SemaDecl.cpp revision 0cd00be2813db976d62fb88fa26ccca8d6791823
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName && !IsCtorOrDtorName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOpts().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOpts()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOpts().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473static bool isTagTypeWithMissingTag(Sema &SemaRef, LookupResult &Result,
474                                    Scope *S, CXXScopeSpec &SS,
475                                    IdentifierInfo *&Name,
476                                    SourceLocation NameLoc) {
477  Result.clear(Sema::LookupTagName);
478  SemaRef.LookupParsedName(Result, S, &SS);
479  if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
480    const char *TagName = 0;
481    const char *FixItTagName = 0;
482    switch (Tag->getTagKind()) {
483      case TTK_Class:
484        TagName = "class";
485        FixItTagName = "class ";
486        break;
487
488      case TTK_Enum:
489        TagName = "enum";
490        FixItTagName = "enum ";
491        break;
492
493      case TTK_Struct:
494        TagName = "struct";
495        FixItTagName = "struct ";
496        break;
497
498      case TTK_Union:
499        TagName = "union";
500        FixItTagName = "union ";
501        break;
502    }
503
504    SemaRef.Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
505      << Name << TagName << SemaRef.getLangOpts().CPlusPlus
506      << FixItHint::CreateInsertion(NameLoc, FixItTagName);
507
508    LookupResult R(SemaRef, Name, NameLoc, Sema::LookupOrdinaryName);
509    if (SemaRef.LookupParsedName(R, S, &SS)) {
510      for (LookupResult::iterator I = R.begin(), IEnd = R.end();
511           I != IEnd; ++I)
512        SemaRef.Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
513          << Name << TagName;
514    }
515    return true;
516  }
517
518  Result.clear(Sema::LookupOrdinaryName);
519  return false;
520}
521
522Sema::NameClassification Sema::ClassifyName(Scope *S,
523                                            CXXScopeSpec &SS,
524                                            IdentifierInfo *&Name,
525                                            SourceLocation NameLoc,
526                                            const Token &NextToken) {
527  DeclarationNameInfo NameInfo(Name, NameLoc);
528  ObjCMethodDecl *CurMethod = getCurMethodDecl();
529
530  if (NextToken.is(tok::coloncolon)) {
531    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
532                                QualType(), false, SS, 0, false);
533
534  }
535
536  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
537  LookupParsedName(Result, S, &SS, !CurMethod);
538
539  // Perform lookup for Objective-C instance variables (including automatically
540  // synthesized instance variables), if we're in an Objective-C method.
541  // FIXME: This lookup really, really needs to be folded in to the normal
542  // unqualified lookup mechanism.
543  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
544    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
545    if (E.get() || E.isInvalid())
546      return E;
547  }
548
549  bool SecondTry = false;
550  bool IsFilteredTemplateName = false;
551
552Corrected:
553  switch (Result.getResultKind()) {
554  case LookupResult::NotFound:
555    // If an unqualified-id is followed by a '(', then we have a function
556    // call.
557    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
558      // In C++, this is an ADL-only call.
559      // FIXME: Reference?
560      if (getLangOpts().CPlusPlus)
561        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
562
563      // C90 6.3.2.2:
564      //   If the expression that precedes the parenthesized argument list in a
565      //   function call consists solely of an identifier, and if no
566      //   declaration is visible for this identifier, the identifier is
567      //   implicitly declared exactly as if, in the innermost block containing
568      //   the function call, the declaration
569      //
570      //     extern int identifier ();
571      //
572      //   appeared.
573      //
574      // We also allow this in C99 as an extension.
575      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
576        Result.addDecl(D);
577        Result.resolveKind();
578        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
579      }
580    }
581
582    // In C, we first see whether there is a tag type by the same name, in
583    // which case it's likely that the user just forget to write "enum",
584    // "struct", or "union".
585    if (!getLangOpts().CPlusPlus && !SecondTry &&
586        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
587      break;
588    }
589
590    // Perform typo correction to determine if there is another name that is
591    // close to this name.
592    if (!SecondTry) {
593      SecondTry = true;
594      CorrectionCandidateCallback DefaultValidator;
595      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
596                                                 Result.getLookupKind(), S,
597                                                 &SS, DefaultValidator)) {
598        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
599        unsigned QualifiedDiag = diag::err_no_member_suggest;
600        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
601        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
602
603        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
604        NamedDecl *UnderlyingFirstDecl
605          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
606        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
607            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
608          UnqualifiedDiag = diag::err_no_template_suggest;
609          QualifiedDiag = diag::err_no_member_template_suggest;
610        } else if (UnderlyingFirstDecl &&
611                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
612                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
613                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
614           UnqualifiedDiag = diag::err_unknown_typename_suggest;
615           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
616         }
617
618        if (SS.isEmpty())
619          Diag(NameLoc, UnqualifiedDiag)
620            << Name << CorrectedQuotedStr
621            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
622        else
623          Diag(NameLoc, QualifiedDiag)
624            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
625            << SS.getRange()
626            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
627
628        // Update the name, so that the caller has the new name.
629        Name = Corrected.getCorrectionAsIdentifierInfo();
630
631        // Typo correction corrected to a keyword.
632        if (Corrected.isKeyword())
633          return Corrected.getCorrectionAsIdentifierInfo();
634
635        // Also update the LookupResult...
636        // FIXME: This should probably go away at some point
637        Result.clear();
638        Result.setLookupName(Corrected.getCorrection());
639        if (FirstDecl) {
640          Result.addDecl(FirstDecl);
641          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
642            << CorrectedQuotedStr;
643        }
644
645        // If we found an Objective-C instance variable, let
646        // LookupInObjCMethod build the appropriate expression to
647        // reference the ivar.
648        // FIXME: This is a gross hack.
649        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
650          Result.clear();
651          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
652          return move(E);
653        }
654
655        goto Corrected;
656      }
657    }
658
659    // We failed to correct; just fall through and let the parser deal with it.
660    Result.suppressDiagnostics();
661    return NameClassification::Unknown();
662
663  case LookupResult::NotFoundInCurrentInstantiation: {
664    // We performed name lookup into the current instantiation, and there were
665    // dependent bases, so we treat this result the same way as any other
666    // dependent nested-name-specifier.
667
668    // C++ [temp.res]p2:
669    //   A name used in a template declaration or definition and that is
670    //   dependent on a template-parameter is assumed not to name a type
671    //   unless the applicable name lookup finds a type name or the name is
672    //   qualified by the keyword typename.
673    //
674    // FIXME: If the next token is '<', we might want to ask the parser to
675    // perform some heroics to see if we actually have a
676    // template-argument-list, which would indicate a missing 'template'
677    // keyword here.
678    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
679                                     NameInfo, /*TemplateArgs=*/0);
680  }
681
682  case LookupResult::Found:
683  case LookupResult::FoundOverloaded:
684  case LookupResult::FoundUnresolvedValue:
685    break;
686
687  case LookupResult::Ambiguous:
688    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
689        hasAnyAcceptableTemplateNames(Result)) {
690      // C++ [temp.local]p3:
691      //   A lookup that finds an injected-class-name (10.2) can result in an
692      //   ambiguity in certain cases (for example, if it is found in more than
693      //   one base class). If all of the injected-class-names that are found
694      //   refer to specializations of the same class template, and if the name
695      //   is followed by a template-argument-list, the reference refers to the
696      //   class template itself and not a specialization thereof, and is not
697      //   ambiguous.
698      //
699      // This filtering can make an ambiguous result into an unambiguous one,
700      // so try again after filtering out template names.
701      FilterAcceptableTemplateNames(Result);
702      if (!Result.isAmbiguous()) {
703        IsFilteredTemplateName = true;
704        break;
705      }
706    }
707
708    // Diagnose the ambiguity and return an error.
709    return NameClassification::Error();
710  }
711
712  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
713      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
714    // C++ [temp.names]p3:
715    //   After name lookup (3.4) finds that a name is a template-name or that
716    //   an operator-function-id or a literal- operator-id refers to a set of
717    //   overloaded functions any member of which is a function template if
718    //   this is followed by a <, the < is always taken as the delimiter of a
719    //   template-argument-list and never as the less-than operator.
720    if (!IsFilteredTemplateName)
721      FilterAcceptableTemplateNames(Result);
722
723    if (!Result.empty()) {
724      bool IsFunctionTemplate;
725      TemplateName Template;
726      if (Result.end() - Result.begin() > 1) {
727        IsFunctionTemplate = true;
728        Template = Context.getOverloadedTemplateName(Result.begin(),
729                                                     Result.end());
730      } else {
731        TemplateDecl *TD
732          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
733        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
734
735        if (SS.isSet() && !SS.isInvalid())
736          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
737                                                    /*TemplateKeyword=*/false,
738                                                      TD);
739        else
740          Template = TemplateName(TD);
741      }
742
743      if (IsFunctionTemplate) {
744        // Function templates always go through overload resolution, at which
745        // point we'll perform the various checks (e.g., accessibility) we need
746        // to based on which function we selected.
747        Result.suppressDiagnostics();
748
749        return NameClassification::FunctionTemplate(Template);
750      }
751
752      return NameClassification::TypeTemplate(Template);
753    }
754  }
755
756  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
757  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
758    DiagnoseUseOfDecl(Type, NameLoc);
759    QualType T = Context.getTypeDeclType(Type);
760    return ParsedType::make(T);
761  }
762
763  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
764  if (!Class) {
765    // FIXME: It's unfortunate that we don't have a Type node for handling this.
766    if (ObjCCompatibleAliasDecl *Alias
767                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
768      Class = Alias->getClassInterface();
769  }
770
771  if (Class) {
772    DiagnoseUseOfDecl(Class, NameLoc);
773
774    if (NextToken.is(tok::period)) {
775      // Interface. <something> is parsed as a property reference expression.
776      // Just return "unknown" as a fall-through for now.
777      Result.suppressDiagnostics();
778      return NameClassification::Unknown();
779    }
780
781    QualType T = Context.getObjCInterfaceType(Class);
782    return ParsedType::make(T);
783  }
784
785  // Check for a tag type hidden by a non-type decl in a few cases where it
786  // seems likely a type is wanted instead of the non-type that was found.
787  if (!getLangOpts().ObjC1 && FirstDecl && !isa<ClassTemplateDecl>(FirstDecl) &&
788      !isa<TypeAliasTemplateDecl>(FirstDecl)) {
789    bool NextIsOp = NextToken.is(tok::amp) || NextToken.is(tok::star);
790    if ((NextToken.is(tok::identifier) ||
791         (NextIsOp && FirstDecl->isFunctionOrFunctionTemplate())) &&
792        isTagTypeWithMissingTag(*this, Result, S, SS, Name, NameLoc)) {
793      FirstDecl = (*Result.begin())->getUnderlyingDecl();
794      if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
795        DiagnoseUseOfDecl(Type, NameLoc);
796        QualType T = Context.getTypeDeclType(Type);
797        return ParsedType::make(T);
798      }
799    }
800  }
801
802  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
803    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
804
805  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
806  return BuildDeclarationNameExpr(SS, Result, ADL);
807}
808
809// Determines the context to return to after temporarily entering a
810// context.  This depends in an unnecessarily complicated way on the
811// exact ordering of callbacks from the parser.
812DeclContext *Sema::getContainingDC(DeclContext *DC) {
813
814  // Functions defined inline within classes aren't parsed until we've
815  // finished parsing the top-level class, so the top-level class is
816  // the context we'll need to return to.
817  if (isa<FunctionDecl>(DC)) {
818    DC = DC->getLexicalParent();
819
820    // A function not defined within a class will always return to its
821    // lexical context.
822    if (!isa<CXXRecordDecl>(DC))
823      return DC;
824
825    // A C++ inline method/friend is parsed *after* the topmost class
826    // it was declared in is fully parsed ("complete");  the topmost
827    // class is the context we need to return to.
828    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
829      DC = RD;
830
831    // Return the declaration context of the topmost class the inline method is
832    // declared in.
833    return DC;
834  }
835
836  return DC->getLexicalParent();
837}
838
839void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
840  assert(getContainingDC(DC) == CurContext &&
841      "The next DeclContext should be lexically contained in the current one.");
842  CurContext = DC;
843  S->setEntity(DC);
844}
845
846void Sema::PopDeclContext() {
847  assert(CurContext && "DeclContext imbalance!");
848
849  CurContext = getContainingDC(CurContext);
850  assert(CurContext && "Popped translation unit!");
851}
852
853/// EnterDeclaratorContext - Used when we must lookup names in the context
854/// of a declarator's nested name specifier.
855///
856void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
857  // C++0x [basic.lookup.unqual]p13:
858  //   A name used in the definition of a static data member of class
859  //   X (after the qualified-id of the static member) is looked up as
860  //   if the name was used in a member function of X.
861  // C++0x [basic.lookup.unqual]p14:
862  //   If a variable member of a namespace is defined outside of the
863  //   scope of its namespace then any name used in the definition of
864  //   the variable member (after the declarator-id) is looked up as
865  //   if the definition of the variable member occurred in its
866  //   namespace.
867  // Both of these imply that we should push a scope whose context
868  // is the semantic context of the declaration.  We can't use
869  // PushDeclContext here because that context is not necessarily
870  // lexically contained in the current context.  Fortunately,
871  // the containing scope should have the appropriate information.
872
873  assert(!S->getEntity() && "scope already has entity");
874
875#ifndef NDEBUG
876  Scope *Ancestor = S->getParent();
877  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
878  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
879#endif
880
881  CurContext = DC;
882  S->setEntity(DC);
883}
884
885void Sema::ExitDeclaratorContext(Scope *S) {
886  assert(S->getEntity() == CurContext && "Context imbalance!");
887
888  // Switch back to the lexical context.  The safety of this is
889  // enforced by an assert in EnterDeclaratorContext.
890  Scope *Ancestor = S->getParent();
891  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
892  CurContext = (DeclContext*) Ancestor->getEntity();
893
894  // We don't need to do anything with the scope, which is going to
895  // disappear.
896}
897
898
899void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
900  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
901  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
902    // We assume that the caller has already called
903    // ActOnReenterTemplateScope
904    FD = TFD->getTemplatedDecl();
905  }
906  if (!FD)
907    return;
908
909  // Same implementation as PushDeclContext, but enters the context
910  // from the lexical parent, rather than the top-level class.
911  assert(CurContext == FD->getLexicalParent() &&
912    "The next DeclContext should be lexically contained in the current one.");
913  CurContext = FD;
914  S->setEntity(CurContext);
915
916  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
917    ParmVarDecl *Param = FD->getParamDecl(P);
918    // If the parameter has an identifier, then add it to the scope
919    if (Param->getIdentifier()) {
920      S->AddDecl(Param);
921      IdResolver.AddDecl(Param);
922    }
923  }
924}
925
926
927void Sema::ActOnExitFunctionContext() {
928  // Same implementation as PopDeclContext, but returns to the lexical parent,
929  // rather than the top-level class.
930  assert(CurContext && "DeclContext imbalance!");
931  CurContext = CurContext->getLexicalParent();
932  assert(CurContext && "Popped translation unit!");
933}
934
935
936/// \brief Determine whether we allow overloading of the function
937/// PrevDecl with another declaration.
938///
939/// This routine determines whether overloading is possible, not
940/// whether some new function is actually an overload. It will return
941/// true in C++ (where we can always provide overloads) or, as an
942/// extension, in C when the previous function is already an
943/// overloaded function declaration or has the "overloadable"
944/// attribute.
945static bool AllowOverloadingOfFunction(LookupResult &Previous,
946                                       ASTContext &Context) {
947  if (Context.getLangOpts().CPlusPlus)
948    return true;
949
950  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
951    return true;
952
953  return (Previous.getResultKind() == LookupResult::Found
954          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
955}
956
957/// Add this decl to the scope shadowed decl chains.
958void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
959  // Move up the scope chain until we find the nearest enclosing
960  // non-transparent context. The declaration will be introduced into this
961  // scope.
962  while (S->getEntity() &&
963         ((DeclContext *)S->getEntity())->isTransparentContext())
964    S = S->getParent();
965
966  // Add scoped declarations into their context, so that they can be
967  // found later. Declarations without a context won't be inserted
968  // into any context.
969  if (AddToContext)
970    CurContext->addDecl(D);
971
972  // Out-of-line definitions shouldn't be pushed into scope in C++.
973  // Out-of-line variable and function definitions shouldn't even in C.
974  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
975      D->isOutOfLine() &&
976      !D->getDeclContext()->getRedeclContext()->Equals(
977        D->getLexicalDeclContext()->getRedeclContext()))
978    return;
979
980  // Template instantiations should also not be pushed into scope.
981  if (isa<FunctionDecl>(D) &&
982      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
983    return;
984
985  // If this replaces anything in the current scope,
986  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
987                               IEnd = IdResolver.end();
988  for (; I != IEnd; ++I) {
989    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
990      S->RemoveDecl(*I);
991      IdResolver.RemoveDecl(*I);
992
993      // Should only need to replace one decl.
994      break;
995    }
996  }
997
998  S->AddDecl(D);
999
1000  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
1001    // Implicitly-generated labels may end up getting generated in an order that
1002    // isn't strictly lexical, which breaks name lookup. Be careful to insert
1003    // the label at the appropriate place in the identifier chain.
1004    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
1005      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
1006      if (IDC == CurContext) {
1007        if (!S->isDeclScope(*I))
1008          continue;
1009      } else if (IDC->Encloses(CurContext))
1010        break;
1011    }
1012
1013    IdResolver.InsertDeclAfter(I, D);
1014  } else {
1015    IdResolver.AddDecl(D);
1016  }
1017}
1018
1019void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
1020  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
1021    TUScope->AddDecl(D);
1022}
1023
1024bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
1025                         bool ExplicitInstantiationOrSpecialization) {
1026  return IdResolver.isDeclInScope(D, Ctx, Context, S,
1027                                  ExplicitInstantiationOrSpecialization);
1028}
1029
1030Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
1031  DeclContext *TargetDC = DC->getPrimaryContext();
1032  do {
1033    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
1034      if (ScopeDC->getPrimaryContext() == TargetDC)
1035        return S;
1036  } while ((S = S->getParent()));
1037
1038  return 0;
1039}
1040
1041static bool isOutOfScopePreviousDeclaration(NamedDecl *,
1042                                            DeclContext*,
1043                                            ASTContext&);
1044
1045/// Filters out lookup results that don't fall within the given scope
1046/// as determined by isDeclInScope.
1047void Sema::FilterLookupForScope(LookupResult &R,
1048                                DeclContext *Ctx, Scope *S,
1049                                bool ConsiderLinkage,
1050                                bool ExplicitInstantiationOrSpecialization) {
1051  LookupResult::Filter F = R.makeFilter();
1052  while (F.hasNext()) {
1053    NamedDecl *D = F.next();
1054
1055    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1056      continue;
1057
1058    if (ConsiderLinkage &&
1059        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1060      continue;
1061
1062    F.erase();
1063  }
1064
1065  F.done();
1066}
1067
1068static bool isUsingDecl(NamedDecl *D) {
1069  return isa<UsingShadowDecl>(D) ||
1070         isa<UnresolvedUsingTypenameDecl>(D) ||
1071         isa<UnresolvedUsingValueDecl>(D);
1072}
1073
1074/// Removes using shadow declarations from the lookup results.
1075static void RemoveUsingDecls(LookupResult &R) {
1076  LookupResult::Filter F = R.makeFilter();
1077  while (F.hasNext())
1078    if (isUsingDecl(F.next()))
1079      F.erase();
1080
1081  F.done();
1082}
1083
1084/// \brief Check for this common pattern:
1085/// @code
1086/// class S {
1087///   S(const S&); // DO NOT IMPLEMENT
1088///   void operator=(const S&); // DO NOT IMPLEMENT
1089/// };
1090/// @endcode
1091static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1092  // FIXME: Should check for private access too but access is set after we get
1093  // the decl here.
1094  if (D->doesThisDeclarationHaveABody())
1095    return false;
1096
1097  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1098    return CD->isCopyConstructor();
1099  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1100    return Method->isCopyAssignmentOperator();
1101  return false;
1102}
1103
1104bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1105  assert(D);
1106
1107  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1108    return false;
1109
1110  // Ignore class templates.
1111  if (D->getDeclContext()->isDependentContext() ||
1112      D->getLexicalDeclContext()->isDependentContext())
1113    return false;
1114
1115  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1116    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1117      return false;
1118
1119    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1120      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1121        return false;
1122    } else {
1123      // 'static inline' functions are used in headers; don't warn.
1124      if (FD->getStorageClass() == SC_Static &&
1125          FD->isInlineSpecified())
1126        return false;
1127    }
1128
1129    if (FD->doesThisDeclarationHaveABody() &&
1130        Context.DeclMustBeEmitted(FD))
1131      return false;
1132  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1133    if (!VD->isFileVarDecl() ||
1134        VD->getType().isConstant(Context) ||
1135        Context.DeclMustBeEmitted(VD))
1136      return false;
1137
1138    if (VD->isStaticDataMember() &&
1139        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1140      return false;
1141
1142  } else {
1143    return false;
1144  }
1145
1146  // Only warn for unused decls internal to the translation unit.
1147  if (D->getLinkage() == ExternalLinkage)
1148    return false;
1149
1150  return true;
1151}
1152
1153void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1154  if (!D)
1155    return;
1156
1157  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1158    const FunctionDecl *First = FD->getFirstDeclaration();
1159    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1160      return; // First should already be in the vector.
1161  }
1162
1163  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1164    const VarDecl *First = VD->getFirstDeclaration();
1165    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1166      return; // First should already be in the vector.
1167  }
1168
1169   if (ShouldWarnIfUnusedFileScopedDecl(D))
1170     UnusedFileScopedDecls.push_back(D);
1171 }
1172
1173static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1174  if (D->isInvalidDecl())
1175    return false;
1176
1177  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1178    return false;
1179
1180  if (isa<LabelDecl>(D))
1181    return true;
1182
1183  // White-list anything that isn't a local variable.
1184  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1185      !D->getDeclContext()->isFunctionOrMethod())
1186    return false;
1187
1188  // Types of valid local variables should be complete, so this should succeed.
1189  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1190
1191    // White-list anything with an __attribute__((unused)) type.
1192    QualType Ty = VD->getType();
1193
1194    // Only look at the outermost level of typedef.
1195    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1196      if (TT->getDecl()->hasAttr<UnusedAttr>())
1197        return false;
1198    }
1199
1200    // If we failed to complete the type for some reason, or if the type is
1201    // dependent, don't diagnose the variable.
1202    if (Ty->isIncompleteType() || Ty->isDependentType())
1203      return false;
1204
1205    if (const TagType *TT = Ty->getAs<TagType>()) {
1206      const TagDecl *Tag = TT->getDecl();
1207      if (Tag->hasAttr<UnusedAttr>())
1208        return false;
1209
1210      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1211        if (!RD->hasTrivialDestructor())
1212          return false;
1213
1214        if (const Expr *Init = VD->getInit()) {
1215          const CXXConstructExpr *Construct =
1216            dyn_cast<CXXConstructExpr>(Init);
1217          if (Construct && !Construct->isElidable()) {
1218            CXXConstructorDecl *CD = Construct->getConstructor();
1219            if (!CD->isTrivial())
1220              return false;
1221          }
1222        }
1223      }
1224    }
1225
1226    // TODO: __attribute__((unused)) templates?
1227  }
1228
1229  return true;
1230}
1231
1232static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1233                                     FixItHint &Hint) {
1234  if (isa<LabelDecl>(D)) {
1235    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1236                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1237    if (AfterColon.isInvalid())
1238      return;
1239    Hint = FixItHint::CreateRemoval(CharSourceRange::
1240                                    getCharRange(D->getLocStart(), AfterColon));
1241  }
1242  return;
1243}
1244
1245/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1246/// unless they are marked attr(unused).
1247void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1248  FixItHint Hint;
1249  if (!ShouldDiagnoseUnusedDecl(D))
1250    return;
1251
1252  GenerateFixForUnusedDecl(D, Context, Hint);
1253
1254  unsigned DiagID;
1255  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1256    DiagID = diag::warn_unused_exception_param;
1257  else if (isa<LabelDecl>(D))
1258    DiagID = diag::warn_unused_label;
1259  else
1260    DiagID = diag::warn_unused_variable;
1261
1262  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1263}
1264
1265static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1266  // Verify that we have no forward references left.  If so, there was a goto
1267  // or address of a label taken, but no definition of it.  Label fwd
1268  // definitions are indicated with a null substmt.
1269  if (L->getStmt() == 0)
1270    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1271}
1272
1273void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1274  if (S->decl_empty()) return;
1275  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1276         "Scope shouldn't contain decls!");
1277
1278  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1279       I != E; ++I) {
1280    Decl *TmpD = (*I);
1281    assert(TmpD && "This decl didn't get pushed??");
1282
1283    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1284    NamedDecl *D = cast<NamedDecl>(TmpD);
1285
1286    if (!D->getDeclName()) continue;
1287
1288    // Diagnose unused variables in this scope.
1289    if (!S->hasErrorOccurred())
1290      DiagnoseUnusedDecl(D);
1291
1292    // If this was a forward reference to a label, verify it was defined.
1293    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1294      CheckPoppedLabel(LD, *this);
1295
1296    // Remove this name from our lexical scope.
1297    IdResolver.RemoveDecl(D);
1298  }
1299}
1300
1301void Sema::ActOnStartFunctionDeclarator() {
1302  ++InFunctionDeclarator;
1303}
1304
1305void Sema::ActOnEndFunctionDeclarator() {
1306  assert(InFunctionDeclarator);
1307  --InFunctionDeclarator;
1308}
1309
1310/// \brief Look for an Objective-C class in the translation unit.
1311///
1312/// \param Id The name of the Objective-C class we're looking for. If
1313/// typo-correction fixes this name, the Id will be updated
1314/// to the fixed name.
1315///
1316/// \param IdLoc The location of the name in the translation unit.
1317///
1318/// \param TypoCorrection If true, this routine will attempt typo correction
1319/// if there is no class with the given name.
1320///
1321/// \returns The declaration of the named Objective-C class, or NULL if the
1322/// class could not be found.
1323ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1324                                              SourceLocation IdLoc,
1325                                              bool DoTypoCorrection) {
1326  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1327  // creation from this context.
1328  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1329
1330  if (!IDecl && DoTypoCorrection) {
1331    // Perform typo correction at the given location, but only if we
1332    // find an Objective-C class name.
1333    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1334    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1335                                       LookupOrdinaryName, TUScope, NULL,
1336                                       Validator)) {
1337      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1338      Diag(IdLoc, diag::err_undef_interface_suggest)
1339        << Id << IDecl->getDeclName()
1340        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1341      Diag(IDecl->getLocation(), diag::note_previous_decl)
1342        << IDecl->getDeclName();
1343
1344      Id = IDecl->getIdentifier();
1345    }
1346  }
1347  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1348  // This routine must always return a class definition, if any.
1349  if (Def && Def->getDefinition())
1350      Def = Def->getDefinition();
1351  return Def;
1352}
1353
1354/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1355/// from S, where a non-field would be declared. This routine copes
1356/// with the difference between C and C++ scoping rules in structs and
1357/// unions. For example, the following code is well-formed in C but
1358/// ill-formed in C++:
1359/// @code
1360/// struct S6 {
1361///   enum { BAR } e;
1362/// };
1363///
1364/// void test_S6() {
1365///   struct S6 a;
1366///   a.e = BAR;
1367/// }
1368/// @endcode
1369/// For the declaration of BAR, this routine will return a different
1370/// scope. The scope S will be the scope of the unnamed enumeration
1371/// within S6. In C++, this routine will return the scope associated
1372/// with S6, because the enumeration's scope is a transparent
1373/// context but structures can contain non-field names. In C, this
1374/// routine will return the translation unit scope, since the
1375/// enumeration's scope is a transparent context and structures cannot
1376/// contain non-field names.
1377Scope *Sema::getNonFieldDeclScope(Scope *S) {
1378  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1379         (S->getEntity() &&
1380          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1381         (S->isClassScope() && !getLangOpts().CPlusPlus))
1382    S = S->getParent();
1383  return S;
1384}
1385
1386/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1387/// file scope.  lazily create a decl for it. ForRedeclaration is true
1388/// if we're creating this built-in in anticipation of redeclaring the
1389/// built-in.
1390NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1391                                     Scope *S, bool ForRedeclaration,
1392                                     SourceLocation Loc) {
1393  Builtin::ID BID = (Builtin::ID)bid;
1394
1395  ASTContext::GetBuiltinTypeError Error;
1396  QualType R = Context.GetBuiltinType(BID, Error);
1397  switch (Error) {
1398  case ASTContext::GE_None:
1399    // Okay
1400    break;
1401
1402  case ASTContext::GE_Missing_stdio:
1403    if (ForRedeclaration)
1404      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1405        << Context.BuiltinInfo.GetName(BID);
1406    return 0;
1407
1408  case ASTContext::GE_Missing_setjmp:
1409    if (ForRedeclaration)
1410      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1411        << Context.BuiltinInfo.GetName(BID);
1412    return 0;
1413
1414  case ASTContext::GE_Missing_ucontext:
1415    if (ForRedeclaration)
1416      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1417        << Context.BuiltinInfo.GetName(BID);
1418    return 0;
1419  }
1420
1421  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1422    Diag(Loc, diag::ext_implicit_lib_function_decl)
1423      << Context.BuiltinInfo.GetName(BID)
1424      << R;
1425    if (Context.BuiltinInfo.getHeaderName(BID) &&
1426        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1427          != DiagnosticsEngine::Ignored)
1428      Diag(Loc, diag::note_please_include_header)
1429        << Context.BuiltinInfo.getHeaderName(BID)
1430        << Context.BuiltinInfo.GetName(BID);
1431  }
1432
1433  FunctionDecl *New = FunctionDecl::Create(Context,
1434                                           Context.getTranslationUnitDecl(),
1435                                           Loc, Loc, II, R, /*TInfo=*/0,
1436                                           SC_Extern,
1437                                           SC_None, false,
1438                                           /*hasPrototype=*/true);
1439  New->setImplicit();
1440
1441  // Create Decl objects for each parameter, adding them to the
1442  // FunctionDecl.
1443  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1444    SmallVector<ParmVarDecl*, 16> Params;
1445    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1446      ParmVarDecl *parm =
1447        ParmVarDecl::Create(Context, New, SourceLocation(),
1448                            SourceLocation(), 0,
1449                            FT->getArgType(i), /*TInfo=*/0,
1450                            SC_None, SC_None, 0);
1451      parm->setScopeInfo(0, i);
1452      Params.push_back(parm);
1453    }
1454    New->setParams(Params);
1455  }
1456
1457  AddKnownFunctionAttributes(New);
1458
1459  // TUScope is the translation-unit scope to insert this function into.
1460  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1461  // relate Scopes to DeclContexts, and probably eliminate CurContext
1462  // entirely, but we're not there yet.
1463  DeclContext *SavedContext = CurContext;
1464  CurContext = Context.getTranslationUnitDecl();
1465  PushOnScopeChains(New, TUScope);
1466  CurContext = SavedContext;
1467  return New;
1468}
1469
1470bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1471  QualType OldType;
1472  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1473    OldType = OldTypedef->getUnderlyingType();
1474  else
1475    OldType = Context.getTypeDeclType(Old);
1476  QualType NewType = New->getUnderlyingType();
1477
1478  if (NewType->isVariablyModifiedType()) {
1479    // Must not redefine a typedef with a variably-modified type.
1480    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1481    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1482      << Kind << NewType;
1483    if (Old->getLocation().isValid())
1484      Diag(Old->getLocation(), diag::note_previous_definition);
1485    New->setInvalidDecl();
1486    return true;
1487  }
1488
1489  if (OldType != NewType &&
1490      !OldType->isDependentType() &&
1491      !NewType->isDependentType() &&
1492      !Context.hasSameType(OldType, NewType)) {
1493    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1494    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1495      << Kind << NewType << OldType;
1496    if (Old->getLocation().isValid())
1497      Diag(Old->getLocation(), diag::note_previous_definition);
1498    New->setInvalidDecl();
1499    return true;
1500  }
1501  return false;
1502}
1503
1504/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1505/// same name and scope as a previous declaration 'Old'.  Figure out
1506/// how to resolve this situation, merging decls or emitting
1507/// diagnostics as appropriate. If there was an error, set New to be invalid.
1508///
1509void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1510  // If the new decl is known invalid already, don't bother doing any
1511  // merging checks.
1512  if (New->isInvalidDecl()) return;
1513
1514  // Allow multiple definitions for ObjC built-in typedefs.
1515  // FIXME: Verify the underlying types are equivalent!
1516  if (getLangOpts().ObjC1) {
1517    const IdentifierInfo *TypeID = New->getIdentifier();
1518    switch (TypeID->getLength()) {
1519    default: break;
1520    case 2:
1521      {
1522        if (!TypeID->isStr("id"))
1523          break;
1524        QualType T = New->getUnderlyingType();
1525        if (!T->isPointerType())
1526          break;
1527        if (!T->isVoidPointerType()) {
1528          QualType PT = T->getAs<PointerType>()->getPointeeType();
1529          if (!PT->isStructureType())
1530            break;
1531        }
1532        Context.setObjCIdRedefinitionType(T);
1533        // Install the built-in type for 'id', ignoring the current definition.
1534        New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1535        return;
1536      }
1537    case 5:
1538      if (!TypeID->isStr("Class"))
1539        break;
1540      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1541      // Install the built-in type for 'Class', ignoring the current definition.
1542      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1543      return;
1544    case 3:
1545      if (!TypeID->isStr("SEL"))
1546        break;
1547      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1548      // Install the built-in type for 'SEL', ignoring the current definition.
1549      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1550      return;
1551    }
1552    // Fall through - the typedef name was not a builtin type.
1553  }
1554
1555  // Verify the old decl was also a type.
1556  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1557  if (!Old) {
1558    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1559      << New->getDeclName();
1560
1561    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1562    if (OldD->getLocation().isValid())
1563      Diag(OldD->getLocation(), diag::note_previous_definition);
1564
1565    return New->setInvalidDecl();
1566  }
1567
1568  // If the old declaration is invalid, just give up here.
1569  if (Old->isInvalidDecl())
1570    return New->setInvalidDecl();
1571
1572  // If the typedef types are not identical, reject them in all languages and
1573  // with any extensions enabled.
1574  if (isIncompatibleTypedef(Old, New))
1575    return;
1576
1577  // The types match.  Link up the redeclaration chain if the old
1578  // declaration was a typedef.
1579  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1580    New->setPreviousDeclaration(Typedef);
1581
1582  if (getLangOpts().MicrosoftExt)
1583    return;
1584
1585  if (getLangOpts().CPlusPlus) {
1586    // C++ [dcl.typedef]p2:
1587    //   In a given non-class scope, a typedef specifier can be used to
1588    //   redefine the name of any type declared in that scope to refer
1589    //   to the type to which it already refers.
1590    if (!isa<CXXRecordDecl>(CurContext))
1591      return;
1592
1593    // C++0x [dcl.typedef]p4:
1594    //   In a given class scope, a typedef specifier can be used to redefine
1595    //   any class-name declared in that scope that is not also a typedef-name
1596    //   to refer to the type to which it already refers.
1597    //
1598    // This wording came in via DR424, which was a correction to the
1599    // wording in DR56, which accidentally banned code like:
1600    //
1601    //   struct S {
1602    //     typedef struct A { } A;
1603    //   };
1604    //
1605    // in the C++03 standard. We implement the C++0x semantics, which
1606    // allow the above but disallow
1607    //
1608    //   struct S {
1609    //     typedef int I;
1610    //     typedef int I;
1611    //   };
1612    //
1613    // since that was the intent of DR56.
1614    if (!isa<TypedefNameDecl>(Old))
1615      return;
1616
1617    Diag(New->getLocation(), diag::err_redefinition)
1618      << New->getDeclName();
1619    Diag(Old->getLocation(), diag::note_previous_definition);
1620    return New->setInvalidDecl();
1621  }
1622
1623  // Modules always permit redefinition of typedefs, as does C11.
1624  if (getLangOpts().Modules || getLangOpts().C11)
1625    return;
1626
1627  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1628  // is normally mapped to an error, but can be controlled with
1629  // -Wtypedef-redefinition.  If either the original or the redefinition is
1630  // in a system header, don't emit this for compatibility with GCC.
1631  if (getDiagnostics().getSuppressSystemWarnings() &&
1632      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1633       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1634    return;
1635
1636  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1637    << New->getDeclName();
1638  Diag(Old->getLocation(), diag::note_previous_definition);
1639  return;
1640}
1641
1642/// DeclhasAttr - returns true if decl Declaration already has the target
1643/// attribute.
1644static bool
1645DeclHasAttr(const Decl *D, const Attr *A) {
1646  // There can be multiple AvailabilityAttr in a Decl. Make sure we copy
1647  // all of them. It is mergeAvailabilityAttr in SemaDeclAttr.cpp that is
1648  // responsible for making sure they are consistent.
1649  const AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(A);
1650  if (AA)
1651    return false;
1652
1653  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1654  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1655  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1656    if ((*i)->getKind() == A->getKind()) {
1657      if (Ann) {
1658        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1659          return true;
1660        continue;
1661      }
1662      // FIXME: Don't hardcode this check
1663      if (OA && isa<OwnershipAttr>(*i))
1664        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1665      return true;
1666    }
1667
1668  return false;
1669}
1670
1671bool Sema::mergeDeclAttribute(Decl *D, InheritableAttr *Attr) {
1672  InheritableAttr *NewAttr = NULL;
1673  if (AvailabilityAttr *AA = dyn_cast<AvailabilityAttr>(Attr))
1674    NewAttr = mergeAvailabilityAttr(D, AA->getRange(), AA->getPlatform(),
1675                                    AA->getIntroduced(), AA->getDeprecated(),
1676                                    AA->getObsoleted(), AA->getUnavailable(),
1677                                    AA->getMessage());
1678  else if (VisibilityAttr *VA = dyn_cast<VisibilityAttr>(Attr))
1679    NewAttr = mergeVisibilityAttr(D, VA->getRange(), VA->getVisibility());
1680  else if (DLLImportAttr *ImportA = dyn_cast<DLLImportAttr>(Attr))
1681    NewAttr = mergeDLLImportAttr(D, ImportA->getRange());
1682  else if (DLLExportAttr *ExportA = dyn_cast<DLLExportAttr>(Attr))
1683    NewAttr = mergeDLLExportAttr(D, ExportA->getRange());
1684  else if (FormatAttr *FA = dyn_cast<FormatAttr>(Attr))
1685    NewAttr = mergeFormatAttr(D, FA->getRange(), FA->getType(),
1686                              FA->getFormatIdx(), FA->getFirstArg());
1687  else if (SectionAttr *SA = dyn_cast<SectionAttr>(Attr))
1688    NewAttr = mergeSectionAttr(D, SA->getRange(), SA->getName());
1689  else if (!DeclHasAttr(D, Attr))
1690    NewAttr = cast<InheritableAttr>(Attr->clone(Context));
1691
1692  if (NewAttr) {
1693    NewAttr->setInherited(true);
1694    D->addAttr(NewAttr);
1695    return true;
1696  }
1697
1698  return false;
1699}
1700
1701/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1702void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1703                               bool MergeDeprecation) {
1704  if (!Old->hasAttrs())
1705    return;
1706
1707  bool foundAny = New->hasAttrs();
1708
1709  // Ensure that any moving of objects within the allocated map is done before
1710  // we process them.
1711  if (!foundAny) New->setAttrs(AttrVec());
1712
1713  for (specific_attr_iterator<InheritableAttr>
1714         i = Old->specific_attr_begin<InheritableAttr>(),
1715         e = Old->specific_attr_end<InheritableAttr>();
1716       i != e; ++i) {
1717    // Ignore deprecated/unavailable/availability attributes if requested.
1718    if (!MergeDeprecation &&
1719        (isa<DeprecatedAttr>(*i) ||
1720         isa<UnavailableAttr>(*i) ||
1721         isa<AvailabilityAttr>(*i)))
1722      continue;
1723
1724    if (mergeDeclAttribute(New, *i))
1725      foundAny = true;
1726  }
1727
1728  if (!foundAny) New->dropAttrs();
1729}
1730
1731/// mergeParamDeclAttributes - Copy attributes from the old parameter
1732/// to the new one.
1733static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1734                                     const ParmVarDecl *oldDecl,
1735                                     ASTContext &C) {
1736  if (!oldDecl->hasAttrs())
1737    return;
1738
1739  bool foundAny = newDecl->hasAttrs();
1740
1741  // Ensure that any moving of objects within the allocated map is
1742  // done before we process them.
1743  if (!foundAny) newDecl->setAttrs(AttrVec());
1744
1745  for (specific_attr_iterator<InheritableParamAttr>
1746       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1747       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1748    if (!DeclHasAttr(newDecl, *i)) {
1749      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1750      newAttr->setInherited(true);
1751      newDecl->addAttr(newAttr);
1752      foundAny = true;
1753    }
1754  }
1755
1756  if (!foundAny) newDecl->dropAttrs();
1757}
1758
1759namespace {
1760
1761/// Used in MergeFunctionDecl to keep track of function parameters in
1762/// C.
1763struct GNUCompatibleParamWarning {
1764  ParmVarDecl *OldParm;
1765  ParmVarDecl *NewParm;
1766  QualType PromotedType;
1767};
1768
1769}
1770
1771/// getSpecialMember - get the special member enum for a method.
