SemaDecl.cpp revision 0a8bab019dbf980911fbefa56d7debd648b7b239
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <cstring>
40#include <functional>
41#include <queue>
42using namespace clang;
43
44/// getDeclName - Return a pretty name for the specified decl if possible, or
45/// an empty string if not.  This is used for pretty crash reporting.
46std::string Sema::getDeclName(DeclPtrTy d) {
47  Decl *D = d.getAs<Decl>();
48  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
49    return DN->getQualifiedNameAsString();
50  return "";
51}
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                                Scope *S, const CXXScopeSpec *SS,
70                                bool isClassName,
71                                TypeTy *ObjectTypePtr) {
72  // Determine where we will perform name lookup.
73  DeclContext *LookupCtx = 0;
74  if (ObjectTypePtr) {
75    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
76    if (ObjectType->isRecordType())
77      LookupCtx = computeDeclContext(ObjectType);
78  } else if (SS && SS->isSet()) {
79    LookupCtx = computeDeclContext(*SS, false);
80
81    if (!LookupCtx) {
82      if (isDependentScopeSpecifier(*SS)) {
83        // C++ [temp.res]p3:
84        //   A qualified-id that refers to a type and in which the
85        //   nested-name-specifier depends on a template-parameter (14.6.2)
86        //   shall be prefixed by the keyword typename to indicate that the
87        //   qualified-id denotes a type, forming an
88        //   elaborated-type-specifier (7.1.5.3).
89        //
90        // We therefore do not perform any name lookup if the result would
91        // refer to a member of an unknown specialization.
92        if (!isClassName)
93          return 0;
94
95        // We know from the grammar that this name refers to a type, so build a
96        // TypenameType node to describe the type.
97        // FIXME: Record somewhere that this TypenameType node has no "typename"
98        // keyword associated with it.
99        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
100                                 II, SS->getRange()).getAsOpaquePtr();
101      }
102
103      return 0;
104    }
105
106    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
107      return 0;
108  }
109
110  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    return 0;
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return 0;
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return 0;
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    // C++ [temp.local]p2:
190    //   Within the scope of a class template specialization or
191    //   partial specialization, when the injected-class-name is
192    //   not followed by a <, it is equivalent to the
193    //   injected-class-name followed by the template-argument s
194    //   of the class template specialization or partial
195    //   specialization enclosed in <>.
196    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
197      if (RD->isInjectedClassName())
198        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
199          T = Template->getInjectedClassNameType(Context);
200
201    if (T.isNull())
202      T = Context.getTypeDeclType(TD);
203
204    if (SS)
205      T = getQualifiedNameType(*SS, T);
206
207  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
208    T = Context.getObjCInterfaceType(IDecl);
209  } else if (UnresolvedUsingTypenameDecl *UUDecl =
210               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
211    // FIXME: preserve source structure information.
212    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
213  } else {
214    // If it's not plausibly a type, suppress diagnostics.
215    Result.suppressDiagnostics();
216    return 0;
217  }
218
219  return T.getAsOpaquePtr();
220}
221
222/// isTagName() - This method is called *for error recovery purposes only*
223/// to determine if the specified name is a valid tag name ("struct foo").  If
224/// so, this returns the TST for the tag corresponding to it (TST_enum,
225/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
226/// where the user forgot to specify the tag.
227DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
228  // Do a tag name lookup in this scope.
229  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
230  LookupName(R, S, false);
231  R.suppressDiagnostics();
232  if (R.getResultKind() == LookupResult::Found)
233    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
234      switch (TD->getTagKind()) {
235      case TagDecl::TK_struct: return DeclSpec::TST_struct;
236      case TagDecl::TK_union:  return DeclSpec::TST_union;
237      case TagDecl::TK_class:  return DeclSpec::TST_class;
238      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
239      }
240    }
241
242  return DeclSpec::TST_unspecified;
243}
244
245bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
246                                   SourceLocation IILoc,
247                                   Scope *S,
248                                   const CXXScopeSpec *SS,
249                                   TypeTy *&SuggestedType) {
250  // We don't have anything to suggest (yet).
251  SuggestedType = 0;
252
253  // FIXME: Should we move the logic that tries to recover from a missing tag
254  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
255
256  if (!SS)
257    Diag(IILoc, diag::err_unknown_typename) << &II;
258  else if (DeclContext *DC = computeDeclContext(*SS, false))
259    Diag(IILoc, diag::err_typename_nested_not_found)
260      << &II << DC << SS->getRange();
261  else if (isDependentScopeSpecifier(*SS)) {
262    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
263      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
264      << SourceRange(SS->getRange().getBegin(), IILoc)
265      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
266                                               "typename ");
267    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
268  } else {
269    assert(SS && SS->isInvalid() &&
270           "Invalid scope specifier has already been diagnosed");
271  }
272
273  return true;
274}
275
276// Determines the context to return to after temporarily entering a
277// context.  This depends in an unnecessarily complicated way on the
278// exact ordering of callbacks from the parser.
279DeclContext *Sema::getContainingDC(DeclContext *DC) {
280
281  // Functions defined inline within classes aren't parsed until we've
282  // finished parsing the top-level class, so the top-level class is
283  // the context we'll need to return to.
284  if (isa<FunctionDecl>(DC)) {
285    DC = DC->getLexicalParent();
286
287    // A function not defined within a class will always return to its
288    // lexical context.
289    if (!isa<CXXRecordDecl>(DC))
290      return DC;
291
292    // A C++ inline method/friend is parsed *after* the topmost class
293    // it was declared in is fully parsed ("complete");  the topmost
294    // class is the context we need to return to.
295    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
296      DC = RD;
297
298    // Return the declaration context of the topmost class the inline method is
299    // declared in.
300    return DC;
301  }
302
303  if (isa<ObjCMethodDecl>(DC))
304    return Context.getTranslationUnitDecl();
305
306  return DC->getLexicalParent();
307}
308
309void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
310  assert(getContainingDC(DC) == CurContext &&
311      "The next DeclContext should be lexically contained in the current one.");
312  CurContext = DC;
313  S->setEntity(DC);
314}
315
316void Sema::PopDeclContext() {
317  assert(CurContext && "DeclContext imbalance!");
318
319  CurContext = getContainingDC(CurContext);
320}
321
322/// EnterDeclaratorContext - Used when we must lookup names in the context
323/// of a declarator's nested name specifier.
324void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
325  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
326  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
327  CurContext = DC;
328  assert(CurContext && "No context?");
329  S->setEntity(CurContext);
330}
331
332void Sema::ExitDeclaratorContext(Scope *S) {
333  S->setEntity(PreDeclaratorDC);
334  PreDeclaratorDC = 0;
335
336  // Reset CurContext to the nearest enclosing context.
337  while (!S->getEntity() && S->getParent())
338    S = S->getParent();
339  CurContext = static_cast<DeclContext*>(S->getEntity());
340  assert(CurContext && "No context?");
341}
342
343/// \brief Determine whether we allow overloading of the function
344/// PrevDecl with another declaration.
345///
346/// This routine determines whether overloading is possible, not
347/// whether some new function is actually an overload. It will return
348/// true in C++ (where we can always provide overloads) or, as an
349/// extension, in C when the previous function is already an
350/// overloaded function declaration or has the "overloadable"
351/// attribute.
352static bool AllowOverloadingOfFunction(LookupResult &Previous,
353                                       ASTContext &Context) {
354  if (Context.getLangOptions().CPlusPlus)
355    return true;
356
357  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
358    return true;
359
360  return (Previous.getResultKind() == LookupResult::Found
361          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
362}
363
364/// Add this decl to the scope shadowed decl chains.
365void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
366  // Move up the scope chain until we find the nearest enclosing
367  // non-transparent context. The declaration will be introduced into this
368  // scope.
369  while (S->getEntity() &&
370         ((DeclContext *)S->getEntity())->isTransparentContext())
371    S = S->getParent();
372
373  // Add scoped declarations into their context, so that they can be
374  // found later. Declarations without a context won't be inserted
375  // into any context.
376  if (AddToContext)
377    CurContext->addDecl(D);
378
379  // Out-of-line function and variable definitions should not be pushed into
380  // scope.
381  if ((isa<FunctionTemplateDecl>(D) &&
382       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
383      (isa<FunctionDecl>(D) &&
384       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
385        cast<FunctionDecl>(D)->isOutOfLine())) ||
386      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
387    return;
388
389  // If this replaces anything in the current scope,
390  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
391                               IEnd = IdResolver.end();
392  for (; I != IEnd; ++I) {
393    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
394      S->RemoveDecl(DeclPtrTy::make(*I));
395      IdResolver.RemoveDecl(*I);
396
397      // Should only need to replace one decl.
398      break;
399    }
400  }
401
402  S->AddDecl(DeclPtrTy::make(D));
403  IdResolver.AddDecl(D);
404}
405
406bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
407  return IdResolver.isDeclInScope(D, Ctx, Context, S);
408}
409
410static bool isOutOfScopePreviousDeclaration(NamedDecl *,
411                                            DeclContext*,
412                                            ASTContext&);
413
414/// Filters out lookup results that don't fall within the given scope
415/// as determined by isDeclInScope.
416static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
417                                 DeclContext *Ctx, Scope *S,
418                                 bool ConsiderLinkage) {
419  LookupResult::Filter F = R.makeFilter();
420  while (F.hasNext()) {
421    NamedDecl *D = F.next();
422
423    if (SemaRef.isDeclInScope(D, Ctx, S))
424      continue;
425
426    if (ConsiderLinkage &&
427        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
428      continue;
429
430    F.erase();
431  }
432
433  F.done();
434}
435
436static bool isUsingDecl(NamedDecl *D) {
437  return isa<UsingShadowDecl>(D) ||
438         isa<UnresolvedUsingTypenameDecl>(D) ||
439         isa<UnresolvedUsingValueDecl>(D);
440}
441
442/// Removes using shadow declarations from the lookup results.
443static void RemoveUsingDecls(LookupResult &R) {
444  LookupResult::Filter F = R.makeFilter();
445  while (F.hasNext())
446    if (isUsingDecl(F.next()))
447      F.erase();
448
449  F.done();
450}
451
452static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
453  if (D->isUsed() || D->hasAttr<UnusedAttr>())
454    return false;
455
456  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
457    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
458      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
459        if (!RD->hasTrivialConstructor())
460          return false;
461        if (!RD->hasTrivialDestructor())
462          return false;
463      }
464    }
465  }
466
467  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
468          !isa<ImplicitParamDecl>(D) &&
469          D->getDeclContext()->isFunctionOrMethod());
470}
471
472void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
473  if (S->decl_empty()) return;
474  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
475         "Scope shouldn't contain decls!");
476
477  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
478       I != E; ++I) {
479    Decl *TmpD = (*I).getAs<Decl>();
480    assert(TmpD && "This decl didn't get pushed??");
481
482    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
483    NamedDecl *D = cast<NamedDecl>(TmpD);
484
485    if (!D->getDeclName()) continue;
486
487    // Diagnose unused variables in this scope.
488    if (ShouldDiagnoseUnusedDecl(D))
489      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
490
491    // Remove this name from our lexical scope.
492    IdResolver.RemoveDecl(D);
493  }
494}
495
496/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
497/// return 0 if one not found.
498ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
499  // The third "scope" argument is 0 since we aren't enabling lazy built-in
500  // creation from this context.
501  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
502
503  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
504}
505
506/// getNonFieldDeclScope - Retrieves the innermost scope, starting
507/// from S, where a non-field would be declared. This routine copes
508/// with the difference between C and C++ scoping rules in structs and
509/// unions. For example, the following code is well-formed in C but
510/// ill-formed in C++:
511/// @code
512/// struct S6 {
513///   enum { BAR } e;
514/// };
515///
516/// void test_S6() {
517///   struct S6 a;
518///   a.e = BAR;
519/// }
520/// @endcode
521/// For the declaration of BAR, this routine will return a different
522/// scope. The scope S will be the scope of the unnamed enumeration
523/// within S6. In C++, this routine will return the scope associated
524/// with S6, because the enumeration's scope is a transparent
525/// context but structures can contain non-field names. In C, this
526/// routine will return the translation unit scope, since the
527/// enumeration's scope is a transparent context and structures cannot
528/// contain non-field names.
529Scope *Sema::getNonFieldDeclScope(Scope *S) {
530  while (((S->getFlags() & Scope::DeclScope) == 0) ||
531         (S->getEntity() &&
532          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
533         (S->isClassScope() && !getLangOptions().CPlusPlus))
534    S = S->getParent();
535  return S;
536}
537
538void Sema::InitBuiltinVaListType() {
539  if (!Context.getBuiltinVaListType().isNull())
540    return;
541
542  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
543  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
544  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
545  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
546}
547
548/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
549/// file scope.  lazily create a decl for it. ForRedeclaration is true
550/// if we're creating this built-in in anticipation of redeclaring the
551/// built-in.
552NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
553                                     Scope *S, bool ForRedeclaration,
554                                     SourceLocation Loc) {
555  Builtin::ID BID = (Builtin::ID)bid;
556
557  if (Context.BuiltinInfo.hasVAListUse(BID))
558    InitBuiltinVaListType();
559
560  ASTContext::GetBuiltinTypeError Error;
561  QualType R = Context.GetBuiltinType(BID, Error);
562  switch (Error) {
563  case ASTContext::GE_None:
564    // Okay
565    break;
566
567  case ASTContext::GE_Missing_stdio:
568    if (ForRedeclaration)
569      Diag(Loc, diag::err_implicit_decl_requires_stdio)
570        << Context.BuiltinInfo.GetName(BID);
571    return 0;
572
573  case ASTContext::GE_Missing_setjmp:
574    if (ForRedeclaration)
575      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
576        << Context.BuiltinInfo.GetName(BID);
577    return 0;
578  }
579
580  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
581    Diag(Loc, diag::ext_implicit_lib_function_decl)
582      << Context.BuiltinInfo.GetName(BID)
583      << R;
584    if (Context.BuiltinInfo.getHeaderName(BID) &&
585        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
586          != Diagnostic::Ignored)
587      Diag(Loc, diag::note_please_include_header)
588        << Context.BuiltinInfo.getHeaderName(BID)
589        << Context.BuiltinInfo.GetName(BID);
590  }
591
592  FunctionDecl *New = FunctionDecl::Create(Context,
593                                           Context.getTranslationUnitDecl(),
594                                           Loc, II, R, /*TInfo=*/0,
595                                           FunctionDecl::Extern, false,
596                                           /*hasPrototype=*/true);
597  New->setImplicit();
598
599  // Create Decl objects for each parameter, adding them to the
600  // FunctionDecl.
601  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
602    llvm::SmallVector<ParmVarDecl*, 16> Params;
603    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
604      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
605                                           FT->getArgType(i), /*TInfo=*/0,
606                                           VarDecl::None, 0));
607    New->setParams(Context, Params.data(), Params.size());
608  }
609
610  AddKnownFunctionAttributes(New);
611
612  // TUScope is the translation-unit scope to insert this function into.
613  // FIXME: This is hideous. We need to teach PushOnScopeChains to
614  // relate Scopes to DeclContexts, and probably eliminate CurContext
615  // entirely, but we're not there yet.
616  DeclContext *SavedContext = CurContext;
617  CurContext = Context.getTranslationUnitDecl();
618  PushOnScopeChains(New, TUScope);
619  CurContext = SavedContext;
620  return New;
621}
622
623/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
624/// same name and scope as a previous declaration 'Old'.  Figure out
625/// how to resolve this situation, merging decls or emitting
626/// diagnostics as appropriate. If there was an error, set New to be invalid.
627///
628void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
629  // If the new decl is known invalid already, don't bother doing any
630  // merging checks.
631  if (New->isInvalidDecl()) return;
632
633  // Allow multiple definitions for ObjC built-in typedefs.
634  // FIXME: Verify the underlying types are equivalent!
635  if (getLangOptions().ObjC1) {
636    const IdentifierInfo *TypeID = New->getIdentifier();
637    switch (TypeID->getLength()) {
638    default: break;
639    case 2:
640      if (!TypeID->isStr("id"))
641        break;
642      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
643      // Install the built-in type for 'id', ignoring the current definition.
644      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
645      return;
646    case 5:
647      if (!TypeID->isStr("Class"))
648        break;
649      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
650      // Install the built-in type for 'Class', ignoring the current definition.
651      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
652      return;
653    case 3:
654      if (!TypeID->isStr("SEL"))
655        break;
656      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
657      // Install the built-in type for 'SEL', ignoring the current definition.
658      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
659      return;
660    case 8:
661      if (!TypeID->isStr("Protocol"))
662        break;
663      Context.setObjCProtoType(New->getUnderlyingType());
664      return;
665    }
666    // Fall through - the typedef name was not a builtin type.
667  }
668
669  // Verify the old decl was also a type.
670  TypeDecl *Old = 0;
671  if (!OldDecls.isSingleResult() ||
672      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675
676    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
677    if (OldD->getLocation().isValid())
678      Diag(OldD->getLocation(), diag::note_previous_definition);
679
680    return New->setInvalidDecl();
681  }
682
683  // If the old declaration is invalid, just give up here.
684  if (Old->isInvalidDecl())
685    return New->setInvalidDecl();
686
687  // Determine the "old" type we'll use for checking and diagnostics.
688  QualType OldType;
689  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
690    OldType = OldTypedef->getUnderlyingType();
691  else
692    OldType = Context.getTypeDeclType(Old);
693
694  // If the typedef types are not identical, reject them in all languages and
695  // with any extensions enabled.
696
697  if (OldType != New->getUnderlyingType() &&
698      Context.getCanonicalType(OldType) !=
699      Context.getCanonicalType(New->getUnderlyingType())) {
700    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
701      << New->getUnderlyingType() << OldType;
702    if (Old->getLocation().isValid())
703      Diag(Old->getLocation(), diag::note_previous_definition);
704    return New->setInvalidDecl();
705  }
706
707  if (getLangOptions().Microsoft)
708    return;
709
710  // C++ [dcl.typedef]p2:
711  //   In a given non-class scope, a typedef specifier can be used to
712  //   redefine the name of any type declared in that scope to refer
713  //   to the type to which it already refers.
714  if (getLangOptions().CPlusPlus) {
715    if (!isa<CXXRecordDecl>(CurContext))
716      return;
717    Diag(New->getLocation(), diag::err_redefinition)
718      << New->getDeclName();
719    Diag(Old->getLocation(), diag::note_previous_definition);
720    return New->setInvalidDecl();
721  }
722
723  // If we have a redefinition of a typedef in C, emit a warning.  This warning
724  // is normally mapped to an error, but can be controlled with
725  // -Wtypedef-redefinition.  If either the original or the redefinition is
726  // in a system header, don't emit this for compatibility with GCC.
727  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
728      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
729       Context.getSourceManager().isInSystemHeader(New->getLocation())))
730    return;
731
732  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
733    << New->getDeclName();
734  Diag(Old->getLocation(), diag::note_previous_definition);
735  return;
736}
737
738/// DeclhasAttr - returns true if decl Declaration already has the target
739/// attribute.
740static bool
741DeclHasAttr(const Decl *decl, const Attr *target) {
742  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
743    if (attr->getKind() == target->getKind())
744      return true;
745
746  return false;
747}
748
749/// MergeAttributes - append attributes from the Old decl to the New one.
750static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
751  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
752    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
753      Attr *NewAttr = attr->clone(C);
754      NewAttr->setInherited(true);
755      New->addAttr(NewAttr);
756    }
757  }
758}
759
760/// Used in MergeFunctionDecl to keep track of function parameters in
761/// C.
762struct GNUCompatibleParamWarning {
763  ParmVarDecl *OldParm;
764  ParmVarDecl *NewParm;
765  QualType PromotedType;
766};
767
768
769/// getSpecialMember - get the special member enum for a method.
770static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
771                                               const CXXMethodDecl *MD) {
772  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
773    if (Ctor->isDefaultConstructor())
774      return Sema::CXXDefaultConstructor;
775    if (Ctor->isCopyConstructor(Ctx))
776      return Sema::CXXCopyConstructor;
777  }
778
779  if (isa<CXXDestructorDecl>(MD))
780    return Sema::CXXDestructor;
781
782  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
783  return Sema::CXXCopyAssignment;
784}
785
786/// MergeFunctionDecl - We just parsed a function 'New' from
787/// declarator D which has the same name and scope as a previous
788/// declaration 'Old'.  Figure out how to resolve this situation,
789/// merging decls or emitting diagnostics as appropriate.
790///
791/// In C++, New and Old must be declarations that are not
792/// overloaded. Use IsOverload to determine whether New and Old are
793/// overloaded, and to select the Old declaration that New should be
794/// merged with.
795///
796/// Returns true if there was an error, false otherwise.
797bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
798  // Verify the old decl was also a function.
799  FunctionDecl *Old = 0;
800  if (FunctionTemplateDecl *OldFunctionTemplate
801        = dyn_cast<FunctionTemplateDecl>(OldD))
802    Old = OldFunctionTemplate->getTemplatedDecl();
803  else
804    Old = dyn_cast<FunctionDecl>(OldD);
805  if (!Old) {
806    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
807      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
808      Diag(Shadow->getTargetDecl()->getLocation(),
809           diag::note_using_decl_target);
810      Diag(Shadow->getUsingDecl()->getLocation(),
811           diag::note_using_decl) << 0;
812      return true;
813    }
814
815    Diag(New->getLocation(), diag::err_redefinition_different_kind)
816      << New->getDeclName();
817    Diag(OldD->getLocation(), diag::note_previous_definition);
818    return true;
819  }
820
821  // Determine whether the previous declaration was a definition,
822  // implicit declaration, or a declaration.
823  diag::kind PrevDiag;
824  if (Old->isThisDeclarationADefinition())
825    PrevDiag = diag::note_previous_definition;
826  else if (Old->isImplicit())
827    PrevDiag = diag::note_previous_implicit_declaration;
828  else
829    PrevDiag = diag::note_previous_declaration;
830
831  QualType OldQType = Context.getCanonicalType(Old->getType());
832  QualType NewQType = Context.getCanonicalType(New->getType());
833
834  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
835      New->getStorageClass() == FunctionDecl::Static &&
836      Old->getStorageClass() != FunctionDecl::Static) {
837    Diag(New->getLocation(), diag::err_static_non_static)
838      << New;
839    Diag(Old->getLocation(), PrevDiag);
840    return true;
841  }
842
843  if (getLangOptions().CPlusPlus) {
844    // (C++98 13.1p2):
845    //   Certain function declarations cannot be overloaded:
846    //     -- Function declarations that differ only in the return type
847    //        cannot be overloaded.
848    QualType OldReturnType
849      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
850    QualType NewReturnType
851      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
852    if (OldReturnType != NewReturnType) {
853      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
854      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
855      return true;
856    }
857
858    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
859    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
860    if (OldMethod && NewMethod) {
861      if (!NewMethod->getFriendObjectKind() &&
862          NewMethod->getLexicalDeclContext()->isRecord()) {
863        //    -- Member function declarations with the same name and the
864        //       same parameter types cannot be overloaded if any of them
865        //       is a static member function declaration.
866        if (OldMethod->isStatic() || NewMethod->isStatic()) {
867          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
868          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
869          return true;
870        }
871
872        // C++ [class.mem]p1:
873        //   [...] A member shall not be declared twice in the
874        //   member-specification, except that a nested class or member
875        //   class template can be declared and then later defined.
876        unsigned NewDiag;
877        if (isa<CXXConstructorDecl>(OldMethod))
878          NewDiag = diag::err_constructor_redeclared;
879        else if (isa<CXXDestructorDecl>(NewMethod))
880          NewDiag = diag::err_destructor_redeclared;
881        else if (isa<CXXConversionDecl>(NewMethod))
882          NewDiag = diag::err_conv_function_redeclared;
883        else
884          NewDiag = diag::err_member_redeclared;
885
886        Diag(New->getLocation(), NewDiag);
887        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
888      } else {
889        if (OldMethod->isImplicit()) {
890          Diag(NewMethod->getLocation(),
891               diag::err_definition_of_implicitly_declared_member)
892          << New << getSpecialMember(Context, OldMethod);
893
894          Diag(OldMethod->getLocation(),
895               diag::note_previous_implicit_declaration);
896          return true;
897        }
898      }
899    }
900
901    // (C++98 8.3.5p3):
902    //   All declarations for a function shall agree exactly in both the
903    //   return type and the parameter-type-list.
