SemaDecl.cpp revision 0abbdfe561377b7af8eba6fc87757a46342f7a10
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName && !IsCtorOrDtorName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOpts().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOpts()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOpts().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
474                                    Scope *S, CXXScopeSpec &SS,
475                                    IdentifierInfo *&Name,
476                                    SourceLocation NameLoc) {
477  Result.clear(Sema::LookupTagName);
478  SemaRef.LookupParsedName(Result, S, &SS);
479  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
480    const char *TagName = 0;
481    const char *FixItTagName = 0;
482    switch (Tag->getTagKind()) {
483      case TTK_Class:
484        TagName = "class";
485        FixItTagName = "class ";
486        break;
487
488      case TTK_Enum:
489        TagName = "enum";
490        FixItTagName = "enum ";
491        break;
492
493      case TTK_Struct:
494        TagName = "struct";
495        FixItTagName = "struct ";
496        break;
497
498      case TTK_Union:
499        TagName = "union";
500        FixItTagName = "union ";
501        break;
502    }
503
504    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
505      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
506      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
507
508    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
509    if (SemaRef.LookupParsedName(R, S, &SS)) {
510      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
511           I != IEnd; ++I)
512        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
513          << Name << TagName;
514    }
515    return true;
516  }
517
518  Result.clear(Sema::LookupOrdinaryName);
519  return false;
520}
521
522Sema::NameClassification Sema::ClassifyName(Scope *S,
523                                            CXXScopeSpec &SS,
524                                            IdentifierInfo *&Name,
525                                            SourceLocation NameLoc,
526                                            const Token &NextToken) {
527  DeclarationNameInfo NameInfo(Name, NameLoc);
528  ObjCMethodDecl *CurMethod = getCurMethodDecl();
529
530  if (NextToken.is(tok::coloncolon)) {
531    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
532                                QualType(), false, SS, 0, false);
533
534  }
535
536  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
537  LookupParsedName(Result, S, &SS, !CurMethod);
538
539  // Perform lookup for Objective-C instance variables (including automatically
540  // synthesized instance variables), if we're in an Objective-C method.
541  // FIXME: This lookup really, really needs to be folded in to the normal
542  // unqualified lookup mechanism.
543  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
544    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
545    if (E.get() || E.isInvalid())
546      return E;
547  }
548
549  bool SecondTry = false;
550  bool IsFilteredTemplateName = false;
551
552Corrected:
553  switch (Result.getResultKind()) {
554  case LookupResult::NotFound:
555    // If an unqualified-id is followed by a '(', then we have a function
556    // call.
557    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
558      // In C++, this is an ADL-only call.
559      // FIXME: Reference?
560      if (getLangOpts().CPlusPlus)
561        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
562
563      // C90 6.3.2.2:
564      //   If the expression that precedes the parenthesized argument list in a
565      //   function call consists solely of an identifier, and if no
566      //   declaration is visible for this identifier, the identifier is
567      //   implicitly declared exactly as if, in the innermost block containing
568      //   the function call, the declaration
569      //
570      //     extern int identifier ();
571      //
572      //   appeared.
573      //
574      // We also allow this in C99 as an extension.
575      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
576        Result.addDecl(D);
577        Result.resolveKind();
578        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
579      }
580    }
581
582    // In C, we first see whether there is a tag type by the same name, in
583    // which case it's likely that the user just forget to write "enum",
584    // "struct", or "union".
585    if (!getLangOpts().CPlusPlus && !SecondTry &&
586        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
587      break;
588    }
589
590    // Perform typo correction to determine if there is another name that is
591    // close to this name.
592    if (!SecondTry) {
593      SecondTry = true;
594      CorrectionCandidateCallback DefaultValidator;
595      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
596                                                 Result.getLookupKind(), S,
597                                                 &SS, DefaultValidator)) {
598        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
599        unsigned QualifiedDiag = diag::err_no_member_suggest;
600        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
601        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
602
603        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
604        NamedDecl *UnderlyingFirstDecl
605          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
606        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
607            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
608          UnqualifiedDiag = diag::err_no_template_suggest;
609          QualifiedDiag = diag::err_no_member_template_suggest;
610        } else if (UnderlyingFirstDecl &&
611                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
612                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
613                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
614           UnqualifiedDiag = diag::err_unknown_typename_suggest;
615           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
616         }
617
618        if (SS.isEmpty())
619          Diag(NameLoc, UnqualifiedDiag)
620            << Name << CorrectedQuotedStr
621            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
622        else
623          Diag(NameLoc, QualifiedDiag)
624            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
625            << SS.getRange()
626            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
627
628        // Update the name, so that the caller has the new name.
629        Name = Corrected.getCorrectionAsIdentifierInfo();
630
631        // Typo correction corrected to a keyword.
632        if (Corrected.isKeyword())
633          return Corrected.getCorrectionAsIdentifierInfo();
634
635        // Also update the LookupResult...
636        // FIXME: This should probably go away at some point
637        Result.clear();
638        Result.setLookupName(Corrected.getCorrection());
639        if (FirstDecl) {
640          Result.addDecl(FirstDecl);
641          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
642            << CorrectedQuotedStr;
643        }
644
645        // If we found an Objective-C instance variable, let
646        // LookupInObjCMethod build the appropriate expression to
647        // reference the ivar.
648        // FIXME: This is a gross hack.
649        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
650          Result.clear();
651          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
652          return move(E);
653        }
654
655        goto Corrected;
656      }
657    }
658
659    // We failed to correct; just fall through and let the parser deal with it.
660    Result.suppressDiagnostics();
661    return NameClassification::Unknown();
662
663  case LookupResult::NotFoundInCurrentInstantiation: {
664    // We performed name lookup into the current instantiation, and there were
665    // dependent bases, so we treat this result the same way as any other
666    // dependent nested-name-specifier.
667
668    // C++ [temp.res]p2:
669    //   A name used in a template declaration or definition and that is
670    //   dependent on a template-parameter is assumed not to name a type
671    //   unless the applicable name lookup finds a type name or the name is
672    //   qualified by the keyword typename.
673    //
674    // FIXME: If the next token is '<', we might want to ask the parser to
675    // perform some heroics to see if we actually have a
676    // template-argument-list, which would indicate a missing 'template'
677    // keyword here.
678    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
679                                     NameInfo, /*TemplateArgs=*/0);
680  }
681
682  case LookupResult::Found:
683  case LookupResult::FoundOverloaded:
684  case LookupResult::FoundUnresolvedValue:
685    break;
686
687  case LookupResult::Ambiguous:
688    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
689        hasAnyAcceptableTemplateNames(Result)) {
690      // C++ [temp.local]p3:
691      //   A lookup that finds an injected-class-name (10.2) can result in an
692      //   ambiguity in certain cases (for example, if it is found in more than
693      //   one base class). If all of the injected-class-names that are found
694      //   refer to specializations of the same class template, and if the name
695      //   is followed by a template-argument-list, the reference refers to the
696      //   class template itself and not a specialization thereof, and is not
697      //   ambiguous.
698      //
699      // This filtering can make an ambiguous result into an unambiguous one,
700      // so try again after filtering out template names.
701      FilterAcceptableTemplateNames(Result);
702      if (!Result.isAmbiguous()) {
703        IsFilteredTemplateName = true;
704        break;
705      }
706    }
707
708    // Diagnose the ambiguity and return an error.
709    return NameClassification::Error();
710  }
711
712  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
713      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
714    // C++ [temp.names]p3:
715    //   After name lookup (3.4) finds that a name is a template-name or that
716    //   an operator-function-id or a literal- operator-id refers to a set of
717    //   overloaded functions any member of which is a function template if
718    //   this is followed by a <, the < is always taken as the delimiter of a
719    //   template-argument-list and never as the less-than operator.
720    if (!IsFilteredTemplateName)
721      FilterAcceptableTemplateNames(Result);
722
723    if (!Result.empty()) {
724      bool IsFunctionTemplate;
725      TemplateName Template;
726      if (Result.end() - Result.begin() > 1) {
727        IsFunctionTemplate = true;
728        Template = Context.getOverloadedTemplateName(Result.begin(),
729                                                     Result.end());
730      } else {
731        TemplateDecl *TD
732          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
733        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
734
735        if (SS.isSet() && !SS.isInvalid())
736          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
737                                                    /*TemplateKeyword=*/false,
738                                                      TD);
739        else
740          Template = TemplateName(TD);
741      }
742
743      if (IsFunctionTemplate) {
744        // Function templates always go through overload resolution, at which
745        // point we'll perform the various checks (e.g., accessibility) we need
746        // to based on which function we selected.
747        Result.suppressDiagnostics();
748
749        return NameClassification::FunctionTemplate(Template);
750      }
751
752      return NameClassification::TypeTemplate(Template);
753    }
754  }
755
756  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
757  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
758    DiagnoseUseOfDecl(Type, NameLoc);
759    QualType T = Context.getTypeDeclType(Type);
760    return ParsedType::make(T);
761  }
762
763  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
764  if (!Class) {
765    // FIXME: It's unfortunate that we don't have a Type node for handling this.
766    if (ObjCCompatibleAliasDecl *Alias
767                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
768      Class = Alias->getClassInterface();
769  }
770
771  if (Class) {
772    DiagnoseUseOfDecl(Class, NameLoc);
773
774    if (NextToken.is(tok::period)) {
775      // Interface. <something> is parsed as a property reference expression.
776      // Just return "unknown" as a fall-through for now.
777      Result.suppressDiagnostics();
778      return NameClassification::Unknown();
779    }
780
781    QualType T = Context.getObjCInterfaceType(Class);
782    return ParsedType::make(T);
783  }
784
785  // Check for a tag type hidden by a non-type decl in a few cases where it
786  // seems likely a type is wanted instead of the non-type that was found.
787  if (!getLangOpts().ObjC1 && FirstDecl && !isa<ClassTemplateDecl>(FirstDecl) &&
788      !isa<TypeAliasTemplateDecl>(FirstDecl)) {
789    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
790    if ((NextToken.is(tok::identifier) ||
791         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
792        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
793      FirstDecl = (*Result.begin())->getUnderlyingDecl();
794      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
795        DiagnoseUseOfDecl(Type, NameLoc);
796        QualType T = Context.getTypeDeclType(Type);
797        return ParsedType::make(T);
798      }
799    }
800  }
801
802  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
803    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
804
805  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
806  return BuildDeclarationNameExpr(SS, Result, ADL);
807}
808
809// Determines the context to return to after temporarily entering a
810// context.  This depends in an unnecessarily complicated way on the
811// exact ordering of callbacks from the parser.
812DeclContext *Sema::getContainingDC(DeclContext *DC) {
813
814  // Functions defined inline within classes aren't parsed until we've
815  // finished parsing the top-level class, so the top-level class is
816  // the context we'll need to return to.
817  if (isa<FunctionDecl>(DC)) {
818    DC = DC->getLexicalParent();
819
820    // A function not defined within a class will always return to its
821    // lexical context.
822    if (!isa<CXXRecordDecl>(DC))
823      return DC;
824
825    // A C++ inline method/friend is parsed *after* the topmost class
826    // it was declared in is fully parsed ("complete");  the topmost
827    // class is the context we need to return to.
828    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
829      DC = RD;
830
831    // Return the declaration context of the topmost class the inline method is
832    // declared in.
833    return DC;
834  }
835
836  return DC->getLexicalParent();
837}
838
839void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
840  assert(getContainingDC(DC) == CurContext &&
841      "The next DeclContext should be lexically contained in the current one.");
842  CurContext = DC;
843  S->setEntity(DC);
844}
845
846void Sema::PopDeclContext() {
847  assert(CurContext && "DeclContext imbalance!");
848
849  CurContext = getContainingDC(CurContext);
850  assert(CurContext && "Popped translation unit!");
851}
852
853/// EnterDeclaratorContext - Used when we must lookup names in the context
854/// of a declarator's nested name specifier.
855///
856void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
857  // C++0x [basic.lookup.unqual]p13:
858  //   A name used in the definition of a static data member of class
859  //   X (after the qualified-id of the static member) is looked up as
860  //   if the name was used in a member function of X.
861  // C++0x [basic.lookup.unqual]p14:
862  //   If a variable member of a namespace is defined outside of the
863  //   scope of its namespace then any name used in the definition of
864  //   the variable member (after the declarator-id) is looked up as
865  //   if the definition of the variable member occurred in its
866  //   namespace.
867  // Both of these imply that we should push a scope whose context
868  // is the semantic context of the declaration.  We can't use
869  // PushDeclContext here because that context is not necessarily
870  // lexically contained in the current context.  Fortunately,
871  // the containing scope should have the appropriate information.
872
873  assert(!S->getEntity() && "scope already has entity");
874
875#ifndef NDEBUG
876  Scope *Ancestor = S->getParent();
877  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
878  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
879#endif
880
881  CurContext = DC;
882  S->setEntity(DC);
883}
884
885void Sema::ExitDeclaratorContext(Scope *S) {
886  assert(S->getEntity() == CurContext && "Context imbalance!");
887
888  // Switch back to the lexical context.  The safety of this is
889  // enforced by an assert in EnterDeclaratorContext.
890  Scope *Ancestor = S->getParent();
891  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
892  CurContext = (DeclContext*) Ancestor->getEntity();
893
894  // We don't need to do anything with the scope, which is going to
895  // disappear.
896}
897
898
899void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
900  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
901  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
902    // We assume that the caller has already called
903    // ActOnReenterTemplateScope
904    FD = TFD->getTemplatedDecl();
905  }
906  if (!FD)
907    return;
908
909  // Same implementation as PushDeclContext, but enters the context
910  // from the lexical parent, rather than the top-level class.
911  assert(CurContext == FD->getLexicalParent() &&
912    "The next DeclContext should be lexically contained in the current one.");
913  CurContext = FD;
914  S->setEntity(CurContext);
915
916  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
917    ParmVarDecl *Param = FD->getParamDecl(P);
918    // If the parameter has an identifier, then add it to the scope
919    if (Param->getIdentifier()) {
920      S->AddDecl(Param);
921      IdResolver.AddDecl(Param);
922    }
923  }
924}
925
926
927void Sema::ActOnExitFunctionContext() {
928  // Same implementation as PopDeclContext, but returns to the lexical parent,
929  // rather than the top-level class.
930  assert(CurContext && "DeclContext imbalance!");
931  CurContext = CurContext->getLexicalParent();
932  assert(CurContext && "Popped translation unit!");
933}
934
935
936/// \brief Determine whether we allow overloading of the function
937/// PrevDecl with another declaration.
938///
939/// This routine determines whether overloading is possible, not
940/// whether some new function is actually an overload. It will return
941/// true in C++ (where we can always provide overloads) or, as an
942/// extension, in C when the previous function is already an
943/// overloaded function declaration or has the "overloadable"
944/// attribute.
945static bool AllowOverloadingOfFunction(LookupResult &Previous,
946                                       ASTContext &Context) {
947  if (Context.getLangOpts().CPlusPlus)
948    return true;
949
950  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
951    return true;
952
953  return (Previous.getResultKind() == LookupResult::Found
954          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
955}
956
957/// Add this decl to the scope shadowed decl chains.
958void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
959  // Move up the scope chain until we find the nearest enclosing
960  // non-transparent context. The declaration will be introduced into this
961  // scope.
962  while (S->getEntity() &&
963         ((DeclContext *)S->getEntity())->isTransparentContext())
964    S = S->getParent();
965
966  // Add scoped declarations into their context, so that they can be
967  // found later. Declarations without a context won't be inserted
968  // into any context.
969  if (AddToContext)
970    CurContext->addDecl(D);
971
972  // Out-of-line definitions shouldn't be pushed into scope in C++.
973  // Out-of-line variable and function definitions shouldn't even in C.
974  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
975      D->isOutOfLine() &&
976      !D->getDeclContext()->getRedeclContext()->Equals(
977        D->getLexicalDeclContext()->getRedeclContext()))
978    return;
979
980  // Template instantiations should also not be pushed into scope.
981  if (isa<FunctionDecl>(D) &&
982      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
983    return;
984
985  // If this replaces anything in the current scope,
986  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
987                               IEnd = IdResolver.end();
988  for (; I != IEnd; ++I) {
989    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
990      S->RemoveDecl(*I);
991      IdResolver.RemoveDecl(*I);
992
993      // Should only need to replace one decl.
994      break;
995    }
996  }
997
998  S->AddDecl(D);
999
1000  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1001    // Implicitly-generated labels may end up getting generated in an order that
1002    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1003    // the label at the appropriate place in the identifier chain.
1004    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1005      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1006      if (IDC == CurContext) {
1007        if (!S->isDeclScope(*I))
1008          continue;
1009      } else if (IDC->Encloses(CurContext))
1010        break;
1011    }
1012
1013    IdResolver.InsertDeclAfter(I, D);
1014  } else {
1015    IdResolver.AddDecl(D);
1016  }
1017}
1018
1019void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1020  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1021    TUScope->AddDecl(D);
1022}
1023
1024bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1025                         bool ExplicitInstantiationOrSpecialization) {
1026  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1027                                  ExplicitInstantiationOrSpecialization);
1028}
1029
1030Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1031  DeclContext *TargetDC = DC->getPrimaryContext();
1032  do {
1033    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1034      if (ScopeDC->getPrimaryContext() == TargetDC)
1035        return S;
1036  } while ((S = S->getParent()));
1037
1038  return 0;
1039}
1040
1041static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1042                                            DeclContext*,
1043                                            ASTContext&);
1044
1045/// Filters out lookup results that don't fall within the given scope
1046/// as determined by isDeclInScope.
1047void Sema::FilterLookupForScope(LookupResult &R,
1048                                DeclContext *Ctx, Scope *S,
1049                                bool ConsiderLinkage,
1050                                bool ExplicitInstantiationOrSpecialization) {
1051  LookupResult::Filter F = R.makeFilter();
1052  while (F.hasNext()) {
1053    NamedDecl *D = F.next();
1054
1055    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1056      continue;
1057
1058    if (ConsiderLinkage &&
1059        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1060      continue;
1061
1062    F.erase();
1063  }
1064
1065  F.done();
1066}
1067
1068static bool isUsingDecl(NamedDecl *D) {
1069  return isa<UsingShadowDecl>(D) ||
1070         isa<UnresolvedUsingTypenameDecl>(D) ||
1071         isa<UnresolvedUsingValueDecl>(D);
1072}
1073
1074/// Removes using shadow declarations from the lookup results.
1075static void RemoveUsingDecls(LookupResult &R) {
1076  LookupResult::Filter F = R.makeFilter();
1077  while (F.hasNext())
1078    if (isUsingDecl(F.next()))
1079      F.erase();
1080
1081  F.done();
1082}
1083
1084/// \brief Check for this common pattern:
1085/// @code
1086/// class S {
1087///   S(const S&); // DO NOT IMPLEMENT
1088///   void operator=(const S&); // DO NOT IMPLEMENT
1089/// };
1090/// @endcode
1091static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1092  // FIXME: Should check for private access too but access is set after we get
1093  // the decl here.
1094  if (D->doesThisDeclarationHaveABody())
1095    return false;
1096
1097  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1098    return CD->isCopyConstructor();
1099  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1100    return Method->isCopyAssignmentOperator();
1101  return false;
1102}
1103
1104bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1105  assert(D);
1106
1107  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1108    return false;
1109
1110  // Ignore class templates.
1111  if (D->getDeclContext()->isDependentContext() ||
1112      D->getLexicalDeclContext()->isDependentContext())
1113    return false;
1114
1115  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1116    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1117      return false;
1118
1119    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1120      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1121        return false;
1122    } else {
1123      // 'static inline' functions are used in headers; don't warn.
1124      if (FD->getStorageClass() == SC_Static &&
1125          FD->isInlineSpecified())
1126        return false;
1127    }
1128
1129    if (FD->doesThisDeclarationHaveABody() &&
1130        Context.DeclMustBeEmitted(FD))
1131      return false;
1132  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1133    if (!VD->isFileVarDecl() ||
1134        VD->getType().isConstant(Context) ||
1135        Context.DeclMustBeEmitted(VD))
1136      return false;
1137
1138    if (VD->isStaticDataMember() &&
1139        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1140      return false;
1141
1142  } else {
1143    return false;
1144  }
1145
1146  // Only warn for unused decls internal to the translation unit.
1147  if (D->getLinkage() == ExternalLinkage)
1148    return false;
1149
1150  return true;
1151}
1152
1153void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1154  if (!D)
1155    return;
1156
1157  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1158    const FunctionDecl *First = FD->getFirstDeclaration();
1159    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1160      return; // First should already be in the vector.
1161  }
1162
1163  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1164    const VarDecl *First = VD->getFirstDeclaration();
1165    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1166      return; // First should already be in the vector.
1167  }
1168
1169  if (ShouldWarnIfUnusedFileScopedDecl(D))
1170    UnusedFileScopedDecls.push_back(D);
1171}
1172
1173static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1174  if (D->isInvalidDecl())
1175    return false;
1176
1177  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1178    return false;
1179
1180  if (isa<LabelDecl>(D))
1181    return true;
1182
1183  // White-list anything that isn't a local variable.
1184  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1185      !D->getDeclContext()->isFunctionOrMethod())
1186    return false;
1187
1188  // Types of valid local variables should be complete, so this should succeed.
1189  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1190
1191    // White-list anything with an __attribute__((unused)) type.
1192    QualType Ty = VD->getType();
1193
1194    // Only look at the outermost level of typedef.
1195    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1196      if (TT->getDecl()->hasAttr<UnusedAttr>())
1197        return false;
1198    }
1199
1200    // If we failed to complete the type for some reason, or if the type is
1201    // dependent, don't diagnose the variable.
1202    if (Ty->isIncompleteType() || Ty->isDependentType())
1203      return false;
1204
1205    if (const TagType *TT = Ty->getAs<TagType>()) {
1206      const TagDecl *Tag = TT->getDecl();
1207      if (Tag->hasAttr<UnusedAttr>())
1208        return false;
1209
1210      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1211        if (!RD->hasTrivialDestructor())
1212          return false;
1213
1214        if (const Expr *Init = VD->getInit()) {
1215          const CXXConstructExpr *Construct =
1216            dyn_cast<CXXConstructExpr>(Init);
1217          if (Construct && !Construct->isElidable()) {
1218            CXXConstructorDecl *CD = Construct->getConstructor();
1219            if (!CD->isTrivial())
1220              return false;
1221          }
1222        }
1223      }
1224    }
1225
1226    // TODO: __attribute__((unused)) templates?
1227  }
1228
1229  return true;
1230}
1231
1232static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1233                                     FixItHint &Hint) {
1234  if (isa<LabelDecl>(D)) {
1235    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1236                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1237    if (AfterColon.isInvalid())
1238      return;
1239    Hint = FixItHint::CreateRemoval(CharSourceRange::
1240                                    getCharRange(D->getLocStart(), AfterColon));
1241  }
1242  return;
1243}
1244
1245/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1246/// unless they are marked attr(unused).
1247void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1248  FixItHint Hint;
1249  if (!ShouldDiagnoseUnusedDecl(D))
1250    return;
1251
1252  GenerateFixForUnusedDecl(D, Context, Hint);
1253
1254  unsigned DiagID;
1255  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1256    DiagID = diag::warn_unused_exception_param;
1257  else if (isa<LabelDecl>(D))
1258    DiagID = diag::warn_unused_label;
1259  else
1260    DiagID = diag::warn_unused_variable;
1261
1262  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1263}
1264
1265static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1266  // Verify that we have no forward references left.  If so, there was a goto
1267  // or address of a label taken, but no definition of it.  Label fwd
1268  // definitions are indicated with a null substmt.
1269  if (L->getStmt() == 0)
1270    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1271}
1272
1273void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1274  if (S->decl_empty()) return;
1275  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1276         "Scope shouldn't contain decls!");
1277
1278  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1279       I != E; ++I) {
1280    Decl *TmpD = (*I);
1281    assert(TmpD && "This decl didn't get pushed??");
1282
1283    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1284    NamedDecl *D = cast<NamedDecl>(TmpD);
1285
1286    if (!D->getDeclName()) continue;
1287
1288    // Diagnose unused variables in this scope.
1289    if (!S->hasErrorOccurred())
1290      DiagnoseUnusedDecl(D);
1291
1292    // If this was a forward reference to a label, verify it was defined.
1293    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1294      CheckPoppedLabel(LD, *this);
1295
1296    // Remove this name from our lexical scope.
1297    IdResolver.RemoveDecl(D);
1298  }
1299}
1300
1301void Sema::ActOnStartFunctionDeclarator() {
1302  ++InFunctionDeclarator;
1303}
1304
1305void Sema::ActOnEndFunctionDeclarator() {
1306  assert(InFunctionDeclarator);
1307  --InFunctionDeclarator;
1308}
1309
1310/// \brief Look for an Objective-C class in the translation unit.
1311///
1312/// \param Id The name of the Objective-C class we're looking for. If
1313/// typo-correction fixes this name, the Id will be updated
1314/// to the fixed name.
1315///
1316/// \param IdLoc The location of the name in the translation unit.
1317///
1318/// \param TypoCorrection If true, this routine will attempt typo correction
1319/// if there is no class with the given name.
1320///
1321/// \returns The declaration of the named Objective-C class, or NULL if the
1322/// class could not be found.
1323ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1324                                              SourceLocation IdLoc,
1325                                              bool DoTypoCorrection) {
1326  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1327  // creation from this context.
1328  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1329
1330  if (!IDecl && DoTypoCorrection) {
1331    // Perform typo correction at the given location, but only if we
1332    // find an Objective-C class name.
1333    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1334    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1335                                       LookupOrdinaryName, TUScope, NULL,
1336                                       Validator)) {
1337      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1338      Diag(IdLoc, diag::err_undef_interface_suggest)
1339        << Id << IDecl->getDeclName()
1340        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1341      Diag(IDecl->getLocation(), diag::note_previous_decl)
1342        << IDecl->getDeclName();
1343
1344      Id = IDecl->getIdentifier();
1345    }
1346  }
1347  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1348  // This routine must always return a class definition, if any.
1349  if (Def && Def->getDefinition())
1350      Def = Def->getDefinition();
1351  return Def;
1352}
1353
1354/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1355/// from S, where a non-field would be declared. This routine copes
1356/// with the difference between C and C++ scoping rules in structs and
1357/// unions. For example, the following code is well-formed in C but
1358/// ill-formed in C++:
1359/// @code
1360/// struct S6 {
1361///   enum { BAR } e;
1362/// };
1363///
1364/// void test_S6() {
1365///   struct S6 a;
1366///   a.e = BAR;
1367/// }
1368/// @endcode
1369/// For the declaration of BAR, this routine will return a different
1370/// scope. The scope S will be the scope of the unnamed enumeration
1371/// within S6. In C++, this routine will return the scope associated
1372/// with S6, because the enumeration's scope is a transparent
1373/// context but structures can contain non-field names. In C, this
1374/// routine will return the translation unit scope, since the
1375/// enumeration's scope is a transparent context and structures cannot
1376/// contain non-field names.
1377Scope *Sema::getNonFieldDeclScope(Scope *S) {
1378  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1379         (S->getEntity() &&
1380          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1381         (S->isClassScope() && !getLangOpts().CPlusPlus))
1382    S = S->getParent();
1383  return S;
1384}
1385
1386/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1387/// file scope.  lazily create a decl for it. ForRedeclaration is true
1388/// if we're creating this built-in in anticipation of redeclaring the
1389/// built-in.
1390NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1391                                     Scope *S, bool ForRedeclaration,
1392                                     SourceLocation Loc) {
1393  Builtin::ID BID = (Builtin::ID)bid;
1394
1395  ASTContext::GetBuiltinTypeError Error;
1396  QualType R = Context.GetBuiltinType(BID, Error);
1397  switch (Error) {
1398  case ASTContext::GE_None:
1399    // Okay
1400    break;
1401
1402  case ASTContext::GE_Missing_stdio:
1403    if (ForRedeclaration)
1404      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1405        << Context.BuiltinInfo.GetName(BID);
1406    return 0;
1407
1408  case ASTContext::GE_Missing_setjmp:
1409    if (ForRedeclaration)
1410      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1411        << Context.BuiltinInfo.GetName(BID);
1412    return 0;
1413
1414  case ASTContext::GE_Missing_ucontext:
1415    if (ForRedeclaration)
1416      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1417        << Context.BuiltinInfo.GetName(BID);
1418    return 0;
1419  }
1420
1421  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1422    Diag(Loc, diag::ext_implicit_lib_function_decl)
1423      << Context.BuiltinInfo.GetName(BID)
1424      << R;
1425    if (Context.BuiltinInfo.getHeaderName(BID) &&
1426        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1427          != DiagnosticsEngine::Ignored)
1428      Diag(Loc, diag::note_please_include_header)
1429        << Context.BuiltinInfo.getHeaderName(BID)
1430        << Context.BuiltinInfo.GetName(BID);
1431  }
1432
1433  FunctionDecl *New = FunctionDecl::Create(Context,
1434                                           Context.getTranslationUnitDecl(),
1435                                           Loc, Loc, II, R, /*TInfo=*/0,
1436                                           SC_Extern,
1437                                           SC_None, false,
1438                                           /*hasPrototype=*/true);
1439  New->setImplicit();
1440
1441  // Create Decl objects for each parameter, adding them to the
1442  // FunctionDecl.
1443  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1444    SmallVector<ParmVarDecl*, 16> Params;
1445    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1446      ParmVarDecl *parm =
1447        ParmVarDecl::Create(Context, New, SourceLocation(),
1448                            SourceLocation(), 0,
1449                            FT->getArgType(i), /*TInfo=*/0,
1450                            SC_None, SC_None, 0);
1451      parm->setScopeInfo(0, i);
1452      Params.push_back(parm);
1453    }
1454    New->setParams(Params);
1455  }
1456
1457  AddKnownFunctionAttributes(New);
1458
1459  // TUScope is the translation-unit scope to insert this function into.
1460  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1461  // relate Scopes to DeclContexts, and probably eliminate CurContext
1462  // entirely, but we're not there yet.
1463  DeclContext *SavedContext = CurContext;
1464  CurContext = Context.getTranslationUnitDecl();
1465  PushOnScopeChains(New, TUScope);
1466  CurContext = SavedContext;
1467  return New;
1468}
1469
1470bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1471  QualType OldType;
1472  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1473    OldType = OldTypedef->getUnderlyingType();
1474  else
1475    OldType = Context.getTypeDeclType(Old);
1476  QualType NewType = New->getUnderlyingType();
1477
1478  if (NewType->isVariablyModifiedType()) {
1479    // Must not redefine a typedef with a variably-modified type.
1480    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1481    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1482      << Kind << NewType;
1483    if (Old->getLocation().isValid())
1484      Diag(Old->getLocation(), diag::note_previous_definition);
1485    New->setInvalidDecl();
1486    return true;
1487  }
1488
1489  if (OldType != NewType &&
1490      !OldType->isDependentType() &&
1491      !NewType->isDependentType() &&
1492      !Context.hasSameType(OldType, NewType)) {
1493    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1494    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1495      << Kind << NewType << OldType;
1496    if (Old->getLocation().isValid())
1497      Diag(Old->getLocation(), diag::note_previous_definition);
1498    New->setInvalidDecl();
1499    return true;
1500  }
1501  return false;
1502}
1503
1504/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1505/// same name and scope as a previous declaration 'Old'.  Figure out
1506/// how to resolve this situation, merging decls or emitting
1507/// diagnostics as appropriate. If there was an error, set New to be invalid.
1508///
1509void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1510  // If the new decl is known invalid already, don't bother doing any
1511  // merging checks.
1512  if (New->isInvalidDecl()) return;
1513
1514  // Allow multiple definitions for ObjC built-in typedefs.
1515  // FIXME: Verify the underlying types are equivalent!
1516  if (getLangOpts().ObjC1) {
1517    const IdentifierInfo *TypeID = New->getIdentifier();
1518    switch (TypeID->getLength()) {
1519    default: break;
1520    case 2:
1521      {
1522        if (!TypeID->isStr("id"))
1523          break;
1524        QualType T = New->getUnderlyingType();
1525        if (!T->isPointerType())
1526          break;
1527        if (!T->isVoidPointerType()) {
1528          QualType PT = T->getAs<PointerType>()->getPointeeType();
1529          if (!PT->isStructureType())
1530            break;
1531        }
1532        Context.setObjCIdRedefinitionType(T);
1533        // Install the built-in type for 'id', ignoring the current definition.
1534        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1535        return;
1536      }
1537    case 5:
1538      if (!TypeID->isStr("Class"))
1539        break;
1540      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1541      // Install the built-in type for 'Class', ignoring the current definition.
1542      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1543      return;
1544    case 3:
1545      if (!TypeID->isStr("SEL"))
1546        break;
1547      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1548      // Install the built-in type for 'SEL', ignoring the current definition.
1549      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1550      return;
1551    }
1552    // Fall through - the typedef name was not a builtin type.
1553  }
1554
1555  // Verify the old decl was also a type.
1556  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1557  if (!Old) {
1558    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1559      << New->getDeclName();
1560
1561    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1562    if (OldD->getLocation().isValid())
1563      Diag(OldD->getLocation(), diag::note_previous_definition);
1564
1565    return New->setInvalidDecl();
1566  }
1567
1568  // If the old declaration is invalid, just give up here.
1569  if (Old->isInvalidDecl())
1570    return New->setInvalidDecl();
1571
1572  // If the typedef types are not identical, reject them in all languages and
1573  // with any extensions enabled.
1574  if (isIncompatibleTypedef(Old, New))
1575    return;
1576
1577  // The types match.  Link up the redeclaration chain if the old
1578  // declaration was a typedef.
1579  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1580    New->setPreviousDeclaration(Typedef);
1581
1582  if (getLangOpts().MicrosoftExt)
1583    return;
1584
1585  if (getLangOpts().CPlusPlus) {
1586    // C++ [dcl.typedef]p2:
1587    //   In a given non-class scope, a typedef specifier can be used to
1588    //   redefine the name of any type declared in that scope to refer
1589    //   to the type to which it already refers.
1590    if (!isa<CXXRecordDecl>(CurContext))
1591      return;
1592
1593    // C++0x [dcl.typedef]p4:
1594    //   In a given class scope, a typedef specifier can be used to redefine
1595    //   any class-name declared in that scope that is not also a typedef-name
1596    //   to refer to the type to which it already refers.
1597    //
1598    // This wording came in via DR424, which was a correction to the
1599    // wording in DR56, which accidentally banned code like:
1600    //
1601    //   struct S {
1602    //     typedef struct A { } A;
1603    //   };
1604    //
1605    // in the C++03 standard. We implement the C++0x semantics, which
1606    // allow the above but disallow
1607    //
1608    //   struct S {
1609    //     typedef int I;
1610    //     typedef int I;
1611    //   };
1612    //
1613    // since that was the intent of DR56.
1614    if (!isa<TypedefNameDecl>(Old))
1615      return;
1616
1617    Diag(New->getLocation(), diag::err_redefinition)
1618      << New->getDeclName();
1619    Diag(Old->getLocation(), diag::note_previous_definition);
1620    return New->setInvalidDecl();
1621  }
1622
1623  // Modules always permit redefinition of typedefs, as does C11.
1624  if (getLangOpts().Modules || getLangOpts().C11)
1625    return;
1626
1627  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1628  // is normally mapped to an error, but can be controlled with
1629  // -Wtypedef-redefinition.  If either the original or the redefinition is
1630  // in a system header, don't emit this for compatibility with GCC.
1631  if (getDiagnostics().getSuppressSystemWarnings() &&
1632      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1633       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1634    return;
1635
1636  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1637    << New->getDeclName();
1638  Diag(Old->getLocation(), diag::note_previous_definition);
1639  return;
1640}
1641
1642/// DeclhasAttr - returns true if decl Declaration already has the target
1643/// attribute.
1644static bool
1645DeclHasAttr(const Decl *D, const Attr *A) {
1646  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1647  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1648  // responsible for making sure they are consistent.
1649  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1650  if (AA)
1651    return false;
1652
1653  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1654  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1655  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1656    if ((*i)->getKind() == A->getKind()) {
1657      if (Ann) {
1658        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1659          return true;
1660        continue;
1661      }
1662      // FIXME: Don't hardcode this check
1663      if (OA && isa<OwnershipAttr>(*i))
1664        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1665      return true;
1666    }
1667
1668  return false;
1669}
1670
1671bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1672  InheritableAttr *NewAttr = NULL;
1673  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1674    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1675                                    AA->getIntroduced(), AA->getDeprecated(),
1676                                    AA->getObsoleted(), AA->getUnavailable(),
1677                                    AA->getMessage());
1678  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1679    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1680  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1681    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1682  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1683    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1684  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1685    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1686                              FA->getFormatIdx(), FA->getFirstArg());
1687  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1688    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1689  else if (!DeclHasAttr(D, Attr))
1690    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1691
1692  if (NewAttr) {
1693    NewAttr->setInherited(true);
1694    D->addAttr(NewAttr);
1695    return true;
1696  }
1697
1698  return false;
1699}
1700
1701static const Decl *getDefinition(Decl *D) {
1702  if (TagDecl *TD = dyn_cast<TagDecl>(D))
1703    return TD->getDefinition();
1704  if (VarDecl *VD = dyn_cast<VarDecl>(D))
1705    return VD->getDefinition();
1706  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1707    const FunctionDecl* Def;
1708    if (FD->hasBody(Def))
1709      return Def;
1710  }
1711  return NULL;
1712}
1713
1714/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1715void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1716                               bool MergeDeprecation) {
1717  // attributes declared post-definition are currently ignored
1718  const Decl *Def = getDefinition(Old);
1719  if (Def && Def != New && New->hasAttrs()) {
1720    Diag(New->getLocation(), diag::warn_attribute_precede_definition);
1721    Diag(Def->getLocation(), diag::note_previous_definition);
1722    New->dropAttrs();
1723  }
1724
1725  if (!Old->hasAttrs())
1726    return;
1727
1728  bool foundAny = New->hasAttrs();
1729
1730  // Ensure that any moving of objects within the allocated map is done before
1731  // we process them.
1732  if (!foundAny) New->setAttrs(AttrVec());
1733
1734  for (specific_attr_iterator<InheritableAttr>
1735         i = Old->specific_attr_begin<InheritableAttr>(),
1736         e = Old->specific_attr_end<InheritableAttr>();
1737       i != e; ++i) {
1738    // Ignore deprecated/unavailable/availability attributes if requested.
1739    if (!MergeDeprecation &&
1740        (isa<DeprecatedAttr>(*i) ||
1741         isa<UnavailableAttr>(*i) ||
1742         isa<AvailabilityAttr>(*i)))
1743      continue;
1744
1745    if (mergeDeclAttribute(New, *i))
1746      foundAny = true;
1747  }
1748
1749  if (!foundAny) New->dropAttrs();
1750}
1751
1752/// mergeParamDeclAttributes - Copy attributes from the old parameter
1753/// to the new one.
1754static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1755                                     const ParmVarDecl *oldDecl,
1756                                     ASTContext &C) {
1757  if (!oldDecl->hasAttrs())
1758    return;
1759
1760  bool foundAny = newDecl->hasAttrs();
1761
1762  // Ensure that any moving of objects within the allocated map is
1763  // done before we process them.
1764  if (!foundAny) newDecl->setAttrs(AttrVec());
1765
1766  for (specific_attr_iterator<InheritableParamAttr>
1767       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1768       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1769    if (!DeclHasAttr(newDecl, *i)) {
1770      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1771      newAttr->setInherited(true);
1772      newDecl->addAttr(newAttr);
1773      foundAny = true;
1774    }
1775  }
1776
1777  if (!foundAny) newDecl->dropAttrs();
1778}
1779
1780namespace {
1781
1782/// Used in MergeFunctionDecl to keep track of function parameters in
1783/// C.
1784struct GNUCompatibleParamWarning {
1785  ParmVarDecl *OldParm;
1786  ParmVarDecl *NewParm;
1787  QualType PromotedType;
1788};
1789
1790}
1791
1792/// getSpecialMember - get the special member enum for a method.
1793Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1794  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1795    if (Ctor->isDefaultConstructor())
1796      return Sema::CXXDefaultConstructor;
1797
1798    if (Ctor->isCopyConstructor())
1799      return Sema::CXXCopyConstructor;
1800
1801    if (Ctor->isMoveConstructor())
1802      return Sema::CXXMoveConstructor;
1803  } else if (isa<CXXDestructorDecl>(MD)) {
1804    return Sema::CXXDestructor;
1805  } else if (MD->isCopyAssignmentOperator()) {
1806    return Sema::CXXCopyAssignment;
1807  } else if (MD->isMoveAssignmentOperator()) {
1808    return Sema::CXXMoveAssignment;
1809  }
1810
1811  return Sema::CXXInvalid;
1812}
1813
1814/// canRedefineFunction - checks if a function can be redefined. Currently,
1815/// only extern inline functions can be redefined, and even then only in
1816/// GNU89 mode.
1817static bool canRedefineFunction(const FunctionDecl *FD,
1818                                const LangOptions& LangOpts) {
1819  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1820          !LangOpts.CPlusPlus &&
1821          FD->isInlineSpecified() &&
1822          FD->getStorageClass() == SC_Extern);
1823}
1824
1825/// MergeFunctionDecl - We just parsed a function 'New' from
1826/// declarator D which has the same name and scope as a previous
1827/// declaration 'Old'.  Figure out how to resolve this situation,
1828/// merging decls or emitting diagnostics as appropriate.
1829///
1830/// In C++, New and Old must be declarations that are not
1831/// overloaded. Use IsOverload to determine whether New and Old are
1832/// overloaded, and to select the Old declaration that New should be
1833/// merged with.
