SemaDecl.cpp revision 0feecbb3165b06ff34663a8c233316aaf7f84ce1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS) {
65  // C++ [temp.res]p3:
66  //   A qualified-id that refers to a type and in which the
67  //   nested-name-specifier depends on a template-parameter (14.6.2)
68  //   shall be prefixed by the keyword typename to indicate that the
69  //   qualified-id denotes a type, forming an
70  //   elaborated-type-specifier (7.1.5.3).
71  //
72  // We therefore do not perform any name lookup if the result would
73  // refer to a member of an unknown specialization.
74  if (SS && isUnknownSpecialization(*SS))
75    return 0;
76
77  LookupResult Result
78    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
79
80  NamedDecl *IIDecl = 0;
81  switch (Result.getKind()) {
82  case LookupResult::NotFound:
83  case LookupResult::FoundOverloaded:
84    return 0;
85
86  case LookupResult::AmbiguousBaseSubobjectTypes:
87  case LookupResult::AmbiguousBaseSubobjects:
88  case LookupResult::AmbiguousReference: {
89    // Look to see if we have a type anywhere in the list of results.
90    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
91         Res != ResEnd; ++Res) {
92      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
93        if (!IIDecl ||
94            (*Res)->getLocation().getRawEncoding() <
95              IIDecl->getLocation().getRawEncoding())
96          IIDecl = *Res;
97      }
98    }
99
100    if (!IIDecl) {
101      // None of the entities we found is a type, so there is no way
102      // to even assume that the result is a type. In this case, don't
103      // complain about the ambiguity. The parser will either try to
104      // perform this lookup again (e.g., as an object name), which
105      // will produce the ambiguity, or will complain that it expected
106      // a type name.
107      Result.Destroy();
108      return 0;
109    }
110
111    // We found a type within the ambiguous lookup; diagnose the
112    // ambiguity and then return that type. This might be the right
113    // answer, or it might not be, but it suppresses any attempt to
114    // perform the name lookup again.
115    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
116    break;
117  }
118
119  case LookupResult::Found:
120    IIDecl = Result.getAsDecl();
121    break;
122  }
123
124  if (IIDecl) {
125    QualType T;
126
127    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
128      // Check whether we can use this type
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      if (getLangOptions().CPlusPlus) {
132        // C++ [temp.local]p2:
133        //   Within the scope of a class template specialization or
134        //   partial specialization, when the injected-class-name is
135        //   not followed by a <, it is equivalent to the
136        //   injected-class-name followed by the template-argument s
137        //   of the class template specialization or partial
138        //   specialization enclosed in <>.
139        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
140          if (RD->isInjectedClassName())
141            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
142              T = Template->getInjectedClassNameType(Context);
143      }
144
145      if (T.isNull())
146        T = Context.getTypeDeclType(TD);
147    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
148      // Check whether we can use this interface.
149      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
150
151      T = Context.getObjCInterfaceType(IDecl);
152    } else
153      return 0;
154
155    if (SS)
156      T = getQualifiedNameType(*SS, T);
157
158    return T.getAsOpaquePtr();
159  }
160
161  return 0;
162}
163
164/// isTagName() - This method is called *for error recovery purposes only*
165/// to determine if the specified name is a valid tag name ("struct foo").  If
166/// so, this returns the TST for the tag corresponding to it (TST_enum,
167/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
168/// where the user forgot to specify the tag.
169DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
170  // Do a tag name lookup in this scope.
171  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
172  if (R.getKind() == LookupResult::Found)
173    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
174      switch (TD->getTagKind()) {
175      case TagDecl::TK_struct: return DeclSpec::TST_struct;
176      case TagDecl::TK_union:  return DeclSpec::TST_union;
177      case TagDecl::TK_class:  return DeclSpec::TST_class;
178      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
179      }
180    }
181
182  return DeclSpec::TST_unspecified;
183}
184
185
186
187DeclContext *Sema::getContainingDC(DeclContext *DC) {
188  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
189    // A C++ out-of-line method will return to the file declaration context.
190    if (MD->isOutOfLine())
191      return MD->getLexicalDeclContext();
192
193    // A C++ inline method is parsed *after* the topmost class it was declared
194    // in is fully parsed (it's "complete").
195    // The parsing of a C++ inline method happens at the declaration context of
196    // the topmost (non-nested) class it is lexically declared in.
197    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
198    DC = MD->getParent();
199    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
200      DC = RD;
201
202    // Return the declaration context of the topmost class the inline method is
203    // declared in.
204    return DC;
205  }
206
207  if (isa<ObjCMethodDecl>(DC))
208    return Context.getTranslationUnitDecl();
209
210  return DC->getLexicalParent();
211}
212
213void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
214  assert(getContainingDC(DC) == CurContext &&
215      "The next DeclContext should be lexically contained in the current one.");
216  CurContext = DC;
217  S->setEntity(DC);
218}
219
220void Sema::PopDeclContext() {
221  assert(CurContext && "DeclContext imbalance!");
222
223  CurContext = getContainingDC(CurContext);
224}
225
226/// EnterDeclaratorContext - Used when we must lookup names in the context
227/// of a declarator's nested name specifier.
228void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
229  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
230  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
231  CurContext = DC;
232  assert(CurContext && "No context?");
233  S->setEntity(CurContext);
234}
235
236void Sema::ExitDeclaratorContext(Scope *S) {
237  S->setEntity(PreDeclaratorDC);
238  PreDeclaratorDC = 0;
239
240  // Reset CurContext to the nearest enclosing context.
241  while (!S->getEntity() && S->getParent())
242    S = S->getParent();
243  CurContext = static_cast<DeclContext*>(S->getEntity());
244  assert(CurContext && "No context?");
245}
246
247/// \brief Determine whether we allow overloading of the function
248/// PrevDecl with another declaration.
249///
250/// This routine determines whether overloading is possible, not
251/// whether some new function is actually an overload. It will return
252/// true in C++ (where we can always provide overloads) or, as an
253/// extension, in C when the previous function is already an
254/// overloaded function declaration or has the "overloadable"
255/// attribute.
256static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
257  if (Context.getLangOptions().CPlusPlus)
258    return true;
259
260  if (isa<OverloadedFunctionDecl>(PrevDecl))
261    return true;
262
263  return PrevDecl->getAttr<OverloadableAttr>() != 0;
264}
265
266/// Add this decl to the scope shadowed decl chains.
267void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
268  // Move up the scope chain until we find the nearest enclosing
269  // non-transparent context. The declaration will be introduced into this
270  // scope.
271  while (S->getEntity() &&
272         ((DeclContext *)S->getEntity())->isTransparentContext())
273    S = S->getParent();
274
275  S->AddDecl(DeclPtrTy::make(D));
276
277  // Add scoped declarations into their context, so that they can be
278  // found later. Declarations without a context won't be inserted
279  // into any context.
280  CurContext->addDecl(D);
281
282  // C++ [basic.scope]p4:
283  //   -- exactly one declaration shall declare a class name or
284  //   enumeration name that is not a typedef name and the other
285  //   declarations shall all refer to the same object or
286  //   enumerator, or all refer to functions and function templates;
287  //   in this case the class name or enumeration name is hidden.
288  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
289    // We are pushing the name of a tag (enum or class).
