kind != TagDecl::TK_enum) {
4802    // Handle #pragma pack: if the #pragma pack stack has non-default
4803    // alignment, make up a packed attribute for this decl. These
4804    // attributes are checked when the ASTContext lays out the
4805    // structure.
4806    //
4807    // It is important for implementing the correct semantics that this
4808    // happen here (in act on tag decl). The #pragma pack stack is
4809    // maintained as a result of parser callbacks which can occur at
4810    // many points during the parsing of a struct declaration (because
4811    // the #pragma tokens are effectively skipped over during the
4812    // parsing of the struct).
4813    if (unsigned Alignment = getPragmaPackAlignment())
4814      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4815  }
4816
4817  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4818    // C++ [dcl.typedef]p3:
4819    //   [...] Similarly, in a given scope, a class or enumeration
4820    //   shall not be declared with the same name as a typedef-name
4821    //   that is declared in that scope and refers to a type other
4822    //   than the class or enumeration itself.
4823    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4824                        ForRedeclaration);
4825    LookupName(Lookup, S);
4826    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4827    NamedDecl *PrevTypedefNamed = PrevTypedef;
4828    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4829        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4830          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4831      Diag(Loc, diag::err_tag_definition_of_typedef)
4832        << Context.getTypeDeclType(New)
4833        << PrevTypedef->getUnderlyingType();
4834      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4835      Invalid = true;
4836    }
4837  }
4838
4839  // If this is a specialization of a member class (of a class template),
4840  // check the specialization.
4841  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4842    Invalid = true;
4843
4844  if (Invalid)
4845    New->setInvalidDecl();
4846
4847  if (Attr)
4848    ProcessDeclAttributeList(S, New, Attr);
4849
4850  // If we're declaring or defining a tag in function prototype scope
4851  // in C, note that this type can only be used within the function.
4852  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4853    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4854
4855  // Set the lexical context. If the tag has a C++ scope specifier, the
4856  // lexical context will be different from the semantic context.
4857  New->setLexicalDeclContext(CurContext);
4858
4859  // Mark this as a friend decl if applicable.
4860  if (TUK == TUK_Friend)
4861    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4862
4863  // Set the access specifier.
4864  if (!Invalid && TUK != TUK_Friend)
4865    SetMemberAccessSpecifier(New, PrevDecl, AS);
4866
4867  if (TUK == TUK_Definition)
4868    New->startDefinition();
4869
4870  // If this has an identifier, add it to the scope stack.
4871  if (TUK == TUK_Friend) {
4872    // We might be replacing an existing declaration in the lookup tables;
4873    // if so, borrow its access specifier.
4874    if (PrevDecl)
4875      New->setAccess(PrevDecl->getAccess());
4876
4877    // Friend tag decls are visible in fairly strange ways.
4878    if (!CurContext->isDependentContext()) {
4879      DeclContext *DC = New->getDeclContext()->getLookupContext();
4880      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4881      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4882        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4883    }
4884  } else if (Name) {
4885    S = getNonFieldDeclScope(S);
4886    PushOnScopeChains(New, S);
4887  } else {
4888    CurContext->addDecl(New);
4889  }
4890
4891  // If this is the C FILE type, notify the AST context.
4892  if (IdentifierInfo *II = New->getIdentifier())
4893    if (!New->isInvalidDecl() &&
4894        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4895        II->isStr("FILE"))
4896      Context.setFILEDecl(New);
4897
4898  OwnedDecl = true;
4899  return DeclPtrTy::make(New);
4900}
4901
4902void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4903  AdjustDeclIfTemplate(TagD);
4904  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4905
4906  // Enter the tag context.
4907  PushDeclContext(S, Tag);
4908}
4909
4910void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
4911                                           SourceLocation LBraceLoc) {
4912  AdjustDeclIfTemplate(TagD);
4913  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
4914
4915  FieldCollector->StartClass();
4916
4917  if (!Record->getIdentifier())
4918    return;
4919
4920  // C++ [class]p2:
4921  //   [...] The class-name is also inserted into the scope of the
4922  //   class itself; this is known as the injected-class-name. For
4923  //   purposes of access checking, the injected-class-name is treated
4924  //   as if it were a public member name.
4925  CXXRecordDecl *InjectedClassName
4926    = CXXRecordDecl::Create(Context, Record->getTagKind(),
4927                            CurContext, Record->getLocation(),
4928                            Record->getIdentifier(),
4929                            Record->getTagKeywordLoc(),
4930                            Record);
4931  InjectedClassName->setImplicit();
4932  InjectedClassName->setAccess(AS_public);
4933  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4934      InjectedClassName->setDescribedClassTemplate(Template);
4935  PushOnScopeChains(InjectedClassName, S);
4936  assert(InjectedClassName->isInjectedClassName() &&
4937         "Broken injected-class-name");
4938}
4939
4940// Traverses the class and any nested classes, making a note of any
4941// dynamic classes that have no key function so that we can mark all of
4942// their virtual member functions as "used" at the end of the translation
4943// unit. This ensures that all functions needed by the vtable will get
4944// instantiated/synthesized.
4945static void
4946RecordDynamicClassesWithNoKeyFunction(Sema &S, CXXRecordDecl *Record,
4947                                      SourceLocation Loc) {
4948  // We don't look at dependent or undefined classes.
