SemaDecl.cpp revision 0f9dc86a14068e04e0d2cc6b4ff15eca571236ce
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isDefaultConstructor())
1509      return Sema::CXXDefaultConstructor;
1510
1511    if (Ctor->isCopyConstructor())
1512      return Sema::CXXCopyConstructor;
1513
1514    if (Ctor->isMoveConstructor())
1515      return Sema::CXXMoveConstructor;
1516  } else if (isa<CXXDestructorDecl>(MD)) {
1517    return Sema::CXXDestructor;
1518  } else if (MD->isCopyAssignmentOperator()) {
1519    return Sema::CXXCopyAssignment;
1520  }
1521
1522  return Sema::CXXInvalid;
1523}
1524
1525/// canRedefineFunction - checks if a function can be redefined. Currently,
1526/// only extern inline functions can be redefined, and even then only in
1527/// GNU89 mode.
1528static bool canRedefineFunction(const FunctionDecl *FD,
1529                                const LangOptions& LangOpts) {
1530  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1531          !LangOpts.CPlusPlus &&
1532          FD->isInlineSpecified() &&
1533          FD->getStorageClass() == SC_Extern);
1534}
1535
1536/// MergeFunctionDecl - We just parsed a function 'New' from
1537/// declarator D which has the same name and scope as a previous
1538/// declaration 'Old'.  Figure out how to resolve this situation,
1539/// merging decls or emitting diagnostics as appropriate.
1540///
1541/// In C++, New and Old must be declarations that are not
1542/// overloaded. Use IsOverload to determine whether New and Old are
1543/// overloaded, and to select the Old declaration that New should be
1544/// merged with.
1545///
1546/// Returns true if there was an error, false otherwise.
1547bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1548  // Verify the old decl was also a function.
1549  FunctionDecl *Old = 0;
1550  if (FunctionTemplateDecl *OldFunctionTemplate
1551        = dyn_cast<FunctionTemplateDecl>(OldD))
1552    Old = OldFunctionTemplate->getTemplatedDecl();
1553  else
1554    Old = dyn_cast<FunctionDecl>(OldD);
1555  if (!Old) {
1556    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1557      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1558      Diag(Shadow->getTargetDecl()->getLocation(),
1559           diag::note_using_decl_target);
1560      Diag(Shadow->getUsingDecl()->getLocation(),
1561           diag::note_using_decl) << 0;
1562      return true;
1563    }
1564
1565    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1566      << New->getDeclName();
1567    Diag(OldD->getLocation(), diag::note_previous_definition);
1568    return true;
1569  }
1570
1571  // Determine whether the previous declaration was a definition,
1572  // implicit declaration, or a declaration.
1573  diag::kind PrevDiag;
1574  if (Old->isThisDeclarationADefinition())
1575    PrevDiag = diag::note_previous_definition;
1576  else if (Old->isImplicit())
1577    PrevDiag = diag::note_previous_implicit_declaration;
1578  else
1579    PrevDiag = diag::note_previous_declaration;
1580
1581  QualType OldQType = Context.getCanonicalType(Old->getType());
1582  QualType NewQType = Context.getCanonicalType(New->getType());
1583
1584  // Don't complain about this if we're in GNU89 mode and the old function
1585  // is an extern inline function.
1586  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1587      New->getStorageClass() == SC_Static &&
1588      Old->getStorageClass() != SC_Static &&
1589      !canRedefineFunction(Old, getLangOptions())) {
1590    if (getLangOptions().Microsoft) {
1591      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1592      Diag(Old->getLocation(), PrevDiag);
1593    } else {
1594      Diag(New->getLocation(), diag::err_static_non_static) << New;
1595      Diag(Old->getLocation(), PrevDiag);
1596      return true;
1597    }
1598  }
1599
1600  // If a function is first declared with a calling convention, but is
1601  // later declared or defined without one, the second decl assumes the
1602  // calling convention of the first.
1603  //
1604  // For the new decl, we have to look at the NON-canonical type to tell the
1605  // difference between a function that really doesn't have a calling
1606  // convention and one that is declared cdecl. That's because in
1607  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1608  // because it is the default calling convention.
1609  //
1610  // Note also that we DO NOT return at this point, because we still have
1611  // other tests to run.
1612  const FunctionType *OldType = cast<FunctionType>(OldQType);
1613  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1614  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1615  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1616  bool RequiresAdjustment = false;
1617  if (OldTypeInfo.getCC() != CC_Default &&
1618      NewTypeInfo.getCC() == CC_Default) {
1619    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1620    RequiresAdjustment = true;
1621  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1622                                     NewTypeInfo.getCC())) {
1623    // Calling conventions really aren't compatible, so complain.
1624    Diag(New->getLocation(), diag::err_cconv_change)
1625      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1626      << (OldTypeInfo.getCC() == CC_Default)
1627      << (OldTypeInfo.getCC() == CC_Default ? "" :
1628          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1629    Diag(Old->getLocation(), diag::note_previous_declaration);
1630    return true;
1631  }
1632
1633  // FIXME: diagnose the other way around?
1634  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1635    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1636    RequiresAdjustment = true;
1637  }
1638
1639  // Merge regparm attribute.
1640  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1641      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1642    if (NewTypeInfo.getHasRegParm()) {
1643      Diag(New->getLocation(), diag::err_regparm_mismatch)
1644        << NewType->getRegParmType()
1645        << OldType->getRegParmType();
1646      Diag(Old->getLocation(), diag::note_previous_declaration);
1647      return true;
1648    }
1649
1650    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1651    RequiresAdjustment = true;
1652  }
1653
1654  if (RequiresAdjustment) {
1655    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1656    New->setType(QualType(NewType, 0));
1657    NewQType = Context.getCanonicalType(New->getType());
1658  }
1659
1660  if (getLangOptions().CPlusPlus) {
1661    // (C++98 13.1p2):
1662    //   Certain function declarations cannot be overloaded:
1663    //     -- Function declarations that differ only in the return type
1664    //        cannot be overloaded.
1665    QualType OldReturnType = OldType->getResultType();
1666    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1667    QualType ResQT;
1668    if (OldReturnType != NewReturnType) {
1669      if (NewReturnType->isObjCObjectPointerType()
1670          && OldReturnType->isObjCObjectPointerType())
1671        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1672      if (ResQT.isNull()) {
1673        if (New->isCXXClassMember() && New->isOutOfLine())
1674          Diag(New->getLocation(),
1675               diag::err_member_def_does_not_match_ret_type) << New;
1676        else
1677          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1678        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1679        return true;
1680      }
1681      else
1682        NewQType = ResQT;
1683    }
1684
1685    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1686    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1687    if (OldMethod && NewMethod) {
1688      // Preserve triviality.
1689      NewMethod->setTrivial(OldMethod->isTrivial());
1690
1691      bool isFriend = NewMethod->getFriendObjectKind();
1692
1693      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1694        //    -- Member function declarations with the same name and the
1695        //       same parameter types cannot be overloaded if any of them
1696        //       is a static member function declaration.
1697        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1698          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1699          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1700          return true;
1701        }
1702
1703        // C++ [class.mem]p1:
1704        //   [...] A member shall not be declared twice in the
1705        //   member-specification, except that a nested class or member
1706        //   class template can be declared and then later defined.
1707        unsigned NewDiag;
1708        if (isa<CXXConstructorDecl>(OldMethod))
1709          NewDiag = diag::err_constructor_redeclared;
1710        else if (isa<CXXDestructorDecl>(NewMethod))
1711          NewDiag = diag::err_destructor_redeclared;
1712        else if (isa<CXXConversionDecl>(NewMethod))
1713          NewDiag = diag::err_conv_function_redeclared;
1714        else
1715          NewDiag = diag::err_member_redeclared;
1716
1717        Diag(New->getLocation(), NewDiag);
1718        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1719
1720      // Complain if this is an explicit declaration of a special
1721      // member that was initially declared implicitly.
1722      //
1723      // As an exception, it's okay to befriend such methods in order
1724      // to permit the implicit constructor/destructor/operator calls.
1725      } else if (OldMethod->isImplicit()) {
1726        if (isFriend) {
1727          NewMethod->setImplicit();
1728        } else {
1729          Diag(NewMethod->getLocation(),
1730               diag::err_definition_of_implicitly_declared_member)
1731            << New << getSpecialMember(OldMethod);
1732          return true;
1733        }
1734      } else if (OldMethod->isExplicitlyDefaulted()) {
1735        Diag(NewMethod->getLocation(),
1736             diag::err_definition_of_explicitly_defaulted_member)
1737          << getSpecialMember(OldMethod);
1738        return true;
1739      }
1740    }
1741
1742    // (C++98 8.3.5p3):
1743    //   All declarations for a function shall agree exactly in both the
1744    //   return type and the parameter-type-list.
1745    // We also want to respect all the extended bits except noreturn.
1746
1747    // noreturn should now match unless the old type info didn't have it.
1748    QualType OldQTypeForComparison = OldQType;
1749    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1750      assert(OldQType == QualType(OldType, 0));
1751      const FunctionType *OldTypeForComparison
1752        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1753      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1754      assert(OldQTypeForComparison.isCanonical());
1755    }
1756
1757    if (OldQTypeForComparison == NewQType)
1758      return MergeCompatibleFunctionDecls(New, Old);
1759
1760    // Fall through for conflicting redeclarations and redefinitions.
1761  }
1762
1763  // C: Function types need to be compatible, not identical. This handles
1764  // duplicate function decls like "void f(int); void f(enum X);" properly.
1765  if (!getLangOptions().CPlusPlus &&
1766      Context.typesAreCompatible(OldQType, NewQType)) {
1767    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1768    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1769    const FunctionProtoType *OldProto = 0;
1770    if (isa<FunctionNoProtoType>(NewFuncType) &&
1771        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1772      // The old declaration provided a function prototype, but the
1773      // new declaration does not. Merge in the prototype.
1774      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1775      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1776                                                 OldProto->arg_type_end());
1777      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1778                                         ParamTypes.data(), ParamTypes.size(),
1779                                         OldProto->getExtProtoInfo());
1780      New->setType(NewQType);
1781      New->setHasInheritedPrototype();
1782
1783      // Synthesize a parameter for each argument type.
1784      llvm::SmallVector<ParmVarDecl*, 16> Params;
1785      for (FunctionProtoType::arg_type_iterator
1786             ParamType = OldProto->arg_type_begin(),
1787             ParamEnd = OldProto->arg_type_end();
1788           ParamType != ParamEnd; ++ParamType) {
1789        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1790                                                 SourceLocation(),
1791                                                 SourceLocation(), 0,
1792                                                 *ParamType, /*TInfo=*/0,
1793                                                 SC_None, SC_None,
1794                                                 0);
1795        Param->setScopeInfo(0, Params.size());
1796        Param->setImplicit();
1797        Params.push_back(Param);
1798      }
1799
1800      New->setParams(Params.data(), Params.size());
1801    }
1802
1803    return MergeCompatibleFunctionDecls(New, Old);
1804  }
1805
1806  // GNU C permits a K&R definition to follow a prototype declaration
1807  // if the declared types of the parameters in the K&R definition
1808  // match the types in the prototype declaration, even when the
1809  // promoted types of the parameters from the K&R definition differ
1810  // from the types in the prototype. GCC then keeps the types from
1811  // the prototype.
1812  //
1813  // If a variadic prototype is followed by a non-variadic K&R definition,
1814  // the K&R definition becomes variadic.  This is sort of an edge case, but
1815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1816  // C99 6.9.1p8.
1817  if (!getLangOptions().CPlusPlus &&
1818      Old->hasPrototype() && !New->hasPrototype() &&
1819      New->getType()->getAs<FunctionProtoType>() &&
1820      Old->getNumParams() == New->getNumParams()) {
1821    llvm::SmallVector<QualType, 16> ArgTypes;
1822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1823    const FunctionProtoType *OldProto
1824      = Old->getType()->getAs<FunctionProtoType>();
1825    const FunctionProtoType *NewProto
1826      = New->getType()->getAs<FunctionProtoType>();
1827
1828    // Determine whether this is the GNU C extension.
1829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1830                                               NewProto->getResultType());
1831    bool LooseCompatible = !MergedReturn.isNull();
1832    for (unsigned Idx = 0, End = Old->getNumParams();
1833         LooseCompatible && Idx != End; ++Idx) {
1834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1836      if (Context.typesAreCompatible(OldParm->getType(),
1837                                     NewProto->getArgType(Idx))) {
1838        ArgTypes.push_back(NewParm->getType());
1839      } else if (Context.typesAreCompatible(OldParm->getType(),
1840                                            NewParm->getType(),
1841                                            /*CompareUnqualified=*/true)) {
1842        GNUCompatibleParamWarning Warn
1843          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1844        Warnings.push_back(Warn);
1845        ArgTypes.push_back(NewParm->getType());
1846      } else
1847        LooseCompatible = false;
1848    }
1849
1850    if (LooseCompatible) {
1851      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1852        Diag(Warnings[Warn].NewParm->getLocation(),
1853             diag::ext_param_promoted_not_compatible_with_prototype)
1854          << Warnings[Warn].PromotedType
1855          << Warnings[Warn].OldParm->getType();
1856        if (Warnings[Warn].OldParm->getLocation().isValid())
1857          Diag(Warnings[Warn].OldParm->getLocation(),
1858               diag::note_previous_declaration);
1859      }
1860
1861      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1862                                           ArgTypes.size(),
1863                                           OldProto->getExtProtoInfo()));
1864      return MergeCompatibleFunctionDecls(New, Old);
1865    }
1866
1867    // Fall through to diagnose conflicting types.
1868  }
1869
1870  // A function that has already been declared has been redeclared or defined
1871  // with a different type- show appropriate diagnostic
1872  if (unsigned BuiltinID = Old->getBuiltinID()) {
1873    // The user has declared a builtin function with an incompatible
1874    // signature.
1875    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1876      // The function the user is redeclaring is a library-defined
1877      // function like 'malloc' or 'printf'. Warn about the
1878      // redeclaration, then pretend that we don't know about this
1879      // library built-in.
1880      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1881      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1882        << Old << Old->getType();
1883      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1884      Old->setInvalidDecl();
1885      return false;
1886    }
1887
1888    PrevDiag = diag::note_previous_builtin_declaration;
1889  }
1890
1891  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1892  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1893  return true;
1894}
1895
1896/// \brief Completes the merge of two function declarations that are
1897/// known to be compatible.
1898///
1899/// This routine handles the merging of attributes and other
1900/// properties of function declarations form the old declaration to
1901/// the new declaration, once we know that New is in fact a
1902/// redeclaration of Old.
1903///
1904/// \returns false
1905bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1906  // Merge the attributes
1907  mergeDeclAttributes(New, Old, Context);
1908
1909  // Merge the storage class.
1910  if (Old->getStorageClass() != SC_Extern &&
1911      Old->getStorageClass() != SC_None)
1912    New->setStorageClass(Old->getStorageClass());
1913
1914  // Merge "pure" flag.
1915  if (Old->isPure())
1916    New->setPure();
1917
1918  // Merge attributes from the parameters.  These can mismatch with K&R
1919  // declarations.
1920  if (New->getNumParams() == Old->getNumParams())
1921    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1922      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1923                               Context);
1924
1925  if (getLangOptions().CPlusPlus)
1926    return MergeCXXFunctionDecl(New, Old);
1927
1928  return false;
1929}
1930
1931
1932void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1933                                const ObjCMethodDecl *oldMethod) {
1934  // Merge the attributes.
1935  mergeDeclAttributes(newMethod, oldMethod, Context);
1936
1937  // Merge attributes from the parameters.
1938  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1939         ni = newMethod->param_begin(), ne = newMethod->param_end();
1940       ni != ne; ++ni, ++oi)
1941    mergeParamDeclAttributes(*ni, *oi, Context);
1942
1943  CheckObjCMethodOverride(newMethod, oldMethod, true);
1944}
1945
1946/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1947/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1948/// emitting diagnostics as appropriate.
1949///
1950/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1951/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1952/// check them before the initializer is attached.
1953///
1954void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1955  if (New->isInvalidDecl() || Old->isInvalidDecl())
1956    return;
1957
1958  QualType MergedT;
1959  if (getLangOptions().CPlusPlus) {
1960    AutoType *AT = New->getType()->getContainedAutoType();
1961    if (AT && !AT->isDeduced()) {
1962      // We don't know what the new type is until the initializer is attached.
1963      return;
1964    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1965      // These could still be something that needs exception specs checked.
1966      return MergeVarDeclExceptionSpecs(New, Old);
1967    }
1968    // C++ [basic.link]p10:
1969    //   [...] the types specified by all declarations referring to a given
1970    //   object or function shall be identical, except that declarations for an
1971    //   array object can specify array types that differ by the presence or
1972    //   absence of a major array bound (8.3.4).
1973    else if (Old->getType()->isIncompleteArrayType() &&
1974             New->getType()->isArrayType()) {
1975      CanQual<ArrayType> OldArray
1976        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1977      CanQual<ArrayType> NewArray
1978        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1979      if (OldArray->getElementType() == NewArray->getElementType())
1980        MergedT = New->getType();
1981    } else if (Old->getType()->isArrayType() &&
1982             New->getType()->isIncompleteArrayType()) {
1983      CanQual<ArrayType> OldArray
1984        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1985      CanQual<ArrayType> NewArray
1986        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1987      if (OldArray->getElementType() == NewArray->getElementType())
1988        MergedT = Old->getType();
1989    } else if (New->getType()->isObjCObjectPointerType()
1990               && Old->getType()->isObjCObjectPointerType()) {
1991        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1992                                                        Old->getType());
1993    }
1994  } else {
1995    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1996  }
1997  if (MergedT.isNull()) {
1998    Diag(New->getLocation(), diag::err_redefinition_different_type)
1999      << New->getDeclName();
2000    Diag(Old->getLocation(), diag::note_previous_definition);
2001    return New->setInvalidDecl();
2002  }
2003  New->setType(MergedT);
2004}
2005
2006/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2007/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2008/// situation, merging decls or emitting diagnostics as appropriate.
2009///
2010/// Tentative definition rules (C99 6.9.2p2) are checked by
2011/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2012/// definitions here, since the initializer hasn't been attached.
2013///
2014void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2015  // If the new decl is already invalid, don't do any other checking.
2016  if (New->isInvalidDecl())
2017    return;
2018
2019  // Verify the old decl was also a variable.
2020  VarDecl *Old = 0;
2021  if (!Previous.isSingleResult() ||
2022      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2023    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2024      << New->getDeclName();
2025    Diag(Previous.getRepresentativeDecl()->getLocation(),
2026         diag::note_previous_definition);
2027    return New->setInvalidDecl();
2028  }
2029
2030  // C++ [class.mem]p1:
2031  //   A member shall not be declared twice in the member-specification [...]
2032  //
2033  // Here, we need only consider static data members.
2034  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2035    Diag(New->getLocation(), diag::err_duplicate_member)
2036      << New->getIdentifier();
2037    Diag(Old->getLocation(), diag::note_previous_declaration);
2038    New->setInvalidDecl();
2039  }
2040
2041  mergeDeclAttributes(New, Old, Context);
2042
2043  // Merge the types.
2044  MergeVarDeclTypes(New, Old);
2045  if (New->isInvalidDecl())
2046    return;
2047
2048  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2049  if (New->getStorageClass() == SC_Static &&
2050      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2051    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2052    Diag(Old->getLocation(), diag::note_previous_definition);
2053    return New->setInvalidDecl();
2054  }
2055  // C99 6.2.2p4:
2056  //   For an identifier declared with the storage-class specifier
2057  //   extern in a scope in which a prior declaration of that
2058  //   identifier is visible,23) if the prior declaration specifies
2059  //   internal or external linkage, the linkage of the identifier at
2060  //   the later declaration is the same as the linkage specified at
2061  //   the prior declaration. If no prior declaration is visible, or
2062  //   if the prior declaration specifies no linkage, then the
2063  //   identifier has external linkage.
2064  if (New->hasExternalStorage() && Old->hasLinkage())
2065    /* Okay */;
2066  else if (New->getStorageClass() != SC_Static &&
2067           Old->getStorageClass() == SC_Static) {
2068    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2069    Diag(Old->getLocation(), diag::note_previous_definition);
2070    return New->setInvalidDecl();
2071  }
2072
2073  // Check if extern is followed by non-extern and vice-versa.
2074  if (New->hasExternalStorage() &&
2075      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2076    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2077    Diag(Old->getLocation(), diag::note_previous_definition);
2078    return New->setInvalidDecl();
2079  }
2080  if (Old->hasExternalStorage() &&
2081      !New->hasLinkage() && New->isLocalVarDecl()) {
2082    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2083    Diag(Old->getLocation(), diag::note_previous_definition);
2084    return New->setInvalidDecl();
2085  }
2086
2087  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2088
2089  // FIXME: The test for external storage here seems wrong? We still
2090  // need to check for mismatches.
2091  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2092      // Don't complain about out-of-line definitions of static members.
2093      !(Old->getLexicalDeclContext()->isRecord() &&
2094        !New->getLexicalDeclContext()->isRecord())) {
2095    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2096    Diag(Old->getLocation(), diag::note_previous_definition);
2097    return New->setInvalidDecl();
2098  }
2099
2100  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2101    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2102    Diag(Old->getLocation(), diag::note_previous_definition);
2103  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2104    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2105    Diag(Old->getLocation(), diag::note_previous_definition);
2106  }
2107
2108  // C++ doesn't have tentative definitions, so go right ahead and check here.
2109  const VarDecl *Def;
2110  if (getLangOptions().CPlusPlus &&
2111      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2112      (Def = Old->getDefinition())) {
2113    Diag(New->getLocation(), diag::err_redefinition)
2114      << New->getDeclName();
2115    Diag(Def->getLocation(), diag::note_previous_definition);
2116    New->setInvalidDecl();
2117    return;
2118  }
2119  // c99 6.2.2 P4.
2120  // For an identifier declared with the storage-class specifier extern in a
2121  // scope in which a prior declaration of that identifier is visible, if
2122  // the prior declaration specifies internal or external linkage, the linkage
2123  // of the identifier at the later declaration is the same as the linkage
2124  // specified at the prior declaration.
2125  // FIXME. revisit this code.
2126  if (New->hasExternalStorage() &&
2127      Old->getLinkage() == InternalLinkage &&
2128      New->getDeclContext() == Old->getDeclContext())
2129    New->setStorageClass(Old->getStorageClass());
2130
2131  // Keep a chain of previous declarations.
2132  New->setPreviousDeclaration(Old);
2133
2134  // Inherit access appropriately.
2135  New->setAccess(Old->getAccess());
2136}
2137
2138/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2139/// no declarator (e.g. "struct foo;") is parsed.
2140Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2141                                       DeclSpec &DS) {
2142  return ParsedFreeStandingDeclSpec(S, AS, DS,
2143                                    MultiTemplateParamsArg(*this, 0, 0));
2144}
2145
2146/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2147/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2148/// parameters to cope with template friend declarations.
2149Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2150                                       DeclSpec &DS,
2151                                       MultiTemplateParamsArg TemplateParams) {
2152  Decl *TagD = 0;
2153  TagDecl *Tag = 0;
2154  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2155      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2156      DS.getTypeSpecType() == DeclSpec::TST_union ||
2157      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2158    TagD = DS.getRepAsDecl();
2159
2160    if (!TagD) // We probably had an error
2161      return 0;
2162
2163    // Note that the above type specs guarantee that the
2164    // type rep is a Decl, whereas in many of the others
2165    // it's a Type.
2166    Tag = dyn_cast<TagDecl>(TagD);
2167  }
2168
2169  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2170    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2171    // or incomplete types shall not be restrict-qualified."
2172    if (TypeQuals & DeclSpec::TQ_restrict)
2173      Diag(DS.getRestrictSpecLoc(),
2174           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2175           << DS.getSourceRange();
2176  }
2177
2178  if (DS.isFriendSpecified()) {
2179    // If we're dealing with a decl but not a TagDecl, assume that
2180    // whatever routines created it handled the friendship aspect.
2181    if (TagD && !Tag)
2182      return 0;
2183    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2184  }
2185
2186  // Track whether we warned about the fact that there aren't any
2187  // declarators.
2188  bool emittedWarning = false;
2189
2190  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2191    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2192
2193    if (!Record->getDeclName() && Record->isDefinition() &&
2194        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2195      if (getLangOptions().CPlusPlus ||
2196          Record->getDeclContext()->isRecord())
2197        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2198
2199      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2200        << DS.getSourceRange();
2201      emittedWarning = true;
2202    }
2203  }
2204
2205  // Check for Microsoft C extension: anonymous struct.
2206  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2207      CurContext->isRecord() &&
2208      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2209    // Handle 2 kinds of anonymous struct:
2210    //   struct STRUCT;
2211    // and
2212    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2213    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2214    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2215        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2216         DS.getRepAsType().get()->isStructureType())) {
2217      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2218        << DS.getSourceRange();
2219      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2220    }
2221  }
2222
2223  if (getLangOptions().CPlusPlus &&
2224      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2225    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2226      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2227          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2228        Diag(Enum->getLocation(), diag::ext_no_declarators)
2229          << DS.getSourceRange();
2230        emittedWarning = true;
2231      }
2232
2233  // Skip all the checks below if we have a type error.
2234  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2235
2236  if (!DS.isMissingDeclaratorOk()) {
2237    // Warn about typedefs of enums without names, since this is an
2238    // extension in both Microsoft and GNU.
2239    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2240        Tag && isa<EnumDecl>(Tag)) {
2241      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2242        << DS.getSourceRange();
2243      return Tag;
2244    }
2245
2246    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2247      << DS.getSourceRange();
2248    emittedWarning = true;
2249  }
2250
2251  // We're going to complain about a bunch of spurious specifiers;
2252  // only do this if we're declaring a tag, because otherwise we
2253  // should be getting diag::ext_no_declarators.
2254  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2255    return TagD;
2256
2257  // Note that a linkage-specification sets a storage class, but
2258  // 'extern "C" struct foo;' is actually valid and not theoretically
2259  // useless.
2260  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2261    if (!DS.isExternInLinkageSpec())
2262      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2263        << DeclSpec::getSpecifierName(scs);
2264
2265  if (DS.isThreadSpecified())
2266    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2267  if (DS.getTypeQualifiers()) {
2268    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2269      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2270    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2271      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2272    // Restrict is covered above.
2273  }
2274  if (DS.isInlineSpecified())
2275    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2276  if (DS.isVirtualSpecified())
2277    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2278  if (DS.isExplicitSpecified())
2279    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2280
2281  // FIXME: Warn on useless attributes
2282
2283  return TagD;
2284}
2285
2286/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2287/// builds a statement for it and returns it so it is evaluated.
2288StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2289  StmtResult R;
2290  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2291    Expr *Exp = DS.getRepAsExpr();
2292    QualType Ty = Exp->getType();
2293    if (Ty->isPointerType()) {
2294      do
2295        Ty = Ty->getAs<PointerType>()->getPointeeType();
2296      while (Ty->isPointerType());
2297    }
2298    if (Ty->isVariableArrayType()) {
2299      R = ActOnExprStmt(MakeFullExpr(Exp));
2300    }
2301  }
2302  return R;
2303}
2304
2305/// We are trying to inject an anonymous member into the given scope;
2306/// check if there's an existing declaration that can't be overloaded.
2307///
2308/// \return true if this is a forbidden redeclaration
2309static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2310                                         Scope *S,
2311                                         DeclContext *Owner,
2312                                         DeclarationName Name,
2313                                         SourceLocation NameLoc,
2314                                         unsigned diagnostic) {
2315  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2316                 Sema::ForRedeclaration);
2317  if (!SemaRef.LookupName(R, S)) return false;
2318
2319  if (R.getAsSingle<TagDecl>())
2320    return false;
2321
2322  // Pick a representative declaration.
2323  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2324  assert(PrevDecl && "Expected a non-null Decl");
2325
2326  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2327    return false;
2328
2329  SemaRef.Diag(NameLoc, diagnostic) << Name;
2330  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2331
2332  return true;
2333}
2334
2335/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2336/// anonymous struct or union AnonRecord into the owning context Owner
2337/// and scope S. This routine will be invoked just after we realize
2338/// that an unnamed union or struct is actually an anonymous union or
2339/// struct, e.g.,
2340///
2341/// @code
2342/// union {
2343///   int i;
2344///   float f;
2345/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2346///    // f into the surrounding scope.x
2347/// @endcode
2348///
2349/// This routine is recursive, injecting the names of nested anonymous
2350/// structs/unions into the owning context and scope as well.
2351static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2352                                                DeclContext *Owner,
2353                                                RecordDecl *AnonRecord,
2354                                                AccessSpecifier AS,
2355                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2356                                                      bool MSAnonStruct) {
2357  unsigned diagKind
2358    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2359                            : diag::err_anonymous_struct_member_redecl;
2360
2361  bool Invalid = false;
2362
2363  // Look every FieldDecl and IndirectFieldDecl with a name.
2364  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2365                               DEnd = AnonRecord->decls_end();
2366       D != DEnd; ++D) {
2367    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2368        cast<NamedDecl>(*D)->getDeclName()) {
2369      ValueDecl *VD = cast<ValueDecl>(*D);
2370      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2371                                       VD->getLocation(), diagKind)) {
2372        // C++ [class.union]p2:
2373        //   The names of the members of an anonymous union shall be
2374        //   distinct from the names of any other entity in the
2375        //   scope in which the anonymous union is declared.
2376        Invalid = true;
2377      } else {
2378        // C++ [class.union]p2:
2379        //   For the purpose of name lookup, after the anonymous union
2380        //   definition, the members of the anonymous union are
2381        //   considered to have been defined in the scope in which the
2382        //   anonymous union is declared.
2383        unsigned OldChainingSize = Chaining.size();
2384        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2385          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2386               PE = IF->chain_end(); PI != PE; ++PI)
2387            Chaining.push_back(*PI);
2388        else
2389          Chaining.push_back(VD);
2390
2391        assert(Chaining.size() >= 2);
2392        NamedDecl **NamedChain =
2393          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2394        for (unsigned i = 0; i < Chaining.size(); i++)
2395          NamedChain[i] = Chaining[i];
2396
2397        IndirectFieldDecl* IndirectField =
2398          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2399                                    VD->getIdentifier(), VD->getType(),
2400                                    NamedChain, Chaining.size());
2401
2402        IndirectField->setAccess(AS);
2403        IndirectField->setImplicit();
2404        SemaRef.PushOnScopeChains(IndirectField, S);
2405
2406        // That includes picking up the appropriate access specifier.
2407        if (AS != AS_none) IndirectField->setAccess(AS);
2408
2409        Chaining.resize(OldChainingSize);
2410      }
2411    }
2412  }
2413
2414  return Invalid;
2415}
2416
2417/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2418/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2419/// illegal input values are mapped to SC_None.
2420static StorageClass
2421StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2422  switch (StorageClassSpec) {
2423  case DeclSpec::SCS_unspecified:    return SC_None;
2424  case DeclSpec::SCS_extern:         return SC_Extern;
2425  case DeclSpec::SCS_static:         return SC_Static;
2426  case DeclSpec::SCS_auto:           return SC_Auto;
2427  case DeclSpec::SCS_register:       return SC_Register;
2428  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2429    // Illegal SCSs map to None: error reporting is up to the caller.
