SemaDecl.cpp revision 075f8f1b6bed4d1b224c74f87508534cc6392ce6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/AST/CharUnits.h"
30#include "clang/Sema/DeclSpec.h"
31#include "clang/Sema/ParsedTemplate.h"
32#include "clang/Parse/ParseDiagnostic.h"
33#include "clang/Basic/PartialDiagnostic.h"
34#include "clang/Basic/SourceManager.h"
35#include "clang/Basic/TargetInfo.h"
36// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
37#include "clang/Lex/Preprocessor.h"
38#include "clang/Lex/HeaderSearch.h"
39#include "llvm/ADT/Triple.h"
40#include <algorithm>
41#include <cstring>
42#include <functional>
43using namespace clang;
44using namespace sema;
45
46Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
47  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
48}
49
50/// \brief If the identifier refers to a type name within this scope,
51/// return the declaration of that type.
52///
53/// This routine performs ordinary name lookup of the identifier II
54/// within the given scope, with optional C++ scope specifier SS, to
55/// determine whether the name refers to a type. If so, returns an
56/// opaque pointer (actually a QualType) corresponding to that
57/// type. Otherwise, returns NULL.
58///
59/// If name lookup results in an ambiguity, this routine will complain
60/// and then return NULL.
61ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
62                             Scope *S, CXXScopeSpec *SS,
63                             bool isClassName,
64                             ParsedType ObjectTypePtr) {
65  // Determine where we will perform name lookup.
66  DeclContext *LookupCtx = 0;
67  if (ObjectTypePtr) {
68    QualType ObjectType = ObjectTypePtr.get();
69    if (ObjectType->isRecordType())
70      LookupCtx = computeDeclContext(ObjectType);
71  } else if (SS && SS->isNotEmpty()) {
72    LookupCtx = computeDeclContext(*SS, false);
73
74    if (!LookupCtx) {
75      if (isDependentScopeSpecifier(*SS)) {
76        // C++ [temp.res]p3:
77        //   A qualified-id that refers to a type and in which the
78        //   nested-name-specifier depends on a template-parameter (14.6.2)
79        //   shall be prefixed by the keyword typename to indicate that the
80        //   qualified-id denotes a type, forming an
81        //   elaborated-type-specifier (7.1.5.3).
82        //
83        // We therefore do not perform any name lookup if the result would
84        // refer to a member of an unknown specialization.
85        if (!isClassName)
86          return ParsedType();
87
88        // We know from the grammar that this name refers to a type,
89        // so build a dependent node to describe the type.
90        QualType T =
91          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
92                            SourceLocation(), SS->getRange(), NameLoc);
93        return ParsedType::make(T);
94      }
95
96      return ParsedType();
97    }
98
99    if (!LookupCtx->isDependentContext() &&
100        RequireCompleteDeclContext(*SS, LookupCtx))
101      return ParsedType();
102  }
103
104  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
105  // lookup for class-names.
106  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
107                                      LookupOrdinaryName;
108  LookupResult Result(*this, &II, NameLoc, Kind);
109  if (LookupCtx) {
110    // Perform "qualified" name lookup into the declaration context we
111    // computed, which is either the type of the base of a member access
112    // expression or the declaration context associated with a prior
113    // nested-name-specifier.
114    LookupQualifiedName(Result, LookupCtx);
115
116    if (ObjectTypePtr && Result.empty()) {
117      // C++ [basic.lookup.classref]p3:
118      //   If the unqualified-id is ~type-name, the type-name is looked up
119      //   in the context of the entire postfix-expression. If the type T of
120      //   the object expression is of a class type C, the type-name is also
121      //   looked up in the scope of class C. At least one of the lookups shall
122      //   find a name that refers to (possibly cv-qualified) T.
123      LookupName(Result, S);
124    }
125  } else {
126    // Perform unqualified name lookup.
127    LookupName(Result, S);
128  }
129
130  NamedDecl *IIDecl = 0;
131  switch (Result.getResultKind()) {
132  case LookupResult::NotFound:
133  case LookupResult::NotFoundInCurrentInstantiation:
134  case LookupResult::FoundOverloaded:
135  case LookupResult::FoundUnresolvedValue:
136    Result.suppressDiagnostics();
137    return ParsedType();
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return ParsedType();
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return ParsedType();
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    if (T.isNull())
190      T = Context.getTypeDeclType(TD);
191
192    if (SS)
193      T = getElaboratedType(ETK_None, *SS, T);
194
195  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
196    T = Context.getObjCInterfaceType(IDecl);
197  } else {
198    // If it's not plausibly a type, suppress diagnostics.
199    Result.suppressDiagnostics();
200    return ParsedType();
201  }
202
203  return ParsedType::make(T);
204}
205
206/// isTagName() - This method is called *for error recovery purposes only*
207/// to determine if the specified name is a valid tag name ("struct foo").  If
208/// so, this returns the TST for the tag corresponding to it (TST_enum,
209/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
210/// where the user forgot to specify the tag.
211DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
212  // Do a tag name lookup in this scope.
213  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
214  LookupName(R, S, false);
215  R.suppressDiagnostics();
216  if (R.getResultKind() == LookupResult::Found)
217    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
218      switch (TD->getTagKind()) {
219      default:         return DeclSpec::TST_unspecified;
220      case TTK_Struct: return DeclSpec::TST_struct;
221      case TTK_Union:  return DeclSpec::TST_union;
222      case TTK_Class:  return DeclSpec::TST_class;
223      case TTK_Enum:   return DeclSpec::TST_enum;
224      }
225    }
226
227  return DeclSpec::TST_unspecified;
228}
229
230bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
231                                   SourceLocation IILoc,
232                                   Scope *S,
233                                   CXXScopeSpec *SS,
234                                   ParsedType &SuggestedType) {
235  // We don't have anything to suggest (yet).
236  SuggestedType = ParsedType();
237
238  // There may have been a typo in the name of the type. Look up typo
239  // results, in case we have something that we can suggest.
240  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
241                      NotForRedeclaration);
242
243  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
244    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
245      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
246          !Result->isInvalidDecl()) {
247        // We found a similarly-named type or interface; suggest that.
248        if (!SS || !SS->isSet())
249          Diag(IILoc, diag::err_unknown_typename_suggest)
250            << &II << Lookup.getLookupName()
251            << FixItHint::CreateReplacement(SourceRange(IILoc),
252                                            Result->getNameAsString());
253        else if (DeclContext *DC = computeDeclContext(*SS, false))
254          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
255            << &II << DC << Lookup.getLookupName() << SS->getRange()
256            << FixItHint::CreateReplacement(SourceRange(IILoc),
257                                            Result->getNameAsString());
258        else
259          llvm_unreachable("could not have corrected a typo here");
260
261        Diag(Result->getLocation(), diag::note_previous_decl)
262          << Result->getDeclName();
263
264        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
265        return true;
266      }
267    } else if (Lookup.empty()) {
268      // We corrected to a keyword.
269      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
270      Diag(IILoc, diag::err_unknown_typename_suggest)
271        << &II << Corrected;
272      return true;
273    }
274  }
275
276  if (getLangOptions().CPlusPlus) {
277    // See if II is a class template that the user forgot to pass arguments to.
278    UnqualifiedId Name;
279    Name.setIdentifier(&II, IILoc);
280    CXXScopeSpec EmptySS;
281    TemplateTy TemplateResult;
282    bool MemberOfUnknownSpecialization;
283    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
284                       Name, ParsedType(), true, TemplateResult,
285                       MemberOfUnknownSpecialization) == TNK_Type_template) {
286      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
287      Diag(IILoc, diag::err_template_missing_args) << TplName;
288      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
289        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
290          << TplDecl->getTemplateParameters()->getSourceRange();
291      }
292      return true;
293    }
294  }
295
296  // FIXME: Should we move the logic that tries to recover from a missing tag
297  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
298
299  if (!SS || (!SS->isSet() && !SS->isInvalid()))
300    Diag(IILoc, diag::err_unknown_typename) << &II;
301  else if (DeclContext *DC = computeDeclContext(*SS, false))
302    Diag(IILoc, diag::err_typename_nested_not_found)
303      << &II << DC << SS->getRange();
304  else if (isDependentScopeSpecifier(*SS)) {
305    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
306      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
307      << SourceRange(SS->getRange().getBegin(), IILoc)
308      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
309    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
310  } else {
311    assert(SS && SS->isInvalid() &&
312           "Invalid scope specifier has already been diagnosed");
313  }
314
315  return true;
316}
317
318// Determines the context to return to after temporarily entering a
319// context.  This depends in an unnecessarily complicated way on the
320// exact ordering of callbacks from the parser.
321DeclContext *Sema::getContainingDC(DeclContext *DC) {
322
323  // Functions defined inline within classes aren't parsed until we've
324  // finished parsing the top-level class, so the top-level class is
325  // the context we'll need to return to.
326  if (isa<FunctionDecl>(DC)) {
327    DC = DC->getLexicalParent();
328
329    // A function not defined within a class will always return to its
330    // lexical context.
331    if (!isa<CXXRecordDecl>(DC))
332      return DC;
333
334    // A C++ inline method/friend is parsed *after* the topmost class
335    // it was declared in is fully parsed ("complete");  the topmost
336    // class is the context we need to return to.
337    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
338      DC = RD;
339
340    // Return the declaration context of the topmost class the inline method is
341    // declared in.
342    return DC;
343  }
344
345  // ObjCMethodDecls are parsed (for some reason) outside the context
346  // of the class.
347  if (isa<ObjCMethodDecl>(DC))
348    return DC->getLexicalParent()->getLexicalParent();
349
350  return DC->getLexicalParent();
351}
352
353void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
354  assert(getContainingDC(DC) == CurContext &&
355      "The next DeclContext should be lexically contained in the current one.");
356  CurContext = DC;
357  S->setEntity(DC);
358}
359
360void Sema::PopDeclContext() {
361  assert(CurContext && "DeclContext imbalance!");
362
363  CurContext = getContainingDC(CurContext);
364  assert(CurContext && "Popped translation unit!");
365}
366
367/// EnterDeclaratorContext - Used when we must lookup names in the context
368/// of a declarator's nested name specifier.
369///
370void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
371  // C++0x [basic.lookup.unqual]p13:
372  //   A name used in the definition of a static data member of class
373  //   X (after the qualified-id of the static member) is looked up as
374  //   if the name was used in a member function of X.
375  // C++0x [basic.lookup.unqual]p14:
376  //   If a variable member of a namespace is defined outside of the
377  //   scope of its namespace then any name used in the definition of
378  //   the variable member (after the declarator-id) is looked up as
379  //   if the definition of the variable member occurred in its
380  //   namespace.
381  // Both of these imply that we should push a scope whose context
382  // is the semantic context of the declaration.  We can't use
383  // PushDeclContext here because that context is not necessarily
384  // lexically contained in the current context.  Fortunately,
385  // the containing scope should have the appropriate information.
386
387  assert(!S->getEntity() && "scope already has entity");
388
389#ifndef NDEBUG
390  Scope *Ancestor = S->getParent();
391  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
392  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
393#endif
394
395  CurContext = DC;
396  S->setEntity(DC);
397}
398
399void Sema::ExitDeclaratorContext(Scope *S) {
400  assert(S->getEntity() == CurContext && "Context imbalance!");
401
402  // Switch back to the lexical context.  The safety of this is
403  // enforced by an assert in EnterDeclaratorContext.
404  Scope *Ancestor = S->getParent();
405  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
406  CurContext = (DeclContext*) Ancestor->getEntity();
407
408  // We don't need to do anything with the scope, which is going to
409  // disappear.
410}
411
412/// \brief Determine whether we allow overloading of the function
413/// PrevDecl with another declaration.
414///
415/// This routine determines whether overloading is possible, not
416/// whether some new function is actually an overload. It will return
417/// true in C++ (where we can always provide overloads) or, as an
418/// extension, in C when the previous function is already an
419/// overloaded function declaration or has the "overloadable"
420/// attribute.
421static bool AllowOverloadingOfFunction(LookupResult &Previous,
422                                       ASTContext &Context) {
423  if (Context.getLangOptions().CPlusPlus)
424    return true;
425
426  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
427    return true;
428
429  return (Previous.getResultKind() == LookupResult::Found
430          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
431}
432
433/// Add this decl to the scope shadowed decl chains.
434void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
435  // Move up the scope chain until we find the nearest enclosing
436  // non-transparent context. The declaration will be introduced into this
437  // scope.
438  while (S->getEntity() &&
439         ((DeclContext *)S->getEntity())->isTransparentContext())
440    S = S->getParent();
441
442  // Add scoped declarations into their context, so that they can be
443  // found later. Declarations without a context won't be inserted
444  // into any context.
445  if (AddToContext)
446    CurContext->addDecl(D);
447
448  // Out-of-line definitions shouldn't be pushed into scope in C++.
449  // Out-of-line variable and function definitions shouldn't even in C.
450  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
451      D->isOutOfLine())
452    return;
453
454  // Template instantiations should also not be pushed into scope.
455  if (isa<FunctionDecl>(D) &&
456      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
457    return;
458
459  // If this replaces anything in the current scope,
460  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
461                               IEnd = IdResolver.end();
462  for (; I != IEnd; ++I) {
463    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
464      S->RemoveDecl(*I);
465      IdResolver.RemoveDecl(*I);
466
467      // Should only need to replace one decl.
468      break;
469    }
470  }
471
472  S->AddDecl(D);
473  IdResolver.AddDecl(D);
474}
475
476bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
477  return IdResolver.isDeclInScope(D, Ctx, Context, S);
478}
479
480Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
481  DeclContext *TargetDC = DC->getPrimaryContext();
482  do {
483    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
484      if (ScopeDC->getPrimaryContext() == TargetDC)
485        return S;
486  } while ((S = S->getParent()));
487
488  return 0;
489}
490
491static bool isOutOfScopePreviousDeclaration(NamedDecl *,
492                                            DeclContext*,
493                                            ASTContext&);
494
495/// Filters out lookup results that don't fall within the given scope
496/// as determined by isDeclInScope.
497static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
498                                 DeclContext *Ctx, Scope *S,
499                                 bool ConsiderLinkage) {
500  LookupResult::Filter F = R.makeFilter();
501  while (F.hasNext()) {
502    NamedDecl *D = F.next();
503
504    if (SemaRef.isDeclInScope(D, Ctx, S))
505      continue;
506
507    if (ConsiderLinkage &&
508        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
509      continue;
510
511    F.erase();
512  }
513
514  F.done();
515}
516
517static bool isUsingDecl(NamedDecl *D) {
518  return isa<UsingShadowDecl>(D) ||
519         isa<UnresolvedUsingTypenameDecl>(D) ||
520         isa<UnresolvedUsingValueDecl>(D);
521}
522
523/// Removes using shadow declarations from the lookup results.
524static void RemoveUsingDecls(LookupResult &R) {
525  LookupResult::Filter F = R.makeFilter();
526  while (F.hasNext())
527    if (isUsingDecl(F.next()))
528      F.erase();
529
530  F.done();
531}
532
533/// \brief Check for this common pattern:
534/// @code
535/// class S {
536///   S(const S&); // DO NOT IMPLEMENT
537///   void operator=(const S&); // DO NOT IMPLEMENT
538/// };
539/// @endcode
540static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
541  // FIXME: Should check for private access too but access is set after we get
542  // the decl here.
543  if (D->isThisDeclarationADefinition())
544    return false;
545
546  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
547    return CD->isCopyConstructor();
548  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
549    return Method->isCopyAssignmentOperator();
550  return false;
551}
552
553bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
554  assert(D);
555
556  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
557    return false;
558
559  // Ignore class templates.
560  if (D->getDeclContext()->isDependentContext())
561    return false;
562
563  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
564    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
565      return false;
566
567    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
568      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
569        return false;
570    } else {
571      // 'static inline' functions are used in headers; don't warn.
572      if (FD->getStorageClass() == SC_Static &&
573          FD->isInlineSpecified())
574        return false;
575    }
576
577    if (FD->isThisDeclarationADefinition() &&
578        Context.DeclMustBeEmitted(FD))
579      return false;
580
581  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
582    if (!VD->isFileVarDecl() ||
583        VD->getType().isConstant(Context) ||
584        Context.DeclMustBeEmitted(VD))
585      return false;
586
587    if (VD->isStaticDataMember() &&
588        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
589      return false;
590
591  } else {
592    return false;
593  }
594
595  // Only warn for unused decls internal to the translation unit.
596  if (D->getLinkage() == ExternalLinkage)
597    return false;
598
599  return true;
600}
601
602void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
603  if (!D)
604    return;
605
606  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
607    const FunctionDecl *First = FD->getFirstDeclaration();
608    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
609      return; // First should already be in the vector.
610  }
611
612  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
613    const VarDecl *First = VD->getFirstDeclaration();
614    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
615      return; // First should already be in the vector.
616  }
617
618   if (ShouldWarnIfUnusedFileScopedDecl(D))
619     UnusedFileScopedDecls.push_back(D);
620 }
621
622static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
623  if (D->isInvalidDecl())
624    return false;
625
626  if (D->isUsed() || D->hasAttr<UnusedAttr>())
627    return false;
628
629  // White-list anything that isn't a local variable.
630  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
631      !D->getDeclContext()->isFunctionOrMethod())
632    return false;
633
634  // Types of valid local variables should be complete, so this should succeed.
635  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
636
637    // White-list anything with an __attribute__((unused)) type.
638    QualType Ty = VD->getType();
639
640    // Only look at the outermost level of typedef.
641    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
642      if (TT->getDecl()->hasAttr<UnusedAttr>())
643        return false;
644    }
645
646    // If we failed to complete the type for some reason, or if the type is
647    // dependent, don't diagnose the variable.
648    if (Ty->isIncompleteType() || Ty->isDependentType())
649      return false;
650
651    if (const TagType *TT = Ty->getAs<TagType>()) {
652      const TagDecl *Tag = TT->getDecl();
653      if (Tag->hasAttr<UnusedAttr>())
654        return false;
655
656      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
657        // FIXME: Checking for the presence of a user-declared constructor
658        // isn't completely accurate; we'd prefer to check that the initializer
659        // has no side effects.
660        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
661          return false;
662      }
663    }
664
665    // TODO: __attribute__((unused)) templates?
666  }
667
668  return true;
669}
670
671void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
672  if (!ShouldDiagnoseUnusedDecl(D))
673    return;
674
675  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
676    Diag(D->getLocation(), diag::warn_unused_exception_param)
677    << D->getDeclName();
678  else
679    Diag(D->getLocation(), diag::warn_unused_variable)
680    << D->getDeclName();
681}
682
683void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
684  if (S->decl_empty()) return;
685  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
686         "Scope shouldn't contain decls!");
687
688  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
689       I != E; ++I) {
690    Decl *TmpD = (*I);
691    assert(TmpD && "This decl didn't get pushed??");
692
693    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
694    NamedDecl *D = cast<NamedDecl>(TmpD);
695
696    if (!D->getDeclName()) continue;
697
698    // Diagnose unused variables in this scope.
699    if (!S->hasErrorOccurred())
700      DiagnoseUnusedDecl(D);
701
702    // Remove this name from our lexical scope.
703    IdResolver.RemoveDecl(D);
704  }
705}
706
707/// \brief Look for an Objective-C class in the translation unit.
708///
709/// \param Id The name of the Objective-C class we're looking for. If
710/// typo-correction fixes this name, the Id will be updated
711/// to the fixed name.
712///
713/// \param IdLoc The location of the name in the translation unit.
714///
715/// \param TypoCorrection If true, this routine will attempt typo correction
716/// if there is no class with the given name.
717///
718/// \returns The declaration of the named Objective-C class, or NULL if the
719/// class could not be found.
720ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
721                                              SourceLocation IdLoc,
722                                              bool TypoCorrection) {
723  // The third "scope" argument is 0 since we aren't enabling lazy built-in
724  // creation from this context.
725  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
726
727  if (!IDecl && TypoCorrection) {
728    // Perform typo correction at the given location, but only if we
729    // find an Objective-C class name.
730    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
731    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
732        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
733      Diag(IdLoc, diag::err_undef_interface_suggest)
734        << Id << IDecl->getDeclName()
735        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
736      Diag(IDecl->getLocation(), diag::note_previous_decl)
737        << IDecl->getDeclName();
738
739      Id = IDecl->getIdentifier();
740    }
741  }
742
743  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
744}
745
746/// getNonFieldDeclScope - Retrieves the innermost scope, starting
747/// from S, where a non-field would be declared. This routine copes
748/// with the difference between C and C++ scoping rules in structs and
749/// unions. For example, the following code is well-formed in C but
750/// ill-formed in C++:
751/// @code
752/// struct S6 {
753///   enum { BAR } e;
754/// };
755///
756/// void test_S6() {
757///   struct S6 a;
758///   a.e = BAR;
759/// }
760/// @endcode
761/// For the declaration of BAR, this routine will return a different
762/// scope. The scope S will be the scope of the unnamed enumeration
763/// within S6. In C++, this routine will return the scope associated
764/// with S6, because the enumeration's scope is a transparent
765/// context but structures can contain non-field names. In C, this
766/// routine will return the translation unit scope, since the
767/// enumeration's scope is a transparent context and structures cannot
768/// contain non-field names.
769Scope *Sema::getNonFieldDeclScope(Scope *S) {
770  while (((S->getFlags() & Scope::DeclScope) == 0) ||
771         (S->getEntity() &&
772          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
773         (S->isClassScope() && !getLangOptions().CPlusPlus))
774    S = S->getParent();
775  return S;
776}
777
778/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
779/// file scope.  lazily create a decl for it. ForRedeclaration is true
780/// if we're creating this built-in in anticipation of redeclaring the
781/// built-in.
782NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
783                                     Scope *S, bool ForRedeclaration,
784                                     SourceLocation Loc) {
785  Builtin::ID BID = (Builtin::ID)bid;
786
787  ASTContext::GetBuiltinTypeError Error;
788  QualType R = Context.GetBuiltinType(BID, Error);
789  switch (Error) {
790  case ASTContext::GE_None:
791    // Okay
792    break;
793
794  case ASTContext::GE_Missing_stdio:
795    if (ForRedeclaration)
796      Diag(Loc, diag::err_implicit_decl_requires_stdio)
797        << Context.BuiltinInfo.GetName(BID);
798    return 0;
799
800  case ASTContext::GE_Missing_setjmp:
801    if (ForRedeclaration)
802      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
803        << Context.BuiltinInfo.GetName(BID);
804    return 0;
805  }
806
807  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
808    Diag(Loc, diag::ext_implicit_lib_function_decl)
809      << Context.BuiltinInfo.GetName(BID)
810      << R;
811    if (Context.BuiltinInfo.getHeaderName(BID) &&
812        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
813          != Diagnostic::Ignored)
814      Diag(Loc, diag::note_please_include_header)
815        << Context.BuiltinInfo.getHeaderName(BID)
816        << Context.BuiltinInfo.GetName(BID);
817  }
818
819  FunctionDecl *New = FunctionDecl::Create(Context,
820                                           Context.getTranslationUnitDecl(),
821                                           Loc, II, R, /*TInfo=*/0,
822                                           SC_Extern,
823                                           SC_None, false,
824                                           /*hasPrototype=*/true);
825  New->setImplicit();
826
827  // Create Decl objects for each parameter, adding them to the
828  // FunctionDecl.
829  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
830    llvm::SmallVector<ParmVarDecl*, 16> Params;
831    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
832      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
833                                           FT->getArgType(i), /*TInfo=*/0,
834                                           SC_None, SC_None, 0));
835    New->setParams(Params.data(), Params.size());
836  }
837
838  AddKnownFunctionAttributes(New);
839
840  // TUScope is the translation-unit scope to insert this function into.
841  // FIXME: This is hideous. We need to teach PushOnScopeChains to
842  // relate Scopes to DeclContexts, and probably eliminate CurContext
843  // entirely, but we're not there yet.
844  DeclContext *SavedContext = CurContext;
845  CurContext = Context.getTranslationUnitDecl();
846  PushOnScopeChains(New, TUScope);
847  CurContext = SavedContext;
848  return New;
849}
850
851/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
852/// same name and scope as a previous declaration 'Old'.  Figure out
853/// how to resolve this situation, merging decls or emitting
854/// diagnostics as appropriate. If there was an error, set New to be invalid.
855///
856void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
857  // If the new decl is known invalid already, don't bother doing any
858  // merging checks.
859  if (New->isInvalidDecl()) return;
860
861  // Allow multiple definitions for ObjC built-in typedefs.
862  // FIXME: Verify the underlying types are equivalent!
863  if (getLangOptions().ObjC1) {
864    const IdentifierInfo *TypeID = New->getIdentifier();
865    switch (TypeID->getLength()) {
866    default: break;
867    case 2:
868      if (!TypeID->isStr("id"))
869        break;
870      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
871      // Install the built-in type for 'id', ignoring the current definition.
872      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
873      return;
874    case 5:
875      if (!TypeID->isStr("Class"))
876        break;
877      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
878      // Install the built-in type for 'Class', ignoring the current definition.
879      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
880      return;
881    case 3:
882      if (!TypeID->isStr("SEL"))
883        break;
884      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
885      // Install the built-in type for 'SEL', ignoring the current definition.
886      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
887      return;
888    case 8:
889      if (!TypeID->isStr("Protocol"))
890        break;
891      Context.setObjCProtoType(New->getUnderlyingType());
892      return;
893    }
894    // Fall through - the typedef name was not a builtin type.
895  }
896
897  // Verify the old decl was also a type.
898  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
899  if (!Old) {
900    Diag(New->getLocation(), diag::err_redefinition_different_kind)
901      << New->getDeclName();
902
903    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
904    if (OldD->getLocation().isValid())
905      Diag(OldD->getLocation(), diag::note_previous_definition);
906
907    return New->setInvalidDecl();
908  }
909
910  // If the old declaration is invalid, just give up here.
911  if (Old->isInvalidDecl())
912    return New->setInvalidDecl();
913
914  // Determine the "old" type we'll use for checking and diagnostics.
915  QualType OldType;
916  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
917    OldType = OldTypedef->getUnderlyingType();
918  else
919    OldType = Context.getTypeDeclType(Old);
920
921  // If the typedef types are not identical, reject them in all languages and
922  // with any extensions enabled.
923
924  if (OldType != New->getUnderlyingType() &&
925      Context.getCanonicalType(OldType) !=
926      Context.getCanonicalType(New->getUnderlyingType())) {
927    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
928      << New->getUnderlyingType() << OldType;
929    if (Old->getLocation().isValid())
930      Diag(Old->getLocation(), diag::note_previous_definition);
931    return New->setInvalidDecl();
932  }
933
934  // The types match.  Link up the redeclaration chain if the old
935  // declaration was a typedef.
936  // FIXME: this is a potential source of wierdness if the type
937  // spellings don't match exactly.
938  if (isa<TypedefDecl>(Old))
939    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
940
941  if (getLangOptions().Microsoft)
942    return;
943
944  if (getLangOptions().CPlusPlus) {
945    // C++ [dcl.typedef]p2:
946    //   In a given non-class scope, a typedef specifier can be used to
947    //   redefine the name of any type declared in that scope to refer
948    //   to the type to which it already refers.
949    if (!isa<CXXRecordDecl>(CurContext))
950      return;
951
952    // C++0x [dcl.typedef]p4:
953    //   In a given class scope, a typedef specifier can be used to redefine
954    //   any class-name declared in that scope that is not also a typedef-name
955    //   to refer to the type to which it already refers.
956    //
957    // This wording came in via DR424, which was a correction to the
958    // wording in DR56, which accidentally banned code like:
959    //
960    //   struct S {
961    //     typedef struct A { } A;
962    //   };
963    //
964    // in the C++03 standard. We implement the C++0x semantics, which
965    // allow the above but disallow
966    //
967    //   struct S {
968    //     typedef int I;
969    //     typedef int I;
970    //   };
971    //
972    // since that was the intent of DR56.
973    if (!isa<TypedefDecl >(Old))
974      return;
975
976    Diag(New->getLocation(), diag::err_redefinition)
977      << New->getDeclName();
978    Diag(Old->getLocation(), diag::note_previous_definition);
979    return New->setInvalidDecl();
980  }
981
982  // If we have a redefinition of a typedef in C, emit a warning.  This warning
983  // is normally mapped to an error, but can be controlled with
984  // -Wtypedef-redefinition.  If either the original or the redefinition is
985  // in a system header, don't emit this for compatibility with GCC.
986  if (getDiagnostics().getSuppressSystemWarnings() &&
987      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
988       Context.getSourceManager().isInSystemHeader(New->getLocation())))
989    return;
990
991  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
992    << New->getDeclName();
993  Diag(Old->getLocation(), diag::note_previous_definition);
994  return;
995}
996
997/// DeclhasAttr - returns true if decl Declaration already has the target
998/// attribute.
999static bool
1000DeclHasAttr(const Decl *D, const Attr *A) {
1001  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1002  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1003    if ((*i)->getKind() == A->getKind()) {
1004      // FIXME: Don't hardcode this check
1005      if (OA && isa<OwnershipAttr>(*i))
1006        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1007      return true;
1008    }
1009
1010  return false;
1011}
1012
1013/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1014static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1015  if (!Old->hasAttrs())
1016    return;
1017  // Ensure that any moving of objects within the allocated map is done before
1018  // we process them.
1019  if (!New->hasAttrs())
1020    New->setAttrs(AttrVec());
1021  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1022       ++i) {
1023    // FIXME: Make this more general than just checking for Overloadable.
1024    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1025      Attr *NewAttr = (*i)->clone(C);
1026      NewAttr->setInherited(true);
1027      New->addAttr(NewAttr);
1028    }
1029  }
1030}
1031
1032namespace {
1033
1034/// Used in MergeFunctionDecl to keep track of function parameters in
1035/// C.
1036struct GNUCompatibleParamWarning {
1037  ParmVarDecl *OldParm;
1038  ParmVarDecl *NewParm;
1039  QualType PromotedType;
1040};
1041
1042}
1043
1044/// getSpecialMember - get the special member enum for a method.
1045Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1046  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1047    if (Ctor->isCopyConstructor())
1048      return Sema::CXXCopyConstructor;
1049
1050    return Sema::CXXConstructor;
1051  }
1052
1053  if (isa<CXXDestructorDecl>(MD))
1054    return Sema::CXXDestructor;
1055
1056  assert(MD->isCopyAssignmentOperator() &&
1057         "Must have copy assignment operator");
1058  return Sema::CXXCopyAssignment;
1059}
1060
1061/// canRedefineFunction - checks if a function can be redefined. Currently,
1062/// only extern inline functions can be redefined, and even then only in
1063/// GNU89 mode.
1064static bool canRedefineFunction(const FunctionDecl *FD,
1065                                const LangOptions& LangOpts) {
1066  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1067          FD->isInlineSpecified() &&
1068          FD->getStorageClass() == SC_Extern);
1069}
1070
1071/// MergeFunctionDecl - We just parsed a function 'New' from
1072/// declarator D which has the same name and scope as a previous
1073/// declaration 'Old'.  Figure out how to resolve this situation,
1074/// merging decls or emitting diagnostics as appropriate.
1075///
1076/// In C++, New and Old must be declarations that are not
1077/// overloaded. Use IsOverload to determine whether New and Old are
1078/// overloaded, and to select the Old declaration that New should be
1079/// merged with.
1080///
1081/// Returns true if there was an error, false otherwise.
1082bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1083  // Verify the old decl was also a function.