4949  if (Record->isDependentContext() || !Record->isDefinition())
4950    return;
4951
4952  if (Record->isDynamicClass() && !S.Context.getKeyFunction(Record))
4953    S.ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record, Loc));
4954
4955  for (DeclContext::decl_iterator D = Record->decls_begin(),
4956                               DEnd = Record->decls_end();
4957       D != DEnd; ++D) {
4958    if (CXXRecordDecl *Nested = dyn_cast<CXXRecordDecl>(*D))
4959      RecordDynamicClassesWithNoKeyFunction(S, Nested, Loc);
4960  }
4961}
4962
4963void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4964                                    SourceLocation RBraceLoc) {
4965  AdjustDeclIfTemplate(TagD);
4966  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4967  Tag->setRBraceLoc(RBraceLoc);
4968
4969  if (isa<CXXRecordDecl>(Tag))
4970    FieldCollector->FinishClass();
4971
4972  // Exit this scope of this tag's definition.
4973  PopDeclContext();
4974
4975  if (isa<CXXRecordDecl>(Tag) && !Tag->getDeclContext()->isRecord())
4976    RecordDynamicClassesWithNoKeyFunction(*this, cast<CXXRecordDecl>(Tag),
4977                                          RBraceLoc);
4978
4979  // Notify the consumer that we've defined a tag.
4980  Consumer.HandleTagDeclDefinition(Tag);
4981}
4982
4983// Note that FieldName may be null for anonymous bitfields.
4984bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4985                          QualType FieldTy, const Expr *BitWidth,
4986                          bool *ZeroWidth) {
4987  // Default to true; that shouldn't confuse checks for emptiness
4988  if (ZeroWidth)
4989    *ZeroWidth = true;
4990
4991  // C99 6.7.2.1p4 - verify the field type.
4992  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4993  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4994    // Handle incomplete types with specific error.
4995    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4996      return true;
4997    if (FieldName)
4998      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4999        << FieldName << FieldTy << BitWidth->getSourceRange();
5000    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5001      << FieldTy << BitWidth->getSourceRange();
5002  }
5003
5004  // If the bit-width is type- or value-dependent, don't try to check
5005  // it now.
5006  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5007    return false;
5008
5009  llvm::APSInt Value;
5010  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5011    return true;
5012
5013  if (Value != 0 && ZeroWidth)
5014    *ZeroWidth = false;
5015
5016  // Zero-width bitfield is ok for anonymous field.
5017  if (Value == 0 && FieldName)
5018    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5019
5020  if (Value.isSigned() && Value.isNegative()) {
5021    if (FieldName)
5022      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5023               << FieldName << Value.toString(10);
5024    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5025      << Value.toString(10);
5026  }
5027
5028  if (!FieldTy->isDependentType()) {
5029    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5030    if (Value.getZExtValue() > TypeSize) {
5031      if (FieldName)
5032        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5033          << FieldName << (unsigned)TypeSize;
5034      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5035        << (unsigned)TypeSize;
5036    }
5037  }
5038
5039  return false;
5040}
5041
5042/// ActOnField - Each field of a struct/union/class is passed into this in order
5043/// to create a FieldDecl object for it.
5044Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5045                                 SourceLocation DeclStart,
5046                                 Declarator &D, ExprTy *BitfieldWidth) {
5047  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5048                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5049                               AS_public);
5050  return DeclPtrTy::make(Res);
5051}
5052
5053/// HandleField - Analyze a field of a C struct or a C++ data member.
5054///
5055FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5056                             SourceLocation DeclStart,
5057                             Declarator &D, Expr *BitWidth,
5058                             AccessSpecifier AS) {
5059  IdentifierInfo *II = D.getIdentifier();
5060  SourceLocation Loc = DeclStart;
5061  if (II) Loc = D.getIdentifierLoc();
5062
5063  TypeSourceInfo *TInfo = 0;
5064  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5065  if (getLangOptions().CPlusPlus)
5066    CheckExtraCXXDefaultArguments(D);
5067
5068  DiagnoseFunctionSpecifiers(D);
5069
5070  if (D.getDeclSpec().isThreadSpecified())
5071    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5072
5073  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5074                                         ForRedeclaration);
5075
5076  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5077    // Maybe we will complain about the shadowed template parameter.
5078    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5079    // Just pretend that we didn't see the previous declaration.
5080    PrevDecl = 0;
5081  }
5082
5083  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5084    PrevDecl = 0;
5085
5086  bool Mutable
5087    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5088  SourceLocation TSSL = D.getSourceRange().getBegin();
5089  FieldDecl *NewFD
5090    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5091                     AS, PrevDecl, &D);
5092  if (NewFD->isInvalidDecl() && PrevDecl) {
5093    // Don't introduce NewFD into scope; there's already something
5094    // with the same name in the same scope.
5095  } else if (II) {
5096    PushOnScopeChains(NewFD, S);
5097  } else
5098    Record->addDecl(NewFD);
5099
5100  return NewFD;
5101}
5102
5103/// \brief Build a new FieldDecl and check its well-formedness.
5104///
5105/// This routine builds a new FieldDecl given the fields name, type,
5106/// record, etc. \p PrevDecl should refer to any previous declaration
5107/// with the same name and in the same scope as the field to be
5108/// created.