2430  case DeclSpec::SCS_mutable:        // Fall through.
2431  case DeclSpec::SCS_typedef:        return SC_None;
2432  }
2433  llvm_unreachable("unknown storage class specifier");
2434}
2435
2436/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2437/// a StorageClass. Any error reporting is up to the caller:
2438/// illegal input values are mapped to SC_None.
2439static StorageClass
2440StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2441  switch (StorageClassSpec) {
2442  case DeclSpec::SCS_unspecified:    return SC_None;
2443  case DeclSpec::SCS_extern:         return SC_Extern;
2444  case DeclSpec::SCS_static:         return SC_Static;
2445  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2446    // Illegal SCSs map to None: error reporting is up to the caller.
2447  case DeclSpec::SCS_auto:           // Fall through.
2448  case DeclSpec::SCS_mutable:        // Fall through.
2449  case DeclSpec::SCS_register:       // Fall through.
2450  case DeclSpec::SCS_typedef:        return SC_None;
2451  }
2452  llvm_unreachable("unknown storage class specifier");
2453}
2454
2455/// BuildAnonymousStructOrUnion - Handle the declaration of an
2456/// anonymous structure or union. Anonymous unions are a C++ feature
2457/// (C++ [class.union]) and a GNU C extension; anonymous structures
2458/// are a GNU C and GNU C++ extension.
2459Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2460                                             AccessSpecifier AS,
2461                                             RecordDecl *Record) {
2462  DeclContext *Owner = Record->getDeclContext();
2463
2464  // Diagnose whether this anonymous struct/union is an extension.
2465  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2466    Diag(Record->getLocation(), diag::ext_anonymous_union);
2467  else if (!Record->isUnion())
2468    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2469
2470  // C and C++ require different kinds of checks for anonymous
2471  // structs/unions.
2472  bool Invalid = false;
2473  if (getLangOptions().CPlusPlus) {
2474    const char* PrevSpec = 0;
2475    unsigned DiagID;
2476    // C++ [class.union]p3:
2477    //   Anonymous unions declared in a named namespace or in the
2478    //   global namespace shall be declared static.
2479    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2480        (isa<TranslationUnitDecl>(Owner) ||
2481         (isa<NamespaceDecl>(Owner) &&
2482          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2483      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2484      Invalid = true;
2485
2486      // Recover by adding 'static'.
2487      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2488                             PrevSpec, DiagID, getLangOptions());
2489    }
2490    // C++ [class.union]p3:
2491    //   A storage class is not allowed in a declaration of an
2492    //   anonymous union in a class scope.
2493    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2494             isa<RecordDecl>(Owner)) {
2495      Diag(DS.getStorageClassSpecLoc(),
2496           diag::err_anonymous_union_with_storage_spec);
2497      Invalid = true;
2498
2499      // Recover by removing the storage specifier.
2500      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2501                             PrevSpec, DiagID, getLangOptions());
2502    }
2503
2504    // Ignore const/volatile/restrict qualifiers.
2505    if (DS.getTypeQualifiers()) {
2506      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2507        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2508          << Record->isUnion() << 0
2509          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2510      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2511        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2512          << Record->isUnion() << 1
2513          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2514      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2515        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2516          << Record->isUnion() << 2
2517          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2518
2519      DS.ClearTypeQualifiers();
2520    }
2521
2522    // C++ [class.union]p2:
2523    //   The member-specification of an anonymous union shall only
2524    //   define non-static data members. [Note: nested types and
2525    //   functions cannot be declared within an anonymous union. ]
2526    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2527                                 MemEnd = Record->decls_end();
2528         Mem != MemEnd; ++Mem) {
2529      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2530        // C++ [class.union]p3:
2531        //   An anonymous union shall not have private or protected
2532        //   members (clause 11).
2533        assert(FD->getAccess() != AS_none);
2534        if (FD->getAccess() != AS_public) {
2535          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2536            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2537          Invalid = true;
2538        }
2539
2540        // C++ [class.union]p1
2541        //   An object of a class with a non-trivial constructor, a non-trivial
2542        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2543        //   assignment operator cannot be a member of a union, nor can an
2544        //   array of such objects.
2545        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2546          Invalid = true;
2547      } else if ((*Mem)->isImplicit()) {
2548        // Any implicit members are fine.
2549      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2550        // This is a type that showed up in an
2551        // elaborated-type-specifier inside the anonymous struct or
2552        // union, but which actually declares a type outside of the
2553        // anonymous struct or union. It's okay.
2554      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2555        if (!MemRecord->isAnonymousStructOrUnion() &&
2556            MemRecord->getDeclName()) {
2557          // Visual C++ allows type definition in anonymous struct or union.
2558          if (getLangOptions().Microsoft)
2559            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2560              << (int)Record->isUnion();
2561          else {
2562            // This is a nested type declaration.
2563            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2564              << (int)Record->isUnion();
2565            Invalid = true;
2566          }
2567        }
2568      } else if (isa<AccessSpecDecl>(*Mem)) {
2569        // Any access specifier is fine.
2570      } else {
2571        // We have something that isn't a non-static data
2572        // member. Complain about it.
2573        unsigned DK = diag::err_anonymous_record_bad_member;
2574        if (isa<TypeDecl>(*Mem))
2575          DK = diag::err_anonymous_record_with_type;
2576        else if (isa<FunctionDecl>(*Mem))
2577          DK = diag::err_anonymous_record_with_function;
2578        else if (isa<VarDecl>(*Mem))
2579          DK = diag::err_anonymous_record_with_static;
2580
2581        // Visual C++ allows type definition in anonymous struct or union.
2582        if (getLangOptions().Microsoft &&
2583            DK == diag::err_anonymous_record_with_type)
2584          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2585            << (int)Record->isUnion();
2586        else {
2587          Diag((*Mem)->getLocation(), DK)
2588              << (int)Record->isUnion();
2589          Invalid = true;
2590        }
2591      }
2592    }
2593  }
2594
2595  if (!Record->isUnion() && !Owner->isRecord()) {
2596    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2597      << (int)getLangOptions().CPlusPlus;
2598    Invalid = true;
2599  }
2600
2601  // Mock up a declarator.
2602  Declarator Dc(DS, Declarator::TypeNameContext);
2603  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2604  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2605
2606  // Create a declaration for this anonymous struct/union.
2607  NamedDecl *Anon = 0;
2608  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2609    Anon = FieldDecl::Create(Context, OwningClass,
2610                             DS.getSourceRange().getBegin(),
2611                             Record->getLocation(),
2612                             /*IdentifierInfo=*/0,
2613                             Context.getTypeDeclType(Record),
2614                             TInfo,
2615                             /*BitWidth=*/0, /*Mutable=*/false,
2616                             /*HasInit=*/false);
2617    Anon->setAccess(AS);
2618    if (getLangOptions().CPlusPlus)
2619      FieldCollector->Add(cast<FieldDecl>(Anon));
2620  } else {
2621    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2622    assert(SCSpec != DeclSpec::SCS_typedef &&
2623           "Parser allowed 'typedef' as storage class VarDecl.");
2624    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2625    if (SCSpec == DeclSpec::SCS_mutable) {
2626      // mutable can only appear on non-static class members, so it's always
2627      // an error here
2628      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2629      Invalid = true;
2630      SC = SC_None;
2631    }
2632    SCSpec = DS.getStorageClassSpecAsWritten();
2633    VarDecl::StorageClass SCAsWritten
2634      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2635
2636    Anon = VarDecl::Create(Context, Owner,
2637                           DS.getSourceRange().getBegin(),
2638                           Record->getLocation(), /*IdentifierInfo=*/0,
2639                           Context.getTypeDeclType(Record),
2640                           TInfo, SC, SCAsWritten);
2641  }
2642  Anon->setImplicit();
2643
2644  // Add the anonymous struct/union object to the current
2645  // context. We'll be referencing this object when we refer to one of
2646  // its members.
2647  Owner->addDecl(Anon);
2648
2649  // Inject the members of the anonymous struct/union into the owning
2650  // context and into the identifier resolver chain for name lookup
2651  // purposes.
2652  llvm::SmallVector<NamedDecl*, 2> Chain;
2653  Chain.push_back(Anon);
2654
2655  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2656                                          Chain, false))
2657    Invalid = true;
2658
2659  // Mark this as an anonymous struct/union type. Note that we do not
2660  // do this until after we have already checked and injected the
2661  // members of this anonymous struct/union type, because otherwise
2662  // the members could be injected twice: once by DeclContext when it
2663  // builds its lookup table, and once by
2664  // InjectAnonymousStructOrUnionMembers.
2665  Record->setAnonymousStructOrUnion(true);
2666
2667  if (Invalid)
2668    Anon->setInvalidDecl();
2669
2670  return Anon;
2671}
2672
2673/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2674/// Microsoft C anonymous structure.
2675/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2676/// Example:
2677///
2678/// struct A { int a; };
2679/// struct B { struct A; int b; };
2680///
2681/// void foo() {
2682///   B var;
2683///   var.a = 3;
2684/// }
2685///
2686Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2687                                           RecordDecl *Record) {
2688
2689  // If there is no Record, get the record via the typedef.
2690  if (!Record)
2691    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2692
2693  // Mock up a declarator.
2694  Declarator Dc(DS, Declarator::TypeNameContext);
2695  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2696  assert(TInfo && "couldn't build declarator info for anonymous struct");
2697
2698  // Create a declaration for this anonymous struct.
2699  NamedDecl* Anon = FieldDecl::Create(Context,
2700                             cast<RecordDecl>(CurContext),
2701                             DS.getSourceRange().getBegin(),
2702                             DS.getSourceRange().getBegin(),
2703                             /*IdentifierInfo=*/0,
2704                             Context.getTypeDeclType(Record),
2705                             TInfo,
2706                             /*BitWidth=*/0, /*Mutable=*/false,
2707                             /*HasInit=*/false);
2708  Anon->setImplicit();
2709
2710  // Add the anonymous struct object to the current context.
2711  CurContext->addDecl(Anon);
2712
2713  // Inject the members of the anonymous struct into the current
2714  // context and into the identifier resolver chain for name lookup
2715  // purposes.
2716  llvm::SmallVector<NamedDecl*, 2> Chain;
2717  Chain.push_back(Anon);
2718
2719  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2720                                          Record->getDefinition(),
2721                                          AS_none, Chain, true))
2722    Anon->setInvalidDecl();
2723
2724  return Anon;
2725}
2726
2727/// GetNameForDeclarator - Determine the full declaration name for the
2728/// given Declarator.
2729DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2730  return GetNameFromUnqualifiedId(D.getName());
2731}
2732
2733/// \brief Retrieves the declaration name from a parsed unqualified-id.
2734DeclarationNameInfo
2735Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2736  DeclarationNameInfo NameInfo;
2737  NameInfo.setLoc(Name.StartLocation);
2738
2739  switch (Name.getKind()) {
2740
2741  case UnqualifiedId::IK_Identifier:
2742    NameInfo.setName(Name.Identifier);
2743    NameInfo.setLoc(Name.StartLocation);
2744    return NameInfo;
2745
2746  case UnqualifiedId::IK_OperatorFunctionId:
2747    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2748                                           Name.OperatorFunctionId.Operator));
2749    NameInfo.setLoc(Name.StartLocation);
2750    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2751      = Name.OperatorFunctionId.SymbolLocations[0];
2752    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2753      = Name.EndLocation.getRawEncoding();
2754    return NameInfo;
2755
2756  case UnqualifiedId::IK_LiteralOperatorId:
2757    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2758                                                           Name.Identifier));
2759    NameInfo.setLoc(Name.StartLocation);
2760    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2761    return NameInfo;
2762
2763  case UnqualifiedId::IK_ConversionFunctionId: {
2764    TypeSourceInfo *TInfo;
2765    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2766    if (Ty.isNull())
2767      return DeclarationNameInfo();
2768    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2769                                               Context.getCanonicalType(Ty)));
2770    NameInfo.setLoc(Name.StartLocation);
2771    NameInfo.setNamedTypeInfo(TInfo);
2772    return NameInfo;
2773  }
2774
2775  case UnqualifiedId::IK_ConstructorName: {
2776    TypeSourceInfo *TInfo;
2777    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2778    if (Ty.isNull())
2779      return DeclarationNameInfo();
2780    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2781                                              Context.getCanonicalType(Ty)));
2782    NameInfo.setLoc(Name.StartLocation);
2783    NameInfo.setNamedTypeInfo(TInfo);
2784    return NameInfo;
2785  }
2786
2787  case UnqualifiedId::IK_ConstructorTemplateId: {
2788    // In well-formed code, we can only have a constructor
2789    // template-id that refers to the current context, so go there
2790    // to find the actual type being constructed.
2791    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2792    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2793      return DeclarationNameInfo();
2794
2795    // Determine the type of the class being constructed.
2796    QualType CurClassType = Context.getTypeDeclType(CurClass);
2797
2798    // FIXME: Check two things: that the template-id names the same type as
2799    // CurClassType, and that the template-id does not occur when the name
2800    // was qualified.
2801
2802    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2803                                    Context.getCanonicalType(CurClassType)));
2804    NameInfo.setLoc(Name.StartLocation);
2805    // FIXME: should we retrieve TypeSourceInfo?
2806    NameInfo.setNamedTypeInfo(0);
2807    return NameInfo;
2808  }
2809
2810  case UnqualifiedId::IK_DestructorName: {
2811    TypeSourceInfo *TInfo;
2812    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2813    if (Ty.isNull())
2814      return DeclarationNameInfo();
2815    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2816                                              Context.getCanonicalType(Ty)));
2817    NameInfo.setLoc(Name.StartLocation);
2818    NameInfo.setNamedTypeInfo(TInfo);
2819    return NameInfo;
2820  }
2821
2822  case UnqualifiedId::IK_TemplateId: {
2823    TemplateName TName = Name.TemplateId->Template.get();
2824    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2825    return Context.getNameForTemplate(TName, TNameLoc);
2826  }
2827
2828  } // switch (Name.getKind())
2829
2830  assert(false && "Unknown name kind");
2831  return DeclarationNameInfo();
2832}
2833
2834/// isNearlyMatchingFunction - Determine whether the C++ functions
2835/// Declaration and Definition are "nearly" matching. This heuristic
2836/// is used to improve diagnostics in the case where an out-of-line
2837/// function definition doesn't match any declaration within
2838/// the class or namespace.
2839static bool isNearlyMatchingFunction(ASTContext &Context,
2840                                     FunctionDecl *Declaration,
2841                                     FunctionDecl *Definition) {
2842  if (Declaration->param_size() != Definition->param_size())
2843    return false;
2844  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2845    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2846    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2847
2848    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2849                                        DefParamTy.getNonReferenceType()))
2850      return false;
2851  }
2852
2853  return true;
2854}
2855
2856/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2857/// declarator needs to be rebuilt in the current instantiation.
2858/// Any bits of declarator which appear before the name are valid for
2859/// consideration here.  That's specifically the type in the decl spec
2860/// and the base type in any member-pointer chunks.
2861static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2862                                                    DeclarationName Name) {
2863  // The types we specifically need to rebuild are:
2864  //   - typenames, typeofs, and decltypes
2865  //   - types which will become injected class names
2866  // Of course, we also need to rebuild any type referencing such a
2867  // type.  It's safest to just say "dependent", but we call out a
2868  // few cases here.
2869
2870  DeclSpec &DS = D.getMutableDeclSpec();
2871  switch (DS.getTypeSpecType()) {
2872  case DeclSpec::TST_typename:
2873  case DeclSpec::TST_typeofType:
2874  case DeclSpec::TST_decltype:
2875  case DeclSpec::TST_underlyingType: {
2876    // Grab the type from the parser.
2877    TypeSourceInfo *TSI = 0;
2878    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2879    if (T.isNull() || !T->isDependentType()) break;
2880
2881    // Make sure there's a type source info.  This isn't really much
2882    // of a waste; most dependent types should have type source info
2883    // attached already.
2884    if (!TSI)
2885      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2886
2887    // Rebuild the type in the current instantiation.
2888    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2889    if (!TSI) return true;
2890
2891    // Store the new type back in the decl spec.
2892    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2893    DS.UpdateTypeRep(LocType);
2894    break;
2895  }
2896
2897  case DeclSpec::TST_typeofExpr: {
2898    Expr *E = DS.getRepAsExpr();
2899    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2900    if (Result.isInvalid()) return true;
2901    DS.UpdateExprRep(Result.get());
2902    break;
2903  }
2904
2905  default:
2906    // Nothing to do for these decl specs.
2907    break;
2908  }
2909
2910  // It doesn't matter what order we do this in.
2911  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2912    DeclaratorChunk &Chunk = D.getTypeObject(I);
2913
2914    // The only type information in the declarator which can come
2915    // before the declaration name is the base type of a member
2916    // pointer.
2917    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2918      continue;
2919
2920    // Rebuild the scope specifier in-place.
2921    CXXScopeSpec &SS = Chunk.Mem.Scope();
2922    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2923      return true;
2924  }
2925
2926  return false;
2927}
2928
2929Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2930                            bool IsFunctionDefinition) {
2931  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2932                          IsFunctionDefinition);
2933}
2934
2935/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2936///   If T is the name of a class, then each of the following shall have a
2937///   name different from T:
2938///     - every static data member of class T;
2939///     - every member function of class T
2940///     - every member of class T that is itself a type;
2941/// \returns true if the declaration name violates these rules.
2942bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2943                                   DeclarationNameInfo NameInfo) {
2944  DeclarationName Name = NameInfo.getName();
2945
2946  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2947    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2948      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2949      return true;
2950    }
2951
2952  return false;
2953}
2954
2955Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2956                             MultiTemplateParamsArg TemplateParamLists,
2957                             bool IsFunctionDefinition) {
2958  // TODO: consider using NameInfo for diagnostic.
2959  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2960  DeclarationName Name = NameInfo.getName();
2961
2962  // All of these full declarators require an identifier.  If it doesn't have
2963  // one, the ParsedFreeStandingDeclSpec action should be used.
2964  if (!Name) {
2965    if (!D.isInvalidType())  // Reject this if we think it is valid.
2966      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2967           diag::err_declarator_need_ident)
2968        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2969    return 0;
2970  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2971    return 0;
2972
2973  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2974  // we find one that is.
2975  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2976         (S->getFlags() & Scope::TemplateParamScope) != 0)
2977    S = S->getParent();
2978
2979  DeclContext *DC = CurContext;
2980  if (D.getCXXScopeSpec().isInvalid())
2981    D.setInvalidType();
2982  else if (D.getCXXScopeSpec().isSet()) {
2983    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2984                                        UPPC_DeclarationQualifier))
2985      return 0;
2986
2987    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2988    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2989    if (!DC) {
2990      // If we could not compute the declaration context, it's because the
2991      // declaration context is dependent but does not refer to a class,
2992      // class template, or class template partial specialization. Complain
2993      // and return early, to avoid the coming semantic disaster.
2994      Diag(D.getIdentifierLoc(),
2995           diag::err_template_qualified_declarator_no_match)
2996        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2997        << D.getCXXScopeSpec().getRange();
2998      return 0;
2999    }
3000    bool IsDependentContext = DC->isDependentContext();
3001
3002    if (!IsDependentContext &&
3003        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3004      return 0;
3005
3006    if (isa<CXXRecordDecl>(DC)) {
3007      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3008        Diag(D.getIdentifierLoc(),
3009             diag::err_member_def_undefined_record)
3010          << Name << DC << D.getCXXScopeSpec().getRange();
3011        D.setInvalidType();
3012      } else if (isa<CXXRecordDecl>(CurContext) &&
3013                 !D.getDeclSpec().isFriendSpecified()) {
3014        // The user provided a superfluous scope specifier inside a class
3015        // definition:
3016        //
3017        // class X {
3018        //   void X::f();
3019        // };
3020        if (CurContext->Equals(DC))
3021          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3022            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3023        else
3024          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3025            << Name << D.getCXXScopeSpec().getRange();
3026
3027        // Pretend that this qualifier was not here.
3028        D.getCXXScopeSpec().clear();
3029      }
3030    }
3031
3032    // Check whether we need to rebuild the type of the given
3033    // declaration in the current instantiation.
3034    if (EnteringContext && IsDependentContext &&
3035        TemplateParamLists.size() != 0) {
3036      ContextRAII SavedContext(*this, DC);
3037      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3038        D.setInvalidType();
3039    }
3040  }
3041
3042  if (DiagnoseClassNameShadow(DC, NameInfo))
3043    // If this is a typedef, we'll end up spewing multiple diagnostics.
3044    // Just return early; it's safer.
3045    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3046      return 0;
3047
3048  NamedDecl *New;
3049
3050  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3051  QualType R = TInfo->getType();
3052
3053  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3054                                      UPPC_DeclarationType))
3055    D.setInvalidType();
3056
3057  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3058                        ForRedeclaration);
3059
3060  // See if this is a redefinition of a variable in the same scope.
3061  if (!D.getCXXScopeSpec().isSet()) {
3062    bool IsLinkageLookup = false;
3063
3064    // If the declaration we're planning to build will be a function
3065    // or object with linkage, then look for another declaration with
3066    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3067    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3068      /* Do nothing*/;
3069    else if (R->isFunctionType()) {
3070      if (CurContext->isFunctionOrMethod() ||
3071          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3072        IsLinkageLookup = true;
3073    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3074      IsLinkageLookup = true;
3075    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3076             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3077      IsLinkageLookup = true;
3078
3079    if (IsLinkageLookup)
3080      Previous.clear(LookupRedeclarationWithLinkage);
3081
3082    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3083  } else { // Something like "int foo::x;"
3084    LookupQualifiedName(Previous, DC);
3085
3086    // Don't consider using declarations as previous declarations for
3087    // out-of-line members.
3088    RemoveUsingDecls(Previous);
3089
3090    // C++ 7.3.1.2p2:
3091    // Members (including explicit specializations of templates) of a named
3092    // namespace can also be defined outside that namespace by explicit
3093    // qualification of the name being defined, provided that the entity being
3094    // defined was already declared in the namespace and the definition appears
3095    // after the point of declaration in a namespace that encloses the
3096    // declarations namespace.
3097    //
3098    // Note that we only check the context at this point. We don't yet
3099    // have enough information to make sure that PrevDecl is actually
3100    // the declaration we want to match. For example, given:
3101    //
3102    //   class X {
3103    //     void f();
3104    //     void f(float);
3105    //   };
3106    //
3107    //   void X::f(int) { } // ill-formed
3108    //
3109    // In this case, PrevDecl will point to the overload set
3110    // containing the two f's declared in X, but neither of them
3111    // matches.
3112
3113    // First check whether we named the global scope.
3114    if (isa<TranslationUnitDecl>(DC)) {
3115      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3116        << Name << D.getCXXScopeSpec().getRange();
3117    } else {
3118      DeclContext *Cur = CurContext;
3119      while (isa<LinkageSpecDecl>(Cur))
3120        Cur = Cur->getParent();
3121      if (!Cur->Encloses(DC)) {
3122        // The qualifying scope doesn't enclose the original declaration.
3123        // Emit diagnostic based on current scope.
3124        SourceLocation L = D.getIdentifierLoc();
3125        SourceRange R = D.getCXXScopeSpec().getRange();
3126        if (isa<FunctionDecl>(Cur))
3127          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3128        else
3129          Diag(L, diag::err_invalid_declarator_scope)
3130            << Name << cast<NamedDecl>(DC) << R;
3131        D.setInvalidType();
3132      }
3133    }
3134  }
3135
3136  if (Previous.isSingleResult() &&
3137      Previous.getFoundDecl()->isTemplateParameter()) {
3138    // Maybe we will complain about the shadowed template parameter.
3139    if (!D.isInvalidType())
3140      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3141                                          Previous.getFoundDecl()))
3142        D.setInvalidType();
3143
3144    // Just pretend that we didn't see the previous declaration.
3145    Previous.clear();
3146  }
3147
3148  // In C++, the previous declaration we find might be a tag type
3149  // (class or enum). In this case, the new declaration will hide the
3150  // tag type. Note that this does does not apply if we're declaring a
3151  // typedef (C++ [dcl.typedef]p4).
3152  if (Previous.isSingleTagDecl() &&
3153      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3154    Previous.clear();
3155
3156  bool Redeclaration = false;
3157  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3158    if (TemplateParamLists.size()) {
3159      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3160      return 0;
3161    }
3162
3163    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3164  } else if (R->isFunctionType()) {
3165    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3166                                  move(TemplateParamLists),
3167                                  IsFunctionDefinition, Redeclaration);
3168  } else {
3169    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3170                                  move(TemplateParamLists),
3171                                  Redeclaration);
3172  }
3173
3174  if (New == 0)
3175    return 0;
3176
3177  // If this has an identifier and is not an invalid redeclaration or
3178  // function template specialization, add it to the scope stack.
3179  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3180    PushOnScopeChains(New, S);
3181
3182  return New;
3183}
3184
3185/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3186/// types into constant array types in certain situations which would otherwise
3187/// be errors (for GCC compatibility).
3188static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3189                                                    ASTContext &Context,
3190                                                    bool &SizeIsNegative,
3191                                                    llvm::APSInt &Oversized) {
3192  // This method tries to turn a variable array into a constant
3193  // array even when the size isn't an ICE.  This is necessary
3194  // for compatibility with code that depends on gcc's buggy
3195  // constant expression folding, like struct {char x[(int)(char*)2];}
3196  SizeIsNegative = false;
3197  Oversized = 0;
3198
3199  if (T->isDependentType())
3200    return QualType();
3201
3202  QualifierCollector Qs;
3203  const Type *Ty = Qs.strip(T);
3204
3205  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3206    QualType Pointee = PTy->getPointeeType();
3207    QualType FixedType =
3208        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3209                                            Oversized);
3210    if (FixedType.isNull()) return FixedType;
3211    FixedType = Context.getPointerType(FixedType);
3212    return Qs.apply(Context, FixedType);
3213  }
3214  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3215    QualType Inner = PTy->getInnerType();
3216    QualType FixedType =
3217        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3218                                            Oversized);
3219    if (FixedType.isNull()) return FixedType;
3220    FixedType = Context.getParenType(FixedType);
3221    return Qs.apply(Context, FixedType);
3222  }
3223
3224  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3225  if (!VLATy)
3226    return QualType();
3227  // FIXME: We should probably handle this case
3228  if (VLATy->getElementType()->isVariablyModifiedType())
3229    return QualType();
3230
3231  Expr::EvalResult EvalResult;
3232  if (!VLATy->getSizeExpr() ||
3233      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3234      !EvalResult.Val.isInt())
3235    return QualType();
3236
3237  // Check whether the array size is negative.
3238  llvm::APSInt &Res = EvalResult.Val.getInt();
3239  if (Res.isSigned() && Res.isNegative()) {
3240    SizeIsNegative = true;
3241    return QualType();
3242  }
3243
3244  // Check whether the array is too large to be addressed.
3245  unsigned ActiveSizeBits
3246    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3247                                              Res);
3248  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3249    Oversized = Res;
3250    return QualType();
3251  }
3252
3253  return Context.getConstantArrayType(VLATy->getElementType(),
3254                                      Res, ArrayType::Normal, 0);
3255}
3256
3257/// \brief Register the given locally-scoped external C declaration so
3258/// that it can be found later for redeclarations
3259void
3260Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3261                                       const LookupResult &Previous,
3262                                       Scope *S) {
3263  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3264         "Decl is not a locally-scoped decl!");
3265  // Note that we have a locally-scoped external with this name.
3266  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3267
3268  if (!Previous.isSingleResult())
3269    return;
3270
3271  NamedDecl *PrevDecl = Previous.getFoundDecl();
3272
3273  // If there was a previous declaration of this variable, it may be
3274  // in our identifier chain. Update the identifier chain with the new
3275  // declaration.
3276  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3277    // The previous declaration was found on the identifer resolver
3278    // chain, so remove it from its scope.
3279    while (S && !S->isDeclScope(PrevDecl))
3280      S = S->getParent();
3281
3282    if (S)
3283      S->RemoveDecl(PrevDecl);
3284  }
3285}
3286
3287/// \brief Diagnose function specifiers on a declaration of an identifier that
3288/// does not identify a function.
3289void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3290  // FIXME: We should probably indicate the identifier in question to avoid
3291  // confusion for constructs like "inline int a(), b;"
3292  if (D.getDeclSpec().isInlineSpecified())
3293    Diag(D.getDeclSpec().getInlineSpecLoc(),
3294         diag::err_inline_non_function);
3295
3296  if (D.getDeclSpec().isVirtualSpecified())
3297    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3298         diag::err_virtual_non_function);
3299
3300  if (D.getDeclSpec().isExplicitSpecified())
3301    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3302         diag::err_explicit_non_function);
3303}
3304
3305NamedDecl*
3306Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3307                             QualType R,  TypeSourceInfo *TInfo,
3308                             LookupResult &Previous, bool &Redeclaration) {
3309  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3310  if (D.getCXXScopeSpec().isSet()) {
3311    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3312      << D.getCXXScopeSpec().getRange();
3313    D.setInvalidType();
3314    // Pretend we didn't see the scope specifier.
3315    DC = CurContext;
3316    Previous.clear();
3317  }
3318
3319  if (getLangOptions().CPlusPlus) {
3320    // Check that there are no default arguments (C++ only).
3321    CheckExtraCXXDefaultArguments(D);
3322  }
3323
3324  DiagnoseFunctionSpecifiers(D);
3325
3326  if (D.getDeclSpec().isThreadSpecified())
3327    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3328
3329  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3330    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3331      << D.getName().getSourceRange();
3332    return 0;
3333  }
3334
3335  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3336  if (!NewTD) return 0;
3337
3338  // Handle attributes prior to checking for duplicates in MergeVarDecl
3339  ProcessDeclAttributes(S, NewTD, D);
3340
3341  CheckTypedefForVariablyModifiedType(S, NewTD);
3342
3343  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3344}
3345
3346void
3347Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3348  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3349  // then it shall have block scope.
3350  // Note that variably modified types must be fixed before merging the decl so
3351  // that redeclarations will match.
3352  QualType T = NewTD->getUnderlyingType();
3353  if (T->isVariablyModifiedType()) {
3354    getCurFunction()->setHasBranchProtectedScope();
3355
3356    if (S->getFnParent() == 0) {
3357      bool SizeIsNegative;
3358      llvm::APSInt Oversized;
3359      QualType FixedTy =
3360          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3361                                              Oversized);
3362      if (!FixedTy.isNull()) {
3363        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3364        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3365      } else {
3366        if (SizeIsNegative)
3367          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3368        else if (T->isVariableArrayType())
3369          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3370        else if (Oversized.getBoolValue())
3371          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3372        else
3373          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3374        NewTD->setInvalidDecl();
3375      }
3376    }
3377  }
3378}
3379
3380
3381/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3382/// declares a typedef-name, either using the 'typedef' type specifier or via
3383/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3384NamedDecl*
3385Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3386                           LookupResult &Previous, bool &Redeclaration) {
3387  // Merge the decl with the existing one if appropriate. If the decl is
3388  // in an outer scope, it isn't the same thing.
3389  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3390                       /*ExplicitInstantiationOrSpecialization=*/false);
3391  if (!Previous.empty()) {
3392    Redeclaration = true;
3393    MergeTypedefNameDecl(NewTD, Previous);
3394  }
3395
3396  // If this is the C FILE type, notify the AST context.