1084  FunctionDecl *Old = 0;
1085  if (FunctionTemplateDecl *OldFunctionTemplate
1086        = dyn_cast<FunctionTemplateDecl>(OldD))
1087    Old = OldFunctionTemplate->getTemplatedDecl();
1088  else
1089    Old = dyn_cast<FunctionDecl>(OldD);
1090  if (!Old) {
1091    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1092      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1093      Diag(Shadow->getTargetDecl()->getLocation(),
1094           diag::note_using_decl_target);
1095      Diag(Shadow->getUsingDecl()->getLocation(),
1096           diag::note_using_decl) << 0;
1097      return true;
1098    }
1099
1100    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1101      << New->getDeclName();
1102    Diag(OldD->getLocation(), diag::note_previous_definition);
1103    return true;
1104  }
1105
1106  // Determine whether the previous declaration was a definition,
1107  // implicit declaration, or a declaration.
1108  diag::kind PrevDiag;
1109  if (Old->isThisDeclarationADefinition())
1110    PrevDiag = diag::note_previous_definition;
1111  else if (Old->isImplicit())
1112    PrevDiag = diag::note_previous_implicit_declaration;
1113  else
1114    PrevDiag = diag::note_previous_declaration;
1115
1116  QualType OldQType = Context.getCanonicalType(Old->getType());
1117  QualType NewQType = Context.getCanonicalType(New->getType());
1118
1119  // Don't complain about this if we're in GNU89 mode and the old function
1120  // is an extern inline function.
1121  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1122      New->getStorageClass() == SC_Static &&
1123      Old->getStorageClass() != SC_Static &&
1124      !canRedefineFunction(Old, getLangOptions())) {
1125    Diag(New->getLocation(), diag::err_static_non_static)
1126      << New;
1127    Diag(Old->getLocation(), PrevDiag);
1128    return true;
1129  }
1130
1131  // If a function is first declared with a calling convention, but is
1132  // later declared or defined without one, the second decl assumes the
1133  // calling convention of the first.
1134  //
1135  // For the new decl, we have to look at the NON-canonical type to tell the
1136  // difference between a function that really doesn't have a calling
1137  // convention and one that is declared cdecl. That's because in
1138  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1139  // because it is the default calling convention.
1140  //
1141  // Note also that we DO NOT return at this point, because we still have
1142  // other tests to run.
1143  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1144  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1145  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1146  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1147  if (OldTypeInfo.getCC() != CC_Default &&
1148      NewTypeInfo.getCC() == CC_Default) {
1149    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1150    New->setType(NewQType);
1151    NewQType = Context.getCanonicalType(NewQType);
1152  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1153                                     NewTypeInfo.getCC())) {
1154    // Calling conventions really aren't compatible, so complain.
1155    Diag(New->getLocation(), diag::err_cconv_change)
1156      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1157      << (OldTypeInfo.getCC() == CC_Default)
1158      << (OldTypeInfo.getCC() == CC_Default ? "" :
1159          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1160    Diag(Old->getLocation(), diag::note_previous_declaration);
1161    return true;
1162  }
1163
1164  // FIXME: diagnose the other way around?
1165  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1166    NewQType = Context.getNoReturnType(NewQType);
1167    New->setType(NewQType);
1168    assert(NewQType.isCanonical());
1169  }
1170
1171  // Merge regparm attribute.
1172  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1173    if (NewType->getRegParmType()) {
1174      Diag(New->getLocation(), diag::err_regparm_mismatch)
1175        << NewType->getRegParmType()
1176        << OldType->getRegParmType();
1177      Diag(Old->getLocation(), diag::note_previous_declaration);
1178      return true;
1179    }
1180
1181    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1182    New->setType(NewQType);
1183    assert(NewQType.isCanonical());
1184  }
1185
1186  if (getLangOptions().CPlusPlus) {
1187    // (C++98 13.1p2):
1188    //   Certain function declarations cannot be overloaded:
1189    //     -- Function declarations that differ only in the return type
1190    //        cannot be overloaded.
1191    QualType OldReturnType
1192      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1193    QualType NewReturnType
1194      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1195    QualType ResQT;
1196    if (OldReturnType != NewReturnType) {
1197      if (NewReturnType->isObjCObjectPointerType()
1198          && OldReturnType->isObjCObjectPointerType())
1199        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1200      if (ResQT.isNull()) {
1201        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1202        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1203        return true;
1204      }
1205      else
1206        NewQType = ResQT;
1207    }
1208
1209    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1210    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1211    if (OldMethod && NewMethod) {
1212      // Preserve triviality.
1213      NewMethod->setTrivial(OldMethod->isTrivial());
1214
1215      bool isFriend = NewMethod->getFriendObjectKind();
1216
1217      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1218        //    -- Member function declarations with the same name and the
1219        //       same parameter types cannot be overloaded if any of them
1220        //       is a static member function declaration.
1221        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1222          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1223          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1224          return true;
1225        }
1226
1227        // C++ [class.mem]p1:
1228        //   [...] A member shall not be declared twice in the
1229        //   member-specification, except that a nested class or member
1230        //   class template can be declared and then later defined.
1231        unsigned NewDiag;
1232        if (isa<CXXConstructorDecl>(OldMethod))
1233          NewDiag = diag::err_constructor_redeclared;
1234        else if (isa<CXXDestructorDecl>(NewMethod))
1235          NewDiag = diag::err_destructor_redeclared;
1236        else if (isa<CXXConversionDecl>(NewMethod))
1237          NewDiag = diag::err_conv_function_redeclared;
1238        else
1239          NewDiag = diag::err_member_redeclared;
1240
1241        Diag(New->getLocation(), NewDiag);
1242        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1243
1244      // Complain if this is an explicit declaration of a special
1245      // member that was initially declared implicitly.
1246      //
1247      // As an exception, it's okay to befriend such methods in order
1248      // to permit the implicit constructor/destructor/operator calls.
1249      } else if (OldMethod->isImplicit()) {
1250        if (isFriend) {
1251          NewMethod->setImplicit();
1252        } else {
1253          Diag(NewMethod->getLocation(),
1254               diag::err_definition_of_implicitly_declared_member)
1255            << New << getSpecialMember(OldMethod);
1256          return true;
1257        }
1258      }
1259    }
1260
1261    // (C++98 8.3.5p3):
1262    //   All declarations for a function shall agree exactly in both the
1263    //   return type and the parameter-type-list.
1264    // attributes should be ignored when comparing.
1265    if (Context.getNoReturnType(OldQType, false) ==
1266        Context.getNoReturnType(NewQType, false))
1267      return MergeCompatibleFunctionDecls(New, Old);
1268
1269    // Fall through for conflicting redeclarations and redefinitions.
1270  }
1271
1272  // C: Function types need to be compatible, not identical. This handles
1273  // duplicate function decls like "void f(int); void f(enum X);" properly.
1274  if (!getLangOptions().CPlusPlus &&
1275      Context.typesAreCompatible(OldQType, NewQType)) {
1276    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1277    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1278    const FunctionProtoType *OldProto = 0;
1279    if (isa<FunctionNoProtoType>(NewFuncType) &&
1280        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1281      // The old declaration provided a function prototype, but the
1282      // new declaration does not. Merge in the prototype.
1283      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1284      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1285                                                 OldProto->arg_type_end());
1286      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1287                                         ParamTypes.data(), ParamTypes.size(),
1288                                         OldProto->isVariadic(),
1289                                         OldProto->getTypeQuals(),
1290                                         false, false, 0, 0,
1291                                         OldProto->getExtInfo());
1292      New->setType(NewQType);
1293      New->setHasInheritedPrototype();
1294
1295      // Synthesize a parameter for each argument type.
1296      llvm::SmallVector<ParmVarDecl*, 16> Params;
1297      for (FunctionProtoType::arg_type_iterator
1298             ParamType = OldProto->arg_type_begin(),
1299             ParamEnd = OldProto->arg_type_end();
1300           ParamType != ParamEnd; ++ParamType) {
1301        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1302                                                 SourceLocation(), 0,
1303                                                 *ParamType, /*TInfo=*/0,
1304                                                 SC_None, SC_None,
1305                                                 0);
1306        Param->setImplicit();
1307        Params.push_back(Param);
1308      }
1309
1310      New->setParams(Params.data(), Params.size());
1311    }
1312
1313    return MergeCompatibleFunctionDecls(New, Old);
1314  }
1315
1316  // GNU C permits a K&R definition to follow a prototype declaration
1317  // if the declared types of the parameters in the K&R definition
1318  // match the types in the prototype declaration, even when the
1319  // promoted types of the parameters from the K&R definition differ
1320  // from the types in the prototype. GCC then keeps the types from
1321  // the prototype.
1322  //
1323  // If a variadic prototype is followed by a non-variadic K&R definition,
1324  // the K&R definition becomes variadic.  This is sort of an edge case, but
1325  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1326  // C99 6.9.1p8.
1327  if (!getLangOptions().CPlusPlus &&
1328      Old->hasPrototype() && !New->hasPrototype() &&
1329      New->getType()->getAs<FunctionProtoType>() &&
1330      Old->getNumParams() == New->getNumParams()) {
1331    llvm::SmallVector<QualType, 16> ArgTypes;
1332    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1333    const FunctionProtoType *OldProto
1334      = Old->getType()->getAs<FunctionProtoType>();
1335    const FunctionProtoType *NewProto
1336      = New->getType()->getAs<FunctionProtoType>();
1337
1338    // Determine whether this is the GNU C extension.
1339    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1340                                               NewProto->getResultType());
1341    bool LooseCompatible = !MergedReturn.isNull();
1342    for (unsigned Idx = 0, End = Old->getNumParams();
1343         LooseCompatible && Idx != End; ++Idx) {
1344      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1345      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1346      if (Context.typesAreCompatible(OldParm->getType(),
1347                                     NewProto->getArgType(Idx))) {
1348        ArgTypes.push_back(NewParm->getType());
1349      } else if (Context.typesAreCompatible(OldParm->getType(),
1350                                            NewParm->getType(),
1351                                            /*CompareUnqualified=*/true)) {
1352        GNUCompatibleParamWarning Warn
1353          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1354        Warnings.push_back(Warn);
1355        ArgTypes.push_back(NewParm->getType());
1356      } else
1357        LooseCompatible = false;
1358    }
1359
1360    if (LooseCompatible) {
1361      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1362        Diag(Warnings[Warn].NewParm->getLocation(),
1363             diag::ext_param_promoted_not_compatible_with_prototype)
1364          << Warnings[Warn].PromotedType
1365          << Warnings[Warn].OldParm->getType();
1366        if (Warnings[Warn].OldParm->getLocation().isValid())
1367          Diag(Warnings[Warn].OldParm->getLocation(),
1368               diag::note_previous_declaration);
1369      }
1370
1371      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1372                                           ArgTypes.size(),
1373                                           OldProto->isVariadic(), 0,
1374                                           false, false, 0, 0,
1375                                           OldProto->getExtInfo()));
1376      return MergeCompatibleFunctionDecls(New, Old);
1377    }
1378
1379    // Fall through to diagnose conflicting types.
1380  }
1381
1382  // A function that has already been declared has been redeclared or defined
1383  // with a different type- show appropriate diagnostic
1384  if (unsigned BuiltinID = Old->getBuiltinID()) {
1385    // The user has declared a builtin function with an incompatible
1386    // signature.
1387    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1388      // The function the user is redeclaring is a library-defined
1389      // function like 'malloc' or 'printf'. Warn about the
1390      // redeclaration, then pretend that we don't know about this
1391      // library built-in.
1392      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1393      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1394        << Old << Old->getType();
1395      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1396      Old->setInvalidDecl();
1397      return false;
1398    }
1399
1400    PrevDiag = diag::note_previous_builtin_declaration;
1401  }
1402
1403  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1404  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1405  return true;
1406}
1407
1408/// \brief Completes the merge of two function declarations that are
1409/// known to be compatible.
1410///
1411/// This routine handles the merging of attributes and other
1412/// properties of function declarations form the old declaration to
1413/// the new declaration, once we know that New is in fact a
1414/// redeclaration of Old.
1415///
1416/// \returns false
1417bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1418  // Merge the attributes
1419  MergeDeclAttributes(New, Old, Context);
1420
1421  // Merge the storage class.
1422  if (Old->getStorageClass() != SC_Extern &&
1423      Old->getStorageClass() != SC_None)
1424    New->setStorageClass(Old->getStorageClass());
1425
1426  // Merge "pure" flag.
1427  if (Old->isPure())
1428    New->setPure();
1429
1430  // Merge the "deleted" flag.
1431  if (Old->isDeleted())
1432    New->setDeleted();
1433
1434  if (getLangOptions().CPlusPlus)
1435    return MergeCXXFunctionDecl(New, Old);
1436
1437  return false;
1438}
1439
1440/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1441/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1442/// situation, merging decls or emitting diagnostics as appropriate.
1443///
1444/// Tentative definition rules (C99 6.9.2p2) are checked by
1445/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1446/// definitions here, since the initializer hasn't been attached.
1447///
1448void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1449  // If the new decl is already invalid, don't do any other checking.
1450  if (New->isInvalidDecl())
1451    return;
1452
1453  // Verify the old decl was also a variable.
1454  VarDecl *Old = 0;
1455  if (!Previous.isSingleResult() ||
1456      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1457    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1458      << New->getDeclName();
1459    Diag(Previous.getRepresentativeDecl()->getLocation(),
1460         diag::note_previous_definition);
1461    return New->setInvalidDecl();
1462  }
1463
1464  // C++ [class.mem]p1:
1465  //   A member shall not be declared twice in the member-specification [...]
1466  //
1467  // Here, we need only consider static data members.
1468  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1469    Diag(New->getLocation(), diag::err_duplicate_member)
1470      << New->getIdentifier();
1471    Diag(Old->getLocation(), diag::note_previous_declaration);
1472    New->setInvalidDecl();
1473  }
1474
1475  MergeDeclAttributes(New, Old, Context);
1476
1477  // Merge the types
1478  QualType MergedT;
1479  if (getLangOptions().CPlusPlus) {
1480    if (Context.hasSameType(New->getType(), Old->getType()))
1481      MergedT = New->getType();
1482    // C++ [basic.link]p10:
1483    //   [...] the types specified by all declarations referring to a given
1484    //   object or function shall be identical, except that declarations for an
1485    //   array object can specify array types that differ by the presence or
1486    //   absence of a major array bound (8.3.4).
1487    else if (Old->getType()->isIncompleteArrayType() &&
1488             New->getType()->isArrayType()) {
1489      CanQual<ArrayType> OldArray
1490        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1491      CanQual<ArrayType> NewArray
1492        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1493      if (OldArray->getElementType() == NewArray->getElementType())
1494        MergedT = New->getType();
1495    } else if (Old->getType()->isArrayType() &&
1496             New->getType()->isIncompleteArrayType()) {
1497      CanQual<ArrayType> OldArray
1498        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1499      CanQual<ArrayType> NewArray
1500        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1501      if (OldArray->getElementType() == NewArray->getElementType())
1502        MergedT = Old->getType();
1503    } else if (New->getType()->isObjCObjectPointerType()
1504               && Old->getType()->isObjCObjectPointerType()) {
1505        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1506    }
1507  } else {
1508    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1509  }
1510  if (MergedT.isNull()) {
1511    Diag(New->getLocation(), diag::err_redefinition_different_type)
1512      << New->getDeclName();
1513    Diag(Old->getLocation(), diag::note_previous_definition);
1514    return New->setInvalidDecl();
1515  }
1516  New->setType(MergedT);
1517
1518  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1519  if (New->getStorageClass() == SC_Static &&
1520      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1521    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1522    Diag(Old->getLocation(), diag::note_previous_definition);
1523    return New->setInvalidDecl();
1524  }
1525  // C99 6.2.2p4:
1526  //   For an identifier declared with the storage-class specifier
1527  //   extern in a scope in which a prior declaration of that
1528  //   identifier is visible,23) if the prior declaration specifies
1529  //   internal or external linkage, the linkage of the identifier at
1530  //   the later declaration is the same as the linkage specified at
1531  //   the prior declaration. If no prior declaration is visible, or
1532  //   if the prior declaration specifies no linkage, then the
1533  //   identifier has external linkage.
1534  if (New->hasExternalStorage() && Old->hasLinkage())
1535    /* Okay */;
1536  else if (New->getStorageClass() != SC_Static &&
1537           Old->getStorageClass() == SC_Static) {
1538    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1539    Diag(Old->getLocation(), diag::note_previous_definition);
1540    return New->setInvalidDecl();
1541  }
1542
1543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1544
1545  // FIXME: The test for external storage here seems wrong? We still
1546  // need to check for mismatches.
1547  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1548      // Don't complain about out-of-line definitions of static members.
1549      !(Old->getLexicalDeclContext()->isRecord() &&
1550        !New->getLexicalDeclContext()->isRecord())) {
1551    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1552    Diag(Old->getLocation(), diag::note_previous_definition);
1553    return New->setInvalidDecl();
1554  }
1555
1556  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1557    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1558    Diag(Old->getLocation(), diag::note_previous_definition);
1559  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1560    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1561    Diag(Old->getLocation(), diag::note_previous_definition);
1562  }
1563
1564  // C++ doesn't have tentative definitions, so go right ahead and check here.
1565  const VarDecl *Def;
1566  if (getLangOptions().CPlusPlus &&
1567      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1568      (Def = Old->getDefinition())) {
1569    Diag(New->getLocation(), diag::err_redefinition)
1570      << New->getDeclName();
1571    Diag(Def->getLocation(), diag::note_previous_definition);
1572    New->setInvalidDecl();
1573    return;
1574  }
1575  // c99 6.2.2 P4.
1576  // For an identifier declared with the storage-class specifier extern in a
1577  // scope in which a prior declaration of that identifier is visible, if
1578  // the prior declaration specifies internal or external linkage, the linkage
1579  // of the identifier at the later declaration is the same as the linkage
1580  // specified at the prior declaration.
1581  // FIXME. revisit this code.
1582  if (New->hasExternalStorage() &&
1583      Old->getLinkage() == InternalLinkage &&
1584      New->getDeclContext() == Old->getDeclContext())
1585    New->setStorageClass(Old->getStorageClass());
1586
1587  // Keep a chain of previous declarations.
1588  New->setPreviousDeclaration(Old);
1589
1590  // Inherit access appropriately.
1591  New->setAccess(Old->getAccess());
1592}
1593
1594/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1595/// no declarator (e.g. "struct foo;") is parsed.
1596Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1597                                            DeclSpec &DS) {
1598  // FIXME: Error on inline/virtual/explicit
1599  // FIXME: Warn on useless __thread
1600  // FIXME: Warn on useless const/volatile
1601  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1602  // FIXME: Warn on useless attributes
1603  Decl *TagD = 0;
1604  TagDecl *Tag = 0;
1605  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1606      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1607      DS.getTypeSpecType() == DeclSpec::TST_union ||
1608      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1609    TagD = DS.getRepAsDecl();
1610
1611    if (!TagD) // We probably had an error
1612      return 0;
1613
1614    // Note that the above type specs guarantee that the
1615    // type rep is a Decl, whereas in many of the others
1616    // it's a Type.
1617    Tag = dyn_cast<TagDecl>(TagD);
1618  }
1619
1620  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1621    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1622    // or incomplete types shall not be restrict-qualified."
1623    if (TypeQuals & DeclSpec::TQ_restrict)
1624      Diag(DS.getRestrictSpecLoc(),
1625           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1626           << DS.getSourceRange();
1627  }
1628
1629  if (DS.isFriendSpecified()) {
1630    // If we're dealing with a decl but not a TagDecl, assume that
1631    // whatever routines created it handled the friendship aspect.
1632    if (TagD && !Tag)
1633      return 0;
1634    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1635  }
1636
1637  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1638    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1639
1640    if (!Record->getDeclName() && Record->isDefinition() &&
1641        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1642      if (getLangOptions().CPlusPlus ||
1643          Record->getDeclContext()->isRecord())
1644        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1645
1646      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1647        << DS.getSourceRange();
1648    }
1649  }
1650
1651  // Check for Microsoft C extension: anonymous struct.
1652  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1653      CurContext->isRecord() &&
1654      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1655    // Handle 2 kinds of anonymous struct:
1656    //   struct STRUCT;
1657    // and
1658    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1659    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1660    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1661        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1662         DS.getRepAsType().get()->isStructureType())) {
1663      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1664        << DS.getSourceRange();
1665      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1666    }
1667  }
1668
1669  if (getLangOptions().CPlusPlus &&
1670      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1671    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1672      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1673          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1674        Diag(Enum->getLocation(), diag::ext_no_declarators)
1675          << DS.getSourceRange();
1676
1677  if (!DS.isMissingDeclaratorOk() &&
1678      DS.getTypeSpecType() != DeclSpec::TST_error) {
1679    // Warn about typedefs of enums without names, since this is an
1680    // extension in both Microsoft and GNU.
1681    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1682        Tag && isa<EnumDecl>(Tag)) {
1683      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1684        << DS.getSourceRange();
1685      return Tag;
1686    }
1687
1688    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1689      << DS.getSourceRange();
1690  }
1691
1692  return TagD;
1693}
1694
1695/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1696/// builds a statement for it and returns it so it is evaluated.
1697StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1698  StmtResult R;
1699  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1700    Expr *Exp = DS.getRepAsExpr();
1701    QualType Ty = Exp->getType();
1702    if (Ty->isPointerType()) {
1703      do
1704        Ty = Ty->getAs<PointerType>()->getPointeeType();
1705      while (Ty->isPointerType());
1706    }
1707    if (Ty->isVariableArrayType()) {
1708      R = ActOnExprStmt(MakeFullExpr(Exp));
1709    }
1710  }
1711  return R;
1712}
1713
1714/// We are trying to inject an anonymous member into the given scope;
1715/// check if there's an existing declaration that can't be overloaded.
1716///
1717/// \return true if this is a forbidden redeclaration
1718static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1719                                         Scope *S,
1720                                         DeclContext *Owner,
1721                                         DeclarationName Name,
1722                                         SourceLocation NameLoc,
1723                                         unsigned diagnostic) {
1724  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1725                 Sema::ForRedeclaration);
1726  if (!SemaRef.LookupName(R, S)) return false;
1727
1728  if (R.getAsSingle<TagDecl>())
1729    return false;
1730
1731  // Pick a representative declaration.
1732  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1733  assert(PrevDecl && "Expected a non-null Decl");
1734
1735  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1736    return false;
1737
1738  SemaRef.Diag(NameLoc, diagnostic) << Name;
1739  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1740
1741  return true;
1742}
1743
1744/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1745/// anonymous struct or union AnonRecord into the owning context Owner
1746/// and scope S. This routine will be invoked just after we realize
1747/// that an unnamed union or struct is actually an anonymous union or
1748/// struct, e.g.,
1749///
1750/// @code
1751/// union {
1752///   int i;
1753///   float f;
1754/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1755///    // f into the surrounding scope.x
1756/// @endcode
1757///
1758/// This routine is recursive, injecting the names of nested anonymous
1759/// structs/unions into the owning context and scope as well.
1760static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1761                                                DeclContext *Owner,
1762                                                RecordDecl *AnonRecord,
1763                                                AccessSpecifier AS,
1764                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1765                                                      bool MSAnonStruct) {
1766  unsigned diagKind
1767    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1768                            : diag::err_anonymous_struct_member_redecl;
1769
1770  bool Invalid = false;
1771
1772  // Look every FieldDecl and IndirectFieldDecl with a name.
1773  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1774                               DEnd = AnonRecord->decls_end();
1775       D != DEnd; ++D) {
1776    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1777        cast<NamedDecl>(*D)->getDeclName()) {
1778      ValueDecl *VD = cast<ValueDecl>(*D);
1779      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1780                                       VD->getLocation(), diagKind)) {
1781        // C++ [class.union]p2:
1782        //   The names of the members of an anonymous union shall be
1783        //   distinct from the names of any other entity in the
1784        //   scope in which the anonymous union is declared.
1785        Invalid = true;
1786      } else {
1787        // C++ [class.union]p2:
1788        //   For the purpose of name lookup, after the anonymous union
1789        //   definition, the members of the anonymous union are
1790        //   considered to have been defined in the scope in which the
1791        //   anonymous union is declared.
1792        unsigned OldChainingSize = Chaining.size();
1793        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1794          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1795               PE = IF->chain_end(); PI != PE; ++PI)
1796            Chaining.push_back(*PI);
1797        else
1798          Chaining.push_back(VD);
1799
1800        assert(Chaining.size() >= 2);
1801        NamedDecl **NamedChain =
1802          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1803        for (unsigned i = 0; i < Chaining.size(); i++)
1804          NamedChain[i] = Chaining[i];
1805
1806        IndirectFieldDecl* IndirectField =
1807          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1808                                    VD->getIdentifier(), VD->getType(),
1809                                    NamedChain, Chaining.size());
1810
1811        IndirectField->setAccess(AS);
1812        IndirectField->setImplicit();
1813        SemaRef.PushOnScopeChains(IndirectField, S);
1814
1815        // That includes picking up the appropriate access specifier.
1816        if (AS != AS_none) IndirectField->setAccess(AS);
1817
1818        Chaining.resize(OldChainingSize);
1819      }
1820    }
1821  }
1822
1823  return Invalid;
1824}
1825
1826/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1827/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1828/// illegal input values are mapped to SC_None.
1829static StorageClass
1830StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1831  switch (StorageClassSpec) {
1832  case DeclSpec::SCS_unspecified:    return SC_None;
1833  case DeclSpec::SCS_extern:         return SC_Extern;
1834  case DeclSpec::SCS_static:         return SC_Static;
1835  case DeclSpec::SCS_auto:           return SC_Auto;
1836  case DeclSpec::SCS_register:       return SC_Register;
1837  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1838    // Illegal SCSs map to None: error reporting is up to the caller.
1839  case DeclSpec::SCS_mutable:        // Fall through.
1840  case DeclSpec::SCS_typedef:        return SC_None;
1841  }
1842  llvm_unreachable("unknown storage class specifier");
1843}
1844
1845/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1846/// a StorageClass. Any error reporting is up to the caller:
1847/// illegal input values are mapped to SC_None.
1848static StorageClass
1849StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1850  switch (StorageClassSpec) {
1851  case DeclSpec::SCS_unspecified:    return SC_None;
1852  case DeclSpec::SCS_extern:         return SC_Extern;
1853  case DeclSpec::SCS_static:         return SC_Static;
1854  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1855    // Illegal SCSs map to None: error reporting is up to the caller.
1856  case DeclSpec::SCS_auto:           // Fall through.
1857  case DeclSpec::SCS_mutable:        // Fall through.
1858  case DeclSpec::SCS_register:       // Fall through.
1859  case DeclSpec::SCS_typedef:        return SC_None;
1860  }
1861  llvm_unreachable("unknown storage class specifier");
1862}
1863
1864/// BuildAnonymousStructOrUnion - Handle the declaration of an
1865/// anonymous structure or union. Anonymous unions are a C++ feature
1866/// (C++ [class.union]) and a GNU C extension; anonymous structures
1867/// are a GNU C and GNU C++ extension.
1868Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1869                                             AccessSpecifier AS,
1870                                             RecordDecl *Record) {
1871  DeclContext *Owner = Record->getDeclContext();
1872
1873  // Diagnose whether this anonymous struct/union is an extension.
1874  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1875    Diag(Record->getLocation(), diag::ext_anonymous_union);
1876  else if (!Record->isUnion())
1877    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1878
1879  // C and C++ require different kinds of checks for anonymous
1880  // structs/unions.
1881  bool Invalid = false;
1882  if (getLangOptions().CPlusPlus) {
1883    const char* PrevSpec = 0;
1884    unsigned DiagID;
1885    // C++ [class.union]p3:
1886    //   Anonymous unions declared in a named namespace or in the
1887    //   global namespace shall be declared static.
1888    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1889        (isa<TranslationUnitDecl>(Owner) ||
1890         (isa<NamespaceDecl>(Owner) &&
1891          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1892      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1893      Invalid = true;
1894
1895      // Recover by adding 'static'.
1896      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1897                             PrevSpec, DiagID);
1898    }
1899    // C++ [class.union]p3:
1900    //   A storage class is not allowed in a declaration of an
1901    //   anonymous union in a class scope.
1902    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1903             isa<RecordDecl>(Owner)) {
1904      Diag(DS.getStorageClassSpecLoc(),
1905           diag::err_anonymous_union_with_storage_spec);
1906      Invalid = true;
1907
1908      // Recover by removing the storage specifier.
1909      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1910                             PrevSpec, DiagID);
1911    }
1912
1913    // C++ [class.union]p2:
1914    //   The member-specification of an anonymous union shall only
1915    //   define non-static data members. [Note: nested types and
1916    //   functions cannot be declared within an anonymous union. ]
1917    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1918                                 MemEnd = Record->decls_end();
1919         Mem != MemEnd; ++Mem) {
1920      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1921        // C++ [class.union]p3:
1922        //   An anonymous union shall not have private or protected
1923        //   members (clause 11).
1924        assert(FD->getAccess() != AS_none);
1925        if (FD->getAccess() != AS_public) {
1926          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1927            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1928          Invalid = true;
1929        }
1930
1931        if (CheckNontrivialField(FD))
1932          Invalid = true;
1933      } else if ((*Mem)->isImplicit()) {
1934        // Any implicit members are fine.
1935      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1936        // This is a type that showed up in an
1937        // elaborated-type-specifier inside the anonymous struct or
1938        // union, but which actually declares a type outside of the
1939        // anonymous struct or union. It's okay.
1940      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1941        if (!MemRecord->isAnonymousStructOrUnion() &&
1942            MemRecord->getDeclName()) {
1943          // Visual C++ allows type definition in anonymous struct or union.
1944          if (getLangOptions().Microsoft)
1945            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1946              << (int)Record->isUnion();
1947          else {
1948            // This is a nested type declaration.
1949            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1950              << (int)Record->isUnion();
1951            Invalid = true;
1952          }
1953        }
1954      } else if (isa<AccessSpecDecl>(*Mem)) {
1955        // Any access specifier is fine.
1956      } else {
1957        // We have something that isn't a non-static data
1958        // member. Complain about it.
1959        unsigned DK = diag::err_anonymous_record_bad_member;
1960        if (isa<TypeDecl>(*Mem))
1961          DK = diag::err_anonymous_record_with_type;
1962        else if (isa<FunctionDecl>(*Mem))
1963          DK = diag::err_anonymous_record_with_function;
1964        else if (isa<VarDecl>(*Mem))
1965          DK = diag::err_anonymous_record_with_static;
1966
1967        // Visual C++ allows type definition in anonymous struct or union.
1968        if (getLangOptions().Microsoft &&
1969            DK == diag::err_anonymous_record_with_type)
1970          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1971            << (int)Record->isUnion();
1972        else {
1973          Diag((*Mem)->getLocation(), DK)
1974              << (int)Record->isUnion();
1975          Invalid = true;
1976        }
1977      }
1978    }
1979  }
1980
1981  if (!Record->isUnion() && !Owner->isRecord()) {
1982    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1983      << (int)getLangOptions().CPlusPlus;
1984    Invalid = true;
1985  }
1986
1987  // Mock up a declarator.
1988  Declarator Dc(DS, Declarator::TypeNameContext);
1989  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1990  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1991
1992  // Create a declaration for this anonymous struct/union.