904    if (OldQType == NewQType)
905      return MergeCompatibleFunctionDecls(New, Old);
906
907    // Fall through for conflicting redeclarations and redefinitions.
908  }
909
910  // C: Function types need to be compatible, not identical. This handles
911  // duplicate function decls like "void f(int); void f(enum X);" properly.
912  if (!getLangOptions().CPlusPlus &&
913      Context.typesAreCompatible(OldQType, NewQType)) {
914    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
915    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
916    const FunctionProtoType *OldProto = 0;
917    if (isa<FunctionNoProtoType>(NewFuncType) &&
918        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
919      // The old declaration provided a function prototype, but the
920      // new declaration does not. Merge in the prototype.
921      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
922      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
923                                                 OldProto->arg_type_end());
924      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
925                                         ParamTypes.data(), ParamTypes.size(),
926                                         OldProto->isVariadic(),
927                                         OldProto->getTypeQuals());
928      New->setType(NewQType);
929      New->setHasInheritedPrototype();
930
931      // Synthesize a parameter for each argument type.
932      llvm::SmallVector<ParmVarDecl*, 16> Params;
933      for (FunctionProtoType::arg_type_iterator
934             ParamType = OldProto->arg_type_begin(),
935             ParamEnd = OldProto->arg_type_end();
936           ParamType != ParamEnd; ++ParamType) {
937        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
938                                                 SourceLocation(), 0,
939                                                 *ParamType, /*TInfo=*/0,
940                                                 VarDecl::None, 0);
941        Param->setImplicit();
942        Params.push_back(Param);
943      }
944
945      New->setParams(Context, Params.data(), Params.size());
946    }
947
948    return MergeCompatibleFunctionDecls(New, Old);
949  }
950
951  // GNU C permits a K&R definition to follow a prototype declaration
952  // if the declared types of the parameters in the K&R definition
953  // match the types in the prototype declaration, even when the
954  // promoted types of the parameters from the K&R definition differ
955  // from the types in the prototype. GCC then keeps the types from
956  // the prototype.
957  //
958  // If a variadic prototype is followed by a non-variadic K&R definition,
959  // the K&R definition becomes variadic.  This is sort of an edge case, but
960  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
961  // C99 6.9.1p8.
962  if (!getLangOptions().CPlusPlus &&
963      Old->hasPrototype() && !New->hasPrototype() &&
964      New->getType()->getAs<FunctionProtoType>() &&
965      Old->getNumParams() == New->getNumParams()) {
966    llvm::SmallVector<QualType, 16> ArgTypes;
967    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
968    const FunctionProtoType *OldProto
969      = Old->getType()->getAs<FunctionProtoType>();
970    const FunctionProtoType *NewProto
971      = New->getType()->getAs<FunctionProtoType>();
972
973    // Determine whether this is the GNU C extension.
974    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
975                                               NewProto->getResultType());
976    bool LooseCompatible = !MergedReturn.isNull();
977    for (unsigned Idx = 0, End = Old->getNumParams();
978         LooseCompatible && Idx != End; ++Idx) {
979      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
980      ParmVarDecl *NewParm = New->getParamDecl(Idx);
981      if (Context.typesAreCompatible(OldParm->getType(),
982                                     NewProto->getArgType(Idx))) {
983        ArgTypes.push_back(NewParm->getType());
984      } else if (Context.typesAreCompatible(OldParm->getType(),
985                                            NewParm->getType())) {
986        GNUCompatibleParamWarning Warn
987          = { OldParm, NewParm, NewProto->getArgType(Idx) };
988        Warnings.push_back(Warn);
989        ArgTypes.push_back(NewParm->getType());
990      } else
991        LooseCompatible = false;
992    }
993
994    if (LooseCompatible) {
995      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
996        Diag(Warnings[Warn].NewParm->getLocation(),
997             diag::ext_param_promoted_not_compatible_with_prototype)
998          << Warnings[Warn].PromotedType
999          << Warnings[Warn].OldParm->getType();
1000        Diag(Warnings[Warn].OldParm->getLocation(),
1001             diag::note_previous_declaration);
1002      }
1003
1004      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1005                                           ArgTypes.size(),
1006                                           OldProto->isVariadic(), 0));
1007      return MergeCompatibleFunctionDecls(New, Old);
1008    }
1009
1010    // Fall through to diagnose conflicting types.
1011  }
1012
1013  // A function that has already been declared has been redeclared or defined
1014  // with a different type- show appropriate diagnostic
1015  if (unsigned BuiltinID = Old->getBuiltinID()) {
1016    // The user has declared a builtin function with an incompatible
1017    // signature.
1018    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1019      // The function the user is redeclaring is a library-defined
1020      // function like 'malloc' or 'printf'. Warn about the
1021      // redeclaration, then pretend that we don't know about this
1022      // library built-in.
1023      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1024      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1025        << Old << Old->getType();
1026      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1027      Old->setInvalidDecl();
1028      return false;
1029    }
1030
1031    PrevDiag = diag::note_previous_builtin_declaration;
1032  }
1033
1034  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1035  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1036  return true;
1037}
1038
1039/// \brief Completes the merge of two function declarations that are
1040/// known to be compatible.
1041///
1042/// This routine handles the merging of attributes and other
1043/// properties of function declarations form the old declaration to
1044/// the new declaration, once we know that New is in fact a
1045/// redeclaration of Old.
1046///
1047/// \returns false
1048bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1049  // Merge the attributes
1050  MergeAttributes(New, Old, Context);
1051
1052  // Merge the storage class.
1053  if (Old->getStorageClass() != FunctionDecl::Extern &&
1054      Old->getStorageClass() != FunctionDecl::None)
1055    New->setStorageClass(Old->getStorageClass());
1056
1057  // Merge "pure" flag.
1058  if (Old->isPure())
1059    New->setPure();
1060
1061  // Merge the "deleted" flag.
1062  if (Old->isDeleted())
1063    New->setDeleted();
1064
1065  if (getLangOptions().CPlusPlus)
1066    return MergeCXXFunctionDecl(New, Old);
1067
1068  return false;
1069}
1070
1071/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1072/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1073/// situation, merging decls or emitting diagnostics as appropriate.
1074///
1075/// Tentative definition rules (C99 6.9.2p2) are checked by
1076/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1077/// definitions here, since the initializer hasn't been attached.
1078///
1079void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1080  // If the new decl is already invalid, don't do any other checking.
1081  if (New->isInvalidDecl())
1082    return;
1083
1084  // Verify the old decl was also a variable.
1085  VarDecl *Old = 0;
1086  if (!Previous.isSingleResult() ||
1087      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1088    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1089      << New->getDeclName();
1090    Diag(Previous.getRepresentativeDecl()->getLocation(),
1091         diag::note_previous_definition);
1092    return New->setInvalidDecl();
1093  }
1094
1095  MergeAttributes(New, Old, Context);
1096
1097  // Merge the types
1098  QualType MergedT;
1099  if (getLangOptions().CPlusPlus) {
1100    if (Context.hasSameType(New->getType(), Old->getType()))
1101      MergedT = New->getType();
1102    // C++ [basic.link]p10:
1103    //   [...] the types specified by all declarations referring to a given
1104    //   object or function shall be identical, except that declarations for an
1105    //   array object can specify array types that differ by the presence or
1106    //   absence of a major array bound (8.3.4).
1107    else if (Old->getType()->isIncompleteArrayType() &&
1108             New->getType()->isArrayType()) {
1109      CanQual<ArrayType> OldArray
1110        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1111      CanQual<ArrayType> NewArray
1112        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1113      if (OldArray->getElementType() == NewArray->getElementType())
1114        MergedT = New->getType();
1115    } else if (Old->getType()->isArrayType() &&
1116             New->getType()->isIncompleteArrayType()) {
1117      CanQual<ArrayType> OldArray
1118        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1119      CanQual<ArrayType> NewArray
1120        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1121      if (OldArray->getElementType() == NewArray->getElementType())
1122        MergedT = Old->getType();
1123    }
1124  } else {
1125    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1126  }
1127  if (MergedT.isNull()) {
1128    Diag(New->getLocation(), diag::err_redefinition_different_type)
1129      << New->getDeclName();
1130    Diag(Old->getLocation(), diag::note_previous_definition);
1131    return New->setInvalidDecl();
1132  }
1133  New->setType(MergedT);
1134
1135  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1136  if (New->getStorageClass() == VarDecl::Static &&
1137      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1138    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1139    Diag(Old->getLocation(), diag::note_previous_definition);
1140    return New->setInvalidDecl();
1141  }
1142  // C99 6.2.2p4:
1143  //   For an identifier declared with the storage-class specifier
1144  //   extern in a scope in which a prior declaration of that
1145  //   identifier is visible,23) if the prior declaration specifies
1146  //   internal or external linkage, the linkage of the identifier at
1147  //   the later declaration is the same as the linkage specified at
1148  //   the prior declaration. If no prior declaration is visible, or
1149  //   if the prior declaration specifies no linkage, then the
1150  //   identifier has external linkage.
1151  if (New->hasExternalStorage() && Old->hasLinkage())
1152    /* Okay */;
1153  else if (New->getStorageClass() != VarDecl::Static &&
1154           Old->getStorageClass() == VarDecl::Static) {
1155    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1156    Diag(Old->getLocation(), diag::note_previous_definition);
1157    return New->setInvalidDecl();
1158  }
1159
1160  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1161
1162  // FIXME: The test for external storage here seems wrong? We still
1163  // need to check for mismatches.
1164  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1165      // Don't complain about out-of-line definitions of static members.
1166      !(Old->getLexicalDeclContext()->isRecord() &&
1167        !New->getLexicalDeclContext()->isRecord())) {
1168    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1169    Diag(Old->getLocation(), diag::note_previous_definition);
1170    return New->setInvalidDecl();
1171  }
1172
1173  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1174    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1175    Diag(Old->getLocation(), diag::note_previous_definition);
1176  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1177    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1178    Diag(Old->getLocation(), diag::note_previous_definition);
1179  }
1180
1181  // Keep a chain of previous declarations.
1182  New->setPreviousDeclaration(Old);
1183}
1184
1185/// CheckFallThrough - Check that we don't fall off the end of a
1186/// Statement that should return a value.
1187///
1188/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1189/// MaybeFallThrough iff we might or might not fall off the end,
1190/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1191/// return.  We assume NeverFallThrough iff we never fall off the end of the
1192/// statement but we may return.  We assume that functions not marked noreturn
1193/// will return.
1194Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1195  // FIXME: Eventually share this CFG object when we have other warnings based
1196  // of the CFG.  This can be done using AnalysisContext.
1197  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1198
1199  // FIXME: They should never return 0, fix that, delete this code.
1200  if (cfg == 0)
1201    // FIXME: This should be NeverFallThrough
1202    return NeverFallThroughOrReturn;
1203  // The CFG leaves in dead things, and we don't want to dead code paths to
1204  // confuse us, so we mark all live things first.
1205  std::queue<CFGBlock*> workq;
1206  llvm::BitVector live(cfg->getNumBlockIDs());
1207  // Prep work queue
1208  workq.push(&cfg->getEntry());
1209  // Solve
1210  while (!workq.empty()) {
1211    CFGBlock *item = workq.front();
1212    workq.pop();
1213    live.set(item->getBlockID());
1214    for (CFGBlock::succ_iterator I=item->succ_begin(),
1215           E=item->succ_end();
1216         I != E;
1217         ++I) {
1218      if ((*I) && !live[(*I)->getBlockID()]) {
1219        live.set((*I)->getBlockID());
1220        workq.push(*I);
1221      }
1222    }
1223  }
1224
1225  // Now we know what is live, we check the live precessors of the exit block
1226  // and look for fall through paths, being careful to ignore normal returns,
1227  // and exceptional paths.
1228  bool HasLiveReturn = false;
1229  bool HasFakeEdge = false;
1230  bool HasPlainEdge = false;
1231  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1232         E = cfg->getExit().pred_end();
1233       I != E;
1234       ++I) {
1235    CFGBlock& B = **I;
1236    if (!live[B.getBlockID()])
1237      continue;
1238    if (B.size() == 0) {
1239      // A labeled empty statement, or the entry block...
1240      HasPlainEdge = true;
1241      continue;
1242    }
1243    Stmt *S = B[B.size()-1];
1244    if (isa<ReturnStmt>(S)) {
1245      HasLiveReturn = true;
1246      continue;
1247    }
1248    if (isa<ObjCAtThrowStmt>(S)) {
1249      HasFakeEdge = true;
1250      continue;
1251    }
1252    if (isa<CXXThrowExpr>(S)) {
1253      HasFakeEdge = true;
1254      continue;
1255    }
1256    if (isa<AsmStmt>(S)) {
1257      HasFakeEdge = true;
1258      HasLiveReturn = true;
1259      continue;
1260    }
1261    bool NoReturnEdge = false;
1262    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1263      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1264      if (CEE->getType().getNoReturnAttr()) {
1265        NoReturnEdge = true;
1266        HasFakeEdge = true;
1267      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1268        ValueDecl *VD = DRE->getDecl();
1269        if (VD->hasAttr<NoReturnAttr>()) {
1270          NoReturnEdge = true;
1271          HasFakeEdge = true;
1272        }
1273      }
1274    }
1275    // FIXME: Add noreturn message sends.
1276    if (NoReturnEdge == false)
1277      HasPlainEdge = true;
1278  }
1279  if (!HasPlainEdge) {
1280    if (HasLiveReturn)
1281      return NeverFallThrough;
1282    return NeverFallThroughOrReturn;
1283  }
1284  if (HasFakeEdge || HasLiveReturn)
1285    return MaybeFallThrough;
1286  // This says AlwaysFallThrough for calls to functions that are not marked
1287  // noreturn, that don't return.  If people would like this warning to be more
1288  // accurate, such functions should be marked as noreturn.
1289  return AlwaysFallThrough;
1290}
1291
1292/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1293/// function that should return a value.  Check that we don't fall off the end
1294/// of a noreturn function.  We assume that functions and blocks not marked
1295/// noreturn will return.
1296void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1297  // FIXME: Would be nice if we had a better way to control cascading errors,
1298  // but for now, avoid them.  The problem is that when Parse sees:
1299  //   int foo() { return a; }
1300  // The return is eaten and the Sema code sees just:
1301  //   int foo() { }
1302  // which this code would then warn about.
1303  if (getDiagnostics().hasErrorOccurred())
1304    return;
1305
1306  bool ReturnsVoid = false;
1307  bool HasNoReturn = false;
1308  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1309    // If the result type of the function is a dependent type, we don't know
1310    // whether it will be void or not, so don't
1311    if (FD->getResultType()->isDependentType())
1312      return;
1313    if (FD->getResultType()->isVoidType())
1314      ReturnsVoid = true;
1315    if (FD->hasAttr<NoReturnAttr>())
1316      HasNoReturn = true;
1317  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1318    if (MD->getResultType()->isVoidType())
1319      ReturnsVoid = true;
1320    if (MD->hasAttr<NoReturnAttr>())
1321      HasNoReturn = true;
1322  }
1323
1324  // Short circuit for compilation speed.
1325  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1326       == Diagnostic::Ignored || ReturnsVoid)
1327      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1328          == Diagnostic::Ignored || !HasNoReturn)
1329      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1330          == Diagnostic::Ignored || !ReturnsVoid))
1331    return;
1332  // FIXME: Function try block
1333  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1334    switch (CheckFallThrough(Body)) {
1335    case MaybeFallThrough:
1336      if (HasNoReturn)
1337        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1338      else if (!ReturnsVoid)
1339        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1340      break;
1341    case AlwaysFallThrough:
1342      if (HasNoReturn)
1343        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1344      else if (!ReturnsVoid)
1345        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1346      break;
1347    case NeverFallThroughOrReturn:
1348      if (ReturnsVoid && !HasNoReturn)
1349        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1350      break;
1351    case NeverFallThrough:
1352      break;
1353    }
1354  }
1355}
1356
1357/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1358/// that should return a value.  Check that we don't fall off the end of a
1359/// noreturn block.  We assume that functions and blocks not marked noreturn
1360/// will return.
1361void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1362  // FIXME: Would be nice if we had a better way to control cascading errors,
1363  // but for now, avoid them.  The problem is that when Parse sees:
1364  //   int foo() { return a; }
1365  // The return is eaten and the Sema code sees just:
1366  //   int foo() { }
1367  // which this code would then warn about.
1368  if (getDiagnostics().hasErrorOccurred())
1369    return;
1370  bool ReturnsVoid = false;
1371  bool HasNoReturn = false;
1372  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1373    if (FT->getResultType()->isVoidType())
1374      ReturnsVoid = true;
1375    if (FT->getNoReturnAttr())
1376      HasNoReturn = true;
1377  }
1378
1379  // Short circuit for compilation speed.
1380  if (ReturnsVoid
1381      && !HasNoReturn
1382      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1383          == Diagnostic::Ignored || !ReturnsVoid))
1384    return;
1385  // FIXME: Funtion try block
1386  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1387    switch (CheckFallThrough(Body)) {
1388    case MaybeFallThrough:
1389      if (HasNoReturn)
1390        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1391      else if (!ReturnsVoid)
1392        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1393      break;
1394    case AlwaysFallThrough:
1395      if (HasNoReturn)
1396        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1397      else if (!ReturnsVoid)
1398        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1399      break;
1400    case NeverFallThroughOrReturn:
1401      if (ReturnsVoid)
1402        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1403      break;
1404    case NeverFallThrough:
1405      break;
1406    }
1407  }
1408}
1409
1410/// CheckParmsForFunctionDef - Check that the parameters of the given
1411/// function are appropriate for the definition of a function. This
1412/// takes care of any checks that cannot be performed on the
1413/// declaration itself, e.g., that the types of each of the function
1414/// parameters are complete.
1415bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1416  bool HasInvalidParm = false;
1417  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1418    ParmVarDecl *Param = FD->getParamDecl(p);
1419
1420    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1421    // function declarator that is part of a function definition of
1422    // that function shall not have incomplete type.
1423    //
1424    // This is also C++ [dcl.fct]p6.
1425    if (!Param->isInvalidDecl() &&
1426        RequireCompleteType(Param->getLocation(), Param->getType(),
1427                               diag::err_typecheck_decl_incomplete_type)) {
1428      Param->setInvalidDecl();
1429      HasInvalidParm = true;
1430    }
1431
1432    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1433    // declaration of each parameter shall include an identifier.
1434    if (Param->getIdentifier() == 0 &&
1435        !Param->isImplicit() &&
1436        !getLangOptions().CPlusPlus)
1437      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1438  }
1439
1440  return HasInvalidParm;
1441}
1442
1443/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1444/// no declarator (e.g. "struct foo;") is parsed.
1445Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1446  // FIXME: Error on auto/register at file scope
1447  // FIXME: Error on inline/virtual/explicit
1448  // FIXME: Warn on useless __thread
1449  // FIXME: Warn on useless const/volatile
1450  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1451  // FIXME: Warn on useless attributes
1452  Decl *TagD = 0;
1453  TagDecl *Tag = 0;
1454  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1455      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1456      DS.getTypeSpecType() == DeclSpec::TST_union ||
1457      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1458    TagD = static_cast<Decl *>(DS.getTypeRep());
1459
1460    if (!TagD) // We probably had an error
1461      return DeclPtrTy();
1462
1463    // Note that the above type specs guarantee that the
1464    // type rep is a Decl, whereas in many of the others
1465    // it's a Type.
1466    Tag = dyn_cast<TagDecl>(TagD);
1467  }
1468
1469  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1470    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1471    // or incomplete types shall not be restrict-qualified."
1472    if (TypeQuals & DeclSpec::TQ_restrict)
1473      Diag(DS.getRestrictSpecLoc(),
1474           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1475           << DS.getSourceRange();
1476  }
1477
1478  if (DS.isFriendSpecified()) {
1479    // If we're dealing with a class template decl, assume that the
1480    // template routines are handling it.
1481    if (TagD && isa<ClassTemplateDecl>(TagD))
1482      return DeclPtrTy();
1483    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1484  }
1485
1486  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1487    // If there are attributes in the DeclSpec, apply them to the record.
1488    if (const AttributeList *AL = DS.getAttributes())
1489      ProcessDeclAttributeList(S, Record, AL);
1490
1491    if (!Record->getDeclName() && Record->isDefinition() &&
1492        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1493      if (getLangOptions().CPlusPlus ||
1494          Record->getDeclContext()->isRecord())
1495        return BuildAnonymousStructOrUnion(S, DS, Record);
1496
1497      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1498        << DS.getSourceRange();
1499    }
1500
1501    // Microsoft allows unnamed struct/union fields. Don't complain
1502    // about them.
1503    // FIXME: Should we support Microsoft's extensions in this area?
1504    if (Record->getDeclName() && getLangOptions().Microsoft)
1505      return DeclPtrTy::make(Tag);
1506  }
1507
1508  if (!DS.isMissingDeclaratorOk() &&
1509      DS.getTypeSpecType() != DeclSpec::TST_error) {
1510    // Warn about typedefs of enums without names, since this is an
1511    // extension in both Microsoft an GNU.
1512    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1513        Tag && isa<EnumDecl>(Tag)) {
1514      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1515        << DS.getSourceRange();
1516      return DeclPtrTy::make(Tag);
1517    }
1518
1519    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1520      << DS.getSourceRange();
1521    return DeclPtrTy();
1522  }
1523
1524  return DeclPtrTy::make(Tag);
1525}
1526
1527/// We are trying to introduce the given name into the given context;
1528/// check if there's an existing declaration that can't be overloaded.
1529///
1530/// \return true if this is a forbidden redeclaration
1531bool Sema::CheckRedeclaration(DeclContext *DC,
1532                              DeclarationName Name,
1533                              SourceLocation NameLoc,
1534                              unsigned diagnostic) {
1535  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1536                 ForRedeclaration);
1537  LookupQualifiedName(R, DC);
1538
1539  if (R.empty()) return false;
1540
1541  if (R.getResultKind() == LookupResult::Found &&
1542      isa<TagDecl>(R.getFoundDecl()))
1543    return false;
1544
1545  // Pick a representative declaration.
1546  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1547
1548  Diag(NameLoc, diagnostic) << Name;
1549  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1550
1551  return true;
1552}
1553
1554/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1555/// anonymous struct or union AnonRecord into the owning context Owner
1556/// and scope S. This routine will be invoked just after we realize
1557/// that an unnamed union or struct is actually an anonymous union or
1558/// struct, e.g.,
1559///
1560/// @code
1561/// union {
1562///   int i;
1563///   float f;
1564/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1565///    // f into the surrounding scope.x
1566/// @endcode
1567///
1568/// This routine is recursive, injecting the names of nested anonymous
1569/// structs/unions into the owning context and scope as well.
1570bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1571                                               RecordDecl *AnonRecord) {
1572  unsigned diagKind
1573    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1574                            : diag::err_anonymous_struct_member_redecl;
1575
1576  bool Invalid = false;
1577  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1578                               FEnd = AnonRecord->field_end();
1579       F != FEnd; ++F) {
1580    if ((*F)->getDeclName()) {
1581      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1582                             (*F)->getLocation(), diagKind)) {
1583        // C++ [class.union]p2:
1584        //   The names of the members of an anonymous union shall be
1585        //   distinct from the names of any other entity in the
1586        //   scope in which the anonymous union is declared.
1587        Invalid = true;
1588      } else {
1589        // C++ [class.union]p2:
1590        //   For the purpose of name lookup, after the anonymous union
1591        //   definition, the members of the anonymous union are
1592        //   considered to have been defined in the scope in which the
1593        //   anonymous union is declared.
1594        Owner->makeDeclVisibleInContext(*F);
1595        S->AddDecl(DeclPtrTy::make(*F));
1596        IdResolver.AddDecl(*F);
1597      }
1598    } else if (const RecordType *InnerRecordType
1599                 = (*F)->getType()->getAs<RecordType>()) {
1600      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1601      if (InnerRecord->isAnonymousStructOrUnion())
1602        Invalid = Invalid ||
1603          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1604    }
1605  }
1606
1607  return Invalid;
1608}
1609
1610/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1611/// anonymous structure or union. Anonymous unions are a C++ feature
1612/// (C++ [class.union]) and a GNU C extension; anonymous structures
1613/// are a GNU C and GNU C++ extension.
1614Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1615                                                  RecordDecl *Record) {
1616  DeclContext *Owner = Record->getDeclContext();
1617
1618  // Diagnose whether this anonymous struct/union is an extension.