290    if (CurContext->getLookupContext()
291          == TD->getDeclContext()->getLookupContext()) {
292      // We're pushing the tag into the current context, which might
293      // require some reshuffling in the identifier resolver.
294      IdentifierResolver::iterator
295        I = IdResolver.begin(TD->getDeclName()),
296        IEnd = IdResolver.end();
297      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
298        NamedDecl *PrevDecl = *I;
299        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
300             PrevDecl = *I, ++I) {
301          if (TD->declarationReplaces(*I)) {
302            // This is a redeclaration. Remove it from the chain and
303            // break out, so that we'll add in the shadowed
304            // declaration.
305            S->RemoveDecl(DeclPtrTy::make(*I));
306            if (PrevDecl == *I) {
307              IdResolver.RemoveDecl(*I);
308              IdResolver.AddDecl(TD);
309              return;
310            } else {
311              IdResolver.RemoveDecl(*I);
312              break;
313            }
314          }
315        }
316
317        // There is already a declaration with the same name in the same
318        // scope, which is not a tag declaration. It must be found
319        // before we find the new declaration, so insert the new
320        // declaration at the end of the chain.
321        IdResolver.AddShadowedDecl(TD, PrevDecl);
322
323        return;
324      }
325    }
326  } else if ((isa<FunctionDecl>(D) &&
327              AllowOverloadingOfFunction(D, Context)) ||
328             isa<FunctionTemplateDecl>(D)) {
329    // We are pushing the name of a function or function template,
330    // which might be an overloaded name.
331    IdentifierResolver::iterator Redecl
332      = std::find_if(IdResolver.begin(D->getDeclName()),
333                     IdResolver.end(),
334                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
335                                  D));
336    if (Redecl != IdResolver.end() &&
337        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
338      // There is already a declaration of a function on our
339      // IdResolver chain. Replace it with this declaration.
340      S->RemoveDecl(DeclPtrTy::make(*Redecl));
341      IdResolver.RemoveDecl(*Redecl);
342    }
343  } else if (isa<ObjCInterfaceDecl>(D)) {
344    // We're pushing an Objective-C interface into the current
345    // context. If there is already an alias declaration, remove it first.
346    for (IdentifierResolver::iterator
347           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
348         I != IEnd; ++I) {
349      if (isa<ObjCCompatibleAliasDecl>(*I)) {
350        S->RemoveDecl(DeclPtrTy::make(*I));
351        IdResolver.RemoveDecl(*I);
352        break;
353      }
354    }
355  }
356
357  IdResolver.AddDecl(D);
358}
359
360void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
361  if (S->decl_empty()) return;
362  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
363	 "Scope shouldn't contain decls!");
364
365  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
366       I != E; ++I) {
367    Decl *TmpD = (*I).getAs<Decl>();
368    assert(TmpD && "This decl didn't get pushed??");
369
370    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
371    NamedDecl *D = cast<NamedDecl>(TmpD);
372
373    if (!D->getDeclName()) continue;
374
375    // Remove this name from our lexical scope.
376    IdResolver.RemoveDecl(D);
377  }
378}
379
380/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
381/// return 0 if one not found.
382ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
383  // The third "scope" argument is 0 since we aren't enabling lazy built-in
384  // creation from this context.
385  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
386
387  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
388}
389
390/// getNonFieldDeclScope - Retrieves the innermost scope, starting
391/// from S, where a non-field would be declared. This routine copes
392/// with the difference between C and C++ scoping rules in structs and
393/// unions. For example, the following code is well-formed in C but
394/// ill-formed in C++:
395/// @code
396/// struct S6 {
397///   enum { BAR } e;
398/// };
399///
400/// void test_S6() {
401///   struct S6 a;
402///   a.e = BAR;
403/// }
404/// @endcode
405/// For the declaration of BAR, this routine will return a different
406/// scope. The scope S will be the scope of the unnamed enumeration
407/// within S6. In C++, this routine will return the scope associated
408/// with S6, because the enumeration's scope is a transparent
409/// context but structures can contain non-field names. In C, this
410/// routine will return the translation unit scope, since the
411/// enumeration's scope is a transparent context and structures cannot
412/// contain non-field names.
413Scope *Sema::getNonFieldDeclScope(Scope *S) {
414  while (((S->getFlags() & Scope::DeclScope) == 0) ||
415         (S->getEntity() &&
416          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
417         (S->isClassScope() && !getLangOptions().CPlusPlus))
418    S = S->getParent();
419  return S;
420}
421
422void Sema::InitBuiltinVaListType() {
423  if (!Context.getBuiltinVaListType().isNull())
424    return;
425
426  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
427  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
428  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
429  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
430}
431
432/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
433/// file scope.  lazily create a decl for it. ForRedeclaration is true
434/// if we're creating this built-in in anticipation of redeclaring the
435/// built-in.
436NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
437                                     Scope *S, bool ForRedeclaration,
438                                     SourceLocation Loc) {
439  Builtin::ID BID = (Builtin::ID)bid;
440
441  if (Context.BuiltinInfo.hasVAListUse(BID))
442    InitBuiltinVaListType();
443
444  ASTContext::GetBuiltinTypeError Error;
445  QualType R = Context.GetBuiltinType(BID, Error);
446  switch (Error) {
447  case ASTContext::GE_None:
448    // Okay
449    break;
450
451  case ASTContext::GE_Missing_FILE:
452    if (ForRedeclaration)
453      Diag(Loc, diag::err_implicit_decl_requires_stdio)
454        << Context.BuiltinInfo.GetName(BID);
455    return 0;
456  }
457
458  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
459    Diag(Loc, diag::ext_implicit_lib_function_decl)
460      << Context.BuiltinInfo.GetName(BID)
461      << R;
462    if (Context.BuiltinInfo.getHeaderName(BID) &&
463        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
464          != Diagnostic::Ignored)
465      Diag(Loc, diag::note_please_include_header)
466        << Context.BuiltinInfo.getHeaderName(BID)
467        << Context.BuiltinInfo.GetName(BID);
468  }
469
470  FunctionDecl *New = FunctionDecl::Create(Context,
471                                           Context.getTranslationUnitDecl(),
472                                           Loc, II, R,
473                                           FunctionDecl::Extern, false,
474                                           /*hasPrototype=*/true);
475  New->setImplicit();
476
477  // Create Decl objects for each parameter, adding them to the
478  // FunctionDecl.
479  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
480    llvm::SmallVector<ParmVarDecl*, 16> Params;
481    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
482      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
483                                           FT->getArgType(i), VarDecl::None, 0));
484    New->setParams(Context, Params.data(), Params.size());
485  }
486
487  AddKnownFunctionAttributes(New);
488
489  // TUScope is the translation-unit scope to insert this function into.
490  // FIXME: This is hideous. We need to teach PushOnScopeChains to
491  // relate Scopes to DeclContexts, and probably eliminate CurContext
492  // entirely, but we're not there yet.
493  DeclContext *SavedContext = CurContext;
494  CurContext = Context.getTranslationUnitDecl();
495  PushOnScopeChains(New, TUScope);
496  CurContext = SavedContext;
497  return New;
498}
499
500/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
501/// everything from the standard library is defined.
