SemaDecl.cpp revision 0ee33912f8ec3453856c8a32ed2c2e8007bed614
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isCopyConstructor())
1509      return Sema::CXXCopyConstructor;
1510
1511    if (Ctor->isDefaultConstructor())
1512      return Sema::CXXDefaultConstructor;
1513  }
1514
1515  if (isa<CXXDestructorDecl>(MD))
1516    return Sema::CXXDestructor;
1517
1518  if (MD->isCopyAssignmentOperator())
1519    return Sema::CXXCopyAssignment;
1520
1521  return Sema::CXXInvalid;
1522}
1523
1524/// canRedefineFunction - checks if a function can be redefined. Currently,
1525/// only extern inline functions can be redefined, and even then only in
1526/// GNU89 mode.
1527static bool canRedefineFunction(const FunctionDecl *FD,
1528                                const LangOptions& LangOpts) {
1529  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1530          FD->isInlineSpecified() &&
1531          FD->getStorageClass() == SC_Extern);
1532}
1533
1534/// MergeFunctionDecl - We just parsed a function 'New' from
1535/// declarator D which has the same name and scope as a previous
1536/// declaration 'Old'.  Figure out how to resolve this situation,
1537/// merging decls or emitting diagnostics as appropriate.
1538///
1539/// In C++, New and Old must be declarations that are not
1540/// overloaded. Use IsOverload to determine whether New and Old are
1541/// overloaded, and to select the Old declaration that New should be
1542/// merged with.
1543///
1544/// Returns true if there was an error, false otherwise.
1545bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1546  // Verify the old decl was also a function.
1547  FunctionDecl *Old = 0;
1548  if (FunctionTemplateDecl *OldFunctionTemplate
1549        = dyn_cast<FunctionTemplateDecl>(OldD))
1550    Old = OldFunctionTemplate->getTemplatedDecl();
1551  else
1552    Old = dyn_cast<FunctionDecl>(OldD);
1553  if (!Old) {
1554    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1555      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1556      Diag(Shadow->getTargetDecl()->getLocation(),
1557           diag::note_using_decl_target);
1558      Diag(Shadow->getUsingDecl()->getLocation(),
1559           diag::note_using_decl) << 0;
1560      return true;
1561    }
1562
1563    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1564      << New->getDeclName();
1565    Diag(OldD->getLocation(), diag::note_previous_definition);
1566    return true;
1567  }
1568
1569  // Determine whether the previous declaration was a definition,
1570  // implicit declaration, or a declaration.
1571  diag::kind PrevDiag;
1572  if (Old->isThisDeclarationADefinition())
1573    PrevDiag = diag::note_previous_definition;
1574  else if (Old->isImplicit())
1575    PrevDiag = diag::note_previous_implicit_declaration;
1576  else
1577    PrevDiag = diag::note_previous_declaration;
1578
1579  QualType OldQType = Context.getCanonicalType(Old->getType());
1580  QualType NewQType = Context.getCanonicalType(New->getType());
1581
1582  // Don't complain about this if we're in GNU89 mode and the old function
1583  // is an extern inline function.
1584  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1585      New->getStorageClass() == SC_Static &&
1586      Old->getStorageClass() != SC_Static &&
1587      !canRedefineFunction(Old, getLangOptions())) {
1588    if (getLangOptions().Microsoft) {
1589      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1590      Diag(Old->getLocation(), PrevDiag);
1591    } else {
1592      Diag(New->getLocation(), diag::err_static_non_static) << New;
1593      Diag(Old->getLocation(), PrevDiag);
1594      return true;
1595    }
1596  }
1597
1598  // If a function is first declared with a calling convention, but is
1599  // later declared or defined without one, the second decl assumes the
1600  // calling convention of the first.
1601  //
1602  // For the new decl, we have to look at the NON-canonical type to tell the
1603  // difference between a function that really doesn't have a calling
1604  // convention and one that is declared cdecl. That's because in
1605  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1606  // because it is the default calling convention.
1607  //
1608  // Note also that we DO NOT return at this point, because we still have
1609  // other tests to run.
1610  const FunctionType *OldType = cast<FunctionType>(OldQType);
1611  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1612  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1613  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1614  bool RequiresAdjustment = false;
1615  if (OldTypeInfo.getCC() != CC_Default &&
1616      NewTypeInfo.getCC() == CC_Default) {
1617    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1618    RequiresAdjustment = true;
1619  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1620                                     NewTypeInfo.getCC())) {
1621    // Calling conventions really aren't compatible, so complain.
1622    Diag(New->getLocation(), diag::err_cconv_change)
1623      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1624      << (OldTypeInfo.getCC() == CC_Default)
1625      << (OldTypeInfo.getCC() == CC_Default ? "" :
1626          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1627    Diag(Old->getLocation(), diag::note_previous_declaration);
1628    return true;
1629  }
1630
1631  // FIXME: diagnose the other way around?
1632  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1633    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1634    RequiresAdjustment = true;
1635  }
1636
1637  // Merge regparm attribute.
1638  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1639      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1640    if (NewTypeInfo.getHasRegParm()) {
1641      Diag(New->getLocation(), diag::err_regparm_mismatch)
1642        << NewType->getRegParmType()
1643        << OldType->getRegParmType();
1644      Diag(Old->getLocation(), diag::note_previous_declaration);
1645      return true;
1646    }
1647
1648    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1649    RequiresAdjustment = true;
1650  }
1651
1652  if (RequiresAdjustment) {
1653    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1654    New->setType(QualType(NewType, 0));
1655    NewQType = Context.getCanonicalType(New->getType());
1656  }
1657
1658  if (getLangOptions().CPlusPlus) {
1659    // (C++98 13.1p2):
1660    //   Certain function declarations cannot be overloaded:
1661    //     -- Function declarations that differ only in the return type
1662    //        cannot be overloaded.
1663    QualType OldReturnType = OldType->getResultType();
1664    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1665    QualType ResQT;
1666    if (OldReturnType != NewReturnType) {
1667      if (NewReturnType->isObjCObjectPointerType()
1668          && OldReturnType->isObjCObjectPointerType())
1669        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1670      if (ResQT.isNull()) {
1671        if (New->isCXXClassMember() && New->isOutOfLine())
1672          Diag(New->getLocation(),
1673               diag::err_member_def_does_not_match_ret_type) << New;
1674        else
1675          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1676        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1677        return true;
1678      }
1679      else
1680        NewQType = ResQT;
1681    }
1682
1683    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1684    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1685    if (OldMethod && NewMethod) {
1686      // Preserve triviality.
1687      NewMethod->setTrivial(OldMethod->isTrivial());
1688
1689      bool isFriend = NewMethod->getFriendObjectKind();
1690
1691      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1692        //    -- Member function declarations with the same name and the
1693        //       same parameter types cannot be overloaded if any of them
1694        //       is a static member function declaration.
1695        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1696          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1697          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1698          return true;
1699        }
1700
1701        // C++ [class.mem]p1:
1702        //   [...] A member shall not be declared twice in the
1703        //   member-specification, except that a nested class or member
1704        //   class template can be declared and then later defined.
1705        unsigned NewDiag;
1706        if (isa<CXXConstructorDecl>(OldMethod))
1707          NewDiag = diag::err_constructor_redeclared;
1708        else if (isa<CXXDestructorDecl>(NewMethod))
1709          NewDiag = diag::err_destructor_redeclared;
1710        else if (isa<CXXConversionDecl>(NewMethod))
1711          NewDiag = diag::err_conv_function_redeclared;
1712        else
1713          NewDiag = diag::err_member_redeclared;
1714
1715        Diag(New->getLocation(), NewDiag);
1716        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1717
1718      // Complain if this is an explicit declaration of a special
1719      // member that was initially declared implicitly.
1720      //
1721      // As an exception, it's okay to befriend such methods in order
1722      // to permit the implicit constructor/destructor/operator calls.
1723      } else if (OldMethod->isImplicit()) {
1724        if (isFriend) {
1725          NewMethod->setImplicit();
1726        } else {
1727          Diag(NewMethod->getLocation(),
1728               diag::err_definition_of_implicitly_declared_member)
1729            << New << getSpecialMember(OldMethod);
1730          return true;
1731        }
1732      } else if (OldMethod->isExplicitlyDefaulted()) {
1733        Diag(NewMethod->getLocation(),
1734             diag::err_definition_of_explicitly_defaulted_member)
1735          << getSpecialMember(OldMethod);
1736        return true;
1737      }
1738    }
1739
1740    // (C++98 8.3.5p3):
1741    //   All declarations for a function shall agree exactly in both the
1742    //   return type and the parameter-type-list.
1743    // We also want to respect all the extended bits except noreturn.
1744
1745    // noreturn should now match unless the old type info didn't have it.
1746    QualType OldQTypeForComparison = OldQType;
1747    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1748      assert(OldQType == QualType(OldType, 0));
1749      const FunctionType *OldTypeForComparison
1750        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1751      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1752      assert(OldQTypeForComparison.isCanonical());
1753    }
1754
1755    if (OldQTypeForComparison == NewQType)
1756      return MergeCompatibleFunctionDecls(New, Old);
1757
1758    // Fall through for conflicting redeclarations and redefinitions.
1759  }
1760
1761  // C: Function types need to be compatible, not identical. This handles
1762  // duplicate function decls like "void f(int); void f(enum X);" properly.
1763  if (!getLangOptions().CPlusPlus &&
1764      Context.typesAreCompatible(OldQType, NewQType)) {
1765    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1766    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1767    const FunctionProtoType *OldProto = 0;
1768    if (isa<FunctionNoProtoType>(NewFuncType) &&
1769        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1770      // The old declaration provided a function prototype, but the
1771      // new declaration does not. Merge in the prototype.
1772      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1773      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1774                                                 OldProto->arg_type_end());
1775      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1776                                         ParamTypes.data(), ParamTypes.size(),
1777                                         OldProto->getExtProtoInfo());
1778      New->setType(NewQType);
1779      New->setHasInheritedPrototype();
1780
1781      // Synthesize a parameter for each argument type.
1782      llvm::SmallVector<ParmVarDecl*, 16> Params;
1783      for (FunctionProtoType::arg_type_iterator
1784             ParamType = OldProto->arg_type_begin(),
1785             ParamEnd = OldProto->arg_type_end();
1786           ParamType != ParamEnd; ++ParamType) {
1787        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1788                                                 SourceLocation(),
1789                                                 SourceLocation(), 0,
1790                                                 *ParamType, /*TInfo=*/0,
1791                                                 SC_None, SC_None,
1792                                                 0);
1793        Param->setScopeInfo(0, Params.size());
1794        Param->setImplicit();
1795        Params.push_back(Param);
1796      }
1797
1798      New->setParams(Params.data(), Params.size());
1799    }
1800
1801    return MergeCompatibleFunctionDecls(New, Old);
1802  }
1803
1804  // GNU C permits a K&R definition to follow a prototype declaration
1805  // if the declared types of the parameters in the K&R definition
1806  // match the types in the prototype declaration, even when the
1807  // promoted types of the parameters from the K&R definition differ
1808  // from the types in the prototype. GCC then keeps the types from
1809  // the prototype.
1810  //
1811  // If a variadic prototype is followed by a non-variadic K&R definition,
1812  // the K&R definition becomes variadic.  This is sort of an edge case, but
1813  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1814  // C99 6.9.1p8.
1815  if (!getLangOptions().CPlusPlus &&
1816      Old->hasPrototype() && !New->hasPrototype() &&
1817      New->getType()->getAs<FunctionProtoType>() &&
1818      Old->getNumParams() == New->getNumParams()) {
1819    llvm::SmallVector<QualType, 16> ArgTypes;
1820    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1821    const FunctionProtoType *OldProto
1822      = Old->getType()->getAs<FunctionProtoType>();
1823    const FunctionProtoType *NewProto
1824      = New->getType()->getAs<FunctionProtoType>();
1825
1826    // Determine whether this is the GNU C extension.
1827    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1828                                               NewProto->getResultType());
1829    bool LooseCompatible = !MergedReturn.isNull();
1830    for (unsigned Idx = 0, End = Old->getNumParams();
1831         LooseCompatible && Idx != End; ++Idx) {
1832      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1833      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1834      if (Context.typesAreCompatible(OldParm->getType(),
1835                                     NewProto->getArgType(Idx))) {
1836        ArgTypes.push_back(NewParm->getType());
1837      } else if (Context.typesAreCompatible(OldParm->getType(),
1838                                            NewParm->getType(),
1839                                            /*CompareUnqualified=*/true)) {
1840        GNUCompatibleParamWarning Warn
1841          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1842        Warnings.push_back(Warn);
1843        ArgTypes.push_back(NewParm->getType());
1844      } else
1845        LooseCompatible = false;
1846    }
1847
1848    if (LooseCompatible) {
1849      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1850        Diag(Warnings[Warn].NewParm->getLocation(),
1851             diag::ext_param_promoted_not_compatible_with_prototype)
1852          << Warnings[Warn].PromotedType
1853          << Warnings[Warn].OldParm->getType();
1854        if (Warnings[Warn].OldParm->getLocation().isValid())
1855          Diag(Warnings[Warn].OldParm->getLocation(),
1856               diag::note_previous_declaration);
1857      }
1858
1859      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1860                                           ArgTypes.size(),
1861                                           OldProto->getExtProtoInfo()));
1862      return MergeCompatibleFunctionDecls(New, Old);
1863    }
1864
1865    // Fall through to diagnose conflicting types.
1866  }
1867
1868  // A function that has already been declared has been redeclared or defined
1869  // with a different type- show appropriate diagnostic
1870  if (unsigned BuiltinID = Old->getBuiltinID()) {
1871    // The user has declared a builtin function with an incompatible
1872    // signature.
1873    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1874      // The function the user is redeclaring is a library-defined
1875      // function like 'malloc' or 'printf'. Warn about the
1876      // redeclaration, then pretend that we don't know about this
1877      // library built-in.
1878      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1879      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1880        << Old << Old->getType();
1881      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1882      Old->setInvalidDecl();
1883      return false;
1884    }
1885
1886    PrevDiag = diag::note_previous_builtin_declaration;
1887  }
1888
1889  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1890  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1891  return true;
1892}
1893
1894/// \brief Completes the merge of two function declarations that are
1895/// known to be compatible.
1896///
1897/// This routine handles the merging of attributes and other
1898/// properties of function declarations form the old declaration to
1899/// the new declaration, once we know that New is in fact a
1900/// redeclaration of Old.
1901///
1902/// \returns false
1903bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1904  // Merge the attributes
1905  mergeDeclAttributes(New, Old, Context);
1906
1907  // Merge the storage class.
1908  if (Old->getStorageClass() != SC_Extern &&
1909      Old->getStorageClass() != SC_None)
1910    New->setStorageClass(Old->getStorageClass());
1911
1912  // Merge "pure" flag.
1913  if (Old->isPure())
1914    New->setPure();
1915
1916  // Merge attributes from the parameters.  These can mismatch with K&R
1917  // declarations.
1918  if (New->getNumParams() == Old->getNumParams())
1919    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1920      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1921                               Context);
1922
1923  if (getLangOptions().CPlusPlus)
1924    return MergeCXXFunctionDecl(New, Old);
1925
1926  return false;
1927}
1928
1929void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1930                                const ObjCMethodDecl *oldMethod) {
1931  // Merge the attributes.
1932  mergeDeclAttributes(newMethod, oldMethod, Context);
1933
1934  // Merge attributes from the parameters.
1935  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1936         ni = newMethod->param_begin(), ne = newMethod->param_end();
1937       ni != ne; ++ni, ++oi)
1938    mergeParamDeclAttributes(*ni, *oi, Context);
1939}
1940
1941/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1942/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1943/// emitting diagnostics as appropriate.
1944///
1945/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1946/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1947/// check them before the initializer is attached.
1948///
1949void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1950  if (New->isInvalidDecl() || Old->isInvalidDecl())
1951    return;
1952
1953  QualType MergedT;
1954  if (getLangOptions().CPlusPlus) {
1955    AutoType *AT = New->getType()->getContainedAutoType();
1956    if (AT && !AT->isDeduced()) {
1957      // We don't know what the new type is until the initializer is attached.
1958      return;
1959    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1960      // These could still be something that needs exception specs checked.
1961      return MergeVarDeclExceptionSpecs(New, Old);
1962    }
1963    // C++ [basic.link]p10:
1964    //   [...] the types specified by all declarations referring to a given
1965    //   object or function shall be identical, except that declarations for an
1966    //   array object can specify array types that differ by the presence or
1967    //   absence of a major array bound (8.3.4).
1968    else if (Old->getType()->isIncompleteArrayType() &&
1969             New->getType()->isArrayType()) {
1970      CanQual<ArrayType> OldArray
1971        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1972      CanQual<ArrayType> NewArray
1973        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1974      if (OldArray->getElementType() == NewArray->getElementType())
1975        MergedT = New->getType();
1976    } else if (Old->getType()->isArrayType() &&
1977             New->getType()->isIncompleteArrayType()) {
1978      CanQual<ArrayType> OldArray
1979        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1980      CanQual<ArrayType> NewArray
1981        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1982      if (OldArray->getElementType() == NewArray->getElementType())
1983        MergedT = Old->getType();
1984    } else if (New->getType()->isObjCObjectPointerType()
1985               && Old->getType()->isObjCObjectPointerType()) {
1986        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1987                                                        Old->getType());
1988    }
1989  } else {
1990    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1991  }
1992  if (MergedT.isNull()) {
1993    Diag(New->getLocation(), diag::err_redefinition_different_type)
1994      << New->getDeclName();
1995    Diag(Old->getLocation(), diag::note_previous_definition);
1996    return New->setInvalidDecl();
1997  }
1998  New->setType(MergedT);
1999}
2000
2001/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2002/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2003/// situation, merging decls or emitting diagnostics as appropriate.
2004///
2005/// Tentative definition rules (C99 6.9.2p2) are checked by
2006/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2007/// definitions here, since the initializer hasn't been attached.
2008///
2009void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2010  // If the new decl is already invalid, don't do any other checking.
2011  if (New->isInvalidDecl())
2012    return;
2013
2014  // Verify the old decl was also a variable.
2015  VarDecl *Old = 0;
2016  if (!Previous.isSingleResult() ||
2017      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2018    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2019      << New->getDeclName();
2020    Diag(Previous.getRepresentativeDecl()->getLocation(),
2021         diag::note_previous_definition);
2022    return New->setInvalidDecl();
2023  }
2024
2025  // C++ [class.mem]p1:
2026  //   A member shall not be declared twice in the member-specification [...]
2027  //
2028  // Here, we need only consider static data members.
2029  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2030    Diag(New->getLocation(), diag::err_duplicate_member)
2031      << New->getIdentifier();
2032    Diag(Old->getLocation(), diag::note_previous_declaration);
2033    New->setInvalidDecl();
2034  }
2035
2036  mergeDeclAttributes(New, Old, Context);
2037
2038  // Merge the types.
2039  MergeVarDeclTypes(New, Old);
2040  if (New->isInvalidDecl())
2041    return;
2042
2043  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2044  if (New->getStorageClass() == SC_Static &&
2045      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2046    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2047    Diag(Old->getLocation(), diag::note_previous_definition);
2048    return New->setInvalidDecl();
2049  }
2050  // C99 6.2.2p4:
2051  //   For an identifier declared with the storage-class specifier
2052  //   extern in a scope in which a prior declaration of that
2053  //   identifier is visible,23) if the prior declaration specifies
2054  //   internal or external linkage, the linkage of the identifier at
2055  //   the later declaration is the same as the linkage specified at
2056  //   the prior declaration. If no prior declaration is visible, or
2057  //   if the prior declaration specifies no linkage, then the
2058  //   identifier has external linkage.
2059  if (New->hasExternalStorage() && Old->hasLinkage())
2060    /* Okay */;
2061  else if (New->getStorageClass() != SC_Static &&
2062           Old->getStorageClass() == SC_Static) {
2063    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2064    Diag(Old->getLocation(), diag::note_previous_definition);
2065    return New->setInvalidDecl();
2066  }
2067
2068  // Check if extern is followed by non-extern and vice-versa.
2069  if (New->hasExternalStorage() &&
2070      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2071    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2072    Diag(Old->getLocation(), diag::note_previous_definition);
2073    return New->setInvalidDecl();
2074  }
2075  if (Old->hasExternalStorage() &&
2076      !New->hasLinkage() && New->isLocalVarDecl()) {
2077    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2078    Diag(Old->getLocation(), diag::note_previous_definition);
2079    return New->setInvalidDecl();
2080  }
2081
2082  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2083
2084  // FIXME: The test for external storage here seems wrong? We still
2085  // need to check for mismatches.
2086  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2087      // Don't complain about out-of-line definitions of static members.
2088      !(Old->getLexicalDeclContext()->isRecord() &&
2089        !New->getLexicalDeclContext()->isRecord())) {
2090    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2091    Diag(Old->getLocation(), diag::note_previous_definition);
2092    return New->setInvalidDecl();
2093  }
2094
2095  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2096    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2097    Diag(Old->getLocation(), diag::note_previous_definition);
2098  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2099    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2100    Diag(Old->getLocation(), diag::note_previous_definition);
2101  }
2102
2103  // C++ doesn't have tentative definitions, so go right ahead and check here.
2104  const VarDecl *Def;
2105  if (getLangOptions().CPlusPlus &&
2106      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2107      (Def = Old->getDefinition())) {
2108    Diag(New->getLocation(), diag::err_redefinition)
2109      << New->getDeclName();
2110    Diag(Def->getLocation(), diag::note_previous_definition);
2111    New->setInvalidDecl();
2112    return;
2113  }
2114  // c99 6.2.2 P4.
2115  // For an identifier declared with the storage-class specifier extern in a
2116  // scope in which a prior declaration of that identifier is visible, if
2117  // the prior declaration specifies internal or external linkage, the linkage
2118  // of the identifier at the later declaration is the same as the linkage
2119  // specified at the prior declaration.
2120  // FIXME. revisit this code.
2121  if (New->hasExternalStorage() &&
2122      Old->getLinkage() == InternalLinkage &&
2123      New->getDeclContext() == Old->getDeclContext())
2124    New->setStorageClass(Old->getStorageClass());
2125
2126  // Keep a chain of previous declarations.
2127  New->setPreviousDeclaration(Old);
2128
2129  // Inherit access appropriately.
2130  New->setAccess(Old->getAccess());
2131}
2132
2133/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2134/// no declarator (e.g. "struct foo;") is parsed.
2135Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2136                                       DeclSpec &DS) {
2137  return ParsedFreeStandingDeclSpec(S, AS, DS,
2138                                    MultiTemplateParamsArg(*this, 0, 0));
2139}
2140
2141/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2142/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2143/// parameters to cope with template friend declarations.
2144Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2145                                       DeclSpec &DS,
2146                                       MultiTemplateParamsArg TemplateParams) {
2147  Decl *TagD = 0;
2148  TagDecl *Tag = 0;
2149  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2150      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2151      DS.getTypeSpecType() == DeclSpec::TST_union ||
2152      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2153    TagD = DS.getRepAsDecl();
2154
2155    if (!TagD) // We probably had an error
2156      return 0;
2157
2158    // Note that the above type specs guarantee that the
2159    // type rep is a Decl, whereas in many of the others
2160    // it's a Type.
2161    Tag = dyn_cast<TagDecl>(TagD);
2162  }
2163
2164  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2165    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2166    // or incomplete types shall not be restrict-qualified."
2167    if (TypeQuals & DeclSpec::TQ_restrict)
2168      Diag(DS.getRestrictSpecLoc(),
2169           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2170           << DS.getSourceRange();
2171  }
2172
2173  if (DS.isFriendSpecified()) {
2174    // If we're dealing with a decl but not a TagDecl, assume that
2175    // whatever routines created it handled the friendship aspect.
2176    if (TagD && !Tag)
2177      return 0;
2178    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2179  }
2180
2181  // Track whether we warned about the fact that there aren't any
2182  // declarators.
2183  bool emittedWarning = false;
2184
2185  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2186    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2187
2188    if (!Record->getDeclName() && Record->isDefinition() &&
2189        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2190      if (getLangOptions().CPlusPlus ||
2191          Record->getDeclContext()->isRecord())
2192        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2193
2194      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2195        << DS.getSourceRange();
2196      emittedWarning = true;
2197    }
2198  }
2199
2200  // Check for Microsoft C extension: anonymous struct.
2201  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2202      CurContext->isRecord() &&
2203      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2204    // Handle 2 kinds of anonymous struct:
2205    //   struct STRUCT;
2206    // and
2207    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2208    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2209    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2210        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2211         DS.getRepAsType().get()->isStructureType())) {
2212      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2213        << DS.getSourceRange();
2214      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2215    }
2216  }
2217
2218  if (getLangOptions().CPlusPlus &&
2219      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2220    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2221      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2222          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2223        Diag(Enum->getLocation(), diag::ext_no_declarators)
2224          << DS.getSourceRange();
2225        emittedWarning = true;
2226      }
2227
2228  // Skip all the checks below if we have a type error.
2229  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2230
2231  if (!DS.isMissingDeclaratorOk()) {
2232    // Warn about typedefs of enums without names, since this is an
2233    // extension in both Microsoft and GNU.
2234    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2235        Tag && isa<EnumDecl>(Tag)) {
2236      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2237        << DS.getSourceRange();
2238      return Tag;
2239    }
2240
2241    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2242      << DS.getSourceRange();
2243    emittedWarning = true;
2244  }
2245
2246  // We're going to complain about a bunch of spurious specifiers;
2247  // only do this if we're declaring a tag, because otherwise we
2248  // should be getting diag::ext_no_declarators.
2249  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2250    return TagD;
2251
2252  // Note that a linkage-specification sets a storage class, but
2253  // 'extern "C" struct foo;' is actually valid and not theoretically
2254  // useless.
2255  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2256    if (!DS.isExternInLinkageSpec())
2257      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2258        << DeclSpec::getSpecifierName(scs);
2259
2260  if (DS.isThreadSpecified())
2261    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2262  if (DS.getTypeQualifiers()) {
2263    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2264      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2265    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2266      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2267    // Restrict is covered above.
2268  }
2269  if (DS.isInlineSpecified())
2270    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2271  if (DS.isVirtualSpecified())
2272    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2273  if (DS.isExplicitSpecified())
2274    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2275
2276  // FIXME: Warn on useless attributes
2277
2278  return TagD;
2279}
2280
2281/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2282/// builds a statement for it and returns it so it is evaluated.
2283StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2284  StmtResult R;
2285  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2286    Expr *Exp = DS.getRepAsExpr();
2287    QualType Ty = Exp->getType();
2288    if (Ty->isPointerType()) {
2289      do
2290        Ty = Ty->getAs<PointerType>()->getPointeeType();
2291      while (Ty->isPointerType());
2292    }
2293    if (Ty->isVariableArrayType()) {
2294      R = ActOnExprStmt(MakeFullExpr(Exp));
2295    }
2296  }
2297  return R;
2298}
2299
2300/// We are trying to inject an anonymous member into the given scope;
2301/// check if there's an existing declaration that can't be overloaded.
2302///
2303/// \return true if this is a forbidden redeclaration
2304static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2305                                         Scope *S,
2306                                         DeclContext *Owner,
2307                                         DeclarationName Name,
2308                                         SourceLocation NameLoc,
2309                                         unsigned diagnostic) {
2310  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2311                 Sema::ForRedeclaration);
2312  if (!SemaRef.LookupName(R, S)) return false;
2313
2314  if (R.getAsSingle<TagDecl>())
2315    return false;
2316
2317  // Pick a representative declaration.
2318  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2319  assert(PrevDecl && "Expected a non-null Decl");
2320
2321  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2322    return false;
2323
2324  SemaRef.Diag(NameLoc, diagnostic) << Name;
2325  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2326
2327  return true;
2328}
2329
2330/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2331/// anonymous struct or union AnonRecord into the owning context Owner
2332/// and scope S. This routine will be invoked just after we realize
2333/// that an unnamed union or struct is actually an anonymous union or
2334/// struct, e.g.,
2335///
2336/// @code
2337/// union {
2338///   int i;
2339///   float f;
2340/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2341///    // f into the surrounding scope.x
2342/// @endcode
2343///
2344/// This routine is recursive, injecting the names of nested anonymous
2345/// structs/unions into the owning context and scope as well.
2346static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2347                                                DeclContext *Owner,
2348                                                RecordDecl *AnonRecord,
2349                                                AccessSpecifier AS,
2350                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2351                                                      bool MSAnonStruct) {
2352  unsigned diagKind
2353    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2354                            : diag::err_anonymous_struct_member_redecl;
2355
2356  bool Invalid = false;
2357
2358  // Look every FieldDecl and IndirectFieldDecl with a name.
2359  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2360                               DEnd = AnonRecord->decls_end();
2361       D != DEnd; ++D) {
2362    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2363        cast<NamedDecl>(*D)->getDeclName()) {
2364      ValueDecl *VD = cast<ValueDecl>(*D);
2365      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2366                                       VD->getLocation(), diagKind)) {
2367        // C++ [class.union]p2:
2368        //   The names of the members of an anonymous union shall be
2369        //   distinct from the names of any other entity in the
2370        //   scope in which the anonymous union is declared.
2371        Invalid = true;
2372      } else {
2373        // C++ [class.union]p2:
2374        //   For the purpose of name lookup, after the anonymous union
2375        //   definition, the members of the anonymous union are
2376        //   considered to have been defined in the scope in which the
2377        //   anonymous union is declared.