1619  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1620    Diag(Record->getLocation(), diag::ext_anonymous_union);
1621  else if (!Record->isUnion())
1622    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1623
1624  // C and C++ require different kinds of checks for anonymous
1625  // structs/unions.
1626  bool Invalid = false;
1627  if (getLangOptions().CPlusPlus) {
1628    const char* PrevSpec = 0;
1629    unsigned DiagID;
1630    // C++ [class.union]p3:
1631    //   Anonymous unions declared in a named namespace or in the
1632    //   global namespace shall be declared static.
1633    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1634        (isa<TranslationUnitDecl>(Owner) ||
1635         (isa<NamespaceDecl>(Owner) &&
1636          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1637      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1638      Invalid = true;
1639
1640      // Recover by adding 'static'.
1641      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1642                             PrevSpec, DiagID);
1643    }
1644    // C++ [class.union]p3:
1645    //   A storage class is not allowed in a declaration of an
1646    //   anonymous union in a class scope.
1647    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1648             isa<RecordDecl>(Owner)) {
1649      Diag(DS.getStorageClassSpecLoc(),
1650           diag::err_anonymous_union_with_storage_spec);
1651      Invalid = true;
1652
1653      // Recover by removing the storage specifier.
1654      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1655                             PrevSpec, DiagID);
1656    }
1657
1658    // C++ [class.union]p2:
1659    //   The member-specification of an anonymous union shall only
1660    //   define non-static data members. [Note: nested types and
1661    //   functions cannot be declared within an anonymous union. ]
1662    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1663                                 MemEnd = Record->decls_end();
1664         Mem != MemEnd; ++Mem) {
1665      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1666        // C++ [class.union]p3:
1667        //   An anonymous union shall not have private or protected
1668        //   members (clause 11).
1669        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1670          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1671            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1672          Invalid = true;
1673        }
1674      } else if ((*Mem)->isImplicit()) {
1675        // Any implicit members are fine.
1676      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1677        // This is a type that showed up in an
1678        // elaborated-type-specifier inside the anonymous struct or
1679        // union, but which actually declares a type outside of the
1680        // anonymous struct or union. It's okay.
1681      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1682        if (!MemRecord->isAnonymousStructOrUnion() &&
1683            MemRecord->getDeclName()) {
1684          // This is a nested type declaration.
1685          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1686            << (int)Record->isUnion();
1687          Invalid = true;
1688        }
1689      } else {
1690        // We have something that isn't a non-static data
1691        // member. Complain about it.
1692        unsigned DK = diag::err_anonymous_record_bad_member;
1693        if (isa<TypeDecl>(*Mem))
1694          DK = diag::err_anonymous_record_with_type;
1695        else if (isa<FunctionDecl>(*Mem))
1696          DK = diag::err_anonymous_record_with_function;
1697        else if (isa<VarDecl>(*Mem))
1698          DK = diag::err_anonymous_record_with_static;
1699        Diag((*Mem)->getLocation(), DK)
1700            << (int)Record->isUnion();
1701          Invalid = true;
1702      }
1703    }
1704  }
1705
1706  if (!Record->isUnion() && !Owner->isRecord()) {
1707    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1708      << (int)getLangOptions().CPlusPlus;
1709    Invalid = true;
1710  }
1711
1712  // Mock up a declarator.
1713  Declarator Dc(DS, Declarator::TypeNameContext);
1714  TypeSourceInfo *TInfo = 0;
1715  GetTypeForDeclarator(Dc, S, &TInfo);
1716  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1717
1718  // Create a declaration for this anonymous struct/union.
1719  NamedDecl *Anon = 0;
1720  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1721    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1722                             /*IdentifierInfo=*/0,
1723                             Context.getTypeDeclType(Record),
1724                             TInfo,
1725                             /*BitWidth=*/0, /*Mutable=*/false);
1726    Anon->setAccess(AS_public);
1727    if (getLangOptions().CPlusPlus)
1728      FieldCollector->Add(cast<FieldDecl>(Anon));
1729  } else {
1730    VarDecl::StorageClass SC;
1731    switch (DS.getStorageClassSpec()) {
1732    default: assert(0 && "Unknown storage class!");
1733    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1734    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1735    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1736    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1737    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1738    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1739    case DeclSpec::SCS_mutable:
1740      // mutable can only appear on non-static class members, so it's always
1741      // an error here
1742      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1743      Invalid = true;
1744      SC = VarDecl::None;
1745      break;
1746    }
1747
1748    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1749                           /*IdentifierInfo=*/0,
1750                           Context.getTypeDeclType(Record),
1751                           TInfo,
1752                           SC);
1753  }
1754  Anon->setImplicit();
1755
1756  // Add the anonymous struct/union object to the current
1757  // context. We'll be referencing this object when we refer to one of
1758  // its members.
1759  Owner->addDecl(Anon);
1760
1761  // Inject the members of the anonymous struct/union into the owning
1762  // context and into the identifier resolver chain for name lookup
1763  // purposes.
1764  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1765    Invalid = true;
1766
1767  // Mark this as an anonymous struct/union type. Note that we do not
1768  // do this until after we have already checked and injected the
1769  // members of this anonymous struct/union type, because otherwise
1770  // the members could be injected twice: once by DeclContext when it
1771  // builds its lookup table, and once by
1772  // InjectAnonymousStructOrUnionMembers.
1773  Record->setAnonymousStructOrUnion(true);
1774
1775  if (Invalid)
1776    Anon->setInvalidDecl();
1777
1778  return DeclPtrTy::make(Anon);
1779}
1780
1781
1782/// GetNameForDeclarator - Determine the full declaration name for the
1783/// given Declarator.
1784DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1785  return GetNameFromUnqualifiedId(D.getName());
1786}
1787
1788/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1789DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1790  switch (Name.getKind()) {
1791    case UnqualifiedId::IK_Identifier:
1792      return DeclarationName(Name.Identifier);
1793
1794    case UnqualifiedId::IK_OperatorFunctionId:
1795      return Context.DeclarationNames.getCXXOperatorName(
1796                                              Name.OperatorFunctionId.Operator);
1797
1798    case UnqualifiedId::IK_LiteralOperatorId:
1799      return Context.DeclarationNames.getCXXLiteralOperatorName(
1800                                                               Name.Identifier);
1801
1802    case UnqualifiedId::IK_ConversionFunctionId: {
1803      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1804      if (Ty.isNull())
1805        return DeclarationName();
1806
1807      return Context.DeclarationNames.getCXXConversionFunctionName(
1808                                                  Context.getCanonicalType(Ty));
1809    }
1810
1811    case UnqualifiedId::IK_ConstructorName: {
1812      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1813      if (Ty.isNull())
1814        return DeclarationName();
1815
1816      return Context.DeclarationNames.getCXXConstructorName(
1817                                                  Context.getCanonicalType(Ty));
1818    }
1819
1820    case UnqualifiedId::IK_DestructorName: {
1821      QualType Ty = GetTypeFromParser(Name.DestructorName);
1822      if (Ty.isNull())
1823        return DeclarationName();
1824
1825      return Context.DeclarationNames.getCXXDestructorName(
1826                                                           Context.getCanonicalType(Ty));
1827    }
1828
1829    case UnqualifiedId::IK_TemplateId: {
1830      TemplateName TName
1831        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1832      return Context.getNameForTemplate(TName);
1833    }
1834  }
1835
1836  assert(false && "Unknown name kind");
1837  return DeclarationName();
1838}
1839
1840/// isNearlyMatchingFunction - Determine whether the C++ functions
1841/// Declaration and Definition are "nearly" matching. This heuristic
1842/// is used to improve diagnostics in the case where an out-of-line
1843/// function definition doesn't match any declaration within
1844/// the class or namespace.
1845static bool isNearlyMatchingFunction(ASTContext &Context,
1846                                     FunctionDecl *Declaration,
1847                                     FunctionDecl *Definition) {
1848  if (Declaration->param_size() != Definition->param_size())
1849    return false;
1850  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1851    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1852    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1853
1854    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1855                                        DefParamTy.getNonReferenceType()))
1856      return false;
1857  }
1858
1859  return true;
1860}
1861
1862Sema::DeclPtrTy
1863Sema::HandleDeclarator(Scope *S, Declarator &D,
1864                       MultiTemplateParamsArg TemplateParamLists,
1865                       bool IsFunctionDefinition) {
1866  DeclarationName Name = GetNameForDeclarator(D);
1867
1868  // All of these full declarators require an identifier.  If it doesn't have
1869  // one, the ParsedFreeStandingDeclSpec action should be used.
1870  if (!Name) {
1871    if (!D.isInvalidType())  // Reject this if we think it is valid.
1872      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1873           diag::err_declarator_need_ident)
1874        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1875    return DeclPtrTy();
1876  }
1877
1878  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1879  // we find one that is.
1880  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1881         (S->getFlags() & Scope::TemplateParamScope) != 0)
1882    S = S->getParent();
1883
1884  // If this is an out-of-line definition of a member of a class template
1885  // or class template partial specialization, we may need to rebuild the
1886  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1887  // for more information.
1888  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1889  // handle expressions properly.
1890  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1891  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1892      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1893      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1894       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1895       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1896       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1897    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1898      // FIXME: Preserve type source info.
1899      QualType T = GetTypeFromParser(DS.getTypeRep());
1900      EnterDeclaratorContext(S, DC);
1901      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1902      ExitDeclaratorContext(S);
1903      if (T.isNull())
1904        return DeclPtrTy();
1905      DS.UpdateTypeRep(T.getAsOpaquePtr());
1906    }
1907  }
1908
1909  DeclContext *DC;
1910  NamedDecl *New;
1911
1912  TypeSourceInfo *TInfo = 0;
1913  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1914
1915  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1916                        ForRedeclaration);
1917
1918  // See if this is a redefinition of a variable in the same scope.
1919  if (D.getCXXScopeSpec().isInvalid()) {
1920    DC = CurContext;
1921    D.setInvalidType();
1922  } else if (!D.getCXXScopeSpec().isSet()) {
1923    bool IsLinkageLookup = false;
1924
1925    // If the declaration we're planning to build will be a function
1926    // or object with linkage, then look for another declaration with
1927    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1928    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1929      /* Do nothing*/;
1930    else if (R->isFunctionType()) {
1931      if (CurContext->isFunctionOrMethod() ||
1932          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1933        IsLinkageLookup = true;
1934    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1935      IsLinkageLookup = true;
1936    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1937             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1938      IsLinkageLookup = true;
1939
1940    if (IsLinkageLookup)
1941      Previous.clear(LookupRedeclarationWithLinkage);
1942
1943    DC = CurContext;
1944    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1945  } else { // Something like "int foo::x;"
1946    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1947
1948    if (!DC) {
1949      // If we could not compute the declaration context, it's because the
1950      // declaration context is dependent but does not refer to a class,
1951      // class template, or class template partial specialization. Complain
1952      // and return early, to avoid the coming semantic disaster.
1953      Diag(D.getIdentifierLoc(),
1954           diag::err_template_qualified_declarator_no_match)
1955        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1956        << D.getCXXScopeSpec().getRange();
1957      return DeclPtrTy();
1958    }
1959
1960    if (!DC->isDependentContext() &&
1961        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1962      return DeclPtrTy();
1963
1964    LookupQualifiedName(Previous, DC);
1965
1966    // Don't consider using declarations as previous declarations for
1967    // out-of-line members.
1968    RemoveUsingDecls(Previous);
1969
1970    // C++ 7.3.1.2p2:
1971    // Members (including explicit specializations of templates) of a named
1972    // namespace can also be defined outside that namespace by explicit
1973    // qualification of the name being defined, provided that the entity being
1974    // defined was already declared in the namespace and the definition appears
1975    // after the point of declaration in a namespace that encloses the
1976    // declarations namespace.
1977    //
1978    // Note that we only check the context at this point. We don't yet
1979    // have enough information to make sure that PrevDecl is actually
1980    // the declaration we want to match. For example, given:
1981    //
1982    //   class X {
1983    //     void f();
1984    //     void f(float);
1985    //   };
1986    //
1987    //   void X::f(int) { } // ill-formed
1988    //
1989    // In this case, PrevDecl will point to the overload set
1990    // containing the two f's declared in X, but neither of them
1991    // matches.
1992
1993    // First check whether we named the global scope.
1994    if (isa<TranslationUnitDecl>(DC)) {
1995      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1996        << Name << D.getCXXScopeSpec().getRange();
1997    } else {
1998      DeclContext *Cur = CurContext;
1999      while (isa<LinkageSpecDecl>(Cur))
2000        Cur = Cur->getParent();
2001      if (!Cur->Encloses(DC)) {
2002        // The qualifying scope doesn't enclose the original declaration.
2003        // Emit diagnostic based on current scope.
2004        SourceLocation L = D.getIdentifierLoc();
2005        SourceRange R = D.getCXXScopeSpec().getRange();
2006        if (isa<FunctionDecl>(Cur))
2007          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2008        else
2009          Diag(L, diag::err_invalid_declarator_scope)
2010            << Name << cast<NamedDecl>(DC) << R;
2011        D.setInvalidType();
2012      }
2013    }
2014  }
2015
2016  if (Previous.isSingleResult() &&
2017      Previous.getFoundDecl()->isTemplateParameter()) {
2018    // Maybe we will complain about the shadowed template parameter.
2019    if (!D.isInvalidType())
2020      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2021                                          Previous.getFoundDecl()))
2022        D.setInvalidType();
2023
2024    // Just pretend that we didn't see the previous declaration.
2025    Previous.clear();
2026  }
2027
2028  // In C++, the previous declaration we find might be a tag type
2029  // (class or enum). In this case, the new declaration will hide the
2030  // tag type. Note that this does does not apply if we're declaring a
2031  // typedef (C++ [dcl.typedef]p4).
2032  if (Previous.isSingleTagDecl() &&
2033      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2034    Previous.clear();
2035
2036  bool Redeclaration = false;
2037  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2038    if (TemplateParamLists.size()) {
2039      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2040      return DeclPtrTy();
2041    }
2042
2043    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2044  } else if (R->isFunctionType()) {
2045    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2046                                  move(TemplateParamLists),
2047                                  IsFunctionDefinition, Redeclaration);
2048  } else {
2049    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2050                                  move(TemplateParamLists),
2051                                  Redeclaration);
2052  }
2053
2054  if (New == 0)
2055    return DeclPtrTy();
2056
2057  // If this has an identifier and is not an invalid redeclaration or
2058  // function template specialization, add it to the scope stack.
2059  if (Name && !(Redeclaration && New->isInvalidDecl()))
2060    PushOnScopeChains(New, S);
2061
2062  return DeclPtrTy::make(New);
2063}
2064
2065/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2066/// types into constant array types in certain situations which would otherwise
2067/// be errors (for GCC compatibility).
2068static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2069                                                    ASTContext &Context,
2070                                                    bool &SizeIsNegative) {
2071  // This method tries to turn a variable array into a constant
2072  // array even when the size isn't an ICE.  This is necessary
2073  // for compatibility with code that depends on gcc's buggy
2074  // constant expression folding, like struct {char x[(int)(char*)2];}
2075  SizeIsNegative = false;
2076
2077  QualifierCollector Qs;
2078  const Type *Ty = Qs.strip(T);
2079
2080  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2081    QualType Pointee = PTy->getPointeeType();
2082    QualType FixedType =
2083        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2084    if (FixedType.isNull()) return FixedType;
2085    FixedType = Context.getPointerType(FixedType);
2086    return Qs.apply(FixedType);
2087  }
2088
2089  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2090  if (!VLATy)
2091    return QualType();
2092  // FIXME: We should probably handle this case
2093  if (VLATy->getElementType()->isVariablyModifiedType())
2094    return QualType();
2095
2096  Expr::EvalResult EvalResult;
2097  if (!VLATy->getSizeExpr() ||
2098      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2099      !EvalResult.Val.isInt())
2100    return QualType();
2101
2102  llvm::APSInt &Res = EvalResult.Val.getInt();
2103  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2104    // TODO: preserve the size expression in declarator info
2105    return Context.getConstantArrayType(VLATy->getElementType(),
2106                                        Res, ArrayType::Normal, 0);
2107  }
2108
2109  SizeIsNegative = true;
2110  return QualType();
2111}
2112
2113/// \brief Register the given locally-scoped external C declaration so
2114/// that it can be found later for redeclarations
2115void
2116Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2117                                       const LookupResult &Previous,
2118                                       Scope *S) {
2119  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2120         "Decl is not a locally-scoped decl!");
2121  // Note that we have a locally-scoped external with this name.
2122  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2123
2124  if (!Previous.isSingleResult())
2125    return;
2126
2127  NamedDecl *PrevDecl = Previous.getFoundDecl();
2128
2129  // If there was a previous declaration of this variable, it may be
2130  // in our identifier chain. Update the identifier chain with the new
2131  // declaration.
2132  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2133    // The previous declaration was found on the identifer resolver
2134    // chain, so remove it from its scope.
2135    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2136      S = S->getParent();
2137
2138    if (S)
2139      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2140  }
2141}
2142
2143/// \brief Diagnose function specifiers on a declaration of an identifier that
2144/// does not identify a function.
2145void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2146  // FIXME: We should probably indicate the identifier in question to avoid
2147  // confusion for constructs like "inline int a(), b;"
2148  if (D.getDeclSpec().isInlineSpecified())
2149    Diag(D.getDeclSpec().getInlineSpecLoc(),
2150         diag::err_inline_non_function);
2151
2152  if (D.getDeclSpec().isVirtualSpecified())
2153    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2154         diag::err_virtual_non_function);
2155
2156  if (D.getDeclSpec().isExplicitSpecified())
2157    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2158         diag::err_explicit_non_function);
2159}
2160
2161NamedDecl*
2162Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2163                             QualType R,  TypeSourceInfo *TInfo,
2164                             LookupResult &Previous, bool &Redeclaration) {
2165  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2166  if (D.getCXXScopeSpec().isSet()) {
2167    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2168      << D.getCXXScopeSpec().getRange();
2169    D.setInvalidType();
2170    // Pretend we didn't see the scope specifier.
2171    DC = 0;
2172  }
2173
2174  if (getLangOptions().CPlusPlus) {
2175    // Check that there are no default arguments (C++ only).
2176    CheckExtraCXXDefaultArguments(D);
2177  }
2178
2179  DiagnoseFunctionSpecifiers(D);
2180
2181  if (D.getDeclSpec().isThreadSpecified())
2182    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2183
2184  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2185  if (!NewTD) return 0;
2186
2187  // Handle attributes prior to checking for duplicates in MergeVarDecl
2188  ProcessDeclAttributes(S, NewTD, D);
2189
2190  // Merge the decl with the existing one if appropriate. If the decl is
2191  // in an outer scope, it isn't the same thing.
2192  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2193  if (!Previous.empty()) {
2194    Redeclaration = true;
2195    MergeTypeDefDecl(NewTD, Previous);
2196  }
2197
2198  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2199  // then it shall have block scope.
2200  QualType T = NewTD->getUnderlyingType();
2201  if (T->isVariablyModifiedType()) {
2202    CurFunctionNeedsScopeChecking = true;
2203
2204    if (S->getFnParent() == 0) {
2205      bool SizeIsNegative;
2206      QualType FixedTy =
2207          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2208      if (!FixedTy.isNull()) {
2209        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2210        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2211      } else {
2212        if (SizeIsNegative)
2213          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2214        else if (T->isVariableArrayType())
2215          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2216        else
2217          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2218        NewTD->setInvalidDecl();
2219      }
2220    }
2221  }
2222
2223  // If this is the C FILE type, notify the AST context.
2224  if (IdentifierInfo *II = NewTD->getIdentifier())
2225    if (!NewTD->isInvalidDecl() &&
2226        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2227      if (II->isStr("FILE"))
2228        Context.setFILEDecl(NewTD);
2229      else if (II->isStr("jmp_buf"))
2230        Context.setjmp_bufDecl(NewTD);
2231      else if (II->isStr("sigjmp_buf"))
2232        Context.setsigjmp_bufDecl(NewTD);
2233    }
2234
2235  return NewTD;
2236}
2237
2238/// \brief Determines whether the given declaration is an out-of-scope
2239/// previous declaration.
2240///
2241/// This routine should be invoked when name lookup has found a
2242/// previous declaration (PrevDecl) that is not in the scope where a
2243/// new declaration by the same name is being introduced. If the new
2244/// declaration occurs in a local scope, previous declarations with
2245/// linkage may still be considered previous declarations (C99
2246/// 6.2.2p4-5, C++ [basic.link]p6).
2247///
2248/// \param PrevDecl the previous declaration found by name
2249/// lookup
2250///
2251/// \param DC the context in which the new declaration is being
2252/// declared.
2253///
2254/// \returns true if PrevDecl is an out-of-scope previous declaration
2255/// for a new delcaration with the same name.
2256static bool
2257isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2258                                ASTContext &Context) {
2259  if (!PrevDecl)
2260    return 0;
2261
2262  if (!PrevDecl->hasLinkage())
2263    return false;
2264
2265  if (Context.getLangOptions().CPlusPlus) {
2266    // C++ [basic.link]p6:
2267    //   If there is a visible declaration of an entity with linkage
2268    //   having the same name and type, ignoring entities declared
2269    //   outside the innermost enclosing namespace scope, the block
2270    //   scope declaration declares that same entity and receives the
2271    //   linkage of the previous declaration.
2272    DeclContext *OuterContext = DC->getLookupContext();
2273    if (!OuterContext->isFunctionOrMethod())
2274      // This rule only applies to block-scope declarations.
2275      return false;
2276    else {
2277      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2278      if (PrevOuterContext->isRecord())
2279        // We found a member function: ignore it.
2280        return false;
2281      else {
2282        // Find the innermost enclosing namespace for the new and
2283        // previous declarations.
2284        while (!OuterContext->isFileContext())
2285          OuterContext = OuterContext->getParent();
2286        while (!PrevOuterContext->isFileContext())
2287          PrevOuterContext = PrevOuterContext->getParent();
2288
2289        // The previous declaration is in a different namespace, so it
2290        // isn't the same function.
2291        if (OuterContext->getPrimaryContext() !=
2292            PrevOuterContext->getPrimaryContext())
2293          return false;
2294      }
2295    }
2296  }
2297
2298  return true;
2299}
2300
2301NamedDecl*
2302Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2303                              QualType R, TypeSourceInfo *TInfo,
2304                              LookupResult &Previous,
2305                              MultiTemplateParamsArg TemplateParamLists,
2306                              bool &Redeclaration) {
2307  DeclarationName Name = GetNameForDeclarator(D);
2308
2309  // Check that there are no default arguments (C++ only).
2310  if (getLangOptions().CPlusPlus)
2311    CheckExtraCXXDefaultArguments(D);
2312
2313  VarDecl *NewVD;
2314  VarDecl::StorageClass SC;
2315  switch (D.getDeclSpec().getStorageClassSpec()) {
2316  default: assert(0 && "Unknown storage class!");
2317  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2318  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2319  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2320  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2321  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2322  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2323  case DeclSpec::SCS_mutable:
2324    // mutable can only appear on non-static class members, so it's always
2325    // an error here
2326    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2327    D.setInvalidType();
2328    SC = VarDecl::None;
2329    break;
2330  }
2331
2332  IdentifierInfo *II = Name.getAsIdentifierInfo();
2333  if (!II) {
2334    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2335      << Name.getAsString();
2336    return 0;
2337  }
2338
2339  DiagnoseFunctionSpecifiers(D);
2340
2341  if (!DC->isRecord() && S->getFnParent() == 0) {
2342    // C99 6.9p2: The storage-class specifiers auto and register shall not
2343    // appear in the declaration specifiers in an external declaration.
2344    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2345
2346      // If this is a register variable with an asm label specified, then this
2347      // is a GNU extension.
2348      if (SC == VarDecl::Register && D.getAsmLabel())
2349        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2350      else
2351        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2352      D.setInvalidType();
2353    }
2354  }
2355  if (DC->isRecord() && !CurContext->isRecord()) {
2356    // This is an out-of-line definition of a static data member.