3397  if (IdentifierInfo *II = NewTD->getIdentifier())
3398    if (!NewTD->isInvalidDecl() &&
3399        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3400      if (II->isStr("FILE"))
3401        Context.setFILEDecl(NewTD);
3402      else if (II->isStr("jmp_buf"))
3403        Context.setjmp_bufDecl(NewTD);
3404      else if (II->isStr("sigjmp_buf"))
3405        Context.setsigjmp_bufDecl(NewTD);
3406      else if (II->isStr("__builtin_va_list"))
3407        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3408    }
3409
3410  return NewTD;
3411}
3412
3413/// \brief Determines whether the given declaration is an out-of-scope
3414/// previous declaration.
3415///
3416/// This routine should be invoked when name lookup has found a
3417/// previous declaration (PrevDecl) that is not in the scope where a
3418/// new declaration by the same name is being introduced. If the new
3419/// declaration occurs in a local scope, previous declarations with
3420/// linkage may still be considered previous declarations (C99
3421/// 6.2.2p4-5, C++ [basic.link]p6).
3422///
3423/// \param PrevDecl the previous declaration found by name
3424/// lookup
3425///
3426/// \param DC the context in which the new declaration is being
3427/// declared.
3428///
3429/// \returns true if PrevDecl is an out-of-scope previous declaration
3430/// for a new delcaration with the same name.
3431static bool
3432isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3433                                ASTContext &Context) {
3434  if (!PrevDecl)
3435    return false;
3436
3437  if (!PrevDecl->hasLinkage())
3438    return false;
3439
3440  if (Context.getLangOptions().CPlusPlus) {
3441    // C++ [basic.link]p6:
3442    //   If there is a visible declaration of an entity with linkage
3443    //   having the same name and type, ignoring entities declared
3444    //   outside the innermost enclosing namespace scope, the block
3445    //   scope declaration declares that same entity and receives the
3446    //   linkage of the previous declaration.
3447    DeclContext *OuterContext = DC->getRedeclContext();
3448    if (!OuterContext->isFunctionOrMethod())
3449      // This rule only applies to block-scope declarations.
3450      return false;
3451
3452    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3453    if (PrevOuterContext->isRecord())
3454      // We found a member function: ignore it.
3455      return false;
3456
3457    // Find the innermost enclosing namespace for the new and
3458    // previous declarations.
3459    OuterContext = OuterContext->getEnclosingNamespaceContext();
3460    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3461
3462    // The previous declaration is in a different namespace, so it
3463    // isn't the same function.
3464    if (!OuterContext->Equals(PrevOuterContext))
3465      return false;
3466  }
3467
3468  return true;
3469}
3470
3471static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3472  CXXScopeSpec &SS = D.getCXXScopeSpec();
3473  if (!SS.isSet()) return;
3474  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3475}
3476
3477bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3478  QualType type = decl->getType();
3479  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3480  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3481    // Various kinds of declaration aren't allowed to be __autoreleasing.
3482    unsigned kind = -1U;
3483    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3484      if (var->hasAttr<BlocksAttr>())
3485        kind = 0; // __block
3486      else if (!var->hasLocalStorage())
3487        kind = 1; // global
3488    } else if (isa<ObjCIvarDecl>(decl)) {
3489      kind = 3; // ivar
3490    } else if (isa<FieldDecl>(decl)) {
3491      kind = 2; // field
3492    }
3493
3494    if (kind != -1U) {
3495      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3496        << kind;
3497    }
3498  } else if (lifetime == Qualifiers::OCL_None) {
3499    // Try to infer lifetime.
3500    if (!type->isObjCLifetimeType())
3501      return false;
3502
3503    lifetime = type->getObjCARCImplicitLifetime();
3504    type = Context.getLifetimeQualifiedType(type, lifetime);
3505    decl->setType(type);
3506  }
3507
3508  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3509    // Thread-local variables cannot have lifetime.
3510    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3511        var->isThreadSpecified()) {
3512      Diag(var->getLocation(), diag::err_arc_thread_lifetime)
3513        << var->getType();
3514      return true;
3515    }
3516  }
3517
3518  return false;
3519}
3520
3521NamedDecl*
3522Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3523                              QualType R, TypeSourceInfo *TInfo,
3524                              LookupResult &Previous,
3525                              MultiTemplateParamsArg TemplateParamLists,
3526                              bool &Redeclaration) {
3527  DeclarationName Name = GetNameForDeclarator(D).getName();
3528
3529  // Check that there are no default arguments (C++ only).
3530  if (getLangOptions().CPlusPlus)
3531    CheckExtraCXXDefaultArguments(D);
3532
3533  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3534  assert(SCSpec != DeclSpec::SCS_typedef &&
3535         "Parser allowed 'typedef' as storage class VarDecl.");
3536  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3537  if (SCSpec == DeclSpec::SCS_mutable) {
3538    // mutable can only appear on non-static class members, so it's always
3539    // an error here
3540    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3541    D.setInvalidType();
3542    SC = SC_None;
3543  }
3544  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3545  VarDecl::StorageClass SCAsWritten
3546    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3547
3548  IdentifierInfo *II = Name.getAsIdentifierInfo();
3549  if (!II) {
3550    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3551      << Name.getAsString();
3552    return 0;
3553  }
3554
3555  DiagnoseFunctionSpecifiers(D);
3556
3557  if (!DC->isRecord() && S->getFnParent() == 0) {
3558    // C99 6.9p2: The storage-class specifiers auto and register shall not
3559    // appear in the declaration specifiers in an external declaration.
3560    if (SC == SC_Auto || SC == SC_Register) {
3561
3562      // If this is a register variable with an asm label specified, then this
3563      // is a GNU extension.
3564      if (SC == SC_Register && D.getAsmLabel())
3565        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3566      else
3567        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3568      D.setInvalidType();
3569    }
3570  }
3571
3572  bool isExplicitSpecialization = false;
3573  VarDecl *NewVD;
3574  if (!getLangOptions().CPlusPlus) {
3575    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3576                            D.getIdentifierLoc(), II,
3577                            R, TInfo, SC, SCAsWritten);
3578
3579    if (D.isInvalidType())
3580      NewVD->setInvalidDecl();
3581  } else {
3582    if (DC->isRecord() && !CurContext->isRecord()) {
3583      // This is an out-of-line definition of a static data member.
3584      if (SC == SC_Static) {
3585        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3586             diag::err_static_out_of_line)
3587          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3588      } else if (SC == SC_None)
3589        SC = SC_Static;
3590    }
3591    if (SC == SC_Static) {
3592      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3593        if (RD->isLocalClass())
3594          Diag(D.getIdentifierLoc(),
3595               diag::err_static_data_member_not_allowed_in_local_class)
3596            << Name << RD->getDeclName();
3597
3598        // C++ [class.union]p1: If a union contains a static data member,
3599        // the program is ill-formed.
3600        //
3601        // We also disallow static data members in anonymous structs.
3602        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3603          Diag(D.getIdentifierLoc(),
3604               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3605            << Name << RD->isUnion();
3606      }
3607    }
3608
3609    // Match up the template parameter lists with the scope specifier, then
3610    // determine whether we have a template or a template specialization.
3611    isExplicitSpecialization = false;
3612    bool Invalid = false;
3613    if (TemplateParameterList *TemplateParams
3614        = MatchTemplateParametersToScopeSpecifier(
3615                                  D.getDeclSpec().getSourceRange().getBegin(),
3616                                                  D.getIdentifierLoc(),
3617                                                  D.getCXXScopeSpec(),
3618                                                  TemplateParamLists.get(),
3619                                                  TemplateParamLists.size(),
3620                                                  /*never a friend*/ false,
3621                                                  isExplicitSpecialization,
3622                                                  Invalid)) {
3623      if (TemplateParams->size() > 0) {
3624        // There is no such thing as a variable template.
3625        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3626          << II
3627          << SourceRange(TemplateParams->getTemplateLoc(),
3628                         TemplateParams->getRAngleLoc());
3629        return 0;
3630      } else {
3631        // There is an extraneous 'template<>' for this variable. Complain
3632        // about it, but allow the declaration of the variable.
3633        Diag(TemplateParams->getTemplateLoc(),
3634             diag::err_template_variable_noparams)
3635          << II
3636          << SourceRange(TemplateParams->getTemplateLoc(),
3637                         TemplateParams->getRAngleLoc());
3638      }
3639    }
3640
3641    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3642                            D.getIdentifierLoc(), II,
3643                            R, TInfo, SC, SCAsWritten);
3644
3645    // If this decl has an auto type in need of deduction, make a note of the
3646    // Decl so we can diagnose uses of it in its own initializer.
3647    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3648        R->getContainedAutoType())
3649      ParsingInitForAutoVars.insert(NewVD);
3650
3651    if (D.isInvalidType() || Invalid)
3652      NewVD->setInvalidDecl();
3653
3654    SetNestedNameSpecifier(NewVD, D);
3655
3656    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3657      NewVD->setTemplateParameterListsInfo(Context,
3658                                           TemplateParamLists.size(),
3659                                           TemplateParamLists.release());
3660    }
3661  }
3662
3663  if (D.getDeclSpec().isThreadSpecified()) {
3664    if (NewVD->hasLocalStorage())
3665      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3666    else if (!Context.Target.isTLSSupported())
3667      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3668    else
3669      NewVD->setThreadSpecified(true);
3670  }
3671
3672  // Set the lexical context. If the declarator has a C++ scope specifier, the
3673  // lexical context will be different from the semantic context.
3674  NewVD->setLexicalDeclContext(CurContext);
3675
3676  // Handle attributes prior to checking for duplicates in MergeVarDecl
3677  ProcessDeclAttributes(S, NewVD, D);
3678
3679  // In auto-retain/release, infer strong retension for variables of
3680  // retainable type.
3681  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3682    NewVD->setInvalidDecl();
3683
3684  // Handle GNU asm-label extension (encoded as an attribute).
3685  if (Expr *E = (Expr*)D.getAsmLabel()) {
3686    // The parser guarantees this is a string.
3687    StringLiteral *SE = cast<StringLiteral>(E);
3688    llvm::StringRef Label = SE->getString();
3689    if (S->getFnParent() != 0) {
3690      switch (SC) {
3691      case SC_None:
3692      case SC_Auto:
3693        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3694        break;
3695      case SC_Register:
3696        if (!Context.Target.isValidGCCRegisterName(Label))
3697          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3698        break;
3699      case SC_Static:
3700      case SC_Extern:
3701      case SC_PrivateExtern:
3702        break;
3703      }
3704    }
3705
3706    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3707                                                Context, Label));
3708  }
3709
3710  // Diagnose shadowed variables before filtering for scope.
3711  if (!D.getCXXScopeSpec().isSet())
3712    CheckShadow(S, NewVD, Previous);
3713
3714  // Don't consider existing declarations that are in a different
3715  // scope and are out-of-semantic-context declarations (if the new
3716  // declaration has linkage).
3717  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3718                       isExplicitSpecialization);
3719
3720  if (!getLangOptions().CPlusPlus)
3721    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3722  else {
3723    // Merge the decl with the existing one if appropriate.
3724    if (!Previous.empty()) {
3725      if (Previous.isSingleResult() &&
3726          isa<FieldDecl>(Previous.getFoundDecl()) &&
3727          D.getCXXScopeSpec().isSet()) {
3728        // The user tried to define a non-static data member
3729        // out-of-line (C++ [dcl.meaning]p1).
3730        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3731          << D.getCXXScopeSpec().getRange();
3732        Previous.clear();
3733        NewVD->setInvalidDecl();
3734      }
3735    } else if (D.getCXXScopeSpec().isSet()) {
3736      // No previous declaration in the qualifying scope.
3737      Diag(D.getIdentifierLoc(), diag::err_no_member)
3738        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3739        << D.getCXXScopeSpec().getRange();
3740      NewVD->setInvalidDecl();
3741    }
3742
3743    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3744
3745    // This is an explicit specialization of a static data member. Check it.
3746    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3747        CheckMemberSpecialization(NewVD, Previous))
3748      NewVD->setInvalidDecl();
3749  }
3750
3751  // attributes declared post-definition are currently ignored
3752  // FIXME: This should be handled in attribute merging, not
3753  // here.
3754  if (Previous.isSingleResult()) {
3755    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3756    if (Def && (Def = Def->getDefinition()) &&
3757        Def != NewVD && D.hasAttributes()) {
3758      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3759      Diag(Def->getLocation(), diag::note_previous_definition);
3760    }
3761  }
3762
3763  // If this is a locally-scoped extern C variable, update the map of
3764  // such variables.
3765  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3766      !NewVD->isInvalidDecl())
3767    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3768
3769  // If there's a #pragma GCC visibility in scope, and this isn't a class
3770  // member, set the visibility of this variable.
3771  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3772    AddPushedVisibilityAttribute(NewVD);
3773
3774  MarkUnusedFileScopedDecl(NewVD);
3775
3776  return NewVD;
3777}
3778
3779/// \brief Diagnose variable or built-in function shadowing.  Implements
3780/// -Wshadow.
3781///
3782/// This method is called whenever a VarDecl is added to a "useful"
3783/// scope.
3784///
3785/// \param S the scope in which the shadowing name is being declared
3786/// \param R the lookup of the name
3787///
3788void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3789  // Return if warning is ignored.
3790  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3791        Diagnostic::Ignored)
3792    return;
3793
3794  // Don't diagnose declarations at file scope.
3795  if (D->hasGlobalStorage())
3796    return;
3797
3798  DeclContext *NewDC = D->getDeclContext();
3799
3800  // Only diagnose if we're shadowing an unambiguous field or variable.
3801  if (R.getResultKind() != LookupResult::Found)
3802    return;
3803
3804  NamedDecl* ShadowedDecl = R.getFoundDecl();
3805  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3806    return;
3807
3808  // Fields are not shadowed by variables in C++ static methods.
3809  if (isa<FieldDecl>(ShadowedDecl))
3810    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3811      if (MD->isStatic())
3812        return;
3813
3814  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3815    if (shadowedVar->isExternC()) {
3816      // For shadowing external vars, make sure that we point to the global
3817      // declaration, not a locally scoped extern declaration.
3818      for (VarDecl::redecl_iterator
3819             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3820           I != E; ++I)
3821        if (I->isFileVarDecl()) {
3822          ShadowedDecl = *I;
3823          break;
3824        }
3825    }
3826
3827  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3828
3829  // Only warn about certain kinds of shadowing for class members.
3830  if (NewDC && NewDC->isRecord()) {
3831    // In particular, don't warn about shadowing non-class members.
3832    if (!OldDC->isRecord())
3833      return;
3834
3835    // TODO: should we warn about static data members shadowing
3836    // static data members from base classes?
3837
3838    // TODO: don't diagnose for inaccessible shadowed members.
3839    // This is hard to do perfectly because we might friend the
3840    // shadowing context, but that's just a false negative.
3841  }
3842
3843  // Determine what kind of declaration we're shadowing.
3844  unsigned Kind;
3845  if (isa<RecordDecl>(OldDC)) {
3846    if (isa<FieldDecl>(ShadowedDecl))
3847      Kind = 3; // field
3848    else
3849      Kind = 2; // static data member
3850  } else if (OldDC->isFileContext())
3851    Kind = 1; // global
3852  else
3853    Kind = 0; // local
3854
3855  DeclarationName Name = R.getLookupName();
3856
3857  // Emit warning and note.
3858  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3859  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3860}
3861
3862/// \brief Check -Wshadow without the advantage of a previous lookup.
3863void Sema::CheckShadow(Scope *S, VarDecl *D) {
3864  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3865        Diagnostic::Ignored)
3866    return;
3867
3868  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3869                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3870  LookupName(R, S);
3871  CheckShadow(S, D, R);
3872}
3873
3874/// \brief Perform semantic checking on a newly-created variable
3875/// declaration.
3876///
3877/// This routine performs all of the type-checking required for a
3878/// variable declaration once it has been built. It is used both to
3879/// check variables after they have been parsed and their declarators
3880/// have been translated into a declaration, and to check variables
3881/// that have been instantiated from a template.
3882///
3883/// Sets NewVD->isInvalidDecl() if an error was encountered.
3884void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3885                                    LookupResult &Previous,
3886                                    bool &Redeclaration) {
3887  // If the decl is already known invalid, don't check it.
3888  if (NewVD->isInvalidDecl())
3889    return;
3890
3891  QualType T = NewVD->getType();
3892
3893  if (T->isObjCObjectType()) {
3894    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3895    return NewVD->setInvalidDecl();
3896  }
3897
3898  // Emit an error if an address space was applied to decl with local storage.
3899  // This includes arrays of objects with address space qualifiers, but not
3900  // automatic variables that point to other address spaces.
3901  // ISO/IEC TR 18037 S5.1.2
3902  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3903    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3904    return NewVD->setInvalidDecl();
3905  }
3906
3907  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3908      && !NewVD->hasAttr<BlocksAttr>()) {
3909    if (getLangOptions().getGCMode() != LangOptions::NonGC)
3910      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3911    else
3912      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3913  }
3914
3915  bool isVM = T->isVariablyModifiedType();
3916  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3917      NewVD->hasAttr<BlocksAttr>())
3918    getCurFunction()->setHasBranchProtectedScope();
3919
3920  if ((isVM && NewVD->hasLinkage()) ||
3921      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3922    bool SizeIsNegative;
3923    llvm::APSInt Oversized;
3924    QualType FixedTy =
3925        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3926                                            Oversized);
3927
3928    if (FixedTy.isNull() && T->isVariableArrayType()) {
3929      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3930      // FIXME: This won't give the correct result for
3931      // int a[10][n];
3932      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3933
3934      if (NewVD->isFileVarDecl())
3935        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3936        << SizeRange;
3937      else if (NewVD->getStorageClass() == SC_Static)
3938        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3939        << SizeRange;
3940      else
3941        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3942        << SizeRange;
3943      return NewVD->setInvalidDecl();
3944    }
3945
3946    if (FixedTy.isNull()) {
3947      if (NewVD->isFileVarDecl())
3948        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3949      else
3950        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3951      return NewVD->setInvalidDecl();
3952    }
3953
3954    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3955    NewVD->setType(FixedTy);
3956  }
3957
3958  if (Previous.empty() && NewVD->isExternC()) {
3959    // Since we did not find anything by this name and we're declaring
3960    // an extern "C" variable, look for a non-visible extern "C"
3961    // declaration with the same name.
3962    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3963      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3964    if (Pos != LocallyScopedExternalDecls.end())
3965      Previous.addDecl(Pos->second);
3966  }
3967
3968  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3969    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3970      << T;
3971    return NewVD->setInvalidDecl();
3972  }
3973
3974  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3975    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3976    return NewVD->setInvalidDecl();
3977  }
3978
3979  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3980    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3981    return NewVD->setInvalidDecl();
3982  }
3983
3984  // Function pointers and references cannot have qualified function type, only
3985  // function pointer-to-members can do that.
3986  QualType Pointee;
3987  unsigned PtrOrRef = 0;
3988  if (const PointerType *Ptr = T->getAs<PointerType>())
3989    Pointee = Ptr->getPointeeType();
3990  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3991    Pointee = Ref->getPointeeType();
3992    PtrOrRef = 1;
3993  }
3994  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3995      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3996    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3997        << PtrOrRef;
3998    return NewVD->setInvalidDecl();
3999  }
4000
4001  if (!Previous.empty()) {
4002    Redeclaration = true;
4003    MergeVarDecl(NewVD, Previous);
4004  }
4005}
4006
4007/// \brief Data used with FindOverriddenMethod
4008struct FindOverriddenMethodData {
4009  Sema *S;
4010  CXXMethodDecl *Method;
4011};
4012
4013/// \brief Member lookup function that determines whether a given C++
4014/// method overrides a method in a base class, to be used with
4015/// CXXRecordDecl::lookupInBases().
4016static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4017                                 CXXBasePath &Path,
4018                                 void *UserData) {
4019  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4020
4021  FindOverriddenMethodData *Data
4022    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4023
4024  DeclarationName Name = Data->Method->getDeclName();
4025
4026  // FIXME: Do we care about other names here too?
4027  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4028    // We really want to find the base class destructor here.
4029    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4030    CanQualType CT = Data->S->Context.getCanonicalType(T);
4031
4032    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4033  }
4034
4035  for (Path.Decls = BaseRecord->lookup(Name);
4036       Path.Decls.first != Path.Decls.second;
4037       ++Path.Decls.first) {
4038    NamedDecl *D = *Path.Decls.first;
4039    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4040      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4041        return true;
4042    }
4043  }
4044
4045  return false;
4046}
4047
4048/// AddOverriddenMethods - See if a method overrides any in the base classes,
4049/// and if so, check that it's a valid override and remember it.
4050bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4051  // Look for virtual methods in base classes that this method might override.
4052  CXXBasePaths Paths;
4053  FindOverriddenMethodData Data;
4054  Data.Method = MD;
4055  Data.S = this;
4056  bool AddedAny = false;
4057  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4058    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4059         E = Paths.found_decls_end(); I != E; ++I) {
4060      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4061        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4062            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4063            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4064          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4065          AddedAny = true;
4066        }
4067      }
4068    }
4069  }
4070
4071  return AddedAny;
4072}
4073
4074static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4075  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4076                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4077  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4078  assert(!Prev.isAmbiguous() &&
4079         "Cannot have an ambiguity in previous-declaration lookup");
4080  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4081       Func != FuncEnd; ++Func) {
4082    if (isa<FunctionDecl>(*Func) &&
4083        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4084      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4085  }
4086}
4087
4088NamedDecl*
4089Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4090                              QualType R, TypeSourceInfo *TInfo,
4091                              LookupResult &Previous,
4092                              MultiTemplateParamsArg TemplateParamLists,
4093                              bool IsFunctionDefinition, bool &Redeclaration) {
4094  assert(R.getTypePtr()->isFunctionType());
4095
4096  // TODO: consider using NameInfo for diagnostic.
4097  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4098  DeclarationName Name = NameInfo.getName();
4099  FunctionDecl::StorageClass SC = SC_None;
4100  switch (D.getDeclSpec().getStorageClassSpec()) {
4101  default: assert(0 && "Unknown storage class!");
4102  case DeclSpec::SCS_auto:
4103  case DeclSpec::SCS_register:
4104  case DeclSpec::SCS_mutable:
4105    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4106         diag::err_typecheck_sclass_func);
4107    D.setInvalidType();
4108    break;
4109  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4110  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4111  case DeclSpec::SCS_static: {
4112    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4113      // C99 6.7.1p5:
4114      //   The declaration of an identifier for a function that has
4115      //   block scope shall have no explicit storage-class specifier
4116      //   other than extern
4117      // See also (C++ [dcl.stc]p4).
4118      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4119           diag::err_static_block_func);
4120      SC = SC_None;
4121    } else
4122      SC = SC_Static;
4123    break;
4124  }
4125  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4126  }
4127
4128  if (D.getDeclSpec().isThreadSpecified())
4129    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4130
4131  // Do not allow returning a objc interface by-value.
4132  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4133    Diag(D.getIdentifierLoc(),
4134         diag::err_object_cannot_be_passed_returned_by_value) << 0
4135    << R->getAs<FunctionType>()->getResultType();
4136    D.setInvalidType();
4137  }
4138
4139  FunctionDecl *NewFD;
4140  bool isInline = D.getDeclSpec().isInlineSpecified();
4141  bool isFriend = false;
4142  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4143  FunctionDecl::StorageClass SCAsWritten
4144    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4145  FunctionTemplateDecl *FunctionTemplate = 0;
4146  bool isExplicitSpecialization = false;
4147  bool isFunctionTemplateSpecialization = false;
4148
4149  if (!getLangOptions().CPlusPlus) {
4150    // Determine whether the function was written with a
4151    // prototype. This true when:
4152    //   - there is a prototype in the declarator, or
4153    //   - the type R of the function is some kind of typedef or other reference
4154    //     to a type name (which eventually refers to a function type).
4155    bool HasPrototype =
4156    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4157    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4158
4159    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4160                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4161                                 HasPrototype);
4162    if (D.isInvalidType())
4163      NewFD->setInvalidDecl();
4164
4165    // Set the lexical context.
4166    NewFD->setLexicalDeclContext(CurContext);
4167    // Filter out previous declarations that don't match the scope.
4168    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4169                         /*ExplicitInstantiationOrSpecialization=*/false);
4170  } else {
4171    isFriend = D.getDeclSpec().isFriendSpecified();
4172    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4173    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4174    bool isVirtualOkay = false;
4175
4176    // Check that the return type is not an abstract class type.
4177    // For record types, this is done by the AbstractClassUsageDiagnoser once
4178    // the class has been completely parsed.
4179    if (!DC->isRecord() &&
4180      RequireNonAbstractType(D.getIdentifierLoc(),
4181                             R->getAs<FunctionType>()->getResultType(),
4182                             diag::err_abstract_type_in_decl,
4183                             AbstractReturnType))
4184      D.setInvalidType();
4185
4186    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4187      // This is a C++ constructor declaration.
4188      assert(DC->isRecord() &&
4189             "Constructors can only be declared in a member context");
4190
4191      R = CheckConstructorDeclarator(D, R, SC);
4192
4193      // Create the new declaration
4194      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4195                                         Context,
4196                                         cast<CXXRecordDecl>(DC),
4197                                         D.getSourceRange().getBegin(),
4198                                         NameInfo, R, TInfo,
4199                                         isExplicit, isInline,
4200                                         /*isImplicitlyDeclared=*/false);
4201
4202      NewFD = NewCD;
4203    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4204      // This is a C++ destructor declaration.
4205      if (DC->isRecord()) {
4206        R = CheckDestructorDeclarator(D, R, SC);
4207        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4208
4209        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4210                                          D.getSourceRange().getBegin(),
4211                                          NameInfo, R, TInfo,
4212                                          isInline,
4213                                          /*isImplicitlyDeclared=*/false);
4214        NewFD = NewDD;
4215        isVirtualOkay = true;
4216
4217        // If the class is complete, then we now create the implicit exception
4218        // specification. If the class is incomplete or dependent, we can't do
4219        // it yet.
4220        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4221            Record->getDefinition() && !Record->isBeingDefined() &&
4222            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4223          AdjustDestructorExceptionSpec(Record, NewDD);
4224        }
4225
4226      } else {
4227        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4228
4229        // Create a FunctionDecl to satisfy the function definition parsing
4230        // code path.
4231        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4232                                     D.getIdentifierLoc(), Name, R, TInfo,
4233                                     SC, SCAsWritten, isInline,
4234                                     /*hasPrototype=*/true);
4235        D.setInvalidType();
4236      }
4237    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4238      if (!DC->isRecord()) {
4239        Diag(D.getIdentifierLoc(),
4240             diag::err_conv_function_not_member);
4241        return 0;
4242      }
4243
4244      CheckConversionDeclarator(D, R, SC);
4245      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4246                                        D.getSourceRange().getBegin(),
4247                                        NameInfo, R, TInfo,
4248                                        isInline, isExplicit,
4249                                        SourceLocation());
4250
4251      isVirtualOkay = true;
4252    } else if (DC->isRecord()) {
4253      // If the of the function is the same as the name of the record, then this
4254      // must be an invalid constructor that has a return type.
4255      // (The parser checks for a return type and makes the declarator a
4256      // constructor if it has no return type).
4257      // must have an invalid constructor that has a return type
4258      if (Name.getAsIdentifierInfo() &&
4259          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4260        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4261          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4262          << SourceRange(D.getIdentifierLoc());
4263        return 0;
4264      }
4265
4266      bool isStatic = SC == SC_Static;
4267
4268      // [class.free]p1:
4269      // Any allocation function for a class T is a static member
4270      // (even if not explicitly declared static).
4271      if (Name.getCXXOverloadedOperator() == OO_New ||
4272          Name.getCXXOverloadedOperator() == OO_Array_New)
4273        isStatic = true;
4274
4275      // [class.free]p6 Any deallocation function for a class X is a static member
4276      // (even if not explicitly declared static).
4277      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4278          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4279        isStatic = true;
4280
4281      // This is a C++ method declaration.
4282      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4283                                               Context, cast<CXXRecordDecl>(DC),
4284                                               D.getSourceRange().getBegin(),
4285                                               NameInfo, R, TInfo,
4286                                               isStatic, SCAsWritten, isInline,
4287                                               SourceLocation());
4288      NewFD = NewMD;
4289
4290      isVirtualOkay = !isStatic;
4291    } else {
4292      // Determine whether the function was written with a
4293      // prototype. This true when:
4294      //   - we're in C++ (where every function has a prototype),
4295      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4296                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4297                                   true/*HasPrototype*/);
4298    }
4299
4300    if (isFriend && !isInline && IsFunctionDefinition) {
4301      // C++ [class.friend]p5
4302      //   A function can be defined in a friend declaration of a
4303      //   class . . . . Such a function is implicitly inline.
4304      NewFD->setImplicitlyInline();
4305    }
4306
4307    SetNestedNameSpecifier(NewFD, D);
4308    isExplicitSpecialization = false;
4309    isFunctionTemplateSpecialization = false;
4310    if (D.isInvalidType())
4311      NewFD->setInvalidDecl();
4312
4313    // Set the lexical context. If the declarator has a C++
4314    // scope specifier, or is the object of a friend declaration, the
4315    // lexical context will be different from the semantic context.
4316    NewFD->setLexicalDeclContext(CurContext);
4317
4318    // Match up the template parameter lists with the scope specifier, then
4319    // determine whether we have a template or a template specialization.
4320    bool Invalid = false;
4321    if (TemplateParameterList *TemplateParams
4322          = MatchTemplateParametersToScopeSpecifier(
4323                                  D.getDeclSpec().getSourceRange().getBegin(),
4324                                  D.getIdentifierLoc(),
4325                                  D.getCXXScopeSpec(),
4326                                  TemplateParamLists.get(),
4327                                  TemplateParamLists.size(),
4328                                  isFriend,
4329                                  isExplicitSpecialization,
4330                                  Invalid)) {
4331      if (TemplateParams->size() > 0) {
4332        // This is a function template
4333
4334        // Check that we can declare a template here.
4335        if (CheckTemplateDeclScope(S, TemplateParams))
4336          return 0;
4337
4338        // A destructor cannot be a template.
4339        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4340          Diag(NewFD->getLocation(), diag::err_destructor_template);
4341          return 0;
4342        }
4343
4344        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4345                                                        NewFD->getLocation(),
4346                                                        Name, TemplateParams,
4347                                                        NewFD);
4348        FunctionTemplate->setLexicalDeclContext(CurContext);
4349        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4350
4351        // For source fidelity, store the other template param lists.
4352        if (TemplateParamLists.size() > 1) {
4353          NewFD->setTemplateParameterListsInfo(Context,
4354                                               TemplateParamLists.size() - 1,
4355                                               TemplateParamLists.release());
4356        }
4357      } else {
4358        // This is a function template specialization.
4359        isFunctionTemplateSpecialization = true;
4360        // For source fidelity, store all the template param lists.
4361        NewFD->setTemplateParameterListsInfo(Context,
4362                                             TemplateParamLists.size(),
4363                                             TemplateParamLists.release());
4364
4365        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4366        if (isFriend) {
4367          // We want to remove the "template<>", found here.