1772Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1773  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1774    if (Ctor->isDefaultConstructor())
1775      return Sema::CXXDefaultConstructor;
1776
1777    if (Ctor->isCopyConstructor())
1778      return Sema::CXXCopyConstructor;
1779
1780    if (Ctor->isMoveConstructor())
1781      return Sema::CXXMoveConstructor;
1782  } else if (isa<CXXDestructorDecl>(MD)) {
1783    return Sema::CXXDestructor;
1784  } else if (MD->isCopyAssignmentOperator()) {
1785    return Sema::CXXCopyAssignment;
1786  } else if (MD->isMoveAssignmentOperator()) {
1787    return Sema::CXXMoveAssignment;
1788  }
1789
1790  return Sema::CXXInvalid;
1791}
1792
1793/// canRedefineFunction - checks if a function can be redefined. Currently,
1794/// only extern inline functions can be redefined, and even then only in
1795/// GNU89 mode.
1796static bool canRedefineFunction(const FunctionDecl *FD,
1797                                const LangOptions& LangOpts) {
1798  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1799          !LangOpts.CPlusPlus &&
1800          FD->isInlineSpecified() &&
1801          FD->getStorageClass() == SC_Extern);
1802}
1803
1804/// MergeFunctionDecl - We just parsed a function 'New' from
1805/// declarator D which has the same name and scope as a previous
1806/// declaration 'Old'.  Figure out how to resolve this situation,
1807/// merging decls or emitting diagnostics as appropriate.
1808///
1809/// In C++, New and Old must be declarations that are not
1810/// overloaded. Use IsOverload to determine whether New and Old are
1811/// overloaded, and to select the Old declaration that New should be
1812/// merged with.
1813///
1814/// Returns true if there was an error, false otherwise.
1815bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1816  // Verify the old decl was also a function.
1817  FunctionDecl *Old = 0;
1818  if (FunctionTemplateDecl *OldFunctionTemplate
1819        = dyn_cast<FunctionTemplateDecl>(OldD))
1820    Old = OldFunctionTemplate->getTemplatedDecl();
1821  else
1822    Old = dyn_cast<FunctionDecl>(OldD);
1823  if (!Old) {
1824    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1825      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1826      Diag(Shadow->getTargetDecl()->getLocation(),
1827           diag::note_using_decl_target);
1828      Diag(Shadow->getUsingDecl()->getLocation(),
1829           diag::note_using_decl) << 0;
1830      return true;
1831    }
1832
1833    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1834      << New->getDeclName();
1835    Diag(OldD->getLocation(), diag::note_previous_definition);
1836    return true;
1837  }
1838
1839  // Determine whether the previous declaration was a definition,
1840  // implicit declaration, or a declaration.
1841  diag::kind PrevDiag;
1842  if (Old->isThisDeclarationADefinition())
1843    PrevDiag = diag::note_previous_definition;
1844  else if (Old->isImplicit())
1845    PrevDiag = diag::note_previous_implicit_declaration;
1846  else
1847    PrevDiag = diag::note_previous_declaration;
1848
1849  QualType OldQType = Context.getCanonicalType(Old->getType());
1850  QualType NewQType = Context.getCanonicalType(New->getType());
1851
1852  // Don't complain about this if we're in GNU89 mode and the old function
1853  // is an extern inline function.
1854  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1855      New->getStorageClass() == SC_Static &&
1856      Old->getStorageClass() != SC_Static &&
1857      !canRedefineFunction(Old, getLangOpts())) {
1858    if (getLangOpts().MicrosoftExt) {
1859      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1860      Diag(Old->getLocation(), PrevDiag);
1861    } else {
1862      Diag(New->getLocation(), diag::err_static_non_static) << New;
1863      Diag(Old->getLocation(), PrevDiag);
1864      return true;
1865    }
1866  }
1867
1868  // If a function is first declared with a calling convention, but is
1869  // later declared or defined without one, the second decl assumes the
1870  // calling convention of the first.
1871  //
1872  // For the new decl, we have to look at the NON-canonical type to tell the
1873  // difference between a function that really doesn't have a calling
1874  // convention and one that is declared cdecl. That's because in
1875  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1876  // because it is the default calling convention.
1877  //
1878  // Note also that we DO NOT return at this point, because we still have
1879  // other tests to run.
1880  const FunctionType *OldType = cast<FunctionType>(OldQType);
1881  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1882  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1883  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1884  bool RequiresAdjustment = false;
1885  if (OldTypeInfo.getCC() != CC_Default &&
1886      NewTypeInfo.getCC() == CC_Default) {
1887    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1888    RequiresAdjustment = true;
1889  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1890                                     NewTypeInfo.getCC())) {
1891    // Calling conventions really aren't compatible, so complain.
1892    Diag(New->getLocation(), diag::err_cconv_change)
1893      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1894      << (OldTypeInfo.getCC() == CC_Default)
1895      << (OldTypeInfo.getCC() == CC_Default ? "" :
1896          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1897    Diag(Old->getLocation(), diag::note_previous_declaration);
1898    return true;
1899  }
1900
1901  // FIXME: diagnose the other way around?
1902  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1903    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1904    RequiresAdjustment = true;
1905  }
1906
1907  // Merge regparm attribute.
1908  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1909      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1910    if (NewTypeInfo.getHasRegParm()) {
1911      Diag(New->getLocation(), diag::err_regparm_mismatch)
1912        << NewType->getRegParmType()
1913        << OldType->getRegParmType();
1914      Diag(Old->getLocation(), diag::note_previous_declaration);
1915      return true;
1916    }
1917
1918    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1919    RequiresAdjustment = true;
1920  }
1921
1922  // Merge ns_returns_retained attribute.
1923  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1924    if (NewTypeInfo.getProducesResult()) {
1925      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1926      Diag(Old->getLocation(), diag::note_previous_declaration);
1927      return true;
1928    }
1929
1930    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1931    RequiresAdjustment = true;
1932  }
1933
1934  if (RequiresAdjustment) {
1935    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1936    New->setType(QualType(NewType, 0));
1937    NewQType = Context.getCanonicalType(New->getType());
1938  }
1939
1940  if (getLangOpts().CPlusPlus) {
1941    // (C++98 13.1p2):
1942    //   Certain function declarations cannot be overloaded:
1943    //     -- Function declarations that differ only in the return type
1944    //        cannot be overloaded.
1945    QualType OldReturnType = OldType->getResultType();
1946    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1947    QualType ResQT;
1948    if (OldReturnType != NewReturnType) {
1949      if (NewReturnType->isObjCObjectPointerType()
1950          && OldReturnType->isObjCObjectPointerType())
1951        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1952      if (ResQT.isNull()) {
1953        if (New->isCXXClassMember() && New->isOutOfLine())
1954          Diag(New->getLocation(),
1955               diag::err_member_def_does_not_match_ret_type) << New;
1956        else
1957          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1958        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1959        return true;
1960      }
1961      else
1962        NewQType = ResQT;
1963    }
1964
1965    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1966    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1967    if (OldMethod && NewMethod) {
1968      // Preserve triviality.
1969      NewMethod->setTrivial(OldMethod->isTrivial());
1970
1971      // MSVC allows explicit template specialization at class scope:
1972      // 2 CXMethodDecls referring to the same function will be injected.
1973      // We don't want a redeclartion error.
1974      bool IsClassScopeExplicitSpecialization =
1975                              OldMethod->isFunctionTemplateSpecialization() &&
1976                              NewMethod->isFunctionTemplateSpecialization();
1977      bool isFriend = NewMethod->getFriendObjectKind();
1978
1979      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1980          !IsClassScopeExplicitSpecialization) {
1981        //    -- Member function declarations with the same name and the
1982        //       same parameter types cannot be overloaded if any of them
1983        //       is a static member function declaration.
1984        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1985          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1986          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1987          return true;
1988        }
1989
1990        // C++ [class.mem]p1:
1991        //   [...] A member shall not be declared twice in the
1992        //   member-specification, except that a nested class or member
1993        //   class template can be declared and then later defined.
1994        unsigned NewDiag;
1995        if (isa<CXXConstructorDecl>(OldMethod))
1996          NewDiag = diag::err_constructor_redeclared;
1997        else if (isa<CXXDestructorDecl>(NewMethod))
1998          NewDiag = diag::err_destructor_redeclared;
1999        else if (isa<CXXConversionDecl>(NewMethod))
2000          NewDiag = diag::err_conv_function_redeclared;
2001        else
2002          NewDiag = diag::err_member_redeclared;
2003
2004        Diag(New->getLocation(), NewDiag);
2005        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2006
2007      // Complain if this is an explicit declaration of a special
2008      // member that was initially declared implicitly.
2009      //
2010      // As an exception, it's okay to befriend such methods in order
2011      // to permit the implicit constructor/destructor/operator calls.
2012      } else if (OldMethod->isImplicit()) {
2013        if (isFriend) {
2014          NewMethod->setImplicit();
2015        } else {
2016          Diag(NewMethod->getLocation(),
2017               diag::err_definition_of_implicitly_declared_member)
2018            << New << getSpecialMember(OldMethod);
2019          return true;
2020        }
2021      } else if (OldMethod->isExplicitlyDefaulted()) {
2022        Diag(NewMethod->getLocation(),
2023             diag::err_definition_of_explicitly_defaulted_member)
2024          << getSpecialMember(OldMethod);
2025        return true;
2026      }
2027    }
2028
2029    // (C++98 8.3.5p3):
2030    //   All declarations for a function shall agree exactly in both the
2031    //   return type and the parameter-type-list.
2032    // We also want to respect all the extended bits except noreturn.
2033
2034    // noreturn should now match unless the old type info didn't have it.
2035    QualType OldQTypeForComparison = OldQType;
2036    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
2037      assert(OldQType == QualType(OldType, 0));
2038      const FunctionType *OldTypeForComparison
2039        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
2040      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
2041      assert(OldQTypeForComparison.isCanonical());
2042    }
2043
2044    if (OldQTypeForComparison == NewQType)
2045      return MergeCompatibleFunctionDecls(New, Old, S);
2046
2047    // Fall through for conflicting redeclarations and redefinitions.
2048  }
2049
2050  // C: Function types need to be compatible, not identical. This handles
2051  // duplicate function decls like "void f(int); void f(enum X);" properly.
2052  if (!getLangOpts().CPlusPlus &&
2053      Context.typesAreCompatible(OldQType, NewQType)) {
2054    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
2055    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
2056    const FunctionProtoType *OldProto = 0;
2057    if (isa<FunctionNoProtoType>(NewFuncType) &&
2058        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
2059      // The old declaration provided a function prototype, but the
2060      // new declaration does not. Merge in the prototype.
2061      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
2062      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
2063                                                 OldProto->arg_type_end());
2064      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
2065                                         ParamTypes.data(), ParamTypes.size(),
2066                                         OldProto->getExtProtoInfo());
2067      New->setType(NewQType);
2068      New->setHasInheritedPrototype();
2069
2070      // Synthesize a parameter for each argument type.
2071      SmallVector<ParmVarDecl*, 16> Params;
2072      for (FunctionProtoType::arg_type_iterator
2073             ParamType = OldProto->arg_type_begin(),
2074             ParamEnd = OldProto->arg_type_end();
2075           ParamType != ParamEnd; ++ParamType) {
2076        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
2077                                                 SourceLocation(),
2078                                                 SourceLocation(), 0,
2079                                                 *ParamType, /*TInfo=*/0,
2080                                                 SC_None, SC_None,
2081                                                 0);
2082        Param->setScopeInfo(0, Params.size());
2083        Param->setImplicit();
2084        Params.push_back(Param);
2085      }
2086
2087      New->setParams(Params);
2088    }
2089
2090    return MergeCompatibleFunctionDecls(New, Old, S);
2091  }
2092
2093  // GNU C permits a K&R definition to follow a prototype declaration
2094  // if the declared types of the parameters in the K&R definition
2095  // match the types in the prototype declaration, even when the
2096  // promoted types of the parameters from the K&R definition differ
2097  // from the types in the prototype. GCC then keeps the types from
2098  // the prototype.
2099  //
2100  // If a variadic prototype is followed by a non-variadic K&R definition,
2101  // the K&R definition becomes variadic.  This is sort of an edge case, but
2102  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2103  // C99 6.9.1p8.
2104  if (!getLangOpts().CPlusPlus &&
2105      Old->hasPrototype() && !New->hasPrototype() &&
2106      New->getType()->getAs<FunctionProtoType>() &&
2107      Old->getNumParams() == New->getNumParams()) {
2108    SmallVector<QualType, 16> ArgTypes;
2109    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2110    const FunctionProtoType *OldProto
2111      = Old->getType()->getAs<FunctionProtoType>();
2112    const FunctionProtoType *NewProto
2113      = New->getType()->getAs<FunctionProtoType>();
2114
2115    // Determine whether this is the GNU C extension.
2116    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2117                                               NewProto->getResultType());
2118    bool LooseCompatible = !MergedReturn.isNull();
2119    for (unsigned Idx = 0, End = Old->getNumParams();
2120         LooseCompatible && Idx != End; ++Idx) {
2121      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2122      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2123      if (Context.typesAreCompatible(OldParm->getType(),
2124                                     NewProto->getArgType(Idx))) {
2125        ArgTypes.push_back(NewParm->getType());
2126      } else if (Context.typesAreCompatible(OldParm->getType(),
2127                                            NewParm->getType(),
2128                                            /*CompareUnqualified=*/true)) {
2129        GNUCompatibleParamWarning Warn
2130          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2131        Warnings.push_back(Warn);
2132        ArgTypes.push_back(NewParm->getType());
2133      } else
2134        LooseCompatible = false;
2135    }
2136
2137    if (LooseCompatible) {
2138      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2139        Diag(Warnings[Warn].NewParm->getLocation(),
2140             diag::ext_param_promoted_not_compatible_with_prototype)
2141          << Warnings[Warn].PromotedType
2142          << Warnings[Warn].OldParm->getType();
2143        if (Warnings[Warn].OldParm->getLocation().isValid())
2144          Diag(Warnings[Warn].OldParm->getLocation(),
2145               diag::note_previous_declaration);
2146      }
2147
2148      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2149                                           ArgTypes.size(),
2150                                           OldProto->getExtProtoInfo()));
2151      return MergeCompatibleFunctionDecls(New, Old, S);
2152    }
2153
2154    // Fall through to diagnose conflicting types.
2155  }
2156
2157  // A function that has already been declared has been redeclared or defined
2158  // with a different type- show appropriate diagnostic
2159  if (unsigned BuiltinID = Old->getBuiltinID()) {
2160    // The user has declared a builtin function with an incompatible
2161    // signature.
2162    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2163      // The function the user is redeclaring is a library-defined
2164      // function like 'malloc' or 'printf'. Warn about the
2165      // redeclaration, then pretend that we don't know about this
2166      // library built-in.
2167      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2168      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2169        << Old << Old->getType();
2170      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2171      Old->setInvalidDecl();
2172      return false;
2173    }
2174
2175    PrevDiag = diag::note_previous_builtin_declaration;
2176  }
2177
2178  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2179  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2180  return true;
2181}
2182
2183/// \brief Completes the merge of two function declarations that are
2184/// known to be compatible.
2185///
2186/// This routine handles the merging of attributes and other
2187/// properties of function declarations form the old declaration to
2188/// the new declaration, once we know that New is in fact a
2189/// redeclaration of Old.
2190///
2191/// \returns false
2192bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2193                                        Scope *S) {
2194  // Merge the attributes
2195  mergeDeclAttributes(New, Old);
2196
2197  // Merge the storage class.
2198  if (Old->getStorageClass() != SC_Extern &&
2199      Old->getStorageClass() != SC_None)
2200    New->setStorageClass(Old->getStorageClass());
2201
2202  // Merge "pure" flag.
2203  if (Old->isPure())
2204    New->setPure();
2205
2206  // Merge attributes from the parameters.  These can mismatch with K&R
2207  // declarations.
2208  if (New->getNumParams() == Old->getNumParams())
2209    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2210      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2211                               Context);
2212
2213  if (getLangOpts().CPlusPlus)
2214    return MergeCXXFunctionDecl(New, Old, S);
2215
2216  return false;
2217}
2218
2219
2220void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2221                                ObjCMethodDecl *oldMethod) {
2222  // We don't want to merge unavailable and deprecated attributes
2223  // except from interface to implementation.
2224  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2225
2226  // Merge the attributes.
2227  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2228
2229  // Merge attributes from the parameters.
2230  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2231  for (ObjCMethodDecl::param_iterator
2232         ni = newMethod->param_begin(), ne = newMethod->param_end();
2233       ni != ne; ++ni, ++oi)
2234    mergeParamDeclAttributes(*ni, *oi, Context);
2235
2236  CheckObjCMethodOverride(newMethod, oldMethod, true);
2237}
2238
2239/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2240/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2241/// emitting diagnostics as appropriate.
2242///
2243/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2244/// to here in AddInitializerToDecl. We can't check them before the initializer
2245/// is attached.
2246void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2247  if (New->isInvalidDecl() || Old->isInvalidDecl())
2248    return;
2249
2250  QualType MergedT;
2251  if (getLangOpts().CPlusPlus) {
2252    AutoType *AT = New->getType()->getContainedAutoType();
2253    if (AT && !AT->isDeduced()) {
2254      // We don't know what the new type is until the initializer is attached.
2255      return;
2256    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2257      // These could still be something that needs exception specs checked.
2258      return MergeVarDeclExceptionSpecs(New, Old);
2259    }
2260    // C++ [basic.link]p10:
2261    //   [...] the types specified by all declarations referring to a given
2262    //   object or function shall be identical, except that declarations for an
2263    //   array object can specify array types that differ by the presence or
2264    //   absence of a major array bound (8.3.4).
2265    else if (Old->getType()->isIncompleteArrayType() &&
2266             New->getType()->isArrayType()) {
2267      CanQual<ArrayType> OldArray
2268        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2269      CanQual<ArrayType> NewArray
2270        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2271      if (OldArray->getElementType() == NewArray->getElementType())
2272        MergedT = New->getType();
2273    } else if (Old->getType()->isArrayType() &&
2274             New->getType()->isIncompleteArrayType()) {
2275      CanQual<ArrayType> OldArray
2276        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2277      CanQual<ArrayType> NewArray
2278        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2279      if (OldArray->getElementType() == NewArray->getElementType())
2280        MergedT = Old->getType();
2281    } else if (New->getType()->isObjCObjectPointerType()
2282               && Old->getType()->isObjCObjectPointerType()) {
2283        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2284                                                        Old->getType());
2285    }
2286  } else {
2287    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2288  }
2289  if (MergedT.isNull()) {
2290    Diag(New->getLocation(), diag::err_redefinition_different_type)
2291      << New->getDeclName();
2292    Diag(Old->getLocation(), diag::note_previous_definition);
2293    return New->setInvalidDecl();
2294  }
2295  New->setType(MergedT);
2296}
2297
2298/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2299/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2300/// situation, merging decls or emitting diagnostics as appropriate.
2301///
2302/// Tentative definition rules (C99 6.9.2p2) are checked by
2303/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2304/// definitions here, since the initializer hasn't been attached.
2305///
2306void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2307  // If the new decl is already invalid, don't do any other checking.
2308  if (New->isInvalidDecl())
2309    return;
2310
2311  // Verify the old decl was also a variable.
2312  VarDecl *Old = 0;
2313  if (!Previous.isSingleResult() ||
2314      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2315    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2316      << New->getDeclName();
2317    Diag(Previous.getRepresentativeDecl()->getLocation(),
2318         diag::note_previous_definition);
2319    return New->setInvalidDecl();
2320  }
2321
2322  // C++ [class.mem]p1:
2323  //   A member shall not be declared twice in the member-specification [...]
2324  //
2325  // Here, we need only consider static data members.
2326  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2327    Diag(New->getLocation(), diag::err_duplicate_member)
2328      << New->getIdentifier();
2329    Diag(Old->getLocation(), diag::note_previous_declaration);
2330    New->setInvalidDecl();
2331  }
2332
2333  mergeDeclAttributes(New, Old);
2334  // Warn if an already-declared variable is made a weak_import in a subsequent
2335  // declaration
2336  if (New->getAttr<WeakImportAttr>() &&
2337      Old->getStorageClass() == SC_None &&
2338      !Old->getAttr<WeakImportAttr>()) {
2339    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2340    Diag(Old->getLocation(), diag::note_previous_definition);
2341    // Remove weak_import attribute on new declaration.
2342    New->dropAttr<WeakImportAttr>();
2343  }
2344
2345  // Merge the types.
2346  MergeVarDeclTypes(New, Old);
2347  if (New->isInvalidDecl())
2348    return;
2349
2350  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2351  if (New->getStorageClass() == SC_Static &&
2352      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2353    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2354    Diag(Old->getLocation(), diag::note_previous_definition);
2355    return New->setInvalidDecl();
2356  }
2357  // C99 6.2.2p4:
2358  //   For an identifier declared with the storage-class specifier
2359  //   extern in a scope in which a prior declaration of that
2360  //   identifier is visible,23) if the prior declaration specifies
2361  //   internal or external linkage, the linkage of the identifier at
2362  //   the later declaration is the same as the linkage specified at
2363  //   the prior declaration. If no prior declaration is visible, or
2364  //   if the prior declaration specifies no linkage, then the
2365  //   identifier has external linkage.
2366  if (New->hasExternalStorage() && Old->hasLinkage())
2367    /* Okay */;
2368  else if (New->getStorageClass() != SC_Static &&
2369           Old->getStorageClass() == SC_Static) {
2370    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2371    Diag(Old->getLocation(), diag::note_previous_definition);
2372    return New->setInvalidDecl();
2373  }
2374
2375  // Check if extern is followed by non-extern and vice-versa.
2376  if (New->hasExternalStorage() &&
2377      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2378    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2379    Diag(Old->getLocation(), diag::note_previous_definition);
2380    return New->setInvalidDecl();
2381  }
2382  if (Old->hasExternalStorage() &&
2383      !New->hasLinkage() && New->isLocalVarDecl()) {
2384    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2385    Diag(Old->getLocation(), diag::note_previous_definition);
2386    return New->setInvalidDecl();
2387  }
2388
2389  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2390
2391  // FIXME: The test for external storage here seems wrong? We still
2392  // need to check for mismatches.
2393  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2394      // Don't complain about out-of-line definitions of static members.
2395      !(Old->getLexicalDeclContext()->isRecord() &&
2396        !New->getLexicalDeclContext()->isRecord())) {
2397    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2398    Diag(Old->getLocation(), diag::note_previous_definition);
2399    return New->setInvalidDecl();
2400  }
2401
2402  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2403    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2404    Diag(Old->getLocation(), diag::note_previous_definition);
2405  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2406    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2407    Diag(Old->getLocation(), diag::note_previous_definition);
2408  }
2409
2410  // C++ doesn't have tentative definitions, so go right ahead and check here.
2411  const VarDecl *Def;
2412  if (getLangOpts().CPlusPlus &&
2413      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2414      (Def = Old->getDefinition())) {
2415    Diag(New->getLocation(), diag::err_redefinition)
2416      << New->getDeclName();
2417    Diag(Def->getLocation(), diag::note_previous_definition);
2418    New->setInvalidDecl();
2419    return;
2420  }
2421  // c99 6.2.2 P4.
2422  // For an identifier declared with the storage-class specifier extern in a
2423  // scope in which a prior declaration of that identifier is visible, if
2424  // the prior declaration specifies internal or external linkage, the linkage
2425  // of the identifier at the later declaration is the same as the linkage
2426  // specified at the prior declaration.
2427  // FIXME. revisit this code.
2428  if (New->hasExternalStorage() &&
2429      Old->getLinkage() == InternalLinkage &&
2430      New->getDeclContext() == Old->getDeclContext())
2431    New->setStorageClass(Old->getStorageClass());
2432
2433  // Keep a chain of previous declarations.
2434  New->setPreviousDeclaration(Old);
2435
2436  // Inherit access appropriately.
2437  New->setAccess(Old->getAccess());
2438}
2439
2440/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2441/// no declarator (e.g. "struct foo;") is parsed.
2442Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2443                                       DeclSpec &DS) {
2444  return ParsedFreeStandingDeclSpec(S, AS, DS,
2445                                    MultiTemplateParamsArg(*this, 0, 0));
2446}
2447
2448/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2449/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2450/// parameters to cope with template friend declarations.
2451Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2452                                       DeclSpec &DS,
2453                                       MultiTemplateParamsArg TemplateParams) {
2454  Decl *TagD = 0;
2455  TagDecl *Tag = 0;
2456  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2457      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2458      DS.getTypeSpecType() == DeclSpec::TST_union ||
2459      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2460    TagD = DS.getRepAsDecl();
2461
2462    if (!TagD) // We probably had an error
2463      return 0;
2464
2465    // Note that the above type specs guarantee that the
2466    // type rep is a Decl, whereas in many of the others
2467    // it's a Type.
2468    if (isa<TagDecl>(TagD))
2469      Tag = cast<TagDecl>(TagD);
2470    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2471      Tag = CTD->getTemplatedDecl();
2472  }
2473
2474  if (Tag) {
2475    Tag->setFreeStanding();
2476    if (Tag->isInvalidDecl())
2477      return Tag;
2478  }
2479
2480  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2481    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2482    // or incomplete types shall not be restrict-qualified."
2483    if (TypeQuals & DeclSpec::TQ_restrict)
2484      Diag(DS.getRestrictSpecLoc(),
2485           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2486           << DS.getSourceRange();
2487  }
2488
2489  if (DS.isConstexprSpecified()) {
2490    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2491    // and definitions of functions and variables.
2492    if (Tag)
2493      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2494        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2495            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2496            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2497    else
2498      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2499    // Don't emit warnings after this error.
2500    return TagD;
2501  }
2502
2503  if (DS.isFriendSpecified()) {
2504    // If we're dealing with a decl but not a TagDecl, assume that
2505    // whatever routines created it handled the friendship aspect.
2506    if (TagD && !Tag)
2507      return 0;
2508    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2509  }
2510
2511  // Track whether we warned about the fact that there aren't any
2512  // declarators.
2513  bool emittedWarning = false;
2514
2515  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2516    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2517        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2518      if (getLangOpts().CPlusPlus ||
2519          Record->getDeclContext()->isRecord())
2520        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2521
2522      Diag(DS.getLocStart(), diag::ext_no_declarators)
2523        << DS.getSourceRange();
2524      emittedWarning = true;
2525    }
2526  }
2527
2528  // Check for Microsoft C extension: anonymous struct.
2529  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2530      CurContext->isRecord() &&
2531      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2532    // Handle 2 kinds of anonymous struct:
2533    //   struct STRUCT;
2534    // and
2535    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2536    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2537    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2538        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2539         DS.getRepAsType().get()->isStructureType())) {
2540      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2541        << DS.getSourceRange();
2542      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2543    }
2544  }
2545
2546  if (getLangOpts().CPlusPlus &&
2547      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2548    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2549      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2550          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2551        Diag(Enum->getLocation(), diag::ext_no_declarators)
2552          << DS.getSourceRange();
2553        emittedWarning = true;
2554      }
2555
2556  // Skip all the checks below if we have a type error.
2557  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2558
2559  if (!DS.isMissingDeclaratorOk()) {
2560    // Warn about typedefs of enums without names, since this is an
2561    // extension in both Microsoft and GNU.
2562    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2563        Tag && isa<EnumDecl>(Tag)) {
2564      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2565        << DS.getSourceRange();
2566      return Tag;
2567    }
2568
2569    Diag(DS.getLocStart(), diag::ext_no_declarators)
2570      << DS.getSourceRange();
2571    emittedWarning = true;
2572  }
2573
2574  // We're going to complain about a bunch of spurious specifiers;
2575  // only do this if we're declaring a tag, because otherwise we
2576  // should be getting diag::ext_no_declarators.
2577  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2578    return TagD;
2579
2580  // Note that a linkage-specification sets a storage class, but
2581  // 'extern "C" struct foo;' is actually valid and not theoretically
2582  // useless.
2583  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2584    if (!DS.isExternInLinkageSpec())
2585      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2586        << DeclSpec::getSpecifierName(scs);
2587
2588  if (DS.isThreadSpecified())
2589    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2590  if (DS.getTypeQualifiers()) {
2591    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2592      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2593    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2594      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2595    // Restrict is covered above.
2596  }
2597  if (DS.isInlineSpecified())
2598    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2599  if (DS.isVirtualSpecified())
2600    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2601  if (DS.isExplicitSpecified())
2602    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2603
2604  if (DS.isModulePrivateSpecified() &&
2605      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2606    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2607      << Tag->getTagKind()
2608      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2609
2610  // Warn about ignored type attributes, for example:
2611  // __attribute__((aligned)) struct A;
2612  // Attributes should be placed after tag to apply to type declaration.
2613  if (!DS.getAttributes().empty()) {
2614    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2615    if (TypeSpecType == DeclSpec::TST_class ||
2616        TypeSpecType == DeclSpec::TST_struct ||
2617        TypeSpecType == DeclSpec::TST_union ||
2618        TypeSpecType == DeclSpec::TST_enum) {
2619      AttributeList* attrs = DS.getAttributes().getList();
2620      while (attrs) {
2621        Diag(attrs->getScopeLoc(),
2622             diag::warn_declspec_attribute_ignored)
2623        << attrs->getName()
2624        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2625            TypeSpecType == DeclSpec::TST_struct ? 1 :
2626            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2627        attrs = attrs->getNext();
2628      }
2629    }
2630  }
2631
2632  return TagD;
2633}
2634
2635/// We are trying to inject an anonymous member into the given scope;
2636/// check if there's an existing declaration that can't be overloaded.
2637///
2638/// \return true if this is a forbidden redeclaration
2639static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2640                                         Scope *S,
2641                                         DeclContext *Owner,
2642                                         DeclarationName Name,
2643                                         SourceLocation NameLoc,
2644                                         unsigned diagnostic) {
2645  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2646                 Sema::ForRedeclaration);
2647  if (!SemaRef.LookupName(R, S)) return false;
2648
2649  if (R.getAsSingle<TagDecl>())
2650    return false;
2651
2652  // Pick a representative declaration.
2653  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2654  assert(PrevDecl && "Expected a non-null Decl");
2655
2656  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2657    return false;
2658
2659  SemaRef.Diag(NameLoc, diagnostic) << Name;
2660  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2661
2662  return true;
2663}
2664
2665/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2666/// anonymous struct or union AnonRecord into the owning context Owner
2667/// and scope S. This routine will be invoked just after we realize
2668/// that an unnamed union or struct is actually an anonymous union or
2669/// struct, e.g.,
2670///
2671/// @code
2672/// union {
2673///   int i;
2674///   float f;
2675/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2676///    // f into the surrounding scope.x
2677/// @endcode
2678///
2679/// This routine is recursive, injecting the names of nested anonymous
2680/// structs/unions into the owning context and scope as well.
2681static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2682                                                DeclContext *Owner,
2683                                                RecordDecl *AnonRecord,
2684                                                AccessSpecifier AS,
2685                              SmallVector<NamedDecl*, 2> &Chaining,
2686                                                      bool MSAnonStruct) {
2687  unsigned diagKind
2688    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2689                            : diag::err_anonymous_struct_member_redecl;
2690
2691  bool Invalid = false;
2692
2693  // Look every FieldDecl and IndirectFieldDecl with a name.
2694  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2695                               DEnd = AnonRecord->decls_end();
2696       D != DEnd; ++D) {
2697    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2698        cast<NamedDecl>(*D)->getDeclName()) {
2699      ValueDecl *VD = cast<ValueDecl>(*D);
2700      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2701                                       VD->getLocation(), diagKind)) {
2702        // C++ [class.union]p2:
2703        //   The names of the members of an anonymous union shall be
2704        //   distinct from the names of any other entity in the
2705        //   scope in which the anonymous union is declared.
2706        Invalid = true;
2707      } else {
2708        // C++ [class.union]p2:
2709        //   For the purpose of name lookup, after the anonymous union
2710        //   definition, the members of the anonymous union are
2711        //   considered to have been defined in the scope in which the
2712        //   anonymous union is declared.
2713        unsigned OldChainingSize = Chaining.size();
2714        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2715          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2716               PE = IF->chain_end(); PI != PE; ++PI)
2717            Chaining.push_back(*PI);
2718        else
2719          Chaining.push_back(VD);
2720
2721        assert(Chaining.size() >= 2);
2722        NamedDecl **NamedChain =
2723          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2724        for (unsigned i = 0; i < Chaining.size(); i++)
2725          NamedChain[i] = Chaining[i];
2726
2727        IndirectFieldDecl* IndirectField =
2728          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2729                                    VD->getIdentifier(), VD->getType(),
2730                                    NamedChain, Chaining.size());
2731
2732        IndirectField->setAccess(AS);
2733        IndirectField->setImplicit();
2734        SemaRef.PushOnScopeChains(IndirectField, S);
2735
2736        // That includes picking up the appropriate access specifier.
2737        if (AS != AS_none) IndirectField->setAccess(AS);
2738
2739        Chaining.resize(OldChainingSize);
2740      }
2741    }
2742  }
2743
2744  return Invalid;
2745}
2746
2747/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2748/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2749/// illegal input values are mapped to SC_None.
2750static StorageClass
2751StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2752  switch (StorageClassSpec) {
2753  case DeclSpec::SCS_unspecified:    return SC_None;
2754  case DeclSpec::SCS_extern:         return SC_Extern;
2755  case DeclSpec::SCS_static:         return SC_Static;
2756  case DeclSpec::SCS_auto:           return SC_Auto;
2757  case DeclSpec::SCS_register:       return SC_Register;
2758  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2759    // Illegal SCSs map to None: error reporting is up to the caller.
2760  case DeclSpec::SCS_mutable:        // Fall through.
2761  case DeclSpec::SCS_typedef:        return SC_None;
2762  }
2763  llvm_unreachable("unknown storage class specifier");
2764}
2765
2766/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2767/// a StorageClass. Any error reporting is up to the caller:
2768/// illegal input values are mapped to SC_None.
2769static StorageClass
2770StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2771  switch (StorageClassSpec) {
2772  case DeclSpec::SCS_unspecified:    return SC_None;
2773  case DeclSpec::SCS_extern:         return SC_Extern;
2774  case DeclSpec::SCS_static:         return SC_Static;
2775  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2776    // Illegal SCSs map to None: error reporting is up to the caller.
2777  case DeclSpec::SCS_auto:           // Fall through.
2778  case DeclSpec::SCS_mutable:        // Fall through.
2779  case DeclSpec::SCS_register:       // Fall through.
2780  case DeclSpec::SCS_typedef:        return SC_None;
2781  }
2782  llvm_unreachable("unknown storage class specifier");
2783}
2784
2785/// BuildAnonymousStructOrUnion - Handle the declaration of an
2786/// anonymous structure or union. Anonymous unions are a C++ feature
2787/// (C++ [class.union]) and a C11 feature; anonymous structures
2788/// are a C11 feature and GNU C++ extension.
2789Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2790                                             AccessSpecifier AS,
2791                                             RecordDecl *Record) {
2792  DeclContext *Owner = Record->getDeclContext();
2793
2794  // Diagnose whether this anonymous struct/union is an extension.
2795  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2796    Diag(Record->getLocation(), diag::ext_anonymous_union);
2797  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2798    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2799  else if (!Record->isUnion() && !getLangOpts().C11)
2800    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2801
2802  // C and C++ require different kinds of checks for anonymous
2803  // structs/unions.
2804  bool Invalid = false;
2805  if (getLangOpts().CPlusPlus) {
2806    const char* PrevSpec = 0;
2807    unsigned DiagID;
2808    if (Record->isUnion()) {
2809      // C++ [class.union]p6:
2810      //   Anonymous unions declared in a named namespace or in the
2811      //   global namespace shall be declared static.
2812      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2813          (isa<TranslationUnitDecl>(Owner) ||
2814           (isa<NamespaceDecl>(Owner) &&
2815            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2816        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2817          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2818
2819        // Recover by adding 'static'.
2820        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2821                               PrevSpec, DiagID);
2822      }
2823      // C++ [class.union]p6:
2824      //   A storage class is not allowed in a declaration of an
2825      //   anonymous union in a class scope.
2826      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2827               isa<RecordDecl>(Owner)) {
2828        Diag(DS.getStorageClassSpecLoc(),
2829             diag::err_anonymous_union_with_storage_spec)
2830          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2831
2832        // Recover by removing the storage specifier.
2833        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2834                               SourceLocation(),
2835                               PrevSpec, DiagID);
2836      }
2837    }
2838
2839    // Ignore const/volatile/restrict qualifiers.
2840    if (DS.getTypeQualifiers()) {
2841      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2842        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2843          << Record->isUnion() << 0
2844          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2845      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2846        Diag(DS.getVolatileSpecLoc(),
2847             diag::ext_anonymous_struct_union_qualified)
2848          << Record->isUnion() << 1
2849          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2850      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2851        Diag(DS.getRestrictSpecLoc(),
2852             diag::ext_anonymous_struct_union_qualified)
2853          << Record->isUnion() << 2
2854          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2855
2856      DS.ClearTypeQualifiers();
2857    }
2858
2859    // C++ [class.union]p2:
2860    //   The member-specification of an anonymous union shall only
2861    //   define non-static data members. [Note: nested types and
2862    //   functions cannot be declared within an anonymous union. ]
2863    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2864                                 MemEnd = Record->decls_end();
2865         Mem != MemEnd; ++Mem) {
2866      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2867        // C++ [class.union]p3:
2868        //   An anonymous union shall not have private or protected
2869        //   members (clause 11).
2870        assert(FD->getAccess() != AS_none);
2871        if (FD->getAccess() != AS_public) {
2872          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2873            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2874          Invalid = true;
2875        }
2876
2877        // C++ [class.union]p1
2878        //   An object of a class with a non-trivial constructor, a non-trivial
2879        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2880        //   assignment operator cannot be a member of a union, nor can an
2881        //   array of such objects.
2882        if (CheckNontrivialField(FD))
2883          Invalid = true;
2884      } else if ((*Mem)->isImplicit()) {
2885        // Any implicit members are fine.
2886      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2887        // This is a type that showed up in an
2888        // elaborated-type-specifier inside the anonymous struct or
2889        // union, but which actually declares a type outside of the
2890        // anonymous struct or union. It's okay.
2891      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2892        if (!MemRecord->isAnonymousStructOrUnion() &&
2893            MemRecord->getDeclName()) {
2894          // Visual C++ allows type definition in anonymous struct or union.
2895          if (getLangOpts().MicrosoftExt)
2896            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2897              << (int)Record->isUnion();
2898          else {
2899            // This is a nested type declaration.
2900            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2901              << (int)Record->isUnion();
2902            Invalid = true;
2903          }
2904        }
2905      } else if (isa<AccessSpecDecl>(*Mem)) {
2906        // Any access specifier is fine.
2907      } else {
2908        // We have something that isn't a non-static data
2909        // member. Complain about it.
2910        unsigned DK = diag::err_anonymous_record_bad_member;
2911        if (isa<TypeDecl>(*Mem))
2912          DK = diag::err_anonymous_record_with_type;
2913        else if (isa<FunctionDecl>(*Mem))
2914          DK = diag::err_anonymous_record_with_function;
2915        else if (isa<VarDecl>(*Mem))
2916          DK = diag::err_anonymous_record_with_static;
2917
2918        // Visual C++ allows type definition in anonymous struct or union.
2919        if (getLangOpts().MicrosoftExt &&
2920            DK == diag::err_anonymous_record_with_type)
2921          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2922            << (int)Record->isUnion();
2923        else {
2924          Diag((*Mem)->getLocation(), DK)
2925              << (int)Record->isUnion();
2926          Invalid = true;
2927        }
2928      }
2929    }
2930  }
2931
2932  if (!Record->isUnion() && !Owner->isRecord()) {
2933    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2934      << (int)getLangOpts().CPlusPlus;
2935    Invalid = true;
2936  }
2937
2938  // Mock up a declarator.
2939  Declarator Dc(DS, Declarator::MemberContext);
2940  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2941  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2942
2943  // Create a declaration for this anonymous struct/union.
2944  NamedDecl *Anon = 0;
2945  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2946    Anon = FieldDecl::Create(Context, OwningClass,
2947                             DS.getLocStart(),
2948                             Record->getLocation(),
2949                             /*IdentifierInfo=*/0,
2950                             Context.getTypeDeclType(Record),
2951                             TInfo,
2952                             /*BitWidth=*/0, /*Mutable=*/false,
2953                             /*HasInit=*/false);
2954    Anon->setAccess(AS);
2955    if (getLangOpts().CPlusPlus)
2956      FieldCollector->Add(cast<FieldDecl>(Anon));
2957  } else {
2958    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2959    assert(SCSpec != DeclSpec::SCS_typedef &&
2960           "Parser allowed 'typedef' as storage class VarDecl.");
2961    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2962    if (SCSpec == DeclSpec::SCS_mutable) {
2963      // mutable can only appear on non-static class members, so it's always
2964      // an error here
2965      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2966      Invalid = true;
2967      SC = SC_None;
2968    }
2969    SCSpec = DS.getStorageClassSpecAsWritten();
2970    VarDecl::StorageClass SCAsWritten
2971      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2972
2973    Anon = VarDecl::Create(Context, Owner,
2974                           DS.getLocStart(),
2975                           Record->getLocation(), /*IdentifierInfo=*/0,
2976                           Context.getTypeDeclType(Record),
2977                           TInfo, SC, SCAsWritten);
2978
2979    // Default-initialize the implicit variable. This initialization will be
2980    // trivial in almost all cases, except if a union member has an in-class
2981    // initializer:
2982    //   union { int n = 0; };
2983    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2984  }
2985  Anon->setImplicit();
2986
2987  // Add the anonymous struct/union object to the current
2988  // context. We'll be referencing this object when we refer to one of
2989  // its members.
2990  Owner->addDecl(Anon);
2991
2992  // Inject the members of the anonymous struct/union into the owning
2993  // context and into the identifier resolver chain for name lookup
2994  // purposes.