502NamespaceDecl *Sema::GetStdNamespace() {
503  if (!StdNamespace) {
504    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
505    DeclContext *Global = Context.getTranslationUnitDecl();
506    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
507    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
508  }
509  return StdNamespace;
510}
511
512/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
513/// same name and scope as a previous declaration 'Old'.  Figure out
514/// how to resolve this situation, merging decls or emitting
515/// diagnostics as appropriate. If there was an error, set New to be invalid.
516///
517void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
518  // If either decl is known invalid already, set the new one to be invalid and
519  // don't bother doing any merging checks.
520  if (New->isInvalidDecl() || OldD->isInvalidDecl())
521    return New->setInvalidDecl();
522
523  // Allow multiple definitions for ObjC built-in typedefs.
524  // FIXME: Verify the underlying types are equivalent!
525  if (getLangOptions().ObjC1) {
526    const IdentifierInfo *TypeID = New->getIdentifier();
527    switch (TypeID->getLength()) {
528    default: break;
529    case 2:
530      if (!TypeID->isStr("id"))
531        break;
532      // Install the built-in type for 'id', ignoring the current definition.
533      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
534      return;
535    case 5:
536      if (!TypeID->isStr("Class"))
537        break;
538      // Install the built-in type for 'Class', ignoring the current definition.
539      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
540      return;
541    case 3:
542      if (!TypeID->isStr("SEL"))
543        break;
544      Context.setObjCSelType(Context.getTypeDeclType(New));
545      return;
546    case 8:
547      if (!TypeID->isStr("Protocol"))
548        break;
549      Context.setObjCProtoType(New->getUnderlyingType());
550      return;
551    }
552    // Fall through - the typedef name was not a builtin type.
553  }
554  // Verify the old decl was also a type.
555  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
556  if (!Old) {
557    Diag(New->getLocation(), diag::err_redefinition_different_kind)
558      << New->getDeclName();
559    if (OldD->getLocation().isValid())
560      Diag(OldD->getLocation(), diag::note_previous_definition);
561    return New->setInvalidDecl();
562  }
563
564  // Determine the "old" type we'll use for checking and diagnostics.
565  QualType OldType;
566  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
567    OldType = OldTypedef->getUnderlyingType();
568  else
569    OldType = Context.getTypeDeclType(Old);
570
571  // If the typedef types are not identical, reject them in all languages and
572  // with any extensions enabled.
573
574  if (OldType != New->getUnderlyingType() &&
575      Context.getCanonicalType(OldType) !=
576      Context.getCanonicalType(New->getUnderlyingType())) {
577    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
578      << New->getUnderlyingType() << OldType;
579    if (Old->getLocation().isValid())
580      Diag(Old->getLocation(), diag::note_previous_definition);
581    return New->setInvalidDecl();
582  }
583
584  if (getLangOptions().Microsoft)
585    return;
586
587  // C++ [dcl.typedef]p2:
588  //   In a given non-class scope, a typedef specifier can be used to
589  //   redefine the name of any type declared in that scope to refer
590  //   to the type to which it already refers.
591  if (getLangOptions().CPlusPlus) {
592    if (!isa<CXXRecordDecl>(CurContext))
593      return;
594    Diag(New->getLocation(), diag::err_redefinition)
595      << New->getDeclName();
596    Diag(Old->getLocation(), diag::note_previous_definition);
597    return New->setInvalidDecl();
598  }
599
600  // If we have a redefinition of a typedef in C, emit a warning.  This warning
601  // is normally mapped to an error, but can be controlled with
602  // -Wtypedef-redefinition.  If either the original or the redefinition is
603  // in a system header, don't emit this for compatibility with GCC.
604  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
605      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
606       Context.getSourceManager().isInSystemHeader(New->getLocation())))
607    return;
608
609  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
610    << New->getDeclName();
611  Diag(Old->getLocation(), diag::note_previous_definition);
612  return;
613}
614
615/// DeclhasAttr - returns true if decl Declaration already has the target
616/// attribute.
617static bool
618DeclHasAttr(const Decl *decl, const Attr *target) {
619  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
620    if (attr->getKind() == target->getKind())
621      return true;
622
623  return false;
624}
625
626/// MergeAttributes - append attributes from the Old decl to the New one.
627static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
628  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
629    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
630      Attr *NewAttr = attr->clone(C);
631      NewAttr->setInherited(true);
632      New->addAttr(NewAttr);
633    }
634  }
635}
636
637/// Used in MergeFunctionDecl to keep track of function parameters in
638/// C.
639struct GNUCompatibleParamWarning {
640  ParmVarDecl *OldParm;
641  ParmVarDecl *NewParm;
642  QualType PromotedType;
643};
644
645/// MergeFunctionDecl - We just parsed a function 'New' from
646/// declarator D which has the same name and scope as a previous
647/// declaration 'Old'.  Figure out how to resolve this situation,
648/// merging decls or emitting diagnostics as appropriate.
649///
650/// In C++, New and Old must be declarations that are not
651/// overloaded. Use IsOverload to determine whether New and Old are
652/// overloaded, and to select the Old declaration that New should be
653/// merged with.
654///
655/// Returns true if there was an error, false otherwise.
656bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
657  assert(!isa<OverloadedFunctionDecl>(OldD) &&
658         "Cannot merge with an overloaded function declaration");
659
660  // Verify the old decl was also a function.
661  FunctionDecl *Old = 0;
662  if (FunctionTemplateDecl *OldFunctionTemplate
663        = dyn_cast<FunctionTemplateDecl>(OldD))
664    Old = OldFunctionTemplate->getTemplatedDecl();
665  else
666    Old = dyn_cast<FunctionDecl>(OldD);
667  if (!Old) {
668    Diag(New->getLocation(), diag::err_redefinition_different_kind)
669      << New->getDeclName();
670    Diag(OldD->getLocation(), diag::note_previous_definition);
671    return true;
672  }
673
674  // Determine whether the previous declaration was a definition,
675  // implicit declaration, or a declaration.
676  diag::kind PrevDiag;
677  if (Old->isThisDeclarationADefinition())
678    PrevDiag = diag::note_previous_definition;
679  else if (Old->isImplicit())
680    PrevDiag = diag::note_previous_implicit_declaration;
681  else
682    PrevDiag = diag::note_previous_declaration;
683
684  QualType OldQType = Context.getCanonicalType(Old->getType());
685  QualType NewQType = Context.getCanonicalType(New->getType());
686
687  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
688      New->getStorageClass() == FunctionDecl::Static &&
689      Old->getStorageClass() != FunctionDecl::Static) {
690    Diag(New->getLocation(), diag::err_static_non_static)
691      << New;
692    Diag(Old->getLocation(), PrevDiag);
693    return true;
694  }
695
696  if (getLangOptions().CPlusPlus) {
697    // (C++98 13.1p2):
698    //   Certain function declarations cannot be overloaded:
699    //     -- Function declarations that differ only in the return type
700    //        cannot be overloaded.
701    QualType OldReturnType
702      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
703    QualType NewReturnType
704      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
705    if (OldReturnType != NewReturnType) {
706      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
707      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
708      return true;
709    }
710
711    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
712    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
713    if (OldMethod && NewMethod &&
714        NewMethod->getLexicalDeclContext()->isRecord()) {
715      //    -- Member function declarations with the same name and the
716      //       same parameter types cannot be overloaded if any of them
717      //       is a static member function declaration.