1834///
1835/// Returns true if there was an error, false otherwise.
1836bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1837  // Verify the old decl was also a function.
1838  FunctionDecl *Old = 0;
1839  if (FunctionTemplateDecl *OldFunctionTemplate
1840        = dyn_cast<FunctionTemplateDecl>(OldD))
1841    Old = OldFunctionTemplate->getTemplatedDecl();
1842  else
1843    Old = dyn_cast<FunctionDecl>(OldD);
1844  if (!Old) {
1845    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1846      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1847      Diag(Shadow->getTargetDecl()->getLocation(),
1848           diag::note_using_decl_target);
1849      Diag(Shadow->getUsingDecl()->getLocation(),
1850           diag::note_using_decl) << 0;
1851      return true;
1852    }
1853
1854    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1855      << New->getDeclName();
1856    Diag(OldD->getLocation(), diag::note_previous_definition);
1857    return true;
1858  }
1859
1860  // Determine whether the previous declaration was a definition,
1861  // implicit declaration, or a declaration.
1862  diag::kind PrevDiag;
1863  if (Old->isThisDeclarationADefinition())
1864    PrevDiag = diag::note_previous_definition;
1865  else if (Old->isImplicit())
1866    PrevDiag = diag::note_previous_implicit_declaration;
1867  else
1868    PrevDiag = diag::note_previous_declaration;
1869
1870  QualType OldQType = Context.getCanonicalType(Old->getType());
1871  QualType NewQType = Context.getCanonicalType(New->getType());
1872
1873  // Don't complain about this if we're in GNU89 mode and the old function
1874  // is an extern inline function.
1875  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1876      New->getStorageClass() == SC_Static &&
1877      Old->getStorageClass() != SC_Static &&
1878      !canRedefineFunction(Old, getLangOpts())) {
1879    if (getLangOpts().MicrosoftExt) {
1880      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1881      Diag(Old->getLocation(), PrevDiag);
1882    } else {
1883      Diag(New->getLocation(), diag::err_static_non_static) << New;
1884      Diag(Old->getLocation(), PrevDiag);
1885      return true;
1886    }
1887  }
1888
1889  // If a function is first declared with a calling convention, but is
1890  // later declared or defined without one, the second decl assumes the
1891  // calling convention of the first.
1892  //
1893  // For the new decl, we have to look at the NON-canonical type to tell the
1894  // difference between a function that really doesn't have a calling
1895  // convention and one that is declared cdecl. That's because in
1896  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1897  // because it is the default calling convention.
1898  //
1899  // Note also that we DO NOT return at this point, because we still have
1900  // other tests to run.
1901  const FunctionType *OldType = cast<FunctionType>(OldQType);
1902  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1903  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1904  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1905  bool RequiresAdjustment = false;
1906  if (OldTypeInfo.getCC() != CC_Default &&
1907      NewTypeInfo.getCC() == CC_Default) {
1908    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1909    RequiresAdjustment = true;
1910  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1911                                     NewTypeInfo.getCC())) {
1912    // Calling conventions really aren't compatible, so complain.
1913    Diag(New->getLocation(), diag::err_cconv_change)
1914      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1915      << (OldTypeInfo.getCC() == CC_Default)
1916      << (OldTypeInfo.getCC() == CC_Default ? "" :
1917          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1918    Diag(Old->getLocation(), diag::note_previous_declaration);
1919    return true;
1920  }
1921
1922  // FIXME: diagnose the other way around?
1923  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1924    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1925    RequiresAdjustment = true;
1926  }
1927
1928  // Merge regparm attribute.
1929  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1930      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1931    if (NewTypeInfo.getHasRegParm()) {
1932      Diag(New->getLocation(), diag::err_regparm_mismatch)
1933        << NewType->getRegParmType()
1934        << OldType->getRegParmType();
1935      Diag(Old->getLocation(), diag::note_previous_declaration);
1936      return true;
1937    }
1938
1939    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1940    RequiresAdjustment = true;
1941  }
1942
1943  // Merge ns_returns_retained attribute.
1944  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1945    if (NewTypeInfo.getProducesResult()) {
1946      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1947      Diag(Old->getLocation(), diag::note_previous_declaration);
1948      return true;
1949    }
1950
1951    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1952    RequiresAdjustment = true;
1953  }
1954
1955  if (RequiresAdjustment) {
1956    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1957    New->setType(QualType(NewType, 0));
1958    NewQType = Context.getCanonicalType(New->getType());
1959  }
1960
1961  if (getLangOpts().CPlusPlus) {
1962    // (C++98 13.1p2):
1963    //   Certain function declarations cannot be overloaded:
1964    //     -- Function declarations that differ only in the return type
1965    //        cannot be overloaded.
1966    QualType OldReturnType = OldType->getResultType();
1967    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1968    QualType ResQT;
1969    if (OldReturnType != NewReturnType) {
1970      if (NewReturnType->isObjCObjectPointerType()
1971          && OldReturnType->isObjCObjectPointerType())
1972        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1973      if (ResQT.isNull()) {
1974        if (New->isCXXClassMember() && New->isOutOfLine())
1975          Diag(New->getLocation(),
1976               diag::err_member_def_does_not_match_ret_type) << New;
1977        else
1978          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1979        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1980        return true;
1981      }
1982      else
1983        NewQType = ResQT;
1984    }
1985
1986    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1987    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1988    if (OldMethod && NewMethod) {
1989      // Preserve triviality.
1990      NewMethod->setTrivial(OldMethod->isTrivial());
1991
1992      // MSVC allows explicit template specialization at class scope:
1993      // 2 CXMethodDecls referring to the same function will be injected.
1994      // We don't want a redeclartion error.
1995      bool IsClassScopeExplicitSpecialization =
1996                              OldMethod->isFunctionTemplateSpecialization() &&
1997                              NewMethod->isFunctionTemplateSpecialization();
1998      bool isFriend = NewMethod->getFriendObjectKind();
1999
2000      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
2001          !IsClassScopeExplicitSpecialization) {
2002        //    -- Member function declarations with the same name and the
2003        //       same parameter types cannot be overloaded if any of them
2004        //       is a static member function declaration.
2005        if (OldMethod->isStatic() || NewMethod->isStatic()) {
2006          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
2007          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2008          return true;
2009        }
2010
2011        // C++ [class.mem]p1:
2012        //   [...] A member shall not be declared twice in the
2013        //   member-specification, except that a nested class or member
2014        //   class template can be declared and then later defined.
2015        unsigned NewDiag;
2016        if (isa<CXXConstructorDecl>(OldMethod))
2017          NewDiag = diag::err_constructor_redeclared;
2018        else if (isa<CXXDestructorDecl>(NewMethod))
2019          NewDiag = diag::err_destructor_redeclared;
2020        else if (isa<CXXConversionDecl>(NewMethod))
2021          NewDiag = diag::err_conv_function_redeclared;
2022        else
2023          NewDiag = diag::err_member_redeclared;
2024
2025        Diag(New->getLocation(), NewDiag);
2026        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2027
2028      // Complain if this is an explicit declaration of a special
2029      // member that was initially declared implicitly.
2030      //
2031      // As an exception, it's okay to befriend such methods in order
2032      // to permit the implicit constructor/destructor/operator calls.
2033      } else if (OldMethod->isImplicit()) {
2034        if (isFriend) {
2035          NewMethod->setImplicit();
2036        } else {
2037          Diag(NewMethod->getLocation(),
2038               diag::err_definition_of_implicitly_declared_member)
2039            << New << getSpecialMember(OldMethod);
2040          return true;
2041        }
2042      } else if (OldMethod->isExplicitlyDefaulted() && !isFriend) {
2043        Diag(NewMethod->getLocation(),
2044             diag::err_definition_of_explicitly_defaulted_member)
2045          << getSpecialMember(OldMethod);
2046        return true;
2047      }
2048    }
2049
2050    // (C++98 8.3.5p3):
2051    //   All declarations for a function shall agree exactly in both the
2052    //   return type and the parameter-type-list.
2053    // We also want to respect all the extended bits except noreturn.
2054
2055    // noreturn should now match unless the old type info didn't have it.
2056    QualType OldQTypeForComparison = OldQType;
2057    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2058      assert(OldQType == QualType(OldType, 0));
2059      const FunctionType *OldTypeForComparison
2060        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2061      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2062      assert(OldQTypeForComparison.isCanonical());
2063    }
2064
2065    if (OldQTypeForComparison == NewQType)
2066      return MergeCompatibleFunctionDecls(New, Old, S);
2067
2068    // Fall through for conflicting redeclarations and redefinitions.
2069  }
2070
2071  // C: Function types need to be compatible, not identical. This handles
2072  // duplicate function decls like "void f(int); void f(enum X);" properly.
2073  if (!getLangOpts().CPlusPlus &&
2074      Context.typesAreCompatible(OldQType, NewQType)) {
2075    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2076    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2077    const FunctionProtoType *OldProto = 0;
2078    if (isa<FunctionNoProtoType>(NewFuncType) &&
2079        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2080      // The old declaration provided a function prototype, but the
2081      // new declaration does not. Merge in the prototype.
2082      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2083      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2084                                                 OldProto->arg_type_end());
2085      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2086                                         ParamTypes.data(), ParamTypes.size(),
2087                                         OldProto->getExtProtoInfo());
2088      New->setType(NewQType);
2089      New->setHasInheritedPrototype();
2090
2091      // Synthesize a parameter for each argument type.
2092      SmallVector<ParmVarDecl*, 16> Params;
2093      for (FunctionProtoType::arg_type_iterator
2094             ParamType = OldProto->arg_type_begin(),
2095             ParamEnd = OldProto->arg_type_end();
2096           ParamType != ParamEnd; ++ParamType) {
2097        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2098                                                 SourceLocation(),
2099                                                 SourceLocation(), 0,
2100                                                 *ParamType, /*TInfo=*/0,
2101                                                 SC_None, SC_None,
2102                                                 0);
2103        Param->setScopeInfo(0, Params.size());
2104        Param->setImplicit();
2105        Params.push_back(Param);
2106      }
2107
2108      New->setParams(Params);
2109    }
2110
2111    return MergeCompatibleFunctionDecls(New, Old, S);
2112  }
2113
2114  // GNU C permits a K&R definition to follow a prototype declaration
2115  // if the declared types of the parameters in the K&R definition
2116  // match the types in the prototype declaration, even when the
2117  // promoted types of the parameters from the K&R definition differ
2118  // from the types in the prototype. GCC then keeps the types from
2119  // the prototype.
2120  //
2121  // If a variadic prototype is followed by a non-variadic K&R definition,
2122  // the K&R definition becomes variadic.  This is sort of an edge case, but
2123  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2124  // C99 6.9.1p8.
2125  if (!getLangOpts().CPlusPlus &&
2126      Old->hasPrototype() && !New->hasPrototype() &&
2127      New->getType()->getAs<FunctionProtoType>() &&
2128      Old->getNumParams() == New->getNumParams()) {
2129    SmallVector<QualType, 16> ArgTypes;
2130    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2131    const FunctionProtoType *OldProto
2132      = Old->getType()->getAs<FunctionProtoType>();
2133    const FunctionProtoType *NewProto
2134      = New->getType()->getAs<FunctionProtoType>();
2135
2136    // Determine whether this is the GNU C extension.
2137    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2138                                               NewProto->getResultType());
2139    bool LooseCompatible = !MergedReturn.isNull();
2140    for (unsigned Idx = 0, End = Old->getNumParams();
2141         LooseCompatible && Idx != End; ++Idx) {
2142      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2143      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2144      if (Context.typesAreCompatible(OldParm->getType(),
2145                                     NewProto->getArgType(Idx))) {
2146        ArgTypes.push_back(NewParm->getType());
2147      } else if (Context.typesAreCompatible(OldParm->getType(),
2148                                            NewParm->getType(),
2149                                            /*CompareUnqualified=*/true)) {
2150        GNUCompatibleParamWarning Warn
2151          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2152        Warnings.push_back(Warn);
2153        ArgTypes.push_back(NewParm->getType());
2154      } else
2155        LooseCompatible = false;
2156    }
2157
2158    if (LooseCompatible) {
2159      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2160        Diag(Warnings[Warn].NewParm->getLocation(),
2161             diag::ext_param_promoted_not_compatible_with_prototype)
2162          << Warnings[Warn].PromotedType
2163          << Warnings[Warn].OldParm->getType();
2164        if (Warnings[Warn].OldParm->getLocation().isValid())
2165          Diag(Warnings[Warn].OldParm->getLocation(),
2166               diag::note_previous_declaration);
2167      }
2168
2169      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2170                                           ArgTypes.size(),
2171                                           OldProto->getExtProtoInfo()));
2172      return MergeCompatibleFunctionDecls(New, Old, S);
2173    }
2174
2175    // Fall through to diagnose conflicting types.
2176  }
2177
2178  // A function that has already been declared has been redeclared or defined
2179  // with a different type- show appropriate diagnostic
2180  if (unsigned BuiltinID = Old->getBuiltinID()) {
2181    // The user has declared a builtin function with an incompatible
2182    // signature.
2183    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2184      // The function the user is redeclaring is a library-defined
2185      // function like 'malloc' or 'printf'. Warn about the
2186      // redeclaration, then pretend that we don't know about this
2187      // library built-in.
2188      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2189      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2190        << Old << Old->getType();
2191      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2192      Old->setInvalidDecl();
2193      return false;
2194    }
2195
2196    PrevDiag = diag::note_previous_builtin_declaration;
2197  }
2198
2199  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2200  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2201  return true;
2202}
2203
2204/// \brief Completes the merge of two function declarations that are
2205/// known to be compatible.
2206///
2207/// This routine handles the merging of attributes and other
2208/// properties of function declarations form the old declaration to
2209/// the new declaration, once we know that New is in fact a
2210/// redeclaration of Old.
2211///
2212/// \returns false
2213bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2214                                        Scope *S) {
2215  // Merge the attributes
2216  mergeDeclAttributes(New, Old);
2217
2218  // Merge the storage class.
2219  if (Old->getStorageClass() != SC_Extern &&
2220      Old->getStorageClass() != SC_None)
2221    New->setStorageClass(Old->getStorageClass());
2222
2223  // Merge "pure" flag.
2224  if (Old->isPure())
2225    New->setPure();
2226
2227  // Merge attributes from the parameters.  These can mismatch with K&R
2228  // declarations.
2229  if (New->getNumParams() == Old->getNumParams())
2230    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2231      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2232                               Context);
2233
2234  if (getLangOpts().CPlusPlus)
2235    return MergeCXXFunctionDecl(New, Old, S);
2236
2237  return false;
2238}
2239
2240
2241void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2242                                ObjCMethodDecl *oldMethod) {
2243
2244  // Merge the attributes, including deprecated/unavailable
2245  mergeDeclAttributes(newMethod, oldMethod, /* mergeDeprecation */true);
2246
2247  // Merge attributes from the parameters.
2248  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin(),
2249                                       oe = oldMethod->param_end();
2250  for (ObjCMethodDecl::param_iterator
2251         ni = newMethod->param_begin(), ne = newMethod->param_end();
2252       ni != ne && oi != oe; ++ni, ++oi)
2253    mergeParamDeclAttributes(*ni, *oi, Context);
2254
2255  CheckObjCMethodOverride(newMethod, oldMethod, true);
2256}
2257
2258/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2259/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2260/// emitting diagnostics as appropriate.
2261///
2262/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2263/// to here in AddInitializerToDecl. We can't check them before the initializer
2264/// is attached.
2265void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2266  if (New->isInvalidDecl() || Old->isInvalidDecl())
2267    return;
2268
2269  QualType MergedT;
2270  if (getLangOpts().CPlusPlus) {
2271    AutoType *AT = New->getType()->getContainedAutoType();
2272    if (AT && !AT->isDeduced()) {
2273      // We don't know what the new type is until the initializer is attached.
2274      return;
2275    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2276      // These could still be something that needs exception specs checked.
2277      return MergeVarDeclExceptionSpecs(New, Old);
2278    }
2279    // C++ [basic.link]p10:
2280    //   [...] the types specified by all declarations referring to a given
2281    //   object or function shall be identical, except that declarations for an
2282    //   array object can specify array types that differ by the presence or
2283    //   absence of a major array bound (8.3.4).
2284    else if (Old->getType()->isIncompleteArrayType() &&
2285             New->getType()->isArrayType()) {
2286      CanQual<ArrayType> OldArray
2287        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2288      CanQual<ArrayType> NewArray
2289        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2290      if (OldArray->getElementType() == NewArray->getElementType())
2291        MergedT = New->getType();
2292    } else if (Old->getType()->isArrayType() &&
2293             New->getType()->isIncompleteArrayType()) {
2294      CanQual<ArrayType> OldArray
2295        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2296      CanQual<ArrayType> NewArray
2297        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2298      if (OldArray->getElementType() == NewArray->getElementType())
2299        MergedT = Old->getType();
2300    } else if (New->getType()->isObjCObjectPointerType()
2301               && Old->getType()->isObjCObjectPointerType()) {
2302        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2303                                                        Old->getType());
2304    }
2305  } else {
2306    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2307  }
2308  if (MergedT.isNull()) {
2309    Diag(New->getLocation(), diag::err_redefinition_different_type)
2310      << New->getDeclName();
2311    Diag(Old->getLocation(), diag::note_previous_definition);
2312    return New->setInvalidDecl();
2313  }
2314  New->setType(MergedT);
2315}
2316
2317/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2318/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2319/// situation, merging decls or emitting diagnostics as appropriate.
2320///
2321/// Tentative definition rules (C99 6.9.2p2) are checked by
2322/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2323/// definitions here, since the initializer hasn't been attached.
2324///
2325void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2326  // If the new decl is already invalid, don't do any other checking.
2327  if (New->isInvalidDecl())
2328    return;
2329
2330  // Verify the old decl was also a variable.
2331  VarDecl *Old = 0;
2332  if (!Previous.isSingleResult() ||
2333      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2334    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2335      << New->getDeclName();
2336    Diag(Previous.getRepresentativeDecl()->getLocation(),
2337         diag::note_previous_definition);
2338    return New->setInvalidDecl();
2339  }
2340
2341  // C++ [class.mem]p1:
2342  //   A member shall not be declared twice in the member-specification [...]
2343  //
2344  // Here, we need only consider static data members.
2345  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2346    Diag(New->getLocation(), diag::err_duplicate_member)
2347      << New->getIdentifier();
2348    Diag(Old->getLocation(), diag::note_previous_declaration);
2349    New->setInvalidDecl();
2350  }
2351
2352  mergeDeclAttributes(New, Old);
2353  // Warn if an already-declared variable is made a weak_import in a subsequent
2354  // declaration
2355  if (New->getAttr<WeakImportAttr>() &&
2356      Old->getStorageClass() == SC_None &&
2357      !Old->getAttr<WeakImportAttr>()) {
2358    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2359    Diag(Old->getLocation(), diag::note_previous_definition);
2360    // Remove weak_import attribute on new declaration.
2361    New->dropAttr<WeakImportAttr>();
2362  }
2363
2364  // Merge the types.
2365  MergeVarDeclTypes(New, Old);
2366  if (New->isInvalidDecl())
2367    return;
2368
2369  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2370  if (New->getStorageClass() == SC_Static &&
2371      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2372    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2373    Diag(Old->getLocation(), diag::note_previous_definition);
2374    return New->setInvalidDecl();
2375  }
2376  // C99 6.2.2p4:
2377  //   For an identifier declared with the storage-class specifier
2378  //   extern in a scope in which a prior declaration of that
2379  //   identifier is visible,23) if the prior declaration specifies
2380  //   internal or external linkage, the linkage of the identifier at
2381  //   the later declaration is the same as the linkage specified at
2382  //   the prior declaration. If no prior declaration is visible, or
2383  //   if the prior declaration specifies no linkage, then the
2384  //   identifier has external linkage.
2385  if (New->hasExternalStorage() && Old->hasLinkage())
2386    /* Okay */;
2387  else if (New->getStorageClass() != SC_Static &&
2388           Old->getStorageClass() == SC_Static) {
2389    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2390    Diag(Old->getLocation(), diag::note_previous_definition);
2391    return New->setInvalidDecl();
2392  }
2393
2394  // Check if extern is followed by non-extern and vice-versa.
2395  if (New->hasExternalStorage() &&
2396      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2397    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2398    Diag(Old->getLocation(), diag::note_previous_definition);
2399    return New->setInvalidDecl();
2400  }
2401  if (Old->hasExternalStorage() &&
2402      !New->hasLinkage() && New->isLocalVarDecl()) {
2403    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2404    Diag(Old->getLocation(), diag::note_previous_definition);
2405    return New->setInvalidDecl();
2406  }
2407
2408  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2409
2410  // FIXME: The test for external storage here seems wrong? We still
2411  // need to check for mismatches.
2412  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2413      // Don't complain about out-of-line definitions of static members.
2414      !(Old->getLexicalDeclContext()->isRecord() &&
2415        !New->getLexicalDeclContext()->isRecord())) {
2416    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2417    Diag(Old->getLocation(), diag::note_previous_definition);
2418    return New->setInvalidDecl();
2419  }
2420
2421  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2422    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2423    Diag(Old->getLocation(), diag::note_previous_definition);
2424  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2425    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2426    Diag(Old->getLocation(), diag::note_previous_definition);
2427  }
2428
2429  // C++ doesn't have tentative definitions, so go right ahead and check here.
2430  const VarDecl *Def;
2431  if (getLangOpts().CPlusPlus &&
2432      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2433      (Def = Old->getDefinition())) {
2434    Diag(New->getLocation(), diag::err_redefinition)
2435      << New->getDeclName();
2436    Diag(Def->getLocation(), diag::note_previous_definition);
2437    New->setInvalidDecl();
2438    return;
2439  }
2440  // c99 6.2.2 P4.
2441  // For an identifier declared with the storage-class specifier extern in a
2442  // scope in which a prior declaration of that identifier is visible, if
2443  // the prior declaration specifies internal or external linkage, the linkage
2444  // of the identifier at the later declaration is the same as the linkage
2445  // specified at the prior declaration.
2446  // FIXME. revisit this code.
2447  if (New->hasExternalStorage() &&
2448      Old->getLinkage() == InternalLinkage &&
2449      New->getDeclContext() == Old->getDeclContext())
2450    New->setStorageClass(Old->getStorageClass());
2451
2452  // Keep a chain of previous declarations.
2453  New->setPreviousDeclaration(Old);
2454
2455  // Inherit access appropriately.
2456  New->setAccess(Old->getAccess());
2457}
2458
2459/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2460/// no declarator (e.g. "struct foo;") is parsed.
2461Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2462                                       DeclSpec &DS) {
2463  return ParsedFreeStandingDeclSpec(S, AS, DS,
2464                                    MultiTemplateParamsArg(*this, 0, 0));
2465}
2466
2467/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2468/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2469/// parameters to cope with template friend declarations.
2470Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2471                                       DeclSpec &DS,
2472                                       MultiTemplateParamsArg TemplateParams) {
2473  Decl *TagD = 0;
2474  TagDecl *Tag = 0;
2475  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2476      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2477      DS.getTypeSpecType() == DeclSpec::TST_union ||
2478      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2479    TagD = DS.getRepAsDecl();
2480
2481    if (!TagD) // We probably had an error
2482      return 0;
2483
2484    // Note that the above type specs guarantee that the
2485    // type rep is a Decl, whereas in many of the others
2486    // it's a Type.
2487    if (isa<TagDecl>(TagD))
2488      Tag = cast<TagDecl>(TagD);
2489    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2490      Tag = CTD->getTemplatedDecl();
2491  }
2492
2493  if (Tag) {
2494    Tag->setFreeStanding();
2495    if (Tag->isInvalidDecl())
2496      return Tag;
2497  }
2498
2499  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2500    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2501    // or incomplete types shall not be restrict-qualified."
2502    if (TypeQuals & DeclSpec::TQ_restrict)
2503      Diag(DS.getRestrictSpecLoc(),
2504           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2505           << DS.getSourceRange();
2506  }
2507
2508  if (DS.isConstexprSpecified()) {
2509    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2510    // and definitions of functions and variables.
2511    if (Tag)
2512      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2513        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2514            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2515            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2516    else
2517      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2518    // Don't emit warnings after this error.
2519    return TagD;
2520  }
2521
2522  if (DS.isFriendSpecified()) {
2523    // If we're dealing with a decl but not a TagDecl, assume that
2524    // whatever routines created it handled the friendship aspect.
2525    if (TagD && !Tag)
2526      return 0;
2527    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2528  }
2529
2530  // Track whether we warned about the fact that there aren't any
2531  // declarators.
2532  bool emittedWarning = false;
2533
2534  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2535    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2536        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2537      if (getLangOpts().CPlusPlus ||
2538          Record->getDeclContext()->isRecord())
2539        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2540
2541      Diag(DS.getLocStart(), diag::ext_no_declarators)
2542        << DS.getSourceRange();
2543      emittedWarning = true;
2544    }
2545  }
2546
2547  // Check for Microsoft C extension: anonymous struct.
2548  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2549      CurContext->isRecord() &&
2550      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2551    // Handle 2 kinds of anonymous struct:
2552    //   struct STRUCT;
2553    // and
2554    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2555    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2556    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2557        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2558         DS.getRepAsType().get()->isStructureType())) {
2559      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2560        << DS.getSourceRange();
2561      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2562    }
2563  }
2564
2565  if (getLangOpts().CPlusPlus &&
2566      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2567    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2568      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2569          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2570        Diag(Enum->getLocation(), diag::ext_no_declarators)
2571          << DS.getSourceRange();
2572        emittedWarning = true;
2573      }
2574
2575  // Skip all the checks below if we have a type error.
2576  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2577
2578  if (!DS.isMissingDeclaratorOk()) {
2579    // Warn about typedefs of enums without names, since this is an
2580    // extension in both Microsoft and GNU.
2581    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2582        Tag && isa<EnumDecl>(Tag)) {
2583      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2584        << DS.getSourceRange();
2585      return Tag;
2586    }
2587
2588    Diag(DS.getLocStart(), diag::ext_no_declarators)
2589      << DS.getSourceRange();
2590    emittedWarning = true;
2591  }
2592
2593  // We're going to complain about a bunch of spurious specifiers;
2594  // only do this if we're declaring a tag, because otherwise we
2595  // should be getting diag::ext_no_declarators.
2596  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2597    return TagD;
2598
2599  // Note that a linkage-specification sets a storage class, but
2600  // 'extern "C" struct foo;' is actually valid and not theoretically
2601  // useless.
2602  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2603    if (!DS.isExternInLinkageSpec())
2604      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2605        << DeclSpec::getSpecifierName(scs);
2606
2607  if (DS.isThreadSpecified())
2608    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2609  if (DS.getTypeQualifiers()) {
2610    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2611      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2612    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2613      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2614    // Restrict is covered above.
2615  }
2616  if (DS.isInlineSpecified())
2617    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2618  if (DS.isVirtualSpecified())
2619    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2620  if (DS.isExplicitSpecified())
2621    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2622
2623  if (DS.isModulePrivateSpecified() &&
2624      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2625    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2626      << Tag->getTagKind()
2627      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2628
2629  // Warn about ignored type attributes, for example:
2630  // __attribute__((aligned)) struct A;
2631  // Attributes should be placed after tag to apply to type declaration.
2632  if (!DS.getAttributes().empty()) {
2633    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2634    if (TypeSpecType == DeclSpec::TST_class ||
2635        TypeSpecType == DeclSpec::TST_struct ||
2636        TypeSpecType == DeclSpec::TST_union ||
2637        TypeSpecType == DeclSpec::TST_enum) {
2638      AttributeList* attrs = DS.getAttributes().getList();
2639      while (attrs) {
2640        Diag(attrs->getScopeLoc(),
2641             diag::warn_declspec_attribute_ignored)
2642        << attrs->getName()
2643        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2644            TypeSpecType == DeclSpec::TST_struct ? 1 :
2645            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2646        attrs = attrs->getNext();
2647      }
2648    }
2649  }
2650
2651  return TagD;
2652}
2653
2654/// We are trying to inject an anonymous member into the given scope;
2655/// check if there's an existing declaration that can't be overloaded.
2656///
2657/// \return true if this is a forbidden redeclaration
2658static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2659                                         Scope *S,
2660                                         DeclContext *Owner,
2661                                         DeclarationName Name,
2662                                         SourceLocation NameLoc,
2663                                         unsigned diagnostic) {
2664  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2665                 Sema::ForRedeclaration);
2666  if (!SemaRef.LookupName(R, S)) return false;
2667
2668  if (R.getAsSingle<TagDecl>())
2669    return false;
2670
2671  // Pick a representative declaration.
2672  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2673  assert(PrevDecl && "Expected a non-null Decl");
2674
2675  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2676    return false;
2677
2678  SemaRef.Diag(NameLoc, diagnostic) << Name;
2679  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2680
2681  return true;
2682}
2683
2684/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2685/// anonymous struct or union AnonRecord into the owning context Owner
2686/// and scope S. This routine will be invoked just after we realize
2687/// that an unnamed union or struct is actually an anonymous union or
2688/// struct, e.g.,
2689///
2690/// @code
2691/// union {
2692///   int i;
2693///   float f;
2694/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2695///    // f into the surrounding scope.x
2696/// @endcode
2697///
2698/// This routine is recursive, injecting the names of nested anonymous
2699/// structs/unions into the owning context and scope as well.
2700static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2701                                                DeclContext *Owner,
2702                                                RecordDecl *AnonRecord,
2703                                                AccessSpecifier AS,
2704                              SmallVector<NamedDecl*, 2> &Chaining,
2705                                                      bool MSAnonStruct) {
2706  unsigned diagKind
2707    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2708                            : diag::err_anonymous_struct_member_redecl;
2709
2710  bool Invalid = false;
2711
2712  // Look every FieldDecl and IndirectFieldDecl with a name.
2713  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2714                               DEnd = AnonRecord->decls_end();
2715       D != DEnd; ++D) {
2716    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2717        cast<NamedDecl>(*D)->getDeclName()) {
2718      ValueDecl *VD = cast<ValueDecl>(*D);
2719      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2720                                       VD->getLocation(), diagKind)) {
2721        // C++ [class.union]p2:
2722        //   The names of the members of an anonymous union shall be
2723        //   distinct from the names of any other entity in the
2724        //   scope in which the anonymous union is declared.
2725        Invalid = true;
2726      } else {
2727        // C++ [class.union]p2:
2728        //   For the purpose of name lookup, after the anonymous union
2729        //   definition, the members of the anonymous union are
2730        //   considered to have been defined in the scope in which the
2731        //   anonymous union is declared.
2732        unsigned OldChainingSize = Chaining.size();
2733        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2734          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2735               PE = IF->chain_end(); PI != PE; ++PI)
2736            Chaining.push_back(*PI);
2737        else
2738          Chaining.push_back(VD);
2739
2740        assert(Chaining.size() >= 2);
2741        NamedDecl **NamedChain =
2742          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2743        for (unsigned i = 0; i < Chaining.size(); i++)
2744          NamedChain[i] = Chaining[i];
2745
2746        IndirectFieldDecl* IndirectField =
2747          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2748                                    VD->getIdentifier(), VD->getType(),
2749                                    NamedChain, Chaining.size());
2750
2751        IndirectField->setAccess(AS);
2752        IndirectField->setImplicit();
2753        SemaRef.PushOnScopeChains(IndirectField, S);
2754
2755        // That includes picking up the appropriate access specifier.
2756        if (AS != AS_none) IndirectField->setAccess(AS);
2757
2758        Chaining.resize(OldChainingSize);
2759      }
2760    }
2761  }
2762
2763  return Invalid;
2764}
2765
2766/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2767/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2768/// illegal input values are mapped to SC_None.
2769static StorageClass
2770StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2771  switch (StorageClassSpec) {
2772  case DeclSpec::SCS_unspecified:    return SC_None;
2773  case DeclSpec::SCS_extern:         return SC_Extern;
2774  case DeclSpec::SCS_static:         return SC_Static;
2775  case DeclSpec::SCS_auto:           return SC_Auto;
2776  case DeclSpec::SCS_register:       return SC_Register;
2777  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2778    // Illegal SCSs map to None: error reporting is up to the caller.
2779  case DeclSpec::SCS_mutable:        // Fall through.
2780  case DeclSpec::SCS_typedef:        return SC_None;
2781  }
2782  llvm_unreachable("unknown storage class specifier");
2783}
2784
2785/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2786/// a StorageClass. Any error reporting is up to the caller:
2787/// illegal input values are mapped to SC_None.
2788static StorageClass
2789StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2790  switch (StorageClassSpec) {
2791  case DeclSpec::SCS_unspecified:    return SC_None;
2792  case DeclSpec::SCS_extern:         return SC_Extern;
2793  case DeclSpec::SCS_static:         return SC_Static;
2794  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2795    // Illegal SCSs map to None: error reporting is up to the caller.
2796  case DeclSpec::SCS_auto:           // Fall through.
2797  case DeclSpec::SCS_mutable:        // Fall through.
2798  case DeclSpec::SCS_register:       // Fall through.
2799  case DeclSpec::SCS_typedef:        return SC_None;
2800  }
2801  llvm_unreachable("unknown storage class specifier");
2802}
2803
2804/// BuildAnonymousStructOrUnion - Handle the declaration of an
2805/// anonymous structure or union. Anonymous unions are a C++ feature
2806/// (C++ [class.union]) and a C11 feature; anonymous structures
2807/// are a C11 feature and GNU C++ extension.
2808Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2809                                             AccessSpecifier AS,
2810                                             RecordDecl *Record) {
2811  DeclContext *Owner = Record->getDeclContext();
2812
2813  // Diagnose whether this anonymous struct/union is an extension.
2814  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2815    Diag(Record->getLocation(), diag::ext_anonymous_union);
2816  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2817    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2818  else if (!Record->isUnion() && !getLangOpts().C11)
2819    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2820
2821  // C and C++ require different kinds of checks for anonymous
2822  // structs/unions.
2823  bool Invalid = false;
2824  if (getLangOpts().CPlusPlus) {
2825    const char* PrevSpec = 0;
2826    unsigned DiagID;
2827    if (Record->isUnion()) {
2828      // C++ [class.union]p6:
2829      //   Anonymous unions declared in a named namespace or in the
2830      //   global namespace shall be declared static.
2831      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2832          (isa<TranslationUnitDecl>(Owner) ||
2833           (isa<NamespaceDecl>(Owner) &&
2834            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2835        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2836          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2837
2838        // Recover by adding 'static'.
2839        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2840                               PrevSpec, DiagID);
2841      }
2842      // C++ [class.union]p6:
2843      //   A storage class is not allowed in a declaration of an
2844      //   anonymous union in a class scope.
2845      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2846               isa<RecordDecl>(Owner)) {
2847        Diag(DS.getStorageClassSpecLoc(),
2848             diag::err_anonymous_union_with_storage_spec)
2849          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2850
2851        // Recover by removing the storage specifier.
2852        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2853                               SourceLocation(),
2854                               PrevSpec, DiagID);
2855      }
2856    }
2857
2858    // Ignore const/volatile/restrict qualifiers.
2859    if (DS.getTypeQualifiers()) {
2860      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2861        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2862          << Record->isUnion() << 0
2863          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2864      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2865        Diag(DS.getVolatileSpecLoc(),
2866             diag::ext_anonymous_struct_union_qualified)
2867          << Record->isUnion() << 1
2868          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2869      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2870        Diag(DS.getRestrictSpecLoc(),
2871             diag::ext_anonymous_struct_union_qualified)
2872          << Record->isUnion() << 2
2873          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2874
2875      DS.ClearTypeQualifiers();
2876    }
2877
2878    // C++ [class.union]p2:
2879    //   The member-specification of an anonymous union shall only
2880    //   define non-static data members. [Note: nested types and
2881    //   functions cannot be declared within an anonymous union. ]
2882    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2883                                 MemEnd = Record->decls_end();
2884         Mem != MemEnd; ++Mem) {
2885      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2886        // C++ [class.union]p3:
2887        //   An anonymous union shall not have private or protected
2888        //   members (clause 11).
2889        assert(FD->getAccess() != AS_none);
2890        if (FD->getAccess() != AS_public) {
2891          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2892            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2893          Invalid = true;
2894        }
2895
2896        // C++ [class.union]p1
2897        //   An object of a class with a non-trivial constructor, a non-trivial
2898        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2899        //   assignment operator cannot be a member of a union, nor can an
2900        //   array of such objects.
2901        if (CheckNontrivialField(FD))
2902          Invalid = true;
2903      } else if ((*Mem)->isImplicit()) {
2904        // Any implicit members are fine.
2905      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2906        // This is a type that showed up in an
2907        // elaborated-type-specifier inside the anonymous struct or
2908        // union, but which actually declares a type outside of the
2909        // anonymous struct or union. It's okay.
2910      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2911        if (!MemRecord->isAnonymousStructOrUnion() &&
2912            MemRecord->getDeclName()) {
2913          // Visual C++ allows type definition in anonymous struct or union.
2914          if (getLangOpts().MicrosoftExt)
2915            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2916              << (int)Record->isUnion();
2917          else {
2918            // This is a nested type declaration.
2919            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2920              << (int)Record->isUnion();
2921            Invalid = true;
2922          }
2923        }
2924      } else if (isa<AccessSpecDecl>(*Mem)) {
2925        // Any access specifier is fine.
2926      } else {
2927        // We have something that isn't a non-static data
2928        // member. Complain about it.
2929        unsigned DK = diag::err_anonymous_record_bad_member;
2930        if (isa<TypeDecl>(*Mem))
2931          DK = diag::err_anonymous_record_with_type;
2932        else if (isa<FunctionDecl>(*Mem))
2933          DK = diag::err_anonymous_record_with_function;
2934        else if (isa<VarDecl>(*Mem))
2935          DK = diag::err_anonymous_record_with_static;
2936
2937        // Visual C++ allows type definition in anonymous struct or union.
2938        if (getLangOpts().MicrosoftExt &&
2939            DK == diag::err_anonymous_record_with_type)
2940          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2941            << (int)Record->isUnion();
2942        else {
2943          Diag((*Mem)->getLocation(), DK)
2944              << (int)Record->isUnion();
2945          Invalid = true;
2946        }
2947      }
2948    }
2949  }
2950
2951  if (!Record->isUnion() && !Owner->isRecord()) {
2952    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2953      << (int)getLangOpts().CPlusPlus;
2954    Invalid = true;
2955  }
2956
2957  // Mock up a declarator.
2958  Declarator Dc(DS, Declarator::MemberContext);
2959  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2960  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2961
2962  // Create a declaration for this anonymous struct/union.
2963  NamedDecl *Anon = 0;
2964  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2965    Anon = FieldDecl::Create(Context, OwningClass,
2966                             DS.getLocStart(),
2967                             Record->getLocation(),
2968                             /*IdentifierInfo=*/0,
2969                             Context.getTypeDeclType(Record),
2970                             TInfo,
2971                             /*BitWidth=*/0, /*Mutable=*/false,
2972                             /*HasInit=*/false);
2973    Anon->setAccess(AS);
2974    if (getLangOpts().CPlusPlus)
2975      FieldCollector->Add(cast<FieldDecl>(Anon));
2976  } else {
2977    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2978    assert(SCSpec != DeclSpec::SCS_typedef &&
2979           "Parser allowed 'typedef' as storage class VarDecl.");
2980    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2981    if (SCSpec == DeclSpec::SCS_mutable) {
2982      // mutable can only appear on non-static class members, so it's always
2983      // an error here
2984      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2985      Invalid = true;
2986      SC = SC_None;
2987    }
2988    SCSpec = DS.getStorageClassSpecAsWritten();
2989    VarDecl::StorageClass SCAsWritten
2990      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2991
2992    Anon = VarDecl::Create(Context, Owner,
2993                           DS.getLocStart(),
2994                           Record->getLocation(), /*IdentifierInfo=*/0,
2995                           Context.getTypeDeclType(Record),
2996                           TInfo, SC, SCAsWritten);
2997
2998    // Default-initialize the implicit variable. This initialization will be
2999    // trivial in almost all cases, except if a union member has an in-class
3000    // initializer:
3001    //   union { int n = 0; };
3002    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
3003  }
3004  Anon->setImplicit();
3005
3006  // Add the anonymous struct/union object to the current
3007  // context. We'll be referencing this object when we refer to one of
3008  // its members.
3009  Owner->addDecl(Anon);
3010
3011  // Inject the members of the anonymous struct/union into the owning
3012  // context and into the identifier resolver chain for name lookup
3013  // purposes.
3014  SmallVector<NamedDecl*, 2> Chain;
3015  Chain.push_back(Anon);
3016
3017  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
3018                                          Chain, false))
3019    Invalid = true;
3020
3021  // Mark this as an anonymous struct/union type. Note that we do not
3022  // do this until after we have already checked and injected the
3023  // members of this anonymous struct/union type, because otherwise
3024  // the members could be injected twice: once by DeclContext when it
3025  // builds its lookup table, and once by
3026  // InjectAnonymousStructOrUnionMembers.
3027  Record->setAnonymousStructOrUnion(true);
3028
3029  if (Invalid)
3030    Anon->setInvalidDecl();
3031
3032  return Anon;
3033}
3034
3035/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3036/// Microsoft C anonymous structure.
3037/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3038/// Example:
3039///
3040/// struct A { int a; };
3041/// struct B { struct A; int b; };
3042///
3043/// void foo() {
3044///   B var;
3045///   var.a = 3;
3046/// }
3047///
3048Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3049                                           RecordDecl *Record) {
3050
3051  // If there is no Record, get the record via the typedef.