2357    if (SC == VarDecl::Static) {
2358      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2359           diag::err_static_out_of_line)
2360        << CodeModificationHint::CreateRemoval(
2361                                      D.getDeclSpec().getStorageClassSpecLoc());
2362    } else if (SC == VarDecl::None)
2363      SC = VarDecl::Static;
2364  }
2365  if (SC == VarDecl::Static) {
2366    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2367      if (RD->isLocalClass())
2368        Diag(D.getIdentifierLoc(),
2369             diag::err_static_data_member_not_allowed_in_local_class)
2370          << Name << RD->getDeclName();
2371    }
2372  }
2373
2374  // Match up the template parameter lists with the scope specifier, then
2375  // determine whether we have a template or a template specialization.
2376  bool isExplicitSpecialization = false;
2377  if (TemplateParameterList *TemplateParams
2378        = MatchTemplateParametersToScopeSpecifier(
2379                                  D.getDeclSpec().getSourceRange().getBegin(),
2380                                                  D.getCXXScopeSpec(),
2381                        (TemplateParameterList**)TemplateParamLists.get(),
2382                                                   TemplateParamLists.size(),
2383                                                  isExplicitSpecialization)) {
2384    if (TemplateParams->size() > 0) {
2385      // There is no such thing as a variable template.
2386      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2387        << II
2388        << SourceRange(TemplateParams->getTemplateLoc(),
2389                       TemplateParams->getRAngleLoc());
2390      return 0;
2391    } else {
2392      // There is an extraneous 'template<>' for this variable. Complain
2393      // about it, but allow the declaration of the variable.
2394      Diag(TemplateParams->getTemplateLoc(),
2395           diag::err_template_variable_noparams)
2396        << II
2397        << SourceRange(TemplateParams->getTemplateLoc(),
2398                       TemplateParams->getRAngleLoc());
2399
2400      isExplicitSpecialization = true;
2401    }
2402  }
2403
2404  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2405                          II, R, TInfo, SC);
2406
2407  if (D.isInvalidType())
2408    NewVD->setInvalidDecl();
2409
2410  if (D.getDeclSpec().isThreadSpecified()) {
2411    if (NewVD->hasLocalStorage())
2412      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2413    else if (!Context.Target.isTLSSupported())
2414      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2415    else
2416      NewVD->setThreadSpecified(true);
2417  }
2418
2419  // Set the lexical context. If the declarator has a C++ scope specifier, the
2420  // lexical context will be different from the semantic context.
2421  NewVD->setLexicalDeclContext(CurContext);
2422
2423  // Handle attributes prior to checking for duplicates in MergeVarDecl
2424  ProcessDeclAttributes(S, NewVD, D);
2425
2426  // Handle GNU asm-label extension (encoded as an attribute).
2427  if (Expr *E = (Expr*) D.getAsmLabel()) {
2428    // The parser guarantees this is a string.
2429    StringLiteral *SE = cast<StringLiteral>(E);
2430    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2431  }
2432
2433  // Don't consider existing declarations that are in a different
2434  // scope and are out-of-semantic-context declarations (if the new
2435  // declaration has linkage).
2436  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2437
2438  // Merge the decl with the existing one if appropriate.
2439  if (!Previous.empty()) {
2440    if (Previous.isSingleResult() &&
2441        isa<FieldDecl>(Previous.getFoundDecl()) &&
2442        D.getCXXScopeSpec().isSet()) {
2443      // The user tried to define a non-static data member
2444      // out-of-line (C++ [dcl.meaning]p1).
2445      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2446        << D.getCXXScopeSpec().getRange();
2447      Previous.clear();
2448      NewVD->setInvalidDecl();
2449    }
2450  } else if (D.getCXXScopeSpec().isSet()) {
2451    // No previous declaration in the qualifying scope.
2452    Diag(D.getIdentifierLoc(), diag::err_no_member)
2453      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2454      << D.getCXXScopeSpec().getRange();
2455    NewVD->setInvalidDecl();
2456  }
2457
2458  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2459
2460  // This is an explicit specialization of a static data member. Check it.
2461  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2462      CheckMemberSpecialization(NewVD, Previous))
2463    NewVD->setInvalidDecl();
2464
2465  // attributes declared post-definition are currently ignored
2466  if (Previous.isSingleResult()) {
2467    const VarDecl *Def = 0;
2468    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2469    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2470      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2471      Diag(Def->getLocation(), diag::note_previous_definition);
2472    }
2473  }
2474
2475  // If this is a locally-scoped extern C variable, update the map of
2476  // such variables.
2477  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2478      !NewVD->isInvalidDecl())
2479    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2480
2481  return NewVD;
2482}
2483
2484/// \brief Perform semantic checking on a newly-created variable
2485/// declaration.
2486///
2487/// This routine performs all of the type-checking required for a
2488/// variable declaration once it has been built. It is used both to
2489/// check variables after they have been parsed and their declarators
2490/// have been translated into a declaration, and to check variables
2491/// that have been instantiated from a template.
2492///
2493/// Sets NewVD->isInvalidDecl() if an error was encountered.
2494void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2495                                    LookupResult &Previous,
2496                                    bool &Redeclaration) {
2497  // If the decl is already known invalid, don't check it.
2498  if (NewVD->isInvalidDecl())
2499    return;
2500
2501  QualType T = NewVD->getType();
2502
2503  if (T->isObjCInterfaceType()) {
2504    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2505    return NewVD->setInvalidDecl();
2506  }
2507
2508  // Emit an error if an address space was applied to decl with local storage.
2509  // This includes arrays of objects with address space qualifiers, but not
2510  // automatic variables that point to other address spaces.
2511  // ISO/IEC TR 18037 S5.1.2
2512  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2513    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2514    return NewVD->setInvalidDecl();
2515  }
2516
2517  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2518      && !NewVD->hasAttr<BlocksAttr>())
2519    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2520
2521  bool isVM = T->isVariablyModifiedType();
2522  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2523      NewVD->hasAttr<BlocksAttr>())
2524    CurFunctionNeedsScopeChecking = true;
2525
2526  if ((isVM && NewVD->hasLinkage()) ||
2527      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2528    bool SizeIsNegative;
2529    QualType FixedTy =
2530        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2531
2532    if (FixedTy.isNull() && T->isVariableArrayType()) {
2533      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2534      // FIXME: This won't give the correct result for
2535      // int a[10][n];
2536      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2537
2538      if (NewVD->isFileVarDecl())
2539        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2540        << SizeRange;
2541      else if (NewVD->getStorageClass() == VarDecl::Static)
2542        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2543        << SizeRange;
2544      else
2545        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2546        << SizeRange;
2547      return NewVD->setInvalidDecl();
2548    }
2549
2550    if (FixedTy.isNull()) {
2551      if (NewVD->isFileVarDecl())
2552        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2553      else
2554        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2555      return NewVD->setInvalidDecl();
2556    }
2557
2558    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2559    NewVD->setType(FixedTy);
2560  }
2561
2562  if (Previous.empty() && NewVD->isExternC()) {
2563    // Since we did not find anything by this name and we're declaring
2564    // an extern "C" variable, look for a non-visible extern "C"
2565    // declaration with the same name.
2566    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2567      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2568    if (Pos != LocallyScopedExternalDecls.end())
2569      Previous.addDecl(Pos->second);
2570  }
2571
2572  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2573    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2574      << T;
2575    return NewVD->setInvalidDecl();
2576  }
2577
2578  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2579    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2580    return NewVD->setInvalidDecl();
2581  }
2582
2583  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2584    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2585    return NewVD->setInvalidDecl();
2586  }
2587
2588  if (!Previous.empty()) {
2589    Redeclaration = true;
2590    MergeVarDecl(NewVD, Previous);
2591  }
2592}
2593
2594/// \brief Data used with FindOverriddenMethod
2595struct FindOverriddenMethodData {
2596  Sema *S;
2597  CXXMethodDecl *Method;
2598};
2599
2600/// \brief Member lookup function that determines whether a given C++
2601/// method overrides a method in a base class, to be used with
2602/// CXXRecordDecl::lookupInBases().
2603static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2604                                 CXXBasePath &Path,
2605                                 void *UserData) {
2606  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2607
2608  FindOverriddenMethodData *Data
2609    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2610
2611  DeclarationName Name = Data->Method->getDeclName();
2612
2613  // FIXME: Do we care about other names here too?
2614  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2615    // We really want to find the base class constructor here.
2616    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2617    CanQualType CT = Data->S->Context.getCanonicalType(T);
2618
2619    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2620  }
2621
2622  for (Path.Decls = BaseRecord->lookup(Name);
2623       Path.Decls.first != Path.Decls.second;
2624       ++Path.Decls.first) {
2625    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2626      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2627        return true;
2628    }
2629  }
2630
2631  return false;
2632}
2633
2634/// AddOverriddenMethods - See if a method overrides any in the base classes,
2635/// and if so, check that it's a valid override and remember it.
2636void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2637  // Look for virtual methods in base classes that this method might override.
2638  CXXBasePaths Paths;
2639  FindOverriddenMethodData Data;
2640  Data.Method = MD;
2641  Data.S = this;
2642  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2643    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2644         E = Paths.found_decls_end(); I != E; ++I) {
2645      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2646        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2647            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2648            !CheckOverridingFunctionAttributes(MD, OldMD))
2649          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2650      }
2651    }
2652  }
2653}
2654
2655NamedDecl*
2656Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2657                              QualType R, TypeSourceInfo *TInfo,
2658                              LookupResult &Previous,
2659                              MultiTemplateParamsArg TemplateParamLists,
2660                              bool IsFunctionDefinition, bool &Redeclaration) {
2661  assert(R.getTypePtr()->isFunctionType());
2662
2663  DeclarationName Name = GetNameForDeclarator(D);
2664  FunctionDecl::StorageClass SC = FunctionDecl::None;
2665  switch (D.getDeclSpec().getStorageClassSpec()) {
2666  default: assert(0 && "Unknown storage class!");
2667  case DeclSpec::SCS_auto:
2668  case DeclSpec::SCS_register:
2669  case DeclSpec::SCS_mutable:
2670    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2671         diag::err_typecheck_sclass_func);
2672    D.setInvalidType();
2673    break;
2674  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2675  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2676  case DeclSpec::SCS_static: {
2677    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2678      // C99 6.7.1p5:
2679      //   The declaration of an identifier for a function that has
2680      //   block scope shall have no explicit storage-class specifier
2681      //   other than extern
2682      // See also (C++ [dcl.stc]p4).
2683      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2684           diag::err_static_block_func);
2685      SC = FunctionDecl::None;
2686    } else
2687      SC = FunctionDecl::Static;
2688    break;
2689  }
2690  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2691  }
2692
2693  if (D.getDeclSpec().isThreadSpecified())
2694    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2695
2696  bool isFriend = D.getDeclSpec().isFriendSpecified();
2697  bool isInline = D.getDeclSpec().isInlineSpecified();
2698  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2699  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2700
2701  // Check that the return type is not an abstract class type.
2702  // For record types, this is done by the AbstractClassUsageDiagnoser once
2703  // the class has been completely parsed.
2704  if (!DC->isRecord() &&
2705      RequireNonAbstractType(D.getIdentifierLoc(),
2706                             R->getAs<FunctionType>()->getResultType(),
2707                             diag::err_abstract_type_in_decl,
2708                             AbstractReturnType))
2709    D.setInvalidType();
2710
2711  // Do not allow returning a objc interface by-value.
2712  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2713    Diag(D.getIdentifierLoc(),
2714         diag::err_object_cannot_be_passed_returned_by_value) << 0
2715      << R->getAs<FunctionType>()->getResultType();
2716    D.setInvalidType();
2717  }
2718
2719  bool isVirtualOkay = false;
2720  FunctionDecl *NewFD;
2721
2722  if (isFriend) {
2723    // C++ [class.friend]p5
2724    //   A function can be defined in a friend declaration of a
2725    //   class . . . . Such a function is implicitly inline.
2726    isInline |= IsFunctionDefinition;
2727  }
2728
2729  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2730    // This is a C++ constructor declaration.
2731    assert(DC->isRecord() &&
2732           "Constructors can only be declared in a member context");
2733
2734    R = CheckConstructorDeclarator(D, R, SC);
2735
2736    // Create the new declaration
2737    NewFD = CXXConstructorDecl::Create(Context,
2738                                       cast<CXXRecordDecl>(DC),
2739                                       D.getIdentifierLoc(), Name, R, TInfo,
2740                                       isExplicit, isInline,
2741                                       /*isImplicitlyDeclared=*/false);
2742  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2743    // This is a C++ destructor declaration.
2744    if (DC->isRecord()) {
2745      R = CheckDestructorDeclarator(D, SC);
2746
2747      NewFD = CXXDestructorDecl::Create(Context,
2748                                        cast<CXXRecordDecl>(DC),
2749                                        D.getIdentifierLoc(), Name, R,
2750                                        isInline,
2751                                        /*isImplicitlyDeclared=*/false);
2752
2753      isVirtualOkay = true;
2754    } else {
2755      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2756
2757      // Create a FunctionDecl to satisfy the function definition parsing
2758      // code path.
2759      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2760                                   Name, R, TInfo, SC, isInline,
2761                                   /*hasPrototype=*/true);
2762      D.setInvalidType();
2763    }
2764  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2765    if (!DC->isRecord()) {
2766      Diag(D.getIdentifierLoc(),
2767           diag::err_conv_function_not_member);
2768      return 0;
2769    }
2770
2771    CheckConversionDeclarator(D, R, SC);
2772    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2773                                      D.getIdentifierLoc(), Name, R, TInfo,
2774                                      isInline, isExplicit);
2775
2776    isVirtualOkay = true;
2777  } else if (DC->isRecord()) {
2778    // If the of the function is the same as the name of the record, then this
2779    // must be an invalid constructor that has a return type.
2780    // (The parser checks for a return type and makes the declarator a
2781    // constructor if it has no return type).
2782    // must have an invalid constructor that has a return type
2783    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2784      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2785        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2786        << SourceRange(D.getIdentifierLoc());
2787      return 0;
2788    }
2789
2790    bool isStatic = SC == FunctionDecl::Static;
2791
2792    // [class.free]p1:
2793    // Any allocation function for a class T is a static member
2794    // (even if not explicitly declared static).
2795    if (Name.getCXXOverloadedOperator() == OO_New ||
2796        Name.getCXXOverloadedOperator() == OO_Array_New)
2797      isStatic = true;
2798
2799    // [class.free]p6 Any deallocation function for a class X is a static member
2800    // (even if not explicitly declared static).
2801    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2802        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2803      isStatic = true;
2804
2805    // This is a C++ method declaration.
2806    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2807                                  D.getIdentifierLoc(), Name, R, TInfo,
2808                                  isStatic, isInline);
2809
2810    isVirtualOkay = !isStatic;
2811  } else {
2812    // Determine whether the function was written with a
2813    // prototype. This true when:
2814    //   - we're in C++ (where every function has a prototype),
2815    //   - there is a prototype in the declarator, or
2816    //   - the type R of the function is some kind of typedef or other reference
2817    //     to a type name (which eventually refers to a function type).
2818    bool HasPrototype =
2819       getLangOptions().CPlusPlus ||
2820       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2821       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2822
2823    NewFD = FunctionDecl::Create(Context, DC,
2824                                 D.getIdentifierLoc(),
2825                                 Name, R, TInfo, SC, isInline, HasPrototype);
2826  }
2827
2828  if (D.isInvalidType())
2829    NewFD->setInvalidDecl();
2830
2831  // Set the lexical context. If the declarator has a C++
2832  // scope specifier, or is the object of a friend declaration, the
2833  // lexical context will be different from the semantic context.
2834  NewFD->setLexicalDeclContext(CurContext);
2835
2836  // Match up the template parameter lists with the scope specifier, then
2837  // determine whether we have a template or a template specialization.
2838  FunctionTemplateDecl *FunctionTemplate = 0;
2839  bool isExplicitSpecialization = false;
2840  bool isFunctionTemplateSpecialization = false;
2841  if (TemplateParameterList *TemplateParams
2842        = MatchTemplateParametersToScopeSpecifier(
2843                                  D.getDeclSpec().getSourceRange().getBegin(),
2844                                  D.getCXXScopeSpec(),
2845                           (TemplateParameterList**)TemplateParamLists.get(),
2846                                                  TemplateParamLists.size(),
2847                                                  isExplicitSpecialization)) {
2848    if (TemplateParams->size() > 0) {
2849      // This is a function template
2850
2851      // Check that we can declare a template here.
2852      if (CheckTemplateDeclScope(S, TemplateParams))
2853        return 0;
2854
2855      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2856                                                      NewFD->getLocation(),
2857                                                      Name, TemplateParams,
2858                                                      NewFD);
2859      FunctionTemplate->setLexicalDeclContext(CurContext);
2860      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2861    } else {
2862      // This is a function template specialization.
2863      isFunctionTemplateSpecialization = true;
2864    }
2865
2866    // FIXME: Free this memory properly.
2867    TemplateParamLists.release();
2868  }
2869
2870  // C++ [dcl.fct.spec]p5:
2871  //   The virtual specifier shall only be used in declarations of
2872  //   nonstatic class member functions that appear within a
2873  //   member-specification of a class declaration; see 10.3.
2874  //
2875  if (isVirtual && !NewFD->isInvalidDecl()) {
2876    if (!isVirtualOkay) {
2877       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2878           diag::err_virtual_non_function);
2879    } else if (!CurContext->isRecord()) {
2880      // 'virtual' was specified outside of the class.
2881      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2882        << CodeModificationHint::CreateRemoval(
2883                                           D.getDeclSpec().getVirtualSpecLoc());
2884    } else {
2885      // Okay: Add virtual to the method.
2886      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2887      CurClass->setMethodAsVirtual(NewFD);
2888    }
2889  }
2890
2891  // Filter out previous declarations that don't match the scope.
2892  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2893
2894  if (isFriend) {
2895    // DC is the namespace in which the function is being declared.
2896    assert((DC->isFileContext() || !Previous.empty()) &&
2897           "previously-undeclared friend function being created "
2898           "in a non-namespace context");
2899
2900    if (FunctionTemplate) {
2901      FunctionTemplate->setObjectOfFriendDecl(
2902                                   /* PreviouslyDeclared= */ !Previous.empty());
2903      FunctionTemplate->setAccess(AS_public);
2904    }
2905    else
2906      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2907
2908    NewFD->setAccess(AS_public);
2909  }
2910
2911  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2912      !CurContext->isRecord()) {
2913    // C++ [class.static]p1:
2914    //   A data or function member of a class may be declared static
2915    //   in a class definition, in which case it is a static member of
2916    //   the class.
2917
2918    // Complain about the 'static' specifier if it's on an out-of-line
2919    // member function definition.
2920    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2921         diag::err_static_out_of_line)
2922      << CodeModificationHint::CreateRemoval(
2923                                      D.getDeclSpec().getStorageClassSpecLoc());
2924  }
2925
2926  // Handle GNU asm-label extension (encoded as an attribute).
2927  if (Expr *E = (Expr*) D.getAsmLabel()) {
2928    // The parser guarantees this is a string.
2929    StringLiteral *SE = cast<StringLiteral>(E);
2930    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2931  }
2932
2933  // Copy the parameter declarations from the declarator D to the function
2934  // declaration NewFD, if they are available.  First scavenge them into Params.
2935  llvm::SmallVector<ParmVarDecl*, 16> Params;
2936  if (D.getNumTypeObjects() > 0) {
2937    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2938
2939    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2940    // function that takes no arguments, not a function that takes a
2941    // single void argument.
2942    // We let through "const void" here because Sema::GetTypeForDeclarator
2943    // already checks for that case.
2944    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2945        FTI.ArgInfo[0].Param &&
2946        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2947      // Empty arg list, don't push any params.
2948      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2949
2950      // In C++, the empty parameter-type-list must be spelled "void"; a
2951      // typedef of void is not permitted.
2952      if (getLangOptions().CPlusPlus &&
2953          Param->getType().getUnqualifiedType() != Context.VoidTy)
2954        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2955      // FIXME: Leaks decl?
2956    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2957      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2958        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2959        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2960        Param->setDeclContext(NewFD);
2961        Params.push_back(Param);
2962      }
2963    }
2964
2965  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2966    // When we're declaring a function with a typedef, typeof, etc as in the
2967    // following example, we'll need to synthesize (unnamed)
2968    // parameters for use in the declaration.
2969    //
2970    // @code
2971    // typedef void fn(int);
2972    // fn f;
2973    // @endcode
2974
2975    // Synthesize a parameter for each argument type.
2976    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2977         AE = FT->arg_type_end(); AI != AE; ++AI) {
2978      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2979                                               SourceLocation(), 0,
2980                                               *AI, /*TInfo=*/0,
2981                                               VarDecl::None, 0);
2982      Param->setImplicit();
2983      Params.push_back(Param);
2984    }
2985  } else {
2986    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2987           "Should not need args for typedef of non-prototype fn");
2988  }
2989  // Finally, we know we have the right number of parameters, install them.
2990  NewFD->setParams(Context, Params.data(), Params.size());
2991
2992  // If the declarator is a template-id, translate the parser's template
2993  // argument list into our AST format.
2994  bool HasExplicitTemplateArgs = false;
2995  TemplateArgumentListInfo TemplateArgs;
2996  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2997    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2998    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2999    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3000    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3001                                       TemplateId->getTemplateArgs(),
3002                                       TemplateId->NumArgs);
3003    translateTemplateArguments(TemplateArgsPtr,
3004                               TemplateArgs);
3005    TemplateArgsPtr.release();
3006
3007    HasExplicitTemplateArgs = true;
3008
3009    if (FunctionTemplate) {
3010      // FIXME: Diagnose function template with explicit template
3011      // arguments.
3012      HasExplicitTemplateArgs = false;
3013    } else if (!isFunctionTemplateSpecialization &&
3014               !D.getDeclSpec().isFriendSpecified()) {
3015      // We have encountered something that the user meant to be a
3016      // specialization (because it has explicitly-specified template
3017      // arguments) but that was not introduced with a "template<>" (or had
3018      // too few of them).
3019      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3020        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3021        << CodeModificationHint::CreateInsertion(
3022                                   D.getDeclSpec().getSourceRange().getBegin(),
3023                                                 "template<> ");
3024      isFunctionTemplateSpecialization = true;
3025    }
3026  }
3027
3028  if (isFunctionTemplateSpecialization) {
3029      if (CheckFunctionTemplateSpecialization(NewFD,
3030                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3031                                              Previous))
3032        NewFD->setInvalidDecl();
3033  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3034             CheckMemberSpecialization(NewFD, Previous))
3035    NewFD->setInvalidDecl();
3036
3037  // Perform semantic checking on the function declaration.
3038  bool OverloadableAttrRequired = false; // FIXME: HACK!
3039  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3040                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3041
3042  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3043          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3044         "previous declaration set still overloaded");
3045
3046  // If we have a function template, check the template parameter
3047  // list. This will check and merge default template arguments.
3048  if (FunctionTemplate) {
3049    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3050    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3051                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3052             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3053                                                : TPC_FunctionTemplate);
3054  }
3055
3056  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3057    // An out-of-line member function declaration must also be a
3058    // definition (C++ [dcl.meaning]p1).
3059    // Note that this is not the case for explicit specializations of
3060    // function templates or member functions of class templates, per
3061    // C++ [temp.expl.spec]p2.
3062    if (!IsFunctionDefinition && !isFriend &&
3063        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3064      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3065        << D.getCXXScopeSpec().getRange();
3066      NewFD->setInvalidDecl();
3067    } else if (!Redeclaration) {
3068      // The user tried to provide an out-of-line definition for a
3069      // function that is a member of a class or namespace, but there
3070      // was no such member function declared (C++ [class.mfct]p2,
3071      // C++ [namespace.memdef]p2). For example:
3072      //
3073      // class X {
3074      //   void f() const;
3075      // };
3076      //
3077      // void X::f() { } // ill-formed
3078      //
3079      // Complain about this problem, and attempt to suggest close
3080      // matches (e.g., those that differ only in cv-qualifiers and
3081      // whether the parameter types are references).
3082      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3083        << Name << DC << D.getCXXScopeSpec().getRange();
3084      NewFD->setInvalidDecl();
3085
3086      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3087                        ForRedeclaration);
3088      LookupQualifiedName(Prev, DC);
3089      assert(!Prev.isAmbiguous() &&
3090             "Cannot have an ambiguity in previous-declaration lookup");
3091      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3092           Func != FuncEnd; ++Func) {
3093        if (isa<FunctionDecl>(*Func) &&
3094            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3095          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3096      }
3097    }
3098  }
3099
3100  // Handle attributes. We need to have merged decls when handling attributes
3101  // (for example to check for conflicts, etc).