1993  NamedDecl *Anon = 0;
1994  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1995    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1996                             /*IdentifierInfo=*/0,
1997                             Context.getTypeDeclType(Record),
1998                             TInfo,
1999                             /*BitWidth=*/0, /*Mutable=*/false);
2000    Anon->setAccess(AS);
2001    if (getLangOptions().CPlusPlus)
2002      FieldCollector->Add(cast<FieldDecl>(Anon));
2003  } else {
2004    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2005    assert(SCSpec != DeclSpec::SCS_typedef &&
2006           "Parser allowed 'typedef' as storage class VarDecl.");
2007    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2008    if (SCSpec == DeclSpec::SCS_mutable) {
2009      // mutable can only appear on non-static class members, so it's always
2010      // an error here
2011      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2012      Invalid = true;
2013      SC = SC_None;
2014    }
2015    SCSpec = DS.getStorageClassSpecAsWritten();
2016    VarDecl::StorageClass SCAsWritten
2017      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2018
2019    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
2020                           /*IdentifierInfo=*/0,
2021                           Context.getTypeDeclType(Record),
2022                           TInfo, SC, SCAsWritten);
2023  }
2024  Anon->setImplicit();
2025
2026  // Add the anonymous struct/union object to the current
2027  // context. We'll be referencing this object when we refer to one of
2028  // its members.
2029  Owner->addDecl(Anon);
2030
2031  // Inject the members of the anonymous struct/union into the owning
2032  // context and into the identifier resolver chain for name lookup
2033  // purposes.
2034  llvm::SmallVector<NamedDecl*, 2> Chain;
2035  Chain.push_back(Anon);
2036
2037  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2038                                          Chain, false))
2039    Invalid = true;
2040
2041  // Mark this as an anonymous struct/union type. Note that we do not
2042  // do this until after we have already checked and injected the
2043  // members of this anonymous struct/union type, because otherwise
2044  // the members could be injected twice: once by DeclContext when it
2045  // builds its lookup table, and once by
2046  // InjectAnonymousStructOrUnionMembers.
2047  Record->setAnonymousStructOrUnion(true);
2048
2049  if (Invalid)
2050    Anon->setInvalidDecl();
2051
2052  return Anon;
2053}
2054
2055/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2056/// Microsoft C anonymous structure.
2057/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2058/// Example:
2059///
2060/// struct A { int a; };
2061/// struct B { struct A; int b; };
2062///
2063/// void foo() {
2064///   B var;
2065///   var.a = 3;
2066/// }
2067///
2068Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2069                                           RecordDecl *Record) {
2070
2071  // If there is no Record, get the record via the typedef.
2072  if (!Record)
2073    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2074
2075  // Mock up a declarator.
2076  Declarator Dc(DS, Declarator::TypeNameContext);
2077  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2078  assert(TInfo && "couldn't build declarator info for anonymous struct");
2079
2080  // Create a declaration for this anonymous struct.
2081  NamedDecl* Anon = FieldDecl::Create(Context,
2082                             cast<RecordDecl>(CurContext),
2083                             DS.getSourceRange().getBegin(),
2084                             /*IdentifierInfo=*/0,
2085                             Context.getTypeDeclType(Record),
2086                             TInfo,
2087                             /*BitWidth=*/0, /*Mutable=*/false);
2088  Anon->setImplicit();
2089
2090  // Add the anonymous struct object to the current context.
2091  CurContext->addDecl(Anon);
2092
2093  // Inject the members of the anonymous struct into the current
2094  // context and into the identifier resolver chain for name lookup
2095  // purposes.
2096  llvm::SmallVector<NamedDecl*, 2> Chain;
2097  Chain.push_back(Anon);
2098
2099  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2100                                          Record->getDefinition(),
2101                                          AS_none, Chain, true))
2102    Anon->setInvalidDecl();
2103
2104  return Anon;
2105}
2106
2107/// GetNameForDeclarator - Determine the full declaration name for the
2108/// given Declarator.
2109DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2110  return GetNameFromUnqualifiedId(D.getName());
2111}
2112
2113/// \brief Retrieves the declaration name from a parsed unqualified-id.
2114DeclarationNameInfo
2115Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2116  DeclarationNameInfo NameInfo;
2117  NameInfo.setLoc(Name.StartLocation);
2118
2119  switch (Name.getKind()) {
2120
2121  case UnqualifiedId::IK_Identifier:
2122    NameInfo.setName(Name.Identifier);
2123    NameInfo.setLoc(Name.StartLocation);
2124    return NameInfo;
2125
2126  case UnqualifiedId::IK_OperatorFunctionId:
2127    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2128                                           Name.OperatorFunctionId.Operator));
2129    NameInfo.setLoc(Name.StartLocation);
2130    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2131      = Name.OperatorFunctionId.SymbolLocations[0];
2132    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2133      = Name.EndLocation.getRawEncoding();
2134    return NameInfo;
2135
2136  case UnqualifiedId::IK_LiteralOperatorId:
2137    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2138                                                           Name.Identifier));
2139    NameInfo.setLoc(Name.StartLocation);
2140    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2141    return NameInfo;
2142
2143  case UnqualifiedId::IK_ConversionFunctionId: {
2144    TypeSourceInfo *TInfo;
2145    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2146    if (Ty.isNull())
2147      return DeclarationNameInfo();
2148    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2149                                               Context.getCanonicalType(Ty)));
2150    NameInfo.setLoc(Name.StartLocation);
2151    NameInfo.setNamedTypeInfo(TInfo);
2152    return NameInfo;
2153  }
2154
2155  case UnqualifiedId::IK_ConstructorName: {
2156    TypeSourceInfo *TInfo;
2157    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2158    if (Ty.isNull())
2159      return DeclarationNameInfo();
2160    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2161                                              Context.getCanonicalType(Ty)));
2162    NameInfo.setLoc(Name.StartLocation);
2163    NameInfo.setNamedTypeInfo(TInfo);
2164    return NameInfo;
2165  }
2166
2167  case UnqualifiedId::IK_ConstructorTemplateId: {
2168    // In well-formed code, we can only have a constructor
2169    // template-id that refers to the current context, so go there
2170    // to find the actual type being constructed.
2171    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2172    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2173      return DeclarationNameInfo();
2174
2175    // Determine the type of the class being constructed.
2176    QualType CurClassType = Context.getTypeDeclType(CurClass);
2177
2178    // FIXME: Check two things: that the template-id names the same type as
2179    // CurClassType, and that the template-id does not occur when the name
2180    // was qualified.
2181
2182    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2183                                    Context.getCanonicalType(CurClassType)));
2184    NameInfo.setLoc(Name.StartLocation);
2185    // FIXME: should we retrieve TypeSourceInfo?
2186    NameInfo.setNamedTypeInfo(0);
2187    return NameInfo;
2188  }
2189
2190  case UnqualifiedId::IK_DestructorName: {
2191    TypeSourceInfo *TInfo;
2192    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2193    if (Ty.isNull())
2194      return DeclarationNameInfo();
2195    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2196                                              Context.getCanonicalType(Ty)));
2197    NameInfo.setLoc(Name.StartLocation);
2198    NameInfo.setNamedTypeInfo(TInfo);
2199    return NameInfo;
2200  }
2201
2202  case UnqualifiedId::IK_TemplateId: {
2203    TemplateName TName = Name.TemplateId->Template.get();
2204    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2205    return Context.getNameForTemplate(TName, TNameLoc);
2206  }
2207
2208  } // switch (Name.getKind())
2209
2210  assert(false && "Unknown name kind");
2211  return DeclarationNameInfo();
2212}
2213
2214/// isNearlyMatchingFunction - Determine whether the C++ functions
2215/// Declaration and Definition are "nearly" matching. This heuristic
2216/// is used to improve diagnostics in the case where an out-of-line
2217/// function definition doesn't match any declaration within
2218/// the class or namespace.
2219static bool isNearlyMatchingFunction(ASTContext &Context,
2220                                     FunctionDecl *Declaration,
2221                                     FunctionDecl *Definition) {
2222  if (Declaration->param_size() != Definition->param_size())
2223    return false;
2224  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2225    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2226    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2227
2228    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2229                                        DefParamTy.getNonReferenceType()))
2230      return false;
2231  }
2232
2233  return true;
2234}
2235
2236/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2237/// declarator needs to be rebuilt in the current instantiation.
2238/// Any bits of declarator which appear before the name are valid for
2239/// consideration here.  That's specifically the type in the decl spec
2240/// and the base type in any member-pointer chunks.
2241static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2242                                                    DeclarationName Name) {
2243  // The types we specifically need to rebuild are:
2244  //   - typenames, typeofs, and decltypes
2245  //   - types which will become injected class names
2246  // Of course, we also need to rebuild any type referencing such a
2247  // type.  It's safest to just say "dependent", but we call out a
2248  // few cases here.
2249
2250  DeclSpec &DS = D.getMutableDeclSpec();
2251  switch (DS.getTypeSpecType()) {
2252  case DeclSpec::TST_typename:
2253  case DeclSpec::TST_typeofType:
2254  case DeclSpec::TST_decltype: {
2255    // Grab the type from the parser.
2256    TypeSourceInfo *TSI = 0;
2257    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2258    if (T.isNull() || !T->isDependentType()) break;
2259
2260    // Make sure there's a type source info.  This isn't really much
2261    // of a waste; most dependent types should have type source info
2262    // attached already.
2263    if (!TSI)
2264      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2265
2266    // Rebuild the type in the current instantiation.
2267    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2268    if (!TSI) return true;
2269
2270    // Store the new type back in the decl spec.
2271    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2272    DS.UpdateTypeRep(LocType);
2273    break;
2274  }
2275
2276  case DeclSpec::TST_typeofExpr: {
2277    Expr *E = DS.getRepAsExpr();
2278    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2279    if (Result.isInvalid()) return true;
2280    DS.UpdateExprRep(Result.get());
2281    break;
2282  }
2283
2284  default:
2285    // Nothing to do for these decl specs.
2286    break;
2287  }
2288
2289  // It doesn't matter what order we do this in.
2290  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2291    DeclaratorChunk &Chunk = D.getTypeObject(I);
2292
2293    // The only type information in the declarator which can come
2294    // before the declaration name is the base type of a member
2295    // pointer.
2296    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2297      continue;
2298
2299    // Rebuild the scope specifier in-place.
2300    CXXScopeSpec &SS = Chunk.Mem.Scope();
2301    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2302      return true;
2303  }
2304
2305  return false;
2306}
2307
2308Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2309  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2310}
2311
2312Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2313                             MultiTemplateParamsArg TemplateParamLists,
2314                             bool IsFunctionDefinition) {
2315  // TODO: consider using NameInfo for diagnostic.
2316  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2317  DeclarationName Name = NameInfo.getName();
2318
2319  // All of these full declarators require an identifier.  If it doesn't have
2320  // one, the ParsedFreeStandingDeclSpec action should be used.
2321  if (!Name) {
2322    if (!D.isInvalidType())  // Reject this if we think it is valid.
2323      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2324           diag::err_declarator_need_ident)
2325        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2326    return 0;
2327  }
2328
2329  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2330  // we find one that is.
2331  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2332         (S->getFlags() & Scope::TemplateParamScope) != 0)
2333    S = S->getParent();
2334
2335  DeclContext *DC = CurContext;
2336  if (D.getCXXScopeSpec().isInvalid())
2337    D.setInvalidType();
2338  else if (D.getCXXScopeSpec().isSet()) {
2339    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2340    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2341    if (!DC) {
2342      // If we could not compute the declaration context, it's because the
2343      // declaration context is dependent but does not refer to a class,
2344      // class template, or class template partial specialization. Complain
2345      // and return early, to avoid the coming semantic disaster.
2346      Diag(D.getIdentifierLoc(),
2347           diag::err_template_qualified_declarator_no_match)
2348        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2349        << D.getCXXScopeSpec().getRange();
2350      return 0;
2351    }
2352
2353    bool IsDependentContext = DC->isDependentContext();
2354
2355    if (!IsDependentContext &&
2356        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2357      return 0;
2358
2359    if (isa<CXXRecordDecl>(DC)) {
2360      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2361        Diag(D.getIdentifierLoc(),
2362             diag::err_member_def_undefined_record)
2363          << Name << DC << D.getCXXScopeSpec().getRange();
2364        D.setInvalidType();
2365      } else if (isa<CXXRecordDecl>(CurContext) &&
2366                 !D.getDeclSpec().isFriendSpecified()) {
2367        // The user provided a superfluous scope specifier inside a class
2368        // definition:
2369        //
2370        // class X {
2371        //   void X::f();
2372        // };
2373        if (CurContext->Equals(DC))
2374          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2375            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2376        else
2377          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2378            << Name << D.getCXXScopeSpec().getRange();
2379
2380        // Pretend that this qualifier was not here.
2381        D.getCXXScopeSpec().clear();
2382      }
2383    }
2384
2385    // Check whether we need to rebuild the type of the given
2386    // declaration in the current instantiation.
2387    if (EnteringContext && IsDependentContext &&
2388        TemplateParamLists.size() != 0) {
2389      ContextRAII SavedContext(*this, DC);
2390      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2391        D.setInvalidType();
2392    }
2393  }
2394
2395  // C++ [class.mem]p13:
2396  //   If T is the name of a class, then each of the following shall have a
2397  //   name different from T:
2398  //     - every static data member of class T;
2399  //     - every member function of class T
2400  //     - every member of class T that is itself a type;
2401  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2402    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2403      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2404        << Name;
2405
2406      // If this is a typedef, we'll end up spewing multiple diagnostics.
2407      // Just return early; it's safer.
2408      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2409        return 0;
2410    }
2411
2412  NamedDecl *New;
2413
2414  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2415  QualType R = TInfo->getType();
2416
2417  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2418                        ForRedeclaration);
2419
2420  // See if this is a redefinition of a variable in the same scope.
2421  if (!D.getCXXScopeSpec().isSet()) {
2422    bool IsLinkageLookup = false;
2423
2424    // If the declaration we're planning to build will be a function
2425    // or object with linkage, then look for another declaration with
2426    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2427    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2428      /* Do nothing*/;
2429    else if (R->isFunctionType()) {
2430      if (CurContext->isFunctionOrMethod() ||
2431          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2432        IsLinkageLookup = true;
2433    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2434      IsLinkageLookup = true;
2435    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2436             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2437      IsLinkageLookup = true;
2438
2439    if (IsLinkageLookup)
2440      Previous.clear(LookupRedeclarationWithLinkage);
2441
2442    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2443  } else { // Something like "int foo::x;"
2444    LookupQualifiedName(Previous, DC);
2445
2446    // Don't consider using declarations as previous declarations for
2447    // out-of-line members.
2448    RemoveUsingDecls(Previous);
2449
2450    // C++ 7.3.1.2p2:
2451    // Members (including explicit specializations of templates) of a named
2452    // namespace can also be defined outside that namespace by explicit
2453    // qualification of the name being defined, provided that the entity being
2454    // defined was already declared in the namespace and the definition appears
2455    // after the point of declaration in a namespace that encloses the
2456    // declarations namespace.
2457    //
2458    // Note that we only check the context at this point. We don't yet
2459    // have enough information to make sure that PrevDecl is actually
2460    // the declaration we want to match. For example, given:
2461    //
2462    //   class X {
2463    //     void f();
2464    //     void f(float);
2465    //   };
2466    //
2467    //   void X::f(int) { } // ill-formed
2468    //
2469    // In this case, PrevDecl will point to the overload set
2470    // containing the two f's declared in X, but neither of them
2471    // matches.
2472
2473    // First check whether we named the global scope.
2474    if (isa<TranslationUnitDecl>(DC)) {
2475      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2476        << Name << D.getCXXScopeSpec().getRange();
2477    } else {
2478      DeclContext *Cur = CurContext;
2479      while (isa<LinkageSpecDecl>(Cur))
2480        Cur = Cur->getParent();
2481      if (!Cur->Encloses(DC)) {
2482        // The qualifying scope doesn't enclose the original declaration.
2483        // Emit diagnostic based on current scope.
2484        SourceLocation L = D.getIdentifierLoc();
2485        SourceRange R = D.getCXXScopeSpec().getRange();
2486        if (isa<FunctionDecl>(Cur))
2487          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2488        else
2489          Diag(L, diag::err_invalid_declarator_scope)
2490            << Name << cast<NamedDecl>(DC) << R;
2491        D.setInvalidType();
2492      }
2493    }
2494  }
2495
2496  if (Previous.isSingleResult() &&
2497      Previous.getFoundDecl()->isTemplateParameter()) {
2498    // Maybe we will complain about the shadowed template parameter.
2499    if (!D.isInvalidType())
2500      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2501                                          Previous.getFoundDecl()))
2502        D.setInvalidType();
2503
2504    // Just pretend that we didn't see the previous declaration.
2505    Previous.clear();
2506  }
2507
2508  // In C++, the previous declaration we find might be a tag type
2509  // (class or enum). In this case, the new declaration will hide the
2510  // tag type. Note that this does does not apply if we're declaring a
2511  // typedef (C++ [dcl.typedef]p4).
2512  if (Previous.isSingleTagDecl() &&
2513      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2514    Previous.clear();
2515
2516  bool Redeclaration = false;
2517  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2518    if (TemplateParamLists.size()) {
2519      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2520      return 0;
2521    }
2522
2523    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2524  } else if (R->isFunctionType()) {
2525    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2526                                  move(TemplateParamLists),
2527                                  IsFunctionDefinition, Redeclaration);
2528  } else {
2529    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2530                                  move(TemplateParamLists),
2531                                  Redeclaration);
2532  }
2533
2534  if (New == 0)
2535    return 0;
2536
2537  // If this has an identifier and is not an invalid redeclaration or
2538  // function template specialization, add it to the scope stack.
2539  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2540    PushOnScopeChains(New, S);
2541
2542  return New;
2543}
2544
2545/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2546/// types into constant array types in certain situations which would otherwise
2547/// be errors (for GCC compatibility).
2548static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2549                                                    ASTContext &Context,
2550                                                    bool &SizeIsNegative,
2551                                                    llvm::APSInt &Oversized) {
2552  // This method tries to turn a variable array into a constant
2553  // array even when the size isn't an ICE.  This is necessary
2554  // for compatibility with code that depends on gcc's buggy
2555  // constant expression folding, like struct {char x[(int)(char*)2];}
2556  SizeIsNegative = false;
2557  Oversized = 0;
2558
2559  if (T->isDependentType())
2560    return QualType();
2561
2562  QualifierCollector Qs;
2563  const Type *Ty = Qs.strip(T);
2564
2565  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2566    QualType Pointee = PTy->getPointeeType();
2567    QualType FixedType =
2568        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2569                                            Oversized);
2570    if (FixedType.isNull()) return FixedType;
2571    FixedType = Context.getPointerType(FixedType);
2572    return Qs.apply(Context, FixedType);
2573  }
2574  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2575    QualType Inner = PTy->getInnerType();
2576    QualType FixedType =
2577        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2578                                            Oversized);
2579    if (FixedType.isNull()) return FixedType;
2580    FixedType = Context.getParenType(FixedType);
2581    return Qs.apply(Context, FixedType);
2582  }
2583
2584  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2585  if (!VLATy)
2586    return QualType();
2587  // FIXME: We should probably handle this case
2588  if (VLATy->getElementType()->isVariablyModifiedType())
2589    return QualType();
2590
2591  Expr::EvalResult EvalResult;
2592  if (!VLATy->getSizeExpr() ||
2593      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2594      !EvalResult.Val.isInt())
2595    return QualType();
2596
2597  // Check whether the array size is negative.
2598  llvm::APSInt &Res = EvalResult.Val.getInt();
2599  if (Res.isSigned() && Res.isNegative()) {
2600    SizeIsNegative = true;
2601    return QualType();
2602  }
2603
2604  // Check whether the array is too large to be addressed.
2605  unsigned ActiveSizeBits
2606    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2607                                              Res);
2608  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2609    Oversized = Res;
2610    return QualType();
2611  }
2612
2613  return Context.getConstantArrayType(VLATy->getElementType(),
2614                                      Res, ArrayType::Normal, 0);
2615}
2616
2617/// \brief Register the given locally-scoped external C declaration so
2618/// that it can be found later for redeclarations
2619void
2620Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2621                                       const LookupResult &Previous,
2622                                       Scope *S) {
2623  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2624         "Decl is not a locally-scoped decl!");
2625  // Note that we have a locally-scoped external with this name.
2626  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2627
2628  if (!Previous.isSingleResult())
2629    return;
2630
2631  NamedDecl *PrevDecl = Previous.getFoundDecl();
2632
2633  // If there was a previous declaration of this variable, it may be
2634  // in our identifier chain. Update the identifier chain with the new
2635  // declaration.
2636  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2637    // The previous declaration was found on the identifer resolver
2638    // chain, so remove it from its scope.
2639    while (S && !S->isDeclScope(PrevDecl))
2640      S = S->getParent();
2641
2642    if (S)
2643      S->RemoveDecl(PrevDecl);
2644  }
2645}
2646
2647/// \brief Diagnose function specifiers on a declaration of an identifier that
2648/// does not identify a function.
2649void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2650  // FIXME: We should probably indicate the identifier in question to avoid
2651  // confusion for constructs like "inline int a(), b;"
2652  if (D.getDeclSpec().isInlineSpecified())
2653    Diag(D.getDeclSpec().getInlineSpecLoc(),
2654         diag::err_inline_non_function);
2655
2656  if (D.getDeclSpec().isVirtualSpecified())
2657    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2658         diag::err_virtual_non_function);
2659
2660  if (D.getDeclSpec().isExplicitSpecified())
2661    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2662         diag::err_explicit_non_function);
2663}
2664
2665NamedDecl*
2666Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2667                             QualType R,  TypeSourceInfo *TInfo,
2668                             LookupResult &Previous, bool &Redeclaration) {
2669  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2670  if (D.getCXXScopeSpec().isSet()) {
2671    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2672      << D.getCXXScopeSpec().getRange();
2673    D.setInvalidType();
2674    // Pretend we didn't see the scope specifier.
2675    DC = CurContext;
2676    Previous.clear();
2677  }
2678
2679  if (getLangOptions().CPlusPlus) {
2680    // Check that there are no default arguments (C++ only).
2681    CheckExtraCXXDefaultArguments(D);
2682  }
2683
2684  DiagnoseFunctionSpecifiers(D);
2685
2686  if (D.getDeclSpec().isThreadSpecified())
2687    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2688
2689  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2690    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2691      << D.getName().getSourceRange();
2692    return 0;
2693  }
2694
2695  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2696  if (!NewTD) return 0;
2697
2698  // Handle attributes prior to checking for duplicates in MergeVarDecl
2699  ProcessDeclAttributes(S, NewTD, D);
2700
2701  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2702  // then it shall have block scope.
2703  // Note that variably modified types must be fixed before merging the decl so
2704  // that redeclarations will match.
2705  QualType T = NewTD->getUnderlyingType();
2706  if (T->isVariablyModifiedType()) {
2707    getCurFunction()->setHasBranchProtectedScope();
2708
2709    if (S->getFnParent() == 0) {
2710      bool SizeIsNegative;
2711      llvm::APSInt Oversized;
2712      QualType FixedTy =
2713          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2714                                              Oversized);
2715      if (!FixedTy.isNull()) {
2716        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2717        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2718      } else {
2719        if (SizeIsNegative)
2720          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2721        else if (T->isVariableArrayType())
2722          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2723        else if (Oversized.getBoolValue())
2724          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2725            << Oversized.toString(10);
2726        else
2727          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2728        NewTD->setInvalidDecl();
2729      }
2730    }
2731  }
2732
2733  // Merge the decl with the existing one if appropriate. If the decl is
2734  // in an outer scope, it isn't the same thing.
2735  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2736  if (!Previous.empty()) {
2737    Redeclaration = true;
2738    MergeTypeDefDecl(NewTD, Previous);
2739  }
2740
2741  // If this is the C FILE type, notify the AST context.
2742  if (IdentifierInfo *II = NewTD->getIdentifier())
2743    if (!NewTD->isInvalidDecl() &&
2744        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2745      if (II->isStr("FILE"))
2746        Context.setFILEDecl(NewTD);
2747      else if (II->isStr("jmp_buf"))
2748        Context.setjmp_bufDecl(NewTD);
2749      else if (II->isStr("sigjmp_buf"))
2750        Context.setsigjmp_bufDecl(NewTD);
2751      else if (II->isStr("__builtin_va_list"))
2752        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2753    }
2754
2755  return NewTD;
2756}
2757
2758/// \brief Determines whether the given declaration is an out-of-scope
2759/// previous declaration.
2760///
2761/// This routine should be invoked when name lookup has found a
2762/// previous declaration (PrevDecl) that is not in the scope where a
2763/// new declaration by the same name is being introduced. If the new
2764/// declaration occurs in a local scope, previous declarations with
2765/// linkage may still be considered previous declarations (C99
2766/// 6.2.2p4-5, C++ [basic.link]p6).
2767///
2768/// \param PrevDecl the previous declaration found by name
2769/// lookup
2770///
2771/// \param DC the context in which the new declaration is being
2772/// declared.
2773///
2774/// \returns true if PrevDecl is an out-of-scope previous declaration
2775/// for a new delcaration with the same name.
2776static bool
2777isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2778                                ASTContext &Context) {
2779  if (!PrevDecl)
2780    return false;
2781
2782  if (!PrevDecl->hasLinkage())
2783    return false;
2784
2785  if (Context.getLangOptions().CPlusPlus) {
2786    // C++ [basic.link]p6:
2787    //   If there is a visible declaration of an entity with linkage
2788    //   having the same name and type, ignoring entities declared
2789    //   outside the innermost enclosing namespace scope, the block
2790    //   scope declaration declares that same entity and receives the
2791    //   linkage of the previous declaration.
2792    DeclContext *OuterContext = DC->getRedeclContext();
2793    if (!OuterContext->isFunctionOrMethod())
2794      // This rule only applies to block-scope declarations.
2795      return false;
2796
2797    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2798    if (PrevOuterContext->isRecord())
2799      // We found a member function: ignore it.
2800      return false;
2801
2802    // Find the innermost enclosing namespace for the new and
2803    // previous declarations.
2804    OuterContext = OuterContext->getEnclosingNamespaceContext();
2805    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2806
2807    // The previous declaration is in a different namespace, so it
2808    // isn't the same function.
2809    if (!OuterContext->Equals(PrevOuterContext))
2810      return false;
2811  }
2812
2813  return true;
2814}
2815
2816static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2817  CXXScopeSpec &SS = D.getCXXScopeSpec();
2818  if (!SS.isSet()) return;
2819  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2820                       SS.getRange());
2821}
2822
2823NamedDecl*
2824Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
2825                              QualType R, TypeSourceInfo *TInfo,
2826                              LookupResult &Previous,
2827                              MultiTemplateParamsArg TemplateParamLists,
2828                              bool &Redeclaration) {
2829  DeclarationName Name = GetNameForDeclarator(D).getName();
2830
2831  // Check that there are no default arguments (C++ only).
2832  if (getLangOptions().CPlusPlus)
2833    CheckExtraCXXDefaultArguments(D);
2834
2835  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2836  assert(SCSpec != DeclSpec::SCS_typedef &&
2837         "Parser allowed 'typedef' as storage class VarDecl.");
2838  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2839  if (SCSpec == DeclSpec::SCS_mutable) {
2840    // mutable can only appear on non-static class members, so it's always
2841    // an error here
2842    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2843    D.setInvalidType();
2844    SC = SC_None;
2845  }
2846  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2847  VarDecl::StorageClass SCAsWritten
2848    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2849
2850  IdentifierInfo *II = Name.getAsIdentifierInfo();
2851  if (!II) {
2852    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2853      << Name.getAsString();
2854    return 0;
2855  }
2856
2857  DiagnoseFunctionSpecifiers(D);
2858
2859  if (!DC->isRecord() && S->getFnParent() == 0) {
2860    // C99 6.9p2: The storage-class specifiers auto and register shall not
2861    // appear in the declaration specifiers in an external declaration.
2862    if (SC == SC_Auto || SC == SC_Register) {
2863
2864      // If this is a register variable with an asm label specified, then this
2865      // is a GNU extension.
2866      if (SC == SC_Register && D.getAsmLabel())
2867        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2868      else
2869        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2870      D.setInvalidType();
2871    }
2872  }
2873
2874  bool isExplicitSpecialization;
2875  VarDecl *NewVD;
2876  if (!getLangOptions().CPlusPlus) {
2877      NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2878                              II, R, TInfo, SC, SCAsWritten);
2879
2880    if (D.isInvalidType())
2881      NewVD->setInvalidDecl();
2882  } else {
2883    if (DC->isRecord() && !CurContext->isRecord()) {
2884      // This is an out-of-line definition of a static data member.
2885      if (SC == SC_Static) {
2886        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2887             diag::err_static_out_of_line)
2888          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2889      } else if (SC == SC_None)
2890        SC = SC_Static;
2891    }
2892    if (SC == SC_Static) {
2893      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2894        if (RD->isLocalClass())
2895          Diag(D.getIdentifierLoc(),
2896               diag::err_static_data_member_not_allowed_in_local_class)
2897            << Name << RD->getDeclName();
2898
2899        // C++ [class.union]p1: If a union contains a static data member,
2900        // the program is ill-formed.
2901        //
2902        // We also disallow static data members in anonymous structs.
2903        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
2904          Diag(D.getIdentifierLoc(),
2905               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
2906            << Name << RD->isUnion();
2907      }
2908    }
2909
2910    // Match up the template parameter lists with the scope specifier, then
2911    // determine whether we have a template or a template specialization.
2912    isExplicitSpecialization = false;
2913    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2914    bool Invalid = false;
2915    if (TemplateParameterList *TemplateParams
2916        = MatchTemplateParametersToScopeSpecifier(
2917                                                  D.getDeclSpec().getSourceRange().getBegin(),
2918                                                  D.getCXXScopeSpec(),
2919                                                  TemplateParamLists.get(),
2920                                                  TemplateParamLists.size(),
2921                                                  /*never a friend*/ false,
2922                                                  isExplicitSpecialization,
2923                                                  Invalid)) {
2924      // All but one template parameter lists have been matching.
2925      --NumMatchedTemplateParamLists;
2926
2927      if (TemplateParams->size() > 0) {
2928        // There is no such thing as a variable template.
2929        Diag(D.getIdentifierLoc(), diag::err_template_variable)
2930          << II
2931          << SourceRange(TemplateParams->getTemplateLoc(),
2932                         TemplateParams->getRAngleLoc());
2933        return 0;
2934      } else {
2935        // There is an extraneous 'template<>' for this variable. Complain
2936        // about it, but allow the declaration of the variable.
2937        Diag(TemplateParams->getTemplateLoc(),
2938             diag::err_template_variable_noparams)
2939          << II
2940          << SourceRange(TemplateParams->getTemplateLoc(),
2941                         TemplateParams->getRAngleLoc());
2942
2943        isExplicitSpecialization = true;
2944      }
2945    }
2946
2947    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2948                            II, R, TInfo, SC, SCAsWritten);
2949
2950    if (D.isInvalidType() || Invalid)
2951      NewVD->setInvalidDecl();
2952
2953    SetNestedNameSpecifier(NewVD, D);
2954
2955    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2956      NewVD->setTemplateParameterListsInfo(Context,
2957                                           NumMatchedTemplateParamLists,
2958                                           TemplateParamLists.release());
2959    }
2960  }
2961
2962  if (D.getDeclSpec().isThreadSpecified()) {
2963    if (NewVD->hasLocalStorage())
2964      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2965    else if (!Context.Target.isTLSSupported())
2966      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2967    else
2968      NewVD->setThreadSpecified(true);
2969  }
2970
2971  // Set the lexical context. If the declarator has a C++ scope specifier, the
2972  // lexical context will be different from the semantic context.
2973  NewVD->setLexicalDeclContext(CurContext);
2974
2975  // Handle attributes prior to checking for duplicates in MergeVarDecl
2976  ProcessDeclAttributes(S, NewVD, D);
2977
2978  // Handle GNU asm-label extension (encoded as an attribute).
2979  if (Expr *E = (Expr*)D.getAsmLabel()) {
2980    // The parser guarantees this is a string.