2995  SmallVector<NamedDecl*, 2> Chain;
2996  Chain.push_back(Anon);
2997
2998  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2999                                          Chain, false))
3000    Invalid = true;
3001
3002  // Mark this as an anonymous struct/union type. Note that we do not
3003  // do this until after we have already checked and injected the
3004  // members of this anonymous struct/union type, because otherwise
3005  // the members could be injected twice: once by DeclContext when it
3006  // builds its lookup table, and once by
3007  // InjectAnonymousStructOrUnionMembers.
3008  Record->setAnonymousStructOrUnion(true);
3009
3010  if (Invalid)
3011    Anon->setInvalidDecl();
3012
3013  return Anon;
3014}
3015
3016/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
3017/// Microsoft C anonymous structure.
3018/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
3019/// Example:
3020///
3021/// struct A { int a; };
3022/// struct B { struct A; int b; };
3023///
3024/// void foo() {
3025///   B var;
3026///   var.a = 3;
3027/// }
3028///
3029Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
3030                                           RecordDecl *Record) {
3031
3032  // If there is no Record, get the record via the typedef.
3033  if (!Record)
3034    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
3035
3036  // Mock up a declarator.
3037  Declarator Dc(DS, Declarator::TypeNameContext);
3038  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
3039  assert(TInfo && "couldn't build declarator info for anonymous struct");
3040
3041  // Create a declaration for this anonymous struct.
3042  NamedDecl* Anon = FieldDecl::Create(Context,
3043                             cast<RecordDecl>(CurContext),
3044                             DS.getLocStart(),
3045                             DS.getLocStart(),
3046                             /*IdentifierInfo=*/0,
3047                             Context.getTypeDeclType(Record),
3048                             TInfo,
3049                             /*BitWidth=*/0, /*Mutable=*/false,
3050                             /*HasInit=*/false);
3051  Anon->setImplicit();
3052
3053  // Add the anonymous struct object to the current context.
3054  CurContext->addDecl(Anon);
3055
3056  // Inject the members of the anonymous struct into the current
3057  // context and into the identifier resolver chain for name lookup
3058  // purposes.
3059  SmallVector<NamedDecl*, 2> Chain;
3060  Chain.push_back(Anon);
3061
3062  RecordDecl *RecordDef = Record->getDefinition();
3063  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
3064                                                        RecordDef, AS_none,
3065                                                        Chain, true))
3066    Anon->setInvalidDecl();
3067
3068  return Anon;
3069}
3070
3071/// GetNameForDeclarator - Determine the full declaration name for the
3072/// given Declarator.
3073DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
3074  return GetNameFromUnqualifiedId(D.getName());
3075}
3076
3077/// \brief Retrieves the declaration name from a parsed unqualified-id.
3078DeclarationNameInfo
3079Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
3080  DeclarationNameInfo NameInfo;
3081  NameInfo.setLoc(Name.StartLocation);
3082
3083  switch (Name.getKind()) {
3084
3085  case UnqualifiedId::IK_ImplicitSelfParam:
3086  case UnqualifiedId::IK_Identifier:
3087    NameInfo.setName(Name.Identifier);
3088    NameInfo.setLoc(Name.StartLocation);
3089    return NameInfo;
3090
3091  case UnqualifiedId::IK_OperatorFunctionId:
3092    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3093                                           Name.OperatorFunctionId.Operator));
3094    NameInfo.setLoc(Name.StartLocation);
3095    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3096      = Name.OperatorFunctionId.SymbolLocations[0];
3097    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3098      = Name.EndLocation.getRawEncoding();
3099    return NameInfo;
3100
3101  case UnqualifiedId::IK_LiteralOperatorId:
3102    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3103                                                           Name.Identifier));
3104    NameInfo.setLoc(Name.StartLocation);
3105    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3106    return NameInfo;
3107
3108  case UnqualifiedId::IK_ConversionFunctionId: {
3109    TypeSourceInfo *TInfo;
3110    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3111    if (Ty.isNull())
3112      return DeclarationNameInfo();
3113    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3114                                               Context.getCanonicalType(Ty)));
3115    NameInfo.setLoc(Name.StartLocation);
3116    NameInfo.setNamedTypeInfo(TInfo);
3117    return NameInfo;
3118  }
3119
3120  case UnqualifiedId::IK_ConstructorName: {
3121    TypeSourceInfo *TInfo;
3122    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3123    if (Ty.isNull())
3124      return DeclarationNameInfo();
3125    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3126                                              Context.getCanonicalType(Ty)));
3127    NameInfo.setLoc(Name.StartLocation);
3128    NameInfo.setNamedTypeInfo(TInfo);
3129    return NameInfo;
3130  }
3131
3132  case UnqualifiedId::IK_ConstructorTemplateId: {
3133    // In well-formed code, we can only have a constructor
3134    // template-id that refers to the current context, so go there
3135    // to find the actual type being constructed.
3136    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3137    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3138      return DeclarationNameInfo();
3139
3140    // Determine the type of the class being constructed.
3141    QualType CurClassType = Context.getTypeDeclType(CurClass);
3142
3143    // FIXME: Check two things: that the template-id names the same type as
3144    // CurClassType, and that the template-id does not occur when the name
3145    // was qualified.
3146
3147    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3148                                    Context.getCanonicalType(CurClassType)));
3149    NameInfo.setLoc(Name.StartLocation);
3150    // FIXME: should we retrieve TypeSourceInfo?
3151    NameInfo.setNamedTypeInfo(0);
3152    return NameInfo;
3153  }
3154
3155  case UnqualifiedId::IK_DestructorName: {
3156    TypeSourceInfo *TInfo;
3157    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3158    if (Ty.isNull())
3159      return DeclarationNameInfo();
3160    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3161                                              Context.getCanonicalType(Ty)));
3162    NameInfo.setLoc(Name.StartLocation);
3163    NameInfo.setNamedTypeInfo(TInfo);
3164    return NameInfo;
3165  }
3166
3167  case UnqualifiedId::IK_TemplateId: {
3168    TemplateName TName = Name.TemplateId->Template.get();
3169    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3170    return Context.getNameForTemplate(TName, TNameLoc);
3171  }
3172
3173  } // switch (Name.getKind())
3174
3175  llvm_unreachable("Unknown name kind");
3176}
3177
3178static QualType getCoreType(QualType Ty) {
3179  do {
3180    if (Ty->isPointerType() || Ty->isReferenceType())
3181      Ty = Ty->getPointeeType();
3182    else if (Ty->isArrayType())
3183      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3184    else
3185      return Ty.withoutLocalFastQualifiers();
3186  } while (true);
3187}
3188
3189/// hasSimilarParameters - Determine whether the C++ functions Declaration
3190/// and Definition have "nearly" matching parameters. This heuristic is
3191/// used to improve diagnostics in the case where an out-of-line function
3192/// definition doesn't match any declaration within the class or namespace.
3193/// Also sets Params to the list of indices to the parameters that differ
3194/// between the declaration and the definition. If hasSimilarParameters
3195/// returns true and Params is empty, then all of the parameters match.
3196static bool hasSimilarParameters(ASTContext &Context,
3197                                     FunctionDecl *Declaration,
3198                                     FunctionDecl *Definition,
3199                                     llvm::SmallVectorImpl<unsigned> &Params) {
3200  Params.clear();
3201  if (Declaration->param_size() != Definition->param_size())
3202    return false;
3203  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3204    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3205    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3206
3207    // The parameter types are identical
3208    if (Context.hasSameType(DefParamTy, DeclParamTy))
3209      continue;
3210
3211    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3212    QualType DefParamBaseTy = getCoreType(DefParamTy);
3213    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3214    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3215
3216    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3217        (DeclTyName && DeclTyName == DefTyName))
3218      Params.push_back(Idx);
3219    else  // The two parameters aren't even close
3220      return false;
3221  }
3222
3223  return true;
3224}
3225
3226/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3227/// declarator needs to be rebuilt in the current instantiation.
3228/// Any bits of declarator which appear before the name are valid for
3229/// consideration here.  That's specifically the type in the decl spec
3230/// and the base type in any member-pointer chunks.
3231static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3232                                                    DeclarationName Name) {
3233  // The types we specifically need to rebuild are:
3234  //   - typenames, typeofs, and decltypes
3235  //   - types which will become injected class names
3236  // Of course, we also need to rebuild any type referencing such a
3237  // type.  It's safest to just say "dependent", but we call out a
3238  // few cases here.
3239
3240  DeclSpec &DS = D.getMutableDeclSpec();
3241  switch (DS.getTypeSpecType()) {
3242  case DeclSpec::TST_typename:
3243  case DeclSpec::TST_typeofType:
3244  case DeclSpec::TST_decltype:
3245  case DeclSpec::TST_underlyingType:
3246  case DeclSpec::TST_atomic: {
3247    // Grab the type from the parser.
3248    TypeSourceInfo *TSI = 0;
3249    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3250    if (T.isNull() || !T->isDependentType()) break;
3251
3252    // Make sure there's a type source info.  This isn't really much
3253    // of a waste; most dependent types should have type source info
3254    // attached already.
3255    if (!TSI)
3256      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3257
3258    // Rebuild the type in the current instantiation.
3259    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3260    if (!TSI) return true;
3261
3262    // Store the new type back in the decl spec.
3263    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3264    DS.UpdateTypeRep(LocType);
3265    break;
3266  }
3267
3268  case DeclSpec::TST_typeofExpr: {
3269    Expr *E = DS.getRepAsExpr();
3270    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3271    if (Result.isInvalid()) return true;
3272    DS.UpdateExprRep(Result.get());
3273    break;
3274  }
3275
3276  default:
3277    // Nothing to do for these decl specs.
3278    break;
3279  }
3280
3281  // It doesn't matter what order we do this in.
3282  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3283    DeclaratorChunk &Chunk = D.getTypeObject(I);
3284
3285    // The only type information in the declarator which can come
3286    // before the declaration name is the base type of a member
3287    // pointer.
3288    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3289      continue;
3290
3291    // Rebuild the scope specifier in-place.
3292    CXXScopeSpec &SS = Chunk.Mem.Scope();
3293    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3294      return true;
3295  }
3296
3297  return false;
3298}
3299
3300Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3301  D.setFunctionDefinitionKind(FDK_Declaration);
3302  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3303
3304  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3305      Dcl && Dcl->getDeclContext()->isFileContext())
3306    Dcl->setTopLevelDeclInObjCContainer();
3307
3308  return Dcl;
3309}
3310
3311/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3312///   If T is the name of a class, then each of the following shall have a
3313///   name different from T:
3314///     - every static data member of class T;
3315///     - every member function of class T
3316///     - every member of class T that is itself a type;
3317/// \returns true if the declaration name violates these rules.
3318bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3319                                   DeclarationNameInfo NameInfo) {
3320  DeclarationName Name = NameInfo.getName();
3321
3322  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3323    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3324      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3325      return true;
3326    }
3327
3328  return false;
3329}
3330
3331/// \brief Diagnose a declaration whose declarator-id has the given
3332/// nested-name-specifier.
3333///
3334/// \param SS The nested-name-specifier of the declarator-id.
3335///
3336/// \param DC The declaration context to which the nested-name-specifier
3337/// resolves.
3338///
3339/// \param Name The name of the entity being declared.
3340///
3341/// \param Loc The location of the name of the entity being declared.
3342///
3343/// \returns true if we cannot safely recover from this error, false otherwise.
3344bool Sema::diagnoseQualifiedDeclaration(CXXScopeSpec &SS, DeclContext *DC,
3345                                        DeclarationName Name,
3346                                      SourceLocation Loc) {
3347  DeclContext *Cur = CurContext;
3348  while (isa<LinkageSpecDecl>(Cur))
3349    Cur = Cur->getParent();
3350
3351  // C++ [dcl.meaning]p1:
3352  //   A declarator-id shall not be qualified except for the definition
3353  //   of a member function (9.3) or static data member (9.4) outside of
3354  //   its class, the definition or explicit instantiation of a function
3355  //   or variable member of a namespace outside of its namespace, or the
3356  //   definition of an explicit specialization outside of its namespace,
3357  //   or the declaration of a friend function that is a member of
3358  //   another class or namespace (11.3). [...]
3359
3360  // The user provided a superfluous scope specifier that refers back to the
3361  // class or namespaces in which the entity is already declared.
3362  //
3363  // class X {
3364  //   void X::f();
3365  // };
3366  if (Cur->Equals(DC)) {
3367    Diag(Loc, diag::warn_member_extra_qualification)
3368      << Name << FixItHint::CreateRemoval(SS.getRange());
3369    SS.clear();
3370    return false;
3371  }
3372
3373  // Check whether the qualifying scope encloses the scope of the original
3374  // declaration.
3375  if (!Cur->Encloses(DC)) {
3376    if (Cur->isRecord())
3377      Diag(Loc, diag::err_member_qualification)
3378        << Name << SS.getRange();
3379    else if (isa<TranslationUnitDecl>(DC))
3380      Diag(Loc, diag::err_invalid_declarator_global_scope)
3381        << Name << SS.getRange();
3382    else if (isa<FunctionDecl>(Cur))
3383      Diag(Loc, diag::err_invalid_declarator_in_function)
3384        << Name << SS.getRange();
3385    else
3386      Diag(Loc, diag::err_invalid_declarator_scope)
3387      << Name << cast<NamedDecl>(Cur) << cast<NamedDecl>(DC) << SS.getRange();
3388
3389    return true;
3390  }
3391
3392  if (Cur->isRecord()) {
3393    // Cannot qualify members within a class.
3394    Diag(Loc, diag::err_member_qualification)
3395      << Name << SS.getRange();
3396    SS.clear();
3397
3398    // C++ constructors and destructors with incorrect scopes can break
3399    // our AST invariants by having the wrong underlying types. If
3400    // that's the case, then drop this declaration entirely.
3401    if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3402         Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3403        !Context.hasSameType(Name.getCXXNameType(),
3404                             Context.getTypeDeclType(cast<CXXRecordDecl>(Cur))))
3405      return true;
3406
3407    return false;
3408  }
3409
3410  // C++11 [dcl.meaning]p1:
3411  //   [...] "The nested-name-specifier of the qualified declarator-id shall
3412  //   not begin with a decltype-specifer"
3413  NestedNameSpecifierLoc SpecLoc(SS.getScopeRep(), SS.location_data());
3414  while (SpecLoc.getPrefix())
3415    SpecLoc = SpecLoc.getPrefix();
3416  if (dyn_cast_or_null<DecltypeType>(
3417        SpecLoc.getNestedNameSpecifier()->getAsType()))
3418    Diag(Loc, diag::err_decltype_in_declarator)
3419      << SpecLoc.getTypeLoc().getSourceRange();
3420
3421  return false;
3422}
3423
3424Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3425                             MultiTemplateParamsArg TemplateParamLists) {
3426  // TODO: consider using NameInfo for diagnostic.
3427  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3428  DeclarationName Name = NameInfo.getName();
3429
3430  // All of these full declarators require an identifier.  If it doesn't have
3431  // one, the ParsedFreeStandingDeclSpec action should be used.
3432  if (!Name) {
3433    if (!D.isInvalidType())  // Reject this if we think it is valid.
3434      Diag(D.getDeclSpec().getLocStart(),
3435           diag::err_declarator_need_ident)
3436        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3437    return 0;
3438  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3439    return 0;
3440
3441  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3442  // we find one that is.
3443  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3444         (S->getFlags() & Scope::TemplateParamScope) != 0)
3445    S = S->getParent();
3446
3447  DeclContext *DC = CurContext;
3448  if (D.getCXXScopeSpec().isInvalid())
3449    D.setInvalidType();
3450  else if (D.getCXXScopeSpec().isSet()) {
3451    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3452                                        UPPC_DeclarationQualifier))
3453      return 0;
3454
3455    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3456    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3457    if (!DC) {
3458      // If we could not compute the declaration context, it's because the
3459      // declaration context is dependent but does not refer to a class,
3460      // class template, or class template partial specialization. Complain
3461      // and return early, to avoid the coming semantic disaster.
3462      Diag(D.getIdentifierLoc(),
3463           diag::err_template_qualified_declarator_no_match)
3464        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3465        << D.getCXXScopeSpec().getRange();
3466      return 0;
3467    }
3468    bool IsDependentContext = DC->isDependentContext();
3469
3470    if (!IsDependentContext &&
3471        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3472      return 0;
3473
3474    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
3475      Diag(D.getIdentifierLoc(),
3476           diag::err_member_def_undefined_record)
3477        << Name << DC << D.getCXXScopeSpec().getRange();
3478      D.setInvalidType();
3479    } else if (!D.getDeclSpec().isFriendSpecified()) {
3480      if (diagnoseQualifiedDeclaration(D.getCXXScopeSpec(), DC,
3481                                      Name, D.getIdentifierLoc())) {
3482        if (DC->isRecord())
3483          return 0;
3484
3485        D.setInvalidType();
3486      }
3487    }
3488
3489    // Check whether we need to rebuild the type of the given
3490    // declaration in the current instantiation.
3491    if (EnteringContext && IsDependentContext &&
3492        TemplateParamLists.size() != 0) {
3493      ContextRAII SavedContext(*this, DC);
3494      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3495        D.setInvalidType();
3496    }
3497  }
3498
3499  if (DiagnoseClassNameShadow(DC, NameInfo))
3500    // If this is a typedef, we'll end up spewing multiple diagnostics.
3501    // Just return early; it's safer.
3502    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3503      return 0;
3504
3505  NamedDecl *New;
3506
3507  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3508  QualType R = TInfo->getType();
3509
3510  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3511                                      UPPC_DeclarationType))
3512    D.setInvalidType();
3513
3514  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3515                        ForRedeclaration);
3516
3517  // See if this is a redefinition of a variable in the same scope.
3518  if (!D.getCXXScopeSpec().isSet()) {
3519    bool IsLinkageLookup = false;
3520
3521    // If the declaration we're planning to build will be a function
3522    // or object with linkage, then look for another declaration with
3523    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3524    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3525      /* Do nothing*/;
3526    else if (R->isFunctionType()) {
3527      if (CurContext->isFunctionOrMethod() ||
3528          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3529        IsLinkageLookup = true;
3530    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3531      IsLinkageLookup = true;
3532    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3533             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3534      IsLinkageLookup = true;
3535
3536    if (IsLinkageLookup)
3537      Previous.clear(LookupRedeclarationWithLinkage);
3538
3539    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3540  } else { // Something like "int foo::x;"
3541    LookupQualifiedName(Previous, DC);
3542
3543    // C++ [dcl.meaning]p1:
3544    //   When the declarator-id is qualified, the declaration shall refer to a
3545    //  previously declared member of the class or namespace to which the
3546    //  qualifier refers (or, in the case of a namespace, of an element of the
3547    //  inline namespace set of that namespace (7.3.1)) or to a specialization
3548    //  thereof; [...]
3549    //
3550    // Note that we already checked the context above, and that we do not have
3551    // enough information to make sure that Previous contains the declaration
3552    // we want to match. For example, given:
3553    //
3554    //   class X {
3555    //     void f();
3556    //     void f(float);
3557    //   };
3558    //
3559    //   void X::f(int) { } // ill-formed
3560    //
3561    // In this case, Previous will point to the overload set
3562    // containing the two f's declared in X, but neither of them
3563    // matches.
3564
3565    // C++ [dcl.meaning]p1:
3566    //   [...] the member shall not merely have been introduced by a
3567    //   using-declaration in the scope of the class or namespace nominated by
3568    //   the nested-name-specifier of the declarator-id.
3569    RemoveUsingDecls(Previous);
3570  }
3571
3572  if (Previous.isSingleResult() &&
3573      Previous.getFoundDecl()->isTemplateParameter()) {
3574    // Maybe we will complain about the shadowed template parameter.
3575    if (!D.isInvalidType())
3576      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3577                                      Previous.getFoundDecl());
3578
3579    // Just pretend that we didn't see the previous declaration.
3580    Previous.clear();
3581  }
3582
3583  // In C++, the previous declaration we find might be a tag type
3584  // (class or enum). In this case, the new declaration will hide the
3585  // tag type. Note that this does does not apply if we're declaring a
3586  // typedef (C++ [dcl.typedef]p4).
3587  if (Previous.isSingleTagDecl() &&
3588      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3589    Previous.clear();
3590
3591  bool AddToScope = true;
3592  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3593    if (TemplateParamLists.size()) {
3594      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3595      return 0;
3596    }
3597
3598    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3599  } else if (R->isFunctionType()) {
3600    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3601                                  move(TemplateParamLists),
3602                                  AddToScope);
3603  } else {
3604    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3605                                  move(TemplateParamLists));
3606  }
3607
3608  if (New == 0)
3609    return 0;
3610
3611  // If this has an identifier and is not an invalid redeclaration or
3612  // function template specialization, add it to the scope stack.
3613  if (New->getDeclName() && AddToScope &&
3614       !(D.isRedeclaration() && New->isInvalidDecl()))
3615    PushOnScopeChains(New, S);
3616
3617  return New;
3618}
3619
3620/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3621/// types into constant array types in certain situations which would otherwise
3622/// be errors (for GCC compatibility).
3623static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3624                                                    ASTContext &Context,
3625                                                    bool &SizeIsNegative,
3626                                                    llvm::APSInt &Oversized) {
3627  // This method tries to turn a variable array into a constant
3628  // array even when the size isn't an ICE.  This is necessary
3629  // for compatibility with code that depends on gcc's buggy
3630  // constant expression folding, like struct {char x[(int)(char*)2];}
3631  SizeIsNegative = false;
3632  Oversized = 0;
3633
3634  if (T->isDependentType())
3635    return QualType();
3636
3637  QualifierCollector Qs;
3638  const Type *Ty = Qs.strip(T);
3639
3640  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3641    QualType Pointee = PTy->getPointeeType();
3642    QualType FixedType =
3643        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3644                                            Oversized);
3645    if (FixedType.isNull()) return FixedType;
3646    FixedType = Context.getPointerType(FixedType);
3647    return Qs.apply(Context, FixedType);
3648  }
3649  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3650    QualType Inner = PTy->getInnerType();
3651    QualType FixedType =
3652        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3653                                            Oversized);
3654    if (FixedType.isNull()) return FixedType;
3655    FixedType = Context.getParenType(FixedType);
3656    return Qs.apply(Context, FixedType);
3657  }
3658
3659  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3660  if (!VLATy)
3661    return QualType();
3662  // FIXME: We should probably handle this case
3663  if (VLATy->getElementType()->isVariablyModifiedType())
3664    return QualType();
3665
3666  llvm::APSInt Res;
3667  if (!VLATy->getSizeExpr() ||
3668      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3669    return QualType();
3670
3671  // Check whether the array size is negative.
3672  if (Res.isSigned() && Res.isNegative()) {
3673    SizeIsNegative = true;
3674    return QualType();
3675  }
3676
3677  // Check whether the array is too large to be addressed.
3678  unsigned ActiveSizeBits
3679    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3680                                              Res);
3681  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3682    Oversized = Res;
3683    return QualType();
3684  }
3685
3686  return Context.getConstantArrayType(VLATy->getElementType(),
3687                                      Res, ArrayType::Normal, 0);
3688}
3689
3690/// \brief Register the given locally-scoped external C declaration so
3691/// that it can be found later for redeclarations
3692void
3693Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3694                                       const LookupResult &Previous,
3695                                       Scope *S) {
3696  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3697         "Decl is not a locally-scoped decl!");
3698  // Note that we have a locally-scoped external with this name.
3699  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3700
3701  if (!Previous.isSingleResult())
3702    return;
3703
3704  NamedDecl *PrevDecl = Previous.getFoundDecl();
3705
3706  // If there was a previous declaration of this variable, it may be
3707  // in our identifier chain. Update the identifier chain with the new
3708  // declaration.
3709  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3710    // The previous declaration was found on the identifer resolver
3711    // chain, so remove it from its scope.
3712
3713    if (S->isDeclScope(PrevDecl)) {
3714      // Special case for redeclarations in the SAME scope.
3715      // Because this declaration is going to be added to the identifier chain
3716      // later, we should temporarily take it OFF the chain.
3717      IdResolver.RemoveDecl(ND);
3718
3719    } else {
3720      // Find the scope for the original declaration.
3721      while (S && !S->isDeclScope(PrevDecl))
3722        S = S->getParent();
3723    }
3724
3725    if (S)
3726      S->RemoveDecl(PrevDecl);
3727  }
3728}
3729
3730llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3731Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3732  if (ExternalSource) {
3733    // Load locally-scoped external decls from the external source.
3734    SmallVector<NamedDecl *, 4> Decls;
3735    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3736    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3737      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3738        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3739      if (Pos == LocallyScopedExternalDecls.end())
3740        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3741    }
3742  }
3743
3744  return LocallyScopedExternalDecls.find(Name);
3745}
3746
3747/// \brief Diagnose function specifiers on a declaration of an identifier that
3748/// does not identify a function.
3749void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3750  // FIXME: We should probably indicate the identifier in question to avoid
3751  // confusion for constructs like "inline int a(), b;"
3752  if (D.getDeclSpec().isInlineSpecified())
3753    Diag(D.getDeclSpec().getInlineSpecLoc(),
3754         diag::err_inline_non_function);
3755
3756  if (D.getDeclSpec().isVirtualSpecified())
3757    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3758         diag::err_virtual_non_function);
3759
3760  if (D.getDeclSpec().isExplicitSpecified())
3761    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3762         diag::err_explicit_non_function);
3763}
3764
3765NamedDecl*
3766Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3767                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3768  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3769  if (D.getCXXScopeSpec().isSet()) {
3770    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3771      << D.getCXXScopeSpec().getRange();
3772    D.setInvalidType();
3773    // Pretend we didn't see the scope specifier.
3774    DC = CurContext;
3775    Previous.clear();
3776  }
3777
3778  if (getLangOpts().CPlusPlus) {
3779    // Check that there are no default arguments (C++ only).
3780    CheckExtraCXXDefaultArguments(D);
3781  }
3782
3783  DiagnoseFunctionSpecifiers(D);
3784
3785  if (D.getDeclSpec().isThreadSpecified())
3786    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3787  if (D.getDeclSpec().isConstexprSpecified())
3788    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3789      << 1;
3790
3791  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3792    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3793      << D.getName().getSourceRange();
3794    return 0;
3795  }
3796
3797  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3798  if (!NewTD) return 0;
3799
3800  // Handle attributes prior to checking for duplicates in MergeVarDecl
3801  ProcessDeclAttributes(S, NewTD, D);
3802
3803  CheckTypedefForVariablyModifiedType(S, NewTD);
3804
3805  bool Redeclaration = D.isRedeclaration();
3806  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3807  D.setRedeclaration(Redeclaration);
3808  return ND;
3809}
3810
3811void
3812Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3813  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3814  // then it shall have block scope.
3815  // Note that variably modified types must be fixed before merging the decl so
3816  // that redeclarations will match.
3817  QualType T = NewTD->getUnderlyingType();
3818  if (T->isVariablyModifiedType()) {
3819    getCurFunction()->setHasBranchProtectedScope();
3820
3821    if (S->getFnParent() == 0) {
3822      bool SizeIsNegative;
3823      llvm::APSInt Oversized;
3824      QualType FixedTy =
3825          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3826                                              Oversized);
3827      if (!FixedTy.isNull()) {
3828        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3829        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3830      } else {
3831        if (SizeIsNegative)
3832          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3833        else if (T->isVariableArrayType())
3834          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3835        else if (Oversized.getBoolValue())
3836          Diag(NewTD->getLocation(), diag::err_array_too_large)
3837            << Oversized.toString(10);
3838        else
3839          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3840        NewTD->setInvalidDecl();
3841      }
3842    }
3843  }
3844}
3845
3846
3847/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3848/// declares a typedef-name, either using the 'typedef' type specifier or via
3849/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3850NamedDecl*
3851Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3852                           LookupResult &Previous, bool &Redeclaration) {
3853  // Merge the decl with the existing one if appropriate. If the decl is
3854  // in an outer scope, it isn't the same thing.
3855  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3856                       /*ExplicitInstantiationOrSpecialization=*/false);
3857  if (!Previous.empty()) {
3858    Redeclaration = true;
3859    MergeTypedefNameDecl(NewTD, Previous);
3860  }
3861
3862  // If this is the C FILE type, notify the AST context.
3863  if (IdentifierInfo *II = NewTD->getIdentifier())
3864    if (!NewTD->isInvalidDecl() &&
3865        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3866      if (II->isStr("FILE"))
3867        Context.setFILEDecl(NewTD);
3868      else if (II->isStr("jmp_buf"))
3869        Context.setjmp_bufDecl(NewTD);
3870      else if (II->isStr("sigjmp_buf"))
3871        Context.setsigjmp_bufDecl(NewTD);
3872      else if (II->isStr("ucontext_t"))
3873        Context.setucontext_tDecl(NewTD);
3874      else if (II->isStr("__builtin_va_list"))
3875        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3876    }
3877
3878  return NewTD;
3879}
3880
3881/// \brief Determines whether the given declaration is an out-of-scope
3882/// previous declaration.
3883///
3884/// This routine should be invoked when name lookup has found a
3885/// previous declaration (PrevDecl) that is not in the scope where a
3886/// new declaration by the same name is being introduced. If the new
3887/// declaration occurs in a local scope, previous declarations with
3888/// linkage may still be considered previous declarations (C99
3889/// 6.2.2p4-5, C++ [basic.link]p6).
3890///
3891/// \param PrevDecl the previous declaration found by name
3892/// lookup
3893///
3894/// \param DC the context in which the new declaration is being
3895/// declared.
3896///
3897/// \returns true if PrevDecl is an out-of-scope previous declaration
3898/// for a new delcaration with the same name.
3899static bool
3900isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3901                                ASTContext &Context) {
3902  if (!PrevDecl)
3903    return false;
3904
3905  if (!PrevDecl->hasLinkage())
3906    return false;
3907
3908  if (Context.getLangOpts().CPlusPlus) {
3909    // C++ [basic.link]p6:
3910    //   If there is a visible declaration of an entity with linkage
3911    //   having the same name and type, ignoring entities declared
3912    //   outside the innermost enclosing namespace scope, the block
3913    //   scope declaration declares that same entity and receives the
3914    //   linkage of the previous declaration.
3915    DeclContext *OuterContext = DC->getRedeclContext();
3916    if (!OuterContext->isFunctionOrMethod())
3917      // This rule only applies to block-scope declarations.
3918      return false;
3919
3920    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3921    if (PrevOuterContext->isRecord())
3922      // We found a member function: ignore it.
3923      return false;
3924
3925    // Find the innermost enclosing namespace for the new and
3926    // previous declarations.
3927    OuterContext = OuterContext->getEnclosingNamespaceContext();
3928    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3929
3930    // The previous declaration is in a different namespace, so it
3931    // isn't the same function.
3932    if (!OuterContext->Equals(PrevOuterContext))
3933      return false;
3934  }
3935
3936  return true;
3937}
3938
3939static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3940  CXXScopeSpec &SS = D.getCXXScopeSpec();
3941  if (!SS.isSet()) return;
3942  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3943}
3944
3945bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3946  QualType type = decl->getType();
3947  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3948  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3949    // Various kinds of declaration aren't allowed to be __autoreleasing.
3950    unsigned kind = -1U;
3951    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3952      if (var->hasAttr<BlocksAttr>())
3953        kind = 0; // __block
3954      else if (!var->hasLocalStorage())
3955        kind = 1; // global
3956    } else if (isa<ObjCIvarDecl>(decl)) {
3957      kind = 3; // ivar
3958    } else if (isa<FieldDecl>(decl)) {
3959      kind = 2; // field
3960    }
3961
3962    if (kind != -1U) {
3963      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3964        << kind;
3965    }
3966  } else if (lifetime == Qualifiers::OCL_None) {
3967    // Try to infer lifetime.
3968    if (!type->isObjCLifetimeType())
3969      return false;
3970
3971    lifetime = type->getObjCARCImplicitLifetime();
3972    type = Context.getLifetimeQualifiedType(type, lifetime);
3973    decl->setType(type);
3974  }
3975
3976  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3977    // Thread-local variables cannot have lifetime.
3978    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3979        var->isThreadSpecified()) {
3980      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3981        << var->getType();
3982      return true;
3983    }
3984  }
3985
3986  return false;
3987}
3988
3989NamedDecl*
3990Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3991                              TypeSourceInfo *TInfo, LookupResult &Previous,
3992                              MultiTemplateParamsArg TemplateParamLists) {
3993  QualType R = TInfo->getType();
3994  DeclarationName Name = GetNameForDeclarator(D).getName();
3995
3996  // Check that there are no default arguments (C++ only).
3997  if (getLangOpts().CPlusPlus)
3998    CheckExtraCXXDefaultArguments(D);
3999
4000  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
4001  assert(SCSpec != DeclSpec::SCS_typedef &&
4002         "Parser allowed 'typedef' as storage class VarDecl.");
4003  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
4004  if (SCSpec == DeclSpec::SCS_mutable) {
4005    // mutable can only appear on non-static class members, so it's always
4006    // an error here
4007    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
4008    D.setInvalidType();
4009    SC = SC_None;
4010  }
4011  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4012  VarDecl::StorageClass SCAsWritten
4013    = StorageClassSpecToVarDeclStorageClass(SCSpec);
4014
4015  IdentifierInfo *II = Name.getAsIdentifierInfo();
4016  if (!II) {
4017    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
4018      << Name;
4019    return 0;
4020  }
4021
4022  DiagnoseFunctionSpecifiers(D);
4023
4024  if (!DC->isRecord() && S->getFnParent() == 0) {
4025    // C99 6.9p2: The storage-class specifiers auto and register shall not
4026    // appear in the declaration specifiers in an external declaration.
4027    if (SC == SC_Auto || SC == SC_Register) {
4028
4029      // If this is a register variable with an asm label specified, then this
4030      // is a GNU extension.
4031      if (SC == SC_Register && D.getAsmLabel())
4032        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
4033      else
4034        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
4035      D.setInvalidType();
4036    }
4037  }
4038
4039  if (getLangOpts().OpenCL) {
4040    // Set up the special work-group-local storage class for variables in the
4041    // OpenCL __local address space.
4042    if (R.getAddressSpace() == LangAS::opencl_local)
4043      SC = SC_OpenCLWorkGroupLocal;
4044  }
4045
4046  bool isExplicitSpecialization = false;
4047  VarDecl *NewVD;
4048  if (!getLangOpts().CPlusPlus) {
4049    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4050                            D.getIdentifierLoc(), II,
4051                            R, TInfo, SC, SCAsWritten);
4052
4053    if (D.isInvalidType())
4054      NewVD->setInvalidDecl();
4055  } else {
4056    if (DC->isRecord() && !CurContext->isRecord()) {
4057      // This is an out-of-line definition of a static data member.
4058      if (SC == SC_Static) {
4059        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4060             diag::err_static_out_of_line)
4061          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4062      } else if (SC == SC_None)
4063        SC = SC_Static;
4064    }
4065    if (SC == SC_Static && CurContext->isRecord()) {
4066      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
4067        if (RD->isLocalClass())
4068          Diag(D.getIdentifierLoc(),
4069               diag::err_static_data_member_not_allowed_in_local_class)
4070            << Name << RD->getDeclName();
4071
4072        // C++98 [class.union]p1: If a union contains a static data member,
4073        // the program is ill-formed. C++11 drops this restriction.
4074        if (RD->isUnion())
4075          Diag(D.getIdentifierLoc(),
4076               getLangOpts().CPlusPlus0x
4077                 ? diag::warn_cxx98_compat_static_data_member_in_union
4078                 : diag::ext_static_data_member_in_union) << Name;
4079        // We conservatively disallow static data members in anonymous structs.
4080        else if (!RD->getDeclName())
4081          Diag(D.getIdentifierLoc(),
4082               diag::err_static_data_member_not_allowed_in_anon_struct)
4083            << Name << RD->isUnion();
4084      }
4085    }
4086
4087    // Match up the template parameter lists with the scope specifier, then
4088    // determine whether we have a template or a template specialization.
4089    isExplicitSpecialization = false;
4090    bool Invalid = false;
4091    if (TemplateParameterList *TemplateParams
4092        = MatchTemplateParametersToScopeSpecifier(
4093                                  D.getDeclSpec().getLocStart(),
4094                                                  D.getIdentifierLoc(),
4095                                                  D.getCXXScopeSpec(),
4096                                                  TemplateParamLists.get(),
4097                                                  TemplateParamLists.size(),
4098                                                  /*never a friend*/ false,
4099                                                  isExplicitSpecialization,
4100                                                  Invalid)) {
4101      if (TemplateParams->size() > 0) {
4102        // There is no such thing as a variable template.
4103        Diag(D.getIdentifierLoc(), diag::err_template_variable)
4104          << II
4105          << SourceRange(TemplateParams->getTemplateLoc(),
4106                         TemplateParams->getRAngleLoc());
4107        return 0;
4108      } else {
4109        // There is an extraneous 'template<>' for this variable. Complain
4110        // about it, but allow the declaration of the variable.
4111        Diag(TemplateParams->getTemplateLoc(),
4112             diag::err_template_variable_noparams)
4113          << II
4114          << SourceRange(TemplateParams->getTemplateLoc(),
4115                         TemplateParams->getRAngleLoc());
4116      }
4117    }
4118
4119    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4120                            D.getIdentifierLoc(), II,
4121                            R, TInfo, SC, SCAsWritten);
4122
4123    // If this decl has an auto type in need of deduction, make a note of the
4124    // Decl so we can diagnose uses of it in its own initializer.
4125    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4126        R->getContainedAutoType())
4127      ParsingInitForAutoVars.insert(NewVD);
4128
4129    if (D.isInvalidType() || Invalid)
4130      NewVD->setInvalidDecl();
4131
4132    SetNestedNameSpecifier(NewVD, D);
4133
4134    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4135      NewVD->setTemplateParameterListsInfo(Context,
4136                                           TemplateParamLists.size(),
4137                                           TemplateParamLists.release());
4138    }
4139
4140    if (D.getDeclSpec().isConstexprSpecified())
4141      NewVD->setConstexpr(true);
4142  }
4143
4144  // Set the lexical context. If the declarator has a C++ scope specifier, the
4145  // lexical context will be different from the semantic context.
4146  NewVD->setLexicalDeclContext(CurContext);
4147
4148  if (D.getDeclSpec().isThreadSpecified()) {
4149    if (NewVD->hasLocalStorage())
4150      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4151    else if (!Context.getTargetInfo().isTLSSupported())
4152      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4153    else
4154      NewVD->setThreadSpecified(true);
4155  }
4156
4157  if (D.getDeclSpec().isModulePrivateSpecified()) {
4158    if (isExplicitSpecialization)
4159      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4160        << 2
4161        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4162    else if (NewVD->hasLocalStorage())
4163      Diag(NewVD->getLocation(), diag::err_module_private_local)
4164        << 0 << NewVD->getDeclName()
4165        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4166        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4167    else
4168      NewVD->setModulePrivate();
4169  }
4170
4171  // Handle attributes prior to checking for duplicates in MergeVarDecl
4172  ProcessDeclAttributes(S, NewVD, D);
4173
4174  // In auto-retain/release, infer strong retension for variables of
4175  // retainable type.
4176  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4177    NewVD->setInvalidDecl();
4178
4179  // Handle GNU asm-label extension (encoded as an attribute).
4180  if (Expr *E = (Expr*)D.getAsmLabel()) {
4181    // The parser guarantees this is a string.
4182    StringLiteral *SE = cast<StringLiteral>(E);
4183    StringRef Label = SE->getString();
4184    if (S->getFnParent() != 0) {
4185      switch (SC) {
4186      case SC_None:
4187      case SC_Auto:
4188        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4189        break;
4190      case SC_Register:
4191        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4192          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4193        break;
4194      case SC_Static:
4195      case SC_Extern:
4196      case SC_PrivateExtern:
4197      case SC_OpenCLWorkGroupLocal:
4198        break;
4199      }
4200    }
4201
4202    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4203                                                Context, Label));
4204  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4205    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4206      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4207    if (I != ExtnameUndeclaredIdentifiers.end()) {
4208      NewVD->addAttr(I->second);
4209      ExtnameUndeclaredIdentifiers.erase(I);
4210    }
4211  }
4212
4213  // Diagnose shadowed variables before filtering for scope.
4214  if (!D.getCXXScopeSpec().isSet())
4215    CheckShadow(S, NewVD, Previous);
4216
4217  // Don't consider existing declarations that are in a different
4218  // scope and are out-of-semantic-context declarations (if the new
4219  // declaration has linkage).
4220  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4221                       isExplicitSpecialization);
4222
4223  if (!getLangOpts().CPlusPlus) {
4224    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4225  } else {
4226    // Merge the decl with the existing one if appropriate.
4227    if (!Previous.empty()) {
4228      if (Previous.isSingleResult() &&
4229          isa<FieldDecl>(Previous.getFoundDecl()) &&
4230          D.getCXXScopeSpec().isSet()) {
4231        // The user tried to define a non-static data member
4232        // out-of-line (C++ [dcl.meaning]p1).
4233        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4234          << D.getCXXScopeSpec().getRange();
4235        Previous.clear();
4236        NewVD->setInvalidDecl();
4237      }
4238    } else if (D.getCXXScopeSpec().isSet()) {
4239      // No previous declaration in the qualifying scope.
4240      Diag(D.getIdentifierLoc(), diag::err_no_member)
4241        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4242        << D.getCXXScopeSpec().getRange();
4243      NewVD->setInvalidDecl();
4244    }
4245
4246    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4247
4248    // This is an explicit specialization of a static data member. Check it.
4249    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4250        CheckMemberSpecialization(NewVD, Previous))
4251      NewVD->setInvalidDecl();
4252  }
4253
4254  // attributes declared post-definition are currently ignored
4255  // FIXME: This should be handled in attribute merging, not
4256  // here.