718      if (OldMethod->isStatic() || NewMethod->isStatic()) {
719        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
720        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
721        return true;
722      }
723
724      // C++ [class.mem]p1:
725      //   [...] A member shall not be declared twice in the
726      //   member-specification, except that a nested class or member
727      //   class template can be declared and then later defined.
728      unsigned NewDiag;
729      if (isa<CXXConstructorDecl>(OldMethod))
730        NewDiag = diag::err_constructor_redeclared;
731      else if (isa<CXXDestructorDecl>(NewMethod))
732        NewDiag = diag::err_destructor_redeclared;
733      else if (isa<CXXConversionDecl>(NewMethod))
734        NewDiag = diag::err_conv_function_redeclared;
735      else
736        NewDiag = diag::err_member_redeclared;
737
738      Diag(New->getLocation(), NewDiag);
739      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
740    }
741
742    // (C++98 8.3.5p3):
743    //   All declarations for a function shall agree exactly in both the
744    //   return type and the parameter-type-list.
745    if (OldQType == NewQType)
746      return MergeCompatibleFunctionDecls(New, Old);
747
748    // Fall through for conflicting redeclarations and redefinitions.
749  }
750
751  // C: Function types need to be compatible, not identical. This handles
752  // duplicate function decls like "void f(int); void f(enum X);" properly.
753  if (!getLangOptions().CPlusPlus &&
754      Context.typesAreCompatible(OldQType, NewQType)) {
755    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
756    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
757    const FunctionProtoType *OldProto = 0;
758    if (isa<FunctionNoProtoType>(NewFuncType) &&
759        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
760      // The old declaration provided a function prototype, but the
761      // new declaration does not. Merge in the prototype.
762      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
763      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
764                                                 OldProto->arg_type_end());
765      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
766                                         ParamTypes.data(), ParamTypes.size(),
767                                         OldProto->isVariadic(),
768                                         OldProto->getTypeQuals());
769      New->setType(NewQType);
770      New->setHasInheritedPrototype();
771
772      // Synthesize a parameter for each argument type.
773      llvm::SmallVector<ParmVarDecl*, 16> Params;
774      for (FunctionProtoType::arg_type_iterator
775             ParamType = OldProto->arg_type_begin(),
776             ParamEnd = OldProto->arg_type_end();
777           ParamType != ParamEnd; ++ParamType) {
778        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
779                                                 SourceLocation(), 0,
780                                                 *ParamType, VarDecl::None,
781                                                 0);
782        Param->setImplicit();
783        Params.push_back(Param);
784      }
785
786      New->setParams(Context, Params.data(), Params.size());
787    }
788
789    return MergeCompatibleFunctionDecls(New, Old);
790  }
791
792  // GNU C permits a K&R definition to follow a prototype declaration
793  // if the declared types of the parameters in the K&R definition
794  // match the types in the prototype declaration, even when the
795  // promoted types of the parameters from the K&R definition differ
796  // from the types in the prototype. GCC then keeps the types from
797  // the prototype.
798  //
799  // If a variadic prototype is followed by a non-variadic K&R definition,
800  // the K&R definition becomes variadic.  This is sort of an edge case, but
801  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
802  // C99 6.9.1p8.
803  if (!getLangOptions().CPlusPlus &&
804      Old->hasPrototype() && !New->hasPrototype() &&
805      New->getType()->getAsFunctionProtoType() &&
806      Old->getNumParams() == New->getNumParams()) {
807    llvm::SmallVector<QualType, 16> ArgTypes;
808    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
809    const FunctionProtoType *OldProto
810      = Old->getType()->getAsFunctionProtoType();
811    const FunctionProtoType *NewProto
812      = New->getType()->getAsFunctionProtoType();
813
814    // Determine whether this is the GNU C extension.
815    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
816                                               NewProto->getResultType());
817    bool LooseCompatible = !MergedReturn.isNull();
818    for (unsigned Idx = 0, End = Old->getNumParams();
819         LooseCompatible && Idx != End; ++Idx) {
820      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
821      ParmVarDecl *NewParm = New->getParamDecl(Idx);
822      if (Context.typesAreCompatible(OldParm->getType(),
823                                     NewProto->getArgType(Idx))) {
824        ArgTypes.push_back(NewParm->getType());
825      } else if (Context.typesAreCompatible(OldParm->getType(),
826                                            NewParm->getType())) {
827        GNUCompatibleParamWarning Warn
828          = { OldParm, NewParm, NewProto->getArgType(Idx) };
829        Warnings.push_back(Warn);
830        ArgTypes.push_back(NewParm->getType());
831      } else
832        LooseCompatible = false;
833    }
834
835    if (LooseCompatible) {
836      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
837        Diag(Warnings[Warn].NewParm->getLocation(),
838             diag::ext_param_promoted_not_compatible_with_prototype)
839          << Warnings[Warn].PromotedType
840          << Warnings[Warn].OldParm->getType();
841        Diag(Warnings[Warn].OldParm->getLocation(),
842             diag::note_previous_declaration);
843      }
844
845      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
846                                           ArgTypes.size(),
847                                           OldProto->isVariadic(), 0));
848      return MergeCompatibleFunctionDecls(New, Old);
849    }
850
851    // Fall through to diagnose conflicting types.
852  }
853
854  // A function that has already been declared has been redeclared or defined
855  // with a different type- show appropriate diagnostic
856  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
857    // The user has declared a builtin function with an incompatible
858    // signature.
859    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
860      // The function the user is redeclaring is a library-defined
861      // function like 'malloc' or 'printf'. Warn about the
862      // redeclaration, then pretend that we don't know about this
863      // library built-in.
864      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
865      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
866        << Old << Old->getType();
867      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
868      Old->setInvalidDecl();
869      return false;
870    }
871
872    PrevDiag = diag::note_previous_builtin_declaration;
873  }
874
875  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
876  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
877  return true;
878}
879
880/// \brief Completes the merge of two function declarations that are
881/// known to be compatible.
882///
883/// This routine handles the merging of attributes and other
884/// properties of function declarations form the old declaration to
885/// the new declaration, once we know that New is in fact a
886/// redeclaration of Old.
887///
888/// \returns false
889bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
890  // Merge the attributes
891  MergeAttributes(New, Old, Context);
892
893  // Merge the storage class.
894  if (Old->getStorageClass() != FunctionDecl::Extern)
895    New->setStorageClass(Old->getStorageClass());
896
897  // Merge "inline"
898  if (Old->isInline())
899    New->setInline(true);
900
901  // If this function declaration by itself qualifies as a C99 inline
902  // definition (C99 6.7.4p6), but the previous definition did not,
903  // then the function is not a C99 inline definition.
904  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
905    New->setC99InlineDefinition(false);
906  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
907    // Mark all preceding definitions as not being C99 inline definitions.
908    for (const FunctionDecl *Prev = Old; Prev;
909         Prev = Prev->getPreviousDeclaration())
910      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
911  }
912
913  // Merge "pure" flag.
914  if (Old->isPure())
915    New->setPure();
916
917  // Merge the "deleted" flag.
918  if (Old->isDeleted())
919    New->setDeleted();
920
921  if (getLangOptions().CPlusPlus)
922    return MergeCXXFunctionDecl(New, Old);
923
924  return false;
925}
926
927/// MergeVarDecl - We just parsed a variable 'New' which has the same name
928/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
929/// situation, merging decls or emitting diagnostics as appropriate.