2378        unsigned OldChainingSize = Chaining.size();
2379        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2380          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2381               PE = IF->chain_end(); PI != PE; ++PI)
2382            Chaining.push_back(*PI);
2383        else
2384          Chaining.push_back(VD);
2385
2386        assert(Chaining.size() >= 2);
2387        NamedDecl **NamedChain =
2388          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2389        for (unsigned i = 0; i < Chaining.size(); i++)
2390          NamedChain[i] = Chaining[i];
2391
2392        IndirectFieldDecl* IndirectField =
2393          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2394                                    VD->getIdentifier(), VD->getType(),
2395                                    NamedChain, Chaining.size());
2396
2397        IndirectField->setAccess(AS);
2398        IndirectField->setImplicit();
2399        SemaRef.PushOnScopeChains(IndirectField, S);
2400
2401        // That includes picking up the appropriate access specifier.
2402        if (AS != AS_none) IndirectField->setAccess(AS);
2403
2404        Chaining.resize(OldChainingSize);
2405      }
2406    }
2407  }
2408
2409  return Invalid;
2410}
2411
2412/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2413/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2414/// illegal input values are mapped to SC_None.
2415static StorageClass
2416StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2417  switch (StorageClassSpec) {
2418  case DeclSpec::SCS_unspecified:    return SC_None;
2419  case DeclSpec::SCS_extern:         return SC_Extern;
2420  case DeclSpec::SCS_static:         return SC_Static;
2421  case DeclSpec::SCS_auto:           return SC_Auto;
2422  case DeclSpec::SCS_register:       return SC_Register;
2423  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2424    // Illegal SCSs map to None: error reporting is up to the caller.
2425  case DeclSpec::SCS_mutable:        // Fall through.
2426  case DeclSpec::SCS_typedef:        return SC_None;
2427  }
2428  llvm_unreachable("unknown storage class specifier");
2429}
2430
2431/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2432/// a StorageClass. Any error reporting is up to the caller:
2433/// illegal input values are mapped to SC_None.
2434static StorageClass
2435StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2436  switch (StorageClassSpec) {
2437  case DeclSpec::SCS_unspecified:    return SC_None;
2438  case DeclSpec::SCS_extern:         return SC_Extern;
2439  case DeclSpec::SCS_static:         return SC_Static;
2440  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2441    // Illegal SCSs map to None: error reporting is up to the caller.
2442  case DeclSpec::SCS_auto:           // Fall through.
2443  case DeclSpec::SCS_mutable:        // Fall through.
2444  case DeclSpec::SCS_register:       // Fall through.
2445  case DeclSpec::SCS_typedef:        return SC_None;
2446  }
2447  llvm_unreachable("unknown storage class specifier");
2448}
2449
2450/// BuildAnonymousStructOrUnion - Handle the declaration of an
2451/// anonymous structure or union. Anonymous unions are a C++ feature
2452/// (C++ [class.union]) and a GNU C extension; anonymous structures
2453/// are a GNU C and GNU C++ extension.
2454Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2455                                             AccessSpecifier AS,
2456                                             RecordDecl *Record) {
2457  DeclContext *Owner = Record->getDeclContext();
2458
2459  // Diagnose whether this anonymous struct/union is an extension.
2460  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2461    Diag(Record->getLocation(), diag::ext_anonymous_union);
2462  else if (!Record->isUnion())
2463    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2464
2465  // C and C++ require different kinds of checks for anonymous
2466  // structs/unions.
2467  bool Invalid = false;
2468  if (getLangOptions().CPlusPlus) {
2469    const char* PrevSpec = 0;
2470    unsigned DiagID;
2471    // C++ [class.union]p3:
2472    //   Anonymous unions declared in a named namespace or in the
2473    //   global namespace shall be declared static.
2474    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2475        (isa<TranslationUnitDecl>(Owner) ||
2476         (isa<NamespaceDecl>(Owner) &&
2477          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2478      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2479      Invalid = true;
2480
2481      // Recover by adding 'static'.
2482      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2483                             PrevSpec, DiagID, getLangOptions());
2484    }
2485    // C++ [class.union]p3:
2486    //   A storage class is not allowed in a declaration of an
2487    //   anonymous union in a class scope.
2488    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2489             isa<RecordDecl>(Owner)) {
2490      Diag(DS.getStorageClassSpecLoc(),
2491           diag::err_anonymous_union_with_storage_spec);
2492      Invalid = true;
2493
2494      // Recover by removing the storage specifier.
2495      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2496                             PrevSpec, DiagID, getLangOptions());
2497    }
2498
2499    // Ignore const/volatile/restrict qualifiers.
2500    if (DS.getTypeQualifiers()) {
2501      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2502        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2503          << Record->isUnion() << 0
2504          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2505      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2506        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2507          << Record->isUnion() << 1
2508          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2509      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2510        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2511          << Record->isUnion() << 2
2512          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2513
2514      DS.ClearTypeQualifiers();
2515    }
2516
2517    // C++ [class.union]p2:
2518    //   The member-specification of an anonymous union shall only
2519    //   define non-static data members. [Note: nested types and
2520    //   functions cannot be declared within an anonymous union. ]
2521    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2522                                 MemEnd = Record->decls_end();
2523         Mem != MemEnd; ++Mem) {
2524      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2525        // C++ [class.union]p3:
2526        //   An anonymous union shall not have private or protected
2527        //   members (clause 11).
2528        assert(FD->getAccess() != AS_none);
2529        if (FD->getAccess() != AS_public) {
2530          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2531            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2532          Invalid = true;
2533        }
2534
2535        // C++ [class.union]p1
2536        //   An object of a class with a non-trivial constructor, a non-trivial
2537        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2538        //   assignment operator cannot be a member of a union, nor can an
2539        //   array of such objects.
2540        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2541          Invalid = true;
2542      } else if ((*Mem)->isImplicit()) {
2543        // Any implicit members are fine.
2544      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2545        // This is a type that showed up in an
2546        // elaborated-type-specifier inside the anonymous struct or
2547        // union, but which actually declares a type outside of the
2548        // anonymous struct or union. It's okay.
2549      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2550        if (!MemRecord->isAnonymousStructOrUnion() &&
2551            MemRecord->getDeclName()) {
2552          // Visual C++ allows type definition in anonymous struct or union.
2553          if (getLangOptions().Microsoft)
2554            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2555              << (int)Record->isUnion();
2556          else {
2557            // This is a nested type declaration.
2558            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2559              << (int)Record->isUnion();
2560            Invalid = true;
2561          }
2562        }
2563      } else if (isa<AccessSpecDecl>(*Mem)) {
2564        // Any access specifier is fine.
2565      } else {
2566        // We have something that isn't a non-static data
2567        // member. Complain about it.
2568        unsigned DK = diag::err_anonymous_record_bad_member;
2569        if (isa<TypeDecl>(*Mem))
2570          DK = diag::err_anonymous_record_with_type;
2571        else if (isa<FunctionDecl>(*Mem))
2572          DK = diag::err_anonymous_record_with_function;
2573        else if (isa<VarDecl>(*Mem))
2574          DK = diag::err_anonymous_record_with_static;
2575
2576        // Visual C++ allows type definition in anonymous struct or union.
2577        if (getLangOptions().Microsoft &&
2578            DK == diag::err_anonymous_record_with_type)
2579          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2580            << (int)Record->isUnion();
2581        else {
2582          Diag((*Mem)->getLocation(), DK)
2583              << (int)Record->isUnion();
2584          Invalid = true;
2585        }
2586      }
2587    }
2588  }
2589
2590  if (!Record->isUnion() && !Owner->isRecord()) {
2591    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2592      << (int)getLangOptions().CPlusPlus;
2593    Invalid = true;
2594  }
2595
2596  // Mock up a declarator.
2597  Declarator Dc(DS, Declarator::TypeNameContext);
2598  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2599  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2600
2601  // Create a declaration for this anonymous struct/union.
2602  NamedDecl *Anon = 0;
2603  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2604    Anon = FieldDecl::Create(Context, OwningClass,
2605                             DS.getSourceRange().getBegin(),
2606                             Record->getLocation(),
2607                             /*IdentifierInfo=*/0,
2608                             Context.getTypeDeclType(Record),
2609                             TInfo,
2610                             /*BitWidth=*/0, /*Mutable=*/false);
2611    Anon->setAccess(AS);
2612    if (getLangOptions().CPlusPlus)
2613      FieldCollector->Add(cast<FieldDecl>(Anon));
2614  } else {
2615    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2616    assert(SCSpec != DeclSpec::SCS_typedef &&
2617           "Parser allowed 'typedef' as storage class VarDecl.");
2618    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2619    if (SCSpec == DeclSpec::SCS_mutable) {
2620      // mutable can only appear on non-static class members, so it's always
2621      // an error here
2622      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2623      Invalid = true;
2624      SC = SC_None;
2625    }
2626    SCSpec = DS.getStorageClassSpecAsWritten();
2627    VarDecl::StorageClass SCAsWritten
2628      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2629
2630    Anon = VarDecl::Create(Context, Owner,
2631                           DS.getSourceRange().getBegin(),
2632                           Record->getLocation(), /*IdentifierInfo=*/0,
2633                           Context.getTypeDeclType(Record),
2634                           TInfo, SC, SCAsWritten);
2635  }
2636  Anon->setImplicit();
2637
2638  // Add the anonymous struct/union object to the current
2639  // context. We'll be referencing this object when we refer to one of
2640  // its members.
2641  Owner->addDecl(Anon);
2642
2643  // Inject the members of the anonymous struct/union into the owning
2644  // context and into the identifier resolver chain for name lookup
2645  // purposes.
2646  llvm::SmallVector<NamedDecl*, 2> Chain;
2647  Chain.push_back(Anon);
2648
2649  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2650                                          Chain, false))
2651    Invalid = true;
2652
2653  // Mark this as an anonymous struct/union type. Note that we do not
2654  // do this until after we have already checked and injected the
2655  // members of this anonymous struct/union type, because otherwise
2656  // the members could be injected twice: once by DeclContext when it
2657  // builds its lookup table, and once by
2658  // InjectAnonymousStructOrUnionMembers.
2659  Record->setAnonymousStructOrUnion(true);
2660
2661  if (Invalid)
2662    Anon->setInvalidDecl();
2663
2664  return Anon;
2665}
2666
2667/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2668/// Microsoft C anonymous structure.
2669/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2670/// Example:
2671///
2672/// struct A { int a; };
2673/// struct B { struct A; int b; };
2674///
2675/// void foo() {
2676///   B var;
2677///   var.a = 3;
2678/// }
2679///
2680Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2681                                           RecordDecl *Record) {
2682
2683  // If there is no Record, get the record via the typedef.
2684  if (!Record)
2685    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2686
2687  // Mock up a declarator.
2688  Declarator Dc(DS, Declarator::TypeNameContext);
2689  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2690  assert(TInfo && "couldn't build declarator info for anonymous struct");
2691
2692  // Create a declaration for this anonymous struct.
2693  NamedDecl* Anon = FieldDecl::Create(Context,
2694                             cast<RecordDecl>(CurContext),
2695                             DS.getSourceRange().getBegin(),
2696                             DS.getSourceRange().getBegin(),
2697                             /*IdentifierInfo=*/0,
2698                             Context.getTypeDeclType(Record),
2699                             TInfo,
2700                             /*BitWidth=*/0, /*Mutable=*/false);
2701  Anon->setImplicit();
2702
2703  // Add the anonymous struct object to the current context.
2704  CurContext->addDecl(Anon);
2705
2706  // Inject the members of the anonymous struct into the current
2707  // context and into the identifier resolver chain for name lookup
2708  // purposes.
2709  llvm::SmallVector<NamedDecl*, 2> Chain;
2710  Chain.push_back(Anon);
2711
2712  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2713                                          Record->getDefinition(),
2714                                          AS_none, Chain, true))
2715    Anon->setInvalidDecl();
2716
2717  return Anon;
2718}
2719
2720/// GetNameForDeclarator - Determine the full declaration name for the
2721/// given Declarator.
2722DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2723  return GetNameFromUnqualifiedId(D.getName());
2724}
2725
2726/// \brief Retrieves the declaration name from a parsed unqualified-id.
2727DeclarationNameInfo
2728Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2729  DeclarationNameInfo NameInfo;
2730  NameInfo.setLoc(Name.StartLocation);
2731
2732  switch (Name.getKind()) {
2733
2734  case UnqualifiedId::IK_Identifier:
2735    NameInfo.setName(Name.Identifier);
2736    NameInfo.setLoc(Name.StartLocation);
2737    return NameInfo;
2738
2739  case UnqualifiedId::IK_OperatorFunctionId:
2740    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2741                                           Name.OperatorFunctionId.Operator));
2742    NameInfo.setLoc(Name.StartLocation);
2743    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2744      = Name.OperatorFunctionId.SymbolLocations[0];
2745    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2746      = Name.EndLocation.getRawEncoding();
2747    return NameInfo;
2748
2749  case UnqualifiedId::IK_LiteralOperatorId:
2750    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2751                                                           Name.Identifier));
2752    NameInfo.setLoc(Name.StartLocation);
2753    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2754    return NameInfo;
2755
2756  case UnqualifiedId::IK_ConversionFunctionId: {
2757    TypeSourceInfo *TInfo;
2758    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2759    if (Ty.isNull())
2760      return DeclarationNameInfo();
2761    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2762                                               Context.getCanonicalType(Ty)));
2763    NameInfo.setLoc(Name.StartLocation);
2764    NameInfo.setNamedTypeInfo(TInfo);
2765    return NameInfo;
2766  }
2767
2768  case UnqualifiedId::IK_ConstructorName: {
2769    TypeSourceInfo *TInfo;
2770    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2771    if (Ty.isNull())
2772      return DeclarationNameInfo();
2773    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2774                                              Context.getCanonicalType(Ty)));
2775    NameInfo.setLoc(Name.StartLocation);
2776    NameInfo.setNamedTypeInfo(TInfo);
2777    return NameInfo;
2778  }
2779
2780  case UnqualifiedId::IK_ConstructorTemplateId: {
2781    // In well-formed code, we can only have a constructor
2782    // template-id that refers to the current context, so go there
2783    // to find the actual type being constructed.
2784    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2785    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2786      return DeclarationNameInfo();
2787
2788    // Determine the type of the class being constructed.
2789    QualType CurClassType = Context.getTypeDeclType(CurClass);
2790
2791    // FIXME: Check two things: that the template-id names the same type as
2792    // CurClassType, and that the template-id does not occur when the name
2793    // was qualified.
2794
2795    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2796                                    Context.getCanonicalType(CurClassType)));
2797    NameInfo.setLoc(Name.StartLocation);
2798    // FIXME: should we retrieve TypeSourceInfo?
2799    NameInfo.setNamedTypeInfo(0);
2800    return NameInfo;
2801  }
2802
2803  case UnqualifiedId::IK_DestructorName: {
2804    TypeSourceInfo *TInfo;
2805    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2806    if (Ty.isNull())
2807      return DeclarationNameInfo();
2808    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2809                                              Context.getCanonicalType(Ty)));
2810    NameInfo.setLoc(Name.StartLocation);
2811    NameInfo.setNamedTypeInfo(TInfo);
2812    return NameInfo;
2813  }
2814
2815  case UnqualifiedId::IK_TemplateId: {
2816    TemplateName TName = Name.TemplateId->Template.get();
2817    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2818    return Context.getNameForTemplate(TName, TNameLoc);
2819  }
2820
2821  } // switch (Name.getKind())
2822
2823  assert(false && "Unknown name kind");
2824  return DeclarationNameInfo();
2825}
2826
2827/// isNearlyMatchingFunction - Determine whether the C++ functions
2828/// Declaration and Definition are "nearly" matching. This heuristic
2829/// is used to improve diagnostics in the case where an out-of-line
2830/// function definition doesn't match any declaration within
2831/// the class or namespace.
2832static bool isNearlyMatchingFunction(ASTContext &Context,
2833                                     FunctionDecl *Declaration,
2834                                     FunctionDecl *Definition) {
2835  if (Declaration->param_size() != Definition->param_size())
2836    return false;
2837  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2838    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2839    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2840
2841    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2842                                        DefParamTy.getNonReferenceType()))
2843      return false;
2844  }
2845
2846  return true;
2847}
2848
2849/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2850/// declarator needs to be rebuilt in the current instantiation.
2851/// Any bits of declarator which appear before the name are valid for
2852/// consideration here.  That's specifically the type in the decl spec
2853/// and the base type in any member-pointer chunks.
2854static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2855                                                    DeclarationName Name) {
2856  // The types we specifically need to rebuild are:
2857  //   - typenames, typeofs, and decltypes
2858  //   - types which will become injected class names
2859  // Of course, we also need to rebuild any type referencing such a
2860  // type.  It's safest to just say "dependent", but we call out a
2861  // few cases here.
2862
2863  DeclSpec &DS = D.getMutableDeclSpec();
2864  switch (DS.getTypeSpecType()) {
2865  case DeclSpec::TST_typename:
2866  case DeclSpec::TST_typeofType:
2867  case DeclSpec::TST_decltype: {
2868    // Grab the type from the parser.
2869    TypeSourceInfo *TSI = 0;
2870    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2871    if (T.isNull() || !T->isDependentType()) break;
2872
2873    // Make sure there's a type source info.  This isn't really much
2874    // of a waste; most dependent types should have type source info
2875    // attached already.
2876    if (!TSI)
2877      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2878
2879    // Rebuild the type in the current instantiation.
2880    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2881    if (!TSI) return true;
2882
2883    // Store the new type back in the decl spec.
2884    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2885    DS.UpdateTypeRep(LocType);
2886    break;
2887  }
2888
2889  case DeclSpec::TST_typeofExpr: {
2890    Expr *E = DS.getRepAsExpr();
2891    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2892    if (Result.isInvalid()) return true;
2893    DS.UpdateExprRep(Result.get());
2894    break;
2895  }
2896
2897  default:
2898    // Nothing to do for these decl specs.
2899    break;
2900  }
2901
2902  // It doesn't matter what order we do this in.
2903  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2904    DeclaratorChunk &Chunk = D.getTypeObject(I);
2905
2906    // The only type information in the declarator which can come
2907    // before the declaration name is the base type of a member
2908    // pointer.
2909    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2910      continue;
2911
2912    // Rebuild the scope specifier in-place.
2913    CXXScopeSpec &SS = Chunk.Mem.Scope();
2914    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2915      return true;
2916  }
2917
2918  return false;
2919}
2920
2921Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2922                            bool IsFunctionDefinition) {
2923  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2924                          IsFunctionDefinition);
2925}
2926
2927/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2928///   If T is the name of a class, then each of the following shall have a
2929///   name different from T:
2930///     - every static data member of class T;
2931///     - every member function of class T
2932///     - every member of class T that is itself a type;
2933/// \returns true if the declaration name violates these rules.
2934bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2935                                   DeclarationNameInfo NameInfo) {
2936  DeclarationName Name = NameInfo.getName();
2937
2938  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2939    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2940      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2941      return true;
2942    }
2943
2944  return false;
2945}
2946
2947Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2948                             MultiTemplateParamsArg TemplateParamLists,
2949                             bool IsFunctionDefinition) {
2950  // TODO: consider using NameInfo for diagnostic.
2951  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2952  DeclarationName Name = NameInfo.getName();
2953
2954  // All of these full declarators require an identifier.  If it doesn't have
2955  // one, the ParsedFreeStandingDeclSpec action should be used.
2956  if (!Name) {
2957    if (!D.isInvalidType())  // Reject this if we think it is valid.
2958      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2959           diag::err_declarator_need_ident)
2960        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2961    return 0;
2962  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2963    return 0;
2964
2965  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2966  // we find one that is.
2967  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2968         (S->getFlags() & Scope::TemplateParamScope) != 0)
2969    S = S->getParent();
2970
2971  DeclContext *DC = CurContext;
2972  if (D.getCXXScopeSpec().isInvalid())
2973    D.setInvalidType();
2974  else if (D.getCXXScopeSpec().isSet()) {
2975    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2976                                        UPPC_DeclarationQualifier))
2977      return 0;
2978
2979    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2980    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2981    if (!DC) {
2982      // If we could not compute the declaration context, it's because the
2983      // declaration context is dependent but does not refer to a class,
2984      // class template, or class template partial specialization. Complain
2985      // and return early, to avoid the coming semantic disaster.
2986      Diag(D.getIdentifierLoc(),
2987           diag::err_template_qualified_declarator_no_match)
2988        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2989        << D.getCXXScopeSpec().getRange();
2990      return 0;
2991    }
2992    bool IsDependentContext = DC->isDependentContext();
2993
2994    if (!IsDependentContext &&
2995        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2996      return 0;
2997
2998    if (isa<CXXRecordDecl>(DC)) {
2999      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3000        Diag(D.getIdentifierLoc(),
3001             diag::err_member_def_undefined_record)
3002          << Name << DC << D.getCXXScopeSpec().getRange();
3003        D.setInvalidType();
3004      } else if (isa<CXXRecordDecl>(CurContext) &&
3005                 !D.getDeclSpec().isFriendSpecified()) {
3006        // The user provided a superfluous scope specifier inside a class
3007        // definition:
3008        //
3009        // class X {
3010        //   void X::f();
3011        // };
3012        if (CurContext->Equals(DC))
3013          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3014            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3015        else
3016          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3017            << Name << D.getCXXScopeSpec().getRange();
3018
3019        // Pretend that this qualifier was not here.
3020        D.getCXXScopeSpec().clear();
3021      }
3022    }
3023
3024    // Check whether we need to rebuild the type of the given
3025    // declaration in the current instantiation.
3026    if (EnteringContext && IsDependentContext &&
3027        TemplateParamLists.size() != 0) {
3028      ContextRAII SavedContext(*this, DC);
3029      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3030        D.setInvalidType();
3031    }
3032  }
3033
3034  if (DiagnoseClassNameShadow(DC, NameInfo))
3035    // If this is a typedef, we'll end up spewing multiple diagnostics.
3036    // Just return early; it's safer.
3037    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3038      return 0;
3039
3040  NamedDecl *New;
3041
3042  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3043  QualType R = TInfo->getType();
3044
3045  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3046                                      UPPC_DeclarationType))
3047    D.setInvalidType();
3048
3049  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3050                        ForRedeclaration);
3051
3052  // See if this is a redefinition of a variable in the same scope.
3053  if (!D.getCXXScopeSpec().isSet()) {
3054    bool IsLinkageLookup = false;
3055
3056    // If the declaration we're planning to build will be a function
3057    // or object with linkage, then look for another declaration with
3058    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3059    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3060      /* Do nothing*/;
3061    else if (R->isFunctionType()) {
3062      if (CurContext->isFunctionOrMethod() ||
3063          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3064        IsLinkageLookup = true;
3065    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3066      IsLinkageLookup = true;
3067    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3068             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3069      IsLinkageLookup = true;
3070
3071    if (IsLinkageLookup)
3072      Previous.clear(LookupRedeclarationWithLinkage);
3073
3074    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3075  } else { // Something like "int foo::x;"
3076    LookupQualifiedName(Previous, DC);
3077
3078    // Don't consider using declarations as previous declarations for
3079    // out-of-line members.
3080    RemoveUsingDecls(Previous);
3081
3082    // C++ 7.3.1.2p2:
3083    // Members (including explicit specializations of templates) of a named
3084    // namespace can also be defined outside that namespace by explicit
3085    // qualification of the name being defined, provided that the entity being
3086    // defined was already declared in the namespace and the definition appears
3087    // after the point of declaration in a namespace that encloses the
3088    // declarations namespace.
3089    //
3090    // Note that we only check the context at this point. We don't yet
3091    // have enough information to make sure that PrevDecl is actually
3092    // the declaration we want to match. For example, given:
3093    //
3094    //   class X {
3095    //     void f();
3096    //     void f(float);
3097    //   };
3098    //
3099    //   void X::f(int) { } // ill-formed
3100    //
3101    // In this case, PrevDecl will point to the overload set
3102    // containing the two f's declared in X, but neither of them
3103    // matches.
3104
3105    // First check whether we named the global scope.
3106    if (isa<TranslationUnitDecl>(DC)) {
3107      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3108        << Name << D.getCXXScopeSpec().getRange();
3109    } else {
3110      DeclContext *Cur = CurContext;
3111      while (isa<LinkageSpecDecl>(Cur))
3112        Cur = Cur->getParent();
3113      if (!Cur->Encloses(DC)) {
3114        // The qualifying scope doesn't enclose the original declaration.
3115        // Emit diagnostic based on current scope.
3116        SourceLocation L = D.getIdentifierLoc();
3117        SourceRange R = D.getCXXScopeSpec().getRange();
3118        if (isa<FunctionDecl>(Cur))
3119          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3120        else
3121          Diag(L, diag::err_invalid_declarator_scope)
3122            << Name << cast<NamedDecl>(DC) << R;
3123        D.setInvalidType();
3124      }
3125    }
3126  }
3127
3128  if (Previous.isSingleResult() &&
3129      Previous.getFoundDecl()->isTemplateParameter()) {
3130    // Maybe we will complain about the shadowed template parameter.
3131    if (!D.isInvalidType())
3132      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3133                                          Previous.getFoundDecl()))
3134        D.setInvalidType();
3135
3136    // Just pretend that we didn't see the previous declaration.
3137    Previous.clear();
3138  }
3139
3140  // In C++, the previous declaration we find might be a tag type
3141  // (class or enum). In this case, the new declaration will hide the
3142  // tag type. Note that this does does not apply if we're declaring a
3143  // typedef (C++ [dcl.typedef]p4).
3144  if (Previous.isSingleTagDecl() &&
3145      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3146    Previous.clear();
3147
3148  bool Redeclaration = false;
3149  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3150    if (TemplateParamLists.size()) {
3151      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3152      return 0;
3153    }
3154
3155    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3156  } else if (R->isFunctionType()) {
3157    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3158                                  move(TemplateParamLists),
3159                                  IsFunctionDefinition, Redeclaration);
3160  } else {
3161    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3162                                  move(TemplateParamLists),
3163                                  Redeclaration);
3164  }
3165
3166  if (New == 0)
3167    return 0;
3168
3169  // If this has an identifier and is not an invalid redeclaration or
3170  // function template specialization, add it to the scope stack.
3171  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3172    PushOnScopeChains(New, S);
3173
3174  return New;
3175}
3176
3177/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3178/// types into constant array types in certain situations which would otherwise
3179/// be errors (for GCC compatibility).
3180static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3181                                                    ASTContext &Context,
3182                                                    bool &SizeIsNegative,
3183                                                    llvm::APSInt &Oversized) {
3184  // This method tries to turn a variable array into a constant
3185  // array even when the size isn't an ICE.  This is necessary
3186  // for compatibility with code that depends on gcc's buggy
3187  // constant expression folding, like struct {char x[(int)(char*)2];}
3188  SizeIsNegative = false;
3189  Oversized = 0;
3190
3191  if (T->isDependentType())
3192    return QualType();
3193
3194  QualifierCollector Qs;
3195  const Type *Ty = Qs.strip(T);
3196
3197  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3198    QualType Pointee = PTy->getPointeeType();
3199    QualType FixedType =
3200        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3201                                            Oversized);
3202    if (FixedType.isNull()) return FixedType;
3203    FixedType = Context.getPointerType(FixedType);
3204    return Qs.apply(Context, FixedType);
3205  }
3206  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3207    QualType Inner = PTy->getInnerType();
3208    QualType FixedType =
3209        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3210                                            Oversized);
3211    if (FixedType.isNull()) return FixedType;
3212    FixedType = Context.getParenType(FixedType);
3213    return Qs.apply(Context, FixedType);
3214  }
3215
3216  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3217  if (!VLATy)
3218    return QualType();
3219  // FIXME: We should probably handle this case
3220  if (VLATy->getElementType()->isVariablyModifiedType())
3221    return QualType();
3222
3223  Expr::EvalResult EvalResult;
3224  if (!VLATy->getSizeExpr() ||
3225      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3226      !EvalResult.Val.isInt())
3227    return QualType();
3228
3229  // Check whether the array size is negative.
3230  llvm::APSInt &Res = EvalResult.Val.getInt();
3231  if (Res.isSigned() && Res.isNegative()) {
3232    SizeIsNegative = true;
3233    return QualType();
3234  }
3235
3236  // Check whether the array is too large to be addressed.
3237  unsigned ActiveSizeBits
3238    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3239                                              Res);
3240  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3241    Oversized = Res;
3242    return QualType();
3243  }
3244
3245  return Context.getConstantArrayType(VLATy->getElementType(),
3246                                      Res, ArrayType::Normal, 0);
3247}
3248
3249/// \brief Register the given locally-scoped external C declaration so
3250/// that it can be found later for redeclarations
3251void
3252Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3253                                       const LookupResult &Previous,
3254                                       Scope *S) {
3255  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3256         "Decl is not a locally-scoped decl!");
3257  // Note that we have a locally-scoped external with this name.
3258  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3259
3260  if (!Previous.isSingleResult())
3261    return;
3262
3263  NamedDecl *PrevDecl = Previous.getFoundDecl();
3264
3265  // If there was a previous declaration of this variable, it may be
3266  // in our identifier chain. Update the identifier chain with the new
3267  // declaration.
3268  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3269    // The previous declaration was found on the identifer resolver
3270    // chain, so remove it from its scope.
3271    while (S && !S->isDeclScope(PrevDecl))
3272      S = S->getParent();
3273
3274    if (S)
3275      S->RemoveDecl(PrevDecl);
3276  }
3277}
3278
3279/// \brief Diagnose function specifiers on a declaration of an identifier that
3280/// does not identify a function.
3281void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3282  // FIXME: We should probably indicate the identifier in question to avoid
3283  // confusion for constructs like "inline int a(), b;"
3284  if (D.getDeclSpec().isInlineSpecified())
3285    Diag(D.getDeclSpec().getInlineSpecLoc(),
3286         diag::err_inline_non_function);
3287
3288  if (D.getDeclSpec().isVirtualSpecified())
3289    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3290         diag::err_virtual_non_function);
3291
3292  if (D.getDeclSpec().isExplicitSpecified())
3293    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3294         diag::err_explicit_non_function);
3295}
3296
3297NamedDecl*
3298Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3299                             QualType R,  TypeSourceInfo *TInfo,
3300                             LookupResult &Previous, bool &Redeclaration) {
3301  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3302  if (D.getCXXScopeSpec().isSet()) {
3303    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3304      << D.getCXXScopeSpec().getRange();
3305    D.setInvalidType();
3306    // Pretend we didn't see the scope specifier.