3052  if (!Record)
3053    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3054
3055  // Mock up a declarator.
3056  Declarator Dc(DS, Declarator::TypeNameContext);
3057  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3058  assert(TInfo && "couldn't build declarator info for anonymous struct");
3059
3060  // Create a declaration for this anonymous struct.
3061  NamedDecl* Anon = FieldDecl::Create(Context,
3062                             cast<RecordDecl>(CurContext),
3063                             DS.getLocStart(),
3064                             DS.getLocStart(),
3065                             /*IdentifierInfo=*/0,
3066                             Context.getTypeDeclType(Record),
3067                             TInfo,
3068                             /*BitWidth=*/0, /*Mutable=*/false,
3069                             /*HasInit=*/false);
3070  Anon->setImplicit();
3071
3072  // Add the anonymous struct object to the current context.
3073  CurContext->addDecl(Anon);
3074
3075  // Inject the members of the anonymous struct into the current
3076  // context and into the identifier resolver chain for name lookup
3077  // purposes.
3078  SmallVector<NamedDecl*, 2> Chain;
3079  Chain.push_back(Anon);
3080
3081  RecordDecl *RecordDef = Record->getDefinition();
3082  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3083                                                        RecordDef, AS_none,
3084                                                        Chain, true))
3085    Anon->setInvalidDecl();
3086
3087  return Anon;
3088}
3089
3090/// GetNameForDeclarator - Determine the full declaration name for the
3091/// given Declarator.
3092DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3093  return GetNameFromUnqualifiedId(D.getName());
3094}
3095
3096/// \brief Retrieves the declaration name from a parsed unqualified-id.
3097DeclarationNameInfo
3098Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3099  DeclarationNameInfo NameInfo;
3100  NameInfo.setLoc(Name.StartLocation);
3101
3102  switch (Name.getKind()) {
3103
3104  case UnqualifiedId::IK_ImplicitSelfParam:
3105  case UnqualifiedId::IK_Identifier:
3106    NameInfo.setName(Name.Identifier);
3107    NameInfo.setLoc(Name.StartLocation);
3108    return NameInfo;
3109
3110  case UnqualifiedId::IK_OperatorFunctionId:
3111    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3112                                           Name.OperatorFunctionId.Operator));
3113    NameInfo.setLoc(Name.StartLocation);
3114    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3115      = Name.OperatorFunctionId.SymbolLocations[0];
3116    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3117      = Name.EndLocation.getRawEncoding();
3118    return NameInfo;
3119
3120  case UnqualifiedId::IK_LiteralOperatorId:
3121    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3122                                                           Name.Identifier));
3123    NameInfo.setLoc(Name.StartLocation);
3124    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3125    return NameInfo;
3126
3127  case UnqualifiedId::IK_ConversionFunctionId: {
3128    TypeSourceInfo *TInfo;
3129    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3130    if (Ty.isNull())
3131      return DeclarationNameInfo();
3132    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3133                                               Context.getCanonicalType(Ty)));
3134    NameInfo.setLoc(Name.StartLocation);
3135    NameInfo.setNamedTypeInfo(TInfo);
3136    return NameInfo;
3137  }
3138
3139  case UnqualifiedId::IK_ConstructorName: {
3140    TypeSourceInfo *TInfo;
3141    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3142    if (Ty.isNull())
3143      return DeclarationNameInfo();
3144    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3145                                              Context.getCanonicalType(Ty)));
3146    NameInfo.setLoc(Name.StartLocation);
3147    NameInfo.setNamedTypeInfo(TInfo);
3148    return NameInfo;
3149  }
3150
3151  case UnqualifiedId::IK_ConstructorTemplateId: {
3152    // In well-formed code, we can only have a constructor
3153    // template-id that refers to the current context, so go there
3154    // to find the actual type being constructed.
3155    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3156    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3157      return DeclarationNameInfo();
3158
3159    // Determine the type of the class being constructed.
3160    QualType CurClassType = Context.getTypeDeclType(CurClass);
3161
3162    // FIXME: Check two things: that the template-id names the same type as
3163    // CurClassType, and that the template-id does not occur when the name
3164    // was qualified.
3165
3166    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3167                                    Context.getCanonicalType(CurClassType)));
3168    NameInfo.setLoc(Name.StartLocation);
3169    // FIXME: should we retrieve TypeSourceInfo?
3170    NameInfo.setNamedTypeInfo(0);
3171    return NameInfo;
3172  }
3173
3174  case UnqualifiedId::IK_DestructorName: {
3175    TypeSourceInfo *TInfo;
3176    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3177    if (Ty.isNull())
3178      return DeclarationNameInfo();
3179    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3180                                              Context.getCanonicalType(Ty)));
3181    NameInfo.setLoc(Name.StartLocation);
3182    NameInfo.setNamedTypeInfo(TInfo);
3183    return NameInfo;
3184  }
3185
3186  case UnqualifiedId::IK_TemplateId: {
3187    TemplateName TName = Name.TemplateId->Template.get();
3188    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3189    return Context.getNameForTemplate(TName, TNameLoc);
3190  }
3191
3192  } // switch (Name.getKind())
3193
3194  llvm_unreachable("Unknown name kind");
3195}
3196
3197static QualType getCoreType(QualType Ty) {
3198  do {
3199    if (Ty->isPointerType() || Ty->isReferenceType())
3200      Ty = Ty->getPointeeType();
3201    else if (Ty->isArrayType())
3202      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3203    else
3204      return Ty.withoutLocalFastQualifiers();
3205  } while (true);
3206}
3207
3208/// hasSimilarParameters - Determine whether the C++ functions Declaration
3209/// and Definition have "nearly" matching parameters. This heuristic is
3210/// used to improve diagnostics in the case where an out-of-line function
3211/// definition doesn't match any declaration within the class or namespace.
3212/// Also sets Params to the list of indices to the parameters that differ
3213/// between the declaration and the definition. If hasSimilarParameters
3214/// returns true and Params is empty, then all of the parameters match.
3215static bool hasSimilarParameters(ASTContext &Context,
3216                                     FunctionDecl *Declaration,
3217                                     FunctionDecl *Definition,
3218                                     llvm::SmallVectorImpl<unsigned> &Params) {
3219  Params.clear();
3220  if (Declaration->param_size() != Definition->param_size())
3221    return false;
3222  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3223    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3224    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3225
3226    // The parameter types are identical
3227    if (Context.hasSameType(DefParamTy, DeclParamTy))
3228      continue;
3229
3230    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3231    QualType DefParamBaseTy = getCoreType(DefParamTy);
3232    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3233    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3234
3235    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3236        (DeclTyName && DeclTyName == DefTyName))
3237      Params.push_back(Idx);
3238    else  // The two parameters aren't even close
3239      return false;
3240  }
3241
3242  return true;
3243}
3244
3245/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3246/// declarator needs to be rebuilt in the current instantiation.
3247/// Any bits of declarator which appear before the name are valid for
3248/// consideration here.  That's specifically the type in the decl spec
3249/// and the base type in any member-pointer chunks.
3250static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3251                                                    DeclarationName Name) {
3252  // The types we specifically need to rebuild are:
3253  //   - typenames, typeofs, and decltypes
3254  //   - types which will become injected class names
3255  // Of course, we also need to rebuild any type referencing such a
3256  // type.  It's safest to just say "dependent", but we call out a
3257  // few cases here.
3258
3259  DeclSpec &DS = D.getMutableDeclSpec();
3260  switch (DS.getTypeSpecType()) {
3261  case DeclSpec::TST_typename:
3262  case DeclSpec::TST_typeofType:
3263  case DeclSpec::TST_decltype:
3264  case DeclSpec::TST_underlyingType:
3265  case DeclSpec::TST_atomic: {
3266    // Grab the type from the parser.
3267    TypeSourceInfo *TSI = 0;
3268    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3269    if (T.isNull() || !T->isDependentType()) break;
3270
3271    // Make sure there's a type source info.  This isn't really much
3272    // of a waste; most dependent types should have type source info
3273    // attached already.
3274    if (!TSI)
3275      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3276
3277    // Rebuild the type in the current instantiation.
3278    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3279    if (!TSI) return true;
3280
3281    // Store the new type back in the decl spec.
3282    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3283    DS.UpdateTypeRep(LocType);
3284    break;
3285  }
3286
3287  case DeclSpec::TST_typeofExpr: {
3288    Expr *E = DS.getRepAsExpr();
3289    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3290    if (Result.isInvalid()) return true;
3291    DS.UpdateExprRep(Result.get());
3292    break;
3293  }
3294
3295  default:
3296    // Nothing to do for these decl specs.
3297    break;
3298  }
3299
3300  // It doesn't matter what order we do this in.
3301  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3302    DeclaratorChunk &Chunk = D.getTypeObject(I);
3303
3304    // The only type information in the declarator which can come
3305    // before the declaration name is the base type of a member
3306    // pointer.
3307    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3308      continue;
3309
3310    // Rebuild the scope specifier in-place.
3311    CXXScopeSpec &SS = Chunk.Mem.Scope();
3312    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3313      return true;
3314  }
3315
3316  return false;
3317}
3318
3319Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3320  D.setFunctionDefinitionKind(FDK_Declaration);
3321  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3322
3323  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3324      Dcl && Dcl->getDeclContext()->isFileContext())
3325    Dcl->setTopLevelDeclInObjCContainer();
3326
3327  return Dcl;
3328}
3329
3330/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3331///   If T is the name of a class, then each of the following shall have a
3332///   name different from T:
3333///     - every static data member of class T;
3334///     - every member function of class T
3335///     - every member of class T that is itself a type;
3336/// \returns true if the declaration name violates these rules.
3337bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3338                                   DeclarationNameInfo NameInfo) {
3339  DeclarationName Name = NameInfo.getName();
3340
3341  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3342    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3343      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3344      return true;
3345    }
3346
3347  return false;
3348}
3349
3350/// \brief Diagnose a declaration whose declarator-id has the given
3351/// nested-name-specifier.
3352///
3353/// \param SS The nested-name-specifier of the declarator-id.
3354///
3355/// \param DC The declaration context to which the nested-name-specifier
3356/// resolves.
3357///
3358/// \param Name The name of the entity being declared.
3359///
3360/// \param Loc The location of the name of the entity being declared.
3361///
3362/// \returns true if we cannot safely recover from this error, false otherwise.
3363bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3364                                        DeclarationName Name,
3365                                      SourceLocation Loc) {
3366  DeclContext *Cur = CurContext;
3367  while (isa<LinkageSpecDecl>(Cur))
3368    Cur = Cur->getParent();
3369
3370  // C++ [dcl.meaning]p1:
3371  //   A declarator-id shall not be qualified except for the definition
3372  //   of a member function (9.3) or static data member (9.4) outside of
3373  //   its class, the definition or explicit instantiation of a function
3374  //   or variable member of a namespace outside of its namespace, or the
3375  //   definition of an explicit specialization outside of its namespace,
3376  //   or the declaration of a friend function that is a member of
3377  //   another class or namespace (11.3). [...]
3378
3379  // The user provided a superfluous scope specifier that refers back to the
3380  // class or namespaces in which the entity is already declared.
3381  //
3382  // class X {
3383  //   void X::f();
3384  // };
3385  if (Cur->Equals(DC)) {
3386    Diag(Loc, diag::warn_member_extra_qualification)
3387      << Name << FixItHint::CreateRemoval(SS.getRange());
3388    SS.clear();
3389    return false;
3390  }
3391
3392  // Check whether the qualifying scope encloses the scope of the original
3393  // declaration.
3394  if (!Cur->Encloses(DC)) {
3395    if (Cur->isRecord())
3396      Diag(Loc, diag::err_member_qualification)
3397        << Name << SS.getRange();
3398    else if (isa<TranslationUnitDecl>(DC))
3399      Diag(Loc, diag::err_invalid_declarator_global_scope)
3400        << Name << SS.getRange();
3401    else if (isa<FunctionDecl>(Cur))
3402      Diag(Loc, diag::err_invalid_declarator_in_function)
3403        << Name << SS.getRange();
3404    else
3405      Diag(Loc, diag::err_invalid_declarator_scope)
3406      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3407
3408    return true;
3409  }
3410
3411  if (Cur->isRecord()) {
3412    // Cannot qualify members within a class.
3413    Diag(Loc, diag::err_member_qualification)
3414      << Name << SS.getRange();
3415    SS.clear();
3416
3417    // C++ constructors and destructors with incorrect scopes can break
3418    // our AST invariants by having the wrong underlying types. If
3419    // that's the case, then drop this declaration entirely.
3420    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3421         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3422        !Context.hasSameType(Name.getCXXNameType(),
3423                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3424      return true;
3425
3426    return false;
3427  }
3428
3429  // C++11 [dcl.meaning]p1:
3430  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3431  //   not begin with a decltype-specifer"
3432  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3433  while (SpecLoc.getPrefix())
3434    SpecLoc = SpecLoc.getPrefix();
3435  if (dyn_cast_or_null<DecltypeType>(
3436        SpecLoc.getNestedNameSpecifier()->getAsType()))
3437    Diag(Loc, diag::err_decltype_in_declarator)
3438      << SpecLoc.getTypeLoc().getSourceRange();
3439
3440  return false;
3441}
3442
3443Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3444                             MultiTemplateParamsArg TemplateParamLists) {
3445  // TODO: consider using NameInfo for diagnostic.
3446  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3447  DeclarationName Name = NameInfo.getName();
3448
3449  // All of these full declarators require an identifier.  If it doesn't have
3450  // one, the ParsedFreeStandingDeclSpec action should be used.
3451  if (!Name) {
3452    if (!D.isInvalidType())  // Reject this if we think it is valid.
3453      Diag(D.getDeclSpec().getLocStart(),
3454           diag::err_declarator_need_ident)
3455        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3456    return 0;
3457  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3458    return 0;
3459
3460  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3461  // we find one that is.
3462  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3463         (S->getFlags() & Scope::TemplateParamScope) != 0)
3464    S = S->getParent();
3465
3466  DeclContext *DC = CurContext;
3467  if (D.getCXXScopeSpec().isInvalid())
3468    D.setInvalidType();
3469  else if (D.getCXXScopeSpec().isSet()) {
3470    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3471                                        UPPC_DeclarationQualifier))
3472      return 0;
3473
3474    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3475    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3476    if (!DC) {
3477      // If we could not compute the declaration context, it's because the
3478      // declaration context is dependent but does not refer to a class,
3479      // class template, or class template partial specialization. Complain
3480      // and return early, to avoid the coming semantic disaster.
3481      Diag(D.getIdentifierLoc(),
3482           diag::err_template_qualified_declarator_no_match)
3483        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3484        << D.getCXXScopeSpec().getRange();
3485      return 0;
3486    }
3487    bool IsDependentContext = DC->isDependentContext();
3488
3489    if (!IsDependentContext &&
3490        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3491      return 0;
3492
3493    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3494      Diag(D.getIdentifierLoc(),
3495           diag::err_member_def_undefined_record)
3496        << Name << DC << D.getCXXScopeSpec().getRange();
3497      D.setInvalidType();
3498    } else if (!D.getDeclSpec().isFriendSpecified()) {
3499      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3500                                      Name, D.getIdentifierLoc())) {
3501        if (DC->isRecord())
3502          return 0;
3503
3504        D.setInvalidType();
3505      }
3506    }
3507
3508    // Check whether we need to rebuild the type of the given
3509    // declaration in the current instantiation.
3510    if (EnteringContext && IsDependentContext &&
3511        TemplateParamLists.size() != 0) {
3512      ContextRAII SavedContext(*this, DC);
3513      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3514        D.setInvalidType();
3515    }
3516  }
3517
3518  if (DiagnoseClassNameShadow(DC, NameInfo))
3519    // If this is a typedef, we'll end up spewing multiple diagnostics.
3520    // Just return early; it's safer.
3521    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3522      return 0;
3523
3524  NamedDecl *New;
3525
3526  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3527  QualType R = TInfo->getType();
3528
3529  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3530                                      UPPC_DeclarationType))
3531    D.setInvalidType();
3532
3533  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3534                        ForRedeclaration);
3535
3536  // See if this is a redefinition of a variable in the same scope.
3537  if (!D.getCXXScopeSpec().isSet()) {
3538    bool IsLinkageLookup = false;
3539
3540    // If the declaration we're planning to build will be a function
3541    // or object with linkage, then look for another declaration with
3542    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3543    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3544      /* Do nothing*/;
3545    else if (R->isFunctionType()) {
3546      if (CurContext->isFunctionOrMethod() ||
3547          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3548        IsLinkageLookup = true;
3549    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3550      IsLinkageLookup = true;
3551    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3552             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3553      IsLinkageLookup = true;
3554
3555    if (IsLinkageLookup)
3556      Previous.clear(LookupRedeclarationWithLinkage);
3557
3558    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3559  } else { // Something like "int foo::x;"
3560    LookupQualifiedName(Previous, DC);
3561
3562    // C++ [dcl.meaning]p1:
3563    //   When the declarator-id is qualified, the declaration shall refer to a
3564    //  previously declared member of the class or namespace to which the
3565    //  qualifier refers (or, in the case of a namespace, of an element of the
3566    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3567    //  thereof; [...]
3568    //
3569    // Note that we already checked the context above, and that we do not have
3570    // enough information to make sure that Previous contains the declaration
3571    // we want to match. For example, given:
3572    //
3573    //   class X {
3574    //     void f();
3575    //     void f(float);
3576    //   };
3577    //
3578    //   void X::f(int) { } // ill-formed
3579    //
3580    // In this case, Previous will point to the overload set
3581    // containing the two f's declared in X, but neither of them
3582    // matches.
3583
3584    // C++ [dcl.meaning]p1:
3585    //   [...] the member shall not merely have been introduced by a
3586    //   using-declaration in the scope of the class or namespace nominated by
3587    //   the nested-name-specifier of the declarator-id.
3588    RemoveUsingDecls(Previous);
3589  }
3590
3591  if (Previous.isSingleResult() &&
3592      Previous.getFoundDecl()->isTemplateParameter()) {
3593    // Maybe we will complain about the shadowed template parameter.
3594    if (!D.isInvalidType())
3595      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3596                                      Previous.getFoundDecl());
3597
3598    // Just pretend that we didn't see the previous declaration.
3599    Previous.clear();
3600  }
3601
3602  // In C++, the previous declaration we find might be a tag type
3603  // (class or enum). In this case, the new declaration will hide the
3604  // tag type. Note that this does does not apply if we're declaring a
3605  // typedef (C++ [dcl.typedef]p4).
3606  if (Previous.isSingleTagDecl() &&
3607      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3608    Previous.clear();
3609
3610  bool AddToScope = true;
3611  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3612    if (TemplateParamLists.size()) {
3613      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3614      return 0;
3615    }
3616
3617    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3618  } else if (R->isFunctionType()) {
3619    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3620                                  move(TemplateParamLists),
3621                                  AddToScope);
3622  } else {
3623    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3624                                  move(TemplateParamLists));
3625  }
3626
3627  if (New == 0)
3628    return 0;
3629
3630  // If this has an identifier and is not an invalid redeclaration or
3631  // function template specialization, add it to the scope stack.
3632  if (New->getDeclName() && AddToScope &&
3633       !(D.isRedeclaration() && New->isInvalidDecl()))
3634    PushOnScopeChains(New, S);
3635
3636  return New;
3637}
3638
3639/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3640/// types into constant array types in certain situations which would otherwise
3641/// be errors (for GCC compatibility).
3642static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3643                                                    ASTContext &Context,
3644                                                    bool &SizeIsNegative,
3645                                                    llvm::APSInt &Oversized) {
3646  // This method tries to turn a variable array into a constant
3647  // array even when the size isn't an ICE.  This is necessary
3648  // for compatibility with code that depends on gcc's buggy
3649  // constant expression folding, like struct {char x[(int)(char*)2];}
3650  SizeIsNegative = false;
3651  Oversized = 0;
3652
3653  if (T->isDependentType())
3654    return QualType();
3655
3656  QualifierCollector Qs;
3657  const Type *Ty = Qs.strip(T);
3658
3659  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3660    QualType Pointee = PTy->getPointeeType();
3661    QualType FixedType =
3662        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3663                                            Oversized);
3664    if (FixedType.isNull()) return FixedType;
3665    FixedType = Context.getPointerType(FixedType);
3666    return Qs.apply(Context, FixedType);
3667  }
3668  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3669    QualType Inner = PTy->getInnerType();
3670    QualType FixedType =
3671        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3672                                            Oversized);
3673    if (FixedType.isNull()) return FixedType;
3674    FixedType = Context.getParenType(FixedType);
3675    return Qs.apply(Context, FixedType);
3676  }
3677
3678  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3679  if (!VLATy)
3680    return QualType();
3681  // FIXME: We should probably handle this case
3682  if (VLATy->getElementType()->isVariablyModifiedType())
3683    return QualType();
3684
3685  llvm::APSInt Res;
3686  if (!VLATy->getSizeExpr() ||
3687      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3688    return QualType();
3689
3690  // Check whether the array size is negative.
3691  if (Res.isSigned() && Res.isNegative()) {
3692    SizeIsNegative = true;
3693    return QualType();
3694  }
3695
3696  // Check whether the array is too large to be addressed.
3697  unsigned ActiveSizeBits
3698    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3699                                              Res);
3700  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3701    Oversized = Res;
3702    return QualType();
3703  }
3704
3705  return Context.getConstantArrayType(VLATy->getElementType(),
3706                                      Res, ArrayType::Normal, 0);
3707}
3708
3709/// \brief Register the given locally-scoped external C declaration so
3710/// that it can be found later for redeclarations
3711void
3712Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3713                                       const LookupResult &Previous,
3714                                       Scope *S) {
3715  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3716         "Decl is not a locally-scoped decl!");
3717  // Note that we have a locally-scoped external with this name.
3718  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3719
3720  if (!Previous.isSingleResult())
3721    return;
3722
3723  NamedDecl *PrevDecl = Previous.getFoundDecl();
3724
3725  // If there was a previous declaration of this variable, it may be
3726  // in our identifier chain. Update the identifier chain with the new
3727  // declaration.
3728  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3729    // The previous declaration was found on the identifer resolver
3730    // chain, so remove it from its scope.
3731
3732    if (S->isDeclScope(PrevDecl)) {
3733      // Special case for redeclarations in the SAME scope.
3734      // Because this declaration is going to be added to the identifier chain
3735      // later, we should temporarily take it OFF the chain.
3736      IdResolver.RemoveDecl(ND);
3737
3738    } else {
3739      // Find the scope for the original declaration.
3740      while (S && !S->isDeclScope(PrevDecl))
3741        S = S->getParent();
3742    }
3743
3744    if (S)
3745      S->RemoveDecl(PrevDecl);
3746  }
3747}
3748
3749llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3750Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3751  if (ExternalSource) {
3752    // Load locally-scoped external decls from the external source.
3753    SmallVector<NamedDecl *, 4> Decls;
3754    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3755    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3756      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3757        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3758      if (Pos == LocallyScopedExternalDecls.end())
3759        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3760    }
3761  }
3762
3763  return LocallyScopedExternalDecls.find(Name);
3764}
3765
3766/// \brief Diagnose function specifiers on a declaration of an identifier that
3767/// does not identify a function.
3768void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3769  // FIXME: We should probably indicate the identifier in question to avoid
3770  // confusion for constructs like "inline int a(), b;"
3771  if (D.getDeclSpec().isInlineSpecified())
3772    Diag(D.getDeclSpec().getInlineSpecLoc(),
3773         diag::err_inline_non_function);
3774
3775  if (D.getDeclSpec().isVirtualSpecified())
3776    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3777         diag::err_virtual_non_function);
3778
3779  if (D.getDeclSpec().isExplicitSpecified())
3780    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3781         diag::err_explicit_non_function);
3782}
3783
3784NamedDecl*
3785Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3786                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3787  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3788  if (D.getCXXScopeSpec().isSet()) {
3789    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3790      << D.getCXXScopeSpec().getRange();
3791    D.setInvalidType();
3792    // Pretend we didn't see the scope specifier.
3793    DC = CurContext;
3794    Previous.clear();
3795  }
3796
3797  if (getLangOpts().CPlusPlus) {
3798    // Check that there are no default arguments (C++ only).
3799    CheckExtraCXXDefaultArguments(D);
3800  }
3801
3802  DiagnoseFunctionSpecifiers(D);
3803
3804  if (D.getDeclSpec().isThreadSpecified())
3805    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3806  if (D.getDeclSpec().isConstexprSpecified())
3807    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3808      << 1;
3809
3810  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3811    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3812      << D.getName().getSourceRange();
3813    return 0;
3814  }
3815
3816  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3817  if (!NewTD) return 0;
3818
3819  // Handle attributes prior to checking for duplicates in MergeVarDecl
3820  ProcessDeclAttributes(S, NewTD, D);
3821
3822  CheckTypedefForVariablyModifiedType(S, NewTD);
3823
3824  bool Redeclaration = D.isRedeclaration();
3825  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3826  D.setRedeclaration(Redeclaration);
3827  return ND;
3828}
3829
3830void
3831Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3832  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3833  // then it shall have block scope.
3834  // Note that variably modified types must be fixed before merging the decl so
3835  // that redeclarations will match.
3836  QualType T = NewTD->getUnderlyingType();
3837  if (T->isVariablyModifiedType()) {
3838    getCurFunction()->setHasBranchProtectedScope();
3839
3840    if (S->getFnParent() == 0) {
3841      bool SizeIsNegative;
3842      llvm::APSInt Oversized;
3843      QualType FixedTy =
3844          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3845                                              Oversized);
3846      if (!FixedTy.isNull()) {
3847        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3848        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3849      } else {
3850        if (SizeIsNegative)
3851          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3852        else if (T->isVariableArrayType())
3853          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3854        else if (Oversized.getBoolValue())
3855          Diag(NewTD->getLocation(), diag::err_array_too_large)
3856            << Oversized.toString(10);
3857        else
3858          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3859        NewTD->setInvalidDecl();
3860      }
3861    }
3862  }
3863}
3864
3865
3866/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3867/// declares a typedef-name, either using the 'typedef' type specifier or via
3868/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3869NamedDecl*
3870Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3871                           LookupResult &Previous, bool &Redeclaration) {
3872  // Merge the decl with the existing one if appropriate. If the decl is
3873  // in an outer scope, it isn't the same thing.
3874  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3875                       /*ExplicitInstantiationOrSpecialization=*/false);
3876  if (!Previous.empty()) {
3877    Redeclaration = true;
3878    MergeTypedefNameDecl(NewTD, Previous);
3879  }
3880
3881  // If this is the C FILE type, notify the AST context.
3882  if (IdentifierInfo *II = NewTD->getIdentifier())
3883    if (!NewTD->isInvalidDecl() &&
3884        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3885      if (II->isStr("FILE"))
3886        Context.setFILEDecl(NewTD);
3887      else if (II->isStr("jmp_buf"))
3888        Context.setjmp_bufDecl(NewTD);
3889      else if (II->isStr("sigjmp_buf"))
3890        Context.setsigjmp_bufDecl(NewTD);
3891      else if (II->isStr("ucontext_t"))
3892        Context.setucontext_tDecl(NewTD);
3893      else if (II->isStr("__builtin_va_list"))
3894        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3895    }
3896
3897  return NewTD;
3898}
3899
3900/// \brief Determines whether the given declaration is an out-of-scope
3901/// previous declaration.
3902///
3903/// This routine should be invoked when name lookup has found a
3904/// previous declaration (PrevDecl) that is not in the scope where a
3905/// new declaration by the same name is being introduced. If the new
3906/// declaration occurs in a local scope, previous declarations with
3907/// linkage may still be considered previous declarations (C99
3908/// 6.2.2p4-5, C++ [basic.link]p6).
3909///
3910/// \param PrevDecl the previous declaration found by name
3911/// lookup
3912///
3913/// \param DC the context in which the new declaration is being
3914/// declared.
3915///
3916/// \returns true if PrevDecl is an out-of-scope previous declaration
3917/// for a new delcaration with the same name.
3918static bool
3919isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3920                                ASTContext &Context) {
3921  if (!PrevDecl)
3922    return false;
3923
3924  if (!PrevDecl->hasLinkage())
3925    return false;
3926
3927  if (Context.getLangOpts().CPlusPlus) {
3928    // C++ [basic.link]p6:
3929    //   If there is a visible declaration of an entity with linkage
3930    //   having the same name and type, ignoring entities declared
3931    //   outside the innermost enclosing namespace scope, the block
3932    //   scope declaration declares that same entity and receives the
3933    //   linkage of the previous declaration.
3934    DeclContext *OuterContext = DC->getRedeclContext();
3935    if (!OuterContext->isFunctionOrMethod())
3936      // This rule only applies to block-scope declarations.
3937      return false;
3938
3939    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3940    if (PrevOuterContext->isRecord())
3941      // We found a member function: ignore it.
3942      return false;
3943
3944    // Find the innermost enclosing namespace for the new and
3945    // previous declarations.
3946    OuterContext = OuterContext->getEnclosingNamespaceContext();
3947    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3948
3949    // The previous declaration is in a different namespace, so it
3950    // isn't the same function.
3951    if (!OuterContext->Equals(PrevOuterContext))
3952      return false;
3953  }
3954
3955  return true;
3956}
3957
3958static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3959  CXXScopeSpec &SS = D.getCXXScopeSpec();
3960  if (!SS.isSet()) return;
3961  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3962}
3963
3964bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3965  QualType type = decl->getType();
3966  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3967  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3968    // Various kinds of declaration aren't allowed to be __autoreleasing.
3969    unsigned kind = -1U;
3970    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3971      if (var->hasAttr<BlocksAttr>())
3972        kind = 0; // __block
3973      else if (!var->hasLocalStorage())
3974        kind = 1; // global
3975    } else if (isa<ObjCIvarDecl>(decl)) {
3976      kind = 3; // ivar
3977    } else if (isa<FieldDecl>(decl)) {
3978      kind = 2; // field
3979    }
3980
3981    if (kind != -1U) {
3982      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3983        << kind;
3984    }
3985  } else if (lifetime == Qualifiers::OCL_None) {
3986    // Try to infer lifetime.
3987    if (!type->isObjCLifetimeType())
3988      return false;
3989
3990    lifetime = type->getObjCARCImplicitLifetime();
3991    type = Context.getLifetimeQualifiedType(type, lifetime);
3992    decl->setType(type);
3993  }
3994
3995  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3996    // Thread-local variables cannot have lifetime.
3997    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3998        var->isThreadSpecified()) {
3999      Diag(var->getLocation(), diag::err_arc_thread_ownership)
4000        << var->getType();
4001      return true;
4002    }
4003  }
4004
4005  return false;
4006}
4007
4008NamedDecl*
4009Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4010                              TypeSourceInfo *TInfo, LookupResult &Previous,
4011                              MultiTemplateParamsArg TemplateParamLists) {
4012  QualType R = TInfo->getType();
4013  DeclarationName Name = GetNameForDeclarator(D).getName();
4014
4015  // Check that there are no default arguments (C++ only).
4016  if (getLangOpts().CPlusPlus)
4017    CheckExtraCXXDefaultArguments(D);
4018
4019  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4020  assert(SCSpec != DeclSpec::SCS_typedef &&
4021         "Parser allowed 'typedef' as storage class VarDecl.");
4022  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4023  if (SCSpec == DeclSpec::SCS_mutable) {
4024    // mutable can only appear on non-static class members, so it's always
4025    // an error here
4026    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4027    D.setInvalidType();
4028    SC = SC_None;
4029  }
4030  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4031  VarDecl::StorageClass SCAsWritten
4032    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4033
4034  IdentifierInfo *II = Name.getAsIdentifierInfo();
4035  if (!II) {
4036    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4037      << Name;
4038    return 0;
4039  }
4040
4041  DiagnoseFunctionSpecifiers(D);
4042
4043  if (!DC->isRecord() && S->getFnParent() == 0) {
4044    // C99 6.9p2: The storage-class specifiers auto and register shall not
4045    // appear in the declaration specifiers in an external declaration.
4046    if (SC == SC_Auto || SC == SC_Register) {
4047
4048      // If this is a register variable with an asm label specified, then this
4049      // is a GNU extension.
4050      if (SC == SC_Register && D.getAsmLabel())
4051        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4052      else
4053        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4054      D.setInvalidType();
4055    }
4056  }
4057
4058  if (getLangOpts().OpenCL) {
4059    // Set up the special work-group-local storage class for variables in the
4060    // OpenCL __local address space.
4061    if (R.getAddressSpace() == LangAS::opencl_local)
4062      SC = SC_OpenCLWorkGroupLocal;
4063  }
4064
4065  bool isExplicitSpecialization = false;
4066  VarDecl *NewVD;
4067  if (!getLangOpts().CPlusPlus) {
4068    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4069                            D.getIdentifierLoc(), II,
4070                            R, TInfo, SC, SCAsWritten);
4071
4072    if (D.isInvalidType())
4073      NewVD->setInvalidDecl();
4074  } else {
4075    if (DC->isRecord() && !CurContext->isRecord()) {
4076      // This is an out-of-line definition of a static data member.
4077      if (SC == SC_Static) {
4078        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4079             diag::err_static_out_of_line)
4080          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4081      } else if (SC == SC_None)
4082        SC = SC_Static;
4083    }
4084    if (SC == SC_Static && CurContext->isRecord()) {
4085      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4086        if (RD->isLocalClass())
4087          Diag(D.getIdentifierLoc(),
4088               diag::err_static_data_member_not_allowed_in_local_class)
4089            << Name << RD->getDeclName();
4090
4091        // C++98 [class.union]p1: If a union contains a static data member,
4092        // the program is ill-formed. C++11 drops this restriction.
4093        if (RD->isUnion())
4094          Diag(D.getIdentifierLoc(),
4095               getLangOpts().CPlusPlus0x
4096                 ? diag::warn_cxx98_compat_static_data_member_in_union
4097                 : diag::ext_static_data_member_in_union) << Name;
4098        // We conservatively disallow static data members in anonymous structs.
4099        else if (!RD->getDeclName())
4100          Diag(D.getIdentifierLoc(),
4101               diag::err_static_data_member_not_allowed_in_anon_struct)
4102            << Name << RD->isUnion();
4103      }
4104    }
4105
4106    // Match up the template parameter lists with the scope specifier, then
4107    // determine whether we have a template or a template specialization.
4108    isExplicitSpecialization = false;
4109    bool Invalid = false;
4110    if (TemplateParameterList *TemplateParams
4111        = MatchTemplateParametersToScopeSpecifier(
4112                                  D.getDeclSpec().getLocStart(),
4113                                                  D.getIdentifierLoc(),
4114                                                  D.getCXXScopeSpec(),
4115                                                  TemplateParamLists.get(),
4116                                                  TemplateParamLists.size(),
4117                                                  /*never a friend*/ false,
4118                                                  isExplicitSpecialization,
4119                                                  Invalid)) {
4120      if (TemplateParams->size() > 0) {
4121        // There is no such thing as a variable template.
4122        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4123          << II
4124          << SourceRange(TemplateParams->getTemplateLoc(),
4125                         TemplateParams->getRAngleLoc());
4126        return 0;
4127      } else {
4128        // There is an extraneous 'template<>' for this variable. Complain
4129        // about it, but allow the declaration of the variable.
4130        Diag(TemplateParams->getTemplateLoc(),
4131             diag::err_template_variable_noparams)
4132          << II
4133          << SourceRange(TemplateParams->getTemplateLoc(),
4134                         TemplateParams->getRAngleLoc());
4135      }
4136    }
4137
4138    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4139                            D.getIdentifierLoc(), II,
4140                            R, TInfo, SC, SCAsWritten);
4141
4142    // If this decl has an auto type in need of deduction, make a note of the
4143    // Decl so we can diagnose uses of it in its own initializer.
4144    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4145        R->getContainedAutoType())
4146      ParsingInitForAutoVars.insert(NewVD);
4147
4148    if (D.isInvalidType() || Invalid)
4149      NewVD->setInvalidDecl();
4150
4151    SetNestedNameSpecifier(NewVD, D);
4152
4153    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4154      NewVD->setTemplateParameterListsInfo(Context,
4155                                           TemplateParamLists.size(),
4156                                           TemplateParamLists.release());
4157    }
4158
4159    if (D.getDeclSpec().isConstexprSpecified())
4160      NewVD->setConstexpr(true);
4161  }
4162
4163  // Set the lexical context. If the declarator has a C++ scope specifier, the
4164  // lexical context will be different from the semantic context.
4165  NewVD->setLexicalDeclContext(CurContext);
4166
4167  if (D.getDeclSpec().isThreadSpecified()) {
4168    if (NewVD->hasLocalStorage())
4169      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4170    else if (!Context.getTargetInfo().isTLSSupported())
4171      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4172    else
4173      NewVD->setThreadSpecified(true);
4174  }
4175
4176  if (D.getDeclSpec().isModulePrivateSpecified()) {
4177    if (isExplicitSpecialization)
4178      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4179        << 2
4180        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4181    else if (NewVD->hasLocalStorage())
4182      Diag(NewVD->getLocation(), diag::err_module_private_local)
4183        << 0 << NewVD->getDeclName()
4184        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4185        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4186    else
4187      NewVD->setModulePrivate();
4188  }
4189
4190  // Handle attributes prior to checking for duplicates in MergeVarDecl
4191  ProcessDeclAttributes(S, NewVD, D);
4192
4193  // In auto-retain/release, infer strong retension for variables of
4194  // retainable type.
4195  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4196    NewVD->setInvalidDecl();
4197
4198  // Handle GNU asm-label extension (encoded as an attribute).
4199  if (Expr *E = (Expr*)D.getAsmLabel()) {
4200    // The parser guarantees this is a string.
4201    StringLiteral *SE = cast<StringLiteral>(E);
4202    StringRef Label = SE->getString();
4203    if (S->getFnParent() != 0) {
4204      switch (SC) {
4205      case SC_None:
4206      case SC_Auto:
4207        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4208        break;
4209      case SC_Register:
4210        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4211          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4212        break;
4213      case SC_Static:
4214      case SC_Extern:
4215      case SC_PrivateExtern:
4216      case SC_OpenCLWorkGroupLocal:
4217        break;
4218      }
4219    }
4220
4221    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4222                                                Context, Label));
4223  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4224    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4225      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4226    if (I != ExtnameUndeclaredIdentifiers.end()) {
4227      NewVD->addAttr(I->second);
4228      ExtnameUndeclaredIdentifiers.erase(I);
4229    }
4230  }
4231
4232  // Diagnose shadowed variables before filtering for scope.
4233  if (!D.getCXXScopeSpec().isSet())
4234    CheckShadow(S, NewVD, Previous);
4235
4236  // Don't consider existing declarations that are in a different
4237  // scope and are out-of-semantic-context declarations (if the new
4238  // declaration has linkage).
4239  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4240                       isExplicitSpecialization);
4241
4242  if (!getLangOpts().CPlusPlus) {
4243    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4244  } else {
4245    // Merge the decl with the existing one if appropriate.
4246    if (!Previous.empty()) {
4247      if (Previous.isSingleResult() &&
4248          isa<FieldDecl>(Previous.getFoundDecl()) &&
4249          D.getCXXScopeSpec().isSet()) {
4250        // The user tried to define a non-static data member
4251        // out-of-line (C++ [dcl.meaning]p1).
4252        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4253          << D.getCXXScopeSpec().getRange();
4254        Previous.clear();
4255        NewVD->setInvalidDecl();
4256      }
4257    } else if (D.getCXXScopeSpec().isSet()) {
4258      // No previous declaration in the qualifying scope.
4259      Diag(D.getIdentifierLoc(), diag::err_no_member)
4260        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4261        << D.getCXXScopeSpec().getRange();
4262      NewVD->setInvalidDecl();
4263    }
4264
4265    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4266
4267    // This is an explicit specialization of a static data member. Check it.
4268    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4269        CheckMemberSpecialization(NewVD, Previous))
4270      NewVD->setInvalidDecl();
4271  }
4272
4273  // If this is a locally-scoped extern C variable, update the map of
4274  // such variables.
4275  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4276      !NewVD->isInvalidDecl())
4277    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4278
4279  // If there's a #pragma GCC visibility in scope, and this isn't a class
4280  // member, set the visibility of this variable.
4281  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4282    AddPushedVisibilityAttribute(NewVD);
4283
4284  MarkUnusedFileScopedDecl(NewVD);
4285
4286  return NewVD;
4287}
4288
4289/// \brief Diagnose variable or built-in function shadowing.  Implements
4290/// -Wshadow.
4291///
4292/// This method is called whenever a VarDecl is added to a "useful"
4293/// scope.
4294///
4295/// \param S the scope in which the shadowing name is being declared
4296/// \param R the lookup of the name
4297///
4298void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4299  // Return if warning is ignored.
4300  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4301        DiagnosticsEngine::Ignored)
4302    return;
4303
4304  // Don't diagnose declarations at file scope.
4305  if (D->hasGlobalStorage())
4306    return;
4307
4308  DeclContext *NewDC = D->getDeclContext();
4309
4310  // Only diagnose if we're shadowing an unambiguous field or variable.
4311  if (R.getResultKind() != LookupResult::Found)
4312    return;
4313
4314  NamedDecl* ShadowedDecl = R.getFoundDecl();
4315  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4316    return;
4317
4318  // Fields are not shadowed by variables in C++ static methods.
4319  if (isa<FieldDecl>(ShadowedDecl))
4320    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4321      if (MD->isStatic())
4322        return;
4323
4324  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4325    if (shadowedVar->isExternC()) {
4326      // For shadowing external vars, make sure that we point to the global
4327      // declaration, not a locally scoped extern declaration.