930///
931/// Tentative definition rules (C99 6.9.2p2) are checked by
932/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
933/// definitions here, since the initializer hasn't been attached.
934///
935void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
936  // If either decl is invalid, make sure the new one is marked invalid and
937  // don't do any other checking.
938  if (New->isInvalidDecl() || OldD->isInvalidDecl())
939    return New->setInvalidDecl();
940
941  // Verify the old decl was also a variable.
942  VarDecl *Old = dyn_cast<VarDecl>(OldD);
943  if (!Old) {
944    Diag(New->getLocation(), diag::err_redefinition_different_kind)
945      << New->getDeclName();
946    Diag(OldD->getLocation(), diag::note_previous_definition);
947    return New->setInvalidDecl();
948  }
949
950  MergeAttributes(New, Old, Context);
951
952  // Merge the types
953  QualType MergedT;
954  if (getLangOptions().CPlusPlus) {
955    if (Context.hasSameType(New->getType(), Old->getType()))
956      MergedT = New->getType();
957  } else {
958    MergedT = Context.mergeTypes(New->getType(), Old->getType());
959  }
960  if (MergedT.isNull()) {
961    Diag(New->getLocation(), diag::err_redefinition_different_type)
962      << New->getDeclName();
963    Diag(Old->getLocation(), diag::note_previous_definition);
964    return New->setInvalidDecl();
965  }
966  New->setType(MergedT);
967
968  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
969  if (New->getStorageClass() == VarDecl::Static &&
970      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
971    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
972    Diag(Old->getLocation(), diag::note_previous_definition);
973    return New->setInvalidDecl();
974  }
975  // C99 6.2.2p4:
976  //   For an identifier declared with the storage-class specifier
977  //   extern in a scope in which a prior declaration of that
978  //   identifier is visible,23) if the prior declaration specifies
979  //   internal or external linkage, the linkage of the identifier at
980  //   the later declaration is the same as the linkage specified at
981  //   the prior declaration. If no prior declaration is visible, or
982  //   if the prior declaration specifies no linkage, then the
983  //   identifier has external linkage.
984  if (New->hasExternalStorage() && Old->hasLinkage())
985    /* Okay */;
986  else if (New->getStorageClass() != VarDecl::Static &&
987           Old->getStorageClass() == VarDecl::Static) {
988    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
989    Diag(Old->getLocation(), diag::note_previous_definition);
990    return New->setInvalidDecl();
991  }
992
993  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
994
995  // FIXME: The test for external storage here seems wrong? We still
996  // need to check for mismatches.
997  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
998      // Don't complain about out-of-line definitions of static members.
999      !(Old->getLexicalDeclContext()->isRecord() &&
1000        !New->getLexicalDeclContext()->isRecord())) {
1001    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1002    Diag(Old->getLocation(), diag::note_previous_definition);
1003    return New->setInvalidDecl();
1004  }
1005
1006  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1007    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1010    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1011    Diag(Old->getLocation(), diag::note_previous_definition);
1012  }
1013
1014  // Keep a chain of previous declarations.
1015  New->setPreviousDeclaration(Old);
1016}
1017
1018/// CheckFallThrough - Check that we don't fall off the end of a
1019/// Statement that should return a value.
1020///
1021/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1022/// MaybeFallThrough iff we might or might not fall off the end and
1023/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1024/// that functions not marked noreturn will return.
1025Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1026  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1027
1028  // FIXME: They should never return 0, fix that, delete this code.
1029  if (cfg == 0)
1030    return NeverFallThrough;
1031  // The CFG leaves in dead things, and we don't want to dead code paths to
1032  // confuse us, so we mark all live things first.
1033  std::queue<CFGBlock*> workq;
1034  llvm::BitVector live(cfg->getNumBlockIDs());
1035  // Prep work queue
1036  workq.push(&cfg->getEntry());
1037  // Solve
1038  while (!workq.empty()) {
1039    CFGBlock *item = workq.front();
1040    workq.pop();
1041    live.set(item->getBlockID());
1042    for (CFGBlock::succ_iterator I=item->succ_begin(),
1043           E=item->succ_end();
1044         I != E;
1045         ++I) {
1046      if ((*I) && !live[(*I)->getBlockID()]) {
1047        live.set((*I)->getBlockID());
1048        workq.push(*I);
1049      }
1050    }
1051  }
1052
1053  // Now we know what is live, we check the live precessors of the exit block
1054  // and look for fall through paths, being careful to ignore normal returns,
1055  // and exceptional paths.
1056  bool HasLiveReturn = false;
1057  bool HasFakeEdge = false;
1058  bool HasPlainEdge = false;
1059  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1060         E = cfg->getExit().pred_end();
1061       I != E;
1062       ++I) {
1063    CFGBlock& B = **I;
1064    if (!live[B.getBlockID()])
1065      continue;
1066    if (B.size() == 0) {
1067      // A labeled empty statement, or the entry block...
1068      HasPlainEdge = true;
1069      continue;
1070    }
1071    Stmt *S = B[B.size()-1];
1072    if (isa<ReturnStmt>(S)) {
1073      HasLiveReturn = true;
1074      continue;
1075    }
1076    if (isa<ObjCAtThrowStmt>(S)) {
1077      HasFakeEdge = true;
1078      continue;
1079    }
1080    if (isa<CXXThrowExpr>(S)) {
1081      HasFakeEdge = true;
1082      continue;
1083    }
1084    bool NoReturnEdge = false;
1085    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1086      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1087      if (CEE->getType().getNoReturnAttr()) {
1088        NoReturnEdge = true;
1089        HasFakeEdge = true;
1090      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1091        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1092          if (FD->hasAttr<NoReturnAttr>()) {
1093            NoReturnEdge = true;
1094            HasFakeEdge = true;
1095          }
1096        }
1097      }
1098    }
1099    // FIXME: Add noreturn message sends.
1100    if (NoReturnEdge == false)
1101      HasPlainEdge = true;
1102  }
1103  if (!HasPlainEdge)
1104    return NeverFallThrough;
1105  if (HasFakeEdge || HasLiveReturn)
1106    return MaybeFallThrough;
1107  // This says AlwaysFallThrough for calls to functions that are not marked
1108  // noreturn, that don't return.  If people would like this warning to be more
1109  // accurate, such functions should be marked as noreturn.
1110  return AlwaysFallThrough;
1111}
1112
1113/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1114/// function that should return a value.  Check that we don't fall off the end
1115/// of a noreturn function.  We assume that functions not marked noreturn will
1116/// return.
1117void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1118  // FIXME: Would be nice if we had a better way to control cascading errors,
1119  // but for now, avoid them.  The problem is that when Parse sees:
1120  //   int foo() { return a; }
1121  // The return is eaten and the Sema code sees just:
1122  //   int foo() { }
1123  // which this code would then warn about.