3307    DC = CurContext;
3308    Previous.clear();
3309  }
3310
3311  if (getLangOptions().CPlusPlus) {
3312    // Check that there are no default arguments (C++ only).
3313    CheckExtraCXXDefaultArguments(D);
3314  }
3315
3316  DiagnoseFunctionSpecifiers(D);
3317
3318  if (D.getDeclSpec().isThreadSpecified())
3319    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3320
3321  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3322    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3323      << D.getName().getSourceRange();
3324    return 0;
3325  }
3326
3327  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3328  if (!NewTD) return 0;
3329
3330  // Handle attributes prior to checking for duplicates in MergeVarDecl
3331  ProcessDeclAttributes(S, NewTD, D);
3332
3333  CheckTypedefForVariablyModifiedType(S, NewTD);
3334
3335  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3336}
3337
3338void
3339Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3340  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3341  // then it shall have block scope.
3342  // Note that variably modified types must be fixed before merging the decl so
3343  // that redeclarations will match.
3344  QualType T = NewTD->getUnderlyingType();
3345  if (T->isVariablyModifiedType()) {
3346    getCurFunction()->setHasBranchProtectedScope();
3347
3348    if (S->getFnParent() == 0) {
3349      bool SizeIsNegative;
3350      llvm::APSInt Oversized;
3351      QualType FixedTy =
3352          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3353                                              Oversized);
3354      if (!FixedTy.isNull()) {
3355        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3356        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3357      } else {
3358        if (SizeIsNegative)
3359          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3360        else if (T->isVariableArrayType())
3361          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3362        else if (Oversized.getBoolValue())
3363          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3364        else
3365          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3366        NewTD->setInvalidDecl();
3367      }
3368    }
3369  }
3370}
3371
3372
3373/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3374/// declares a typedef-name, either using the 'typedef' type specifier or via
3375/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3376NamedDecl*
3377Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3378                           LookupResult &Previous, bool &Redeclaration) {
3379  // Merge the decl with the existing one if appropriate. If the decl is
3380  // in an outer scope, it isn't the same thing.
3381  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3382                       /*ExplicitInstantiationOrSpecialization=*/false);
3383  if (!Previous.empty()) {
3384    Redeclaration = true;
3385    MergeTypedefNameDecl(NewTD, Previous);
3386  }
3387
3388  // If this is the C FILE type, notify the AST context.
3389  if (IdentifierInfo *II = NewTD->getIdentifier())
3390    if (!NewTD->isInvalidDecl() &&
3391        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3392      if (II->isStr("FILE"))
3393        Context.setFILEDecl(NewTD);
3394      else if (II->isStr("jmp_buf"))
3395        Context.setjmp_bufDecl(NewTD);
3396      else if (II->isStr("sigjmp_buf"))
3397        Context.setsigjmp_bufDecl(NewTD);
3398      else if (II->isStr("__builtin_va_list"))
3399        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3400    }
3401
3402  return NewTD;
3403}
3404
3405/// \brief Determines whether the given declaration is an out-of-scope
3406/// previous declaration.
3407///
3408/// This routine should be invoked when name lookup has found a
3409/// previous declaration (PrevDecl) that is not in the scope where a
3410/// new declaration by the same name is being introduced. If the new
3411/// declaration occurs in a local scope, previous declarations with
3412/// linkage may still be considered previous declarations (C99
3413/// 6.2.2p4-5, C++ [basic.link]p6).
3414///
3415/// \param PrevDecl the previous declaration found by name
3416/// lookup
3417///
3418/// \param DC the context in which the new declaration is being
3419/// declared.
3420///
3421/// \returns true if PrevDecl is an out-of-scope previous declaration
3422/// for a new delcaration with the same name.
3423static bool
3424isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3425                                ASTContext &Context) {
3426  if (!PrevDecl)
3427    return false;
3428
3429  if (!PrevDecl->hasLinkage())
3430    return false;
3431
3432  if (Context.getLangOptions().CPlusPlus) {
3433    // C++ [basic.link]p6:
3434    //   If there is a visible declaration of an entity with linkage
3435    //   having the same name and type, ignoring entities declared
3436    //   outside the innermost enclosing namespace scope, the block
3437    //   scope declaration declares that same entity and receives the
3438    //   linkage of the previous declaration.
3439    DeclContext *OuterContext = DC->getRedeclContext();
3440    if (!OuterContext->isFunctionOrMethod())
3441      // This rule only applies to block-scope declarations.
3442      return false;
3443
3444    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3445    if (PrevOuterContext->isRecord())
3446      // We found a member function: ignore it.
3447      return false;
3448
3449    // Find the innermost enclosing namespace for the new and
3450    // previous declarations.
3451    OuterContext = OuterContext->getEnclosingNamespaceContext();
3452    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3453
3454    // The previous declaration is in a different namespace, so it
3455    // isn't the same function.
3456    if (!OuterContext->Equals(PrevOuterContext))
3457      return false;
3458  }
3459
3460  return true;
3461}
3462
3463static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3464  CXXScopeSpec &SS = D.getCXXScopeSpec();
3465  if (!SS.isSet()) return;
3466  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3467}
3468
3469NamedDecl*
3470Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3471                              QualType R, TypeSourceInfo *TInfo,
3472                              LookupResult &Previous,
3473                              MultiTemplateParamsArg TemplateParamLists,
3474                              bool &Redeclaration) {
3475  DeclarationName Name = GetNameForDeclarator(D).getName();
3476
3477  // Check that there are no default arguments (C++ only).
3478  if (getLangOptions().CPlusPlus)
3479    CheckExtraCXXDefaultArguments(D);
3480
3481  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3482  assert(SCSpec != DeclSpec::SCS_typedef &&
3483         "Parser allowed 'typedef' as storage class VarDecl.");
3484  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3485  if (SCSpec == DeclSpec::SCS_mutable) {
3486    // mutable can only appear on non-static class members, so it's always
3487    // an error here
3488    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3489    D.setInvalidType();
3490    SC = SC_None;
3491  }
3492  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3493  VarDecl::StorageClass SCAsWritten
3494    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3495
3496  IdentifierInfo *II = Name.getAsIdentifierInfo();
3497  if (!II) {
3498    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3499      << Name.getAsString();
3500    return 0;
3501  }
3502
3503  DiagnoseFunctionSpecifiers(D);
3504
3505  if (!DC->isRecord() && S->getFnParent() == 0) {
3506    // C99 6.9p2: The storage-class specifiers auto and register shall not
3507    // appear in the declaration specifiers in an external declaration.
3508    if (SC == SC_Auto || SC == SC_Register) {
3509
3510      // If this is a register variable with an asm label specified, then this
3511      // is a GNU extension.
3512      if (SC == SC_Register && D.getAsmLabel())
3513        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3514      else
3515        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3516      D.setInvalidType();
3517    }
3518  }
3519
3520  bool isExplicitSpecialization = false;
3521  VarDecl *NewVD;
3522  if (!getLangOptions().CPlusPlus) {
3523    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3524                            D.getIdentifierLoc(), II,
3525                            R, TInfo, SC, SCAsWritten);
3526
3527    if (D.isInvalidType())
3528      NewVD->setInvalidDecl();
3529  } else {
3530    if (DC->isRecord() && !CurContext->isRecord()) {
3531      // This is an out-of-line definition of a static data member.
3532      if (SC == SC_Static) {
3533        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3534             diag::err_static_out_of_line)
3535          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3536      } else if (SC == SC_None)
3537        SC = SC_Static;
3538    }
3539    if (SC == SC_Static) {
3540      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3541        if (RD->isLocalClass())
3542          Diag(D.getIdentifierLoc(),
3543               diag::err_static_data_member_not_allowed_in_local_class)
3544            << Name << RD->getDeclName();
3545
3546        // C++ [class.union]p1: If a union contains a static data member,
3547        // the program is ill-formed.
3548        //
3549        // We also disallow static data members in anonymous structs.
3550        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3551          Diag(D.getIdentifierLoc(),
3552               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3553            << Name << RD->isUnion();
3554      }
3555    }
3556
3557    // Match up the template parameter lists with the scope specifier, then
3558    // determine whether we have a template or a template specialization.
3559    isExplicitSpecialization = false;
3560    bool Invalid = false;
3561    if (TemplateParameterList *TemplateParams
3562        = MatchTemplateParametersToScopeSpecifier(
3563                                  D.getDeclSpec().getSourceRange().getBegin(),
3564                                                  D.getIdentifierLoc(),
3565                                                  D.getCXXScopeSpec(),
3566                                                  TemplateParamLists.get(),
3567                                                  TemplateParamLists.size(),
3568                                                  /*never a friend*/ false,
3569                                                  isExplicitSpecialization,
3570                                                  Invalid)) {
3571      if (TemplateParams->size() > 0) {
3572        // There is no such thing as a variable template.
3573        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3574          << II
3575          << SourceRange(TemplateParams->getTemplateLoc(),
3576                         TemplateParams->getRAngleLoc());
3577        return 0;
3578      } else {
3579        // There is an extraneous 'template<>' for this variable. Complain
3580        // about it, but allow the declaration of the variable.
3581        Diag(TemplateParams->getTemplateLoc(),
3582             diag::err_template_variable_noparams)
3583          << II
3584          << SourceRange(TemplateParams->getTemplateLoc(),
3585                         TemplateParams->getRAngleLoc());
3586      }
3587    }
3588
3589    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3590                            D.getIdentifierLoc(), II,
3591                            R, TInfo, SC, SCAsWritten);
3592
3593    // If this decl has an auto type in need of deduction, make a note of the
3594    // Decl so we can diagnose uses of it in its own initializer.
3595    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3596        R->getContainedAutoType())
3597      ParsingInitForAutoVars.insert(NewVD);
3598
3599    if (D.isInvalidType() || Invalid)
3600      NewVD->setInvalidDecl();
3601
3602    SetNestedNameSpecifier(NewVD, D);
3603
3604    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3605      NewVD->setTemplateParameterListsInfo(Context,
3606                                           TemplateParamLists.size(),
3607                                           TemplateParamLists.release());
3608    }
3609  }
3610
3611  if (D.getDeclSpec().isThreadSpecified()) {
3612    if (NewVD->hasLocalStorage())
3613      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3614    else if (!Context.Target.isTLSSupported())
3615      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3616    else
3617      NewVD->setThreadSpecified(true);
3618  }
3619
3620  // Set the lexical context. If the declarator has a C++ scope specifier, the
3621  // lexical context will be different from the semantic context.
3622  NewVD->setLexicalDeclContext(CurContext);
3623
3624  // Handle attributes prior to checking for duplicates in MergeVarDecl
3625  ProcessDeclAttributes(S, NewVD, D);
3626
3627  // Handle GNU asm-label extension (encoded as an attribute).
3628  if (Expr *E = (Expr*)D.getAsmLabel()) {
3629    // The parser guarantees this is a string.
3630    StringLiteral *SE = cast<StringLiteral>(E);
3631    llvm::StringRef Label = SE->getString();
3632    if (S->getFnParent() != 0) {
3633      switch (SC) {
3634      case SC_None:
3635      case SC_Auto:
3636        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3637        break;
3638      case SC_Register:
3639        if (!Context.Target.isValidGCCRegisterName(Label))
3640          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3641        break;
3642      case SC_Static:
3643      case SC_Extern:
3644      case SC_PrivateExtern:
3645        break;
3646      }
3647    }
3648
3649    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3650                                                Context, Label));
3651  }
3652
3653  // Diagnose shadowed variables before filtering for scope.
3654  if (!D.getCXXScopeSpec().isSet())
3655    CheckShadow(S, NewVD, Previous);
3656
3657  // Don't consider existing declarations that are in a different
3658  // scope and are out-of-semantic-context declarations (if the new
3659  // declaration has linkage).
3660  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3661                       isExplicitSpecialization);
3662
3663  if (!getLangOptions().CPlusPlus)
3664    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3665  else {
3666    // Merge the decl with the existing one if appropriate.
3667    if (!Previous.empty()) {
3668      if (Previous.isSingleResult() &&
3669          isa<FieldDecl>(Previous.getFoundDecl()) &&
3670          D.getCXXScopeSpec().isSet()) {
3671        // The user tried to define a non-static data member
3672        // out-of-line (C++ [dcl.meaning]p1).
3673        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3674          << D.getCXXScopeSpec().getRange();
3675        Previous.clear();
3676        NewVD->setInvalidDecl();
3677      }
3678    } else if (D.getCXXScopeSpec().isSet()) {
3679      // No previous declaration in the qualifying scope.
3680      Diag(D.getIdentifierLoc(), diag::err_no_member)
3681        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3682        << D.getCXXScopeSpec().getRange();
3683      NewVD->setInvalidDecl();
3684    }
3685
3686    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3687
3688    // This is an explicit specialization of a static data member. Check it.
3689    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3690        CheckMemberSpecialization(NewVD, Previous))
3691      NewVD->setInvalidDecl();
3692  }
3693
3694  // attributes declared post-definition are currently ignored
3695  // FIXME: This should be handled in attribute merging, not
3696  // here.
3697  if (Previous.isSingleResult()) {
3698    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3699    if (Def && (Def = Def->getDefinition()) &&
3700        Def != NewVD && D.hasAttributes()) {
3701      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3702      Diag(Def->getLocation(), diag::note_previous_definition);
3703    }
3704  }
3705
3706  // If this is a locally-scoped extern C variable, update the map of
3707  // such variables.
3708  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3709      !NewVD->isInvalidDecl())
3710    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3711
3712  // If there's a #pragma GCC visibility in scope, and this isn't a class
3713  // member, set the visibility of this variable.
3714  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3715    AddPushedVisibilityAttribute(NewVD);
3716
3717  MarkUnusedFileScopedDecl(NewVD);
3718
3719  return NewVD;
3720}
3721
3722/// \brief Diagnose variable or built-in function shadowing.  Implements
3723/// -Wshadow.
3724///
3725/// This method is called whenever a VarDecl is added to a "useful"
3726/// scope.
3727///
3728/// \param S the scope in which the shadowing name is being declared
3729/// \param R the lookup of the name
3730///
3731void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3732  // Return if warning is ignored.
3733  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3734        Diagnostic::Ignored)
3735    return;
3736
3737  // Don't diagnose declarations at file scope.
3738  if (D->hasGlobalStorage())
3739    return;
3740
3741  DeclContext *NewDC = D->getDeclContext();
3742
3743  // Only diagnose if we're shadowing an unambiguous field or variable.
3744  if (R.getResultKind() != LookupResult::Found)
3745    return;
3746
3747  NamedDecl* ShadowedDecl = R.getFoundDecl();
3748  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3749    return;
3750
3751  // Fields are not shadowed by variables in C++ static methods.
3752  if (isa<FieldDecl>(ShadowedDecl))
3753    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3754      if (MD->isStatic())
3755        return;
3756
3757  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3758    if (shadowedVar->isExternC()) {
3759      // For shadowing external vars, make sure that we point to the global
3760      // declaration, not a locally scoped extern declaration.
3761      for (VarDecl::redecl_iterator
3762             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3763           I != E; ++I)
3764        if (I->isFileVarDecl()) {
3765          ShadowedDecl = *I;
3766          break;
3767        }
3768    }
3769
3770  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3771
3772  // Only warn about certain kinds of shadowing for class members.
3773  if (NewDC && NewDC->isRecord()) {
3774    // In particular, don't warn about shadowing non-class members.
3775    if (!OldDC->isRecord())
3776      return;
3777
3778    // TODO: should we warn about static data members shadowing
3779    // static data members from base classes?
3780
3781    // TODO: don't diagnose for inaccessible shadowed members.
3782    // This is hard to do perfectly because we might friend the
3783    // shadowing context, but that's just a false negative.
3784  }
3785
3786  // Determine what kind of declaration we're shadowing.
3787  unsigned Kind;
3788  if (isa<RecordDecl>(OldDC)) {
3789    if (isa<FieldDecl>(ShadowedDecl))
3790      Kind = 3; // field
3791    else
3792      Kind = 2; // static data member
3793  } else if (OldDC->isFileContext())
3794    Kind = 1; // global
3795  else
3796    Kind = 0; // local
3797
3798  DeclarationName Name = R.getLookupName();
3799
3800  // Emit warning and note.
3801  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3802  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3803}
3804
3805/// \brief Check -Wshadow without the advantage of a previous lookup.
3806void Sema::CheckShadow(Scope *S, VarDecl *D) {
3807  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3808        Diagnostic::Ignored)
3809    return;
3810
3811  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3812                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3813  LookupName(R, S);
3814  CheckShadow(S, D, R);
3815}
3816
3817/// \brief Perform semantic checking on a newly-created variable
3818/// declaration.
3819///
3820/// This routine performs all of the type-checking required for a
3821/// variable declaration once it has been built. It is used both to
3822/// check variables after they have been parsed and their declarators
3823/// have been translated into a declaration, and to check variables
3824/// that have been instantiated from a template.
3825///
3826/// Sets NewVD->isInvalidDecl() if an error was encountered.
3827void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3828                                    LookupResult &Previous,
3829                                    bool &Redeclaration) {
3830  // If the decl is already known invalid, don't check it.
3831  if (NewVD->isInvalidDecl())
3832    return;
3833
3834  QualType T = NewVD->getType();
3835
3836  if (T->isObjCObjectType()) {
3837    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3838    return NewVD->setInvalidDecl();
3839  }
3840
3841  // Emit an error if an address space was applied to decl with local storage.
3842  // This includes arrays of objects with address space qualifiers, but not
3843  // automatic variables that point to other address spaces.
3844  // ISO/IEC TR 18037 S5.1.2
3845  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3846    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3847    return NewVD->setInvalidDecl();
3848  }
3849
3850  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3851      && !NewVD->hasAttr<BlocksAttr>())
3852    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3853
3854  bool isVM = T->isVariablyModifiedType();
3855  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3856      NewVD->hasAttr<BlocksAttr>())
3857    getCurFunction()->setHasBranchProtectedScope();
3858
3859  if ((isVM && NewVD->hasLinkage()) ||
3860      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3861    bool SizeIsNegative;
3862    llvm::APSInt Oversized;
3863    QualType FixedTy =
3864        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3865                                            Oversized);
3866
3867    if (FixedTy.isNull() && T->isVariableArrayType()) {
3868      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3869      // FIXME: This won't give the correct result for
3870      // int a[10][n];
3871      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3872
3873      if (NewVD->isFileVarDecl())
3874        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3875        << SizeRange;
3876      else if (NewVD->getStorageClass() == SC_Static)
3877        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3878        << SizeRange;
3879      else
3880        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3881        << SizeRange;
3882      return NewVD->setInvalidDecl();
3883    }
3884
3885    if (FixedTy.isNull()) {
3886      if (NewVD->isFileVarDecl())
3887        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3888      else
3889        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3890      return NewVD->setInvalidDecl();
3891    }
3892
3893    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3894    NewVD->setType(FixedTy);
3895  }
3896
3897  if (Previous.empty() && NewVD->isExternC()) {
3898    // Since we did not find anything by this name and we're declaring
3899    // an extern "C" variable, look for a non-visible extern "C"
3900    // declaration with the same name.
3901    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3902      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3903    if (Pos != LocallyScopedExternalDecls.end())
3904      Previous.addDecl(Pos->second);
3905  }
3906
3907  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3908    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3909      << T;
3910    return NewVD->setInvalidDecl();
3911  }
3912
3913  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3914    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3915    return NewVD->setInvalidDecl();
3916  }
3917
3918  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3919    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3920    return NewVD->setInvalidDecl();
3921  }
3922
3923  // Function pointers and references cannot have qualified function type, only
3924  // function pointer-to-members can do that.
3925  QualType Pointee;
3926  unsigned PtrOrRef = 0;
3927  if (const PointerType *Ptr = T->getAs<PointerType>())
3928    Pointee = Ptr->getPointeeType();
3929  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3930    Pointee = Ref->getPointeeType();
3931    PtrOrRef = 1;
3932  }
3933  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3934      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3935    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3936        << PtrOrRef;
3937    return NewVD->setInvalidDecl();
3938  }
3939
3940  if (!Previous.empty()) {
3941    Redeclaration = true;
3942    MergeVarDecl(NewVD, Previous);
3943  }
3944}
3945
3946/// \brief Data used with FindOverriddenMethod
3947struct FindOverriddenMethodData {
3948  Sema *S;
3949  CXXMethodDecl *Method;
3950};
3951
3952/// \brief Member lookup function that determines whether a given C++
3953/// method overrides a method in a base class, to be used with
3954/// CXXRecordDecl::lookupInBases().
3955static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3956                                 CXXBasePath &Path,
3957                                 void *UserData) {
3958  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3959
3960  FindOverriddenMethodData *Data
3961    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3962
3963  DeclarationName Name = Data->Method->getDeclName();
3964
3965  // FIXME: Do we care about other names here too?
3966  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3967    // We really want to find the base class destructor here.
3968    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3969    CanQualType CT = Data->S->Context.getCanonicalType(T);
3970
3971    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3972  }
3973
3974  for (Path.Decls = BaseRecord->lookup(Name);
3975       Path.Decls.first != Path.Decls.second;
3976       ++Path.Decls.first) {
3977    NamedDecl *D = *Path.Decls.first;
3978    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3979      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3980        return true;
3981    }
3982  }
3983
3984  return false;
3985}
3986
3987/// AddOverriddenMethods - See if a method overrides any in the base classes,
3988/// and if so, check that it's a valid override and remember it.
3989bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3990  // Look for virtual methods in base classes that this method might override.
3991  CXXBasePaths Paths;
3992  FindOverriddenMethodData Data;
3993  Data.Method = MD;
3994  Data.S = this;
3995  bool AddedAny = false;
3996  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3997    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3998         E = Paths.found_decls_end(); I != E; ++I) {
3999      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4000        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4001            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4002            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4003          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4004          AddedAny = true;
4005        }
4006      }
4007    }
4008  }
4009
4010  return AddedAny;
4011}
4012
4013static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4014  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4015                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4016  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4017  assert(!Prev.isAmbiguous() &&
4018         "Cannot have an ambiguity in previous-declaration lookup");
4019  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4020       Func != FuncEnd; ++Func) {
4021    if (isa<FunctionDecl>(*Func) &&
4022        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4023      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4024  }
4025}
4026
4027NamedDecl*
4028Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4029                              QualType R, TypeSourceInfo *TInfo,
4030                              LookupResult &Previous,
4031                              MultiTemplateParamsArg TemplateParamLists,
4032                              bool IsFunctionDefinition, bool &Redeclaration) {
4033  assert(R.getTypePtr()->isFunctionType());
4034
4035  // TODO: consider using NameInfo for diagnostic.
4036  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4037  DeclarationName Name = NameInfo.getName();
4038  FunctionDecl::StorageClass SC = SC_None;
4039  switch (D.getDeclSpec().getStorageClassSpec()) {
4040  default: assert(0 && "Unknown storage class!");
4041  case DeclSpec::SCS_auto:
4042  case DeclSpec::SCS_register:
4043  case DeclSpec::SCS_mutable:
4044    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4045         diag::err_typecheck_sclass_func);
4046    D.setInvalidType();
4047    break;
4048  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4049  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4050  case DeclSpec::SCS_static: {
4051    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4052      // C99 6.7.1p5:
4053      //   The declaration of an identifier for a function that has
4054      //   block scope shall have no explicit storage-class specifier
4055      //   other than extern
4056      // See also (C++ [dcl.stc]p4).
4057      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4058           diag::err_static_block_func);
4059      SC = SC_None;
4060    } else
4061      SC = SC_Static;
4062    break;
4063  }
4064  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4065  }
4066
4067  if (D.getDeclSpec().isThreadSpecified())
4068    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4069
4070  // Do not allow returning a objc interface by-value.
4071  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4072    Diag(D.getIdentifierLoc(),
4073         diag::err_object_cannot_be_passed_returned_by_value) << 0
4074    << R->getAs<FunctionType>()->getResultType();
4075    D.setInvalidType();
4076  }
4077
4078  FunctionDecl *NewFD;
4079  bool isInline = D.getDeclSpec().isInlineSpecified();
4080  bool isFriend = false;
4081  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4082  FunctionDecl::StorageClass SCAsWritten
4083    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4084  FunctionTemplateDecl *FunctionTemplate = 0;
4085  bool isExplicitSpecialization = false;
4086  bool isFunctionTemplateSpecialization = false;
4087
4088  if (!getLangOptions().CPlusPlus) {
4089    // Determine whether the function was written with a
4090    // prototype. This true when:
4091    //   - there is a prototype in the declarator, or
4092    //   - the type R of the function is some kind of typedef or other reference
4093    //     to a type name (which eventually refers to a function type).
4094    bool HasPrototype =
4095    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4096    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4097
4098    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4099                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4100                                 HasPrototype);
4101    if (D.isInvalidType())
4102      NewFD->setInvalidDecl();
4103
4104    // Set the lexical context.
4105    NewFD->setLexicalDeclContext(CurContext);
4106    // Filter out previous declarations that don't match the scope.
4107    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4108                         /*ExplicitInstantiationOrSpecialization=*/false);
4109  } else {
4110    isFriend = D.getDeclSpec().isFriendSpecified();
4111    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4112    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4113    bool isVirtualOkay = false;
4114
4115    // Check that the return type is not an abstract class type.
4116    // For record types, this is done by the AbstractClassUsageDiagnoser once
4117    // the class has been completely parsed.
4118    if (!DC->isRecord() &&
4119      RequireNonAbstractType(D.getIdentifierLoc(),
4120                             R->getAs<FunctionType>()->getResultType(),
4121                             diag::err_abstract_type_in_decl,
4122                             AbstractReturnType))
4123      D.setInvalidType();
4124
4125    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4126      // This is a C++ constructor declaration.
4127      assert(DC->isRecord() &&
4128             "Constructors can only be declared in a member context");
4129
4130      R = CheckConstructorDeclarator(D, R, SC);
4131
4132      // Create the new declaration
4133      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4134                                         Context,
4135                                         cast<CXXRecordDecl>(DC),
4136                                         D.getSourceRange().getBegin(),
4137                                         NameInfo, R, TInfo,
4138                                         isExplicit, isInline,
4139                                         /*isImplicitlyDeclared=*/false);
4140
4141      NewFD = NewCD;
4142    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4143      // This is a C++ destructor declaration.
4144      if (DC->isRecord()) {
4145        R = CheckDestructorDeclarator(D, R, SC);
4146        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4147
4148        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4149                                          D.getSourceRange().getBegin(),
4150                                          NameInfo, R, TInfo,
4151                                          isInline,
4152                                          /*isImplicitlyDeclared=*/false);
4153        NewFD = NewDD;
4154        isVirtualOkay = true;
4155
4156        // If the class is complete, then we now create the implicit exception
4157        // specification. If the class is incomplete or dependent, we can't do
4158        // it yet.
4159        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4160            Record->getDefinition() && !Record->isBeingDefined() &&
4161            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4162          AdjustDestructorExceptionSpec(Record, NewDD);
4163        }
4164
4165      } else {
4166        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4167
4168        // Create a FunctionDecl to satisfy the function definition parsing
4169        // code path.
4170        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4171                                     D.getIdentifierLoc(), Name, R, TInfo,
4172                                     SC, SCAsWritten, isInline,
4173                                     /*hasPrototype=*/true);
4174        D.setInvalidType();
4175      }
4176    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4177      if (!DC->isRecord()) {
4178        Diag(D.getIdentifierLoc(),
4179             diag::err_conv_function_not_member);
4180        return 0;
4181      }
4182
4183      CheckConversionDeclarator(D, R, SC);
4184      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4185                                        D.getSourceRange().getBegin(),
4186                                        NameInfo, R, TInfo,
4187                                        isInline, isExplicit,
4188                                        SourceLocation());
4189
4190      isVirtualOkay = true;
4191    } else if (DC->isRecord()) {
4192      // If the of the function is the same as the name of the record, then this
4193      // must be an invalid constructor that has a return type.
4194      // (The parser checks for a return type and makes the declarator a
4195      // constructor if it has no return type).
4196      // must have an invalid constructor that has a return type
4197      if (Name.getAsIdentifierInfo() &&
4198          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4199        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4200          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4201          << SourceRange(D.getIdentifierLoc());
4202        return 0;
4203      }
4204
4205      bool isStatic = SC == SC_Static;
4206
4207      // [class.free]p1:
4208      // Any allocation function for a class T is a static member
4209      // (even if not explicitly declared static).
4210      if (Name.getCXXOverloadedOperator() == OO_New ||
4211          Name.getCXXOverloadedOperator() == OO_Array_New)
4212        isStatic = true;
4213
4214      // [class.free]p6 Any deallocation function for a class X is a static member
4215      // (even if not explicitly declared static).
4216      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4217          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4218        isStatic = true;
4219
4220      // This is a C++ method declaration.
4221      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4222                                               Context, cast<CXXRecordDecl>(DC),
4223                                               D.getSourceRange().getBegin(),
4224                                               NameInfo, R, TInfo,
4225                                               isStatic, SCAsWritten, isInline,
4226                                               SourceLocation());
4227      NewFD = NewMD;
4228
4229      isVirtualOkay = !isStatic;
4230    } else {
4231      // Determine whether the function was written with a
4232      // prototype. This true when:
4233      //   - we're in C++ (where every function has a prototype),
4234      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4235                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4236                                   true/*HasPrototype*/);
4237    }
4238
4239    if (isFriend && !isInline && IsFunctionDefinition) {
4240      // C++ [class.friend]p5
4241      //   A function can be defined in a friend declaration of a
4242      //   class . . . . Such a function is implicitly inline.