2981    StringLiteral *SE = cast<StringLiteral>(E);
2982    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2983                                                Context, SE->getString()));
2984  }
2985
2986  // Diagnose shadowed variables before filtering for scope.
2987  if (!D.getCXXScopeSpec().isSet())
2988    CheckShadow(S, NewVD, Previous);
2989
2990  // Don't consider existing declarations that are in a different
2991  // scope and are out-of-semantic-context declarations (if the new
2992  // declaration has linkage).
2993  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2994
2995  if (!getLangOptions().CPlusPlus)
2996    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2997  else {
2998    // Merge the decl with the existing one if appropriate.
2999    if (!Previous.empty()) {
3000      if (Previous.isSingleResult() &&
3001          isa<FieldDecl>(Previous.getFoundDecl()) &&
3002          D.getCXXScopeSpec().isSet()) {
3003        // The user tried to define a non-static data member
3004        // out-of-line (C++ [dcl.meaning]p1).
3005        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3006          << D.getCXXScopeSpec().getRange();
3007        Previous.clear();
3008        NewVD->setInvalidDecl();
3009      }
3010    } else if (D.getCXXScopeSpec().isSet()) {
3011      // No previous declaration in the qualifying scope.
3012      Diag(D.getIdentifierLoc(), diag::err_no_member)
3013        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3014        << D.getCXXScopeSpec().getRange();
3015      NewVD->setInvalidDecl();
3016    }
3017
3018    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3019
3020    // This is an explicit specialization of a static data member. Check it.
3021    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3022        CheckMemberSpecialization(NewVD, Previous))
3023      NewVD->setInvalidDecl();
3024    // For variables declared as __block which require copy construction,
3025    // must capture copy initialization expression here.
3026    if (!NewVD->isInvalidDecl() && NewVD->hasAttr<BlocksAttr>()) {
3027      QualType T = NewVD->getType();
3028      if (!T->isDependentType() && !T->isReferenceType() &&
3029          T->getAs<RecordType>() && !T->isUnionType()) {
3030        Expr *E = new (Context) DeclRefExpr(NewVD, T,
3031                                            VK_LValue, SourceLocation());
3032        ExprResult Res = PerformCopyInitialization(
3033                InitializedEntity::InitializeBlock(NewVD->getLocation(),
3034                                                   T, false),
3035                SourceLocation(),
3036                Owned(E));
3037        if (!Res.isInvalid()) {
3038          Res = MaybeCreateExprWithCleanups(Res);
3039          Expr *Init = Res.takeAs<Expr>();
3040          Context.setBlockVarCopyInits(NewVD, Init);
3041        }
3042      }
3043    }
3044  }
3045
3046  // attributes declared post-definition are currently ignored
3047  // FIXME: This should be handled in attribute merging, not
3048  // here.
3049  if (Previous.isSingleResult()) {
3050    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3051    if (Def && (Def = Def->getDefinition()) &&
3052        Def != NewVD && D.hasAttributes()) {
3053      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3054      Diag(Def->getLocation(), diag::note_previous_definition);
3055    }
3056  }
3057
3058  // If this is a locally-scoped extern C variable, update the map of
3059  // such variables.
3060  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3061      !NewVD->isInvalidDecl())
3062    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3063
3064  // If there's a #pragma GCC visibility in scope, and this isn't a class
3065  // member, set the visibility of this variable.
3066  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3067    AddPushedVisibilityAttribute(NewVD);
3068
3069  MarkUnusedFileScopedDecl(NewVD);
3070
3071  return NewVD;
3072}
3073
3074/// \brief Diagnose variable or built-in function shadowing.  Implements
3075/// -Wshadow.
3076///
3077/// This method is called whenever a VarDecl is added to a "useful"
3078/// scope.
3079///
3080/// \param S the scope in which the shadowing name is being declared
3081/// \param R the lookup of the name
3082///
3083void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3084  // Return if warning is ignored.
3085  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
3086    return;
3087
3088  // Don't diagnose declarations at file scope.  The scope might not
3089  // have a DeclContext if (e.g.) we're parsing a function prototype.
3090  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
3091  if (NewDC && NewDC->isFileContext())
3092    return;
3093
3094  // Only diagnose if we're shadowing an unambiguous field or variable.
3095  if (R.getResultKind() != LookupResult::Found)
3096    return;
3097
3098  NamedDecl* ShadowedDecl = R.getFoundDecl();
3099  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3100    return;
3101
3102  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3103
3104  // Only warn about certain kinds of shadowing for class members.
3105  if (NewDC && NewDC->isRecord()) {
3106    // In particular, don't warn about shadowing non-class members.
3107    if (!OldDC->isRecord())
3108      return;
3109
3110    // TODO: should we warn about static data members shadowing
3111    // static data members from base classes?
3112
3113    // TODO: don't diagnose for inaccessible shadowed members.
3114    // This is hard to do perfectly because we might friend the
3115    // shadowing context, but that's just a false negative.
3116  }
3117
3118  // Determine what kind of declaration we're shadowing.
3119  unsigned Kind;
3120  if (isa<RecordDecl>(OldDC)) {
3121    if (isa<FieldDecl>(ShadowedDecl))
3122      Kind = 3; // field
3123    else
3124      Kind = 2; // static data member
3125  } else if (OldDC->isFileContext())
3126    Kind = 1; // global
3127  else
3128    Kind = 0; // local
3129
3130  DeclarationName Name = R.getLookupName();
3131
3132  // Emit warning and note.
3133  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3134  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3135}
3136
3137/// \brief Check -Wshadow without the advantage of a previous lookup.
3138void Sema::CheckShadow(Scope *S, VarDecl *D) {
3139  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3140                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3141  LookupName(R, S);
3142  CheckShadow(S, D, R);
3143}
3144
3145/// \brief Perform semantic checking on a newly-created variable
3146/// declaration.
3147///
3148/// This routine performs all of the type-checking required for a
3149/// variable declaration once it has been built. It is used both to
3150/// check variables after they have been parsed and their declarators
3151/// have been translated into a declaration, and to check variables
3152/// that have been instantiated from a template.
3153///
3154/// Sets NewVD->isInvalidDecl() if an error was encountered.
3155void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3156                                    LookupResult &Previous,
3157                                    bool &Redeclaration) {
3158  // If the decl is already known invalid, don't check it.
3159  if (NewVD->isInvalidDecl())
3160    return;
3161
3162  QualType T = NewVD->getType();
3163
3164  if (T->isObjCObjectType()) {
3165    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3166    return NewVD->setInvalidDecl();
3167  }
3168
3169  // Emit an error if an address space was applied to decl with local storage.
3170  // This includes arrays of objects with address space qualifiers, but not
3171  // automatic variables that point to other address spaces.
3172  // ISO/IEC TR 18037 S5.1.2
3173  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3174    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3175    return NewVD->setInvalidDecl();
3176  }
3177
3178  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3179      && !NewVD->hasAttr<BlocksAttr>())
3180    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3181
3182  bool isVM = T->isVariablyModifiedType();
3183  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3184      NewVD->hasAttr<BlocksAttr>())
3185    getCurFunction()->setHasBranchProtectedScope();
3186
3187  if ((isVM && NewVD->hasLinkage()) ||
3188      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3189    bool SizeIsNegative;
3190    llvm::APSInt Oversized;
3191    QualType FixedTy =
3192        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3193                                            Oversized);
3194
3195    if (FixedTy.isNull() && T->isVariableArrayType()) {
3196      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3197      // FIXME: This won't give the correct result for
3198      // int a[10][n];
3199      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3200
3201      if (NewVD->isFileVarDecl())
3202        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3203        << SizeRange;
3204      else if (NewVD->getStorageClass() == SC_Static)
3205        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3206        << SizeRange;
3207      else
3208        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3209        << SizeRange;
3210      return NewVD->setInvalidDecl();
3211    }
3212
3213    if (FixedTy.isNull()) {
3214      if (NewVD->isFileVarDecl())
3215        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3216      else
3217        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3218      return NewVD->setInvalidDecl();
3219    }
3220
3221    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3222    NewVD->setType(FixedTy);
3223  }
3224
3225  if (Previous.empty() && NewVD->isExternC()) {
3226    // Since we did not find anything by this name and we're declaring
3227    // an extern "C" variable, look for a non-visible extern "C"
3228    // declaration with the same name.
3229    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3230      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3231    if (Pos != LocallyScopedExternalDecls.end())
3232      Previous.addDecl(Pos->second);
3233  }
3234
3235  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3236    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3237      << T;
3238    return NewVD->setInvalidDecl();
3239  }
3240
3241  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3242    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3243    return NewVD->setInvalidDecl();
3244  }
3245
3246  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3247    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3248    return NewVD->setInvalidDecl();
3249  }
3250
3251  // Function pointers and references cannot have qualified function type, only
3252  // function pointer-to-members can do that.
3253  QualType Pointee;
3254  unsigned PtrOrRef = 0;
3255  if (const PointerType *Ptr = T->getAs<PointerType>())
3256    Pointee = Ptr->getPointeeType();
3257  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3258    Pointee = Ref->getPointeeType();
3259    PtrOrRef = 1;
3260  }
3261  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3262      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3263    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3264        << PtrOrRef;
3265    return NewVD->setInvalidDecl();
3266  }
3267
3268  if (!Previous.empty()) {
3269    Redeclaration = true;
3270    MergeVarDecl(NewVD, Previous);
3271  }
3272}
3273
3274/// \brief Data used with FindOverriddenMethod
3275struct FindOverriddenMethodData {
3276  Sema *S;
3277  CXXMethodDecl *Method;
3278};
3279
3280/// \brief Member lookup function that determines whether a given C++
3281/// method overrides a method in a base class, to be used with
3282/// CXXRecordDecl::lookupInBases().
3283static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3284                                 CXXBasePath &Path,
3285                                 void *UserData) {
3286  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3287
3288  FindOverriddenMethodData *Data
3289    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3290
3291  DeclarationName Name = Data->Method->getDeclName();
3292
3293  // FIXME: Do we care about other names here too?
3294  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3295    // We really want to find the base class destructor here.
3296    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3297    CanQualType CT = Data->S->Context.getCanonicalType(T);
3298
3299    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3300  }
3301
3302  for (Path.Decls = BaseRecord->lookup(Name);
3303       Path.Decls.first != Path.Decls.second;
3304       ++Path.Decls.first) {
3305    NamedDecl *D = *Path.Decls.first;
3306    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3307      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3308        return true;
3309    }
3310  }
3311
3312  return false;
3313}
3314
3315/// AddOverriddenMethods - See if a method overrides any in the base classes,
3316/// and if so, check that it's a valid override and remember it.
3317bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3318  // Look for virtual methods in base classes that this method might override.
3319  CXXBasePaths Paths;
3320  FindOverriddenMethodData Data;
3321  Data.Method = MD;
3322  Data.S = this;
3323  bool AddedAny = false;
3324  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3325    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3326         E = Paths.found_decls_end(); I != E; ++I) {
3327      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3328        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3329            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3330            !CheckOverridingFunctionAttributes(MD, OldMD)) {
3331          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3332          AddedAny = true;
3333        }
3334      }
3335    }
3336  }
3337
3338  return AddedAny;
3339}
3340
3341static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3342  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3343                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3344  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3345  assert(!Prev.isAmbiguous() &&
3346         "Cannot have an ambiguity in previous-declaration lookup");
3347  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3348       Func != FuncEnd; ++Func) {
3349    if (isa<FunctionDecl>(*Func) &&
3350        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3351      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3352  }
3353}
3354
3355/// CheckClassMemberNameAttributes - Check for class member name checking
3356/// attributes according to [dcl.attr.override]
3357static void
3358CheckClassMemberNameAttributes(Sema& SemaRef, const FunctionDecl *FD) {
3359  const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD);
3360  if (!MD || !MD->isVirtual())
3361    return;
3362
3363  bool HasOverrideAttr = MD->hasAttr<OverrideAttr>();
3364  bool HasOverriddenMethods =
3365    MD->begin_overridden_methods() != MD->end_overridden_methods();
3366
3367  /// C++ [dcl.attr.override]p2:
3368  ///   If a virtual member function f is marked override and does not override
3369  ///   a member function of a base class the program is ill-formed.
3370  if (HasOverrideAttr && !HasOverriddenMethods) {
3371    SemaRef.Diag(MD->getLocation(), diag::err_override_function_not_overriding)
3372      << MD->getDeclName();
3373    return;
3374  }
3375
3376  if (!MD->getParent()->hasAttr<BaseCheckAttr>())
3377    return;
3378
3379  /// C++ [dcl.attr.override]p6:
3380  ///   In a class definition marked base_check, if a virtual member function
3381  ///    that is neither implicitly-declared nor a destructor overrides a
3382  ///    member function of a base class and it is not marked override, the
3383  ///    program is ill-formed.
3384  if (HasOverriddenMethods && !HasOverrideAttr && !MD->isImplicit() &&
3385      !isa<CXXDestructorDecl>(MD)) {
3386    llvm::SmallVector<const CXXMethodDecl*, 4>
3387      OverriddenMethods(MD->begin_overridden_methods(),
3388                        MD->end_overridden_methods());
3389
3390    SemaRef.Diag(MD->getLocation(),
3391                 diag::err_function_overriding_without_override)
3392      << MD->getDeclName() << (unsigned)OverriddenMethods.size();
3393
3394    for (unsigned I = 0; I != OverriddenMethods.size(); ++I)
3395      SemaRef.Diag(OverriddenMethods[I]->getLocation(),
3396                   diag::note_overridden_virtual_function);
3397  }
3398}
3399
3400NamedDecl*
3401Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3402                              QualType R, TypeSourceInfo *TInfo,
3403                              LookupResult &Previous,
3404                              MultiTemplateParamsArg TemplateParamLists,
3405                              bool IsFunctionDefinition, bool &Redeclaration) {
3406  assert(R.getTypePtr()->isFunctionType());
3407
3408  // TODO: consider using NameInfo for diagnostic.
3409  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3410  DeclarationName Name = NameInfo.getName();
3411  FunctionDecl::StorageClass SC = SC_None;
3412  switch (D.getDeclSpec().getStorageClassSpec()) {
3413  default: assert(0 && "Unknown storage class!");
3414  case DeclSpec::SCS_auto:
3415  case DeclSpec::SCS_register:
3416  case DeclSpec::SCS_mutable:
3417    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3418         diag::err_typecheck_sclass_func);
3419    D.setInvalidType();
3420    break;
3421  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3422  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3423  case DeclSpec::SCS_static: {
3424    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3425      // C99 6.7.1p5:
3426      //   The declaration of an identifier for a function that has
3427      //   block scope shall have no explicit storage-class specifier
3428      //   other than extern
3429      // See also (C++ [dcl.stc]p4).
3430      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3431           diag::err_static_block_func);
3432      SC = SC_None;
3433    } else
3434      SC = SC_Static;
3435    break;
3436  }
3437  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3438  }
3439
3440  if (D.getDeclSpec().isThreadSpecified())
3441    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3442
3443  // Do not allow returning a objc interface by-value.
3444  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3445    Diag(D.getIdentifierLoc(),
3446         diag::err_object_cannot_be_passed_returned_by_value) << 0
3447    << R->getAs<FunctionType>()->getResultType();
3448    D.setInvalidType();
3449  }
3450
3451  FunctionDecl *NewFD;
3452  bool isFriend, isVirtual, isExplicit, isVirtualOkay;
3453  bool isInline = D.getDeclSpec().isInlineSpecified();
3454  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3455  FunctionDecl::StorageClass SCAsWritten
3456    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3457  FunctionTemplateDecl *FunctionTemplate;
3458  bool isExplicitSpecialization, isFunctionTemplateSpecialization;
3459  unsigned NumMatchedTemplateParamLists;
3460
3461  if (!getLangOptions().CPlusPlus) {
3462    // Determine whether the function was written with a
3463    // prototype. This true when:
3464    //   - there is a prototype in the declarator, or
3465    //   - the type R of the function is some kind of typedef or other reference
3466    //     to a type name (which eventually refers to a function type).
3467    bool HasPrototype =
3468    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3469    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3470
3471    NewFD = FunctionDecl::Create(Context, DC,
3472                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3473                                 HasPrototype);
3474    if (D.isInvalidType())
3475      NewFD->setInvalidDecl();
3476
3477    // Set the lexical context.
3478    NewFD->setLexicalDeclContext(CurContext);
3479    // Filter out previous declarations that don't match the scope.
3480    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3481  } else {
3482    isFriend = D.getDeclSpec().isFriendSpecified();
3483    isVirtual = D.getDeclSpec().isVirtualSpecified();
3484    isExplicit = D.getDeclSpec().isExplicitSpecified();
3485    isVirtualOkay = false;
3486
3487    // Check that the return type is not an abstract class type.
3488    // For record types, this is done by the AbstractClassUsageDiagnoser once
3489    // the class has been completely parsed.
3490    if (!DC->isRecord() &&
3491      RequireNonAbstractType(D.getIdentifierLoc(),
3492                             R->getAs<FunctionType>()->getResultType(),
3493                             diag::err_abstract_type_in_decl,
3494                             AbstractReturnType))
3495      D.setInvalidType();
3496
3497
3498    if (isFriend) {
3499      // C++ [class.friend]p5
3500      //   A function can be defined in a friend declaration of a
3501      //   class . . . . Such a function is implicitly inline.
3502      isInline |= IsFunctionDefinition;
3503    }
3504
3505    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3506      // This is a C++ constructor declaration.
3507      assert(DC->isRecord() &&
3508             "Constructors can only be declared in a member context");
3509
3510      R = CheckConstructorDeclarator(D, R, SC);
3511
3512      // Create the new declaration
3513      NewFD = CXXConstructorDecl::Create(Context,
3514                                         cast<CXXRecordDecl>(DC),
3515                                         NameInfo, R, TInfo,
3516                                         isExplicit, isInline,
3517                                         /*isImplicitlyDeclared=*/false);
3518    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3519      // This is a C++ destructor declaration.
3520      if (DC->isRecord()) {
3521        R = CheckDestructorDeclarator(D, R, SC);
3522
3523        NewFD = CXXDestructorDecl::Create(Context,
3524                                          cast<CXXRecordDecl>(DC),
3525                                          NameInfo, R, TInfo,
3526                                          isInline,
3527                                          /*isImplicitlyDeclared=*/false);
3528        isVirtualOkay = true;
3529      } else {
3530        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3531
3532        // Create a FunctionDecl to satisfy the function definition parsing
3533        // code path.
3534        NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3535                                     Name, R, TInfo, SC, SCAsWritten, isInline,
3536                                     /*hasPrototype=*/true);
3537        D.setInvalidType();
3538      }
3539    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3540      if (!DC->isRecord()) {
3541        Diag(D.getIdentifierLoc(),
3542             diag::err_conv_function_not_member);
3543        return 0;
3544      }
3545
3546      CheckConversionDeclarator(D, R, SC);
3547      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3548                                        NameInfo, R, TInfo,
3549                                        isInline, isExplicit);
3550
3551      isVirtualOkay = true;
3552    } else if (DC->isRecord()) {
3553      // If the of the function is the same as the name of the record, then this
3554      // must be an invalid constructor that has a return type.
3555      // (The parser checks for a return type and makes the declarator a
3556      // constructor if it has no return type).
3557      // must have an invalid constructor that has a return type
3558      if (Name.getAsIdentifierInfo() &&
3559          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3560        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3561          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3562          << SourceRange(D.getIdentifierLoc());
3563        return 0;
3564      }
3565
3566      bool isStatic = SC == SC_Static;
3567
3568      // [class.free]p1:
3569      // Any allocation function for a class T is a static member
3570      // (even if not explicitly declared static).
3571      if (Name.getCXXOverloadedOperator() == OO_New ||
3572          Name.getCXXOverloadedOperator() == OO_Array_New)
3573        isStatic = true;
3574
3575      // [class.free]p6 Any deallocation function for a class X is a static member
3576      // (even if not explicitly declared static).
3577      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3578          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3579        isStatic = true;
3580
3581      // This is a C++ method declaration.
3582      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3583                                    NameInfo, R, TInfo,
3584                                    isStatic, SCAsWritten, isInline);
3585
3586      isVirtualOkay = !isStatic;
3587    } else {
3588      // Determine whether the function was written with a
3589      // prototype. This true when:
3590      //   - we're in C++ (where every function has a prototype),
3591      NewFD = FunctionDecl::Create(Context, DC,
3592                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3593                                   true/*HasPrototype*/);
3594    }
3595    SetNestedNameSpecifier(NewFD, D);
3596    FunctionTemplate = 0;
3597    isExplicitSpecialization = false;
3598    isFunctionTemplateSpecialization = false;
3599    NumMatchedTemplateParamLists = TemplateParamLists.size();
3600    if (D.isInvalidType())
3601      NewFD->setInvalidDecl();
3602
3603    // Set the lexical context. If the declarator has a C++
3604    // scope specifier, or is the object of a friend declaration, the
3605    // lexical context will be different from the semantic context.
3606    NewFD->setLexicalDeclContext(CurContext);
3607
3608    // Match up the template parameter lists with the scope specifier, then
3609    // determine whether we have a template or a template specialization.
3610    bool Invalid = false;
3611    if (TemplateParameterList *TemplateParams
3612        = MatchTemplateParametersToScopeSpecifier(
3613                                  D.getDeclSpec().getSourceRange().getBegin(),
3614                                  D.getCXXScopeSpec(),
3615                                  TemplateParamLists.get(),
3616                                  TemplateParamLists.size(),
3617                                  isFriend,
3618                                  isExplicitSpecialization,
3619                                  Invalid)) {
3620          // All but one template parameter lists have been matching.
3621          --NumMatchedTemplateParamLists;
3622
3623          if (TemplateParams->size() > 0) {
3624            // This is a function template
3625
3626            // Check that we can declare a template here.
3627            if (CheckTemplateDeclScope(S, TemplateParams))
3628              return 0;
3629
3630            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3631                                                      NewFD->getLocation(),
3632                                                      Name, TemplateParams,
3633                                                      NewFD);
3634            FunctionTemplate->setLexicalDeclContext(CurContext);
3635            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3636          } else {
3637            // This is a function template specialization.
3638            isFunctionTemplateSpecialization = true;
3639
3640            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3641            if (isFriend && isFunctionTemplateSpecialization) {
3642              // We want to remove the "template<>", found here.
3643              SourceRange RemoveRange = TemplateParams->getSourceRange();
3644
3645              // If we remove the template<> and the name is not a
3646              // template-id, we're actually silently creating a problem:
3647              // the friend declaration will refer to an untemplated decl,
3648              // and clearly the user wants a template specialization.  So
3649              // we need to insert '<>' after the name.
3650              SourceLocation InsertLoc;
3651              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3652                InsertLoc = D.getName().getSourceRange().getEnd();
3653                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3654              }
3655
3656              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3657              << Name << RemoveRange
3658              << FixItHint::CreateRemoval(RemoveRange)
3659              << FixItHint::CreateInsertion(InsertLoc, "<>");
3660            }
3661          }
3662        }
3663
3664    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3665      NewFD->setTemplateParameterListsInfo(Context,
3666                                           NumMatchedTemplateParamLists,
3667                                           TemplateParamLists.release());
3668    }
3669
3670    if (Invalid) {
3671      NewFD->setInvalidDecl();
3672      if (FunctionTemplate)
3673        FunctionTemplate->setInvalidDecl();
3674    }
3675
3676    // C++ [dcl.fct.spec]p5:
3677    //   The virtual specifier shall only be used in declarations of
3678    //   nonstatic class member functions that appear within a
3679    //   member-specification of a class declaration; see 10.3.
3680    //
3681    if (isVirtual && !NewFD->isInvalidDecl()) {
3682      if (!isVirtualOkay) {
3683        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3684             diag::err_virtual_non_function);
3685      } else if (!CurContext->isRecord()) {
3686        // 'virtual' was specified outside of the class.
3687        Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3688          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3689      } else {
3690        // Okay: Add virtual to the method.
3691        NewFD->setVirtualAsWritten(true);
3692      }
3693    }
3694
3695    // C++ [dcl.fct.spec]p3:
3696    //  The inline specifier shall not appear on a block scope function declaration.
3697    if (isInline && !NewFD->isInvalidDecl()) {
3698      if (CurContext->isFunctionOrMethod()) {
3699        // 'inline' is not allowed on block scope function declaration.
3700        Diag(D.getDeclSpec().getInlineSpecLoc(),
3701             diag::err_inline_declaration_block_scope) << Name
3702          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3703      }
3704    }
3705
3706    // C++ [dcl.fct.spec]p6:
3707    //  The explicit specifier shall be used only in the declaration of a
3708    //  constructor or conversion function within its class definition; see 12.3.1
3709    //  and 12.3.2.
3710    if (isExplicit && !NewFD->isInvalidDecl()) {
3711      if (!CurContext->isRecord()) {
3712        // 'explicit' was specified outside of the class.
3713        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3714             diag::err_explicit_out_of_class)
3715          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3716      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3717                 !isa<CXXConversionDecl>(NewFD)) {
3718        // 'explicit' was specified on a function that wasn't a constructor
3719        // or conversion function.
3720        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3721             diag::err_explicit_non_ctor_or_conv_function)
3722          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3723      }
3724    }
3725
3726    // Filter out previous declarations that don't match the scope.
3727    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3728
3729    if (isFriend) {
3730      // For now, claim that the objects have no previous declaration.
3731      if (FunctionTemplate) {
3732        FunctionTemplate->setObjectOfFriendDecl(false);
3733        FunctionTemplate->setAccess(AS_public);
3734      }
3735      NewFD->setObjectOfFriendDecl(false);
3736      NewFD->setAccess(AS_public);
3737    }
3738
3739    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3740        !CurContext->isRecord()) {
3741      // C++ [class.static]p1:
3742      //   A data or function member of a class may be declared static
3743      //   in a class definition, in which case it is a static member of
3744      //   the class.
3745
3746      // Complain about the 'static' specifier if it's on an out-of-line
3747      // member function definition.
3748      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3749           diag::err_static_out_of_line)
3750        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3751    }
3752  }
3753
3754  // Handle GNU asm-label extension (encoded as an attribute).
3755  if (Expr *E = (Expr*) D.getAsmLabel()) {
3756    // The parser guarantees this is a string.
3757    StringLiteral *SE = cast<StringLiteral>(E);
3758    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3759                                                SE->getString()));
3760  }
3761
3762  // Copy the parameter declarations from the declarator D to the function
3763  // declaration NewFD, if they are available.  First scavenge them into Params.
3764  llvm::SmallVector<ParmVarDecl*, 16> Params;
3765  if (D.getNumTypeObjects() > 0) {
3766    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3767
3768    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3769    // function that takes no arguments, not a function that takes a
3770    // single void argument.
3771    // We let through "const void" here because Sema::GetTypeForDeclarator
3772    // already checks for that case.
3773    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3774        FTI.ArgInfo[0].Param &&
3775        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3776      // Empty arg list, don't push any params.
3777      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3778
3779      // In C++, the empty parameter-type-list must be spelled "void"; a
3780      // typedef of void is not permitted.
3781      if (getLangOptions().CPlusPlus &&
3782          Param->getType().getUnqualifiedType() != Context.VoidTy)
3783        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3784    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3785      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3786        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3787        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3788        Param->setDeclContext(NewFD);
3789        Params.push_back(Param);
3790
3791        if (Param->isInvalidDecl())
3792          NewFD->setInvalidDecl();
3793      }
3794    }
3795
3796  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3797    // When we're declaring a function with a typedef, typeof, etc as in the
3798    // following example, we'll need to synthesize (unnamed)
3799    // parameters for use in the declaration.
3800    //
3801    // @code
3802    // typedef void fn(int);
3803    // fn f;
3804    // @endcode
3805
3806    // Synthesize a parameter for each argument type.
3807    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3808         AE = FT->arg_type_end(); AI != AE; ++AI) {
3809      ParmVarDecl *Param =
3810        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3811      Params.push_back(Param);
3812    }
3813  } else {
3814    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3815           "Should not need args for typedef of non-prototype fn");
3816  }
3817  // Finally, we know we have the right number of parameters, install them.
3818  NewFD->setParams(Params.data(), Params.size());
3819
3820  bool OverloadableAttrRequired=false; // FIXME: HACK!
3821  if (!getLangOptions().CPlusPlus) {
3822    // Perform semantic checking on the function declaration.
3823    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3824                             Redeclaration,
3825                             /*FIXME:*/OverloadableAttrRequired);
3826    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3827            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3828           "previous declaration set still overloaded");
3829  } else {
3830    // If the declarator is a template-id, translate the parser's template
3831    // argument list into our AST format.
3832    bool HasExplicitTemplateArgs = false;
3833    TemplateArgumentListInfo TemplateArgs;
3834    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3835      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3836      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3837      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3838      ASTTemplateArgsPtr TemplateArgsPtr(*this,
3839                                         TemplateId->getTemplateArgs(),
3840                                         TemplateId->NumArgs);
3841      translateTemplateArguments(TemplateArgsPtr,
3842                                 TemplateArgs);
3843      TemplateArgsPtr.release();
3844
3845      HasExplicitTemplateArgs = true;
3846
3847      if (FunctionTemplate) {
3848        // FIXME: Diagnose function template with explicit template
3849        // arguments.
3850        HasExplicitTemplateArgs = false;
3851      } else if (!isFunctionTemplateSpecialization &&
3852                 !D.getDeclSpec().isFriendSpecified()) {
3853        // We have encountered something that the user meant to be a
3854        // specialization (because it has explicitly-specified template
3855        // arguments) but that was not introduced with a "template<>" (or had
3856        // too few of them).
3857        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3858          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3859          << FixItHint::CreateInsertion(
3860                                        D.getDeclSpec().getSourceRange().getBegin(),
3861                                                  "template<> ");
3862        isFunctionTemplateSpecialization = true;
3863      } else {
3864        // "friend void foo<>(int);" is an implicit specialization decl.
3865        isFunctionTemplateSpecialization = true;
3866      }
3867    } else if (isFriend && isFunctionTemplateSpecialization) {
3868      // This combination is only possible in a recovery case;  the user
3869      // wrote something like:
3870      //   template <> friend void foo(int);
3871      // which we're recovering from as if the user had written:
3872      //   friend void foo<>(int);
3873      // Go ahead and fake up a template id.
3874      HasExplicitTemplateArgs = true;
3875        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3876      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3877    }
3878
3879    // If it's a friend (and only if it's a friend), it's possible
3880    // that either the specialized function type or the specialized
3881    // template is dependent, and therefore matching will fail.  In
3882    // this case, don't check the specialization yet.
3883    if (isFunctionTemplateSpecialization && isFriend &&
3884        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3885      assert(HasExplicitTemplateArgs &&
3886             "friend function specialization without template args");
3887      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3888                                                       Previous))
3889        NewFD->setInvalidDecl();
3890    } else if (isFunctionTemplateSpecialization) {
3891      if (CheckFunctionTemplateSpecialization(NewFD,
3892                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3893                                              Previous))
3894        NewFD->setInvalidDecl();
3895    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3896      if (CheckMemberSpecialization(NewFD, Previous))
3897          NewFD->setInvalidDecl();
3898    }
3899
3900    // Perform semantic checking on the function declaration.