3102  // FIXME: This needs to happen before we merge declarations. Then,
3103  // let attribute merging cope with attribute conflicts.
3104  ProcessDeclAttributes(S, NewFD, D);
3105
3106  // attributes declared post-definition are currently ignored
3107  if (Redeclaration && Previous.isSingleResult()) {
3108    const FunctionDecl *Def;
3109    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3110    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3111      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3112      Diag(Def->getLocation(), diag::note_previous_definition);
3113    }
3114  }
3115
3116  AddKnownFunctionAttributes(NewFD);
3117
3118  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3119    // If a function name is overloadable in C, then every function
3120    // with that name must be marked "overloadable".
3121    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3122      << Redeclaration << NewFD;
3123    if (!Previous.empty())
3124      Diag(Previous.getRepresentativeDecl()->getLocation(),
3125           diag::note_attribute_overloadable_prev_overload);
3126    NewFD->addAttr(::new (Context) OverloadableAttr());
3127  }
3128
3129  // If this is a locally-scoped extern C function, update the
3130  // map of such names.
3131  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3132      && !NewFD->isInvalidDecl())
3133    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3134
3135  // Set this FunctionDecl's range up to the right paren.
3136  NewFD->setLocEnd(D.getSourceRange().getEnd());
3137
3138  if (FunctionTemplate && NewFD->isInvalidDecl())
3139    FunctionTemplate->setInvalidDecl();
3140
3141  if (FunctionTemplate)
3142    return FunctionTemplate;
3143
3144  return NewFD;
3145}
3146
3147/// \brief Perform semantic checking of a new function declaration.
3148///
3149/// Performs semantic analysis of the new function declaration
3150/// NewFD. This routine performs all semantic checking that does not
3151/// require the actual declarator involved in the declaration, and is
3152/// used both for the declaration of functions as they are parsed
3153/// (called via ActOnDeclarator) and for the declaration of functions
3154/// that have been instantiated via C++ template instantiation (called
3155/// via InstantiateDecl).
3156///
3157/// \param IsExplicitSpecialiation whether this new function declaration is
3158/// an explicit specialization of the previous declaration.
3159///
3160/// This sets NewFD->isInvalidDecl() to true if there was an error.
3161void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3162                                    LookupResult &Previous,
3163                                    bool IsExplicitSpecialization,
3164                                    bool &Redeclaration,
3165                                    bool &OverloadableAttrRequired) {
3166  // If NewFD is already known erroneous, don't do any of this checking.
3167  if (NewFD->isInvalidDecl())
3168    return;
3169
3170  if (NewFD->getResultType()->isVariablyModifiedType()) {
3171    // Functions returning a variably modified type violate C99 6.7.5.2p2
3172    // because all functions have linkage.
3173    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3174    return NewFD->setInvalidDecl();
3175  }
3176
3177  if (NewFD->isMain())
3178    CheckMain(NewFD);
3179
3180  // Check for a previous declaration of this name.
3181  if (Previous.empty() && NewFD->isExternC()) {
3182    // Since we did not find anything by this name and we're declaring
3183    // an extern "C" function, look for a non-visible extern "C"
3184    // declaration with the same name.
3185    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3186      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3187    if (Pos != LocallyScopedExternalDecls.end())
3188      Previous.addDecl(Pos->second);
3189  }
3190
3191  // Merge or overload the declaration with an existing declaration of
3192  // the same name, if appropriate.
3193  if (!Previous.empty()) {
3194    // Determine whether NewFD is an overload of PrevDecl or
3195    // a declaration that requires merging. If it's an overload,
3196    // there's no more work to do here; we'll just add the new
3197    // function to the scope.
3198
3199    NamedDecl *OldDecl = 0;
3200    if (!AllowOverloadingOfFunction(Previous, Context)) {
3201      Redeclaration = true;
3202      OldDecl = Previous.getFoundDecl();
3203    } else {
3204      if (!getLangOptions().CPlusPlus) {
3205        OverloadableAttrRequired = true;
3206
3207        // Functions marked "overloadable" must have a prototype (that
3208        // we can't get through declaration merging).
3209        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3210          Diag(NewFD->getLocation(),
3211               diag::err_attribute_overloadable_no_prototype)
3212            << NewFD;
3213          Redeclaration = true;
3214
3215          // Turn this into a variadic function with no parameters.
3216          QualType R = Context.getFunctionType(
3217                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3218                     0, 0, true, 0);
3219          NewFD->setType(R);
3220          return NewFD->setInvalidDecl();
3221        }
3222      }
3223
3224      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3225      case Ovl_Match:
3226        Redeclaration = true;
3227        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3228          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3229          Redeclaration = false;
3230        }
3231        break;
3232
3233      case Ovl_NonFunction:
3234        Redeclaration = true;
3235        break;
3236
3237      case Ovl_Overload:
3238        Redeclaration = false;
3239        break;
3240      }
3241    }
3242
3243    if (Redeclaration) {
3244      // NewFD and OldDecl represent declarations that need to be
3245      // merged.
3246      if (MergeFunctionDecl(NewFD, OldDecl))
3247        return NewFD->setInvalidDecl();
3248
3249      Previous.clear();
3250      Previous.addDecl(OldDecl);
3251
3252      if (FunctionTemplateDecl *OldTemplateDecl
3253                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3254        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3255        FunctionTemplateDecl *NewTemplateDecl
3256          = NewFD->getDescribedFunctionTemplate();
3257        assert(NewTemplateDecl && "Template/non-template mismatch");
3258        if (CXXMethodDecl *Method
3259              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3260          Method->setAccess(OldTemplateDecl->getAccess());
3261          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3262        }
3263
3264        // If this is an explicit specialization of a member that is a function
3265        // template, mark it as a member specialization.
3266        if (IsExplicitSpecialization &&
3267            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3268          NewTemplateDecl->setMemberSpecialization();
3269          assert(OldTemplateDecl->isMemberSpecialization());
3270        }
3271      } else {
3272        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3273          NewFD->setAccess(OldDecl->getAccess());
3274        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3275      }
3276    }
3277  }
3278
3279  // Semantic checking for this function declaration (in isolation).
3280  if (getLangOptions().CPlusPlus) {
3281    // C++-specific checks.
3282    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3283      CheckConstructor(Constructor);
3284    } else if (CXXDestructorDecl *Destructor =
3285                dyn_cast<CXXDestructorDecl>(NewFD)) {
3286      CXXRecordDecl *Record = Destructor->getParent();
3287      QualType ClassType = Context.getTypeDeclType(Record);
3288
3289      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3290      // type is dependent? Both gcc and edg can handle that.
3291      if (!ClassType->isDependentType()) {
3292        DeclarationName Name
3293          = Context.DeclarationNames.getCXXDestructorName(
3294                                        Context.getCanonicalType(ClassType));
3295        if (NewFD->getDeclName() != Name) {
3296          Diag(NewFD->getLocation(), diag::err_destructor_name);
3297          return NewFD->setInvalidDecl();
3298        }
3299      }
3300
3301      Record->setUserDeclaredDestructor(true);
3302      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3303      // user-defined destructor.
3304      Record->setPOD(false);
3305
3306      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3307      // declared destructor.
3308      // FIXME: C++0x: don't do this for "= default" destructors
3309      Record->setHasTrivialDestructor(false);
3310    } else if (CXXConversionDecl *Conversion
3311               = dyn_cast<CXXConversionDecl>(NewFD)) {
3312      ActOnConversionDeclarator(Conversion);
3313    }
3314
3315    // Find any virtual functions that this function overrides.
3316    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3317      if (!Method->isFunctionTemplateSpecialization() &&
3318          !Method->getDescribedFunctionTemplate())
3319        AddOverriddenMethods(Method->getParent(), Method);
3320    }
3321
3322    // Additional checks for the destructor; make sure we do this after we
3323    // figure out whether the destructor is virtual.
3324    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3325      if (!Destructor->getParent()->isDependentType())
3326        CheckDestructor(Destructor);
3327
3328    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3329    if (NewFD->isOverloadedOperator() &&
3330        CheckOverloadedOperatorDeclaration(NewFD))
3331      return NewFD->setInvalidDecl();
3332
3333    // In C++, check default arguments now that we have merged decls. Unless
3334    // the lexical context is the class, because in this case this is done
3335    // during delayed parsing anyway.
3336    if (!CurContext->isRecord())
3337      CheckCXXDefaultArguments(NewFD);
3338  }
3339}
3340
3341void Sema::CheckMain(FunctionDecl* FD) {
3342  // C++ [basic.start.main]p3:  A program that declares main to be inline
3343  //   or static is ill-formed.
3344  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3345  //   shall not appear in a declaration of main.
3346  // static main is not an error under C99, but we should warn about it.
3347  bool isInline = FD->isInlineSpecified();
3348  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3349  if (isInline || isStatic) {
3350    unsigned diagID = diag::warn_unusual_main_decl;
3351    if (isInline || getLangOptions().CPlusPlus)
3352      diagID = diag::err_unusual_main_decl;
3353
3354    int which = isStatic + (isInline << 1) - 1;
3355    Diag(FD->getLocation(), diagID) << which;
3356  }
3357
3358  QualType T = FD->getType();
3359  assert(T->isFunctionType() && "function decl is not of function type");
3360  const FunctionType* FT = T->getAs<FunctionType>();
3361
3362  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3363    // TODO: add a replacement fixit to turn the return type into 'int'.
3364    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3365    FD->setInvalidDecl(true);
3366  }
3367
3368  // Treat protoless main() as nullary.
3369  if (isa<FunctionNoProtoType>(FT)) return;
3370
3371  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3372  unsigned nparams = FTP->getNumArgs();
3373  assert(FD->getNumParams() == nparams);
3374
3375  if (nparams > 3) {
3376    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3377    FD->setInvalidDecl(true);
3378    nparams = 3;
3379  }
3380
3381  // FIXME: a lot of the following diagnostics would be improved
3382  // if we had some location information about types.
3383
3384  QualType CharPP =
3385    Context.getPointerType(Context.getPointerType(Context.CharTy));
3386  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3387
3388  for (unsigned i = 0; i < nparams; ++i) {
3389    QualType AT = FTP->getArgType(i);
3390
3391    bool mismatch = true;
3392
3393    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3394      mismatch = false;
3395    else if (Expected[i] == CharPP) {
3396      // As an extension, the following forms are okay:
3397      //   char const **
3398      //   char const * const *
3399      //   char * const *
3400
3401      QualifierCollector qs;
3402      const PointerType* PT;
3403      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3404          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3405          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3406        qs.removeConst();
3407        mismatch = !qs.empty();
3408      }
3409    }
3410
3411    if (mismatch) {
3412      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3413      // TODO: suggest replacing given type with expected type
3414      FD->setInvalidDecl(true);
3415    }
3416  }
3417
3418  if (nparams == 1 && !FD->isInvalidDecl()) {
3419    Diag(FD->getLocation(), diag::warn_main_one_arg);
3420  }
3421}
3422
3423bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3424  // FIXME: Need strict checking.  In C89, we need to check for
3425  // any assignment, increment, decrement, function-calls, or
3426  // commas outside of a sizeof.  In C99, it's the same list,
3427  // except that the aforementioned are allowed in unevaluated
3428  // expressions.  Everything else falls under the
3429  // "may accept other forms of constant expressions" exception.
3430  // (We never end up here for C++, so the constant expression
3431  // rules there don't matter.)
3432  if (Init->isConstantInitializer(Context))
3433    return false;
3434  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3435    << Init->getSourceRange();
3436  return true;
3437}
3438
3439void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3440  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3441}
3442
3443/// AddInitializerToDecl - Adds the initializer Init to the
3444/// declaration dcl. If DirectInit is true, this is C++ direct
3445/// initialization rather than copy initialization.
3446void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3447  Decl *RealDecl = dcl.getAs<Decl>();
3448  // If there is no declaration, there was an error parsing it.  Just ignore
3449  // the initializer.
3450  if (RealDecl == 0)
3451    return;
3452
3453  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3454    // With declarators parsed the way they are, the parser cannot
3455    // distinguish between a normal initializer and a pure-specifier.
3456    // Thus this grotesque test.
3457    IntegerLiteral *IL;
3458    Expr *Init = static_cast<Expr *>(init.get());
3459    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3460        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3461      CheckPureMethod(Method, Init->getSourceRange());
3462    else {
3463      Diag(Method->getLocation(), diag::err_member_function_initialization)
3464        << Method->getDeclName() << Init->getSourceRange();
3465      Method->setInvalidDecl();
3466    }
3467    return;
3468  }
3469
3470  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3471  if (!VDecl) {
3472    if (getLangOptions().CPlusPlus &&
3473        RealDecl->getLexicalDeclContext()->isRecord() &&
3474        isa<NamedDecl>(RealDecl))
3475      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3476        << cast<NamedDecl>(RealDecl)->getDeclName();
3477    else
3478      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3479    RealDecl->setInvalidDecl();
3480    return;
3481  }
3482
3483  // A definition must end up with a complete type, which means it must be
3484  // complete with the restriction that an array type might be completed by the
3485  // initializer; note that later code assumes this restriction.
3486  QualType BaseDeclType = VDecl->getType();
3487  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3488    BaseDeclType = Array->getElementType();
3489  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3490                          diag::err_typecheck_decl_incomplete_type)) {
3491    RealDecl->setInvalidDecl();
3492    return;
3493  }
3494
3495  // The variable can not have an abstract class type.
3496  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3497                             diag::err_abstract_type_in_decl,
3498                             AbstractVariableType))
3499    VDecl->setInvalidDecl();
3500
3501  const VarDecl *Def = 0;
3502  if (VDecl->getDefinition(Def)) {
3503    Diag(VDecl->getLocation(), diag::err_redefinition)
3504      << VDecl->getDeclName();
3505    Diag(Def->getLocation(), diag::note_previous_definition);
3506    VDecl->setInvalidDecl();
3507    return;
3508  }
3509
3510  // Take ownership of the expression, now that we're sure we have somewhere
3511  // to put it.
3512  Expr *Init = init.takeAs<Expr>();
3513  assert(Init && "missing initializer");
3514
3515  // Capture the variable that is being initialized and the style of
3516  // initialization.
3517  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3518
3519  // FIXME: Poor source location information.
3520  InitializationKind Kind
3521    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3522                                                   Init->getLocStart(),
3523                                                   Init->getLocEnd())
3524                : InitializationKind::CreateCopy(VDecl->getLocation(),
3525                                                 Init->getLocStart());
3526
3527  // Get the decls type and save a reference for later, since
3528  // CheckInitializerTypes may change it.
3529  QualType DclT = VDecl->getType(), SavT = DclT;
3530  if (VDecl->isBlockVarDecl()) {
3531    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3532      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3533      VDecl->setInvalidDecl();
3534    } else if (!VDecl->isInvalidDecl()) {
3535      if (VDecl->getType()->isReferenceType()
3536          || isa<InitListExpr>(Init)) {
3537        InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3538        if (InitSeq) {
3539          OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3540                                           MultiExprArg(*this, (void**)&Init, 1),
3541                                                    &DclT);
3542          if (Result.isInvalid()) {
3543            VDecl->setInvalidDecl();
3544            return;
3545          }
3546
3547          Init = Result.takeAs<Expr>();
3548        } else {
3549          InitSeq.Diagnose(*this, Entity, Kind, &Init, 1);
3550          VDecl->setInvalidDecl();
3551          return;
3552        }
3553      } else if (CheckInitializerTypes(Init, DclT, Entity, Kind))
3554        VDecl->setInvalidDecl();
3555
3556      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3557      // Don't check invalid declarations to avoid emitting useless diagnostics.
3558      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3559        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3560          CheckForConstantInitializer(Init, DclT);
3561      }
3562    }
3563  } else if (VDecl->isStaticDataMember() &&
3564             VDecl->getLexicalDeclContext()->isRecord()) {
3565    // This is an in-class initialization for a static data member, e.g.,
3566    //
3567    // struct S {
3568    //   static const int value = 17;
3569    // };
3570
3571    // Attach the initializer
3572    VDecl->setInit(Context, Init);
3573
3574    // C++ [class.mem]p4:
3575    //   A member-declarator can contain a constant-initializer only
3576    //   if it declares a static member (9.4) of const integral or
3577    //   const enumeration type, see 9.4.2.
3578    QualType T = VDecl->getType();
3579    if (!T->isDependentType() &&
3580        (!Context.getCanonicalType(T).isConstQualified() ||
3581         !T->isIntegralType())) {
3582      Diag(VDecl->getLocation(), diag::err_member_initialization)
3583        << VDecl->getDeclName() << Init->getSourceRange();
3584      VDecl->setInvalidDecl();
3585    } else {
3586      // C++ [class.static.data]p4:
3587      //   If a static data member is of const integral or const
3588      //   enumeration type, its declaration in the class definition
3589      //   can specify a constant-initializer which shall be an
3590      //   integral constant expression (5.19).
3591      if (!Init->isTypeDependent() &&
3592          !Init->getType()->isIntegralType()) {
3593        // We have a non-dependent, non-integral or enumeration type.
3594        Diag(Init->getSourceRange().getBegin(),
3595             diag::err_in_class_initializer_non_integral_type)
3596          << Init->getType() << Init->getSourceRange();
3597        VDecl->setInvalidDecl();
3598      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3599        // Check whether the expression is a constant expression.
3600        llvm::APSInt Value;
3601        SourceLocation Loc;
3602        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3603          Diag(Loc, diag::err_in_class_initializer_non_constant)
3604            << Init->getSourceRange();
3605          VDecl->setInvalidDecl();
3606        } else if (!VDecl->getType()->isDependentType())
3607          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3608      }
3609    }
3610  } else if (VDecl->isFileVarDecl()) {
3611    if (VDecl->getStorageClass() == VarDecl::Extern)
3612      Diag(VDecl->getLocation(), diag::warn_extern_init);
3613    if (!VDecl->isInvalidDecl())
3614      if (CheckInitializerTypes(Init, DclT, Entity, Kind))
3615        VDecl->setInvalidDecl();
3616
3617    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3618    // Don't check invalid declarations to avoid emitting useless diagnostics.
3619    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3620      // C99 6.7.8p4. All file scoped initializers need to be constant.
3621      CheckForConstantInitializer(Init, DclT);
3622    }
3623  }
3624  // If the type changed, it means we had an incomplete type that was
3625  // completed by the initializer. For example:
3626  //   int ary[] = { 1, 3, 5 };
3627  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3628  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3629    VDecl->setType(DclT);
3630    Init->setType(DclT);
3631  }
3632
3633  Init = MaybeCreateCXXExprWithTemporaries(Init);
3634  // Attach the initializer to the decl.
3635  VDecl->setInit(Context, Init);
3636
3637  // If the previous declaration of VDecl was a tentative definition,
3638  // remove it from the set of tentative definitions.
3639  if (VDecl->getPreviousDeclaration() &&
3640      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3641    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3642    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3643  }
3644
3645  return;
3646}
3647
3648void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3649                                  bool TypeContainsUndeducedAuto) {
3650  Decl *RealDecl = dcl.getAs<Decl>();
3651
3652  // If there is no declaration, there was an error parsing it. Just ignore it.
3653  if (RealDecl == 0)
3654    return;
3655
3656  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3657    QualType Type = Var->getType();
3658
3659    // Record tentative definitions.
3660    if (Var->isTentativeDefinition(Context)) {
3661      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3662        InsertPair =
3663           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3664
3665      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3666      // want the second one in the map.
3667      InsertPair.first->second = Var;
3668
3669      // However, for the list, we don't care about the order, just make sure
3670      // that there are no dupes for a given declaration name.
3671      if (InsertPair.second)
3672        TentativeDefinitionList.push_back(Var->getDeclName());
3673    }
3674
3675    // C++ [dcl.init.ref]p3:
3676    //   The initializer can be omitted for a reference only in a
3677    //   parameter declaration (8.3.5), in the declaration of a
3678    //   function return type, in the declaration of a class member
3679    //   within its class declaration (9.2), and where the extern
3680    //   specifier is explicitly used.
3681    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3682      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3683        << Var->getDeclName()
3684        << SourceRange(Var->getLocation(), Var->getLocation());
3685      Var->setInvalidDecl();
3686      return;
3687    }
3688
3689    // C++0x [dcl.spec.auto]p3
3690    if (TypeContainsUndeducedAuto) {
3691      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3692        << Var->getDeclName() << Type;
3693      Var->setInvalidDecl();
3694      return;
3695    }
3696
3697    // An array without size is an incomplete type, and there are no special
3698    // rules in C++ to make such a definition acceptable.
3699    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3700        !Var->hasExternalStorage()) {
3701      Diag(Var->getLocation(),
3702           diag::err_typecheck_incomplete_array_needs_initializer);
3703      Var->setInvalidDecl();
3704      return;
3705    }
3706
3707    // C++ [temp.expl.spec]p15:
3708    //   An explicit specialization of a static data member of a template is a
3709    //   definition if the declaration includes an initializer; otherwise, it
3710    //   is a declaration.
3711    if (Var->isStaticDataMember() &&
3712        Var->getInstantiatedFromStaticDataMember() &&
3713        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3714      return;
3715
3716    // C++ [dcl.init]p9:
3717    //   If no initializer is specified for an object, and the object
3718    //   is of (possibly cv-qualified) non-POD class type (or array
3719    //   thereof), the object shall be default-initialized; if the
3720    //   object is of const-qualified type, the underlying class type
3721    //   shall have a user-declared default constructor.
3722    //
3723    // FIXME: Diagnose the "user-declared default constructor" bit.
3724    if (getLangOptions().CPlusPlus) {
3725      QualType InitType = Type;
3726      if (const ArrayType *Array = Context.getAsArrayType(Type))
3727        InitType = Context.getBaseElementType(Array);
3728      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3729          InitType->isRecordType() && !InitType->isDependentType()) {
3730        if (!RequireCompleteType(Var->getLocation(), InitType,
3731                                 diag::err_invalid_incomplete_type_use)) {
3732          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3733
3734          CXXConstructorDecl *Constructor
3735            = PerformInitializationByConstructor(InitType,
3736                                                 MultiExprArg(*this, 0, 0),
3737                                                 Var->getLocation(),
3738                                               SourceRange(Var->getLocation(),
3739                                                           Var->getLocation()),
3740                                                 Var->getDeclName(),
3741                         InitializationKind::CreateDefault(Var->getLocation()),
3742                                                 ConstructorArgs);
3743
3744          // FIXME: Location info for the variable initialization?
3745          if (!Constructor)
3746            Var->setInvalidDecl();
3747          else {
3748            // FIXME: Cope with initialization of arrays
3749            if (!Constructor->isTrivial() &&
3750                InitializeVarWithConstructor(Var, Constructor,
3751                                             move_arg(ConstructorArgs)))
3752              Var->setInvalidDecl();
3753
3754            FinalizeVarWithDestructor(Var, InitType);
3755          }
3756        } else {
3757          Var->setInvalidDecl();
3758        }
3759      }
3760
3761      // The variable can not have an abstract class type.
3762      if (RequireNonAbstractType(Var->getLocation(), Type,
3763                                 diag::err_abstract_type_in_decl,
3764                                 AbstractVariableType))
3765        Var->setInvalidDecl();
3766    }
3767
3768#if 0
3769    // FIXME: Temporarily disabled because we are not properly parsing
3770    // linkage specifications on declarations, e.g.,
3771    //
3772    //   extern "C" const CGPoint CGPointerZero;
3773    //
3774    // C++ [dcl.init]p9:
3775    //
3776    //     If no initializer is specified for an object, and the
3777    //     object is of (possibly cv-qualified) non-POD class type (or
3778    //     array thereof), the object shall be default-initialized; if
3779    //     the object is of const-qualified type, the underlying class
3780    //     type shall have a user-declared default
3781    //     constructor. Otherwise, if no initializer is specified for
3782    //     an object, the object and its subobjects, if any, have an
3783    //     indeterminate initial value; if the object or any of its
3784    //     subobjects are of const-qualified type, the program is
3785    //     ill-formed.
3786    //
3787    // This isn't technically an error in C, so we don't diagnose it.
3788    //
3789    // FIXME: Actually perform the POD/user-defined default
3790    // constructor check.