4243      NewFD->setImplicitlyInline();
4244    }
4245
4246    SetNestedNameSpecifier(NewFD, D);
4247    isExplicitSpecialization = false;
4248    isFunctionTemplateSpecialization = false;
4249    if (D.isInvalidType())
4250      NewFD->setInvalidDecl();
4251
4252    // Set the lexical context. If the declarator has a C++
4253    // scope specifier, or is the object of a friend declaration, the
4254    // lexical context will be different from the semantic context.
4255    NewFD->setLexicalDeclContext(CurContext);
4256
4257    // Match up the template parameter lists with the scope specifier, then
4258    // determine whether we have a template or a template specialization.
4259    bool Invalid = false;
4260    if (TemplateParameterList *TemplateParams
4261          = MatchTemplateParametersToScopeSpecifier(
4262                                  D.getDeclSpec().getSourceRange().getBegin(),
4263                                  D.getIdentifierLoc(),
4264                                  D.getCXXScopeSpec(),
4265                                  TemplateParamLists.get(),
4266                                  TemplateParamLists.size(),
4267                                  isFriend,
4268                                  isExplicitSpecialization,
4269                                  Invalid)) {
4270      if (TemplateParams->size() > 0) {
4271        // This is a function template
4272
4273        // Check that we can declare a template here.
4274        if (CheckTemplateDeclScope(S, TemplateParams))
4275          return 0;
4276
4277        // A destructor cannot be a template.
4278        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4279          Diag(NewFD->getLocation(), diag::err_destructor_template);
4280          return 0;
4281        }
4282
4283        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4284                                                        NewFD->getLocation(),
4285                                                        Name, TemplateParams,
4286                                                        NewFD);
4287        FunctionTemplate->setLexicalDeclContext(CurContext);
4288        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4289
4290        // For source fidelity, store the other template param lists.
4291        if (TemplateParamLists.size() > 1) {
4292          NewFD->setTemplateParameterListsInfo(Context,
4293                                               TemplateParamLists.size() - 1,
4294                                               TemplateParamLists.release());
4295        }
4296      } else {
4297        // This is a function template specialization.
4298        isFunctionTemplateSpecialization = true;
4299        // For source fidelity, store all the template param lists.
4300        NewFD->setTemplateParameterListsInfo(Context,
4301                                             TemplateParamLists.size(),
4302                                             TemplateParamLists.release());
4303
4304        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4305        if (isFriend) {
4306          // We want to remove the "template<>", found here.
4307          SourceRange RemoveRange = TemplateParams->getSourceRange();
4308
4309          // If we remove the template<> and the name is not a
4310          // template-id, we're actually silently creating a problem:
4311          // the friend declaration will refer to an untemplated decl,
4312          // and clearly the user wants a template specialization.  So
4313          // we need to insert '<>' after the name.
4314          SourceLocation InsertLoc;
4315          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4316            InsertLoc = D.getName().getSourceRange().getEnd();
4317            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4318          }
4319
4320          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4321            << Name << RemoveRange
4322            << FixItHint::CreateRemoval(RemoveRange)
4323            << FixItHint::CreateInsertion(InsertLoc, "<>");
4324        }
4325      }
4326    }
4327    else {
4328      // All template param lists were matched against the scope specifier:
4329      // this is NOT (an explicit specialization of) a template.
4330      if (TemplateParamLists.size() > 0)
4331        // For source fidelity, store all the template param lists.
4332        NewFD->setTemplateParameterListsInfo(Context,
4333                                             TemplateParamLists.size(),
4334                                             TemplateParamLists.release());
4335    }
4336
4337    if (Invalid) {
4338      NewFD->setInvalidDecl();
4339      if (FunctionTemplate)
4340        FunctionTemplate->setInvalidDecl();
4341    }
4342
4343    // C++ [dcl.fct.spec]p5:
4344    //   The virtual specifier shall only be used in declarations of
4345    //   nonstatic class member functions that appear within a
4346    //   member-specification of a class declaration; see 10.3.
4347    //
4348    if (isVirtual && !NewFD->isInvalidDecl()) {
4349      if (!isVirtualOkay) {
4350        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4351             diag::err_virtual_non_function);
4352      } else if (!CurContext->isRecord()) {
4353        // 'virtual' was specified outside of the class.
4354        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4355             diag::err_virtual_out_of_class)
4356          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4357      } else if (NewFD->getDescribedFunctionTemplate()) {
4358        // C++ [temp.mem]p3:
4359        //  A member function template shall not be virtual.
4360        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4361             diag::err_virtual_member_function_template)
4362          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4363      } else {
4364        // Okay: Add virtual to the method.
4365        NewFD->setVirtualAsWritten(true);
4366      }
4367    }
4368
4369    // C++ [dcl.fct.spec]p3:
4370    //  The inline specifier shall not appear on a block scope function declaration.
4371    if (isInline && !NewFD->isInvalidDecl()) {
4372      if (CurContext->isFunctionOrMethod()) {
4373        // 'inline' is not allowed on block scope function declaration.
4374        Diag(D.getDeclSpec().getInlineSpecLoc(),
4375             diag::err_inline_declaration_block_scope) << Name
4376          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4377      }
4378    }
4379
4380    // C++ [dcl.fct.spec]p6:
4381    //  The explicit specifier shall be used only in the declaration of a
4382    //  constructor or conversion function within its class definition; see 12.3.1
4383    //  and 12.3.2.
4384    if (isExplicit && !NewFD->isInvalidDecl()) {
4385      if (!CurContext->isRecord()) {
4386        // 'explicit' was specified outside of the class.
4387        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4388             diag::err_explicit_out_of_class)
4389          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4390      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4391                 !isa<CXXConversionDecl>(NewFD)) {
4392        // 'explicit' was specified on a function that wasn't a constructor
4393        // or conversion function.
4394        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4395             diag::err_explicit_non_ctor_or_conv_function)
4396          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4397      }
4398    }
4399
4400    // Filter out previous declarations that don't match the scope.
4401    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4402                         isExplicitSpecialization ||
4403                         isFunctionTemplateSpecialization);
4404
4405    if (isFriend) {
4406      // For now, claim that the objects have no previous declaration.
4407      if (FunctionTemplate) {
4408        FunctionTemplate->setObjectOfFriendDecl(false);
4409        FunctionTemplate->setAccess(AS_public);
4410      }
4411      NewFD->setObjectOfFriendDecl(false);
4412      NewFD->setAccess(AS_public);
4413    }
4414
4415    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4416      // A method is implicitly inline if it's defined in its class
4417      // definition.
4418      NewFD->setImplicitlyInline();
4419    }
4420
4421    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4422        !CurContext->isRecord()) {
4423      // C++ [class.static]p1:
4424      //   A data or function member of a class may be declared static
4425      //   in a class definition, in which case it is a static member of
4426      //   the class.
4427
4428      // Complain about the 'static' specifier if it's on an out-of-line
4429      // member function definition.
4430      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4431           diag::err_static_out_of_line)
4432        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4433    }
4434  }
4435
4436  // Handle GNU asm-label extension (encoded as an attribute).
4437  if (Expr *E = (Expr*) D.getAsmLabel()) {
4438    // The parser guarantees this is a string.
4439    StringLiteral *SE = cast<StringLiteral>(E);
4440    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4441                                                SE->getString()));
4442  }
4443
4444  // Copy the parameter declarations from the declarator D to the function
4445  // declaration NewFD, if they are available.  First scavenge them into Params.
4446  llvm::SmallVector<ParmVarDecl*, 16> Params;
4447  if (D.isFunctionDeclarator()) {
4448    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4449
4450    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4451    // function that takes no arguments, not a function that takes a
4452    // single void argument.
4453    // We let through "const void" here because Sema::GetTypeForDeclarator
4454    // already checks for that case.
4455    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4456        FTI.ArgInfo[0].Param &&
4457        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4458      // Empty arg list, don't push any params.
4459      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4460
4461      // In C++, the empty parameter-type-list must be spelled "void"; a
4462      // typedef of void is not permitted.
4463      if (getLangOptions().CPlusPlus &&
4464          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4465        bool IsTypeAlias = false;
4466        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4467          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4468        else if (const TemplateSpecializationType *TST =
4469                   Param->getType()->getAs<TemplateSpecializationType>())
4470          IsTypeAlias = TST->isTypeAlias();
4471        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4472          << IsTypeAlias;
4473      }
4474    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4475      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4476        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4477        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4478        Param->setDeclContext(NewFD);
4479        Params.push_back(Param);
4480
4481        if (Param->isInvalidDecl())
4482          NewFD->setInvalidDecl();
4483      }
4484    }
4485
4486  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4487    // When we're declaring a function with a typedef, typeof, etc as in the
4488    // following example, we'll need to synthesize (unnamed)
4489    // parameters for use in the declaration.
4490    //
4491    // @code
4492    // typedef void fn(int);
4493    // fn f;
4494    // @endcode
4495
4496    // Synthesize a parameter for each argument type.
4497    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4498         AE = FT->arg_type_end(); AI != AE; ++AI) {
4499      ParmVarDecl *Param =
4500        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4501      Param->setScopeInfo(0, Params.size());
4502      Params.push_back(Param);
4503    }
4504  } else {
4505    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4506           "Should not need args for typedef of non-prototype fn");
4507  }
4508  // Finally, we know we have the right number of parameters, install them.
4509  NewFD->setParams(Params.data(), Params.size());
4510
4511  // Process the non-inheritable attributes on this declaration.
4512  ProcessDeclAttributes(S, NewFD, D,
4513                        /*NonInheritable=*/true, /*Inheritable=*/false);
4514
4515  if (!getLangOptions().CPlusPlus) {
4516    // Perform semantic checking on the function declaration.
4517    bool isExplctSpecialization=false;
4518    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4519                             Redeclaration);
4520    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4521            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4522           "previous declaration set still overloaded");
4523  } else {
4524    // If the declarator is a template-id, translate the parser's template
4525    // argument list into our AST format.
4526    bool HasExplicitTemplateArgs = false;
4527    TemplateArgumentListInfo TemplateArgs;
4528    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4529      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4530      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4531      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4532      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4533                                         TemplateId->getTemplateArgs(),
4534                                         TemplateId->NumArgs);
4535      translateTemplateArguments(TemplateArgsPtr,
4536                                 TemplateArgs);
4537      TemplateArgsPtr.release();
4538
4539      HasExplicitTemplateArgs = true;
4540
4541      if (FunctionTemplate) {
4542        // Function template with explicit template arguments.
4543        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4544          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4545
4546        HasExplicitTemplateArgs = false;
4547      } else if (!isFunctionTemplateSpecialization &&
4548                 !D.getDeclSpec().isFriendSpecified()) {
4549        // We have encountered something that the user meant to be a
4550        // specialization (because it has explicitly-specified template
4551        // arguments) but that was not introduced with a "template<>" (or had
4552        // too few of them).
4553        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4554          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4555          << FixItHint::CreateInsertion(
4556                                        D.getDeclSpec().getSourceRange().getBegin(),
4557                                                  "template<> ");
4558        isFunctionTemplateSpecialization = true;
4559      } else {
4560        // "friend void foo<>(int);" is an implicit specialization decl.
4561        isFunctionTemplateSpecialization = true;
4562      }
4563    } else if (isFriend && isFunctionTemplateSpecialization) {
4564      // This combination is only possible in a recovery case;  the user
4565      // wrote something like:
4566      //   template <> friend void foo(int);
4567      // which we're recovering from as if the user had written:
4568      //   friend void foo<>(int);
4569      // Go ahead and fake up a template id.
4570      HasExplicitTemplateArgs = true;
4571        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4572      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4573    }
4574
4575    // If it's a friend (and only if it's a friend), it's possible
4576    // that either the specialized function type or the specialized
4577    // template is dependent, and therefore matching will fail.  In
4578    // this case, don't check the specialization yet.
4579    if (isFunctionTemplateSpecialization && isFriend &&
4580        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4581      assert(HasExplicitTemplateArgs &&
4582             "friend function specialization without template args");
4583      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4584                                                       Previous))
4585        NewFD->setInvalidDecl();
4586    } else if (isFunctionTemplateSpecialization) {
4587      if (CurContext->isDependentContext() && CurContext->isRecord()
4588          && !isFriend && !getLangOptions().Microsoft) {
4589        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4590          << NewFD->getDeclName();
4591        NewFD->setInvalidDecl();
4592        return 0;
4593      } else if (CheckFunctionTemplateSpecialization(NewFD,
4594                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4595                                                     Previous))
4596        NewFD->setInvalidDecl();
4597    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4598      if (CheckMemberSpecialization(NewFD, Previous))
4599          NewFD->setInvalidDecl();
4600    }
4601
4602    // Perform semantic checking on the function declaration.
4603    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4604                             Redeclaration);
4605
4606    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4607            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4608           "previous declaration set still overloaded");
4609
4610    NamedDecl *PrincipalDecl = (FunctionTemplate
4611                                ? cast<NamedDecl>(FunctionTemplate)
4612                                : NewFD);
4613
4614    if (isFriend && Redeclaration) {
4615      AccessSpecifier Access = AS_public;
4616      if (!NewFD->isInvalidDecl())
4617        Access = NewFD->getPreviousDeclaration()->getAccess();
4618
4619      NewFD->setAccess(Access);
4620      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4621
4622      PrincipalDecl->setObjectOfFriendDecl(true);
4623    }
4624
4625    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4626        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4627      PrincipalDecl->setNonMemberOperator();
4628
4629    // If we have a function template, check the template parameter
4630    // list. This will check and merge default template arguments.
4631    if (FunctionTemplate) {
4632      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4633      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4634                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4635                            D.getDeclSpec().isFriendSpecified()
4636                              ? (IsFunctionDefinition
4637                                   ? TPC_FriendFunctionTemplateDefinition
4638                                   : TPC_FriendFunctionTemplate)
4639                              : (D.getCXXScopeSpec().isSet() &&
4640                                 DC && DC->isRecord() &&
4641                                 DC->isDependentContext())
4642                                  ? TPC_ClassTemplateMember
4643                                  : TPC_FunctionTemplate);
4644    }
4645
4646    if (NewFD->isInvalidDecl()) {
4647      // Ignore all the rest of this.
4648    } else if (!Redeclaration) {
4649      // Fake up an access specifier if it's supposed to be a class member.
4650      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4651        NewFD->setAccess(AS_public);
4652
4653      // Qualified decls generally require a previous declaration.
4654      if (D.getCXXScopeSpec().isSet()) {
4655        // ...with the major exception of templated-scope or
4656        // dependent-scope friend declarations.
4657
4658        // TODO: we currently also suppress this check in dependent
4659        // contexts because (1) the parameter depth will be off when
4660        // matching friend templates and (2) we might actually be
4661        // selecting a friend based on a dependent factor.  But there
4662        // are situations where these conditions don't apply and we
4663        // can actually do this check immediately.
4664        if (isFriend &&
4665            (TemplateParamLists.size() ||
4666             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4667             CurContext->isDependentContext())) {
4668              // ignore these
4669            } else {
4670              // The user tried to provide an out-of-line definition for a
4671              // function that is a member of a class or namespace, but there
4672              // was no such member function declared (C++ [class.mfct]p2,
4673              // C++ [namespace.memdef]p2). For example:
4674              //
4675              // class X {
4676              //   void f() const;
4677              // };
4678              //
4679              // void X::f() { } // ill-formed
4680              //
4681              // Complain about this problem, and attempt to suggest close
4682              // matches (e.g., those that differ only in cv-qualifiers and
4683              // whether the parameter types are references).
4684              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4685              << Name << DC << D.getCXXScopeSpec().getRange();
4686              NewFD->setInvalidDecl();
4687
4688              DiagnoseInvalidRedeclaration(*this, NewFD);
4689            }
4690
4691        // Unqualified local friend declarations are required to resolve
4692        // to something.
4693        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4694          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4695          NewFD->setInvalidDecl();
4696          DiagnoseInvalidRedeclaration(*this, NewFD);
4697        }
4698
4699    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4700               !isFriend && !isFunctionTemplateSpecialization &&
4701               !isExplicitSpecialization) {
4702      // An out-of-line member function declaration must also be a
4703      // definition (C++ [dcl.meaning]p1).
4704      // Note that this is not the case for explicit specializations of
4705      // function templates or member functions of class templates, per
4706      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4707      // for compatibility with old SWIG code which likes to generate them.
4708      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4709        << D.getCXXScopeSpec().getRange();
4710    }
4711  }
4712
4713
4714  // Handle attributes. We need to have merged decls when handling attributes
4715  // (for example to check for conflicts, etc).
4716  // FIXME: This needs to happen before we merge declarations. Then,
4717  // let attribute merging cope with attribute conflicts.
4718  ProcessDeclAttributes(S, NewFD, D,
4719                        /*NonInheritable=*/false, /*Inheritable=*/true);
4720
4721  // attributes declared post-definition are currently ignored
4722  // FIXME: This should happen during attribute merging
4723  if (Redeclaration && Previous.isSingleResult()) {
4724    const FunctionDecl *Def;
4725    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4726    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4727      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4728      Diag(Def->getLocation(), diag::note_previous_definition);
4729    }
4730  }
4731
4732  AddKnownFunctionAttributes(NewFD);
4733
4734  if (NewFD->hasAttr<OverloadableAttr>() &&
4735      !NewFD->getType()->getAs<FunctionProtoType>()) {
4736    Diag(NewFD->getLocation(),
4737         diag::err_attribute_overloadable_no_prototype)
4738      << NewFD;
4739
4740    // Turn this into a variadic function with no parameters.
4741    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4742    FunctionProtoType::ExtProtoInfo EPI;
4743    EPI.Variadic = true;
4744    EPI.ExtInfo = FT->getExtInfo();
4745
4746    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4747    NewFD->setType(R);
4748  }
4749
4750  // If there's a #pragma GCC visibility in scope, and this isn't a class
4751  // member, set the visibility of this function.
4752  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4753    AddPushedVisibilityAttribute(NewFD);
4754
4755  // If this is a locally-scoped extern C function, update the
4756  // map of such names.
4757  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4758      && !NewFD->isInvalidDecl())
4759    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4760
4761  // Set this FunctionDecl's range up to the right paren.
4762  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4763
4764  if (getLangOptions().CPlusPlus) {
4765    if (FunctionTemplate) {
4766      if (NewFD->isInvalidDecl())
4767        FunctionTemplate->setInvalidDecl();
4768      return FunctionTemplate;
4769    }
4770  }
4771
4772  MarkUnusedFileScopedDecl(NewFD);
4773
4774  if (getLangOptions().CUDA)
4775    if (IdentifierInfo *II = NewFD->getIdentifier())
4776      if (!NewFD->isInvalidDecl() &&
4777          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4778        if (II->isStr("cudaConfigureCall")) {
4779          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4780            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4781
4782          Context.setcudaConfigureCallDecl(NewFD);
4783        }
4784      }
4785
4786  return NewFD;
4787}
4788
4789/// \brief Perform semantic checking of a new function declaration.
4790///
4791/// Performs semantic analysis of the new function declaration
4792/// NewFD. This routine performs all semantic checking that does not
4793/// require the actual declarator involved in the declaration, and is
4794/// used both for the declaration of functions as they are parsed
4795/// (called via ActOnDeclarator) and for the declaration of functions
4796/// that have been instantiated via C++ template instantiation (called
4797/// via InstantiateDecl).
4798///
4799/// \param IsExplicitSpecialiation whether this new function declaration is
4800/// an explicit specialization of the previous declaration.
4801///
4802/// This sets NewFD->isInvalidDecl() to true if there was an error.
4803void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4804                                    LookupResult &Previous,
4805                                    bool IsExplicitSpecialization,
4806                                    bool &Redeclaration) {
4807  // If NewFD is already known erroneous, don't do any of this checking.
4808  if (NewFD->isInvalidDecl()) {
4809    // If this is a class member, mark the class invalid immediately.
4810    // This avoids some consistency errors later.
4811    if (isa<CXXMethodDecl>(NewFD))
4812      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4813
4814    return;
4815  }
4816
4817  if (NewFD->getResultType()->isVariablyModifiedType()) {
4818    // Functions returning a variably modified type violate C99 6.7.5.2p2
4819    // because all functions have linkage.
4820    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4821    return NewFD->setInvalidDecl();
4822  }
4823
4824  if (NewFD->isMain())
4825    CheckMain(NewFD);
4826
4827  // Check for a previous declaration of this name.
4828  if (Previous.empty() && NewFD->isExternC()) {
4829    // Since we did not find anything by this name and we're declaring
4830    // an extern "C" function, look for a non-visible extern "C"
4831    // declaration with the same name.
4832    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4833      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4834    if (Pos != LocallyScopedExternalDecls.end())
4835      Previous.addDecl(Pos->second);
4836  }
4837
4838  // Merge or overload the declaration with an existing declaration of
4839  // the same name, if appropriate.
4840  if (!Previous.empty()) {
4841    // Determine whether NewFD is an overload of PrevDecl or
4842    // a declaration that requires merging. If it's an overload,
4843    // there's no more work to do here; we'll just add the new
4844    // function to the scope.
4845
4846    NamedDecl *OldDecl = 0;
4847    if (!AllowOverloadingOfFunction(Previous, Context)) {
4848      Redeclaration = true;
4849      OldDecl = Previous.getFoundDecl();
4850    } else {
4851      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4852                            /*NewIsUsingDecl*/ false)) {
4853      case Ovl_Match:
4854        Redeclaration = true;
4855        break;
4856
4857      case Ovl_NonFunction:
4858        Redeclaration = true;
4859        break;
4860
4861      case Ovl_Overload:
4862        Redeclaration = false;
4863        break;
4864      }
4865
4866      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4867        // If a function name is overloadable in C, then every function
4868        // with that name must be marked "overloadable".
4869        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4870          << Redeclaration << NewFD;
4871        NamedDecl *OverloadedDecl = 0;
4872        if (Redeclaration)
4873          OverloadedDecl = OldDecl;
4874        else if (!Previous.empty())
4875          OverloadedDecl = Previous.getRepresentativeDecl();
4876        if (OverloadedDecl)
4877          Diag(OverloadedDecl->getLocation(),
4878               diag::note_attribute_overloadable_prev_overload);
4879        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4880                                                        Context));
4881      }
4882    }
4883
4884    if (Redeclaration) {
4885      // NewFD and OldDecl represent declarations that need to be
4886      // merged.
4887      if (MergeFunctionDecl(NewFD, OldDecl))
4888        return NewFD->setInvalidDecl();
4889
4890      Previous.clear();
4891      Previous.addDecl(OldDecl);
4892
4893      if (FunctionTemplateDecl *OldTemplateDecl
4894                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4895        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4896        FunctionTemplateDecl *NewTemplateDecl
4897          = NewFD->getDescribedFunctionTemplate();
4898        assert(NewTemplateDecl && "Template/non-template mismatch");
4899        if (CXXMethodDecl *Method
4900              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4901          Method->setAccess(OldTemplateDecl->getAccess());
4902          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4903        }
4904
4905        // If this is an explicit specialization of a member that is a function
4906        // template, mark it as a member specialization.
4907        if (IsExplicitSpecialization &&
4908            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4909          NewTemplateDecl->setMemberSpecialization();
4910          assert(OldTemplateDecl->isMemberSpecialization());
4911        }
4912      } else {
4913        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4914          NewFD->setAccess(OldDecl->getAccess());
4915        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4916      }
4917    }
4918  }
4919
4920  // Semantic checking for this function declaration (in isolation).
4921  if (getLangOptions().CPlusPlus) {
4922    // C++-specific checks.
4923    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4924      CheckConstructor(Constructor);
4925    } else if (CXXDestructorDecl *Destructor =
4926                dyn_cast<CXXDestructorDecl>(NewFD)) {
4927      CXXRecordDecl *Record = Destructor->getParent();
4928      QualType ClassType = Context.getTypeDeclType(Record);
4929
4930      // FIXME: Shouldn't we be able to perform this check even when the class
4931      // type is dependent? Both gcc and edg can handle that.
4932      if (!ClassType->isDependentType()) {
4933        DeclarationName Name
4934          = Context.DeclarationNames.getCXXDestructorName(
4935                                        Context.getCanonicalType(ClassType));
4936        if (NewFD->getDeclName() != Name) {
4937          Diag(NewFD->getLocation(), diag::err_destructor_name);
4938          return NewFD->setInvalidDecl();
4939        }
4940      }
4941    } else if (CXXConversionDecl *Conversion
4942               = dyn_cast<CXXConversionDecl>(NewFD)) {
4943      ActOnConversionDeclarator(Conversion);
4944    }
4945
4946    // Find any virtual functions that this function overrides.
4947    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4948      if (!Method->isFunctionTemplateSpecialization() &&
4949          !Method->getDescribedFunctionTemplate()) {
4950        if (AddOverriddenMethods(Method->getParent(), Method)) {
4951          // If the function was marked as "static", we have a problem.
4952          if (NewFD->getStorageClass() == SC_Static) {
4953            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4954              << NewFD->getDeclName();
4955            for (CXXMethodDecl::method_iterator
4956                      Overridden = Method->begin_overridden_methods(),
4957                   OverriddenEnd = Method->end_overridden_methods();
4958                 Overridden != OverriddenEnd;
4959                 ++Overridden) {
4960              Diag((*Overridden)->getLocation(),
4961                   diag::note_overridden_virtual_function);
4962            }
4963          }
4964        }
4965      }
4966    }
4967
4968    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4969    if (NewFD->isOverloadedOperator() &&
4970        CheckOverloadedOperatorDeclaration(NewFD))
4971      return NewFD->setInvalidDecl();
4972
4973    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4974    if (NewFD->getLiteralIdentifier() &&
4975        CheckLiteralOperatorDeclaration(NewFD))
4976      return NewFD->setInvalidDecl();
4977
4978    // In C++, check default arguments now that we have merged decls. Unless
4979    // the lexical context is the class, because in this case this is done
4980    // during delayed parsing anyway.
4981    if (!CurContext->isRecord())
4982      CheckCXXDefaultArguments(NewFD);
4983
4984    // If this function declares a builtin function, check the type of this
4985    // declaration against the expected type for the builtin.
4986    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4987      ASTContext::GetBuiltinTypeError Error;
4988      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4989      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4990        // The type of this function differs from the type of the builtin,
4991        // so forget about the builtin entirely.
4992        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4993      }
4994    }
4995  }
4996}
4997
4998void Sema::CheckMain(FunctionDecl* FD) {
4999  // C++ [basic.start.main]p3:  A program that declares main to be inline
5000  //   or static is ill-formed.
5001  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5002  //   shall not appear in a declaration of main.
5003  // static main is not an error under C99, but we should warn about it.
5004  bool isInline = FD->isInlineSpecified();
5005  bool isStatic = FD->getStorageClass() == SC_Static;
5006  if (isInline || isStatic) {
5007    unsigned diagID = diag::warn_unusual_main_decl;
5008    if (isInline || getLangOptions().CPlusPlus)
5009      diagID = diag::err_unusual_main_decl;
5010
5011    int which = isStatic + (isInline << 1) - 1;
5012    Diag(FD->getLocation(), diagID) << which;
5013  }
5014
5015  QualType T = FD->getType();
5016  assert(T->isFunctionType() && "function decl is not of function type");
5017  const FunctionType* FT = T->getAs<FunctionType>();
5018
5019  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5020    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5021    FD->setInvalidDecl(true);
5022  }
5023
5024  // Treat protoless main() as nullary.
5025  if (isa<FunctionNoProtoType>(FT)) return;
5026
5027  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5028  unsigned nparams = FTP->getNumArgs();
5029  assert(FD->getNumParams() == nparams);
5030
5031  bool HasExtraParameters = (nparams > 3);
5032
5033  // Darwin passes an undocumented fourth argument of type char**.  If
5034  // other platforms start sprouting these, the logic below will start
5035  // getting shifty.
5036  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5037    HasExtraParameters = false;
5038
5039  if (HasExtraParameters) {
5040    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5041    FD->setInvalidDecl(true);
5042    nparams = 3;
5043  }
5044
5045  // FIXME: a lot of the following diagnostics would be improved
5046  // if we had some location information about types.
5047
5048  QualType CharPP =
5049    Context.getPointerType(Context.getPointerType(Context.CharTy));
5050  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5051
5052  for (unsigned i = 0; i < nparams; ++i) {
5053    QualType AT = FTP->getArgType(i);
5054
5055    bool mismatch = true;
5056
5057    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5058      mismatch = false;
5059    else if (Expected[i] == CharPP) {
5060      // As an extension, the following forms are okay:
5061      //   char const **
5062      //   char const * const *
5063      //   char * const *
5064
5065      QualifierCollector qs;
5066      const PointerType* PT;
5067      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5068          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5069          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5070        qs.removeConst();
5071        mismatch = !qs.empty();
5072      }
5073    }
5074
5075    if (mismatch) {
5076      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5077      // TODO: suggest replacing given type with expected type
5078      FD->setInvalidDecl(true);
5079    }
5080  }
5081
5082  if (nparams == 1 && !FD->isInvalidDecl()) {
5083    Diag(FD->getLocation(), diag::warn_main_one_arg);
5084  }
5085
5086  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5087    Diag(FD->getLocation(), diag::err_main_template_decl);
5088    FD->setInvalidDecl();
5089  }
5090}
5091
5092bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5093  // FIXME: Need strict checking.  In C89, we need to check for
5094  // any assignment, increment, decrement, function-calls, or
5095  // commas outside of a sizeof.  In C99, it's the same list,
5096  // except that the aforementioned are allowed in unevaluated
5097  // expressions.  Everything else falls under the
5098  // "may accept other forms of constant expressions" exception.
5099  // (We never end up here for C++, so the constant expression
5100  // rules there don't matter.)
5101  if (Init->isConstantInitializer(Context, false))
5102    return false;
5103  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5104    << Init->getSourceRange();
5105  return true;
5106}
5107
5108namespace {
5109  // Visits an initialization expression to see if OrigDecl is evaluated in
5110  // its own initialization and throws a warning if it does.