3901    bool flag_c_overloaded=false; // unused for c++
3902    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3903                             Redeclaration, /*FIXME:*/flag_c_overloaded);
3904
3905    assert((NewFD->isInvalidDecl() || !Redeclaration ||
3906            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3907           "previous declaration set still overloaded");
3908
3909    NamedDecl *PrincipalDecl = (FunctionTemplate
3910                                ? cast<NamedDecl>(FunctionTemplate)
3911                                : NewFD);
3912
3913    if (isFriend && Redeclaration) {
3914      AccessSpecifier Access = AS_public;
3915      if (!NewFD->isInvalidDecl())
3916        Access = NewFD->getPreviousDeclaration()->getAccess();
3917
3918      NewFD->setAccess(Access);
3919      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3920
3921      PrincipalDecl->setObjectOfFriendDecl(true);
3922    }
3923
3924    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3925        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3926      PrincipalDecl->setNonMemberOperator();
3927
3928    // If we have a function template, check the template parameter
3929    // list. This will check and merge default template arguments.
3930    if (FunctionTemplate) {
3931      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3932      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3933                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3934                                 D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3935                                                  : TPC_FunctionTemplate);
3936    }
3937
3938    if (NewFD->isInvalidDecl()) {
3939      // Ignore all the rest of this.
3940    } else if (!Redeclaration) {
3941      // Fake up an access specifier if it's supposed to be a class member.
3942      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
3943        NewFD->setAccess(AS_public);
3944
3945      // Qualified decls generally require a previous declaration.
3946      if (D.getCXXScopeSpec().isSet()) {
3947        // ...with the major exception of templated-scope or
3948        // dependent-scope friend declarations.
3949
3950        // TODO: we currently also suppress this check in dependent
3951        // contexts because (1) the parameter depth will be off when
3952        // matching friend templates and (2) we might actually be
3953        // selecting a friend based on a dependent factor.  But there
3954        // are situations where these conditions don't apply and we
3955        // can actually do this check immediately.
3956        if (isFriend &&
3957            (NumMatchedTemplateParamLists ||
3958             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
3959             CurContext->isDependentContext())) {
3960              // ignore these
3961            } else {
3962              // The user tried to provide an out-of-line definition for a
3963              // function that is a member of a class or namespace, but there
3964              // was no such member function declared (C++ [class.mfct]p2,
3965              // C++ [namespace.memdef]p2). For example:
3966              //
3967              // class X {
3968              //   void f() const;
3969              // };
3970              //
3971              // void X::f() { } // ill-formed
3972              //
3973              // Complain about this problem, and attempt to suggest close
3974              // matches (e.g., those that differ only in cv-qualifiers and
3975              // whether the parameter types are references).
3976              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3977              << Name << DC << D.getCXXScopeSpec().getRange();
3978              NewFD->setInvalidDecl();
3979
3980              DiagnoseInvalidRedeclaration(*this, NewFD);
3981            }
3982
3983        // Unqualified local friend declarations are required to resolve
3984        // to something.
3985        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
3986          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
3987          NewFD->setInvalidDecl();
3988          DiagnoseInvalidRedeclaration(*this, NewFD);
3989        }
3990
3991    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
3992               !isFriend && !isFunctionTemplateSpecialization &&
3993               !isExplicitSpecialization) {
3994      // An out-of-line member function declaration must also be a
3995      // definition (C++ [dcl.meaning]p1).
3996      // Note that this is not the case for explicit specializations of
3997      // function templates or member functions of class templates, per
3998      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3999      // for compatibility with old SWIG code which likes to generate them.
4000      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4001        << D.getCXXScopeSpec().getRange();
4002    }
4003  }
4004
4005
4006  // Handle attributes. We need to have merged decls when handling attributes
4007  // (for example to check for conflicts, etc).
4008  // FIXME: This needs to happen before we merge declarations. Then,
4009  // let attribute merging cope with attribute conflicts.
4010  ProcessDeclAttributes(S, NewFD, D);
4011
4012  // attributes declared post-definition are currently ignored
4013  // FIXME: This should happen during attribute merging
4014  if (Redeclaration && Previous.isSingleResult()) {
4015    const FunctionDecl *Def;
4016    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4017    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4018      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4019      Diag(Def->getLocation(), diag::note_previous_definition);
4020    }
4021  }
4022
4023  AddKnownFunctionAttributes(NewFD);
4024
4025  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
4026    // If a function name is overloadable in C, then every function
4027    // with that name must be marked "overloadable".
4028    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4029      << Redeclaration << NewFD;
4030    if (!Previous.empty())
4031      Diag(Previous.getRepresentativeDecl()->getLocation(),
4032           diag::note_attribute_overloadable_prev_overload);
4033    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
4034  }
4035
4036  if (NewFD->hasAttr<OverloadableAttr>() &&
4037      !NewFD->getType()->getAs<FunctionProtoType>()) {
4038    Diag(NewFD->getLocation(),
4039         diag::err_attribute_overloadable_no_prototype)
4040      << NewFD;
4041
4042    // Turn this into a variadic function with no parameters.
4043    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4044    QualType R = Context.getFunctionType(FT->getResultType(),
4045                                         0, 0, true, 0, false, false, 0, 0,
4046                                         FT->getExtInfo());
4047    NewFD->setType(R);
4048  }
4049
4050  // If there's a #pragma GCC visibility in scope, and this isn't a class
4051  // member, set the visibility of this function.
4052  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4053    AddPushedVisibilityAttribute(NewFD);
4054
4055  // If this is a locally-scoped extern C function, update the
4056  // map of such names.
4057  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4058      && !NewFD->isInvalidDecl())
4059    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4060
4061  // Set this FunctionDecl's range up to the right paren.
4062  NewFD->setLocEnd(D.getSourceRange().getEnd());
4063
4064  if (getLangOptions().CPlusPlus) {
4065    if (FunctionTemplate) {
4066      if (NewFD->isInvalidDecl())
4067        FunctionTemplate->setInvalidDecl();
4068      return FunctionTemplate;
4069    }
4070    CheckClassMemberNameAttributes(*this, NewFD);
4071  }
4072
4073  MarkUnusedFileScopedDecl(NewFD);
4074  return NewFD;
4075}
4076
4077/// \brief Perform semantic checking of a new function declaration.
4078///
4079/// Performs semantic analysis of the new function declaration
4080/// NewFD. This routine performs all semantic checking that does not
4081/// require the actual declarator involved in the declaration, and is
4082/// used both for the declaration of functions as they are parsed
4083/// (called via ActOnDeclarator) and for the declaration of functions
4084/// that have been instantiated via C++ template instantiation (called
4085/// via InstantiateDecl).
4086///
4087/// \param IsExplicitSpecialiation whether this new function declaration is
4088/// an explicit specialization of the previous declaration.
4089///
4090/// This sets NewFD->isInvalidDecl() to true if there was an error.
4091void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4092                                    LookupResult &Previous,
4093                                    bool IsExplicitSpecialization,
4094                                    bool &Redeclaration,
4095                                    bool &OverloadableAttrRequired) {
4096  // If NewFD is already known erroneous, don't do any of this checking.
4097  if (NewFD->isInvalidDecl()) {
4098    // If this is a class member, mark the class invalid immediately.
4099    // This avoids some consistency errors later.
4100    if (isa<CXXMethodDecl>(NewFD))
4101      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4102
4103    return;
4104  }
4105
4106  if (NewFD->getResultType()->isVariablyModifiedType()) {
4107    // Functions returning a variably modified type violate C99 6.7.5.2p2
4108    // because all functions have linkage.
4109    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4110    return NewFD->setInvalidDecl();
4111  }
4112
4113  if (NewFD->isMain())
4114    CheckMain(NewFD);
4115
4116  // Check for a previous declaration of this name.
4117  if (Previous.empty() && NewFD->isExternC()) {
4118    // Since we did not find anything by this name and we're declaring
4119    // an extern "C" function, look for a non-visible extern "C"
4120    // declaration with the same name.
4121    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4122      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4123    if (Pos != LocallyScopedExternalDecls.end())
4124      Previous.addDecl(Pos->second);
4125  }
4126
4127  // Merge or overload the declaration with an existing declaration of
4128  // the same name, if appropriate.
4129  if (!Previous.empty()) {
4130    // Determine whether NewFD is an overload of PrevDecl or
4131    // a declaration that requires merging. If it's an overload,
4132    // there's no more work to do here; we'll just add the new
4133    // function to the scope.
4134
4135    NamedDecl *OldDecl = 0;
4136    if (!AllowOverloadingOfFunction(Previous, Context)) {
4137      Redeclaration = true;
4138      OldDecl = Previous.getFoundDecl();
4139    } else {
4140      if (!getLangOptions().CPlusPlus)
4141        OverloadableAttrRequired = true;
4142
4143      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4144                            /*NewIsUsingDecl*/ false)) {
4145      case Ovl_Match:
4146        Redeclaration = true;
4147        break;
4148
4149      case Ovl_NonFunction:
4150        Redeclaration = true;
4151        break;
4152
4153      case Ovl_Overload:
4154        Redeclaration = false;
4155        break;
4156      }
4157    }
4158
4159    if (Redeclaration) {
4160      // NewFD and OldDecl represent declarations that need to be
4161      // merged.
4162      if (MergeFunctionDecl(NewFD, OldDecl))
4163        return NewFD->setInvalidDecl();
4164
4165      Previous.clear();
4166      Previous.addDecl(OldDecl);
4167
4168      if (FunctionTemplateDecl *OldTemplateDecl
4169                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4170        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4171        FunctionTemplateDecl *NewTemplateDecl
4172          = NewFD->getDescribedFunctionTemplate();
4173        assert(NewTemplateDecl && "Template/non-template mismatch");
4174        if (CXXMethodDecl *Method
4175              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4176          Method->setAccess(OldTemplateDecl->getAccess());
4177          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4178        }
4179
4180        // If this is an explicit specialization of a member that is a function
4181        // template, mark it as a member specialization.
4182        if (IsExplicitSpecialization &&
4183            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4184          NewTemplateDecl->setMemberSpecialization();
4185          assert(OldTemplateDecl->isMemberSpecialization());
4186        }
4187      } else {
4188        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4189          NewFD->setAccess(OldDecl->getAccess());
4190        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4191      }
4192    }
4193  }
4194
4195  // Semantic checking for this function declaration (in isolation).
4196  if (getLangOptions().CPlusPlus) {
4197    // C++-specific checks.
4198    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4199      CheckConstructor(Constructor);
4200    } else if (CXXDestructorDecl *Destructor =
4201                dyn_cast<CXXDestructorDecl>(NewFD)) {
4202      CXXRecordDecl *Record = Destructor->getParent();
4203      QualType ClassType = Context.getTypeDeclType(Record);
4204
4205      // FIXME: Shouldn't we be able to perform this check even when the class
4206      // type is dependent? Both gcc and edg can handle that.
4207      if (!ClassType->isDependentType()) {
4208        DeclarationName Name
4209          = Context.DeclarationNames.getCXXDestructorName(
4210                                        Context.getCanonicalType(ClassType));
4211        if (NewFD->getDeclName() != Name) {
4212          Diag(NewFD->getLocation(), diag::err_destructor_name);
4213          return NewFD->setInvalidDecl();
4214        }
4215      }
4216    } else if (CXXConversionDecl *Conversion
4217               = dyn_cast<CXXConversionDecl>(NewFD)) {
4218      ActOnConversionDeclarator(Conversion);
4219    }
4220
4221    // Find any virtual functions that this function overrides.
4222    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4223      if (!Method->isFunctionTemplateSpecialization() &&
4224          !Method->getDescribedFunctionTemplate()) {
4225        if (AddOverriddenMethods(Method->getParent(), Method)) {
4226          // If the function was marked as "static", we have a problem.
4227          if (NewFD->getStorageClass() == SC_Static) {
4228            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4229              << NewFD->getDeclName();
4230            for (CXXMethodDecl::method_iterator
4231                      Overridden = Method->begin_overridden_methods(),
4232                   OverriddenEnd = Method->end_overridden_methods();
4233                 Overridden != OverriddenEnd;
4234                 ++Overridden) {
4235              Diag((*Overridden)->getLocation(),
4236                   diag::note_overridden_virtual_function);
4237            }
4238          }
4239        }
4240      }
4241    }
4242
4243    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4244    if (NewFD->isOverloadedOperator() &&
4245        CheckOverloadedOperatorDeclaration(NewFD))
4246      return NewFD->setInvalidDecl();
4247
4248    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4249    if (NewFD->getLiteralIdentifier() &&
4250        CheckLiteralOperatorDeclaration(NewFD))
4251      return NewFD->setInvalidDecl();
4252
4253    // In C++, check default arguments now that we have merged decls. Unless
4254    // the lexical context is the class, because in this case this is done
4255    // during delayed parsing anyway.
4256    if (!CurContext->isRecord())
4257      CheckCXXDefaultArguments(NewFD);
4258  }
4259}
4260
4261void Sema::CheckMain(FunctionDecl* FD) {
4262  // C++ [basic.start.main]p3:  A program that declares main to be inline
4263  //   or static is ill-formed.
4264  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4265  //   shall not appear in a declaration of main.
4266  // static main is not an error under C99, but we should warn about it.
4267  bool isInline = FD->isInlineSpecified();
4268  bool isStatic = FD->getStorageClass() == SC_Static;
4269  if (isInline || isStatic) {
4270    unsigned diagID = diag::warn_unusual_main_decl;
4271    if (isInline || getLangOptions().CPlusPlus)
4272      diagID = diag::err_unusual_main_decl;
4273
4274    int which = isStatic + (isInline << 1) - 1;
4275    Diag(FD->getLocation(), diagID) << which;
4276  }
4277
4278  QualType T = FD->getType();
4279  assert(T->isFunctionType() && "function decl is not of function type");
4280  const FunctionType* FT = T->getAs<FunctionType>();
4281
4282  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4283    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
4284    TypeLoc TL = TSI->getTypeLoc();
4285    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
4286                                          diag::err_main_returns_nonint);
4287    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
4288      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4289                                        "int");
4290    }
4291    FD->setInvalidDecl(true);
4292  }
4293
4294  // Treat protoless main() as nullary.
4295  if (isa<FunctionNoProtoType>(FT)) return;
4296
4297  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4298  unsigned nparams = FTP->getNumArgs();
4299  assert(FD->getNumParams() == nparams);
4300
4301  bool HasExtraParameters = (nparams > 3);
4302
4303  // Darwin passes an undocumented fourth argument of type char**.  If
4304  // other platforms start sprouting these, the logic below will start
4305  // getting shifty.
4306  if (nparams == 4 &&
4307      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4308    HasExtraParameters = false;
4309
4310  if (HasExtraParameters) {
4311    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4312    FD->setInvalidDecl(true);
4313    nparams = 3;
4314  }
4315
4316  // FIXME: a lot of the following diagnostics would be improved
4317  // if we had some location information about types.
4318
4319  QualType CharPP =
4320    Context.getPointerType(Context.getPointerType(Context.CharTy));
4321  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4322
4323  for (unsigned i = 0; i < nparams; ++i) {
4324    QualType AT = FTP->getArgType(i);
4325
4326    bool mismatch = true;
4327
4328    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4329      mismatch = false;
4330    else if (Expected[i] == CharPP) {
4331      // As an extension, the following forms are okay:
4332      //   char const **
4333      //   char const * const *
4334      //   char * const *
4335
4336      QualifierCollector qs;
4337      const PointerType* PT;
4338      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4339          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4340          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4341        qs.removeConst();
4342        mismatch = !qs.empty();
4343      }
4344    }
4345
4346    if (mismatch) {
4347      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4348      // TODO: suggest replacing given type with expected type
4349      FD->setInvalidDecl(true);
4350    }
4351  }
4352
4353  if (nparams == 1 && !FD->isInvalidDecl()) {
4354    Diag(FD->getLocation(), diag::warn_main_one_arg);
4355  }
4356
4357  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4358    Diag(FD->getLocation(), diag::err_main_template_decl);
4359    FD->setInvalidDecl();
4360  }
4361}
4362
4363bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4364  // FIXME: Need strict checking.  In C89, we need to check for
4365  // any assignment, increment, decrement, function-calls, or
4366  // commas outside of a sizeof.  In C99, it's the same list,
4367  // except that the aforementioned are allowed in unevaluated
4368  // expressions.  Everything else falls under the
4369  // "may accept other forms of constant expressions" exception.
4370  // (We never end up here for C++, so the constant expression
4371  // rules there don't matter.)
4372  if (Init->isConstantInitializer(Context, false))
4373    return false;
4374  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4375    << Init->getSourceRange();
4376  return true;
4377}
4378
4379void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4380  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4381}
4382
4383/// AddInitializerToDecl - Adds the initializer Init to the
4384/// declaration dcl. If DirectInit is true, this is C++ direct
4385/// initialization rather than copy initialization.
4386void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4387  // If there is no declaration, there was an error parsing it.  Just ignore
4388  // the initializer.
4389  if (RealDecl == 0)
4390    return;
4391
4392  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4393    // With declarators parsed the way they are, the parser cannot
4394    // distinguish between a normal initializer and a pure-specifier.
4395    // Thus this grotesque test.
4396    IntegerLiteral *IL;
4397    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4398        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4399      CheckPureMethod(Method, Init->getSourceRange());
4400    else {
4401      Diag(Method->getLocation(), diag::err_member_function_initialization)
4402        << Method->getDeclName() << Init->getSourceRange();
4403      Method->setInvalidDecl();
4404    }
4405    return;
4406  }
4407
4408  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4409  if (!VDecl) {
4410    if (getLangOptions().CPlusPlus &&
4411        RealDecl->getLexicalDeclContext()->isRecord() &&
4412        isa<NamedDecl>(RealDecl))
4413      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4414    else
4415      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4416    RealDecl->setInvalidDecl();
4417    return;
4418  }
4419
4420
4421
4422  // A definition must end up with a complete type, which means it must be
4423  // complete with the restriction that an array type might be completed by the
4424  // initializer; note that later code assumes this restriction.
4425  QualType BaseDeclType = VDecl->getType();
4426  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4427    BaseDeclType = Array->getElementType();
4428  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4429                          diag::err_typecheck_decl_incomplete_type)) {
4430    RealDecl->setInvalidDecl();
4431    return;
4432  }
4433
4434  // The variable can not have an abstract class type.
4435  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4436                             diag::err_abstract_type_in_decl,
4437                             AbstractVariableType))
4438    VDecl->setInvalidDecl();
4439
4440  const VarDecl *Def;
4441  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4442    Diag(VDecl->getLocation(), diag::err_redefinition)
4443      << VDecl->getDeclName();
4444    Diag(Def->getLocation(), diag::note_previous_definition);
4445    VDecl->setInvalidDecl();
4446    return;
4447  }
4448
4449  // C++ [class.static.data]p4
4450  //   If a static data member is of const integral or const
4451  //   enumeration type, its declaration in the class definition can
4452  //   specify a constant-initializer which shall be an integral
4453  //   constant expression (5.19). In that case, the member can appear
4454  //   in integral constant expressions. The member shall still be
4455  //   defined in a namespace scope if it is used in the program and the
4456  //   namespace scope definition shall not contain an initializer.
4457  //
4458  // We already performed a redefinition check above, but for static
4459  // data members we also need to check whether there was an in-class
4460  // declaration with an initializer.
4461  const VarDecl* PrevInit = 0;
4462  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4463    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4464    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4465    return;
4466  }
4467
4468  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4469    getCurFunction()->setHasBranchProtectedScope();
4470
4471  // Capture the variable that is being initialized and the style of
4472  // initialization.
4473  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4474
4475  // FIXME: Poor source location information.
4476  InitializationKind Kind
4477    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4478                                                   Init->getLocStart(),
4479                                                   Init->getLocEnd())
4480                : InitializationKind::CreateCopy(VDecl->getLocation(),
4481                                                 Init->getLocStart());
4482
4483  // Get the decls type and save a reference for later, since
4484  // CheckInitializerTypes may change it.
4485  QualType DclT = VDecl->getType(), SavT = DclT;
4486  if (VDecl->isLocalVarDecl()) {
4487    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4488      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4489      VDecl->setInvalidDecl();
4490    } else if (!VDecl->isInvalidDecl()) {
4491      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4492      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4493                                                MultiExprArg(*this, &Init, 1),
4494                                                &DclT);
4495      if (Result.isInvalid()) {
4496        VDecl->setInvalidDecl();
4497        return;
4498      }
4499
4500      Init = Result.takeAs<Expr>();
4501
4502      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4503      // Don't check invalid declarations to avoid emitting useless diagnostics.
4504      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4505        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4506          CheckForConstantInitializer(Init, DclT);
4507      }
4508    }
4509  } else if (VDecl->isStaticDataMember() &&
4510             VDecl->getLexicalDeclContext()->isRecord()) {
4511    // This is an in-class initialization for a static data member, e.g.,
4512    //
4513    // struct S {
4514    //   static const int value = 17;
4515    // };
4516
4517    // Try to perform the initialization regardless.
4518    if (!VDecl->isInvalidDecl()) {
4519      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4520      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4521                                          MultiExprArg(*this, &Init, 1),
4522                                          &DclT);
4523      if (Result.isInvalid()) {
4524        VDecl->setInvalidDecl();
4525        return;
4526      }
4527
4528      Init = Result.takeAs<Expr>();
4529    }
4530
4531    // C++ [class.mem]p4:
4532    //   A member-declarator can contain a constant-initializer only
4533    //   if it declares a static member (9.4) of const integral or
4534    //   const enumeration type, see 9.4.2.
4535    QualType T = VDecl->getType();
4536
4537    // Do nothing on dependent types.
4538    if (T->isDependentType()) {
4539
4540    // Require constness.
4541    } else if (!T.isConstQualified()) {
4542      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4543        << Init->getSourceRange();
4544      VDecl->setInvalidDecl();
4545
4546    // We allow integer constant expressions in all cases.
4547    } else if (T->isIntegralOrEnumerationType()) {
4548      if (!Init->isValueDependent()) {
4549        // Check whether the expression is a constant expression.
4550        llvm::APSInt Value;
4551        SourceLocation Loc;
4552        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4553          Diag(Loc, diag::err_in_class_initializer_non_constant)
4554            << Init->getSourceRange();
4555          VDecl->setInvalidDecl();
4556        }
4557      }
4558
4559    // We allow floating-point constants as an extension in C++03, and
4560    // C++0x has far more complicated rules that we don't really
4561    // implement fully.
4562    } else {
4563      bool Allowed = false;
4564      if (getLangOptions().CPlusPlus0x) {
4565        Allowed = T->isLiteralType();
4566      } else if (T->isFloatingType()) { // also permits complex, which is ok
4567        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4568          << T << Init->getSourceRange();
4569        Allowed = true;
4570      }
4571
4572      if (!Allowed) {
4573        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4574          << T << Init->getSourceRange();
4575        VDecl->setInvalidDecl();
4576
4577      // TODO: there are probably expressions that pass here that shouldn't.
4578      } else if (!Init->isValueDependent() &&
4579                 !Init->isConstantInitializer(Context, false)) {
4580        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4581          << Init->getSourceRange();
4582        VDecl->setInvalidDecl();
4583      }
4584    }
4585  } else if (VDecl->isFileVarDecl()) {
4586    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4587        (!getLangOptions().CPlusPlus ||
4588         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4589      Diag(VDecl->getLocation(), diag::warn_extern_init);
4590    if (!VDecl->isInvalidDecl()) {
4591      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4592      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4593                                                MultiExprArg(*this, &Init, 1),
4594                                                &DclT);
4595      if (Result.isInvalid()) {
4596        VDecl->setInvalidDecl();
4597        return;
4598      }
4599
4600      Init = Result.takeAs<Expr>();
4601    }
4602
4603    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4604    // Don't check invalid declarations to avoid emitting useless diagnostics.
4605    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4606      // C99 6.7.8p4. All file scoped initializers need to be constant.
4607      CheckForConstantInitializer(Init, DclT);
4608    }
4609  }
4610  // If the type changed, it means we had an incomplete type that was
4611  // completed by the initializer. For example:
4612  //   int ary[] = { 1, 3, 5 };
4613  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4614  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4615    VDecl->setType(DclT);
4616    Init->setType(DclT);
4617  }
4618
4619
4620  // If this variable is a local declaration with record type, make sure it
4621  // doesn't have a flexible member initialization.  We only support this as a
4622  // global/static definition.
4623  if (VDecl->hasLocalStorage())
4624    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4625      if (RT->getDecl()->hasFlexibleArrayMember()) {
4626        // Check whether the initializer tries to initialize the flexible
4627        // array member itself to anything other than an empty initializer list.
4628        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4629          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4630                                         RT->getDecl()->field_end()) - 1;
4631          if (Index < ILE->getNumInits() &&
4632              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4633                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4634            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4635            VDecl->setInvalidDecl();
4636          }
4637        }
4638      }
4639
4640  // Check any implicit conversions within the expression.
4641  CheckImplicitConversions(Init, VDecl->getLocation());
4642
4643  Init = MaybeCreateExprWithCleanups(Init);
4644  // Attach the initializer to the decl.
4645  VDecl->setInit(Init);
4646
4647  if (getLangOptions().CPlusPlus) {
4648    if (!VDecl->isInvalidDecl() &&
4649        !VDecl->getDeclContext()->isDependentContext() &&
4650        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4651        !Init->isConstantInitializer(Context,
4652                                     VDecl->getType()->isReferenceType()))
4653      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4654        << Init->getSourceRange();
4655
4656    // Make sure we mark the destructor as used if necessary.
4657    QualType InitType = VDecl->getType();
4658    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4659      InitType = Context.getBaseElementType(Array);
4660    if (const RecordType *Record = InitType->getAs<RecordType>())
4661      FinalizeVarWithDestructor(VDecl, Record);
4662  }
4663
4664  return;
4665}
4666
4667/// ActOnInitializerError - Given that there was an error parsing an
4668/// initializer for the given declaration, try to return to some form
4669/// of sanity.
4670void Sema::ActOnInitializerError(Decl *D) {
4671  // Our main concern here is re-establishing invariants like "a
4672  // variable's type is either dependent or complete".
4673  if (!D || D->isInvalidDecl()) return;
4674
4675  VarDecl *VD = dyn_cast<VarDecl>(D);
4676  if (!VD) return;
4677
4678  QualType Ty = VD->getType();
4679  if (Ty->isDependentType()) return;
4680
4681  // Require a complete type.
4682  if (RequireCompleteType(VD->getLocation(),
4683                          Context.getBaseElementType(Ty),
4684                          diag::err_typecheck_decl_incomplete_type)) {
4685    VD->setInvalidDecl();
4686    return;
4687  }
4688
4689  // Require an abstract type.
4690  if (RequireNonAbstractType(VD->getLocation(), Ty,
4691                             diag::err_abstract_type_in_decl,
4692                             AbstractVariableType)) {
4693    VD->setInvalidDecl();
4694    return;
4695  }
4696
4697  // Don't bother complaining about constructors or destructors,
4698  // though.
4699}
4700
4701void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4702                                  bool TypeContainsUndeducedAuto) {
4703  // If there is no declaration, there was an error parsing it. Just ignore it.
4704  if (RealDecl == 0)
4705    return;
4706
4707  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4708    QualType Type = Var->getType();
4709
4710    // C++0x [dcl.spec.auto]p3
4711    if (TypeContainsUndeducedAuto) {
4712      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4713        << Var->getDeclName() << Type;
4714      Var->setInvalidDecl();
4715      return;
4716    }
4717
4718    switch (Var->isThisDeclarationADefinition()) {
4719    case VarDecl::Definition:
4720      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4721        break;
4722
4723      // We have an out-of-line definition of a static data member
4724      // that has an in-class initializer, so we type-check this like
4725      // a declaration.
4726      //
4727      // Fall through
4728
4729    case VarDecl::DeclarationOnly:
4730      // It's only a declaration.
4731
4732      // Block scope. C99 6.7p7: If an identifier for an object is
4733      // declared with no linkage (C99 6.2.2p6), the type for the
4734      // object shall be complete.
4735      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4736          !Var->getLinkage() && !Var->isInvalidDecl() &&
4737          RequireCompleteType(Var->getLocation(), Type,
4738                              diag::err_typecheck_decl_incomplete_type))
4739        Var->setInvalidDecl();
4740
4741      // Make sure that the type is not abstract.
4742      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4743          RequireNonAbstractType(Var->getLocation(), Type,
4744                                 diag::err_abstract_type_in_decl,
4745                                 AbstractVariableType))
4746        Var->setInvalidDecl();
4747      return;
4748
4749    case VarDecl::TentativeDefinition:
4750      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4751      // object that has file scope without an initializer, and without a
4752      // storage-class specifier or with the storage-class specifier "static",
4753      // constitutes a tentative definition. Note: A tentative definition with
4754      // external linkage is valid (C99 6.2.2p5).
4755      if (!Var->isInvalidDecl()) {
4756        if (const IncompleteArrayType *ArrayT
4757                                    = Context.getAsIncompleteArrayType(Type)) {
4758          if (RequireCompleteType(Var->getLocation(),
4759                                  ArrayT->getElementType(),
4760                                  diag::err_illegal_decl_array_incomplete_type))
4761            Var->setInvalidDecl();
4762        } else if (Var->getStorageClass() == SC_Static) {
4763          // C99 6.9.2p3: If the declaration of an identifier for an object is
4764          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4765          // declared type shall not be an incomplete type.
4766          // NOTE: code such as the following
4767          //     static struct s;
4768          //     struct s { int a; };
4769          // is accepted by gcc. Hence here we issue a warning instead of
4770          // an error and we do not invalidate the static declaration.
4771          // NOTE: to avoid multiple warnings, only check the first declaration.
4772          if (Var->getPreviousDeclaration() == 0)
4773            RequireCompleteType(Var->getLocation(), Type,
4774                                diag::ext_typecheck_decl_incomplete_type);
4775        }
4776      }
4777
4778      // Record the tentative definition; we're done.
4779      if (!Var->isInvalidDecl())
4780        TentativeDefinitions.push_back(Var);
4781      return;
4782    }
4783
4784    // Provide a specific diagnostic for uninitialized variable
4785    // definitions with incomplete array type.
4786    if (Type->isIncompleteArrayType()) {
4787      Diag(Var->getLocation(),
4788           diag::err_typecheck_incomplete_array_needs_initializer);
4789      Var->setInvalidDecl();
4790      return;
4791    }
4792
4793    // Provide a specific diagnostic for uninitialized variable
4794    // definitions with reference type.
4795    if (Type->isReferenceType()) {
4796      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4797        << Var->getDeclName()
4798        << SourceRange(Var->getLocation(), Var->getLocation());
4799      Var->setInvalidDecl();
4800      return;
4801    }
4802
4803    // Do not attempt to type-check the default initializer for a
4804    // variable with dependent type.
4805    if (Type->isDependentType())
4806      return;
4807
4808    if (Var->isInvalidDecl())
4809      return;
4810
4811    if (RequireCompleteType(Var->getLocation(),
4812                            Context.getBaseElementType(Type),
4813                            diag::err_typecheck_decl_incomplete_type)) {
4814      Var->setInvalidDecl();
4815      return;
4816    }
4817
4818    // The variable can not have an abstract class type.
4819    if (RequireNonAbstractType(Var->getLocation(), Type,
4820                               diag::err_abstract_type_in_decl,
4821                               AbstractVariableType)) {
4822      Var->setInvalidDecl();
4823      return;
4824    }
4825
4826    const RecordType *Record
4827      = Context.getBaseElementType(Type)->getAs<RecordType>();
4828    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4829        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4830      // C++03 [dcl.init]p9:
4831      //   If no initializer is specified for an object, and the
4832      //   object is of (possibly cv-qualified) non-POD class type (or
4833      //   array thereof), the object shall be default-initialized; if
4834      //   the object is of const-qualified type, the underlying class
4835      //   type shall have a user-declared default
4836      //   constructor. Otherwise, if no initializer is specified for
4837      //   a non- static object, the object and its subobjects, if
4838      //   any, have an indeterminate initial value); if the object
4839      //   or any of its subobjects are of const-qualified type, the
4840      //   program is ill-formed.