4257  if (Previous.isSingleResult()) {
4258    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4259    if (Def && (Def = Def->getDefinition()) &&
4260        Def != NewVD && D.hasAttributes()) {
4261      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4262      Diag(Def->getLocation(), diag::note_previous_definition);
4263    }
4264  }
4265
4266  // If this is a locally-scoped extern C variable, update the map of
4267  // such variables.
4268  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4269      !NewVD->isInvalidDecl())
4270    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4271
4272  // If there's a #pragma GCC visibility in scope, and this isn't a class
4273  // member, set the visibility of this variable.
4274  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4275    AddPushedVisibilityAttribute(NewVD);
4276
4277  MarkUnusedFileScopedDecl(NewVD);
4278
4279  return NewVD;
4280}
4281
4282/// \brief Diagnose variable or built-in function shadowing.  Implements
4283/// -Wshadow.
4284///
4285/// This method is called whenever a VarDecl is added to a "useful"
4286/// scope.
4287///
4288/// \param S the scope in which the shadowing name is being declared
4289/// \param R the lookup of the name
4290///
4291void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4292  // Return if warning is ignored.
4293  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4294        DiagnosticsEngine::Ignored)
4295    return;
4296
4297  // Don't diagnose declarations at file scope.
4298  if (D->hasGlobalStorage())
4299    return;
4300
4301  DeclContext *NewDC = D->getDeclContext();
4302
4303  // Only diagnose if we're shadowing an unambiguous field or variable.
4304  if (R.getResultKind() != LookupResult::Found)
4305    return;
4306
4307  NamedDecl* ShadowedDecl = R.getFoundDecl();
4308  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4309    return;
4310
4311  // Fields are not shadowed by variables in C++ static methods.
4312  if (isa<FieldDecl>(ShadowedDecl))
4313    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4314      if (MD->isStatic())
4315        return;
4316
4317  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4318    if (shadowedVar->isExternC()) {
4319      // For shadowing external vars, make sure that we point to the global
4320      // declaration, not a locally scoped extern declaration.
4321      for (VarDecl::redecl_iterator
4322             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4323           I != E; ++I)
4324        if (I->isFileVarDecl()) {
4325          ShadowedDecl = *I;
4326          break;
4327        }
4328    }
4329
4330  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4331
4332  // Only warn about certain kinds of shadowing for class members.
4333  if (NewDC && NewDC->isRecord()) {
4334    // In particular, don't warn about shadowing non-class members.
4335    if (!OldDC->isRecord())
4336      return;
4337
4338    // TODO: should we warn about static data members shadowing
4339    // static data members from base classes?
4340
4341    // TODO: don't diagnose for inaccessible shadowed members.
4342    // This is hard to do perfectly because we might friend the
4343    // shadowing context, but that's just a false negative.
4344  }
4345
4346  // Determine what kind of declaration we're shadowing.
4347  unsigned Kind;
4348  if (isa<RecordDecl>(OldDC)) {
4349    if (isa<FieldDecl>(ShadowedDecl))
4350      Kind = 3; // field
4351    else
4352      Kind = 2; // static data member
4353  } else if (OldDC->isFileContext())
4354    Kind = 1; // global
4355  else
4356    Kind = 0; // local
4357
4358  DeclarationName Name = R.getLookupName();
4359
4360  // Emit warning and note.
4361  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4362  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4363}
4364
4365/// \brief Check -Wshadow without the advantage of a previous lookup.
4366void Sema::CheckShadow(Scope *S, VarDecl *D) {
4367  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4368        DiagnosticsEngine::Ignored)
4369    return;
4370
4371  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4372                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4373  LookupName(R, S);
4374  CheckShadow(S, D, R);
4375}
4376
4377/// \brief Perform semantic checking on a newly-created variable
4378/// declaration.
4379///
4380/// This routine performs all of the type-checking required for a
4381/// variable declaration once it has been built. It is used both to
4382/// check variables after they have been parsed and their declarators
4383/// have been translated into a declaration, and to check variables
4384/// that have been instantiated from a template.
4385///
4386/// Sets NewVD->isInvalidDecl() if an error was encountered.
4387///
4388/// Returns true if the variable declaration is a redeclaration.
4389bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4390                                    LookupResult &Previous) {
4391  // If the decl is already known invalid, don't check it.
4392  if (NewVD->isInvalidDecl())
4393    return false;
4394
4395  QualType T = NewVD->getType();
4396
4397  if (T->isObjCObjectType()) {
4398    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4399      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4400    T = Context.getObjCObjectPointerType(T);
4401    NewVD->setType(T);
4402  }
4403
4404  // Emit an error if an address space was applied to decl with local storage.
4405  // This includes arrays of objects with address space qualifiers, but not
4406  // automatic variables that point to other address spaces.
4407  // ISO/IEC TR 18037 S5.1.2
4408  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4409    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4410    NewVD->setInvalidDecl();
4411    return false;
4412  }
4413
4414  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4415      && !NewVD->hasAttr<BlocksAttr>()) {
4416    if (getLangOpts().getGC() != LangOptions::NonGC)
4417      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4418    else
4419      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4420  }
4421
4422  bool isVM = T->isVariablyModifiedType();
4423  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4424      NewVD->hasAttr<BlocksAttr>())
4425    getCurFunction()->setHasBranchProtectedScope();
4426
4427  if ((isVM && NewVD->hasLinkage()) ||
4428      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4429    bool SizeIsNegative;
4430    llvm::APSInt Oversized;
4431    QualType FixedTy =
4432        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4433                                            Oversized);
4434
4435    if (FixedTy.isNull() && T->isVariableArrayType()) {
4436      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4437      // FIXME: This won't give the correct result for
4438      // int a[10][n];
4439      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4440
4441      if (NewVD->isFileVarDecl())
4442        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4443        << SizeRange;
4444      else if (NewVD->getStorageClass() == SC_Static)
4445        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4446        << SizeRange;
4447      else
4448        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4449        << SizeRange;
4450      NewVD->setInvalidDecl();
4451      return false;
4452    }
4453
4454    if (FixedTy.isNull()) {
4455      if (NewVD->isFileVarDecl())
4456        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4457      else
4458        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4459      NewVD->setInvalidDecl();
4460      return false;
4461    }
4462
4463    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4464    NewVD->setType(FixedTy);
4465  }
4466
4467  if (Previous.empty() && NewVD->isExternC()) {
4468    // Since we did not find anything by this name and we're declaring
4469    // an extern "C" variable, look for a non-visible extern "C"
4470    // declaration with the same name.
4471    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4472      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4473    if (Pos != LocallyScopedExternalDecls.end())
4474      Previous.addDecl(Pos->second);
4475  }
4476
4477  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4478    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4479      << T;
4480    NewVD->setInvalidDecl();
4481    return false;
4482  }
4483
4484  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4485    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4486    NewVD->setInvalidDecl();
4487    return false;
4488  }
4489
4490  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4491    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4492    NewVD->setInvalidDecl();
4493    return false;
4494  }
4495
4496  if (NewVD->isConstexpr() && !T->isDependentType() &&
4497      RequireLiteralType(NewVD->getLocation(), T,
4498                         diag::err_constexpr_var_non_literal)) {
4499    NewVD->setInvalidDecl();
4500    return false;
4501  }
4502
4503  if (!Previous.empty()) {
4504    MergeVarDecl(NewVD, Previous);
4505    return true;
4506  }
4507  return false;
4508}
4509
4510/// \brief Data used with FindOverriddenMethod
4511struct FindOverriddenMethodData {
4512  Sema *S;
4513  CXXMethodDecl *Method;
4514};
4515
4516/// \brief Member lookup function that determines whether a given C++
4517/// method overrides a method in a base class, to be used with
4518/// CXXRecordDecl::lookupInBases().
4519static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4520                                 CXXBasePath &Path,
4521                                 void *UserData) {
4522  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4523
4524  FindOverriddenMethodData *Data
4525    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4526
4527  DeclarationName Name = Data->Method->getDeclName();
4528
4529  // FIXME: Do we care about other names here too?
4530  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4531    // We really want to find the base class destructor here.
4532    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4533    CanQualType CT = Data->S->Context.getCanonicalType(T);
4534
4535    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4536  }
4537
4538  for (Path.Decls = BaseRecord->lookup(Name);
4539       Path.Decls.first != Path.Decls.second;
4540       ++Path.Decls.first) {
4541    NamedDecl *D = *Path.Decls.first;
4542    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4543      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4544        return true;
4545    }
4546  }
4547
4548  return false;
4549}
4550
4551static bool hasDelayedExceptionSpec(CXXMethodDecl *Method) {
4552  const FunctionProtoType *Proto =Method->getType()->getAs<FunctionProtoType>();
4553  return Proto && Proto->getExceptionSpecType() == EST_Delayed;
4554}
4555
4556/// AddOverriddenMethods - See if a method overrides any in the base classes,
4557/// and if so, check that it's a valid override and remember it.
4558bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4559  // Look for virtual methods in base classes that this method might override.
4560  CXXBasePaths Paths;
4561  FindOverriddenMethodData Data;
4562  Data.Method = MD;
4563  Data.S = this;
4564  bool AddedAny = false;
4565  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4566    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4567         E = Paths.found_decls_end(); I != E; ++I) {
4568      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4569        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4570        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4571            (hasDelayedExceptionSpec(MD) ||
4572             !CheckOverridingFunctionExceptionSpec(MD, OldMD)) &&
4573            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4574          AddedAny = true;
4575        }
4576      }
4577    }
4578  }
4579
4580  return AddedAny;
4581}
4582
4583namespace {
4584  // Struct for holding all of the extra arguments needed by
4585  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4586  struct ActOnFDArgs {
4587    Scope *S;
4588    Declarator &D;
4589    MultiTemplateParamsArg TemplateParamLists;
4590    bool AddToScope;
4591  };
4592}
4593
4594namespace {
4595
4596// Callback to only accept typo corrections that have a non-zero edit distance.
4597// Also only accept corrections that have the same parent decl.
4598class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4599 public:
4600  DifferentNameValidatorCCC(CXXRecordDecl *Parent)
4601      : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4602
4603  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4604    if (candidate.getEditDistance() == 0)
4605      return false;
4606
4607    if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
4608      CXXRecordDecl *Parent = MD->getParent();
4609      return Parent && Parent->getCanonicalDecl() == ExpectedParent;
4610    }
4611
4612    return !ExpectedParent;
4613  }
4614
4615 private:
4616  CXXRecordDecl *ExpectedParent;
4617};
4618
4619}
4620
4621/// \brief Generate diagnostics for an invalid function redeclaration.
4622///
4623/// This routine handles generating the diagnostic messages for an invalid
4624/// function redeclaration, including finding possible similar declarations
4625/// or performing typo correction if there are no previous declarations with
4626/// the same name.
4627///
4628/// Returns a NamedDecl iff typo correction was performed and substituting in
4629/// the new declaration name does not cause new errors.
4630static NamedDecl* DiagnoseInvalidRedeclaration(
4631    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4632    ActOnFDArgs &ExtraArgs) {
4633  NamedDecl *Result = NULL;
4634  DeclarationName Name = NewFD->getDeclName();
4635  DeclContext *NewDC = NewFD->getDeclContext();
4636  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4637                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4638  llvm::SmallVector<unsigned, 1> MismatchedParams;
4639  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4640  TypoCorrection Correction;
4641  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4642                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4643  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4644                                  : diag::err_member_def_does_not_match;
4645
4646  NewFD->setInvalidDecl();
4647  SemaRef.LookupQualifiedName(Prev, NewDC);
4648  assert(!Prev.isAmbiguous() &&
4649         "Cannot have an ambiguity in previous-declaration lookup");
4650  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4651  DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
4652  if (!Prev.empty()) {
4653    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4654         Func != FuncEnd; ++Func) {
4655      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4656      if (FD &&
4657          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4658        // Add 1 to the index so that 0 can mean the mismatch didn't
4659        // involve a parameter
4660        unsigned ParamNum =
4661            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4662        NearMatches.push_back(std::make_pair(FD, ParamNum));
4663      }
4664    }
4665  // If the qualified name lookup yielded nothing, try typo correction
4666  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4667                                         Prev.getLookupKind(), 0, 0,
4668                                         Validator, NewDC))) {
4669    // Trap errors.
4670    Sema::SFINAETrap Trap(SemaRef);
4671
4672    // Set up everything for the call to ActOnFunctionDeclarator
4673    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4674                              ExtraArgs.D.getIdentifierLoc());
4675    Previous.clear();
4676    Previous.setLookupName(Correction.getCorrection());
4677    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4678                                    CDeclEnd = Correction.end();
4679         CDecl != CDeclEnd; ++CDecl) {
4680      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4681      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4682                                     MismatchedParams)) {
4683        Previous.addDecl(FD);
4684      }
4685    }
4686    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4687    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4688    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4689    // eliminate the need for the parameter pack ExtraArgs.
4690    Result = SemaRef.ActOnFunctionDeclarator(
4691        ExtraArgs.S, ExtraArgs.D,
4692        Correction.getCorrectionDecl()->getDeclContext(),
4693        NewFD->getTypeSourceInfo(), Previous, ExtraArgs.TemplateParamLists,
4694        ExtraArgs.AddToScope);
4695    if (Trap.hasErrorOccurred()) {
4696      // Pretend the typo correction never occurred
4697      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4698                                ExtraArgs.D.getIdentifierLoc());
4699      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4700      Previous.clear();
4701      Previous.setLookupName(Name);
4702      Result = NULL;
4703    } else {
4704      for (LookupResult::iterator Func = Previous.begin(),
4705                               FuncEnd = Previous.end();
4706           Func != FuncEnd; ++Func) {
4707        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4708          NearMatches.push_back(std::make_pair(FD, 0));
4709      }
4710    }
4711    if (NearMatches.empty()) {
4712      // Ignore the correction if it didn't yield any close FunctionDecl matches
4713      Correction = TypoCorrection();
4714    } else {
4715      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4716                             : diag::err_member_def_does_not_match_suggest;
4717    }
4718  }
4719
4720  if (Correction)
4721    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4722        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4723        << FixItHint::CreateReplacement(
4724            NewFD->getLocation(),
4725            Correction.getAsString(SemaRef.getLangOpts()));
4726  else
4727    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4728        << Name << NewDC << NewFD->getLocation();
4729
4730  bool NewFDisConst = false;
4731  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4732    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4733
4734  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4735       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4736       NearMatch != NearMatchEnd; ++NearMatch) {
4737    FunctionDecl *FD = NearMatch->first;
4738    bool FDisConst = false;
4739    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4740      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4741
4742    if (unsigned Idx = NearMatch->second) {
4743      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4744      SourceLocation Loc = FDParam->getTypeSpecStartLoc();
4745      if (Loc.isInvalid()) Loc = FD->getLocation();
4746      SemaRef.Diag(Loc, diag::note_member_def_close_param_match)
4747          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4748    } else if (Correction) {
4749      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4750          << Correction.getQuoted(SemaRef.getLangOpts());
4751    } else if (FDisConst != NewFDisConst) {
4752      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4753          << NewFDisConst << FD->getSourceRange().getEnd();
4754    } else
4755      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4756  }
4757  return Result;
4758}
4759
4760static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4761                                                          Declarator &D) {
4762  switch (D.getDeclSpec().getStorageClassSpec()) {
4763  default: llvm_unreachable("Unknown storage class!");
4764  case DeclSpec::SCS_auto:
4765  case DeclSpec::SCS_register:
4766  case DeclSpec::SCS_mutable:
4767    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4768                 diag::err_typecheck_sclass_func);
4769    D.setInvalidType();
4770    break;
4771  case DeclSpec::SCS_unspecified: break;
4772  case DeclSpec::SCS_extern: return SC_Extern;
4773  case DeclSpec::SCS_static: {
4774    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4775      // C99 6.7.1p5:
4776      //   The declaration of an identifier for a function that has
4777      //   block scope shall have no explicit storage-class specifier
4778      //   other than extern
4779      // See also (C++ [dcl.stc]p4).
4780      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4781                   diag::err_static_block_func);
4782      break;
4783    } else
4784      return SC_Static;
4785  }
4786  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4787  }
4788
4789  // No explicit storage class has already been returned
4790  return SC_None;
4791}
4792
4793static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4794                                           DeclContext *DC, QualType &R,
4795                                           TypeSourceInfo *TInfo,
4796                                           FunctionDecl::StorageClass SC,
4797                                           bool &IsVirtualOkay) {
4798  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4799  DeclarationName Name = NameInfo.getName();
4800
4801  FunctionDecl *NewFD = 0;
4802  bool isInline = D.getDeclSpec().isInlineSpecified();
4803  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4804  FunctionDecl::StorageClass SCAsWritten
4805    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4806
4807  if (!SemaRef.getLangOpts().CPlusPlus) {
4808    // Determine whether the function was written with a
4809    // prototype. This true when:
4810    //   - there is a prototype in the declarator, or
4811    //   - the type R of the function is some kind of typedef or other reference
4812    //     to a type name (which eventually refers to a function type).
4813    bool HasPrototype =
4814      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4815      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4816
4817    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4818                                 D.getLocStart(), NameInfo, R,
4819                                 TInfo, SC, SCAsWritten, isInline,
4820                                 HasPrototype);
4821    if (D.isInvalidType())
4822      NewFD->setInvalidDecl();
4823
4824    // Set the lexical context.
4825    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4826
4827    return NewFD;
4828  }
4829
4830  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4831  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4832
4833  // Check that the return type is not an abstract class type.
4834  // For record types, this is done by the AbstractClassUsageDiagnoser once
4835  // the class has been completely parsed.
4836  if (!DC->isRecord() &&
4837      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4838                                     R->getAs<FunctionType>()->getResultType(),
4839                                     diag::err_abstract_type_in_decl,
4840                                     SemaRef.AbstractReturnType))
4841    D.setInvalidType();
4842
4843  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4844    // This is a C++ constructor declaration.
4845    assert(DC->isRecord() &&
4846           "Constructors can only be declared in a member context");
4847
4848    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4849    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4850                                      D.getLocStart(), NameInfo,
4851                                      R, TInfo, isExplicit, isInline,
4852                                      /*isImplicitlyDeclared=*/false,
4853                                      isConstexpr);
4854
4855  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4856    // This is a C++ destructor declaration.
4857    if (DC->isRecord()) {
4858      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4859      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4860      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4861                                        SemaRef.Context, Record,
4862                                        D.getLocStart(),
4863                                        NameInfo, R, TInfo, isInline,
4864                                        /*isImplicitlyDeclared=*/false);
4865
4866      // If the class is complete, then we now create the implicit exception
4867      // specification. If the class is incomplete or dependent, we can't do
4868      // it yet.
4869      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4870          Record->getDefinition() && !Record->isBeingDefined() &&
4871          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4872        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4873      }
4874
4875      IsVirtualOkay = true;
4876      return NewDD;
4877
4878    } else {
4879      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4880      D.setInvalidType();
4881
4882      // Create a FunctionDecl to satisfy the function definition parsing
4883      // code path.
4884      return FunctionDecl::Create(SemaRef.Context, DC,
4885                                  D.getLocStart(),
4886                                  D.getIdentifierLoc(), Name, R, TInfo,
4887                                  SC, SCAsWritten, isInline,
4888                                  /*hasPrototype=*/true, isConstexpr);
4889    }
4890
4891  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4892    if (!DC->isRecord()) {
4893      SemaRef.Diag(D.getIdentifierLoc(),
4894           diag::err_conv_function_not_member);
4895      return 0;
4896    }
4897
4898    SemaRef.CheckConversionDeclarator(D, R, SC);
4899    IsVirtualOkay = true;
4900    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4901                                     D.getLocStart(), NameInfo,
4902                                     R, TInfo, isInline, isExplicit,
4903                                     isConstexpr, SourceLocation());
4904
4905  } else if (DC->isRecord()) {
4906    // If the name of the function is the same as the name of the record,
4907    // then this must be an invalid constructor that has a return type.
4908    // (The parser checks for a return type and makes the declarator a
4909    // constructor if it has no return type).
4910    if (Name.getAsIdentifierInfo() &&
4911        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4912      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4913        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4914        << SourceRange(D.getIdentifierLoc());
4915      return 0;
4916    }
4917
4918    bool isStatic = SC == SC_Static;
4919
4920    // [class.free]p1:
4921    // Any allocation function for a class T is a static member
4922    // (even if not explicitly declared static).
4923    if (Name.getCXXOverloadedOperator() == OO_New ||
4924        Name.getCXXOverloadedOperator() == OO_Array_New)
4925      isStatic = true;
4926
4927    // [class.free]p6 Any deallocation function for a class X is a static member
4928    // (even if not explicitly declared static).
4929    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4930        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4931      isStatic = true;
4932
4933    IsVirtualOkay = !isStatic;
4934
4935    // This is a C++ method declaration.
4936    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4937                                 D.getLocStart(), NameInfo, R,
4938                                 TInfo, isStatic, SCAsWritten, isInline,
4939                                 isConstexpr, SourceLocation());
4940
4941  } else {
4942    // Determine whether the function was written with a
4943    // prototype. This true when:
4944    //   - we're in C++ (where every function has a prototype),
4945    return FunctionDecl::Create(SemaRef.Context, DC,
4946                                D.getLocStart(),
4947                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4948                                true/*HasPrototype*/, isConstexpr);
4949  }
4950}
4951
4952NamedDecl*
4953Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4954                              TypeSourceInfo *TInfo, LookupResult &Previous,
4955                              MultiTemplateParamsArg TemplateParamLists,
4956                              bool &AddToScope) {
4957  QualType R = TInfo->getType();
4958
4959  assert(R.getTypePtr()->isFunctionType());
4960
4961  // TODO: consider using NameInfo for diagnostic.
4962  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4963  DeclarationName Name = NameInfo.getName();
4964  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4965
4966  if (D.getDeclSpec().isThreadSpecified())
4967    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4968
4969  // Do not allow returning a objc interface by-value.
4970  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4971    Diag(D.getIdentifierLoc(),
4972         diag::err_object_cannot_be_passed_returned_by_value) << 0
4973    << R->getAs<FunctionType>()->getResultType()
4974    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4975
4976    QualType T = R->getAs<FunctionType>()->getResultType();
4977    T = Context.getObjCObjectPointerType(T);
4978    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4979      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4980      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4981                                  FPT->getNumArgs(), EPI);
4982    }
4983    else if (isa<FunctionNoProtoType>(R))
4984      R = Context.getFunctionNoProtoType(T);
4985  }
4986
4987  bool isFriend = false;
4988  FunctionTemplateDecl *FunctionTemplate = 0;
4989  bool isExplicitSpecialization = false;
4990  bool isFunctionTemplateSpecialization = false;
4991  bool isDependentClassScopeExplicitSpecialization = false;
4992  bool isVirtualOkay = false;
4993
4994  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4995                                              isVirtualOkay);
4996  if (!NewFD) return 0;
4997
4998  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4999    NewFD->setTopLevelDeclInObjCContainer();
5000
5001  if (getLangOpts().CPlusPlus) {
5002    bool isInline = D.getDeclSpec().isInlineSpecified();
5003    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
5004    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
5005    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
5006    isFriend = D.getDeclSpec().isFriendSpecified();
5007    if (isFriend && !isInline && D.isFunctionDefinition()) {
5008      // C++ [class.friend]p5
5009      //   A function can be defined in a friend declaration of a
5010      //   class . . . . Such a function is implicitly inline.
5011      NewFD->setImplicitlyInline();
5012    }
5013
5014    SetNestedNameSpecifier(NewFD, D);
5015    isExplicitSpecialization = false;
5016    isFunctionTemplateSpecialization = false;
5017    if (D.isInvalidType())
5018      NewFD->setInvalidDecl();
5019
5020    // Set the lexical context. If the declarator has a C++
5021    // scope specifier, or is the object of a friend declaration, the
5022    // lexical context will be different from the semantic context.
5023    NewFD->setLexicalDeclContext(CurContext);
5024
5025    // Match up the template parameter lists with the scope specifier, then
5026    // determine whether we have a template or a template specialization.
5027    bool Invalid = false;
5028    if (TemplateParameterList *TemplateParams
5029          = MatchTemplateParametersToScopeSpecifier(
5030                                  D.getDeclSpec().getLocStart(),
5031                                  D.getIdentifierLoc(),
5032                                  D.getCXXScopeSpec(),
5033                                  TemplateParamLists.get(),
5034                                  TemplateParamLists.size(),
5035                                  isFriend,
5036                                  isExplicitSpecialization,
5037                                  Invalid)) {
5038      if (TemplateParams->size() > 0) {
5039        // This is a function template
5040
5041        // Check that we can declare a template here.
5042        if (CheckTemplateDeclScope(S, TemplateParams))
5043          return 0;
5044
5045        // A destructor cannot be a template.
5046        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
5047          Diag(NewFD->getLocation(), diag::err_destructor_template);
5048          return 0;
5049        }
5050
5051        // If we're adding a template to a dependent context, we may need to
5052        // rebuilding some of the types used within the template parameter list,
5053        // now that we know what the current instantiation is.
5054        if (DC->isDependentContext()) {
5055          ContextRAII SavedContext(*this, DC);
5056          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
5057            Invalid = true;
5058        }
5059
5060
5061        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
5062                                                        NewFD->getLocation(),
5063                                                        Name, TemplateParams,
5064                                                        NewFD);
5065        FunctionTemplate->setLexicalDeclContext(CurContext);
5066        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
5067
5068        // For source fidelity, store the other template param lists.
5069        if (TemplateParamLists.size() > 1) {
5070          NewFD->setTemplateParameterListsInfo(Context,
5071                                               TemplateParamLists.size() - 1,
5072                                               TemplateParamLists.release());
5073        }
5074      } else {
5075        // This is a function template specialization.
5076        isFunctionTemplateSpecialization = true;
5077        // For source fidelity, store all the template param lists.
5078        NewFD->setTemplateParameterListsInfo(Context,
5079                                             TemplateParamLists.size(),
5080                                             TemplateParamLists.release());
5081
5082        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
5083        if (isFriend) {
5084          // We want to remove the "template<>", found here.
5085          SourceRange RemoveRange = TemplateParams->getSourceRange();
5086
5087          // If we remove the template<> and the name is not a
5088          // template-id, we're actually silently creating a problem:
5089          // the friend declaration will refer to an untemplated decl,
5090          // and clearly the user wants a template specialization.  So
5091          // we need to insert '<>' after the name.
5092          SourceLocation InsertLoc;
5093          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
5094            InsertLoc = D.getName().getSourceRange().getEnd();
5095            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
5096          }
5097
5098          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
5099            << Name << RemoveRange
5100            << FixItHint::CreateRemoval(RemoveRange)
5101            << FixItHint::CreateInsertion(InsertLoc, "<>");
5102        }
5103      }
5104    }
5105    else {
5106      // All template param lists were matched against the scope specifier:
5107      // this is NOT (an explicit specialization of) a template.
5108      if (TemplateParamLists.size() > 0)
5109        // For source fidelity, store all the template param lists.
5110        NewFD->setTemplateParameterListsInfo(Context,
5111                                             TemplateParamLists.size(),
5112                                             TemplateParamLists.release());
5113    }
5114
5115    if (Invalid) {
5116      NewFD->setInvalidDecl();
5117      if (FunctionTemplate)
5118        FunctionTemplate->setInvalidDecl();
5119    }
5120
5121    // If we see "T var();" at block scope, where T is a class type, it is
5122    // probably an attempt to initialize a variable, not a function declaration.
5123    // We don't catch this case earlier, since there is no ambiguity here.
5124    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
5125        CurContext->isFunctionOrMethod() &&
5126        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
5127        D.getDeclSpec().getStorageClassSpecAsWritten()
5128          == DeclSpec::SCS_unspecified) {
5129      QualType T = R->getAs<FunctionType>()->getResultType();
5130      DeclaratorChunk &C = D.getTypeObject(0);
5131      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
5132          !C.Fun.TrailingReturnType &&
5133          C.Fun.getExceptionSpecType() == EST_None) {
5134        SourceRange ParenRange(C.Loc, C.EndLoc);
5135        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
5136
5137        // If the declaration looks like:
5138        //   T var1,
5139        //   f();
5140        // and name lookup finds a function named 'f', then the ',' was
5141        // probably intended to be a ';'.
5142        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5143          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5144          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5145          if (Comma.getFileID() != Name.getFileID() ||
5146              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5147            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5148                                LookupOrdinaryName);
5149            if (LookupName(Result, S))
5150              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5151                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5152          }
5153        }
5154        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5155        // Empty parens mean value-initialization, and no parens mean default
5156        // initialization. These are equivalent if the default constructor is
5157        // user-provided, or if zero-initialization is a no-op.
5158        if (RD && RD->hasDefinition() &&
5159            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5160          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5161            << FixItHint::CreateRemoval(ParenRange);
5162        else {
5163          std::string Init = getFixItZeroInitializerForType(T);
5164          if (Init.empty() && LangOpts.CPlusPlus0x)
5165            Init = "{}";
5166          if (!Init.empty())
5167            Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5168              << FixItHint::CreateReplacement(ParenRange, Init);
5169        }
5170      }
5171    }
5172
5173    // C++ [dcl.fct.spec]p5:
5174    //   The virtual specifier shall only be used in declarations of
5175    //   nonstatic class member functions that appear within a
5176    //   member-specification of a class declaration; see 10.3.
5177    //
5178    if (isVirtual && !NewFD->isInvalidDecl()) {
5179      if (!isVirtualOkay) {
5180        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5181             diag::err_virtual_non_function);
5182      } else if (!CurContext->isRecord()) {
5183        // 'virtual' was specified outside of the class.
5184        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5185             diag::err_virtual_out_of_class)
5186          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5187      } else if (NewFD->getDescribedFunctionTemplate()) {
5188        // C++ [temp.mem]p3:
5189        //  A member function template shall not be virtual.
5190        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5191             diag::err_virtual_member_function_template)
5192          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5193      } else {
5194        // Okay: Add virtual to the method.
5195        NewFD->setVirtualAsWritten(true);
5196      }
5197    }
5198
5199    // C++ [dcl.fct.spec]p3:
5200    //  The inline specifier shall not appear on a block scope function
5201    //  declaration.
5202    if (isInline && !NewFD->isInvalidDecl()) {
5203      if (CurContext->isFunctionOrMethod()) {
5204        // 'inline' is not allowed on block scope function declaration.
5205        Diag(D.getDeclSpec().getInlineSpecLoc(),
5206             diag::err_inline_declaration_block_scope) << Name
5207          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5208      }
5209    }
5210
5211    // C++ [dcl.fct.spec]p6:
5212    //  The explicit specifier shall be used only in the declaration of a
5213    //  constructor or conversion function within its class definition;
5214    //  see 12.3.1 and 12.3.2.
5215    if (isExplicit && !NewFD->isInvalidDecl()) {
5216      if (!CurContext->isRecord()) {
5217        // 'explicit' was specified outside of the class.
5218        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5219             diag::err_explicit_out_of_class)
5220          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5221      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5222                 !isa<CXXConversionDecl>(NewFD)) {
5223        // 'explicit' was specified on a function that wasn't a constructor
5224        // or conversion function.
5225        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5226             diag::err_explicit_non_ctor_or_conv_function)
5227          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5228      }
5229    }
5230
5231    if (isConstexpr) {
5232      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5233      // are implicitly inline.
5234      NewFD->setImplicitlyInline();
5235
5236      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5237      // be either constructors or to return a literal type. Therefore,
5238      // destructors cannot be declared constexpr.
5239      if (isa<CXXDestructorDecl>(NewFD))
5240        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5241    }
5242
5243    // If __module_private__ was specified, mark the function accordingly.
5244    if (D.getDeclSpec().isModulePrivateSpecified()) {
5245      if (isFunctionTemplateSpecialization) {
5246        SourceLocation ModulePrivateLoc
5247          = D.getDeclSpec().getModulePrivateSpecLoc();
5248        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5249          << 0
5250          << FixItHint::CreateRemoval(ModulePrivateLoc);
5251      } else {
5252        NewFD->setModulePrivate();
5253        if (FunctionTemplate)
5254          FunctionTemplate->setModulePrivate();
5255      }
5256    }
5257
5258    if (isFriend) {
5259      // For now, claim that the objects have no previous declaration.
5260      if (FunctionTemplate) {
5261        FunctionTemplate->setObjectOfFriendDecl(false);
5262        FunctionTemplate->setAccess(AS_public);
5263      }
5264      NewFD->setObjectOfFriendDecl(false);
5265      NewFD->setAccess(AS_public);
5266    }
5267
5268    // If a function is defined as defaulted or deleted, mark it as such now.
5269    switch (D.getFunctionDefinitionKind()) {
5270      case FDK_Declaration:
5271      case FDK_Definition:
5272        break;
5273
5274      case FDK_Defaulted:
5275        NewFD->setDefaulted();
5276        break;
5277
5278      case FDK_Deleted:
5279        NewFD->setDeletedAsWritten();
5280        break;
5281    }
5282
5283    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5284        D.isFunctionDefinition()) {
5285      // C++ [class.mfct]p2:
5286      //   A member function may be defined (8.4) in its class definition, in
5287      //   which case it is an inline member function (7.1.2)
5288      NewFD->setImplicitlyInline();
5289    }
5290
5291    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5292        !CurContext->isRecord()) {
5293      // C++ [class.static]p1:
5294      //   A data or function member of a class may be declared static
5295      //   in a class definition, in which case it is a static member of
5296      //   the class.
5297
5298      // Complain about the 'static' specifier if it's on an out-of-line
5299      // member function definition.
5300      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5301           diag::err_static_out_of_line)
5302        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5303    }
5304  }
5305
5306  // Filter out previous declarations that don't match the scope.
5307  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5308                       isExplicitSpecialization ||
5309                       isFunctionTemplateSpecialization);
5310
5311  // Handle GNU asm-label extension (encoded as an attribute).
5312  if (Expr *E = (Expr*) D.getAsmLabel()) {
5313    // The parser guarantees this is a string.
5314    StringLiteral *SE = cast<StringLiteral>(E);
5315    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5316                                                SE->getString()));
5317  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5318    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5319      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5320    if (I != ExtnameUndeclaredIdentifiers.end()) {
5321      NewFD->addAttr(I->second);
5322      ExtnameUndeclaredIdentifiers.erase(I);
5323    }
5324  }
5325
5326  // Copy the parameter declarations from the declarator D to the function
5327  // declaration NewFD, if they are available.  First scavenge them into Params.
5328  SmallVector<ParmVarDecl*, 16> Params;
5329  if (D.isFunctionDeclarator()) {
5330    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5331
5332    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5333    // function that takes no arguments, not a function that takes a
5334    // single void argument.
5335    // We let through "const void" here because Sema::GetTypeForDeclarator
5336    // already checks for that case.
5337    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5338        FTI.ArgInfo[0].Param &&
5339        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5340      // Empty arg list, don't push any params.
5341      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5342
5343      // In C++, the empty parameter-type-list must be spelled "void"; a
5344      // typedef of void is not permitted.
5345      if (getLangOpts().CPlusPlus &&
5346          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5347        bool IsTypeAlias = false;
5348        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5349          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5350        else if (const TemplateSpecializationType *TST =
5351                   Param->getType()->getAs<TemplateSpecializationType>())
5352          IsTypeAlias = TST->isTypeAlias();
5353        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5354          << IsTypeAlias;
5355      }
5356    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5357      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5358        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5359        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5360        Param->setDeclContext(NewFD);
5361        Params.push_back(Param);
5362
5363        if (Param->isInvalidDecl())
5364          NewFD->setInvalidDecl();
5365      }
5366    }
5367
5368  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5369    // When we're declaring a function with a typedef, typeof, etc as in the
5370    // following example, we'll need to synthesize (unnamed)
5371    // parameters for use in the declaration.
5372    //
5373    // @code
5374    // typedef void fn(int);
5375    // fn f;
5376    // @endcode
5377
5378    // Synthesize a parameter for each argument type.
5379    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5380         AE = FT->arg_type_end(); AI != AE; ++AI) {
5381      ParmVarDecl *Param =
5382        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5383      Param->setScopeInfo(0, Params.size());
5384      Params.push_back(Param);
5385    }
5386  } else {
5387    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5388           "Should not need args for typedef of non-prototype fn");
5389  }
5390
5391  // Finally, we know we have the right number of parameters, install them.
5392  NewFD->setParams(Params);
5393
5394  // Find all anonymous symbols defined during the declaration of this function
5395  // and add to NewFD. This lets us track decls such 'enum Y' in:
5396  //
5397  //   void f(enum Y {AA} x) {}
5398  //
5399  // which would otherwise incorrectly end up in the translation unit scope.
5400  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5401  DeclsInPrototypeScope.clear();
5402
5403  // Process the non-inheritable attributes on this declaration.
5404  ProcessDeclAttributes(S, NewFD, D,
5405                        /*NonInheritable=*/true, /*Inheritable=*/false);
5406
5407  // Functions returning a variably modified type violate C99 6.7.5.2p2
5408  // because all functions have linkage.
5409  if (!NewFD->isInvalidDecl() &&
5410      NewFD->getResultType()->isVariablyModifiedType()) {
5411    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5412    NewFD->setInvalidDecl();
5413  }
5414
5415  // Handle attributes.
5416  ProcessDeclAttributes(S, NewFD, D,
5417                        /*NonInheritable=*/false, /*Inheritable=*/true);
5418
5419  if (!getLangOpts().CPlusPlus) {
5420    // Perform semantic checking on the function declaration.
5421    bool isExplicitSpecialization=false;
5422    if (!NewFD->isInvalidDecl()) {
5423      if (NewFD->isMain())
5424        CheckMain(NewFD, D.getDeclSpec());
5425      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5426                                                  isExplicitSpecialization));
5427    }
5428    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5429            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5430           "previous declaration set still overloaded");
5431  } else {
5432    // If the declarator is a template-id, translate the parser's template
5433    // argument list into our AST format.
5434    bool HasExplicitTemplateArgs = false;
5435    TemplateArgumentListInfo TemplateArgs;
5436    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5437      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5438      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5439      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5440      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5441                                         TemplateId->getTemplateArgs(),
5442                                         TemplateId->NumArgs);
5443      translateTemplateArguments(TemplateArgsPtr,
5444                                 TemplateArgs);
5445      TemplateArgsPtr.release();
5446
5447      HasExplicitTemplateArgs = true;
5448
5449      if (NewFD->isInvalidDecl()) {
5450        HasExplicitTemplateArgs = false;
5451      } else if (FunctionTemplate) {
5452        // Function template with explicit template arguments.
5453        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5454          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5455
5456        HasExplicitTemplateArgs = false;
5457      } else if (!isFunctionTemplateSpecialization &&
5458                 !D.getDeclSpec().isFriendSpecified()) {
5459        // We have encountered something that the user meant to be a
5460        // specialization (because it has explicitly-specified template
5461        // arguments) but that was not introduced with a "template<>" (or had
5462        // too few of them).
5463        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5464          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5465          << FixItHint::CreateInsertion(
5466                                    D.getDeclSpec().getLocStart(),
5467                                        "template<> ");
5468        isFunctionTemplateSpecialization = true;
5469      } else {
5470        // "friend void foo<>(int);" is an implicit specialization decl.
5471        isFunctionTemplateSpecialization = true;
5472      }
5473    } else if (isFriend && isFunctionTemplateSpecialization) {
5474      // This combination is only possible in a recovery case;  the user
5475      // wrote something like:
5476      //   template <> friend void foo(int);
5477      // which we're recovering from as if the user had written:
5478      //   friend void foo<>(int);
5479      // Go ahead and fake up a template id.
5480      HasExplicitTemplateArgs = true;
5481        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5482      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5483    }
5484
5485    // If it's a friend (and only if it's a friend), it's possible
5486    // that either the specialized function type or the specialized
5487    // template is dependent, and therefore matching will fail.  In
5488    // this case, don't check the specialization yet.
5489    bool InstantiationDependent = false;
5490    if (isFunctionTemplateSpecialization && isFriend &&
5491        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5492         TemplateSpecializationType::anyDependentTemplateArguments(
5493            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5494            InstantiationDependent))) {
5495      assert(HasExplicitTemplateArgs &&
5496             "friend function specialization without template args");
5497      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5498                                                       Previous))
5499        NewFD->setInvalidDecl();
5500    } else if (isFunctionTemplateSpecialization) {
5501      if (CurContext->isDependentContext() && CurContext->isRecord()
5502          && !isFriend) {
5503        isDependentClassScopeExplicitSpecialization = true;
5504        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5505          diag::ext_function_specialization_in_class :
5506          diag::err_function_specialization_in_class)
5507          << NewFD->getDeclName();
5508      } else if (CheckFunctionTemplateSpecialization(NewFD,
5509                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5510                                                     Previous))
5511        NewFD->setInvalidDecl();
5512
5513      // C++ [dcl.stc]p1:
5514      //   A storage-class-specifier shall not be specified in an explicit
5515      //   specialization (14.7.3)
5516      if (SC != SC_None) {
5517        if (SC != NewFD->getStorageClass())
5518          Diag(NewFD->getLocation(),
5519               diag::err_explicit_specialization_inconsistent_storage_class)
5520            << SC
5521            << FixItHint::CreateRemoval(
5522                                      D.getDeclSpec().getStorageClassSpecLoc());
5523
5524        else
5525          Diag(NewFD->getLocation(),
5526               diag::ext_explicit_specialization_storage_class)
5527            << FixItHint::CreateRemoval(
5528                                      D.getDeclSpec().getStorageClassSpecLoc());
5529      }
5530
5531    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5532      if (CheckMemberSpecialization(NewFD, Previous))
5533          NewFD->setInvalidDecl();
5534    }
5535
5536    // Perform semantic checking on the function declaration.
5537    if (!isDependentClassScopeExplicitSpecialization) {
5538      if (NewFD->isInvalidDecl()) {
5539        // If this is a class member, mark the class invalid immediately.