5111  class SelfReferenceChecker
5112      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5113    Sema &S;
5114    Decl *OrigDecl;
5115
5116  public:
5117    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5118
5119    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5120                                                    S(S), OrigDecl(OrigDecl) { }
5121
5122    void VisitExpr(Expr *E) {
5123      if (isa<ObjCMessageExpr>(*E)) return;
5124      Inherited::VisitExpr(E);
5125    }
5126
5127    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5128      CheckForSelfReference(E);
5129      Inherited::VisitImplicitCastExpr(E);
5130    }
5131
5132    void CheckForSelfReference(ImplicitCastExpr *E) {
5133      if (E->getCastKind() != CK_LValueToRValue) return;
5134      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5135      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5136      if (!DRE) return;
5137      Decl* ReferenceDecl = DRE->getDecl();
5138      if (OrigDecl != ReferenceDecl) return;
5139      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5140                          Sema::NotForRedeclaration);
5141      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5142        << Result.getLookupName() << OrigDecl->getLocation()
5143        << SubExpr->getSourceRange();
5144    }
5145  };
5146}
5147
5148/// AddInitializerToDecl - Adds the initializer Init to the
5149/// declaration dcl. If DirectInit is true, this is C++ direct
5150/// initialization rather than copy initialization.
5151void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5152                                bool DirectInit, bool TypeMayContainAuto) {
5153  // If there is no declaration, there was an error parsing it.  Just ignore
5154  // the initializer.
5155  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5156    return;
5157
5158  // Check for self-references within variable initializers.
5159  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5160    // Variables declared within a function/method body are handled
5161    // by a dataflow analysis.
5162    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5163      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5164  }
5165  else {
5166    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5167  }
5168
5169  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5170    // With declarators parsed the way they are, the parser cannot
5171    // distinguish between a normal initializer and a pure-specifier.
5172    // Thus this grotesque test.
5173    IntegerLiteral *IL;
5174    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5175        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5176      CheckPureMethod(Method, Init->getSourceRange());
5177    else {
5178      Diag(Method->getLocation(), diag::err_member_function_initialization)
5179        << Method->getDeclName() << Init->getSourceRange();
5180      Method->setInvalidDecl();
5181    }
5182    return;
5183  }
5184
5185  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5186  if (!VDecl) {
5187    if (getLangOptions().CPlusPlus &&
5188        RealDecl->getLexicalDeclContext()->isRecord() &&
5189        isa<NamedDecl>(RealDecl))
5190      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5191    else
5192      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5193    RealDecl->setInvalidDecl();
5194    return;
5195  }
5196
5197  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5198  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5199    TypeSourceInfo *DeducedType = 0;
5200    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5201      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5202        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5203        << Init->getSourceRange();
5204    if (!DeducedType) {
5205      RealDecl->setInvalidDecl();
5206      return;
5207    }
5208    VDecl->setTypeSourceInfo(DeducedType);
5209    VDecl->setType(DeducedType->getType());
5210
5211    // If this is a redeclaration, check that the type we just deduced matches
5212    // the previously declared type.
5213    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5214      MergeVarDeclTypes(VDecl, Old);
5215  }
5216
5217
5218  // A definition must end up with a complete type, which means it must be
5219  // complete with the restriction that an array type might be completed by the
5220  // initializer; note that later code assumes this restriction.
5221  QualType BaseDeclType = VDecl->getType();
5222  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5223    BaseDeclType = Array->getElementType();
5224  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5225                          diag::err_typecheck_decl_incomplete_type)) {
5226    RealDecl->setInvalidDecl();
5227    return;
5228  }
5229
5230  // The variable can not have an abstract class type.
5231  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5232                             diag::err_abstract_type_in_decl,
5233                             AbstractVariableType))
5234    VDecl->setInvalidDecl();
5235
5236  const VarDecl *Def;
5237  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5238    Diag(VDecl->getLocation(), diag::err_redefinition)
5239      << VDecl->getDeclName();
5240    Diag(Def->getLocation(), diag::note_previous_definition);
5241    VDecl->setInvalidDecl();
5242    return;
5243  }
5244
5245  const VarDecl* PrevInit = 0;
5246  if (getLangOptions().CPlusPlus) {
5247    // C++ [class.static.data]p4
5248    //   If a static data member is of const integral or const
5249    //   enumeration type, its declaration in the class definition can
5250    //   specify a constant-initializer which shall be an integral
5251    //   constant expression (5.19). In that case, the member can appear
5252    //   in integral constant expressions. The member shall still be
5253    //   defined in a namespace scope if it is used in the program and the
5254    //   namespace scope definition shall not contain an initializer.
5255    //
5256    // We already performed a redefinition check above, but for static
5257    // data members we also need to check whether there was an in-class
5258    // declaration with an initializer.
5259    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5260      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5261      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5262      return;
5263    }
5264
5265    if (VDecl->hasLocalStorage())
5266      getCurFunction()->setHasBranchProtectedScope();
5267
5268    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5269      VDecl->setInvalidDecl();
5270      return;
5271    }
5272  }
5273
5274  // Capture the variable that is being initialized and the style of
5275  // initialization.
5276  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5277
5278  // FIXME: Poor source location information.
5279  InitializationKind Kind
5280    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5281                                                   Init->getLocStart(),
5282                                                   Init->getLocEnd())
5283                : InitializationKind::CreateCopy(VDecl->getLocation(),
5284                                                 Init->getLocStart());
5285
5286  // Get the decls type and save a reference for later, since
5287  // CheckInitializerTypes may change it.
5288  QualType DclT = VDecl->getType(), SavT = DclT;
5289  if (VDecl->isLocalVarDecl()) {
5290    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5291      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5292      VDecl->setInvalidDecl();
5293    } else if (!VDecl->isInvalidDecl()) {
5294      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5295      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5296                                                MultiExprArg(*this, &Init, 1),
5297                                                &DclT);
5298      if (Result.isInvalid()) {
5299        VDecl->setInvalidDecl();
5300        return;
5301      }
5302
5303      Init = Result.takeAs<Expr>();
5304
5305      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5306      // Don't check invalid declarations to avoid emitting useless diagnostics.
5307      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5308        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5309          CheckForConstantInitializer(Init, DclT);
5310      }
5311    }
5312  } else if (VDecl->isStaticDataMember() &&
5313             VDecl->getLexicalDeclContext()->isRecord()) {
5314    // This is an in-class initialization for a static data member, e.g.,
5315    //
5316    // struct S {
5317    //   static const int value = 17;
5318    // };
5319
5320    // Try to perform the initialization regardless.
5321    if (!VDecl->isInvalidDecl()) {
5322      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5323      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5324                                          MultiExprArg(*this, &Init, 1),
5325                                          &DclT);
5326      if (Result.isInvalid()) {
5327        VDecl->setInvalidDecl();
5328        return;
5329      }
5330
5331      Init = Result.takeAs<Expr>();
5332    }
5333
5334    // C++ [class.mem]p4:
5335    //   A member-declarator can contain a constant-initializer only
5336    //   if it declares a static member (9.4) of const integral or
5337    //   const enumeration type, see 9.4.2.
5338    QualType T = VDecl->getType();
5339
5340    // Do nothing on dependent types.
5341    if (T->isDependentType()) {
5342
5343    // Require constness.
5344    } else if (!T.isConstQualified()) {
5345      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5346        << Init->getSourceRange();
5347      VDecl->setInvalidDecl();
5348
5349    // We allow integer constant expressions in all cases.
5350    } else if (T->isIntegralOrEnumerationType()) {
5351      if (!Init->isValueDependent()) {
5352        // Check whether the expression is a constant expression.
5353        llvm::APSInt Value;
5354        SourceLocation Loc;
5355        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5356          Diag(Loc, diag::err_in_class_initializer_non_constant)
5357            << Init->getSourceRange();
5358          VDecl->setInvalidDecl();
5359        }
5360      }
5361
5362    // We allow floating-point constants as an extension in C++03, and
5363    // C++0x has far more complicated rules that we don't really
5364    // implement fully.
5365    } else {
5366      bool Allowed = false;
5367      if (getLangOptions().CPlusPlus0x) {
5368        Allowed = T->isLiteralType();
5369      } else if (T->isFloatingType()) { // also permits complex, which is ok
5370        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5371          << T << Init->getSourceRange();
5372        Allowed = true;
5373      }
5374
5375      if (!Allowed) {
5376        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5377          << T << Init->getSourceRange();
5378        VDecl->setInvalidDecl();
5379
5380      // TODO: there are probably expressions that pass here that shouldn't.
5381      } else if (!Init->isValueDependent() &&
5382                 !Init->isConstantInitializer(Context, false)) {
5383        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5384          << Init->getSourceRange();
5385        VDecl->setInvalidDecl();
5386      }
5387    }
5388  } else if (VDecl->isFileVarDecl()) {
5389    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5390        (!getLangOptions().CPlusPlus ||
5391         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5392      Diag(VDecl->getLocation(), diag::warn_extern_init);
5393    if (!VDecl->isInvalidDecl()) {
5394      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5395      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5396                                                MultiExprArg(*this, &Init, 1),
5397                                                &DclT);
5398      if (Result.isInvalid()) {
5399        VDecl->setInvalidDecl();
5400        return;
5401      }
5402
5403      Init = Result.takeAs<Expr>();
5404    }
5405
5406    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5407    // Don't check invalid declarations to avoid emitting useless diagnostics.
5408    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5409      // C99 6.7.8p4. All file scoped initializers need to be constant.
5410      CheckForConstantInitializer(Init, DclT);
5411    }
5412  }
5413  // If the type changed, it means we had an incomplete type that was
5414  // completed by the initializer. For example:
5415  //   int ary[] = { 1, 3, 5 };
5416  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5417  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5418    VDecl->setType(DclT);
5419    Init->setType(DclT);
5420  }
5421
5422
5423  // If this variable is a local declaration with record type, make sure it
5424  // doesn't have a flexible member initialization.  We only support this as a
5425  // global/static definition.
5426  if (VDecl->hasLocalStorage())
5427    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5428      if (RT->getDecl()->hasFlexibleArrayMember()) {
5429        // Check whether the initializer tries to initialize the flexible
5430        // array member itself to anything other than an empty initializer list.
5431        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5432          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5433                                         RT->getDecl()->field_end()) - 1;
5434          if (Index < ILE->getNumInits() &&
5435              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5436                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5437            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5438            VDecl->setInvalidDecl();
5439          }
5440        }
5441      }
5442
5443  // Check any implicit conversions within the expression.
5444  CheckImplicitConversions(Init, VDecl->getLocation());
5445
5446  Init = MaybeCreateExprWithCleanups(Init);
5447  // Attach the initializer to the decl.
5448  VDecl->setInit(Init);
5449
5450  CheckCompleteVariableDeclaration(VDecl);
5451}
5452
5453/// ActOnInitializerError - Given that there was an error parsing an
5454/// initializer for the given declaration, try to return to some form
5455/// of sanity.
5456void Sema::ActOnInitializerError(Decl *D) {
5457  // Our main concern here is re-establishing invariants like "a
5458  // variable's type is either dependent or complete".
5459  if (!D || D->isInvalidDecl()) return;
5460
5461  VarDecl *VD = dyn_cast<VarDecl>(D);
5462  if (!VD) return;
5463
5464  // Auto types are meaningless if we can't make sense of the initializer.
5465  if (ParsingInitForAutoVars.count(D)) {
5466    D->setInvalidDecl();
5467    return;
5468  }
5469
5470  QualType Ty = VD->getType();
5471  if (Ty->isDependentType()) return;
5472
5473  // Require a complete type.
5474  if (RequireCompleteType(VD->getLocation(),
5475                          Context.getBaseElementType(Ty),
5476                          diag::err_typecheck_decl_incomplete_type)) {
5477    VD->setInvalidDecl();
5478    return;
5479  }
5480
5481  // Require an abstract type.
5482  if (RequireNonAbstractType(VD->getLocation(), Ty,
5483                             diag::err_abstract_type_in_decl,
5484                             AbstractVariableType)) {
5485    VD->setInvalidDecl();
5486    return;
5487  }
5488
5489  // Don't bother complaining about constructors or destructors,
5490  // though.
5491}
5492
5493void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5494                                  bool TypeMayContainAuto) {
5495  // If there is no declaration, there was an error parsing it. Just ignore it.
5496  if (RealDecl == 0)
5497    return;
5498
5499  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5500    QualType Type = Var->getType();
5501
5502    // C++0x [dcl.spec.auto]p3
5503    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5504      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5505        << Var->getDeclName() << Type;
5506      Var->setInvalidDecl();
5507      return;
5508    }
5509
5510    switch (Var->isThisDeclarationADefinition()) {
5511    case VarDecl::Definition:
5512      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5513        break;
5514
5515      // We have an out-of-line definition of a static data member
5516      // that has an in-class initializer, so we type-check this like
5517      // a declaration.
5518      //
5519      // Fall through
5520
5521    case VarDecl::DeclarationOnly:
5522      // It's only a declaration.
5523
5524      // Block scope. C99 6.7p7: If an identifier for an object is
5525      // declared with no linkage (C99 6.2.2p6), the type for the
5526      // object shall be complete.
5527      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5528          !Var->getLinkage() && !Var->isInvalidDecl() &&
5529          RequireCompleteType(Var->getLocation(), Type,
5530                              diag::err_typecheck_decl_incomplete_type))
5531        Var->setInvalidDecl();
5532
5533      // Make sure that the type is not abstract.
5534      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5535          RequireNonAbstractType(Var->getLocation(), Type,
5536                                 diag::err_abstract_type_in_decl,
5537                                 AbstractVariableType))
5538        Var->setInvalidDecl();
5539      return;
5540
5541    case VarDecl::TentativeDefinition:
5542      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5543      // object that has file scope without an initializer, and without a
5544      // storage-class specifier or with the storage-class specifier "static",
5545      // constitutes a tentative definition. Note: A tentative definition with
5546      // external linkage is valid (C99 6.2.2p5).
5547      if (!Var->isInvalidDecl()) {
5548        if (const IncompleteArrayType *ArrayT
5549                                    = Context.getAsIncompleteArrayType(Type)) {
5550          if (RequireCompleteType(Var->getLocation(),
5551                                  ArrayT->getElementType(),
5552                                  diag::err_illegal_decl_array_incomplete_type))
5553            Var->setInvalidDecl();
5554        } else if (Var->getStorageClass() == SC_Static) {
5555          // C99 6.9.2p3: If the declaration of an identifier for an object is
5556          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5557          // declared type shall not be an incomplete type.
5558          // NOTE: code such as the following
5559          //     static struct s;
5560          //     struct s { int a; };
5561          // is accepted by gcc. Hence here we issue a warning instead of
5562          // an error and we do not invalidate the static declaration.
5563          // NOTE: to avoid multiple warnings, only check the first declaration.
5564          if (Var->getPreviousDeclaration() == 0)
5565            RequireCompleteType(Var->getLocation(), Type,
5566                                diag::ext_typecheck_decl_incomplete_type);
5567        }
5568      }
5569
5570      // Record the tentative definition; we're done.
5571      if (!Var->isInvalidDecl())
5572        TentativeDefinitions.push_back(Var);
5573      return;
5574    }
5575
5576    // Provide a specific diagnostic for uninitialized variable
5577    // definitions with incomplete array type.
5578    if (Type->isIncompleteArrayType()) {
5579      Diag(Var->getLocation(),
5580           diag::err_typecheck_incomplete_array_needs_initializer);
5581      Var->setInvalidDecl();
5582      return;
5583    }
5584
5585    // Provide a specific diagnostic for uninitialized variable
5586    // definitions with reference type.
5587    if (Type->isReferenceType()) {
5588      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5589        << Var->getDeclName()
5590        << SourceRange(Var->getLocation(), Var->getLocation());
5591      Var->setInvalidDecl();
5592      return;
5593    }
5594
5595    // Do not attempt to type-check the default initializer for a
5596    // variable with dependent type.
5597    if (Type->isDependentType())
5598      return;
5599
5600    if (Var->isInvalidDecl())
5601      return;
5602
5603    if (RequireCompleteType(Var->getLocation(),
5604                            Context.getBaseElementType(Type),
5605                            diag::err_typecheck_decl_incomplete_type)) {
5606      Var->setInvalidDecl();
5607      return;
5608    }
5609
5610    // The variable can not have an abstract class type.
5611    if (RequireNonAbstractType(Var->getLocation(), Type,
5612                               diag::err_abstract_type_in_decl,
5613                               AbstractVariableType)) {
5614      Var->setInvalidDecl();
5615      return;
5616    }
5617
5618    const RecordType *Record
5619      = Context.getBaseElementType(Type)->getAs<RecordType>();
5620    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5621        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5622      // C++03 [dcl.init]p9:
5623      //   If no initializer is specified for an object, and the
5624      //   object is of (possibly cv-qualified) non-POD class type (or
5625      //   array thereof), the object shall be default-initialized; if
5626      //   the object is of const-qualified type, the underlying class
5627      //   type shall have a user-declared default
5628      //   constructor. Otherwise, if no initializer is specified for
5629      //   a non- static object, the object and its subobjects, if
5630      //   any, have an indeterminate initial value); if the object
5631      //   or any of its subobjects are of const-qualified type, the
5632      //   program is ill-formed.
5633      // C++0x [dcl.init]p11:
5634      //   If no initializer is specified for an object, the object is
5635      //   default-initialized; [...].
5636    } else {
5637      // Check for jumps past the implicit initializer.  C++0x
5638      // clarifies that this applies to a "variable with automatic
5639      // storage duration", not a "local variable".
5640      // C++0x [stmt.dcl]p3
5641      //   A program that jumps from a point where a variable with automatic
5642      //   storage duration is not ins cope to a point where it is in scope is
5643      //   ill-formed unless the variable has scalar type, class type with a
5644      //   trivial defautl constructor and a trivial destructor, a cv-qualified
5645      //   version of one of these types, or an array of one of the preceding
5646      //   types and is declared without an initializer.
5647      if (getLangOptions().CPlusPlus && Var->hasLocalStorage() && Record) {
5648        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5649        if (!getLangOptions().CPlusPlus0x ||
5650            !CXXRecord->hasTrivialDefaultConstructor() ||
5651            !CXXRecord->hasTrivialDestructor())
5652          getCurFunction()->setHasBranchProtectedScope();
5653      }
5654
5655      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5656      InitializationKind Kind
5657        = InitializationKind::CreateDefault(Var->getLocation());
5658
5659      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5660      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5661                                        MultiExprArg(*this, 0, 0));
5662      if (Init.isInvalid())
5663        Var->setInvalidDecl();
5664      else if (Init.get())
5665        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5666    }
5667
5668    CheckCompleteVariableDeclaration(Var);
5669  }
5670}
5671
5672void Sema::ActOnCXXForRangeDecl(Decl *D) {
5673  VarDecl *VD = dyn_cast<VarDecl>(D);
5674  if (!VD) {
5675    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5676    D->setInvalidDecl();
5677    return;
5678  }
5679
5680  VD->setCXXForRangeDecl(true);
5681
5682  // for-range-declaration cannot be given a storage class specifier.
5683  int Error = -1;
5684  switch (VD->getStorageClassAsWritten()) {
5685  case SC_None:
5686    break;
5687  case SC_Extern:
5688    Error = 0;
5689    break;
5690  case SC_Static:
5691    Error = 1;
5692    break;
5693  case SC_PrivateExtern:
5694    Error = 2;
5695    break;
5696  case SC_Auto:
5697    Error = 3;
5698    break;
5699  case SC_Register:
5700    Error = 4;
5701    break;
5702  }
5703  // FIXME: constexpr isn't allowed here.
5704  //if (DS.isConstexprSpecified())
5705  //  Error = 5;
5706  if (Error != -1) {
5707    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5708      << VD->getDeclName() << Error;
5709    D->setInvalidDecl();
5710  }
5711}
5712
5713void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5714  if (var->isInvalidDecl()) return;
5715
5716  // All the following checks are C++ only.
5717  if (!getLangOptions().CPlusPlus) return;
5718
5719  QualType baseType = Context.getBaseElementType(var->getType());
5720  if (baseType->isDependentType()) return;
5721
5722  // __block variables might require us to capture a copy-initializer.
5723  if (var->hasAttr<BlocksAttr>()) {
5724    // It's currently invalid to ever have a __block variable with an
5725    // array type; should we diagnose that here?
5726
5727    // Regardless, we don't want to ignore array nesting when
5728    // constructing this copy.
5729    QualType type = var->getType();
5730
5731    if (type->isStructureOrClassType()) {
5732      SourceLocation poi = var->getLocation();
5733      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5734      ExprResult result =
5735        PerformCopyInitialization(
5736                        InitializedEntity::InitializeBlock(poi, type, false),
5737                                  poi, Owned(varRef));
5738      if (!result.isInvalid()) {
5739        result = MaybeCreateExprWithCleanups(result);
5740        Expr *init = result.takeAs<Expr>();
5741        Context.setBlockVarCopyInits(var, init);
5742      }
5743    }
5744  }
5745
5746  // Check for global constructors.
5747  if (!var->getDeclContext()->isDependentContext() &&
5748      var->hasGlobalStorage() &&
5749      !var->isStaticLocal() &&
5750      var->getInit() &&
5751      !var->getInit()->isConstantInitializer(Context,
5752                                             baseType->isReferenceType()))
5753    Diag(var->getLocation(), diag::warn_global_constructor)
5754      << var->getInit()->getSourceRange();
5755
5756  // Require the destructor.
5757  if (const RecordType *recordType = baseType->getAs<RecordType>())
5758    FinalizeVarWithDestructor(var, recordType);
5759}
5760
5761/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5762/// any semantic actions necessary after any initializer has been attached.
5763void
5764Sema::FinalizeDeclaration(Decl *ThisDecl) {
5765  // Note that we are no longer parsing the initializer for this declaration.
5766  ParsingInitForAutoVars.erase(ThisDecl);
5767}
5768
5769Sema::DeclGroupPtrTy
5770Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5771                              Decl **Group, unsigned NumDecls) {
5772  llvm::SmallVector<Decl*, 8> Decls;
5773
5774  if (DS.isTypeSpecOwned())
5775    Decls.push_back(DS.getRepAsDecl());
5776
5777  for (unsigned i = 0; i != NumDecls; ++i)
5778    if (Decl *D = Group[i])
5779      Decls.push_back(D);
5780
5781  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5782                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5783}
5784
5785/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5786/// group, performing any necessary semantic checking.
5787Sema::DeclGroupPtrTy
5788Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5789                           bool TypeMayContainAuto) {
5790  // C++0x [dcl.spec.auto]p7:
5791  //   If the type deduced for the template parameter U is not the same in each
5792  //   deduction, the program is ill-formed.
5793  // FIXME: When initializer-list support is added, a distinction is needed
5794  // between the deduced type U and the deduced type which 'auto' stands for.
5795  //   auto a = 0, b = { 1, 2, 3 };
5796  // is legal because the deduced type U is 'int' in both cases.
5797  if (TypeMayContainAuto && NumDecls > 1) {
5798    QualType Deduced;
5799    CanQualType DeducedCanon;
5800    VarDecl *DeducedDecl = 0;
5801    for (unsigned i = 0; i != NumDecls; ++i) {
5802      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5803        AutoType *AT = D->getType()->getContainedAutoType();
5804        // Don't reissue diagnostics when instantiating a template.
5805        if (AT && D->isInvalidDecl())
5806          break;
5807        if (AT && AT->isDeduced()) {
5808          QualType U = AT->getDeducedType();
5809          CanQualType UCanon = Context.getCanonicalType(U);
5810          if (Deduced.isNull()) {
5811            Deduced = U;
5812            DeducedCanon = UCanon;
5813            DeducedDecl = D;
5814          } else if (DeducedCanon != UCanon) {
5815            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5816                 diag::err_auto_different_deductions)
5817              << Deduced << DeducedDecl->getDeclName()
5818              << U << D->getDeclName()
5819              << DeducedDecl->getInit()->getSourceRange()
5820              << D->getInit()->getSourceRange();
5821            D->setInvalidDecl();
5822            break;
5823          }
5824        }
5825      }
5826    }
5827  }
5828
5829  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5830}
5831
5832
5833/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5834/// to introduce parameters into function prototype scope.
5835Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5836  const DeclSpec &DS = D.getDeclSpec();
5837
5838  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5839  VarDecl::StorageClass StorageClass = SC_None;
5840  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5841  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5842    StorageClass = SC_Register;
5843    StorageClassAsWritten = SC_Register;
5844  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5845    Diag(DS.getStorageClassSpecLoc(),
5846         diag::err_invalid_storage_class_in_func_decl);
5847    D.getMutableDeclSpec().ClearStorageClassSpecs();
5848  }
5849
5850  if (D.getDeclSpec().isThreadSpecified())
5851    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5852
5853  DiagnoseFunctionSpecifiers(D);
5854
5855  TagDecl *OwnedDecl = 0;
5856  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5857  QualType parmDeclType = TInfo->getType();
5858
5859  if (getLangOptions().CPlusPlus) {
5860    // Check that there are no default arguments inside the type of this
5861    // parameter.
5862    CheckExtraCXXDefaultArguments(D);
5863
5864    if (OwnedDecl && OwnedDecl->isDefinition()) {
5865      // C++ [dcl.fct]p6:
5866      //   Types shall not be defined in return or parameter types.
5867      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5868        << Context.getTypeDeclType(OwnedDecl);
5869    }
5870
5871    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5872    if (D.getCXXScopeSpec().isSet()) {
5873      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5874        << D.getCXXScopeSpec().getRange();
5875      D.getCXXScopeSpec().clear();
5876    }
5877  }
5878
5879  // Ensure we have a valid name
5880  IdentifierInfo *II = 0;
5881  if (D.hasName()) {
5882    II = D.getIdentifier();
5883    if (!II) {
5884      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5885        << GetNameForDeclarator(D).getName().getAsString();
5886      D.setInvalidType(true);
5887    }
5888  }
5889
5890  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5891  if (II) {
5892    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5893                   ForRedeclaration);
5894    LookupName(R, S);
5895    if (R.isSingleResult()) {
5896      NamedDecl *PrevDecl = R.getFoundDecl();
5897      if (PrevDecl->isTemplateParameter()) {
5898        // Maybe we will complain about the shadowed template parameter.
5899        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5900        // Just pretend that we didn't see the previous declaration.
5901        PrevDecl = 0;
5902      } else if (S->isDeclScope(PrevDecl)) {
5903        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5904        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5905
5906        // Recover by removing the name
5907        II = 0;
5908        D.SetIdentifier(0, D.getIdentifierLoc());
5909        D.setInvalidType(true);
5910      }
5911    }
5912  }
5913
5914  // Temporarily put parameter variables in the translation unit, not
5915  // the enclosing context.  This prevents them from accidentally
5916  // looking like class members in C++.
5917  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5918                                    D.getSourceRange().getBegin(),
5919                                    D.getIdentifierLoc(), II,
5920                                    parmDeclType, TInfo,
5921                                    StorageClass, StorageClassAsWritten);
5922
5923  if (D.isInvalidType())
5924    New->setInvalidDecl();
5925
5926  assert(S->isFunctionPrototypeScope());
5927  assert(S->getFunctionPrototypeDepth() >= 1);
5928  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
5929                    S->getNextFunctionPrototypeIndex());
5930
5931  // Add the parameter declaration into this scope.
5932  S->AddDecl(New);
5933  if (II)
5934    IdResolver.AddDecl(New);
5935
5936  ProcessDeclAttributes(S, New, D);
5937
5938  if (New->hasAttr<BlocksAttr>()) {
5939    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5940  }
5941  return New;
5942}
5943
5944/// \brief Synthesizes a variable for a parameter arising from a
5945/// typedef.
5946ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5947                                              SourceLocation Loc,
5948                                              QualType T) {
5949  /* FIXME: setting StartLoc == Loc.
5950     Would it be worth to modify callers so as to provide proper source
5951     location for the unnamed parameters, embedding the parameter's type? */
5952  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5953                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5954                                           SC_None, SC_None, 0);
5955  Param->setImplicit();
5956  return Param;
5957}
5958
5959void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5960                                    ParmVarDecl * const *ParamEnd) {
5961  // Don't diagnose unused-parameter errors in template instantiations; we
5962  // will already have done so in the template itself.
5963  if (!ActiveTemplateInstantiations.empty())
5964    return;
5965
5966  for (; Param != ParamEnd; ++Param) {
5967    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5968        !(*Param)->hasAttr<UnusedAttr>()) {
5969      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5970        << (*Param)->getDeclName();
5971    }
5972  }
5973}
5974
5975void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5976                                                  ParmVarDecl * const *ParamEnd,
5977                                                  QualType ReturnTy,
5978                                                  NamedDecl *D) {
5979  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5980    return;
5981
5982  // Warn if the return value is pass-by-value and larger than the specified
5983  // threshold.
5984  if (ReturnTy->isPODType()) {
5985    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5986    if (Size > LangOpts.NumLargeByValueCopy)
5987      Diag(D->getLocation(), diag::warn_return_value_size)
5988          << D->getDeclName() << Size;
5989  }
5990
5991  // Warn if any parameter is pass-by-value and larger than the specified
5992  // threshold.
5993  for (; Param != ParamEnd; ++Param) {
5994    QualType T = (*Param)->getType();
5995    if (!T->isPODType())
5996      continue;
5997    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5998    if (Size > LangOpts.NumLargeByValueCopy)
5999      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6000          << (*Param)->getDeclName() << Size;
6001  }
6002}
6003
6004ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6005                                  SourceLocation NameLoc, IdentifierInfo *Name,
6006                                  QualType T, TypeSourceInfo *TSInfo,
6007                                  VarDecl::StorageClass StorageClass,
6008                                  VarDecl::StorageClass StorageClassAsWritten) {
6009  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6010                                         adjustParameterType(T), TSInfo,
6011                                         StorageClass, StorageClassAsWritten,
6012                                         0);
6013
6014  // Parameters can not be abstract class types.