4368          SourceRange RemoveRange = TemplateParams->getSourceRange();
4369
4370          // If we remove the template<> and the name is not a
4371          // template-id, we're actually silently creating a problem:
4372          // the friend declaration will refer to an untemplated decl,
4373          // and clearly the user wants a template specialization.  So
4374          // we need to insert '<>' after the name.
4375          SourceLocation InsertLoc;
4376          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4377            InsertLoc = D.getName().getSourceRange().getEnd();
4378            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4379          }
4380
4381          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4382            << Name << RemoveRange
4383            << FixItHint::CreateRemoval(RemoveRange)
4384            << FixItHint::CreateInsertion(InsertLoc, "<>");
4385        }
4386      }
4387    }
4388    else {
4389      // All template param lists were matched against the scope specifier:
4390      // this is NOT (an explicit specialization of) a template.
4391      if (TemplateParamLists.size() > 0)
4392        // For source fidelity, store all the template param lists.
4393        NewFD->setTemplateParameterListsInfo(Context,
4394                                             TemplateParamLists.size(),
4395                                             TemplateParamLists.release());
4396    }
4397
4398    if (Invalid) {
4399      NewFD->setInvalidDecl();
4400      if (FunctionTemplate)
4401        FunctionTemplate->setInvalidDecl();
4402    }
4403
4404    // C++ [dcl.fct.spec]p5:
4405    //   The virtual specifier shall only be used in declarations of
4406    //   nonstatic class member functions that appear within a
4407    //   member-specification of a class declaration; see 10.3.
4408    //
4409    if (isVirtual && !NewFD->isInvalidDecl()) {
4410      if (!isVirtualOkay) {
4411        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4412             diag::err_virtual_non_function);
4413      } else if (!CurContext->isRecord()) {
4414        // 'virtual' was specified outside of the class.
4415        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4416             diag::err_virtual_out_of_class)
4417          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4418      } else if (NewFD->getDescribedFunctionTemplate()) {
4419        // C++ [temp.mem]p3:
4420        //  A member function template shall not be virtual.
4421        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4422             diag::err_virtual_member_function_template)
4423          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4424      } else {
4425        // Okay: Add virtual to the method.
4426        NewFD->setVirtualAsWritten(true);
4427      }
4428    }
4429
4430    // C++ [dcl.fct.spec]p3:
4431    //  The inline specifier shall not appear on a block scope function declaration.
4432    if (isInline && !NewFD->isInvalidDecl()) {
4433      if (CurContext->isFunctionOrMethod()) {
4434        // 'inline' is not allowed on block scope function declaration.
4435        Diag(D.getDeclSpec().getInlineSpecLoc(),
4436             diag::err_inline_declaration_block_scope) << Name
4437          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4438      }
4439    }
4440
4441    // C++ [dcl.fct.spec]p6:
4442    //  The explicit specifier shall be used only in the declaration of a
4443    //  constructor or conversion function within its class definition; see 12.3.1
4444    //  and 12.3.2.
4445    if (isExplicit && !NewFD->isInvalidDecl()) {
4446      if (!CurContext->isRecord()) {
4447        // 'explicit' was specified outside of the class.
4448        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4449             diag::err_explicit_out_of_class)
4450          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4451      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4452                 !isa<CXXConversionDecl>(NewFD)) {
4453        // 'explicit' was specified on a function that wasn't a constructor
4454        // or conversion function.
4455        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4456             diag::err_explicit_non_ctor_or_conv_function)
4457          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4458      }
4459    }
4460
4461    // Filter out previous declarations that don't match the scope.
4462    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4463                         isExplicitSpecialization ||
4464                         isFunctionTemplateSpecialization);
4465
4466    if (isFriend) {
4467      // For now, claim that the objects have no previous declaration.
4468      if (FunctionTemplate) {
4469        FunctionTemplate->setObjectOfFriendDecl(false);
4470        FunctionTemplate->setAccess(AS_public);
4471      }
4472      NewFD->setObjectOfFriendDecl(false);
4473      NewFD->setAccess(AS_public);
4474    }
4475
4476    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4477      // A method is implicitly inline if it's defined in its class
4478      // definition.
4479      NewFD->setImplicitlyInline();
4480    }
4481
4482    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4483        !CurContext->isRecord()) {
4484      // C++ [class.static]p1:
4485      //   A data or function member of a class may be declared static
4486      //   in a class definition, in which case it is a static member of
4487      //   the class.
4488
4489      // Complain about the 'static' specifier if it's on an out-of-line
4490      // member function definition.
4491      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4492           diag::err_static_out_of_line)
4493        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4494    }
4495  }
4496
4497  // Handle GNU asm-label extension (encoded as an attribute).
4498  if (Expr *E = (Expr*) D.getAsmLabel()) {
4499    // The parser guarantees this is a string.
4500    StringLiteral *SE = cast<StringLiteral>(E);
4501    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4502                                                SE->getString()));
4503  }
4504
4505  // Copy the parameter declarations from the declarator D to the function
4506  // declaration NewFD, if they are available.  First scavenge them into Params.
4507  llvm::SmallVector<ParmVarDecl*, 16> Params;
4508  if (D.isFunctionDeclarator()) {
4509    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4510
4511    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4512    // function that takes no arguments, not a function that takes a
4513    // single void argument.
4514    // We let through "const void" here because Sema::GetTypeForDeclarator
4515    // already checks for that case.
4516    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4517        FTI.ArgInfo[0].Param &&
4518        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4519      // Empty arg list, don't push any params.
4520      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4521
4522      // In C++, the empty parameter-type-list must be spelled "void"; a
4523      // typedef of void is not permitted.
4524      if (getLangOptions().CPlusPlus &&
4525          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4526        bool IsTypeAlias = false;
4527        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4528          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4529        else if (const TemplateSpecializationType *TST =
4530                   Param->getType()->getAs<TemplateSpecializationType>())
4531          IsTypeAlias = TST->isTypeAlias();
4532        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4533          << IsTypeAlias;
4534      }
4535    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4536      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4537        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4538        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4539        Param->setDeclContext(NewFD);
4540        Params.push_back(Param);
4541
4542        if (Param->isInvalidDecl())
4543          NewFD->setInvalidDecl();
4544      }
4545    }
4546
4547  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4548    // When we're declaring a function with a typedef, typeof, etc as in the
4549    // following example, we'll need to synthesize (unnamed)
4550    // parameters for use in the declaration.
4551    //
4552    // @code
4553    // typedef void fn(int);
4554    // fn f;
4555    // @endcode
4556
4557    // Synthesize a parameter for each argument type.
4558    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4559         AE = FT->arg_type_end(); AI != AE; ++AI) {
4560      ParmVarDecl *Param =
4561        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4562      Param->setScopeInfo(0, Params.size());
4563      Params.push_back(Param);
4564    }
4565  } else {
4566    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4567           "Should not need args for typedef of non-prototype fn");
4568  }
4569  // Finally, we know we have the right number of parameters, install them.
4570  NewFD->setParams(Params.data(), Params.size());
4571
4572  // Process the non-inheritable attributes on this declaration.
4573  ProcessDeclAttributes(S, NewFD, D,
4574                        /*NonInheritable=*/true, /*Inheritable=*/false);
4575
4576  if (!getLangOptions().CPlusPlus) {
4577    // Perform semantic checking on the function declaration.
4578    bool isExplicitSpecialization=false;
4579    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4580                             Redeclaration);
4581    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4582            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4583           "previous declaration set still overloaded");
4584  } else {
4585    // If the declarator is a template-id, translate the parser's template
4586    // argument list into our AST format.
4587    bool HasExplicitTemplateArgs = false;
4588    TemplateArgumentListInfo TemplateArgs;
4589    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4590      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4591      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4592      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4593      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4594                                         TemplateId->getTemplateArgs(),
4595                                         TemplateId->NumArgs);
4596      translateTemplateArguments(TemplateArgsPtr,
4597                                 TemplateArgs);
4598      TemplateArgsPtr.release();
4599
4600      HasExplicitTemplateArgs = true;
4601
4602      if (NewFD->isInvalidDecl()) {
4603        HasExplicitTemplateArgs = false;
4604      } else if (FunctionTemplate) {
4605        // Function template with explicit template arguments.
4606        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4607          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4608
4609        HasExplicitTemplateArgs = false;
4610      } else if (!isFunctionTemplateSpecialization &&
4611                 !D.getDeclSpec().isFriendSpecified()) {
4612        // We have encountered something that the user meant to be a
4613        // specialization (because it has explicitly-specified template
4614        // arguments) but that was not introduced with a "template<>" (or had
4615        // too few of them).
4616        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4617          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4618          << FixItHint::CreateInsertion(
4619                                        D.getDeclSpec().getSourceRange().getBegin(),
4620                                                  "template<> ");
4621        isFunctionTemplateSpecialization = true;
4622      } else {
4623        // "friend void foo<>(int);" is an implicit specialization decl.
4624        isFunctionTemplateSpecialization = true;
4625      }
4626    } else if (isFriend && isFunctionTemplateSpecialization) {
4627      // This combination is only possible in a recovery case;  the user
4628      // wrote something like:
4629      //   template <> friend void foo(int);
4630      // which we're recovering from as if the user had written:
4631      //   friend void foo<>(int);
4632      // Go ahead and fake up a template id.
4633      HasExplicitTemplateArgs = true;
4634        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4635      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4636    }
4637
4638    // If it's a friend (and only if it's a friend), it's possible
4639    // that either the specialized function type or the specialized
4640    // template is dependent, and therefore matching will fail.  In
4641    // this case, don't check the specialization yet.
4642    if (isFunctionTemplateSpecialization && isFriend &&
4643        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4644      assert(HasExplicitTemplateArgs &&
4645             "friend function specialization without template args");
4646      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4647                                                       Previous))
4648        NewFD->setInvalidDecl();
4649    } else if (isFunctionTemplateSpecialization) {
4650      if (CurContext->isDependentContext() && CurContext->isRecord()
4651          && !isFriend) {
4652        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4653          << NewFD->getDeclName();
4654        NewFD->setInvalidDecl();
4655        return 0;
4656      } else if (CheckFunctionTemplateSpecialization(NewFD,
4657                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4658                                                     Previous))
4659        NewFD->setInvalidDecl();
4660
4661      // C++ [dcl.stc]p1:
4662      //   A storage-class-specifier shall not be specified in an explicit
4663      //   specialization (14.7.3)
4664      if (SC != SC_None) {
4665        if (SC != NewFD->getStorageClass())
4666          Diag(NewFD->getLocation(),
4667               diag::err_explicit_specialization_inconsistent_storage_class)
4668            << SC
4669            << FixItHint::CreateRemoval(
4670                                      D.getDeclSpec().getStorageClassSpecLoc());
4671
4672        else
4673          Diag(NewFD->getLocation(),
4674               diag::ext_explicit_specialization_storage_class)
4675            << FixItHint::CreateRemoval(
4676                                      D.getDeclSpec().getStorageClassSpecLoc());
4677      }
4678
4679    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4680      if (CheckMemberSpecialization(NewFD, Previous))
4681          NewFD->setInvalidDecl();
4682    }
4683
4684    // Perform semantic checking on the function declaration.
4685    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4686                             Redeclaration);
4687
4688    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4689            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4690           "previous declaration set still overloaded");
4691
4692    NamedDecl *PrincipalDecl = (FunctionTemplate
4693                                ? cast<NamedDecl>(FunctionTemplate)
4694                                : NewFD);
4695
4696    if (isFriend && Redeclaration) {
4697      AccessSpecifier Access = AS_public;
4698      if (!NewFD->isInvalidDecl())
4699        Access = NewFD->getPreviousDeclaration()->getAccess();
4700
4701      NewFD->setAccess(Access);
4702      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4703
4704      PrincipalDecl->setObjectOfFriendDecl(true);
4705    }
4706
4707    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4708        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4709      PrincipalDecl->setNonMemberOperator();
4710
4711    // If we have a function template, check the template parameter
4712    // list. This will check and merge default template arguments.
4713    if (FunctionTemplate) {
4714      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4715      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4716                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4717                            D.getDeclSpec().isFriendSpecified()
4718                              ? (IsFunctionDefinition
4719                                   ? TPC_FriendFunctionTemplateDefinition
4720                                   : TPC_FriendFunctionTemplate)
4721                              : (D.getCXXScopeSpec().isSet() &&
4722                                 DC && DC->isRecord() &&
4723                                 DC->isDependentContext())
4724                                  ? TPC_ClassTemplateMember
4725                                  : TPC_FunctionTemplate);
4726    }
4727
4728    if (NewFD->isInvalidDecl()) {
4729      // Ignore all the rest of this.
4730    } else if (!Redeclaration) {
4731      // Fake up an access specifier if it's supposed to be a class member.
4732      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4733        NewFD->setAccess(AS_public);
4734
4735      // Qualified decls generally require a previous declaration.
4736      if (D.getCXXScopeSpec().isSet()) {
4737        // ...with the major exception of templated-scope or
4738        // dependent-scope friend declarations.
4739
4740        // TODO: we currently also suppress this check in dependent
4741        // contexts because (1) the parameter depth will be off when
4742        // matching friend templates and (2) we might actually be
4743        // selecting a friend based on a dependent factor.  But there
4744        // are situations where these conditions don't apply and we
4745        // can actually do this check immediately.
4746        if (isFriend &&
4747            (TemplateParamLists.size() ||
4748             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4749             CurContext->isDependentContext())) {
4750              // ignore these
4751            } else {
4752              // The user tried to provide an out-of-line definition for a
4753              // function that is a member of a class or namespace, but there
4754              // was no such member function declared (C++ [class.mfct]p2,
4755              // C++ [namespace.memdef]p2). For example:
4756              //
4757              // class X {
4758              //   void f() const;
4759              // };
4760              //
4761              // void X::f() { } // ill-formed
4762              //
4763              // Complain about this problem, and attempt to suggest close
4764              // matches (e.g., those that differ only in cv-qualifiers and
4765              // whether the parameter types are references).
4766              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4767              << Name << DC << D.getCXXScopeSpec().getRange();
4768              NewFD->setInvalidDecl();
4769
4770              DiagnoseInvalidRedeclaration(*this, NewFD);
4771            }
4772
4773        // Unqualified local friend declarations are required to resolve
4774        // to something.
4775        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4776          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4777          NewFD->setInvalidDecl();
4778          DiagnoseInvalidRedeclaration(*this, NewFD);
4779        }
4780
4781    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4782               !isFriend && !isFunctionTemplateSpecialization &&
4783               !isExplicitSpecialization) {
4784      // An out-of-line member function declaration must also be a
4785      // definition (C++ [dcl.meaning]p1).
4786      // Note that this is not the case for explicit specializations of
4787      // function templates or member functions of class templates, per
4788      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4789      // for compatibility with old SWIG code which likes to generate them.
4790      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4791        << D.getCXXScopeSpec().getRange();
4792    }
4793  }
4794
4795
4796  // Handle attributes. We need to have merged decls when handling attributes
4797  // (for example to check for conflicts, etc).
4798  // FIXME: This needs to happen before we merge declarations. Then,
4799  // let attribute merging cope with attribute conflicts.
4800  ProcessDeclAttributes(S, NewFD, D,
4801                        /*NonInheritable=*/false, /*Inheritable=*/true);
4802
4803  // attributes declared post-definition are currently ignored
4804  // FIXME: This should happen during attribute merging
4805  if (Redeclaration && Previous.isSingleResult()) {
4806    const FunctionDecl *Def;
4807    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4808    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4809      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4810      Diag(Def->getLocation(), diag::note_previous_definition);
4811    }
4812  }
4813
4814  AddKnownFunctionAttributes(NewFD);
4815
4816  if (NewFD->hasAttr<OverloadableAttr>() &&
4817      !NewFD->getType()->getAs<FunctionProtoType>()) {
4818    Diag(NewFD->getLocation(),
4819         diag::err_attribute_overloadable_no_prototype)
4820      << NewFD;
4821
4822    // Turn this into a variadic function with no parameters.
4823    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4824    FunctionProtoType::ExtProtoInfo EPI;
4825    EPI.Variadic = true;
4826    EPI.ExtInfo = FT->getExtInfo();
4827
4828    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4829    NewFD->setType(R);
4830  }
4831
4832  // If there's a #pragma GCC visibility in scope, and this isn't a class
4833  // member, set the visibility of this function.
4834  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4835    AddPushedVisibilityAttribute(NewFD);
4836
4837  // If this is a locally-scoped extern C function, update the
4838  // map of such names.
4839  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4840      && !NewFD->isInvalidDecl())
4841    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4842
4843  // Set this FunctionDecl's range up to the right paren.
4844  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4845
4846  if (getLangOptions().CPlusPlus) {
4847    if (FunctionTemplate) {
4848      if (NewFD->isInvalidDecl())
4849        FunctionTemplate->setInvalidDecl();
4850      return FunctionTemplate;
4851    }
4852  }
4853
4854  MarkUnusedFileScopedDecl(NewFD);
4855
4856  if (getLangOptions().CUDA)
4857    if (IdentifierInfo *II = NewFD->getIdentifier())
4858      if (!NewFD->isInvalidDecl() &&
4859          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4860        if (II->isStr("cudaConfigureCall")) {
4861          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4862            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4863
4864          Context.setcudaConfigureCallDecl(NewFD);
4865        }
4866      }
4867
4868  return NewFD;
4869}
4870
4871/// \brief Perform semantic checking of a new function declaration.
4872///
4873/// Performs semantic analysis of the new function declaration
4874/// NewFD. This routine performs all semantic checking that does not
4875/// require the actual declarator involved in the declaration, and is
4876/// used both for the declaration of functions as they are parsed
4877/// (called via ActOnDeclarator) and for the declaration of functions
4878/// that have been instantiated via C++ template instantiation (called
4879/// via InstantiateDecl).
4880///
4881/// \param IsExplicitSpecialiation whether this new function declaration is
4882/// an explicit specialization of the previous declaration.
4883///
4884/// This sets NewFD->isInvalidDecl() to true if there was an error.
4885void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4886                                    LookupResult &Previous,
4887                                    bool IsExplicitSpecialization,
4888                                    bool &Redeclaration) {
4889  // If NewFD is already known erroneous, don't do any of this checking.
4890  if (NewFD->isInvalidDecl()) {
4891    // If this is a class member, mark the class invalid immediately.
4892    // This avoids some consistency errors later.
4893    if (isa<CXXMethodDecl>(NewFD))
4894      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4895
4896    return;
4897  }
4898
4899  if (NewFD->getResultType()->isVariablyModifiedType()) {
4900    // Functions returning a variably modified type violate C99 6.7.5.2p2
4901    // because all functions have linkage.
4902    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4903    return NewFD->setInvalidDecl();
4904  }
4905
4906  if (NewFD->isMain())
4907    CheckMain(NewFD);
4908
4909  // Check for a previous declaration of this name.
4910  if (Previous.empty() && NewFD->isExternC()) {
4911    // Since we did not find anything by this name and we're declaring
4912    // an extern "C" function, look for a non-visible extern "C"
4913    // declaration with the same name.
4914    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4915      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4916    if (Pos != LocallyScopedExternalDecls.end())
4917      Previous.addDecl(Pos->second);
4918  }
4919
4920  // Merge or overload the declaration with an existing declaration of
4921  // the same name, if appropriate.
4922  if (!Previous.empty()) {
4923    // Determine whether NewFD is an overload of PrevDecl or
4924    // a declaration that requires merging. If it's an overload,
4925    // there's no more work to do here; we'll just add the new
4926    // function to the scope.
4927
4928    NamedDecl *OldDecl = 0;
4929    if (!AllowOverloadingOfFunction(Previous, Context)) {
4930      Redeclaration = true;
4931      OldDecl = Previous.getFoundDecl();
4932    } else {
4933      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4934                            /*NewIsUsingDecl*/ false)) {
4935      case Ovl_Match:
4936        Redeclaration = true;
4937        break;
4938
4939      case Ovl_NonFunction:
4940        Redeclaration = true;
4941        break;
4942
4943      case Ovl_Overload:
4944        Redeclaration = false;
4945        break;
4946      }
4947
4948      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4949        // If a function name is overloadable in C, then every function
4950        // with that name must be marked "overloadable".
4951        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4952          << Redeclaration << NewFD;
4953        NamedDecl *OverloadedDecl = 0;
4954        if (Redeclaration)
4955          OverloadedDecl = OldDecl;
4956        else if (!Previous.empty())
4957          OverloadedDecl = Previous.getRepresentativeDecl();
4958        if (OverloadedDecl)
4959          Diag(OverloadedDecl->getLocation(),
4960               diag::note_attribute_overloadable_prev_overload);
4961        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4962                                                        Context));
4963      }
4964    }
4965
4966    if (Redeclaration) {
4967      // NewFD and OldDecl represent declarations that need to be
4968      // merged.
4969      if (MergeFunctionDecl(NewFD, OldDecl))
4970        return NewFD->setInvalidDecl();
4971
4972      Previous.clear();
4973      Previous.addDecl(OldDecl);
4974
4975      if (FunctionTemplateDecl *OldTemplateDecl
4976                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4977        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4978        FunctionTemplateDecl *NewTemplateDecl
4979          = NewFD->getDescribedFunctionTemplate();
4980        assert(NewTemplateDecl && "Template/non-template mismatch");
4981        if (CXXMethodDecl *Method
4982              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4983          Method->setAccess(OldTemplateDecl->getAccess());
4984          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4985        }
4986
4987        // If this is an explicit specialization of a member that is a function
4988        // template, mark it as a member specialization.
4989        if (IsExplicitSpecialization &&
4990            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4991          NewTemplateDecl->setMemberSpecialization();
4992          assert(OldTemplateDecl->isMemberSpecialization());
4993        }
4994      } else {
4995        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4996          NewFD->setAccess(OldDecl->getAccess());
4997        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4998      }
4999    }
5000  }
5001
5002  // Semantic checking for this function declaration (in isolation).
5003  if (getLangOptions().CPlusPlus) {
5004    // C++-specific checks.
5005    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5006      CheckConstructor(Constructor);
5007    } else if (CXXDestructorDecl *Destructor =
5008                dyn_cast<CXXDestructorDecl>(NewFD)) {
5009      CXXRecordDecl *Record = Destructor->getParent();
5010      QualType ClassType = Context.getTypeDeclType(Record);
5011
5012      // FIXME: Shouldn't we be able to perform this check even when the class
5013      // type is dependent? Both gcc and edg can handle that.
5014      if (!ClassType->isDependentType()) {
5015        DeclarationName Name
5016          = Context.DeclarationNames.getCXXDestructorName(
5017                                        Context.getCanonicalType(ClassType));
5018        if (NewFD->getDeclName() != Name) {
5019          Diag(NewFD->getLocation(), diag::err_destructor_name);
5020          return NewFD->setInvalidDecl();
5021        }
5022      }
5023    } else if (CXXConversionDecl *Conversion
5024               = dyn_cast<CXXConversionDecl>(NewFD)) {
5025      ActOnConversionDeclarator(Conversion);
5026    }
5027
5028    // Find any virtual functions that this function overrides.
5029    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5030      if (!Method->isFunctionTemplateSpecialization() &&
5031          !Method->getDescribedFunctionTemplate()) {
5032        if (AddOverriddenMethods(Method->getParent(), Method)) {
5033          // If the function was marked as "static", we have a problem.
5034          if (NewFD->getStorageClass() == SC_Static) {
5035            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5036              << NewFD->getDeclName();
5037            for (CXXMethodDecl::method_iterator
5038                      Overridden = Method->begin_overridden_methods(),
5039                   OverriddenEnd = Method->end_overridden_methods();
5040                 Overridden != OverriddenEnd;
5041                 ++Overridden) {
5042              Diag((*Overridden)->getLocation(),
5043                   diag::note_overridden_virtual_function);
5044            }
5045          }
5046        }
5047      }
5048    }
5049
5050    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5051    if (NewFD->isOverloadedOperator() &&
5052        CheckOverloadedOperatorDeclaration(NewFD))
5053      return NewFD->setInvalidDecl();
5054
5055    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5056    if (NewFD->getLiteralIdentifier() &&
5057        CheckLiteralOperatorDeclaration(NewFD))
5058      return NewFD->setInvalidDecl();
5059
5060    // In C++, check default arguments now that we have merged decls. Unless
5061    // the lexical context is the class, because in this case this is done
5062    // during delayed parsing anyway.
5063    if (!CurContext->isRecord())
5064      CheckCXXDefaultArguments(NewFD);
5065
5066    // If this function declares a builtin function, check the type of this
5067    // declaration against the expected type for the builtin.
5068    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5069      ASTContext::GetBuiltinTypeError Error;
5070      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5071      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5072        // The type of this function differs from the type of the builtin,
5073        // so forget about the builtin entirely.
5074        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5075      }
5076    }
5077  }
5078}
5079
5080void Sema::CheckMain(FunctionDecl* FD) {
5081  // C++ [basic.start.main]p3:  A program that declares main to be inline
5082  //   or static is ill-formed.
5083  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5084  //   shall not appear in a declaration of main.
5085  // static main is not an error under C99, but we should warn about it.
5086  bool isInline = FD->isInlineSpecified();
5087  bool isStatic = FD->getStorageClass() == SC_Static;
5088  if (isInline || isStatic) {
5089    unsigned diagID = diag::warn_unusual_main_decl;
5090    if (isInline || getLangOptions().CPlusPlus)
5091      diagID = diag::err_unusual_main_decl;
5092
5093    int which = isStatic + (isInline << 1) - 1;
5094    Diag(FD->getLocation(), diagID) << which;
5095  }
5096
5097  QualType T = FD->getType();
5098  assert(T->isFunctionType() && "function decl is not of function type");
5099  const FunctionType* FT = T->getAs<FunctionType>();
5100
5101  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5102    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5103    FD->setInvalidDecl(true);
5104  }
5105
5106  // Treat protoless main() as nullary.
5107  if (isa<FunctionNoProtoType>(FT)) return;
5108
5109  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5110  unsigned nparams = FTP->getNumArgs();
5111  assert(FD->getNumParams() == nparams);
5112
5113  bool HasExtraParameters = (nparams > 3);
5114
5115  // Darwin passes an undocumented fourth argument of type char**.  If
5116  // other platforms start sprouting these, the logic below will start
5117  // getting shifty.
5118  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5119    HasExtraParameters = false;
5120
5121  if (HasExtraParameters) {
5122    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5123    FD->setInvalidDecl(true);
5124    nparams = 3;
5125  }
5126
5127  // FIXME: a lot of the following diagnostics would be improved
5128  // if we had some location information about types.
5129
5130  QualType CharPP =
5131    Context.getPointerType(Context.getPointerType(Context.CharTy));
5132  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5133
5134  for (unsigned i = 0; i < nparams; ++i) {
5135    QualType AT = FTP->getArgType(i);
5136
5137    bool mismatch = true;
5138
5139    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5140      mismatch = false;
5141    else if (Expected[i] == CharPP) {
5142      // As an extension, the following forms are okay:
5143      //   char const **
5144      //   char const * const *
5145      //   char * const *
5146
5147      QualifierCollector qs;
5148      const PointerType* PT;
5149      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5150          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5151          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5152        qs.removeConst();
5153        mismatch = !qs.empty();
5154      }
5155    }
5156
5157    if (mismatch) {
5158      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5159      // TODO: suggest replacing given type with expected type
5160      FD->setInvalidDecl(true);
5161    }
5162  }
5163
5164  if (nparams == 1 && !FD->isInvalidDecl()) {
5165    Diag(FD->getLocation(), diag::warn_main_one_arg);
5166  }
5167
5168  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5169    Diag(FD->getLocation(), diag::err_main_template_decl);
5170    FD->setInvalidDecl();
5171  }
5172}
5173
5174bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5175  // FIXME: Need strict checking.  In C89, we need to check for
5176  // any assignment, increment, decrement, function-calls, or
5177  // commas outside of a sizeof.  In C99, it's the same list,
5178  // except that the aforementioned are allowed in unevaluated
5179  // expressions.  Everything else falls under the
5180  // "may accept other forms of constant expressions" exception.
5181  // (We never end up here for C++, so the constant expression
5182  // rules there don't matter.)
5183  if (Init->isConstantInitializer(Context, false))
5184    return false;
5185  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5186    << Init->getSourceRange();
5187  return true;
5188}
5189
5190namespace {
5191  // Visits an initialization expression to see if OrigDecl is evaluated in
5192  // its own initialization and throws a warning if it does.
5193  class SelfReferenceChecker
5194      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5195    Sema &S;
5196    Decl *OrigDecl;
5197
5198  public:
5199    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5200
5201    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5202                                                    S(S), OrigDecl(OrigDecl) { }
5203
5204    void VisitExpr(Expr *E) {
5205      if (isa<ObjCMessageExpr>(*E)) return;
5206      Inherited::VisitExpr(E);
5207    }
5208
5209    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5210      CheckForSelfReference(E);
5211      Inherited::VisitImplicitCastExpr(E);
5212    }
5213
5214    void CheckForSelfReference(ImplicitCastExpr *E) {
5215      if (E->getCastKind() != CK_LValueToRValue) return;
5216      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5217      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5218      if (!DRE) return;
5219      Decl* ReferenceDecl = DRE->getDecl();
5220      if (OrigDecl != ReferenceDecl) return;
5221      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5222                          Sema::NotForRedeclaration);
5223      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5224                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5225                              << Result.getLookupName()
5226                              << OrigDecl->getLocation()
5227                              << SubExpr->getSourceRange());
5228    }
5229  };
5230}
5231
5232/// AddInitializerToDecl - Adds the initializer Init to the
5233/// declaration dcl. If DirectInit is true, this is C++ direct
5234/// initialization rather than copy initialization.
5235void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5236                                bool DirectInit, bool TypeMayContainAuto) {
5237  // If there is no declaration, there was an error parsing it.  Just ignore
5238  // the initializer.
5239  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5240    return;
5241
5242  // Check for self-references within variable initializers.
5243  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5244    // Variables declared within a function/method body are handled
5245    // by a dataflow analysis.
5246    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5247      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5248  }
5249  else {
5250    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5251  }
5252
5253  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5254    // With declarators parsed the way they are, the parser cannot
5255    // distinguish between a normal initializer and a pure-specifier.
5256    // Thus this grotesque test.
5257    IntegerLiteral *IL;
5258    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5259        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5260      CheckPureMethod(Method, Init->getSourceRange());
5261    else {
5262      Diag(Method->getLocation(), diag::err_member_function_initialization)
5263        << Method->getDeclName() << Init->getSourceRange();
5264      Method->setInvalidDecl();
5265    }
5266    return;
5267  }
5268
5269  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5270  if (!VDecl) {
5271    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5272    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5273    RealDecl->setInvalidDecl();
5274    return;
5275  }
5276
5277  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5278  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5279    TypeSourceInfo *DeducedType = 0;
5280    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5281      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5282        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5283        << Init->getSourceRange();
5284    if (!DeducedType) {
5285      RealDecl->setInvalidDecl();
5286      return;
5287    }
5288    VDecl->setTypeSourceInfo(DeducedType);
5289    VDecl->setType(DeducedType->getType());
5290
5291    // In ARC, infer lifetime.