4328      for (VarDecl::redecl_iterator
4329             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4330           I != E; ++I)
4331        if (I->isFileVarDecl()) {
4332          ShadowedDecl = *I;
4333          break;
4334        }
4335    }
4336
4337  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4338
4339  // Only warn about certain kinds of shadowing for class members.
4340  if (NewDC && NewDC->isRecord()) {
4341    // In particular, don't warn about shadowing non-class members.
4342    if (!OldDC->isRecord())
4343      return;
4344
4345    // TODO: should we warn about static data members shadowing
4346    // static data members from base classes?
4347
4348    // TODO: don't diagnose for inaccessible shadowed members.
4349    // This is hard to do perfectly because we might friend the
4350    // shadowing context, but that's just a false negative.
4351  }
4352
4353  // Determine what kind of declaration we're shadowing.
4354  unsigned Kind;
4355  if (isa<RecordDecl>(OldDC)) {
4356    if (isa<FieldDecl>(ShadowedDecl))
4357      Kind = 3; // field
4358    else
4359      Kind = 2; // static data member
4360  } else if (OldDC->isFileContext())
4361    Kind = 1; // global
4362  else
4363    Kind = 0; // local
4364
4365  DeclarationName Name = R.getLookupName();
4366
4367  // Emit warning and note.
4368  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4369  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4370}
4371
4372/// \brief Check -Wshadow without the advantage of a previous lookup.
4373void Sema::CheckShadow(Scope *S, VarDecl *D) {
4374  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4375        DiagnosticsEngine::Ignored)
4376    return;
4377
4378  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4379                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4380  LookupName(R, S);
4381  CheckShadow(S, D, R);
4382}
4383
4384/// \brief Perform semantic checking on a newly-created variable
4385/// declaration.
4386///
4387/// This routine performs all of the type-checking required for a
4388/// variable declaration once it has been built. It is used both to
4389/// check variables after they have been parsed and their declarators
4390/// have been translated into a declaration, and to check variables
4391/// that have been instantiated from a template.
4392///
4393/// Sets NewVD->isInvalidDecl() if an error was encountered.
4394///
4395/// Returns true if the variable declaration is a redeclaration.
4396bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4397                                    LookupResult &Previous) {
4398  // If the decl is already known invalid, don't check it.
4399  if (NewVD->isInvalidDecl())
4400    return false;
4401
4402  QualType T = NewVD->getType();
4403
4404  if (T->isObjCObjectType()) {
4405    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4406      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4407    T = Context.getObjCObjectPointerType(T);
4408    NewVD->setType(T);
4409  }
4410
4411  // Emit an error if an address space was applied to decl with local storage.
4412  // This includes arrays of objects with address space qualifiers, but not
4413  // automatic variables that point to other address spaces.
4414  // ISO/IEC TR 18037 S5.1.2
4415  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4416    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4417    NewVD->setInvalidDecl();
4418    return false;
4419  }
4420
4421  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4422      && !NewVD->hasAttr<BlocksAttr>()) {
4423    if (getLangOpts().getGC() != LangOptions::NonGC)
4424      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4425    else
4426      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4427  }
4428
4429  bool isVM = T->isVariablyModifiedType();
4430  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4431      NewVD->hasAttr<BlocksAttr>())
4432    getCurFunction()->setHasBranchProtectedScope();
4433
4434  if ((isVM && NewVD->hasLinkage()) ||
4435      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4436    bool SizeIsNegative;
4437    llvm::APSInt Oversized;
4438    QualType FixedTy =
4439        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4440                                            Oversized);
4441
4442    if (FixedTy.isNull() && T->isVariableArrayType()) {
4443      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4444      // FIXME: This won't give the correct result for
4445      // int a[10][n];
4446      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4447
4448      if (NewVD->isFileVarDecl())
4449        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4450        << SizeRange;
4451      else if (NewVD->getStorageClass() == SC_Static)
4452        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4453        << SizeRange;
4454      else
4455        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4456        << SizeRange;
4457      NewVD->setInvalidDecl();
4458      return false;
4459    }
4460
4461    if (FixedTy.isNull()) {
4462      if (NewVD->isFileVarDecl())
4463        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4464      else
4465        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4466      NewVD->setInvalidDecl();
4467      return false;
4468    }
4469
4470    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4471    NewVD->setType(FixedTy);
4472  }
4473
4474  if (Previous.empty() && NewVD->isExternC()) {
4475    // Since we did not find anything by this name and we're declaring
4476    // an extern "C" variable, look for a non-visible extern "C"
4477    // declaration with the same name.
4478    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4479      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4480    if (Pos != LocallyScopedExternalDecls.end())
4481      Previous.addDecl(Pos->second);
4482  }
4483
4484  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4485    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4486      << T;
4487    NewVD->setInvalidDecl();
4488    return false;
4489  }
4490
4491  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4492    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4493    NewVD->setInvalidDecl();
4494    return false;
4495  }
4496
4497  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4498    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4499    NewVD->setInvalidDecl();
4500    return false;
4501  }
4502
4503  if (NewVD->isConstexpr() && !T->isDependentType() &&
4504      RequireLiteralType(NewVD->getLocation(), T,
4505                         diag::err_constexpr_var_non_literal)) {
4506    NewVD->setInvalidDecl();
4507    return false;
4508  }
4509
4510  if (!Previous.empty()) {
4511    MergeVarDecl(NewVD, Previous);
4512    return true;
4513  }
4514  return false;
4515}
4516
4517/// \brief Data used with FindOverriddenMethod
4518struct FindOverriddenMethodData {
4519  Sema *S;
4520  CXXMethodDecl *Method;
4521};
4522
4523/// \brief Member lookup function that determines whether a given C++
4524/// method overrides a method in a base class, to be used with
4525/// CXXRecordDecl::lookupInBases().
4526static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4527                                 CXXBasePath &Path,
4528                                 void *UserData) {
4529  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4530
4531  FindOverriddenMethodData *Data
4532    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4533
4534  DeclarationName Name = Data->Method->getDeclName();
4535
4536  // FIXME: Do we care about other names here too?
4537  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4538    // We really want to find the base class destructor here.
4539    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4540    CanQualType CT = Data->S->Context.getCanonicalType(T);
4541
4542    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4543  }
4544
4545  for (Path.Decls = BaseRecord->lookup(Name);
4546       Path.Decls.first != Path.Decls.second;
4547       ++Path.Decls.first) {
4548    NamedDecl *D = *Path.Decls.first;
4549    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4550      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4551        return true;
4552    }
4553  }
4554
4555  return false;
4556}
4557
4558static bool hasDelayedExceptionSpec(CXXMethodDecl *Method) {
4559  const FunctionProtoType *Proto =Method->getType()->getAs<FunctionProtoType>();
4560  return Proto && Proto->getExceptionSpecType() == EST_Delayed;
4561}
4562
4563/// AddOverriddenMethods - See if a method overrides any in the base classes,
4564/// and if so, check that it's a valid override and remember it.
4565bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4566  // Look for virtual methods in base classes that this method might override.
4567  CXXBasePaths Paths;
4568  FindOverriddenMethodData Data;
4569  Data.Method = MD;
4570  Data.S = this;
4571  bool AddedAny = false;
4572  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4573    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4574         E = Paths.found_decls_end(); I != E; ++I) {
4575      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4576        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4577        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4578            (hasDelayedExceptionSpec(MD) ||
4579             !CheckOverridingFunctionExceptionSpec(MD, OldMD)) &&
4580            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4581          AddedAny = true;
4582        }
4583      }
4584    }
4585  }
4586
4587  return AddedAny;
4588}
4589
4590namespace {
4591  // Struct for holding all of the extra arguments needed by
4592  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4593  struct ActOnFDArgs {
4594    Scope *S;
4595    Declarator &D;
4596    MultiTemplateParamsArg TemplateParamLists;
4597    bool AddToScope;
4598  };
4599}
4600
4601namespace {
4602
4603// Callback to only accept typo corrections that have a non-zero edit distance.
4604// Also only accept corrections that have the same parent decl.
4605class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4606 public:
4607  DifferentNameValidatorCCC(ASTContext &Context, FunctionDecl *TypoFD,
4608                            CXXRecordDecl *Parent)
4609      : Context(Context), OriginalFD(TypoFD),
4610        ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4611
4612  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4613    if (candidate.getEditDistance() == 0)
4614      return false;
4615
4616    llvm::SmallVector<unsigned, 1> MismatchedParams;
4617    for (TypoCorrection::const_decl_iterator CDecl = candidate.begin(),
4618                                          CDeclEnd = candidate.end();
4619         CDecl != CDeclEnd; ++CDecl) {
4620      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4621
4622      if (FD && !FD->hasBody() &&
4623          hasSimilarParameters(Context, FD, OriginalFD, MismatchedParams)) {
4624        if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
4625          CXXRecordDecl *Parent = MD->getParent();
4626          if (Parent && Parent->getCanonicalDecl() == ExpectedParent)
4627            return true;
4628        } else if (!ExpectedParent) {
4629          return true;
4630        }
4631      }
4632    }
4633
4634    return false;
4635  }
4636
4637 private:
4638  ASTContext &Context;
4639  FunctionDecl *OriginalFD;
4640  CXXRecordDecl *ExpectedParent;
4641};
4642
4643}
4644
4645/// \brief Generate diagnostics for an invalid function redeclaration.
4646///
4647/// This routine handles generating the diagnostic messages for an invalid
4648/// function redeclaration, including finding possible similar declarations
4649/// or performing typo correction if there are no previous declarations with
4650/// the same name.
4651///
4652/// Returns a NamedDecl iff typo correction was performed and substituting in
4653/// the new declaration name does not cause new errors.
4654static NamedDecl* DiagnoseInvalidRedeclaration(
4655    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4656    ActOnFDArgs &ExtraArgs) {
4657  NamedDecl *Result = NULL;
4658  DeclarationName Name = NewFD->getDeclName();
4659  DeclContext *NewDC = NewFD->getDeclContext();
4660  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4661                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4662  llvm::SmallVector<unsigned, 1> MismatchedParams;
4663  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4664  TypoCorrection Correction;
4665  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4666                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4667  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4668                                  : diag::err_member_def_does_not_match;
4669
4670  NewFD->setInvalidDecl();
4671  SemaRef.LookupQualifiedName(Prev, NewDC);
4672  assert(!Prev.isAmbiguous() &&
4673         "Cannot have an ambiguity in previous-declaration lookup");
4674  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4675  DifferentNameValidatorCCC Validator(SemaRef.Context, NewFD,
4676                                      MD ? MD->getParent() : 0);
4677  if (!Prev.empty()) {
4678    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4679         Func != FuncEnd; ++Func) {
4680      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4681      if (FD &&
4682          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4683        // Add 1 to the index so that 0 can mean the mismatch didn't
4684        // involve a parameter
4685        unsigned ParamNum =
4686            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4687        NearMatches.push_back(std::make_pair(FD, ParamNum));
4688      }
4689    }
4690  // If the qualified name lookup yielded nothing, try typo correction
4691  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4692                                         Prev.getLookupKind(), 0, 0,
4693                                         Validator, NewDC))) {
4694    // Trap errors.
4695    Sema::SFINAETrap Trap(SemaRef);
4696
4697    // Set up everything for the call to ActOnFunctionDeclarator
4698    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4699                              ExtraArgs.D.getIdentifierLoc());
4700    Previous.clear();
4701    Previous.setLookupName(Correction.getCorrection());
4702    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4703                                    CDeclEnd = Correction.end();
4704         CDecl != CDeclEnd; ++CDecl) {
4705      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4706      if (FD && !FD->hasBody() &&
4707          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4708        Previous.addDecl(FD);
4709      }
4710    }
4711    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4712    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4713    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4714    // eliminate the need for the parameter pack ExtraArgs.
4715    Result = SemaRef.ActOnFunctionDeclarator(
4716        ExtraArgs.S, ExtraArgs.D,
4717        Correction.getCorrectionDecl()->getDeclContext(),
4718        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4719        ExtraArgs.AddToScope);
4720    if (Trap.hasErrorOccurred()) {
4721      // Pretend the typo correction never occurred
4722      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4723                                ExtraArgs.D.getIdentifierLoc());
4724      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4725      Previous.clear();
4726      Previous.setLookupName(Name);
4727      Result = NULL;
4728    } else {
4729      for (LookupResult::iterator Func = Previous.begin(),
4730                               FuncEnd = Previous.end();
4731           Func != FuncEnd; ++Func) {
4732        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4733          NearMatches.push_back(std::make_pair(FD, 0));
4734      }
4735    }
4736    if (NearMatches.empty()) {
4737      // Ignore the correction if it didn't yield any close FunctionDecl matches
4738      Correction = TypoCorrection();
4739    } else {
4740      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4741                             : diag::err_member_def_does_not_match_suggest;
4742    }
4743  }
4744
4745  if (Correction) {
4746    SourceRange FixItLoc(NewFD->getLocation());
4747    CXXScopeSpec &SS = ExtraArgs.D.getCXXScopeSpec();
4748    if (Correction.getCorrectionSpecifier() && SS.isValid())
4749      FixItLoc.setBegin(SS.getBeginLoc());
4750    SemaRef.Diag(NewFD->getLocStart(), DiagMsg)
4751        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4752        << FixItHint::CreateReplacement(
4753            FixItLoc, Correction.getAsString(SemaRef.getLangOpts()));
4754  } else {
4755    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4756        << Name << NewDC << NewFD->getLocation();
4757  }
4758
4759  bool NewFDisConst = false;
4760  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4761    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4762
4763  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4764       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4765       NearMatch != NearMatchEnd; ++NearMatch) {
4766    FunctionDecl *FD = NearMatch->first;
4767    bool FDisConst = false;
4768    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4769      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4770
4771    if (unsigned Idx = NearMatch->second) {
4772      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4773      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4774      if (Loc.isInvalid()) Loc = FD->getLocation();
4775      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4776          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4777    } else if (Correction) {
4778      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4779          << Correction.getQuoted(SemaRef.getLangOpts());
4780    } else if (FDisConst != NewFDisConst) {
4781      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4782          << NewFDisConst << FD->getSourceRange().getEnd();
4783    } else
4784      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4785  }
4786  return Result;
4787}
4788
4789static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4790                                                          Declarator &D) {
4791  switch (D.getDeclSpec().getStorageClassSpec()) {
4792  default: llvm_unreachable("Unknown storage class!");
4793  case DeclSpec::SCS_auto:
4794  case DeclSpec::SCS_register:
4795  case DeclSpec::SCS_mutable:
4796    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4797                 diag::err_typecheck_sclass_func);
4798    D.setInvalidType();
4799    break;
4800  case DeclSpec::SCS_unspecified: break;
4801  case DeclSpec::SCS_extern: return SC_Extern;
4802  case DeclSpec::SCS_static: {
4803    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4804      // C99 6.7.1p5:
4805      //   The declaration of an identifier for a function that has
4806      //   block scope shall have no explicit storage-class specifier
4807      //   other than extern
4808      // See also (C++ [dcl.stc]p4).
4809      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4810                   diag::err_static_block_func);
4811      break;
4812    } else
4813      return SC_Static;
4814  }
4815  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4816  }
4817
4818  // No explicit storage class has already been returned
4819  return SC_None;
4820}
4821
4822static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4823                                           DeclContext *DC, QualType &R,
4824                                           TypeSourceInfo *TInfo,
4825                                           FunctionDecl::StorageClass SC,
4826                                           bool &IsVirtualOkay) {
4827  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4828  DeclarationName Name = NameInfo.getName();
4829
4830  FunctionDecl *NewFD = 0;
4831  bool isInline = D.getDeclSpec().isInlineSpecified();
4832  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4833  FunctionDecl::StorageClass SCAsWritten
4834    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4835
4836  if (!SemaRef.getLangOpts().CPlusPlus) {
4837    // Determine whether the function was written with a
4838    // prototype. This true when:
4839    //   - there is a prototype in the declarator, or
4840    //   - the type R of the function is some kind of typedef or other reference
4841    //     to a type name (which eventually refers to a function type).
4842    bool HasPrototype =
4843      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4844      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4845
4846    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4847                                 D.getLocStart(), NameInfo, R,
4848                                 TInfo, SC, SCAsWritten, isInline,
4849                                 HasPrototype);
4850    if (D.isInvalidType())
4851      NewFD->setInvalidDecl();
4852
4853    // Set the lexical context.
4854    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4855
4856    return NewFD;
4857  }
4858
4859  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4860  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4861
4862  // Check that the return type is not an abstract class type.
4863  // For record types, this is done by the AbstractClassUsageDiagnoser once
4864  // the class has been completely parsed.
4865  if (!DC->isRecord() &&
4866      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4867                                     R->getAs<FunctionType>()->getResultType(),
4868                                     diag::err_abstract_type_in_decl,
4869                                     SemaRef.AbstractReturnType))
4870    D.setInvalidType();
4871
4872  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4873    // This is a C++ constructor declaration.
4874    assert(DC->isRecord() &&
4875           "Constructors can only be declared in a member context");
4876
4877    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4878    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4879                                      D.getLocStart(), NameInfo,
4880                                      R, TInfo, isExplicit, isInline,
4881                                      /*isImplicitlyDeclared=*/false,
4882                                      isConstexpr);
4883
4884  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4885    // This is a C++ destructor declaration.
4886    if (DC->isRecord()) {
4887      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4888      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4889      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4890                                        SemaRef.Context, Record,
4891                                        D.getLocStart(),
4892                                        NameInfo, R, TInfo, isInline,
4893                                        /*isImplicitlyDeclared=*/false);
4894
4895      // If the class is complete, then we now create the implicit exception
4896      // specification. If the class is incomplete or dependent, we can't do
4897      // it yet.
4898      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4899          Record->getDefinition() && !Record->isBeingDefined() &&
4900          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4901        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4902      }
4903
4904      IsVirtualOkay = true;
4905      return NewDD;
4906
4907    } else {
4908      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4909      D.setInvalidType();
4910
4911      // Create a FunctionDecl to satisfy the function definition parsing
4912      // code path.
4913      return FunctionDecl::Create(SemaRef.Context, DC,
4914                                  D.getLocStart(),
4915                                  D.getIdentifierLoc(), Name, R, TInfo,
4916                                  SC, SCAsWritten, isInline,
4917                                  /*hasPrototype=*/true, isConstexpr);
4918    }
4919
4920  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4921    if (!DC->isRecord()) {
4922      SemaRef.Diag(D.getIdentifierLoc(),
4923           diag::err_conv_function_not_member);
4924      return 0;
4925    }
4926
4927    SemaRef.CheckConversionDeclarator(D, R, SC);
4928    IsVirtualOkay = true;
4929    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4930                                     D.getLocStart(), NameInfo,
4931                                     R, TInfo, isInline, isExplicit,
4932                                     isConstexpr, SourceLocation());
4933
4934  } else if (DC->isRecord()) {
4935    // If the name of the function is the same as the name of the record,
4936    // then this must be an invalid constructor that has a return type.
4937    // (The parser checks for a return type and makes the declarator a
4938    // constructor if it has no return type).
4939    if (Name.getAsIdentifierInfo() &&
4940        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4941      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4942        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4943        << SourceRange(D.getIdentifierLoc());
4944      return 0;
4945    }
4946
4947    bool isStatic = SC == SC_Static;
4948
4949    // [class.free]p1:
4950    // Any allocation function for a class T is a static member
4951    // (even if not explicitly declared static).
4952    if (Name.getCXXOverloadedOperator() == OO_New ||
4953        Name.getCXXOverloadedOperator() == OO_Array_New)
4954      isStatic = true;
4955
4956    // [class.free]p6 Any deallocation function for a class X is a static member
4957    // (even if not explicitly declared static).
4958    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4959        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4960      isStatic = true;
4961
4962    IsVirtualOkay = !isStatic;
4963
4964    // This is a C++ method declaration.
4965    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4966                                 D.getLocStart(), NameInfo, R,
4967                                 TInfo, isStatic, SCAsWritten, isInline,
4968                                 isConstexpr, SourceLocation());
4969
4970  } else {
4971    // Determine whether the function was written with a
4972    // prototype. This true when:
4973    //   - we're in C++ (where every function has a prototype),
4974    return FunctionDecl::Create(SemaRef.Context, DC,
4975                                D.getLocStart(),
4976                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4977                                true/*HasPrototype*/, isConstexpr);
4978  }
4979}
4980
4981NamedDecl*
4982Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4983                              TypeSourceInfo *TInfo, LookupResult &Previous,
4984                              MultiTemplateParamsArg TemplateParamLists,
4985                              bool &AddToScope) {
4986  QualType R = TInfo->getType();
4987
4988  assert(R.getTypePtr()->isFunctionType());
4989
4990  // TODO: consider using NameInfo for diagnostic.
4991  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4992  DeclarationName Name = NameInfo.getName();
4993  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4994
4995  if (D.getDeclSpec().isThreadSpecified())
4996    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4997
4998  // Do not allow returning a objc interface by-value.
4999  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
5000    Diag(D.getIdentifierLoc(),
5001         diag::err_object_cannot_be_passed_returned_by_value) << 0
5002    << R->getAs<FunctionType>()->getResultType()
5003    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
5004
5005    QualType T = R->getAs<FunctionType>()->getResultType();
5006    T = Context.getObjCObjectPointerType(T);
5007    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
5008      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
5009      R = Context.getFunctionType(T, FPT->arg_type_begin(),
5010                                  FPT->getNumArgs(), EPI);
5011    }
5012    else if (isa<FunctionNoProtoType>(R))
5013      R = Context.getFunctionNoProtoType(T);
5014  }
5015
5016  bool isFriend = false;
5017  FunctionTemplateDecl *FunctionTemplate = 0;
5018  bool isExplicitSpecialization = false;
5019  bool isFunctionTemplateSpecialization = false;
5020  bool isDependentClassScopeExplicitSpecialization = false;
5021  bool isVirtualOkay = false;
5022
5023  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
5024                                              isVirtualOkay);
5025  if (!NewFD) return 0;
5026
5027  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
5028    NewFD->setTopLevelDeclInObjCContainer();
5029
5030  if (getLangOpts().CPlusPlus) {
5031    bool isInline = D.getDeclSpec().isInlineSpecified();
5032    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5033    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5034    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5035    isFriend = D.getDeclSpec().isFriendSpecified();
5036    if (isFriend && !isInline && D.isFunctionDefinition()) {
5037      // C++ [class.friend]p5
5038      //   A function can be defined in a friend declaration of a
5039      //   class . . . . Such a function is implicitly inline.
5040      NewFD->setImplicitlyInline();
5041    }
5042
5043    SetNestedNameSpecifier(NewFD, D);
5044    isExplicitSpecialization = false;
5045    isFunctionTemplateSpecialization = false;
5046    if (D.isInvalidType())
5047      NewFD->setInvalidDecl();
5048
5049    // Set the lexical context. If the declarator has a C++
5050    // scope specifier, or is the object of a friend declaration, the
5051    // lexical context will be different from the semantic context.
5052    NewFD->setLexicalDeclContext(CurContext);
5053
5054    // Match up the template parameter lists with the scope specifier, then
5055    // determine whether we have a template or a template specialization.
5056    bool Invalid = false;
5057    if (TemplateParameterList *TemplateParams
5058          = MatchTemplateParametersToScopeSpecifier(
5059                                  D.getDeclSpec().getLocStart(),
5060                                  D.getIdentifierLoc(),
5061                                  D.getCXXScopeSpec(),
5062                                  TemplateParamLists.get(),
5063                                  TemplateParamLists.size(),
5064                                  isFriend,
5065                                  isExplicitSpecialization,
5066                                  Invalid)) {
5067      if (TemplateParams->size() > 0) {
5068        // This is a function template
5069
5070        // Check that we can declare a template here.
5071        if (CheckTemplateDeclScope(S, TemplateParams))
5072          return 0;
5073
5074        // A destructor cannot be a template.
5075        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5076          Diag(NewFD->getLocation(), diag::err_destructor_template);
5077          return 0;
5078        }
5079
5080        // If we're adding a template to a dependent context, we may need to
5081        // rebuilding some of the types used within the template parameter list,
5082        // now that we know what the current instantiation is.
5083        if (DC->isDependentContext()) {
5084          ContextRAII SavedContext(*this, DC);
5085          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5086            Invalid = true;
5087        }
5088
5089
5090        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5091                                                        NewFD->getLocation(),
5092                                                        Name, TemplateParams,
5093                                                        NewFD);
5094        FunctionTemplate->setLexicalDeclContext(CurContext);
5095        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5096
5097        // For source fidelity, store the other template param lists.
5098        if (TemplateParamLists.size() > 1) {
5099          NewFD->setTemplateParameterListsInfo(Context,
5100                                               TemplateParamLists.size() - 1,
5101                                               TemplateParamLists.release());
5102        }
5103      } else {
5104        // This is a function template specialization.
5105        isFunctionTemplateSpecialization = true;
5106        // For source fidelity, store all the template param lists.
5107        NewFD->setTemplateParameterListsInfo(Context,
5108                                             TemplateParamLists.size(),
5109                                             TemplateParamLists.release());
5110
5111        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5112        if (isFriend) {
5113          // We want to remove the "template<>", found here.
5114          SourceRange RemoveRange = TemplateParams->getSourceRange();
5115
5116          // If we remove the template<> and the name is not a
5117          // template-id, we're actually silently creating a problem:
5118          // the friend declaration will refer to an untemplated decl,
5119          // and clearly the user wants a template specialization.  So
5120          // we need to insert '<>' after the name.
5121          SourceLocation InsertLoc;
5122          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5123            InsertLoc = D.getName().getSourceRange().getEnd();
5124            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5125          }
5126
5127          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5128            << Name << RemoveRange
5129            << FixItHint::CreateRemoval(RemoveRange)
5130            << FixItHint::CreateInsertion(InsertLoc, "<>");
5131        }
5132      }
5133    }
5134    else {
5135      // All template param lists were matched against the scope specifier:
5136      // this is NOT (an explicit specialization of) a template.
5137      if (TemplateParamLists.size() > 0)
5138        // For source fidelity, store all the template param lists.
5139        NewFD->setTemplateParameterListsInfo(Context,
5140                                             TemplateParamLists.size(),
5141                                             TemplateParamLists.release());
5142    }
5143
5144    if (Invalid) {
5145      NewFD->setInvalidDecl();
5146      if (FunctionTemplate)
5147        FunctionTemplate->setInvalidDecl();
5148    }
5149
5150    // If we see "T var();" at block scope, where T is a class type, it is
5151    // probably an attempt to initialize a variable, not a function declaration.
5152    // We don't catch this case earlier, since there is no ambiguity here.
5153    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
5154        CurContext->isFunctionOrMethod() &&
5155        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
5156        D.getDeclSpec().getStorageClassSpecAsWritten()
5157          == DeclSpec::SCS_unspecified) {
5158      QualType T = R->getAs<FunctionType>()->getResultType();
5159      DeclaratorChunk &C = D.getTypeObject(0);
5160      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
5161          !C.Fun.TrailingReturnType &&
5162          C.Fun.getExceptionSpecType() == EST_None) {
5163        SourceRange ParenRange(C.Loc, C.EndLoc);
5164        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
5165
5166        // If the declaration looks like:
5167        //   T var1,
5168        //   f();
5169        // and name lookup finds a function named 'f', then the ',' was
5170        // probably intended to be a ';'.
5171        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5172          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5173          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5174          if (Comma.getFileID() != Name.getFileID() ||
5175              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5176            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5177                                LookupOrdinaryName);
5178            if (LookupName(Result, S))
5179              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5180                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5181          }
5182        }
5183        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5184        // Empty parens mean value-initialization, and no parens mean default
5185        // initialization. These are equivalent if the default constructor is
5186        // user-provided, or if zero-initialization is a no-op.
5187        if (RD && RD->hasDefinition() &&
5188            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5189          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5190            << FixItHint::CreateRemoval(ParenRange);
5191        else {
5192          std::string Init = getFixItZeroInitializerForType(T);
5193          if (Init.empty() && LangOpts.CPlusPlus0x)
5194            Init = "{}";
5195          if (!Init.empty())
5196            Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5197              << FixItHint::CreateReplacement(ParenRange, Init);
5198        }
5199      }
5200    }
5201
5202    // C++ [dcl.fct.spec]p5:
5203    //   The virtual specifier shall only be used in declarations of
5204    //   nonstatic class member functions that appear within a
5205    //   member-specification of a class declaration; see 10.3.
5206    //
5207    if (isVirtual && !NewFD->isInvalidDecl()) {
5208      if (!isVirtualOkay) {
5209        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5210             diag::err_virtual_non_function);
5211      } else if (!CurContext->isRecord()) {
5212        // 'virtual' was specified outside of the class.
5213        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5214             diag::err_virtual_out_of_class)
5215          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5216      } else if (NewFD->getDescribedFunctionTemplate()) {
5217        // C++ [temp.mem]p3:
5218        //  A member function template shall not be virtual.
5219        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5220             diag::err_virtual_member_function_template)
5221          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5222      } else {
5223        // Okay: Add virtual to the method.
5224        NewFD->setVirtualAsWritten(true);
5225      }
5226    }
5227
5228    // C++ [dcl.fct.spec]p3:
5229    //  The inline specifier shall not appear on a block scope function
5230    //  declaration.
5231    if (isInline && !NewFD->isInvalidDecl()) {
5232      if (CurContext->isFunctionOrMethod()) {
5233        // 'inline' is not allowed on block scope function declaration.
5234        Diag(D.getDeclSpec().getInlineSpecLoc(),
5235             diag::err_inline_declaration_block_scope) << Name
5236          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5237      }
5238    }
5239
5240    // C++ [dcl.fct.spec]p6:
5241    //  The explicit specifier shall be used only in the declaration of a
5242    //  constructor or conversion function within its class definition;
5243    //  see 12.3.1 and 12.3.2.
5244    if (isExplicit && !NewFD->isInvalidDecl()) {
5245      if (!CurContext->isRecord()) {
5246        // 'explicit' was specified outside of the class.
5247        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5248             diag::err_explicit_out_of_class)
5249          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5250      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5251                 !isa<CXXConversionDecl>(NewFD)) {
5252        // 'explicit' was specified on a function that wasn't a constructor
5253        // or conversion function.
5254        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5255             diag::err_explicit_non_ctor_or_conv_function)
5256          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5257      }
5258    }
5259
5260    if (isConstexpr) {
5261      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5262      // are implicitly inline.
5263      NewFD->setImplicitlyInline();
5264
5265      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5266      // be either constructors or to return a literal type. Therefore,
5267      // destructors cannot be declared constexpr.
5268      if (isa<CXXDestructorDecl>(NewFD))
5269        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5270    }
5271
5272    // If __module_private__ was specified, mark the function accordingly.
5273    if (D.getDeclSpec().isModulePrivateSpecified()) {
5274      if (isFunctionTemplateSpecialization) {
5275        SourceLocation ModulePrivateLoc
5276          = D.getDeclSpec().getModulePrivateSpecLoc();
5277        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5278          << 0
5279          << FixItHint::CreateRemoval(ModulePrivateLoc);
5280      } else {
5281        NewFD->setModulePrivate();
5282        if (FunctionTemplate)
5283          FunctionTemplate->setModulePrivate();
5284      }
5285    }
5286
5287    if (isFriend) {
5288      // For now, claim that the objects have no previous declaration.
5289      if (FunctionTemplate) {
5290        FunctionTemplate->setObjectOfFriendDecl(false);
5291        FunctionTemplate->setAccess(AS_public);
5292      }
5293      NewFD->setObjectOfFriendDecl(false);
5294      NewFD->setAccess(AS_public);
5295    }
5296
5297    // If a function is defined as defaulted or deleted, mark it as such now.
5298    switch (D.getFunctionDefinitionKind()) {
5299      case FDK_Declaration:
5300      case FDK_Definition:
5301        break;
5302
5303      case FDK_Defaulted:
5304        NewFD->setDefaulted();
5305        break;
5306
5307      case FDK_Deleted:
5308        NewFD->setDeletedAsWritten();
5309        break;
5310    }
5311
5312    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5313        D.isFunctionDefinition()) {
5314      // C++ [class.mfct]p2:
5315      //   A member function may be defined (8.4) in its class definition, in
5316      //   which case it is an inline member function (7.1.2)
5317      NewFD->setImplicitlyInline();
5318    }
5319
5320    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5321        !CurContext->isRecord()) {
5322      // C++ [class.static]p1:
5323      //   A data or function member of a class may be declared static
5324      //   in a class definition, in which case it is a static member of
5325      //   the class.
5326
5327      // Complain about the 'static' specifier if it's on an out-of-line
5328      // member function definition.
5329      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5330           diag::err_static_out_of_line)
5331        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5332    }
5333  }
5334
5335  // Filter out previous declarations that don't match the scope.
5336  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5337                       isExplicitSpecialization ||
5338                       isFunctionTemplateSpecialization);
5339
5340  // Handle GNU asm-label extension (encoded as an attribute).
5341  if (Expr *E = (Expr*) D.getAsmLabel()) {
5342    // The parser guarantees this is a string.
5343    StringLiteral *SE = cast<StringLiteral>(E);
5344    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5345                                                SE->getString()));
5346  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5347    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5348      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5349    if (I != ExtnameUndeclaredIdentifiers.end()) {
5350      NewFD->addAttr(I->second);
5351      ExtnameUndeclaredIdentifiers.erase(I);
5352    }
5353  }
5354
5355  // Copy the parameter declarations from the declarator D to the function
5356  // declaration NewFD, if they are available.  First scavenge them into Params.
5357  SmallVector<ParmVarDecl*, 16> Params;
5358  if (D.isFunctionDeclarator()) {
5359    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5360
5361    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5362    // function that takes no arguments, not a function that takes a
5363    // single void argument.
5364    // We let through "const void" here because Sema::GetTypeForDeclarator
5365    // already checks for that case.
5366    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5367        FTI.ArgInfo[0].Param &&
5368        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5369      // Empty arg list, don't push any params.
5370      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5371
5372      // In C++, the empty parameter-type-list must be spelled "void"; a
5373      // typedef of void is not permitted.
5374      if (getLangOpts().CPlusPlus &&
5375          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5376        bool IsTypeAlias = false;
5377        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5378          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5379        else if (const TemplateSpecializationType *TST =
5380                   Param->getType()->getAs<TemplateSpecializationType>())
5381          IsTypeAlias = TST->isTypeAlias();
5382        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5383          << IsTypeAlias;
5384      }
5385    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5386      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5387        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5388        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5389        Param->setDeclContext(NewFD);
5390        Params.push_back(Param);
5391
5392        if (Param->isInvalidDecl())
5393          NewFD->setInvalidDecl();
5394      }
5395    }
5396
5397  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5398    // When we're declaring a function with a typedef, typeof, etc as in the
5399    // following example, we'll need to synthesize (unnamed)
5400    // parameters for use in the declaration.
5401    //
5402    // @code
5403    // typedef void fn(int);
5404    // fn f;
5405    // @endcode
5406
5407    // Synthesize a parameter for each argument type.
5408    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5409         AE = FT->arg_type_end(); AI != AE; ++AI) {
5410      ParmVarDecl *Param =
5411        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5412      Param->setScopeInfo(0, Params.size());
5413      Params.push_back(Param);
5414    }
5415  } else {
5416    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5417           "Should not need args for typedef of non-prototype fn");
5418  }
5419
5420  // Finally, we know we have the right number of parameters, install them.
5421  NewFD->setParams(Params);
5422
5423  // Find all anonymous symbols defined during the declaration of this function
5424  // and add to NewFD. This lets us track decls such 'enum Y' in:
5425  //
5426  //   void f(enum Y {AA} x) {}
5427  //
5428  // which would otherwise incorrectly end up in the translation unit scope.
5429  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5430  DeclsInPrototypeScope.clear();
5431
5432  // Process the non-inheritable attributes on this declaration.
5433  ProcessDeclAttributes(S, NewFD, D,
5434                        /*NonInheritable=*/true, /*Inheritable=*/false);
5435
5436  // Functions returning a variably modified type violate C99 6.7.5.2p2
5437  // because all functions have linkage.
5438  if (!NewFD->isInvalidDecl() &&
5439      NewFD->getResultType()->isVariablyModifiedType()) {
5440    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5441    NewFD->setInvalidDecl();
5442  }
5443
5444  // Handle attributes.
5445  ProcessDeclAttributes(S, NewFD, D,
5446                        /*NonInheritable=*/false, /*Inheritable=*/true);
5447
5448  if (!getLangOpts().CPlusPlus) {
5449    // Perform semantic checking on the function declaration.
5450    bool isExplicitSpecialization=false;
5451    if (!NewFD->isInvalidDecl()) {
5452      if (NewFD->isMain())
5453        CheckMain(NewFD, D.getDeclSpec());
5454      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5455                                                  isExplicitSpecialization));
5456    }
5457    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5458            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5459           "previous declaration set still overloaded");
5460  } else {
5461    // If the declarator is a template-id, translate the parser's template
5462    // argument list into our AST format.
5463    bool HasExplicitTemplateArgs = false;
5464    TemplateArgumentListInfo TemplateArgs;
5465    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5466      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5467      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5468      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5469      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5470                                         TemplateId->getTemplateArgs(),
5471                                         TemplateId->NumArgs);
5472      translateTemplateArguments(TemplateArgsPtr,
5473                                 TemplateArgs);
5474      TemplateArgsPtr.release();
5475
5476      HasExplicitTemplateArgs = true;
5477
5478      if (NewFD->isInvalidDecl()) {
5479        HasExplicitTemplateArgs = false;
5480      } else if (FunctionTemplate) {
5481        // Function template with explicit template arguments.
5482        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5483          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5484
5485        HasExplicitTemplateArgs = false;
5486      } else if (!isFunctionTemplateSpecialization &&
5487                 !D.getDeclSpec().isFriendSpecified()) {
5488        // We have encountered something that the user meant to be a
5489        // specialization (because it has explicitly-specified template
5490        // arguments) but that was not introduced with a "template<>" (or had
5491        // too few of them).
5492        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5493          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5494          << FixItHint::CreateInsertion(
5495                                    D.getDeclSpec().getLocStart(),
5496                                        "template<> ");
5497        isFunctionTemplateSpecialization = true;
5498      } else {
5499        // "friend void foo<>(int);" is an implicit specialization decl.
5500        isFunctionTemplateSpecialization = true;
5501      }
5502    } else if (isFriend && isFunctionTemplateSpecialization) {
5503      // This combination is only possible in a recovery case;  the user
5504      // wrote something like:
5505      //   template <> friend void foo(int);
5506      // which we're recovering from as if the user had written:
5507      //   friend void foo<>(int);
5508      // Go ahead and fake up a template id.
5509      HasExplicitTemplateArgs = true;
5510        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5511      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5512    }
5513
5514    // If it's a friend (and only if it's a friend), it's possible
5515    // that either the specialized function type or the specialized
5516    // template is dependent, and therefore matching will fail.  In
5517    // this case, don't check the specialization yet.
5518    bool InstantiationDependent = false;
5519    if (isFunctionTemplateSpecialization && isFriend &&
5520        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5521         TemplateSpecializationType::anyDependentTemplateArguments(
5522            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5523            InstantiationDependent))) {
5524      assert(HasExplicitTemplateArgs &&
5525             "friend function specialization without template args");
5526      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5527                                                       Previous))
5528        NewFD->setInvalidDecl();
5529    } else if (isFunctionTemplateSpecialization) {
5530      if (CurContext->isDependentContext() && CurContext->isRecord()
5531          && !isFriend) {
5532        isDependentClassScopeExplicitSpecialization = true;
5533        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5534          diag::ext_function_specialization_in_class :
5535          diag::err_function_specialization_in_class)
5536          << NewFD->getDeclName();
5537      } else if (CheckFunctionTemplateSpecialization(NewFD,
5538                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5539                                                     Previous))
5540        NewFD->setInvalidDecl();
5541
5542      // C++ [dcl.stc]p1:
5543      //   A storage-class-specifier shall not be specified in an explicit
5544      //   specialization (14.7.3)
5545      if (SC != SC_None) {
5546        if (SC != NewFD->getStorageClass())
5547          Diag(NewFD->getLocation(),
5548               diag::err_explicit_specialization_inconsistent_storage_class)
5549            << SC
5550            << FixItHint::CreateRemoval(
5551                                      D.getDeclSpec().getStorageClassSpecLoc());
5552
5553        else
5554          Diag(NewFD->getLocation(),
5555               diag::ext_explicit_specialization_storage_class)
5556            << FixItHint::CreateRemoval(
5557                                      D.getDeclSpec().getStorageClassSpecLoc());
5558      }
5559
5560    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5561      if (CheckMemberSpecialization(NewFD, Previous))
5562          NewFD->setInvalidDecl();
5563    }
5564
5565    // Perform semantic checking on the function declaration.
5566    if (!isDependentClassScopeExplicitSpecialization) {
5567      if (NewFD->isInvalidDecl()) {
5568        // If this is a class member, mark the class invalid immediately.
5569        // This avoids some consistency errors later.
5570        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5571          methodDecl->getParent()->setInvalidDecl();
5572      } else {
5573        if (NewFD->isMain())
5574          CheckMain(NewFD, D.getDeclSpec());
5575        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5576                                                    isExplicitSpecialization));
5577      }
5578    }
5579
5580    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5581            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5582           "previous declaration set still overloaded");
5583
5584    NamedDecl *PrincipalDecl = (FunctionTemplate
5585                                ? cast<NamedDecl>(FunctionTemplate)
5586                                : NewFD);
5587
5588    if (isFriend && D.isRedeclaration()) {
5589      AccessSpecifier Access = AS_public;
5590      if (!NewFD->isInvalidDecl())
5591        Access = NewFD->getPreviousDecl()->getAccess();
5592
5593      NewFD->setAccess(Access);
5594      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5595
5596      PrincipalDecl->setObjectOfFriendDecl(true);
5597    }
5598
5599    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5600        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5601      PrincipalDecl->setNonMemberOperator();
5602
5603    // If we have a function template, check the template parameter
5604    // list. This will check and merge default template arguments.