5540        // This avoids some consistency errors later.
5541        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5542          methodDecl->getParent()->setInvalidDecl();
5543      } else {
5544        if (NewFD->isMain())
5545          CheckMain(NewFD, D.getDeclSpec());
5546        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5547                                                    isExplicitSpecialization));
5548      }
5549    }
5550
5551    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5552            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5553           "previous declaration set still overloaded");
5554
5555    NamedDecl *PrincipalDecl = (FunctionTemplate
5556                                ? cast<NamedDecl>(FunctionTemplate)
5557                                : NewFD);
5558
5559    if (isFriend && D.isRedeclaration()) {
5560      AccessSpecifier Access = AS_public;
5561      if (!NewFD->isInvalidDecl())
5562        Access = NewFD->getPreviousDecl()->getAccess();
5563
5564      NewFD->setAccess(Access);
5565      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5566
5567      PrincipalDecl->setObjectOfFriendDecl(true);
5568    }
5569
5570    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5571        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5572      PrincipalDecl->setNonMemberOperator();
5573
5574    // If we have a function template, check the template parameter
5575    // list. This will check and merge default template arguments.
5576    if (FunctionTemplate) {
5577      FunctionTemplateDecl *PrevTemplate =
5578                                     FunctionTemplate->getPreviousDecl();
5579      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5580                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5581                            D.getDeclSpec().isFriendSpecified()
5582                              ? (D.isFunctionDefinition()
5583                                   ? TPC_FriendFunctionTemplateDefinition
5584                                   : TPC_FriendFunctionTemplate)
5585                              : (D.getCXXScopeSpec().isSet() &&
5586                                 DC && DC->isRecord() &&
5587                                 DC->isDependentContext())
5588                                  ? TPC_ClassTemplateMember
5589                                  : TPC_FunctionTemplate);
5590    }
5591
5592    if (NewFD->isInvalidDecl()) {
5593      // Ignore all the rest of this.
5594    } else if (!D.isRedeclaration()) {
5595      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5596                                       AddToScope };
5597      // Fake up an access specifier if it's supposed to be a class member.
5598      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5599        NewFD->setAccess(AS_public);
5600
5601      // Qualified decls generally require a previous declaration.
5602      if (D.getCXXScopeSpec().isSet()) {
5603        // ...with the major exception of templated-scope or
5604        // dependent-scope friend declarations.
5605
5606        // TODO: we currently also suppress this check in dependent
5607        // contexts because (1) the parameter depth will be off when
5608        // matching friend templates and (2) we might actually be
5609        // selecting a friend based on a dependent factor.  But there
5610        // are situations where these conditions don't apply and we
5611        // can actually do this check immediately.
5612        if (isFriend &&
5613            (TemplateParamLists.size() ||
5614             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5615             CurContext->isDependentContext())) {
5616          // ignore these
5617        } else {
5618          // The user tried to provide an out-of-line definition for a
5619          // function that is a member of a class or namespace, but there
5620          // was no such member function declared (C++ [class.mfct]p2,
5621          // C++ [namespace.memdef]p2). For example:
5622          //
5623          // class X {
5624          //   void f() const;
5625          // };
5626          //
5627          // void X::f() { } // ill-formed
5628          //
5629          // Complain about this problem, and attempt to suggest close
5630          // matches (e.g., those that differ only in cv-qualifiers and
5631          // whether the parameter types are references).
5632
5633          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5634                                                               NewFD,
5635                                                               ExtraArgs)) {
5636            AddToScope = ExtraArgs.AddToScope;
5637            return Result;
5638          }
5639        }
5640
5641        // Unqualified local friend declarations are required to resolve
5642        // to something.
5643      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5644        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5645                                                             NewFD,
5646                                                             ExtraArgs)) {
5647          AddToScope = ExtraArgs.AddToScope;
5648          return Result;
5649        }
5650      }
5651
5652    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5653               !isFriend && !isFunctionTemplateSpecialization &&
5654               !isExplicitSpecialization) {
5655      // An out-of-line member function declaration must also be a
5656      // definition (C++ [dcl.meaning]p1).
5657      // Note that this is not the case for explicit specializations of
5658      // function templates or member functions of class templates, per
5659      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5660      // extension for compatibility with old SWIG code which likes to
5661      // generate them.
5662      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5663        << D.getCXXScopeSpec().getRange();
5664    }
5665  }
5666
5667  // attributes declared post-definition are currently ignored
5668  // FIXME: This should happen during attribute merging
5669  if (D.isRedeclaration() && Previous.isSingleResult()) {
5670    const FunctionDecl *Def;
5671    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5672    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5673      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5674      Diag(Def->getLocation(), diag::note_previous_definition);
5675    }
5676  }
5677
5678  AddKnownFunctionAttributes(NewFD);
5679
5680  if (NewFD->hasAttr<OverloadableAttr>() &&
5681      !NewFD->getType()->getAs<FunctionProtoType>()) {
5682    Diag(NewFD->getLocation(),
5683         diag::err_attribute_overloadable_no_prototype)
5684      << NewFD;
5685
5686    // Turn this into a variadic function with no parameters.
5687    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5688    FunctionProtoType::ExtProtoInfo EPI;
5689    EPI.Variadic = true;
5690    EPI.ExtInfo = FT->getExtInfo();
5691
5692    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5693    NewFD->setType(R);
5694  }
5695
5696  // If there's a #pragma GCC visibility in scope, and this isn't a class
5697  // member, set the visibility of this function.
5698  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5699    AddPushedVisibilityAttribute(NewFD);
5700
5701  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5702  // marking the function.
5703  AddCFAuditedAttribute(NewFD);
5704
5705  // If this is a locally-scoped extern C function, update the
5706  // map of such names.
5707  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5708      && !NewFD->isInvalidDecl())
5709    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5710
5711  // Set this FunctionDecl's range up to the right paren.
5712  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5713
5714  if (getLangOpts().CPlusPlus) {
5715    if (FunctionTemplate) {
5716      if (NewFD->isInvalidDecl())
5717        FunctionTemplate->setInvalidDecl();
5718      return FunctionTemplate;
5719    }
5720  }
5721
5722  MarkUnusedFileScopedDecl(NewFD);
5723
5724  if (getLangOpts().CUDA)
5725    if (IdentifierInfo *II = NewFD->getIdentifier())
5726      if (!NewFD->isInvalidDecl() &&
5727          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5728        if (II->isStr("cudaConfigureCall")) {
5729          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5730            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5731
5732          Context.setcudaConfigureCallDecl(NewFD);
5733        }
5734      }
5735
5736  // Here we have an function template explicit specialization at class scope.
5737  // The actually specialization will be postponed to template instatiation
5738  // time via the ClassScopeFunctionSpecializationDecl node.
5739  if (isDependentClassScopeExplicitSpecialization) {
5740    ClassScopeFunctionSpecializationDecl *NewSpec =
5741                         ClassScopeFunctionSpecializationDecl::Create(
5742                                Context, CurContext,  SourceLocation(),
5743                                cast<CXXMethodDecl>(NewFD));
5744    CurContext->addDecl(NewSpec);
5745    AddToScope = false;
5746  }
5747
5748  return NewFD;
5749}
5750
5751/// \brief Perform semantic checking of a new function declaration.
5752///
5753/// Performs semantic analysis of the new function declaration
5754/// NewFD. This routine performs all semantic checking that does not
5755/// require the actual declarator involved in the declaration, and is
5756/// used both for the declaration of functions as they are parsed
5757/// (called via ActOnDeclarator) and for the declaration of functions
5758/// that have been instantiated via C++ template instantiation (called
5759/// via InstantiateDecl).
5760///
5761/// \param IsExplicitSpecialiation whether this new function declaration is
5762/// an explicit specialization of the previous declaration.
5763///
5764/// This sets NewFD->isInvalidDecl() to true if there was an error.
5765///
5766/// Returns true if the function declaration is a redeclaration.
5767bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5768                                    LookupResult &Previous,
5769                                    bool IsExplicitSpecialization) {
5770  assert(!NewFD->getResultType()->isVariablyModifiedType()
5771         && "Variably modified return types are not handled here");
5772
5773  // Check for a previous declaration of this name.
5774  if (Previous.empty() && NewFD->isExternC()) {
5775    // Since we did not find anything by this name and we're declaring
5776    // an extern "C" function, look for a non-visible extern "C"
5777    // declaration with the same name.
5778    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5779      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5780    if (Pos != LocallyScopedExternalDecls.end())
5781      Previous.addDecl(Pos->second);
5782  }
5783
5784  bool Redeclaration = false;
5785
5786  // Merge or overload the declaration with an existing declaration of
5787  // the same name, if appropriate.
5788  if (!Previous.empty()) {
5789    // Determine whether NewFD is an overload of PrevDecl or
5790    // a declaration that requires merging. If it's an overload,
5791    // there's no more work to do here; we'll just add the new
5792    // function to the scope.
5793
5794    NamedDecl *OldDecl = 0;
5795    if (!AllowOverloadingOfFunction(Previous, Context)) {
5796      Redeclaration = true;
5797      OldDecl = Previous.getFoundDecl();
5798    } else {
5799      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5800                            /*NewIsUsingDecl*/ false)) {
5801      case Ovl_Match:
5802        Redeclaration = true;
5803        break;
5804
5805      case Ovl_NonFunction:
5806        Redeclaration = true;
5807        break;
5808
5809      case Ovl_Overload:
5810        Redeclaration = false;
5811        break;
5812      }
5813
5814      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5815        // If a function name is overloadable in C, then every function
5816        // with that name must be marked "overloadable".
5817        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5818          << Redeclaration << NewFD;
5819        NamedDecl *OverloadedDecl = 0;
5820        if (Redeclaration)
5821          OverloadedDecl = OldDecl;
5822        else if (!Previous.empty())
5823          OverloadedDecl = Previous.getRepresentativeDecl();
5824        if (OverloadedDecl)
5825          Diag(OverloadedDecl->getLocation(),
5826               diag::note_attribute_overloadable_prev_overload);
5827        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5828                                                        Context));
5829      }
5830    }
5831
5832    if (Redeclaration) {
5833      // NewFD and OldDecl represent declarations that need to be
5834      // merged.
5835      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5836        NewFD->setInvalidDecl();
5837        return Redeclaration;
5838      }
5839
5840      Previous.clear();
5841      Previous.addDecl(OldDecl);
5842
5843      if (FunctionTemplateDecl *OldTemplateDecl
5844                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5845        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5846        FunctionTemplateDecl *NewTemplateDecl
5847          = NewFD->getDescribedFunctionTemplate();
5848        assert(NewTemplateDecl && "Template/non-template mismatch");
5849        if (CXXMethodDecl *Method
5850              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5851          Method->setAccess(OldTemplateDecl->getAccess());
5852          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5853        }
5854
5855        // If this is an explicit specialization of a member that is a function
5856        // template, mark it as a member specialization.
5857        if (IsExplicitSpecialization &&
5858            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5859          NewTemplateDecl->setMemberSpecialization();
5860          assert(OldTemplateDecl->isMemberSpecialization());
5861        }
5862
5863      } else {
5864        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5865          NewFD->setAccess(OldDecl->getAccess());
5866        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5867      }
5868    }
5869  }
5870
5871  // Semantic checking for this function declaration (in isolation).
5872  if (getLangOpts().CPlusPlus) {
5873    // C++-specific checks.
5874    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5875      CheckConstructor(Constructor);
5876    } else if (CXXDestructorDecl *Destructor =
5877                dyn_cast<CXXDestructorDecl>(NewFD)) {
5878      CXXRecordDecl *Record = Destructor->getParent();
5879      QualType ClassType = Context.getTypeDeclType(Record);
5880
5881      // FIXME: Shouldn't we be able to perform this check even when the class
5882      // type is dependent? Both gcc and edg can handle that.
5883      if (!ClassType->isDependentType()) {
5884        DeclarationName Name
5885          = Context.DeclarationNames.getCXXDestructorName(
5886                                        Context.getCanonicalType(ClassType));
5887        if (NewFD->getDeclName() != Name) {
5888          Diag(NewFD->getLocation(), diag::err_destructor_name);
5889          NewFD->setInvalidDecl();
5890          return Redeclaration;
5891        }
5892      }
5893    } else if (CXXConversionDecl *Conversion
5894               = dyn_cast<CXXConversionDecl>(NewFD)) {
5895      ActOnConversionDeclarator(Conversion);
5896    }
5897
5898    // Find any virtual functions that this function overrides.
5899    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5900      if (!Method->isFunctionTemplateSpecialization() &&
5901          !Method->getDescribedFunctionTemplate()) {
5902        if (AddOverriddenMethods(Method->getParent(), Method)) {
5903          // If the function was marked as "static", we have a problem.
5904          if (NewFD->getStorageClass() == SC_Static) {
5905            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5906              << NewFD->getDeclName();
5907            for (CXXMethodDecl::method_iterator
5908                      Overridden = Method->begin_overridden_methods(),
5909                   OverriddenEnd = Method->end_overridden_methods();
5910                 Overridden != OverriddenEnd;
5911                 ++Overridden) {
5912              Diag((*Overridden)->getLocation(),
5913                   diag::note_overridden_virtual_function);
5914            }
5915          }
5916        }
5917      }
5918
5919      if (Method->isStatic())
5920        checkThisInStaticMemberFunctionType(Method);
5921    }
5922
5923    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5924    if (NewFD->isOverloadedOperator() &&
5925        CheckOverloadedOperatorDeclaration(NewFD)) {
5926      NewFD->setInvalidDecl();
5927      return Redeclaration;
5928    }
5929
5930    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5931    if (NewFD->getLiteralIdentifier() &&
5932        CheckLiteralOperatorDeclaration(NewFD)) {
5933      NewFD->setInvalidDecl();
5934      return Redeclaration;
5935    }
5936
5937    // In C++, check default arguments now that we have merged decls. Unless
5938    // the lexical context is the class, because in this case this is done
5939    // during delayed parsing anyway.
5940    if (!CurContext->isRecord())
5941      CheckCXXDefaultArguments(NewFD);
5942
5943    // If this function declares a builtin function, check the type of this
5944    // declaration against the expected type for the builtin.
5945    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5946      ASTContext::GetBuiltinTypeError Error;
5947      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5948      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5949        // The type of this function differs from the type of the builtin,
5950        // so forget about the builtin entirely.
5951        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5952      }
5953    }
5954
5955    // If this function is declared as being extern "C", then check to see if
5956    // the function returns a UDT (class, struct, or union type) that is not C
5957    // compatible, and if it does, warn the user.
5958    if (NewFD->isExternC()) {
5959      QualType R = NewFD->getResultType();
5960      if (!R.isPODType(Context) &&
5961          !R->isVoidType())
5962        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5963          << NewFD << R;
5964    }
5965  }
5966  return Redeclaration;
5967}
5968
5969void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5970  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5971  //   static or constexpr is ill-formed.
5972  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5973  //   shall not appear in a declaration of main.
5974  // static main is not an error under C99, but we should warn about it.
5975  if (FD->getStorageClass() == SC_Static)
5976    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
5977         ? diag::err_static_main : diag::warn_static_main)
5978      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5979  if (FD->isInlineSpecified())
5980    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5981      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5982  if (FD->isConstexpr()) {
5983    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5984      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5985    FD->setConstexpr(false);
5986  }
5987
5988  QualType T = FD->getType();
5989  assert(T->isFunctionType() && "function decl is not of function type");
5990  const FunctionType* FT = T->castAs<FunctionType>();
5991
5992  // All the standards say that main() should should return 'int'.
5993  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5994    // In C and C++, main magically returns 0 if you fall off the end;
5995    // set the flag which tells us that.
5996    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5997    FD->setHasImplicitReturnZero(true);
5998
5999  // In C with GNU extensions we allow main() to have non-integer return
6000  // type, but we should warn about the extension, and we disable the
6001  // implicit-return-zero rule.
6002  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
6003    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
6004
6005  // Otherwise, this is just a flat-out error.
6006  } else {
6007    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
6008    FD->setInvalidDecl(true);
6009  }
6010
6011  // Treat protoless main() as nullary.
6012  if (isa<FunctionNoProtoType>(FT)) return;
6013
6014  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
6015  unsigned nparams = FTP->getNumArgs();
6016  assert(FD->getNumParams() == nparams);
6017
6018  bool HasExtraParameters = (nparams > 3);
6019
6020  // Darwin passes an undocumented fourth argument of type char**.  If
6021  // other platforms start sprouting these, the logic below will start
6022  // getting shifty.
6023  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
6024    HasExtraParameters = false;
6025
6026  if (HasExtraParameters) {
6027    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
6028    FD->setInvalidDecl(true);
6029    nparams = 3;
6030  }
6031
6032  // FIXME: a lot of the following diagnostics would be improved
6033  // if we had some location information about types.
6034
6035  QualType CharPP =
6036    Context.getPointerType(Context.getPointerType(Context.CharTy));
6037  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
6038
6039  for (unsigned i = 0; i < nparams; ++i) {
6040    QualType AT = FTP->getArgType(i);
6041
6042    bool mismatch = true;
6043
6044    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
6045      mismatch = false;
6046    else if (Expected[i] == CharPP) {
6047      // As an extension, the following forms are okay:
6048      //   char const **
6049      //   char const * const *
6050      //   char * const *
6051
6052      QualifierCollector qs;
6053      const PointerType* PT;
6054      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
6055          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
6056          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
6057        qs.removeConst();
6058        mismatch = !qs.empty();
6059      }
6060    }
6061
6062    if (mismatch) {
6063      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
6064      // TODO: suggest replacing given type with expected type
6065      FD->setInvalidDecl(true);
6066    }
6067  }
6068
6069  if (nparams == 1 && !FD->isInvalidDecl()) {
6070    Diag(FD->getLocation(), diag::warn_main_one_arg);
6071  }
6072
6073  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
6074    Diag(FD->getLocation(), diag::err_main_template_decl);
6075    FD->setInvalidDecl();
6076  }
6077}
6078
6079bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
6080  // FIXME: Need strict checking.  In C89, we need to check for
6081  // any assignment, increment, decrement, function-calls, or
6082  // commas outside of a sizeof.  In C99, it's the same list,
6083  // except that the aforementioned are allowed in unevaluated
6084  // expressions.  Everything else falls under the
6085  // "may accept other forms of constant expressions" exception.
6086  // (We never end up here for C++, so the constant expression
6087  // rules there don't matter.)
6088  if (Init->isConstantInitializer(Context, false))
6089    return false;
6090  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
6091    << Init->getSourceRange();
6092  return true;
6093}
6094
6095namespace {
6096  // Visits an initialization expression to see if OrigDecl is evaluated in
6097  // its own initialization and throws a warning if it does.
6098  class SelfReferenceChecker
6099      : public EvaluatedExprVisitor<SelfReferenceChecker> {
6100    Sema &S;
6101    Decl *OrigDecl;
6102    bool isRecordType;
6103    bool isPODType;
6104
6105  public:
6106    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
6107
6108    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
6109                                                    S(S), OrigDecl(OrigDecl) {
6110      isPODType = false;
6111      isRecordType = false;
6112      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
6113        isPODType = VD->getType().isPODType(S.Context);
6114        isRecordType = VD->getType()->isRecordType();
6115      }
6116    }
6117
6118    // Sometimes, the expression passed in lacks the casts that are used
6119    // to determine which DeclRefExpr's to check.  Assume that the casts
6120    // are present and continue visiting the expression.
6121    void HandleExpr(Expr *E) {
6122      // Skip checking T a = a where T is not a record type.  Doing so is a
6123      // way to silence uninitialized warnings.
6124      if (isRecordType)
6125        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
6126          HandleDeclRefExpr(DRE);
6127
6128      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6129        HandleValue(CO->getTrueExpr());
6130        HandleValue(CO->getFalseExpr());
6131      }
6132
6133      Visit(E);
6134    }
6135
6136    // For most expressions, the cast is directly above the DeclRefExpr.
6137    // For conditional operators, the cast can be outside the conditional
6138    // operator if both expressions are DeclRefExpr's.
6139    void HandleValue(Expr *E) {
6140      E = E->IgnoreParenImpCasts();
6141      if (DeclRefExpr* DRE = dyn_cast<DeclRefExpr>(E)) {
6142        HandleDeclRefExpr(DRE);
6143        return;
6144      }
6145
6146      if (ConditionalOperator *CO = dyn_cast<ConditionalOperator>(E)) {
6147        HandleValue(CO->getTrueExpr());
6148        HandleValue(CO->getFalseExpr());
6149      }
6150    }
6151
6152    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6153      if ((!isRecordType && E->getCastKind() == CK_LValueToRValue) ||
6154          (isRecordType && E->getCastKind() == CK_NoOp))
6155        HandleValue(E->getSubExpr());
6156
6157      Inherited::VisitImplicitCastExpr(E);
6158    }
6159
6160    void VisitMemberExpr(MemberExpr *E) {
6161      // Don't warn on arrays since they can be treated as pointers.
6162      if (E->getType()->canDecayToPointerType()) return;
6163
6164      ValueDecl *VD = E->getMemberDecl();
6165      CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(VD);
6166      if (isa<FieldDecl>(VD) || (MD && !MD->isStatic()))
6167        if (DeclRefExpr *DRE
6168              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6169          HandleDeclRefExpr(DRE);
6170          return;
6171        }
6172
6173      Inherited::VisitMemberExpr(E);
6174    }
6175
6176    void VisitUnaryOperator(UnaryOperator *E) {
6177      // For POD record types, addresses of its own members are well-defined.
6178      if (E->getOpcode() == UO_AddrOf && isRecordType && isPODType &&
6179          isa<MemberExpr>(E->getSubExpr())) return;
6180      Inherited::VisitUnaryOperator(E);
6181    }
6182
6183    void VisitObjCMessageExpr(ObjCMessageExpr *E) { return; }
6184
6185    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6186      Decl* ReferenceDecl = DRE->getDecl();
6187      if (OrigDecl != ReferenceDecl) return;
6188      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6189                          Sema::NotForRedeclaration);
6190      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6191                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6192                              << Result.getLookupName()
6193                              << OrigDecl->getLocation()
6194                              << DRE->getSourceRange());
6195    }
6196  };
6197}
6198
6199/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6200void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6201  SelfReferenceChecker(*this, OrigDecl).HandleExpr(E);
6202}
6203
6204/// AddInitializerToDecl - Adds the initializer Init to the
6205/// declaration dcl. If DirectInit is true, this is C++ direct
6206/// initialization rather than copy initialization.
6207void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6208                                bool DirectInit, bool TypeMayContainAuto) {
6209  // If there is no declaration, there was an error parsing it.  Just ignore
6210  // the initializer.
6211  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6212    return;
6213
6214  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6215    // With declarators parsed the way they are, the parser cannot
6216    // distinguish between a normal initializer and a pure-specifier.
6217    // Thus this grotesque test.
6218    IntegerLiteral *IL;
6219    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6220        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6221      CheckPureMethod(Method, Init->getSourceRange());
6222    else {
6223      Diag(Method->getLocation(), diag::err_member_function_initialization)
6224        << Method->getDeclName() << Init->getSourceRange();
6225      Method->setInvalidDecl();
6226    }
6227    return;
6228  }
6229
6230  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6231  if (!VDecl) {
6232    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6233    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6234    RealDecl->setInvalidDecl();
6235    return;
6236  }
6237
6238  // Check for self-references within variable initializers.
6239  // Variables declared within a function/method body are handled
6240  // by a dataflow analysis.
6241  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6242    CheckSelfReference(RealDecl, Init);
6243
6244  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6245
6246  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6247  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6248    Expr *DeduceInit = Init;
6249    // Initializer could be a C++ direct-initializer. Deduction only works if it
6250    // contains exactly one expression.
6251    if (CXXDirectInit) {
6252      if (CXXDirectInit->getNumExprs() == 0) {
6253        // It isn't possible to write this directly, but it is possible to
6254        // end up in this situation with "auto x(some_pack...);"
6255        Diag(CXXDirectInit->getLocStart(),
6256             diag::err_auto_var_init_no_expression)
6257          << VDecl->getDeclName() << VDecl->getType()
6258          << VDecl->getSourceRange();
6259        RealDecl->setInvalidDecl();
6260        return;
6261      } else if (CXXDirectInit->getNumExprs() > 1) {
6262        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6263             diag::err_auto_var_init_multiple_expressions)
6264          << VDecl->getDeclName() << VDecl->getType()
6265          << VDecl->getSourceRange();
6266        RealDecl->setInvalidDecl();
6267        return;
6268      } else {
6269        DeduceInit = CXXDirectInit->getExpr(0);
6270      }
6271    }
6272    TypeSourceInfo *DeducedType = 0;
6273    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6274            DAR_Failed)
6275      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6276    if (!DeducedType) {
6277      RealDecl->setInvalidDecl();
6278      return;
6279    }
6280    VDecl->setTypeSourceInfo(DeducedType);
6281    VDecl->setType(DeducedType->getType());
6282    VDecl->ClearLinkageCache();
6283
6284    // In ARC, infer lifetime.
6285    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6286      VDecl->setInvalidDecl();
6287
6288    // If this is a redeclaration, check that the type we just deduced matches
6289    // the previously declared type.
6290    if (VarDecl *Old = VDecl->getPreviousDecl())
6291      MergeVarDeclTypes(VDecl, Old);
6292  }
6293
6294  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6295    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6296    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6297    VDecl->setInvalidDecl();
6298    return;
6299  }
6300
6301  if (!VDecl->getType()->isDependentType()) {
6302    // A definition must end up with a complete type, which means it must be
6303    // complete with the restriction that an array type might be completed by
6304    // the initializer; note that later code assumes this restriction.
6305    QualType BaseDeclType = VDecl->getType();
6306    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6307      BaseDeclType = Array->getElementType();
6308    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6309                            diag::err_typecheck_decl_incomplete_type)) {
6310      RealDecl->setInvalidDecl();
6311      return;
6312    }
6313
6314    // The variable can not have an abstract class type.
6315    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6316                               diag::err_abstract_type_in_decl,
6317                               AbstractVariableType))
6318      VDecl->setInvalidDecl();
6319  }
6320
6321  const VarDecl *Def;
6322  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6323    Diag(VDecl->getLocation(), diag::err_redefinition)
6324      << VDecl->getDeclName();
6325    Diag(Def->getLocation(), diag::note_previous_definition);
6326    VDecl->setInvalidDecl();
6327    return;
6328  }
6329
6330  const VarDecl* PrevInit = 0;
6331  if (getLangOpts().CPlusPlus) {
6332    // C++ [class.static.data]p4
6333    //   If a static data member is of const integral or const
6334    //   enumeration type, its declaration in the class definition can
6335    //   specify a constant-initializer which shall be an integral
6336    //   constant expression (5.19). In that case, the member can appear
6337    //   in integral constant expressions. The member shall still be
6338    //   defined in a namespace scope if it is used in the program and the
6339    //   namespace scope definition shall not contain an initializer.
6340    //
6341    // We already performed a redefinition check above, but for static
6342    // data members we also need to check whether there was an in-class
6343    // declaration with an initializer.
6344    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6345      Diag(VDecl->getLocation(), diag::err_redefinition)
6346        << VDecl->getDeclName();
6347      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6348      return;
6349    }
6350
6351    if (VDecl->hasLocalStorage())
6352      getCurFunction()->setHasBranchProtectedScope();
6353
6354    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6355      VDecl->setInvalidDecl();
6356      return;
6357    }
6358  }
6359
6360  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6361  // a kernel function cannot be initialized."
6362  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6363    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6364    VDecl->setInvalidDecl();
6365    return;
6366  }
6367
6368  // Get the decls type and save a reference for later, since
6369  // CheckInitializerTypes may change it.
6370  QualType DclT = VDecl->getType(), SavT = DclT;
6371
6372  // Top-level message sends default to 'id' when we're in a debugger
6373  // and we are assigning it to a variable of 'id' type.
6374  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6375    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6376      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6377      if (Result.isInvalid()) {
6378        VDecl->setInvalidDecl();
6379        return;
6380      }
6381      Init = Result.take();
6382    }
6383
6384  // Perform the initialization.
6385  if (!VDecl->isInvalidDecl()) {
6386    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6387    InitializationKind Kind
6388      = DirectInit ?
6389          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6390                                                           Init->getLocStart(),
6391                                                           Init->getLocEnd())
6392                        : InitializationKind::CreateDirectList(
6393                                                          VDecl->getLocation())
6394                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6395                                                    Init->getLocStart());
6396
6397    Expr **Args = &Init;
6398    unsigned NumArgs = 1;
6399    if (CXXDirectInit) {
6400      Args = CXXDirectInit->getExprs();
6401      NumArgs = CXXDirectInit->getNumExprs();
6402    }
6403    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6404    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6405                                              MultiExprArg(*this, Args,NumArgs),
6406                                              &DclT);
6407    if (Result.isInvalid()) {
6408      VDecl->setInvalidDecl();
6409      return;
6410    }
6411
6412    Init = Result.takeAs<Expr>();
6413  }
6414
6415  // If the type changed, it means we had an incomplete type that was
6416  // completed by the initializer. For example:
6417  //   int ary[] = { 1, 3, 5 };
6418  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6419  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6420    VDecl->setType(DclT);
6421
6422  // Check any implicit conversions within the expression.
6423  CheckImplicitConversions(Init, VDecl->getLocation());
6424
6425  if (!VDecl->isInvalidDecl())
6426    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6427
6428  Init = MaybeCreateExprWithCleanups(Init);
6429  // Attach the initializer to the decl.
6430  VDecl->setInit(Init);
6431
6432  if (VDecl->isLocalVarDecl()) {
6433    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6434    // static storage duration shall be constant expressions or string literals.
6435    // C++ does not have this restriction.
6436    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6437        VDecl->getStorageClass() == SC_Static)
6438      CheckForConstantInitializer(Init, DclT);
6439  } else if (VDecl->isStaticDataMember() &&
6440             VDecl->getLexicalDeclContext()->isRecord()) {
6441    // This is an in-class initialization for a static data member, e.g.,
6442    //
6443    // struct S {
6444    //   static const int value = 17;
6445    // };
6446
6447    // C++ [class.mem]p4:
6448    //   A member-declarator can contain a constant-initializer only
6449    //   if it declares a static member (9.4) of const integral or
6450    //   const enumeration type, see 9.4.2.
6451    //
6452    // C++11 [class.static.data]p3:
6453    //   If a non-volatile const static data member is of integral or
6454    //   enumeration type, its declaration in the class definition can
6455    //   specify a brace-or-equal-initializer in which every initalizer-clause
6456    //   that is an assignment-expression is a constant expression. A static
6457    //   data member of literal type can be declared in the class definition
6458    //   with the constexpr specifier; if so, its declaration shall specify a
6459    //   brace-or-equal-initializer in which every initializer-clause that is
6460    //   an assignment-expression is a constant expression.
6461
6462    // Do nothing on dependent types.
6463    if (DclT->isDependentType()) {
6464
6465    // Allow any 'static constexpr' members, whether or not they are of literal
6466    // type. We separately check that every constexpr variable is of literal
6467    // type.
6468    } else if (VDecl->isConstexpr()) {
6469
6470    // Require constness.
6471    } else if (!DclT.isConstQualified()) {
6472      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6473        << Init->getSourceRange();
6474      VDecl->setInvalidDecl();
6475
6476    // We allow integer constant expressions in all cases.
6477    } else if (DclT->isIntegralOrEnumerationType()) {
6478      // Check whether the expression is a constant expression.
6479      SourceLocation Loc;
6480      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6481        // In C++11, a non-constexpr const static data member with an
6482        // in-class initializer cannot be volatile.
6483        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6484      else if (Init->isValueDependent())
6485        ; // Nothing to check.
6486      else if (Init->isIntegerConstantExpr(Context, &Loc))
6487        ; // Ok, it's an ICE!
6488      else if (Init->isEvaluatable(Context)) {
6489        // If we can constant fold the initializer through heroics, accept it,
6490        // but report this as a use of an extension for -pedantic.
6491        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6492          << Init->getSourceRange();
6493      } else {
6494        // Otherwise, this is some crazy unknown case.  Report the issue at the
6495        // location provided by the isIntegerConstantExpr failed check.
6496        Diag(Loc, diag::err_in_class_initializer_non_constant)
6497          << Init->getSourceRange();
6498        VDecl->setInvalidDecl();
6499      }
6500
6501    // We allow foldable floating-point constants as an extension.
6502    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6503      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6504        << DclT << Init->getSourceRange();
6505      if (getLangOpts().CPlusPlus0x)
6506        Diag(VDecl->getLocation(),
6507             diag::note_in_class_initializer_float_type_constexpr)
6508          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6509
6510      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6511        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6512          << Init->getSourceRange();
6513        VDecl->setInvalidDecl();
6514      }
6515
6516    // Suggest adding 'constexpr' in C++11 for literal types.
6517    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6518      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6519        << DclT << Init->getSourceRange()
6520        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6521      VDecl->setConstexpr(true);
6522
6523    } else {
6524      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6525        << DclT << Init->getSourceRange();
6526      VDecl->setInvalidDecl();
6527    }
6528  } else if (VDecl->isFileVarDecl()) {
6529    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6530        (!getLangOpts().CPlusPlus ||
6531         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6532      Diag(VDecl->getLocation(), diag::warn_extern_init);
6533
6534    // C99 6.7.8p4. All file scoped initializers need to be constant.
6535    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6536      CheckForConstantInitializer(Init, DclT);
6537  }
6538
6539  // We will represent direct-initialization similarly to copy-initialization:
6540  //    int x(1);  -as-> int x = 1;
6541  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6542  //
6543  // Clients that want to distinguish between the two forms, can check for
6544  // direct initializer using VarDecl::getInitStyle().
6545  // A major benefit is that clients that don't particularly care about which
6546  // exactly form was it (like the CodeGen) can handle both cases without
6547  // special case code.
6548
6549  // C++ 8.5p11:
6550  // The form of initialization (using parentheses or '=') is generally
6551  // insignificant, but does matter when the entity being initialized has a
6552  // class type.
6553  if (CXXDirectInit) {
6554    assert(DirectInit && "Call-style initializer must be direct init.");
6555    VDecl->setInitStyle(VarDecl::CallInit);
6556  } else if (DirectInit) {
6557    // This must be list-initialization. No other way is direct-initialization.
6558    VDecl->setInitStyle(VarDecl::ListInit);
6559  }
6560
6561  CheckCompleteVariableDeclaration(VDecl);
6562}
6563
6564/// ActOnInitializerError - Given that there was an error parsing an
6565/// initializer for the given declaration, try to return to some form
6566/// of sanity.
6567void Sema::ActOnInitializerError(Decl *D) {
6568  // Our main concern here is re-establishing invariants like "a
6569  // variable's type is either dependent or complete".
6570  if (!D || D->isInvalidDecl()) return;
6571
6572  VarDecl *VD = dyn_cast<VarDecl>(D);
6573  if (!VD) return;
6574
6575  // Auto types are meaningless if we can't make sense of the initializer.
6576  if (ParsingInitForAutoVars.count(D)) {
6577    D->setInvalidDecl();
6578    return;
6579  }
6580
6581  QualType Ty = VD->getType();
6582  if (Ty->isDependentType()) return;
6583
6584  // Require a complete type.
6585  if (RequireCompleteType(VD->getLocation(),
6586                          Context.getBaseElementType(Ty),
6587                          diag::err_typecheck_decl_incomplete_type)) {
6588    VD->setInvalidDecl();
6589    return;
6590  }
6591
6592  // Require an abstract type.
6593  if (RequireNonAbstractType(VD->getLocation(), Ty,
6594                             diag::err_abstract_type_in_decl,
6595                             AbstractVariableType)) {
6596    VD->setInvalidDecl();
6597    return;
6598  }
6599
6600  // Don't bother complaining about constructors or destructors,
6601  // though.
6602}
6603
6604void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6605                                  bool TypeMayContainAuto) {
6606  // If there is no declaration, there was an error parsing it. Just ignore it.
6607  if (RealDecl == 0)
6608    return;
6609
6610  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6611    QualType Type = Var->getType();
6612
6613    // C++11 [dcl.spec.auto]p3
6614    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6615      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6616        << Var->getDeclName() << Type;
6617      Var->setInvalidDecl();
6618      return;
6619    }
6620
6621    // C++11 [class.static.data]p3: A static data member can be declared with
6622    // the constexpr specifier; if so, its declaration shall specify
6623    // a brace-or-equal-initializer.
6624    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6625    // the definition of a variable [...] or the declaration of a static data
6626    // member.
6627    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6628      if (Var->isStaticDataMember())
6629        Diag(Var->getLocation(),
6630             diag::err_constexpr_static_mem_var_requires_init)
6631          << Var->getDeclName();
6632      else
6633        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6634      Var->setInvalidDecl();
6635      return;
6636    }
6637
6638    switch (Var->isThisDeclarationADefinition()) {
6639    case VarDecl::Definition:
6640      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6641        break;
6642
6643      // We have an out-of-line definition of a static data member
6644      // that has an in-class initializer, so we type-check this like
6645      // a declaration.
6646      //
6647      // Fall through
6648
6649    case VarDecl::DeclarationOnly:
6650      // It's only a declaration.
6651
6652      // Block scope. C99 6.7p7: If an identifier for an object is
6653      // declared with no linkage (C99 6.2.2p6), the type for the
6654      // object shall be complete.
6655      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6656          !Var->getLinkage() && !Var->isInvalidDecl() &&
6657          RequireCompleteType(Var->getLocation(), Type,
6658                              diag::err_typecheck_decl_incomplete_type))
6659        Var->setInvalidDecl();
6660
6661      // Make sure that the type is not abstract.
6662      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6663          RequireNonAbstractType(Var->getLocation(), Type,
6664                                 diag::err_abstract_type_in_decl,
6665                                 AbstractVariableType))
6666        Var->setInvalidDecl();
6667      return;
6668
6669    case VarDecl::TentativeDefinition:
6670      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6671      // object that has file scope without an initializer, and without a
6672      // storage-class specifier or with the storage-class specifier "static",
6673      // constitutes a tentative definition. Note: A tentative definition with
6674      // external linkage is valid (C99 6.2.2p5).
6675      if (!Var->isInvalidDecl()) {
6676        if (const IncompleteArrayType *ArrayT
6677                                    = Context.getAsIncompleteArrayType(Type)) {
6678          if (RequireCompleteType(Var->getLocation(),
6679                                  ArrayT->getElementType(),
6680                                  diag::err_illegal_decl_array_incomplete_type))
6681            Var->setInvalidDecl();
6682        } else if (Var->getStorageClass() == SC_Static) {
6683          // C99 6.9.2p3: If the declaration of an identifier for an object is
6684          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6685          // declared type shall not be an incomplete type.
6686          // NOTE: code such as the following
6687          //     static struct s;
6688          //     struct s { int a; };
6689          // is accepted by gcc. Hence here we issue a warning instead of
6690          // an error and we do not invalidate the static declaration.
6691          // NOTE: to avoid multiple warnings, only check the first declaration.
6692          if (Var->getPreviousDecl() == 0)
6693            RequireCompleteType(Var->getLocation(), Type,
6694                                diag::ext_typecheck_decl_incomplete_type);
6695        }
6696      }
6697
6698      // Record the tentative definition; we're done.
6699      if (!Var->isInvalidDecl())
6700        TentativeDefinitions.push_back(Var);
6701      return;
6702    }
6703
6704    // Provide a specific diagnostic for uninitialized variable
6705    // definitions with incomplete array type.
6706    if (Type->isIncompleteArrayType()) {
6707      Diag(Var->getLocation(),
6708           diag::err_typecheck_incomplete_array_needs_initializer);
6709      Var->setInvalidDecl();
6710      return;
6711    }
6712
6713    // Provide a specific diagnostic for uninitialized variable
6714    // definitions with reference type.
6715    if (Type->isReferenceType()) {
6716      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6717        << Var->getDeclName()
6718        << SourceRange(Var->getLocation(), Var->getLocation());
6719      Var->setInvalidDecl();
6720      return;
6721    }
6722
6723    // Do not attempt to type-check the default initializer for a
6724    // variable with dependent type.
6725    if (Type->isDependentType())
6726      return;
6727
6728    if (Var->isInvalidDecl())
6729      return;
6730
6731    if (RequireCompleteType(Var->getLocation(),
6732                            Context.getBaseElementType(Type),
6733                            diag::err_typecheck_decl_incomplete_type)) {
6734      Var->setInvalidDecl();
6735      return;
6736    }
6737
6738    // The variable can not have an abstract class type.
6739    if (RequireNonAbstractType(Var->getLocation(), Type,
6740                               diag::err_abstract_type_in_decl,
6741                               AbstractVariableType)) {
6742      Var->setInvalidDecl();
6743      return;
6744    }
6745
6746    // Check for jumps past the implicit initializer.  C++0x
6747    // clarifies that this applies to a "variable with automatic
6748    // storage duration", not a "local variable".
6749    // C++11 [stmt.dcl]p3
6750    //   A program that jumps from a point where a variable with automatic
6751    //   storage duration is not in scope to a point where it is in scope is
6752    //   ill-formed unless the variable has scalar type, class type with a
6753    //   trivial default constructor and a trivial destructor, a cv-qualified
6754    //   version of one of these types, or an array of one of the preceding
6755    //   types and is declared without an initializer.
6756    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6757      if (const RecordType *Record
6758            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6759        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6760        // Mark the function for further checking even if the looser rules of
6761        // C++11 do not require such checks, so that we can diagnose
6762        // incompatibilities with C++98.