6015  // For record types, this is done by the AbstractClassUsageDiagnoser once
6016  // the class has been completely parsed.
6017  if (!CurContext->isRecord() &&
6018      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6019                             AbstractParamType))
6020    New->setInvalidDecl();
6021
6022  // Parameter declarators cannot be interface types. All ObjC objects are
6023  // passed by reference.
6024  if (T->isObjCObjectType()) {
6025    Diag(NameLoc,
6026         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6027    New->setInvalidDecl();
6028  }
6029
6030  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6031  // duration shall not be qualified by an address-space qualifier."
6032  // Since all parameters have automatic store duration, they can not have
6033  // an address space.
6034  if (T.getAddressSpace() != 0) {
6035    Diag(NameLoc, diag::err_arg_with_address_space);
6036    New->setInvalidDecl();
6037  }
6038
6039  return New;
6040}
6041
6042void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6043                                           SourceLocation LocAfterDecls) {
6044  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6045
6046  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6047  // for a K&R function.
6048  if (!FTI.hasPrototype) {
6049    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6050      --i;
6051      if (FTI.ArgInfo[i].Param == 0) {
6052        llvm::SmallString<256> Code;
6053        llvm::raw_svector_ostream(Code) << "  int "
6054                                        << FTI.ArgInfo[i].Ident->getName()
6055                                        << ";\n";
6056        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6057          << FTI.ArgInfo[i].Ident
6058          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6059
6060        // Implicitly declare the argument as type 'int' for lack of a better
6061        // type.
6062        AttributeFactory attrs;
6063        DeclSpec DS(attrs);
6064        const char* PrevSpec; // unused
6065        unsigned DiagID; // unused
6066        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6067                           PrevSpec, DiagID);
6068        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6069        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6070        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6071      }
6072    }
6073  }
6074}
6075
6076Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6077                                         Declarator &D) {
6078  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6079  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6080  Scope *ParentScope = FnBodyScope->getParent();
6081
6082  Decl *DP = HandleDeclarator(ParentScope, D,
6083                              MultiTemplateParamsArg(*this),
6084                              /*IsFunctionDefinition=*/true);
6085  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6086}
6087
6088static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6089  // Don't warn about invalid declarations.
6090  if (FD->isInvalidDecl())
6091    return false;
6092
6093  // Or declarations that aren't global.
6094  if (!FD->isGlobal())
6095    return false;
6096
6097  // Don't warn about C++ member functions.
6098  if (isa<CXXMethodDecl>(FD))
6099    return false;
6100
6101  // Don't warn about 'main'.
6102  if (FD->isMain())
6103    return false;
6104
6105  // Don't warn about inline functions.
6106  if (FD->isInlined())
6107    return false;
6108
6109  // Don't warn about function templates.
6110  if (FD->getDescribedFunctionTemplate())
6111    return false;
6112
6113  // Don't warn about function template specializations.
6114  if (FD->isFunctionTemplateSpecialization())
6115    return false;
6116
6117  bool MissingPrototype = true;
6118  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6119       Prev; Prev = Prev->getPreviousDeclaration()) {
6120    // Ignore any declarations that occur in function or method
6121    // scope, because they aren't visible from the header.
6122    if (Prev->getDeclContext()->isFunctionOrMethod())
6123      continue;
6124
6125    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6126    break;
6127  }
6128
6129  return MissingPrototype;
6130}
6131
6132void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6133  // Don't complain if we're in GNU89 mode and the previous definition
6134  // was an extern inline function.
6135  const FunctionDecl *Definition;
6136  if (FD->isDefined(Definition) &&
6137      !canRedefineFunction(Definition, getLangOptions())) {
6138    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6139        Definition->getStorageClass() == SC_Extern)
6140      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6141        << FD->getDeclName() << getLangOptions().CPlusPlus;
6142    else
6143      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6144    Diag(Definition->getLocation(), diag::note_previous_definition);
6145  }
6146}
6147
6148Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6149  // Clear the last template instantiation error context.
6150  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6151
6152  if (!D)
6153    return D;
6154  FunctionDecl *FD = 0;
6155
6156  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6157    FD = FunTmpl->getTemplatedDecl();
6158  else
6159    FD = cast<FunctionDecl>(D);
6160
6161  // Enter a new function scope
6162  PushFunctionScope();
6163
6164  // See if this is a redefinition.
6165  if (!FD->isLateTemplateParsed())
6166    CheckForFunctionRedefinition(FD);
6167
6168  // Builtin functions cannot be defined.
6169  if (unsigned BuiltinID = FD->getBuiltinID()) {
6170    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6171      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6172      FD->setInvalidDecl();
6173    }
6174  }
6175
6176  // The return type of a function definition must be complete
6177  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6178  QualType ResultType = FD->getResultType();
6179  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6180      !FD->isInvalidDecl() &&
6181      RequireCompleteType(FD->getLocation(), ResultType,
6182                          diag::err_func_def_incomplete_result))
6183    FD->setInvalidDecl();
6184
6185  // GNU warning -Wmissing-prototypes:
6186  //   Warn if a global function is defined without a previous
6187  //   prototype declaration. This warning is issued even if the
6188  //   definition itself provides a prototype. The aim is to detect
6189  //   global functions that fail to be declared in header files.
6190  if (ShouldWarnAboutMissingPrototype(FD))
6191    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6192
6193  if (FnBodyScope)
6194    PushDeclContext(FnBodyScope, FD);
6195
6196  // Check the validity of our function parameters
6197  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6198                           /*CheckParameterNames=*/true);
6199
6200  // Introduce our parameters into the function scope
6201  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6202    ParmVarDecl *Param = FD->getParamDecl(p);
6203    Param->setOwningFunction(FD);
6204
6205    // If this has an identifier, add it to the scope stack.
6206    if (Param->getIdentifier() && FnBodyScope) {
6207      CheckShadow(FnBodyScope, Param);
6208
6209      PushOnScopeChains(Param, FnBodyScope);
6210    }
6211  }
6212
6213  // Checking attributes of current function definition
6214  // dllimport attribute.
6215  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6216  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6217    // dllimport attribute cannot be directly applied to definition.
6218    // Microsoft accepts dllimport for functions defined within class scope.
6219    if (!DA->isInherited() &&
6220        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6221      Diag(FD->getLocation(),
6222           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6223        << "dllimport";
6224      FD->setInvalidDecl();
6225      return FD;
6226    }
6227
6228    // Visual C++ appears to not think this is an issue, so only issue
6229    // a warning when Microsoft extensions are disabled.
6230    if (!LangOpts.Microsoft) {
6231      // If a symbol previously declared dllimport is later defined, the
6232      // attribute is ignored in subsequent references, and a warning is
6233      // emitted.
6234      Diag(FD->getLocation(),
6235           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6236        << FD->getName() << "dllimport";
6237    }
6238  }
6239  return FD;
6240}
6241
6242/// \brief Given the set of return statements within a function body,
6243/// compute the variables that are subject to the named return value
6244/// optimization.
6245///
6246/// Each of the variables that is subject to the named return value
6247/// optimization will be marked as NRVO variables in the AST, and any
6248/// return statement that has a marked NRVO variable as its NRVO candidate can
6249/// use the named return value optimization.
6250///
6251/// This function applies a very simplistic algorithm for NRVO: if every return
6252/// statement in the function has the same NRVO candidate, that candidate is
6253/// the NRVO variable.
6254///
6255/// FIXME: Employ a smarter algorithm that accounts for multiple return
6256/// statements and the lifetimes of the NRVO candidates. We should be able to
6257/// find a maximal set of NRVO variables.
6258static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6259  ReturnStmt **Returns = Scope->Returns.data();
6260
6261  const VarDecl *NRVOCandidate = 0;
6262  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6263    if (!Returns[I]->getNRVOCandidate())
6264      return;
6265
6266    if (!NRVOCandidate)
6267      NRVOCandidate = Returns[I]->getNRVOCandidate();
6268    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6269      return;
6270  }
6271
6272  if (NRVOCandidate)
6273    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6274}
6275
6276Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6277  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6278}
6279
6280Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6281                                    bool IsInstantiation) {
6282  FunctionDecl *FD = 0;
6283  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6284  if (FunTmpl)
6285    FD = FunTmpl->getTemplatedDecl();
6286  else
6287    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6288
6289  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6290  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6291
6292  if (FD) {
6293    FD->setBody(Body);
6294    if (FD->isMain()) {
6295      // C and C++ allow for main to automagically return 0.
6296      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6297      FD->setHasImplicitReturnZero(true);
6298      WP.disableCheckFallThrough();
6299    }
6300
6301    // MSVC permits the use of pure specifier (=0) on function definition,
6302    // defined at class scope, warn about this non standard construct.
6303    if (getLangOptions().Microsoft && FD->isPure())
6304      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6305
6306    if (!FD->isInvalidDecl()) {
6307      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6308      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6309                                             FD->getResultType(), FD);
6310
6311      // If this is a constructor, we need a vtable.
6312      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6313        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6314
6315      ComputeNRVO(Body, getCurFunction());
6316    }
6317
6318    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6319  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6320    assert(MD == getCurMethodDecl() && "Method parsing confused");
6321    MD->setBody(Body);
6322    if (Body)
6323      MD->setEndLoc(Body->getLocEnd());
6324    if (!MD->isInvalidDecl()) {
6325      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6326      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6327                                             MD->getResultType(), MD);
6328    }
6329  } else {
6330    return 0;
6331  }
6332
6333  // Verify and clean out per-function state.
6334  if (Body) {
6335    // C++ constructors that have function-try-blocks can't have return
6336    // statements in the handlers of that block. (C++ [except.handle]p14)
6337    // Verify this.
6338    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6339      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6340
6341    // Verify that that gotos and switch cases don't jump into scopes illegally.
6342    // Verify that that gotos and switch cases don't jump into scopes illegally.
6343    if (getCurFunction()->NeedsScopeChecking() &&
6344        !dcl->isInvalidDecl() &&
6345        !hasAnyErrorsInThisFunction())
6346      DiagnoseInvalidJumps(Body);
6347
6348    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6349      if (!Destructor->getParent()->isDependentType())
6350        CheckDestructor(Destructor);
6351
6352      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6353                                             Destructor->getParent());
6354    }
6355
6356    // If any errors have occurred, clear out any temporaries that may have
6357    // been leftover. This ensures that these temporaries won't be picked up for
6358    // deletion in some later function.
6359    if (PP.getDiagnostics().hasErrorOccurred() ||
6360        PP.getDiagnostics().getSuppressAllDiagnostics())
6361      ExprTemporaries.clear();
6362    else if (!isa<FunctionTemplateDecl>(dcl)) {
6363      // Since the body is valid, issue any analysis-based warnings that are
6364      // enabled.
6365      ActivePolicy = &WP;
6366    }
6367
6368    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6369  }
6370
6371  if (!IsInstantiation)
6372    PopDeclContext();
6373
6374  PopFunctionOrBlockScope(ActivePolicy, dcl);
6375
6376  // If any errors have occurred, clear out any temporaries that may have
6377  // been leftover. This ensures that these temporaries won't be picked up for
6378  // deletion in some later function.
6379  if (getDiagnostics().hasErrorOccurred())
6380    ExprTemporaries.clear();
6381
6382  return dcl;
6383}
6384
6385/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6386/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6387NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6388                                          IdentifierInfo &II, Scope *S) {
6389  // Before we produce a declaration for an implicitly defined
6390  // function, see whether there was a locally-scoped declaration of
6391  // this name as a function or variable. If so, use that
6392  // (non-visible) declaration, and complain about it.
6393  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6394    = LocallyScopedExternalDecls.find(&II);
6395  if (Pos != LocallyScopedExternalDecls.end()) {
6396    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6397    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6398    return Pos->second;
6399  }
6400
6401  // Extension in C99.  Legal in C90, but warn about it.
6402  if (II.getName().startswith("__builtin_"))
6403    Diag(Loc, diag::warn_builtin_unknown) << &II;
6404  else if (getLangOptions().C99)
6405    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6406  else
6407    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6408
6409  // Set a Declarator for the implicit definition: int foo();
6410  const char *Dummy;
6411  AttributeFactory attrFactory;
6412  DeclSpec DS(attrFactory);
6413  unsigned DiagID;
6414  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6415  (void)Error; // Silence warning.
6416  assert(!Error && "Error setting up implicit decl!");
6417  Declarator D(DS, Declarator::BlockContext);
6418  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6419                                             0, 0, true, SourceLocation(),
6420                                             EST_None, SourceLocation(),
6421                                             0, 0, 0, 0, Loc, Loc, D),
6422                DS.getAttributes(),
6423                SourceLocation());
6424  D.SetIdentifier(&II, Loc);
6425
6426  // Insert this function into translation-unit scope.
6427
6428  DeclContext *PrevDC = CurContext;
6429  CurContext = Context.getTranslationUnitDecl();
6430
6431  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6432  FD->setImplicit();
6433
6434  CurContext = PrevDC;
6435
6436  AddKnownFunctionAttributes(FD);
6437
6438  return FD;
6439}
6440
6441/// \brief Adds any function attributes that we know a priori based on
6442/// the declaration of this function.
6443///
6444/// These attributes can apply both to implicitly-declared builtins
6445/// (like __builtin___printf_chk) or to library-declared functions
6446/// like NSLog or printf.
6447void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6448  if (FD->isInvalidDecl())
6449    return;
6450
6451  // If this is a built-in function, map its builtin attributes to
6452  // actual attributes.
6453  if (unsigned BuiltinID = FD->getBuiltinID()) {
6454    // Handle printf-formatting attributes.
6455    unsigned FormatIdx;
6456    bool HasVAListArg;
6457    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6458      if (!FD->getAttr<FormatAttr>())
6459        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6460                                                "printf", FormatIdx+1,
6461                                               HasVAListArg ? 0 : FormatIdx+2));
6462    }
6463    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6464                                             HasVAListArg)) {
6465     if (!FD->getAttr<FormatAttr>())
6466       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6467                                              "scanf", FormatIdx+1,
6468                                              HasVAListArg ? 0 : FormatIdx+2));
6469    }
6470
6471    // Mark const if we don't care about errno and that is the only
6472    // thing preventing the function from being const. This allows
6473    // IRgen to use LLVM intrinsics for such functions.
6474    if (!getLangOptions().MathErrno &&
6475        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6476      if (!FD->getAttr<ConstAttr>())
6477        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6478    }
6479
6480    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6481      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6482    if (Context.BuiltinInfo.isConst(BuiltinID))
6483      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6484  }
6485
6486  IdentifierInfo *Name = FD->getIdentifier();
6487  if (!Name)
6488    return;
6489  if ((!getLangOptions().CPlusPlus &&
6490       FD->getDeclContext()->isTranslationUnit()) ||
6491      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6492       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6493       LinkageSpecDecl::lang_c)) {
6494    // Okay: this could be a libc/libm/Objective-C function we know
6495    // about.
6496  } else
6497    return;
6498
6499  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6500    // FIXME: NSLog and NSLogv should be target specific
6501    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6502      // FIXME: We known better than our headers.
6503      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6504    } else
6505      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6506                                             "printf", 1,
6507                                             Name->isStr("NSLogv") ? 0 : 2));
6508  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6509    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6510    // target-specific builtins, perhaps?
6511    if (!FD->getAttr<FormatAttr>())
6512      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6513                                             "printf", 2,
6514                                             Name->isStr("vasprintf") ? 0 : 3));
6515  }
6516}
6517
6518TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6519                                    TypeSourceInfo *TInfo) {
6520  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6521  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6522
6523  if (!TInfo) {
6524    assert(D.isInvalidType() && "no declarator info for valid type");
6525    TInfo = Context.getTrivialTypeSourceInfo(T);
6526  }
6527
6528  // Scope manipulation handled by caller.
6529  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6530                                           D.getSourceRange().getBegin(),
6531                                           D.getIdentifierLoc(),
6532                                           D.getIdentifier(),
6533                                           TInfo);
6534
6535  // Bail out immediately if we have an invalid declaration.
6536  if (D.isInvalidType()) {
6537    NewTD->setInvalidDecl();
6538    return NewTD;
6539  }
6540
6541  // C++ [dcl.typedef]p8:
6542  //   If the typedef declaration defines an unnamed class (or
6543  //   enum), the first typedef-name declared by the declaration
6544  //   to be that class type (or enum type) is used to denote the
6545  //   class type (or enum type) for linkage purposes only.
6546  // We need to check whether the type was declared in the declaration.
6547  switch (D.getDeclSpec().getTypeSpecType()) {
6548  case TST_enum:
6549  case TST_struct:
6550  case TST_union:
6551  case TST_class: {
6552    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6553
6554    // Do nothing if the tag is not anonymous or already has an
6555    // associated typedef (from an earlier typedef in this decl group).
6556    if (tagFromDeclSpec->getIdentifier()) break;
6557    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6558
6559    // A well-formed anonymous tag must always be a TUK_Definition.
6560    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6561
6562    // The type must match the tag exactly;  no qualifiers allowed.
6563    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6564      break;
6565
6566    // Otherwise, set this is the anon-decl typedef for the tag.
6567    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6568    break;
6569  }
6570
6571  default:
6572    break;
6573  }
6574
6575  return NewTD;
6576}
6577
6578
6579/// \brief Determine whether a tag with a given kind is acceptable
6580/// as a redeclaration of the given tag declaration.
6581///
6582/// \returns true if the new tag kind is acceptable, false otherwise.
6583bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6584                                        TagTypeKind NewTag,
6585                                        SourceLocation NewTagLoc,
6586                                        const IdentifierInfo &Name) {
6587  // C++ [dcl.type.elab]p3:
6588  //   The class-key or enum keyword present in the
6589  //   elaborated-type-specifier shall agree in kind with the
6590  //   declaration to which the name in the elaborated-type-specifier
6591  //   refers. This rule also applies to the form of
6592  //   elaborated-type-specifier that declares a class-name or
6593  //   friend class since it can be construed as referring to the
6594  //   definition of the class. Thus, in any
6595  //   elaborated-type-specifier, the enum keyword shall be used to
6596  //   refer to an enumeration (7.2), the union class-key shall be
6597  //   used to refer to a union (clause 9), and either the class or
6598  //   struct class-key shall be used to refer to a class (clause 9)
6599  //   declared using the class or struct class-key.
6600  TagTypeKind OldTag = Previous->getTagKind();
6601  if (OldTag == NewTag)
6602    return true;
6603
6604  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6605      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6606    // Warn about the struct/class tag mismatch.
6607    bool isTemplate = false;
6608    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6609      isTemplate = Record->getDescribedClassTemplate();
6610
6611    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6612      << (NewTag == TTK_Class)
6613      << isTemplate << &Name
6614      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6615                              OldTag == TTK_Class? "class" : "struct");
6616    Diag(Previous->getLocation(), diag::note_previous_use);
6617    return true;
6618  }
6619  return false;
6620}
6621
6622/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6623/// former case, Name will be non-null.  In the later case, Name will be null.
6624/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6625/// reference/declaration/definition of a tag.
6626Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6627                     SourceLocation KWLoc, CXXScopeSpec &SS,
6628                     IdentifierInfo *Name, SourceLocation NameLoc,
6629                     AttributeList *Attr, AccessSpecifier AS,
6630                     MultiTemplateParamsArg TemplateParameterLists,
6631                     bool &OwnedDecl, bool &IsDependent,
6632                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6633                     TypeResult UnderlyingType) {
6634  // If this is not a definition, it must have a name.
6635  assert((Name != 0 || TUK == TUK_Definition) &&
6636         "Nameless record must be a definition!");
6637  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6638
6639  OwnedDecl = false;
6640  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6641
6642  // FIXME: Check explicit specializations more carefully.
6643  bool isExplicitSpecialization = false;
6644  bool Invalid = false;
6645
6646  // We only need to do this matching if we have template parameters
6647  // or a scope specifier, which also conveniently avoids this work
6648  // for non-C++ cases.
6649  if (TemplateParameterLists.size() > 0 ||
6650      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6651    if (TemplateParameterList *TemplateParams
6652          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6653                                                TemplateParameterLists.get(),
6654                                                TemplateParameterLists.size(),
6655                                                    TUK == TUK_Friend,
6656                                                    isExplicitSpecialization,
6657                                                    Invalid)) {
6658      if (TemplateParams->size() > 0) {
6659        // This is a declaration or definition of a class template (which may
6660        // be a member of another template).
6661
6662        if (Invalid)
6663          return 0;
6664
6665        OwnedDecl = false;
6666        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6667                                               SS, Name, NameLoc, Attr,
6668                                               TemplateParams, AS,
6669                                           TemplateParameterLists.size() - 1,
6670                 (TemplateParameterList**) TemplateParameterLists.release());
6671        return Result.get();
6672      } else {
6673        // The "template<>" header is extraneous.
6674        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6675          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6676        isExplicitSpecialization = true;
6677      }
6678    }
6679  }
6680
6681  // Figure out the underlying type if this a enum declaration. We need to do
6682  // this early, because it's needed to detect if this is an incompatible
6683  // redeclaration.
6684  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6685
6686  if (Kind == TTK_Enum) {
6687    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6688      // No underlying type explicitly specified, or we failed to parse the
6689      // type, default to int.
6690      EnumUnderlying = Context.IntTy.getTypePtr();
6691    else if (UnderlyingType.get()) {
6692      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6693      // integral type; any cv-qualification is ignored.
6694      TypeSourceInfo *TI = 0;
6695      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6696      EnumUnderlying = TI;
6697
6698      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6699
6700      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6701        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6702          << T;
6703        // Recover by falling back to int.
6704        EnumUnderlying = Context.IntTy.getTypePtr();
6705      }
6706
6707      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6708                                          UPPC_FixedUnderlyingType))
6709        EnumUnderlying = Context.IntTy.getTypePtr();
6710
6711    } else if (getLangOptions().Microsoft)
6712      // Microsoft enums are always of int type.
6713      EnumUnderlying = Context.IntTy.getTypePtr();
6714  }
6715
6716  DeclContext *SearchDC = CurContext;
6717  DeclContext *DC = CurContext;
6718  bool isStdBadAlloc = false;
6719
6720  RedeclarationKind Redecl = ForRedeclaration;
6721  if (TUK == TUK_Friend || TUK == TUK_Reference)
6722    Redecl = NotForRedeclaration;
6723
6724  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6725
6726  if (Name && SS.isNotEmpty()) {
6727    // We have a nested-name tag ('struct foo::bar').
6728
6729    // Check for invalid 'foo::'.
6730    if (SS.isInvalid()) {
6731      Name = 0;
6732      goto CreateNewDecl;
6733    }
6734
6735    // If this is a friend or a reference to a class in a dependent
6736    // context, don't try to make a decl for it.
6737    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6738      DC = computeDeclContext(SS, false);
6739      if (!DC) {
6740        IsDependent = true;
6741        return 0;
6742      }
6743    } else {
6744      DC = computeDeclContext(SS, true);
6745      if (!DC) {
6746        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6747          << SS.getRange();
6748        return 0;
6749      }
6750    }
6751
6752    if (RequireCompleteDeclContext(SS, DC))
6753      return 0;
6754
6755    SearchDC = DC;
6756    // Look-up name inside 'foo::'.
6757    LookupQualifiedName(Previous, DC);
6758
6759    if (Previous.isAmbiguous())
6760      return 0;
6761
6762    if (Previous.empty()) {
6763      // Name lookup did not find anything. However, if the
6764      // nested-name-specifier refers to the current instantiation,
6765      // and that current instantiation has any dependent base
6766      // classes, we might find something at instantiation time: treat
6767      // this as a dependent elaborated-type-specifier.
6768      // But this only makes any sense for reference-like lookups.
6769      if (Previous.wasNotFoundInCurrentInstantiation() &&
6770          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6771        IsDependent = true;
6772        return 0;
6773      }
6774
6775      // A tag 'foo::bar' must already exist.
6776      Diag(NameLoc, diag::err_not_tag_in_scope)
6777        << Kind << Name << DC << SS.getRange();
6778      Name = 0;
6779      Invalid = true;
6780      goto CreateNewDecl;
6781    }
6782  } else if (Name) {
6783    // If this is a named struct, check to see if there was a previous forward
6784    // declaration or definition.
6785    // FIXME: We're looking into outer scopes here, even when we
6786    // shouldn't be. Doing so can result in ambiguities that we
6787    // shouldn't be diagnosing.
6788    LookupName(Previous, S);
6789
6790    if (Previous.isAmbiguous() &&
6791        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6792      LookupResult::Filter F = Previous.makeFilter();
6793      while (F.hasNext()) {
6794        NamedDecl *ND = F.next();
6795        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6796          F.erase();
6797      }
6798      F.done();
6799    }
6800
6801    // Note:  there used to be some attempt at recovery here.
6802    if (Previous.isAmbiguous())
6803      return 0;
6804
6805    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6806      // FIXME: This makes sure that we ignore the contexts associated
6807      // with C structs, unions, and enums when looking for a matching
6808      // tag declaration or definition. See the similar lookup tweak
6809      // in Sema::LookupName; is there a better way to deal with this?
6810      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6811        SearchDC = SearchDC->getParent();
6812    }
6813  } else if (S->isFunctionPrototypeScope()) {
6814    // If this is an enum declaration in function prototype scope, set its
6815    // initial context to the translation unit.
6816    SearchDC = Context.getTranslationUnitDecl();
6817  }
6818
6819  if (Previous.isSingleResult() &&
6820      Previous.getFoundDecl()->isTemplateParameter()) {
6821    // Maybe we will complain about the shadowed template parameter.
6822    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6823    // Just pretend that we didn't see the previous declaration.
6824    Previous.clear();
6825  }
6826
6827  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6828      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6829    // This is a declaration of or a reference to "std::bad_alloc".
6830    isStdBadAlloc = true;
6831
6832    if (Previous.empty() && StdBadAlloc) {
6833      // std::bad_alloc has been implicitly declared (but made invisible to
6834      // name lookup). Fill in this implicit declaration as the previous
6835      // declaration, so that the declarations get chained appropriately.
6836      Previous.addDecl(getStdBadAlloc());
6837    }
6838  }
6839
6840  // If we didn't find a previous declaration, and this is a reference
6841  // (or friend reference), move to the correct scope.  In C++, we
6842  // also need to do a redeclaration lookup there, just in case
6843  // there's a shadow friend decl.
6844  if (Name && Previous.empty() &&
6845      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6846    if (Invalid) goto CreateNewDecl;
6847    assert(SS.isEmpty());
6848
6849    if (TUK == TUK_Reference) {
6850      // C++ [basic.scope.pdecl]p5:
6851      //   -- for an elaborated-type-specifier of the form
6852      //
6853      //          class-key identifier
6854      //
6855      //      if the elaborated-type-specifier is used in the
6856      //      decl-specifier-seq or parameter-declaration-clause of a
6857      //      function defined in namespace scope, the identifier is
6858      //      declared as a class-name in the namespace that contains
6859      //      the declaration; otherwise, except as a friend
6860      //      declaration, the identifier is declared in the smallest
6861      //      non-class, non-function-prototype scope that contains the
6862      //      declaration.
6863      //
6864      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6865      // C structs and unions.
6866      //
6867      // It is an error in C++ to declare (rather than define) an enum
6868      // type, including via an elaborated type specifier.  We'll
6869      // diagnose that later; for now, declare the enum in the same
6870      // scope as we would have picked for any other tag type.
6871      //
6872      // GNU C also supports this behavior as part of its incomplete
6873      // enum types extension, while GNU C++ does not.
6874      //
6875      // Find the context where we'll be declaring the tag.
6876      // FIXME: We would like to maintain the current DeclContext as the
6877      // lexical context,
6878      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6879        SearchDC = SearchDC->getParent();
6880
6881      // Find the scope where we'll be declaring the tag.
6882      while (S->isClassScope() ||
6883             (getLangOptions().CPlusPlus &&
6884              S->isFunctionPrototypeScope()) ||
6885             ((S->getFlags() & Scope::DeclScope) == 0) ||
6886             (S->getEntity() &&
6887              ((DeclContext *)S->getEntity())->isTransparentContext()))
6888        S = S->getParent();
6889    } else {
6890      assert(TUK == TUK_Friend);
6891      // C++ [namespace.memdef]p3:
6892      //   If a friend declaration in a non-local class first declares a
6893      //   class or function, the friend class or function is a member of
6894      //   the innermost enclosing namespace.
6895      SearchDC = SearchDC->getEnclosingNamespaceContext();
6896    }
6897
6898    // In C++, we need to do a redeclaration lookup to properly
6899    // diagnose some problems.
6900    if (getLangOptions().CPlusPlus) {
6901      Previous.setRedeclarationKind(ForRedeclaration);
6902      LookupQualifiedName(Previous, SearchDC);
6903    }
6904  }
6905
6906  if (!Previous.empty()) {
6907    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6908
6909    // It's okay to have a tag decl in the same scope as a typedef
6910    // which hides a tag decl in the same scope.  Finding this
6911    // insanity with a redeclaration lookup can only actually happen
6912    // in C++.
6913    //
6914    // This is also okay for elaborated-type-specifiers, which is
6915    // technically forbidden by the current standard but which is
6916    // okay according to the likely resolution of an open issue;
6917    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6918    if (getLangOptions().CPlusPlus) {
6919      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6920        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6921          TagDecl *Tag = TT->getDecl();
6922          if (Tag->getDeclName() == Name &&
6923              Tag->getDeclContext()->getRedeclContext()
6924                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6925            PrevDecl = Tag;
6926            Previous.clear();
6927            Previous.addDecl(Tag);
6928            Previous.resolveKind();
6929          }
6930        }
6931      }
6932    }
6933
6934    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6935      // If this is a use of a previous tag, or if the tag is already declared
6936      // in the same scope (so that the definition/declaration completes or
6937      // rementions the tag), reuse the decl.