5605    if (FunctionTemplate) {
5606      FunctionTemplateDecl *PrevTemplate =
5607                                     FunctionTemplate->getPreviousDecl();
5608      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5609                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5610                            D.getDeclSpec().isFriendSpecified()
5611                              ? (D.isFunctionDefinition()
5612                                   ? TPC_FriendFunctionTemplateDefinition
5613                                   : TPC_FriendFunctionTemplate)
5614                              : (D.getCXXScopeSpec().isSet() &&
5615                                 DC && DC->isRecord() &&
5616                                 DC->isDependentContext())
5617                                  ? TPC_ClassTemplateMember
5618                                  : TPC_FunctionTemplate);
5619    }
5620
5621    if (NewFD->isInvalidDecl()) {
5622      // Ignore all the rest of this.
5623    } else if (!D.isRedeclaration()) {
5624      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5625                                       AddToScope };
5626      // Fake up an access specifier if it's supposed to be a class member.
5627      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5628        NewFD->setAccess(AS_public);
5629
5630      // Qualified decls generally require a previous declaration.
5631      if (D.getCXXScopeSpec().isSet()) {
5632        // ...with the major exception of templated-scope or
5633        // dependent-scope friend declarations.
5634
5635        // TODO: we currently also suppress this check in dependent
5636        // contexts because (1) the parameter depth will be off when
5637        // matching friend templates and (2) we might actually be
5638        // selecting a friend based on a dependent factor.  But there
5639        // are situations where these conditions don't apply and we
5640        // can actually do this check immediately.
5641        if (isFriend &&
5642            (TemplateParamLists.size() ||
5643             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5644             CurContext->isDependentContext())) {
5645          // ignore these
5646        } else {
5647          // The user tried to provide an out-of-line definition for a
5648          // function that is a member of a class or namespace, but there
5649          // was no such member function declared (C++ [class.mfct]p2,
5650          // C++ [namespace.memdef]p2). For example:
5651          //
5652          // class X {
5653          //   void f() const;
5654          // };
5655          //
5656          // void X::f() { } // ill-formed
5657          //
5658          // Complain about this problem, and attempt to suggest close
5659          // matches (e.g., those that differ only in cv-qualifiers and
5660          // whether the parameter types are references).
5661
5662          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5663                                                               NewFD,
5664                                                               ExtraArgs)) {
5665            AddToScope = ExtraArgs.AddToScope;
5666            return Result;
5667          }
5668        }
5669
5670        // Unqualified local friend declarations are required to resolve
5671        // to something.
5672      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5673        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5674                                                             NewFD,
5675                                                             ExtraArgs)) {
5676          AddToScope = ExtraArgs.AddToScope;
5677          return Result;
5678        }
5679      }
5680
5681    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5682               !isFriend && !isFunctionTemplateSpecialization &&
5683               !isExplicitSpecialization) {
5684      // An out-of-line member function declaration must also be a
5685      // definition (C++ [dcl.meaning]p1).
5686      // Note that this is not the case for explicit specializations of
5687      // function templates or member functions of class templates, per
5688      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5689      // extension for compatibility with old SWIG code which likes to
5690      // generate them.
5691      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5692        << D.getCXXScopeSpec().getRange();
5693    }
5694  }
5695
5696  AddKnownFunctionAttributes(NewFD);
5697
5698  if (NewFD->hasAttr<OverloadableAttr>() &&
5699      !NewFD->getType()->getAs<FunctionProtoType>()) {
5700    Diag(NewFD->getLocation(),
5701         diag::err_attribute_overloadable_no_prototype)
5702      << NewFD;
5703
5704    // Turn this into a variadic function with no parameters.
5705    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5706    FunctionProtoType::ExtProtoInfo EPI;
5707    EPI.Variadic = true;
5708    EPI.ExtInfo = FT->getExtInfo();
5709
5710    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5711    NewFD->setType(R);
5712  }
5713
5714  // If there's a #pragma GCC visibility in scope, and this isn't a class
5715  // member, set the visibility of this function.
5716  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5717    AddPushedVisibilityAttribute(NewFD);
5718
5719  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5720  // marking the function.
5721  AddCFAuditedAttribute(NewFD);
5722
5723  // If this is a locally-scoped extern C function, update the
5724  // map of such names.
5725  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5726      && !NewFD->isInvalidDecl())
5727    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5728
5729  // Set this FunctionDecl's range up to the right paren.
5730  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5731
5732  if (getLangOpts().CPlusPlus) {
5733    if (FunctionTemplate) {
5734      if (NewFD->isInvalidDecl())
5735        FunctionTemplate->setInvalidDecl();
5736      return FunctionTemplate;
5737    }
5738  }
5739
5740  MarkUnusedFileScopedDecl(NewFD);
5741
5742  if (getLangOpts().CUDA)
5743    if (IdentifierInfo *II = NewFD->getIdentifier())
5744      if (!NewFD->isInvalidDecl() &&
5745          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5746        if (II->isStr("cudaConfigureCall")) {
5747          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5748            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5749
5750          Context.setcudaConfigureCallDecl(NewFD);
5751        }
5752      }
5753
5754  // Here we have an function template explicit specialization at class scope.
5755  // The actually specialization will be postponed to template instatiation
5756  // time via the ClassScopeFunctionSpecializationDecl node.
5757  if (isDependentClassScopeExplicitSpecialization) {
5758    ClassScopeFunctionSpecializationDecl *NewSpec =
5759                         ClassScopeFunctionSpecializationDecl::Create(
5760                                Context, CurContext,  SourceLocation(),
5761                                cast<CXXMethodDecl>(NewFD));
5762    CurContext->addDecl(NewSpec);
5763    AddToScope = false;
5764  }
5765
5766  return NewFD;
5767}
5768
5769/// \brief Perform semantic checking of a new function declaration.
5770///
5771/// Performs semantic analysis of the new function declaration
5772/// NewFD. This routine performs all semantic checking that does not
5773/// require the actual declarator involved in the declaration, and is
5774/// used both for the declaration of functions as they are parsed
5775/// (called via ActOnDeclarator) and for the declaration of functions
5776/// that have been instantiated via C++ template instantiation (called
5777/// via InstantiateDecl).
5778///
5779/// \param IsExplicitSpecialiation whether this new function declaration is
5780/// an explicit specialization of the previous declaration.
5781///
5782/// This sets NewFD->isInvalidDecl() to true if there was an error.
5783///
5784/// Returns true if the function declaration is a redeclaration.
5785bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5786                                    LookupResult &Previous,
5787                                    bool IsExplicitSpecialization) {
5788  assert(!NewFD->getResultType()->isVariablyModifiedType()
5789         && "Variably modified return types are not handled here");
5790
5791  // Check for a previous declaration of this name.
5792  if (Previous.empty() && NewFD->isExternC()) {
5793    // Since we did not find anything by this name and we're declaring
5794    // an extern "C" function, look for a non-visible extern "C"
5795    // declaration with the same name.
5796    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5797      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5798    if (Pos != LocallyScopedExternalDecls.end())
5799      Previous.addDecl(Pos->second);
5800  }
5801
5802  bool Redeclaration = false;
5803
5804  // Merge or overload the declaration with an existing declaration of
5805  // the same name, if appropriate.
5806  if (!Previous.empty()) {
5807    // Determine whether NewFD is an overload of PrevDecl or
5808    // a declaration that requires merging. If it's an overload,
5809    // there's no more work to do here; we'll just add the new
5810    // function to the scope.
5811
5812    NamedDecl *OldDecl = 0;
5813    if (!AllowOverloadingOfFunction(Previous, Context)) {
5814      Redeclaration = true;
5815      OldDecl = Previous.getFoundDecl();
5816    } else {
5817      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5818                            /*NewIsUsingDecl*/ false)) {
5819      case Ovl_Match:
5820        Redeclaration = true;
5821        break;
5822
5823      case Ovl_NonFunction:
5824        Redeclaration = true;
5825        break;
5826
5827      case Ovl_Overload:
5828        Redeclaration = false;
5829        break;
5830      }
5831
5832      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5833        // If a function name is overloadable in C, then every function
5834        // with that name must be marked "overloadable".
5835        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5836          << Redeclaration << NewFD;
5837        NamedDecl *OverloadedDecl = 0;
5838        if (Redeclaration)
5839          OverloadedDecl = OldDecl;
5840        else if (!Previous.empty())
5841          OverloadedDecl = Previous.getRepresentativeDecl();
5842        if (OverloadedDecl)
5843          Diag(OverloadedDecl->getLocation(),
5844               diag::note_attribute_overloadable_prev_overload);
5845        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5846                                                        Context));
5847      }
5848    }
5849
5850    if (Redeclaration) {
5851      // NewFD and OldDecl represent declarations that need to be
5852      // merged.
5853      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5854        NewFD->setInvalidDecl();
5855        return Redeclaration;
5856      }
5857
5858      Previous.clear();
5859      Previous.addDecl(OldDecl);
5860
5861      if (FunctionTemplateDecl *OldTemplateDecl
5862                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5863        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5864        FunctionTemplateDecl *NewTemplateDecl
5865          = NewFD->getDescribedFunctionTemplate();
5866        assert(NewTemplateDecl && "Template/non-template mismatch");
5867        if (CXXMethodDecl *Method
5868              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5869          Method->setAccess(OldTemplateDecl->getAccess());
5870          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5871        }
5872
5873        // If this is an explicit specialization of a member that is a function
5874        // template, mark it as a member specialization.
5875        if (IsExplicitSpecialization &&
5876            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5877          NewTemplateDecl->setMemberSpecialization();
5878          assert(OldTemplateDecl->isMemberSpecialization());
5879        }
5880
5881      } else {
5882        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5883          NewFD->setAccess(OldDecl->getAccess());
5884        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5885      }
5886    }
5887  }
5888
5889  // Semantic checking for this function declaration (in isolation).
5890  if (getLangOpts().CPlusPlus) {
5891    // C++-specific checks.
5892    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5893      CheckConstructor(Constructor);
5894    } else if (CXXDestructorDecl *Destructor =
5895                dyn_cast<CXXDestructorDecl>(NewFD)) {
5896      CXXRecordDecl *Record = Destructor->getParent();
5897      QualType ClassType = Context.getTypeDeclType(Record);
5898
5899      // FIXME: Shouldn't we be able to perform this check even when the class
5900      // type is dependent? Both gcc and edg can handle that.
5901      if (!ClassType->isDependentType()) {
5902        DeclarationName Name
5903          = Context.DeclarationNames.getCXXDestructorName(
5904                                        Context.getCanonicalType(ClassType));
5905        if (NewFD->getDeclName() != Name) {
5906          Diag(NewFD->getLocation(), diag::err_destructor_name);
5907          NewFD->setInvalidDecl();
5908          return Redeclaration;
5909        }
5910      }
5911    } else if (CXXConversionDecl *Conversion
5912               = dyn_cast<CXXConversionDecl>(NewFD)) {
5913      ActOnConversionDeclarator(Conversion);
5914    }
5915
5916    // Find any virtual functions that this function overrides.
5917    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5918      if (!Method->isFunctionTemplateSpecialization() &&
5919          !Method->getDescribedFunctionTemplate()) {
5920        if (AddOverriddenMethods(Method->getParent(), Method)) {
5921          // If the function was marked as "static", we have a problem.
5922          if (NewFD->getStorageClass() == SC_Static) {
5923            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5924              << NewFD->getDeclName();
5925            for (CXXMethodDecl::method_iterator
5926                      Overridden = Method->begin_overridden_methods(),
5927                   OverriddenEnd = Method->end_overridden_methods();
5928                 Overridden != OverriddenEnd;
5929                 ++Overridden) {
5930              Diag((*Overridden)->getLocation(),
5931                   diag::note_overridden_virtual_function);
5932            }
5933          }
5934        }
5935      }
5936
5937      if (Method->isStatic())
5938        checkThisInStaticMemberFunctionType(Method);
5939    }
5940
5941    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5942    if (NewFD->isOverloadedOperator() &&
5943        CheckOverloadedOperatorDeclaration(NewFD)) {
5944      NewFD->setInvalidDecl();
5945      return Redeclaration;
5946    }
5947
5948    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5949    if (NewFD->getLiteralIdentifier() &&
5950        CheckLiteralOperatorDeclaration(NewFD)) {
5951      NewFD->setInvalidDecl();
5952      return Redeclaration;
5953    }
5954
5955    // In C++, check default arguments now that we have merged decls. Unless
5956    // the lexical context is the class, because in this case this is done
5957    // during delayed parsing anyway.
5958    if (!CurContext->isRecord())
5959      CheckCXXDefaultArguments(NewFD);
5960
5961    // If this function declares a builtin function, check the type of this
5962    // declaration against the expected type for the builtin.
5963    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5964      ASTContext::GetBuiltinTypeError Error;
5965      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5966      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5967        // The type of this function differs from the type of the builtin,
5968        // so forget about the builtin entirely.
5969        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5970      }
5971    }
5972
5973    // If this function is declared as being extern "C", then check to see if
5974    // the function returns a UDT (class, struct, or union type) that is not C
5975    // compatible, and if it does, warn the user.
5976    if (NewFD->isExternC()) {
5977      QualType R = NewFD->getResultType();
5978      if (!R.isPODType(Context) &&
5979          !R->isVoidType())
5980        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5981          << NewFD << R;
5982    }
5983  }
5984  return Redeclaration;
5985}
5986
5987void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5988  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5989  //   static or constexpr is ill-formed.
5990  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5991  //   shall not appear in a declaration of main.
5992  // static main is not an error under C99, but we should warn about it.
5993  if (FD->getStorageClass() == SC_Static)
5994    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
5995         ? diag::err_static_main : diag::warn_static_main)
5996      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5997  if (FD->isInlineSpecified())
5998    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5999      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
6000  if (FD->isConstexpr()) {
6001    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
6002      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
6003    FD->setConstexpr(false);
6004  }
6005
6006  QualType T = FD->getType();
6007  assert(T->isFunctionType() && "function decl is not of function type");
6008  const FunctionType* FT = T->castAs<FunctionType>();
6009
6010  // All the standards say that main() should should return 'int'.
6011  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
6012    // In C and C++, main magically returns 0 if you fall off the end;
6013    // set the flag which tells us that.
6014    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6015    FD->setHasImplicitReturnZero(true);
6016
6017  // In C with GNU extensions we allow main() to have non-integer return
6018  // type, but we should warn about the extension, and we disable the
6019  // implicit-return-zero rule.
6020  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6021    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6022
6023  // Otherwise, this is just a flat-out error.
6024  } else {
6025    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6026    FD->setInvalidDecl(true);
6027  }
6028
6029  // Treat protoless main() as nullary.
6030  if (isa<FunctionNoProtoType>(FT)) return;
6031
6032  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6033  unsigned nparams = FTP->getNumArgs();
6034  assert(FD->getNumParams() == nparams);
6035
6036  bool HasExtraParameters = (nparams > 3);
6037
6038  // Darwin passes an undocumented fourth argument of type char**.  If
6039  // other platforms start sprouting these, the logic below will start
6040  // getting shifty.
6041  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6042    HasExtraParameters = false;
6043
6044  if (HasExtraParameters) {
6045    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6046    FD->setInvalidDecl(true);
6047    nparams = 3;
6048  }
6049
6050  // FIXME: a lot of the following diagnostics would be improved
6051  // if we had some location information about types.
6052
6053  QualType CharPP =
6054    Context.getPointerType(Context.getPointerType(Context.CharTy));
6055  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6056
6057  for (unsigned i = 0; i < nparams; ++i) {
6058    QualType AT = FTP->getArgType(i);
6059
6060    bool mismatch = true;
6061
6062    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6063      mismatch = false;
6064    else if (Expected[i] == CharPP) {
6065      // As an extension, the following forms are okay:
6066      //   char const **
6067      //   char const * const *
6068      //   char * const *
6069
6070      QualifierCollector qs;
6071      const PointerType* PT;
6072      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6073          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6074          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6075        qs.removeConst();
6076        mismatch = !qs.empty();
6077      }
6078    }
6079
6080    if (mismatch) {
6081      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6082      // TODO: suggest replacing given type with expected type
6083      FD->setInvalidDecl(true);
6084    }
6085  }
6086
6087  if (nparams == 1 && !FD->isInvalidDecl()) {
6088    Diag(FD->getLocation(), diag::warn_main_one_arg);
6089  }
6090
6091  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6092    Diag(FD->getLocation(), diag::err_main_template_decl);
6093    FD->setInvalidDecl();
6094  }
6095}
6096
6097bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6098  // FIXME: Need strict checking.  In C89, we need to check for
6099  // any assignment, increment, decrement, function-calls, or
6100  // commas outside of a sizeof.  In C99, it's the same list,
6101  // except that the aforementioned are allowed in unevaluated
6102  // expressions.  Everything else falls under the
6103  // "may accept other forms of constant expressions" exception.
6104  // (We never end up here for C++, so the constant expression
6105  // rules there don't matter.)
6106  if (Init->isConstantInitializer(Context, false))
6107    return false;
6108  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6109    << Init->getSourceRange();
6110  return true;
6111}
6112
6113namespace {
6114  // Visits an initialization expression to see if OrigDecl is evaluated in
6115  // its own initialization and throws a warning if it does.
6116  class SelfReferenceChecker
6117      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6118    Sema &S;
6119    Decl *OrigDecl;
6120    bool isRecordType;
6121    bool isPODType;
6122
6123  public:
6124    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6125
6126    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6127                                                    S(S), OrigDecl(OrigDecl) {
6128      isPODType = false;
6129      isRecordType = false;
6130      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6131        isPODType = VD->getType().isPODType(S.Context);
6132        isRecordType = VD->getType()->isRecordType();
6133      }
6134    }
6135
6136    // Sometimes, the expression passed in lacks the casts that are used
6137    // to determine which DeclRefExpr's to check.  Assume that the casts
6138    // are present and continue visiting the expression.
6139    void HandleExpr(Expr *E) {
6140      // Skip checking T a = a where T is not a record type.  Doing so is a
6141      // way to silence uninitialized warnings.
6142      if (isRecordType)
6143        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6144          HandleDeclRefExpr(DRE);
6145
6146      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6147        HandleValue(CO->getTrueExpr());
6148        HandleValue(CO->getFalseExpr());
6149      }
6150
6151      Visit(E);
6152    }
6153
6154    // For most expressions, the cast is directly above the DeclRefExpr.
6155    // For conditional operators, the cast can be outside the conditional
6156    // operator if both expressions are DeclRefExpr's.
6157    void HandleValue(Expr *E) {
6158      E = E->IgnoreParenImpCasts();
6159      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6160        HandleDeclRefExpr(DRE);
6161        return;
6162      }
6163
6164      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6165        HandleValue(CO->getTrueExpr());
6166        HandleValue(CO->getFalseExpr());
6167      }
6168    }
6169
6170    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6171      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6172          (isRecordType && E->getCastKind() == CK_NoOp))
6173        HandleValue(E->getSubExpr());
6174
6175      Inherited::VisitImplicitCastExpr(E);
6176    }
6177
6178    void VisitMemberExpr(MemberExpr *E) {
6179      // Don't warn on arrays since they can be treated as pointers.
6180      if (E->getType()->canDecayToPointerType()) return;
6181
6182      ValueDecl *VD = E->getMemberDecl();
6183      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6184      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6185        if (DeclRefExpr *DRE
6186              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6187          HandleDeclRefExpr(DRE);
6188          return;
6189        }
6190
6191      Inherited::VisitMemberExpr(E);
6192    }
6193
6194    void VisitUnaryOperator(UnaryOperator *E) {
6195      // For POD record types, addresses of its own members are well-defined.
6196      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6197          isa<MemberExpr>(E->getSubExpr())) return;
6198      Inherited::VisitUnaryOperator(E);
6199    }
6200
6201    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6202
6203    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6204      Decl* ReferenceDecl = DRE->getDecl();
6205      if (OrigDecl != ReferenceDecl) return;
6206      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6207                          Sema::NotForRedeclaration);
6208      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6209                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6210                              << Result.getLookupName()
6211                              << OrigDecl->getLocation()
6212                              << DRE->getSourceRange());
6213    }
6214  };
6215}
6216
6217/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6218void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6219  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6220}
6221
6222/// AddInitializerToDecl - Adds the initializer Init to the
6223/// declaration dcl. If DirectInit is true, this is C++ direct
6224/// initialization rather than copy initialization.
6225void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6226                                bool DirectInit, bool TypeMayContainAuto) {
6227  // If there is no declaration, there was an error parsing it.  Just ignore
6228  // the initializer.
6229  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6230    return;
6231
6232  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6233    // With declarators parsed the way they are, the parser cannot
6234    // distinguish between a normal initializer and a pure-specifier.
6235    // Thus this grotesque test.
6236    IntegerLiteral *IL;
6237    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6238        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6239      CheckPureMethod(Method, Init->getSourceRange());
6240    else {
6241      Diag(Method->getLocation(), diag::err_member_function_initialization)
6242        << Method->getDeclName() << Init->getSourceRange();
6243      Method->setInvalidDecl();
6244    }
6245    return;
6246  }
6247
6248  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6249  if (!VDecl) {
6250    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6251    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6252    RealDecl->setInvalidDecl();
6253    return;
6254  }
6255
6256  // Check for self-references within variable initializers.
6257  // Variables declared within a function/method body are handled
6258  // by a dataflow analysis.
6259  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6260    CheckSelfReference(RealDecl, Init);
6261
6262  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6263
6264  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6265  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6266    Expr *DeduceInit = Init;
6267    // Initializer could be a C++ direct-initializer. Deduction only works if it
6268    // contains exactly one expression.
6269    if (CXXDirectInit) {
6270      if (CXXDirectInit->getNumExprs() == 0) {
6271        // It isn't possible to write this directly, but it is possible to
6272        // end up in this situation with "auto x(some_pack...);"
6273        Diag(CXXDirectInit->getLocStart(),
6274             diag::err_auto_var_init_no_expression)
6275          << VDecl->getDeclName() << VDecl->getType()
6276          << VDecl->getSourceRange();
6277        RealDecl->setInvalidDecl();
6278        return;
6279      } else if (CXXDirectInit->getNumExprs() > 1) {
6280        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6281             diag::err_auto_var_init_multiple_expressions)
6282          << VDecl->getDeclName() << VDecl->getType()
6283          << VDecl->getSourceRange();
6284        RealDecl->setInvalidDecl();
6285        return;
6286      } else {
6287        DeduceInit = CXXDirectInit->getExpr(0);
6288      }
6289    }
6290    TypeSourceInfo *DeducedType = 0;
6291    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6292            DAR_Failed)
6293      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6294    if (!DeducedType) {
6295      RealDecl->setInvalidDecl();
6296      return;
6297    }
6298    VDecl->setTypeSourceInfo(DeducedType);
6299    VDecl->setType(DeducedType->getType());
6300    VDecl->ClearLinkageCache();
6301
6302    // In ARC, infer lifetime.
6303    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6304      VDecl->setInvalidDecl();
6305
6306    // Warn if we deduced 'id'. 'auto' usually implies type-safety, but using
6307    // 'id' instead of a specific object type prevents most of our usual checks.
6308    // We only want to warn outside of template instantiations, though:
6309    // inside a template, the 'id' could have come from a parameter.
6310    if (ActiveTemplateInstantiations.empty() &&
6311        DeducedType->getType()->isObjCIdType()) {
6312      SourceLocation Loc = DeducedType->getTypeLoc().getBeginLoc();
6313      Diag(Loc, diag::warn_auto_var_is_id)
6314        << VDecl->getDeclName() << DeduceInit->getSourceRange();
6315    }
6316
6317    // If this is a redeclaration, check that the type we just deduced matches
6318    // the previously declared type.
6319    if (VarDecl *Old = VDecl->getPreviousDecl())
6320      MergeVarDeclTypes(VDecl, Old);
6321  }
6322
6323  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6324    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6325    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6326    VDecl->setInvalidDecl();
6327    return;
6328  }
6329
6330  if (!VDecl->getType()->isDependentType()) {
6331    // A definition must end up with a complete type, which means it must be
6332    // complete with the restriction that an array type might be completed by
6333    // the initializer; note that later code assumes this restriction.
6334    QualType BaseDeclType = VDecl->getType();
6335    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6336      BaseDeclType = Array->getElementType();
6337    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6338                            diag::err_typecheck_decl_incomplete_type)) {
6339      RealDecl->setInvalidDecl();
6340      return;
6341    }
6342
6343    // The variable can not have an abstract class type.
6344    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6345                               diag::err_abstract_type_in_decl,
6346                               AbstractVariableType))
6347      VDecl->setInvalidDecl();
6348  }
6349
6350  const VarDecl *Def;
6351  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6352    Diag(VDecl->getLocation(), diag::err_redefinition)
6353      << VDecl->getDeclName();
6354    Diag(Def->getLocation(), diag::note_previous_definition);
6355    VDecl->setInvalidDecl();
6356    return;
6357  }
6358
6359  const VarDecl* PrevInit = 0;
6360  if (getLangOpts().CPlusPlus) {
6361    // C++ [class.static.data]p4
6362    //   If a static data member is of const integral or const
6363    //   enumeration type, its declaration in the class definition can
6364    //   specify a constant-initializer which shall be an integral
6365    //   constant expression (5.19). In that case, the member can appear
6366    //   in integral constant expressions. The member shall still be
6367    //   defined in a namespace scope if it is used in the program and the
6368    //   namespace scope definition shall not contain an initializer.
6369    //
6370    // We already performed a redefinition check above, but for static
6371    // data members we also need to check whether there was an in-class
6372    // declaration with an initializer.
6373    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6374      Diag(VDecl->getLocation(), diag::err_redefinition)
6375        << VDecl->getDeclName();
6376      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6377      return;
6378    }
6379
6380    if (VDecl->hasLocalStorage())
6381      getCurFunction()->setHasBranchProtectedScope();
6382
6383    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6384      VDecl->setInvalidDecl();
6385      return;
6386    }
6387  }
6388
6389  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6390  // a kernel function cannot be initialized."
6391  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6392    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6393    VDecl->setInvalidDecl();
6394    return;
6395  }
6396
6397  // Get the decls type and save a reference for later, since
6398  // CheckInitializerTypes may change it.
6399  QualType DclT = VDecl->getType(), SavT = DclT;
6400
6401  // Top-level message sends default to 'id' when we're in a debugger
6402  // and we are assigning it to a variable of 'id' type.
6403  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6404    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6405      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6406      if (Result.isInvalid()) {
6407        VDecl->setInvalidDecl();
6408        return;
6409      }
6410      Init = Result.take();
6411    }
6412
6413  // Perform the initialization.
6414  if (!VDecl->isInvalidDecl()) {
6415    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6416    InitializationKind Kind
6417      = DirectInit ?
6418          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6419                                                           Init->getLocStart(),
6420                                                           Init->getLocEnd())
6421                        : InitializationKind::CreateDirectList(
6422                                                          VDecl->getLocation())
6423                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6424                                                    Init->getLocStart());
6425
6426    Expr **Args = &Init;
6427    unsigned NumArgs = 1;
6428    if (CXXDirectInit) {
6429      Args = CXXDirectInit->getExprs();
6430      NumArgs = CXXDirectInit->getNumExprs();
6431    }
6432    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6433    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6434                                              MultiExprArg(*this, Args,NumArgs),
6435                                              &DclT);
6436    if (Result.isInvalid()) {
6437      VDecl->setInvalidDecl();
6438      return;
6439    }
6440
6441    Init = Result.takeAs<Expr>();
6442  }
6443
6444  // If the type changed, it means we had an incomplete type that was
6445  // completed by the initializer. For example:
6446  //   int ary[] = { 1, 3, 5 };
6447  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6448  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6449    VDecl->setType(DclT);
6450
6451  // Check any implicit conversions within the expression.
6452  CheckImplicitConversions(Init, VDecl->getLocation());
6453
6454  if (!VDecl->isInvalidDecl())
6455    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6456
6457  Init = MaybeCreateExprWithCleanups(Init);
6458  // Attach the initializer to the decl.
6459  VDecl->setInit(Init);
6460
6461  if (VDecl->isLocalVarDecl()) {
6462    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6463    // static storage duration shall be constant expressions or string literals.
6464    // C++ does not have this restriction.
6465    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6466        VDecl->getStorageClass() == SC_Static)
6467      CheckForConstantInitializer(Init, DclT);
6468  } else if (VDecl->isStaticDataMember() &&
6469             VDecl->getLexicalDeclContext()->isRecord()) {
6470    // This is an in-class initialization for a static data member, e.g.,
6471    //
6472    // struct S {
6473    //   static const int value = 17;
6474    // };
6475
6476    // C++ [class.mem]p4:
6477    //   A member-declarator can contain a constant-initializer only
6478    //   if it declares a static member (9.4) of const integral or
6479    //   const enumeration type, see 9.4.2.
6480    //
6481    // C++11 [class.static.data]p3:
6482    //   If a non-volatile const static data member is of integral or
6483    //   enumeration type, its declaration in the class definition can
6484    //   specify a brace-or-equal-initializer in which every initalizer-clause
6485    //   that is an assignment-expression is a constant expression. A static
6486    //   data member of literal type can be declared in the class definition
6487    //   with the constexpr specifier; if so, its declaration shall specify a
6488    //   brace-or-equal-initializer in which every initializer-clause that is
6489    //   an assignment-expression is a constant expression.
6490
6491    // Do nothing on dependent types.
6492    if (DclT->isDependentType()) {
6493
6494    // Allow any 'static constexpr' members, whether or not they are of literal
6495    // type. We separately check that every constexpr variable is of literal
6496    // type.
6497    } else if (VDecl->isConstexpr()) {
6498
6499    // Require constness.
6500    } else if (!DclT.isConstQualified()) {
6501      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6502        << Init->getSourceRange();
6503      VDecl->setInvalidDecl();
6504
6505    // We allow integer constant expressions in all cases.
6506    } else if (DclT->isIntegralOrEnumerationType()) {
6507      // Check whether the expression is a constant expression.
6508      SourceLocation Loc;
6509      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6510        // In C++11, a non-constexpr const static data member with an
6511        // in-class initializer cannot be volatile.
6512        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6513      else if (Init->isValueDependent())
6514        ; // Nothing to check.
6515      else if (Init->isIntegerConstantExpr(Context, &Loc))
6516        ; // Ok, it's an ICE!
6517      else if (Init->isEvaluatable(Context)) {
6518        // If we can constant fold the initializer through heroics, accept it,
6519        // but report this as a use of an extension for -pedantic.
6520        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6521          << Init->getSourceRange();
6522      } else {
6523        // Otherwise, this is some crazy unknown case.  Report the issue at the
6524        // location provided by the isIntegerConstantExpr failed check.
6525        Diag(Loc, diag::err_in_class_initializer_non_constant)
6526          << Init->getSourceRange();
6527        VDecl->setInvalidDecl();
6528      }
6529
6530    // We allow foldable floating-point constants as an extension.
6531    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6532      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6533        << DclT << Init->getSourceRange();
6534      if (getLangOpts().CPlusPlus0x)
6535        Diag(VDecl->getLocation(),
6536             diag::note_in_class_initializer_float_type_constexpr)
6537          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6538
6539      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6540        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6541          << Init->getSourceRange();
6542        VDecl->setInvalidDecl();
6543      }
6544
6545    // Suggest adding 'constexpr' in C++11 for literal types.
6546    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6547      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6548        << DclT << Init->getSourceRange()
6549        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6550      VDecl->setConstexpr(true);
6551
6552    } else {
6553      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6554        << DclT << Init->getSourceRange();
6555      VDecl->setInvalidDecl();
6556    }
6557  } else if (VDecl->isFileVarDecl()) {
6558    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6559        (!getLangOpts().CPlusPlus ||
6560         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6561      Diag(VDecl->getLocation(), diag::warn_extern_init);
6562
6563    // C99 6.7.8p4. All file scoped initializers need to be constant.
6564    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6565      CheckForConstantInitializer(Init, DclT);
6566  }
6567
6568  // We will represent direct-initialization similarly to copy-initialization:
6569  //    int x(1);  -as-> int x = 1;
6570  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6571  //
6572  // Clients that want to distinguish between the two forms, can check for
6573  // direct initializer using VarDecl::getInitStyle().
6574  // A major benefit is that clients that don't particularly care about which
6575  // exactly form was it (like the CodeGen) can handle both cases without
6576  // special case code.
6577
6578  // C++ 8.5p11:
6579  // The form of initialization (using parentheses or '=') is generally
6580  // insignificant, but does matter when the entity being initialized has a
6581  // class type.
6582  if (CXXDirectInit) {
6583    assert(DirectInit && "Call-style initializer must be direct init.");
6584    VDecl->setInitStyle(VarDecl::CallInit);
6585  } else if (DirectInit) {
6586    // This must be list-initialization. No other way is direct-initialization.
6587    VDecl->setInitStyle(VarDecl::ListInit);
6588  }
6589
6590  CheckCompleteVariableDeclaration(VDecl);
6591}
6592
6593/// ActOnInitializerError - Given that there was an error parsing an
6594/// initializer for the given declaration, try to return to some form
6595/// of sanity.
6596void Sema::ActOnInitializerError(Decl *D) {
6597  // Our main concern here is re-establishing invariants like "a
6598  // variable's type is either dependent or complete".
6599  if (!D || D->isInvalidDecl()) return;
6600
6601  VarDecl *VD = dyn_cast<VarDecl>(D);
6602  if (!VD) return;
6603
6604  // Auto types are meaningless if we can't make sense of the initializer.
6605  if (ParsingInitForAutoVars.count(D)) {
6606    D->setInvalidDecl();
6607    return;
6608  }
6609
6610  QualType Ty = VD->getType();
6611  if (Ty->isDependentType()) return;
6612
6613  // Require a complete type.
6614  if (RequireCompleteType(VD->getLocation(),
6615                          Context.getBaseElementType(Ty),
6616                          diag::err_typecheck_decl_incomplete_type)) {
6617    VD->setInvalidDecl();
6618    return;
6619  }
6620
6621  // Require an abstract type.
6622  if (RequireNonAbstractType(VD->getLocation(), Ty,
6623                             diag::err_abstract_type_in_decl,
6624                             AbstractVariableType)) {
6625    VD->setInvalidDecl();
6626    return;
6627  }
6628
6629  // Don't bother complaining about constructors or destructors,
6630  // though.
6631}
6632
6633void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6634                                  bool TypeMayContainAuto) {
6635  // If there is no declaration, there was an error parsing it. Just ignore it.
6636  if (RealDecl == 0)
6637    return;
6638
6639  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6640    QualType Type = Var->getType();
6641
6642    // C++11 [dcl.spec.auto]p3
6643    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6644      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6645        << Var->getDeclName() << Type;
6646      Var->setInvalidDecl();
6647      return;
6648    }
6649
6650    // C++11 [class.static.data]p3: A static data member can be declared with
6651    // the constexpr specifier; if so, its declaration shall specify
6652    // a brace-or-equal-initializer.
6653    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6654    // the definition of a variable [...] or the declaration of a static data
6655    // member.
6656    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6657      if (Var->isStaticDataMember())
6658        Diag(Var->getLocation(),
6659             diag::err_constexpr_static_mem_var_requires_init)
6660          << Var->getDeclName();
6661      else
6662        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6663      Var->setInvalidDecl();
6664      return;
6665    }
6666
6667    switch (Var->isThisDeclarationADefinition()) {
6668    case VarDecl::Definition:
6669      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6670        break;
6671
6672      // We have an out-of-line definition of a static data member
6673      // that has an in-class initializer, so we type-check this like
6674      // a declaration.
6675      //
6676      // Fall through
6677
6678    case VarDecl::DeclarationOnly:
6679      // It's only a declaration.
6680
6681      // Block scope. C99 6.7p7: If an identifier for an object is
6682      // declared with no linkage (C99 6.2.2p6), the type for the
6683      // object shall be complete.
6684      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6685          !Var->getLinkage() && !Var->isInvalidDecl() &&
6686          RequireCompleteType(Var->getLocation(), Type,
6687                              diag::err_typecheck_decl_incomplete_type))
6688        Var->setInvalidDecl();
6689
6690      // Make sure that the type is not abstract.
6691      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6692          RequireNonAbstractType(Var->getLocation(), Type,
6693                                 diag::err_abstract_type_in_decl,
6694                                 AbstractVariableType))
6695        Var->setInvalidDecl();
6696      return;
6697
6698    case VarDecl::TentativeDefinition:
6699      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6700      // object that has file scope without an initializer, and without a
6701      // storage-class specifier or with the storage-class specifier "static",
6702      // constitutes a tentative definition. Note: A tentative definition with
6703      // external linkage is valid (C99 6.2.2p5).
6704      if (!Var->isInvalidDecl()) {
6705        if (const IncompleteArrayType *ArrayT
6706                                    = Context.getAsIncompleteArrayType(Type)) {
6707          if (RequireCompleteType(Var->getLocation(),
6708                                  ArrayT->getElementType(),
6709                                  diag::err_illegal_decl_array_incomplete_type))
6710            Var->setInvalidDecl();
6711        } else if (Var->getStorageClass() == SC_Static) {
6712          // C99 6.9.2p3: If the declaration of an identifier for an object is
6713          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6714          // declared type shall not be an incomplete type.
6715          // NOTE: code such as the following
6716          //     static struct s;
6717          //     struct s { int a; };
6718          // is accepted by gcc. Hence here we issue a warning instead of
6719          // an error and we do not invalidate the static declaration.
6720          // NOTE: to avoid multiple warnings, only check the first declaration.
6721          if (Var->getPreviousDecl() == 0)
6722            RequireCompleteType(Var->getLocation(), Type,
6723                                diag::ext_typecheck_decl_incomplete_type);
6724        }
6725      }
6726
6727      // Record the tentative definition; we're done.
6728      if (!Var->isInvalidDecl())
6729        TentativeDefinitions.push_back(Var);
6730      return;
6731    }
6732
6733    // Provide a specific diagnostic for uninitialized variable
6734    // definitions with incomplete array type.
6735    if (Type->isIncompleteArrayType()) {
6736      Diag(Var->getLocation(),
6737           diag::err_typecheck_incomplete_array_needs_initializer);
6738      Var->setInvalidDecl();
6739      return;
6740    }
6741
6742    // Provide a specific diagnostic for uninitialized variable
6743    // definitions with reference type.
6744    if (Type->isReferenceType()) {
6745      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6746        << Var->getDeclName()
6747        << SourceRange(Var->getLocation(), Var->getLocation());
6748      Var->setInvalidDecl();
6749      return;
6750    }
6751
6752    // Do not attempt to type-check the default initializer for a
6753    // variable with dependent type.
6754    if (Type->isDependentType())
6755      return;
6756
6757    if (Var->isInvalidDecl())
6758      return;
6759
6760    if (RequireCompleteType(Var->getLocation(),
6761                            Context.getBaseElementType(Type),
6762                            diag::err_typecheck_decl_incomplete_type)) {
6763      Var->setInvalidDecl();
6764      return;
6765    }
6766
6767    // The variable can not have an abstract class type.
6768    if (RequireNonAbstractType(Var->getLocation(), Type,
6769                               diag::err_abstract_type_in_decl,
6770                               AbstractVariableType)) {
6771      Var->setInvalidDecl();
6772      return;
6773    }
6774
6775    // Check for jumps past the implicit initializer.  C++0x
6776    // clarifies that this applies to a "variable with automatic
6777    // storage duration", not a "local variable".
6778    // C++11 [stmt.dcl]p3
6779    //   A program that jumps from a point where a variable with automatic
6780    //   storage duration is not in scope to a point where it is in scope is
6781    //   ill-formed unless the variable has scalar type, class type with a
6782    //   trivial default constructor and a trivial destructor, a cv-qualified
6783    //   version of one of these types, or an array of one of the preceding
6784    //   types and is declared without an initializer.
6785    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6786      if (const RecordType *Record
6787            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6788        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6789        // Mark the function for further checking even if the looser rules of
6790        // C++11 do not require such checks, so that we can diagnose
6791        // incompatibilities with C++98.
6792        if (!CXXRecord->isPOD())
6793          getCurFunction()->setHasBranchProtectedScope();
6794      }
6795    }
6796
6797    // C++03 [dcl.init]p9:
6798    //   If no initializer is specified for an object, and the
6799    //   object is of (possibly cv-qualified) non-POD class type (or
6800    //   array thereof), the object shall be default-initialized; if
6801    //   the object is of const-qualified type, the underlying class
6802    //   type shall have a user-declared default
6803    //   constructor. Otherwise, if no initializer is specified for
6804    //   a non- static object, the object and its subobjects, if
6805    //   any, have an indeterminate initial value); if the object
6806    //   or any of its subobjects are of const-qualified type, the
6807    //   program is ill-formed.
6808    // C++0x [dcl.init]p11:
6809    //   If no initializer is specified for an object, the object is
6810    //   default-initialized; [...].
6811    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6812    InitializationKind Kind
6813      = InitializationKind::CreateDefault(Var->getLocation());
6814
6815    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6816    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6817                                      MultiExprArg(*this, 0, 0));
6818    if (Init.isInvalid())
6819      Var->setInvalidDecl();
6820    else if (Init.get()) {
6821      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6822      // This is important for template substitution.