5292    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5293      VDecl->setInvalidDecl();
5294
5295    // If this is a redeclaration, check that the type we just deduced matches
5296    // the previously declared type.
5297    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5298      MergeVarDeclTypes(VDecl, Old);
5299  }
5300
5301
5302  // A definition must end up with a complete type, which means it must be
5303  // complete with the restriction that an array type might be completed by the
5304  // initializer; note that later code assumes this restriction.
5305  QualType BaseDeclType = VDecl->getType();
5306  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5307    BaseDeclType = Array->getElementType();
5308  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5309                          diag::err_typecheck_decl_incomplete_type)) {
5310    RealDecl->setInvalidDecl();
5311    return;
5312  }
5313
5314  // The variable can not have an abstract class type.
5315  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5316                             diag::err_abstract_type_in_decl,
5317                             AbstractVariableType))
5318    VDecl->setInvalidDecl();
5319
5320  const VarDecl *Def;
5321  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5322    Diag(VDecl->getLocation(), diag::err_redefinition)
5323      << VDecl->getDeclName();
5324    Diag(Def->getLocation(), diag::note_previous_definition);
5325    VDecl->setInvalidDecl();
5326    return;
5327  }
5328
5329  const VarDecl* PrevInit = 0;
5330  if (getLangOptions().CPlusPlus) {
5331    // C++ [class.static.data]p4
5332    //   If a static data member is of const integral or const
5333    //   enumeration type, its declaration in the class definition can
5334    //   specify a constant-initializer which shall be an integral
5335    //   constant expression (5.19). In that case, the member can appear
5336    //   in integral constant expressions. The member shall still be
5337    //   defined in a namespace scope if it is used in the program and the
5338    //   namespace scope definition shall not contain an initializer.
5339    //
5340    // We already performed a redefinition check above, but for static
5341    // data members we also need to check whether there was an in-class
5342    // declaration with an initializer.
5343    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5344      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5345      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5346      return;
5347    }
5348
5349    if (VDecl->hasLocalStorage())
5350      getCurFunction()->setHasBranchProtectedScope();
5351
5352    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5353      VDecl->setInvalidDecl();
5354      return;
5355    }
5356  }
5357
5358  // Capture the variable that is being initialized and the style of
5359  // initialization.
5360  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5361
5362  // FIXME: Poor source location information.
5363  InitializationKind Kind
5364    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5365                                                   Init->getLocStart(),
5366                                                   Init->getLocEnd())
5367                : InitializationKind::CreateCopy(VDecl->getLocation(),
5368                                                 Init->getLocStart());
5369
5370  // Get the decls type and save a reference for later, since
5371  // CheckInitializerTypes may change it.
5372  QualType DclT = VDecl->getType(), SavT = DclT;
5373  if (VDecl->isLocalVarDecl()) {
5374    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5375      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5376      VDecl->setInvalidDecl();
5377    } else if (!VDecl->isInvalidDecl()) {
5378      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5379      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5380                                                MultiExprArg(*this, &Init, 1),
5381                                                &DclT);
5382      if (Result.isInvalid()) {
5383        VDecl->setInvalidDecl();
5384        return;
5385      }
5386
5387      Init = Result.takeAs<Expr>();
5388
5389      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5390      // Don't check invalid declarations to avoid emitting useless diagnostics.
5391      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5392        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5393          CheckForConstantInitializer(Init, DclT);
5394      }
5395    }
5396  } else if (VDecl->isStaticDataMember() &&
5397             VDecl->getLexicalDeclContext()->isRecord()) {
5398    // This is an in-class initialization for a static data member, e.g.,
5399    //
5400    // struct S {
5401    //   static const int value = 17;
5402    // };
5403
5404    // Try to perform the initialization regardless.
5405    if (!VDecl->isInvalidDecl()) {
5406      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5407      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5408                                          MultiExprArg(*this, &Init, 1),
5409                                          &DclT);
5410      if (Result.isInvalid()) {
5411        VDecl->setInvalidDecl();
5412        return;
5413      }
5414
5415      Init = Result.takeAs<Expr>();
5416    }
5417
5418    // C++ [class.mem]p4:
5419    //   A member-declarator can contain a constant-initializer only
5420    //   if it declares a static member (9.4) of const integral or
5421    //   const enumeration type, see 9.4.2.
5422    QualType T = VDecl->getType();
5423
5424    // Do nothing on dependent types.
5425    if (T->isDependentType()) {
5426
5427    // Require constness.
5428    } else if (!T.isConstQualified()) {
5429      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5430        << Init->getSourceRange();
5431      VDecl->setInvalidDecl();
5432
5433    // We allow integer constant expressions in all cases.
5434    } else if (T->isIntegralOrEnumerationType()) {
5435      // Check whether the expression is a constant expression.
5436      SourceLocation Loc;
5437      if (Init->isValueDependent())
5438        ; // Nothing to check.
5439      else if (Init->isIntegerConstantExpr(Context, &Loc))
5440        ; // Ok, it's an ICE!
5441      else if (Init->isEvaluatable(Context)) {
5442        // If we can constant fold the initializer through heroics, accept it,
5443        // but report this as a use of an extension for -pedantic.
5444        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5445          << Init->getSourceRange();
5446      } else {
5447        // Otherwise, this is some crazy unknown case.  Report the issue at the
5448        // location provided by the isIntegerConstantExpr failed check.
5449        Diag(Loc, diag::err_in_class_initializer_non_constant)
5450          << Init->getSourceRange();
5451        VDecl->setInvalidDecl();
5452      }
5453
5454    // We allow floating-point constants as an extension in C++03, and
5455    // C++0x has far more complicated rules that we don't really
5456    // implement fully.
5457    } else {
5458      bool Allowed = false;
5459      if (getLangOptions().CPlusPlus0x) {
5460        Allowed = T->isLiteralType();
5461      } else if (T->isFloatingType()) { // also permits complex, which is ok
5462        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5463          << T << Init->getSourceRange();
5464        Allowed = true;
5465      }
5466
5467      if (!Allowed) {
5468        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5469          << T << Init->getSourceRange();
5470        VDecl->setInvalidDecl();
5471
5472      // TODO: there are probably expressions that pass here that shouldn't.
5473      } else if (!Init->isValueDependent() &&
5474                 !Init->isConstantInitializer(Context, false)) {
5475        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5476          << Init->getSourceRange();
5477        VDecl->setInvalidDecl();
5478      }
5479    }
5480  } else if (VDecl->isFileVarDecl()) {
5481    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5482        (!getLangOptions().CPlusPlus ||
5483         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5484      Diag(VDecl->getLocation(), diag::warn_extern_init);
5485    if (!VDecl->isInvalidDecl()) {
5486      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5487      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5488                                                MultiExprArg(*this, &Init, 1),
5489                                                &DclT);
5490      if (Result.isInvalid()) {
5491        VDecl->setInvalidDecl();
5492        return;
5493      }
5494
5495      Init = Result.takeAs<Expr>();
5496    }
5497
5498    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5499    // Don't check invalid declarations to avoid emitting useless diagnostics.
5500    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5501      // C99 6.7.8p4. All file scoped initializers need to be constant.
5502      CheckForConstantInitializer(Init, DclT);
5503    }
5504  }
5505  // If the type changed, it means we had an incomplete type that was
5506  // completed by the initializer. For example:
5507  //   int ary[] = { 1, 3, 5 };
5508  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5509  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5510    VDecl->setType(DclT);
5511    Init->setType(DclT);
5512  }
5513
5514
5515  // If this variable is a local declaration with record type, make sure it
5516  // doesn't have a flexible member initialization.  We only support this as a
5517  // global/static definition.
5518  if (VDecl->hasLocalStorage())
5519    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5520      if (RT->getDecl()->hasFlexibleArrayMember()) {
5521        // Check whether the initializer tries to initialize the flexible
5522        // array member itself to anything other than an empty initializer list.
5523        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5524          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5525                                         RT->getDecl()->field_end()) - 1;
5526          if (Index < ILE->getNumInits() &&
5527              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5528                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5529            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5530            VDecl->setInvalidDecl();
5531          }
5532        }
5533      }
5534
5535  // Check any implicit conversions within the expression.
5536  CheckImplicitConversions(Init, VDecl->getLocation());
5537
5538  if (!VDecl->isInvalidDecl())
5539    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5540
5541  Init = MaybeCreateExprWithCleanups(Init);
5542  // Attach the initializer to the decl.
5543  VDecl->setInit(Init);
5544
5545  CheckCompleteVariableDeclaration(VDecl);
5546}
5547
5548/// ActOnInitializerError - Given that there was an error parsing an
5549/// initializer for the given declaration, try to return to some form
5550/// of sanity.
5551void Sema::ActOnInitializerError(Decl *D) {
5552  // Our main concern here is re-establishing invariants like "a
5553  // variable's type is either dependent or complete".
5554  if (!D || D->isInvalidDecl()) return;
5555
5556  VarDecl *VD = dyn_cast<VarDecl>(D);
5557  if (!VD) return;
5558
5559  // Auto types are meaningless if we can't make sense of the initializer.
5560  if (ParsingInitForAutoVars.count(D)) {
5561    D->setInvalidDecl();
5562    return;
5563  }
5564
5565  QualType Ty = VD->getType();
5566  if (Ty->isDependentType()) return;
5567
5568  // Require a complete type.
5569  if (RequireCompleteType(VD->getLocation(),
5570                          Context.getBaseElementType(Ty),
5571                          diag::err_typecheck_decl_incomplete_type)) {
5572    VD->setInvalidDecl();
5573    return;
5574  }
5575
5576  // Require an abstract type.
5577  if (RequireNonAbstractType(VD->getLocation(), Ty,
5578                             diag::err_abstract_type_in_decl,
5579                             AbstractVariableType)) {
5580    VD->setInvalidDecl();
5581    return;
5582  }
5583
5584  // Don't bother complaining about constructors or destructors,
5585  // though.
5586}
5587
5588void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5589                                  bool TypeMayContainAuto) {
5590  // If there is no declaration, there was an error parsing it. Just ignore it.
5591  if (RealDecl == 0)
5592    return;
5593
5594  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5595    QualType Type = Var->getType();
5596
5597    // C++0x [dcl.spec.auto]p3
5598    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5599      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5600        << Var->getDeclName() << Type;
5601      Var->setInvalidDecl();
5602      return;
5603    }
5604
5605    switch (Var->isThisDeclarationADefinition()) {
5606    case VarDecl::Definition:
5607      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5608        break;
5609
5610      // We have an out-of-line definition of a static data member
5611      // that has an in-class initializer, so we type-check this like
5612      // a declaration.
5613      //
5614      // Fall through
5615
5616    case VarDecl::DeclarationOnly:
5617      // It's only a declaration.
5618
5619      // Block scope. C99 6.7p7: If an identifier for an object is
5620      // declared with no linkage (C99 6.2.2p6), the type for the
5621      // object shall be complete.
5622      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5623          !Var->getLinkage() && !Var->isInvalidDecl() &&
5624          RequireCompleteType(Var->getLocation(), Type,
5625                              diag::err_typecheck_decl_incomplete_type))
5626        Var->setInvalidDecl();
5627
5628      // Make sure that the type is not abstract.
5629      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5630          RequireNonAbstractType(Var->getLocation(), Type,
5631                                 diag::err_abstract_type_in_decl,
5632                                 AbstractVariableType))
5633        Var->setInvalidDecl();
5634      return;
5635
5636    case VarDecl::TentativeDefinition:
5637      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5638      // object that has file scope without an initializer, and without a
5639      // storage-class specifier or with the storage-class specifier "static",
5640      // constitutes a tentative definition. Note: A tentative definition with
5641      // external linkage is valid (C99 6.2.2p5).
5642      if (!Var->isInvalidDecl()) {
5643        if (const IncompleteArrayType *ArrayT
5644                                    = Context.getAsIncompleteArrayType(Type)) {
5645          if (RequireCompleteType(Var->getLocation(),
5646                                  ArrayT->getElementType(),
5647                                  diag::err_illegal_decl_array_incomplete_type))
5648            Var->setInvalidDecl();
5649        } else if (Var->getStorageClass() == SC_Static) {
5650          // C99 6.9.2p3: If the declaration of an identifier for an object is
5651          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5652          // declared type shall not be an incomplete type.
5653          // NOTE: code such as the following
5654          //     static struct s;
5655          //     struct s { int a; };
5656          // is accepted by gcc. Hence here we issue a warning instead of
5657          // an error and we do not invalidate the static declaration.
5658          // NOTE: to avoid multiple warnings, only check the first declaration.
5659          if (Var->getPreviousDeclaration() == 0)
5660            RequireCompleteType(Var->getLocation(), Type,
5661                                diag::ext_typecheck_decl_incomplete_type);
5662        }
5663      }
5664
5665      // Record the tentative definition; we're done.
5666      if (!Var->isInvalidDecl())
5667        TentativeDefinitions.push_back(Var);
5668      return;
5669    }
5670
5671    // Provide a specific diagnostic for uninitialized variable
5672    // definitions with incomplete array type.
5673    if (Type->isIncompleteArrayType()) {
5674      Diag(Var->getLocation(),
5675           diag::err_typecheck_incomplete_array_needs_initializer);
5676      Var->setInvalidDecl();
5677      return;
5678    }
5679
5680    // Provide a specific diagnostic for uninitialized variable
5681    // definitions with reference type.
5682    if (Type->isReferenceType()) {
5683      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5684        << Var->getDeclName()
5685        << SourceRange(Var->getLocation(), Var->getLocation());
5686      Var->setInvalidDecl();
5687      return;
5688    }
5689
5690    // Do not attempt to type-check the default initializer for a
5691    // variable with dependent type.
5692    if (Type->isDependentType())
5693      return;
5694
5695    if (Var->isInvalidDecl())
5696      return;
5697
5698    if (RequireCompleteType(Var->getLocation(),
5699                            Context.getBaseElementType(Type),
5700                            diag::err_typecheck_decl_incomplete_type)) {
5701      Var->setInvalidDecl();
5702      return;
5703    }
5704
5705    // The variable can not have an abstract class type.
5706    if (RequireNonAbstractType(Var->getLocation(), Type,
5707                               diag::err_abstract_type_in_decl,
5708                               AbstractVariableType)) {
5709      Var->setInvalidDecl();
5710      return;
5711    }
5712
5713    // Check for jumps past the implicit initializer.  C++0x
5714    // clarifies that this applies to a "variable with automatic
5715    // storage duration", not a "local variable".
5716    // C++0x [stmt.dcl]p3
5717    //   A program that jumps from a point where a variable with automatic
5718    //   storage duration is not in scope to a point where it is in scope is
5719    //   ill-formed unless the variable has scalar type, class type with a
5720    //   trivial default constructor and a trivial destructor, a cv-qualified
5721    //   version of one of these types, or an array of one of the preceding
5722    //   types and is declared without an initializer.
5723    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5724      if (const RecordType *Record
5725            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5726        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5727        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5728            (getLangOptions().CPlusPlus0x &&
5729             (!CXXRecord->hasTrivialDefaultConstructor() ||
5730              !CXXRecord->hasTrivialDestructor())))
5731          getCurFunction()->setHasBranchProtectedScope();
5732      }
5733    }
5734
5735    // C++03 [dcl.init]p9:
5736    //   If no initializer is specified for an object, and the
5737    //   object is of (possibly cv-qualified) non-POD class type (or
5738    //   array thereof), the object shall be default-initialized; if
5739    //   the object is of const-qualified type, the underlying class
5740    //   type shall have a user-declared default
5741    //   constructor. Otherwise, if no initializer is specified for
5742    //   a non- static object, the object and its subobjects, if
5743    //   any, have an indeterminate initial value); if the object
5744    //   or any of its subobjects are of const-qualified type, the
5745    //   program is ill-formed.
5746    // C++0x [dcl.init]p11:
5747    //   If no initializer is specified for an object, the object is
5748    //   default-initialized; [...].
5749    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5750    InitializationKind Kind
5751      = InitializationKind::CreateDefault(Var->getLocation());
5752
5753    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5754    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5755                                      MultiExprArg(*this, 0, 0));
5756    if (Init.isInvalid())
5757      Var->setInvalidDecl();
5758    else if (Init.get())
5759      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5760
5761    CheckCompleteVariableDeclaration(Var);
5762  }
5763}
5764
5765void Sema::ActOnCXXForRangeDecl(Decl *D) {
5766  VarDecl *VD = dyn_cast<VarDecl>(D);
5767  if (!VD) {
5768    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5769    D->setInvalidDecl();
5770    return;
5771  }
5772
5773  VD->setCXXForRangeDecl(true);
5774
5775  // for-range-declaration cannot be given a storage class specifier.
5776  int Error = -1;
5777  switch (VD->getStorageClassAsWritten()) {
5778  case SC_None:
5779    break;
5780  case SC_Extern:
5781    Error = 0;
5782    break;
5783  case SC_Static:
5784    Error = 1;
5785    break;
5786  case SC_PrivateExtern:
5787    Error = 2;
5788    break;
5789  case SC_Auto:
5790    Error = 3;
5791    break;
5792  case SC_Register:
5793    Error = 4;
5794    break;
5795  }
5796  // FIXME: constexpr isn't allowed here.
5797  //if (DS.isConstexprSpecified())
5798  //  Error = 5;
5799  if (Error != -1) {
5800    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5801      << VD->getDeclName() << Error;
5802    D->setInvalidDecl();
5803  }
5804}
5805
5806void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5807  if (var->isInvalidDecl()) return;
5808
5809  // In ARC, don't allow jumps past the implicit initialization of a
5810  // local retaining variable.
5811  if (getLangOptions().ObjCAutoRefCount &&
5812      var->hasLocalStorage()) {
5813    switch (var->getType().getObjCLifetime()) {
5814    case Qualifiers::OCL_None:
5815    case Qualifiers::OCL_ExplicitNone:
5816    case Qualifiers::OCL_Autoreleasing:
5817      break;
5818
5819    case Qualifiers::OCL_Weak:
5820    case Qualifiers::OCL_Strong:
5821      getCurFunction()->setHasBranchProtectedScope();
5822      break;
5823    }
5824  }
5825
5826  // All the following checks are C++ only.
5827  if (!getLangOptions().CPlusPlus) return;
5828
5829  QualType baseType = Context.getBaseElementType(var->getType());
5830  if (baseType->isDependentType()) return;
5831
5832  // __block variables might require us to capture a copy-initializer.
5833  if (var->hasAttr<BlocksAttr>()) {
5834    // It's currently invalid to ever have a __block variable with an
5835    // array type; should we diagnose that here?
5836
5837    // Regardless, we don't want to ignore array nesting when
5838    // constructing this copy.
5839    QualType type = var->getType();
5840
5841    if (type->isStructureOrClassType()) {
5842      SourceLocation poi = var->getLocation();
5843      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5844      ExprResult result =
5845        PerformCopyInitialization(
5846                        InitializedEntity::InitializeBlock(poi, type, false),
5847                                  poi, Owned(varRef));
5848      if (!result.isInvalid()) {
5849        result = MaybeCreateExprWithCleanups(result);
5850        Expr *init = result.takeAs<Expr>();
5851        Context.setBlockVarCopyInits(var, init);
5852      }
5853    }
5854  }
5855
5856  // Check for global constructors.
5857  if (!var->getDeclContext()->isDependentContext() &&
5858      var->hasGlobalStorage() &&
5859      !var->isStaticLocal() &&
5860      var->getInit() &&
5861      !var->getInit()->isConstantInitializer(Context,
5862                                             baseType->isReferenceType()))
5863    Diag(var->getLocation(), diag::warn_global_constructor)
5864      << var->getInit()->getSourceRange();
5865
5866  // Require the destructor.
5867  if (const RecordType *recordType = baseType->getAs<RecordType>())
5868    FinalizeVarWithDestructor(var, recordType);
5869}
5870
5871/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5872/// any semantic actions necessary after any initializer has been attached.
5873void
5874Sema::FinalizeDeclaration(Decl *ThisDecl) {
5875  // Note that we are no longer parsing the initializer for this declaration.
5876  ParsingInitForAutoVars.erase(ThisDecl);
5877}
5878
5879Sema::DeclGroupPtrTy
5880Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5881                              Decl **Group, unsigned NumDecls) {
5882  llvm::SmallVector<Decl*, 8> Decls;
5883
5884  if (DS.isTypeSpecOwned())
5885    Decls.push_back(DS.getRepAsDecl());
5886
5887  for (unsigned i = 0; i != NumDecls; ++i)
5888    if (Decl *D = Group[i])
5889      Decls.push_back(D);
5890
5891  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5892                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5893}
5894
5895/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5896/// group, performing any necessary semantic checking.
5897Sema::DeclGroupPtrTy
5898Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5899                           bool TypeMayContainAuto) {
5900  // C++0x [dcl.spec.auto]p7:
5901  //   If the type deduced for the template parameter U is not the same in each
5902  //   deduction, the program is ill-formed.
5903  // FIXME: When initializer-list support is added, a distinction is needed
5904  // between the deduced type U and the deduced type which 'auto' stands for.
5905  //   auto a = 0, b = { 1, 2, 3 };
5906  // is legal because the deduced type U is 'int' in both cases.
5907  if (TypeMayContainAuto && NumDecls > 1) {
5908    QualType Deduced;
5909    CanQualType DeducedCanon;
5910    VarDecl *DeducedDecl = 0;
5911    for (unsigned i = 0; i != NumDecls; ++i) {
5912      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5913        AutoType *AT = D->getType()->getContainedAutoType();
5914        // Don't reissue diagnostics when instantiating a template.
5915        if (AT && D->isInvalidDecl())
5916          break;
5917        if (AT && AT->isDeduced()) {
5918          QualType U = AT->getDeducedType();
5919          CanQualType UCanon = Context.getCanonicalType(U);
5920          if (Deduced.isNull()) {
5921            Deduced = U;
5922            DeducedCanon = UCanon;
5923            DeducedDecl = D;
5924          } else if (DeducedCanon != UCanon) {
5925            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5926                 diag::err_auto_different_deductions)
5927              << Deduced << DeducedDecl->getDeclName()
5928              << U << D->getDeclName()
5929              << DeducedDecl->getInit()->getSourceRange()
5930              << D->getInit()->getSourceRange();
5931            D->setInvalidDecl();
5932            break;
5933          }
5934        }
5935      }
5936    }
5937  }
5938
5939  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5940}
5941
5942
5943/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5944/// to introduce parameters into function prototype scope.
5945Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5946  const DeclSpec &DS = D.getDeclSpec();
5947
5948  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5949  VarDecl::StorageClass StorageClass = SC_None;
5950  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5951  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5952    StorageClass = SC_Register;
5953    StorageClassAsWritten = SC_Register;
5954  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5955    Diag(DS.getStorageClassSpecLoc(),
5956         diag::err_invalid_storage_class_in_func_decl);
5957    D.getMutableDeclSpec().ClearStorageClassSpecs();
5958  }
5959
5960  if (D.getDeclSpec().isThreadSpecified())
5961    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5962
5963  DiagnoseFunctionSpecifiers(D);
5964
5965  TagDecl *OwnedDecl = 0;
5966  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5967  QualType parmDeclType = TInfo->getType();
5968
5969  if (getLangOptions().CPlusPlus) {
5970    // Check that there are no default arguments inside the type of this
5971    // parameter.
5972    CheckExtraCXXDefaultArguments(D);
5973
5974    if (OwnedDecl && OwnedDecl->isDefinition()) {
5975      // C++ [dcl.fct]p6:
5976      //   Types shall not be defined in return or parameter types.
5977      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5978        << Context.getTypeDeclType(OwnedDecl);
5979    }
5980
5981    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5982    if (D.getCXXScopeSpec().isSet()) {
5983      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5984        << D.getCXXScopeSpec().getRange();
5985      D.getCXXScopeSpec().clear();
5986    }
5987  }
5988
5989  // Ensure we have a valid name
5990  IdentifierInfo *II = 0;
5991  if (D.hasName()) {
5992    II = D.getIdentifier();
5993    if (!II) {
5994      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5995        << GetNameForDeclarator(D).getName().getAsString();
5996      D.setInvalidType(true);
5997    }
5998  }
5999
6000  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6001  if (II) {
6002    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6003                   ForRedeclaration);
6004    LookupName(R, S);
6005    if (R.isSingleResult()) {
6006      NamedDecl *PrevDecl = R.getFoundDecl();
6007      if (PrevDecl->isTemplateParameter()) {
6008        // Maybe we will complain about the shadowed template parameter.
6009        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6010        // Just pretend that we didn't see the previous declaration.
6011        PrevDecl = 0;
6012      } else if (S->isDeclScope(PrevDecl)) {
6013        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6014        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6015
6016        // Recover by removing the name
6017        II = 0;
6018        D.SetIdentifier(0, D.getIdentifierLoc());
6019        D.setInvalidType(true);
6020      }
6021    }
6022  }
6023
6024  // Temporarily put parameter variables in the translation unit, not
6025  // the enclosing context.  This prevents them from accidentally
6026  // looking like class members in C++.
6027  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6028                                    D.getSourceRange().getBegin(),
6029                                    D.getIdentifierLoc(), II,
6030                                    parmDeclType, TInfo,
6031                                    StorageClass, StorageClassAsWritten);
6032
6033  if (D.isInvalidType())
6034    New->setInvalidDecl();
6035
6036  assert(S->isFunctionPrototypeScope());
6037  assert(S->getFunctionPrototypeDepth() >= 1);
6038  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6039                    S->getNextFunctionPrototypeIndex());
6040
6041  // Add the parameter declaration into this scope.
6042  S->AddDecl(New);
6043  if (II)
6044    IdResolver.AddDecl(New);
6045
6046  ProcessDeclAttributes(S, New, D);
6047
6048  if (New->hasAttr<BlocksAttr>()) {
6049    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6050  }
6051  return New;
6052}
6053
6054/// \brief Synthesizes a variable for a parameter arising from a
6055/// typedef.
6056ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6057                                              SourceLocation Loc,
6058                                              QualType T) {
6059  /* FIXME: setting StartLoc == Loc.
6060     Would it be worth to modify callers so as to provide proper source
6061     location for the unnamed parameters, embedding the parameter's type? */
6062  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6063                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6064                                           SC_None, SC_None, 0);
6065  Param->setImplicit();
6066  return Param;
6067}
6068
6069void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6070                                    ParmVarDecl * const *ParamEnd) {
6071  // Don't diagnose unused-parameter errors in template instantiations; we
6072  // will already have done so in the template itself.
6073  if (!ActiveTemplateInstantiations.empty())
6074    return;
6075
6076  for (; Param != ParamEnd; ++Param) {
6077    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6078        !(*Param)->hasAttr<UnusedAttr>()) {
6079      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6080        << (*Param)->getDeclName();
6081    }
6082  }
6083}
6084
6085void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6086                                                  ParmVarDecl * const *ParamEnd,
6087                                                  QualType ReturnTy,
6088                                                  NamedDecl *D) {
6089  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6090    return;
6091
6092  // Warn if the return value is pass-by-value and larger than the specified
6093  // threshold.
6094  if (ReturnTy.isPODType(Context)) {
6095    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6096    if (Size > LangOpts.NumLargeByValueCopy)
6097      Diag(D->getLocation(), diag::warn_return_value_size)
6098          << D->getDeclName() << Size;
6099  }
6100
6101  // Warn if any parameter is pass-by-value and larger than the specified
6102  // threshold.
6103  for (; Param != ParamEnd; ++Param) {
6104    QualType T = (*Param)->getType();
6105    if (!T.isPODType(Context))
6106      continue;
6107    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6108    if (Size > LangOpts.NumLargeByValueCopy)
6109      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6110          << (*Param)->getDeclName() << Size;
6111  }
6112}
6113
6114ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6115                                  SourceLocation NameLoc, IdentifierInfo *Name,
6116                                  QualType T, TypeSourceInfo *TSInfo,
6117                                  VarDecl::StorageClass StorageClass,
6118                                  VarDecl::StorageClass StorageClassAsWritten) {
6119  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6120  if (getLangOptions().ObjCAutoRefCount &&
6121      T.getObjCLifetime() == Qualifiers::OCL_None &&
6122      T->isObjCLifetimeType()) {
6123
6124    Qualifiers::ObjCLifetime lifetime;
6125
6126    // Special cases for arrays:
6127    //   - if it's const, use __unsafe_unretained
6128    //   - otherwise, it's an error
6129    if (T->isArrayType()) {
6130      if (!T.isConstQualified()) {
6131        Diag(NameLoc, diag::err_arc_array_param_no_lifetime)
6132          << TSInfo->getTypeLoc().getSourceRange();
6133      }
6134      lifetime = Qualifiers::OCL_ExplicitNone;
6135    } else {
6136      lifetime = T->getObjCARCImplicitLifetime();
6137    }
6138    T = Context.getLifetimeQualifiedType(T, lifetime);
6139  }
6140
6141  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6142                                         adjustParameterType(T), TSInfo,
6143                                         StorageClass, StorageClassAsWritten,
6144                                         0);
6145
6146  // Parameters can not be abstract class types.
6147  // For record types, this is done by the AbstractClassUsageDiagnoser once
6148  // the class has been completely parsed.
6149  if (!CurContext->isRecord() &&
6150      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6151                             AbstractParamType))
6152    New->setInvalidDecl();
6153
6154  // Parameter declarators cannot be interface types. All ObjC objects are
6155  // passed by reference.
6156  if (T->isObjCObjectType()) {
6157    Diag(NameLoc,
6158         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6159    New->setInvalidDecl();
6160  }
6161
6162  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6163  // duration shall not be qualified by an address-space qualifier."
6164  // Since all parameters have automatic store duration, they can not have
6165  // an address space.
6166  if (T.getAddressSpace() != 0) {
6167    Diag(NameLoc, diag::err_arg_with_address_space);
6168    New->setInvalidDecl();
6169  }
6170
6171  return New;
6172}
6173
6174void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6175                                           SourceLocation LocAfterDecls) {
6176  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6177
6178  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6179  // for a K&R function.
6180  if (!FTI.hasPrototype) {
6181    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6182      --i;
6183      if (FTI.ArgInfo[i].Param == 0) {
6184        llvm::SmallString<256> Code;
6185        llvm::raw_svector_ostream(Code) << "  int "
6186                                        << FTI.ArgInfo[i].Ident->getName()
6187                                        << ";\n";
6188        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6189          << FTI.ArgInfo[i].Ident
6190          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6191
6192        // Implicitly declare the argument as type 'int' for lack of a better
6193        // type.
6194        AttributeFactory attrs;
6195        DeclSpec DS(attrs);
6196        const char* PrevSpec; // unused
6197        unsigned DiagID; // unused
6198        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6199                           PrevSpec, DiagID);
6200        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6201        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6202        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6203      }
6204    }
6205  }
6206}
6207
6208Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6209                                         Declarator &D) {
6210  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6211  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6212  Scope *ParentScope = FnBodyScope->getParent();
6213
6214  Decl *DP = HandleDeclarator(ParentScope, D,
6215                              MultiTemplateParamsArg(*this),
6216                              /*IsFunctionDefinition=*/true);
6217  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6218}
6219
6220static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6221  // Don't warn about invalid declarations.
6222  if (FD->isInvalidDecl())
6223    return false;
6224
6225  // Or declarations that aren't global.