6938      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6939          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6940        // Make sure that this wasn't declared as an enum and now used as a
6941        // struct or something similar.
6942        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6943          bool SafeToContinue
6944            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6945               Kind != TTK_Enum);
6946          if (SafeToContinue)
6947            Diag(KWLoc, diag::err_use_with_wrong_tag)
6948              << Name
6949              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6950                                              PrevTagDecl->getKindName());
6951          else
6952            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6953          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6954
6955          if (SafeToContinue)
6956            Kind = PrevTagDecl->getTagKind();
6957          else {
6958            // Recover by making this an anonymous redefinition.
6959            Name = 0;
6960            Previous.clear();
6961            Invalid = true;
6962          }
6963        }
6964
6965        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6966          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6967
6968          // All conflicts with previous declarations are recovered by
6969          // returning the previous declaration.
6970          if (ScopedEnum != PrevEnum->isScoped()) {
6971            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6972              << PrevEnum->isScoped();
6973            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6974            return PrevTagDecl;
6975          }
6976          else if (EnumUnderlying && PrevEnum->isFixed()) {
6977            QualType T;
6978            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6979                T = TI->getType();
6980            else
6981                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6982
6983            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6984              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6985                   diag::err_enum_redeclare_type_mismatch)
6986                << T
6987                << PrevEnum->getIntegerType();
6988              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6989              return PrevTagDecl;
6990            }
6991          }
6992          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6993            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6994              << PrevEnum->isFixed();
6995            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6996            return PrevTagDecl;
6997          }
6998        }
6999
7000        if (!Invalid) {
7001          // If this is a use, just return the declaration we found.
7002
7003          // FIXME: In the future, return a variant or some other clue
7004          // for the consumer of this Decl to know it doesn't own it.
7005          // For our current ASTs this shouldn't be a problem, but will
7006          // need to be changed with DeclGroups.
7007          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
7008              TUK == TUK_Friend)
7009            return PrevTagDecl;
7010
7011          // Diagnose attempts to redefine a tag.
7012          if (TUK == TUK_Definition) {
7013            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7014              // If we're defining a specialization and the previous definition
7015              // is from an implicit instantiation, don't emit an error
7016              // here; we'll catch this in the general case below.
7017              if (!isExplicitSpecialization ||
7018                  !isa<CXXRecordDecl>(Def) ||
7019                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7020                                               == TSK_ExplicitSpecialization) {
7021                Diag(NameLoc, diag::err_redefinition) << Name;
7022                Diag(Def->getLocation(), diag::note_previous_definition);
7023                // If this is a redefinition, recover by making this
7024                // struct be anonymous, which will make any later
7025                // references get the previous definition.
7026                Name = 0;
7027                Previous.clear();
7028                Invalid = true;
7029              }
7030            } else {
7031              // If the type is currently being defined, complain
7032              // about a nested redefinition.
7033              const TagType *Tag
7034                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7035              if (Tag->isBeingDefined()) {
7036                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7037                Diag(PrevTagDecl->getLocation(),
7038                     diag::note_previous_definition);
7039                Name = 0;
7040                Previous.clear();
7041                Invalid = true;
7042              }
7043            }
7044
7045            // Okay, this is definition of a previously declared or referenced
7046            // tag PrevDecl. We're going to create a new Decl for it.
7047          }
7048        }
7049        // If we get here we have (another) forward declaration or we
7050        // have a definition.  Just create a new decl.
7051
7052      } else {
7053        // If we get here, this is a definition of a new tag type in a nested
7054        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7055        // new decl/type.  We set PrevDecl to NULL so that the entities
7056        // have distinct types.
7057        Previous.clear();
7058      }
7059      // If we get here, we're going to create a new Decl. If PrevDecl
7060      // is non-NULL, it's a definition of the tag declared by
7061      // PrevDecl. If it's NULL, we have a new definition.
7062
7063
7064    // Otherwise, PrevDecl is not a tag, but was found with tag
7065    // lookup.  This is only actually possible in C++, where a few
7066    // things like templates still live in the tag namespace.
7067    } else {
7068      assert(getLangOptions().CPlusPlus);
7069
7070      // Use a better diagnostic if an elaborated-type-specifier
7071      // found the wrong kind of type on the first
7072      // (non-redeclaration) lookup.
7073      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7074          !Previous.isForRedeclaration()) {
7075        unsigned Kind = 0;
7076        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7077        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7078        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7079        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7080        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7081        Invalid = true;
7082
7083      // Otherwise, only diagnose if the declaration is in scope.
7084      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7085                                isExplicitSpecialization)) {
7086        // do nothing
7087
7088      // Diagnose implicit declarations introduced by elaborated types.
7089      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7090        unsigned Kind = 0;
7091        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7092        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7093        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7094        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7095        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7096        Invalid = true;
7097
7098      // Otherwise it's a declaration.  Call out a particularly common
7099      // case here.
7100      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7101        unsigned Kind = 0;
7102        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7103        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7104          << Name << Kind << TND->getUnderlyingType();
7105        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7106        Invalid = true;
7107
7108      // Otherwise, diagnose.
7109      } else {
7110        // The tag name clashes with something else in the target scope,
7111        // issue an error and recover by making this tag be anonymous.
7112        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7113        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7114        Name = 0;
7115        Invalid = true;
7116      }
7117
7118      // The existing declaration isn't relevant to us; we're in a
7119      // new scope, so clear out the previous declaration.
7120      Previous.clear();
7121    }
7122  }
7123
7124CreateNewDecl:
7125
7126  TagDecl *PrevDecl = 0;
7127  if (Previous.isSingleResult())
7128    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7129
7130  // If there is an identifier, use the location of the identifier as the
7131  // location of the decl, otherwise use the location of the struct/union
7132  // keyword.
7133  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7134
7135  // Otherwise, create a new declaration. If there is a previous
7136  // declaration of the same entity, the two will be linked via
7137  // PrevDecl.
7138  TagDecl *New;
7139
7140  bool IsForwardReference = false;
7141  if (Kind == TTK_Enum) {
7142    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7143    // enum X { A, B, C } D;    D should chain to X.
7144    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7145                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7146                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7147    // If this is an undefined enum, warn.
7148    if (TUK != TUK_Definition && !Invalid) {
7149      TagDecl *Def;
7150      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7151        // C++0x: 7.2p2: opaque-enum-declaration.
7152        // Conflicts are diagnosed above. Do nothing.
7153      }
7154      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7155        Diag(Loc, diag::ext_forward_ref_enum_def)
7156          << New;
7157        Diag(Def->getLocation(), diag::note_previous_definition);
7158      } else {
7159        unsigned DiagID = diag::ext_forward_ref_enum;
7160        if (getLangOptions().Microsoft)
7161          DiagID = diag::ext_ms_forward_ref_enum;
7162        else if (getLangOptions().CPlusPlus)
7163          DiagID = diag::err_forward_ref_enum;
7164        Diag(Loc, DiagID);
7165
7166        // If this is a forward-declared reference to an enumeration, make a
7167        // note of it; we won't actually be introducing the declaration into
7168        // the declaration context.
7169        if (TUK == TUK_Reference)
7170          IsForwardReference = true;
7171      }
7172    }
7173
7174    if (EnumUnderlying) {
7175      EnumDecl *ED = cast<EnumDecl>(New);
7176      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7177        ED->setIntegerTypeSourceInfo(TI);
7178      else
7179        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7180      ED->setPromotionType(ED->getIntegerType());
7181    }
7182
7183  } else {
7184    // struct/union/class
7185
7186    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7187    // struct X { int A; } D;    D should chain to X.
7188    if (getLangOptions().CPlusPlus) {
7189      // FIXME: Look for a way to use RecordDecl for simple structs.
7190      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7191                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7192
7193      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7194        StdBadAlloc = cast<CXXRecordDecl>(New);
7195    } else
7196      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7197                               cast_or_null<RecordDecl>(PrevDecl));
7198  }
7199
7200  // Maybe add qualifier info.
7201  if (SS.isNotEmpty()) {
7202    if (SS.isSet()) {
7203      New->setQualifierInfo(SS.getWithLocInContext(Context));
7204      if (TemplateParameterLists.size() > 0) {
7205        New->setTemplateParameterListsInfo(Context,
7206                                           TemplateParameterLists.size(),
7207                    (TemplateParameterList**) TemplateParameterLists.release());
7208      }
7209    }
7210    else
7211      Invalid = true;
7212  }
7213
7214  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7215    // Add alignment attributes if necessary; these attributes are checked when
7216    // the ASTContext lays out the structure.
7217    //
7218    // It is important for implementing the correct semantics that this
7219    // happen here (in act on tag decl). The #pragma pack stack is
7220    // maintained as a result of parser callbacks which can occur at
7221    // many points during the parsing of a struct declaration (because
7222    // the #pragma tokens are effectively skipped over during the
7223    // parsing of the struct).
7224    AddAlignmentAttributesForRecord(RD);
7225
7226    AddMsStructLayoutForRecord(RD);
7227  }
7228
7229  // If this is a specialization of a member class (of a class template),
7230  // check the specialization.
7231  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7232    Invalid = true;
7233
7234  if (Invalid)
7235    New->setInvalidDecl();
7236
7237  if (Attr)
7238    ProcessDeclAttributeList(S, New, Attr);
7239
7240  // If we're declaring or defining a tag in function prototype scope
7241  // in C, note that this type can only be used within the function.
7242  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7243    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7244
7245  // Set the lexical context. If the tag has a C++ scope specifier, the
7246  // lexical context will be different from the semantic context.
7247  New->setLexicalDeclContext(CurContext);
7248
7249  // Mark this as a friend decl if applicable.
7250  if (TUK == TUK_Friend)
7251    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7252
7253  // Set the access specifier.
7254  if (!Invalid && SearchDC->isRecord())
7255    SetMemberAccessSpecifier(New, PrevDecl, AS);
7256
7257  if (TUK == TUK_Definition)
7258    New->startDefinition();
7259
7260  // If this has an identifier, add it to the scope stack.
7261  if (TUK == TUK_Friend) {
7262    // We might be replacing an existing declaration in the lookup tables;
7263    // if so, borrow its access specifier.
7264    if (PrevDecl)
7265      New->setAccess(PrevDecl->getAccess());
7266
7267    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7268    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7269    if (Name) // can be null along some error paths
7270      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7271        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7272  } else if (Name) {
7273    S = getNonFieldDeclScope(S);
7274    PushOnScopeChains(New, S, !IsForwardReference);
7275    if (IsForwardReference)
7276      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7277
7278  } else {
7279    CurContext->addDecl(New);
7280  }
7281
7282  // If this is the C FILE type, notify the AST context.
7283  if (IdentifierInfo *II = New->getIdentifier())
7284    if (!New->isInvalidDecl() &&
7285        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7286        II->isStr("FILE"))
7287      Context.setFILEDecl(New);
7288
7289  OwnedDecl = true;
7290  return New;
7291}
7292
7293void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7294  AdjustDeclIfTemplate(TagD);
7295  TagDecl *Tag = cast<TagDecl>(TagD);
7296
7297  // Enter the tag context.
7298  PushDeclContext(S, Tag);
7299}
7300
7301void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7302                                           SourceLocation FinalLoc,
7303                                           SourceLocation LBraceLoc) {
7304  AdjustDeclIfTemplate(TagD);
7305  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7306
7307  FieldCollector->StartClass();
7308
7309  if (!Record->getIdentifier())
7310    return;
7311
7312  if (FinalLoc.isValid())
7313    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7314
7315  // C++ [class]p2:
7316  //   [...] The class-name is also inserted into the scope of the
7317  //   class itself; this is known as the injected-class-name. For
7318  //   purposes of access checking, the injected-class-name is treated
7319  //   as if it were a public member name.
7320  CXXRecordDecl *InjectedClassName
7321    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7322                            Record->getLocStart(), Record->getLocation(),
7323                            Record->getIdentifier(),
7324                            /*PrevDecl=*/0,
7325                            /*DelayTypeCreation=*/true);
7326  Context.getTypeDeclType(InjectedClassName, Record);
7327  InjectedClassName->setImplicit();
7328  InjectedClassName->setAccess(AS_public);
7329  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7330      InjectedClassName->setDescribedClassTemplate(Template);
7331  PushOnScopeChains(InjectedClassName, S);
7332  assert(InjectedClassName->isInjectedClassName() &&
7333         "Broken injected-class-name");
7334}
7335
7336void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7337                                    SourceLocation RBraceLoc) {
7338  AdjustDeclIfTemplate(TagD);
7339  TagDecl *Tag = cast<TagDecl>(TagD);
7340  Tag->setRBraceLoc(RBraceLoc);
7341
7342  if (isa<CXXRecordDecl>(Tag))
7343    FieldCollector->FinishClass();
7344
7345  // Exit this scope of this tag's definition.
7346  PopDeclContext();
7347
7348  // Notify the consumer that we've defined a tag.
7349  Consumer.HandleTagDeclDefinition(Tag);
7350}
7351
7352void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7353  AdjustDeclIfTemplate(TagD);
7354  TagDecl *Tag = cast<TagDecl>(TagD);
7355  Tag->setInvalidDecl();
7356
7357  // We're undoing ActOnTagStartDefinition here, not
7358  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7359  // the FieldCollector.
7360
7361  PopDeclContext();
7362}
7363
7364// Note that FieldName may be null for anonymous bitfields.
7365bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7366                          QualType FieldTy, const Expr *BitWidth,
7367                          bool *ZeroWidth) {
7368  // Default to true; that shouldn't confuse checks for emptiness
7369  if (ZeroWidth)
7370    *ZeroWidth = true;
7371
7372  // C99 6.7.2.1p4 - verify the field type.
7373  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7374  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7375    // Handle incomplete types with specific error.
7376    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7377      return true;
7378    if (FieldName)
7379      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7380        << FieldName << FieldTy << BitWidth->getSourceRange();
7381    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7382      << FieldTy << BitWidth->getSourceRange();
7383  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7384                                             UPPC_BitFieldWidth))
7385    return true;
7386
7387  // If the bit-width is type- or value-dependent, don't try to check
7388  // it now.
7389  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7390    return false;
7391
7392  llvm::APSInt Value;
7393  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7394    return true;
7395
7396  if (Value != 0 && ZeroWidth)
7397    *ZeroWidth = false;
7398
7399  // Zero-width bitfield is ok for anonymous field.
7400  if (Value == 0 && FieldName)
7401    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7402
7403  if (Value.isSigned() && Value.isNegative()) {
7404    if (FieldName)
7405      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7406               << FieldName << Value.toString(10);
7407    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7408      << Value.toString(10);
7409  }
7410
7411  if (!FieldTy->isDependentType()) {
7412    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7413    if (Value.getZExtValue() > TypeSize) {
7414      if (!getLangOptions().CPlusPlus) {
7415        if (FieldName)
7416          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7417            << FieldName << (unsigned)Value.getZExtValue()
7418            << (unsigned)TypeSize;
7419
7420        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7421          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7422      }
7423
7424      if (FieldName)
7425        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7426          << FieldName << (unsigned)Value.getZExtValue()
7427          << (unsigned)TypeSize;
7428      else
7429        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7430          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7431    }
7432  }
7433
7434  return false;
7435}
7436
7437/// ActOnField - Each field of a struct/union/class is passed into this in order
7438/// to create a FieldDecl object for it.
7439Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7440                                 SourceLocation DeclStart,
7441                                 Declarator &D, ExprTy *BitfieldWidth) {
7442  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7443                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7444                               AS_public);
7445  return Res;
7446}
7447
7448/// HandleField - Analyze a field of a C struct or a C++ data member.
7449///
7450FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7451                             SourceLocation DeclStart,
7452                             Declarator &D, Expr *BitWidth,
7453                             AccessSpecifier AS) {
7454  IdentifierInfo *II = D.getIdentifier();
7455  SourceLocation Loc = DeclStart;
7456  if (II) Loc = D.getIdentifierLoc();
7457
7458  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7459  QualType T = TInfo->getType();
7460  if (getLangOptions().CPlusPlus) {
7461    CheckExtraCXXDefaultArguments(D);
7462
7463    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7464                                        UPPC_DataMemberType)) {
7465      D.setInvalidType();
7466      T = Context.IntTy;
7467      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7468    }
7469  }
7470
7471  DiagnoseFunctionSpecifiers(D);
7472
7473  if (D.getDeclSpec().isThreadSpecified())
7474    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7475
7476  // Check to see if this name was declared as a member previously
7477  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7478  LookupName(Previous, S);
7479  assert((Previous.empty() || Previous.isOverloadedResult() ||
7480          Previous.isSingleResult())
7481    && "Lookup of member name should be either overloaded, single or null");
7482
7483  // If the name is overloaded then get any declaration else get the single result
7484  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7485    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7486
7487  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7488    // Maybe we will complain about the shadowed template parameter.
7489    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7490    // Just pretend that we didn't see the previous declaration.
7491    PrevDecl = 0;
7492  }
7493
7494  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7495    PrevDecl = 0;
7496
7497  bool Mutable
7498    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7499  SourceLocation TSSL = D.getSourceRange().getBegin();
7500  FieldDecl *NewFD
7501    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7502                     AS, PrevDecl, &D);
7503
7504  if (NewFD->isInvalidDecl())
7505    Record->setInvalidDecl();
7506
7507  if (NewFD->isInvalidDecl() && PrevDecl) {
7508    // Don't introduce NewFD into scope; there's already something
7509    // with the same name in the same scope.
7510  } else if (II) {
7511    PushOnScopeChains(NewFD, S);
7512  } else
7513    Record->addDecl(NewFD);
7514
7515  return NewFD;
7516}
7517
7518/// \brief Build a new FieldDecl and check its well-formedness.
7519///
7520/// This routine builds a new FieldDecl given the fields name, type,
7521/// record, etc. \p PrevDecl should refer to any previous declaration
7522/// with the same name and in the same scope as the field to be
7523/// created.
7524///
7525/// \returns a new FieldDecl.
7526///
7527/// \todo The Declarator argument is a hack. It will be removed once
7528FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7529                                TypeSourceInfo *TInfo,
7530                                RecordDecl *Record, SourceLocation Loc,
7531                                bool Mutable, Expr *BitWidth,
7532                                SourceLocation TSSL,
7533                                AccessSpecifier AS, NamedDecl *PrevDecl,
7534                                Declarator *D) {
7535  IdentifierInfo *II = Name.getAsIdentifierInfo();
7536  bool InvalidDecl = false;
7537  if (D) InvalidDecl = D->isInvalidType();
7538
7539  // If we receive a broken type, recover by assuming 'int' and
7540  // marking this declaration as invalid.
7541  if (T.isNull()) {
7542    InvalidDecl = true;
7543    T = Context.IntTy;
7544  }
7545
7546  QualType EltTy = Context.getBaseElementType(T);
7547  if (!EltTy->isDependentType() &&
7548      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7549    // Fields of incomplete type force their record to be invalid.
7550    Record->setInvalidDecl();
7551    InvalidDecl = true;
7552  }
7553
7554  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7555  // than a variably modified type.
7556  if (!InvalidDecl && T->isVariablyModifiedType()) {
7557    bool SizeIsNegative;
7558    llvm::APSInt Oversized;
7559    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7560                                                           SizeIsNegative,
7561                                                           Oversized);
7562    if (!FixedTy.isNull()) {
7563      Diag(Loc, diag::warn_illegal_constant_array_size);
7564      T = FixedTy;
7565    } else {
7566      if (SizeIsNegative)
7567        Diag(Loc, diag::err_typecheck_negative_array_size);
7568      else if (Oversized.getBoolValue())
7569        Diag(Loc, diag::err_array_too_large)
7570          << Oversized.toString(10);
7571      else
7572        Diag(Loc, diag::err_typecheck_field_variable_size);
7573      InvalidDecl = true;
7574    }
7575  }
7576
7577  // Fields can not have abstract class types
7578  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7579                                             diag::err_abstract_type_in_decl,
7580                                             AbstractFieldType))
7581    InvalidDecl = true;
7582
7583  bool ZeroWidth = false;
7584  // If this is declared as a bit-field, check the bit-field.
7585  if (!InvalidDecl && BitWidth &&
7586      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7587    InvalidDecl = true;
7588    BitWidth = 0;
7589    ZeroWidth = false;
7590  }
7591
7592  // Check that 'mutable' is consistent with the type of the declaration.
7593  if (!InvalidDecl && Mutable) {
7594    unsigned DiagID = 0;
7595    if (T->isReferenceType())
7596      DiagID = diag::err_mutable_reference;
7597    else if (T.isConstQualified())
7598      DiagID = diag::err_mutable_const;
7599
7600    if (DiagID) {
7601      SourceLocation ErrLoc = Loc;
7602      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7603        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7604      Diag(ErrLoc, DiagID);
7605      Mutable = false;
7606      InvalidDecl = true;
7607    }
7608  }
7609
7610  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7611                                       BitWidth, Mutable);
7612  if (InvalidDecl)
7613    NewFD->setInvalidDecl();
7614
7615  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7616    Diag(Loc, diag::err_duplicate_member) << II;
7617    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7618    NewFD->setInvalidDecl();
7619  }
7620
7621  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7622    if (Record->isUnion()) {
7623      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7624        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7625        if (RDecl->getDefinition()) {
7626          // C++ [class.union]p1: An object of a class with a non-trivial
7627          // constructor, a non-trivial copy constructor, a non-trivial
7628          // destructor, or a non-trivial copy assignment operator
7629          // cannot be a member of a union, nor can an array of such
7630          // objects.
7631          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7632            NewFD->setInvalidDecl();
7633        }
7634      }
7635
7636      // C++ [class.union]p1: If a union contains a member of reference type,
7637      // the program is ill-formed.
7638      if (EltTy->isReferenceType()) {
7639        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7640          << NewFD->getDeclName() << EltTy;
7641        NewFD->setInvalidDecl();
7642      }
7643    }
7644  }
7645
7646  // FIXME: We need to pass in the attributes given an AST
7647  // representation, not a parser representation.
7648  if (D)
7649    // FIXME: What to pass instead of TUScope?
7650    ProcessDeclAttributes(TUScope, NewFD, *D);
7651
7652  if (T.isObjCGCWeak())
7653    Diag(Loc, diag::warn_attribute_weak_on_field);
7654
7655  NewFD->setAccess(AS);
7656  return NewFD;
7657}
7658
7659bool Sema::CheckNontrivialField(FieldDecl *FD) {
7660  assert(FD);
7661  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7662
7663  if (FD->isInvalidDecl())
7664    return true;
7665
7666  QualType EltTy = Context.getBaseElementType(FD->getType());
7667  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7668    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7669    if (RDecl->getDefinition()) {
7670      // We check for copy constructors before constructors
7671      // because otherwise we'll never get complaints about
7672      // copy constructors.
7673
7674      CXXSpecialMember member = CXXInvalid;
7675      if (!RDecl->hasTrivialCopyConstructor())
7676        member = CXXCopyConstructor;
7677      else if (!RDecl->hasTrivialDefaultConstructor())
7678        member = CXXDefaultConstructor;
7679      else if (!RDecl->hasTrivialCopyAssignment())
7680        member = CXXCopyAssignment;
7681      else if (!RDecl->hasTrivialDestructor())
7682        member = CXXDestructor;
7683
7684      if (member != CXXInvalid) {
7685        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7686              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7687        DiagnoseNontrivial(RT, member);
7688        return true;
7689      }
7690    }
7691  }
7692
7693  return false;
7694}
7695
7696/// DiagnoseNontrivial - Given that a class has a non-trivial
7697/// special member, figure out why.
7698void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7699  QualType QT(T, 0U);
7700  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7701
7702  // Check whether the member was user-declared.
7703  switch (member) {
7704  case CXXInvalid:
7705    break;
7706
7707  case CXXDefaultConstructor:
7708    if (RD->hasUserDeclaredConstructor()) {
7709      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7710      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7711        const FunctionDecl *body = 0;
7712        ci->hasBody(body);
7713        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7714          SourceLocation CtorLoc = ci->getLocation();
7715          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7716          return;
7717        }
7718      }
7719
7720      assert(0 && "found no user-declared constructors");
7721      return;
7722    }
7723    break;
7724
7725  case CXXCopyConstructor:
7726    if (RD->hasUserDeclaredCopyConstructor()) {
7727      SourceLocation CtorLoc =
7728        RD->getCopyConstructor(Context, 0)->getLocation();
7729      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7730      return;
7731    }
7732    break;
7733
7734  case CXXCopyAssignment:
7735    if (RD->hasUserDeclaredCopyAssignment()) {
7736      // FIXME: this should use the location of the copy
7737      // assignment, not the type.
7738      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7739      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7740      return;
7741    }
7742    break;
7743
7744  case CXXDestructor:
7745    if (RD->hasUserDeclaredDestructor()) {
7746      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7747      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7748      return;
7749    }
7750    break;
7751  }
7752
7753  typedef CXXRecordDecl::base_class_iterator base_iter;
7754
7755  // Virtual bases and members inhibit trivial copying/construction,
7756  // but not trivial destruction.
7757  if (member != CXXDestructor) {
7758    // Check for virtual bases.  vbases includes indirect virtual bases,
7759    // so we just iterate through the direct bases.
7760    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7761      if (bi->isVirtual()) {
7762        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7763        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7764        return;
7765      }
7766
7767    // Check for virtual methods.
7768    typedef CXXRecordDecl::method_iterator meth_iter;
7769    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7770         ++mi) {
7771      if (mi->isVirtual()) {
7772        SourceLocation MLoc = mi->getSourceRange().getBegin();
7773        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7774        return;
7775      }
7776    }
7777  }
7778
7779  bool (CXXRecordDecl::*hasTrivial)() const;
7780  switch (member) {
7781  case CXXDefaultConstructor:
7782    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
7783  case CXXCopyConstructor:
7784    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7785  case CXXCopyAssignment:
7786    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7787  case CXXDestructor:
7788    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7789  default:
7790    assert(0 && "unexpected special member"); return;
7791  }
7792
7793  // Check for nontrivial bases (and recurse).
7794  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7795    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7796    assert(BaseRT && "Don't know how to handle dependent bases");
7797    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7798    if (!(BaseRecTy->*hasTrivial)()) {
7799      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7800      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7801      DiagnoseNontrivial(BaseRT, member);
7802      return;
7803    }
7804  }
7805
7806  // Check for nontrivial members (and recurse).
7807  typedef RecordDecl::field_iterator field_iter;
7808  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7809       ++fi) {
7810    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7811    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7812      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7813
7814      if (!(EltRD->*hasTrivial)()) {
7815        SourceLocation FLoc = (*fi)->getLocation();
7816        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7817        DiagnoseNontrivial(EltRT, member);
7818        return;
7819      }
7820    }
7821  }
7822
7823  assert(0 && "found no explanation for non-trivial member");
7824}
7825
7826/// TranslateIvarVisibility - Translate visibility from a token ID to an
7827///  AST enum value.
7828static ObjCIvarDecl::AccessControl
7829TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7830  switch (ivarVisibility) {
7831  default: assert(0 && "Unknown visitibility kind");
7832  case tok::objc_private: return ObjCIvarDecl::Private;
7833  case tok::objc_public: return ObjCIvarDecl::Public;
7834  case tok::objc_protected: return ObjCIvarDecl::Protected;
7835  case tok::objc_package: return ObjCIvarDecl::Package;
7836  }
7837}
7838
7839/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7840/// in order to create an IvarDecl object for it.
7841Decl *Sema::ActOnIvar(Scope *S,
7842                                SourceLocation DeclStart,
7843                                Decl *IntfDecl,
7844                                Declarator &D, ExprTy *BitfieldWidth,
7845                                tok::ObjCKeywordKind Visibility) {
7846
7847  IdentifierInfo *II = D.getIdentifier();
7848  Expr *BitWidth = (Expr*)BitfieldWidth;
7849  SourceLocation Loc = DeclStart;
7850  if (II) Loc = D.getIdentifierLoc();
7851
7852  // FIXME: Unnamed fields can be handled in various different ways, for
7853  // example, unnamed unions inject all members into the struct namespace!
7854
7855  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7856  QualType T = TInfo->getType();
7857
7858  if (BitWidth) {
7859    // 6.7.2.1p3, 6.7.2.1p4
7860    if (VerifyBitField(Loc, II, T, BitWidth)) {
7861      D.setInvalidType();
7862      BitWidth = 0;
7863    }
7864  } else {
7865    // Not a bitfield.
7866
7867    // validate II.
7868
7869  }
7870  if (T->isReferenceType()) {
7871    Diag(Loc, diag::err_ivar_reference_type);
7872    D.setInvalidType();
7873  }
7874  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7875  // than a variably modified type.
7876  else if (T->isVariablyModifiedType()) {
7877    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7878    D.setInvalidType();
7879  }
7880
7881  // Get the visibility (access control) for this ivar.
7882  ObjCIvarDecl::AccessControl ac =
7883    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7884                                        : ObjCIvarDecl::None;
7885  // Must set ivar's DeclContext to its enclosing interface.
7886  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7887  ObjCContainerDecl *EnclosingContext;
7888  if (ObjCImplementationDecl *IMPDecl =
7889      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7890    if (!LangOpts.ObjCNonFragileABI2) {
7891    // Case of ivar declared in an implementation. Context is that of its class.
7892      EnclosingContext = IMPDecl->getClassInterface();
7893      assert(EnclosingContext && "Implementation has no class interface!");
7894    }
7895    else
7896      EnclosingContext = EnclosingDecl;
7897  } else {
7898    if (ObjCCategoryDecl *CDecl =
7899        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7900      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7901        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7902        return 0;
7903      }
7904    }
7905    EnclosingContext = EnclosingDecl;
7906  }
7907
7908  // Construct the decl.