5109///
5110/// \returns a new FieldDecl.
5111///
5112/// \todo The Declarator argument is a hack. It will be removed once
5113FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5114                                TypeSourceInfo *TInfo,
5115                                RecordDecl *Record, SourceLocation Loc,
5116                                bool Mutable, Expr *BitWidth,
5117                                SourceLocation TSSL,
5118                                AccessSpecifier AS, NamedDecl *PrevDecl,
5119                                Declarator *D) {
5120  IdentifierInfo *II = Name.getAsIdentifierInfo();
5121  bool InvalidDecl = false;
5122  if (D) InvalidDecl = D->isInvalidType();
5123
5124  // If we receive a broken type, recover by assuming 'int' and
5125  // marking this declaration as invalid.
5126  if (T.isNull()) {
5127    InvalidDecl = true;
5128    T = Context.IntTy;
5129  }
5130
5131  QualType EltTy = Context.getBaseElementType(T);
5132  if (!EltTy->isDependentType() &&
5133      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5134    InvalidDecl = true;
5135
5136  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5137  // than a variably modified type.
5138  if (!InvalidDecl && T->isVariablyModifiedType()) {
5139    bool SizeIsNegative;
5140    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5141                                                           SizeIsNegative);
5142    if (!FixedTy.isNull()) {
5143      Diag(Loc, diag::warn_illegal_constant_array_size);
5144      T = FixedTy;
5145    } else {
5146      if (SizeIsNegative)
5147        Diag(Loc, diag::err_typecheck_negative_array_size);
5148      else
5149        Diag(Loc, diag::err_typecheck_field_variable_size);
5150      InvalidDecl = true;
5151    }
5152  }
5153
5154  // Fields can not have abstract class types
5155  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5156                                             diag::err_abstract_type_in_decl,
5157                                             AbstractFieldType))
5158    InvalidDecl = true;
5159
5160  bool ZeroWidth = false;
5161  // If this is declared as a bit-field, check the bit-field.
5162  if (!InvalidDecl && BitWidth &&
5163      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5164    InvalidDecl = true;
5165    DeleteExpr(BitWidth);
5166    BitWidth = 0;
5167    ZeroWidth = false;
5168  }
5169
5170  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5171                                       BitWidth, Mutable);
5172  if (InvalidDecl)
5173    NewFD->setInvalidDecl();
5174
5175  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5176    Diag(Loc, diag::err_duplicate_member) << II;
5177    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5178    NewFD->setInvalidDecl();
5179  }
5180
5181  if (getLangOptions().CPlusPlus) {
5182    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5183
5184    if (!T->isPODType())
5185      CXXRecord->setPOD(false);
5186    if (!ZeroWidth)
5187      CXXRecord->setEmpty(false);
5188
5189    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5190      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5191
5192      if (!RDecl->hasTrivialConstructor())
5193        CXXRecord->setHasTrivialConstructor(false);
5194      if (!RDecl->hasTrivialCopyConstructor())
5195        CXXRecord->setHasTrivialCopyConstructor(false);
5196      if (!RDecl->hasTrivialCopyAssignment())
5197        CXXRecord->setHasTrivialCopyAssignment(false);
5198      if (!RDecl->hasTrivialDestructor())
5199        CXXRecord->setHasTrivialDestructor(false);
5200
5201      // C++ 9.5p1: An object of a class with a non-trivial
5202      // constructor, a non-trivial copy constructor, a non-trivial
5203      // destructor, or a non-trivial copy assignment operator
5204      // cannot be a member of a union, nor can an array of such
5205      // objects.
5206      // TODO: C++0x alters this restriction significantly.
5207      if (Record->isUnion()) {
5208        // We check for copy constructors before constructors
5209        // because otherwise we'll never get complaints about
5210        // copy constructors.
5211
5212        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5213
5214        CXXSpecialMember member;
5215        if (!RDecl->hasTrivialCopyConstructor())
5216          member = CXXCopyConstructor;
5217        else if (!RDecl->hasTrivialConstructor())
5218          member = CXXDefaultConstructor;
5219        else if (!RDecl->hasTrivialCopyAssignment())
5220          member = CXXCopyAssignment;
5221        else if (!RDecl->hasTrivialDestructor())
5222          member = CXXDestructor;
5223        else
5224          member = invalid;
5225
5226        if (member != invalid) {
5227          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5228          DiagnoseNontrivial(RT, member);
5229          NewFD->setInvalidDecl();
5230        }
5231      }
5232    }
5233  }
5234
5235  // FIXME: We need to pass in the attributes given an AST
5236  // representation, not a parser representation.
5237  if (D)
5238    // FIXME: What to pass instead of TUScope?
5239    ProcessDeclAttributes(TUScope, NewFD, *D);
5240
5241  if (T.isObjCGCWeak())
5242    Diag(Loc, diag::warn_attribute_weak_on_field);
5243
5244  NewFD->setAccess(AS);
5245
5246  // C++ [dcl.init.aggr]p1:
5247  //   An aggregate is an array or a class (clause 9) with [...] no
5248  //   private or protected non-static data members (clause 11).
5249  // A POD must be an aggregate.