4841      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4842    } else {
4843      // Check for jumps past the implicit initializer.  C++0x
4844      // clarifies that this applies to a "variable with automatic
4845      // storage duration", not a "local variable".
4846      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4847        getCurFunction()->setHasBranchProtectedScope();
4848
4849      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4850      InitializationKind Kind
4851        = InitializationKind::CreateDefault(Var->getLocation());
4852
4853      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4854      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4855                                        MultiExprArg(*this, 0, 0));
4856      if (Init.isInvalid())
4857        Var->setInvalidDecl();
4858      else if (Init.get()) {
4859        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
4860
4861        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4862            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4863            !Var->getDeclContext()->isDependentContext() &&
4864            !Var->getInit()->isConstantInitializer(Context, false))
4865          Diag(Var->getLocation(), diag::warn_global_constructor);
4866      }
4867    }
4868
4869    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4870      FinalizeVarWithDestructor(Var, Record);
4871  }
4872}
4873
4874Sema::DeclGroupPtrTy
4875Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4876                              Decl **Group, unsigned NumDecls) {
4877  llvm::SmallVector<Decl*, 8> Decls;
4878
4879  if (DS.isTypeSpecOwned())
4880    Decls.push_back(DS.getRepAsDecl());
4881
4882  for (unsigned i = 0; i != NumDecls; ++i)
4883    if (Decl *D = Group[i])
4884      Decls.push_back(D);
4885
4886  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4887                                                   Decls.data(), Decls.size()));
4888}
4889
4890
4891/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4892/// to introduce parameters into function prototype scope.
4893Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4894  const DeclSpec &DS = D.getDeclSpec();
4895
4896  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4897  VarDecl::StorageClass StorageClass = SC_None;
4898  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4899  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4900    StorageClass = SC_Register;
4901    StorageClassAsWritten = SC_Register;
4902  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4903    Diag(DS.getStorageClassSpecLoc(),
4904         diag::err_invalid_storage_class_in_func_decl);
4905    D.getMutableDeclSpec().ClearStorageClassSpecs();
4906  }
4907
4908  if (D.getDeclSpec().isThreadSpecified())
4909    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4910
4911  DiagnoseFunctionSpecifiers(D);
4912
4913  // Check that there are no default arguments inside the type of this
4914  // parameter (C++ only).
4915  if (getLangOptions().CPlusPlus)
4916    CheckExtraCXXDefaultArguments(D);
4917
4918  TagDecl *OwnedDecl = 0;
4919  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4920  QualType parmDeclType = TInfo->getType();
4921
4922  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4923    // C++ [dcl.fct]p6:
4924    //   Types shall not be defined in return or parameter types.
4925    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4926      << Context.getTypeDeclType(OwnedDecl);
4927  }
4928
4929  // Ensure we have a valid name
4930  IdentifierInfo *II = 0;
4931  if (D.hasName()) {
4932    II = D.getIdentifier();
4933    if (!II) {
4934      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
4935        << GetNameForDeclarator(D).getName().getAsString();
4936      D.setInvalidType(true);
4937    }
4938  }
4939
4940  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4941  if (II) {
4942    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4943                   ForRedeclaration);
4944    LookupName(R, S);
4945    if (R.isSingleResult()) {
4946      NamedDecl *PrevDecl = R.getFoundDecl();
4947      if (PrevDecl->isTemplateParameter()) {
4948        // Maybe we will complain about the shadowed template parameter.
4949        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4950        // Just pretend that we didn't see the previous declaration.
4951        PrevDecl = 0;
4952      } else if (S->isDeclScope(PrevDecl)) {
4953        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4954        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4955
4956        // Recover by removing the name
4957        II = 0;
4958        D.SetIdentifier(0, D.getIdentifierLoc());
4959        D.setInvalidType(true);
4960      }
4961    }
4962  }
4963
4964  // Temporarily put parameter variables in the translation unit, not
4965  // the enclosing context.  This prevents them from accidentally
4966  // looking like class members in C++.
4967  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4968                                    TInfo, parmDeclType, II,
4969                                    D.getIdentifierLoc(),
4970                                    StorageClass, StorageClassAsWritten);
4971
4972  if (D.isInvalidType())
4973    New->setInvalidDecl();
4974
4975  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4976  if (D.getCXXScopeSpec().isSet()) {
4977    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4978      << D.getCXXScopeSpec().getRange();
4979    New->setInvalidDecl();
4980  }
4981
4982  // Add the parameter declaration into this scope.
4983  S->AddDecl(New);
4984  if (II)
4985    IdResolver.AddDecl(New);
4986
4987  ProcessDeclAttributes(S, New, D);
4988
4989  if (New->hasAttr<BlocksAttr>()) {
4990    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4991  }
4992  return New;
4993}
4994
4995/// \brief Synthesizes a variable for a parameter arising from a
4996/// typedef.
4997ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4998                                              SourceLocation Loc,
4999                                              QualType T) {
5000  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
5001                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5002                                           SC_None, SC_None, 0);
5003  Param->setImplicit();
5004  return Param;
5005}
5006
5007void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5008                                    ParmVarDecl * const *ParamEnd) {
5009  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
5010        Diagnostic::Ignored)
5011    return;
5012
5013  // Don't diagnose unused-parameter errors in template instantiations; we
5014  // will already have done so in the template itself.
5015  if (!ActiveTemplateInstantiations.empty())
5016    return;
5017
5018  for (; Param != ParamEnd; ++Param) {
5019    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5020        !(*Param)->hasAttr<UnusedAttr>()) {
5021      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5022        << (*Param)->getDeclName();
5023    }
5024  }
5025}
5026
5027void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5028                                                  ParmVarDecl * const *ParamEnd,
5029                                                  QualType ReturnTy,
5030                                                  NamedDecl *D) {
5031  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5032    return;
5033
5034  // Warn if the return value is pass-by-value and larger than the specified
5035  // threshold.
5036  if (ReturnTy->isPODType()) {
5037    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5038    if (Size > LangOpts.NumLargeByValueCopy)
5039      Diag(D->getLocation(), diag::warn_return_value_size)
5040          << D->getDeclName() << Size;
5041  }
5042
5043  if (Diags.getDiagnosticLevel(diag::warn_parameter_size)==Diagnostic::Ignored)
5044    return;
5045
5046  // Warn if any parameter is pass-by-value and larger than the specified
5047  // threshold.
5048  for (; Param != ParamEnd; ++Param) {
5049    QualType T = (*Param)->getType();
5050    if (!T->isPODType())
5051      continue;
5052    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5053    if (Size > LangOpts.NumLargeByValueCopy)
5054      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5055          << (*Param)->getDeclName() << Size;
5056  }
5057}
5058
5059ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
5060                                  TypeSourceInfo *TSInfo, QualType T,
5061                                  IdentifierInfo *Name,
5062                                  SourceLocation NameLoc,
5063                                  VarDecl::StorageClass StorageClass,
5064                                  VarDecl::StorageClass StorageClassAsWritten) {
5065  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
5066                                         adjustParameterType(T), TSInfo,
5067                                         StorageClass, StorageClassAsWritten,
5068                                         0);
5069
5070  // Parameters can not be abstract class types.
5071  // For record types, this is done by the AbstractClassUsageDiagnoser once
5072  // the class has been completely parsed.
5073  if (!CurContext->isRecord() &&
5074      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5075                             AbstractParamType))
5076    New->setInvalidDecl();
5077
5078  // Parameter declarators cannot be interface types. All ObjC objects are
5079  // passed by reference.
5080  if (T->isObjCObjectType()) {
5081    Diag(NameLoc,
5082         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5083    New->setInvalidDecl();
5084  }
5085
5086  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5087  // duration shall not be qualified by an address-space qualifier."
5088  // Since all parameters have automatic store duration, they can not have
5089  // an address space.
5090  if (T.getAddressSpace() != 0) {
5091    Diag(NameLoc, diag::err_arg_with_address_space);
5092    New->setInvalidDecl();
5093  }
5094
5095  return New;
5096}
5097
5098void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5099                                           SourceLocation LocAfterDecls) {
5100  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5101
5102  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5103  // for a K&R function.
5104  if (!FTI.hasPrototype) {
5105    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5106      --i;
5107      if (FTI.ArgInfo[i].Param == 0) {
5108        llvm::SmallString<256> Code;
5109        llvm::raw_svector_ostream(Code) << "  int "
5110                                        << FTI.ArgInfo[i].Ident->getName()
5111                                        << ";\n";
5112        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5113          << FTI.ArgInfo[i].Ident
5114          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5115
5116        // Implicitly declare the argument as type 'int' for lack of a better
5117        // type.
5118        DeclSpec DS;
5119        const char* PrevSpec; // unused
5120        unsigned DiagID; // unused
5121        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5122                           PrevSpec, DiagID);
5123        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5124        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5125        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5126      }
5127    }
5128  }
5129}
5130
5131Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5132                                         Declarator &D) {
5133  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5134  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5135  Scope *ParentScope = FnBodyScope->getParent();
5136
5137  Decl *DP = HandleDeclarator(ParentScope, D,
5138                              MultiTemplateParamsArg(*this),
5139                              /*IsFunctionDefinition=*/true);
5140  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5141}
5142
5143static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5144  // Don't warn about invalid declarations.
5145  if (FD->isInvalidDecl())
5146    return false;
5147
5148  // Or declarations that aren't global.
5149  if (!FD->isGlobal())
5150    return false;
5151
5152  // Don't warn about C++ member functions.
5153  if (isa<CXXMethodDecl>(FD))
5154    return false;
5155
5156  // Don't warn about 'main'.
5157  if (FD->isMain())
5158    return false;
5159
5160  // Don't warn about inline functions.
5161  if (FD->isInlineSpecified())
5162    return false;
5163
5164  // Don't warn about function templates.
5165  if (FD->getDescribedFunctionTemplate())
5166    return false;
5167
5168  // Don't warn about function template specializations.
5169  if (FD->isFunctionTemplateSpecialization())
5170    return false;
5171
5172  bool MissingPrototype = true;
5173  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5174       Prev; Prev = Prev->getPreviousDeclaration()) {
5175    // Ignore any declarations that occur in function or method
5176    // scope, because they aren't visible from the header.
5177    if (Prev->getDeclContext()->isFunctionOrMethod())
5178      continue;
5179
5180    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5181    break;
5182  }
5183
5184  return MissingPrototype;
5185}
5186
5187Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5188  // Clear the last template instantiation error context.
5189  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5190
5191  if (!D)
5192    return D;
5193  FunctionDecl *FD = 0;
5194
5195  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5196    FD = FunTmpl->getTemplatedDecl();
5197  else
5198    FD = cast<FunctionDecl>(D);
5199
5200  // Enter a new function scope
5201  PushFunctionScope();
5202
5203  // See if this is a redefinition.
5204  // But don't complain if we're in GNU89 mode and the previous definition
5205  // was an extern inline function.
5206  const FunctionDecl *Definition;
5207  if (FD->hasBody(Definition) &&
5208      !canRedefineFunction(Definition, getLangOptions())) {
5209    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5210        Definition->getStorageClass() == SC_Extern)
5211      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5212        << FD->getDeclName() << getLangOptions().CPlusPlus;
5213    else
5214      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5215    Diag(Definition->getLocation(), diag::note_previous_definition);
5216  }
5217
5218  // Builtin functions cannot be defined.
5219  if (unsigned BuiltinID = FD->getBuiltinID()) {
5220    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5221      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5222      FD->setInvalidDecl();
5223    }
5224  }
5225
5226  // The return type of a function definition must be complete
5227  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5228  QualType ResultType = FD->getResultType();
5229  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5230      !FD->isInvalidDecl() &&
5231      RequireCompleteType(FD->getLocation(), ResultType,
5232                          diag::err_func_def_incomplete_result))
5233    FD->setInvalidDecl();
5234
5235  // GNU warning -Wmissing-prototypes:
5236  //   Warn if a global function is defined without a previous
5237  //   prototype declaration. This warning is issued even if the
5238  //   definition itself provides a prototype. The aim is to detect
5239  //   global functions that fail to be declared in header files.
5240  if (ShouldWarnAboutMissingPrototype(FD))
5241    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5242
5243  if (FnBodyScope)
5244    PushDeclContext(FnBodyScope, FD);
5245
5246  // Check the validity of our function parameters
5247  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5248                           /*CheckParameterNames=*/true);
5249
5250  bool ShouldCheckShadow =
5251    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
5252
5253  // Introduce our parameters into the function scope
5254  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5255    ParmVarDecl *Param = FD->getParamDecl(p);
5256    Param->setOwningFunction(FD);
5257
5258    // If this has an identifier, add it to the scope stack.
5259    if (Param->getIdentifier() && FnBodyScope) {
5260      if (ShouldCheckShadow)
5261        CheckShadow(FnBodyScope, Param);
5262
5263      PushOnScopeChains(Param, FnBodyScope);
5264    }
5265  }
5266
5267  // Checking attributes of current function definition
5268  // dllimport attribute.
5269  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5270  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5271    // dllimport attribute cannot be directly applied to definition.
5272    if (!DA->isInherited()) {
5273      Diag(FD->getLocation(),
5274           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5275        << "dllimport";
5276      FD->setInvalidDecl();
5277      return FD;
5278    }
5279
5280    // Visual C++ appears to not think this is an issue, so only issue
5281    // a warning when Microsoft extensions are disabled.
5282    if (!LangOpts.Microsoft) {
5283      // If a symbol previously declared dllimport is later defined, the
5284      // attribute is ignored in subsequent references, and a warning is
5285      // emitted.
5286      Diag(FD->getLocation(),
5287           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5288        << FD->getName() << "dllimport";
5289    }
5290  }
5291  return FD;
5292}
5293
5294/// \brief Given the set of return statements within a function body,
5295/// compute the variables that are subject to the named return value
5296/// optimization.
5297///
5298/// Each of the variables that is subject to the named return value
5299/// optimization will be marked as NRVO variables in the AST, and any
5300/// return statement that has a marked NRVO variable as its NRVO candidate can
5301/// use the named return value optimization.
5302///
5303/// This function applies a very simplistic algorithm for NRVO: if every return
5304/// statement in the function has the same NRVO candidate, that candidate is
5305/// the NRVO variable.
5306///
5307/// FIXME: Employ a smarter algorithm that accounts for multiple return
5308/// statements and the lifetimes of the NRVO candidates. We should be able to
5309/// find a maximal set of NRVO variables.
5310static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5311  ReturnStmt **Returns = Scope->Returns.data();
5312
5313  const VarDecl *NRVOCandidate = 0;
5314  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5315    if (!Returns[I]->getNRVOCandidate())
5316      return;
5317
5318    if (!NRVOCandidate)
5319      NRVOCandidate = Returns[I]->getNRVOCandidate();
5320    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5321      return;
5322  }
5323
5324  if (NRVOCandidate)
5325    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5326}
5327
5328Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5329  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5330}
5331
5332Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5333                                    bool IsInstantiation) {
5334  FunctionDecl *FD = 0;
5335  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5336  if (FunTmpl)
5337    FD = FunTmpl->getTemplatedDecl();
5338  else
5339    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5340
5341  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5342
5343  if (FD) {
5344    FD->setBody(Body);
5345    if (FD->isMain()) {
5346      // C and C++ allow for main to automagically return 0.
5347      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5348      FD->setHasImplicitReturnZero(true);
5349      WP.disableCheckFallThrough();
5350    }
5351
5352    if (!FD->isInvalidDecl()) {
5353      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5354      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5355                                             FD->getResultType(), FD);
5356
5357      // If this is a constructor, we need a vtable.
5358      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5359        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5360
5361      ComputeNRVO(Body, getCurFunction());
5362    }
5363
5364    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5365  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5366    assert(MD == getCurMethodDecl() && "Method parsing confused");
5367    MD->setBody(Body);
5368    MD->setEndLoc(Body->getLocEnd());
5369    if (!MD->isInvalidDecl()) {
5370      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5371      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5372                                             MD->getResultType(), MD);
5373    }
5374  } else {
5375    return 0;
5376  }
5377
5378  // Verify and clean out per-function state.
5379
5380  // Check goto/label use.
5381  FunctionScopeInfo *CurFn = getCurFunction();
5382  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5383         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5384    LabelStmt *L = I->second;
5385
5386    // Verify that we have no forward references left.  If so, there was a goto
5387    // or address of a label taken, but no definition of it.  Label fwd
5388    // definitions are indicated with a null substmt.
5389    if (L->getSubStmt() != 0) {
5390      if (!L->isUsed())
5391        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5392      continue;
5393    }
5394
5395    // Emit error.
5396    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5397
5398    // At this point, we have gotos that use the bogus label.  Stitch it into
5399    // the function body so that they aren't leaked and that the AST is well
5400    // formed.
5401    if (Body == 0) {
5402      // The whole function wasn't parsed correctly.
5403      continue;
5404    }
5405
5406    // Otherwise, the body is valid: we want to stitch the label decl into the
5407    // function somewhere so that it is properly owned and so that the goto
5408    // has a valid target.  Do this by creating a new compound stmt with the
5409    // label in it.
5410
5411    // Give the label a sub-statement.
5412    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5413
5414    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5415                               cast<CXXTryStmt>(Body)->getTryBlock() :
5416                               cast<CompoundStmt>(Body);
5417    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5418                                          Compound->body_end());
5419    Elements.push_back(L);
5420    Compound->setStmts(Context, Elements.data(), Elements.size());
5421  }
5422
5423  if (Body) {
5424    // C++ constructors that have function-try-blocks can't have return
5425    // statements in the handlers of that block. (C++ [except.handle]p14)
5426    // Verify this.
5427    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5428      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5429
5430    // Verify that that gotos and switch cases don't jump into scopes illegally.
5431    // Verify that that gotos and switch cases don't jump into scopes illegally.
5432    if (getCurFunction()->NeedsScopeChecking() &&
5433        !dcl->isInvalidDecl() &&
5434        !hasAnyErrorsInThisFunction())
5435      DiagnoseInvalidJumps(Body);
5436
5437    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5438      if (!Destructor->getParent()->isDependentType())
5439        CheckDestructor(Destructor);
5440
5441      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5442                                             Destructor->getParent());
5443    }
5444
5445    // If any errors have occurred, clear out any temporaries that may have
5446    // been leftover. This ensures that these temporaries won't be picked up for
5447    // deletion in some later function.
5448    if (PP.getDiagnostics().hasErrorOccurred())
5449      ExprTemporaries.clear();
5450    else if (!isa<FunctionTemplateDecl>(dcl)) {
5451      // Since the body is valid, issue any analysis-based warnings that are
5452      // enabled.
5453      QualType ResultType;
5454      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5455        AnalysisWarnings.IssueWarnings(WP, FD);
5456      } else {
5457        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5458        AnalysisWarnings.IssueWarnings(WP, MD);
5459      }
5460    }
5461
5462    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5463  }
5464
5465  if (!IsInstantiation)
5466    PopDeclContext();
5467
5468  PopFunctionOrBlockScope();
5469
5470  // If any errors have occurred, clear out any temporaries that may have
5471  // been leftover. This ensures that these temporaries won't be picked up for
5472  // deletion in some later function.
5473  if (getDiagnostics().hasErrorOccurred())
5474    ExprTemporaries.clear();
5475
5476  return dcl;
5477}
5478
5479/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5480/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5481NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5482                                          IdentifierInfo &II, Scope *S) {
5483  // Before we produce a declaration for an implicitly defined
5484  // function, see whether there was a locally-scoped declaration of
5485  // this name as a function or variable. If so, use that
5486  // (non-visible) declaration, and complain about it.
5487  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5488    = LocallyScopedExternalDecls.find(&II);
5489  if (Pos != LocallyScopedExternalDecls.end()) {
5490    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5491    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5492    return Pos->second;
5493  }
5494
5495  // Extension in C99.  Legal in C90, but warn about it.
5496  if (II.getName().startswith("__builtin_"))
5497    Diag(Loc, diag::warn_builtin_unknown) << &II;
5498  else if (getLangOptions().C99)
5499    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5500  else
5501    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5502
5503  // Set a Declarator for the implicit definition: int foo();
5504  const char *Dummy;
5505  DeclSpec DS;
5506  unsigned DiagID;
5507  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5508  Error = Error; // Silence warning.
5509  assert(!Error && "Error setting up implicit decl!");
5510  Declarator D(DS, Declarator::BlockContext);
5511  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5512                                             0, 0, false, SourceLocation(),
5513                                             false, 0,0,0, Loc, Loc, D),
5514                SourceLocation());
5515  D.SetIdentifier(&II, Loc);
5516
5517  // Insert this function into translation-unit scope.
5518
5519  DeclContext *PrevDC = CurContext;
5520  CurContext = Context.getTranslationUnitDecl();
5521
5522  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5523  FD->setImplicit();
5524
5525  CurContext = PrevDC;
5526
5527  AddKnownFunctionAttributes(FD);
5528
5529  return FD;
5530}
5531
5532/// \brief Adds any function attributes that we know a priori based on
5533/// the declaration of this function.
5534///
5535/// These attributes can apply both to implicitly-declared builtins
5536/// (like __builtin___printf_chk) or to library-declared functions
5537/// like NSLog or printf.
5538void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5539  if (FD->isInvalidDecl())
5540    return;
5541
5542  // If this is a built-in function, map its builtin attributes to
5543  // actual attributes.
5544  if (unsigned BuiltinID = FD->getBuiltinID()) {
5545    // Handle printf-formatting attributes.
5546    unsigned FormatIdx;
5547    bool HasVAListArg;
5548    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5549      if (!FD->getAttr<FormatAttr>())
5550        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5551                                                "printf", FormatIdx+1,
5552                                               HasVAListArg ? 0 : FormatIdx+2));
5553    }
5554    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5555                                             HasVAListArg)) {
5556     if (!FD->getAttr<FormatAttr>())
5557       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5558                                              "scanf", FormatIdx+1,
5559                                              HasVAListArg ? 0 : FormatIdx+2));
5560    }
5561
5562    // Mark const if we don't care about errno and that is the only
5563    // thing preventing the function from being const. This allows
5564    // IRgen to use LLVM intrinsics for such functions.
5565    if (!getLangOptions().MathErrno &&
5566        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5567      if (!FD->getAttr<ConstAttr>())
5568        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5569    }
5570
5571    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5572      FD->setType(Context.getNoReturnType(FD->getType()));
5573    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5574      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5575    if (Context.BuiltinInfo.isConst(BuiltinID))
5576      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5577  }
5578
5579  IdentifierInfo *Name = FD->getIdentifier();
5580  if (!Name)
5581    return;
5582  if ((!getLangOptions().CPlusPlus &&
5583       FD->getDeclContext()->isTranslationUnit()) ||
5584      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5585       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5586       LinkageSpecDecl::lang_c)) {
5587    // Okay: this could be a libc/libm/Objective-C function we know
5588    // about.
5589  } else
5590    return;
5591
5592  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5593    // FIXME: NSLog and NSLogv should be target specific
5594    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5595      // FIXME: We known better than our headers.
5596      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5597    } else
5598      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5599                                             "printf", 1,
5600                                             Name->isStr("NSLogv") ? 0 : 2));
5601  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5602    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5603    // target-specific builtins, perhaps?
5604    if (!FD->getAttr<FormatAttr>())
5605      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5606                                             "printf", 2,
5607                                             Name->isStr("vasprintf") ? 0 : 3));
5608  }
5609}
5610
5611TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5612                                    TypeSourceInfo *TInfo) {
5613  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5614  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5615
5616  if (!TInfo) {
5617    assert(D.isInvalidType() && "no declarator info for valid type");
5618    TInfo = Context.getTrivialTypeSourceInfo(T);
5619  }
5620
5621  // Scope manipulation handled by caller.
5622  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5623                                           D.getIdentifierLoc(),
5624                                           D.getIdentifier(),
5625                                           TInfo);
5626
5627  if (const TagType *TT = T->getAs<TagType>()) {
5628    TagDecl *TD = TT->getDecl();
5629
5630    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5631    // keep track of the TypedefDecl.
5632    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5633      TD->setTypedefForAnonDecl(NewTD);
5634  }
5635
5636  if (D.isInvalidType())
5637    NewTD->setInvalidDecl();
5638  return NewTD;
5639}
5640
5641
5642/// \brief Determine whether a tag with a given kind is acceptable
5643/// as a redeclaration of the given tag declaration.
5644///
5645/// \returns true if the new tag kind is acceptable, false otherwise.
5646bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5647                                        TagTypeKind NewTag,
5648                                        SourceLocation NewTagLoc,
5649                                        const IdentifierInfo &Name) {
5650  // C++ [dcl.type.elab]p3:
5651  //   The class-key or enum keyword present in the
5652  //   elaborated-type-specifier shall agree in kind with the
5653  //   declaration to which the name in the elaborated-type-specifier
5654  //   refers. This rule also applies to the form of
5655  //   elaborated-type-specifier that declares a class-name or
5656  //   friend class since it can be construed as referring to the
5657  //   definition of the class. Thus, in any
5658  //   elaborated-type-specifier, the enum keyword shall be used to
5659  //   refer to an enumeration (7.2), the union class-key shall be
5660  //   used to refer to a union (clause 9), and either the class or
5661  //   struct class-key shall be used to refer to a class (clause 9)
5662  //   declared using the class or struct class-key.
5663  TagTypeKind OldTag = Previous->getTagKind();
5664  if (OldTag == NewTag)
5665    return true;
5666
5667  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5668      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5669    // Warn about the struct/class tag mismatch.
5670    bool isTemplate = false;
5671    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5672      isTemplate = Record->getDescribedClassTemplate();
5673
5674    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5675      << (NewTag == TTK_Class)
5676      << isTemplate << &Name
5677      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5678                              OldTag == TTK_Class? "class" : "struct");
5679    Diag(Previous->getLocation(), diag::note_previous_use);
5680    return true;
5681  }
5682  return false;
5683}
5684
5685/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5686/// former case, Name will be non-null.  In the later case, Name will be null.
5687/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5688/// reference/declaration/definition of a tag.
5689Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5690                     SourceLocation KWLoc, CXXScopeSpec &SS,
5691                     IdentifierInfo *Name, SourceLocation NameLoc,
5692                     AttributeList *Attr, AccessSpecifier AS,
5693                     MultiTemplateParamsArg TemplateParameterLists,
5694                     bool &OwnedDecl, bool &IsDependent,
5695                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
5696                     TypeResult UnderlyingType) {
5697  // If this is not a definition, it must have a name.
5698  assert((Name != 0 || TUK == TUK_Definition) &&
5699         "Nameless record must be a definition!");
5700  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
5701
5702  OwnedDecl = false;
5703  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5704
5705  // FIXME: Check explicit specializations more carefully.
5706  bool isExplicitSpecialization = false;
5707  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5708  bool Invalid = false;
5709
5710  // We only need to do this matching if we have template parameters
5711  // or a scope specifier, which also conveniently avoids this work
5712  // for non-C++ cases.
5713  if (NumMatchedTemplateParamLists ||
5714      (SS.isNotEmpty() && TUK != TUK_Reference)) {
5715    if (TemplateParameterList *TemplateParams
5716          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5717                                                TemplateParameterLists.get(),
5718                                               TemplateParameterLists.size(),
5719                                                    TUK == TUK_Friend,
5720                                                    isExplicitSpecialization,
5721                                                    Invalid)) {
5722      // All but one template parameter lists have been matching.
5723      --NumMatchedTemplateParamLists;
5724
5725      if (TemplateParams->size() > 0) {
5726        // This is a declaration or definition of a class template (which may
5727        // be a member of another template).
5728        if (Invalid)
5729          return 0;
5730
5731        OwnedDecl = false;
5732        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5733                                               SS, Name, NameLoc, Attr,
5734                                               TemplateParams,
5735                                               AS);
5736        TemplateParameterLists.release();
5737        return Result.get();
5738      } else {
5739        // The "template<>" header is extraneous.
5740        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5741          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5742        isExplicitSpecialization = true;
5743      }
5744    }
5745  }
5746
5747  // Figure out the underlying type if this a enum declaration. We need to do
5748  // this early, because it's needed to detect if this is an incompatible
5749  // redeclaration.
5750  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
5751
5752  if (Kind == TTK_Enum) {
5753    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
5754      // No underlying type explicitly specified, or we failed to parse the
5755      // type, default to int.
5756      EnumUnderlying = Context.IntTy.getTypePtr();
5757    else if (UnderlyingType.get()) {
5758      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
5759      // integral type; any cv-qualification is ignored.
5760      TypeSourceInfo *TI = 0;
5761      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
5762      EnumUnderlying = TI;
5763
5764      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
5765
5766      if (!T->isDependentType() && !T->isIntegralType(Context)) {
5767        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
5768          << T;
5769        // Recover by falling back to int.
5770        EnumUnderlying = Context.IntTy.getTypePtr();
5771      }
5772    } else if (getLangOptions().Microsoft)
5773      // Microsoft enums are always of int type.
5774      EnumUnderlying = Context.IntTy.getTypePtr();
5775  }
5776
5777  DeclContext *SearchDC = CurContext;
5778  DeclContext *DC = CurContext;
5779  bool isStdBadAlloc = false;
5780
5781  RedeclarationKind Redecl = ForRedeclaration;
5782  if (TUK == TUK_Friend || TUK == TUK_Reference)
5783    Redecl = NotForRedeclaration;
5784
5785  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5786
5787  if (Name && SS.isNotEmpty()) {
5788    // We have a nested-name tag ('struct foo::bar').
5789
5790    // Check for invalid 'foo::'.
5791    if (SS.isInvalid()) {
5792      Name = 0;
5793      goto CreateNewDecl;
5794    }
5795
5796    // If this is a friend or a reference to a class in a dependent
5797    // context, don't try to make a decl for it.
5798    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5799      DC = computeDeclContext(SS, false);
5800      if (!DC) {
5801        IsDependent = true;
5802        return 0;
5803      }
5804    } else {
5805      DC = computeDeclContext(SS, true);
5806      if (!DC) {
5807        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5808          << SS.getRange();
5809        return 0;
5810      }
5811    }
5812
5813    if (RequireCompleteDeclContext(SS, DC))
5814      return 0;
5815
5816    SearchDC = DC;
5817    // Look-up name inside 'foo::'.
5818    LookupQualifiedName(Previous, DC);
5819
5820    if (Previous.isAmbiguous())
5821      return 0;
5822
5823    if (Previous.empty()) {
5824      // Name lookup did not find anything. However, if the
5825      // nested-name-specifier refers to the current instantiation,
5826      // and that current instantiation has any dependent base
5827      // classes, we might find something at instantiation time: treat
5828      // this as a dependent elaborated-type-specifier.
5829      // But this only makes any sense for reference-like lookups.
5830      if (Previous.wasNotFoundInCurrentInstantiation() &&
5831          (TUK == TUK_Reference || TUK == TUK_Friend)) {
5832        IsDependent = true;
5833        return 0;
5834      }
5835
5836      // A tag 'foo::bar' must already exist.
5837      Diag(NameLoc, diag::err_not_tag_in_scope)
5838        << Kind << Name << DC << SS.getRange();
5839      Name = 0;
5840      Invalid = true;
5841      goto CreateNewDecl;
5842    }
5843  } else if (Name) {
5844    // If this is a named struct, check to see if there was a previous forward
5845    // declaration or definition.
5846    // FIXME: We're looking into outer scopes here, even when we
5847    // shouldn't be. Doing so can result in ambiguities that we
5848    // shouldn't be diagnosing.
5849    LookupName(Previous, S);
5850
5851    // Note:  there used to be some attempt at recovery here.