7909  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7910                                             DeclStart, Loc, II, T,
7911                                             TInfo, ac, (Expr *)BitfieldWidth);
7912
7913  if (II) {
7914    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7915                                           ForRedeclaration);
7916    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7917        && !isa<TagDecl>(PrevDecl)) {
7918      Diag(Loc, diag::err_duplicate_member) << II;
7919      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7920      NewID->setInvalidDecl();
7921    }
7922  }
7923
7924  // Process attributes attached to the ivar.
7925  ProcessDeclAttributes(S, NewID, D);
7926
7927  if (D.isInvalidType())
7928    NewID->setInvalidDecl();
7929
7930  if (II) {
7931    // FIXME: When interfaces are DeclContexts, we'll need to add
7932    // these to the interface.
7933    S->AddDecl(NewID);
7934    IdResolver.AddDecl(NewID);
7935  }
7936
7937  return NewID;
7938}
7939
7940/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7941/// class and class extensions. For every class @interface and class
7942/// extension @interface, if the last ivar is a bitfield of any type,
7943/// then add an implicit `char :0` ivar to the end of that interface.
7944void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7945                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7946  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7947    return;
7948
7949  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7950  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7951
7952  if (!Ivar->isBitField())
7953    return;
7954  uint64_t BitFieldSize =
7955    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7956  if (BitFieldSize == 0)
7957    return;
7958  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7959  if (!ID) {
7960    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7961      if (!CD->IsClassExtension())
7962        return;
7963    }
7964    // No need to add this to end of @implementation.
7965    else
7966      return;
7967  }
7968  // All conditions are met. Add a new bitfield to the tail end of ivars.
7969  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7970  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7971
7972  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7973                              DeclLoc, DeclLoc, 0,
7974                              Context.CharTy,
7975                              Context.CreateTypeSourceInfo(Context.CharTy),
7976                              ObjCIvarDecl::Private, BW,
7977                              true);
7978  AllIvarDecls.push_back(Ivar);
7979}
7980
7981void Sema::ActOnFields(Scope* S,
7982                       SourceLocation RecLoc, Decl *EnclosingDecl,
7983                       Decl **Fields, unsigned NumFields,
7984                       SourceLocation LBrac, SourceLocation RBrac,
7985                       AttributeList *Attr) {
7986  assert(EnclosingDecl && "missing record or interface decl");
7987
7988  // If the decl this is being inserted into is invalid, then it may be a
7989  // redeclaration or some other bogus case.  Don't try to add fields to it.
7990  if (EnclosingDecl->isInvalidDecl()) {
7991    // FIXME: Deallocate fields?
7992    return;
7993  }
7994
7995
7996  // Verify that all the fields are okay.
7997  unsigned NumNamedMembers = 0;
7998  llvm::SmallVector<FieldDecl*, 32> RecFields;
7999
8000  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8001  for (unsigned i = 0; i != NumFields; ++i) {
8002    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8003
8004    // Get the type for the field.
8005    const Type *FDTy = FD->getType().getTypePtr();
8006
8007    if (!FD->isAnonymousStructOrUnion()) {
8008      // Remember all fields written by the user.
8009      RecFields.push_back(FD);
8010    }
8011
8012    // If the field is already invalid for some reason, don't emit more
8013    // diagnostics about it.
8014    if (FD->isInvalidDecl()) {
8015      EnclosingDecl->setInvalidDecl();
8016      continue;
8017    }
8018
8019    // C99 6.7.2.1p2:
8020    //   A structure or union shall not contain a member with
8021    //   incomplete or function type (hence, a structure shall not
8022    //   contain an instance of itself, but may contain a pointer to
8023    //   an instance of itself), except that the last member of a
8024    //   structure with more than one named member may have incomplete
8025    //   array type; such a structure (and any union containing,
8026    //   possibly recursively, a member that is such a structure)
8027    //   shall not be a member of a structure or an element of an
8028    //   array.
8029    if (FDTy->isFunctionType()) {
8030      // Field declared as a function.
8031      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8032        << FD->getDeclName();
8033      FD->setInvalidDecl();
8034      EnclosingDecl->setInvalidDecl();
8035      continue;
8036    } else if (FDTy->isIncompleteArrayType() && Record &&
8037               ((i == NumFields - 1 && !Record->isUnion()) ||
8038                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8039                 (i == NumFields - 1 || Record->isUnion())))) {
8040      // Flexible array member.
8041      // Microsoft and g++ is more permissive regarding flexible array.
8042      // It will accept flexible array in union and also
8043      // as the sole element of a struct/class.
8044      if (getLangOptions().Microsoft) {
8045        if (Record->isUnion())
8046          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8047            << FD->getDeclName();
8048        else if (NumFields == 1)
8049          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8050            << FD->getDeclName() << Record->getTagKind();
8051      } else if (getLangOptions().CPlusPlus) {
8052        if (Record->isUnion())
8053          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8054            << FD->getDeclName();
8055        else if (NumFields == 1)
8056          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8057            << FD->getDeclName() << Record->getTagKind();
8058      } else if (NumNamedMembers < 1) {
8059        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8060          << FD->getDeclName();
8061        FD->setInvalidDecl();
8062        EnclosingDecl->setInvalidDecl();
8063        continue;
8064      }
8065      if (!FD->getType()->isDependentType() &&
8066          !Context.getBaseElementType(FD->getType())->isPODType()) {
8067        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8068          << FD->getDeclName() << FD->getType();
8069        FD->setInvalidDecl();
8070        EnclosingDecl->setInvalidDecl();
8071        continue;
8072      }
8073      // Okay, we have a legal flexible array member at the end of the struct.
8074      if (Record)
8075        Record->setHasFlexibleArrayMember(true);
8076    } else if (!FDTy->isDependentType() &&
8077               RequireCompleteType(FD->getLocation(), FD->getType(),
8078                                   diag::err_field_incomplete)) {
8079      // Incomplete type
8080      FD->setInvalidDecl();
8081      EnclosingDecl->setInvalidDecl();
8082      continue;
8083    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8084      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8085        // If this is a member of a union, then entire union becomes "flexible".
8086        if (Record && Record->isUnion()) {
8087          Record->setHasFlexibleArrayMember(true);
8088        } else {
8089          // If this is a struct/class and this is not the last element, reject
8090          // it.  Note that GCC supports variable sized arrays in the middle of
8091          // structures.
8092          if (i != NumFields-1)
8093            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8094              << FD->getDeclName() << FD->getType();
8095          else {
8096            // We support flexible arrays at the end of structs in
8097            // other structs as an extension.
8098            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8099              << FD->getDeclName();
8100            if (Record)
8101              Record->setHasFlexibleArrayMember(true);
8102          }
8103        }
8104      }
8105      if (Record && FDTTy->getDecl()->hasObjectMember())
8106        Record->setHasObjectMember(true);
8107    } else if (FDTy->isObjCObjectType()) {
8108      /// A field cannot be an Objective-c object
8109      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8110      FD->setInvalidDecl();
8111      EnclosingDecl->setInvalidDecl();
8112      continue;
8113    } else if (getLangOptions().ObjC1 &&
8114               getLangOptions().getGCMode() != LangOptions::NonGC &&
8115               Record &&
8116               (FD->getType()->isObjCObjectPointerType() ||
8117                FD->getType().isObjCGCStrong()))
8118      Record->setHasObjectMember(true);
8119    else if (Context.getAsArrayType(FD->getType())) {
8120      QualType BaseType = Context.getBaseElementType(FD->getType());
8121      if (Record && BaseType->isRecordType() &&
8122          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8123        Record->setHasObjectMember(true);
8124    }
8125    // Keep track of the number of named members.
8126    if (FD->getIdentifier())
8127      ++NumNamedMembers;
8128  }
8129
8130  // Okay, we successfully defined 'Record'.
8131  if (Record) {
8132    bool Completed = false;
8133    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8134      if (!CXXRecord->isInvalidDecl()) {
8135        // Set access bits correctly on the directly-declared conversions.
8136        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8137        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8138             I != E; ++I)
8139          Convs->setAccess(I, (*I)->getAccess());
8140
8141        if (!CXXRecord->isDependentType()) {
8142          // Adjust user-defined destructor exception spec.
8143          if (getLangOptions().CPlusPlus0x &&
8144              CXXRecord->hasUserDeclaredDestructor())
8145            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8146
8147          // Add any implicitly-declared members to this class.
8148          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8149
8150          // If we have virtual base classes, we may end up finding multiple
8151          // final overriders for a given virtual function. Check for this
8152          // problem now.
8153          if (CXXRecord->getNumVBases()) {
8154            CXXFinalOverriderMap FinalOverriders;
8155            CXXRecord->getFinalOverriders(FinalOverriders);
8156
8157            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8158                                             MEnd = FinalOverriders.end();
8159                 M != MEnd; ++M) {
8160              for (OverridingMethods::iterator SO = M->second.begin(),
8161                                            SOEnd = M->second.end();
8162                   SO != SOEnd; ++SO) {
8163                assert(SO->second.size() > 0 &&
8164                       "Virtual function without overridding functions?");
8165                if (SO->second.size() == 1)
8166                  continue;
8167
8168                // C++ [class.virtual]p2:
8169                //   In a derived class, if a virtual member function of a base
8170                //   class subobject has more than one final overrider the
8171                //   program is ill-formed.
8172                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8173                  << (NamedDecl *)M->first << Record;
8174                Diag(M->first->getLocation(),
8175                     diag::note_overridden_virtual_function);
8176                for (OverridingMethods::overriding_iterator
8177                          OM = SO->second.begin(),
8178                       OMEnd = SO->second.end();
8179                     OM != OMEnd; ++OM)
8180                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8181                    << (NamedDecl *)M->first << OM->Method->getParent();
8182
8183                Record->setInvalidDecl();
8184              }
8185            }
8186            CXXRecord->completeDefinition(&FinalOverriders);
8187            Completed = true;
8188          }
8189        }
8190      }
8191    }
8192
8193    if (!Completed)
8194      Record->completeDefinition();
8195
8196    // Now that the record is complete, do any delayed exception spec checks
8197    // we were missing.
8198    if (!DelayedDestructorExceptionSpecChecks.empty()) {
8199      const CXXDestructorDecl *Dtor =
8200              DelayedDestructorExceptionSpecChecks.back().first;
8201      if (Dtor->getParent() == Record) {
8202        CheckOverridingFunctionExceptionSpec(Dtor,
8203            DelayedDestructorExceptionSpecChecks.back().second);
8204        DelayedDestructorExceptionSpecChecks.pop_back();
8205      }
8206    }
8207
8208  } else {
8209    ObjCIvarDecl **ClsFields =
8210      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8211    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8212      ID->setLocEnd(RBrac);
8213      // Add ivar's to class's DeclContext.
8214      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8215        ClsFields[i]->setLexicalDeclContext(ID);
8216        ID->addDecl(ClsFields[i]);
8217      }
8218      // Must enforce the rule that ivars in the base classes may not be
8219      // duplicates.
8220      if (ID->getSuperClass())
8221        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8222    } else if (ObjCImplementationDecl *IMPDecl =
8223                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8224      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8225      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8226        // Ivar declared in @implementation never belongs to the implementation.
8227        // Only it is in implementation's lexical context.
8228        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8229      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8230    } else if (ObjCCategoryDecl *CDecl =
8231                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8232      // case of ivars in class extension; all other cases have been
8233      // reported as errors elsewhere.
8234      // FIXME. Class extension does not have a LocEnd field.
8235      // CDecl->setLocEnd(RBrac);
8236      // Add ivar's to class extension's DeclContext.
8237      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8238        ClsFields[i]->setLexicalDeclContext(CDecl);
8239        CDecl->addDecl(ClsFields[i]);
8240      }
8241    }
8242  }
8243
8244  if (Attr)
8245    ProcessDeclAttributeList(S, Record, Attr);
8246
8247  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8248  // set the visibility of this record.
8249  if (Record && !Record->getDeclContext()->isRecord())
8250    AddPushedVisibilityAttribute(Record);
8251}
8252
8253/// \brief Determine whether the given integral value is representable within
8254/// the given type T.
8255static bool isRepresentableIntegerValue(ASTContext &Context,
8256                                        llvm::APSInt &Value,
8257                                        QualType T) {
8258  assert(T->isIntegralType(Context) && "Integral type required!");
8259  unsigned BitWidth = Context.getIntWidth(T);
8260
8261  if (Value.isUnsigned() || Value.isNonNegative()) {
8262    if (T->isSignedIntegerType())
8263      --BitWidth;
8264    return Value.getActiveBits() <= BitWidth;
8265  }
8266  return Value.getMinSignedBits() <= BitWidth;
8267}
8268
8269// \brief Given an integral type, return the next larger integral type
8270// (or a NULL type of no such type exists).
8271static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8272  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8273  // enum checking below.
8274  assert(T->isIntegralType(Context) && "Integral type required!");
8275  const unsigned NumTypes = 4;
8276  QualType SignedIntegralTypes[NumTypes] = {
8277    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8278  };
8279  QualType UnsignedIntegralTypes[NumTypes] = {
8280    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8281    Context.UnsignedLongLongTy
8282  };
8283
8284  unsigned BitWidth = Context.getTypeSize(T);
8285  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8286                                            : UnsignedIntegralTypes;
8287  for (unsigned I = 0; I != NumTypes; ++I)
8288    if (Context.getTypeSize(Types[I]) > BitWidth)
8289      return Types[I];
8290
8291  return QualType();
8292}
8293
8294EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8295                                          EnumConstantDecl *LastEnumConst,
8296                                          SourceLocation IdLoc,
8297                                          IdentifierInfo *Id,
8298                                          Expr *Val) {
8299  unsigned IntWidth = Context.Target.getIntWidth();
8300  llvm::APSInt EnumVal(IntWidth);
8301  QualType EltTy;
8302
8303  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8304    Val = 0;
8305
8306  if (Val) {
8307    if (Enum->isDependentType() || Val->isTypeDependent())
8308      EltTy = Context.DependentTy;
8309    else {
8310      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8311      SourceLocation ExpLoc;
8312      if (!Val->isValueDependent() &&
8313          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8314        Val = 0;
8315      } else {
8316        if (!getLangOptions().CPlusPlus) {
8317          // C99 6.7.2.2p2:
8318          //   The expression that defines the value of an enumeration constant
8319          //   shall be an integer constant expression that has a value
8320          //   representable as an int.
8321
8322          // Complain if the value is not representable in an int.
8323          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8324            Diag(IdLoc, diag::ext_enum_value_not_int)
8325              << EnumVal.toString(10) << Val->getSourceRange()
8326              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8327          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8328            // Force the type of the expression to 'int'.
8329            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8330          }
8331        }
8332
8333        if (Enum->isFixed()) {
8334          EltTy = Enum->getIntegerType();
8335
8336          // C++0x [dcl.enum]p5:
8337          //   ... if the initializing value of an enumerator cannot be
8338          //   represented by the underlying type, the program is ill-formed.
8339          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8340            if (getLangOptions().Microsoft) {
8341              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8342              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8343            } else
8344              Diag(IdLoc, diag::err_enumerator_too_large)
8345                << EltTy;
8346          } else
8347            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8348        }
8349        else {
8350          // C++0x [dcl.enum]p5:
8351          //   If the underlying type is not fixed, the type of each enumerator
8352          //   is the type of its initializing value:
8353          //     - If an initializer is specified for an enumerator, the
8354          //       initializing value has the same type as the expression.
8355          EltTy = Val->getType();
8356        }
8357      }
8358    }
8359  }
8360
8361  if (!Val) {
8362    if (Enum->isDependentType())
8363      EltTy = Context.DependentTy;
8364    else if (!LastEnumConst) {
8365      // C++0x [dcl.enum]p5:
8366      //   If the underlying type is not fixed, the type of each enumerator
8367      //   is the type of its initializing value:
8368      //     - If no initializer is specified for the first enumerator, the
8369      //       initializing value has an unspecified integral type.
8370      //
8371      // GCC uses 'int' for its unspecified integral type, as does
8372      // C99 6.7.2.2p3.
8373      if (Enum->isFixed()) {
8374        EltTy = Enum->getIntegerType();
8375      }
8376      else {
8377        EltTy = Context.IntTy;
8378      }
8379    } else {
8380      // Assign the last value + 1.
8381      EnumVal = LastEnumConst->getInitVal();
8382      ++EnumVal;
8383      EltTy = LastEnumConst->getType();
8384
8385      // Check for overflow on increment.
8386      if (EnumVal < LastEnumConst->getInitVal()) {
8387        // C++0x [dcl.enum]p5:
8388        //   If the underlying type is not fixed, the type of each enumerator
8389        //   is the type of its initializing value:
8390        //
8391        //     - Otherwise the type of the initializing value is the same as
8392        //       the type of the initializing value of the preceding enumerator
8393        //       unless the incremented value is not representable in that type,
8394        //       in which case the type is an unspecified integral type
8395        //       sufficient to contain the incremented value. If no such type
8396        //       exists, the program is ill-formed.
8397        QualType T = getNextLargerIntegralType(Context, EltTy);
8398        if (T.isNull() || Enum->isFixed()) {
8399          // There is no integral type larger enough to represent this
8400          // value. Complain, then allow the value to wrap around.
8401          EnumVal = LastEnumConst->getInitVal();
8402          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8403          ++EnumVal;
8404          if (Enum->isFixed())
8405            // When the underlying type is fixed, this is ill-formed.
8406            Diag(IdLoc, diag::err_enumerator_wrapped)
8407              << EnumVal.toString(10)
8408              << EltTy;
8409          else
8410            Diag(IdLoc, diag::warn_enumerator_too_large)
8411              << EnumVal.toString(10);
8412        } else {
8413          EltTy = T;
8414        }
8415
8416        // Retrieve the last enumerator's value, extent that type to the
8417        // type that is supposed to be large enough to represent the incremented
8418        // value, then increment.
8419        EnumVal = LastEnumConst->getInitVal();
8420        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8421        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8422        ++EnumVal;
8423
8424        // If we're not in C++, diagnose the overflow of enumerator values,
8425        // which in C99 means that the enumerator value is not representable in
8426        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8427        // permits enumerator values that are representable in some larger
8428        // integral type.
8429        if (!getLangOptions().CPlusPlus && !T.isNull())
8430          Diag(IdLoc, diag::warn_enum_value_overflow);
8431      } else if (!getLangOptions().CPlusPlus &&
8432                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8433        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8434        Diag(IdLoc, diag::ext_enum_value_not_int)
8435          << EnumVal.toString(10) << 1;
8436      }
8437    }
8438  }
8439
8440  if (!EltTy->isDependentType()) {
8441    // Make the enumerator value match the signedness and size of the
8442    // enumerator's type.
8443    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8444    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8445  }
8446
8447  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8448                                  Val, EnumVal);
8449}
8450
8451
8452Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8453                              SourceLocation IdLoc, IdentifierInfo *Id,
8454                              AttributeList *Attr,
8455                              SourceLocation EqualLoc, ExprTy *val) {
8456  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8457  EnumConstantDecl *LastEnumConst =
8458    cast_or_null<EnumConstantDecl>(lastEnumConst);
8459  Expr *Val = static_cast<Expr*>(val);
8460
8461  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8462  // we find one that is.
8463  S = getNonFieldDeclScope(S);
8464
8465  // Verify that there isn't already something declared with this name in this
8466  // scope.
8467  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8468                                         ForRedeclaration);
8469  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8470    // Maybe we will complain about the shadowed template parameter.
8471    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8472    // Just pretend that we didn't see the previous declaration.
8473    PrevDecl = 0;
8474  }
8475
8476  if (PrevDecl) {
8477    // When in C++, we may get a TagDecl with the same name; in this case the
8478    // enum constant will 'hide' the tag.
8479    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8480           "Received TagDecl when not in C++!");
8481    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8482      if (isa<EnumConstantDecl>(PrevDecl))
8483        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8484      else
8485        Diag(IdLoc, diag::err_redefinition) << Id;
8486      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8487      return 0;
8488    }
8489  }
8490
8491  // C++ [class.mem]p13:
8492  //   If T is the name of a class, then each of the following shall have a
8493  //   name different from T:
8494  //     - every enumerator of every member of class T that is an enumerated
8495  //       type
8496  if (CXXRecordDecl *Record
8497                      = dyn_cast<CXXRecordDecl>(
8498                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8499    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8500      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8501
8502  EnumConstantDecl *New =
8503    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8504
8505  if (New) {
8506    // Process attributes.
8507    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8508
8509    // Register this decl in the current scope stack.
8510    New->setAccess(TheEnumDecl->getAccess());
8511    PushOnScopeChains(New, S);
8512  }
8513
8514  return New;
8515}
8516
8517void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8518                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8519                         Decl **Elements, unsigned NumElements,
8520                         Scope *S, AttributeList *Attr) {
8521  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8522  QualType EnumType = Context.getTypeDeclType(Enum);
8523
8524  if (Attr)
8525    ProcessDeclAttributeList(S, Enum, Attr);
8526
8527  if (Enum->isDependentType()) {
8528    for (unsigned i = 0; i != NumElements; ++i) {
8529      EnumConstantDecl *ECD =
8530        cast_or_null<EnumConstantDecl>(Elements[i]);
8531      if (!ECD) continue;
8532
8533      ECD->setType(EnumType);
8534    }
8535
8536    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8537    return;
8538  }
8539
8540  // TODO: If the result value doesn't fit in an int, it must be a long or long
8541  // long value.  ISO C does not support this, but GCC does as an extension,
8542  // emit a warning.
8543  unsigned IntWidth = Context.Target.getIntWidth();
8544  unsigned CharWidth = Context.Target.getCharWidth();
8545  unsigned ShortWidth = Context.Target.getShortWidth();
8546
8547  // Verify that all the values are okay, compute the size of the values, and
8548  // reverse the list.
8549  unsigned NumNegativeBits = 0;
8550  unsigned NumPositiveBits = 0;
8551
8552  // Keep track of whether all elements have type int.
8553  bool AllElementsInt = true;
8554
8555  for (unsigned i = 0; i != NumElements; ++i) {
8556    EnumConstantDecl *ECD =
8557      cast_or_null<EnumConstantDecl>(Elements[i]);
8558    if (!ECD) continue;  // Already issued a diagnostic.
8559
8560    const llvm::APSInt &InitVal = ECD->getInitVal();
8561
8562    // Keep track of the size of positive and negative values.
8563    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8564      NumPositiveBits = std::max(NumPositiveBits,
8565                                 (unsigned)InitVal.getActiveBits());
8566    else
8567      NumNegativeBits = std::max(NumNegativeBits,
8568                                 (unsigned)InitVal.getMinSignedBits());
8569
8570    // Keep track of whether every enum element has type int (very commmon).
8571    if (AllElementsInt)
8572      AllElementsInt = ECD->getType() == Context.IntTy;
8573  }
8574
8575  // Figure out the type that should be used for this enum.
8576  QualType BestType;
8577  unsigned BestWidth;
8578
8579  // C++0x N3000 [conv.prom]p3:
8580  //   An rvalue of an unscoped enumeration type whose underlying
8581  //   type is not fixed can be converted to an rvalue of the first
8582  //   of the following types that can represent all the values of
8583  //   the enumeration: int, unsigned int, long int, unsigned long
8584  //   int, long long int, or unsigned long long int.
8585  // C99 6.4.4.3p2:
8586  //   An identifier declared as an enumeration constant has type int.
8587  // The C99 rule is modified by a gcc extension
8588  QualType BestPromotionType;
8589
8590  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8591  // -fshort-enums is the equivalent to specifying the packed attribute on all
8592  // enum definitions.
8593  if (LangOpts.ShortEnums)
8594    Packed = true;
8595
8596  if (Enum->isFixed()) {
8597    BestType = BestPromotionType = Enum->getIntegerType();
8598    // We don't need to set BestWidth, because BestType is going to be the type
8599    // of the enumerators, but we do anyway because otherwise some compilers
8600    // warn that it might be used uninitialized.
8601    BestWidth = CharWidth;
8602  }
8603  else if (NumNegativeBits) {
8604    // If there is a negative value, figure out the smallest integer type (of
8605    // int/long/longlong) that fits.
8606    // If it's packed, check also if it fits a char or a short.
8607    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8608      BestType = Context.SignedCharTy;
8609      BestWidth = CharWidth;
8610    } else if (Packed && NumNegativeBits <= ShortWidth &&
8611               NumPositiveBits < ShortWidth) {
8612      BestType = Context.ShortTy;
8613      BestWidth = ShortWidth;
8614    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8615      BestType = Context.IntTy;
8616      BestWidth = IntWidth;
8617    } else {
8618      BestWidth = Context.Target.getLongWidth();
8619
8620      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8621        BestType = Context.LongTy;
8622      } else {
8623        BestWidth = Context.Target.getLongLongWidth();
8624
8625        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8626          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8627        BestType = Context.LongLongTy;
8628      }
8629    }
8630    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8631  } else {
8632    // If there is no negative value, figure out the smallest type that fits
8633    // all of the enumerator values.
8634    // If it's packed, check also if it fits a char or a short.
8635    if (Packed && NumPositiveBits <= CharWidth) {
8636      BestType = Context.UnsignedCharTy;
8637      BestPromotionType = Context.IntTy;
8638      BestWidth = CharWidth;
8639    } else if (Packed && NumPositiveBits <= ShortWidth) {
8640      BestType = Context.UnsignedShortTy;
8641      BestPromotionType = Context.IntTy;
8642      BestWidth = ShortWidth;
8643    } else if (NumPositiveBits <= IntWidth) {
8644      BestType = Context.UnsignedIntTy;
8645      BestWidth = IntWidth;
8646      BestPromotionType
8647        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8648                           ? Context.UnsignedIntTy : Context.IntTy;
8649    } else if (NumPositiveBits <=
8650               (BestWidth = Context.Target.getLongWidth())) {
8651      BestType = Context.UnsignedLongTy;
8652      BestPromotionType
8653        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8654                           ? Context.UnsignedLongTy : Context.LongTy;
8655    } else {
8656      BestWidth = Context.Target.getLongLongWidth();
8657      assert(NumPositiveBits <= BestWidth &&
8658             "How could an initializer get larger than ULL?");
8659      BestType = Context.UnsignedLongLongTy;
8660      BestPromotionType
8661        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8662                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8663    }
8664  }
8665
8666  // Loop over all of the enumerator constants, changing their types to match
8667  // the type of the enum if needed.
8668  for (unsigned i = 0; i != NumElements; ++i) {
8669    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8670    if (!ECD) continue;  // Already issued a diagnostic.
8671
8672    // Standard C says the enumerators have int type, but we allow, as an
8673    // extension, the enumerators to be larger than int size.  If each
8674    // enumerator value fits in an int, type it as an int, otherwise type it the
8675    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8676    // that X has type 'int', not 'unsigned'.
8677
8678    // Determine whether the value fits into an int.
8679    llvm::APSInt InitVal = ECD->getInitVal();
8680
8681    // If it fits into an integer type, force it.  Otherwise force it to match
8682    // the enum decl type.
8683    QualType NewTy;
8684    unsigned NewWidth;
8685    bool NewSign;
8686    if (!getLangOptions().CPlusPlus &&
8687        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8688      NewTy = Context.IntTy;
8689      NewWidth = IntWidth;
8690      NewSign = true;
8691    } else if (ECD->getType() == BestType) {
8692      // Already the right type!
8693      if (getLangOptions().CPlusPlus)
8694        // C++ [dcl.enum]p4: Following the closing brace of an
8695        // enum-specifier, each enumerator has the type of its
8696        // enumeration.
8697        ECD->setType(EnumType);
8698      continue;
8699    } else {
8700      NewTy = BestType;
8701      NewWidth = BestWidth;
8702      NewSign = BestType->isSignedIntegerType();
8703    }
8704
8705    // Adjust the APSInt value.
8706    InitVal = InitVal.extOrTrunc(NewWidth);
8707    InitVal.setIsSigned(NewSign);
8708    ECD->setInitVal(InitVal);
8709
8710    // Adjust the Expr initializer and type.
8711    if (ECD->getInitExpr() &&
8712	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8713      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8714                                                CK_IntegralCast,
8715                                                ECD->getInitExpr(),
8716                                                /*base paths*/ 0,
8717                                                VK_RValue));
8718    if (getLangOptions().CPlusPlus)
8719      // C++ [dcl.enum]p4: Following the closing brace of an
8720      // enum-specifier, each enumerator has the type of its
8721      // enumeration.
8722      ECD->setType(EnumType);
8723    else
8724      ECD->setType(NewTy);
8725  }
8726
8727  Enum->completeDefinition(BestType, BestPromotionType,
8728                           NumPositiveBits, NumNegativeBits);
8729}
8730
8731Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8732                                  SourceLocation StartLoc,
8733                                  SourceLocation EndLoc) {
8734  StringLiteral *AsmString = cast<StringLiteral>(expr);
8735
8736  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8737                                                   AsmString, StartLoc,
8738                                                   EndLoc);
8739  CurContext->addDecl(New);
8740  return New;
8741}
8742
8743void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8744                             SourceLocation PragmaLoc,
8745                             SourceLocation NameLoc) {
8746  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8747
8748  if (PrevDecl) {
8749    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8750  } else {
8751    (void)WeakUndeclaredIdentifiers.insert(
8752      std::pair<IdentifierInfo*,WeakInfo>
8753        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8754  }
8755}
8756
8757void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8758                                IdentifierInfo* AliasName,
8759                                SourceLocation PragmaLoc,
8760                                SourceLocation NameLoc,
8761                                SourceLocation AliasNameLoc) {
8762  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8763                                    LookupOrdinaryName);
8764  WeakInfo W = WeakInfo(Name, NameLoc);
8765
8766  if (PrevDecl) {
8767    if (!PrevDecl->hasAttr<AliasAttr>())
8768      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8769        DeclApplyPragmaWeak(TUScope, ND, W);
8770  } else {
8771    (void)WeakUndeclaredIdentifiers.insert(
8772      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8773  }
8774}
8775