1124  if (getDiagnostics().hasErrorOccurred())
1125    return;
1126  bool ReturnsVoid = false;
1127  bool HasNoReturn = false;
1128  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1129    if (FD->getResultType()->isVoidType())
1130      ReturnsVoid = true;
1131    if (FD->hasAttr<NoReturnAttr>())
1132      HasNoReturn = true;
1133  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1134    if (MD->getResultType()->isVoidType())
1135      ReturnsVoid = true;
1136    if (MD->hasAttr<NoReturnAttr>())
1137      HasNoReturn = true;
1138  }
1139
1140  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1141       == Diagnostic::Ignored || ReturnsVoid)
1142      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1143          == Diagnostic::Ignored || !HasNoReturn))
1144    return;
1145  // FIXME: Funtion try block
1146  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1147    switch (CheckFallThrough(Body)) {
1148    case MaybeFallThrough:
1149      if (HasNoReturn)
1150        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1151      else if (!ReturnsVoid)
1152        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1153      break;
1154    case AlwaysFallThrough:
1155      if (HasNoReturn)
1156        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1157      else if (!ReturnsVoid)
1158        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1159      break;
1160    case NeverFallThrough:
1161      break;
1162    }
1163  }
1164}
1165
1166/// CheckParmsForFunctionDef - Check that the parameters of the given
1167/// function are appropriate for the definition of a function. This
1168/// takes care of any checks that cannot be performed on the
1169/// declaration itself, e.g., that the types of each of the function
1170/// parameters are complete.
1171bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1172  bool HasInvalidParm = false;
1173  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1174    ParmVarDecl *Param = FD->getParamDecl(p);
1175
1176    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1177    // function declarator that is part of a function definition of
1178    // that function shall not have incomplete type.
1179    //
1180    // This is also C++ [dcl.fct]p6.
1181    if (!Param->isInvalidDecl() &&
1182        RequireCompleteType(Param->getLocation(), Param->getType(),
1183                               diag::err_typecheck_decl_incomplete_type)) {
1184      Param->setInvalidDecl();
1185      HasInvalidParm = true;
1186    }
1187
1188    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1189    // declaration of each parameter shall include an identifier.
1190    if (Param->getIdentifier() == 0 &&
1191        !Param->isImplicit() &&
1192        !getLangOptions().CPlusPlus)
1193      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1194  }
1195
1196  return HasInvalidParm;
1197}
1198
1199/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1200/// no declarator (e.g. "struct foo;") is parsed.
1201Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1202  // FIXME: Error on auto/register at file scope
1203  // FIXME: Error on inline/virtual/explicit
1204  // FIXME: Error on invalid restrict
1205  // FIXME: Warn on useless __thread
1206  // FIXME: Warn on useless const/volatile
1207  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1208  // FIXME: Warn on useless attributes
1209  TagDecl *Tag = 0;
1210  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1211      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1212      DS.getTypeSpecType() == DeclSpec::TST_union ||
1213      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1214    if (!DS.getTypeRep()) // We probably had an error
1215      return DeclPtrTy();
1216
1217    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1218  }
1219
1220  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1221    if (!Record->getDeclName() && Record->isDefinition() &&
1222        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1223      if (getLangOptions().CPlusPlus ||
1224          Record->getDeclContext()->isRecord())
1225        return BuildAnonymousStructOrUnion(S, DS, Record);
1226
1227      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1228        << DS.getSourceRange();
1229    }
1230
1231    // Microsoft allows unnamed struct/union fields. Don't complain
1232    // about them.
1233    // FIXME: Should we support Microsoft's extensions in this area?
1234    if (Record->getDeclName() && getLangOptions().Microsoft)
1235      return DeclPtrTy::make(Tag);
1236  }
1237
1238  if (!DS.isMissingDeclaratorOk() &&
1239      DS.getTypeSpecType() != DeclSpec::TST_error) {
1240    // Warn about typedefs of enums without names, since this is an
1241    // extension in both Microsoft an GNU.
1242    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1243        Tag && isa<EnumDecl>(Tag)) {
1244      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1245        << DS.getSourceRange();
1246      return DeclPtrTy::make(Tag);
1247    }
1248
1249    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1250      << DS.getSourceRange();
1251    return DeclPtrTy();
1252  }
1253
1254  return DeclPtrTy::make(Tag);
1255}
1256
1257/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1258/// anonymous struct or union AnonRecord into the owning context Owner
1259/// and scope S. This routine will be invoked just after we realize
1260/// that an unnamed union or struct is actually an anonymous union or
1261/// struct, e.g.,
1262///
1263/// @code
1264/// union {
1265///   int i;
1266///   float f;
1267/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1268///    // f into the surrounding scope.x
1269/// @endcode
1270///
1271/// This routine is recursive, injecting the names of nested anonymous
1272/// structs/unions into the owning context and scope as well.
1273bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1274                                               RecordDecl *AnonRecord) {
1275  bool Invalid = false;
1276  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1277                               FEnd = AnonRecord->field_end();
1278       F != FEnd; ++F) {
1279    if ((*F)->getDeclName()) {
1280      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1281                                                LookupOrdinaryName, true);
1282      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1283        // C++ [class.union]p2:
1284        //   The names of the members of an anonymous union shall be
1285        //   distinct from the names of any other entity in the
1286        //   scope in which the anonymous union is declared.
1287        unsigned diagKind
1288          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1289                                 : diag::err_anonymous_struct_member_redecl;
1290        Diag((*F)->getLocation(), diagKind)
1291          << (*F)->getDeclName();
1292        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1293        Invalid = true;
1294      } else {
1295        // C++ [class.union]p2:
1296        //   For the purpose of name lookup, after the anonymous union
1297        //   definition, the members of the anonymous union are
1298        //   considered to have been defined in the scope in which the
1299        //   anonymous union is declared.
1300        Owner->makeDeclVisibleInContext(*F);
1301        S->AddDecl(DeclPtrTy::make(*F));
1302        IdResolver.AddDecl(*F);
1303      }
1304    } else if (const RecordType *InnerRecordType
1305                 = (*F)->getType()->getAsRecordType()) {
1306      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1307      if (InnerRecord->isAnonymousStructOrUnion())
1308        Invalid = Invalid ||
1309          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1310    }
1311  }
1312
1313  return Invalid;
1314}
1315
1316/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1317/// anonymous structure or union. Anonymous unions are a C++ feature
1318/// (C++ [class.union]) and a GNU C extension; anonymous structures
1319/// are a GNU C and GNU C++ extension.
1320Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1321                                                  RecordDecl *Record) {
1322  DeclContext *Owner = Record->getDeclContext();
1323
1324  // Diagnose whether this anonymous struct/union is an extension.
1325  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1326    Diag(Record->getLocation(), diag::ext_anonymous_union);
1327  else if (!Record->isUnion())
1328    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1329
1330  // C and C++ require different kinds of checks for anonymous
1331  // structs/unions.
1332  bool Invalid = false;
1333  if (getLangOptions().CPlusPlus) {
1334    const char* PrevSpec = 0;
1335    // C++ [class.union]p3:
1336    //   Anonymous unions declared in a named namespace or in the
1337    //   global namespace shall be declared static.
1338    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1339        (isa<TranslationUnitDecl>(Owner) ||
1340         (isa<NamespaceDecl>(Owner) &&
1341          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1342      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1343      Invalid = true;
1344
1345      // Recover by adding 'static'.
1346      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1347    }
1348    // C++ [class.union]p3:
1349    //   A storage class is not allowed in a declaration of an
1350    //   anonymous union in a class scope.
1351    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1352             isa<RecordDecl>(Owner)) {
1353      Diag(DS.getStorageClassSpecLoc(),
1354           diag::err_anonymous_union_with_storage_spec);
1355      Invalid = true;
1356
1357      // Recover by removing the storage specifier.