6823      Var->setInitStyle(VarDecl::CallInit);
6824    }
6825
6826    CheckCompleteVariableDeclaration(Var);
6827  }
6828}
6829
6830void Sema::ActOnCXXForRangeDecl(Decl *D) {
6831  VarDecl *VD = dyn_cast<VarDecl>(D);
6832  if (!VD) {
6833    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6834    D->setInvalidDecl();
6835    return;
6836  }
6837
6838  VD->setCXXForRangeDecl(true);
6839
6840  // for-range-declaration cannot be given a storage class specifier.
6841  int Error = -1;
6842  switch (VD->getStorageClassAsWritten()) {
6843  case SC_None:
6844    break;
6845  case SC_Extern:
6846    Error = 0;
6847    break;
6848  case SC_Static:
6849    Error = 1;
6850    break;
6851  case SC_PrivateExtern:
6852    Error = 2;
6853    break;
6854  case SC_Auto:
6855    Error = 3;
6856    break;
6857  case SC_Register:
6858    Error = 4;
6859    break;
6860  case SC_OpenCLWorkGroupLocal:
6861    llvm_unreachable("Unexpected storage class");
6862  }
6863  if (VD->isConstexpr())
6864    Error = 5;
6865  if (Error != -1) {
6866    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6867      << VD->getDeclName() << Error;
6868    D->setInvalidDecl();
6869  }
6870}
6871
6872void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6873  if (var->isInvalidDecl()) return;
6874
6875  // In ARC, don't allow jumps past the implicit initialization of a
6876  // local retaining variable.
6877  if (getLangOpts().ObjCAutoRefCount &&
6878      var->hasLocalStorage()) {
6879    switch (var->getType().getObjCLifetime()) {
6880    case Qualifiers::OCL_None:
6881    case Qualifiers::OCL_ExplicitNone:
6882    case Qualifiers::OCL_Autoreleasing:
6883      break;
6884
6885    case Qualifiers::OCL_Weak:
6886    case Qualifiers::OCL_Strong:
6887      getCurFunction()->setHasBranchProtectedScope();
6888      break;
6889    }
6890  }
6891
6892  // All the following checks are C++ only.
6893  if (!getLangOpts().CPlusPlus) return;
6894
6895  QualType baseType = Context.getBaseElementType(var->getType());
6896  if (baseType->isDependentType()) return;
6897
6898  // __block variables might require us to capture a copy-initializer.
6899  if (var->hasAttr<BlocksAttr>()) {
6900    // It's currently invalid to ever have a __block variable with an
6901    // array type; should we diagnose that here?
6902
6903    // Regardless, we don't want to ignore array nesting when
6904    // constructing this copy.
6905    QualType type = var->getType();
6906
6907    if (type->isStructureOrClassType()) {
6908      SourceLocation poi = var->getLocation();
6909      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6910      ExprResult result =
6911        PerformCopyInitialization(
6912                        InitializedEntity::InitializeBlock(poi, type, false),
6913                                  poi, Owned(varRef));
6914      if (!result.isInvalid()) {
6915        result = MaybeCreateExprWithCleanups(result);
6916        Expr *init = result.takeAs<Expr>();
6917        Context.setBlockVarCopyInits(var, init);
6918      }
6919    }
6920  }
6921
6922  Expr *Init = var->getInit();
6923  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6924
6925  if (!var->getDeclContext()->isDependentContext() && Init) {
6926    if (IsGlobal && !var->isConstexpr() &&
6927        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6928                                            var->getLocation())
6929          != DiagnosticsEngine::Ignored &&
6930        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6931      Diag(var->getLocation(), diag::warn_global_constructor)
6932        << Init->getSourceRange();
6933
6934    if (var->isConstexpr()) {
6935      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6936      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6937        SourceLocation DiagLoc = var->getLocation();
6938        // If the note doesn't add any useful information other than a source
6939        // location, fold it into the primary diagnostic.
6940        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6941              diag::note_invalid_subexpr_in_const_expr) {
6942          DiagLoc = Notes[0].first;
6943          Notes.clear();
6944        }
6945        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6946          << var << Init->getSourceRange();
6947        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6948          Diag(Notes[I].first, Notes[I].second);
6949      }
6950    } else if (var->isUsableInConstantExpressions(Context)) {
6951      // Check whether the initializer of a const variable of integral or
6952      // enumeration type is an ICE now, since we can't tell whether it was
6953      // initialized by a constant expression if we check later.
6954      var->checkInitIsICE();
6955    }
6956  }
6957
6958  // Require the destructor.
6959  if (const RecordType *recordType = baseType->getAs<RecordType>())
6960    FinalizeVarWithDestructor(var, recordType);
6961}
6962
6963/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6964/// any semantic actions necessary after any initializer has been attached.
6965void
6966Sema::FinalizeDeclaration(Decl *ThisDecl) {
6967  // Note that we are no longer parsing the initializer for this declaration.
6968  ParsingInitForAutoVars.erase(ThisDecl);
6969}
6970
6971Sema::DeclGroupPtrTy
6972Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6973                              Decl **Group, unsigned NumDecls) {
6974  SmallVector<Decl*, 8> Decls;
6975
6976  if (DS.isTypeSpecOwned())
6977    Decls.push_back(DS.getRepAsDecl());
6978
6979  for (unsigned i = 0; i != NumDecls; ++i)
6980    if (Decl *D = Group[i])
6981      Decls.push_back(D);
6982
6983  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6984                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6985}
6986
6987/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6988/// group, performing any necessary semantic checking.
6989Sema::DeclGroupPtrTy
6990Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6991                           bool TypeMayContainAuto) {
6992  // C++0x [dcl.spec.auto]p7:
6993  //   If the type deduced for the template parameter U is not the same in each
6994  //   deduction, the program is ill-formed.
6995  // FIXME: When initializer-list support is added, a distinction is needed
6996  // between the deduced type U and the deduced type which 'auto' stands for.
6997  //   auto a = 0, b = { 1, 2, 3 };
6998  // is legal because the deduced type U is 'int' in both cases.
6999  if (TypeMayContainAuto && NumDecls > 1) {
7000    QualType Deduced;
7001    CanQualType DeducedCanon;
7002    VarDecl *DeducedDecl = 0;
7003    for (unsigned i = 0; i != NumDecls; ++i) {
7004      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
7005        AutoType *AT = D->getType()->getContainedAutoType();
7006        // Don't reissue diagnostics when instantiating a template.
7007        if (AT && D->isInvalidDecl())
7008          break;
7009        if (AT && AT->isDeduced()) {
7010          QualType U = AT->getDeducedType();
7011          CanQualType UCanon = Context.getCanonicalType(U);
7012          if (Deduced.isNull()) {
7013            Deduced = U;
7014            DeducedCanon = UCanon;
7015            DeducedDecl = D;
7016          } else if (DeducedCanon != UCanon) {
7017            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
7018                 diag::err_auto_different_deductions)
7019              << Deduced << DeducedDecl->getDeclName()
7020              << U << D->getDeclName()
7021              << DeducedDecl->getInit()->getSourceRange()
7022              << D->getInit()->getSourceRange();
7023            D->setInvalidDecl();
7024            break;
7025          }
7026        }
7027      }
7028    }
7029  }
7030
7031  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7032}
7033
7034
7035/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7036/// to introduce parameters into function prototype scope.
7037Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7038  const DeclSpec &DS = D.getDeclSpec();
7039
7040  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7041  // C++03 [dcl.stc]p2 also permits 'auto'.
7042  VarDecl::StorageClass StorageClass = SC_None;
7043  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7044  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7045    StorageClass = SC_Register;
7046    StorageClassAsWritten = SC_Register;
7047  } else if (getLangOpts().CPlusPlus &&
7048             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7049    StorageClass = SC_Auto;
7050    StorageClassAsWritten = SC_Auto;
7051  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7052    Diag(DS.getStorageClassSpecLoc(),
7053         diag::err_invalid_storage_class_in_func_decl);
7054    D.getMutableDeclSpec().ClearStorageClassSpecs();
7055  }
7056
7057  if (D.getDeclSpec().isThreadSpecified())
7058    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7059  if (D.getDeclSpec().isConstexprSpecified())
7060    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7061      << 0;
7062
7063  DiagnoseFunctionSpecifiers(D);
7064
7065  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7066  QualType parmDeclType = TInfo->getType();
7067
7068  if (getLangOpts().CPlusPlus) {
7069    // Check that there are no default arguments inside the type of this
7070    // parameter.
7071    CheckExtraCXXDefaultArguments(D);
7072
7073    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7074    if (D.getCXXScopeSpec().isSet()) {
7075      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7076        << D.getCXXScopeSpec().getRange();
7077      D.getCXXScopeSpec().clear();
7078    }
7079  }
7080
7081  // Ensure we have a valid name
7082  IdentifierInfo *II = 0;
7083  if (D.hasName()) {
7084    II = D.getIdentifier();
7085    if (!II) {
7086      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7087        << GetNameForDeclarator(D).getName().getAsString();
7088      D.setInvalidType(true);
7089    }
7090  }
7091
7092  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7093  if (II) {
7094    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7095                   ForRedeclaration);
7096    LookupName(R, S);
7097    if (R.isSingleResult()) {
7098      NamedDecl *PrevDecl = R.getFoundDecl();
7099      if (PrevDecl->isTemplateParameter()) {
7100        // Maybe we will complain about the shadowed template parameter.
7101        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7102        // Just pretend that we didn't see the previous declaration.
7103        PrevDecl = 0;
7104      } else if (S->isDeclScope(PrevDecl)) {
7105        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7106        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7107
7108        // Recover by removing the name
7109        II = 0;
7110        D.SetIdentifier(0, D.getIdentifierLoc());
7111        D.setInvalidType(true);
7112      }
7113    }
7114  }
7115
7116  // Temporarily put parameter variables in the translation unit, not
7117  // the enclosing context.  This prevents them from accidentally
7118  // looking like class members in C++.
7119  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7120                                    D.getLocStart(),
7121                                    D.getIdentifierLoc(), II,
7122                                    parmDeclType, TInfo,
7123                                    StorageClass, StorageClassAsWritten);
7124
7125  if (D.isInvalidType())
7126    New->setInvalidDecl();
7127
7128  assert(S->isFunctionPrototypeScope());
7129  assert(S->getFunctionPrototypeDepth() >= 1);
7130  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7131                    S->getNextFunctionPrototypeIndex());
7132
7133  // Add the parameter declaration into this scope.
7134  S->AddDecl(New);
7135  if (II)
7136    IdResolver.AddDecl(New);
7137
7138  ProcessDeclAttributes(S, New, D);
7139
7140  if (D.getDeclSpec().isModulePrivateSpecified())
7141    Diag(New->getLocation(), diag::err_module_private_local)
7142      << 1 << New->getDeclName()
7143      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7144      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7145
7146  if (New->hasAttr<BlocksAttr>()) {
7147    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7148  }
7149  return New;
7150}
7151
7152/// \brief Synthesizes a variable for a parameter arising from a
7153/// typedef.
7154ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7155                                              SourceLocation Loc,
7156                                              QualType T) {
7157  /* FIXME: setting StartLoc == Loc.
7158     Would it be worth to modify callers so as to provide proper source
7159     location for the unnamed parameters, embedding the parameter's type? */
7160  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7161                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7162                                           SC_None, SC_None, 0);
7163  Param->setImplicit();
7164  return Param;
7165}
7166
7167void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7168                                    ParmVarDecl * const *ParamEnd) {
7169  // Don't diagnose unused-parameter errors in template instantiations; we
7170  // will already have done so in the template itself.
7171  if (!ActiveTemplateInstantiations.empty())
7172    return;
7173
7174  for (; Param != ParamEnd; ++Param) {
7175    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7176        !(*Param)->hasAttr<UnusedAttr>()) {
7177      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7178        << (*Param)->getDeclName();
7179    }
7180  }
7181}
7182
7183void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7184                                                  ParmVarDecl * const *ParamEnd,
7185                                                  QualType ReturnTy,
7186                                                  NamedDecl *D) {
7187  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7188    return;
7189
7190  // Warn if the return value is pass-by-value and larger than the specified
7191  // threshold.
7192  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7193    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7194    if (Size > LangOpts.NumLargeByValueCopy)
7195      Diag(D->getLocation(), diag::warn_return_value_size)
7196          << D->getDeclName() << Size;
7197  }
7198
7199  // Warn if any parameter is pass-by-value and larger than the specified
7200  // threshold.
7201  for (; Param != ParamEnd; ++Param) {
7202    QualType T = (*Param)->getType();
7203    if (T->isDependentType() || !T.isPODType(Context))
7204      continue;
7205    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7206    if (Size > LangOpts.NumLargeByValueCopy)
7207      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7208          << (*Param)->getDeclName() << Size;
7209  }
7210}
7211
7212ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7213                                  SourceLocation NameLoc, IdentifierInfo *Name,
7214                                  QualType T, TypeSourceInfo *TSInfo,
7215                                  VarDecl::StorageClass StorageClass,
7216                                  VarDecl::StorageClass StorageClassAsWritten) {
7217  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7218  if (getLangOpts().ObjCAutoRefCount &&
7219      T.getObjCLifetime() == Qualifiers::OCL_None &&
7220      T->isObjCLifetimeType()) {
7221
7222    Qualifiers::ObjCLifetime lifetime;
7223
7224    // Special cases for arrays:
7225    //   - if it's const, use __unsafe_unretained
7226    //   - otherwise, it's an error
7227    if (T->isArrayType()) {
7228      if (!T.isConstQualified()) {
7229        DelayedDiagnostics.add(
7230            sema::DelayedDiagnostic::makeForbiddenType(
7231            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7232      }
7233      lifetime = Qualifiers::OCL_ExplicitNone;
7234    } else {
7235      lifetime = T->getObjCARCImplicitLifetime();
7236    }
7237    T = Context.getLifetimeQualifiedType(T, lifetime);
7238  }
7239
7240  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7241                                         Context.getAdjustedParameterType(T),
7242                                         TSInfo,
7243                                         StorageClass, StorageClassAsWritten,
7244                                         0);
7245
7246  // Parameters can not be abstract class types.
7247  // For record types, this is done by the AbstractClassUsageDiagnoser once
7248  // the class has been completely parsed.
7249  if (!CurContext->isRecord() &&
7250      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7251                             AbstractParamType))
7252    New->setInvalidDecl();
7253
7254  // Parameter declarators cannot be interface types. All ObjC objects are
7255  // passed by reference.
7256  if (T->isObjCObjectType()) {
7257    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7258    Diag(NameLoc,
7259         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7260      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7261    T = Context.getObjCObjectPointerType(T);
7262    New->setType(T);
7263  }
7264
7265  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7266  // duration shall not be qualified by an address-space qualifier."
7267  // Since all parameters have automatic store duration, they can not have
7268  // an address space.
7269  if (T.getAddressSpace() != 0) {
7270    Diag(NameLoc, diag::err_arg_with_address_space);
7271    New->setInvalidDecl();
7272  }
7273
7274  return New;
7275}
7276
7277void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7278                                           SourceLocation LocAfterDecls) {
7279  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7280
7281  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7282  // for a K&R function.
7283  if (!FTI.hasPrototype) {
7284    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7285      --i;
7286      if (FTI.ArgInfo[i].Param == 0) {
7287        SmallString<256> Code;
7288        llvm::raw_svector_ostream(Code) << "  int "
7289                                        << FTI.ArgInfo[i].Ident->getName()
7290                                        << ";\n";
7291        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7292          << FTI.ArgInfo[i].Ident
7293          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7294
7295        // Implicitly declare the argument as type 'int' for lack of a better
7296        // type.
7297        AttributeFactory attrs;
7298        DeclSpec DS(attrs);
7299        const char* PrevSpec; // unused
7300        unsigned DiagID; // unused
7301        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7302                           PrevSpec, DiagID);
7303        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7304        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7305        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7306      }
7307    }
7308  }
7309}
7310
7311Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7312  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7313  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7314  Scope *ParentScope = FnBodyScope->getParent();
7315
7316  D.setFunctionDefinitionKind(FDK_Definition);
7317  Decl *DP = HandleDeclarator(ParentScope, D,
7318                              MultiTemplateParamsArg(*this));
7319  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7320}
7321
7322static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7323  // Don't warn about invalid declarations.
7324  if (FD->isInvalidDecl())
7325    return false;
7326
7327  // Or declarations that aren't global.
7328  if (!FD->isGlobal())
7329    return false;
7330
7331  // Don't warn about C++ member functions.
7332  if (isa<CXXMethodDecl>(FD))
7333    return false;
7334
7335  // Don't warn about 'main'.
7336  if (FD->isMain())
7337    return false;
7338
7339  // Don't warn about inline functions.
7340  if (FD->isInlined())
7341    return false;
7342
7343  // Don't warn about function templates.
7344  if (FD->getDescribedFunctionTemplate())
7345    return false;
7346
7347  // Don't warn about function template specializations.
7348  if (FD->isFunctionTemplateSpecialization())
7349    return false;
7350
7351  bool MissingPrototype = true;
7352  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7353       Prev; Prev = Prev->getPreviousDecl()) {
7354    // Ignore any declarations that occur in function or method
7355    // scope, because they aren't visible from the header.
7356    if (Prev->getDeclContext()->isFunctionOrMethod())
7357      continue;
7358
7359    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7360    break;
7361  }
7362
7363  return MissingPrototype;
7364}
7365
7366void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7367  // Don't complain if we're in GNU89 mode and the previous definition
7368  // was an extern inline function.
7369  const FunctionDecl *Definition;
7370  if (FD->isDefined(Definition) &&
7371      !canRedefineFunction(Definition, getLangOpts())) {
7372    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7373        Definition->getStorageClass() == SC_Extern)
7374      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7375        << FD->getDeclName() << getLangOpts().CPlusPlus;
7376    else
7377      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7378    Diag(Definition->getLocation(), diag::note_previous_definition);
7379  }
7380}
7381
7382Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7383  // Clear the last template instantiation error context.
7384  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7385
7386  if (!D)
7387    return D;
7388  FunctionDecl *FD = 0;
7389
7390  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7391    FD = FunTmpl->getTemplatedDecl();
7392  else
7393    FD = cast<FunctionDecl>(D);
7394
7395  // Enter a new function scope
7396  PushFunctionScope();
7397
7398  // See if this is a redefinition.
7399  if (!FD->isLateTemplateParsed())
7400    CheckForFunctionRedefinition(FD);
7401
7402  // Builtin functions cannot be defined.
7403  if (unsigned BuiltinID = FD->getBuiltinID()) {
7404    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7405      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7406      FD->setInvalidDecl();
7407    }
7408  }
7409
7410  // The return type of a function definition must be complete
7411  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7412  QualType ResultType = FD->getResultType();
7413  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7414      !FD->isInvalidDecl() &&
7415      RequireCompleteType(FD->getLocation(), ResultType,
7416                          diag::err_func_def_incomplete_result))
7417    FD->setInvalidDecl();
7418
7419  // GNU warning -Wmissing-prototypes:
7420  //   Warn if a global function is defined without a previous
7421  //   prototype declaration. This warning is issued even if the
7422  //   definition itself provides a prototype. The aim is to detect
7423  //   global functions that fail to be declared in header files.
7424  if (ShouldWarnAboutMissingPrototype(FD))
7425    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7426
7427  if (FnBodyScope)
7428    PushDeclContext(FnBodyScope, FD);
7429
7430  // Check the validity of our function parameters
7431  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7432                           /*CheckParameterNames=*/true);
7433
7434  // Introduce our parameters into the function scope
7435  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7436    ParmVarDecl *Param = FD->getParamDecl(p);
7437    Param->setOwningFunction(FD);
7438
7439    // If this has an identifier, add it to the scope stack.
7440    if (Param->getIdentifier() && FnBodyScope) {
7441      CheckShadow(FnBodyScope, Param);
7442
7443      PushOnScopeChains(Param, FnBodyScope);
7444    }
7445  }
7446
7447  // If we had any tags defined in the function prototype,
7448  // introduce them into the function scope.
7449  if (FnBodyScope) {
7450    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7451           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7452      NamedDecl *D = *I;
7453
7454      // Some of these decls (like enums) may have been pinned to the translation unit
7455      // for lack of a real context earlier. If so, remove from the translation unit
7456      // and reattach to the current context.
7457      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7458        // Is the decl actually in the context?
7459        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7460               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7461          if (*DI == D) {
7462            Context.getTranslationUnitDecl()->removeDecl(D);
7463            break;
7464          }
7465        }
7466        // Either way, reassign the lexical decl context to our FunctionDecl.
7467        D->setLexicalDeclContext(CurContext);
7468      }
7469
7470      // If the decl has a non-null name, make accessible in the current scope.
7471      if (!D->getName().empty())
7472        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7473
7474      // Similarly, dive into enums and fish their constants out, making them
7475      // accessible in this scope.
7476      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7477        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7478               EE = ED->enumerator_end(); EI != EE; ++EI)
7479          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7480      }
7481    }
7482  }
7483
7484  // Ensure that the function's exception specification is instantiated.
7485  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7486    ResolveExceptionSpec(D->getLocation(), FPT);
7487
7488  // Checking attributes of current function definition
7489  // dllimport attribute.
7490  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7491  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7492    // dllimport attribute cannot be directly applied to definition.
7493    // Microsoft accepts dllimport for functions defined within class scope.
7494    if (!DA->isInherited() &&
7495        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7496      Diag(FD->getLocation(),
7497           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7498        << "dllimport";
7499      FD->setInvalidDecl();
7500      return FD;
7501    }
7502
7503    // Visual C++ appears to not think this is an issue, so only issue
7504    // a warning when Microsoft extensions are disabled.
7505    if (!LangOpts.MicrosoftExt) {
7506      // If a symbol previously declared dllimport is later defined, the
7507      // attribute is ignored in subsequent references, and a warning is
7508      // emitted.
7509      Diag(FD->getLocation(),
7510           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7511        << FD->getName() << "dllimport";
7512    }
7513  }
7514  return FD;
7515}
7516
7517/// \brief Given the set of return statements within a function body,
7518/// compute the variables that are subject to the named return value
7519/// optimization.
7520///
7521/// Each of the variables that is subject to the named return value
7522/// optimization will be marked as NRVO variables in the AST, and any
7523/// return statement that has a marked NRVO variable as its NRVO candidate can
7524/// use the named return value optimization.
7525///
7526/// This function applies a very simplistic algorithm for NRVO: if every return
7527/// statement in the function has the same NRVO candidate, that candidate is
7528/// the NRVO variable.
7529///
7530/// FIXME: Employ a smarter algorithm that accounts for multiple return
7531/// statements and the lifetimes of the NRVO candidates. We should be able to
7532/// find a maximal set of NRVO variables.
7533void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7534  ReturnStmt **Returns = Scope->Returns.data();
7535
7536  const VarDecl *NRVOCandidate = 0;
7537  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7538    if (!Returns[I]->getNRVOCandidate())
7539      return;
7540
7541    if (!NRVOCandidate)
7542      NRVOCandidate = Returns[I]->getNRVOCandidate();
7543    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7544      return;
7545  }
7546
7547  if (NRVOCandidate)
7548    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7549}
7550
7551Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7552  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7553}
7554
7555Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7556                                    bool IsInstantiation) {
7557  FunctionDecl *FD = 0;
7558  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7559  if (FunTmpl)
7560    FD = FunTmpl->getTemplatedDecl();
7561  else
7562    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7563
7564  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7565  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7566
7567  if (FD) {
7568    FD->setBody(Body);
7569
7570    // If the function implicitly returns zero (like 'main') or is naked,
7571    // don't complain about missing return statements.
7572    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7573      WP.disableCheckFallThrough();
7574
7575    // MSVC permits the use of pure specifier (=0) on function definition,
7576    // defined at class scope, warn about this non standard construct.
7577    if (getLangOpts().MicrosoftExt && FD->isPure())
7578      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7579
7580    if (!FD->isInvalidDecl()) {
7581      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7582      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7583                                             FD->getResultType(), FD);
7584
7585      // If this is a constructor, we need a vtable.
7586      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7587        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7588
7589      computeNRVO(Body, getCurFunction());
7590    }
7591
7592    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7593           "Function parsing confused");
7594  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7595    assert(MD == getCurMethodDecl() && "Method parsing confused");
7596    MD->setBody(Body);
7597    if (Body)
7598      MD->setEndLoc(Body->getLocEnd());
7599    if (!MD->isInvalidDecl()) {
7600      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7601      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7602                                             MD->getResultType(), MD);
7603
7604      if (Body)
7605        computeNRVO(Body, getCurFunction());
7606    }
7607    if (ObjCShouldCallSuperDealloc) {
7608      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7609      ObjCShouldCallSuperDealloc = false;
7610    }
7611    if (ObjCShouldCallSuperFinalize) {
7612      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7613      ObjCShouldCallSuperFinalize = false;
7614    }
7615  } else {
7616    return 0;
7617  }
7618
7619  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7620         "ObjC methods, which should have been handled in the block above.");
7621  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7622         "ObjC methods, which should have been handled in the block above.");
7623
7624  // Verify and clean out per-function state.
7625  if (Body) {
7626    // C++ constructors that have function-try-blocks can't have return
7627    // statements in the handlers of that block. (C++ [except.handle]p14)
7628    // Verify this.
7629    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7630      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7631
7632    // Verify that gotos and switch cases don't jump into scopes illegally.
7633    if (getCurFunction()->NeedsScopeChecking() &&
7634        !dcl->isInvalidDecl() &&
7635        !hasAnyUnrecoverableErrorsInThisFunction())
7636      DiagnoseInvalidJumps(Body);
7637
7638    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7639      if (!Destructor->getParent()->isDependentType())
7640        CheckDestructor(Destructor);
7641
7642      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7643                                             Destructor->getParent());
7644    }
7645
7646    // If any errors have occurred, clear out any temporaries that may have
7647    // been leftover. This ensures that these temporaries won't be picked up for
7648    // deletion in some later function.
7649    if (PP.getDiagnostics().hasErrorOccurred() ||
7650        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7651      DiscardCleanupsInEvaluationContext();
7652    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7653      // Since the body is valid, issue any analysis-based warnings that are
7654      // enabled.
7655      ActivePolicy = &WP;
7656    }
7657
7658    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7659        (!CheckConstexprFunctionDecl(FD) ||
7660         !CheckConstexprFunctionBody(FD, Body)))
7661      FD->setInvalidDecl();
7662
7663    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7664    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7665    assert(MaybeODRUseExprs.empty() &&
7666           "Leftover expressions for odr-use checking");
7667  }
7668
7669  if (!IsInstantiation)
7670    PopDeclContext();
7671
7672  PopFunctionScopeInfo(ActivePolicy, dcl);
7673
7674  // If any errors have occurred, clear out any temporaries that may have
7675  // been leftover. This ensures that these temporaries won't be picked up for
7676  // deletion in some later function.
7677  if (getDiagnostics().hasErrorOccurred()) {
7678    DiscardCleanupsInEvaluationContext();
7679  }
7680
7681  return dcl;
7682}
7683
7684
7685/// When we finish delayed parsing of an attribute, we must attach it to the
7686/// relevant Decl.
7687void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7688                                       ParsedAttributes &Attrs) {
7689  // Always attach attributes to the underlying decl.
7690  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7691    D = TD->getTemplatedDecl();
7692  ProcessDeclAttributeList(S, D, Attrs.getList());
7693
7694  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7695    if (Method->isStatic())
7696      checkThisInStaticMemberFunctionAttributes(Method);
7697}
7698
7699
7700/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7701/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7702NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7703                                          IdentifierInfo &II, Scope *S) {
7704  // Before we produce a declaration for an implicitly defined
7705  // function, see whether there was a locally-scoped declaration of
7706  // this name as a function or variable. If so, use that
7707  // (non-visible) declaration, and complain about it.
7708  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7709    = findLocallyScopedExternalDecl(&II);
7710  if (Pos != LocallyScopedExternalDecls.end()) {
7711    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7712    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7713    return Pos->second;
7714  }
7715
7716  // Extension in C99.  Legal in C90, but warn about it.
7717  unsigned diag_id;
7718  if (II.getName().startswith("__builtin_"))
7719    diag_id = diag::warn_builtin_unknown;
7720  else if (getLangOpts().C99)
7721    diag_id = diag::ext_implicit_function_decl;
7722  else
7723    diag_id = diag::warn_implicit_function_decl;
7724  Diag(Loc, diag_id) << &II;
7725
7726  // Because typo correction is expensive, only do it if the implicit
7727  // function declaration is going to be treated as an error.
7728  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7729    TypoCorrection Corrected;
7730    DeclFilterCCC<FunctionDecl> Validator;
7731    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7732                                      LookupOrdinaryName, S, 0, Validator))) {
7733      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7734      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7735      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7736
7737      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7738          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7739
7740      if (Func->getLocation().isValid()
7741          && !II.getName().startswith("__builtin_"))
7742        Diag(Func->getLocation(), diag::note_previous_decl)
7743            << CorrectedQuotedStr;
7744    }
7745  }
7746
7747  // Set a Declarator for the implicit definition: int foo();
7748  const char *Dummy;
7749  AttributeFactory attrFactory;
7750  DeclSpec DS(attrFactory);
7751  unsigned DiagID;
7752  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7753  (void)Error; // Silence warning.
7754  assert(!Error && "Error setting up implicit decl!");
7755  Declarator D(DS, Declarator::BlockContext);
7756  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7757                                             0, 0, true, SourceLocation(),
7758                                             SourceLocation(), SourceLocation(),
7759                                             SourceLocation(),
7760                                             EST_None, SourceLocation(),
7761                                             0, 0, 0, 0, Loc, Loc, D),
7762                DS.getAttributes(),
7763                SourceLocation());
7764  D.SetIdentifier(&II, Loc);
7765
7766  // Insert this function into translation-unit scope.
7767
7768  DeclContext *PrevDC = CurContext;
7769  CurContext = Context.getTranslationUnitDecl();
7770
7771  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7772  FD->setImplicit();
7773
7774  CurContext = PrevDC;
7775
7776  AddKnownFunctionAttributes(FD);
7777
7778  return FD;
7779}
7780
7781/// \brief Adds any function attributes that we know a priori based on
7782/// the declaration of this function.
7783///
7784/// These attributes can apply both to implicitly-declared builtins
7785/// (like __builtin___printf_chk) or to library-declared functions
7786/// like NSLog or printf.
7787///
7788/// We need to check for duplicate attributes both here and where user-written
7789/// attributes are applied to declarations.
7790void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7791  if (FD->isInvalidDecl())
7792    return;
7793
7794  // If this is a built-in function, map its builtin attributes to
7795  // actual attributes.
7796  if (unsigned BuiltinID = FD->getBuiltinID()) {
7797    // Handle printf-formatting attributes.
7798    unsigned FormatIdx;
7799    bool HasVAListArg;
7800    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7801      if (!FD->getAttr<FormatAttr>()) {
7802        const char *fmt = "printf";
7803        unsigned int NumParams = FD->getNumParams();
7804        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7805            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7806          fmt = "NSString";
7807        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7808                                               fmt, FormatIdx+1,
7809                                               HasVAListArg ? 0 : FormatIdx+2));
7810      }
7811    }
7812    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7813                                             HasVAListArg)) {
7814     if (!FD->getAttr<FormatAttr>())
7815       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7816                                              "scanf", FormatIdx+1,
7817                                              HasVAListArg ? 0 : FormatIdx+2));
7818    }
7819
7820    // Mark const if we don't care about errno and that is the only
7821    // thing preventing the function from being const. This allows
7822    // IRgen to use LLVM intrinsics for such functions.
7823    if (!getLangOpts().MathErrno &&
7824        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7825      if (!FD->getAttr<ConstAttr>())
7826        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7827    }
7828
7829    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7830        !FD->getAttr<ReturnsTwiceAttr>())
7831      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7832    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7833      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7834    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7835      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7836  }
7837
7838  IdentifierInfo *Name = FD->getIdentifier();
7839  if (!Name)
7840    return;
7841  if ((!getLangOpts().CPlusPlus &&
7842       FD->getDeclContext()->isTranslationUnit()) ||
7843      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7844       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7845       LinkageSpecDecl::lang_c)) {
7846    // Okay: this could be a libc/libm/Objective-C function we know
7847    // about.
7848  } else
7849    return;
7850
7851  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7852    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7853    // target-specific builtins, perhaps?
7854    if (!FD->getAttr<FormatAttr>())
7855      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7856                                             "printf", 2,
7857                                             Name->isStr("vasprintf") ? 0 : 3));
7858  }
7859}
7860
7861TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7862                                    TypeSourceInfo *TInfo) {
7863  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7864  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7865
7866  if (!TInfo) {
7867    assert(D.isInvalidType() && "no declarator info for valid type");
7868    TInfo = Context.getTrivialTypeSourceInfo(T);
7869  }
7870
7871  // Scope manipulation handled by caller.
7872  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7873                                           D.getLocStart(),
7874                                           D.getIdentifierLoc(),
7875                                           D.getIdentifier(),
7876                                           TInfo);
7877
7878  // Bail out immediately if we have an invalid declaration.
7879  if (D.isInvalidType()) {
7880    NewTD->setInvalidDecl();
7881    return NewTD;
7882  }
7883
7884  if (D.getDeclSpec().isModulePrivateSpecified()) {
7885    if (CurContext->isFunctionOrMethod())
7886      Diag(NewTD->getLocation(), diag::err_module_private_local)
7887        << 2 << NewTD->getDeclName()
7888        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7889        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7890    else
7891      NewTD->setModulePrivate();
7892  }
7893
7894  // C++ [dcl.typedef]p8:
7895  //   If the typedef declaration defines an unnamed class (or
7896  //   enum), the first typedef-name declared by the declaration
7897  //   to be that class type (or enum type) is used to denote the
7898  //   class type (or enum type) for linkage purposes only.
7899  // We need to check whether the type was declared in the declaration.
7900  switch (D.getDeclSpec().getTypeSpecType()) {
7901  case TST_enum:
7902  case TST_struct:
7903  case TST_union:
7904  case TST_class: {
7905    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7906
7907    // Do nothing if the tag is not anonymous or already has an
7908    // associated typedef (from an earlier typedef in this decl group).
7909    if (tagFromDeclSpec->getIdentifier()) break;
7910    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7911
7912    // A well-formed anonymous tag must always be a TUK_Definition.
7913    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7914
7915    // The type must match the tag exactly;  no qualifiers allowed.
7916    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7917      break;
7918
7919    // Otherwise, set this is the anon-decl typedef for the tag.
7920    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7921    break;
7922  }
7923
7924  default:
7925    break;
7926  }
7927
7928  return NewTD;
7929}
7930
7931
7932/// \brief Check that this is a valid underlying type for an enum declaration.
7933bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
7934  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7935  QualType T = TI->getType();
7936
7937  if (T->isDependentType() || T->isIntegralType(Context))
7938    return false;
7939
7940  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
7941  return true;
7942}
7943
7944/// Check whether this is a valid redeclaration of a previous enumeration.
7945/// \return true if the redeclaration was invalid.
7946bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
7947                                  QualType EnumUnderlyingTy,
7948                                  const EnumDecl *Prev) {
7949  bool IsFixed = !EnumUnderlyingTy.isNull();
7950
7951  if (IsScoped != Prev->isScoped()) {
7952    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
7953      << Prev->isScoped();
7954    Diag(Prev->getLocation(), diag::note_previous_use);
7955    return true;
7956  }
7957
7958  if (IsFixed && Prev->isFixed()) {
7959    if (!EnumUnderlyingTy->isDependentType() &&
7960        !Prev->getIntegerType()->isDependentType() &&
7961        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
7962                                        Prev->getIntegerType())) {
7963      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
7964        << EnumUnderlyingTy << Prev->getIntegerType();
7965      Diag(Prev->getLocation(), diag::note_previous_use);
7966      return true;
7967    }
7968  } else if (IsFixed != Prev->isFixed()) {
7969    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
7970      << Prev->isFixed();
7971    Diag(Prev->getLocation(), diag::note_previous_use);
7972    return true;
7973  }
7974
7975  return false;
7976}
7977
7978/// \brief Determine whether a tag with a given kind is acceptable
7979/// as a redeclaration of the given tag declaration.
7980///
7981/// \returns true if the new tag kind is acceptable, false otherwise.
7982bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7983                                        TagTypeKind NewTag, bool isDefinition,
7984                                        SourceLocation NewTagLoc,
7985                                        const IdentifierInfo &Name) {
7986  // C++ [dcl.type.elab]p3:
7987  //   The class-key or enum keyword present in the
7988  //   elaborated-type-specifier shall agree in kind with the
7989  //   declaration to which the name in the elaborated-type-specifier
7990  //   refers. This rule also applies to the form of
7991  //   elaborated-type-specifier that declares a class-name or
7992  //   friend class since it can be construed as referring to the
7993  //   definition of the class. Thus, in any
7994  //   elaborated-type-specifier, the enum keyword shall be used to
7995  //   refer to an enumeration (7.2), the union class-key shall be
7996  //   used to refer to a union (clause 9), and either the class or
7997  //   struct class-key shall be used to refer to a class (clause 9)
7998  //   declared using the class or struct class-key.
7999  TagTypeKind OldTag = Previous->getTagKind();
8000  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
8001    if (OldTag == NewTag)
8002      return true;
8003
8004  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
8005      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
8006    // Warn about the struct/class tag mismatch.
8007    bool isTemplate = false;
8008    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
8009      isTemplate = Record->getDescribedClassTemplate();
8010
8011    if (!ActiveTemplateInstantiations.empty()) {
8012      // In a template instantiation, do not offer fix-its for tag mismatches
8013      // since they usually mess up the template instead of fixing the problem.
8014      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8015        << (NewTag == TTK_Class) << isTemplate << &Name;
8016      return true;
8017    }
8018
8019    if (isDefinition) {
8020      // On definitions, check previous tags and issue a fix-it for each
8021      // one that doesn't match the current tag.
8022      if (Previous->getDefinition()) {
8023        // Don't suggest fix-its for redefinitions.
8024        return true;
8025      }
8026
8027      bool previousMismatch = false;
8028      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8029           E(Previous->redecls_end()); I != E; ++I) {
8030        if (I->getTagKind() != NewTag) {
8031          if (!previousMismatch) {
8032            previousMismatch = true;
8033            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8034              << (NewTag == TTK_Class) << isTemplate << &Name;
8035          }
8036          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8037            << (NewTag == TTK_Class)
8038            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8039                                            NewTag == TTK_Class?
8040                                            "class" : "struct");
8041        }
8042      }
8043      return true;
8044    }
8045
8046    // Check for a previous definition.  If current tag and definition
8047    // are same type, do nothing.  If no definition, but disagree with
8048    // with previous tag type, give a warning, but no fix-it.
8049    const TagDecl *Redecl = Previous->getDefinition() ?
8050                            Previous->getDefinition() : Previous;
8051    if (Redecl->getTagKind() == NewTag) {
8052      return true;
8053    }
8054
8055    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8056      << (NewTag == TTK_Class)
8057      << isTemplate << &Name;
8058    Diag(Redecl->getLocation(), diag::note_previous_use);
8059
8060    // If there is a previous defintion, suggest a fix-it.
8061    if (Previous->getDefinition()) {
8062        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8063          << (Redecl->getTagKind() == TTK_Class)
8064          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8065                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
8066    }
8067
8068    return true;
8069  }
8070  return false;
8071}
8072
8073/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8074/// former case, Name will be non-null.  In the later case, Name will be null.
8075/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8076/// reference/declaration/definition of a tag.
8077Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8078                     SourceLocation KWLoc, CXXScopeSpec &SS,
8079                     IdentifierInfo *Name, SourceLocation NameLoc,
8080                     AttributeList *Attr, AccessSpecifier AS,
8081                     SourceLocation ModulePrivateLoc,
8082                     MultiTemplateParamsArg TemplateParameterLists,
8083                     bool &OwnedDecl, bool &IsDependent,
8084                     SourceLocation ScopedEnumKWLoc,
8085                     bool ScopedEnumUsesClassTag,
8086                     TypeResult UnderlyingType) {
8087  // If this is not a definition, it must have a name.
8088  IdentifierInfo *OrigName = Name;
8089  assert((Name != 0 || TUK == TUK_Definition) &&
8090         "Nameless record must be a definition!");
8091  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8092
8093  OwnedDecl = false;
8094  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8095  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8096
8097  // FIXME: Check explicit specializations more carefully.
8098  bool isExplicitSpecialization = false;
8099  bool Invalid = false;
8100
8101  // We only need to do this matching if we have template parameters
8102  // or a scope specifier, which also conveniently avoids this work
8103  // for non-C++ cases.
8104  if (TemplateParameterLists.size() > 0 ||
8105      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8106    if (TemplateParameterList *TemplateParams
8107          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8108                                                TemplateParameterLists.get(),
8109                                                TemplateParameterLists.size(),
8110                                                    TUK == TUK_Friend,
8111                                                    isExplicitSpecialization,
8112                                                    Invalid)) {
8113      if (TemplateParams->size() > 0) {
8114        // This is a declaration or definition of a class template (which may
8115        // be a member of another template).
8116
8117        if (Invalid)
8118          return 0;
8119
8120        OwnedDecl = false;
8121        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8122                                               SS, Name, NameLoc, Attr,
8123                                               TemplateParams, AS,
8124                                               ModulePrivateLoc,
8125                                           TemplateParameterLists.size() - 1,
8126                 (TemplateParameterList**) TemplateParameterLists.release());
8127        return Result.get();
8128      } else {
8129        // The "template<>" header is extraneous.
8130        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8131          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8132        isExplicitSpecialization = true;
8133      }
8134    }
8135  }
8136
8137  // Figure out the underlying type if this a enum declaration. We need to do
8138  // this early, because it's needed to detect if this is an incompatible
8139  // redeclaration.