3791    if (getLangOptions().CPlusPlus &&
3792        Context.getCanonicalType(Type).isConstQualified() &&
3793        !Var->hasExternalStorage())
3794      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3795        << Var->getName()
3796        << SourceRange(Var->getLocation(), Var->getLocation());
3797#endif
3798  }
3799}
3800
3801Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3802                                                   DeclPtrTy *Group,
3803                                                   unsigned NumDecls) {
3804  llvm::SmallVector<Decl*, 8> Decls;
3805
3806  if (DS.isTypeSpecOwned())
3807    Decls.push_back((Decl*)DS.getTypeRep());
3808
3809  for (unsigned i = 0; i != NumDecls; ++i)
3810    if (Decl *D = Group[i].getAs<Decl>())
3811      Decls.push_back(D);
3812
3813  // Perform semantic analysis that depends on having fully processed both
3814  // the declarator and initializer.
3815  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3816    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3817    if (!IDecl)
3818      continue;
3819    QualType T = IDecl->getType();
3820
3821    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3822    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3823    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3824      if (T->isDependentType()) {
3825        // If T is dependent, we should not require a complete type.
3826        // (RequireCompleteType shouldn't be called with dependent types.)
3827        // But we still can at least check if we've got an array of unspecified
3828        // size without an initializer.
3829        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3830            !IDecl->getInit()) {
3831          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3832            << T;
3833          IDecl->setInvalidDecl();
3834        }
3835      } else if (!IDecl->isInvalidDecl()) {
3836        // If T is an incomplete array type with an initializer list that is
3837        // dependent on something, its size has not been fixed. We could attempt
3838        // to fix the size for such arrays, but we would still have to check
3839        // here for initializers containing a C++0x vararg expansion, e.g.
3840        // template <typename... Args> void f(Args... args) {
3841        //   int vals[] = { args };
3842        // }
3843        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3844        Expr *Init = IDecl->getInit();
3845        if (IAT && Init &&
3846            (Init->isTypeDependent() || Init->isValueDependent())) {
3847          // Check that the member type of the array is complete, at least.
3848          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3849                                  diag::err_typecheck_decl_incomplete_type))
3850            IDecl->setInvalidDecl();
3851        } else if (RequireCompleteType(IDecl->getLocation(), T,
3852                                      diag::err_typecheck_decl_incomplete_type))
3853          IDecl->setInvalidDecl();
3854      }
3855    }
3856    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3857    // object that has file scope without an initializer, and without a
3858    // storage-class specifier or with the storage-class specifier "static",
3859    // constitutes a tentative definition. Note: A tentative definition with
3860    // external linkage is valid (C99 6.2.2p5).
3861    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3862      if (const IncompleteArrayType *ArrayT
3863          = Context.getAsIncompleteArrayType(T)) {
3864        if (RequireCompleteType(IDecl->getLocation(),
3865                                ArrayT->getElementType(),
3866                                diag::err_illegal_decl_array_incomplete_type))
3867          IDecl->setInvalidDecl();
3868      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3869        // C99 6.9.2p3: If the declaration of an identifier for an object is
3870        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3871        // declared type shall not be an incomplete type.
3872        // NOTE: code such as the following
3873        //     static struct s;
3874        //     struct s { int a; };
3875        // is accepted by gcc. Hence here we issue a warning instead of
3876        // an error and we do not invalidate the static declaration.
3877        // NOTE: to avoid multiple warnings, only check the first declaration.
3878        if (IDecl->getPreviousDeclaration() == 0)
3879          RequireCompleteType(IDecl->getLocation(), T,
3880                              diag::ext_typecheck_decl_incomplete_type);
3881      }
3882    }
3883  }
3884  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3885                                                   Decls.data(), Decls.size()));
3886}
3887
3888
3889/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3890/// to introduce parameters into function prototype scope.
3891Sema::DeclPtrTy
3892Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3893  const DeclSpec &DS = D.getDeclSpec();
3894
3895  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3896  VarDecl::StorageClass StorageClass = VarDecl::None;
3897  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3898    StorageClass = VarDecl::Register;
3899  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3900    Diag(DS.getStorageClassSpecLoc(),
3901         diag::err_invalid_storage_class_in_func_decl);
3902    D.getMutableDeclSpec().ClearStorageClassSpecs();
3903  }
3904
3905  if (D.getDeclSpec().isThreadSpecified())
3906    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3907
3908  DiagnoseFunctionSpecifiers(D);
3909
3910  // Check that there are no default arguments inside the type of this
3911  // parameter (C++ only).
3912  if (getLangOptions().CPlusPlus)
3913    CheckExtraCXXDefaultArguments(D);
3914
3915  TypeSourceInfo *TInfo = 0;
3916  TagDecl *OwnedDecl = 0;
3917  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3918
3919  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3920    // C++ [dcl.fct]p6:
3921    //   Types shall not be defined in return or parameter types.
3922    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3923      << Context.getTypeDeclType(OwnedDecl);
3924  }
3925
3926  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3927  // Can this happen for params?  We already checked that they don't conflict
3928  // among each other.  Here they can only shadow globals, which is ok.
3929  IdentifierInfo *II = D.getIdentifier();
3930  if (II) {
3931    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3932      if (PrevDecl->isTemplateParameter()) {
3933        // Maybe we will complain about the shadowed template parameter.
3934        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3935        // Just pretend that we didn't see the previous declaration.
3936        PrevDecl = 0;
3937      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3938        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3939
3940        // Recover by removing the name
3941        II = 0;
3942        D.SetIdentifier(0, D.getIdentifierLoc());
3943      }
3944    }
3945  }
3946
3947  // Parameters can not be abstract class types.
3948  // For record types, this is done by the AbstractClassUsageDiagnoser once
3949  // the class has been completely parsed.
3950  if (!CurContext->isRecord() &&
3951      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3952                             diag::err_abstract_type_in_decl,
3953                             AbstractParamType))
3954    D.setInvalidType(true);
3955
3956  QualType T = adjustParameterType(parmDeclType);
3957
3958  ParmVarDecl *New
3959    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3960                          T, TInfo, StorageClass, 0);
3961
3962  if (D.isInvalidType())
3963    New->setInvalidDecl();
3964
3965  // Parameter declarators cannot be interface types. All ObjC objects are
3966  // passed by reference.
3967  if (T->isObjCInterfaceType()) {
3968    Diag(D.getIdentifierLoc(),
3969         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3970    New->setInvalidDecl();
3971  }
3972
3973  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3974  if (D.getCXXScopeSpec().isSet()) {
3975    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3976      << D.getCXXScopeSpec().getRange();
3977    New->setInvalidDecl();
3978  }
3979
3980  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3981  // duration shall not be qualified by an address-space qualifier."
3982  // Since all parameters have automatic store duration, they can not have
3983  // an address space.
3984  if (T.getAddressSpace() != 0) {
3985    Diag(D.getIdentifierLoc(),
3986         diag::err_arg_with_address_space);
3987    New->setInvalidDecl();
3988  }
3989
3990
3991  // Add the parameter declaration into this scope.
3992  S->AddDecl(DeclPtrTy::make(New));
3993  if (II)
3994    IdResolver.AddDecl(New);
3995
3996  ProcessDeclAttributes(S, New, D);
3997
3998  if (New->hasAttr<BlocksAttr>()) {
3999    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4000  }
4001  return DeclPtrTy::make(New);
4002}
4003
4004void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4005                                           SourceLocation LocAfterDecls) {
4006  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4007         "Not a function declarator!");
4008  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4009
4010  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4011  // for a K&R function.
4012  if (!FTI.hasPrototype) {
4013    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4014      --i;
4015      if (FTI.ArgInfo[i].Param == 0) {
4016        llvm::SmallString<256> Code;
4017        llvm::raw_svector_ostream(Code) << "  int "
4018                                        << FTI.ArgInfo[i].Ident->getName()
4019                                        << ";\n";
4020        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4021          << FTI.ArgInfo[i].Ident
4022          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4023
4024        // Implicitly declare the argument as type 'int' for lack of a better
4025        // type.
4026        DeclSpec DS;
4027        const char* PrevSpec; // unused
4028        unsigned DiagID; // unused
4029        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4030                           PrevSpec, DiagID);
4031        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4032        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4033        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4034      }
4035    }
4036  }
4037}
4038
4039Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4040                                              Declarator &D) {
4041  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4042  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4043         "Not a function declarator!");
4044  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4045
4046  if (FTI.hasPrototype) {
4047    // FIXME: Diagnose arguments without names in C.
4048  }
4049
4050  Scope *ParentScope = FnBodyScope->getParent();
4051
4052  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4053                                  MultiTemplateParamsArg(*this),
4054                                  /*IsFunctionDefinition=*/true);
4055  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4056}
4057
4058static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4059  // Don't warn about invalid declarations.
4060  if (FD->isInvalidDecl())
4061    return false;
4062
4063  // Or declarations that aren't global.
4064  if (!FD->isGlobal())
4065    return false;
4066
4067  // Don't warn about C++ member functions.
4068  if (isa<CXXMethodDecl>(FD))
4069    return false;
4070
4071  // Don't warn about 'main'.
4072  if (FD->isMain())
4073    return false;
4074
4075  // Don't warn about inline functions.
4076  if (FD->isInlineSpecified())
4077    return false;
4078
4079  // Don't warn about function templates.
4080  if (FD->getDescribedFunctionTemplate())
4081    return false;
4082
4083  // Don't warn about function template specializations.
4084  if (FD->isFunctionTemplateSpecialization())
4085    return false;
4086
4087  bool MissingPrototype = true;
4088  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4089       Prev; Prev = Prev->getPreviousDeclaration()) {
4090    // Ignore any declarations that occur in function or method
4091    // scope, because they aren't visible from the header.
4092    if (Prev->getDeclContext()->isFunctionOrMethod())
4093      continue;
4094
4095    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4096    break;
4097  }
4098
4099  return MissingPrototype;
4100}
4101
4102Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4103  // Clear the last template instantiation error context.
4104  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4105
4106  if (!D)
4107    return D;
4108  FunctionDecl *FD = 0;
4109
4110  if (FunctionTemplateDecl *FunTmpl
4111        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4112    FD = FunTmpl->getTemplatedDecl();
4113  else
4114    FD = cast<FunctionDecl>(D.getAs<Decl>());
4115
4116  CurFunctionNeedsScopeChecking = false;
4117
4118  // See if this is a redefinition.
4119  const FunctionDecl *Definition;
4120  if (FD->getBody(Definition)) {
4121    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4122    Diag(Definition->getLocation(), diag::note_previous_definition);
4123  }
4124
4125  // Builtin functions cannot be defined.
4126  if (unsigned BuiltinID = FD->getBuiltinID()) {
4127    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4128      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4129      FD->setInvalidDecl();
4130    }
4131  }
4132
4133  // The return type of a function definition must be complete
4134  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4135  QualType ResultType = FD->getResultType();
4136  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4137      !FD->isInvalidDecl() &&
4138      RequireCompleteType(FD->getLocation(), ResultType,
4139                          diag::err_func_def_incomplete_result))
4140    FD->setInvalidDecl();
4141
4142  // GNU warning -Wmissing-prototypes:
4143  //   Warn if a global function is defined without a previous
4144  //   prototype declaration. This warning is issued even if the
4145  //   definition itself provides a prototype. The aim is to detect
4146  //   global functions that fail to be declared in header files.
4147  if (ShouldWarnAboutMissingPrototype(FD))
4148    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4149
4150  if (FnBodyScope)
4151    PushDeclContext(FnBodyScope, FD);
4152
4153  // Check the validity of our function parameters
4154  CheckParmsForFunctionDef(FD);
4155
4156  // Introduce our parameters into the function scope
4157  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4158    ParmVarDecl *Param = FD->getParamDecl(p);
4159    Param->setOwningFunction(FD);
4160
4161    // If this has an identifier, add it to the scope stack.
4162    if (Param->getIdentifier() && FnBodyScope)
4163      PushOnScopeChains(Param, FnBodyScope);
4164  }
4165
4166  // Checking attributes of current function definition
4167  // dllimport attribute.
4168  if (FD->getAttr<DLLImportAttr>() &&
4169      (!FD->getAttr<DLLExportAttr>())) {
4170    // dllimport attribute cannot be applied to definition.
4171    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4172      Diag(FD->getLocation(),
4173           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4174        << "dllimport";
4175      FD->setInvalidDecl();
4176      return DeclPtrTy::make(FD);
4177    } else {
4178      // If a symbol previously declared dllimport is later defined, the
4179      // attribute is ignored in subsequent references, and a warning is
4180      // emitted.
4181      Diag(FD->getLocation(),
4182           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4183        << FD->getNameAsCString() << "dllimport";
4184    }
4185  }
4186  return DeclPtrTy::make(FD);
4187}
4188
4189Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4190  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4191}
4192
4193Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4194                                              bool IsInstantiation) {
4195  Decl *dcl = D.getAs<Decl>();
4196  Stmt *Body = BodyArg.takeAs<Stmt>();
4197
4198  FunctionDecl *FD = 0;
4199  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4200  if (FunTmpl)
4201    FD = FunTmpl->getTemplatedDecl();
4202  else
4203    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4204
4205  if (FD) {
4206    FD->setBody(Body);
4207    if (FD->isMain())
4208      // C and C++ allow for main to automagically return 0.
4209      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4210      FD->setHasImplicitReturnZero(true);
4211    else
4212      CheckFallThroughForFunctionDef(FD, Body);
4213
4214    if (!FD->isInvalidDecl())
4215      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4216
4217    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4218      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4219
4220    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4221  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4222    assert(MD == getCurMethodDecl() && "Method parsing confused");
4223    MD->setBody(Body);
4224    CheckFallThroughForFunctionDef(MD, Body);
4225    MD->setEndLoc(Body->getLocEnd());
4226
4227    if (!MD->isInvalidDecl())
4228      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4229  } else {
4230    Body->Destroy(Context);
4231    return DeclPtrTy();
4232  }
4233  if (!IsInstantiation)
4234    PopDeclContext();
4235
4236  // Verify and clean out per-function state.
4237
4238  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4239
4240  // Check goto/label use.
4241  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4242       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4243    LabelStmt *L = I->second;
4244
4245    // Verify that we have no forward references left.  If so, there was a goto
4246    // or address of a label taken, but no definition of it.  Label fwd
4247    // definitions are indicated with a null substmt.
4248    if (L->getSubStmt() != 0)
4249      continue;
4250
4251    // Emit error.
4252    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4253
4254    // At this point, we have gotos that use the bogus label.  Stitch it into
4255    // the function body so that they aren't leaked and that the AST is well
4256    // formed.
4257    if (Body == 0) {
4258      // The whole function wasn't parsed correctly, just delete this.
4259      L->Destroy(Context);
4260      continue;
4261    }
4262
4263    // Otherwise, the body is valid: we want to stitch the label decl into the
4264    // function somewhere so that it is properly owned and so that the goto
4265    // has a valid target.  Do this by creating a new compound stmt with the
4266    // label in it.
4267
4268    // Give the label a sub-statement.
4269    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4270
4271    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4272                               cast<CXXTryStmt>(Body)->getTryBlock() :
4273                               cast<CompoundStmt>(Body);
4274    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4275    Elements.push_back(L);
4276    Compound->setStmts(Context, &Elements[0], Elements.size());
4277  }
4278  FunctionLabelMap.clear();
4279
4280  if (!Body) return D;
4281
4282  // Verify that that gotos and switch cases don't jump into scopes illegally.
4283  if (CurFunctionNeedsScopeChecking)
4284    DiagnoseInvalidJumps(Body);
4285
4286  // C++ constructors that have function-try-blocks can't have return
4287  // statements in the handlers of that block. (C++ [except.handle]p14)
4288  // Verify this.
4289  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4290    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4291
4292  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4293    MarkBaseAndMemberDestructorsReferenced(Destructor);
4294
4295  // If any errors have occurred, clear out any temporaries that may have
4296  // been leftover. This ensures that these temporaries won't be picked up for
4297  // deletion in some later function.
4298  if (PP.getDiagnostics().hasErrorOccurred())
4299    ExprTemporaries.clear();
4300
4301  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4302  return D;
4303}
4304
4305/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4306/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4307NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4308                                          IdentifierInfo &II, Scope *S) {
4309  // Before we produce a declaration for an implicitly defined
4310  // function, see whether there was a locally-scoped declaration of
4311  // this name as a function or variable. If so, use that
4312  // (non-visible) declaration, and complain about it.
4313  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4314    = LocallyScopedExternalDecls.find(&II);
4315  if (Pos != LocallyScopedExternalDecls.end()) {
4316    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4317    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4318    return Pos->second;
4319  }
4320
4321  // Extension in C99.  Legal in C90, but warn about it.
4322  if (II.getName().startswith("__builtin_"))
4323    Diag(Loc, diag::warn_builtin_unknown) << &II;
4324  else if (getLangOptions().C99)
4325    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4326  else
4327    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4328
4329  // Set a Declarator for the implicit definition: int foo();
4330  const char *Dummy;
4331  DeclSpec DS;
4332  unsigned DiagID;
4333  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4334  Error = Error; // Silence warning.
4335  assert(!Error && "Error setting up implicit decl!");
4336  Declarator D(DS, Declarator::BlockContext);
4337  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4338                                             0, 0, false, SourceLocation(),
4339                                             false, 0,0,0, Loc, Loc, D),
4340                SourceLocation());
4341  D.SetIdentifier(&II, Loc);
4342
4343  // Insert this function into translation-unit scope.
4344
4345  DeclContext *PrevDC = CurContext;
4346  CurContext = Context.getTranslationUnitDecl();
4347
4348  FunctionDecl *FD =
4349 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4350  FD->setImplicit();
4351
4352  CurContext = PrevDC;
4353
4354  AddKnownFunctionAttributes(FD);
4355
4356  return FD;
4357}
4358
4359/// \brief Adds any function attributes that we know a priori based on
4360/// the declaration of this function.
4361///
4362/// These attributes can apply both to implicitly-declared builtins
4363/// (like __builtin___printf_chk) or to library-declared functions
4364/// like NSLog or printf.
4365void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4366  if (FD->isInvalidDecl())
4367    return;
4368
4369  // If this is a built-in function, map its builtin attributes to
4370  // actual attributes.
4371  if (unsigned BuiltinID = FD->getBuiltinID()) {
4372    // Handle printf-formatting attributes.
4373    unsigned FormatIdx;
4374    bool HasVAListArg;
4375    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4376      if (!FD->getAttr<FormatAttr>())
4377        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4378                                             HasVAListArg ? 0 : FormatIdx + 2));
4379    }
4380
4381    // Mark const if we don't care about errno and that is the only
4382    // thing preventing the function from being const. This allows
4383    // IRgen to use LLVM intrinsics for such functions.
4384    if (!getLangOptions().MathErrno &&
4385        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4386      if (!FD->getAttr<ConstAttr>())
4387        FD->addAttr(::new (Context) ConstAttr());
4388    }
4389
4390    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4391      FD->addAttr(::new (Context) NoReturnAttr());
4392  }
4393
4394  IdentifierInfo *Name = FD->getIdentifier();
4395  if (!Name)
4396    return;
4397  if ((!getLangOptions().CPlusPlus &&
4398       FD->getDeclContext()->isTranslationUnit()) ||
4399      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4400       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4401       LinkageSpecDecl::lang_c)) {
4402    // Okay: this could be a libc/libm/Objective-C function we know
4403    // about.
4404  } else
4405    return;
4406
4407  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4408    // FIXME: NSLog and NSLogv should be target specific
4409    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4410      // FIXME: We known better than our headers.
4411      const_cast<FormatAttr *>(Format)->setType("printf");
4412    } else
4413      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4414                                             Name->isStr("NSLogv") ? 0 : 2));
4415  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4416    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4417    // target-specific builtins, perhaps?
4418    if (!FD->getAttr<FormatAttr>())
4419      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4420                                             Name->isStr("vasprintf") ? 0 : 3));
4421  }
4422}
4423
4424TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4425                                    TypeSourceInfo *TInfo) {
4426  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4427  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4428
4429  if (!TInfo) {
4430    assert(D.isInvalidType() && "no declarator info for valid type");
4431    TInfo = Context.getTrivialTypeSourceInfo(T);
4432  }
4433
4434  // Scope manipulation handled by caller.
4435  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4436                                           D.getIdentifierLoc(),
4437                                           D.getIdentifier(),
4438                                           TInfo);
4439
4440  if (const TagType *TT = T->getAs<TagType>()) {
4441    TagDecl *TD = TT->getDecl();
4442
4443    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4444    // keep track of the TypedefDecl.
4445    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4446      TD->setTypedefForAnonDecl(NewTD);
4447  }
4448
4449  if (D.isInvalidType())
4450    NewTD->setInvalidDecl();
4451  return NewTD;
4452}
4453
4454
4455/// \brief Determine whether a tag with a given kind is acceptable
4456/// as a redeclaration of the given tag declaration.
4457///
4458/// \returns true if the new tag kind is acceptable, false otherwise.
4459bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4460                                        TagDecl::TagKind NewTag,
4461                                        SourceLocation NewTagLoc,
4462                                        const IdentifierInfo &Name) {
4463  // C++ [dcl.type.elab]p3:
4464  //   The class-key or enum keyword present in the
4465  //   elaborated-type-specifier shall agree in kind with the
4466  //   declaration to which the name in theelaborated-type-specifier
4467  //   refers. This rule also applies to the form of
4468  //   elaborated-type-specifier that declares a class-name or
4469  //   friend class since it can be construed as referring to the
4470  //   definition of the class. Thus, in any
4471  //   elaborated-type-specifier, the enum keyword shall be used to
4472  //   refer to an enumeration (7.2), the union class-keyshall be
4473  //   used to refer to a union (clause 9), and either the class or
4474  //   struct class-key shall be used to refer to a class (clause 9)
4475  //   declared using the class or struct class-key.
4476  TagDecl::TagKind OldTag = Previous->getTagKind();
4477  if (OldTag == NewTag)
4478    return true;
4479
4480  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4481      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4482    // Warn about the struct/class tag mismatch.
4483    bool isTemplate = false;
4484    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4485      isTemplate = Record->getDescribedClassTemplate();
4486
4487    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4488      << (NewTag == TagDecl::TK_class)
4489      << isTemplate << &Name
4490      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4491                              OldTag == TagDecl::TK_class? "class" : "struct");
4492    Diag(Previous->getLocation(), diag::note_previous_use);
4493    return true;
4494  }
4495  return false;
4496}
4497
4498/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4499/// former case, Name will be non-null.  In the later case, Name will be null.
4500/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4501/// reference/declaration/definition of a tag.
4502Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4503                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4504                               IdentifierInfo *Name, SourceLocation NameLoc,
4505                               AttributeList *Attr, AccessSpecifier AS,
4506                               MultiTemplateParamsArg TemplateParameterLists,
4507                               bool &OwnedDecl, bool &IsDependent) {
4508  // If this is not a definition, it must have a name.
4509  assert((Name != 0 || TUK == TUK_Definition) &&
4510         "Nameless record must be a definition!");
4511
4512  OwnedDecl = false;
4513  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4514
4515  // FIXME: Check explicit specializations more carefully.
4516  bool isExplicitSpecialization = false;
4517  if (TUK != TUK_Reference) {
4518    if (TemplateParameterList *TemplateParams
4519          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4520                        (TemplateParameterList**)TemplateParameterLists.get(),
4521                                              TemplateParameterLists.size(),
4522                                                    isExplicitSpecialization)) {
4523      if (TemplateParams->size() > 0) {
4524        // This is a declaration or definition of a class template (which may
4525        // be a member of another template).
4526        OwnedDecl = false;
4527        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4528                                               SS, Name, NameLoc, Attr,
4529                                               TemplateParams,
4530                                               AS);
4531        TemplateParameterLists.release();
4532        return Result.get();
4533      } else {
4534        // The "template<>" header is extraneous.
4535        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4536          << ElaboratedType::getNameForTagKind(Kind) << Name;
4537        isExplicitSpecialization = true;
4538      }
4539    }
4540
4541    TemplateParameterLists.release();
4542  }
4543
4544  DeclContext *SearchDC = CurContext;
4545  DeclContext *DC = CurContext;
4546  bool isStdBadAlloc = false;
4547  bool Invalid = false;
4548
4549  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4550                                                   : NotForRedeclaration);
4551
4552  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4553
4554  if (Name && SS.isNotEmpty()) {
4555    // We have a nested-name tag ('struct foo::bar').
4556
4557    // Check for invalid 'foo::'.