1358      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1359                             PrevSpec);
1360    }
1361
1362    // C++ [class.union]p2:
1363    //   The member-specification of an anonymous union shall only
1364    //   define non-static data members. [Note: nested types and
1365    //   functions cannot be declared within an anonymous union. ]
1366    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1367                                 MemEnd = Record->decls_end();
1368         Mem != MemEnd; ++Mem) {
1369      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1370        // C++ [class.union]p3:
1371        //   An anonymous union shall not have private or protected
1372        //   members (clause 11).
1373        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1374          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1375            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1376          Invalid = true;
1377        }
1378      } else if ((*Mem)->isImplicit()) {
1379        // Any implicit members are fine.
1380      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1381        // This is a type that showed up in an
1382        // elaborated-type-specifier inside the anonymous struct or
1383        // union, but which actually declares a type outside of the
1384        // anonymous struct or union. It's okay.
1385      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1386        if (!MemRecord->isAnonymousStructOrUnion() &&
1387            MemRecord->getDeclName()) {
1388          // This is a nested type declaration.
1389          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1390            << (int)Record->isUnion();
1391          Invalid = true;
1392        }
1393      } else {
1394        // We have something that isn't a non-static data
1395        // member. Complain about it.
1396        unsigned DK = diag::err_anonymous_record_bad_member;
1397        if (isa<TypeDecl>(*Mem))
1398          DK = diag::err_anonymous_record_with_type;
1399        else if (isa<FunctionDecl>(*Mem))
1400          DK = diag::err_anonymous_record_with_function;
1401        else if (isa<VarDecl>(*Mem))
1402          DK = diag::err_anonymous_record_with_static;
1403        Diag((*Mem)->getLocation(), DK)
1404            << (int)Record->isUnion();
1405          Invalid = true;
1406      }
1407    }
1408  }
1409
1410  if (!Record->isUnion() && !Owner->isRecord()) {
1411    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1412      << (int)getLangOptions().CPlusPlus;
1413    Invalid = true;
1414  }
1415
1416  // Create a declaration for this anonymous struct/union.
1417  NamedDecl *Anon = 0;
1418  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1419    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1420                             /*IdentifierInfo=*/0,
1421                             Context.getTypeDeclType(Record),
1422                             /*BitWidth=*/0, /*Mutable=*/false,
1423                             DS.getSourceRange().getBegin());
1424    Anon->setAccess(AS_public);
1425    if (getLangOptions().CPlusPlus)
1426      FieldCollector->Add(cast<FieldDecl>(Anon));
1427  } else {
1428    VarDecl::StorageClass SC;
1429    switch (DS.getStorageClassSpec()) {
1430    default: assert(0 && "Unknown storage class!");
1431    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1432    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1433    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1434    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1435    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1436    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1437    case DeclSpec::SCS_mutable:
1438      // mutable can only appear on non-static class members, so it's always
1439      // an error here
1440      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1441      Invalid = true;
1442      SC = VarDecl::None;
1443      break;
1444    }
1445
1446    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1447                           /*IdentifierInfo=*/0,
1448                           Context.getTypeDeclType(Record),
1449                           SC, DS.getSourceRange().getBegin());
1450  }
1451  Anon->setImplicit();
1452
1453  // Add the anonymous struct/union object to the current
1454  // context. We'll be referencing this object when we refer to one of
1455  // its members.
1456  Owner->addDecl(Anon);
1457
1458  // Inject the members of the anonymous struct/union into the owning
1459  // context and into the identifier resolver chain for name lookup
1460  // purposes.
1461  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1462    Invalid = true;
1463
1464  // Mark this as an anonymous struct/union type. Note that we do not
1465  // do this until after we have already checked and injected the
1466  // members of this anonymous struct/union type, because otherwise
1467  // the members could be injected twice: once by DeclContext when it
1468  // builds its lookup table, and once by
1469  // InjectAnonymousStructOrUnionMembers.
1470  Record->setAnonymousStructOrUnion(true);
1471
1472  if (Invalid)
1473    Anon->setInvalidDecl();
1474
1475  return DeclPtrTy::make(Anon);
1476}
1477
1478
1479/// GetNameForDeclarator - Determine the full declaration name for the
1480/// given Declarator.
1481DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1482  switch (D.getKind()) {
1483  case Declarator::DK_Abstract:
1484    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1485    return DeclarationName();
1486
1487  case Declarator::DK_Normal:
1488    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1489    return DeclarationName(D.getIdentifier());
1490
1491  case Declarator::DK_Constructor: {
1492    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1493    Ty = Context.getCanonicalType(Ty);
1494    return Context.DeclarationNames.getCXXConstructorName(Ty);
1495  }
1496
1497  case Declarator::DK_Destructor: {
1498    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1499    Ty = Context.getCanonicalType(Ty);
1500    return Context.DeclarationNames.getCXXDestructorName(Ty);
1501  }
1502
1503  case Declarator::DK_Conversion: {
1504    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1505    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1506    Ty = Context.getCanonicalType(Ty);
1507    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1508  }
1509
1510  case Declarator::DK_Operator:
1511    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1512    return Context.DeclarationNames.getCXXOperatorName(
1513                                                D.getOverloadedOperator());
1514  }
1515
1516  assert(false && "Unknown name kind");
1517  return DeclarationName();
1518}
1519
1520/// isNearlyMatchingFunction - Determine whether the C++ functions
1521/// Declaration and Definition are "nearly" matching. This heuristic
1522/// is used to improve diagnostics in the case where an out-of-line
1523/// function definition doesn't match any declaration within
1524/// the class or namespace.
1525static bool isNearlyMatchingFunction(ASTContext &Context,
1526                                     FunctionDecl *Declaration,
1527                                     FunctionDecl *Definition) {
1528  if (Declaration->param_size() != Definition->param_size())
1529    return false;
1530  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1531    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1532    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1533
1534    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1535    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1536    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1537      return false;
1538  }
1539
1540  return true;
1541}
1542
1543Sema::DeclPtrTy
1544Sema::HandleDeclarator(Scope *S, Declarator &D,
1545                       MultiTemplateParamsArg TemplateParamLists,
1546                       bool IsFunctionDefinition) {
1547  DeclarationName Name = GetNameForDeclarator(D);
1548
1549  // All of these full declarators require an identifier.  If it doesn't have
1550  // one, the ParsedFreeStandingDeclSpec action should be used.
1551  if (!Name) {
1552    if (!D.isInvalidType())  // Reject this if we think it is valid.
1553      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1554           diag::err_declarator_need_ident)
1555        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1556    return DeclPtrTy();
1557  }
1558
1559  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1560  // we find one that is.
1561  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1562         (S->getFlags() & Scope::TemplateParamScope) != 0)
1563    S = S->getParent();
1564
1565  DeclContext *DC;
1566  NamedDecl *PrevDecl;
1567  NamedDecl *New;
1568
1569  QualType R = GetTypeForDeclarator(D, S);
1570
1571  // See if this is a redefinition of a variable in the same scope.