8140  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8141
8142  if (Kind == TTK_Enum) {
8143    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8144      // No underlying type explicitly specified, or we failed to parse the
8145      // type, default to int.
8146      EnumUnderlying = Context.IntTy.getTypePtr();
8147    else if (UnderlyingType.get()) {
8148      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8149      // integral type; any cv-qualification is ignored.
8150      TypeSourceInfo *TI = 0;
8151      GetTypeFromParser(UnderlyingType.get(), &TI);
8152      EnumUnderlying = TI;
8153
8154      if (CheckEnumUnderlyingType(TI))
8155        // Recover by falling back to int.
8156        EnumUnderlying = Context.IntTy.getTypePtr();
8157
8158      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8159                                          UPPC_FixedUnderlyingType))
8160        EnumUnderlying = Context.IntTy.getTypePtr();
8161
8162    } else if (getLangOpts().MicrosoftMode)
8163      // Microsoft enums are always of int type.
8164      EnumUnderlying = Context.IntTy.getTypePtr();
8165  }
8166
8167  DeclContext *SearchDC = CurContext;
8168  DeclContext *DC = CurContext;
8169  bool isStdBadAlloc = false;
8170
8171  RedeclarationKind Redecl = ForRedeclaration;
8172  if (TUK == TUK_Friend || TUK == TUK_Reference)
8173    Redecl = NotForRedeclaration;
8174
8175  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8176
8177  if (Name && SS.isNotEmpty()) {
8178    // We have a nested-name tag ('struct foo::bar').
8179
8180    // Check for invalid 'foo::'.
8181    if (SS.isInvalid()) {
8182      Name = 0;
8183      goto CreateNewDecl;
8184    }
8185
8186    // If this is a friend or a reference to a class in a dependent
8187    // context, don't try to make a decl for it.
8188    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8189      DC = computeDeclContext(SS, false);
8190      if (!DC) {
8191        IsDependent = true;
8192        return 0;
8193      }
8194    } else {
8195      DC = computeDeclContext(SS, true);
8196      if (!DC) {
8197        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8198          << SS.getRange();
8199        return 0;
8200      }
8201    }
8202
8203    if (RequireCompleteDeclContext(SS, DC))
8204      return 0;
8205
8206    SearchDC = DC;
8207    // Look-up name inside 'foo::'.
8208    LookupQualifiedName(Previous, DC);
8209
8210    if (Previous.isAmbiguous())
8211      return 0;
8212
8213    if (Previous.empty()) {
8214      // Name lookup did not find anything. However, if the
8215      // nested-name-specifier refers to the current instantiation,
8216      // and that current instantiation has any dependent base
8217      // classes, we might find something at instantiation time: treat
8218      // this as a dependent elaborated-type-specifier.
8219      // But this only makes any sense for reference-like lookups.
8220      if (Previous.wasNotFoundInCurrentInstantiation() &&
8221          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8222        IsDependent = true;
8223        return 0;
8224      }
8225
8226      // A tag 'foo::bar' must already exist.
8227      Diag(NameLoc, diag::err_not_tag_in_scope)
8228        << Kind << Name << DC << SS.getRange();
8229      Name = 0;
8230      Invalid = true;
8231      goto CreateNewDecl;
8232    }
8233  } else if (Name) {
8234    // If this is a named struct, check to see if there was a previous forward
8235    // declaration or definition.
8236    // FIXME: We're looking into outer scopes here, even when we
8237    // shouldn't be. Doing so can result in ambiguities that we
8238    // shouldn't be diagnosing.
8239    LookupName(Previous, S);
8240
8241    if (Previous.isAmbiguous() &&
8242        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8243      LookupResult::Filter F = Previous.makeFilter();
8244      while (F.hasNext()) {
8245        NamedDecl *ND = F.next();
8246        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8247          F.erase();
8248      }
8249      F.done();
8250    }
8251
8252    // Note:  there used to be some attempt at recovery here.
8253    if (Previous.isAmbiguous())
8254      return 0;
8255
8256    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8257      // FIXME: This makes sure that we ignore the contexts associated
8258      // with C structs, unions, and enums when looking for a matching
8259      // tag declaration or definition. See the similar lookup tweak
8260      // in Sema::LookupName; is there a better way to deal with this?
8261      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8262        SearchDC = SearchDC->getParent();
8263    }
8264  } else if (S->isFunctionPrototypeScope()) {
8265    // If this is an enum declaration in function prototype scope, set its
8266    // initial context to the translation unit.
8267    // FIXME: [citation needed]
8268    SearchDC = Context.getTranslationUnitDecl();
8269  }
8270
8271  if (Previous.isSingleResult() &&
8272      Previous.getFoundDecl()->isTemplateParameter()) {
8273    // Maybe we will complain about the shadowed template parameter.
8274    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8275    // Just pretend that we didn't see the previous declaration.
8276    Previous.clear();
8277  }
8278
8279  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8280      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8281    // This is a declaration of or a reference to "std::bad_alloc".
8282    isStdBadAlloc = true;
8283
8284    if (Previous.empty() && StdBadAlloc) {
8285      // std::bad_alloc has been implicitly declared (but made invisible to
8286      // name lookup). Fill in this implicit declaration as the previous
8287      // declaration, so that the declarations get chained appropriately.
8288      Previous.addDecl(getStdBadAlloc());
8289    }
8290  }
8291
8292  // If we didn't find a previous declaration, and this is a reference
8293  // (or friend reference), move to the correct scope.  In C++, we
8294  // also need to do a redeclaration lookup there, just in case
8295  // there's a shadow friend decl.
8296  if (Name && Previous.empty() &&
8297      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8298    if (Invalid) goto CreateNewDecl;
8299    assert(SS.isEmpty());
8300
8301    if (TUK == TUK_Reference) {
8302      // C++ [basic.scope.pdecl]p5:
8303      //   -- for an elaborated-type-specifier of the form
8304      //
8305      //          class-key identifier
8306      //
8307      //      if the elaborated-type-specifier is used in the
8308      //      decl-specifier-seq or parameter-declaration-clause of a
8309      //      function defined in namespace scope, the identifier is
8310      //      declared as a class-name in the namespace that contains
8311      //      the declaration; otherwise, except as a friend
8312      //      declaration, the identifier is declared in the smallest
8313      //      non-class, non-function-prototype scope that contains the
8314      //      declaration.
8315      //
8316      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8317      // C structs and unions.
8318      //
8319      // It is an error in C++ to declare (rather than define) an enum
8320      // type, including via an elaborated type specifier.  We'll
8321      // diagnose that later; for now, declare the enum in the same
8322      // scope as we would have picked for any other tag type.
8323      //
8324      // GNU C also supports this behavior as part of its incomplete
8325      // enum types extension, while GNU C++ does not.
8326      //
8327      // Find the context where we'll be declaring the tag.
8328      // FIXME: We would like to maintain the current DeclContext as the
8329      // lexical context,
8330      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8331        SearchDC = SearchDC->getParent();
8332
8333      // Find the scope where we'll be declaring the tag.
8334      while (S->isClassScope() ||
8335             (getLangOpts().CPlusPlus &&
8336              S->isFunctionPrototypeScope()) ||
8337             ((S->getFlags() & Scope::DeclScope) == 0) ||
8338             (S->getEntity() &&
8339              ((DeclContext *)S->getEntity())->isTransparentContext()))
8340        S = S->getParent();
8341    } else {
8342      assert(TUK == TUK_Friend);
8343      // C++ [namespace.memdef]p3:
8344      //   If a friend declaration in a non-local class first declares a
8345      //   class or function, the friend class or function is a member of
8346      //   the innermost enclosing namespace.
8347      SearchDC = SearchDC->getEnclosingNamespaceContext();
8348    }
8349
8350    // In C++, we need to do a redeclaration lookup to properly
8351    // diagnose some problems.
8352    if (getLangOpts().CPlusPlus) {
8353      Previous.setRedeclarationKind(ForRedeclaration);
8354      LookupQualifiedName(Previous, SearchDC);
8355    }
8356  }
8357
8358  if (!Previous.empty()) {
8359    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8360
8361    // It's okay to have a tag decl in the same scope as a typedef
8362    // which hides a tag decl in the same scope.  Finding this
8363    // insanity with a redeclaration lookup can only actually happen
8364    // in C++.
8365    //
8366    // This is also okay for elaborated-type-specifiers, which is
8367    // technically forbidden by the current standard but which is
8368    // okay according to the likely resolution of an open issue;
8369    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8370    if (getLangOpts().CPlusPlus) {
8371      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8372        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8373          TagDecl *Tag = TT->getDecl();
8374          if (Tag->getDeclName() == Name &&
8375              Tag->getDeclContext()->getRedeclContext()
8376                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8377            PrevDecl = Tag;
8378            Previous.clear();
8379            Previous.addDecl(Tag);
8380            Previous.resolveKind();
8381          }
8382        }
8383      }
8384    }
8385
8386    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8387      // If this is a use of a previous tag, or if the tag is already declared
8388      // in the same scope (so that the definition/declaration completes or
8389      // rementions the tag), reuse the decl.
8390      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8391          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8392        // Make sure that this wasn't declared as an enum and now used as a
8393        // struct or something similar.
8394        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8395                                          TUK == TUK_Definition, KWLoc,
8396                                          *Name)) {
8397          bool SafeToContinue
8398            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8399               Kind != TTK_Enum);
8400          if (SafeToContinue)
8401            Diag(KWLoc, diag::err_use_with_wrong_tag)
8402              << Name
8403              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8404                                              PrevTagDecl->getKindName());
8405          else
8406            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8407          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8408
8409          if (SafeToContinue)
8410            Kind = PrevTagDecl->getTagKind();
8411          else {
8412            // Recover by making this an anonymous redefinition.
8413            Name = 0;
8414            Previous.clear();
8415            Invalid = true;
8416          }
8417        }
8418
8419        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8420          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8421
8422          // If this is an elaborated-type-specifier for a scoped enumeration,
8423          // the 'class' keyword is not necessary and not permitted.
8424          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8425            if (ScopedEnum)
8426              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8427                << PrevEnum->isScoped()
8428                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8429            return PrevTagDecl;
8430          }
8431
8432          QualType EnumUnderlyingTy;
8433          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8434            EnumUnderlyingTy = TI->getType();
8435          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8436            EnumUnderlyingTy = QualType(T, 0);
8437
8438          // All conflicts with previous declarations are recovered by
8439          // returning the previous declaration, unless this is a definition,
8440          // in which case we want the caller to bail out.
8441          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8442                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8443            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8444        }
8445
8446        if (!Invalid) {
8447          // If this is a use, just return the declaration we found.
8448
8449          // FIXME: In the future, return a variant or some other clue
8450          // for the consumer of this Decl to know it doesn't own it.
8451          // For our current ASTs this shouldn't be a problem, but will
8452          // need to be changed with DeclGroups.
8453          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8454               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8455            return PrevTagDecl;
8456
8457          // Diagnose attempts to redefine a tag.
8458          if (TUK == TUK_Definition) {
8459            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8460              // If we're defining a specialization and the previous definition
8461              // is from an implicit instantiation, don't emit an error
8462              // here; we'll catch this in the general case below.
8463              bool IsExplicitSpecializationAfterInstantiation = false;
8464              if (isExplicitSpecialization) {
8465                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8466                  IsExplicitSpecializationAfterInstantiation =
8467                    RD->getTemplateSpecializationKind() !=
8468                    TSK_ExplicitSpecialization;
8469                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8470                  IsExplicitSpecializationAfterInstantiation =
8471                    ED->getTemplateSpecializationKind() !=
8472                    TSK_ExplicitSpecialization;
8473              }
8474
8475              if (!IsExplicitSpecializationAfterInstantiation) {
8476                // A redeclaration in function prototype scope in C isn't
8477                // visible elsewhere, so merely issue a warning.
8478                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8479                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8480                else
8481                  Diag(NameLoc, diag::err_redefinition) << Name;
8482                Diag(Def->getLocation(), diag::note_previous_definition);
8483                // If this is a redefinition, recover by making this
8484                // struct be anonymous, which will make any later
8485                // references get the previous definition.
8486                Name = 0;
8487                Previous.clear();
8488                Invalid = true;
8489              }
8490            } else {
8491              // If the type is currently being defined, complain
8492              // about a nested redefinition.
8493              const TagType *Tag
8494                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8495              if (Tag->isBeingDefined()) {
8496                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8497                Diag(PrevTagDecl->getLocation(),
8498                     diag::note_previous_definition);
8499                Name = 0;
8500                Previous.clear();
8501                Invalid = true;
8502              }
8503            }
8504
8505            // Okay, this is definition of a previously declared or referenced
8506            // tag PrevDecl. We're going to create a new Decl for it.
8507          }
8508        }
8509        // If we get here we have (another) forward declaration or we
8510        // have a definition.  Just create a new decl.
8511
8512      } else {
8513        // If we get here, this is a definition of a new tag type in a nested
8514        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8515        // new decl/type.  We set PrevDecl to NULL so that the entities
8516        // have distinct types.
8517        Previous.clear();
8518      }
8519      // If we get here, we're going to create a new Decl. If PrevDecl
8520      // is non-NULL, it's a definition of the tag declared by
8521      // PrevDecl. If it's NULL, we have a new definition.
8522
8523
8524    // Otherwise, PrevDecl is not a tag, but was found with tag
8525    // lookup.  This is only actually possible in C++, where a few
8526    // things like templates still live in the tag namespace.
8527    } else {
8528      // Use a better diagnostic if an elaborated-type-specifier
8529      // found the wrong kind of type on the first
8530      // (non-redeclaration) lookup.
8531      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8532          !Previous.isForRedeclaration()) {
8533        unsigned Kind = 0;
8534        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8535        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8536        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8537        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8538        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8539        Invalid = true;
8540
8541      // Otherwise, only diagnose if the declaration is in scope.
8542      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8543                                isExplicitSpecialization)) {
8544        // do nothing
8545
8546      // Diagnose implicit declarations introduced by elaborated types.
8547      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8548        unsigned Kind = 0;
8549        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8550        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8551        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8552        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8553        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8554        Invalid = true;
8555
8556      // Otherwise it's a declaration.  Call out a particularly common
8557      // case here.
8558      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8559        unsigned Kind = 0;
8560        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8561        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8562          << Name << Kind << TND->getUnderlyingType();
8563        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8564        Invalid = true;
8565
8566      // Otherwise, diagnose.
8567      } else {
8568        // The tag name clashes with something else in the target scope,
8569        // issue an error and recover by making this tag be anonymous.
8570        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8571        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8572        Name = 0;
8573        Invalid = true;
8574      }
8575
8576      // The existing declaration isn't relevant to us; we're in a
8577      // new scope, so clear out the previous declaration.
8578      Previous.clear();
8579    }
8580  }
8581
8582CreateNewDecl:
8583
8584  TagDecl *PrevDecl = 0;
8585  if (Previous.isSingleResult())
8586    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8587
8588  // If there is an identifier, use the location of the identifier as the
8589  // location of the decl, otherwise use the location of the struct/union
8590  // keyword.
8591  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8592
8593  // Otherwise, create a new declaration. If there is a previous
8594  // declaration of the same entity, the two will be linked via
8595  // PrevDecl.
8596  TagDecl *New;
8597
8598  bool IsForwardReference = false;
8599  if (Kind == TTK_Enum) {
8600    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8601    // enum X { A, B, C } D;    D should chain to X.
8602    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8603                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8604                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8605    // If this is an undefined enum, warn.
8606    if (TUK != TUK_Definition && !Invalid) {
8607      TagDecl *Def;
8608      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8609        // C++0x: 7.2p2: opaque-enum-declaration.
8610        // Conflicts are diagnosed above. Do nothing.
8611      }
8612      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8613        Diag(Loc, diag::ext_forward_ref_enum_def)
8614          << New;
8615        Diag(Def->getLocation(), diag::note_previous_definition);
8616      } else {
8617        unsigned DiagID = diag::ext_forward_ref_enum;
8618        if (getLangOpts().MicrosoftMode)
8619          DiagID = diag::ext_ms_forward_ref_enum;
8620        else if (getLangOpts().CPlusPlus)
8621          DiagID = diag::err_forward_ref_enum;
8622        Diag(Loc, DiagID);
8623
8624        // If this is a forward-declared reference to an enumeration, make a
8625        // note of it; we won't actually be introducing the declaration into
8626        // the declaration context.
8627        if (TUK == TUK_Reference)
8628          IsForwardReference = true;
8629      }
8630    }
8631
8632    if (EnumUnderlying) {
8633      EnumDecl *ED = cast<EnumDecl>(New);
8634      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8635        ED->setIntegerTypeSourceInfo(TI);
8636      else
8637        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8638      ED->setPromotionType(ED->getIntegerType());
8639    }
8640
8641  } else {
8642    // struct/union/class
8643
8644    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8645    // struct X { int A; } D;    D should chain to X.
8646    if (getLangOpts().CPlusPlus) {
8647      // FIXME: Look for a way to use RecordDecl for simple structs.
8648      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8649                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8650
8651      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8652        StdBadAlloc = cast<CXXRecordDecl>(New);
8653    } else
8654      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8655                               cast_or_null<RecordDecl>(PrevDecl));
8656  }
8657
8658  // Maybe add qualifier info.
8659  if (SS.isNotEmpty()) {
8660    if (SS.isSet()) {
8661      // If this is either a declaration or a definition, check the
8662      // nested-name-specifier against the current context. We don't do this
8663      // for explicit specializations, because they have similar checking
8664      // (with more specific diagnostics) in the call to
8665      // CheckMemberSpecialization, below.
8666      if (!isExplicitSpecialization &&
8667          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8668          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8669        Invalid = true;
8670
8671      New->setQualifierInfo(SS.getWithLocInContext(Context));
8672      if (TemplateParameterLists.size() > 0) {
8673        New->setTemplateParameterListsInfo(Context,
8674                                           TemplateParameterLists.size(),
8675                    (TemplateParameterList**) TemplateParameterLists.release());
8676      }
8677    }
8678    else
8679      Invalid = true;
8680  }
8681
8682  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8683    // Add alignment attributes if necessary; these attributes are checked when
8684    // the ASTContext lays out the structure.
8685    //
8686    // It is important for implementing the correct semantics that this
8687    // happen here (in act on tag decl). The #pragma pack stack is
8688    // maintained as a result of parser callbacks which can occur at
8689    // many points during the parsing of a struct declaration (because
8690    // the #pragma tokens are effectively skipped over during the
8691    // parsing of the struct).
8692    AddAlignmentAttributesForRecord(RD);
8693
8694    AddMsStructLayoutForRecord(RD);
8695  }
8696
8697  if (ModulePrivateLoc.isValid()) {
8698    if (isExplicitSpecialization)
8699      Diag(New->getLocation(), diag::err_module_private_specialization)
8700        << 2
8701        << FixItHint::CreateRemoval(ModulePrivateLoc);
8702    // __module_private__ does not apply to local classes. However, we only
8703    // diagnose this as an error when the declaration specifiers are
8704    // freestanding. Here, we just ignore the __module_private__.
8705    else if (!SearchDC->isFunctionOrMethod())
8706      New->setModulePrivate();
8707  }
8708
8709  // If this is a specialization of a member class (of a class template),
8710  // check the specialization.
8711  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8712    Invalid = true;
8713
8714  if (Invalid)
8715    New->setInvalidDecl();
8716
8717  if (Attr)
8718    ProcessDeclAttributeList(S, New, Attr);
8719
8720  // If we're declaring or defining a tag in function prototype scope
8721  // in C, note that this type can only be used within the function.
8722  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8723    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8724
8725  // Set the lexical context. If the tag has a C++ scope specifier, the
8726  // lexical context will be different from the semantic context.
8727  New->setLexicalDeclContext(CurContext);
8728
8729  // Mark this as a friend decl if applicable.
8730  // In Microsoft mode, a friend declaration also acts as a forward
8731  // declaration so we always pass true to setObjectOfFriendDecl to make
8732  // the tag name visible.
8733  if (TUK == TUK_Friend)
8734    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8735                               getLangOpts().MicrosoftExt);
8736
8737  // Set the access specifier.
8738  if (!Invalid && SearchDC->isRecord())
8739    SetMemberAccessSpecifier(New, PrevDecl, AS);
8740
8741  if (TUK == TUK_Definition)
8742    New->startDefinition();
8743
8744  // If this has an identifier, add it to the scope stack.
8745  if (TUK == TUK_Friend) {
8746    // We might be replacing an existing declaration in the lookup tables;
8747    // if so, borrow its access specifier.
8748    if (PrevDecl)
8749      New->setAccess(PrevDecl->getAccess());
8750
8751    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8752    DC->makeDeclVisibleInContext(New);
8753    if (Name) // can be null along some error paths
8754      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8755        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8756  } else if (Name) {
8757    S = getNonFieldDeclScope(S);
8758    PushOnScopeChains(New, S, !IsForwardReference);
8759    if (IsForwardReference)
8760      SearchDC->makeDeclVisibleInContext(New);
8761
8762  } else {
8763    CurContext->addDecl(New);
8764  }
8765
8766  // If this is the C FILE type, notify the AST context.
8767  if (IdentifierInfo *II = New->getIdentifier())
8768    if (!New->isInvalidDecl() &&
8769        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8770        II->isStr("FILE"))
8771      Context.setFILEDecl(New);
8772
8773  // If we were in function prototype scope (and not in C++ mode), add this
8774  // tag to the list of decls to inject into the function definition scope.
8775  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8776      InFunctionDeclarator && Name)
8777    DeclsInPrototypeScope.push_back(New);
8778
8779  if (PrevDecl)
8780    mergeDeclAttributes(New, PrevDecl);
8781
8782  OwnedDecl = true;
8783  return New;
8784}
8785
8786void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8787  AdjustDeclIfTemplate(TagD);
8788  TagDecl *Tag = cast<TagDecl>(TagD);
8789
8790  // Enter the tag context.
8791  PushDeclContext(S, Tag);
8792}
8793
8794Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8795  assert(isa<ObjCContainerDecl>(IDecl) &&
8796         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8797  DeclContext *OCD = cast<DeclContext>(IDecl);
8798  assert(getContainingDC(OCD) == CurContext &&
8799      "The next DeclContext should be lexically contained in the current one.");
8800  CurContext = OCD;
8801  return IDecl;
8802}
8803
8804void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8805                                           SourceLocation FinalLoc,
8806                                           SourceLocation LBraceLoc) {
8807  AdjustDeclIfTemplate(TagD);
8808  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8809
8810  FieldCollector->StartClass();
8811
8812  if (!Record->getIdentifier())
8813    return;
8814
8815  if (FinalLoc.isValid())
8816    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8817
8818  // C++ [class]p2:
8819  //   [...] The class-name is also inserted into the scope of the
8820  //   class itself; this is known as the injected-class-name. For
8821  //   purposes of access checking, the injected-class-name is treated
8822  //   as if it were a public member name.
8823  CXXRecordDecl *InjectedClassName
8824    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8825                            Record->getLocStart(), Record->getLocation(),
8826                            Record->getIdentifier(),
8827                            /*PrevDecl=*/0,
8828                            /*DelayTypeCreation=*/true);
8829  Context.getTypeDeclType(InjectedClassName, Record);
8830  InjectedClassName->setImplicit();
8831  InjectedClassName->setAccess(AS_public);
8832  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8833      InjectedClassName->setDescribedClassTemplate(Template);
8834  PushOnScopeChains(InjectedClassName, S);
8835  assert(InjectedClassName->isInjectedClassName() &&
8836         "Broken injected-class-name");
8837}
8838
8839void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8840                                    SourceLocation RBraceLoc) {
8841  AdjustDeclIfTemplate(TagD);
8842  TagDecl *Tag = cast<TagDecl>(TagD);
8843  Tag->setRBraceLoc(RBraceLoc);
8844
8845  // Make sure we "complete" the definition even it is invalid.
8846  if (Tag->isBeingDefined()) {
8847    assert(Tag->isInvalidDecl() && "We should already have completed it");
8848    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8849      RD->completeDefinition();
8850  }
8851
8852  if (isa<CXXRecordDecl>(Tag))
8853    FieldCollector->FinishClass();
8854
8855  // Exit this scope of this tag's definition.
8856  PopDeclContext();
8857
8858  // Notify the consumer that we've defined a tag.
8859  Consumer.HandleTagDeclDefinition(Tag);
8860}
8861
8862void Sema::ActOnObjCContainerFinishDefinition() {
8863  // Exit this scope of this interface definition.
8864  PopDeclContext();
8865}
8866
8867void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8868  assert(DC == CurContext && "Mismatch of container contexts");
8869  OriginalLexicalContext = DC;
8870  ActOnObjCContainerFinishDefinition();
8871}
8872
8873void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8874  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8875  OriginalLexicalContext = 0;
8876}
8877
8878void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8879  AdjustDeclIfTemplate(TagD);
8880  TagDecl *Tag = cast<TagDecl>(TagD);
8881  Tag->setInvalidDecl();
8882
8883  // Make sure we "complete" the definition even it is invalid.
8884  if (Tag->isBeingDefined()) {
8885    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8886      RD->completeDefinition();
8887  }
8888
8889  // We're undoing ActOnTagStartDefinition here, not
8890  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8891  // the FieldCollector.
8892
8893  PopDeclContext();
8894}
8895
8896// Note that FieldName may be null for anonymous bitfields.
8897ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8898                                IdentifierInfo *FieldName,
8899                                QualType FieldTy, Expr *BitWidth,
8900                                bool *ZeroWidth) {
8901  // Default to true; that shouldn't confuse checks for emptiness
8902  if (ZeroWidth)
8903    *ZeroWidth = true;
8904
8905  // C99 6.7.2.1p4 - verify the field type.
8906  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8907  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8908    // Handle incomplete types with specific error.
8909    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8910      return ExprError();
8911    if (FieldName)
8912      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8913        << FieldName << FieldTy << BitWidth->getSourceRange();
8914    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8915      << FieldTy << BitWidth->getSourceRange();
8916  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8917                                             UPPC_BitFieldWidth))
8918    return ExprError();
8919
8920  // If the bit-width is type- or value-dependent, don't try to check
8921  // it now.
8922  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8923    return Owned(BitWidth);
8924
8925  llvm::APSInt Value;
8926  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8927  if (ICE.isInvalid())
8928    return ICE;
8929  BitWidth = ICE.take();
8930
8931  if (Value != 0 && ZeroWidth)
8932    *ZeroWidth = false;
8933
8934  // Zero-width bitfield is ok for anonymous field.
8935  if (Value == 0 && FieldName)
8936    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8937
8938  if (Value.isSigned() && Value.isNegative()) {
8939    if (FieldName)
8940      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8941               << FieldName << Value.toString(10);
8942    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8943      << Value.toString(10);
8944  }
8945
8946  if (!FieldTy->isDependentType()) {
8947    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8948    if (Value.getZExtValue() > TypeSize) {
8949      if (!getLangOpts().CPlusPlus) {
8950        if (FieldName)
8951          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8952            << FieldName << (unsigned)Value.getZExtValue()
8953            << (unsigned)TypeSize;
8954
8955        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8956          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8957      }
8958
8959      if (FieldName)
8960        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8961          << FieldName << (unsigned)Value.getZExtValue()
8962          << (unsigned)TypeSize;
8963      else
8964        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8965          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8966    }
8967  }
8968
8969  return Owned(BitWidth);
8970}
8971
8972/// ActOnField - Each field of a C struct/union is passed into this in order
8973/// to create a FieldDecl object for it.
8974Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8975                       Declarator &D, Expr *BitfieldWidth) {
8976  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8977                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8978                               /*HasInit=*/false, AS_public);
8979  return Res;
8980}
8981
8982/// HandleField - Analyze a field of a C struct or a C++ data member.
8983///
8984FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8985                             SourceLocation DeclStart,
8986                             Declarator &D, Expr *BitWidth, bool HasInit,
8987                             AccessSpecifier AS) {
8988  IdentifierInfo *II = D.getIdentifier();
8989  SourceLocation Loc = DeclStart;
8990  if (II) Loc = D.getIdentifierLoc();
8991
8992  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8993  QualType T = TInfo->getType();
8994  if (getLangOpts().CPlusPlus) {
8995    CheckExtraCXXDefaultArguments(D);
8996
8997    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8998                                        UPPC_DataMemberType)) {
8999      D.setInvalidType();
9000      T = Context.IntTy;
9001      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
9002    }
9003  }
9004
9005  DiagnoseFunctionSpecifiers(D);
9006
9007  if (D.getDeclSpec().isThreadSpecified())
9008    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
9009  if (D.getDeclSpec().isConstexprSpecified())
9010    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
9011      << 2;
9012
9013  // Check to see if this name was declared as a member previously
9014  NamedDecl *PrevDecl = 0;
9015  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
9016  LookupName(Previous, S);
9017  switch (Previous.getResultKind()) {
9018    case LookupResult::Found:
9019    case LookupResult::FoundUnresolvedValue:
9020      PrevDecl = Previous.getAsSingle<NamedDecl>();
9021      break;
9022
9023    case LookupResult::FoundOverloaded:
9024      PrevDecl = Previous.getRepresentativeDecl();
9025      break;
9026
9027    case LookupResult::NotFound:
9028    case LookupResult::NotFoundInCurrentInstantiation:
9029    case LookupResult::Ambiguous:
9030      break;
9031  }
9032  Previous.suppressDiagnostics();
9033
9034  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9035    // Maybe we will complain about the shadowed template parameter.
9036    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9037    // Just pretend that we didn't see the previous declaration.
9038    PrevDecl = 0;
9039  }
9040
9041  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9042    PrevDecl = 0;
9043
9044  bool Mutable
9045    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9046  SourceLocation TSSL = D.getLocStart();
9047  FieldDecl *NewFD
9048    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
9049                     TSSL, AS, PrevDecl, &D);
9050
9051  if (NewFD->isInvalidDecl())
9052    Record->setInvalidDecl();
9053
9054  if (D.getDeclSpec().isModulePrivateSpecified())
9055    NewFD->setModulePrivate();
9056
9057  if (NewFD->isInvalidDecl() && PrevDecl) {
9058    // Don't introduce NewFD into scope; there's already something
9059    // with the same name in the same scope.
9060  } else if (II) {
9061    PushOnScopeChains(NewFD, S);
9062  } else
9063    Record->addDecl(NewFD);
9064
9065  return NewFD;
9066}
9067
9068/// \brief Build a new FieldDecl and check its well-formedness.
9069///
9070/// This routine builds a new FieldDecl given the fields name, type,
9071/// record, etc. \p PrevDecl should refer to any previous declaration
9072/// with the same name and in the same scope as the field to be
9073/// created.
9074///
9075/// \returns a new FieldDecl.
9076///
9077/// \todo The Declarator argument is a hack. It will be removed once
9078FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9079                                TypeSourceInfo *TInfo,
9080                                RecordDecl *Record, SourceLocation Loc,
9081                                bool Mutable, Expr *BitWidth, bool HasInit,
9082                                SourceLocation TSSL,
9083                                AccessSpecifier AS, NamedDecl *PrevDecl,
9084                                Declarator *D) {
9085  IdentifierInfo *II = Name.getAsIdentifierInfo();
9086  bool InvalidDecl = false;
9087  if (D) InvalidDecl = D->isInvalidType();
9088
9089  // If we receive a broken type, recover by assuming 'int' and
9090  // marking this declaration as invalid.
9091  if (T.isNull()) {
9092    InvalidDecl = true;
9093    T = Context.IntTy;
9094  }
9095
9096  QualType EltTy = Context.getBaseElementType(T);
9097  if (!EltTy->isDependentType()) {
9098    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9099      // Fields of incomplete type force their record to be invalid.
9100      Record->setInvalidDecl();
9101      InvalidDecl = true;
9102    } else {
9103      NamedDecl *Def;
9104      EltTy->isIncompleteType(&Def);
9105      if (Def && Def->isInvalidDecl()) {
9106        Record->setInvalidDecl();
9107        InvalidDecl = true;
9108      }
9109    }
9110  }
9111
9112  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9113  // than a variably modified type.
9114  if (!InvalidDecl && T->isVariablyModifiedType()) {
9115    bool SizeIsNegative;
9116    llvm::APSInt Oversized;
9117    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9118                                                           SizeIsNegative,
9119                                                           Oversized);
9120    if (!FixedTy.isNull()) {
9121      Diag(Loc, diag::warn_illegal_constant_array_size);
9122      T = FixedTy;
9123    } else {
9124      if (SizeIsNegative)
9125        Diag(Loc, diag::err_typecheck_negative_array_size);
9126      else if (Oversized.getBoolValue())
9127        Diag(Loc, diag::err_array_too_large)
9128          << Oversized.toString(10);
9129      else
9130        Diag(Loc, diag::err_typecheck_field_variable_size);
9131      InvalidDecl = true;
9132    }
9133  }
9134
9135  // Fields can not have abstract class types
9136  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9137                                             diag::err_abstract_type_in_decl,
9138                                             AbstractFieldType))
9139    InvalidDecl = true;
9140
9141  bool ZeroWidth = false;
9142  // If this is declared as a bit-field, check the bit-field.
9143  if (!InvalidDecl && BitWidth) {
9144    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9145    if (!BitWidth) {
9146      InvalidDecl = true;
9147      BitWidth = 0;
9148      ZeroWidth = false;
9149    }
9150  }
9151
9152  // Check that 'mutable' is consistent with the type of the declaration.
9153  if (!InvalidDecl && Mutable) {
9154    unsigned DiagID = 0;
9155    if (T->isReferenceType())
9156      DiagID = diag::err_mutable_reference;
9157    else if (T.isConstQualified())
9158      DiagID = diag::err_mutable_const;
9159
9160    if (DiagID) {
9161      SourceLocation ErrLoc = Loc;
9162      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9163        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9164      Diag(ErrLoc, DiagID);
9165      Mutable = false;
9166      InvalidDecl = true;
9167    }
9168  }
9169
9170  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9171                                       BitWidth, Mutable, HasInit);
9172  if (InvalidDecl)
9173    NewFD->setInvalidDecl();
9174
9175  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9176    Diag(Loc, diag::err_duplicate_member) << II;
9177    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9178    NewFD->setInvalidDecl();
9179  }
9180
9181  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9182    if (Record->isUnion()) {
9183      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9184        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9185        if (RDecl->getDefinition()) {
9186          // C++ [class.union]p1: An object of a class with a non-trivial
9187          // constructor, a non-trivial copy constructor, a non-trivial
9188          // destructor, or a non-trivial copy assignment operator
9189          // cannot be a member of a union, nor can an array of such
9190          // objects.
9191          if (CheckNontrivialField(NewFD))
9192            NewFD->setInvalidDecl();
9193        }
9194      }
9195
9196      // C++ [class.union]p1: If a union contains a member of reference type,
9197      // the program is ill-formed.
9198      if (EltTy->isReferenceType()) {
9199        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9200          << NewFD->getDeclName() << EltTy;
9201        NewFD->setInvalidDecl();
9202      }
9203    }
9204  }
9205
9206  // FIXME: We need to pass in the attributes given an AST
9207  // representation, not a parser representation.
9208  if (D)
9209    // FIXME: What to pass instead of TUScope?
9210    ProcessDeclAttributes(TUScope, NewFD, *D);
9211
9212  // In auto-retain/release, infer strong retension for fields of
9213  // retainable type.
9214  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9215    NewFD->setInvalidDecl();
9216
9217  if (T.isObjCGCWeak())
9218    Diag(Loc, diag::warn_attribute_weak_on_field);
9219
9220  NewFD->setAccess(AS);
9221  return NewFD;
9222}
9223
9224bool Sema::CheckNontrivialField(FieldDecl *FD) {
9225  assert(FD);
9226  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9227
9228  if (FD->isInvalidDecl())
9229    return true;
9230
9231  QualType EltTy = Context.getBaseElementType(FD->getType());
9232  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9233    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9234    if (RDecl->getDefinition()) {
9235      // We check for copy constructors before constructors
9236      // because otherwise we'll never get complaints about
9237      // copy constructors.
9238
9239      CXXSpecialMember member = CXXInvalid;
9240      if (!RDecl->hasTrivialCopyConstructor())
9241        member = CXXCopyConstructor;
9242      else if (!RDecl->hasTrivialDefaultConstructor())
9243        member = CXXDefaultConstructor;
9244      else if (!RDecl->hasTrivialCopyAssignment())
9245        member = CXXCopyAssignment;
9246      else if (!RDecl->hasTrivialDestructor())
9247        member = CXXDestructor;
9248
9249      if (member != CXXInvalid) {
9250        if (!getLangOpts().CPlusPlus0x &&
9251            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9252          // Objective-C++ ARC: it is an error to have a non-trivial field of
9253          // a union. However, system headers in Objective-C programs
9254          // occasionally have Objective-C lifetime objects within unions,
9255          // and rather than cause the program to fail, we make those
9256          // members unavailable.
9257          SourceLocation Loc = FD->getLocation();
9258          if (getSourceManager().isInSystemHeader(Loc)) {
9259            if (!FD->hasAttr<UnavailableAttr>())
9260              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9261                                  "this system field has retaining ownership"));
9262            return false;
9263          }
9264        }
9265
9266        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9267               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9268               diag::err_illegal_union_or_anon_struct_member)
9269          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9270        DiagnoseNontrivial(RT, member);
9271        return !getLangOpts().CPlusPlus0x;
9272      }
9273    }
9274  }
9275
9276  return false;
9277}
9278
9279/// If the given constructor is user-provided, produce a diagnostic explaining
9280/// that it makes the class non-trivial.
9281static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9282                                               CXXConstructorDecl *CD,
9283                                               Sema::CXXSpecialMember CSM) {
9284  if (!CD->isUserProvided())
9285    return false;
9286
9287  SourceLocation CtorLoc = CD->getLocation();
9288  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9289  return true;
9290}
9291
9292/// DiagnoseNontrivial - Given that a class has a non-trivial
9293/// special member, figure out why.
9294void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9295  QualType QT(T, 0U);
9296  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9297
9298  // Check whether the member was user-declared.
9299  switch (member) {
9300  case CXXInvalid:
9301    break;
9302
9303  case CXXDefaultConstructor:
9304    if (RD->hasUserDeclaredConstructor()) {
9305      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9306      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9307        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9308          return;
9309
9310      // No user-provided constructors; look for constructor templates.
9311      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9312          tmpl_iter;
9313      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9314           TI != TE; ++TI) {
9315        CXXConstructorDecl *CD =
9316            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9317        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9318          return;
9319      }
9320    }
9321    break;
9322
9323  case CXXCopyConstructor:
9324    if (RD->hasUserDeclaredCopyConstructor()) {
9325      SourceLocation CtorLoc =
9326        RD->getCopyConstructor(0)->getLocation();
9327      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9328      return;
9329    }
9330    break;
9331
9332  case CXXMoveConstructor:
9333    if (RD->hasUserDeclaredMoveConstructor()) {
9334      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9335      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9336      return;
9337    }
9338    break;
9339
9340  case CXXCopyAssignment:
9341    if (RD->hasUserDeclaredCopyAssignment()) {
9342      // FIXME: this should use the location of the copy
9343      // assignment, not the type.
9344      SourceLocation TyLoc = RD->getLocStart();
9345      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9346      return;
9347    }
9348    break;
9349
9350  case CXXMoveAssignment:
9351    if (RD->hasUserDeclaredMoveAssignment()) {
9352      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9353      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9354      return;
9355    }
9356    break;
9357
9358  case CXXDestructor:
9359    if (RD->hasUserDeclaredDestructor()) {
9360      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9361      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9362      return;
9363    }
9364    break;
9365  }
9366
9367  typedef CXXRecordDecl::base_class_iterator base_iter;
9368
9369  // Virtual bases and members inhibit trivial copying/construction,
9370  // but not trivial destruction.
9371  if (member != CXXDestructor) {
9372    // Check for virtual bases.  vbases includes indirect virtual bases,
9373    // so we just iterate through the direct bases.
9374    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9375      if (bi->isVirtual()) {
9376        SourceLocation BaseLoc = bi->getLocStart();
9377        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9378        return;
9379      }
9380
9381    // Check for virtual methods.
9382    typedef CXXRecordDecl::method_iterator meth_iter;
9383    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9384         ++mi) {
9385      if (mi->isVirtual()) {
9386        SourceLocation MLoc = mi->getLocStart();
9387        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9388        return;
9389      }
9390    }
9391  }
9392
9393  bool (CXXRecordDecl::*hasTrivial)() const;
9394  switch (member) {
9395  case CXXDefaultConstructor:
9396    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9397  case CXXCopyConstructor:
9398    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9399  case CXXCopyAssignment:
9400    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9401  case CXXDestructor:
9402    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9403  default:
9404    llvm_unreachable("unexpected special member");
9405  }
9406
9407  // Check for nontrivial bases (and recurse).
9408  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9409    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9410    assert(BaseRT && "Don't know how to handle dependent bases");
9411    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9412    if (!(BaseRecTy->*hasTrivial)()) {
9413      SourceLocation BaseLoc = bi->getLocStart();
9414      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9415      DiagnoseNontrivial(BaseRT, member);
9416      return;
9417    }
9418  }
9419
9420  // Check for nontrivial members (and recurse).