6763        if (!CXXRecord->isPOD())
6764          getCurFunction()->setHasBranchProtectedScope();
6765      }
6766    }
6767
6768    // C++03 [dcl.init]p9:
6769    //   If no initializer is specified for an object, and the
6770    //   object is of (possibly cv-qualified) non-POD class type (or
6771    //   array thereof), the object shall be default-initialized; if
6772    //   the object is of const-qualified type, the underlying class
6773    //   type shall have a user-declared default
6774    //   constructor. Otherwise, if no initializer is specified for
6775    //   a non- static object, the object and its subobjects, if
6776    //   any, have an indeterminate initial value); if the object
6777    //   or any of its subobjects are of const-qualified type, the
6778    //   program is ill-formed.
6779    // C++0x [dcl.init]p11:
6780    //   If no initializer is specified for an object, the object is
6781    //   default-initialized; [...].
6782    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6783    InitializationKind Kind
6784      = InitializationKind::CreateDefault(Var->getLocation());
6785
6786    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6787    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6788                                      MultiExprArg(*this, 0, 0));
6789    if (Init.isInvalid())
6790      Var->setInvalidDecl();
6791    else if (Init.get()) {
6792      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6793      // This is important for template substitution.
6794      Var->setInitStyle(VarDecl::CallInit);
6795    }
6796
6797    CheckCompleteVariableDeclaration(Var);
6798  }
6799}
6800
6801void Sema::ActOnCXXForRangeDecl(Decl *D) {
6802  VarDecl *VD = dyn_cast<VarDecl>(D);
6803  if (!VD) {
6804    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6805    D->setInvalidDecl();
6806    return;
6807  }
6808
6809  VD->setCXXForRangeDecl(true);
6810
6811  // for-range-declaration cannot be given a storage class specifier.
6812  int Error = -1;
6813  switch (VD->getStorageClassAsWritten()) {
6814  case SC_None:
6815    break;
6816  case SC_Extern:
6817    Error = 0;
6818    break;
6819  case SC_Static:
6820    Error = 1;
6821    break;
6822  case SC_PrivateExtern:
6823    Error = 2;
6824    break;
6825  case SC_Auto:
6826    Error = 3;
6827    break;
6828  case SC_Register:
6829    Error = 4;
6830    break;
6831  case SC_OpenCLWorkGroupLocal:
6832    llvm_unreachable("Unexpected storage class");
6833  }
6834  if (VD->isConstexpr())
6835    Error = 5;
6836  if (Error != -1) {
6837    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6838      << VD->getDeclName() << Error;
6839    D->setInvalidDecl();
6840  }
6841}
6842
6843void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6844  if (var->isInvalidDecl()) return;
6845
6846  // In ARC, don't allow jumps past the implicit initialization of a
6847  // local retaining variable.
6848  if (getLangOpts().ObjCAutoRefCount &&
6849      var->hasLocalStorage()) {
6850    switch (var->getType().getObjCLifetime()) {
6851    case Qualifiers::OCL_None:
6852    case Qualifiers::OCL_ExplicitNone:
6853    case Qualifiers::OCL_Autoreleasing:
6854      break;
6855
6856    case Qualifiers::OCL_Weak:
6857    case Qualifiers::OCL_Strong:
6858      getCurFunction()->setHasBranchProtectedScope();
6859      break;
6860    }
6861  }
6862
6863  // All the following checks are C++ only.
6864  if (!getLangOpts().CPlusPlus) return;
6865
6866  QualType baseType = Context.getBaseElementType(var->getType());
6867  if (baseType->isDependentType()) return;
6868
6869  // __block variables might require us to capture a copy-initializer.
6870  if (var->hasAttr<BlocksAttr>()) {
6871    // It's currently invalid to ever have a __block variable with an
6872    // array type; should we diagnose that here?
6873
6874    // Regardless, we don't want to ignore array nesting when
6875    // constructing this copy.
6876    QualType type = var->getType();
6877
6878    if (type->isStructureOrClassType()) {
6879      SourceLocation poi = var->getLocation();
6880      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6881      ExprResult result =
6882        PerformCopyInitialization(
6883                        InitializedEntity::InitializeBlock(poi, type, false),
6884                                  poi, Owned(varRef));
6885      if (!result.isInvalid()) {
6886        result = MaybeCreateExprWithCleanups(result);
6887        Expr *init = result.takeAs<Expr>();
6888        Context.setBlockVarCopyInits(var, init);
6889      }
6890    }
6891  }
6892
6893  Expr *Init = var->getInit();
6894  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6895
6896  if (!var->getDeclContext()->isDependentContext() && Init) {
6897    if (IsGlobal && !var->isConstexpr() &&
6898        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6899                                            var->getLocation())
6900          != DiagnosticsEngine::Ignored &&
6901        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6902      Diag(var->getLocation(), diag::warn_global_constructor)
6903        << Init->getSourceRange();
6904
6905    if (var->isConstexpr()) {
6906      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6907      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6908        SourceLocation DiagLoc = var->getLocation();
6909        // If the note doesn't add any useful information other than a source
6910        // location, fold it into the primary diagnostic.
6911        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6912              diag::note_invalid_subexpr_in_const_expr) {
6913          DiagLoc = Notes[0].first;
6914          Notes.clear();
6915        }
6916        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6917          << var << Init->getSourceRange();
6918        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6919          Diag(Notes[I].first, Notes[I].second);
6920      }
6921    } else if (var->isUsableInConstantExpressions(Context)) {
6922      // Check whether the initializer of a const variable of integral or
6923      // enumeration type is an ICE now, since we can't tell whether it was
6924      // initialized by a constant expression if we check later.
6925      var->checkInitIsICE();
6926    }
6927  }
6928
6929  // Require the destructor.
6930  if (const RecordType *recordType = baseType->getAs<RecordType>())
6931    FinalizeVarWithDestructor(var, recordType);
6932}
6933
6934/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6935/// any semantic actions necessary after any initializer has been attached.
6936void
6937Sema::FinalizeDeclaration(Decl *ThisDecl) {
6938  // Note that we are no longer parsing the initializer for this declaration.
6939  ParsingInitForAutoVars.erase(ThisDecl);
6940}
6941
6942Sema::DeclGroupPtrTy
6943Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6944                              Decl **Group, unsigned NumDecls) {
6945  SmallVector<Decl*, 8> Decls;
6946
6947  if (DS.isTypeSpecOwned())
6948    Decls.push_back(DS.getRepAsDecl());
6949
6950  for (unsigned i = 0; i != NumDecls; ++i)
6951    if (Decl *D = Group[i])
6952      Decls.push_back(D);
6953
6954  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6955                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6956}
6957
6958/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6959/// group, performing any necessary semantic checking.
6960Sema::DeclGroupPtrTy
6961Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6962                           bool TypeMayContainAuto) {
6963  // C++0x [dcl.spec.auto]p7:
6964  //   If the type deduced for the template parameter U is not the same in each
6965  //   deduction, the program is ill-formed.
6966  // FIXME: When initializer-list support is added, a distinction is needed
6967  // between the deduced type U and the deduced type which 'auto' stands for.
6968  //   auto a = 0, b = { 1, 2, 3 };
6969  // is legal because the deduced type U is 'int' in both cases.
6970  if (TypeMayContainAuto && NumDecls > 1) {
6971    QualType Deduced;
6972    CanQualType DeducedCanon;
6973    VarDecl *DeducedDecl = 0;
6974    for (unsigned i = 0; i != NumDecls; ++i) {
6975      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6976        AutoType *AT = D->getType()->getContainedAutoType();
6977        // Don't reissue diagnostics when instantiating a template.
6978        if (AT && D->isInvalidDecl())
6979          break;
6980        if (AT && AT->isDeduced()) {
6981          QualType U = AT->getDeducedType();
6982          CanQualType UCanon = Context.getCanonicalType(U);
6983          if (Deduced.isNull()) {
6984            Deduced = U;
6985            DeducedCanon = UCanon;
6986            DeducedDecl = D;
6987          } else if (DeducedCanon != UCanon) {
6988            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6989                 diag::err_auto_different_deductions)
6990              << Deduced << DeducedDecl->getDeclName()
6991              << U << D->getDeclName()
6992              << DeducedDecl->getInit()->getSourceRange()
6993              << D->getInit()->getSourceRange();
6994            D->setInvalidDecl();
6995            break;
6996          }
6997        }
6998      }
6999    }
7000  }
7001
7002  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
7003}
7004
7005
7006/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
7007/// to introduce parameters into function prototype scope.
7008Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
7009  const DeclSpec &DS = D.getDeclSpec();
7010
7011  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
7012  // C++03 [dcl.stc]p2 also permits 'auto'.
7013  VarDecl::StorageClass StorageClass = SC_None;
7014  VarDecl::StorageClass StorageClassAsWritten = SC_None;
7015  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
7016    StorageClass = SC_Register;
7017    StorageClassAsWritten = SC_Register;
7018  } else if (getLangOpts().CPlusPlus &&
7019             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
7020    StorageClass = SC_Auto;
7021    StorageClassAsWritten = SC_Auto;
7022  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
7023    Diag(DS.getStorageClassSpecLoc(),
7024         diag::err_invalid_storage_class_in_func_decl);
7025    D.getMutableDeclSpec().ClearStorageClassSpecs();
7026  }
7027
7028  if (D.getDeclSpec().isThreadSpecified())
7029    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7030  if (D.getDeclSpec().isConstexprSpecified())
7031    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
7032      << 0;
7033
7034  DiagnoseFunctionSpecifiers(D);
7035
7036  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7037  QualType parmDeclType = TInfo->getType();
7038
7039  if (getLangOpts().CPlusPlus) {
7040    // Check that there are no default arguments inside the type of this
7041    // parameter.
7042    CheckExtraCXXDefaultArguments(D);
7043
7044    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
7045    if (D.getCXXScopeSpec().isSet()) {
7046      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
7047        << D.getCXXScopeSpec().getRange();
7048      D.getCXXScopeSpec().clear();
7049    }
7050  }
7051
7052  // Ensure we have a valid name
7053  IdentifierInfo *II = 0;
7054  if (D.hasName()) {
7055    II = D.getIdentifier();
7056    if (!II) {
7057      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
7058        << GetNameForDeclarator(D).getName().getAsString();
7059      D.setInvalidType(true);
7060    }
7061  }
7062
7063  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
7064  if (II) {
7065    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
7066                   ForRedeclaration);
7067    LookupName(R, S);
7068    if (R.isSingleResult()) {
7069      NamedDecl *PrevDecl = R.getFoundDecl();
7070      if (PrevDecl->isTemplateParameter()) {
7071        // Maybe we will complain about the shadowed template parameter.
7072        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7073        // Just pretend that we didn't see the previous declaration.
7074        PrevDecl = 0;
7075      } else if (S->isDeclScope(PrevDecl)) {
7076        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
7077        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7078
7079        // Recover by removing the name
7080        II = 0;
7081        D.SetIdentifier(0, D.getIdentifierLoc());
7082        D.setInvalidType(true);
7083      }
7084    }
7085  }
7086
7087  // Temporarily put parameter variables in the translation unit, not
7088  // the enclosing context.  This prevents them from accidentally
7089  // looking like class members in C++.
7090  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
7091                                    D.getLocStart(),
7092                                    D.getIdentifierLoc(), II,
7093                                    parmDeclType, TInfo,
7094                                    StorageClass, StorageClassAsWritten);
7095
7096  if (D.isInvalidType())
7097    New->setInvalidDecl();
7098
7099  assert(S->isFunctionPrototypeScope());
7100  assert(S->getFunctionPrototypeDepth() >= 1);
7101  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
7102                    S->getNextFunctionPrototypeIndex());
7103
7104  // Add the parameter declaration into this scope.
7105  S->AddDecl(New);
7106  if (II)
7107    IdResolver.AddDecl(New);
7108
7109  ProcessDeclAttributes(S, New, D);
7110
7111  if (D.getDeclSpec().isModulePrivateSpecified())
7112    Diag(New->getLocation(), diag::err_module_private_local)
7113      << 1 << New->getDeclName()
7114      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7115      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7116
7117  if (New->hasAttr<BlocksAttr>()) {
7118    Diag(New->getLocation(), diag::err_block_on_nonlocal);
7119  }
7120  return New;
7121}
7122
7123/// \brief Synthesizes a variable for a parameter arising from a
7124/// typedef.
7125ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
7126                                              SourceLocation Loc,
7127                                              QualType T) {
7128  /* FIXME: setting StartLoc == Loc.
7129     Would it be worth to modify callers so as to provide proper source
7130     location for the unnamed parameters, embedding the parameter's type? */
7131  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
7132                                T, Context.getTrivialTypeSourceInfo(T, Loc),
7133                                           SC_None, SC_None, 0);
7134  Param->setImplicit();
7135  return Param;
7136}
7137
7138void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7139                                    ParmVarDecl * const *ParamEnd) {
7140  // Don't diagnose unused-parameter errors in template instantiations; we
7141  // will already have done so in the template itself.
7142  if (!ActiveTemplateInstantiations.empty())
7143    return;
7144
7145  for (; Param != ParamEnd; ++Param) {
7146    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7147        !(*Param)->hasAttr<UnusedAttr>()) {
7148      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7149        << (*Param)->getDeclName();
7150    }
7151  }
7152}
7153
7154void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7155                                                  ParmVarDecl * const *ParamEnd,
7156                                                  QualType ReturnTy,
7157                                                  NamedDecl *D) {
7158  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7159    return;
7160
7161  // Warn if the return value is pass-by-value and larger than the specified
7162  // threshold.
7163  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7164    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7165    if (Size > LangOpts.NumLargeByValueCopy)
7166      Diag(D->getLocation(), diag::warn_return_value_size)
7167          << D->getDeclName() << Size;
7168  }
7169
7170  // Warn if any parameter is pass-by-value and larger than the specified
7171  // threshold.
7172  for (; Param != ParamEnd; ++Param) {
7173    QualType T = (*Param)->getType();
7174    if (T->isDependentType() || !T.isPODType(Context))
7175      continue;
7176    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7177    if (Size > LangOpts.NumLargeByValueCopy)
7178      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7179          << (*Param)->getDeclName() << Size;
7180  }
7181}
7182
7183ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7184                                  SourceLocation NameLoc, IdentifierInfo *Name,
7185                                  QualType T, TypeSourceInfo *TSInfo,
7186                                  VarDecl::StorageClass StorageClass,
7187                                  VarDecl::StorageClass StorageClassAsWritten) {
7188  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7189  if (getLangOpts().ObjCAutoRefCount &&
7190      T.getObjCLifetime() == Qualifiers::OCL_None &&
7191      T->isObjCLifetimeType()) {
7192
7193    Qualifiers::ObjCLifetime lifetime;
7194
7195    // Special cases for arrays:
7196    //   - if it's const, use __unsafe_unretained
7197    //   - otherwise, it's an error
7198    if (T->isArrayType()) {
7199      if (!T.isConstQualified()) {
7200        DelayedDiagnostics.add(
7201            sema::DelayedDiagnostic::makeForbiddenType(
7202            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7203      }
7204      lifetime = Qualifiers::OCL_ExplicitNone;
7205    } else {
7206      lifetime = T->getObjCARCImplicitLifetime();
7207    }
7208    T = Context.getLifetimeQualifiedType(T, lifetime);
7209  }
7210
7211  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7212                                         Context.getAdjustedParameterType(T),
7213                                         TSInfo,
7214                                         StorageClass, StorageClassAsWritten,
7215                                         0);
7216
7217  // Parameters can not be abstract class types.
7218  // For record types, this is done by the AbstractClassUsageDiagnoser once
7219  // the class has been completely parsed.
7220  if (!CurContext->isRecord() &&
7221      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7222                             AbstractParamType))
7223    New->setInvalidDecl();
7224
7225  // Parameter declarators cannot be interface types. All ObjC objects are
7226  // passed by reference.
7227  if (T->isObjCObjectType()) {
7228    SourceLocation TypeEndLoc = TSInfo->getTypeLoc().getLocEnd();
7229    Diag(NameLoc,
7230         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7231      << FixItHint::CreateInsertion(TypeEndLoc, "*");
7232    T = Context.getObjCObjectPointerType(T);
7233    New->setType(T);
7234  }
7235
7236  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7237  // duration shall not be qualified by an address-space qualifier."
7238  // Since all parameters have automatic store duration, they can not have
7239  // an address space.
7240  if (T.getAddressSpace() != 0) {
7241    Diag(NameLoc, diag::err_arg_with_address_space);
7242    New->setInvalidDecl();
7243  }
7244
7245  return New;
7246}
7247
7248void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7249                                           SourceLocation LocAfterDecls) {
7250  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7251
7252  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7253  // for a K&R function.
7254  if (!FTI.hasPrototype) {
7255    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7256      --i;
7257      if (FTI.ArgInfo[i].Param == 0) {
7258        SmallString<256> Code;
7259        llvm::raw_svector_ostream(Code) << "  int "
7260                                        << FTI.ArgInfo[i].Ident->getName()
7261                                        << ";\n";
7262        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7263          << FTI.ArgInfo[i].Ident
7264          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7265
7266        // Implicitly declare the argument as type 'int' for lack of a better
7267        // type.
7268        AttributeFactory attrs;
7269        DeclSpec DS(attrs);
7270        const char* PrevSpec; // unused
7271        unsigned DiagID; // unused
7272        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7273                           PrevSpec, DiagID);
7274        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7275        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7276        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7277      }
7278    }
7279  }
7280}
7281
7282Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
7283  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7284  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7285  Scope *ParentScope = FnBodyScope->getParent();
7286
7287  D.setFunctionDefinitionKind(FDK_Definition);
7288  Decl *DP = HandleDeclarator(ParentScope, D,
7289                              MultiTemplateParamsArg(*this));
7290  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7291}
7292
7293static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7294  // Don't warn about invalid declarations.
7295  if (FD->isInvalidDecl())
7296    return false;
7297
7298  // Or declarations that aren't global.
7299  if (!FD->isGlobal())
7300    return false;
7301
7302  // Don't warn about C++ member functions.
7303  if (isa<CXXMethodDecl>(FD))
7304    return false;
7305
7306  // Don't warn about 'main'.
7307  if (FD->isMain())
7308    return false;
7309
7310  // Don't warn about inline functions.
7311  if (FD->isInlined())
7312    return false;
7313
7314  // Don't warn about function templates.
7315  if (FD->getDescribedFunctionTemplate())
7316    return false;
7317
7318  // Don't warn about function template specializations.
7319  if (FD->isFunctionTemplateSpecialization())
7320    return false;
7321
7322  bool MissingPrototype = true;
7323  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7324       Prev; Prev = Prev->getPreviousDecl()) {
7325    // Ignore any declarations that occur in function or method
7326    // scope, because they aren't visible from the header.
7327    if (Prev->getDeclContext()->isFunctionOrMethod())
7328      continue;
7329
7330    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7331    break;
7332  }
7333
7334  return MissingPrototype;
7335}
7336
7337void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7338  // Don't complain if we're in GNU89 mode and the previous definition
7339  // was an extern inline function.
7340  const FunctionDecl *Definition;
7341  if (FD->isDefined(Definition) &&
7342      !canRedefineFunction(Definition, getLangOpts())) {
7343    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7344        Definition->getStorageClass() == SC_Extern)
7345      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7346        << FD->getDeclName() << getLangOpts().CPlusPlus;
7347    else
7348      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7349    Diag(Definition->getLocation(), diag::note_previous_definition);
7350  }
7351}
7352
7353Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7354  // Clear the last template instantiation error context.
7355  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7356
7357  if (!D)
7358    return D;
7359  FunctionDecl *FD = 0;
7360
7361  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7362    FD = FunTmpl->getTemplatedDecl();
7363  else
7364    FD = cast<FunctionDecl>(D);
7365
7366  // Enter a new function scope
7367  PushFunctionScope();
7368
7369  // See if this is a redefinition.
7370  if (!FD->isLateTemplateParsed())
7371    CheckForFunctionRedefinition(FD);
7372
7373  // Builtin functions cannot be defined.
7374  if (unsigned BuiltinID = FD->getBuiltinID()) {
7375    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7376      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7377      FD->setInvalidDecl();
7378    }
7379  }
7380
7381  // The return type of a function definition must be complete
7382  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7383  QualType ResultType = FD->getResultType();
7384  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7385      !FD->isInvalidDecl() &&
7386      RequireCompleteType(FD->getLocation(), ResultType,
7387                          diag::err_func_def_incomplete_result))
7388    FD->setInvalidDecl();
7389
7390  // GNU warning -Wmissing-prototypes:
7391  //   Warn if a global function is defined without a previous
7392  //   prototype declaration. This warning is issued even if the
7393  //   definition itself provides a prototype. The aim is to detect
7394  //   global functions that fail to be declared in header files.
7395  if (ShouldWarnAboutMissingPrototype(FD))
7396    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7397
7398  if (FnBodyScope)
7399    PushDeclContext(FnBodyScope, FD);
7400
7401  // Check the validity of our function parameters
7402  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7403                           /*CheckParameterNames=*/true);
7404
7405  // Introduce our parameters into the function scope
7406  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7407    ParmVarDecl *Param = FD->getParamDecl(p);
7408    Param->setOwningFunction(FD);
7409
7410    // If this has an identifier, add it to the scope stack.
7411    if (Param->getIdentifier() && FnBodyScope) {
7412      CheckShadow(FnBodyScope, Param);
7413
7414      PushOnScopeChains(Param, FnBodyScope);
7415    }
7416  }
7417
7418  // If we had any tags defined in the function prototype,
7419  // introduce them into the function scope.
7420  if (FnBodyScope) {
7421    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7422           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7423      NamedDecl *D = *I;
7424
7425      // Some of these decls (like enums) may have been pinned to the translation unit
7426      // for lack of a real context earlier. If so, remove from the translation unit
7427      // and reattach to the current context.
7428      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7429        // Is the decl actually in the context?
7430        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7431               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7432          if (*DI == D) {
7433            Context.getTranslationUnitDecl()->removeDecl(D);
7434            break;
7435          }
7436        }
7437        // Either way, reassign the lexical decl context to our FunctionDecl.
7438        D->setLexicalDeclContext(CurContext);
7439      }
7440
7441      // If the decl has a non-null name, make accessible in the current scope.
7442      if (!D->getName().empty())
7443        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7444
7445      // Similarly, dive into enums and fish their constants out, making them
7446      // accessible in this scope.
7447      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7448        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7449               EE = ED->enumerator_end(); EI != EE; ++EI)
7450          PushOnScopeChains(&*EI, FnBodyScope, /*AddToContext=*/false);
7451      }
7452    }
7453  }
7454
7455  // Ensure that the function's exception specification is instantiated.
7456  if (const FunctionProtoType *FPT = FD->getType()->getAs<FunctionProtoType>())
7457    ResolveExceptionSpec(D->getLocation(), FPT);
7458
7459  // Checking attributes of current function definition
7460  // dllimport attribute.
7461  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7462  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7463    // dllimport attribute cannot be directly applied to definition.
7464    // Microsoft accepts dllimport for functions defined within class scope.
7465    if (!DA->isInherited() &&
7466        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7467      Diag(FD->getLocation(),
7468           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7469        << "dllimport";
7470      FD->setInvalidDecl();
7471      return FD;
7472    }
7473
7474    // Visual C++ appears to not think this is an issue, so only issue
7475    // a warning when Microsoft extensions are disabled.
7476    if (!LangOpts.MicrosoftExt) {
7477      // If a symbol previously declared dllimport is later defined, the
7478      // attribute is ignored in subsequent references, and a warning is
7479      // emitted.
7480      Diag(FD->getLocation(),
7481           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7482        << FD->getName() << "dllimport";
7483    }
7484  }
7485  return FD;
7486}
7487
7488/// \brief Given the set of return statements within a function body,
7489/// compute the variables that are subject to the named return value
7490/// optimization.
7491///
7492/// Each of the variables that is subject to the named return value
7493/// optimization will be marked as NRVO variables in the AST, and any
7494/// return statement that has a marked NRVO variable as its NRVO candidate can
7495/// use the named return value optimization.
7496///
7497/// This function applies a very simplistic algorithm for NRVO: if every return
7498/// statement in the function has the same NRVO candidate, that candidate is
7499/// the NRVO variable.
7500///
7501/// FIXME: Employ a smarter algorithm that accounts for multiple return
7502/// statements and the lifetimes of the NRVO candidates. We should be able to
7503/// find a maximal set of NRVO variables.
7504void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7505  ReturnStmt **Returns = Scope->Returns.data();
7506
7507  const VarDecl *NRVOCandidate = 0;
7508  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7509    if (!Returns[I]->getNRVOCandidate())
7510      return;
7511
7512    if (!NRVOCandidate)
7513      NRVOCandidate = Returns[I]->getNRVOCandidate();
7514    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7515      return;
7516  }
7517
7518  if (NRVOCandidate)
7519    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7520}
7521
7522Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7523  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7524}
7525
7526Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7527                                    bool IsInstantiation) {
7528  FunctionDecl *FD = 0;
7529  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7530  if (FunTmpl)
7531    FD = FunTmpl->getTemplatedDecl();
7532  else
7533    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7534
7535  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7536  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7537
7538  if (FD) {
7539    FD->setBody(Body);
7540
7541    // If the function implicitly returns zero (like 'main') or is naked,
7542    // don't complain about missing return statements.
7543    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7544      WP.disableCheckFallThrough();
7545
7546    // MSVC permits the use of pure specifier (=0) on function definition,
7547    // defined at class scope, warn about this non standard construct.
7548    if (getLangOpts().MicrosoftExt && FD->isPure())
7549      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7550
7551    if (!FD->isInvalidDecl()) {
7552      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7553      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7554                                             FD->getResultType(), FD);
7555
7556      // If this is a constructor, we need a vtable.
7557      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7558        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7559
7560      computeNRVO(Body, getCurFunction());
7561    }
7562
7563    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7564           "Function parsing confused");
7565  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7566    assert(MD == getCurMethodDecl() && "Method parsing confused");
7567    MD->setBody(Body);
7568    if (Body)
7569      MD->setEndLoc(Body->getLocEnd());
7570    if (!MD->isInvalidDecl()) {
7571      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7572      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7573                                             MD->getResultType(), MD);
7574
7575      if (Body)
7576        computeNRVO(Body, getCurFunction());
7577    }
7578    if (ObjCShouldCallSuperDealloc) {
7579      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7580      ObjCShouldCallSuperDealloc = false;
7581    }
7582    if (ObjCShouldCallSuperFinalize) {
7583      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7584      ObjCShouldCallSuperFinalize = false;
7585    }
7586  } else {
7587    return 0;
7588  }
7589
7590  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7591         "ObjC methods, which should have been handled in the block above.");
7592  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7593         "ObjC methods, which should have been handled in the block above.");
7594
7595  // Verify and clean out per-function state.
7596  if (Body) {
7597    // C++ constructors that have function-try-blocks can't have return
7598    // statements in the handlers of that block. (C++ [except.handle]p14)
7599    // Verify this.
7600    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7601      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7602
7603    // Verify that gotos and switch cases don't jump into scopes illegally.
7604    if (getCurFunction()->NeedsScopeChecking() &&
7605        !dcl->isInvalidDecl() &&
7606        !hasAnyUnrecoverableErrorsInThisFunction())
7607      DiagnoseInvalidJumps(Body);
7608
7609    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7610      if (!Destructor->getParent()->isDependentType())
7611        CheckDestructor(Destructor);
7612
7613      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7614                                             Destructor->getParent());
7615    }
7616
7617    // If any errors have occurred, clear out any temporaries that may have
7618    // been leftover. This ensures that these temporaries won't be picked up for
7619    // deletion in some later function.
7620    if (PP.getDiagnostics().hasErrorOccurred() ||
7621        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7622      DiscardCleanupsInEvaluationContext();
7623    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7624      // Since the body is valid, issue any analysis-based warnings that are
7625      // enabled.
7626      ActivePolicy = &WP;
7627    }
7628
7629    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7630        (!CheckConstexprFunctionDecl(FD) ||
7631         !CheckConstexprFunctionBody(FD, Body)))
7632      FD->setInvalidDecl();
7633
7634    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7635    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7636    assert(MaybeODRUseExprs.empty() &&
7637           "Leftover expressions for odr-use checking");
7638  }
7639
7640  if (!IsInstantiation)
7641    PopDeclContext();
7642
7643  PopFunctionScopeInfo(ActivePolicy, dcl);
7644
7645  // If any errors have occurred, clear out any temporaries that may have
7646  // been leftover. This ensures that these temporaries won't be picked up for
7647  // deletion in some later function.
7648  if (getDiagnostics().hasErrorOccurred()) {
7649    DiscardCleanupsInEvaluationContext();
7650  }
7651
7652  return dcl;
7653}
7654
7655
7656/// When we finish delayed parsing of an attribute, we must attach it to the
7657/// relevant Decl.
7658void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7659                                       ParsedAttributes &Attrs) {
7660  // Always attach attributes to the underlying decl.
7661  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7662    D = TD->getTemplatedDecl();
7663  ProcessDeclAttributeList(S, D, Attrs.getList());
7664
7665  if (CXXMethodDecl *Method = dyn_cast_or_null<CXXMethodDecl>(D))
7666    if (Method->isStatic())
7667      checkThisInStaticMemberFunctionAttributes(Method);
7668}
7669
7670
7671/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7672/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7673NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7674                                          IdentifierInfo &II, Scope *S) {
7675  // Before we produce a declaration for an implicitly defined
7676  // function, see whether there was a locally-scoped declaration of
7677  // this name as a function or variable. If so, use that
7678  // (non-visible) declaration, and complain about it.
7679  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7680    = findLocallyScopedExternalDecl(&II);
7681  if (Pos != LocallyScopedExternalDecls.end()) {
7682    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7683    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7684    return Pos->second;
7685  }
7686
7687  // Extension in C99.  Legal in C90, but warn about it.
7688  unsigned diag_id;
7689  if (II.getName().startswith("__builtin_"))
7690    diag_id = diag::warn_builtin_unknown;
7691  else if (getLangOpts().C99)
7692    diag_id = diag::ext_implicit_function_decl;
7693  else
7694    diag_id = diag::warn_implicit_function_decl;
7695  Diag(Loc, diag_id) << &II;
7696
7697  // Because typo correction is expensive, only do it if the implicit
7698  // function declaration is going to be treated as an error.
7699  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7700    TypoCorrection Corrected;
7701    DeclFilterCCC<FunctionDecl> Validator;
7702    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7703                                      LookupOrdinaryName, S, 0, Validator))) {
7704      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7705      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7706      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7707
7708      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7709          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7710
7711      if (Func->getLocation().isValid()
7712          && !II.getName().startswith("__builtin_"))
7713        Diag(Func->getLocation(), diag::note_previous_decl)
7714            << CorrectedQuotedStr;
7715    }
7716  }
7717
7718  // Set a Declarator for the implicit definition: int foo();
7719  const char *Dummy;
7720  AttributeFactory attrFactory;
7721  DeclSpec DS(attrFactory);
7722  unsigned DiagID;
7723  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7724  (void)Error; // Silence warning.
7725  assert(!Error && "Error setting up implicit decl!");
7726  Declarator D(DS, Declarator::BlockContext);
7727  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7728                                             0, 0, true, SourceLocation(),
7729                                             SourceLocation(), SourceLocation(),
7730                                             SourceLocation(),
7731                                             EST_None, SourceLocation(),
7732                                             0, 0, 0, 0, Loc, Loc, D),
7733                DS.getAttributes(),
7734                SourceLocation());
7735  D.SetIdentifier(&II, Loc);
7736
7737  // Insert this function into translation-unit scope.
7738
7739  DeclContext *PrevDC = CurContext;
7740  CurContext = Context.getTranslationUnitDecl();
7741
7742  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7743  FD->setImplicit();
7744
7745  CurContext = PrevDC;
7746
7747  AddKnownFunctionAttributes(FD);
7748
7749  return FD;
7750}
7751
7752/// \brief Adds any function attributes that we know a priori based on
7753/// the declaration of this function.
7754///
7755/// These attributes can apply both to implicitly-declared builtins
7756/// (like __builtin___printf_chk) or to library-declared functions
7757/// like NSLog or printf.
7758///
7759/// We need to check for duplicate attributes both here and where user-written
7760/// attributes are applied to declarations.
7761void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7762  if (FD->isInvalidDecl())
7763    return;
7764
7765  // If this is a built-in function, map its builtin attributes to
7766  // actual attributes.
7767  if (unsigned BuiltinID = FD->getBuiltinID()) {
7768    // Handle printf-formatting attributes.
7769    unsigned FormatIdx;
7770    bool HasVAListArg;
7771    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7772      if (!FD->getAttr<FormatAttr>()) {
7773        const char *fmt = "printf";
7774        unsigned int NumParams = FD->getNumParams();
7775        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7776            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7777          fmt = "NSString";
7778        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7779                                               fmt, FormatIdx+1,
7780                                               HasVAListArg ? 0 : FormatIdx+2));
7781      }
7782    }
7783    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7784                                             HasVAListArg)) {
7785     if (!FD->getAttr<FormatAttr>())
7786       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7787                                              "scanf", FormatIdx+1,
7788                                              HasVAListArg ? 0 : FormatIdx+2));
7789    }
7790
7791    // Mark const if we don't care about errno and that is the only
7792    // thing preventing the function from being const. This allows
7793    // IRgen to use LLVM intrinsics for such functions.
7794    if (!getLangOpts().MathErrno &&
7795        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7796      if (!FD->getAttr<ConstAttr>())
7797        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7798    }
7799
7800    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7801        !FD->getAttr<ReturnsTwiceAttr>())
7802      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7803    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7804      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7805    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7806      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7807  }
7808
7809  IdentifierInfo *Name = FD->getIdentifier();
7810  if (!Name)
7811    return;
7812  if ((!getLangOpts().CPlusPlus &&
7813       FD->getDeclContext()->isTranslationUnit()) ||
7814      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7815       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7816       LinkageSpecDecl::lang_c)) {
7817    // Okay: this could be a libc/libm/Objective-C function we know
7818    // about.
7819  } else
7820    return;
7821
7822  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7823    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7824    // target-specific builtins, perhaps?
7825    if (!FD->getAttr<FormatAttr>())
7826      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7827                                             "printf", 2,
7828                                             Name->isStr("vasprintf") ? 0 : 3));
7829  }
7830}
7831
7832TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7833                                    TypeSourceInfo *TInfo) {
7834  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7835  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7836
7837  if (!TInfo) {
7838    assert(D.isInvalidType() && "no declarator info for valid type");
7839    TInfo = Context.getTrivialTypeSourceInfo(T);
7840  }
7841
7842  // Scope manipulation handled by caller.
7843  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7844                                           D.getLocStart(),
7845                                           D.getIdentifierLoc(),
7846                                           D.getIdentifier(),
7847                                           TInfo);
7848
7849  // Bail out immediately if we have an invalid declaration.
7850  if (D.isInvalidType()) {
7851    NewTD->setInvalidDecl();
7852    return NewTD;
7853  }
7854
7855  if (D.getDeclSpec().isModulePrivateSpecified()) {
7856    if (CurContext->isFunctionOrMethod())
7857      Diag(NewTD->getLocation(), diag::err_module_private_local)
7858        << 2 << NewTD->getDeclName()
7859        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7860        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7861    else
7862      NewTD->setModulePrivate();
7863  }
7864
7865  // C++ [dcl.typedef]p8:
7866  //   If the typedef declaration defines an unnamed class (or
7867  //   enum), the first typedef-name declared by the declaration
7868  //   to be that class type (or enum type) is used to denote the
7869  //   class type (or enum type) for linkage purposes only.
7870  // We need to check whether the type was declared in the declaration.
7871  switch (D.getDeclSpec().getTypeSpecType()) {
7872  case TST_enum:
7873  case TST_struct:
7874  case TST_union:
7875  case TST_class: {
7876    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7877
7878    // Do nothing if the tag is not anonymous or already has an
7879    // associated typedef (from an earlier typedef in this decl group).
7880    if (tagFromDeclSpec->getIdentifier()) break;
7881    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7882
7883    // A well-formed anonymous tag must always be a TUK_Definition.
7884    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7885
7886    // The type must match the tag exactly;  no qualifiers allowed.
7887    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7888      break;
7889
7890    // Otherwise, set this is the anon-decl typedef for the tag.
7891    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7892    break;
7893  }
7894
7895  default:
7896    break;
7897  }
7898
7899  return NewTD;
7900}
7901
7902
7903/// \brief Check that this is a valid underlying type for an enum declaration.
7904bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
7905  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7906  QualType T = TI->getType();
7907
7908  if (T->isDependentType() || T->isIntegralType(Context))
7909    return false;
7910
7911  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
7912  return true;
7913}
7914
7915/// Check whether this is a valid redeclaration of a previous enumeration.
7916/// \return true if the redeclaration was invalid.
7917bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
7918                                  QualType EnumUnderlyingTy,
7919                                  const EnumDecl *Prev) {
7920  bool IsFixed = !EnumUnderlyingTy.isNull();
7921
7922  if (IsScoped != Prev->isScoped()) {
7923    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
7924      << Prev->isScoped();
7925    Diag(Prev->getLocation(), diag::note_previous_use);
7926    return true;
7927  }
7928
7929  if (IsFixed && Prev->isFixed()) {
7930    if (!EnumUnderlyingTy->isDependentType() &&
7931        !Prev->getIntegerType()->isDependentType() &&
7932        !Context.hasSameUnqualifiedType(EnumUnderlyingTy,
7933                                        Prev->getIntegerType())) {
7934      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
7935        << EnumUnderlyingTy << Prev->getIntegerType();
7936      Diag(Prev->getLocation(), diag::note_previous_use);
7937      return true;
7938    }
7939  } else if (IsFixed != Prev->isFixed()) {
7940    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
7941      << Prev->isFixed();
7942    Diag(Prev->getLocation(), diag::note_previous_use);
7943    return true;
7944  }
7945
7946  return false;
7947}
7948
7949/// \brief Determine whether a tag with a given kind is acceptable
7950/// as a redeclaration of the given tag declaration.
7951///
7952/// \returns true if the new tag kind is acceptable, false otherwise.
7953bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7954                                        TagTypeKind NewTag, bool isDefinition,
7955                                        SourceLocation NewTagLoc,
7956                                        const IdentifierInfo &Name) {
7957  // C++ [dcl.type.elab]p3:
7958  //   The class-key or enum keyword present in the
7959  //   elaborated-type-specifier shall agree in kind with the
7960  //   declaration to which the name in the elaborated-type-specifier
7961  //   refers. This rule also applies to the form of
7962  //   elaborated-type-specifier that declares a class-name or
7963  //   friend class since it can be construed as referring to the
7964  //   definition of the class. Thus, in any
7965  //   elaborated-type-specifier, the enum keyword shall be used to
7966  //   refer to an enumeration (7.2), the union class-key shall be
7967  //   used to refer to a union (clause 9), and either the class or
7968  //   struct class-key shall be used to refer to a class (clause 9)
7969  //   declared using the class or struct class-key.
7970  TagTypeKind OldTag = Previous->getTagKind();
7971  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7972    if (OldTag == NewTag)
7973      return true;
7974
7975  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7976      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7977    // Warn about the struct/class tag mismatch.
7978    bool isTemplate = false;
7979    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7980      isTemplate = Record->getDescribedClassTemplate();
7981
7982    if (!ActiveTemplateInstantiations.empty()) {
7983      // In a template instantiation, do not offer fix-its for tag mismatches
7984      // since they usually mess up the template instead of fixing the problem.
7985      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7986        << (NewTag == TTK_Class) << isTemplate << &Name;
7987      return true;
7988    }
7989
7990    if (isDefinition) {
7991      // On definitions, check previous tags and issue a fix-it for each
7992      // one that doesn't match the current tag.
7993      if (Previous->getDefinition()) {
7994        // Don't suggest fix-its for redefinitions.
7995        return true;
7996      }
7997
7998      bool previousMismatch = false;
7999      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
8000           E(Previous->redecls_end()); I != E; ++I) {
8001        if (I->getTagKind() != NewTag) {
8002          if (!previousMismatch) {
8003            previousMismatch = true;
8004            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
8005              << (NewTag == TTK_Class) << isTemplate << &Name;
8006          }
8007          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
8008            << (NewTag == TTK_Class)
8009            << FixItHint::CreateReplacement(I->getInnerLocStart(),
8010                                            NewTag == TTK_Class?
8011                                            "class" : "struct");
8012        }
8013      }
8014      return true;
8015    }
8016
8017    // Check for a previous definition.  If current tag and definition
8018    // are same type, do nothing.  If no definition, but disagree with
8019    // with previous tag type, give a warning, but no fix-it.
8020    const TagDecl *Redecl = Previous->getDefinition() ?
8021                            Previous->getDefinition() : Previous;
8022    if (Redecl->getTagKind() == NewTag) {
8023      return true;
8024    }
8025
8026    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
8027      << (NewTag == TTK_Class)
8028      << isTemplate << &Name;
8029    Diag(Redecl->getLocation(), diag::note_previous_use);
8030
8031    // If there is a previous defintion, suggest a fix-it.
8032    if (Previous->getDefinition()) {
8033        Diag(NewTagLoc, diag::note_struct_class_suggestion)
8034          << (Redecl->getTagKind() == TTK_Class)
8035          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
8036                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
8037    }
8038
8039    return true;
8040  }
8041  return false;
8042}
8043
8044/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
8045/// former case, Name will be non-null.  In the later case, Name will be null.
8046/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
8047/// reference/declaration/definition of a tag.
8048Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
8049                     SourceLocation KWLoc, CXXScopeSpec &SS,
8050                     IdentifierInfo *Name, SourceLocation NameLoc,
8051                     AttributeList *Attr, AccessSpecifier AS,
8052                     SourceLocation ModulePrivateLoc,
8053                     MultiTemplateParamsArg TemplateParameterLists,
8054                     bool &OwnedDecl, bool &IsDependent,
8055                     SourceLocation ScopedEnumKWLoc,
8056                     bool ScopedEnumUsesClassTag,
8057                     TypeResult UnderlyingType) {
8058  // If this is not a definition, it must have a name.