5852    if (Previous.isAmbiguous())
5853      return 0;
5854
5855    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5856      // FIXME: This makes sure that we ignore the contexts associated
5857      // with C structs, unions, and enums when looking for a matching
5858      // tag declaration or definition. See the similar lookup tweak
5859      // in Sema::LookupName; is there a better way to deal with this?
5860      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5861        SearchDC = SearchDC->getParent();
5862    }
5863  } else if (S->isFunctionPrototypeScope()) {
5864    // If this is an enum declaration in function prototype scope, set its
5865    // initial context to the translation unit.
5866    SearchDC = Context.getTranslationUnitDecl();
5867  }
5868
5869  if (Previous.isSingleResult() &&
5870      Previous.getFoundDecl()->isTemplateParameter()) {
5871    // Maybe we will complain about the shadowed template parameter.
5872    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5873    // Just pretend that we didn't see the previous declaration.
5874    Previous.clear();
5875  }
5876
5877  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5878      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5879    // This is a declaration of or a reference to "std::bad_alloc".
5880    isStdBadAlloc = true;
5881
5882    if (Previous.empty() && StdBadAlloc) {
5883      // std::bad_alloc has been implicitly declared (but made invisible to
5884      // name lookup). Fill in this implicit declaration as the previous
5885      // declaration, so that the declarations get chained appropriately.
5886      Previous.addDecl(getStdBadAlloc());
5887    }
5888  }
5889
5890  // If we didn't find a previous declaration, and this is a reference
5891  // (or friend reference), move to the correct scope.  In C++, we
5892  // also need to do a redeclaration lookup there, just in case
5893  // there's a shadow friend decl.
5894  if (Name && Previous.empty() &&
5895      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5896    if (Invalid) goto CreateNewDecl;
5897    assert(SS.isEmpty());
5898
5899    if (TUK == TUK_Reference) {
5900      // C++ [basic.scope.pdecl]p5:
5901      //   -- for an elaborated-type-specifier of the form
5902      //
5903      //          class-key identifier
5904      //
5905      //      if the elaborated-type-specifier is used in the
5906      //      decl-specifier-seq or parameter-declaration-clause of a
5907      //      function defined in namespace scope, the identifier is
5908      //      declared as a class-name in the namespace that contains
5909      //      the declaration; otherwise, except as a friend
5910      //      declaration, the identifier is declared in the smallest
5911      //      non-class, non-function-prototype scope that contains the
5912      //      declaration.
5913      //
5914      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5915      // C structs and unions.
5916      //
5917      // It is an error in C++ to declare (rather than define) an enum
5918      // type, including via an elaborated type specifier.  We'll
5919      // diagnose that later; for now, declare the enum in the same
5920      // scope as we would have picked for any other tag type.
5921      //
5922      // GNU C also supports this behavior as part of its incomplete
5923      // enum types extension, while GNU C++ does not.
5924      //
5925      // Find the context where we'll be declaring the tag.
5926      // FIXME: We would like to maintain the current DeclContext as the
5927      // lexical context,
5928      while (SearchDC->isRecord())
5929        SearchDC = SearchDC->getParent();
5930
5931      // Find the scope where we'll be declaring the tag.
5932      while (S->isClassScope() ||
5933             (getLangOptions().CPlusPlus &&
5934              S->isFunctionPrototypeScope()) ||
5935             ((S->getFlags() & Scope::DeclScope) == 0) ||
5936             (S->getEntity() &&
5937              ((DeclContext *)S->getEntity())->isTransparentContext()))
5938        S = S->getParent();
5939    } else {
5940      assert(TUK == TUK_Friend);
5941      // C++ [namespace.memdef]p3:
5942      //   If a friend declaration in a non-local class first declares a
5943      //   class or function, the friend class or function is a member of
5944      //   the innermost enclosing namespace.
5945      SearchDC = SearchDC->getEnclosingNamespaceContext();
5946    }
5947
5948    // In C++, we need to do a redeclaration lookup to properly
5949    // diagnose some problems.
5950    if (getLangOptions().CPlusPlus) {
5951      Previous.setRedeclarationKind(ForRedeclaration);
5952      LookupQualifiedName(Previous, SearchDC);
5953    }
5954  }
5955
5956  if (!Previous.empty()) {
5957    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5958
5959    // It's okay to have a tag decl in the same scope as a typedef
5960    // which hides a tag decl in the same scope.  Finding this
5961    // insanity with a redeclaration lookup can only actually happen
5962    // in C++.
5963    //
5964    // This is also okay for elaborated-type-specifiers, which is
5965    // technically forbidden by the current standard but which is
5966    // okay according to the likely resolution of an open issue;
5967    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5968    if (getLangOptions().CPlusPlus) {
5969      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5970        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5971          TagDecl *Tag = TT->getDecl();
5972          if (Tag->getDeclName() == Name &&
5973              Tag->getDeclContext()->getRedeclContext()
5974                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5975            PrevDecl = Tag;
5976            Previous.clear();
5977            Previous.addDecl(Tag);
5978            Previous.resolveKind();
5979          }
5980        }
5981      }
5982    }
5983
5984    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5985      // If this is a use of a previous tag, or if the tag is already declared
5986      // in the same scope (so that the definition/declaration completes or
5987      // rementions the tag), reuse the decl.
5988      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5989          isDeclInScope(PrevDecl, SearchDC, S)) {
5990        // Make sure that this wasn't declared as an enum and now used as a
5991        // struct or something similar.
5992        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5993          bool SafeToContinue
5994            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5995               Kind != TTK_Enum);
5996          if (SafeToContinue)
5997            Diag(KWLoc, diag::err_use_with_wrong_tag)
5998              << Name
5999              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6000                                              PrevTagDecl->getKindName());
6001          else
6002            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6003          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6004
6005          if (SafeToContinue)
6006            Kind = PrevTagDecl->getTagKind();
6007          else {
6008            // Recover by making this an anonymous redefinition.
6009            Name = 0;
6010            Previous.clear();
6011            Invalid = true;
6012          }
6013        }
6014
6015        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6016          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6017
6018          // All conflicts with previous declarations are recovered by
6019          // returning the previous declaration.
6020          if (ScopedEnum != PrevEnum->isScoped()) {
6021            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6022              << PrevEnum->isScoped();
6023            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6024            return PrevTagDecl;
6025          }
6026          else if (EnumUnderlying && PrevEnum->isFixed()) {
6027            QualType T;
6028            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6029                T = TI->getType();
6030            else
6031                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6032
6033            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6034              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6035                   diag::err_enum_redeclare_type_mismatch)
6036                << T
6037                << PrevEnum->getIntegerType();
6038              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6039              return PrevTagDecl;
6040            }
6041          }
6042          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6043            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6044              << PrevEnum->isFixed();
6045            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6046            return PrevTagDecl;
6047          }
6048        }
6049
6050        if (!Invalid) {
6051          // If this is a use, just return the declaration we found.
6052
6053          // FIXME: In the future, return a variant or some other clue
6054          // for the consumer of this Decl to know it doesn't own it.
6055          // For our current ASTs this shouldn't be a problem, but will
6056          // need to be changed with DeclGroups.
6057          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6058              TUK == TUK_Friend)
6059            return PrevTagDecl;
6060
6061          // Diagnose attempts to redefine a tag.
6062          if (TUK == TUK_Definition) {
6063            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6064              // If we're defining a specialization and the previous definition
6065              // is from an implicit instantiation, don't emit an error
6066              // here; we'll catch this in the general case below.
6067              if (!isExplicitSpecialization ||
6068                  !isa<CXXRecordDecl>(Def) ||
6069                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6070                                               == TSK_ExplicitSpecialization) {
6071                Diag(NameLoc, diag::err_redefinition) << Name;
6072                Diag(Def->getLocation(), diag::note_previous_definition);
6073                // If this is a redefinition, recover by making this
6074                // struct be anonymous, which will make any later
6075                // references get the previous definition.
6076                Name = 0;
6077                Previous.clear();
6078                Invalid = true;
6079              }
6080            } else {
6081              // If the type is currently being defined, complain
6082              // about a nested redefinition.
6083              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6084              if (Tag->isBeingDefined()) {
6085                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6086                Diag(PrevTagDecl->getLocation(),
6087                     diag::note_previous_definition);
6088                Name = 0;
6089                Previous.clear();
6090                Invalid = true;
6091              }
6092            }
6093
6094            // Okay, this is definition of a previously declared or referenced
6095            // tag PrevDecl. We're going to create a new Decl for it.
6096          }
6097        }
6098        // If we get here we have (another) forward declaration or we
6099        // have a definition.  Just create a new decl.
6100
6101      } else {
6102        // If we get here, this is a definition of a new tag type in a nested
6103        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6104        // new decl/type.  We set PrevDecl to NULL so that the entities
6105        // have distinct types.
6106        Previous.clear();
6107      }
6108      // If we get here, we're going to create a new Decl. If PrevDecl
6109      // is non-NULL, it's a definition of the tag declared by
6110      // PrevDecl. If it's NULL, we have a new definition.
6111
6112
6113    // Otherwise, PrevDecl is not a tag, but was found with tag
6114    // lookup.  This is only actually possible in C++, where a few
6115    // things like templates still live in the tag namespace.
6116    } else {
6117      assert(getLangOptions().CPlusPlus);
6118
6119      // Use a better diagnostic if an elaborated-type-specifier
6120      // found the wrong kind of type on the first
6121      // (non-redeclaration) lookup.
6122      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6123          !Previous.isForRedeclaration()) {
6124        unsigned Kind = 0;
6125        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6126        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6127        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6128        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6129        Invalid = true;
6130
6131      // Otherwise, only diagnose if the declaration is in scope.
6132      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
6133        // do nothing
6134
6135      // Diagnose implicit declarations introduced by elaborated types.
6136      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6137        unsigned Kind = 0;
6138        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6139        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6140        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6141        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6142        Invalid = true;
6143
6144      // Otherwise it's a declaration.  Call out a particularly common
6145      // case here.
6146      } else if (isa<TypedefDecl>(PrevDecl)) {
6147        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6148          << Name
6149          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6150        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6151        Invalid = true;
6152
6153      // Otherwise, diagnose.
6154      } else {
6155        // The tag name clashes with something else in the target scope,
6156        // issue an error and recover by making this tag be anonymous.
6157        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6158        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6159        Name = 0;
6160        Invalid = true;
6161      }
6162
6163      // The existing declaration isn't relevant to us; we're in a
6164      // new scope, so clear out the previous declaration.
6165      Previous.clear();
6166    }
6167  }
6168
6169CreateNewDecl:
6170
6171  TagDecl *PrevDecl = 0;
6172  if (Previous.isSingleResult())
6173    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6174
6175  // If there is an identifier, use the location of the identifier as the
6176  // location of the decl, otherwise use the location of the struct/union
6177  // keyword.
6178  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6179
6180  // Otherwise, create a new declaration. If there is a previous
6181  // declaration of the same entity, the two will be linked via
6182  // PrevDecl.
6183  TagDecl *New;
6184
6185  bool IsForwardReference = false;
6186  if (Kind == TTK_Enum) {
6187    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6188    // enum X { A, B, C } D;    D should chain to X.
6189    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
6190                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6191                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6192    // If this is an undefined enum, warn.
6193    if (TUK != TUK_Definition && !Invalid) {
6194      TagDecl *Def;
6195      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6196        // C++0x: 7.2p2: opaque-enum-declaration.
6197        // Conflicts are diagnosed above. Do nothing.
6198      }
6199      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6200        Diag(Loc, diag::ext_forward_ref_enum_def)
6201          << New;
6202        Diag(Def->getLocation(), diag::note_previous_definition);
6203      } else {
6204        unsigned DiagID = diag::ext_forward_ref_enum;
6205        if (getLangOptions().Microsoft)
6206          DiagID = diag::ext_ms_forward_ref_enum;
6207        else if (getLangOptions().CPlusPlus)
6208          DiagID = diag::err_forward_ref_enum;
6209        Diag(Loc, DiagID);
6210
6211        // If this is a forward-declared reference to an enumeration, make a
6212        // note of it; we won't actually be introducing the declaration into
6213        // the declaration context.
6214        if (TUK == TUK_Reference)
6215          IsForwardReference = true;
6216      }
6217    }
6218
6219    if (EnumUnderlying) {
6220      EnumDecl *ED = cast<EnumDecl>(New);
6221      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6222        ED->setIntegerTypeSourceInfo(TI);
6223      else
6224        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6225      ED->setPromotionType(ED->getIntegerType());
6226    }
6227
6228  } else {
6229    // struct/union/class
6230
6231    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6232    // struct X { int A; } D;    D should chain to X.
6233    if (getLangOptions().CPlusPlus) {
6234      // FIXME: Look for a way to use RecordDecl for simple structs.
6235      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6236                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6237
6238      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6239        StdBadAlloc = cast<CXXRecordDecl>(New);
6240    } else
6241      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
6242                               cast_or_null<RecordDecl>(PrevDecl));
6243  }
6244
6245  // Maybe add qualifier info.
6246  if (SS.isNotEmpty()) {
6247    if (SS.isSet()) {
6248      NestedNameSpecifier *NNS
6249        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
6250      New->setQualifierInfo(NNS, SS.getRange());
6251      if (NumMatchedTemplateParamLists > 0) {
6252        New->setTemplateParameterListsInfo(Context,
6253                                           NumMatchedTemplateParamLists,
6254                    (TemplateParameterList**) TemplateParameterLists.release());
6255      }
6256    }
6257    else
6258      Invalid = true;
6259  }
6260
6261  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6262    // Add alignment attributes if necessary; these attributes are checked when
6263    // the ASTContext lays out the structure.
6264    //
6265    // It is important for implementing the correct semantics that this
6266    // happen here (in act on tag decl). The #pragma pack stack is
6267    // maintained as a result of parser callbacks which can occur at
6268    // many points during the parsing of a struct declaration (because
6269    // the #pragma tokens are effectively skipped over during the
6270    // parsing of the struct).
6271    AddAlignmentAttributesForRecord(RD);
6272  }
6273
6274  // If this is a specialization of a member class (of a class template),
6275  // check the specialization.
6276  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6277    Invalid = true;
6278
6279  if (Invalid)
6280    New->setInvalidDecl();
6281
6282  if (Attr)
6283    ProcessDeclAttributeList(S, New, Attr);
6284
6285  // If we're declaring or defining a tag in function prototype scope
6286  // in C, note that this type can only be used within the function.
6287  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6288    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6289
6290  // Set the lexical context. If the tag has a C++ scope specifier, the
6291  // lexical context will be different from the semantic context.
6292  New->setLexicalDeclContext(CurContext);
6293
6294  // Mark this as a friend decl if applicable.
6295  if (TUK == TUK_Friend)
6296    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6297
6298  // Set the access specifier.
6299  if (!Invalid && SearchDC->isRecord())
6300    SetMemberAccessSpecifier(New, PrevDecl, AS);
6301
6302  if (TUK == TUK_Definition)
6303    New->startDefinition();
6304
6305  // If this has an identifier, add it to the scope stack.
6306  if (TUK == TUK_Friend) {
6307    // We might be replacing an existing declaration in the lookup tables;
6308    // if so, borrow its access specifier.
6309    if (PrevDecl)
6310      New->setAccess(PrevDecl->getAccess());
6311
6312    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6313    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6314    if (Name) // can be null along some error paths
6315      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6316        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6317  } else if (Name) {
6318    S = getNonFieldDeclScope(S);
6319    PushOnScopeChains(New, S, !IsForwardReference);
6320    if (IsForwardReference)
6321      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6322
6323  } else {
6324    CurContext->addDecl(New);
6325  }
6326
6327  // If this is the C FILE type, notify the AST context.
6328  if (IdentifierInfo *II = New->getIdentifier())
6329    if (!New->isInvalidDecl() &&
6330        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6331        II->isStr("FILE"))
6332      Context.setFILEDecl(New);
6333
6334  OwnedDecl = true;
6335  return New;
6336}
6337
6338void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6339  AdjustDeclIfTemplate(TagD);
6340  TagDecl *Tag = cast<TagDecl>(TagD);
6341
6342  // Enter the tag context.
6343  PushDeclContext(S, Tag);
6344}
6345
6346void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6347                                           SourceLocation LBraceLoc) {
6348  AdjustDeclIfTemplate(TagD);
6349  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6350
6351  FieldCollector->StartClass();
6352
6353  if (!Record->getIdentifier())
6354    return;
6355
6356  // C++ [class]p2:
6357  //   [...] The class-name is also inserted into the scope of the
6358  //   class itself; this is known as the injected-class-name. For
6359  //   purposes of access checking, the injected-class-name is treated
6360  //   as if it were a public member name.
6361  CXXRecordDecl *InjectedClassName
6362    = CXXRecordDecl::Create(Context, Record->getTagKind(),
6363                            CurContext, Record->getLocation(),
6364                            Record->getIdentifier(),
6365                            Record->getTagKeywordLoc(),
6366                            /*PrevDecl=*/0,
6367                            /*DelayTypeCreation=*/true);
6368  Context.getTypeDeclType(InjectedClassName, Record);
6369  InjectedClassName->setImplicit();
6370  InjectedClassName->setAccess(AS_public);
6371  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6372      InjectedClassName->setDescribedClassTemplate(Template);
6373  PushOnScopeChains(InjectedClassName, S);
6374  assert(InjectedClassName->isInjectedClassName() &&
6375         "Broken injected-class-name");
6376}
6377
6378void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6379                                    SourceLocation RBraceLoc) {
6380  AdjustDeclIfTemplate(TagD);
6381  TagDecl *Tag = cast<TagDecl>(TagD);
6382  Tag->setRBraceLoc(RBraceLoc);
6383
6384  if (isa<CXXRecordDecl>(Tag))
6385    FieldCollector->FinishClass();
6386
6387  // Exit this scope of this tag's definition.
6388  PopDeclContext();
6389
6390  // Notify the consumer that we've defined a tag.
6391  Consumer.HandleTagDeclDefinition(Tag);
6392}
6393
6394void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6395  AdjustDeclIfTemplate(TagD);
6396  TagDecl *Tag = cast<TagDecl>(TagD);
6397  Tag->setInvalidDecl();
6398
6399  // We're undoing ActOnTagStartDefinition here, not
6400  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6401  // the FieldCollector.
6402
6403  PopDeclContext();
6404}
6405
6406// Note that FieldName may be null for anonymous bitfields.
6407bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6408                          QualType FieldTy, const Expr *BitWidth,
6409                          bool *ZeroWidth) {
6410  // Default to true; that shouldn't confuse checks for emptiness
6411  if (ZeroWidth)
6412    *ZeroWidth = true;
6413
6414  // C99 6.7.2.1p4 - verify the field type.
6415  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6416  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6417    // Handle incomplete types with specific error.
6418    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6419      return true;
6420    if (FieldName)
6421      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6422        << FieldName << FieldTy << BitWidth->getSourceRange();
6423    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6424      << FieldTy << BitWidth->getSourceRange();
6425  }
6426
6427  // If the bit-width is type- or value-dependent, don't try to check
6428  // it now.
6429  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6430    return false;
6431
6432  llvm::APSInt Value;
6433  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6434    return true;
6435
6436  if (Value != 0 && ZeroWidth)
6437    *ZeroWidth = false;
6438
6439  // Zero-width bitfield is ok for anonymous field.
6440  if (Value == 0 && FieldName)
6441    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6442
6443  if (Value.isSigned() && Value.isNegative()) {
6444    if (FieldName)
6445      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6446               << FieldName << Value.toString(10);
6447    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6448      << Value.toString(10);
6449  }
6450
6451  if (!FieldTy->isDependentType()) {
6452    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6453    if (Value.getZExtValue() > TypeSize) {
6454      if (!getLangOptions().CPlusPlus) {
6455        if (FieldName)
6456          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6457            << FieldName << (unsigned)Value.getZExtValue()
6458            << (unsigned)TypeSize;
6459
6460        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6461          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6462      }
6463
6464      if (FieldName)
6465        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6466          << FieldName << (unsigned)Value.getZExtValue()
6467          << (unsigned)TypeSize;
6468      else
6469        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6470          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6471    }
6472  }
6473
6474  return false;
6475}
6476
6477/// ActOnField - Each field of a struct/union/class is passed into this in order
6478/// to create a FieldDecl object for it.
6479Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6480                                 SourceLocation DeclStart,
6481                                 Declarator &D, ExprTy *BitfieldWidth) {
6482  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6483                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6484                               AS_public);
6485  return Res;
6486}
6487
6488/// HandleField - Analyze a field of a C struct or a C++ data member.
6489///
6490FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6491                             SourceLocation DeclStart,
6492                             Declarator &D, Expr *BitWidth,
6493                             AccessSpecifier AS) {
6494  IdentifierInfo *II = D.getIdentifier();
6495  SourceLocation Loc = DeclStart;
6496  if (II) Loc = D.getIdentifierLoc();
6497
6498  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6499  QualType T = TInfo->getType();
6500  if (getLangOptions().CPlusPlus)
6501    CheckExtraCXXDefaultArguments(D);
6502
6503  DiagnoseFunctionSpecifiers(D);
6504
6505  if (D.getDeclSpec().isThreadSpecified())
6506    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6507
6508  // Check to see if this name was declared as a member previously
6509  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6510  LookupName(Previous, S);
6511  assert((Previous.empty() || Previous.isOverloadedResult() ||
6512          Previous.isSingleResult())
6513    && "Lookup of member name should be either overloaded, single or null");
6514
6515  // If the name is overloaded then get any declaration else get the single result
6516  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6517    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6518
6519  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6520    // Maybe we will complain about the shadowed template parameter.
6521    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6522    // Just pretend that we didn't see the previous declaration.
6523    PrevDecl = 0;
6524  }
6525
6526  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6527    PrevDecl = 0;
6528
6529  bool Mutable
6530    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6531  SourceLocation TSSL = D.getSourceRange().getBegin();
6532  FieldDecl *NewFD
6533    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6534                     AS, PrevDecl, &D);
6535
6536  if (NewFD->isInvalidDecl())
6537    Record->setInvalidDecl();
6538
6539  if (NewFD->isInvalidDecl() && PrevDecl) {
6540    // Don't introduce NewFD into scope; there's already something
6541    // with the same name in the same scope.
6542  } else if (II) {
6543    PushOnScopeChains(NewFD, S);
6544  } else
6545    Record->addDecl(NewFD);
6546
6547  return NewFD;
6548}
6549
6550/// \brief Build a new FieldDecl and check its well-formedness.
6551///
6552/// This routine builds a new FieldDecl given the fields name, type,
6553/// record, etc. \p PrevDecl should refer to any previous declaration
6554/// with the same name and in the same scope as the field to be
6555/// created.
6556///
6557/// \returns a new FieldDecl.
6558///
6559/// \todo The Declarator argument is a hack. It will be removed once
6560FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6561                                TypeSourceInfo *TInfo,
6562                                RecordDecl *Record, SourceLocation Loc,
6563                                bool Mutable, Expr *BitWidth,
6564                                SourceLocation TSSL,
6565                                AccessSpecifier AS, NamedDecl *PrevDecl,
6566                                Declarator *D) {
6567  IdentifierInfo *II = Name.getAsIdentifierInfo();
6568  bool InvalidDecl = false;
6569  if (D) InvalidDecl = D->isInvalidType();
6570
6571  // If we receive a broken type, recover by assuming 'int' and
6572  // marking this declaration as invalid.
6573  if (T.isNull()) {
6574    InvalidDecl = true;
6575    T = Context.IntTy;
6576  }
6577
6578  QualType EltTy = Context.getBaseElementType(T);
6579  if (!EltTy->isDependentType() &&
6580      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6581    // Fields of incomplete type force their record to be invalid.
6582    Record->setInvalidDecl();
6583    InvalidDecl = true;
6584  }
6585
6586  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6587  // than a variably modified type.
6588  if (!InvalidDecl && T->isVariablyModifiedType()) {
6589    bool SizeIsNegative;
6590    llvm::APSInt Oversized;
6591    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6592                                                           SizeIsNegative,
6593                                                           Oversized);
6594    if (!FixedTy.isNull()) {
6595      Diag(Loc, diag::warn_illegal_constant_array_size);
6596      T = FixedTy;
6597    } else {
6598      if (SizeIsNegative)
6599        Diag(Loc, diag::err_typecheck_negative_array_size);
6600      else if (Oversized.getBoolValue())
6601        Diag(Loc, diag::err_array_too_large)
6602          << Oversized.toString(10);
6603      else
6604        Diag(Loc, diag::err_typecheck_field_variable_size);
6605      InvalidDecl = true;
6606    }
6607  }
6608
6609  // Fields can not have abstract class types
6610  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6611                                             diag::err_abstract_type_in_decl,
6612                                             AbstractFieldType))
6613    InvalidDecl = true;
6614
6615  bool ZeroWidth = false;
6616  // If this is declared as a bit-field, check the bit-field.
6617  if (!InvalidDecl && BitWidth &&
6618      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6619    InvalidDecl = true;
6620    BitWidth = 0;
6621    ZeroWidth = false;
6622  }
6623
6624  // Check that 'mutable' is consistent with the type of the declaration.
6625  if (!InvalidDecl && Mutable) {
6626    unsigned DiagID = 0;
6627    if (T->isReferenceType())
6628      DiagID = diag::err_mutable_reference;
6629    else if (T.isConstQualified())
6630      DiagID = diag::err_mutable_const;
6631
6632    if (DiagID) {
6633      SourceLocation ErrLoc = Loc;
6634      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6635        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6636      Diag(ErrLoc, DiagID);
6637      Mutable = false;
6638      InvalidDecl = true;
6639    }
6640  }
6641
6642  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6643                                       BitWidth, Mutable);
6644  if (InvalidDecl)
6645    NewFD->setInvalidDecl();
6646
6647  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6648    Diag(Loc, diag::err_duplicate_member) << II;
6649    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6650    NewFD->setInvalidDecl();
6651  }
6652
6653  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6654    if (Record->isUnion()) {
6655      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6656        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6657        if (RDecl->getDefinition()) {
6658          // C++ [class.union]p1: An object of a class with a non-trivial
6659          // constructor, a non-trivial copy constructor, a non-trivial
6660          // destructor, or a non-trivial copy assignment operator
6661          // cannot be a member of a union, nor can an array of such
6662          // objects.
6663          // TODO: C++0x alters this restriction significantly.
6664          if (CheckNontrivialField(NewFD))
6665            NewFD->setInvalidDecl();
6666        }
6667      }
6668
6669      // C++ [class.union]p1: If a union contains a member of reference type,
6670      // the program is ill-formed.
6671      if (EltTy->isReferenceType()) {
6672        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
6673          << NewFD->getDeclName() << EltTy;
6674        NewFD->setInvalidDecl();
6675      }
6676    }
6677  }
6678
6679  // FIXME: We need to pass in the attributes given an AST
6680  // representation, not a parser representation.
6681  if (D)
6682    // FIXME: What to pass instead of TUScope?
6683    ProcessDeclAttributes(TUScope, NewFD, *D);
6684
6685  if (T.isObjCGCWeak())
6686    Diag(Loc, diag::warn_attribute_weak_on_field);
6687
6688  NewFD->setAccess(AS);
6689  return NewFD;
6690}
6691
6692bool Sema::CheckNontrivialField(FieldDecl *FD) {
6693  assert(FD);
6694  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6695
6696  if (FD->isInvalidDecl())
6697    return true;
6698
6699  QualType EltTy = Context.getBaseElementType(FD->getType());
6700  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6701    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6702    if (RDecl->getDefinition()) {
6703      // We check for copy constructors before constructors
6704      // because otherwise we'll never get complaints about
6705      // copy constructors.
6706
6707      CXXSpecialMember member = CXXInvalid;
6708      if (!RDecl->hasTrivialCopyConstructor())
6709        member = CXXCopyConstructor;
6710      else if (!RDecl->hasTrivialConstructor())
6711        member = CXXConstructor;
6712      else if (!RDecl->hasTrivialCopyAssignment())
6713        member = CXXCopyAssignment;
6714      else if (!RDecl->hasTrivialDestructor())
6715        member = CXXDestructor;
6716
6717      if (member != CXXInvalid) {
6718        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6719              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6720        DiagnoseNontrivial(RT, member);
6721        return true;
6722      }
6723    }
6724  }
6725
6726  return false;
6727}
6728
6729/// DiagnoseNontrivial - Given that a class has a non-trivial
6730/// special member, figure out why.
6731void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6732  QualType QT(T, 0U);
6733  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6734
6735  // Check whether the member was user-declared.
6736  switch (member) {
6737  case CXXInvalid:
6738    break;
6739
6740  case CXXConstructor:
6741    if (RD->hasUserDeclaredConstructor()) {
6742      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6743      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6744        const FunctionDecl *body = 0;
6745        ci->hasBody(body);
6746        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6747          SourceLocation CtorLoc = ci->getLocation();
6748          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6749          return;
6750        }
6751      }
6752
6753      assert(0 && "found no user-declared constructors");
6754      return;
6755    }
6756    break;
6757
6758  case CXXCopyConstructor:
6759    if (RD->hasUserDeclaredCopyConstructor()) {
6760      SourceLocation CtorLoc =
6761        RD->getCopyConstructor(Context, 0)->getLocation();
6762      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6763      return;
6764    }
6765    break;
6766
6767  case CXXCopyAssignment:
6768    if (RD->hasUserDeclaredCopyAssignment()) {
6769      // FIXME: this should use the location of the copy
6770      // assignment, not the type.
6771      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6772      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6773      return;
6774    }
6775    break;
6776
6777  case CXXDestructor:
6778    if (RD->hasUserDeclaredDestructor()) {
6779      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6780      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6781      return;
6782    }
6783    break;
6784  }
6785
6786  typedef CXXRecordDecl::base_class_iterator base_iter;
6787
6788  // Virtual bases and members inhibit trivial copying/construction,
6789  // but not trivial destruction.
6790  if (member != CXXDestructor) {
6791    // Check for virtual bases.  vbases includes indirect virtual bases,
6792    // so we just iterate through the direct bases.
6793    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6794      if (bi->isVirtual()) {
6795        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6796        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6797        return;
6798      }
6799
6800    // Check for virtual methods.
6801    typedef CXXRecordDecl::method_iterator meth_iter;
6802    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6803         ++mi) {
6804      if (mi->isVirtual()) {
6805        SourceLocation MLoc = mi->getSourceRange().getBegin();
6806        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6807        return;
6808      }
6809    }
6810  }
6811
6812  bool (CXXRecordDecl::*hasTrivial)() const;
6813  switch (member) {
6814  case CXXConstructor:
6815    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6816  case CXXCopyConstructor:
6817    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6818  case CXXCopyAssignment:
6819    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6820  case CXXDestructor:
6821    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6822  default:
6823    assert(0 && "unexpected special member"); return;
6824  }
6825
6826  // Check for nontrivial bases (and recurse).
6827  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6828    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6829    assert(BaseRT && "Don't know how to handle dependent bases");
6830    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6831    if (!(BaseRecTy->*hasTrivial)()) {
6832      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6833      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6834      DiagnoseNontrivial(BaseRT, member);
6835      return;
6836    }
6837  }
6838
6839  // Check for nontrivial members (and recurse).
6840  typedef RecordDecl::field_iterator field_iter;
6841  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6842       ++fi) {
6843    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6844    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6845      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6846
6847      if (!(EltRD->*hasTrivial)()) {
6848        SourceLocation FLoc = (*fi)->getLocation();
6849        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6850        DiagnoseNontrivial(EltRT, member);
6851        return;
6852      }
6853    }
6854  }
6855
6856  assert(0 && "found no explanation for non-trivial member");
6857}
6858
6859/// TranslateIvarVisibility - Translate visibility from a token ID to an
6860///  AST enum value.