4558    if (SS.isInvalid()) {
4559      Name = 0;
4560      goto CreateNewDecl;
4561    }
4562
4563    // If this is a friend or a reference to a class in a dependent
4564    // context, don't try to make a decl for it.
4565    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4566      DC = computeDeclContext(SS, false);
4567      if (!DC) {
4568        IsDependent = true;
4569        return DeclPtrTy();
4570      }
4571    }
4572
4573    if (RequireCompleteDeclContext(SS))
4574      return DeclPtrTy::make((Decl *)0);
4575
4576    DC = computeDeclContext(SS, true);
4577    SearchDC = DC;
4578    // Look-up name inside 'foo::'.
4579    LookupQualifiedName(Previous, DC);
4580
4581    if (Previous.isAmbiguous())
4582      return DeclPtrTy();
4583
4584    // A tag 'foo::bar' must already exist.
4585    if (Previous.empty()) {
4586      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4587      Name = 0;
4588      Invalid = true;
4589      goto CreateNewDecl;
4590    }
4591  } else if (Name) {
4592    // If this is a named struct, check to see if there was a previous forward
4593    // declaration or definition.
4594    // FIXME: We're looking into outer scopes here, even when we
4595    // shouldn't be. Doing so can result in ambiguities that we
4596    // shouldn't be diagnosing.
4597    LookupName(Previous, S);
4598
4599    // Note:  there used to be some attempt at recovery here.
4600    if (Previous.isAmbiguous())
4601      return DeclPtrTy();
4602
4603    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4604      // FIXME: This makes sure that we ignore the contexts associated
4605      // with C structs, unions, and enums when looking for a matching
4606      // tag declaration or definition. See the similar lookup tweak
4607      // in Sema::LookupName; is there a better way to deal with this?
4608      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4609        SearchDC = SearchDC->getParent();
4610    }
4611  }
4612
4613  if (Previous.isSingleResult() &&
4614      Previous.getFoundDecl()->isTemplateParameter()) {
4615    // Maybe we will complain about the shadowed template parameter.
4616    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4617    // Just pretend that we didn't see the previous declaration.
4618    Previous.clear();
4619  }
4620
4621  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4622      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4623    // This is a declaration of or a reference to "std::bad_alloc".
4624    isStdBadAlloc = true;
4625
4626    if (Previous.empty() && StdBadAlloc) {
4627      // std::bad_alloc has been implicitly declared (but made invisible to
4628      // name lookup). Fill in this implicit declaration as the previous
4629      // declaration, so that the declarations get chained appropriately.
4630      Previous.addDecl(StdBadAlloc);
4631    }
4632  }
4633
4634  if (!Previous.empty()) {
4635    assert(Previous.isSingleResult());
4636    NamedDecl *PrevDecl = Previous.getFoundDecl();
4637    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4638      // If this is a use of a previous tag, or if the tag is already declared
4639      // in the same scope (so that the definition/declaration completes or
4640      // rementions the tag), reuse the decl.
4641      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4642          isDeclInScope(PrevDecl, SearchDC, S)) {
4643        // Make sure that this wasn't declared as an enum and now used as a
4644        // struct or something similar.
4645        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4646          bool SafeToContinue
4647            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4648               Kind != TagDecl::TK_enum);
4649          if (SafeToContinue)
4650            Diag(KWLoc, diag::err_use_with_wrong_tag)
4651              << Name
4652              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4653                                                  PrevTagDecl->getKindName());
4654          else
4655            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4656          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4657
4658          if (SafeToContinue)
4659            Kind = PrevTagDecl->getTagKind();
4660          else {
4661            // Recover by making this an anonymous redefinition.
4662            Name = 0;
4663            Previous.clear();
4664            Invalid = true;
4665          }
4666        }
4667
4668        if (!Invalid) {
4669          // If this is a use, just return the declaration we found.
4670
4671          // FIXME: In the future, return a variant or some other clue
4672          // for the consumer of this Decl to know it doesn't own it.
4673          // For our current ASTs this shouldn't be a problem, but will
4674          // need to be changed with DeclGroups.
4675          if (TUK == TUK_Reference || TUK == TUK_Friend)
4676            return DeclPtrTy::make(PrevTagDecl);
4677
4678          // Diagnose attempts to redefine a tag.
4679          if (TUK == TUK_Definition) {
4680            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4681              // If we're defining a specialization and the previous definition
4682              // is from an implicit instantiation, don't emit an error
4683              // here; we'll catch this in the general case below.
4684              if (!isExplicitSpecialization ||
4685                  !isa<CXXRecordDecl>(Def) ||
4686                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4687                                               == TSK_ExplicitSpecialization) {
4688                Diag(NameLoc, diag::err_redefinition) << Name;
4689                Diag(Def->getLocation(), diag::note_previous_definition);
4690                // If this is a redefinition, recover by making this
4691                // struct be anonymous, which will make any later
4692                // references get the previous definition.
4693                Name = 0;
4694                Previous.clear();
4695                Invalid = true;
4696              }
4697            } else {
4698              // If the type is currently being defined, complain
4699              // about a nested redefinition.
4700              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4701              if (Tag->isBeingDefined()) {
4702                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4703                Diag(PrevTagDecl->getLocation(),
4704                     diag::note_previous_definition);
4705                Name = 0;
4706                Previous.clear();
4707                Invalid = true;
4708              }
4709            }
4710
4711            // Okay, this is definition of a previously declared or referenced
4712            // tag PrevDecl. We're going to create a new Decl for it.
4713          }
4714        }
4715        // If we get here we have (another) forward declaration or we
4716        // have a definition.  Just create a new decl.
4717
4718      } else {
4719        // If we get here, this is a definition of a new tag type in a nested
4720        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4721        // new decl/type.  We set PrevDecl to NULL so that the entities
4722        // have distinct types.
4723        Previous.clear();
4724      }
4725      // If we get here, we're going to create a new Decl. If PrevDecl
4726      // is non-NULL, it's a definition of the tag declared by
4727      // PrevDecl. If it's NULL, we have a new definition.
4728    } else {
4729      // PrevDecl is a namespace, template, or anything else
4730      // that lives in the IDNS_Tag identifier namespace.
4731      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4732        // The tag name clashes with a namespace name, issue an error and
4733        // recover by making this tag be anonymous.
4734        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4735        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4736        Name = 0;
4737        Previous.clear();
4738        Invalid = true;
4739      } else {
4740        // The existing declaration isn't relevant to us; we're in a
4741        // new scope, so clear out the previous declaration.
4742        Previous.clear();
4743      }
4744    }
4745  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4746    // C++ [basic.scope.pdecl]p5:
4747    //   -- for an elaborated-type-specifier of the form
4748    //
4749    //          class-key identifier
4750    //
4751    //      if the elaborated-type-specifier is used in the
4752    //      decl-specifier-seq or parameter-declaration-clause of a
4753    //      function defined in namespace scope, the identifier is
4754    //      declared as a class-name in the namespace that contains
4755    //      the declaration; otherwise, except as a friend
4756    //      declaration, the identifier is declared in the smallest
4757    //      non-class, non-function-prototype scope that contains the
4758    //      declaration.
4759    //
4760    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4761    // C structs and unions.
4762    //
4763    // It is an error in C++ to declare (rather than define) an enum
4764    // type, including via an elaborated type specifier.  We'll
4765    // diagnose that later; for now, declare the enum in the same
4766    // scope as we would have picked for any other tag type.
4767    //
4768    // GNU C also supports this behavior as part of its incomplete
4769    // enum types extension, while GNU C++ does not.
4770    //
4771    // Find the context where we'll be declaring the tag.
4772    // FIXME: We would like to maintain the current DeclContext as the
4773    // lexical context,
4774    while (SearchDC->isRecord())
4775      SearchDC = SearchDC->getParent();
4776
4777    // Find the scope where we'll be declaring the tag.
4778    while (S->isClassScope() ||
4779           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4780           ((S->getFlags() & Scope::DeclScope) == 0) ||
4781           (S->getEntity() &&
4782            ((DeclContext *)S->getEntity())->isTransparentContext()))
4783      S = S->getParent();
4784
4785  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4786    // C++ [namespace.memdef]p3:
4787    //   If a friend declaration in a non-local class first declares a
4788    //   class or function, the friend class or function is a member of
4789    //   the innermost enclosing namespace.
4790    while (!SearchDC->isFileContext())
4791      SearchDC = SearchDC->getParent();
4792
4793    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4794    while (S->getEntity() != SearchDC)
4795      S = S->getParent();
4796  }
4797
4798CreateNewDecl:
4799
4800  TagDecl *PrevDecl = 0;
4801  if (Previous.isSingleResult())
4802    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4803
4804  // If there is an identifier, use the location of the identifier as the
4805  // location of the decl, otherwise use the location of the struct/union
4806  // keyword.
4807  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4808
4809  // Otherwise, create a new declaration. If there is a previous
4810  // declaration of the same entity, the two will be linked via
4811  // PrevDecl.
4812  TagDecl *New;
4813
4814  if (Kind == TagDecl::TK_enum) {
4815    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4816    // enum X { A, B, C } D;    D should chain to X.
4817    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4818                           cast_or_null<EnumDecl>(PrevDecl));
4819    // If this is an undefined enum, warn.
4820    if (TUK != TUK_Definition && !Invalid)  {
4821      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4822                                              : diag::ext_forward_ref_enum;
4823      Diag(Loc, DK);
4824    }
4825  } else {
4826    // struct/union/class
4827
4828    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4829    // struct X { int A; } D;    D should chain to X.
4830    if (getLangOptions().CPlusPlus) {
4831      // FIXME: Look for a way to use RecordDecl for simple structs.
4832      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4833                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4834
4835      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4836        StdBadAlloc = cast<CXXRecordDecl>(New);
4837    } else
4838      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4839                               cast_or_null<RecordDecl>(PrevDecl));
4840  }
4841
4842  if (Kind != TagDecl::TK_enum) {
4843    // Handle #pragma pack: if the #pragma pack stack has non-default
4844    // alignment, make up a packed attribute for this decl. These
4845    // attributes are checked when the ASTContext lays out the
4846    // structure.
4847    //
4848    // It is important for implementing the correct semantics that this
4849    // happen here (in act on tag decl). The #pragma pack stack is
4850    // maintained as a result of parser callbacks which can occur at
4851    // many points during the parsing of a struct declaration (because
4852    // the #pragma tokens are effectively skipped over during the
4853    // parsing of the struct).
4854    if (unsigned Alignment = getPragmaPackAlignment())
4855      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4856  }
4857
4858  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4859    // C++ [dcl.typedef]p3:
4860    //   [...] Similarly, in a given scope, a class or enumeration
4861    //   shall not be declared with the same name as a typedef-name
4862    //   that is declared in that scope and refers to a type other
4863    //   than the class or enumeration itself.
4864    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4865                        ForRedeclaration);
4866    LookupName(Lookup, S);
4867    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4868    NamedDecl *PrevTypedefNamed = PrevTypedef;
4869    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4870        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4871          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4872      Diag(Loc, diag::err_tag_definition_of_typedef)
4873        << Context.getTypeDeclType(New)
4874        << PrevTypedef->getUnderlyingType();
4875      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4876      Invalid = true;
4877    }
4878  }
4879
4880  // If this is a specialization of a member class (of a class template),
4881  // check the specialization.
4882  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4883    Invalid = true;
4884
4885  if (Invalid)
4886    New->setInvalidDecl();
4887
4888  if (Attr)
4889    ProcessDeclAttributeList(S, New, Attr);
4890
4891  // If we're declaring or defining a tag in function prototype scope
4892  // in C, note that this type can only be used within the function.
4893  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4894    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4895
4896  // Set the lexical context. If the tag has a C++ scope specifier, the
4897  // lexical context will be different from the semantic context.
4898  New->setLexicalDeclContext(CurContext);
4899
4900  // Mark this as a friend decl if applicable.
4901  if (TUK == TUK_Friend)
4902    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4903
4904  // Set the access specifier.
4905  if (!Invalid && TUK != TUK_Friend)
4906    SetMemberAccessSpecifier(New, PrevDecl, AS);
4907
4908  if (TUK == TUK_Definition)
4909    New->startDefinition();
4910
4911  // If this has an identifier, add it to the scope stack.
4912  if (TUK == TUK_Friend) {
4913    // We might be replacing an existing declaration in the lookup tables;
4914    // if so, borrow its access specifier.
4915    if (PrevDecl)
4916      New->setAccess(PrevDecl->getAccess());
4917
4918    // Friend tag decls are visible in fairly strange ways.
4919    if (!CurContext->isDependentContext()) {
4920      DeclContext *DC = New->getDeclContext()->getLookupContext();
4921      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4922      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4923        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4924    }
4925  } else if (Name) {
4926    S = getNonFieldDeclScope(S);
4927    PushOnScopeChains(New, S);
4928  } else {
4929    CurContext->addDecl(New);
4930  }
4931
4932  // If this is the C FILE type, notify the AST context.
4933  if (IdentifierInfo *II = New->getIdentifier())
4934    if (!New->isInvalidDecl() &&
4935        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4936        II->isStr("FILE"))
4937      Context.setFILEDecl(New);
4938
4939  OwnedDecl = true;
4940  return DeclPtrTy::make(New);
4941}
4942
4943void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4944  AdjustDeclIfTemplate(TagD);
4945  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4946
4947  // Enter the tag context.
4948  PushDeclContext(S, Tag);
4949
4950  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4951    FieldCollector->StartClass();
4952
4953    if (Record->getIdentifier()) {
4954      // C++ [class]p2:
4955      //   [...] The class-name is also inserted into the scope of the
4956      //   class itself; this is known as the injected-class-name. For
4957      //   purposes of access checking, the injected-class-name is treated
4958      //   as if it were a public member name.
4959      CXXRecordDecl *InjectedClassName
4960        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4961                                CurContext, Record->getLocation(),
4962                                Record->getIdentifier(),
4963                                Record->getTagKeywordLoc(),
4964                                Record);
4965      InjectedClassName->setImplicit();
4966      InjectedClassName->setAccess(AS_public);
4967      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4968        InjectedClassName->setDescribedClassTemplate(Template);
4969      PushOnScopeChains(InjectedClassName, S);
4970      assert(InjectedClassName->isInjectedClassName() &&
4971             "Broken injected-class-name");
4972    }
4973  }
4974}
4975
4976void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4977                                    SourceLocation RBraceLoc) {
4978  AdjustDeclIfTemplate(TagD);
4979  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4980  Tag->setRBraceLoc(RBraceLoc);
4981
4982  if (isa<CXXRecordDecl>(Tag))
4983    FieldCollector->FinishClass();
4984
4985  // Exit this scope of this tag's definition.
4986  PopDeclContext();
4987
4988  // Notify the consumer that we've defined a tag.
4989  Consumer.HandleTagDeclDefinition(Tag);
4990}
4991
4992// Note that FieldName may be null for anonymous bitfields.
4993bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4994                          QualType FieldTy, const Expr *BitWidth,
4995                          bool *ZeroWidth) {
4996  // Default to true; that shouldn't confuse checks for emptiness
4997  if (ZeroWidth)
4998    *ZeroWidth = true;
4999
5000  // C99 6.7.2.1p4 - verify the field type.
5001  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5002  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5003    // Handle incomplete types with specific error.
5004    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5005      return true;
5006    if (FieldName)
5007      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5008        << FieldName << FieldTy << BitWidth->getSourceRange();
5009    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5010      << FieldTy << BitWidth->getSourceRange();
5011  }
5012
5013  // If the bit-width is type- or value-dependent, don't try to check
5014  // it now.
5015  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5016    return false;
5017
5018  llvm::APSInt Value;
5019  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5020    return true;
5021
5022  if (Value != 0 && ZeroWidth)
5023    *ZeroWidth = false;
5024
5025  // Zero-width bitfield is ok for anonymous field.
5026  if (Value == 0 && FieldName)
5027    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5028
5029  if (Value.isSigned() && Value.isNegative()) {
5030    if (FieldName)
5031      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5032               << FieldName << Value.toString(10);
5033    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5034      << Value.toString(10);
5035  }
5036
5037  if (!FieldTy->isDependentType()) {
5038    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5039    if (Value.getZExtValue() > TypeSize) {
5040      if (FieldName)
5041        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5042          << FieldName << (unsigned)TypeSize;
5043      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5044        << (unsigned)TypeSize;
5045    }
5046  }
5047
5048  return false;
5049}
5050
5051/// ActOnField - Each field of a struct/union/class is passed into this in order
5052/// to create a FieldDecl object for it.
5053Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5054                                 SourceLocation DeclStart,
5055                                 Declarator &D, ExprTy *BitfieldWidth) {
5056  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5057                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5058                               AS_public);
5059  return DeclPtrTy::make(Res);
5060}
5061
5062/// HandleField - Analyze a field of a C struct or a C++ data member.
5063///
5064FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5065                             SourceLocation DeclStart,
5066                             Declarator &D, Expr *BitWidth,
5067                             AccessSpecifier AS) {
5068  IdentifierInfo *II = D.getIdentifier();
5069  SourceLocation Loc = DeclStart;
5070  if (II) Loc = D.getIdentifierLoc();
5071
5072  TypeSourceInfo *TInfo = 0;
5073  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5074  if (getLangOptions().CPlusPlus)
5075    CheckExtraCXXDefaultArguments(D);
5076
5077  DiagnoseFunctionSpecifiers(D);
5078
5079  if (D.getDeclSpec().isThreadSpecified())
5080    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5081
5082  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5083                                         ForRedeclaration);
5084
5085  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5086    // Maybe we will complain about the shadowed template parameter.
5087    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5088    // Just pretend that we didn't see the previous declaration.
5089    PrevDecl = 0;
5090  }
5091
5092  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5093    PrevDecl = 0;
5094
5095  bool Mutable
5096    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5097  SourceLocation TSSL = D.getSourceRange().getBegin();
5098  FieldDecl *NewFD
5099    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5100                     AS, PrevDecl, &D);
5101  if (NewFD->isInvalidDecl() && PrevDecl) {
5102    // Don't introduce NewFD into scope; there's already something
5103    // with the same name in the same scope.
5104  } else if (II) {
5105    PushOnScopeChains(NewFD, S);
5106  } else
5107    Record->addDecl(NewFD);
5108
5109  return NewFD;
5110}
5111
5112/// \brief Build a new FieldDecl and check its well-formedness.
5113///
5114/// This routine builds a new FieldDecl given the fields name, type,
5115/// record, etc. \p PrevDecl should refer to any previous declaration
5116/// with the same name and in the same scope as the field to be
5117/// created.
5118///
5119/// \returns a new FieldDecl.
5120///
5121/// \todo The Declarator argument is a hack. It will be removed once
5122FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5123                                TypeSourceInfo *TInfo,
5124                                RecordDecl *Record, SourceLocation Loc,
5125                                bool Mutable, Expr *BitWidth,
5126                                SourceLocation TSSL,
5127                                AccessSpecifier AS, NamedDecl *PrevDecl,
5128                                Declarator *D) {
5129  IdentifierInfo *II = Name.getAsIdentifierInfo();
5130  bool InvalidDecl = false;
5131  if (D) InvalidDecl = D->isInvalidType();
5132
5133  // If we receive a broken type, recover by assuming 'int' and
5134  // marking this declaration as invalid.
5135  if (T.isNull()) {
5136    InvalidDecl = true;
5137    T = Context.IntTy;
5138  }
5139
5140  QualType EltTy = Context.getBaseElementType(T);
5141  if (!EltTy->isDependentType() &&
5142      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5143    InvalidDecl = true;
5144
5145  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5146  // than a variably modified type.
5147  if (!InvalidDecl && T->isVariablyModifiedType()) {
5148    bool SizeIsNegative;
5149    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5150                                                           SizeIsNegative);
5151    if (!FixedTy.isNull()) {
5152      Diag(Loc, diag::warn_illegal_constant_array_size);
5153      T = FixedTy;
5154    } else {
5155      if (SizeIsNegative)
5156        Diag(Loc, diag::err_typecheck_negative_array_size);
5157      else
5158        Diag(Loc, diag::err_typecheck_field_variable_size);
5159      InvalidDecl = true;
5160    }
5161  }
5162
5163  // Fields can not have abstract class types
5164  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5165                                             diag::err_abstract_type_in_decl,
5166                                             AbstractFieldType))
5167    InvalidDecl = true;
5168
5169  bool ZeroWidth = false;
5170  // If this is declared as a bit-field, check the bit-field.
5171  if (!InvalidDecl && BitWidth &&
5172      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5173    InvalidDecl = true;
5174    DeleteExpr(BitWidth);
5175    BitWidth = 0;
5176    ZeroWidth = false;
5177  }
5178
5179  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5180                                       BitWidth, Mutable);
5181  if (InvalidDecl)
5182    NewFD->setInvalidDecl();
5183
5184  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5185    Diag(Loc, diag::err_duplicate_member) << II;
5186    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5187    NewFD->setInvalidDecl();
5188  }
5189
5190  if (getLangOptions().CPlusPlus) {
5191    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5192
5193    if (!T->isPODType())
5194      CXXRecord->setPOD(false);
5195    if (!ZeroWidth)
5196      CXXRecord->setEmpty(false);
5197
5198    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5199      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5200
5201      if (!RDecl->hasTrivialConstructor())
5202        CXXRecord->setHasTrivialConstructor(false);
5203      if (!RDecl->hasTrivialCopyConstructor())
5204        CXXRecord->setHasTrivialCopyConstructor(false);
5205      if (!RDecl->hasTrivialCopyAssignment())
5206        CXXRecord->setHasTrivialCopyAssignment(false);
5207      if (!RDecl->hasTrivialDestructor())
5208        CXXRecord->setHasTrivialDestructor(false);
5209
5210      // C++ 9.5p1: An object of a class with a non-trivial
5211      // constructor, a non-trivial copy constructor, a non-trivial
5212      // destructor, or a non-trivial copy assignment operator
5213      // cannot be a member of a union, nor can an array of such
5214      // objects.
5215      // TODO: C++0x alters this restriction significantly.
5216      if (Record->isUnion()) {
5217        // We check for copy constructors before constructors
5218        // because otherwise we'll never get complaints about
5219        // copy constructors.
5220
5221        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5222
5223        CXXSpecialMember member;
5224        if (!RDecl->hasTrivialCopyConstructor())
5225          member = CXXCopyConstructor;
5226        else if (!RDecl->hasTrivialConstructor())
5227          member = CXXDefaultConstructor;
5228        else if (!RDecl->hasTrivialCopyAssignment())
5229          member = CXXCopyAssignment;
5230        else if (!RDecl->hasTrivialDestructor())
5231          member = CXXDestructor;
5232        else
5233          member = invalid;
5234
5235        if (member != invalid) {
5236          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5237          DiagnoseNontrivial(RT, member);
5238          NewFD->setInvalidDecl();
5239        }
5240      }
5241    }
5242  }
5243
5244  // FIXME: We need to pass in the attributes given an AST
5245  // representation, not a parser representation.
5246  if (D)
5247    // FIXME: What to pass instead of TUScope?
5248    ProcessDeclAttributes(TUScope, NewFD, *D);
5249
5250  if (T.isObjCGCWeak())
5251    Diag(Loc, diag::warn_attribute_weak_on_field);
5252
5253  NewFD->setAccess(AS);
5254
5255  // C++ [dcl.init.aggr]p1:
5256  //   An aggregate is an array or a class (clause 9) with [...] no
5257  //   private or protected non-static data members (clause 11).
5258  // A POD must be an aggregate.
5259  if (getLangOptions().CPlusPlus &&
5260      (AS == AS_private || AS == AS_protected)) {
5261    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5262    CXXRecord->setAggregate(false);
5263    CXXRecord->setPOD(false);
5264  }
5265
5266  return NewFD;
5267}
5268
5269/// DiagnoseNontrivial - Given that a class has a non-trivial
5270/// special member, figure out why.
5271void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5272  QualType QT(T, 0U);
5273  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5274
5275  // Check whether the member was user-declared.
5276  switch (member) {
5277  case CXXDefaultConstructor:
5278    if (RD->hasUserDeclaredConstructor()) {
5279      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5280      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5281        const FunctionDecl *body = 0;
5282        ci->getBody(body);
5283        if (!body ||
5284            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5285          SourceLocation CtorLoc = ci->getLocation();
5286          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5287          return;
5288        }
5289      }
5290
5291      assert(0 && "found no user-declared constructors");
5292      return;
5293    }
5294    break;
5295
5296  case CXXCopyConstructor:
5297    if (RD->hasUserDeclaredCopyConstructor()) {
5298      SourceLocation CtorLoc =
5299        RD->getCopyConstructor(Context, 0)->getLocation();
5300      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5301      return;
5302    }
5303    break;
5304
5305  case CXXCopyAssignment:
5306    if (RD->hasUserDeclaredCopyAssignment()) {
5307      // FIXME: this should use the location of the copy
5308      // assignment, not the type.