5250  if (getLangOptions().CPlusPlus &&
5251      (AS == AS_private || AS == AS_protected)) {
5252    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5253    CXXRecord->setAggregate(false);
5254    CXXRecord->setPOD(false);
5255  }
5256
5257  return NewFD;
5258}
5259
5260/// DiagnoseNontrivial - Given that a class has a non-trivial
5261/// special member, figure out why.
5262void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5263  QualType QT(T, 0U);
5264  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5265
5266  // Check whether the member was user-declared.
5267  switch (member) {
5268  case CXXDefaultConstructor:
5269    if (RD->hasUserDeclaredConstructor()) {
5270      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5271      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5272        const FunctionDecl *body = 0;
5273        ci->getBody(body);
5274        if (!body ||
5275            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5276          SourceLocation CtorLoc = ci->getLocation();
5277          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5278          return;
5279        }
5280      }
5281
5282      assert(0 && "found no user-declared constructors");
5283      return;
5284    }
5285    break;
5286
5287  case CXXCopyConstructor:
5288    if (RD->hasUserDeclaredCopyConstructor()) {
5289      SourceLocation CtorLoc =
5290        RD->getCopyConstructor(Context, 0)->getLocation();
5291      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5292      return;
5293    }
5294    break;
5295
5296  case CXXCopyAssignment:
5297    if (RD->hasUserDeclaredCopyAssignment()) {
5298      // FIXME: this should use the location of the copy
5299      // assignment, not the type.
5300      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5301      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5302      return;
5303    }
5304    break;
5305
5306  case CXXDestructor:
5307    if (RD->hasUserDeclaredDestructor()) {
5308      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5309      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5310      return;
5311    }
5312    break;
5313  }
5314
5315  typedef CXXRecordDecl::base_class_iterator base_iter;
5316
5317  // Virtual bases and members inhibit trivial copying/construction,
5318  // but not trivial destruction.
5319  if (member != CXXDestructor) {
5320    // Check for virtual bases.  vbases includes indirect virtual bases,
5321    // so we just iterate through the direct bases.
5322    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5323      if (bi->isVirtual()) {
5324        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5325        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5326        return;
5327      }
5328
5329    // Check for virtual methods.
5330    typedef CXXRecordDecl::method_iterator meth_iter;
5331    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5332         ++mi) {
5333      if (mi->isVirtual()) {
5334        SourceLocation MLoc = mi->getSourceRange().getBegin();
5335        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5336        return;
5337      }
5338    }
5339  }
5340
5341  bool (CXXRecordDecl::*hasTrivial)() const;
5342  switch (member) {
5343  case CXXDefaultConstructor:
5344    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5345  case CXXCopyConstructor:
5346    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5347  case CXXCopyAssignment:
5348    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5349  case CXXDestructor:
5350    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5351  default:
5352    assert(0 && "unexpected special member"); return;
5353  }
5354
5355  // Check for nontrivial bases (and recurse).
5356  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5357    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5358    assert(BaseRT && "Don't know how to handle dependent bases");
5359    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5360    if (!(BaseRecTy->*hasTrivial)()) {
5361      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5362      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5363      DiagnoseNontrivial(BaseRT, member);
5364      return;
5365    }
5366  }
5367
5368  // Check for nontrivial members (and recurse).
5369  typedef RecordDecl::field_iterator field_iter;
5370  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5371       ++fi) {
5372    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5373    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5374      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5375
5376      if (!(EltRD->*hasTrivial)()) {
5377        SourceLocation FLoc = (*fi)->getLocation();
5378        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5379        DiagnoseNontrivial(EltRT, member);
5380        return;
5381      }
5382    }
5383  }
5384
5385  assert(0 && "found no explanation for non-trivial member");
5386}
5387
5388/// TranslateIvarVisibility - Translate visibility from a token ID to an
5389///  AST enum value.
5390static ObjCIvarDecl::AccessControl
5391TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5392  switch (ivarVisibility) {
5393  default: assert(0 && "Unknown visitibility kind");
5394  case tok::objc_private: return ObjCIvarDecl::Private;
5395  case tok::objc_public: return ObjCIvarDecl::Public;
5396  case tok::objc_protected: return ObjCIvarDecl::Protected;
5397  case tok::objc_package: return ObjCIvarDecl::Package;
5398  }
5399}
5400
5401/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5402/// in order to create an IvarDecl object for it.
5403Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5404                                SourceLocation DeclStart,
5405                                DeclPtrTy IntfDecl,
5406                                Declarator &D, ExprTy *BitfieldWidth,
5407                                tok::ObjCKeywordKind Visibility) {
5408
5409  IdentifierInfo *II = D.getIdentifier();
5410  Expr *BitWidth = (Expr*)BitfieldWidth;
5411  SourceLocation Loc = DeclStart;
5412  if (II) Loc = D.getIdentifierLoc();
5413
5414  // FIXME: Unnamed fields can be handled in various different ways, for
5415  // example, unnamed unions inject all members into the struct namespace!
5416
5417  TypeSourceInfo *TInfo = 0;
5418  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5419
5420  if (BitWidth) {
5421    // 6.7.2.1p3, 6.7.2.1p4
5422    if (VerifyBitField(Loc, II, T, BitWidth)) {
5423      D.setInvalidType();
5424      DeleteExpr(BitWidth);
5425      BitWidth = 0;
5426    }
5427  } else {
5428    // Not a bitfield.