9421  typedef RecordDecl::field_iterator field_iter;
9422  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9423       ++fi) {
9424    QualType EltTy = Context.getBaseElementType(fi->getType());
9425    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9426      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9427
9428      if (!(EltRD->*hasTrivial)()) {
9429        SourceLocation FLoc = fi->getLocation();
9430        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9431        DiagnoseNontrivial(EltRT, member);
9432        return;
9433      }
9434    }
9435
9436    if (EltTy->isObjCLifetimeType()) {
9437      switch (EltTy.getObjCLifetime()) {
9438      case Qualifiers::OCL_None:
9439      case Qualifiers::OCL_ExplicitNone:
9440        break;
9441
9442      case Qualifiers::OCL_Autoreleasing:
9443      case Qualifiers::OCL_Weak:
9444      case Qualifiers::OCL_Strong:
9445        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9446          << QT << EltTy.getObjCLifetime();
9447        return;
9448      }
9449    }
9450  }
9451
9452  llvm_unreachable("found no explanation for non-trivial member");
9453}
9454
9455/// TranslateIvarVisibility - Translate visibility from a token ID to an
9456///  AST enum value.
9457static ObjCIvarDecl::AccessControl
9458TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9459  switch (ivarVisibility) {
9460  default: llvm_unreachable("Unknown visitibility kind");
9461  case tok::objc_private: return ObjCIvarDecl::Private;
9462  case tok::objc_public: return ObjCIvarDecl::Public;
9463  case tok::objc_protected: return ObjCIvarDecl::Protected;
9464  case tok::objc_package: return ObjCIvarDecl::Package;
9465  }
9466}
9467
9468/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9469/// in order to create an IvarDecl object for it.
9470Decl *Sema::ActOnIvar(Scope *S,
9471                                SourceLocation DeclStart,
9472                                Declarator &D, Expr *BitfieldWidth,
9473                                tok::ObjCKeywordKind Visibility) {
9474
9475  IdentifierInfo *II = D.getIdentifier();
9476  Expr *BitWidth = (Expr*)BitfieldWidth;
9477  SourceLocation Loc = DeclStart;
9478  if (II) Loc = D.getIdentifierLoc();
9479
9480  // FIXME: Unnamed fields can be handled in various different ways, for
9481  // example, unnamed unions inject all members into the struct namespace!
9482
9483  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9484  QualType T = TInfo->getType();
9485
9486  if (BitWidth) {
9487    // 6.7.2.1p3, 6.7.2.1p4
9488    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9489    if (!BitWidth)
9490      D.setInvalidType();
9491  } else {
9492    // Not a bitfield.
9493
9494    // validate II.
9495
9496  }
9497  if (T->isReferenceType()) {
9498    Diag(Loc, diag::err_ivar_reference_type);
9499    D.setInvalidType();
9500  }
9501  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9502  // than a variably modified type.
9503  else if (T->isVariablyModifiedType()) {
9504    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9505    D.setInvalidType();
9506  }
9507
9508  // Get the visibility (access control) for this ivar.
9509  ObjCIvarDecl::AccessControl ac =
9510    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9511                                        : ObjCIvarDecl::None;
9512  // Must set ivar's DeclContext to its enclosing interface.
9513  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9514  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9515    return 0;
9516  ObjCContainerDecl *EnclosingContext;
9517  if (ObjCImplementationDecl *IMPDecl =
9518      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9519    if (!LangOpts.ObjCNonFragileABI2) {
9520    // Case of ivar declared in an implementation. Context is that of its class.
9521      EnclosingContext = IMPDecl->getClassInterface();
9522      assert(EnclosingContext && "Implementation has no class interface!");
9523    }
9524    else
9525      EnclosingContext = EnclosingDecl;
9526  } else {
9527    if (ObjCCategoryDecl *CDecl =
9528        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9529      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9530        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9531        return 0;
9532      }
9533    }
9534    EnclosingContext = EnclosingDecl;
9535  }
9536
9537  // Construct the decl.
9538  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9539                                             DeclStart, Loc, II, T,
9540                                             TInfo, ac, (Expr *)BitfieldWidth);
9541
9542  if (II) {
9543    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9544                                           ForRedeclaration);
9545    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9546        && !isa<TagDecl>(PrevDecl)) {
9547      Diag(Loc, diag::err_duplicate_member) << II;
9548      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9549      NewID->setInvalidDecl();
9550    }
9551  }
9552
9553  // Process attributes attached to the ivar.
9554  ProcessDeclAttributes(S, NewID, D);
9555
9556  if (D.isInvalidType())
9557    NewID->setInvalidDecl();
9558
9559  // In ARC, infer 'retaining' for ivars of retainable type.
9560  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9561    NewID->setInvalidDecl();
9562
9563  if (D.getDeclSpec().isModulePrivateSpecified())
9564    NewID->setModulePrivate();
9565
9566  if (II) {
9567    // FIXME: When interfaces are DeclContexts, we'll need to add
9568    // these to the interface.
9569    S->AddDecl(NewID);
9570    IdResolver.AddDecl(NewID);
9571  }
9572
9573  if (LangOpts.ObjCNonFragileABI2 &&
9574      !NewID->isInvalidDecl() && isa<ObjCInterfaceDecl>(EnclosingDecl))
9575    Diag(Loc, diag::warn_ivars_in_interface);
9576
9577  return NewID;
9578}
9579
9580/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9581/// class and class extensions. For every class @interface and class
9582/// extension @interface, if the last ivar is a bitfield of any type,
9583/// then add an implicit `char :0` ivar to the end of that interface.
9584void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9585                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9586  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9587    return;
9588
9589  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9590  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9591
9592  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9593    return;
9594  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9595  if (!ID) {
9596    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9597      if (!CD->IsClassExtension())
9598        return;
9599    }
9600    // No need to add this to end of @implementation.
9601    else
9602      return;
9603  }
9604  // All conditions are met. Add a new bitfield to the tail end of ivars.
9605  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9606  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9607
9608  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9609                              DeclLoc, DeclLoc, 0,
9610                              Context.CharTy,
9611                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9612                                                               DeclLoc),
9613                              ObjCIvarDecl::Private, BW,
9614                              true);
9615  AllIvarDecls.push_back(Ivar);
9616}
9617
9618void Sema::ActOnFields(Scope* S,
9619                       SourceLocation RecLoc, Decl *EnclosingDecl,
9620                       llvm::ArrayRef<Decl *> Fields,
9621                       SourceLocation LBrac, SourceLocation RBrac,
9622                       AttributeList *Attr) {
9623  assert(EnclosingDecl && "missing record or interface decl");
9624
9625  // If the decl this is being inserted into is invalid, then it may be a
9626  // redeclaration or some other bogus case.  Don't try to add fields to it.
9627  if (EnclosingDecl->isInvalidDecl())
9628    return;
9629
9630  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9631
9632  // Start counting up the number of named members; make sure to include
9633  // members of anonymous structs and unions in the total.
9634  unsigned NumNamedMembers = 0;
9635  if (Record) {
9636    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9637                                   e = Record->decls_end(); i != e; i++) {
9638      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9639        if (IFD->getDeclName())
9640          ++NumNamedMembers;
9641    }
9642  }
9643
9644  // Verify that all the fields are okay.
9645  SmallVector<FieldDecl*, 32> RecFields;
9646
9647  bool ARCErrReported = false;
9648  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9649       i != end; ++i) {
9650    FieldDecl *FD = cast<FieldDecl>(*i);
9651
9652    // Get the type for the field.
9653    const Type *FDTy = FD->getType().getTypePtr();
9654
9655    if (!FD->isAnonymousStructOrUnion()) {
9656      // Remember all fields written by the user.
9657      RecFields.push_back(FD);
9658    }
9659
9660    // If the field is already invalid for some reason, don't emit more
9661    // diagnostics about it.
9662    if (FD->isInvalidDecl()) {
9663      EnclosingDecl->setInvalidDecl();
9664      continue;
9665    }
9666
9667    // C99 6.7.2.1p2:
9668    //   A structure or union shall not contain a member with
9669    //   incomplete or function type (hence, a structure shall not
9670    //   contain an instance of itself, but may contain a pointer to
9671    //   an instance of itself), except that the last member of a
9672    //   structure with more than one named member may have incomplete
9673    //   array type; such a structure (and any union containing,
9674    //   possibly recursively, a member that is such a structure)
9675    //   shall not be a member of a structure or an element of an
9676    //   array.
9677    if (FDTy->isFunctionType()) {
9678      // Field declared as a function.
9679      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9680        << FD->getDeclName();
9681      FD->setInvalidDecl();
9682      EnclosingDecl->setInvalidDecl();
9683      continue;
9684    } else if (FDTy->isIncompleteArrayType() && Record &&
9685               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9686                ((getLangOpts().MicrosoftExt ||
9687                  getLangOpts().CPlusPlus) &&
9688                 (i + 1 == Fields.end() || Record->isUnion())))) {
9689      // Flexible array member.
9690      // Microsoft and g++ is more permissive regarding flexible array.
9691      // It will accept flexible array in union and also
9692      // as the sole element of a struct/class.
9693      if (getLangOpts().MicrosoftExt) {
9694        if (Record->isUnion())
9695          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9696            << FD->getDeclName();
9697        else if (Fields.size() == 1)
9698          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9699            << FD->getDeclName() << Record->getTagKind();
9700      } else if (getLangOpts().CPlusPlus) {
9701        if (Record->isUnion())
9702          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9703            << FD->getDeclName();
9704        else if (Fields.size() == 1)
9705          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9706            << FD->getDeclName() << Record->getTagKind();
9707      } else if (!getLangOpts().C99) {
9708      if (Record->isUnion())
9709        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9710          << FD->getDeclName();
9711      else
9712        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9713          << FD->getDeclName() << Record->getTagKind();
9714      } else if (NumNamedMembers < 1) {
9715        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9716          << FD->getDeclName();
9717        FD->setInvalidDecl();
9718        EnclosingDecl->setInvalidDecl();
9719        continue;
9720      }
9721      if (!FD->getType()->isDependentType() &&
9722          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9723        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9724          << FD->getDeclName() << FD->getType();
9725        FD->setInvalidDecl();
9726        EnclosingDecl->setInvalidDecl();
9727        continue;
9728      }
9729      // Okay, we have a legal flexible array member at the end of the struct.
9730      if (Record)
9731        Record->setHasFlexibleArrayMember(true);
9732    } else if (!FDTy->isDependentType() &&
9733               RequireCompleteType(FD->getLocation(), FD->getType(),
9734                                   diag::err_field_incomplete)) {
9735      // Incomplete type
9736      FD->setInvalidDecl();
9737      EnclosingDecl->setInvalidDecl();
9738      continue;
9739    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9740      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9741        // If this is a member of a union, then entire union becomes "flexible".
9742        if (Record && Record->isUnion()) {
9743          Record->setHasFlexibleArrayMember(true);
9744        } else {
9745          // If this is a struct/class and this is not the last element, reject
9746          // it.  Note that GCC supports variable sized arrays in the middle of
9747          // structures.
9748          if (i + 1 != Fields.end())
9749            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9750              << FD->getDeclName() << FD->getType();
9751          else {
9752            // We support flexible arrays at the end of structs in
9753            // other structs as an extension.
9754            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9755              << FD->getDeclName();
9756            if (Record)
9757              Record->setHasFlexibleArrayMember(true);
9758          }
9759        }
9760      }
9761      if (Record && FDTTy->getDecl()->hasObjectMember())
9762        Record->setHasObjectMember(true);
9763    } else if (FDTy->isObjCObjectType()) {
9764      /// A field cannot be an Objective-c object
9765      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9766        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9767      QualType T = Context.getObjCObjectPointerType(FD->getType());
9768      FD->setType(T);
9769    }
9770    else if (!getLangOpts().CPlusPlus) {
9771      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9772        // It's an error in ARC if a field has lifetime.
9773        // We don't want to report this in a system header, though,
9774        // so we just make the field unavailable.
9775        // FIXME: that's really not sufficient; we need to make the type
9776        // itself invalid to, say, initialize or copy.
9777        QualType T = FD->getType();
9778        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9779        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9780          SourceLocation loc = FD->getLocation();
9781          if (getSourceManager().isInSystemHeader(loc)) {
9782            if (!FD->hasAttr<UnavailableAttr>()) {
9783              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9784                                "this system field has retaining ownership"));
9785            }
9786          } else {
9787            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9788              << T->isBlockPointerType();
9789          }
9790          ARCErrReported = true;
9791        }
9792      }
9793      else if (getLangOpts().ObjC1 &&
9794               getLangOpts().getGC() != LangOptions::NonGC &&
9795               Record && !Record->hasObjectMember()) {
9796        if (FD->getType()->isObjCObjectPointerType() ||
9797            FD->getType().isObjCGCStrong())
9798          Record->setHasObjectMember(true);
9799        else if (Context.getAsArrayType(FD->getType())) {
9800          QualType BaseType = Context.getBaseElementType(FD->getType());
9801          if (BaseType->isRecordType() &&
9802              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9803            Record->setHasObjectMember(true);
9804          else if (BaseType->isObjCObjectPointerType() ||
9805                   BaseType.isObjCGCStrong())
9806                 Record->setHasObjectMember(true);
9807        }
9808      }
9809    }
9810    // Keep track of the number of named members.
9811    if (FD->getIdentifier())
9812      ++NumNamedMembers;
9813  }
9814
9815  // Okay, we successfully defined 'Record'.
9816  if (Record) {
9817    bool Completed = false;
9818    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9819      if (!CXXRecord->isInvalidDecl()) {
9820        // Set access bits correctly on the directly-declared conversions.
9821        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9822        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9823             I != E; ++I)
9824          Convs->setAccess(I, (*I)->getAccess());
9825
9826        if (!CXXRecord->isDependentType()) {
9827          // Objective-C Automatic Reference Counting:
9828          //   If a class has a non-static data member of Objective-C pointer
9829          //   type (or array thereof), it is a non-POD type and its
9830          //   default constructor (if any), copy constructor, copy assignment
9831          //   operator, and destructor are non-trivial.
9832          //
9833          // This rule is also handled by CXXRecordDecl::completeDefinition().
9834          // However, here we check whether this particular class is only
9835          // non-POD because of the presence of an Objective-C pointer member.
9836          // If so, objects of this type cannot be shared between code compiled
9837          // with instant objects and code compiled with manual retain/release.
9838          if (getLangOpts().ObjCAutoRefCount &&
9839              CXXRecord->hasObjectMember() &&
9840              CXXRecord->getLinkage() == ExternalLinkage) {
9841            if (CXXRecord->isPOD()) {
9842              Diag(CXXRecord->getLocation(),
9843                   diag::warn_arc_non_pod_class_with_object_member)
9844               << CXXRecord;
9845            } else {
9846              // FIXME: Fix-Its would be nice here, but finding a good location
9847              // for them is going to be tricky.
9848              if (CXXRecord->hasTrivialCopyConstructor())
9849                Diag(CXXRecord->getLocation(),
9850                     diag::warn_arc_trivial_member_function_with_object_member)
9851                  << CXXRecord << 0;
9852              if (CXXRecord->hasTrivialCopyAssignment())
9853                Diag(CXXRecord->getLocation(),
9854                     diag::warn_arc_trivial_member_function_with_object_member)
9855                << CXXRecord << 1;
9856              if (CXXRecord->hasTrivialDestructor())
9857                Diag(CXXRecord->getLocation(),
9858                     diag::warn_arc_trivial_member_function_with_object_member)
9859                << CXXRecord << 2;
9860            }
9861          }
9862
9863          // Adjust user-defined destructor exception spec.
9864          if (getLangOpts().CPlusPlus0x &&
9865              CXXRecord->hasUserDeclaredDestructor())
9866            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9867
9868          // Add any implicitly-declared members to this class.
9869          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9870
9871          // If we have virtual base classes, we may end up finding multiple
9872          // final overriders for a given virtual function. Check for this
9873          // problem now.
9874          if (CXXRecord->getNumVBases()) {
9875            CXXFinalOverriderMap FinalOverriders;
9876            CXXRecord->getFinalOverriders(FinalOverriders);
9877
9878            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9879                                             MEnd = FinalOverriders.end();
9880                 M != MEnd; ++M) {
9881              for (OverridingMethods::iterator SO = M->second.begin(),
9882                                            SOEnd = M->second.end();
9883                   SO != SOEnd; ++SO) {
9884                assert(SO->second.size() > 0 &&
9885                       "Virtual function without overridding functions?");
9886                if (SO->second.size() == 1)
9887                  continue;
9888
9889                // C++ [class.virtual]p2:
9890                //   In a derived class, if a virtual member function of a base
9891                //   class subobject has more than one final overrider the
9892                //   program is ill-formed.
9893                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9894                  << (NamedDecl *)M->first << Record;
9895                Diag(M->first->getLocation(),
9896                     diag::note_overridden_virtual_function);
9897                for (OverridingMethods::overriding_iterator
9898                          OM = SO->second.begin(),
9899                       OMEnd = SO->second.end();
9900                     OM != OMEnd; ++OM)
9901                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9902                    << (NamedDecl *)M->first << OM->Method->getParent();
9903
9904                Record->setInvalidDecl();
9905              }
9906            }
9907            CXXRecord->completeDefinition(&FinalOverriders);
9908            Completed = true;
9909          }
9910        }
9911      }
9912    }
9913
9914    if (!Completed)
9915      Record->completeDefinition();
9916
9917  } else {
9918    ObjCIvarDecl **ClsFields =
9919      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9920    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9921      ID->setEndOfDefinitionLoc(RBrac);
9922      // Add ivar's to class's DeclContext.
9923      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9924        ClsFields[i]->setLexicalDeclContext(ID);
9925        ID->addDecl(ClsFields[i]);
9926      }
9927      // Must enforce the rule that ivars in the base classes may not be
9928      // duplicates.
9929      if (ID->getSuperClass())
9930        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9931    } else if (ObjCImplementationDecl *IMPDecl =
9932                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9933      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9934      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9935        // Ivar declared in @implementation never belongs to the implementation.
9936        // Only it is in implementation's lexical context.
9937        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9938      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9939      IMPDecl->setIvarLBraceLoc(LBrac);
9940      IMPDecl->setIvarRBraceLoc(RBrac);
9941    } else if (ObjCCategoryDecl *CDecl =
9942                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9943      // case of ivars in class extension; all other cases have been
9944      // reported as errors elsewhere.
9945      // FIXME. Class extension does not have a LocEnd field.
9946      // CDecl->setLocEnd(RBrac);
9947      // Add ivar's to class extension's DeclContext.
9948      // Diagnose redeclaration of private ivars.
9949      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9950      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9951        if (IDecl) {
9952          if (const ObjCIvarDecl *ClsIvar =
9953              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9954            Diag(ClsFields[i]->getLocation(),
9955                 diag::err_duplicate_ivar_declaration);
9956            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9957            continue;
9958          }
9959          for (const ObjCCategoryDecl *ClsExtDecl =
9960                IDecl->getFirstClassExtension();
9961               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9962            if (const ObjCIvarDecl *ClsExtIvar =
9963                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9964              Diag(ClsFields[i]->getLocation(),
9965                   diag::err_duplicate_ivar_declaration);
9966              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9967              continue;
9968            }
9969          }
9970        }
9971        ClsFields[i]->setLexicalDeclContext(CDecl);
9972        CDecl->addDecl(ClsFields[i]);
9973      }
9974      CDecl->setIvarLBraceLoc(LBrac);
9975      CDecl->setIvarRBraceLoc(RBrac);
9976    }
9977  }
9978
9979  if (Attr)
9980    ProcessDeclAttributeList(S, Record, Attr);
9981
9982  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9983  // set the visibility of this record.
9984  if (Record && !Record->getDeclContext()->isRecord())
9985    AddPushedVisibilityAttribute(Record);
9986}
9987
9988/// \brief Determine whether the given integral value is representable within
9989/// the given type T.
9990static bool isRepresentableIntegerValue(ASTContext &Context,
9991                                        llvm::APSInt &Value,
9992                                        QualType T) {
9993  assert(T->isIntegralType(Context) && "Integral type required!");
9994  unsigned BitWidth = Context.getIntWidth(T);
9995
9996  if (Value.isUnsigned() || Value.isNonNegative()) {
9997    if (T->isSignedIntegerOrEnumerationType())
9998      --BitWidth;
9999    return Value.getActiveBits() <= BitWidth;
10000  }
10001  return Value.getMinSignedBits() <= BitWidth;
10002}
10003
10004// \brief Given an integral type, return the next larger integral type
10005// (or a NULL type of no such type exists).
10006static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
10007  // FIXME: Int128/UInt128 support, which also needs to be introduced into
10008  // enum checking below.
10009  assert(T->isIntegralType(Context) && "Integral type required!");
10010  const unsigned NumTypes = 4;
10011  QualType SignedIntegralTypes[NumTypes] = {
10012    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
10013  };
10014  QualType UnsignedIntegralTypes[NumTypes] = {
10015    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
10016    Context.UnsignedLongLongTy
10017  };
10018
10019  unsigned BitWidth = Context.getTypeSize(T);
10020  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
10021                                                        : UnsignedIntegralTypes;
10022  for (unsigned I = 0; I != NumTypes; ++I)
10023    if (Context.getTypeSize(Types[I]) > BitWidth)
10024      return Types[I];
10025
10026  return QualType();
10027}
10028
10029EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
10030                                          EnumConstantDecl *LastEnumConst,
10031                                          SourceLocation IdLoc,
10032                                          IdentifierInfo *Id,
10033                                          Expr *Val) {
10034  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10035  llvm::APSInt EnumVal(IntWidth);
10036  QualType EltTy;
10037
10038  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10039    Val = 0;
10040
10041  if (Val)
10042    Val = DefaultLvalueConversion(Val).take();
10043
10044  if (Val) {
10045    if (Enum->isDependentType() || Val->isTypeDependent())
10046      EltTy = Context.DependentTy;
10047    else {
10048      SourceLocation ExpLoc;
10049      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10050          !getLangOpts().MicrosoftMode) {
10051        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10052        // constant-expression in the enumerator-definition shall be a converted
10053        // constant expression of the underlying type.
10054        EltTy = Enum->getIntegerType();
10055        ExprResult Converted =
10056          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10057                                           CCEK_Enumerator);
10058        if (Converted.isInvalid())
10059          Val = 0;
10060        else
10061          Val = Converted.take();
10062      } else if (!Val->isValueDependent() &&
10063                 !(Val = VerifyIntegerConstantExpression(Val,
10064                                                         &EnumVal).take())) {
10065        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10066      } else {
10067        if (Enum->isFixed()) {
10068          EltTy = Enum->getIntegerType();
10069
10070          // In Obj-C and Microsoft mode, require the enumeration value to be
10071          // representable in the underlying type of the enumeration. In C++11,
10072          // we perform a non-narrowing conversion as part of converted constant
10073          // expression checking.
10074          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10075            if (getLangOpts().MicrosoftMode) {
10076              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10077              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10078            } else
10079              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10080          } else
10081            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10082        } else if (getLangOpts().CPlusPlus) {
10083          // C++11 [dcl.enum]p5:
10084          //   If the underlying type is not fixed, the type of each enumerator
10085          //   is the type of its initializing value:
10086          //     - If an initializer is specified for an enumerator, the
10087          //       initializing value has the same type as the expression.
10088          EltTy = Val->getType();
10089        } else {
10090          // C99 6.7.2.2p2:
10091          //   The expression that defines the value of an enumeration constant
10092          //   shall be an integer constant expression that has a value
10093          //   representable as an int.
10094
10095          // Complain if the value is not representable in an int.
10096          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10097            Diag(IdLoc, diag::ext_enum_value_not_int)
10098              << EnumVal.toString(10) << Val->getSourceRange()
10099              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10100          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10101            // Force the type of the expression to 'int'.
10102            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10103          }
10104          EltTy = Val->getType();
10105        }
10106      }
10107    }
10108  }
10109
10110  if (!Val) {
10111    if (Enum->isDependentType())
10112      EltTy = Context.DependentTy;
10113    else if (!LastEnumConst) {
10114      // C++0x [dcl.enum]p5:
10115      //   If the underlying type is not fixed, the type of each enumerator
10116      //   is the type of its initializing value:
10117      //     - If no initializer is specified for the first enumerator, the
10118      //       initializing value has an unspecified integral type.
10119      //
10120      // GCC uses 'int' for its unspecified integral type, as does
10121      // C99 6.7.2.2p3.
10122      if (Enum->isFixed()) {
10123        EltTy = Enum->getIntegerType();
10124      }
10125      else {
10126        EltTy = Context.IntTy;
10127      }
10128    } else {
10129      // Assign the last value + 1.
10130      EnumVal = LastEnumConst->getInitVal();
10131      ++EnumVal;
10132      EltTy = LastEnumConst->getType();
10133
10134      // Check for overflow on increment.
10135      if (EnumVal < LastEnumConst->getInitVal()) {
10136        // C++0x [dcl.enum]p5:
10137        //   If the underlying type is not fixed, the type of each enumerator
10138        //   is the type of its initializing value:
10139        //
10140        //     - Otherwise the type of the initializing value is the same as
10141        //       the type of the initializing value of the preceding enumerator
10142        //       unless the incremented value is not representable in that type,
10143        //       in which case the type is an unspecified integral type
10144        //       sufficient to contain the incremented value. If no such type
10145        //       exists, the program is ill-formed.
10146        QualType T = getNextLargerIntegralType(Context, EltTy);
10147        if (T.isNull() || Enum->isFixed()) {
10148          // There is no integral type larger enough to represent this
10149          // value. Complain, then allow the value to wrap around.
10150          EnumVal = LastEnumConst->getInitVal();
10151          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10152          ++EnumVal;
10153          if (Enum->isFixed())
10154            // When the underlying type is fixed, this is ill-formed.
10155            Diag(IdLoc, diag::err_enumerator_wrapped)
10156              << EnumVal.toString(10)
10157              << EltTy;
10158          else
10159            Diag(IdLoc, diag::warn_enumerator_too_large)
10160              << EnumVal.toString(10);
10161        } else {
10162          EltTy = T;
10163        }
10164
10165        // Retrieve the last enumerator's value, extent that type to the
10166        // type that is supposed to be large enough to represent the incremented
10167        // value, then increment.
10168        EnumVal = LastEnumConst->getInitVal();
10169        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10170        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10171        ++EnumVal;
10172
10173        // If we're not in C++, diagnose the overflow of enumerator values,
10174        // which in C99 means that the enumerator value is not representable in
10175        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10176        // permits enumerator values that are representable in some larger
10177        // integral type.
10178        if (!getLangOpts().CPlusPlus && !T.isNull())
10179          Diag(IdLoc, diag::warn_enum_value_overflow);
10180      } else if (!getLangOpts().CPlusPlus &&
10181                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10182        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10183        Diag(IdLoc, diag::ext_enum_value_not_int)
10184          << EnumVal.toString(10) << 1;
10185      }
10186    }
10187  }
10188
10189  if (!EltTy->isDependentType()) {
10190    // Make the enumerator value match the signedness and size of the
10191    // enumerator's type.
10192    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10193    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10194  }
10195
10196  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10197                                  Val, EnumVal);
10198}
10199
10200
10201Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10202                              SourceLocation IdLoc, IdentifierInfo *Id,
10203                              AttributeList *Attr,
10204                              SourceLocation EqualLoc, Expr *Val) {
10205  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10206  EnumConstantDecl *LastEnumConst =
10207    cast_or_null<EnumConstantDecl>(lastEnumConst);
10208
10209  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10210  // we find one that is.
10211  S = getNonFieldDeclScope(S);
10212
10213  // Verify that there isn't already something declared with this name in this
10214  // scope.
10215  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10216                                         ForRedeclaration);
10217  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10218    // Maybe we will complain about the shadowed template parameter.
10219    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10220    // Just pretend that we didn't see the previous declaration.
10221    PrevDecl = 0;
10222  }
10223
10224  if (PrevDecl) {
10225    // When in C++, we may get a TagDecl with the same name; in this case the
10226    // enum constant will 'hide' the tag.
10227    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10228           "Received TagDecl when not in C++!");
10229    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10230      if (isa<EnumConstantDecl>(PrevDecl))
10231        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10232      else
10233        Diag(IdLoc, diag::err_redefinition) << Id;
10234      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10235      return 0;
10236    }
10237  }
10238
10239  // C++ [class.mem]p13:
10240  //   If T is the name of a class, then each of the following shall have a
10241  //   name different from T:
10242  //     - every enumerator of every member of class T that is an enumerated
10243  //       type
10244  if (CXXRecordDecl *Record
10245                      = dyn_cast<CXXRecordDecl>(
10246                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10247    if (Record->getIdentifier() && Record->getIdentifier() == Id)
10248      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10249
10250  EnumConstantDecl *New =
10251    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10252
10253  if (New) {
10254    // Process attributes.
10255    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10256
10257    // Register this decl in the current scope stack.
10258    New->setAccess(TheEnumDecl->getAccess());
10259    PushOnScopeChains(New, S);
10260  }
10261
10262  return New;
10263}
10264
10265// Emits a warning if every element in the enum is the same value and if
10266// every element is initialized with a integer or boolean literal.
10267static void CheckForUniqueEnumValues(Sema &S, Decl **Elements,
10268                                     unsigned NumElements, EnumDecl *Enum,
10269                                     QualType EnumType) {
10270  if (S.Diags.getDiagnosticLevel(diag::warn_identical_enum_values,
10271                                 Enum->getLocation()) ==
10272      DiagnosticsEngine::Ignored)
10273    return;
10274
10275  if (NumElements < 2)
10276    return;
10277
10278  if (!Enum->getIdentifier())
10279    return;
10280
10281  llvm::APSInt FirstVal;
10282
10283  for (unsigned i = 0; i != NumElements; ++i) {
10284    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10285    if (!ECD)
10286      return;
10287
10288    Expr *InitExpr = ECD->getInitExpr();
10289    if (!InitExpr)
10290      return;
10291    InitExpr = InitExpr->IgnoreImpCasts();
10292    if (!isa<IntegerLiteral>(InitExpr) && !isa<CXXBoolLiteralExpr>(InitExpr))
10293      return;
10294
10295    if (i == 0) {
10296      FirstVal = ECD->getInitVal();
10297      continue;
10298    }
10299
10300    if (FirstVal != ECD->getInitVal())
10301      return;
10302  }
10303
10304  S.Diag(Enum->getLocation(), diag::warn_identical_enum_values)
10305      << EnumType << FirstVal.toString(10)
10306      << Enum->getSourceRange();
10307}
10308
10309void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10310                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10311                         Decl **Elements, unsigned NumElements,
10312                         Scope *S, AttributeList *Attr) {
10313  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10314  QualType EnumType = Context.getTypeDeclType(Enum);
10315
10316  if (Attr)
10317    ProcessDeclAttributeList(S, Enum, Attr);
10318
10319  if (Enum->isDependentType()) {
10320    for (unsigned i = 0; i != NumElements; ++i) {
10321      EnumConstantDecl *ECD =
10322        cast_or_null<EnumConstantDecl>(Elements[i]);
10323      if (!ECD) continue;
10324
10325      ECD->setType(EnumType);
10326    }
10327
10328    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10329    return;
10330  }
10331
10332  // TODO: If the result value doesn't fit in an int, it must be a long or long
10333  // long value.  ISO C does not support this, but GCC does as an extension,
10334  // emit a warning.
10335  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10336  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10337  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10338
10339  // Verify that all the values are okay, compute the size of the values, and
10340  // reverse the list.
10341  unsigned NumNegativeBits = 0;
10342  unsigned NumPositiveBits = 0;
10343
10344  // Keep track of whether all elements have type int.
10345  bool AllElementsInt = true;
10346
10347  for (unsigned i = 0; i != NumElements; ++i) {
10348    EnumConstantDecl *ECD =
10349      cast_or_null<EnumConstantDecl>(Elements[i]);
10350    if (!ECD) continue;  // Already issued a diagnostic.
10351
10352    const llvm::APSInt &InitVal = ECD->getInitVal();
10353
10354    // Keep track of the size of positive and negative values.
10355    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10356      NumPositiveBits = std::max(NumPositiveBits,
10357                                 (unsigned)InitVal.getActiveBits());
10358    else
10359      NumNegativeBits = std::max(NumNegativeBits,
10360                                 (unsigned)InitVal.getMinSignedBits());
10361
10362    // Keep track of whether every enum element has type int (very commmon).
10363    if (AllElementsInt)
10364      AllElementsInt = ECD->getType() == Context.IntTy;
10365  }
10366
10367  // Figure out the type that should be used for this enum.
10368  QualType BestType;
10369  unsigned BestWidth;
10370
10371  // C++0x N3000 [conv.prom]p3:
10372  //   An rvalue of an unscoped enumeration type whose underlying
10373  //   type is not fixed can be converted to an rvalue of the first
10374  //   of the following types that can represent all the values of
10375  //   the enumeration: int, unsigned int, long int, unsigned long
10376  //   int, long long int, or unsigned long long int.
10377  // C99 6.4.4.3p2:
10378  //   An identifier declared as an enumeration constant has type int.
10379  // The C99 rule is modified by a gcc extension
10380  QualType BestPromotionType;
10381
10382  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10383  // -fshort-enums is the equivalent to specifying the packed attribute on all
10384  // enum definitions.
10385  if (LangOpts.ShortEnums)
10386    Packed = true;
10387
10388  if (Enum->isFixed()) {
10389    BestType = Enum->getIntegerType();
10390    if (BestType->isPromotableIntegerType())
10391      BestPromotionType = Context.getPromotedIntegerType(BestType);
10392    else
10393      BestPromotionType = BestType;
10394    // We don't need to set BestWidth, because BestType is going to be the type
10395    // of the enumerators, but we do anyway because otherwise some compilers
10396    // warn that it might be used uninitialized.
10397    BestWidth = CharWidth;
10398  }
10399  else if (NumNegativeBits) {
10400    // If there is a negative value, figure out the smallest integer type (of
10401    // int/long/longlong) that fits.
10402    // If it's packed, check also if it fits a char or a short.
10403    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10404      BestType = Context.SignedCharTy;
10405      BestWidth = CharWidth;
10406    } else if (Packed && NumNegativeBits <= ShortWidth &&
10407               NumPositiveBits < ShortWidth) {
10408      BestType = Context.ShortTy;
10409      BestWidth = ShortWidth;
10410    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10411      BestType = Context.IntTy;
10412      BestWidth = IntWidth;
10413    } else {
10414      BestWidth = Context.getTargetInfo().getLongWidth();
10415
10416      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10417        BestType = Context.LongTy;
10418      } else {
10419        BestWidth = Context.getTargetInfo().getLongLongWidth();
10420
10421        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10422          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10423        BestType = Context.LongLongTy;
10424      }
10425    }
10426    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10427  } else {
10428    // If there is no negative value, figure out the smallest type that fits
10429    // all of the enumerator values.
10430    // If it's packed, check also if it fits a char or a short.
10431    if (Packed && NumPositiveBits <= CharWidth) {
10432      BestType = Context.UnsignedCharTy;
10433      BestPromotionType = Context.IntTy;
10434      BestWidth = CharWidth;
10435    } else if (Packed && NumPositiveBits <= ShortWidth) {
10436      BestType = Context.UnsignedShortTy;
10437      BestPromotionType = Context.IntTy;
10438      BestWidth = ShortWidth;
10439    } else if (NumPositiveBits <= IntWidth) {
10440      BestType = Context.UnsignedIntTy;
10441      BestWidth = IntWidth;
10442      BestPromotionType
10443        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10444                           ? Context.UnsignedIntTy : Context.IntTy;
10445    } else if (NumPositiveBits <=
10446               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10447      BestType = Context.UnsignedLongTy;
10448      BestPromotionType
10449        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10450                           ? Context.UnsignedLongTy : Context.LongTy;
10451    } else {
10452      BestWidth = Context.getTargetInfo().getLongLongWidth();
10453      assert(NumPositiveBits <= BestWidth &&
10454             "How could an initializer get larger than ULL?");
10455      BestType = Context.UnsignedLongLongTy;
10456      BestPromotionType
10457        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10458                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10459    }
10460  }
10461
10462  // Loop over all of the enumerator constants, changing their types to match
10463  // the type of the enum if needed.
10464  for (unsigned i = 0; i != NumElements; ++i) {
10465    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10466    if (!ECD) continue;  // Already issued a diagnostic.
10467
10468    // Standard C says the enumerators have int type, but we allow, as an
10469    // extension, the enumerators to be larger than int size.  If each
10470    // enumerator value fits in an int, type it as an int, otherwise type it the
10471    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10472    // that X has type 'int', not 'unsigned'.
10473
10474    // Determine whether the value fits into an int.
10475    llvm::APSInt InitVal = ECD->getInitVal();
10476
10477    // If it fits into an integer type, force it.  Otherwise force it to match
10478    // the enum decl type.
10479    QualType NewTy;
10480    unsigned NewWidth;
10481    bool NewSign;
10482    if (!getLangOpts().CPlusPlus &&
10483        !Enum->isFixed() &&
10484        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10485      NewTy = Context.IntTy;
10486      NewWidth = IntWidth;
10487      NewSign = true;
10488    } else if (ECD->getType() == BestType) {
10489      // Already the right type!
10490      if (getLangOpts().CPlusPlus)
10491        // C++ [dcl.enum]p4: Following the closing brace of an
10492        // enum-specifier, each enumerator has the type of its
10493        // enumeration.
10494        ECD->setType(EnumType);
10495      continue;
10496    } else {
10497      NewTy = BestType;
10498      NewWidth = BestWidth;
10499      NewSign = BestType->isSignedIntegerOrEnumerationType();
10500    }
10501
10502    // Adjust the APSInt value.
10503    InitVal = InitVal.extOrTrunc(NewWidth);
10504    InitVal.setIsSigned(NewSign);
10505    ECD->setInitVal(InitVal);
10506
10507    // Adjust the Expr initializer and type.
10508    if (ECD->getInitExpr() &&
10509        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10510      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10511                                                CK_IntegralCast,
10512                                                ECD->getInitExpr(),
10513                                                /*base paths*/ 0,
10514                                                VK_RValue));
10515    if (getLangOpts().CPlusPlus)
10516      // C++ [dcl.enum]p4: Following the closing brace of an
10517      // enum-specifier, each enumerator has the type of its
10518      // enumeration.
10519      ECD->setType(EnumType);
10520    else
10521      ECD->setType(NewTy);
10522  }
10523
10524  Enum->completeDefinition(BestType, BestPromotionType,
10525                           NumPositiveBits, NumNegativeBits);
10526
10527  // If we're declaring a function, ensure this decl isn't forgotten about -
10528  // it needs to go into the function scope.
10529  if (InFunctionDeclarator)
10530    DeclsInPrototypeScope.push_back(Enum);
10531
10532  CheckForUniqueEnumValues(*this, Elements, NumElements, Enum, EnumType);
10533}
10534
10535Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10536                                  SourceLocation StartLoc,
10537                                  SourceLocation EndLoc) {
10538  StringLiteral *AsmString = cast<StringLiteral>(expr);
10539
10540  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10541                                                   AsmString, StartLoc,
10542                                                   EndLoc);
10543  CurContext->addDecl(New);
10544  return New;
10545}
10546
10547DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10548                                   SourceLocation ImportLoc,
10549                                   ModuleIdPath Path) {
10550  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10551                                                Module::AllVisible,
10552                                                /*IsIncludeDirective=*/false);
10553  if (!Mod)
10554    return true;
10555
10556  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10557  Module *ModCheck = Mod;
10558  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10559    // If we've run out of module parents, just drop the remaining identifiers.
10560    // We need the length to be consistent.
10561    if (!ModCheck)
10562      break;
10563    ModCheck = ModCheck->Parent;
10564
10565    IdentifierLocs.push_back(Path[I].second);
10566  }
10567
10568  ImportDecl *Import = ImportDecl::Create(Context,
10569                                          Context.getTranslationUnitDecl(),
10570                                          AtLoc.isValid()? AtLoc : ImportLoc,
10571                                          Mod, IdentifierLocs);
10572  Context.getTranslationUnitDecl()->addDecl(Import);
10573  return Import;
10574}
10575
10576void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10577                                      IdentifierInfo* AliasName,
10578                                      SourceLocation PragmaLoc,
10579                                      SourceLocation NameLoc,
10580                                      SourceLocation AliasNameLoc) {
10581  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10582                                    LookupOrdinaryName);
10583  AsmLabelAttr *Attr =
10584     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10585
10586  if (PrevDecl)
10587    PrevDecl->addAttr(Attr);
10588  else
10589    (void)ExtnameUndeclaredIdentifiers.insert(
10590      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10591}
10592
10593void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10594                             SourceLocation PragmaLoc,
10595                             SourceLocation NameLoc) {
10596  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10597
10598  if (PrevDecl) {
10599    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10600  } else {
10601    (void)WeakUndeclaredIdentifiers.insert(
10602      std::pair<IdentifierInfo*,WeakInfo>
10603        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10604  }
10605}
10606
10607void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10608                                IdentifierInfo* AliasName,
10609                                SourceLocation PragmaLoc,
10610                                SourceLocation NameLoc,
10611                                SourceLocation AliasNameLoc) {
10612  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10613                                    LookupOrdinaryName);
10614  WeakInfo W = WeakInfo(Name, NameLoc);
10615
10616  if (PrevDecl) {
10617    if (!PrevDecl->hasAttr<AliasAttr>())
10618      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10619        DeclApplyPragmaWeak(TUScope, ND, W);
10620  } else {
10621    (void)WeakUndeclaredIdentifiers.insert(
10622      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10623  }
10624}
10625
10626Decl *Sema::getObjCDeclContext() const {
10627  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10628}
10629
10630AvailabilityResult Sema::getCurContextAvailability() const {
10631  const Decl *D = cast<Decl>(getCurLexicalContext());
10632  // A category implicitly has the availability of the interface.
10633  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10634    D = CatD->getClassInterface();
10635
10636  return D->getAvailability();
10637}
10638