5309      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5310      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5311      return;
5312    }
5313    break;
5314
5315  case CXXDestructor:
5316    if (RD->hasUserDeclaredDestructor()) {
5317      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5318      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5319      return;
5320    }
5321    break;
5322  }
5323
5324  typedef CXXRecordDecl::base_class_iterator base_iter;
5325
5326  // Virtual bases and members inhibit trivial copying/construction,
5327  // but not trivial destruction.
5328  if (member != CXXDestructor) {
5329    // Check for virtual bases.  vbases includes indirect virtual bases,
5330    // so we just iterate through the direct bases.
5331    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5332      if (bi->isVirtual()) {
5333        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5334        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5335        return;
5336      }
5337
5338    // Check for virtual methods.
5339    typedef CXXRecordDecl::method_iterator meth_iter;
5340    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5341         ++mi) {
5342      if (mi->isVirtual()) {
5343        SourceLocation MLoc = mi->getSourceRange().getBegin();
5344        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5345        return;
5346      }
5347    }
5348  }
5349
5350  bool (CXXRecordDecl::*hasTrivial)() const;
5351  switch (member) {
5352  case CXXDefaultConstructor:
5353    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5354  case CXXCopyConstructor:
5355    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5356  case CXXCopyAssignment:
5357    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5358  case CXXDestructor:
5359    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5360  default:
5361    assert(0 && "unexpected special member"); return;
5362  }
5363
5364  // Check for nontrivial bases (and recurse).
5365  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5366    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5367    assert(BaseRT && "Don't know how to handle dependent bases");
5368    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5369    if (!(BaseRecTy->*hasTrivial)()) {
5370      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5371      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5372      DiagnoseNontrivial(BaseRT, member);
5373      return;
5374    }
5375  }
5376
5377  // Check for nontrivial members (and recurse).
5378  typedef RecordDecl::field_iterator field_iter;
5379  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5380       ++fi) {
5381    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5382    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5383      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5384
5385      if (!(EltRD->*hasTrivial)()) {
5386        SourceLocation FLoc = (*fi)->getLocation();
5387        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5388        DiagnoseNontrivial(EltRT, member);
5389        return;
5390      }
5391    }
5392  }
5393
5394  assert(0 && "found no explanation for non-trivial member");
5395}
5396
5397/// TranslateIvarVisibility - Translate visibility from a token ID to an
5398///  AST enum value.
5399static ObjCIvarDecl::AccessControl
5400TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5401  switch (ivarVisibility) {
5402  default: assert(0 && "Unknown visitibility kind");
5403  case tok::objc_private: return ObjCIvarDecl::Private;
5404  case tok::objc_public: return ObjCIvarDecl::Public;
5405  case tok::objc_protected: return ObjCIvarDecl::Protected;
5406  case tok::objc_package: return ObjCIvarDecl::Package;
5407  }
5408}
5409
5410/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5411/// in order to create an IvarDecl object for it.
5412Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5413                                SourceLocation DeclStart,
5414                                DeclPtrTy IntfDecl,
5415                                Declarator &D, ExprTy *BitfieldWidth,
5416                                tok::ObjCKeywordKind Visibility) {
5417
5418  IdentifierInfo *II = D.getIdentifier();
5419  Expr *BitWidth = (Expr*)BitfieldWidth;
5420  SourceLocation Loc = DeclStart;
5421  if (II) Loc = D.getIdentifierLoc();
5422
5423  // FIXME: Unnamed fields can be handled in various different ways, for
5424  // example, unnamed unions inject all members into the struct namespace!
5425
5426  TypeSourceInfo *TInfo = 0;
5427  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5428
5429  if (BitWidth) {
5430    // 6.7.2.1p3, 6.7.2.1p4
5431    if (VerifyBitField(Loc, II, T, BitWidth)) {
5432      D.setInvalidType();
5433      DeleteExpr(BitWidth);
5434      BitWidth = 0;
5435    }
5436  } else {
5437    // Not a bitfield.
5438
5439    // validate II.
5440
5441  }
5442
5443  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5444  // than a variably modified type.
5445  if (T->isVariablyModifiedType()) {
5446    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5447    D.setInvalidType();
5448  }
5449
5450  // Get the visibility (access control) for this ivar.
5451  ObjCIvarDecl::AccessControl ac =
5452    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5453                                        : ObjCIvarDecl::None;
5454  // Must set ivar's DeclContext to its enclosing interface.
5455  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5456  DeclContext *EnclosingContext;
5457  if (ObjCImplementationDecl *IMPDecl =
5458      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5459    // Case of ivar declared in an implementation. Context is that of its class.
5460    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5461    assert(IDecl && "No class- ActOnIvar");
5462    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5463  } else
5464    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5465  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5466
5467  // Construct the decl.
5468  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5469                                             EnclosingContext, Loc, II, T,
5470                                             TInfo, ac, (Expr *)BitfieldWidth);
5471
5472  if (II) {
5473    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5474                                           ForRedeclaration);
5475    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5476        && !isa<TagDecl>(PrevDecl)) {
5477      Diag(Loc, diag::err_duplicate_member) << II;
5478      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5479      NewID->setInvalidDecl();
5480    }
5481  }
5482
5483  // Process attributes attached to the ivar.
5484  ProcessDeclAttributes(S, NewID, D);
5485
5486  if (D.isInvalidType())
5487    NewID->setInvalidDecl();
5488
5489  if (II) {
5490    // FIXME: When interfaces are DeclContexts, we'll need to add
5491    // these to the interface.
5492    S->AddDecl(DeclPtrTy::make(NewID));
5493    IdResolver.AddDecl(NewID);
5494  }
5495
5496  return DeclPtrTy::make(NewID);
5497}
5498
5499void Sema::ActOnFields(Scope* S,
5500                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5501                       DeclPtrTy *Fields, unsigned NumFields,
5502                       SourceLocation LBrac, SourceLocation RBrac,
5503                       AttributeList *Attr) {
5504  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5505  assert(EnclosingDecl && "missing record or interface decl");
5506
5507  // If the decl this is being inserted into is invalid, then it may be a
5508  // redeclaration or some other bogus case.  Don't try to add fields to it.
5509  if (EnclosingDecl->isInvalidDecl()) {
5510    // FIXME: Deallocate fields?
5511    return;
5512  }
5513
5514
5515  // Verify that all the fields are okay.
5516  unsigned NumNamedMembers = 0;
5517  llvm::SmallVector<FieldDecl*, 32> RecFields;
5518
5519  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5520  for (unsigned i = 0; i != NumFields; ++i) {
5521    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5522
5523    // Get the type for the field.
5524    Type *FDTy = FD->getType().getTypePtr();
5525
5526    if (!FD->isAnonymousStructOrUnion()) {
5527      // Remember all fields written by the user.
5528      RecFields.push_back(FD);
5529    }
5530
5531    // If the field is already invalid for some reason, don't emit more
5532    // diagnostics about it.
5533    if (FD->isInvalidDecl()) {
5534      EnclosingDecl->setInvalidDecl();
5535      continue;
5536    }
5537
5538    // C99 6.7.2.1p2:
5539    //   A structure or union shall not contain a member with
5540    //   incomplete or function type (hence, a structure shall not
5541    //   contain an instance of itself, but may contain a pointer to
5542    //   an instance of itself), except that the last member of a
5543    //   structure with more than one named member may have incomplete
5544    //   array type; such a structure (and any union containing,
5545    //   possibly recursively, a member that is such a structure)
5546    //   shall not be a member of a structure or an element of an
5547    //   array.
5548    if (FDTy->isFunctionType()) {
5549      // Field declared as a function.
5550      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5551        << FD->getDeclName();
5552      FD->setInvalidDecl();
5553      EnclosingDecl->setInvalidDecl();
5554      continue;
5555    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5556               Record && Record->isStruct()) {
5557      // Flexible array member.
5558      if (NumNamedMembers < 1) {
5559        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5560          << FD->getDeclName();
5561        FD->setInvalidDecl();
5562        EnclosingDecl->setInvalidDecl();
5563        continue;
5564      }
5565      // Okay, we have a legal flexible array member at the end of the struct.
5566      if (Record)
5567        Record->setHasFlexibleArrayMember(true);
5568    } else if (!FDTy->isDependentType() &&
5569               RequireCompleteType(FD->getLocation(), FD->getType(),
5570                                   diag::err_field_incomplete)) {
5571      // Incomplete type
5572      FD->setInvalidDecl();
5573      EnclosingDecl->setInvalidDecl();
5574      continue;
5575    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5576      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5577        // If this is a member of a union, then entire union becomes "flexible".
5578        if (Record && Record->isUnion()) {
5579          Record->setHasFlexibleArrayMember(true);
5580        } else {
5581          // If this is a struct/class and this is not the last element, reject
5582          // it.  Note that GCC supports variable sized arrays in the middle of
5583          // structures.
5584          if (i != NumFields-1)
5585            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5586              << FD->getDeclName() << FD->getType();
5587          else {
5588            // We support flexible arrays at the end of structs in
5589            // other structs as an extension.
5590            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5591              << FD->getDeclName();
5592            if (Record)
5593              Record->setHasFlexibleArrayMember(true);
5594          }
5595        }
5596      }
5597      if (Record && FDTTy->getDecl()->hasObjectMember())
5598        Record->setHasObjectMember(true);
5599    } else if (FDTy->isObjCInterfaceType()) {
5600      /// A field cannot be an Objective-c object
5601      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5602      FD->setInvalidDecl();
5603      EnclosingDecl->setInvalidDecl();
5604      continue;
5605    } else if (getLangOptions().ObjC1 &&
5606               getLangOptions().getGCMode() != LangOptions::NonGC &&
5607               Record &&
5608               (FD->getType()->isObjCObjectPointerType() ||
5609                FD->getType().isObjCGCStrong()))
5610      Record->setHasObjectMember(true);
5611    // Keep track of the number of named members.
5612    if (FD->getIdentifier())
5613      ++NumNamedMembers;
5614  }
5615
5616  // Okay, we successfully defined 'Record'.
5617  if (Record) {
5618    Record->completeDefinition(Context);
5619  } else {
5620    ObjCIvarDecl **ClsFields =
5621      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5622    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5623      ID->setIVarList(ClsFields, RecFields.size(), Context);
5624      ID->setLocEnd(RBrac);
5625      // Add ivar's to class's DeclContext.
5626      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5627        ClsFields[i]->setLexicalDeclContext(ID);
5628        ID->addDecl(ClsFields[i]);
5629      }
5630      // Must enforce the rule that ivars in the base classes may not be
5631      // duplicates.
5632      if (ID->getSuperClass()) {
5633        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5634             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5635          ObjCIvarDecl* Ivar = (*IVI);
5636
5637          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5638            ObjCIvarDecl* prevIvar =
5639              ID->getSuperClass()->lookupInstanceVariable(II);
5640            if (prevIvar) {
5641              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5642              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5643            }
5644          }
5645        }
5646      }
5647    } else if (ObjCImplementationDecl *IMPDecl =
5648                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5649      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5650      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5651        // Ivar declared in @implementation never belongs to the implementation.
5652        // Only it is in implementation's lexical context.
5653        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5654      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5655    }
5656  }
5657
5658  if (Attr)
5659    ProcessDeclAttributeList(S, Record, Attr);
5660}
5661
5662EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5663                                          EnumConstantDecl *LastEnumConst,
5664                                          SourceLocation IdLoc,
5665                                          IdentifierInfo *Id,
5666                                          ExprArg val) {
5667  Expr *Val = (Expr *)val.get();
5668
5669  llvm::APSInt EnumVal(32);
5670  QualType EltTy;
5671  if (Val) {
5672    if (Enum->isDependentType())
5673      EltTy = Context.DependentTy;
5674    else {
5675      // Make sure to promote the operand type to int.
5676      UsualUnaryConversions(Val);
5677      if (Val != val.get()) {
5678        val.release();
5679        val = Val;
5680      }
5681
5682      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5683      SourceLocation ExpLoc;
5684      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5685        Val = 0;
5686      } else {
5687        EltTy = Val->getType();
5688      }
5689    }
5690  }
5691
5692  if (!Val) {
5693    if (Enum->isDependentType())
5694      EltTy = Context.DependentTy;
5695    else if (LastEnumConst) {
5696      // Assign the last value + 1.
5697      EnumVal = LastEnumConst->getInitVal();
5698      ++EnumVal;
5699
5700      // Check for overflow on increment.
5701      if (EnumVal < LastEnumConst->getInitVal())
5702        Diag(IdLoc, diag::warn_enum_value_overflow);
5703
5704      EltTy = LastEnumConst->getType();
5705    } else {
5706      // First value, set to zero.
5707      EltTy = Context.IntTy;
5708      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5709      EnumVal.setIsSigned(true);
5710    }
5711  }
5712
5713  assert(!EltTy.isNull() && "Enum constant with NULL type");
5714
5715  val.release();
5716  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5717                                  Val, EnumVal);
5718}
5719
5720
5721Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5722                                        DeclPtrTy lastEnumConst,
5723                                        SourceLocation IdLoc,
5724                                        IdentifierInfo *Id,
5725                                        SourceLocation EqualLoc, ExprTy *val) {
5726  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5727  EnumConstantDecl *LastEnumConst =
5728    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5729  Expr *Val = static_cast<Expr*>(val);
5730
5731  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5732  // we find one that is.
5733  S = getNonFieldDeclScope(S);
5734
5735  // Verify that there isn't already something declared with this name in this
5736  // scope.
5737  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5738  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5739    // Maybe we will complain about the shadowed template parameter.
5740    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5741    // Just pretend that we didn't see the previous declaration.
5742    PrevDecl = 0;
5743  }
5744
5745  if (PrevDecl) {
5746    // When in C++, we may get a TagDecl with the same name; in this case the
5747    // enum constant will 'hide' the tag.
5748    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5749           "Received TagDecl when not in C++!");
5750    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5751      if (isa<EnumConstantDecl>(PrevDecl))
5752        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5753      else
5754        Diag(IdLoc, diag::err_redefinition) << Id;
5755      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5756      if (Val) Val->Destroy(Context);
5757      return DeclPtrTy();
5758    }
5759  }
5760
5761  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5762                                            IdLoc, Id, Owned(Val));
5763
5764  // Register this decl in the current scope stack.
5765  if (New)
5766    PushOnScopeChains(New, S);
5767
5768  return DeclPtrTy::make(New);
5769}
5770
5771void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5772                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5773                         DeclPtrTy *Elements, unsigned NumElements,
5774                         Scope *S, AttributeList *Attr) {
5775  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5776  QualType EnumType = Context.getTypeDeclType(Enum);
5777
5778  if (Attr)
5779    ProcessDeclAttributeList(S, Enum, Attr);
5780
5781  if (Enum->isDependentType()) {
5782    for (unsigned i = 0; i != NumElements; ++i) {
5783      EnumConstantDecl *ECD =
5784        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5785      if (!ECD) continue;
5786
5787      ECD->setType(EnumType);
5788    }
5789
5790    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5791    return;
5792  }
5793
5794  // TODO: If the result value doesn't fit in an int, it must be a long or long
5795  // long value.  ISO C does not support this, but GCC does as an extension,
5796  // emit a warning.
5797  unsigned IntWidth = Context.Target.getIntWidth();
5798  unsigned CharWidth = Context.Target.getCharWidth();
5799  unsigned ShortWidth = Context.Target.getShortWidth();
5800
5801  // Verify that all the values are okay, compute the size of the values, and
5802  // reverse the list.
5803  unsigned NumNegativeBits = 0;
5804  unsigned NumPositiveBits = 0;
5805
5806  // Keep track of whether all elements have type int.
5807  bool AllElementsInt = true;
5808
5809  for (unsigned i = 0; i != NumElements; ++i) {
5810    EnumConstantDecl *ECD =
5811      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5812    if (!ECD) continue;  // Already issued a diagnostic.
5813
5814    // If the enum value doesn't fit in an int, emit an extension warning.
5815    const llvm::APSInt &InitVal = ECD->getInitVal();
5816    assert(InitVal.getBitWidth() >= IntWidth &&
5817           "Should have promoted value to int");
5818    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5819      llvm::APSInt V(InitVal);
5820      V.trunc(IntWidth);
5821      V.extend(InitVal.getBitWidth());
5822      if (V != InitVal)
5823        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5824          << InitVal.toString(10);
5825    }
5826
5827    // Keep track of the size of positive and negative values.
5828    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5829      NumPositiveBits = std::max(NumPositiveBits,
5830                                 (unsigned)InitVal.getActiveBits());
5831    else
5832      NumNegativeBits = std::max(NumNegativeBits,
5833                                 (unsigned)InitVal.getMinSignedBits());
5834
5835    // Keep track of whether every enum element has type int (very commmon).
5836    if (AllElementsInt)
5837      AllElementsInt = ECD->getType() == Context.IntTy;
5838  }
5839
5840  // Figure out the type that should be used for this enum.
5841  // FIXME: Support -fshort-enums.
5842  QualType BestType;
5843  unsigned BestWidth;
5844
5845  // C++0x N3000 [conv.prom]p3:
5846  //   An rvalue of an unscoped enumeration type whose underlying
5847  //   type is not fixed can be converted to an rvalue of the first
5848  //   of the following types that can represent all the values of
5849  //   the enumeration: int, unsigned int, long int, unsigned long
5850  //   int, long long int, or unsigned long long int.
5851  // C99 6.4.4.3p2:
5852  //   An identifier declared as an enumeration constant has type int.
5853  // The C99 rule is modified by a gcc extension
5854  QualType BestPromotionType;
5855
5856  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5857
5858  if (NumNegativeBits) {
5859    // If there is a negative value, figure out the smallest integer type (of
5860    // int/long/longlong) that fits.
5861    // If it's packed, check also if it fits a char or a short.
5862    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5863      BestType = Context.SignedCharTy;
5864      BestWidth = CharWidth;
5865    } else if (Packed && NumNegativeBits <= ShortWidth &&
5866               NumPositiveBits < ShortWidth) {
5867      BestType = Context.ShortTy;
5868      BestWidth = ShortWidth;
5869    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5870      BestType = Context.IntTy;
5871      BestWidth = IntWidth;
5872    } else {
5873      BestWidth = Context.Target.getLongWidth();
5874
5875      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5876        BestType = Context.LongTy;
5877      } else {
5878        BestWidth = Context.Target.getLongLongWidth();
5879
5880        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5881          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5882        BestType = Context.LongLongTy;
5883      }
5884    }
5885    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5886  } else {
5887    // If there is no negative value, figure out which of uint, ulong, ulonglong
5888    // fits.
5889    // If it's packed, check also if it fits a char or a short.
5890    if (Packed && NumPositiveBits <= CharWidth) {
5891      BestType = Context.UnsignedCharTy;
5892      BestPromotionType = Context.IntTy;
5893      BestWidth = CharWidth;
5894    } else if (Packed && NumPositiveBits <= ShortWidth) {
5895      BestType = Context.UnsignedShortTy;
5896      BestPromotionType = Context.IntTy;
5897      BestWidth = ShortWidth;
5898    } else if (NumPositiveBits <= IntWidth) {
5899      BestType = Context.UnsignedIntTy;
5900      BestWidth = IntWidth;
5901      BestPromotionType = (NumPositiveBits == BestWidth
5902                           ? Context.UnsignedIntTy : Context.IntTy);
5903    } else if (NumPositiveBits <=
5904               (BestWidth = Context.Target.getLongWidth())) {
5905      BestType = Context.UnsignedLongTy;
5906      BestPromotionType = (NumPositiveBits == BestWidth
5907                           ? Context.UnsignedLongTy : Context.LongTy);
5908    } else {
5909      BestWidth = Context.Target.getLongLongWidth();
5910      assert(NumPositiveBits <= BestWidth &&
5911             "How could an initializer get larger than ULL?");
5912      BestType = Context.UnsignedLongLongTy;
5913      BestPromotionType = (NumPositiveBits == BestWidth
5914                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5915    }
5916  }
5917
5918  // If we're in C and the promotion type is larger than an int, just
5919  // use the underlying type, which is generally the unsigned integer
5920  // type of the same rank as the promotion type.  This is how the gcc
5921  // extension works.
5922  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5923    BestPromotionType = BestType;
5924
5925  // Loop over all of the enumerator constants, changing their types to match
5926  // the type of the enum if needed.
5927  for (unsigned i = 0; i != NumElements; ++i) {
5928    EnumConstantDecl *ECD =
5929      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5930    if (!ECD) continue;  // Already issued a diagnostic.
5931
5932    // Standard C says the enumerators have int type, but we allow, as an
5933    // extension, the enumerators to be larger than int size.  If each
5934    // enumerator value fits in an int, type it as an int, otherwise type it the
5935    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5936    // that X has type 'int', not 'unsigned'.
5937    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5938      continue;
5939
5940    // Determine whether the value fits into an int.
5941    llvm::APSInt InitVal = ECD->getInitVal();
5942    bool FitsInInt;
5943    if (InitVal.isUnsigned() || !InitVal.isNegative())
5944      FitsInInt = InitVal.getActiveBits() < IntWidth;
5945    else
5946      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5947
5948    // If it fits into an integer type, force it.  Otherwise force it to match
5949    // the enum decl type.
5950    QualType NewTy;
5951    unsigned NewWidth;
5952    bool NewSign;
5953    if (FitsInInt && !getLangOptions().CPlusPlus) {
5954      NewTy = Context.IntTy;
5955      NewWidth = IntWidth;
5956      NewSign = true;
5957    } else if (ECD->getType() == BestType) {
5958      // Already the right type!
5959      if (getLangOptions().CPlusPlus)
5960        // C++ [dcl.enum]p4: Following the closing brace of an
5961        // enum-specifier, each enumerator has the type of its
5962        // enumeration.
5963        ECD->setType(EnumType);
5964      continue;
5965    } else {
5966      NewTy = BestType;
5967      NewWidth = BestWidth;
5968      NewSign = BestType->isSignedIntegerType();
5969    }
5970
5971    // Adjust the APSInt value.
5972    InitVal.extOrTrunc(NewWidth);
5973    InitVal.setIsSigned(NewSign);
5974    ECD->setInitVal(InitVal);
5975
5976    // Adjust the Expr initializer and type.
5977    if (ECD->getInitExpr())
5978      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5979                                                      CastExpr::CK_IntegralCast,
5980                                                      ECD->getInitExpr(),
5981                                                      /*isLvalue=*/false));
5982    if (getLangOptions().CPlusPlus)
5983      // C++ [dcl.enum]p4: Following the closing brace of an
5984      // enum-specifier, each enumerator has the type of its
5985      // enumeration.
5986      ECD->setType(EnumType);
5987    else
5988      ECD->setType(NewTy);
5989  }
5990
5991  Enum->completeDefinition(Context, BestType, BestPromotionType);
5992}
5993
5994Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5995                                            ExprArg expr) {
5996  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5997
5998  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5999                                                   Loc, AsmString);
6000  CurContext->addDecl(New);
6001  return DeclPtrTy::make(New);
6002}
6003
6004void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6005                             SourceLocation PragmaLoc,
6006                             SourceLocation NameLoc) {
6007  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6008
6009  if (PrevDecl) {
6010    PrevDecl->addAttr(::new (Context) WeakAttr());
6011  } else {
6012    (void)WeakUndeclaredIdentifiers.insert(
6013      std::pair<IdentifierInfo*,WeakInfo>
6014        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6015  }
6016}
6017
6018void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6019                                IdentifierInfo* AliasName,
6020                                SourceLocation PragmaLoc,
6021                                SourceLocation NameLoc,
6022                                SourceLocation AliasNameLoc) {
6023  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6024  WeakInfo W = WeakInfo(Name, NameLoc);
6025
6026  if (PrevDecl) {
6027    if (!PrevDecl->hasAttr<AliasAttr>())
6028      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6029        DeclApplyPragmaWeak(TUScope, ND, W);
6030  } else {
6031    (void)WeakUndeclaredIdentifiers.insert(
6032      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6033  }
6034}
6035