5429
5430    // validate II.
5431
5432  }
5433
5434  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5435  // than a variably modified type.
5436  if (T->isVariablyModifiedType()) {
5437    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5438    D.setInvalidType();
5439  }
5440
5441  // Get the visibility (access control) for this ivar.
5442  ObjCIvarDecl::AccessControl ac =
5443    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5444                                        : ObjCIvarDecl::None;
5445  // Must set ivar's DeclContext to its enclosing interface.
5446  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5447  DeclContext *EnclosingContext;
5448  if (ObjCImplementationDecl *IMPDecl =
5449      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5450    // Case of ivar declared in an implementation. Context is that of its class.
5451    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5452    assert(IDecl && "No class- ActOnIvar");
5453    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5454  } else
5455    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5456  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5457
5458  // Construct the decl.
5459  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5460                                             EnclosingContext, Loc, II, T,
5461                                             TInfo, ac, (Expr *)BitfieldWidth);
5462
5463  if (II) {
5464    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5465                                           ForRedeclaration);
5466    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5467        && !isa<TagDecl>(PrevDecl)) {
5468      Diag(Loc, diag::err_duplicate_member) << II;
5469      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5470      NewID->setInvalidDecl();
5471    }
5472  }
5473
5474  // Process attributes attached to the ivar.
5475  ProcessDeclAttributes(S, NewID, D);
5476
5477  if (D.isInvalidType())
5478    NewID->setInvalidDecl();
5479
5480  if (II) {
5481    // FIXME: When interfaces are DeclContexts, we'll need to add
5482    // these to the interface.
5483    S->AddDecl(DeclPtrTy::make(NewID));
5484    IdResolver.AddDecl(NewID);
5485  }
5486
5487  return DeclPtrTy::make(NewID);
5488}
5489
5490void Sema::ActOnFields(Scope* S,
5491                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5492                       DeclPtrTy *Fields, unsigned NumFields,
5493                       SourceLocation LBrac, SourceLocation RBrac,
5494                       AttributeList *Attr) {
5495  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5496  assert(EnclosingDecl && "missing record or interface decl");
5497
5498  // If the decl this is being inserted into is invalid, then it may be a
5499  // redeclaration or some other bogus case.  Don't try to add fields to it.
5500  if (EnclosingDecl->isInvalidDecl()) {
5501    // FIXME: Deallocate fields?
5502    return;
5503  }
5504
5505
5506  // Verify that all the fields are okay.
5507  unsigned NumNamedMembers = 0;
5508  llvm::SmallVector<FieldDecl*, 32> RecFields;
5509
5510  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5511  for (unsigned i = 0; i != NumFields; ++i) {
5512    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5513
5514    // Get the type for the field.
5515    Type *FDTy = FD->getType().getTypePtr();
5516
5517    if (!FD->isAnonymousStructOrUnion()) {
5518      // Remember all fields written by the user.
5519      RecFields.push_back(FD);
5520    }
5521
5522    // If the field is already invalid for some reason, don't emit more
5523    // diagnostics about it.
5524    if (FD->isInvalidDecl()) {
5525      EnclosingDecl->setInvalidDecl();
5526      continue;
5527    }
5528
5529    // C99 6.7.2.1p2:
5530    //   A structure or union shall not contain a member with
5531    //   incomplete or function type (hence, a structure shall not
5532    //   contain an instance of itself, but may contain a pointer to
5533    //   an instance of itself), except that the last member of a
5534    //   structure with more than one named member may have incomplete
5535    //   array type; such a structure (and any union containing,
5536    //   possibly recursively, a member that is such a structure)
5537    //   shall not be a member of a structure or an element of an
5538    //   array.
5539    if (FDTy->isFunctionType()) {
5540      // Field declared as a function.
5541      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5542        << FD->getDeclName();
5543      FD->setInvalidDecl();
5544      EnclosingDecl->setInvalidDecl();
5545      continue;
5546    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5547               Record && Record->isStruct()) {
5548      // Flexible array member.
5549      if (NumNamedMembers < 1) {
5550        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5551          << FD->getDeclName();
5552        FD->setInvalidDecl();
5553        EnclosingDecl->setInvalidDecl();
5554        continue;
5555      }
5556      // Okay, we have a legal flexible array member at the end of the struct.
5557      if (Record)
5558        Record->setHasFlexibleArrayMember(true);
5559    } else if (!FDTy->isDependentType() &&
5560               RequireCompleteType(FD->getLocation(), FD->getType(),
5561                                   diag::err_field_incomplete)) {
5562      // Incomplete type
5563      FD->setInvalidDecl();
5564      EnclosingDecl->setInvalidDecl();
5565      continue;
5566    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5567      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5568        // If this is a member of a union, then entire union becomes "flexible".
5569        if (Record && Record->isUnion()) {
5570          Record->setHasFlexibleArrayMember(true);
5571        } else {
5572          // If this is a struct/class and this is not the last element, reject
5573          // it.  Note that GCC supports variable sized arrays in the middle of
5574          // structures.