6861static ObjCIvarDecl::AccessControl
6862TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6863  switch (ivarVisibility) {
6864  default: assert(0 && "Unknown visitibility kind");
6865  case tok::objc_private: return ObjCIvarDecl::Private;
6866  case tok::objc_public: return ObjCIvarDecl::Public;
6867  case tok::objc_protected: return ObjCIvarDecl::Protected;
6868  case tok::objc_package: return ObjCIvarDecl::Package;
6869  }
6870}
6871
6872/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6873/// in order to create an IvarDecl object for it.
6874Decl *Sema::ActOnIvar(Scope *S,
6875                                SourceLocation DeclStart,
6876                                Decl *IntfDecl,
6877                                Declarator &D, ExprTy *BitfieldWidth,
6878                                tok::ObjCKeywordKind Visibility) {
6879
6880  IdentifierInfo *II = D.getIdentifier();
6881  Expr *BitWidth = (Expr*)BitfieldWidth;
6882  SourceLocation Loc = DeclStart;
6883  if (II) Loc = D.getIdentifierLoc();
6884
6885  // FIXME: Unnamed fields can be handled in various different ways, for
6886  // example, unnamed unions inject all members into the struct namespace!
6887
6888  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6889  QualType T = TInfo->getType();
6890
6891  if (BitWidth) {
6892    // 6.7.2.1p3, 6.7.2.1p4
6893    if (VerifyBitField(Loc, II, T, BitWidth)) {
6894      D.setInvalidType();
6895      BitWidth = 0;
6896    }
6897  } else {
6898    // Not a bitfield.
6899
6900    // validate II.
6901
6902  }
6903  if (T->isReferenceType()) {
6904    Diag(Loc, diag::err_ivar_reference_type);
6905    D.setInvalidType();
6906  }
6907  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6908  // than a variably modified type.
6909  else if (T->isVariablyModifiedType()) {
6910    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6911    D.setInvalidType();
6912  }
6913
6914  // Get the visibility (access control) for this ivar.
6915  ObjCIvarDecl::AccessControl ac =
6916    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6917                                        : ObjCIvarDecl::None;
6918  // Must set ivar's DeclContext to its enclosing interface.
6919  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6920  ObjCContainerDecl *EnclosingContext;
6921  if (ObjCImplementationDecl *IMPDecl =
6922      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6923    if (!LangOpts.ObjCNonFragileABI2) {
6924    // Case of ivar declared in an implementation. Context is that of its class.
6925      EnclosingContext = IMPDecl->getClassInterface();
6926      assert(EnclosingContext && "Implementation has no class interface!");
6927    }
6928    else
6929      EnclosingContext = EnclosingDecl;
6930  } else {
6931    if (ObjCCategoryDecl *CDecl =
6932        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6933      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6934        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6935        return 0;
6936      }
6937    }
6938    EnclosingContext = EnclosingDecl;
6939  }
6940
6941  // Construct the decl.
6942  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6943                                             EnclosingContext, Loc, II, T,
6944                                             TInfo, ac, (Expr *)BitfieldWidth);
6945
6946  if (II) {
6947    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6948                                           ForRedeclaration);
6949    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6950        && !isa<TagDecl>(PrevDecl)) {
6951      Diag(Loc, diag::err_duplicate_member) << II;
6952      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6953      NewID->setInvalidDecl();
6954    }
6955  }
6956
6957  // Process attributes attached to the ivar.
6958  ProcessDeclAttributes(S, NewID, D);
6959
6960  if (D.isInvalidType())
6961    NewID->setInvalidDecl();
6962
6963  if (II) {
6964    // FIXME: When interfaces are DeclContexts, we'll need to add
6965    // these to the interface.
6966    S->AddDecl(NewID);
6967    IdResolver.AddDecl(NewID);
6968  }
6969
6970  return NewID;
6971}
6972
6973/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6974/// class and class extensions. For every class @interface and class
6975/// extension @interface, if the last ivar is a bitfield of any type,
6976/// then add an implicit `char :0` ivar to the end of that interface.
6977void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6978                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6979  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6980    return;
6981
6982  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6983  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6984
6985  if (!Ivar->isBitField())
6986    return;
6987  uint64_t BitFieldSize =
6988    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6989  if (BitFieldSize == 0)
6990    return;
6991  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6992  if (!ID) {
6993    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6994      if (!CD->IsClassExtension())
6995        return;
6996    }
6997    // No need to add this to end of @implementation.
6998    else
6999      return;
7000  }
7001  // All conditions are met. Add a new bitfield to the tail end of ivars.
7002  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7003  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7004
7005  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7006                              DeclLoc, 0,
7007                              Context.CharTy,
7008                              Context.CreateTypeSourceInfo(Context.CharTy),
7009                              ObjCIvarDecl::Private, BW,
7010                              true);
7011  AllIvarDecls.push_back(Ivar);
7012}
7013
7014void Sema::ActOnFields(Scope* S,
7015                       SourceLocation RecLoc, Decl *EnclosingDecl,
7016                       Decl **Fields, unsigned NumFields,
7017                       SourceLocation LBrac, SourceLocation RBrac,
7018                       AttributeList *Attr) {
7019  assert(EnclosingDecl && "missing record or interface decl");
7020
7021  // If the decl this is being inserted into is invalid, then it may be a
7022  // redeclaration or some other bogus case.  Don't try to add fields to it.
7023  if (EnclosingDecl->isInvalidDecl()) {
7024    // FIXME: Deallocate fields?
7025    return;
7026  }
7027
7028
7029  // Verify that all the fields are okay.
7030  unsigned NumNamedMembers = 0;
7031  llvm::SmallVector<FieldDecl*, 32> RecFields;
7032
7033  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7034  for (unsigned i = 0; i != NumFields; ++i) {
7035    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7036
7037    // Get the type for the field.
7038    Type *FDTy = FD->getType().getTypePtr();
7039
7040    if (!FD->isAnonymousStructOrUnion()) {
7041      // Remember all fields written by the user.
7042      RecFields.push_back(FD);
7043    }
7044
7045    // If the field is already invalid for some reason, don't emit more
7046    // diagnostics about it.
7047    if (FD->isInvalidDecl()) {
7048      EnclosingDecl->setInvalidDecl();
7049      continue;
7050    }
7051
7052    // C99 6.7.2.1p2:
7053    //   A structure or union shall not contain a member with
7054    //   incomplete or function type (hence, a structure shall not
7055    //   contain an instance of itself, but may contain a pointer to
7056    //   an instance of itself), except that the last member of a
7057    //   structure with more than one named member may have incomplete
7058    //   array type; such a structure (and any union containing,
7059    //   possibly recursively, a member that is such a structure)
7060    //   shall not be a member of a structure or an element of an
7061    //   array.
7062    if (FDTy->isFunctionType()) {
7063      // Field declared as a function.
7064      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7065        << FD->getDeclName();
7066      FD->setInvalidDecl();
7067      EnclosingDecl->setInvalidDecl();
7068      continue;
7069    } else if (FDTy->isIncompleteArrayType() && Record &&
7070               ((i == NumFields - 1 && !Record->isUnion()) ||
7071                (getLangOptions().Microsoft &&
7072                 (i == NumFields - 1 || Record->isUnion())))) {
7073      // Flexible array member.
7074      // Microsoft is more permissive regarding flexible array.
7075      // It will accept flexible array in union and also
7076      // as the sole element of a struct/class.
7077      if (getLangOptions().Microsoft) {
7078        if (Record->isUnion())
7079          Diag(FD->getLocation(), diag::ext_flexible_array_union)
7080            << FD->getDeclName();
7081        else if (NumFields == 1)
7082          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
7083            << FD->getDeclName() << Record->getTagKind();
7084      } else  if (NumNamedMembers < 1) {
7085        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7086          << FD->getDeclName();
7087        FD->setInvalidDecl();
7088        EnclosingDecl->setInvalidDecl();
7089        continue;
7090      }
7091      if (!FD->getType()->isDependentType() &&
7092          !Context.getBaseElementType(FD->getType())->isPODType()) {
7093        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7094          << FD->getDeclName() << FD->getType();
7095        FD->setInvalidDecl();
7096        EnclosingDecl->setInvalidDecl();
7097        continue;
7098      }
7099      // Okay, we have a legal flexible array member at the end of the struct.
7100      if (Record)
7101        Record->setHasFlexibleArrayMember(true);
7102    } else if (!FDTy->isDependentType() &&
7103               RequireCompleteType(FD->getLocation(), FD->getType(),
7104                                   diag::err_field_incomplete)) {
7105      // Incomplete type
7106      FD->setInvalidDecl();
7107      EnclosingDecl->setInvalidDecl();
7108      continue;
7109    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7110      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7111        // If this is a member of a union, then entire union becomes "flexible".
7112        if (Record && Record->isUnion()) {
7113          Record->setHasFlexibleArrayMember(true);
7114        } else {
7115          // If this is a struct/class and this is not the last element, reject
7116          // it.  Note that GCC supports variable sized arrays in the middle of
7117          // structures.
7118          if (i != NumFields-1)
7119            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7120              << FD->getDeclName() << FD->getType();
7121          else {
7122            // We support flexible arrays at the end of structs in
7123            // other structs as an extension.
7124            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7125              << FD->getDeclName();
7126            if (Record)
7127              Record->setHasFlexibleArrayMember(true);
7128          }
7129        }
7130      }
7131      if (Record && FDTTy->getDecl()->hasObjectMember())
7132        Record->setHasObjectMember(true);
7133    } else if (FDTy->isObjCObjectType()) {
7134      /// A field cannot be an Objective-c object
7135      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7136      FD->setInvalidDecl();
7137      EnclosingDecl->setInvalidDecl();
7138      continue;
7139    } else if (getLangOptions().ObjC1 &&
7140               getLangOptions().getGCMode() != LangOptions::NonGC &&
7141               Record &&
7142               (FD->getType()->isObjCObjectPointerType() ||
7143                FD->getType().isObjCGCStrong()))
7144      Record->setHasObjectMember(true);
7145    else if (Context.getAsArrayType(FD->getType())) {
7146      QualType BaseType = Context.getBaseElementType(FD->getType());
7147      if (Record && BaseType->isRecordType() &&
7148          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7149        Record->setHasObjectMember(true);
7150    }
7151    // Keep track of the number of named members.
7152    if (FD->getIdentifier())
7153      ++NumNamedMembers;
7154  }
7155
7156  // Okay, we successfully defined 'Record'.
7157  if (Record) {
7158    bool Completed = false;
7159    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7160      if (!CXXRecord->isInvalidDecl()) {
7161        // Set access bits correctly on the directly-declared conversions.
7162        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7163        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7164             I != E; ++I)
7165          Convs->setAccess(I, (*I)->getAccess());
7166
7167        if (!CXXRecord->isDependentType()) {
7168          // Add any implicitly-declared members to this class.
7169          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7170
7171          // If we have virtual base classes, we may end up finding multiple
7172          // final overriders for a given virtual function. Check for this
7173          // problem now.
7174          if (CXXRecord->getNumVBases()) {
7175            CXXFinalOverriderMap FinalOverriders;
7176            CXXRecord->getFinalOverriders(FinalOverriders);
7177
7178            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7179                                             MEnd = FinalOverriders.end();
7180                 M != MEnd; ++M) {
7181              for (OverridingMethods::iterator SO = M->second.begin(),
7182                                            SOEnd = M->second.end();
7183                   SO != SOEnd; ++SO) {
7184                assert(SO->second.size() > 0 &&
7185                       "Virtual function without overridding functions?");
7186                if (SO->second.size() == 1)
7187                  continue;
7188
7189                // C++ [class.virtual]p2:
7190                //   In a derived class, if a virtual member function of a base
7191                //   class subobject has more than one final overrider the
7192                //   program is ill-formed.
7193                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7194                  << (NamedDecl *)M->first << Record;
7195                Diag(M->first->getLocation(),
7196                     diag::note_overridden_virtual_function);
7197                for (OverridingMethods::overriding_iterator
7198                          OM = SO->second.begin(),
7199                       OMEnd = SO->second.end();
7200                     OM != OMEnd; ++OM)
7201                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7202                    << (NamedDecl *)M->first << OM->Method->getParent();
7203
7204                Record->setInvalidDecl();
7205              }
7206            }
7207            CXXRecord->completeDefinition(&FinalOverriders);
7208            Completed = true;
7209          }
7210        }
7211      }
7212    }
7213
7214    if (!Completed)
7215      Record->completeDefinition();
7216  } else {
7217    ObjCIvarDecl **ClsFields =
7218      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7219    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7220      ID->setLocEnd(RBrac);
7221      // Add ivar's to class's DeclContext.
7222      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7223        ClsFields[i]->setLexicalDeclContext(ID);
7224        ID->addDecl(ClsFields[i]);
7225      }
7226      // Must enforce the rule that ivars in the base classes may not be
7227      // duplicates.
7228      if (ID->getSuperClass())
7229        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7230    } else if (ObjCImplementationDecl *IMPDecl =
7231                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7232      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7233      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7234        // Ivar declared in @implementation never belongs to the implementation.
7235        // Only it is in implementation's lexical context.
7236        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7237      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7238    } else if (ObjCCategoryDecl *CDecl =
7239                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7240      // case of ivars in class extension; all other cases have been
7241      // reported as errors elsewhere.
7242      // FIXME. Class extension does not have a LocEnd field.
7243      // CDecl->setLocEnd(RBrac);
7244      // Add ivar's to class extension's DeclContext.
7245      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7246        ClsFields[i]->setLexicalDeclContext(CDecl);
7247        CDecl->addDecl(ClsFields[i]);
7248      }
7249    }
7250  }
7251
7252  if (Attr)
7253    ProcessDeclAttributeList(S, Record, Attr);
7254
7255  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7256  // set the visibility of this record.
7257  if (Record && !Record->getDeclContext()->isRecord())
7258    AddPushedVisibilityAttribute(Record);
7259}
7260
7261/// \brief Determine whether the given integral value is representable within
7262/// the given type T.
7263static bool isRepresentableIntegerValue(ASTContext &Context,
7264                                        llvm::APSInt &Value,
7265                                        QualType T) {
7266  assert(T->isIntegralType(Context) && "Integral type required!");
7267  unsigned BitWidth = Context.getIntWidth(T);
7268
7269  if (Value.isUnsigned() || Value.isNonNegative()) {
7270    if (T->isSignedIntegerType())
7271      --BitWidth;
7272    return Value.getActiveBits() <= BitWidth;
7273  }
7274  return Value.getMinSignedBits() <= BitWidth;
7275}
7276
7277// \brief Given an integral type, return the next larger integral type
7278// (or a NULL type of no such type exists).
7279static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7280  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7281  // enum checking below.
7282  assert(T->isIntegralType(Context) && "Integral type required!");
7283  const unsigned NumTypes = 4;
7284  QualType SignedIntegralTypes[NumTypes] = {
7285    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7286  };
7287  QualType UnsignedIntegralTypes[NumTypes] = {
7288    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7289    Context.UnsignedLongLongTy
7290  };
7291
7292  unsigned BitWidth = Context.getTypeSize(T);
7293  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7294                                            : UnsignedIntegralTypes;
7295  for (unsigned I = 0; I != NumTypes; ++I)
7296    if (Context.getTypeSize(Types[I]) > BitWidth)
7297      return Types[I];
7298
7299  return QualType();
7300}
7301
7302EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7303                                          EnumConstantDecl *LastEnumConst,
7304                                          SourceLocation IdLoc,
7305                                          IdentifierInfo *Id,
7306                                          Expr *Val) {
7307  unsigned IntWidth = Context.Target.getIntWidth();
7308  llvm::APSInt EnumVal(IntWidth);
7309  QualType EltTy;
7310  if (Val) {
7311    if (Enum->isDependentType() || Val->isTypeDependent())
7312      EltTy = Context.DependentTy;
7313    else {
7314      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7315      SourceLocation ExpLoc;
7316      if (!Val->isValueDependent() &&
7317          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7318        Val = 0;
7319      } else {
7320        if (!getLangOptions().CPlusPlus) {
7321          // C99 6.7.2.2p2:
7322          //   The expression that defines the value of an enumeration constant
7323          //   shall be an integer constant expression that has a value
7324          //   representable as an int.
7325
7326          // Complain if the value is not representable in an int.
7327          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7328            Diag(IdLoc, diag::ext_enum_value_not_int)
7329              << EnumVal.toString(10) << Val->getSourceRange()
7330              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7331          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7332            // Force the type of the expression to 'int'.
7333            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7334          }
7335        }
7336
7337        if (Enum->isFixed()) {
7338          EltTy = Enum->getIntegerType();
7339
7340          // C++0x [dcl.enum]p5:
7341          //   ... if the initializing value of an enumerator cannot be
7342          //   represented by the underlying type, the program is ill-formed.
7343          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7344            if (getLangOptions().Microsoft) {
7345              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7346              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7347            } else
7348              Diag(IdLoc, diag::err_enumerator_too_large)
7349                << EltTy;
7350          } else
7351            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7352        }
7353        else {
7354          // C++0x [dcl.enum]p5:
7355          //   If the underlying type is not fixed, the type of each enumerator
7356          //   is the type of its initializing value:
7357          //     - If an initializer is specified for an enumerator, the
7358          //       initializing value has the same type as the expression.
7359          EltTy = Val->getType();
7360        }
7361      }
7362    }
7363  }
7364
7365  if (!Val) {
7366    if (Enum->isDependentType())
7367      EltTy = Context.DependentTy;
7368    else if (!LastEnumConst) {
7369      // C++0x [dcl.enum]p5:
7370      //   If the underlying type is not fixed, the type of each enumerator
7371      //   is the type of its initializing value:
7372      //     - If no initializer is specified for the first enumerator, the
7373      //       initializing value has an unspecified integral type.
7374      //
7375      // GCC uses 'int' for its unspecified integral type, as does
7376      // C99 6.7.2.2p3.
7377      if (Enum->isFixed()) {
7378        EltTy = Enum->getIntegerType();
7379      }
7380      else {
7381        EltTy = Context.IntTy;
7382      }
7383    } else {
7384      // Assign the last value + 1.
7385      EnumVal = LastEnumConst->getInitVal();
7386      ++EnumVal;
7387      EltTy = LastEnumConst->getType();
7388
7389      // Check for overflow on increment.
7390      if (EnumVal < LastEnumConst->getInitVal()) {
7391        // C++0x [dcl.enum]p5:
7392        //   If the underlying type is not fixed, the type of each enumerator
7393        //   is the type of its initializing value:
7394        //
7395        //     - Otherwise the type of the initializing value is the same as
7396        //       the type of the initializing value of the preceding enumerator
7397        //       unless the incremented value is not representable in that type,
7398        //       in which case the type is an unspecified integral type
7399        //       sufficient to contain the incremented value. If no such type
7400        //       exists, the program is ill-formed.
7401        QualType T = getNextLargerIntegralType(Context, EltTy);
7402        if (T.isNull() || Enum->isFixed()) {
7403          // There is no integral type larger enough to represent this
7404          // value. Complain, then allow the value to wrap around.
7405          EnumVal = LastEnumConst->getInitVal();
7406          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7407          ++EnumVal;
7408          if (Enum->isFixed())
7409            // When the underlying type is fixed, this is ill-formed.
7410            Diag(IdLoc, diag::err_enumerator_wrapped)
7411              << EnumVal.toString(10)
7412              << EltTy;
7413          else
7414            Diag(IdLoc, diag::warn_enumerator_too_large)
7415              << EnumVal.toString(10);
7416        } else {
7417          EltTy = T;
7418        }
7419
7420        // Retrieve the last enumerator's value, extent that type to the
7421        // type that is supposed to be large enough to represent the incremented
7422        // value, then increment.
7423        EnumVal = LastEnumConst->getInitVal();
7424        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7425        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7426        ++EnumVal;
7427
7428        // If we're not in C++, diagnose the overflow of enumerator values,
7429        // which in C99 means that the enumerator value is not representable in
7430        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7431        // permits enumerator values that are representable in some larger
7432        // integral type.
7433        if (!getLangOptions().CPlusPlus && !T.isNull())
7434          Diag(IdLoc, diag::warn_enum_value_overflow);
7435      } else if (!getLangOptions().CPlusPlus &&
7436                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7437        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7438        Diag(IdLoc, diag::ext_enum_value_not_int)
7439          << EnumVal.toString(10) << 1;
7440      }
7441    }
7442  }
7443
7444  if (!EltTy->isDependentType()) {
7445    // Make the enumerator value match the signedness and size of the
7446    // enumerator's type.
7447    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7448    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7449  }
7450
7451  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7452                                  Val, EnumVal);
7453}
7454
7455
7456Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7457                              SourceLocation IdLoc, IdentifierInfo *Id,
7458                              AttributeList *Attr,
7459                              SourceLocation EqualLoc, ExprTy *val) {
7460  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7461  EnumConstantDecl *LastEnumConst =
7462    cast_or_null<EnumConstantDecl>(lastEnumConst);
7463  Expr *Val = static_cast<Expr*>(val);
7464
7465  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7466  // we find one that is.
7467  S = getNonFieldDeclScope(S);
7468
7469  // Verify that there isn't already something declared with this name in this
7470  // scope.
7471  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7472                                         ForRedeclaration);
7473  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7474    // Maybe we will complain about the shadowed template parameter.
7475    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7476    // Just pretend that we didn't see the previous declaration.
7477    PrevDecl = 0;
7478  }
7479
7480  if (PrevDecl) {
7481    // When in C++, we may get a TagDecl with the same name; in this case the
7482    // enum constant will 'hide' the tag.
7483    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7484           "Received TagDecl when not in C++!");
7485    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7486      if (isa<EnumConstantDecl>(PrevDecl))
7487        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7488      else
7489        Diag(IdLoc, diag::err_redefinition) << Id;
7490      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7491      return 0;
7492    }
7493  }
7494
7495  // C++ [class.mem]p13:
7496  //   If T is the name of a class, then each of the following shall have a
7497  //   name different from T:
7498  //     - every enumerator of every member of class T that is an enumerated
7499  //       type
7500  if (CXXRecordDecl *Record
7501                      = dyn_cast<CXXRecordDecl>(
7502                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7503    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7504      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7505
7506  EnumConstantDecl *New =
7507    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7508
7509  if (New) {
7510    // Process attributes.
7511    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7512
7513    // Register this decl in the current scope stack.
7514    New->setAccess(TheEnumDecl->getAccess());
7515    PushOnScopeChains(New, S);
7516  }
7517
7518  return New;
7519}
7520
7521void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7522                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7523                         Decl **Elements, unsigned NumElements,
7524                         Scope *S, AttributeList *Attr) {
7525  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7526  QualType EnumType = Context.getTypeDeclType(Enum);
7527
7528  if (Attr)
7529    ProcessDeclAttributeList(S, Enum, Attr);
7530
7531  if (Enum->isDependentType()) {
7532    for (unsigned i = 0; i != NumElements; ++i) {
7533      EnumConstantDecl *ECD =
7534        cast_or_null<EnumConstantDecl>(Elements[i]);
7535      if (!ECD) continue;
7536
7537      ECD->setType(EnumType);
7538    }
7539
7540    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7541    return;
7542  }
7543
7544  // TODO: If the result value doesn't fit in an int, it must be a long or long
7545  // long value.  ISO C does not support this, but GCC does as an extension,
7546  // emit a warning.
7547  unsigned IntWidth = Context.Target.getIntWidth();
7548  unsigned CharWidth = Context.Target.getCharWidth();
7549  unsigned ShortWidth = Context.Target.getShortWidth();
7550
7551  // Verify that all the values are okay, compute the size of the values, and
7552  // reverse the list.
7553  unsigned NumNegativeBits = 0;
7554  unsigned NumPositiveBits = 0;
7555
7556  // Keep track of whether all elements have type int.
7557  bool AllElementsInt = true;
7558
7559  for (unsigned i = 0; i != NumElements; ++i) {
7560    EnumConstantDecl *ECD =
7561      cast_or_null<EnumConstantDecl>(Elements[i]);
7562    if (!ECD) continue;  // Already issued a diagnostic.
7563
7564    const llvm::APSInt &InitVal = ECD->getInitVal();
7565
7566    // Keep track of the size of positive and negative values.
7567    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7568      NumPositiveBits = std::max(NumPositiveBits,
7569                                 (unsigned)InitVal.getActiveBits());
7570    else
7571      NumNegativeBits = std::max(NumNegativeBits,
7572                                 (unsigned)InitVal.getMinSignedBits());
7573
7574    // Keep track of whether every enum element has type int (very commmon).
7575    if (AllElementsInt)
7576      AllElementsInt = ECD->getType() == Context.IntTy;
7577  }
7578
7579  // Figure out the type that should be used for this enum.
7580  QualType BestType;
7581  unsigned BestWidth;
7582
7583  // C++0x N3000 [conv.prom]p3:
7584  //   An rvalue of an unscoped enumeration type whose underlying
7585  //   type is not fixed can be converted to an rvalue of the first
7586  //   of the following types that can represent all the values of
7587  //   the enumeration: int, unsigned int, long int, unsigned long
7588  //   int, long long int, or unsigned long long int.
7589  // C99 6.4.4.3p2:
7590  //   An identifier declared as an enumeration constant has type int.
7591  // The C99 rule is modified by a gcc extension
7592  QualType BestPromotionType;
7593
7594  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7595  // -fshort-enums is the equivalent to specifying the packed attribute on all
7596  // enum definitions.
7597  if (LangOpts.ShortEnums)
7598    Packed = true;
7599
7600  if (Enum->isFixed()) {
7601    BestType = BestPromotionType = Enum->getIntegerType();
7602    // We don't need to set BestWidth, because BestType is going to be the type
7603    // of the enumerators, but we do anyway because otherwise some compilers
7604    // warn that it might be used uninitialized.
7605    BestWidth = CharWidth;
7606  }
7607  else if (NumNegativeBits) {
7608    // If there is a negative value, figure out the smallest integer type (of
7609    // int/long/longlong) that fits.
7610    // If it's packed, check also if it fits a char or a short.
7611    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7612      BestType = Context.SignedCharTy;
7613      BestWidth = CharWidth;
7614    } else if (Packed && NumNegativeBits <= ShortWidth &&
7615               NumPositiveBits < ShortWidth) {
7616      BestType = Context.ShortTy;
7617      BestWidth = ShortWidth;
7618    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7619      BestType = Context.IntTy;
7620      BestWidth = IntWidth;
7621    } else {
7622      BestWidth = Context.Target.getLongWidth();
7623
7624      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7625        BestType = Context.LongTy;
7626      } else {
7627        BestWidth = Context.Target.getLongLongWidth();
7628
7629        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7630          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7631        BestType = Context.LongLongTy;
7632      }
7633    }
7634    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7635  } else {
7636    // If there is no negative value, figure out the smallest type that fits
7637    // all of the enumerator values.
7638    // If it's packed, check also if it fits a char or a short.
7639    if (Packed && NumPositiveBits <= CharWidth) {
7640      BestType = Context.UnsignedCharTy;
7641      BestPromotionType = Context.IntTy;
7642      BestWidth = CharWidth;
7643    } else if (Packed && NumPositiveBits <= ShortWidth) {
7644      BestType = Context.UnsignedShortTy;
7645      BestPromotionType = Context.IntTy;
7646      BestWidth = ShortWidth;
7647    } else if (NumPositiveBits <= IntWidth) {
7648      BestType = Context.UnsignedIntTy;
7649      BestWidth = IntWidth;
7650      BestPromotionType
7651        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7652                           ? Context.UnsignedIntTy : Context.IntTy;
7653    } else if (NumPositiveBits <=
7654               (BestWidth = Context.Target.getLongWidth())) {
7655      BestType = Context.UnsignedLongTy;
7656      BestPromotionType
7657        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7658                           ? Context.UnsignedLongTy : Context.LongTy;
7659    } else {
7660      BestWidth = Context.Target.getLongLongWidth();
7661      assert(NumPositiveBits <= BestWidth &&
7662             "How could an initializer get larger than ULL?");
7663      BestType = Context.UnsignedLongLongTy;
7664      BestPromotionType
7665        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7666                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7667    }
7668  }
7669
7670  // Loop over all of the enumerator constants, changing their types to match
7671  // the type of the enum if needed.
7672  for (unsigned i = 0; i != NumElements; ++i) {
7673    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7674    if (!ECD) continue;  // Already issued a diagnostic.
7675
7676    // Standard C says the enumerators have int type, but we allow, as an
7677    // extension, the enumerators to be larger than int size.  If each
7678    // enumerator value fits in an int, type it as an int, otherwise type it the
7679    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7680    // that X has type 'int', not 'unsigned'.
7681
7682    // Determine whether the value fits into an int.
7683    llvm::APSInt InitVal = ECD->getInitVal();
7684
7685    // If it fits into an integer type, force it.  Otherwise force it to match
7686    // the enum decl type.
7687    QualType NewTy;
7688    unsigned NewWidth;
7689    bool NewSign;
7690    if (!getLangOptions().CPlusPlus &&
7691        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7692      NewTy = Context.IntTy;
7693      NewWidth = IntWidth;
7694      NewSign = true;
7695    } else if (ECD->getType() == BestType) {
7696      // Already the right type!
7697      if (getLangOptions().CPlusPlus)
7698        // C++ [dcl.enum]p4: Following the closing brace of an
7699        // enum-specifier, each enumerator has the type of its
7700        // enumeration.
7701        ECD->setType(EnumType);
7702      continue;
7703    } else {
7704      NewTy = BestType;
7705      NewWidth = BestWidth;
7706      NewSign = BestType->isSignedIntegerType();
7707    }
7708
7709    // Adjust the APSInt value.
7710    InitVal = InitVal.extOrTrunc(NewWidth);
7711    InitVal.setIsSigned(NewSign);
7712    ECD->setInitVal(InitVal);
7713
7714    // Adjust the Expr initializer and type.
7715    if (ECD->getInitExpr())
7716      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7717                                                CK_IntegralCast,
7718                                                ECD->getInitExpr(),
7719                                                /*base paths*/ 0,
7720                                                VK_RValue));
7721    if (getLangOptions().CPlusPlus)
7722      // C++ [dcl.enum]p4: Following the closing brace of an
7723      // enum-specifier, each enumerator has the type of its
7724      // enumeration.
7725      ECD->setType(EnumType);
7726    else
7727      ECD->setType(NewTy);
7728  }
7729
7730  Enum->completeDefinition(BestType, BestPromotionType,
7731                           NumPositiveBits, NumNegativeBits);
7732}
7733
7734Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7735  StringLiteral *AsmString = cast<StringLiteral>(expr);
7736
7737  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7738                                                   Loc, AsmString);
7739  CurContext->addDecl(New);
7740  return New;
7741}
7742
7743void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7744                             SourceLocation PragmaLoc,
7745                             SourceLocation NameLoc) {
7746  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7747
7748  if (PrevDecl) {
7749    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7750  } else {
7751    (void)WeakUndeclaredIdentifiers.insert(
7752      std::pair<IdentifierInfo*,WeakInfo>
7753        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7754  }
7755}
7756
7757void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7758                                IdentifierInfo* AliasName,
7759                                SourceLocation PragmaLoc,
7760                                SourceLocation NameLoc,
7761                                SourceLocation AliasNameLoc) {
7762  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7763                                    LookupOrdinaryName);
7764  WeakInfo W = WeakInfo(Name, NameLoc);
7765
7766  if (PrevDecl) {
7767    if (!PrevDecl->hasAttr<AliasAttr>())
7768      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7769        DeclApplyPragmaWeak(TUScope, ND, W);
7770  } else {
7771    (void)WeakUndeclaredIdentifiers.insert(
7772      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7773  }
7774}
7775