6226  if (!FD->isGlobal())
6227    return false;
6228
6229  // Don't warn about C++ member functions.
6230  if (isa<CXXMethodDecl>(FD))
6231    return false;
6232
6233  // Don't warn about 'main'.
6234  if (FD->isMain())
6235    return false;
6236
6237  // Don't warn about inline functions.
6238  if (FD->isInlined())
6239    return false;
6240
6241  // Don't warn about function templates.
6242  if (FD->getDescribedFunctionTemplate())
6243    return false;
6244
6245  // Don't warn about function template specializations.
6246  if (FD->isFunctionTemplateSpecialization())
6247    return false;
6248
6249  bool MissingPrototype = true;
6250  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6251       Prev; Prev = Prev->getPreviousDeclaration()) {
6252    // Ignore any declarations that occur in function or method
6253    // scope, because they aren't visible from the header.
6254    if (Prev->getDeclContext()->isFunctionOrMethod())
6255      continue;
6256
6257    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6258    break;
6259  }
6260
6261  return MissingPrototype;
6262}
6263
6264void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6265  // Don't complain if we're in GNU89 mode and the previous definition
6266  // was an extern inline function.
6267  const FunctionDecl *Definition;
6268  if (FD->isDefined(Definition) &&
6269      !canRedefineFunction(Definition, getLangOptions())) {
6270    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6271        Definition->getStorageClass() == SC_Extern)
6272      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6273        << FD->getDeclName() << getLangOptions().CPlusPlus;
6274    else
6275      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6276    Diag(Definition->getLocation(), diag::note_previous_definition);
6277  }
6278}
6279
6280Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6281  // Clear the last template instantiation error context.
6282  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6283
6284  if (!D)
6285    return D;
6286  FunctionDecl *FD = 0;
6287
6288  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6289    FD = FunTmpl->getTemplatedDecl();
6290  else
6291    FD = cast<FunctionDecl>(D);
6292
6293  // Enter a new function scope
6294  PushFunctionScope();
6295
6296  // See if this is a redefinition.
6297  if (!FD->isLateTemplateParsed())
6298    CheckForFunctionRedefinition(FD);
6299
6300  // Builtin functions cannot be defined.
6301  if (unsigned BuiltinID = FD->getBuiltinID()) {
6302    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6303      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6304      FD->setInvalidDecl();
6305    }
6306  }
6307
6308  // The return type of a function definition must be complete
6309  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6310  QualType ResultType = FD->getResultType();
6311  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6312      !FD->isInvalidDecl() &&
6313      RequireCompleteType(FD->getLocation(), ResultType,
6314                          diag::err_func_def_incomplete_result))
6315    FD->setInvalidDecl();
6316
6317  // GNU warning -Wmissing-prototypes:
6318  //   Warn if a global function is defined without a previous
6319  //   prototype declaration. This warning is issued even if the
6320  //   definition itself provides a prototype. The aim is to detect
6321  //   global functions that fail to be declared in header files.
6322  if (ShouldWarnAboutMissingPrototype(FD))
6323    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6324
6325  if (FnBodyScope)
6326    PushDeclContext(FnBodyScope, FD);
6327
6328  // Check the validity of our function parameters
6329  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6330                           /*CheckParameterNames=*/true);
6331
6332  // Introduce our parameters into the function scope
6333  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6334    ParmVarDecl *Param = FD->getParamDecl(p);
6335    Param->setOwningFunction(FD);
6336
6337    // If this has an identifier, add it to the scope stack.
6338    if (Param->getIdentifier() && FnBodyScope) {
6339      CheckShadow(FnBodyScope, Param);
6340
6341      PushOnScopeChains(Param, FnBodyScope);
6342    }
6343  }
6344
6345  // Checking attributes of current function definition
6346  // dllimport attribute.
6347  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6348  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6349    // dllimport attribute cannot be directly applied to definition.
6350    // Microsoft accepts dllimport for functions defined within class scope.
6351    if (!DA->isInherited() &&
6352        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6353      Diag(FD->getLocation(),
6354           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6355        << "dllimport";
6356      FD->setInvalidDecl();
6357      return FD;
6358    }
6359
6360    // Visual C++ appears to not think this is an issue, so only issue
6361    // a warning when Microsoft extensions are disabled.
6362    if (!LangOpts.Microsoft) {
6363      // If a symbol previously declared dllimport is later defined, the
6364      // attribute is ignored in subsequent references, and a warning is
6365      // emitted.
6366      Diag(FD->getLocation(),
6367           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6368        << FD->getName() << "dllimport";
6369    }
6370  }
6371  return FD;
6372}
6373
6374/// \brief Given the set of return statements within a function body,
6375/// compute the variables that are subject to the named return value
6376/// optimization.
6377///
6378/// Each of the variables that is subject to the named return value
6379/// optimization will be marked as NRVO variables in the AST, and any
6380/// return statement that has a marked NRVO variable as its NRVO candidate can
6381/// use the named return value optimization.
6382///
6383/// This function applies a very simplistic algorithm for NRVO: if every return
6384/// statement in the function has the same NRVO candidate, that candidate is
6385/// the NRVO variable.
6386///
6387/// FIXME: Employ a smarter algorithm that accounts for multiple return
6388/// statements and the lifetimes of the NRVO candidates. We should be able to
6389/// find a maximal set of NRVO variables.
6390static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6391  ReturnStmt **Returns = Scope->Returns.data();
6392
6393  const VarDecl *NRVOCandidate = 0;
6394  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6395    if (!Returns[I]->getNRVOCandidate())
6396      return;
6397
6398    if (!NRVOCandidate)
6399      NRVOCandidate = Returns[I]->getNRVOCandidate();
6400    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6401      return;
6402  }
6403
6404  if (NRVOCandidate)
6405    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6406}
6407
6408Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6409  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6410}
6411
6412Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6413                                    bool IsInstantiation) {
6414  FunctionDecl *FD = 0;
6415  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6416  if (FunTmpl)
6417    FD = FunTmpl->getTemplatedDecl();
6418  else
6419    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6420
6421  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6422  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6423
6424  if (FD) {
6425    FD->setBody(Body);
6426    if (FD->isMain()) {
6427      // C and C++ allow for main to automagically return 0.
6428      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6429      FD->setHasImplicitReturnZero(true);
6430      WP.disableCheckFallThrough();
6431    }
6432
6433    // MSVC permits the use of pure specifier (=0) on function definition,
6434    // defined at class scope, warn about this non standard construct.
6435    if (getLangOptions().Microsoft && FD->isPure())
6436      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6437
6438    if (!FD->isInvalidDecl()) {
6439      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6440      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6441                                             FD->getResultType(), FD);
6442
6443      // If this is a constructor, we need a vtable.
6444      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6445        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6446
6447      ComputeNRVO(Body, getCurFunction());
6448    }
6449
6450    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6451  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6452    assert(MD == getCurMethodDecl() && "Method parsing confused");
6453    MD->setBody(Body);
6454    if (Body)
6455      MD->setEndLoc(Body->getLocEnd());
6456    if (!MD->isInvalidDecl()) {
6457      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6458      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6459                                             MD->getResultType(), MD);
6460    }
6461  } else {
6462    return 0;
6463  }
6464
6465  // Verify and clean out per-function state.
6466  if (Body) {
6467    // C++ constructors that have function-try-blocks can't have return
6468    // statements in the handlers of that block. (C++ [except.handle]p14)
6469    // Verify this.
6470    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6471      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6472
6473    // Verify that that gotos and switch cases don't jump into scopes illegally.
6474    // Verify that that gotos and switch cases don't jump into scopes illegally.
6475    if (getCurFunction()->NeedsScopeChecking() &&
6476        !dcl->isInvalidDecl() &&
6477        !hasAnyUnrecoverableErrorsInThisFunction())
6478      DiagnoseInvalidJumps(Body);
6479
6480    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6481      if (!Destructor->getParent()->isDependentType())
6482        CheckDestructor(Destructor);
6483
6484      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6485                                             Destructor->getParent());
6486    }
6487
6488    // If any errors have occurred, clear out any temporaries that may have
6489    // been leftover. This ensures that these temporaries won't be picked up for
6490    // deletion in some later function.
6491    if (PP.getDiagnostics().hasErrorOccurred() ||
6492        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6493      ExprTemporaries.clear();
6494      ExprNeedsCleanups = false;
6495    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6496      // Since the body is valid, issue any analysis-based warnings that are
6497      // enabled.
6498      ActivePolicy = &WP;
6499    }
6500
6501    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6502    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6503  }
6504
6505  if (!IsInstantiation)
6506    PopDeclContext();
6507
6508  PopFunctionOrBlockScope(ActivePolicy, dcl);
6509
6510  // If any errors have occurred, clear out any temporaries that may have
6511  // been leftover. This ensures that these temporaries won't be picked up for
6512  // deletion in some later function.
6513  if (getDiagnostics().hasErrorOccurred()) {
6514    ExprTemporaries.clear();
6515    ExprNeedsCleanups = false;
6516  }
6517
6518  return dcl;
6519}
6520
6521/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6522/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6523NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6524                                          IdentifierInfo &II, Scope *S) {
6525  // Before we produce a declaration for an implicitly defined
6526  // function, see whether there was a locally-scoped declaration of
6527  // this name as a function or variable. If so, use that
6528  // (non-visible) declaration, and complain about it.
6529  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6530    = LocallyScopedExternalDecls.find(&II);
6531  if (Pos != LocallyScopedExternalDecls.end()) {
6532    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6533    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6534    return Pos->second;
6535  }
6536
6537  // Extension in C99.  Legal in C90, but warn about it.
6538  if (II.getName().startswith("__builtin_"))
6539    Diag(Loc, diag::warn_builtin_unknown) << &II;
6540  else if (getLangOptions().C99)
6541    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6542  else
6543    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6544
6545  // Set a Declarator for the implicit definition: int foo();
6546  const char *Dummy;
6547  AttributeFactory attrFactory;
6548  DeclSpec DS(attrFactory);
6549  unsigned DiagID;
6550  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6551  (void)Error; // Silence warning.
6552  assert(!Error && "Error setting up implicit decl!");
6553  Declarator D(DS, Declarator::BlockContext);
6554  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6555                                             0, 0, true, SourceLocation(),
6556                                             EST_None, SourceLocation(),
6557                                             0, 0, 0, 0, Loc, Loc, D),
6558                DS.getAttributes(),
6559                SourceLocation());
6560  D.SetIdentifier(&II, Loc);
6561
6562  // Insert this function into translation-unit scope.
6563
6564  DeclContext *PrevDC = CurContext;
6565  CurContext = Context.getTranslationUnitDecl();
6566
6567  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6568  FD->setImplicit();
6569
6570  CurContext = PrevDC;
6571
6572  AddKnownFunctionAttributes(FD);
6573
6574  return FD;
6575}
6576
6577/// \brief Adds any function attributes that we know a priori based on
6578/// the declaration of this function.
6579///
6580/// These attributes can apply both to implicitly-declared builtins
6581/// (like __builtin___printf_chk) or to library-declared functions
6582/// like NSLog or printf.
6583///
6584/// We need to check for duplicate attributes both here and where user-written
6585/// attributes are applied to declarations.
6586void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6587  if (FD->isInvalidDecl())
6588    return;
6589
6590  // If this is a built-in function, map its builtin attributes to
6591  // actual attributes.
6592  if (unsigned BuiltinID = FD->getBuiltinID()) {
6593    // Handle printf-formatting attributes.
6594    unsigned FormatIdx;
6595    bool HasVAListArg;
6596    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6597      if (!FD->getAttr<FormatAttr>())
6598        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6599                                                "printf", FormatIdx+1,
6600                                               HasVAListArg ? 0 : FormatIdx+2));
6601    }
6602    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6603                                             HasVAListArg)) {
6604     if (!FD->getAttr<FormatAttr>())
6605       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6606                                              "scanf", FormatIdx+1,
6607                                              HasVAListArg ? 0 : FormatIdx+2));
6608    }
6609
6610    // Mark const if we don't care about errno and that is the only
6611    // thing preventing the function from being const. This allows
6612    // IRgen to use LLVM intrinsics for such functions.
6613    if (!getLangOptions().MathErrno &&
6614        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6615      if (!FD->getAttr<ConstAttr>())
6616        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6617    }
6618
6619    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6620      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6621    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6622      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6623  }
6624
6625  IdentifierInfo *Name = FD->getIdentifier();
6626  if (!Name)
6627    return;
6628  if ((!getLangOptions().CPlusPlus &&
6629       FD->getDeclContext()->isTranslationUnit()) ||
6630      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6631       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6632       LinkageSpecDecl::lang_c)) {
6633    // Okay: this could be a libc/libm/Objective-C function we know
6634    // about.
6635  } else
6636    return;
6637
6638  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6639    // FIXME: NSLog and NSLogv should be target specific
6640    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6641      // FIXME: We known better than our headers.
6642      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6643    } else
6644      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6645                                             "printf", 1,
6646                                             Name->isStr("NSLogv") ? 0 : 2));
6647  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6648    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6649    // target-specific builtins, perhaps?
6650    if (!FD->getAttr<FormatAttr>())
6651      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6652                                             "printf", 2,
6653                                             Name->isStr("vasprintf") ? 0 : 3));
6654  }
6655}
6656
6657TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6658                                    TypeSourceInfo *TInfo) {
6659  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6660  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6661
6662  if (!TInfo) {
6663    assert(D.isInvalidType() && "no declarator info for valid type");
6664    TInfo = Context.getTrivialTypeSourceInfo(T);
6665  }
6666
6667  // Scope manipulation handled by caller.
6668  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6669                                           D.getSourceRange().getBegin(),
6670                                           D.getIdentifierLoc(),
6671                                           D.getIdentifier(),
6672                                           TInfo);
6673
6674  // Bail out immediately if we have an invalid declaration.
6675  if (D.isInvalidType()) {
6676    NewTD->setInvalidDecl();
6677    return NewTD;
6678  }
6679
6680  // C++ [dcl.typedef]p8:
6681  //   If the typedef declaration defines an unnamed class (or
6682  //   enum), the first typedef-name declared by the declaration
6683  //   to be that class type (or enum type) is used to denote the
6684  //   class type (or enum type) for linkage purposes only.
6685  // We need to check whether the type was declared in the declaration.
6686  switch (D.getDeclSpec().getTypeSpecType()) {
6687  case TST_enum:
6688  case TST_struct:
6689  case TST_union:
6690  case TST_class: {
6691    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6692
6693    // Do nothing if the tag is not anonymous or already has an
6694    // associated typedef (from an earlier typedef in this decl group).
6695    if (tagFromDeclSpec->getIdentifier()) break;
6696    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6697
6698    // A well-formed anonymous tag must always be a TUK_Definition.
6699    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6700
6701    // The type must match the tag exactly;  no qualifiers allowed.
6702    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6703      break;
6704
6705    // Otherwise, set this is the anon-decl typedef for the tag.
6706    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6707    break;
6708  }
6709
6710  default:
6711    break;
6712  }
6713
6714  return NewTD;
6715}
6716
6717
6718/// \brief Determine whether a tag with a given kind is acceptable
6719/// as a redeclaration of the given tag declaration.
6720///
6721/// \returns true if the new tag kind is acceptable, false otherwise.
6722bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6723                                        TagTypeKind NewTag, bool isDefinition,
6724                                        SourceLocation NewTagLoc,
6725                                        const IdentifierInfo &Name) {
6726  // C++ [dcl.type.elab]p3:
6727  //   The class-key or enum keyword present in the
6728  //   elaborated-type-specifier shall agree in kind with the
6729  //   declaration to which the name in the elaborated-type-specifier
6730  //   refers. This rule also applies to the form of
6731  //   elaborated-type-specifier that declares a class-name or
6732  //   friend class since it can be construed as referring to the
6733  //   definition of the class. Thus, in any
6734  //   elaborated-type-specifier, the enum keyword shall be used to
6735  //   refer to an enumeration (7.2), the union class-key shall be
6736  //   used to refer to a union (clause 9), and either the class or
6737  //   struct class-key shall be used to refer to a class (clause 9)
6738  //   declared using the class or struct class-key.
6739  TagTypeKind OldTag = Previous->getTagKind();
6740  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6741    if (OldTag == NewTag)
6742      return true;
6743
6744  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6745      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6746    // Warn about the struct/class tag mismatch.
6747    bool isTemplate = false;
6748    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6749      isTemplate = Record->getDescribedClassTemplate();
6750
6751    if (!ActiveTemplateInstantiations.empty()) {
6752      // In a template instantiation, do not offer fix-its for tag mismatches
6753      // since they usually mess up the template instead of fixing the problem.
6754      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6755        << (NewTag == TTK_Class) << isTemplate << &Name;
6756      return true;
6757    }
6758
6759    if (isDefinition) {
6760      // On definitions, check previous tags and issue a fix-it for each
6761      // one that doesn't match the current tag.
6762      if (Previous->getDefinition()) {
6763        // Don't suggest fix-its for redefinitions.
6764        return true;
6765      }
6766
6767      bool previousMismatch = false;
6768      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6769           E(Previous->redecls_end()); I != E; ++I) {
6770        if (I->getTagKind() != NewTag) {
6771          if (!previousMismatch) {
6772            previousMismatch = true;
6773            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6774              << (NewTag == TTK_Class) << isTemplate << &Name;
6775          }
6776          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6777            << (NewTag == TTK_Class)
6778            << FixItHint::CreateReplacement(I->getInnerLocStart(),
6779                                            NewTag == TTK_Class?
6780                                            "class" : "struct");
6781        }
6782      }
6783      return true;
6784    }
6785
6786    // Check for a previous definition.  If current tag and definition
6787    // are same type, do nothing.  If no definition, but disagree with
6788    // with previous tag type, give a warning, but no fix-it.
6789    const TagDecl *Redecl = Previous->getDefinition() ?
6790                            Previous->getDefinition() : Previous;
6791    if (Redecl->getTagKind() == NewTag) {
6792      return true;
6793    }
6794
6795    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6796      << (NewTag == TTK_Class)
6797      << isTemplate << &Name;
6798    Diag(Redecl->getLocation(), diag::note_previous_use);
6799
6800    // If there is a previous defintion, suggest a fix-it.
6801    if (Previous->getDefinition()) {
6802        Diag(NewTagLoc, diag::note_struct_class_suggestion)
6803          << (Redecl->getTagKind() == TTK_Class)
6804          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6805                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
6806    }
6807
6808    return true;
6809  }
6810  return false;
6811}
6812
6813/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6814/// former case, Name will be non-null.  In the later case, Name will be null.
6815/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6816/// reference/declaration/definition of a tag.
6817Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6818                     SourceLocation KWLoc, CXXScopeSpec &SS,
6819                     IdentifierInfo *Name, SourceLocation NameLoc,
6820                     AttributeList *Attr, AccessSpecifier AS,
6821                     MultiTemplateParamsArg TemplateParameterLists,
6822                     bool &OwnedDecl, bool &IsDependent,
6823                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6824                     TypeResult UnderlyingType) {
6825  // If this is not a definition, it must have a name.
6826  assert((Name != 0 || TUK == TUK_Definition) &&
6827         "Nameless record must be a definition!");
6828  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6829
6830  OwnedDecl = false;
6831  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6832
6833  // FIXME: Check explicit specializations more carefully.
6834  bool isExplicitSpecialization = false;
6835  bool Invalid = false;
6836
6837  // We only need to do this matching if we have template parameters
6838  // or a scope specifier, which also conveniently avoids this work
6839  // for non-C++ cases.
6840  if (TemplateParameterLists.size() > 0 ||
6841      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6842    if (TemplateParameterList *TemplateParams
6843          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6844                                                TemplateParameterLists.get(),
6845                                                TemplateParameterLists.size(),
6846                                                    TUK == TUK_Friend,
6847                                                    isExplicitSpecialization,
6848                                                    Invalid)) {
6849      if (TemplateParams->size() > 0) {
6850        // This is a declaration or definition of a class template (which may
6851        // be a member of another template).
6852
6853        if (Invalid)
6854          return 0;
6855
6856        OwnedDecl = false;
6857        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6858                                               SS, Name, NameLoc, Attr,
6859                                               TemplateParams, AS,
6860                                           TemplateParameterLists.size() - 1,
6861                 (TemplateParameterList**) TemplateParameterLists.release());
6862        return Result.get();
6863      } else {
6864        // The "template<>" header is extraneous.
6865        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6866          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6867        isExplicitSpecialization = true;
6868      }
6869    }
6870  }
6871
6872  // Figure out the underlying type if this a enum declaration. We need to do
6873  // this early, because it's needed to detect if this is an incompatible
6874  // redeclaration.
6875  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6876
6877  if (Kind == TTK_Enum) {
6878    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6879      // No underlying type explicitly specified, or we failed to parse the
6880      // type, default to int.
6881      EnumUnderlying = Context.IntTy.getTypePtr();
6882    else if (UnderlyingType.get()) {
6883      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6884      // integral type; any cv-qualification is ignored.
6885      TypeSourceInfo *TI = 0;
6886      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6887      EnumUnderlying = TI;
6888
6889      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6890
6891      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6892        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6893          << T;
6894        // Recover by falling back to int.
6895        EnumUnderlying = Context.IntTy.getTypePtr();
6896      }
6897
6898      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6899                                          UPPC_FixedUnderlyingType))
6900        EnumUnderlying = Context.IntTy.getTypePtr();
6901
6902    } else if (getLangOptions().Microsoft)
6903      // Microsoft enums are always of int type.
6904      EnumUnderlying = Context.IntTy.getTypePtr();
6905  }
6906
6907  DeclContext *SearchDC = CurContext;
6908  DeclContext *DC = CurContext;
6909  bool isStdBadAlloc = false;
6910
6911  RedeclarationKind Redecl = ForRedeclaration;
6912  if (TUK == TUK_Friend || TUK == TUK_Reference)
6913    Redecl = NotForRedeclaration;
6914
6915  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6916
6917  if (Name && SS.isNotEmpty()) {
6918    // We have a nested-name tag ('struct foo::bar').
6919
6920    // Check for invalid 'foo::'.
6921    if (SS.isInvalid()) {
6922      Name = 0;
6923      goto CreateNewDecl;
6924    }
6925
6926    // If this is a friend or a reference to a class in a dependent
6927    // context, don't try to make a decl for it.
6928    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6929      DC = computeDeclContext(SS, false);
6930      if (!DC) {
6931        IsDependent = true;
6932        return 0;
6933      }
6934    } else {
6935      DC = computeDeclContext(SS, true);
6936      if (!DC) {
6937        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6938          << SS.getRange();
6939        return 0;
6940      }
6941    }
6942
6943    if (RequireCompleteDeclContext(SS, DC))
6944      return 0;
6945
6946    SearchDC = DC;
6947    // Look-up name inside 'foo::'.
6948    LookupQualifiedName(Previous, DC);
6949
6950    if (Previous.isAmbiguous())
6951      return 0;
6952
6953    if (Previous.empty()) {
6954      // Name lookup did not find anything. However, if the
6955      // nested-name-specifier refers to the current instantiation,
6956      // and that current instantiation has any dependent base
6957      // classes, we might find something at instantiation time: treat
6958      // this as a dependent elaborated-type-specifier.
6959      // But this only makes any sense for reference-like lookups.
6960      if (Previous.wasNotFoundInCurrentInstantiation() &&
6961          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6962        IsDependent = true;
6963        return 0;
6964      }
6965
6966      // A tag 'foo::bar' must already exist.
6967      Diag(NameLoc, diag::err_not_tag_in_scope)
6968        << Kind << Name << DC << SS.getRange();
6969      Name = 0;
6970      Invalid = true;
6971      goto CreateNewDecl;
6972    }
6973  } else if (Name) {
6974    // If this is a named struct, check to see if there was a previous forward
6975    // declaration or definition.
6976    // FIXME: We're looking into outer scopes here, even when we
6977    // shouldn't be. Doing so can result in ambiguities that we
6978    // shouldn't be diagnosing.
6979    LookupName(Previous, S);
6980
6981    if (Previous.isAmbiguous() &&
6982        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6983      LookupResult::Filter F = Previous.makeFilter();
6984      while (F.hasNext()) {
6985        NamedDecl *ND = F.next();
6986        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6987          F.erase();
6988      }
6989      F.done();
6990    }
6991
6992    // Note:  there used to be some attempt at recovery here.
6993    if (Previous.isAmbiguous())
6994      return 0;
6995
6996    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6997      // FIXME: This makes sure that we ignore the contexts associated
6998      // with C structs, unions, and enums when looking for a matching
6999      // tag declaration or definition. See the similar lookup tweak
7000      // in Sema::LookupName; is there a better way to deal with this?
7001      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7002        SearchDC = SearchDC->getParent();
7003    }
7004  } else if (S->isFunctionPrototypeScope()) {
7005    // If this is an enum declaration in function prototype scope, set its
7006    // initial context to the translation unit.
7007    SearchDC = Context.getTranslationUnitDecl();
7008  }
7009
7010  if (Previous.isSingleResult() &&
7011      Previous.getFoundDecl()->isTemplateParameter()) {
7012    // Maybe we will complain about the shadowed template parameter.
7013    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7014    // Just pretend that we didn't see the previous declaration.
7015    Previous.clear();
7016  }
7017
7018  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7019      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7020    // This is a declaration of or a reference to "std::bad_alloc".
7021    isStdBadAlloc = true;
7022
7023    if (Previous.empty() && StdBadAlloc) {
7024      // std::bad_alloc has been implicitly declared (but made invisible to
7025      // name lookup). Fill in this implicit declaration as the previous
7026      // declaration, so that the declarations get chained appropriately.
7027      Previous.addDecl(getStdBadAlloc());
7028    }
7029  }
7030
7031  // If we didn't find a previous declaration, and this is a reference
7032  // (or friend reference), move to the correct scope.  In C++, we
7033  // also need to do a redeclaration lookup there, just in case
7034  // there's a shadow friend decl.
7035  if (Name && Previous.empty() &&
7036      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7037    if (Invalid) goto CreateNewDecl;
7038    assert(SS.isEmpty());
7039
7040    if (TUK == TUK_Reference) {
7041      // C++ [basic.scope.pdecl]p5:
7042      //   -- for an elaborated-type-specifier of the form
7043      //
7044      //          class-key identifier
7045      //
7046      //      if the elaborated-type-specifier is used in the
7047      //      decl-specifier-seq or parameter-declaration-clause of a
7048      //      function defined in namespace scope, the identifier is
7049      //      declared as a class-name in the namespace that contains
7050      //      the declaration; otherwise, except as a friend
7051      //      declaration, the identifier is declared in the smallest
7052      //      non-class, non-function-prototype scope that contains the
7053      //      declaration.
7054      //
7055      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7056      // C structs and unions.
7057      //
7058      // It is an error in C++ to declare (rather than define) an enum
7059      // type, including via an elaborated type specifier.  We'll
7060      // diagnose that later; for now, declare the enum in the same
7061      // scope as we would have picked for any other tag type.
7062      //
7063      // GNU C also supports this behavior as part of its incomplete
7064      // enum types extension, while GNU C++ does not.
7065      //
7066      // Find the context where we'll be declaring the tag.
7067      // FIXME: We would like to maintain the current DeclContext as the
7068      // lexical context,
7069      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7070        SearchDC = SearchDC->getParent();
7071
7072      // Find the scope where we'll be declaring the tag.
7073      while (S->isClassScope() ||
7074             (getLangOptions().CPlusPlus &&
7075              S->isFunctionPrototypeScope()) ||
7076             ((S->getFlags() & Scope::DeclScope) == 0) ||
7077             (S->getEntity() &&
7078              ((DeclContext *)S->getEntity())->isTransparentContext()))
7079        S = S->getParent();
7080    } else {
7081      assert(TUK == TUK_Friend);
7082      // C++ [namespace.memdef]p3:
7083      //   If a friend declaration in a non-local class first declares a
7084      //   class or function, the friend class or function is a member of
7085      //   the innermost enclosing namespace.
7086      SearchDC = SearchDC->getEnclosingNamespaceContext();
7087    }
7088
7089    // In C++, we need to do a redeclaration lookup to properly
7090    // diagnose some problems.
7091    if (getLangOptions().CPlusPlus) {
7092      Previous.setRedeclarationKind(ForRedeclaration);
7093      LookupQualifiedName(Previous, SearchDC);
7094    }
7095  }
7096
7097  if (!Previous.empty()) {
7098    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7099
7100    // It's okay to have a tag decl in the same scope as a typedef
7101    // which hides a tag decl in the same scope.  Finding this
7102    // insanity with a redeclaration lookup can only actually happen
7103    // in C++.
7104    //
7105    // This is also okay for elaborated-type-specifiers, which is
7106    // technically forbidden by the current standard but which is
7107    // okay according to the likely resolution of an open issue;
7108    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7109    if (getLangOptions().CPlusPlus) {
7110      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7111        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7112          TagDecl *Tag = TT->getDecl();
7113          if (Tag->getDeclName() == Name &&
7114              Tag->getDeclContext()->getRedeclContext()
7115                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7116            PrevDecl = Tag;
7117            Previous.clear();
7118            Previous.addDecl(Tag);
7119            Previous.resolveKind();
7120          }
7121        }
7122      }
7123    }
7124
7125    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7126      // If this is a use of a previous tag, or if the tag is already declared
7127      // in the same scope (so that the definition/declaration completes or
7128      // rementions the tag), reuse the decl.
7129      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7130          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7131        // Make sure that this wasn't declared as an enum and now used as a
7132        // struct or something similar.
7133        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7134                                          TUK == TUK_Definition, KWLoc,
7135                                          *Name)) {
7136          bool SafeToContinue
7137            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7138               Kind != TTK_Enum);
7139          if (SafeToContinue)
7140            Diag(KWLoc, diag::err_use_with_wrong_tag)
7141              << Name
7142              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7143                                              PrevTagDecl->getKindName());
7144          else
7145            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7146          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7147
7148          if (SafeToContinue)
7149            Kind = PrevTagDecl->getTagKind();
7150          else {
7151            // Recover by making this an anonymous redefinition.
7152            Name = 0;
7153            Previous.clear();
7154            Invalid = true;
7155          }
7156        }
7157
7158        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7159          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7160
7161          // All conflicts with previous declarations are recovered by
7162          // returning the previous declaration.
7163          if (ScopedEnum != PrevEnum->isScoped()) {
7164            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7165              << PrevEnum->isScoped();
7166            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7167            return PrevTagDecl;
7168          }
7169          else if (EnumUnderlying && PrevEnum->isFixed()) {
7170            QualType T;
7171            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7172                T = TI->getType();
7173            else
7174                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7175
7176            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7177              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7178                   diag::err_enum_redeclare_type_mismatch)
7179                << T
7180                << PrevEnum->getIntegerType();
7181              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7182              return PrevTagDecl;
7183            }
7184          }
7185          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7186            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7187              << PrevEnum->isFixed();
7188            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7189            return PrevTagDecl;
7190          }
7191        }
7192
7193        if (!Invalid) {
7194          // If this is a use, just return the declaration we found.
7195
7196          // FIXME: In the future, return a variant or some other clue
7197          // for the consumer of this Decl to know it doesn't own it.
7198          // For our current ASTs this shouldn't be a problem, but will
7199          // need to be changed with DeclGroups.