5575          if (i != NumFields-1)
5576            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5577              << FD->getDeclName() << FD->getType();
5578          else {
5579            // We support flexible arrays at the end of structs in
5580            // other structs as an extension.
5581            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5582              << FD->getDeclName();
5583            if (Record)
5584              Record->setHasFlexibleArrayMember(true);
5585          }
5586        }
5587      }
5588      if (Record && FDTTy->getDecl()->hasObjectMember())
5589        Record->setHasObjectMember(true);
5590    } else if (FDTy->isObjCInterfaceType()) {
5591      /// A field cannot be an Objective-c object
5592      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5593      FD->setInvalidDecl();
5594      EnclosingDecl->setInvalidDecl();
5595      continue;
5596    } else if (getLangOptions().ObjC1 &&
5597               getLangOptions().getGCMode() != LangOptions::NonGC &&
5598               Record &&
5599               (FD->getType()->isObjCObjectPointerType() ||
5600                FD->getType().isObjCGCStrong()))
5601      Record->setHasObjectMember(true);
5602    // Keep track of the number of named members.
5603    if (FD->getIdentifier())
5604      ++NumNamedMembers;
5605  }
5606
5607  // Okay, we successfully defined 'Record'.
5608  if (Record) {
5609    Record->completeDefinition(Context);
5610  } else {
5611    ObjCIvarDecl **ClsFields =
5612      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5613    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5614      ID->setIVarList(ClsFields, RecFields.size(), Context);
5615      ID->setLocEnd(RBrac);
5616      // Add ivar's to class's DeclContext.
5617      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5618        ClsFields[i]->setLexicalDeclContext(ID);
5619        ID->addDecl(ClsFields[i]);
5620      }
5621      // Must enforce the rule that ivars in the base classes may not be
5622      // duplicates.
5623      if (ID->getSuperClass()) {
5624        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5625             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5626          ObjCIvarDecl* Ivar = (*IVI);
5627
5628          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5629            ObjCIvarDecl* prevIvar =
5630              ID->getSuperClass()->lookupInstanceVariable(II);
5631            if (prevIvar) {
5632              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5633              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5634            }
5635          }
5636        }
5637      }
5638    } else if (ObjCImplementationDecl *IMPDecl =
5639                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5640      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5641      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5642        // Ivar declared in @implementation never belongs to the implementation.
5643        // Only it is in implementation's lexical context.
5644        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5645      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5646    }
5647  }
5648
5649  if (Attr)
5650    ProcessDeclAttributeList(S, Record, Attr);
5651}
5652
5653EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5654                                          EnumConstantDecl *LastEnumConst,
5655                                          SourceLocation IdLoc,
5656                                          IdentifierInfo *Id,
5657                                          ExprArg val) {
5658  Expr *Val = (Expr *)val.get();
5659
5660  llvm::APSInt EnumVal(32);
5661  QualType EltTy;
5662  if (Val) {
5663    if (Enum->isDependentType())
5664      EltTy = Context.DependentTy;
5665    else {
5666      // Make sure to promote the operand type to int.
5667      UsualUnaryConversions(Val);
5668      if (Val != val.get()) {
5669        val.release();
5670        val = Val;
5671      }
5672
5673      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5674      SourceLocation ExpLoc;
5675      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5676        Val = 0;
5677      } else {
5678        EltTy = Val->getType();
5679      }
5680    }
5681  }
5682
5683  if (!Val) {
5684    if (Enum->isDependentType())
5685      EltTy = Context.DependentTy;
5686    else if (LastEnumConst) {
5687      // Assign the last value + 1.
5688      EnumVal = LastEnumConst->getInitVal();
5689      ++EnumVal;
5690
5691      // Check for overflow on increment.
5692      if (EnumVal < LastEnumConst->getInitVal())
5693        Diag(IdLoc, diag::warn_enum_value_overflow);
5694
5695      EltTy = LastEnumConst->getType();
5696    } else {
5697      // First value, set to zero.
5698      EltTy = Context.IntTy;
5699      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5700      EnumVal.setIsSigned(true);
5701    }
5702  }
5703
5704  assert(!EltTy.isNull() && "Enum constant with NULL type");
5705
5706  val.release();
5707  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5708                                  Val, EnumVal);
5709}
5710
5711
5712Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5713                                        DeclPtrTy lastEnumConst,
5714                                        SourceLocation IdLoc,
5715                                        IdentifierInfo *Id,
5716                                        SourceLocation EqualLoc, ExprTy *val) {
5717  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5718  EnumConstantDecl *LastEnumConst =
5719    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5720  Expr *Val = static_cast<Expr*>(val);
5721
5722  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5723  // we find one that is.
5724  S = getNonFieldDeclScope(S);
5725
5726  // Verify that there isn't already something declared with this name in this
5727  // scope.
5728  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName,
5729                                         ForRedeclaration);
5730  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5731    // Maybe we will complain about the shadowed template parameter.
5732    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5733    // Just pretend that we didn't see the previous declaration.
5734    PrevDecl = 0;
5735  }
5736
5737  if (PrevDecl) {
5738    // When in C++, we may get a TagDecl with the same name; in this case the
5739    // enum constant will 'hide' the tag.