8059  IdentifierInfo *OrigName = Name;
8060  assert((Name != 0 || TUK == TUK_Definition) &&
8061         "Nameless record must be a definition!");
8062  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
8063
8064  OwnedDecl = false;
8065  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
8066  bool ScopedEnum = ScopedEnumKWLoc.isValid();
8067
8068  // FIXME: Check explicit specializations more carefully.
8069  bool isExplicitSpecialization = false;
8070  bool Invalid = false;
8071
8072  // We only need to do this matching if we have template parameters
8073  // or a scope specifier, which also conveniently avoids this work
8074  // for non-C++ cases.
8075  if (TemplateParameterLists.size() > 0 ||
8076      (SS.isNotEmpty() && TUK != TUK_Reference)) {
8077    if (TemplateParameterList *TemplateParams
8078          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
8079                                                TemplateParameterLists.get(),
8080                                                TemplateParameterLists.size(),
8081                                                    TUK == TUK_Friend,
8082                                                    isExplicitSpecialization,
8083                                                    Invalid)) {
8084      if (TemplateParams->size() > 0) {
8085        // This is a declaration or definition of a class template (which may
8086        // be a member of another template).
8087
8088        if (Invalid)
8089          return 0;
8090
8091        OwnedDecl = false;
8092        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
8093                                               SS, Name, NameLoc, Attr,
8094                                               TemplateParams, AS,
8095                                               ModulePrivateLoc,
8096                                           TemplateParameterLists.size() - 1,
8097                 (TemplateParameterList**) TemplateParameterLists.release());
8098        return Result.get();
8099      } else {
8100        // The "template<>" header is extraneous.
8101        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
8102          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
8103        isExplicitSpecialization = true;
8104      }
8105    }
8106  }
8107
8108  // Figure out the underlying type if this a enum declaration. We need to do
8109  // this early, because it's needed to detect if this is an incompatible
8110  // redeclaration.
8111  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
8112
8113  if (Kind == TTK_Enum) {
8114    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
8115      // No underlying type explicitly specified, or we failed to parse the
8116      // type, default to int.
8117      EnumUnderlying = Context.IntTy.getTypePtr();
8118    else if (UnderlyingType.get()) {
8119      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
8120      // integral type; any cv-qualification is ignored.
8121      TypeSourceInfo *TI = 0;
8122      GetTypeFromParser(UnderlyingType.get(), &TI);
8123      EnumUnderlying = TI;
8124
8125      if (CheckEnumUnderlyingType(TI))
8126        // Recover by falling back to int.
8127        EnumUnderlying = Context.IntTy.getTypePtr();
8128
8129      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
8130                                          UPPC_FixedUnderlyingType))
8131        EnumUnderlying = Context.IntTy.getTypePtr();
8132
8133    } else if (getLangOpts().MicrosoftMode)
8134      // Microsoft enums are always of int type.
8135      EnumUnderlying = Context.IntTy.getTypePtr();
8136  }
8137
8138  DeclContext *SearchDC = CurContext;
8139  DeclContext *DC = CurContext;
8140  bool isStdBadAlloc = false;
8141
8142  RedeclarationKind Redecl = ForRedeclaration;
8143  if (TUK == TUK_Friend || TUK == TUK_Reference)
8144    Redecl = NotForRedeclaration;
8145
8146  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
8147
8148  if (Name && SS.isNotEmpty()) {
8149    // We have a nested-name tag ('struct foo::bar').
8150
8151    // Check for invalid 'foo::'.
8152    if (SS.isInvalid()) {
8153      Name = 0;
8154      goto CreateNewDecl;
8155    }
8156
8157    // If this is a friend or a reference to a class in a dependent
8158    // context, don't try to make a decl for it.
8159    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8160      DC = computeDeclContext(SS, false);
8161      if (!DC) {
8162        IsDependent = true;
8163        return 0;
8164      }
8165    } else {
8166      DC = computeDeclContext(SS, true);
8167      if (!DC) {
8168        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8169          << SS.getRange();
8170        return 0;
8171      }
8172    }
8173
8174    if (RequireCompleteDeclContext(SS, DC))
8175      return 0;
8176
8177    SearchDC = DC;
8178    // Look-up name inside 'foo::'.
8179    LookupQualifiedName(Previous, DC);
8180
8181    if (Previous.isAmbiguous())
8182      return 0;
8183
8184    if (Previous.empty()) {
8185      // Name lookup did not find anything. However, if the
8186      // nested-name-specifier refers to the current instantiation,
8187      // and that current instantiation has any dependent base
8188      // classes, we might find something at instantiation time: treat
8189      // this as a dependent elaborated-type-specifier.
8190      // But this only makes any sense for reference-like lookups.
8191      if (Previous.wasNotFoundInCurrentInstantiation() &&
8192          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8193        IsDependent = true;
8194        return 0;
8195      }
8196
8197      // A tag 'foo::bar' must already exist.
8198      Diag(NameLoc, diag::err_not_tag_in_scope)
8199        << Kind << Name << DC << SS.getRange();
8200      Name = 0;
8201      Invalid = true;
8202      goto CreateNewDecl;
8203    }
8204  } else if (Name) {
8205    // If this is a named struct, check to see if there was a previous forward
8206    // declaration or definition.
8207    // FIXME: We're looking into outer scopes here, even when we
8208    // shouldn't be. Doing so can result in ambiguities that we
8209    // shouldn't be diagnosing.
8210    LookupName(Previous, S);
8211
8212    if (Previous.isAmbiguous() &&
8213        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8214      LookupResult::Filter F = Previous.makeFilter();
8215      while (F.hasNext()) {
8216        NamedDecl *ND = F.next();
8217        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8218          F.erase();
8219      }
8220      F.done();
8221    }
8222
8223    // Note:  there used to be some attempt at recovery here.
8224    if (Previous.isAmbiguous())
8225      return 0;
8226
8227    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8228      // FIXME: This makes sure that we ignore the contexts associated
8229      // with C structs, unions, and enums when looking for a matching
8230      // tag declaration or definition. See the similar lookup tweak
8231      // in Sema::LookupName; is there a better way to deal with this?
8232      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8233        SearchDC = SearchDC->getParent();
8234    }
8235  } else if (S->isFunctionPrototypeScope()) {
8236    // If this is an enum declaration in function prototype scope, set its
8237    // initial context to the translation unit.
8238    // FIXME: [citation needed]
8239    SearchDC = Context.getTranslationUnitDecl();
8240  }
8241
8242  if (Previous.isSingleResult() &&
8243      Previous.getFoundDecl()->isTemplateParameter()) {
8244    // Maybe we will complain about the shadowed template parameter.
8245    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8246    // Just pretend that we didn't see the previous declaration.
8247    Previous.clear();
8248  }
8249
8250  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8251      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8252    // This is a declaration of or a reference to "std::bad_alloc".
8253    isStdBadAlloc = true;
8254
8255    if (Previous.empty() && StdBadAlloc) {
8256      // std::bad_alloc has been implicitly declared (but made invisible to
8257      // name lookup). Fill in this implicit declaration as the previous
8258      // declaration, so that the declarations get chained appropriately.
8259      Previous.addDecl(getStdBadAlloc());
8260    }
8261  }
8262
8263  // If we didn't find a previous declaration, and this is a reference
8264  // (or friend reference), move to the correct scope.  In C++, we
8265  // also need to do a redeclaration lookup there, just in case
8266  // there's a shadow friend decl.
8267  if (Name && Previous.empty() &&
8268      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8269    if (Invalid) goto CreateNewDecl;
8270    assert(SS.isEmpty());
8271
8272    if (TUK == TUK_Reference) {
8273      // C++ [basic.scope.pdecl]p5:
8274      //   -- for an elaborated-type-specifier of the form
8275      //
8276      //          class-key identifier
8277      //
8278      //      if the elaborated-type-specifier is used in the
8279      //      decl-specifier-seq or parameter-declaration-clause of a
8280      //      function defined in namespace scope, the identifier is
8281      //      declared as a class-name in the namespace that contains
8282      //      the declaration; otherwise, except as a friend
8283      //      declaration, the identifier is declared in the smallest
8284      //      non-class, non-function-prototype scope that contains the
8285      //      declaration.
8286      //
8287      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8288      // C structs and unions.
8289      //
8290      // It is an error in C++ to declare (rather than define) an enum
8291      // type, including via an elaborated type specifier.  We'll
8292      // diagnose that later; for now, declare the enum in the same
8293      // scope as we would have picked for any other tag type.
8294      //
8295      // GNU C also supports this behavior as part of its incomplete
8296      // enum types extension, while GNU C++ does not.
8297      //
8298      // Find the context where we'll be declaring the tag.
8299      // FIXME: We would like to maintain the current DeclContext as the
8300      // lexical context,
8301      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8302        SearchDC = SearchDC->getParent();
8303
8304      // Find the scope where we'll be declaring the tag.
8305      while (S->isClassScope() ||
8306             (getLangOpts().CPlusPlus &&
8307              S->isFunctionPrototypeScope()) ||
8308             ((S->getFlags() & Scope::DeclScope) == 0) ||
8309             (S->getEntity() &&
8310              ((DeclContext *)S->getEntity())->isTransparentContext()))
8311        S = S->getParent();
8312    } else {
8313      assert(TUK == TUK_Friend);
8314      // C++ [namespace.memdef]p3:
8315      //   If a friend declaration in a non-local class first declares a
8316      //   class or function, the friend class or function is a member of
8317      //   the innermost enclosing namespace.
8318      SearchDC = SearchDC->getEnclosingNamespaceContext();
8319    }
8320
8321    // In C++, we need to do a redeclaration lookup to properly
8322    // diagnose some problems.
8323    if (getLangOpts().CPlusPlus) {
8324      Previous.setRedeclarationKind(ForRedeclaration);
8325      LookupQualifiedName(Previous, SearchDC);
8326    }
8327  }
8328
8329  if (!Previous.empty()) {
8330    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8331
8332    // It's okay to have a tag decl in the same scope as a typedef
8333    // which hides a tag decl in the same scope.  Finding this
8334    // insanity with a redeclaration lookup can only actually happen
8335    // in C++.
8336    //
8337    // This is also okay for elaborated-type-specifiers, which is
8338    // technically forbidden by the current standard but which is
8339    // okay according to the likely resolution of an open issue;
8340    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8341    if (getLangOpts().CPlusPlus) {
8342      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8343        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8344          TagDecl *Tag = TT->getDecl();
8345          if (Tag->getDeclName() == Name &&
8346              Tag->getDeclContext()->getRedeclContext()
8347                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8348            PrevDecl = Tag;
8349            Previous.clear();
8350            Previous.addDecl(Tag);
8351            Previous.resolveKind();
8352          }
8353        }
8354      }
8355    }
8356
8357    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8358      // If this is a use of a previous tag, or if the tag is already declared
8359      // in the same scope (so that the definition/declaration completes or
8360      // rementions the tag), reuse the decl.
8361      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8362          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8363        // Make sure that this wasn't declared as an enum and now used as a
8364        // struct or something similar.
8365        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8366                                          TUK == TUK_Definition, KWLoc,
8367                                          *Name)) {
8368          bool SafeToContinue
8369            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8370               Kind != TTK_Enum);
8371          if (SafeToContinue)
8372            Diag(KWLoc, diag::err_use_with_wrong_tag)
8373              << Name
8374              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8375                                              PrevTagDecl->getKindName());
8376          else
8377            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8378          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8379
8380          if (SafeToContinue)
8381            Kind = PrevTagDecl->getTagKind();
8382          else {
8383            // Recover by making this an anonymous redefinition.
8384            Name = 0;
8385            Previous.clear();
8386            Invalid = true;
8387          }
8388        }
8389
8390        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8391          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8392
8393          // If this is an elaborated-type-specifier for a scoped enumeration,
8394          // the 'class' keyword is not necessary and not permitted.
8395          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8396            if (ScopedEnum)
8397              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8398                << PrevEnum->isScoped()
8399                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8400            return PrevTagDecl;
8401          }
8402
8403          QualType EnumUnderlyingTy;
8404          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8405            EnumUnderlyingTy = TI->getType();
8406          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8407            EnumUnderlyingTy = QualType(T, 0);
8408
8409          // All conflicts with previous declarations are recovered by
8410          // returning the previous declaration, unless this is a definition,
8411          // in which case we want the caller to bail out.
8412          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8413                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8414            return TUK == TUK_Declaration ? PrevTagDecl : 0;
8415        }
8416
8417        if (!Invalid) {
8418          // If this is a use, just return the declaration we found.
8419
8420          // FIXME: In the future, return a variant or some other clue
8421          // for the consumer of this Decl to know it doesn't own it.
8422          // For our current ASTs this shouldn't be a problem, but will
8423          // need to be changed with DeclGroups.
8424          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8425               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8426            return PrevTagDecl;
8427
8428          // Diagnose attempts to redefine a tag.
8429          if (TUK == TUK_Definition) {
8430            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8431              // If we're defining a specialization and the previous definition
8432              // is from an implicit instantiation, don't emit an error
8433              // here; we'll catch this in the general case below.
8434              bool IsExplicitSpecializationAfterInstantiation = false;
8435              if (isExplicitSpecialization) {
8436                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8437                  IsExplicitSpecializationAfterInstantiation =
8438                    RD->getTemplateSpecializationKind() !=
8439                    TSK_ExplicitSpecialization;
8440                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8441                  IsExplicitSpecializationAfterInstantiation =
8442                    ED->getTemplateSpecializationKind() !=
8443                    TSK_ExplicitSpecialization;
8444              }
8445
8446              if (!IsExplicitSpecializationAfterInstantiation) {
8447                // A redeclaration in function prototype scope in C isn't
8448                // visible elsewhere, so merely issue a warning.
8449                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8450                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8451                else
8452                  Diag(NameLoc, diag::err_redefinition) << Name;
8453                Diag(Def->getLocation(), diag::note_previous_definition);
8454                // If this is a redefinition, recover by making this
8455                // struct be anonymous, which will make any later
8456                // references get the previous definition.
8457                Name = 0;
8458                Previous.clear();
8459                Invalid = true;
8460              }
8461            } else {
8462              // If the type is currently being defined, complain
8463              // about a nested redefinition.
8464              const TagType *Tag
8465                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8466              if (Tag->isBeingDefined()) {
8467                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8468                Diag(PrevTagDecl->getLocation(),
8469                     diag::note_previous_definition);
8470                Name = 0;
8471                Previous.clear();
8472                Invalid = true;
8473              }
8474            }
8475
8476            // Okay, this is definition of a previously declared or referenced
8477            // tag PrevDecl. We're going to create a new Decl for it.
8478          }
8479        }
8480        // If we get here we have (another) forward declaration or we
8481        // have a definition.  Just create a new decl.
8482
8483      } else {
8484        // If we get here, this is a definition of a new tag type in a nested
8485        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8486        // new decl/type.  We set PrevDecl to NULL so that the entities
8487        // have distinct types.
8488        Previous.clear();
8489      }
8490      // If we get here, we're going to create a new Decl. If PrevDecl
8491      // is non-NULL, it's a definition of the tag declared by
8492      // PrevDecl. If it's NULL, we have a new definition.
8493
8494
8495    // Otherwise, PrevDecl is not a tag, but was found with tag
8496    // lookup.  This is only actually possible in C++, where a few
8497    // things like templates still live in the tag namespace.
8498    } else {
8499      // Use a better diagnostic if an elaborated-type-specifier
8500      // found the wrong kind of type on the first
8501      // (non-redeclaration) lookup.
8502      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8503          !Previous.isForRedeclaration()) {
8504        unsigned Kind = 0;
8505        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8506        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8507        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8508        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8509        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8510        Invalid = true;
8511
8512      // Otherwise, only diagnose if the declaration is in scope.
8513      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8514                                isExplicitSpecialization)) {
8515        // do nothing
8516
8517      // Diagnose implicit declarations introduced by elaborated types.
8518      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8519        unsigned Kind = 0;
8520        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8521        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8522        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8523        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8524        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8525        Invalid = true;
8526
8527      // Otherwise it's a declaration.  Call out a particularly common
8528      // case here.
8529      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8530        unsigned Kind = 0;
8531        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8532        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8533          << Name << Kind << TND->getUnderlyingType();
8534        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8535        Invalid = true;
8536
8537      // Otherwise, diagnose.
8538      } else {
8539        // The tag name clashes with something else in the target scope,
8540        // issue an error and recover by making this tag be anonymous.
8541        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8542        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8543        Name = 0;
8544        Invalid = true;
8545      }
8546
8547      // The existing declaration isn't relevant to us; we're in a
8548      // new scope, so clear out the previous declaration.
8549      Previous.clear();
8550    }
8551  }
8552
8553CreateNewDecl:
8554
8555  TagDecl *PrevDecl = 0;
8556  if (Previous.isSingleResult())
8557    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8558
8559  // If there is an identifier, use the location of the identifier as the
8560  // location of the decl, otherwise use the location of the struct/union
8561  // keyword.
8562  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8563
8564  // Otherwise, create a new declaration. If there is a previous
8565  // declaration of the same entity, the two will be linked via
8566  // PrevDecl.
8567  TagDecl *New;
8568
8569  bool IsForwardReference = false;
8570  if (Kind == TTK_Enum) {
8571    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8572    // enum X { A, B, C } D;    D should chain to X.
8573    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8574                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8575                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8576    // If this is an undefined enum, warn.
8577    if (TUK != TUK_Definition && !Invalid) {
8578      TagDecl *Def;
8579      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8580        // C++0x: 7.2p2: opaque-enum-declaration.
8581        // Conflicts are diagnosed above. Do nothing.
8582      }
8583      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8584        Diag(Loc, diag::ext_forward_ref_enum_def)
8585          << New;
8586        Diag(Def->getLocation(), diag::note_previous_definition);
8587      } else {
8588        unsigned DiagID = diag::ext_forward_ref_enum;
8589        if (getLangOpts().MicrosoftMode)
8590          DiagID = diag::ext_ms_forward_ref_enum;
8591        else if (getLangOpts().CPlusPlus)
8592          DiagID = diag::err_forward_ref_enum;
8593        Diag(Loc, DiagID);
8594
8595        // If this is a forward-declared reference to an enumeration, make a
8596        // note of it; we won't actually be introducing the declaration into
8597        // the declaration context.
8598        if (TUK == TUK_Reference)
8599          IsForwardReference = true;
8600      }
8601    }
8602
8603    if (EnumUnderlying) {
8604      EnumDecl *ED = cast<EnumDecl>(New);
8605      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8606        ED->setIntegerTypeSourceInfo(TI);
8607      else
8608        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8609      ED->setPromotionType(ED->getIntegerType());
8610    }
8611
8612  } else {
8613    // struct/union/class
8614
8615    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8616    // struct X { int A; } D;    D should chain to X.
8617    if (getLangOpts().CPlusPlus) {
8618      // FIXME: Look for a way to use RecordDecl for simple structs.
8619      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8620                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8621
8622      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8623        StdBadAlloc = cast<CXXRecordDecl>(New);
8624    } else
8625      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8626                               cast_or_null<RecordDecl>(PrevDecl));
8627  }
8628
8629  // Maybe add qualifier info.
8630  if (SS.isNotEmpty()) {
8631    if (SS.isSet()) {
8632      // If this is either a declaration or a definition, check the
8633      // nested-name-specifier against the current context. We don't do this
8634      // for explicit specializations, because they have similar checking
8635      // (with more specific diagnostics) in the call to
8636      // CheckMemberSpecialization, below.
8637      if (!isExplicitSpecialization &&
8638          (TUK == TUK_Definition || TUK == TUK_Declaration) &&
8639          diagnoseQualifiedDeclaration(SS, DC, OrigName, NameLoc))
8640        Invalid = true;
8641
8642      New->setQualifierInfo(SS.getWithLocInContext(Context));
8643      if (TemplateParameterLists.size() > 0) {
8644        New->setTemplateParameterListsInfo(Context,
8645                                           TemplateParameterLists.size(),
8646                    (TemplateParameterList**) TemplateParameterLists.release());
8647      }
8648    }
8649    else
8650      Invalid = true;
8651  }
8652
8653  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8654    // Add alignment attributes if necessary; these attributes are checked when
8655    // the ASTContext lays out the structure.
8656    //
8657    // It is important for implementing the correct semantics that this
8658    // happen here (in act on tag decl). The #pragma pack stack is
8659    // maintained as a result of parser callbacks which can occur at
8660    // many points during the parsing of a struct declaration (because
8661    // the #pragma tokens are effectively skipped over during the
8662    // parsing of the struct).
8663    AddAlignmentAttributesForRecord(RD);
8664
8665    AddMsStructLayoutForRecord(RD);
8666  }
8667
8668  if (ModulePrivateLoc.isValid()) {
8669    if (isExplicitSpecialization)
8670      Diag(New->getLocation(), diag::err_module_private_specialization)
8671        << 2
8672        << FixItHint::CreateRemoval(ModulePrivateLoc);
8673    // __module_private__ does not apply to local classes. However, we only
8674    // diagnose this as an error when the declaration specifiers are
8675    // freestanding. Here, we just ignore the __module_private__.
8676    else if (!SearchDC->isFunctionOrMethod())
8677      New->setModulePrivate();
8678  }
8679
8680  // If this is a specialization of a member class (of a class template),
8681  // check the specialization.
8682  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8683    Invalid = true;
8684
8685  if (Invalid)
8686    New->setInvalidDecl();
8687
8688  if (Attr)
8689    ProcessDeclAttributeList(S, New, Attr);
8690
8691  // If we're declaring or defining a tag in function prototype scope
8692  // in C, note that this type can only be used within the function.
8693  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8694    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8695
8696  // Set the lexical context. If the tag has a C++ scope specifier, the
8697  // lexical context will be different from the semantic context.
8698  New->setLexicalDeclContext(CurContext);
8699
8700  // Mark this as a friend decl if applicable.
8701  // In Microsoft mode, a friend declaration also acts as a forward
8702  // declaration so we always pass true to setObjectOfFriendDecl to make
8703  // the tag name visible.
8704  if (TUK == TUK_Friend)
8705    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8706                               getLangOpts().MicrosoftExt);
8707
8708  // Set the access specifier.
8709  if (!Invalid && SearchDC->isRecord())
8710    SetMemberAccessSpecifier(New, PrevDecl, AS);
8711
8712  if (TUK == TUK_Definition)
8713    New->startDefinition();
8714
8715  // If this has an identifier, add it to the scope stack.
8716  if (TUK == TUK_Friend) {
8717    // We might be replacing an existing declaration in the lookup tables;
8718    // if so, borrow its access specifier.
8719    if (PrevDecl)
8720      New->setAccess(PrevDecl->getAccess());
8721
8722    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8723    DC->makeDeclVisibleInContext(New);
8724    if (Name) // can be null along some error paths
8725      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8726        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8727  } else if (Name) {
8728    S = getNonFieldDeclScope(S);
8729    PushOnScopeChains(New, S, !IsForwardReference);
8730    if (IsForwardReference)
8731      SearchDC->makeDeclVisibleInContext(New);
8732
8733  } else {
8734    CurContext->addDecl(New);
8735  }
8736
8737  // If this is the C FILE type, notify the AST context.
8738  if (IdentifierInfo *II = New->getIdentifier())
8739    if (!New->isInvalidDecl() &&
8740        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8741        II->isStr("FILE"))
8742      Context.setFILEDecl(New);
8743
8744  // If we were in function prototype scope (and not in C++ mode), add this
8745  // tag to the list of decls to inject into the function definition scope.
8746  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8747      InFunctionDeclarator && Name)
8748    DeclsInPrototypeScope.push_back(New);
8749
8750  if (PrevDecl)
8751    mergeDeclAttributes(New, PrevDecl);
8752
8753  OwnedDecl = true;
8754  return New;
8755}
8756
8757void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8758  AdjustDeclIfTemplate(TagD);
8759  TagDecl *Tag = cast<TagDecl>(TagD);
8760
8761  // Enter the tag context.
8762  PushDeclContext(S, Tag);
8763}
8764
8765Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8766  assert(isa<ObjCContainerDecl>(IDecl) &&
8767         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8768  DeclContext *OCD = cast<DeclContext>(IDecl);
8769  assert(getContainingDC(OCD) == CurContext &&
8770      "The next DeclContext should be lexically contained in the current one.");
8771  CurContext = OCD;
8772  return IDecl;
8773}
8774
8775void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8776                                           SourceLocation FinalLoc,
8777                                           SourceLocation LBraceLoc) {
8778  AdjustDeclIfTemplate(TagD);
8779  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8780
8781  FieldCollector->StartClass();
8782
8783  if (!Record->getIdentifier())
8784    return;
8785
8786  if (FinalLoc.isValid())
8787    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8788
8789  // C++ [class]p2:
8790  //   [...] The class-name is also inserted into the scope of the
8791  //   class itself; this is known as the injected-class-name. For
8792  //   purposes of access checking, the injected-class-name is treated
8793  //   as if it were a public member name.
8794  CXXRecordDecl *InjectedClassName
8795    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8796                            Record->getLocStart(), Record->getLocation(),
8797                            Record->getIdentifier(),
8798                            /*PrevDecl=*/0,
8799                            /*DelayTypeCreation=*/true);
8800  Context.getTypeDeclType(InjectedClassName, Record);
8801  InjectedClassName->setImplicit();
8802  InjectedClassName->setAccess(AS_public);
8803  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8804      InjectedClassName->setDescribedClassTemplate(Template);
8805  PushOnScopeChains(InjectedClassName, S);
8806  assert(InjectedClassName->isInjectedClassName() &&
8807         "Broken injected-class-name");
8808}
8809
8810void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8811                                    SourceLocation RBraceLoc) {
8812  AdjustDeclIfTemplate(TagD);
8813  TagDecl *Tag = cast<TagDecl>(TagD);
8814  Tag->setRBraceLoc(RBraceLoc);
8815
8816  // Make sure we "complete" the definition even it is invalid.
8817  if (Tag->isBeingDefined()) {
8818    assert(Tag->isInvalidDecl() && "We should already have completed it");
8819    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8820      RD->completeDefinition();
8821  }
8822
8823  if (isa<CXXRecordDecl>(Tag))
8824    FieldCollector->FinishClass();
8825
8826  // Exit this scope of this tag's definition.
8827  PopDeclContext();
8828
8829  // Notify the consumer that we've defined a tag.
8830  Consumer.HandleTagDeclDefinition(Tag);
8831}
8832
8833void Sema::ActOnObjCContainerFinishDefinition() {
8834  // Exit this scope of this interface definition.
8835  PopDeclContext();
8836}
8837
8838void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8839  assert(DC == CurContext && "Mismatch of container contexts");
8840  OriginalLexicalContext = DC;
8841  ActOnObjCContainerFinishDefinition();
8842}
8843
8844void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8845  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8846  OriginalLexicalContext = 0;
8847}
8848
8849void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8850  AdjustDeclIfTemplate(TagD);
8851  TagDecl *Tag = cast<TagDecl>(TagD);
8852  Tag->setInvalidDecl();
8853
8854  // Make sure we "complete" the definition even it is invalid.
8855  if (Tag->isBeingDefined()) {
8856    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8857      RD->completeDefinition();
8858  }
8859
8860  // We're undoing ActOnTagStartDefinition here, not
8861  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8862  // the FieldCollector.
8863
8864  PopDeclContext();
8865}
8866
8867// Note that FieldName may be null for anonymous bitfields.
8868ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8869                                IdentifierInfo *FieldName,
8870                                QualType FieldTy, Expr *BitWidth,
8871                                bool *ZeroWidth) {
8872  // Default to true; that shouldn't confuse checks for emptiness
8873  if (ZeroWidth)
8874    *ZeroWidth = true;
8875
8876  // C99 6.7.2.1p4 - verify the field type.
8877  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8878  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8879    // Handle incomplete types with specific error.
8880    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8881      return ExprError();
8882    if (FieldName)
8883      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8884        << FieldName << FieldTy << BitWidth->getSourceRange();
8885    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8886      << FieldTy << BitWidth->getSourceRange();
8887  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8888                                             UPPC_BitFieldWidth))
8889    return ExprError();
8890
8891  // If the bit-width is type- or value-dependent, don't try to check
8892  // it now.
8893  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8894    return Owned(BitWidth);
8895
8896  llvm::APSInt Value;
8897  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8898  if (ICE.isInvalid())
8899    return ICE;
8900  BitWidth = ICE.take();
8901
8902  if (Value != 0 && ZeroWidth)
8903    *ZeroWidth = false;
8904
8905  // Zero-width bitfield is ok for anonymous field.
8906  if (Value == 0 && FieldName)
8907    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8908
8909  if (Value.isSigned() && Value.isNegative()) {
8910    if (FieldName)
8911      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8912               << FieldName << Value.toString(10);
8913    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8914      << Value.toString(10);
8915  }
8916
8917  if (!FieldTy->isDependentType()) {
8918    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8919    if (Value.getZExtValue() > TypeSize) {
8920      if (!getLangOpts().CPlusPlus) {
8921        if (FieldName)
8922          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8923            << FieldName << (unsigned)Value.getZExtValue()
8924            << (unsigned)TypeSize;
8925
8926        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8927          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8928      }
8929
8930      if (FieldName)
8931        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8932          << FieldName << (unsigned)Value.getZExtValue()
8933          << (unsigned)TypeSize;
8934      else
8935        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8936          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8937    }
8938  }
8939
8940  return Owned(BitWidth);
8941}
8942
8943/// ActOnField - Each field of a C struct/union is passed into this in order
8944/// to create a FieldDecl object for it.
8945Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8946                       Declarator &D, Expr *BitfieldWidth) {
8947  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8948                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8949                               /*HasInit=*/false, AS_public);
8950  return Res;
8951}
8952
8953/// HandleField - Analyze a field of a C struct or a C++ data member.
8954///
8955FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8956                             SourceLocation DeclStart,
8957                             Declarator &D, Expr *BitWidth, bool HasInit,
8958                             AccessSpecifier AS) {
8959  IdentifierInfo *II = D.getIdentifier();
8960  SourceLocation Loc = DeclStart;
8961  if (II) Loc = D.getIdentifierLoc();
8962
8963  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8964  QualType T = TInfo->getType();
8965  if (getLangOpts().CPlusPlus) {
8966    CheckExtraCXXDefaultArguments(D);
8967
8968    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8969                                        UPPC_DataMemberType)) {
8970      D.setInvalidType();
8971      T = Context.IntTy;
8972      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8973    }
8974  }
8975
8976  DiagnoseFunctionSpecifiers(D);
8977
8978  if (D.getDeclSpec().isThreadSpecified())
8979    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8980  if (D.getDeclSpec().isConstexprSpecified())
8981    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8982      << 2;
8983
8984  // Check to see if this name was declared as a member previously
8985  NamedDecl *PrevDecl = 0;
8986  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8987  LookupName(Previous, S);
8988  switch (Previous.getResultKind()) {
8989    case LookupResult::Found:
8990    case LookupResult::FoundUnresolvedValue:
8991      PrevDecl = Previous.getAsSingle<NamedDecl>();
8992      break;
8993
8994    case LookupResult::FoundOverloaded:
8995      PrevDecl = Previous.getRepresentativeDecl();
8996      break;
8997
8998    case LookupResult::NotFound:
8999    case LookupResult::NotFoundInCurrentInstantiation:
9000    case LookupResult::Ambiguous:
9001      break;
9002  }
9003  Previous.suppressDiagnostics();
9004
9005  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9006    // Maybe we will complain about the shadowed template parameter.
9007    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
9008    // Just pretend that we didn't see the previous declaration.
9009    PrevDecl = 0;
9010  }
9011
9012  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
9013    PrevDecl = 0;
9014
9015  bool Mutable
9016    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
9017  SourceLocation TSSL = D.getLocStart();
9018  FieldDecl *NewFD
9019    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
9020                     TSSL, AS, PrevDecl, &D);
9021
9022  if (NewFD->isInvalidDecl())
9023    Record->setInvalidDecl();
9024
9025  if (D.getDeclSpec().isModulePrivateSpecified())
9026    NewFD->setModulePrivate();
9027
9028  if (NewFD->isInvalidDecl() && PrevDecl) {
9029    // Don't introduce NewFD into scope; there's already something
9030    // with the same name in the same scope.
9031  } else if (II) {
9032    PushOnScopeChains(NewFD, S);
9033  } else
9034    Record->addDecl(NewFD);
9035
9036  return NewFD;
9037}
9038
9039/// \brief Build a new FieldDecl and check its well-formedness.
9040///
9041/// This routine builds a new FieldDecl given the fields name, type,
9042/// record, etc. \p PrevDecl should refer to any previous declaration
9043/// with the same name and in the same scope as the field to be
9044/// created.
9045///
9046/// \returns a new FieldDecl.
9047///
9048/// \todo The Declarator argument is a hack. It will be removed once
9049FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
9050                                TypeSourceInfo *TInfo,
9051                                RecordDecl *Record, SourceLocation Loc,
9052                                bool Mutable, Expr *BitWidth, bool HasInit,
9053                                SourceLocation TSSL,
9054                                AccessSpecifier AS, NamedDecl *PrevDecl,
9055                                Declarator *D) {
9056  IdentifierInfo *II = Name.getAsIdentifierInfo();
9057  bool InvalidDecl = false;
9058  if (D) InvalidDecl = D->isInvalidType();
9059
9060  // If we receive a broken type, recover by assuming 'int' and
9061  // marking this declaration as invalid.
9062  if (T.isNull()) {
9063    InvalidDecl = true;
9064    T = Context.IntTy;
9065  }
9066
9067  QualType EltTy = Context.getBaseElementType(T);
9068  if (!EltTy->isDependentType()) {
9069    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
9070      // Fields of incomplete type force their record to be invalid.
9071      Record->setInvalidDecl();
9072      InvalidDecl = true;
9073    } else {
9074      NamedDecl *Def;
9075      EltTy->isIncompleteType(&Def);
9076      if (Def && Def->isInvalidDecl()) {
9077        Record->setInvalidDecl();
9078        InvalidDecl = true;
9079      }
9080    }
9081  }
9082
9083  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9084  // than a variably modified type.
9085  if (!InvalidDecl && T->isVariablyModifiedType()) {
9086    bool SizeIsNegative;
9087    llvm::APSInt Oversized;
9088    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
9089                                                           SizeIsNegative,
9090                                                           Oversized);
9091    if (!FixedTy.isNull()) {
9092      Diag(Loc, diag::warn_illegal_constant_array_size);
9093      T = FixedTy;
9094    } else {
9095      if (SizeIsNegative)
9096        Diag(Loc, diag::err_typecheck_negative_array_size);
9097      else if (Oversized.getBoolValue())
9098        Diag(Loc, diag::err_array_too_large)
9099          << Oversized.toString(10);
9100      else
9101        Diag(Loc, diag::err_typecheck_field_variable_size);
9102      InvalidDecl = true;
9103    }
9104  }
9105
9106  // Fields can not have abstract class types
9107  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
9108                                             diag::err_abstract_type_in_decl,
9109                                             AbstractFieldType))
9110    InvalidDecl = true;
9111
9112  bool ZeroWidth = false;
9113  // If this is declared as a bit-field, check the bit-field.
9114  if (!InvalidDecl && BitWidth) {
9115    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
9116    if (!BitWidth) {
9117      InvalidDecl = true;
9118      BitWidth = 0;
9119      ZeroWidth = false;
9120    }
9121  }
9122
9123  // Check that 'mutable' is consistent with the type of the declaration.
9124  if (!InvalidDecl && Mutable) {
9125    unsigned DiagID = 0;
9126    if (T->isReferenceType())
9127      DiagID = diag::err_mutable_reference;
9128    else if (T.isConstQualified())
9129      DiagID = diag::err_mutable_const;
9130
9131    if (DiagID) {
9132      SourceLocation ErrLoc = Loc;
9133      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
9134        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
9135      Diag(ErrLoc, DiagID);
9136      Mutable = false;
9137      InvalidDecl = true;
9138    }
9139  }
9140
9141  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
9142                                       BitWidth, Mutable, HasInit);
9143  if (InvalidDecl)
9144    NewFD->setInvalidDecl();
9145
9146  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
9147    Diag(Loc, diag::err_duplicate_member) << II;
9148    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9149    NewFD->setInvalidDecl();
9150  }
9151
9152  if (!InvalidDecl && getLangOpts().CPlusPlus) {
9153    if (Record->isUnion()) {
9154      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9155        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9156        if (RDecl->getDefinition()) {
9157          // C++ [class.union]p1: An object of a class with a non-trivial
9158          // constructor, a non-trivial copy constructor, a non-trivial
9159          // destructor, or a non-trivial copy assignment operator
9160          // cannot be a member of a union, nor can an array of such
9161          // objects.
9162          if (CheckNontrivialField(NewFD))
9163            NewFD->setInvalidDecl();
9164        }
9165      }
9166
9167      // C++ [class.union]p1: If a union contains a member of reference type,
9168      // the program is ill-formed.
9169      if (EltTy->isReferenceType()) {
9170        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9171          << NewFD->getDeclName() << EltTy;
9172        NewFD->setInvalidDecl();
9173      }
9174    }
9175  }
9176
9177  // FIXME: We need to pass in the attributes given an AST
9178  // representation, not a parser representation.
9179  if (D)
9180    // FIXME: What to pass instead of TUScope?
9181    ProcessDeclAttributes(TUScope, NewFD, *D);
9182
9183  // In auto-retain/release, infer strong retension for fields of
9184  // retainable type.
9185  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9186    NewFD->setInvalidDecl();
9187
9188  if (T.isObjCGCWeak())
9189    Diag(Loc, diag::warn_attribute_weak_on_field);
9190
9191  NewFD->setAccess(AS);
9192  return NewFD;
9193}
9194
9195bool Sema::CheckNontrivialField(FieldDecl *FD) {
9196  assert(FD);
9197  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9198
9199  if (FD->isInvalidDecl())
9200    return true;
9201
9202  QualType EltTy = Context.getBaseElementType(FD->getType());
9203  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9204    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9205    if (RDecl->getDefinition()) {
9206      // We check for copy constructors before constructors
9207      // because otherwise we'll never get complaints about
9208      // copy constructors.
9209
9210      CXXSpecialMember member = CXXInvalid;
9211      if (!RDecl->hasTrivialCopyConstructor())
9212        member = CXXCopyConstructor;
9213      else if (!RDecl->hasTrivialDefaultConstructor())
9214        member = CXXDefaultConstructor;
9215      else if (!RDecl->hasTrivialCopyAssignment())
9216        member = CXXCopyAssignment;
9217      else if (!RDecl->hasTrivialDestructor())
9218        member = CXXDestructor;
9219
9220      if (member != CXXInvalid) {
9221        if (!getLangOpts().CPlusPlus0x &&
9222            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9223          // Objective-C++ ARC: it is an error to have a non-trivial field of
9224          // a union. However, system headers in Objective-C programs
9225          // occasionally have Objective-C lifetime objects within unions,
9226          // and rather than cause the program to fail, we make those
9227          // members unavailable.
9228          SourceLocation Loc = FD->getLocation();
9229          if (getSourceManager().isInSystemHeader(Loc)) {
9230            if (!FD->hasAttr<UnavailableAttr>())
9231              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9232                                  "this system field has retaining ownership"));
9233            return false;
9234          }
9235        }
9236
9237        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9238               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9239               diag::err_illegal_union_or_anon_struct_member)
9240          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9241        DiagnoseNontrivial(RT, member);
9242        return !getLangOpts().CPlusPlus0x;
9243      }
9244    }
9245  }
9246
9247  return false;
9248}
9249
9250/// If the given constructor is user-provided, produce a diagnostic explaining
9251/// that it makes the class non-trivial.
9252static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9253                                               CXXConstructorDecl *CD,
9254                                               Sema::CXXSpecialMember CSM) {
9255  if (!CD->isUserProvided())
9256    return false;
9257
9258  SourceLocation CtorLoc = CD->getLocation();
9259  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9260  return true;
9261}
9262
9263/// DiagnoseNontrivial - Given that a class has a non-trivial
9264/// special member, figure out why.
9265void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9266  QualType QT(T, 0U);
9267  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9268
9269  // Check whether the member was user-declared.
9270  switch (member) {
9271  case CXXInvalid:
9272    break;
9273
9274  case CXXDefaultConstructor:
9275    if (RD->hasUserDeclaredConstructor()) {
9276      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9277      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9278        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, &*CI, member))
9279          return;
9280
9281      // No user-provided constructors; look for constructor templates.
9282      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9283          tmpl_iter;
9284      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9285           TI != TE; ++TI) {
9286        CXXConstructorDecl *CD =
9287            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9288        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9289          return;
9290      }
9291    }
9292    break;
9293
9294  case CXXCopyConstructor:
9295    if (RD->hasUserDeclaredCopyConstructor()) {
9296      SourceLocation CtorLoc =
9297        RD->getCopyConstructor(0)->getLocation();
9298      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9299      return;
9300    }
9301    break;
9302
9303  case CXXMoveConstructor:
9304    if (RD->hasUserDeclaredMoveConstructor()) {
9305      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9306      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9307      return;
9308    }
9309    break;
9310
9311  case CXXCopyAssignment:
9312    if (RD->hasUserDeclaredCopyAssignment()) {
9313      // FIXME: this should use the location of the copy
9314      // assignment, not the type.
9315      SourceLocation TyLoc = RD->getLocStart();
9316      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9317      return;
9318    }
9319    break;
9320
9321  case CXXMoveAssignment:
9322    if (RD->hasUserDeclaredMoveAssignment()) {
9323      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9324      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9325      return;
9326    }
9327    break;
9328
9329  case CXXDestructor:
9330    if (RD->hasUserDeclaredDestructor()) {
9331      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9332      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9333      return;
9334    }
9335    break;
9336  }
9337
9338  typedef CXXRecordDecl::base_class_iterator base_iter;
9339
9340  // Virtual bases and members inhibit trivial copying/construction,
9341  // but not trivial destruction.