7200          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7201               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7202            return PrevTagDecl;
7203
7204          // Diagnose attempts to redefine a tag.
7205          if (TUK == TUK_Definition) {
7206            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7207              // If we're defining a specialization and the previous definition
7208              // is from an implicit instantiation, don't emit an error
7209              // here; we'll catch this in the general case below.
7210              if (!isExplicitSpecialization ||
7211                  !isa<CXXRecordDecl>(Def) ||
7212                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7213                                               == TSK_ExplicitSpecialization) {
7214                Diag(NameLoc, diag::err_redefinition) << Name;
7215                Diag(Def->getLocation(), diag::note_previous_definition);
7216                // If this is a redefinition, recover by making this
7217                // struct be anonymous, which will make any later
7218                // references get the previous definition.
7219                Name = 0;
7220                Previous.clear();
7221                Invalid = true;
7222              }
7223            } else {
7224              // If the type is currently being defined, complain
7225              // about a nested redefinition.
7226              const TagType *Tag
7227                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7228              if (Tag->isBeingDefined()) {
7229                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7230                Diag(PrevTagDecl->getLocation(),
7231                     diag::note_previous_definition);
7232                Name = 0;
7233                Previous.clear();
7234                Invalid = true;
7235              }
7236            }
7237
7238            // Okay, this is definition of a previously declared or referenced
7239            // tag PrevDecl. We're going to create a new Decl for it.
7240          }
7241        }
7242        // If we get here we have (another) forward declaration or we
7243        // have a definition.  Just create a new decl.
7244
7245      } else {
7246        // If we get here, this is a definition of a new tag type in a nested
7247        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7248        // new decl/type.  We set PrevDecl to NULL so that the entities
7249        // have distinct types.
7250        Previous.clear();
7251      }
7252      // If we get here, we're going to create a new Decl. If PrevDecl
7253      // is non-NULL, it's a definition of the tag declared by
7254      // PrevDecl. If it's NULL, we have a new definition.
7255
7256
7257    // Otherwise, PrevDecl is not a tag, but was found with tag
7258    // lookup.  This is only actually possible in C++, where a few
7259    // things like templates still live in the tag namespace.
7260    } else {
7261      assert(getLangOptions().CPlusPlus);
7262
7263      // Use a better diagnostic if an elaborated-type-specifier
7264      // found the wrong kind of type on the first
7265      // (non-redeclaration) lookup.
7266      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7267          !Previous.isForRedeclaration()) {
7268        unsigned Kind = 0;
7269        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7270        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7271        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7272        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7273        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7274        Invalid = true;
7275
7276      // Otherwise, only diagnose if the declaration is in scope.
7277      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7278                                isExplicitSpecialization)) {
7279        // do nothing
7280
7281      // Diagnose implicit declarations introduced by elaborated types.
7282      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7283        unsigned Kind = 0;
7284        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7285        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7286        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7287        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7288        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7289        Invalid = true;
7290
7291      // Otherwise it's a declaration.  Call out a particularly common
7292      // case here.
7293      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7294        unsigned Kind = 0;
7295        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7296        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7297          << Name << Kind << TND->getUnderlyingType();
7298        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7299        Invalid = true;
7300
7301      // Otherwise, diagnose.
7302      } else {
7303        // The tag name clashes with something else in the target scope,
7304        // issue an error and recover by making this tag be anonymous.
7305        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7306        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7307        Name = 0;
7308        Invalid = true;
7309      }
7310
7311      // The existing declaration isn't relevant to us; we're in a
7312      // new scope, so clear out the previous declaration.
7313      Previous.clear();
7314    }
7315  }
7316
7317CreateNewDecl:
7318
7319  TagDecl *PrevDecl = 0;
7320  if (Previous.isSingleResult())
7321    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7322
7323  // If there is an identifier, use the location of the identifier as the
7324  // location of the decl, otherwise use the location of the struct/union
7325  // keyword.
7326  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7327
7328  // Otherwise, create a new declaration. If there is a previous
7329  // declaration of the same entity, the two will be linked via
7330  // PrevDecl.
7331  TagDecl *New;
7332
7333  bool IsForwardReference = false;
7334  if (Kind == TTK_Enum) {
7335    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7336    // enum X { A, B, C } D;    D should chain to X.
7337    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7338                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7339                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7340    // If this is an undefined enum, warn.
7341    if (TUK != TUK_Definition && !Invalid) {
7342      TagDecl *Def;
7343      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7344        // C++0x: 7.2p2: opaque-enum-declaration.
7345        // Conflicts are diagnosed above. Do nothing.
7346      }
7347      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7348        Diag(Loc, diag::ext_forward_ref_enum_def)
7349          << New;
7350        Diag(Def->getLocation(), diag::note_previous_definition);
7351      } else {
7352        unsigned DiagID = diag::ext_forward_ref_enum;
7353        if (getLangOptions().Microsoft)
7354          DiagID = diag::ext_ms_forward_ref_enum;
7355        else if (getLangOptions().CPlusPlus)
7356          DiagID = diag::err_forward_ref_enum;
7357        Diag(Loc, DiagID);
7358
7359        // If this is a forward-declared reference to an enumeration, make a
7360        // note of it; we won't actually be introducing the declaration into
7361        // the declaration context.
7362        if (TUK == TUK_Reference)
7363          IsForwardReference = true;
7364      }
7365    }
7366
7367    if (EnumUnderlying) {
7368      EnumDecl *ED = cast<EnumDecl>(New);
7369      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7370        ED->setIntegerTypeSourceInfo(TI);
7371      else
7372        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7373      ED->setPromotionType(ED->getIntegerType());
7374    }
7375
7376  } else {
7377    // struct/union/class
7378
7379    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7380    // struct X { int A; } D;    D should chain to X.
7381    if (getLangOptions().CPlusPlus) {
7382      // FIXME: Look for a way to use RecordDecl for simple structs.
7383      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7384                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7385
7386      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7387        StdBadAlloc = cast<CXXRecordDecl>(New);
7388    } else
7389      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7390                               cast_or_null<RecordDecl>(PrevDecl));
7391  }
7392
7393  // Maybe add qualifier info.
7394  if (SS.isNotEmpty()) {
7395    if (SS.isSet()) {
7396      New->setQualifierInfo(SS.getWithLocInContext(Context));
7397      if (TemplateParameterLists.size() > 0) {
7398        New->setTemplateParameterListsInfo(Context,
7399                                           TemplateParameterLists.size(),
7400                    (TemplateParameterList**) TemplateParameterLists.release());
7401      }
7402    }
7403    else
7404      Invalid = true;
7405  }
7406
7407  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7408    // Add alignment attributes if necessary; these attributes are checked when
7409    // the ASTContext lays out the structure.
7410    //
7411    // It is important for implementing the correct semantics that this
7412    // happen here (in act on tag decl). The #pragma pack stack is
7413    // maintained as a result of parser callbacks which can occur at
7414    // many points during the parsing of a struct declaration (because
7415    // the #pragma tokens are effectively skipped over during the
7416    // parsing of the struct).
7417    AddAlignmentAttributesForRecord(RD);
7418
7419    AddMsStructLayoutForRecord(RD);
7420  }
7421
7422  // If this is a specialization of a member class (of a class template),
7423  // check the specialization.
7424  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7425    Invalid = true;
7426
7427  if (Invalid)
7428    New->setInvalidDecl();
7429
7430  if (Attr)
7431    ProcessDeclAttributeList(S, New, Attr);
7432
7433  // If we're declaring or defining a tag in function prototype scope
7434  // in C, note that this type can only be used within the function.
7435  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7436    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7437
7438  // Set the lexical context. If the tag has a C++ scope specifier, the
7439  // lexical context will be different from the semantic context.
7440  New->setLexicalDeclContext(CurContext);
7441
7442  // Mark this as a friend decl if applicable.
7443  // In Microsoft mode, a friend declaration also acts as a forward
7444  // declaration so we always pass true to setObjectOfFriendDecl to make
7445  // the tag name visible.
7446  if (TUK == TUK_Friend)
7447    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7448                               getLangOptions().Microsoft);
7449
7450  // Set the access specifier.
7451  if (!Invalid && SearchDC->isRecord())
7452    SetMemberAccessSpecifier(New, PrevDecl, AS);
7453
7454  if (TUK == TUK_Definition)
7455    New->startDefinition();
7456
7457  // If this has an identifier, add it to the scope stack.
7458  if (TUK == TUK_Friend) {
7459    // We might be replacing an existing declaration in the lookup tables;
7460    // if so, borrow its access specifier.
7461    if (PrevDecl)
7462      New->setAccess(PrevDecl->getAccess());
7463
7464    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7465    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7466    if (Name) // can be null along some error paths
7467      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7468        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7469  } else if (Name) {
7470    S = getNonFieldDeclScope(S);
7471    PushOnScopeChains(New, S, !IsForwardReference);
7472    if (IsForwardReference)
7473      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7474
7475  } else {
7476    CurContext->addDecl(New);
7477  }
7478
7479  // If this is the C FILE type, notify the AST context.
7480  if (IdentifierInfo *II = New->getIdentifier())
7481    if (!New->isInvalidDecl() &&
7482        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7483        II->isStr("FILE"))
7484      Context.setFILEDecl(New);
7485
7486  OwnedDecl = true;
7487  return New;
7488}
7489
7490void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7491  AdjustDeclIfTemplate(TagD);
7492  TagDecl *Tag = cast<TagDecl>(TagD);
7493
7494  // Enter the tag context.
7495  PushDeclContext(S, Tag);
7496}
7497
7498void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7499                                           SourceLocation FinalLoc,
7500                                           SourceLocation LBraceLoc) {
7501  AdjustDeclIfTemplate(TagD);
7502  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7503
7504  FieldCollector->StartClass();
7505
7506  if (!Record->getIdentifier())
7507    return;
7508
7509  if (FinalLoc.isValid())
7510    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7511
7512  // C++ [class]p2:
7513  //   [...] The class-name is also inserted into the scope of the
7514  //   class itself; this is known as the injected-class-name. For
7515  //   purposes of access checking, the injected-class-name is treated
7516  //   as if it were a public member name.
7517  CXXRecordDecl *InjectedClassName
7518    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7519                            Record->getLocStart(), Record->getLocation(),
7520                            Record->getIdentifier(),
7521                            /*PrevDecl=*/0,
7522                            /*DelayTypeCreation=*/true);
7523  Context.getTypeDeclType(InjectedClassName, Record);
7524  InjectedClassName->setImplicit();
7525  InjectedClassName->setAccess(AS_public);
7526  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7527      InjectedClassName->setDescribedClassTemplate(Template);
7528  PushOnScopeChains(InjectedClassName, S);
7529  assert(InjectedClassName->isInjectedClassName() &&
7530         "Broken injected-class-name");
7531}
7532
7533void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7534                                    SourceLocation RBraceLoc) {
7535  AdjustDeclIfTemplate(TagD);
7536  TagDecl *Tag = cast<TagDecl>(TagD);
7537  Tag->setRBraceLoc(RBraceLoc);
7538
7539  if (isa<CXXRecordDecl>(Tag))
7540    FieldCollector->FinishClass();
7541
7542  // Exit this scope of this tag's definition.
7543  PopDeclContext();
7544
7545  // Notify the consumer that we've defined a tag.
7546  Consumer.HandleTagDeclDefinition(Tag);
7547}
7548
7549void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7550  AdjustDeclIfTemplate(TagD);
7551  TagDecl *Tag = cast<TagDecl>(TagD);
7552  Tag->setInvalidDecl();
7553
7554  // We're undoing ActOnTagStartDefinition here, not
7555  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7556  // the FieldCollector.
7557
7558  PopDeclContext();
7559}
7560
7561// Note that FieldName may be null for anonymous bitfields.
7562bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7563                          QualType FieldTy, const Expr *BitWidth,
7564                          bool *ZeroWidth) {
7565  // Default to true; that shouldn't confuse checks for emptiness
7566  if (ZeroWidth)
7567    *ZeroWidth = true;
7568
7569  // C99 6.7.2.1p4 - verify the field type.
7570  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7571  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7572    // Handle incomplete types with specific error.
7573    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7574      return true;
7575    if (FieldName)
7576      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7577        << FieldName << FieldTy << BitWidth->getSourceRange();
7578    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7579      << FieldTy << BitWidth->getSourceRange();
7580  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7581                                             UPPC_BitFieldWidth))
7582    return true;
7583
7584  // If the bit-width is type- or value-dependent, don't try to check
7585  // it now.
7586  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7587    return false;
7588
7589  llvm::APSInt Value;
7590  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7591    return true;
7592
7593  if (Value != 0 && ZeroWidth)
7594    *ZeroWidth = false;
7595
7596  // Zero-width bitfield is ok for anonymous field.
7597  if (Value == 0 && FieldName)
7598    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7599
7600  if (Value.isSigned() && Value.isNegative()) {
7601    if (FieldName)
7602      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7603               << FieldName << Value.toString(10);
7604    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7605      << Value.toString(10);
7606  }
7607
7608  if (!FieldTy->isDependentType()) {
7609    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7610    if (Value.getZExtValue() > TypeSize) {
7611      if (!getLangOptions().CPlusPlus) {
7612        if (FieldName)
7613          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7614            << FieldName << (unsigned)Value.getZExtValue()
7615            << (unsigned)TypeSize;
7616
7617        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7618          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7619      }
7620
7621      if (FieldName)
7622        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7623          << FieldName << (unsigned)Value.getZExtValue()
7624          << (unsigned)TypeSize;
7625      else
7626        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7627          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7628    }
7629  }
7630
7631  return false;
7632}
7633
7634/// ActOnField - Each field of a C struct/union is passed into this in order
7635/// to create a FieldDecl object for it.
7636Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7637                       Declarator &D, ExprTy *BitfieldWidth) {
7638  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7639                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7640                               /*HasInit=*/false, AS_public);
7641  return Res;
7642}
7643
7644/// HandleField - Analyze a field of a C struct or a C++ data member.
7645///
7646FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7647                             SourceLocation DeclStart,
7648                             Declarator &D, Expr *BitWidth, bool HasInit,
7649                             AccessSpecifier AS) {
7650  IdentifierInfo *II = D.getIdentifier();
7651  SourceLocation Loc = DeclStart;
7652  if (II) Loc = D.getIdentifierLoc();
7653
7654  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7655  QualType T = TInfo->getType();
7656  if (getLangOptions().CPlusPlus) {
7657    CheckExtraCXXDefaultArguments(D);
7658
7659    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7660                                        UPPC_DataMemberType)) {
7661      D.setInvalidType();
7662      T = Context.IntTy;
7663      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7664    }
7665  }
7666
7667  DiagnoseFunctionSpecifiers(D);
7668
7669  if (D.getDeclSpec().isThreadSpecified())
7670    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7671
7672  // Check to see if this name was declared as a member previously
7673  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7674  LookupName(Previous, S);
7675  assert((Previous.empty() || Previous.isOverloadedResult() ||
7676          Previous.isSingleResult())
7677    && "Lookup of member name should be either overloaded, single or null");
7678
7679  // If the name is overloaded then get any declaration else get the single result
7680  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7681    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7682
7683  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7684    // Maybe we will complain about the shadowed template parameter.
7685    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7686    // Just pretend that we didn't see the previous declaration.
7687    PrevDecl = 0;
7688  }
7689
7690  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7691    PrevDecl = 0;
7692
7693  bool Mutable
7694    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7695  SourceLocation TSSL = D.getSourceRange().getBegin();
7696  FieldDecl *NewFD
7697    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7698                     TSSL, AS, PrevDecl, &D);
7699
7700  if (NewFD->isInvalidDecl())
7701    Record->setInvalidDecl();
7702
7703  if (NewFD->isInvalidDecl() && PrevDecl) {
7704    // Don't introduce NewFD into scope; there's already something
7705    // with the same name in the same scope.
7706  } else if (II) {
7707    PushOnScopeChains(NewFD, S);
7708  } else
7709    Record->addDecl(NewFD);
7710
7711  return NewFD;
7712}
7713
7714/// \brief Build a new FieldDecl and check its well-formedness.
7715///
7716/// This routine builds a new FieldDecl given the fields name, type,
7717/// record, etc. \p PrevDecl should refer to any previous declaration
7718/// with the same name and in the same scope as the field to be
7719/// created.
7720///
7721/// \returns a new FieldDecl.
7722///
7723/// \todo The Declarator argument is a hack. It will be removed once
7724FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7725                                TypeSourceInfo *TInfo,
7726                                RecordDecl *Record, SourceLocation Loc,
7727                                bool Mutable, Expr *BitWidth, bool HasInit,
7728                                SourceLocation TSSL,
7729                                AccessSpecifier AS, NamedDecl *PrevDecl,
7730                                Declarator *D) {
7731  IdentifierInfo *II = Name.getAsIdentifierInfo();
7732  bool InvalidDecl = false;
7733  if (D) InvalidDecl = D->isInvalidType();
7734
7735  // If we receive a broken type, recover by assuming 'int' and
7736  // marking this declaration as invalid.
7737  if (T.isNull()) {
7738    InvalidDecl = true;
7739    T = Context.IntTy;
7740  }
7741
7742  QualType EltTy = Context.getBaseElementType(T);
7743  if (!EltTy->isDependentType() &&
7744      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7745    // Fields of incomplete type force their record to be invalid.
7746    Record->setInvalidDecl();
7747    InvalidDecl = true;
7748  }
7749
7750  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7751  // than a variably modified type.
7752  if (!InvalidDecl && T->isVariablyModifiedType()) {
7753    bool SizeIsNegative;
7754    llvm::APSInt Oversized;
7755    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7756                                                           SizeIsNegative,
7757                                                           Oversized);
7758    if (!FixedTy.isNull()) {
7759      Diag(Loc, diag::warn_illegal_constant_array_size);
7760      T = FixedTy;
7761    } else {
7762      if (SizeIsNegative)
7763        Diag(Loc, diag::err_typecheck_negative_array_size);
7764      else if (Oversized.getBoolValue())
7765        Diag(Loc, diag::err_array_too_large)
7766          << Oversized.toString(10);
7767      else
7768        Diag(Loc, diag::err_typecheck_field_variable_size);
7769      InvalidDecl = true;
7770    }
7771  }
7772
7773  // Fields can not have abstract class types
7774  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7775                                             diag::err_abstract_type_in_decl,
7776                                             AbstractFieldType))
7777    InvalidDecl = true;
7778
7779  bool ZeroWidth = false;
7780  // If this is declared as a bit-field, check the bit-field.
7781  if (!InvalidDecl && BitWidth &&
7782      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7783    InvalidDecl = true;
7784    BitWidth = 0;
7785    ZeroWidth = false;
7786  }
7787
7788  // Check that 'mutable' is consistent with the type of the declaration.
7789  if (!InvalidDecl && Mutable) {
7790    unsigned DiagID = 0;
7791    if (T->isReferenceType())
7792      DiagID = diag::err_mutable_reference;
7793    else if (T.isConstQualified())
7794      DiagID = diag::err_mutable_const;
7795
7796    if (DiagID) {
7797      SourceLocation ErrLoc = Loc;
7798      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7799        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7800      Diag(ErrLoc, DiagID);
7801      Mutable = false;
7802      InvalidDecl = true;
7803    }
7804  }
7805
7806  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7807                                       BitWidth, Mutable, HasInit);
7808  if (InvalidDecl)
7809    NewFD->setInvalidDecl();
7810
7811  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7812    Diag(Loc, diag::err_duplicate_member) << II;
7813    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7814    NewFD->setInvalidDecl();
7815  }
7816
7817  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7818    if (Record->isUnion()) {
7819      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7820        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7821        if (RDecl->getDefinition()) {
7822          // C++ [class.union]p1: An object of a class with a non-trivial
7823          // constructor, a non-trivial copy constructor, a non-trivial
7824          // destructor, or a non-trivial copy assignment operator
7825          // cannot be a member of a union, nor can an array of such
7826          // objects.
7827          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7828            NewFD->setInvalidDecl();
7829        }
7830      }
7831
7832      // C++ [class.union]p1: If a union contains a member of reference type,
7833      // the program is ill-formed.
7834      if (EltTy->isReferenceType()) {
7835        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7836          << NewFD->getDeclName() << EltTy;
7837        NewFD->setInvalidDecl();
7838      }
7839    }
7840  }
7841
7842  // FIXME: We need to pass in the attributes given an AST
7843  // representation, not a parser representation.
7844  if (D)
7845    // FIXME: What to pass instead of TUScope?
7846    ProcessDeclAttributes(TUScope, NewFD, *D);
7847
7848  // In auto-retain/release, infer strong retension for fields of
7849  // retainable type.
7850  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
7851    NewFD->setInvalidDecl();
7852
7853  if (T.isObjCGCWeak())
7854    Diag(Loc, diag::warn_attribute_weak_on_field);
7855
7856  NewFD->setAccess(AS);
7857  return NewFD;
7858}
7859
7860bool Sema::CheckNontrivialField(FieldDecl *FD) {
7861  assert(FD);
7862  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7863
7864  if (FD->isInvalidDecl())
7865    return true;
7866
7867  QualType EltTy = Context.getBaseElementType(FD->getType());
7868  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7869    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7870    if (RDecl->getDefinition()) {
7871      // We check for copy constructors before constructors
7872      // because otherwise we'll never get complaints about
7873      // copy constructors.
7874
7875      CXXSpecialMember member = CXXInvalid;
7876      if (!RDecl->hasTrivialCopyConstructor())
7877        member = CXXCopyConstructor;
7878      else if (!RDecl->hasTrivialDefaultConstructor())
7879        member = CXXDefaultConstructor;
7880      else if (!RDecl->hasTrivialCopyAssignment())
7881        member = CXXCopyAssignment;
7882      else if (!RDecl->hasTrivialDestructor())
7883        member = CXXDestructor;
7884
7885      if (member != CXXInvalid) {
7886        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
7887          // Objective-C++ ARC: it is an error to have a non-trivial field of
7888          // a union. However, system headers in Objective-C programs
7889          // occasionally have Objective-C lifetime objects within unions,
7890          // and rather than cause the program to fail, we make those
7891          // members unavailable.
7892          SourceLocation Loc = FD->getLocation();
7893          if (getSourceManager().isInSystemHeader(Loc)) {
7894            if (!FD->hasAttr<UnavailableAttr>())
7895              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
7896                                  "this system field has retaining lifetime"));
7897            return false;
7898          }
7899        }
7900
7901        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7902              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7903        DiagnoseNontrivial(RT, member);
7904        return true;
7905      }
7906    }
7907  }
7908
7909  return false;
7910}
7911
7912/// DiagnoseNontrivial - Given that a class has a non-trivial
7913/// special member, figure out why.
7914void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7915  QualType QT(T, 0U);
7916  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7917
7918  // Check whether the member was user-declared.
7919  switch (member) {
7920  case CXXInvalid:
7921    break;
7922
7923  case CXXDefaultConstructor:
7924    if (RD->hasUserDeclaredConstructor()) {
7925      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7926      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7927        const FunctionDecl *body = 0;
7928        ci->hasBody(body);
7929        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7930          SourceLocation CtorLoc = ci->getLocation();
7931          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7932          return;
7933        }
7934      }
7935
7936      assert(0 && "found no user-declared constructors");
7937      return;
7938    }
7939    break;
7940
7941  case CXXCopyConstructor:
7942    if (RD->hasUserDeclaredCopyConstructor()) {
7943      SourceLocation CtorLoc =
7944        RD->getCopyConstructor(0)->getLocation();
7945      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7946      return;
7947    }
7948    break;
7949
7950  case CXXMoveConstructor:
7951    if (RD->hasUserDeclaredMoveConstructor()) {
7952      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7953      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7954      return;
7955    }
7956    break;
7957
7958  case CXXCopyAssignment:
7959    if (RD->hasUserDeclaredCopyAssignment()) {
7960      // FIXME: this should use the location of the copy
7961      // assignment, not the type.
7962      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7963      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7964      return;
7965    }
7966    break;
7967
7968  case CXXMoveAssignment:
7969    if (RD->hasUserDeclaredMoveAssignment()) {
7970      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
7971      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
7972      return;
7973    }
7974    break;
7975
7976  case CXXDestructor:
7977    if (RD->hasUserDeclaredDestructor()) {
7978      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7979      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7980      return;
7981    }
7982    break;
7983  }
7984
7985  typedef CXXRecordDecl::base_class_iterator base_iter;
7986
7987  // Virtual bases and members inhibit trivial copying/construction,
7988  // but not trivial destruction.
7989  if (member != CXXDestructor) {
7990    // Check for virtual bases.  vbases includes indirect virtual bases,
7991    // so we just iterate through the direct bases.
7992    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7993      if (bi->isVirtual()) {
7994        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7995        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7996        return;
7997      }
7998
7999    // Check for virtual methods.
8000    typedef CXXRecordDecl::method_iterator meth_iter;
8001    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8002         ++mi) {
8003      if (mi->isVirtual()) {
8004        SourceLocation MLoc = mi->getSourceRange().getBegin();
8005        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8006        return;
8007      }
8008    }
8009  }
8010
8011  bool (CXXRecordDecl::*hasTrivial)() const;
8012  switch (member) {
8013  case CXXDefaultConstructor:
8014    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8015  case CXXCopyConstructor:
8016    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8017  case CXXCopyAssignment:
8018    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8019  case CXXDestructor:
8020    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8021  default:
8022    assert(0 && "unexpected special member"); return;
8023  }
8024
8025  // Check for nontrivial bases (and recurse).
8026  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8027    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8028    assert(BaseRT && "Don't know how to handle dependent bases");
8029    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8030    if (!(BaseRecTy->*hasTrivial)()) {
8031      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8032      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8033      DiagnoseNontrivial(BaseRT, member);
8034      return;
8035    }
8036  }
8037
8038  // Check for nontrivial members (and recurse).
8039  typedef RecordDecl::field_iterator field_iter;
8040  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8041       ++fi) {
8042    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8043    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8044      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8045
8046      if (!(EltRD->*hasTrivial)()) {
8047        SourceLocation FLoc = (*fi)->getLocation();
8048        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8049        DiagnoseNontrivial(EltRT, member);
8050        return;
8051      }
8052    }
8053
8054    if (EltTy->isObjCLifetimeType()) {
8055      switch (EltTy.getObjCLifetime()) {
8056      case Qualifiers::OCL_None:
8057      case Qualifiers::OCL_ExplicitNone:
8058        break;
8059
8060      case Qualifiers::OCL_Autoreleasing:
8061      case Qualifiers::OCL_Weak:
8062      case Qualifiers::OCL_Strong:
8063        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_lifetime)
8064          << QT << EltTy.getObjCLifetime();
8065        return;
8066      }
8067    }
8068  }
8069
8070  assert(0 && "found no explanation for non-trivial member");
8071}
8072
8073/// TranslateIvarVisibility - Translate visibility from a token ID to an
8074///  AST enum value.
8075static ObjCIvarDecl::AccessControl
8076TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8077  switch (ivarVisibility) {
8078  default: assert(0 && "Unknown visitibility kind");
8079  case tok::objc_private: return ObjCIvarDecl::Private;
8080  case tok::objc_public: return ObjCIvarDecl::Public;
8081  case tok::objc_protected: return ObjCIvarDecl::Protected;
8082  case tok::objc_package: return ObjCIvarDecl::Package;
8083  }
8084}
8085
8086/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8087/// in order to create an IvarDecl object for it.
8088Decl *Sema::ActOnIvar(Scope *S,
8089                                SourceLocation DeclStart,
8090                                Decl *IntfDecl,
8091                                Declarator &D, ExprTy *BitfieldWidth,
8092                                tok::ObjCKeywordKind Visibility) {
8093
8094  IdentifierInfo *II = D.getIdentifier();
8095  Expr *BitWidth = (Expr*)BitfieldWidth;
8096  SourceLocation Loc = DeclStart;
8097  if (II) Loc = D.getIdentifierLoc();
8098
8099  // FIXME: Unnamed fields can be handled in various different ways, for
8100  // example, unnamed unions inject all members into the struct namespace!
8101
8102  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8103  QualType T = TInfo->getType();
8104
8105  if (BitWidth) {
8106    // 6.7.2.1p3, 6.7.2.1p4
8107    if (VerifyBitField(Loc, II, T, BitWidth)) {
8108      D.setInvalidType();
8109      BitWidth = 0;
8110    }
8111  } else {
8112    // Not a bitfield.
8113
8114    // validate II.
8115
8116  }
8117  if (T->isReferenceType()) {
8118    Diag(Loc, diag::err_ivar_reference_type);
8119    D.setInvalidType();
8120  }
8121  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8122  // than a variably modified type.
8123  else if (T->isVariablyModifiedType()) {
8124    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8125    D.setInvalidType();
8126  }
8127
8128  // Get the visibility (access control) for this ivar.
8129  ObjCIvarDecl::AccessControl ac =
8130    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8131                                        : ObjCIvarDecl::None;
8132  // Must set ivar's DeclContext to its enclosing interface.
8133  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
8134  ObjCContainerDecl *EnclosingContext;
8135  if (ObjCImplementationDecl *IMPDecl =
8136      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8137    if (!LangOpts.ObjCNonFragileABI2) {
8138    // Case of ivar declared in an implementation. Context is that of its class.
8139      EnclosingContext = IMPDecl->getClassInterface();
8140      assert(EnclosingContext && "Implementation has no class interface!");
8141    }
8142    else
8143      EnclosingContext = EnclosingDecl;
8144  } else {
8145    if (ObjCCategoryDecl *CDecl =
8146        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8147      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8148        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8149        return 0;
8150      }
8151    }
8152    EnclosingContext = EnclosingDecl;
8153  }
8154
8155  // Construct the decl.
8156  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8157                                             DeclStart, Loc, II, T,
8158                                             TInfo, ac, (Expr *)BitfieldWidth);
8159
8160  if (II) {
8161    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8162                                           ForRedeclaration);
8163    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8164        && !isa<TagDecl>(PrevDecl)) {
8165      Diag(Loc, diag::err_duplicate_member) << II;
8166      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8167      NewID->setInvalidDecl();
8168    }
8169  }
8170
8171  // Process attributes attached to the ivar.
8172  ProcessDeclAttributes(S, NewID, D);
8173
8174  if (D.isInvalidType())
8175    NewID->setInvalidDecl();
8176
8177  // In ARC, infer 'retaining' for ivars of retainable type.
8178  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8179    NewID->setInvalidDecl();
8180
8181  if (II) {
8182    // FIXME: When interfaces are DeclContexts, we'll need to add
8183    // these to the interface.
8184    S->AddDecl(NewID);
8185    IdResolver.AddDecl(NewID);
8186  }
8187
8188  return NewID;
8189}
8190
8191/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8192/// class and class extensions. For every class @interface and class
8193/// extension @interface, if the last ivar is a bitfield of any type,
8194/// then add an implicit `char :0` ivar to the end of that interface.
8195void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8196                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
8197  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8198    return;
8199
8200  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8201  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8202
8203  if (!Ivar->isBitField())
8204    return;
8205  uint64_t BitFieldSize =
8206    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8207  if (BitFieldSize == 0)
8208    return;
8209  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8210  if (!ID) {
8211    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8212      if (!CD->IsClassExtension())
8213        return;
8214    }
8215    // No need to add this to end of @implementation.