5740    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5741           "Received TagDecl when not in C++!");
5742    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5743      if (isa<EnumConstantDecl>(PrevDecl))
5744        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5745      else
5746        Diag(IdLoc, diag::err_redefinition) << Id;
5747      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5748      if (Val) Val->Destroy(Context);
5749      return DeclPtrTy();
5750    }
5751  }
5752
5753  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5754                                            IdLoc, Id, Owned(Val));
5755
5756  // Register this decl in the current scope stack.
5757  if (New) {
5758    New->setAccess(TheEnumDecl->getAccess());
5759    PushOnScopeChains(New, S);
5760  }
5761
5762  return DeclPtrTy::make(New);
5763}
5764
5765void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5766                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5767                         DeclPtrTy *Elements, unsigned NumElements,
5768                         Scope *S, AttributeList *Attr) {
5769  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5770  QualType EnumType = Context.getTypeDeclType(Enum);
5771
5772  if (Attr)
5773    ProcessDeclAttributeList(S, Enum, Attr);
5774
5775  if (Enum->isDependentType()) {
5776    for (unsigned i = 0; i != NumElements; ++i) {
5777      EnumConstantDecl *ECD =
5778        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5779      if (!ECD) continue;
5780
5781      ECD->setType(EnumType);
5782    }
5783
5784    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5785    return;
5786  }
5787
5788  // TODO: If the result value doesn't fit in an int, it must be a long or long
5789  // long value.  ISO C does not support this, but GCC does as an extension,
5790  // emit a warning.
5791  unsigned IntWidth = Context.Target.getIntWidth();
5792  unsigned CharWidth = Context.Target.getCharWidth();
5793  unsigned ShortWidth = Context.Target.getShortWidth();
5794
5795  // Verify that all the values are okay, compute the size of the values, and
5796  // reverse the list.
5797  unsigned NumNegativeBits = 0;
5798  unsigned NumPositiveBits = 0;
5799
5800  // Keep track of whether all elements have type int.
5801  bool AllElementsInt = true;
5802
5803  for (unsigned i = 0; i != NumElements; ++i) {
5804    EnumConstantDecl *ECD =
5805      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5806    if (!ECD) continue;  // Already issued a diagnostic.
5807
5808    // If the enum value doesn't fit in an int, emit an extension warning.
5809    const llvm::APSInt &InitVal = ECD->getInitVal();
5810    assert(InitVal.getBitWidth() >= IntWidth &&
5811           "Should have promoted value to int");
5812    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5813      llvm::APSInt V(InitVal);
5814      V.trunc(IntWidth);
5815      V.extend(InitVal.getBitWidth());
5816      if (V != InitVal)
5817        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5818          << InitVal.toString(10);
5819    }
5820
5821    // Keep track of the size of positive and negative values.
5822    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5823      NumPositiveBits = std::max(NumPositiveBits,
5824                                 (unsigned)InitVal.getActiveBits());
5825    else
5826      NumNegativeBits = std::max(NumNegativeBits,
5827                                 (unsigned)InitVal.getMinSignedBits());
5828
5829    // Keep track of whether every enum element has type int (very commmon).
5830    if (AllElementsInt)
5831      AllElementsInt = ECD->getType() == Context.IntTy;
5832  }
5833
5834  // Figure out the type that should be used for this enum.
5835  // FIXME: Support -fshort-enums.
5836  QualType BestType;
5837  unsigned BestWidth;
5838
5839  // C++0x N3000 [conv.prom]p3:
5840  //   An rvalue of an unscoped enumeration type whose underlying
5841  //   type is not fixed can be converted to an rvalue of the first
5842  //   of the following types that can represent all the values of
5843  //   the enumeration: int, unsigned int, long int, unsigned long
5844  //   int, long long int, or unsigned long long int.
5845  // C99 6.4.4.3p2:
5846  //   An identifier declared as an enumeration constant has type int.
5847  // The C99 rule is modified by a gcc extension
5848  QualType BestPromotionType;
5849
5850  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5851
5852  if (NumNegativeBits) {
5853    // If there is a negative value, figure out the smallest integer type (of
5854    // int/long/longlong) that fits.
5855    // If it's packed, check also if it fits a char or a short.
5856    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5857      BestType = Context.SignedCharTy;
5858      BestWidth = CharWidth;
5859    } else if (Packed && NumNegativeBits <= ShortWidth &&
5860               NumPositiveBits < ShortWidth) {
5861      BestType = Context.ShortTy;
5862      BestWidth = ShortWidth;
5863    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5864      BestType = Context.IntTy;
5865      BestWidth = IntWidth;
5866    } else {
5867      BestWidth = Context.Target.getLongWidth();
5868
5869      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5870        BestType = Context.LongTy;
5871      } else {
5872        BestWidth = Context.Target.getLongLongWidth();
5873
5874        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5875          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5876        BestType = Context.LongLongTy;
5877      }
5878    }
5879    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5880  } else {
5881    // If there is no negative value, figure out which of uint, ulong, ulonglong
5882    // fits.
5883    // If it's packed, check also if it fits a char or a short.