9342  if (member != CXXDestructor) {
9343    // Check for virtual bases.  vbases includes indirect virtual bases,
9344    // so we just iterate through the direct bases.
9345    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9346      if (bi->isVirtual()) {
9347        SourceLocation BaseLoc = bi->getLocStart();
9348        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9349        return;
9350      }
9351
9352    // Check for virtual methods.
9353    typedef CXXRecordDecl::method_iterator meth_iter;
9354    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9355         ++mi) {
9356      if (mi->isVirtual()) {
9357        SourceLocation MLoc = mi->getLocStart();
9358        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9359        return;
9360      }
9361    }
9362  }
9363
9364  bool (CXXRecordDecl::*hasTrivial)() const;
9365  switch (member) {
9366  case CXXDefaultConstructor:
9367    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9368  case CXXCopyConstructor:
9369    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9370  case CXXCopyAssignment:
9371    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9372  case CXXDestructor:
9373    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9374  default:
9375    llvm_unreachable("unexpected special member");
9376  }
9377
9378  // Check for nontrivial bases (and recurse).
9379  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9380    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9381    assert(BaseRT && "Don't know how to handle dependent bases");
9382    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9383    if (!(BaseRecTy->*hasTrivial)()) {
9384      SourceLocation BaseLoc = bi->getLocStart();
9385      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9386      DiagnoseNontrivial(BaseRT, member);
9387      return;
9388    }
9389  }
9390
9391  // Check for nontrivial members (and recurse).
9392  typedef RecordDecl::field_iterator field_iter;
9393  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9394       ++fi) {
9395    QualType EltTy = Context.getBaseElementType(fi->getType());
9396    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9397      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9398
9399      if (!(EltRD->*hasTrivial)()) {
9400        SourceLocation FLoc = fi->getLocation();
9401        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9402        DiagnoseNontrivial(EltRT, member);
9403        return;
9404      }
9405    }
9406
9407    if (EltTy->isObjCLifetimeType()) {
9408      switch (EltTy.getObjCLifetime()) {
9409      case Qualifiers::OCL_None:
9410      case Qualifiers::OCL_ExplicitNone:
9411        break;
9412
9413      case Qualifiers::OCL_Autoreleasing:
9414      case Qualifiers::OCL_Weak:
9415      case Qualifiers::OCL_Strong:
9416        Diag(fi->getLocation(), diag::note_nontrivial_objc_ownership)
9417          << QT << EltTy.getObjCLifetime();
9418        return;
9419      }
9420    }
9421  }
9422
9423  llvm_unreachable("found no explanation for non-trivial member");
9424}
9425
9426/// TranslateIvarVisibility - Translate visibility from a token ID to an
9427///  AST enum value.
9428static ObjCIvarDecl::AccessControl
9429TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9430  switch (ivarVisibility) {
9431  default: llvm_unreachable("Unknown visitibility kind");
9432  case tok::objc_private: return ObjCIvarDecl::Private;
9433  case tok::objc_public: return ObjCIvarDecl::Public;
9434  case tok::objc_protected: return ObjCIvarDecl::Protected;
9435  case tok::objc_package: return ObjCIvarDecl::Package;
9436  }
9437}
9438
9439/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9440/// in order to create an IvarDecl object for it.
9441Decl *Sema::ActOnIvar(Scope *S,
9442                                SourceLocation DeclStart,
9443                                Declarator &D, Expr *BitfieldWidth,
9444                                tok::ObjCKeywordKind Visibility) {
9445
9446  IdentifierInfo *II = D.getIdentifier();
9447  Expr *BitWidth = (Expr*)BitfieldWidth;
9448  SourceLocation Loc = DeclStart;
9449  if (II) Loc = D.getIdentifierLoc();
9450
9451  // FIXME: Unnamed fields can be handled in various different ways, for
9452  // example, unnamed unions inject all members into the struct namespace!
9453
9454  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9455  QualType T = TInfo->getType();
9456
9457  if (BitWidth) {
9458    // 6.7.2.1p3, 6.7.2.1p4
9459    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9460    if (!BitWidth)
9461      D.setInvalidType();
9462  } else {
9463    // Not a bitfield.
9464
9465    // validate II.
9466
9467  }
9468  if (T->isReferenceType()) {
9469    Diag(Loc, diag::err_ivar_reference_type);
9470    D.setInvalidType();
9471  }
9472  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9473  // than a variably modified type.
9474  else if (T->isVariablyModifiedType()) {
9475    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9476    D.setInvalidType();
9477  }
9478
9479  // Get the visibility (access control) for this ivar.
9480  ObjCIvarDecl::AccessControl ac =
9481    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9482                                        : ObjCIvarDecl::None;
9483  // Must set ivar's DeclContext to its enclosing interface.
9484  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9485  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9486    return 0;
9487  ObjCContainerDecl *EnclosingContext;
9488  if (ObjCImplementationDecl *IMPDecl =
9489      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9490    if (!LangOpts.ObjCNonFragileABI2) {
9491    // Case of ivar declared in an implementation. Context is that of its class.
9492      EnclosingContext = IMPDecl->getClassInterface();
9493      assert(EnclosingContext && "Implementation has no class interface!");
9494    }
9495    else
9496      EnclosingContext = EnclosingDecl;
9497  } else {
9498    if (ObjCCategoryDecl *CDecl =
9499        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9500      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9501        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9502        return 0;
9503      }
9504    }
9505    EnclosingContext = EnclosingDecl;
9506  }
9507
9508  // Construct the decl.
9509  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9510                                             DeclStart, Loc, II, T,
9511                                             TInfo, ac, (Expr *)BitfieldWidth);
9512
9513  if (II) {
9514    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9515                                           ForRedeclaration);
9516    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9517        && !isa<TagDecl>(PrevDecl)) {
9518      Diag(Loc, diag::err_duplicate_member) << II;
9519      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9520      NewID->setInvalidDecl();
9521    }
9522  }
9523
9524  // Process attributes attached to the ivar.
9525  ProcessDeclAttributes(S, NewID, D);
9526
9527  if (D.isInvalidType())
9528    NewID->setInvalidDecl();
9529
9530  // In ARC, infer 'retaining' for ivars of retainable type.
9531  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9532    NewID->setInvalidDecl();
9533
9534  if (D.getDeclSpec().isModulePrivateSpecified())
9535    NewID->setModulePrivate();
9536
9537  if (II) {
9538    // FIXME: When interfaces are DeclContexts, we'll need to add
9539    // these to the interface.
9540    S->AddDecl(NewID);
9541    IdResolver.AddDecl(NewID);
9542  }
9543
9544  return NewID;
9545}
9546
9547/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9548/// class and class extensions. For every class @interface and class
9549/// extension @interface, if the last ivar is a bitfield of any type,
9550/// then add an implicit `char :0` ivar to the end of that interface.
9551void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9552                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9553  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9554    return;
9555
9556  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9557  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9558
9559  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9560    return;
9561  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9562  if (!ID) {
9563    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9564      if (!CD->IsClassExtension())
9565        return;
9566    }
9567    // No need to add this to end of @implementation.
9568    else
9569      return;
9570  }
9571  // All conditions are met. Add a new bitfield to the tail end of ivars.
9572  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9573  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9574
9575  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9576                              DeclLoc, DeclLoc, 0,
9577                              Context.CharTy,
9578                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9579                                                               DeclLoc),
9580                              ObjCIvarDecl::Private, BW,
9581                              true);
9582  AllIvarDecls.push_back(Ivar);
9583}
9584
9585void Sema::ActOnFields(Scope* S,
9586                       SourceLocation RecLoc, Decl *EnclosingDecl,
9587                       llvm::ArrayRef<Decl *> Fields,
9588                       SourceLocation LBrac, SourceLocation RBrac,
9589                       AttributeList *Attr) {
9590  assert(EnclosingDecl && "missing record or interface decl");
9591
9592  // If the decl this is being inserted into is invalid, then it may be a
9593  // redeclaration or some other bogus case.  Don't try to add fields to it.
9594  if (EnclosingDecl->isInvalidDecl())
9595    return;
9596
9597  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9598
9599  // Start counting up the number of named members; make sure to include
9600  // members of anonymous structs and unions in the total.
9601  unsigned NumNamedMembers = 0;
9602  if (Record) {
9603    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9604                                   e = Record->decls_end(); i != e; i++) {
9605      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9606        if (IFD->getDeclName())
9607          ++NumNamedMembers;
9608    }
9609  }
9610
9611  // Verify that all the fields are okay.
9612  SmallVector<FieldDecl*, 32> RecFields;
9613
9614  bool ARCErrReported = false;
9615  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9616       i != end; ++i) {
9617    FieldDecl *FD = cast<FieldDecl>(*i);
9618
9619    // Get the type for the field.
9620    const Type *FDTy = FD->getType().getTypePtr();
9621
9622    if (!FD->isAnonymousStructOrUnion()) {
9623      // Remember all fields written by the user.
9624      RecFields.push_back(FD);
9625    }
9626
9627    // If the field is already invalid for some reason, don't emit more
9628    // diagnostics about it.
9629    if (FD->isInvalidDecl()) {
9630      EnclosingDecl->setInvalidDecl();
9631      continue;
9632    }
9633
9634    // C99 6.7.2.1p2:
9635    //   A structure or union shall not contain a member with
9636    //   incomplete or function type (hence, a structure shall not
9637    //   contain an instance of itself, but may contain a pointer to
9638    //   an instance of itself), except that the last member of a
9639    //   structure with more than one named member may have incomplete
9640    //   array type; such a structure (and any union containing,
9641    //   possibly recursively, a member that is such a structure)
9642    //   shall not be a member of a structure or an element of an
9643    //   array.
9644    if (FDTy->isFunctionType()) {
9645      // Field declared as a function.
9646      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9647        << FD->getDeclName();
9648      FD->setInvalidDecl();
9649      EnclosingDecl->setInvalidDecl();
9650      continue;
9651    } else if (FDTy->isIncompleteArrayType() && Record &&
9652               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9653                ((getLangOpts().MicrosoftExt ||
9654                  getLangOpts().CPlusPlus) &&
9655                 (i + 1 == Fields.end() || Record->isUnion())))) {
9656      // Flexible array member.
9657      // Microsoft and g++ is more permissive regarding flexible array.
9658      // It will accept flexible array in union and also
9659      // as the sole element of a struct/class.
9660      if (getLangOpts().MicrosoftExt) {
9661        if (Record->isUnion())
9662          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9663            << FD->getDeclName();
9664        else if (Fields.size() == 1)
9665          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9666            << FD->getDeclName() << Record->getTagKind();
9667      } else if (getLangOpts().CPlusPlus) {
9668        if (Record->isUnion())
9669          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9670            << FD->getDeclName();
9671        else if (Fields.size() == 1)
9672          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9673            << FD->getDeclName() << Record->getTagKind();
9674      } else if (!getLangOpts().C99) {
9675      if (Record->isUnion())
9676        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9677          << FD->getDeclName();
9678      else
9679        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9680          << FD->getDeclName() << Record->getTagKind();
9681      } else if (NumNamedMembers < 1) {
9682        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9683          << FD->getDeclName();
9684        FD->setInvalidDecl();
9685        EnclosingDecl->setInvalidDecl();
9686        continue;
9687      }
9688      if (!FD->getType()->isDependentType() &&
9689          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9690        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9691          << FD->getDeclName() << FD->getType();
9692        FD->setInvalidDecl();
9693        EnclosingDecl->setInvalidDecl();
9694        continue;
9695      }
9696      // Okay, we have a legal flexible array member at the end of the struct.
9697      if (Record)
9698        Record->setHasFlexibleArrayMember(true);
9699    } else if (!FDTy->isDependentType() &&
9700               RequireCompleteType(FD->getLocation(), FD->getType(),
9701                                   diag::err_field_incomplete)) {
9702      // Incomplete type
9703      FD->setInvalidDecl();
9704      EnclosingDecl->setInvalidDecl();
9705      continue;
9706    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9707      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9708        // If this is a member of a union, then entire union becomes "flexible".
9709        if (Record && Record->isUnion()) {
9710          Record->setHasFlexibleArrayMember(true);
9711        } else {
9712          // If this is a struct/class and this is not the last element, reject
9713          // it.  Note that GCC supports variable sized arrays in the middle of
9714          // structures.
9715          if (i + 1 != Fields.end())
9716            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9717              << FD->getDeclName() << FD->getType();
9718          else {
9719            // We support flexible arrays at the end of structs in
9720            // other structs as an extension.
9721            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9722              << FD->getDeclName();
9723            if (Record)
9724              Record->setHasFlexibleArrayMember(true);
9725          }
9726        }
9727      }
9728      if (Record && FDTTy->getDecl()->hasObjectMember())
9729        Record->setHasObjectMember(true);
9730    } else if (FDTy->isObjCObjectType()) {
9731      /// A field cannot be an Objective-c object
9732      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9733        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9734      QualType T = Context.getObjCObjectPointerType(FD->getType());
9735      FD->setType(T);
9736    }
9737    else if (!getLangOpts().CPlusPlus) {
9738      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9739        // It's an error in ARC if a field has lifetime.
9740        // We don't want to report this in a system header, though,
9741        // so we just make the field unavailable.
9742        // FIXME: that's really not sufficient; we need to make the type
9743        // itself invalid to, say, initialize or copy.
9744        QualType T = FD->getType();
9745        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9746        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9747          SourceLocation loc = FD->getLocation();
9748          if (getSourceManager().isInSystemHeader(loc)) {
9749            if (!FD->hasAttr<UnavailableAttr>()) {
9750              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9751                                "this system field has retaining ownership"));
9752            }
9753          } else {
9754            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9755              << T->isBlockPointerType();
9756          }
9757          ARCErrReported = true;
9758        }
9759      }
9760      else if (getLangOpts().ObjC1 &&
9761               getLangOpts().getGC() != LangOptions::NonGC &&
9762               Record && !Record->hasObjectMember()) {
9763        if (FD->getType()->isObjCObjectPointerType() ||
9764            FD->getType().isObjCGCStrong())
9765          Record->setHasObjectMember(true);
9766        else if (Context.getAsArrayType(FD->getType())) {
9767          QualType BaseType = Context.getBaseElementType(FD->getType());
9768          if (BaseType->isRecordType() &&
9769              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9770            Record->setHasObjectMember(true);
9771          else if (BaseType->isObjCObjectPointerType() ||
9772                   BaseType.isObjCGCStrong())
9773                 Record->setHasObjectMember(true);
9774        }
9775      }
9776    }
9777    // Keep track of the number of named members.
9778    if (FD->getIdentifier())
9779      ++NumNamedMembers;
9780  }
9781
9782  // Okay, we successfully defined 'Record'.
9783  if (Record) {
9784    bool Completed = false;
9785    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9786      if (!CXXRecord->isInvalidDecl()) {
9787        // Set access bits correctly on the directly-declared conversions.
9788        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9789        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9790             I != E; ++I)
9791          Convs->setAccess(I, (*I)->getAccess());
9792
9793        if (!CXXRecord->isDependentType()) {
9794          // Objective-C Automatic Reference Counting:
9795          //   If a class has a non-static data member of Objective-C pointer
9796          //   type (or array thereof), it is a non-POD type and its
9797          //   default constructor (if any), copy constructor, copy assignment
9798          //   operator, and destructor are non-trivial.
9799          //
9800          // This rule is also handled by CXXRecordDecl::completeDefinition().
9801          // However, here we check whether this particular class is only
9802          // non-POD because of the presence of an Objective-C pointer member.
9803          // If so, objects of this type cannot be shared between code compiled
9804          // with instant objects and code compiled with manual retain/release.
9805          if (getLangOpts().ObjCAutoRefCount &&
9806              CXXRecord->hasObjectMember() &&
9807              CXXRecord->getLinkage() == ExternalLinkage) {
9808            if (CXXRecord->isPOD()) {
9809              Diag(CXXRecord->getLocation(),
9810                   diag::warn_arc_non_pod_class_with_object_member)
9811               << CXXRecord;
9812            } else {
9813              // FIXME: Fix-Its would be nice here, but finding a good location
9814              // for them is going to be tricky.
9815              if (CXXRecord->hasTrivialCopyConstructor())
9816                Diag(CXXRecord->getLocation(),
9817                     diag::warn_arc_trivial_member_function_with_object_member)
9818                  << CXXRecord << 0;
9819              if (CXXRecord->hasTrivialCopyAssignment())
9820                Diag(CXXRecord->getLocation(),
9821                     diag::warn_arc_trivial_member_function_with_object_member)
9822                << CXXRecord << 1;
9823              if (CXXRecord->hasTrivialDestructor())
9824                Diag(CXXRecord->getLocation(),
9825                     diag::warn_arc_trivial_member_function_with_object_member)
9826                << CXXRecord << 2;
9827            }
9828          }
9829
9830          // Adjust user-defined destructor exception spec.
9831          if (getLangOpts().CPlusPlus0x &&
9832              CXXRecord->hasUserDeclaredDestructor())
9833            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9834
9835          // Add any implicitly-declared members to this class.
9836          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9837
9838          // If we have virtual base classes, we may end up finding multiple
9839          // final overriders for a given virtual function. Check for this
9840          // problem now.
9841          if (CXXRecord->getNumVBases()) {
9842            CXXFinalOverriderMap FinalOverriders;
9843            CXXRecord->getFinalOverriders(FinalOverriders);
9844
9845            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9846                                             MEnd = FinalOverriders.end();
9847                 M != MEnd; ++M) {
9848              for (OverridingMethods::iterator SO = M->second.begin(),
9849                                            SOEnd = M->second.end();
9850                   SO != SOEnd; ++SO) {
9851                assert(SO->second.size() > 0 &&
9852                       "Virtual function without overridding functions?");
9853                if (SO->second.size() == 1)
9854                  continue;
9855
9856                // C++ [class.virtual]p2:
9857                //   In a derived class, if a virtual member function of a base
9858                //   class subobject has more than one final overrider the
9859                //   program is ill-formed.
9860                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9861                  << (NamedDecl *)M->first << Record;
9862                Diag(M->first->getLocation(),
9863                     diag::note_overridden_virtual_function);
9864                for (OverridingMethods::overriding_iterator
9865                          OM = SO->second.begin(),
9866                       OMEnd = SO->second.end();
9867                     OM != OMEnd; ++OM)
9868                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9869                    << (NamedDecl *)M->first << OM->Method->getParent();
9870
9871                Record->setInvalidDecl();
9872              }
9873            }
9874            CXXRecord->completeDefinition(&FinalOverriders);
9875            Completed = true;
9876          }
9877        }
9878      }
9879    }
9880
9881    if (!Completed)
9882      Record->completeDefinition();
9883
9884  } else {
9885    ObjCIvarDecl **ClsFields =
9886      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9887    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9888      ID->setEndOfDefinitionLoc(RBrac);
9889      // Add ivar's to class's DeclContext.
9890      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9891        ClsFields[i]->setLexicalDeclContext(ID);
9892        ID->addDecl(ClsFields[i]);
9893      }
9894      // Must enforce the rule that ivars in the base classes may not be
9895      // duplicates.
9896      if (ID->getSuperClass())
9897        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9898    } else if (ObjCImplementationDecl *IMPDecl =
9899                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9900      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9901      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9902        // Ivar declared in @implementation never belongs to the implementation.
9903        // Only it is in implementation's lexical context.
9904        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9905      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9906      IMPDecl->setIvarLBraceLoc(LBrac);
9907      IMPDecl->setIvarRBraceLoc(RBrac);
9908    } else if (ObjCCategoryDecl *CDecl =
9909                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9910      // case of ivars in class extension; all other cases have been
9911      // reported as errors elsewhere.
9912      // FIXME. Class extension does not have a LocEnd field.
9913      // CDecl->setLocEnd(RBrac);
9914      // Add ivar's to class extension's DeclContext.
9915      // Diagnose redeclaration of private ivars.
9916      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9917      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9918        if (IDecl) {
9919          if (const ObjCIvarDecl *ClsIvar =
9920              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9921            Diag(ClsFields[i]->getLocation(),
9922                 diag::err_duplicate_ivar_declaration);
9923            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9924            continue;
9925          }
9926          for (const ObjCCategoryDecl *ClsExtDecl =
9927                IDecl->getFirstClassExtension();
9928               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9929            if (const ObjCIvarDecl *ClsExtIvar =
9930                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9931              Diag(ClsFields[i]->getLocation(),
9932                   diag::err_duplicate_ivar_declaration);
9933              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9934              continue;
9935            }
9936          }
9937        }
9938        ClsFields[i]->setLexicalDeclContext(CDecl);
9939        CDecl->addDecl(ClsFields[i]);
9940      }
9941      CDecl->setIvarLBraceLoc(LBrac);
9942      CDecl->setIvarRBraceLoc(RBrac);
9943    }
9944  }
9945
9946  if (Attr)
9947    ProcessDeclAttributeList(S, Record, Attr);
9948
9949  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9950  // set the visibility of this record.
9951  if (Record && !Record->getDeclContext()->isRecord())
9952    AddPushedVisibilityAttribute(Record);
9953}
9954
9955/// \brief Determine whether the given integral value is representable within
9956/// the given type T.
9957static bool isRepresentableIntegerValue(ASTContext &Context,
9958                                        llvm::APSInt &Value,
9959                                        QualType T) {
9960  assert(T->isIntegralType(Context) && "Integral type required!");
9961  unsigned BitWidth = Context.getIntWidth(T);
9962
9963  if (Value.isUnsigned() || Value.isNonNegative()) {
9964    if (T->isSignedIntegerOrEnumerationType())
9965      --BitWidth;
9966    return Value.getActiveBits() <= BitWidth;
9967  }
9968  return Value.getMinSignedBits() <= BitWidth;
9969}
9970
9971// \brief Given an integral type, return the next larger integral type
9972// (or a NULL type of no such type exists).
9973static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9974  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9975  // enum checking below.
9976  assert(T->isIntegralType(Context) && "Integral type required!");
9977  const unsigned NumTypes = 4;
9978  QualType SignedIntegralTypes[NumTypes] = {
9979    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9980  };
9981  QualType UnsignedIntegralTypes[NumTypes] = {
9982    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9983    Context.UnsignedLongLongTy
9984  };
9985
9986  unsigned BitWidth = Context.getTypeSize(T);
9987  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9988                                                        : UnsignedIntegralTypes;
9989  for (unsigned I = 0; I != NumTypes; ++I)
9990    if (Context.getTypeSize(Types[I]) > BitWidth)
9991      return Types[I];
9992
9993  return QualType();
9994}
9995
9996EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9997                                          EnumConstantDecl *LastEnumConst,
9998                                          SourceLocation IdLoc,
9999                                          IdentifierInfo *Id,
10000                                          Expr *Val) {
10001  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10002  llvm::APSInt EnumVal(IntWidth);
10003  QualType EltTy;
10004
10005  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
10006    Val = 0;
10007
10008  if (Val)
10009    Val = DefaultLvalueConversion(Val).take();
10010
10011  if (Val) {
10012    if (Enum->isDependentType() || Val->isTypeDependent())
10013      EltTy = Context.DependentTy;
10014    else {
10015      SourceLocation ExpLoc;
10016      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
10017          !getLangOpts().MicrosoftMode) {
10018        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
10019        // constant-expression in the enumerator-definition shall be a converted
10020        // constant expression of the underlying type.
10021        EltTy = Enum->getIntegerType();
10022        ExprResult Converted =
10023          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
10024                                           CCEK_Enumerator);
10025        if (Converted.isInvalid())
10026          Val = 0;
10027        else
10028          Val = Converted.take();
10029      } else if (!Val->isValueDependent() &&
10030                 !(Val = VerifyIntegerConstantExpression(Val,
10031                                                         &EnumVal).take())) {
10032        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
10033      } else {
10034        if (Enum->isFixed()) {
10035          EltTy = Enum->getIntegerType();
10036
10037          // In Obj-C and Microsoft mode, require the enumeration value to be
10038          // representable in the underlying type of the enumeration. In C++11,
10039          // we perform a non-narrowing conversion as part of converted constant
10040          // expression checking.
10041          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10042            if (getLangOpts().MicrosoftMode) {
10043              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
10044              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10045            } else
10046              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
10047          } else
10048            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
10049        } else if (getLangOpts().CPlusPlus) {
10050          // C++11 [dcl.enum]p5:
10051          //   If the underlying type is not fixed, the type of each enumerator
10052          //   is the type of its initializing value:
10053          //     - If an initializer is specified for an enumerator, the
10054          //       initializing value has the same type as the expression.
10055          EltTy = Val->getType();
10056        } else {
10057          // C99 6.7.2.2p2:
10058          //   The expression that defines the value of an enumeration constant
10059          //   shall be an integer constant expression that has a value
10060          //   representable as an int.
10061
10062          // Complain if the value is not representable in an int.
10063          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
10064            Diag(IdLoc, diag::ext_enum_value_not_int)
10065              << EnumVal.toString(10) << Val->getSourceRange()
10066              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
10067          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
10068            // Force the type of the expression to 'int'.
10069            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
10070          }
10071          EltTy = Val->getType();
10072        }
10073      }
10074    }
10075  }
10076
10077  if (!Val) {
10078    if (Enum->isDependentType())
10079      EltTy = Context.DependentTy;
10080    else if (!LastEnumConst) {
10081      // C++0x [dcl.enum]p5:
10082      //   If the underlying type is not fixed, the type of each enumerator
10083      //   is the type of its initializing value:
10084      //     - If no initializer is specified for the first enumerator, the
10085      //       initializing value has an unspecified integral type.
10086      //
10087      // GCC uses 'int' for its unspecified integral type, as does
10088      // C99 6.7.2.2p3.
10089      if (Enum->isFixed()) {
10090        EltTy = Enum->getIntegerType();
10091      }
10092      else {
10093        EltTy = Context.IntTy;
10094      }
10095    } else {
10096      // Assign the last value + 1.
10097      EnumVal = LastEnumConst->getInitVal();
10098      ++EnumVal;
10099      EltTy = LastEnumConst->getType();
10100
10101      // Check for overflow on increment.
10102      if (EnumVal < LastEnumConst->getInitVal()) {
10103        // C++0x [dcl.enum]p5:
10104        //   If the underlying type is not fixed, the type of each enumerator
10105        //   is the type of its initializing value:
10106        //
10107        //     - Otherwise the type of the initializing value is the same as
10108        //       the type of the initializing value of the preceding enumerator
10109        //       unless the incremented value is not representable in that type,
10110        //       in which case the type is an unspecified integral type
10111        //       sufficient to contain the incremented value. If no such type
10112        //       exists, the program is ill-formed.
10113        QualType T = getNextLargerIntegralType(Context, EltTy);
10114        if (T.isNull() || Enum->isFixed()) {
10115          // There is no integral type larger enough to represent this
10116          // value. Complain, then allow the value to wrap around.
10117          EnumVal = LastEnumConst->getInitVal();
10118          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
10119          ++EnumVal;
10120          if (Enum->isFixed())
10121            // When the underlying type is fixed, this is ill-formed.
10122            Diag(IdLoc, diag::err_enumerator_wrapped)
10123              << EnumVal.toString(10)
10124              << EltTy;
10125          else
10126            Diag(IdLoc, diag::warn_enumerator_too_large)
10127              << EnumVal.toString(10);
10128        } else {
10129          EltTy = T;
10130        }
10131
10132        // Retrieve the last enumerator's value, extent that type to the
10133        // type that is supposed to be large enough to represent the incremented
10134        // value, then increment.
10135        EnumVal = LastEnumConst->getInitVal();
10136        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10137        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
10138        ++EnumVal;
10139
10140        // If we're not in C++, diagnose the overflow of enumerator values,
10141        // which in C99 means that the enumerator value is not representable in
10142        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
10143        // permits enumerator values that are representable in some larger
10144        // integral type.
10145        if (!getLangOpts().CPlusPlus && !T.isNull())
10146          Diag(IdLoc, diag::warn_enum_value_overflow);
10147      } else if (!getLangOpts().CPlusPlus &&
10148                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10149        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10150        Diag(IdLoc, diag::ext_enum_value_not_int)
10151          << EnumVal.toString(10) << 1;
10152      }
10153    }
10154  }
10155
10156  if (!EltTy->isDependentType()) {
10157    // Make the enumerator value match the signedness and size of the
10158    // enumerator's type.
10159    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10160    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10161  }
10162
10163  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10164                                  Val, EnumVal);
10165}
10166
10167
10168Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10169                              SourceLocation IdLoc, IdentifierInfo *Id,
10170                              AttributeList *Attr,
10171                              SourceLocation EqualLoc, Expr *Val) {
10172  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10173  EnumConstantDecl *LastEnumConst =
10174    cast_or_null<EnumConstantDecl>(lastEnumConst);
10175
10176  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10177  // we find one that is.
10178  S = getNonFieldDeclScope(S);
10179
10180  // Verify that there isn't already something declared with this name in this
10181  // scope.
10182  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10183                                         ForRedeclaration);
10184  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10185    // Maybe we will complain about the shadowed template parameter.
10186    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10187    // Just pretend that we didn't see the previous declaration.
10188    PrevDecl = 0;
10189  }
10190
10191  if (PrevDecl) {
10192    // When in C++, we may get a TagDecl with the same name; in this case the
10193    // enum constant will 'hide' the tag.
10194    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10195           "Received TagDecl when not in C++!");
10196    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10197      if (isa<EnumConstantDecl>(PrevDecl))
10198        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10199      else
10200        Diag(IdLoc, diag::err_redefinition) << Id;
10201      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10202      return 0;
10203    }
10204  }
10205
10206  // C++ [class.mem]p13:
10207  //   If T is the name of a class, then each of the following shall have a
10208  //   name different from T:
10209  //     - every enumerator of every member of class T that is an enumerated
10210  //       type
10211  if (CXXRecordDecl *Record
10212                      = dyn_cast<CXXRecordDecl>(
10213                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10214    if (Record->getIdentifier() && Record->getIdentifier() == Id)
10215      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10216
10217  EnumConstantDecl *New =
10218    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10219
10220  if (New) {
10221    // Process attributes.
10222    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10223
10224    // Register this decl in the current scope stack.
10225    New->setAccess(TheEnumDecl->getAccess());
10226    PushOnScopeChains(New, S);
10227  }
10228
10229  return New;
10230}
10231
10232void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10233                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10234                         Decl **Elements, unsigned NumElements,
10235                         Scope *S, AttributeList *Attr) {
10236  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10237  QualType EnumType = Context.getTypeDeclType(Enum);
10238
10239  if (Attr)
10240    ProcessDeclAttributeList(S, Enum, Attr);
10241
10242  if (Enum->isDependentType()) {
10243    for (unsigned i = 0; i != NumElements; ++i) {
10244      EnumConstantDecl *ECD =
10245        cast_or_null<EnumConstantDecl>(Elements[i]);
10246      if (!ECD) continue;
10247
10248      ECD->setType(EnumType);
10249    }
10250
10251    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10252    return;
10253  }
10254
10255  // TODO: If the result value doesn't fit in an int, it must be a long or long
10256  // long value.  ISO C does not support this, but GCC does as an extension,
10257  // emit a warning.
10258  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10259  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10260  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10261
10262  // Verify that all the values are okay, compute the size of the values, and
10263  // reverse the list.
10264  unsigned NumNegativeBits = 0;
10265  unsigned NumPositiveBits = 0;
10266
10267  // Keep track of whether all elements have type int.
10268  bool AllElementsInt = true;
10269
10270  for (unsigned i = 0; i != NumElements; ++i) {
10271    EnumConstantDecl *ECD =
10272      cast_or_null<EnumConstantDecl>(Elements[i]);
10273    if (!ECD) continue;  // Already issued a diagnostic.
10274
10275    const llvm::APSInt &InitVal = ECD->getInitVal();
10276
10277    // Keep track of the size of positive and negative values.
10278    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10279      NumPositiveBits = std::max(NumPositiveBits,
10280                                 (unsigned)InitVal.getActiveBits());
10281    else
10282      NumNegativeBits = std::max(NumNegativeBits,
10283                                 (unsigned)InitVal.getMinSignedBits());
10284
10285    // Keep track of whether every enum element has type int (very commmon).
10286    if (AllElementsInt)
10287      AllElementsInt = ECD->getType() == Context.IntTy;
10288  }
10289
10290  // Figure out the type that should be used for this enum.
10291  QualType BestType;
10292  unsigned BestWidth;
10293
10294  // C++0x N3000 [conv.prom]p3:
10295  //   An rvalue of an unscoped enumeration type whose underlying
10296  //   type is not fixed can be converted to an rvalue of the first
10297  //   of the following types that can represent all the values of
10298  //   the enumeration: int, unsigned int, long int, unsigned long
10299  //   int, long long int, or unsigned long long int.
10300  // C99 6.4.4.3p2:
10301  //   An identifier declared as an enumeration constant has type int.
10302  // The C99 rule is modified by a gcc extension
10303  QualType BestPromotionType;
10304
10305  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10306  // -fshort-enums is the equivalent to specifying the packed attribute on all
10307  // enum definitions.
10308  if (LangOpts.ShortEnums)
10309    Packed = true;
10310
10311  if (Enum->isFixed()) {
10312    BestType = Enum->getIntegerType();
10313    if (BestType->isPromotableIntegerType())
10314      BestPromotionType = Context.getPromotedIntegerType(BestType);
10315    else
10316      BestPromotionType = BestType;
10317    // We don't need to set BestWidth, because BestType is going to be the type
10318    // of the enumerators, but we do anyway because otherwise some compilers
10319    // warn that it might be used uninitialized.
10320    BestWidth = CharWidth;
10321  }
10322  else if (NumNegativeBits) {
10323    // If there is a negative value, figure out the smallest integer type (of
10324    // int/long/longlong) that fits.
10325    // If it's packed, check also if it fits a char or a short.
10326    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10327      BestType = Context.SignedCharTy;
10328      BestWidth = CharWidth;
10329    } else if (Packed && NumNegativeBits <= ShortWidth &&
10330               NumPositiveBits < ShortWidth) {
10331      BestType = Context.ShortTy;
10332      BestWidth = ShortWidth;
10333    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10334      BestType = Context.IntTy;
10335      BestWidth = IntWidth;
10336    } else {
10337      BestWidth = Context.getTargetInfo().getLongWidth();
10338
10339      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10340        BestType = Context.LongTy;
10341      } else {
10342        BestWidth = Context.getTargetInfo().getLongLongWidth();
10343
10344        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10345          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10346        BestType = Context.LongLongTy;
10347      }
10348    }
10349    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10350  } else {
10351    // If there is no negative value, figure out the smallest type that fits
10352    // all of the enumerator values.
10353    // If it's packed, check also if it fits a char or a short.
10354    if (Packed && NumPositiveBits <= CharWidth) {
10355      BestType = Context.UnsignedCharTy;
10356      BestPromotionType = Context.IntTy;
10357      BestWidth = CharWidth;
10358    } else if (Packed && NumPositiveBits <= ShortWidth) {
10359      BestType = Context.UnsignedShortTy;
10360      BestPromotionType = Context.IntTy;
10361      BestWidth = ShortWidth;
10362    } else if (NumPositiveBits <= IntWidth) {
10363      BestType = Context.UnsignedIntTy;
10364      BestWidth = IntWidth;
10365      BestPromotionType
10366        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10367                           ? Context.UnsignedIntTy : Context.IntTy;
10368    } else if (NumPositiveBits <=
10369               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10370      BestType = Context.UnsignedLongTy;
10371      BestPromotionType
10372        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10373                           ? Context.UnsignedLongTy : Context.LongTy;
10374    } else {
10375      BestWidth = Context.getTargetInfo().getLongLongWidth();
10376      assert(NumPositiveBits <= BestWidth &&
10377             "How could an initializer get larger than ULL?");
10378      BestType = Context.UnsignedLongLongTy;
10379      BestPromotionType
10380        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10381                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10382    }
10383  }
10384
10385  // Loop over all of the enumerator constants, changing their types to match
10386  // the type of the enum if needed.
10387  for (unsigned i = 0; i != NumElements; ++i) {
10388    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10389    if (!ECD) continue;  // Already issued a diagnostic.
10390
10391    // Standard C says the enumerators have int type, but we allow, as an
10392    // extension, the enumerators to be larger than int size.  If each
10393    // enumerator value fits in an int, type it as an int, otherwise type it the
10394    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10395    // that X has type 'int', not 'unsigned'.
10396
10397    // Determine whether the value fits into an int.
10398    llvm::APSInt InitVal = ECD->getInitVal();
10399
10400    // If it fits into an integer type, force it.  Otherwise force it to match
10401    // the enum decl type.
10402    QualType NewTy;
10403    unsigned NewWidth;
10404    bool NewSign;
10405    if (!getLangOpts().CPlusPlus &&
10406        !Enum->isFixed() &&
10407        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10408      NewTy = Context.IntTy;
10409      NewWidth = IntWidth;
10410      NewSign = true;
10411    } else if (ECD->getType() == BestType) {
10412      // Already the right type!
10413      if (getLangOpts().CPlusPlus)
10414        // C++ [dcl.enum]p4: Following the closing brace of an
10415        // enum-specifier, each enumerator has the type of its
10416        // enumeration.
10417        ECD->setType(EnumType);
10418      continue;
10419    } else {
10420      NewTy = BestType;
10421      NewWidth = BestWidth;
10422      NewSign = BestType->isSignedIntegerOrEnumerationType();
10423    }
10424
10425    // Adjust the APSInt value.
10426    InitVal = InitVal.extOrTrunc(NewWidth);
10427    InitVal.setIsSigned(NewSign);
10428    ECD->setInitVal(InitVal);
10429
10430    // Adjust the Expr initializer and type.
10431    if (ECD->getInitExpr() &&
10432        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10433      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10434                                                CK_IntegralCast,
10435                                                ECD->getInitExpr(),
10436                                                /*base paths*/ 0,
10437                                                VK_RValue));
10438    if (getLangOpts().CPlusPlus)
10439      // C++ [dcl.enum]p4: Following the closing brace of an
10440      // enum-specifier, each enumerator has the type of its
10441      // enumeration.
10442      ECD->setType(EnumType);
10443    else
10444      ECD->setType(NewTy);
10445  }
10446
10447  Enum->completeDefinition(BestType, BestPromotionType,
10448                           NumPositiveBits, NumNegativeBits);
10449
10450  // If we're declaring a function, ensure this decl isn't forgotten about -
10451  // it needs to go into the function scope.
10452  if (InFunctionDeclarator)
10453    DeclsInPrototypeScope.push_back(Enum);
10454
10455}
10456
10457Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10458                                  SourceLocation StartLoc,
10459                                  SourceLocation EndLoc) {
10460  StringLiteral *AsmString = cast<StringLiteral>(expr);
10461
10462  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10463                                                   AsmString, StartLoc,
10464                                                   EndLoc);
10465  CurContext->addDecl(New);
10466  return New;
10467}
10468
10469DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10470                                   SourceLocation ImportLoc,
10471                                   ModuleIdPath Path) {
10472  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10473                                                Module::AllVisible,
10474                                                /*IsIncludeDirective=*/false);
10475  if (!Mod)
10476    return true;
10477
10478  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10479  Module *ModCheck = Mod;
10480  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10481    // If we've run out of module parents, just drop the remaining identifiers.
10482    // We need the length to be consistent.
10483    if (!ModCheck)
10484      break;
10485    ModCheck = ModCheck->Parent;
10486
10487    IdentifierLocs.push_back(Path[I].second);
10488  }
10489
10490  ImportDecl *Import = ImportDecl::Create(Context,
10491                                          Context.getTranslationUnitDecl(),
10492                                          AtLoc.isValid()? AtLoc : ImportLoc,
10493                                          Mod, IdentifierLocs);
10494  Context.getTranslationUnitDecl()->addDecl(Import);
10495  return Import;
10496}
10497
10498void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10499                                      IdentifierInfo* AliasName,
10500                                      SourceLocation PragmaLoc,
10501                                      SourceLocation NameLoc,
10502                                      SourceLocation AliasNameLoc) {
10503  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10504                                    LookupOrdinaryName);
10505  AsmLabelAttr *Attr =
10506     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10507
10508  if (PrevDecl)
10509    PrevDecl->addAttr(Attr);
10510  else
10511    (void)ExtnameUndeclaredIdentifiers.insert(
10512      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10513}
10514
10515void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10516                             SourceLocation PragmaLoc,
10517                             SourceLocation NameLoc) {
10518  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10519
10520  if (PrevDecl) {
10521    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10522  } else {
10523    (void)WeakUndeclaredIdentifiers.insert(
10524      std::pair<IdentifierInfo*,WeakInfo>
10525        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10526  }
10527}
10528
10529void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10530                                IdentifierInfo* AliasName,
10531                                SourceLocation PragmaLoc,
10532                                SourceLocation NameLoc,
10533                                SourceLocation AliasNameLoc) {
10534  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10535                                    LookupOrdinaryName);
10536  WeakInfo W = WeakInfo(Name, NameLoc);
10537
10538  if (PrevDecl) {
10539    if (!PrevDecl->hasAttr<AliasAttr>())
10540      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10541        DeclApplyPragmaWeak(TUScope, ND, W);
10542  } else {
10543    (void)WeakUndeclaredIdentifiers.insert(
10544      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10545  }
10546}
10547
10548Decl *Sema::getObjCDeclContext() const {
10549  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10550}
10551
10552AvailabilityResult Sema::getCurContextAvailability() const {
10553  const Decl *D = cast<Decl>(getCurLexicalContext());
10554  // A category implicitly has the availability of the interface.
10555  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10556    D = CatD->getClassInterface();
10557
10558  return D->getAvailability();
10559}
10560