8216    else
8217      return;
8218  }
8219  // All conditions are met. Add a new bitfield to the tail end of ivars.
8220  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8221  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8222
8223  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8224                              DeclLoc, DeclLoc, 0,
8225                              Context.CharTy,
8226                              Context.CreateTypeSourceInfo(Context.CharTy),
8227                              ObjCIvarDecl::Private, BW,
8228                              true);
8229  AllIvarDecls.push_back(Ivar);
8230}
8231
8232void Sema::ActOnFields(Scope* S,
8233                       SourceLocation RecLoc, Decl *EnclosingDecl,
8234                       Decl **Fields, unsigned NumFields,
8235                       SourceLocation LBrac, SourceLocation RBrac,
8236                       AttributeList *Attr) {
8237  assert(EnclosingDecl && "missing record or interface decl");
8238
8239  // If the decl this is being inserted into is invalid, then it may be a
8240  // redeclaration or some other bogus case.  Don't try to add fields to it.
8241  if (EnclosingDecl->isInvalidDecl()) {
8242    // FIXME: Deallocate fields?
8243    return;
8244  }
8245
8246
8247  // Verify that all the fields are okay.
8248  unsigned NumNamedMembers = 0;
8249  llvm::SmallVector<FieldDecl*, 32> RecFields;
8250
8251  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8252  bool ARCErrReported = false;
8253  for (unsigned i = 0; i != NumFields; ++i) {
8254    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8255
8256    // Get the type for the field.
8257    const Type *FDTy = FD->getType().getTypePtr();
8258
8259    if (!FD->isAnonymousStructOrUnion()) {
8260      // Remember all fields written by the user.
8261      RecFields.push_back(FD);
8262    }
8263
8264    // If the field is already invalid for some reason, don't emit more
8265    // diagnostics about it.
8266    if (FD->isInvalidDecl()) {
8267      EnclosingDecl->setInvalidDecl();
8268      continue;
8269    }
8270
8271    // C99 6.7.2.1p2:
8272    //   A structure or union shall not contain a member with
8273    //   incomplete or function type (hence, a structure shall not
8274    //   contain an instance of itself, but may contain a pointer to
8275    //   an instance of itself), except that the last member of a
8276    //   structure with more than one named member may have incomplete
8277    //   array type; such a structure (and any union containing,
8278    //   possibly recursively, a member that is such a structure)
8279    //   shall not be a member of a structure or an element of an
8280    //   array.
8281    if (FDTy->isFunctionType()) {
8282      // Field declared as a function.
8283      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8284        << FD->getDeclName();
8285      FD->setInvalidDecl();
8286      EnclosingDecl->setInvalidDecl();
8287      continue;
8288    } else if (FDTy->isIncompleteArrayType() && Record &&
8289               ((i == NumFields - 1 && !Record->isUnion()) ||
8290                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8291                 (i == NumFields - 1 || Record->isUnion())))) {
8292      // Flexible array member.
8293      // Microsoft and g++ is more permissive regarding flexible array.
8294      // It will accept flexible array in union and also
8295      // as the sole element of a struct/class.
8296      if (getLangOptions().Microsoft) {
8297        if (Record->isUnion())
8298          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8299            << FD->getDeclName();
8300        else if (NumFields == 1)
8301          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8302            << FD->getDeclName() << Record->getTagKind();
8303      } else if (getLangOptions().CPlusPlus) {
8304        if (Record->isUnion())
8305          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8306            << FD->getDeclName();
8307        else if (NumFields == 1)
8308          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8309            << FD->getDeclName() << Record->getTagKind();
8310      } else if (NumNamedMembers < 1) {
8311        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8312          << FD->getDeclName();
8313        FD->setInvalidDecl();
8314        EnclosingDecl->setInvalidDecl();
8315        continue;
8316      }
8317      if (!FD->getType()->isDependentType() &&
8318          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8319        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8320          << FD->getDeclName() << FD->getType();
8321        FD->setInvalidDecl();
8322        EnclosingDecl->setInvalidDecl();
8323        continue;
8324      }
8325      // Okay, we have a legal flexible array member at the end of the struct.
8326      if (Record)
8327        Record->setHasFlexibleArrayMember(true);
8328    } else if (!FDTy->isDependentType() &&
8329               RequireCompleteType(FD->getLocation(), FD->getType(),
8330                                   diag::err_field_incomplete)) {
8331      // Incomplete type
8332      FD->setInvalidDecl();
8333      EnclosingDecl->setInvalidDecl();
8334      continue;
8335    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8336      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8337        // If this is a member of a union, then entire union becomes "flexible".
8338        if (Record && Record->isUnion()) {
8339          Record->setHasFlexibleArrayMember(true);
8340        } else {
8341          // If this is a struct/class and this is not the last element, reject
8342          // it.  Note that GCC supports variable sized arrays in the middle of
8343          // structures.
8344          if (i != NumFields-1)
8345            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8346              << FD->getDeclName() << FD->getType();
8347          else {
8348            // We support flexible arrays at the end of structs in
8349            // other structs as an extension.
8350            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8351              << FD->getDeclName();
8352            if (Record)
8353              Record->setHasFlexibleArrayMember(true);
8354          }
8355        }
8356      }
8357      if (Record && FDTTy->getDecl()->hasObjectMember())
8358        Record->setHasObjectMember(true);
8359    } else if (FDTy->isObjCObjectType()) {
8360      /// A field cannot be an Objective-c object
8361      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8362      FD->setInvalidDecl();
8363      EnclosingDecl->setInvalidDecl();
8364      continue;
8365    }
8366    else if (!getLangOptions().CPlusPlus) {
8367      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8368        // It's an error in ARC if a field has lifetime.
8369        // We don't want to report this in a system header, though,
8370        // so we just make the field unavailable.
8371        // FIXME: that's really not sufficient; we need to make the type
8372        // itself invalid to, say, initialize or copy.
8373        QualType T = FD->getType();
8374        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8375        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8376          SourceLocation loc = FD->getLocation();
8377          if (getSourceManager().isInSystemHeader(loc)) {
8378            if (!FD->hasAttr<UnavailableAttr>()) {
8379              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8380                                "this system field has retaining lifetime"));
8381            }
8382          } else {
8383            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8384          }
8385          ARCErrReported = true;
8386        }
8387      }
8388      else if (getLangOptions().ObjC1 &&
8389               getLangOptions().getGCMode() != LangOptions::NonGC &&
8390               Record && !Record->hasObjectMember()) {
8391        if (FD->getType()->isObjCObjectPointerType() ||
8392            FD->getType().isObjCGCStrong())
8393          Record->setHasObjectMember(true);
8394        else if (Context.getAsArrayType(FD->getType())) {
8395          QualType BaseType = Context.getBaseElementType(FD->getType());
8396          if (BaseType->isRecordType() &&
8397              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8398            Record->setHasObjectMember(true);
8399          else if (BaseType->isObjCObjectPointerType() ||
8400                   BaseType.isObjCGCStrong())
8401                 Record->setHasObjectMember(true);
8402        }
8403      }
8404    }
8405    // Keep track of the number of named members.
8406    if (FD->getIdentifier())
8407      ++NumNamedMembers;
8408  }
8409
8410  // Okay, we successfully defined 'Record'.
8411  if (Record) {
8412    bool Completed = false;
8413    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8414      if (!CXXRecord->isInvalidDecl()) {
8415        // Set access bits correctly on the directly-declared conversions.
8416        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8417        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8418             I != E; ++I)
8419          Convs->setAccess(I, (*I)->getAccess());
8420
8421        if (!CXXRecord->isDependentType()) {
8422          // Objective-C Automatic Reference Counting:
8423          //   If a class has a non-static data member of Objective-C pointer
8424          //   type (or array thereof), it is a non-POD type and its
8425          //   default constructor (if any), copy constructor, copy assignment
8426          //   operator, and destructor are non-trivial.
8427          //
8428          // This rule is also handled by CXXRecordDecl::completeDefinition().
8429          // However, here we check whether this particular class is only
8430          // non-POD because of the presence of an Objective-C pointer member.
8431          // If so, objects of this type cannot be shared between code compiled
8432          // with instant objects and code compiled with manual retain/release.
8433          if (getLangOptions().ObjCAutoRefCount &&
8434              CXXRecord->hasObjectMember() &&
8435              CXXRecord->getLinkage() == ExternalLinkage) {
8436            if (CXXRecord->isPOD()) {
8437              Diag(CXXRecord->getLocation(),
8438                   diag::warn_arc_non_pod_class_with_object_member)
8439               << CXXRecord;
8440            } else {
8441              // FIXME: Fix-Its would be nice here, but finding a good location
8442              // for them is going to be tricky.
8443              if (CXXRecord->hasTrivialCopyConstructor())
8444                Diag(CXXRecord->getLocation(),
8445                     diag::warn_arc_trivial_member_function_with_object_member)
8446                  << CXXRecord << 0;
8447              if (CXXRecord->hasTrivialCopyAssignment())
8448                Diag(CXXRecord->getLocation(),
8449                     diag::warn_arc_trivial_member_function_with_object_member)
8450                << CXXRecord << 1;
8451              if (CXXRecord->hasTrivialDestructor())
8452                Diag(CXXRecord->getLocation(),
8453                     diag::warn_arc_trivial_member_function_with_object_member)
8454                << CXXRecord << 2;
8455            }
8456          }
8457
8458          // Adjust user-defined destructor exception spec.
8459          if (getLangOptions().CPlusPlus0x &&
8460              CXXRecord->hasUserDeclaredDestructor())
8461            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8462
8463          // Add any implicitly-declared members to this class.
8464          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8465
8466          // If we have virtual base classes, we may end up finding multiple
8467          // final overriders for a given virtual function. Check for this
8468          // problem now.
8469          if (CXXRecord->getNumVBases()) {
8470            CXXFinalOverriderMap FinalOverriders;
8471            CXXRecord->getFinalOverriders(FinalOverriders);
8472
8473            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8474                                             MEnd = FinalOverriders.end();
8475                 M != MEnd; ++M) {
8476              for (OverridingMethods::iterator SO = M->second.begin(),
8477                                            SOEnd = M->second.end();
8478                   SO != SOEnd; ++SO) {
8479                assert(SO->second.size() > 0 &&
8480                       "Virtual function without overridding functions?");
8481                if (SO->second.size() == 1)
8482                  continue;
8483
8484                // C++ [class.virtual]p2:
8485                //   In a derived class, if a virtual member function of a base
8486                //   class subobject has more than one final overrider the
8487                //   program is ill-formed.
8488                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8489                  << (NamedDecl *)M->first << Record;
8490                Diag(M->first->getLocation(),
8491                     diag::note_overridden_virtual_function);
8492                for (OverridingMethods::overriding_iterator
8493                          OM = SO->second.begin(),
8494                       OMEnd = SO->second.end();
8495                     OM != OMEnd; ++OM)
8496                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8497                    << (NamedDecl *)M->first << OM->Method->getParent();
8498
8499                Record->setInvalidDecl();
8500              }
8501            }
8502            CXXRecord->completeDefinition(&FinalOverriders);
8503            Completed = true;
8504          }
8505        }
8506      }
8507    }
8508
8509    if (!Completed)
8510      Record->completeDefinition();
8511
8512    // Now that the record is complete, do any delayed exception spec checks
8513    // we were missing.
8514    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8515      const CXXDestructorDecl *Dtor =
8516              DelayedDestructorExceptionSpecChecks.back().first;
8517      if (Dtor->getParent() != Record)
8518        break;
8519
8520      assert(!Dtor->getParent()->isDependentType() &&
8521          "Should not ever add destructors of templates into the list.");
8522      CheckOverridingFunctionExceptionSpec(Dtor,
8523          DelayedDestructorExceptionSpecChecks.back().second);
8524      DelayedDestructorExceptionSpecChecks.pop_back();
8525    }
8526
8527  } else {
8528    ObjCIvarDecl **ClsFields =
8529      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8530    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8531      ID->setLocEnd(RBrac);
8532      // Add ivar's to class's DeclContext.
8533      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8534        ClsFields[i]->setLexicalDeclContext(ID);
8535        ID->addDecl(ClsFields[i]);
8536      }
8537      // Must enforce the rule that ivars in the base classes may not be
8538      // duplicates.
8539      if (ID->getSuperClass())
8540        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8541    } else if (ObjCImplementationDecl *IMPDecl =
8542                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8543      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8544      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8545        // Ivar declared in @implementation never belongs to the implementation.
8546        // Only it is in implementation's lexical context.
8547        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8548      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8549    } else if (ObjCCategoryDecl *CDecl =
8550                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8551      // case of ivars in class extension; all other cases have been
8552      // reported as errors elsewhere.
8553      // FIXME. Class extension does not have a LocEnd field.
8554      // CDecl->setLocEnd(RBrac);
8555      // Add ivar's to class extension's DeclContext.
8556      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8557        ClsFields[i]->setLexicalDeclContext(CDecl);
8558        CDecl->addDecl(ClsFields[i]);
8559      }
8560    }
8561  }
8562
8563  if (Attr)
8564    ProcessDeclAttributeList(S, Record, Attr);
8565
8566  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8567  // set the visibility of this record.
8568  if (Record && !Record->getDeclContext()->isRecord())
8569    AddPushedVisibilityAttribute(Record);
8570}
8571
8572/// \brief Determine whether the given integral value is representable within
8573/// the given type T.
8574static bool isRepresentableIntegerValue(ASTContext &Context,
8575                                        llvm::APSInt &Value,
8576                                        QualType T) {
8577  assert(T->isIntegralType(Context) && "Integral type required!");
8578  unsigned BitWidth = Context.getIntWidth(T);
8579
8580  if (Value.isUnsigned() || Value.isNonNegative()) {
8581    if (T->isSignedIntegerOrEnumerationType())
8582      --BitWidth;
8583    return Value.getActiveBits() <= BitWidth;
8584  }
8585  return Value.getMinSignedBits() <= BitWidth;
8586}
8587
8588// \brief Given an integral type, return the next larger integral type
8589// (or a NULL type of no such type exists).
8590static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8591  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8592  // enum checking below.
8593  assert(T->isIntegralType(Context) && "Integral type required!");
8594  const unsigned NumTypes = 4;
8595  QualType SignedIntegralTypes[NumTypes] = {
8596    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8597  };
8598  QualType UnsignedIntegralTypes[NumTypes] = {
8599    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8600    Context.UnsignedLongLongTy
8601  };
8602
8603  unsigned BitWidth = Context.getTypeSize(T);
8604  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8605                                                        : UnsignedIntegralTypes;
8606  for (unsigned I = 0; I != NumTypes; ++I)
8607    if (Context.getTypeSize(Types[I]) > BitWidth)
8608      return Types[I];
8609
8610  return QualType();
8611}
8612
8613EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8614                                          EnumConstantDecl *LastEnumConst,
8615                                          SourceLocation IdLoc,
8616                                          IdentifierInfo *Id,
8617                                          Expr *Val) {
8618  unsigned IntWidth = Context.Target.getIntWidth();
8619  llvm::APSInt EnumVal(IntWidth);
8620  QualType EltTy;
8621
8622  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8623    Val = 0;
8624
8625  if (Val) {
8626    if (Enum->isDependentType() || Val->isTypeDependent())
8627      EltTy = Context.DependentTy;
8628    else {
8629      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8630      SourceLocation ExpLoc;
8631      if (!Val->isValueDependent() &&
8632          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8633        Val = 0;
8634      } else {
8635        if (!getLangOptions().CPlusPlus) {
8636          // C99 6.7.2.2p2:
8637          //   The expression that defines the value of an enumeration constant
8638          //   shall be an integer constant expression that has a value
8639          //   representable as an int.
8640
8641          // Complain if the value is not representable in an int.
8642          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8643            Diag(IdLoc, diag::ext_enum_value_not_int)
8644              << EnumVal.toString(10) << Val->getSourceRange()
8645              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8646          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8647            // Force the type of the expression to 'int'.
8648            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8649          }
8650        }
8651
8652        if (Enum->isFixed()) {
8653          EltTy = Enum->getIntegerType();
8654
8655          // C++0x [dcl.enum]p5:
8656          //   ... if the initializing value of an enumerator cannot be
8657          //   represented by the underlying type, the program is ill-formed.
8658          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8659            if (getLangOptions().Microsoft) {
8660              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8661              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8662            } else
8663              Diag(IdLoc, diag::err_enumerator_too_large)
8664                << EltTy;
8665          } else
8666            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8667        }
8668        else {
8669          // C++0x [dcl.enum]p5:
8670          //   If the underlying type is not fixed, the type of each enumerator
8671          //   is the type of its initializing value:
8672          //     - If an initializer is specified for an enumerator, the
8673          //       initializing value has the same type as the expression.
8674          EltTy = Val->getType();
8675        }
8676      }
8677    }
8678  }
8679
8680  if (!Val) {
8681    if (Enum->isDependentType())
8682      EltTy = Context.DependentTy;
8683    else if (!LastEnumConst) {
8684      // C++0x [dcl.enum]p5:
8685      //   If the underlying type is not fixed, the type of each enumerator
8686      //   is the type of its initializing value:
8687      //     - If no initializer is specified for the first enumerator, the
8688      //       initializing value has an unspecified integral type.
8689      //
8690      // GCC uses 'int' for its unspecified integral type, as does
8691      // C99 6.7.2.2p3.
8692      if (Enum->isFixed()) {
8693        EltTy = Enum->getIntegerType();
8694      }
8695      else {
8696        EltTy = Context.IntTy;
8697      }
8698    } else {
8699      // Assign the last value + 1.
8700      EnumVal = LastEnumConst->getInitVal();
8701      ++EnumVal;
8702      EltTy = LastEnumConst->getType();
8703
8704      // Check for overflow on increment.
8705      if (EnumVal < LastEnumConst->getInitVal()) {
8706        // C++0x [dcl.enum]p5:
8707        //   If the underlying type is not fixed, the type of each enumerator
8708        //   is the type of its initializing value:
8709        //
8710        //     - Otherwise the type of the initializing value is the same as
8711        //       the type of the initializing value of the preceding enumerator
8712        //       unless the incremented value is not representable in that type,
8713        //       in which case the type is an unspecified integral type
8714        //       sufficient to contain the incremented value. If no such type
8715        //       exists, the program is ill-formed.
8716        QualType T = getNextLargerIntegralType(Context, EltTy);
8717        if (T.isNull() || Enum->isFixed()) {
8718          // There is no integral type larger enough to represent this
8719          // value. Complain, then allow the value to wrap around.
8720          EnumVal = LastEnumConst->getInitVal();
8721          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8722          ++EnumVal;
8723          if (Enum->isFixed())
8724            // When the underlying type is fixed, this is ill-formed.
8725            Diag(IdLoc, diag::err_enumerator_wrapped)
8726              << EnumVal.toString(10)
8727              << EltTy;
8728          else
8729            Diag(IdLoc, diag::warn_enumerator_too_large)
8730              << EnumVal.toString(10);
8731        } else {
8732          EltTy = T;
8733        }
8734
8735        // Retrieve the last enumerator's value, extent that type to the
8736        // type that is supposed to be large enough to represent the incremented
8737        // value, then increment.
8738        EnumVal = LastEnumConst->getInitVal();
8739        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8740        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8741        ++EnumVal;
8742
8743        // If we're not in C++, diagnose the overflow of enumerator values,
8744        // which in C99 means that the enumerator value is not representable in
8745        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8746        // permits enumerator values that are representable in some larger
8747        // integral type.
8748        if (!getLangOptions().CPlusPlus && !T.isNull())
8749          Diag(IdLoc, diag::warn_enum_value_overflow);
8750      } else if (!getLangOptions().CPlusPlus &&
8751                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8752        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8753        Diag(IdLoc, diag::ext_enum_value_not_int)
8754          << EnumVal.toString(10) << 1;
8755      }
8756    }
8757  }
8758
8759  if (!EltTy->isDependentType()) {
8760    // Make the enumerator value match the signedness and size of the
8761    // enumerator's type.
8762    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8763    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8764  }
8765
8766  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8767                                  Val, EnumVal);
8768}
8769
8770
8771Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8772                              SourceLocation IdLoc, IdentifierInfo *Id,
8773                              AttributeList *Attr,
8774                              SourceLocation EqualLoc, ExprTy *val) {
8775  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8776  EnumConstantDecl *LastEnumConst =
8777    cast_or_null<EnumConstantDecl>(lastEnumConst);
8778  Expr *Val = static_cast<Expr*>(val);
8779
8780  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8781  // we find one that is.
8782  S = getNonFieldDeclScope(S);
8783
8784  // Verify that there isn't already something declared with this name in this
8785  // scope.
8786  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8787                                         ForRedeclaration);
8788  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8789    // Maybe we will complain about the shadowed template parameter.
8790    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8791    // Just pretend that we didn't see the previous declaration.
8792    PrevDecl = 0;
8793  }
8794
8795  if (PrevDecl) {
8796    // When in C++, we may get a TagDecl with the same name; in this case the
8797    // enum constant will 'hide' the tag.
8798    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8799           "Received TagDecl when not in C++!");
8800    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8801      if (isa<EnumConstantDecl>(PrevDecl))
8802        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8803      else
8804        Diag(IdLoc, diag::err_redefinition) << Id;
8805      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8806      return 0;
8807    }
8808  }
8809
8810  // C++ [class.mem]p13:
8811  //   If T is the name of a class, then each of the following shall have a
8812  //   name different from T:
8813  //     - every enumerator of every member of class T that is an enumerated
8814  //       type
8815  if (CXXRecordDecl *Record
8816                      = dyn_cast<CXXRecordDecl>(
8817                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8818    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8819      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8820
8821  EnumConstantDecl *New =
8822    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8823
8824  if (New) {
8825    // Process attributes.
8826    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8827
8828    // Register this decl in the current scope stack.
8829    New->setAccess(TheEnumDecl->getAccess());
8830    PushOnScopeChains(New, S);
8831  }
8832
8833  return New;
8834}
8835
8836void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8837                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8838                         Decl **Elements, unsigned NumElements,
8839                         Scope *S, AttributeList *Attr) {
8840  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8841  QualType EnumType = Context.getTypeDeclType(Enum);
8842
8843  if (Attr)
8844    ProcessDeclAttributeList(S, Enum, Attr);
8845
8846  if (Enum->isDependentType()) {
8847    for (unsigned i = 0; i != NumElements; ++i) {
8848      EnumConstantDecl *ECD =
8849        cast_or_null<EnumConstantDecl>(Elements[i]);
8850      if (!ECD) continue;
8851
8852      ECD->setType(EnumType);
8853    }
8854
8855    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8856    return;
8857  }
8858
8859  // TODO: If the result value doesn't fit in an int, it must be a long or long
8860  // long value.  ISO C does not support this, but GCC does as an extension,
8861  // emit a warning.
8862  unsigned IntWidth = Context.Target.getIntWidth();
8863  unsigned CharWidth = Context.Target.getCharWidth();
8864  unsigned ShortWidth = Context.Target.getShortWidth();
8865
8866  // Verify that all the values are okay, compute the size of the values, and
8867  // reverse the list.
8868  unsigned NumNegativeBits = 0;
8869  unsigned NumPositiveBits = 0;
8870
8871  // Keep track of whether all elements have type int.
8872  bool AllElementsInt = true;
8873
8874  for (unsigned i = 0; i != NumElements; ++i) {
8875    EnumConstantDecl *ECD =
8876      cast_or_null<EnumConstantDecl>(Elements[i]);
8877    if (!ECD) continue;  // Already issued a diagnostic.
8878
8879    const llvm::APSInt &InitVal = ECD->getInitVal();
8880
8881    // Keep track of the size of positive and negative values.
8882    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8883      NumPositiveBits = std::max(NumPositiveBits,
8884                                 (unsigned)InitVal.getActiveBits());
8885    else
8886      NumNegativeBits = std::max(NumNegativeBits,
8887                                 (unsigned)InitVal.getMinSignedBits());
8888
8889    // Keep track of whether every enum element has type int (very commmon).
8890    if (AllElementsInt)
8891      AllElementsInt = ECD->getType() == Context.IntTy;
8892  }
8893
8894  // Figure out the type that should be used for this enum.
8895  QualType BestType;
8896  unsigned BestWidth;
8897
8898  // C++0x N3000 [conv.prom]p3:
8899  //   An rvalue of an unscoped enumeration type whose underlying
8900  //   type is not fixed can be converted to an rvalue of the first
8901  //   of the following types that can represent all the values of
8902  //   the enumeration: int, unsigned int, long int, unsigned long
8903  //   int, long long int, or unsigned long long int.
8904  // C99 6.4.4.3p2:
8905  //   An identifier declared as an enumeration constant has type int.
8906  // The C99 rule is modified by a gcc extension
8907  QualType BestPromotionType;
8908
8909  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8910  // -fshort-enums is the equivalent to specifying the packed attribute on all
8911  // enum definitions.
8912  if (LangOpts.ShortEnums)
8913    Packed = true;
8914
8915  if (Enum->isFixed()) {
8916    BestType = BestPromotionType = Enum->getIntegerType();
8917    // We don't need to set BestWidth, because BestType is going to be the type
8918    // of the enumerators, but we do anyway because otherwise some compilers
8919    // warn that it might be used uninitialized.
8920    BestWidth = CharWidth;
8921  }
8922  else if (NumNegativeBits) {
8923    // If there is a negative value, figure out the smallest integer type (of
8924    // int/long/longlong) that fits.
8925    // If it's packed, check also if it fits a char or a short.
8926    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8927      BestType = Context.SignedCharTy;
8928      BestWidth = CharWidth;
8929    } else if (Packed && NumNegativeBits <= ShortWidth &&
8930               NumPositiveBits < ShortWidth) {
8931      BestType = Context.ShortTy;
8932      BestWidth = ShortWidth;
8933    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8934      BestType = Context.IntTy;
8935      BestWidth = IntWidth;
8936    } else {
8937      BestWidth = Context.Target.getLongWidth();
8938
8939      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8940        BestType = Context.LongTy;
8941      } else {
8942        BestWidth = Context.Target.getLongLongWidth();
8943
8944        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8945          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8946        BestType = Context.LongLongTy;
8947      }
8948    }
8949    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8950  } else {
8951    // If there is no negative value, figure out the smallest type that fits
8952    // all of the enumerator values.
8953    // If it's packed, check also if it fits a char or a short.
8954    if (Packed && NumPositiveBits <= CharWidth) {
8955      BestType = Context.UnsignedCharTy;
8956      BestPromotionType = Context.IntTy;
8957      BestWidth = CharWidth;
8958    } else if (Packed && NumPositiveBits <= ShortWidth) {
8959      BestType = Context.UnsignedShortTy;
8960      BestPromotionType = Context.IntTy;
8961      BestWidth = ShortWidth;
8962    } else if (NumPositiveBits <= IntWidth) {
8963      BestType = Context.UnsignedIntTy;
8964      BestWidth = IntWidth;
8965      BestPromotionType
8966        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8967                           ? Context.UnsignedIntTy : Context.IntTy;
8968    } else if (NumPositiveBits <=
8969               (BestWidth = Context.Target.getLongWidth())) {
8970      BestType = Context.UnsignedLongTy;
8971      BestPromotionType
8972        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8973                           ? Context.UnsignedLongTy : Context.LongTy;
8974    } else {
8975      BestWidth = Context.Target.getLongLongWidth();
8976      assert(NumPositiveBits <= BestWidth &&
8977             "How could an initializer get larger than ULL?");
8978      BestType = Context.UnsignedLongLongTy;
8979      BestPromotionType
8980        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8981                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8982    }
8983  }
8984
8985  // Loop over all of the enumerator constants, changing their types to match
8986  // the type of the enum if needed.
8987  for (unsigned i = 0; i != NumElements; ++i) {
8988    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8989    if (!ECD) continue;  // Already issued a diagnostic.
8990
8991    // Standard C says the enumerators have int type, but we allow, as an
8992    // extension, the enumerators to be larger than int size.  If each
8993    // enumerator value fits in an int, type it as an int, otherwise type it the
8994    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8995    // that X has type 'int', not 'unsigned'.
8996
8997    // Determine whether the value fits into an int.
8998    llvm::APSInt InitVal = ECD->getInitVal();
8999
9000    // If it fits into an integer type, force it.  Otherwise force it to match
9001    // the enum decl type.
9002    QualType NewTy;
9003    unsigned NewWidth;
9004    bool NewSign;
9005    if (!getLangOptions().CPlusPlus &&
9006        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9007      NewTy = Context.IntTy;
9008      NewWidth = IntWidth;
9009      NewSign = true;
9010    } else if (ECD->getType() == BestType) {
9011      // Already the right type!
9012      if (getLangOptions().CPlusPlus)
9013        // C++ [dcl.enum]p4: Following the closing brace of an
9014        // enum-specifier, each enumerator has the type of its
9015        // enumeration.
9016        ECD->setType(EnumType);
9017      continue;
9018    } else {
9019      NewTy = BestType;
9020      NewWidth = BestWidth;
9021      NewSign = BestType->isSignedIntegerOrEnumerationType();
9022    }
9023
9024    // Adjust the APSInt value.
9025    InitVal = InitVal.extOrTrunc(NewWidth);
9026    InitVal.setIsSigned(NewSign);
9027    ECD->setInitVal(InitVal);
9028
9029    // Adjust the Expr initializer and type.
9030    if (ECD->getInitExpr() &&
9031	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9032      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9033                                                CK_IntegralCast,
9034                                                ECD->getInitExpr(),
9035                                                /*base paths*/ 0,
9036                                                VK_RValue));
9037    if (getLangOptions().CPlusPlus)
9038      // C++ [dcl.enum]p4: Following the closing brace of an
9039      // enum-specifier, each enumerator has the type of its
9040      // enumeration.
9041      ECD->setType(EnumType);
9042    else
9043      ECD->setType(NewTy);
9044  }
9045
9046  Enum->completeDefinition(BestType, BestPromotionType,
9047                           NumPositiveBits, NumNegativeBits);
9048}
9049
9050Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9051                                  SourceLocation StartLoc,
9052                                  SourceLocation EndLoc) {
9053  StringLiteral *AsmString = cast<StringLiteral>(expr);
9054
9055  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9056                                                   AsmString, StartLoc,
9057                                                   EndLoc);
9058  CurContext->addDecl(New);
9059  return New;
9060}
9061
9062void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9063                             SourceLocation PragmaLoc,
9064                             SourceLocation NameLoc) {
9065  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9066
9067  if (PrevDecl) {
9068    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9069  } else {
9070    (void)WeakUndeclaredIdentifiers.insert(
9071      std::pair<IdentifierInfo*,WeakInfo>
9072        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9073  }
9074}
9075
9076void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9077                                IdentifierInfo* AliasName,
9078                                SourceLocation PragmaLoc,
9079                                SourceLocation NameLoc,
9080                                SourceLocation AliasNameLoc) {
9081  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9082                                    LookupOrdinaryName);
9083  WeakInfo W = WeakInfo(Name, NameLoc);
9084
9085  if (PrevDecl) {
9086    if (!PrevDecl->hasAttr<AliasAttr>())
9087      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9088        DeclApplyPragmaWeak(TUScope, ND, W);
9089  } else {
9090    (void)WeakUndeclaredIdentifiers.insert(
9091      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9092  }
9093}
9094