5884    if (Packed && NumPositiveBits <= CharWidth) {
5885      BestType = Context.UnsignedCharTy;
5886      BestPromotionType = Context.IntTy;
5887      BestWidth = CharWidth;
5888    } else if (Packed && NumPositiveBits <= ShortWidth) {
5889      BestType = Context.UnsignedShortTy;
5890      BestPromotionType = Context.IntTy;
5891      BestWidth = ShortWidth;
5892    } else if (NumPositiveBits <= IntWidth) {
5893      BestType = Context.UnsignedIntTy;
5894      BestWidth = IntWidth;
5895      BestPromotionType = (NumPositiveBits == BestWidth
5896                           ? Context.UnsignedIntTy : Context.IntTy);
5897    } else if (NumPositiveBits <=
5898               (BestWidth = Context.Target.getLongWidth())) {
5899      BestType = Context.UnsignedLongTy;
5900      BestPromotionType = (NumPositiveBits == BestWidth
5901                           ? Context.UnsignedLongTy : Context.LongTy);
5902    } else {
5903      BestWidth = Context.Target.getLongLongWidth();
5904      assert(NumPositiveBits <= BestWidth &&
5905             "How could an initializer get larger than ULL?");
5906      BestType = Context.UnsignedLongLongTy;
5907      BestPromotionType = (NumPositiveBits == BestWidth
5908                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5909    }
5910  }
5911
5912  // If we're in C and the promotion type is larger than an int, just
5913  // use the underlying type, which is generally the unsigned integer
5914  // type of the same rank as the promotion type.  This is how the gcc
5915  // extension works.
5916  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5917    BestPromotionType = BestType;
5918
5919  // Loop over all of the enumerator constants, changing their types to match
5920  // the type of the enum if needed.
5921  for (unsigned i = 0; i != NumElements; ++i) {
5922    EnumConstantDecl *ECD =
5923      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5924    if (!ECD) continue;  // Already issued a diagnostic.
5925
5926    // Standard C says the enumerators have int type, but we allow, as an
5927    // extension, the enumerators to be larger than int size.  If each
5928    // enumerator value fits in an int, type it as an int, otherwise type it the
5929    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5930    // that X has type 'int', not 'unsigned'.
5931    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5932      continue;
5933
5934    // Determine whether the value fits into an int.
5935    llvm::APSInt InitVal = ECD->getInitVal();
5936    bool FitsInInt;
5937    if (InitVal.isUnsigned() || !InitVal.isNegative())
5938      FitsInInt = InitVal.getActiveBits() < IntWidth;
5939    else
5940      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5941
5942    // If it fits into an integer type, force it.  Otherwise force it to match
5943    // the enum decl type.
5944    QualType NewTy;
5945    unsigned NewWidth;
5946    bool NewSign;
5947    if (FitsInInt && !getLangOptions().CPlusPlus) {
5948      NewTy = Context.IntTy;
5949      NewWidth = IntWidth;
5950      NewSign = true;
5951    } else if (ECD->getType() == BestType) {
5952      // Already the right type!
5953      if (getLangOptions().CPlusPlus)
5954        // C++ [dcl.enum]p4: Following the closing brace of an
5955        // enum-specifier, each enumerator has the type of its
5956        // enumeration.
5957        ECD->setType(EnumType);
5958      continue;
5959    } else {
5960      NewTy = BestType;
5961      NewWidth = BestWidth;
5962      NewSign = BestType->isSignedIntegerType();
5963    }
5964
5965    // Adjust the APSInt value.
5966    InitVal.extOrTrunc(NewWidth);
5967    InitVal.setIsSigned(NewSign);
5968    ECD->setInitVal(InitVal);
5969
5970    // Adjust the Expr initializer and type.
5971    if (ECD->getInitExpr())
5972      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5973                                                      CastExpr::CK_IntegralCast,
5974                                                      ECD->getInitExpr(),
5975                                                      /*isLvalue=*/false));
5976    if (getLangOptions().CPlusPlus)
5977      // C++ [dcl.enum]p4: Following the closing brace of an
5978      // enum-specifier, each enumerator has the type of its
5979      // enumeration.
5980      ECD->setType(EnumType);
5981    else
5982      ECD->setType(NewTy);
5983  }
5984
5985  Enum->completeDefinition(Context, BestType, BestPromotionType);
5986}
5987
5988Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5989                                            ExprArg expr) {
5990  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5991
5992  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5993                                                   Loc, AsmString);
5994  CurContext->addDecl(New);
5995  return DeclPtrTy::make(New);
5996}
5997
5998void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5999                             SourceLocation PragmaLoc,
6000                             SourceLocation NameLoc) {
6001  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6002
6003  if (PrevDecl) {
6004    PrevDecl->addAttr(::new (Context) WeakAttr());
6005  } else {
6006    (void)WeakUndeclaredIdentifiers.insert(
6007      std::pair<IdentifierInfo*,WeakInfo>
6008        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6009  }
6010}
6011
6012void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6013                                IdentifierInfo* AliasName,
6014                                SourceLocation PragmaLoc,
6015                                SourceLocation NameLoc,
6016                                SourceLocation AliasNameLoc) {
6017  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6018  WeakInfo W = WeakInfo(Name, NameLoc);
6019
6020  if (PrevDecl) {
6021    if (!PrevDecl->hasAttr<AliasAttr>())
6022      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6023        DeclApplyPragmaWeak(TUScope, ND, W);
6024  } else {
6025    (void)WeakUndeclaredIdentifiers.insert(
6026      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6027  }
6028}
6029