1572  if (D.getCXXScopeSpec().isInvalid()) {
1573    DC = CurContext;
1574    PrevDecl = 0;
1575    D.setInvalidType();
1576  } else if (!D.getCXXScopeSpec().isSet()) {
1577    LookupNameKind NameKind = LookupOrdinaryName;
1578
1579    // If the declaration we're planning to build will be a function
1580    // or object with linkage, then look for another declaration with
1581    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1582    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1583      /* Do nothing*/;
1584    else if (R->isFunctionType()) {
1585      if (CurContext->isFunctionOrMethod() ||
1586          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1587        NameKind = LookupRedeclarationWithLinkage;
1588    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1589      NameKind = LookupRedeclarationWithLinkage;
1590    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1591             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1592      NameKind = LookupRedeclarationWithLinkage;
1593
1594    DC = CurContext;
1595    PrevDecl = LookupName(S, Name, NameKind, true,
1596                          NameKind == LookupRedeclarationWithLinkage,
1597                          D.getIdentifierLoc());
1598  } else { // Something like "int foo::x;"
1599    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1600    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1601    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1602
1603    // C++ 7.3.1.2p2:
1604    // Members (including explicit specializations of templates) of a named
1605    // namespace can also be defined outside that namespace by explicit
1606    // qualification of the name being defined, provided that the entity being
1607    // defined was already declared in the namespace and the definition appears
1608    // after the point of declaration in a namespace that encloses the
1609    // declarations namespace.
1610    //
1611    // Note that we only check the context at this point. We don't yet
1612    // have enough information to make sure that PrevDecl is actually
1613    // the declaration we want to match. For example, given:
1614    //
1615    //   class X {
1616    //     void f();
1617    //     void f(float);
1618    //   };
1619    //
1620    //   void X::f(int) { } // ill-formed
1621    //
1622    // In this case, PrevDecl will point to the overload set
1623    // containing the two f's declared in X, but neither of them
1624    // matches.
1625
1626    // First check whether we named the global scope.
1627    if (isa<TranslationUnitDecl>(DC)) {
1628      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1629        << Name << D.getCXXScopeSpec().getRange();
1630    } else if (!CurContext->Encloses(DC)) {
1631      // The qualifying scope doesn't enclose the original declaration.
1632      // Emit diagnostic based on current scope.
1633      SourceLocation L = D.getIdentifierLoc();
1634      SourceRange R = D.getCXXScopeSpec().getRange();
1635      if (isa<FunctionDecl>(CurContext))
1636        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1637      else
1638        Diag(L, diag::err_invalid_declarator_scope)
1639          << Name << cast<NamedDecl>(DC) << R;
1640      D.setInvalidType();
1641    }
1642  }
1643
1644  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1645    // Maybe we will complain about the shadowed template parameter.
1646    if (!D.isInvalidType())
1647      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1648        D.setInvalidType();
1649
1650    // Just pretend that we didn't see the previous declaration.
1651    PrevDecl = 0;
1652  }
1653
1654  // In C++, the previous declaration we find might be a tag type
1655  // (class or enum). In this case, the new declaration will hide the
1656  // tag type. Note that this does does not apply if we're declaring a
1657  // typedef (C++ [dcl.typedef]p4).
1658  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1659      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1660    PrevDecl = 0;
1661
1662  bool Redeclaration = false;
1663  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1664    if (TemplateParamLists.size()) {
1665      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1666      return DeclPtrTy();
1667    }
1668
1669    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1670  } else if (R->isFunctionType()) {
1671    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1672                                  move(TemplateParamLists),
1673                                  IsFunctionDefinition, Redeclaration);
1674  } else {
1675    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1676                                  move(TemplateParamLists),
1677                                  Redeclaration);
1678  }
1679
1680  if (New == 0)
1681    return DeclPtrTy();
1682
1683  // If this has an identifier and is not an invalid redeclaration,
1684  // add it to the scope stack.
1685  if (Name && !(Redeclaration && New->isInvalidDecl()))
1686    PushOnScopeChains(New, S);
1687
1688  return DeclPtrTy::make(New);
1689}
1690
1691/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1692/// types into constant array types in certain situations which would otherwise
1693/// be errors (for GCC compatibility).
1694static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1695                                                    ASTContext &Context,
1696                                                    bool &SizeIsNegative) {
1697  // This method tries to turn a variable array into a constant
1698  // array even when the size isn't an ICE.  This is necessary
1699  // for compatibility with code that depends on gcc's buggy
1700  // constant expression folding, like struct {char x[(int)(char*)2];}
1701  SizeIsNegative = false;
1702
1703  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1704    QualType Pointee = PTy->getPointeeType();
1705    QualType FixedType =
1706        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1707    if (FixedType.isNull()) return FixedType;
1708    FixedType = Context.getPointerType(FixedType);
1709    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1710    return FixedType;
1711  }
1712
1713  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1714  if (!VLATy)
1715    return QualType();
1716  // FIXME: We should probably handle this case
1717  if (VLATy->getElementType()->isVariablyModifiedType())
1718    return QualType();
1719
1720  Expr::EvalResult EvalResult;
1721  if (!VLATy->getSizeExpr() ||
1722      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1723      !EvalResult.Val.isInt())
1724    return QualType();
1725
1726  llvm::APSInt &Res = EvalResult.Val.getInt();
1727  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1728    Expr* ArySizeExpr = VLATy->getSizeExpr();
1729    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1730    // so as to transfer ownership to the ConstantArrayWithExpr.
1731    // Alternatively, we could "clone" it (how?).
1732    // Since we don't know how to do things above, we just use the
1733    // very same Expr*.
1734    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1735                                                Res, ArySizeExpr,
1736                                                ArrayType::Normal, 0,
1737                                                VLATy->getBracketsRange());
1738  }
1739
1740  SizeIsNegative = true;
1741  return QualType();
1742}
1743
1744/// \brief Register the given locally-scoped external C declaration so
1745/// that it can be found later for redeclarations
1746void
1747Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1748                                       Scope *S) {
1749  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1750         "Decl is not a locally-scoped decl!");
1751  // Note that we have a locally-scoped external with this name.
1752  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1753
1754  if (!PrevDecl)
1755    return;
1756
1757  // If there was a previous declaration of this variable, it may be
1758  // in our identifier chain. Update the identifier chain with the new
1759  // declaration.
1760  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1761    // The previous declaration was found on the identifer resolver
1762    // chain, so remove it from its scope.
1763    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1764      S = S->getParent();
1765
1766    if (S)
1767      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1768  }
1769}
1770
1771/// \brief Diagnose function specifiers on a declaration of an identifier that
1772/// does not identify a function.
1773void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1774  // FIXME: We should probably indicate the identifier in question to avoid
1775  // confusion for constructs like "inline int a(), b;"
1776  if (D.getDeclSpec().isInlineSpecified())
1777    Diag(D.getDeclSpec().getInlineSpecLoc(),
1778         diag::err_inline_non_function);
1779
1780  if (D.getDeclSpec().isVirtualSpecified())
1781    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1782         diag::err_virtual_non_function);
1783
1784  if (D.getDeclSpec().isExplicitSpecified())
1785    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1786         diag::err_explicit_non_function);
1787}
1788
1789NamedDecl*
1790Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1791                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1792  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1793  if (D.getCXXScopeSpec().isSet()) {
1794    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1795      << D.getCXXScopeSpec().getRange();
1796    D.setInvalidType();
1797    // Pretend we didn't see the scope specifier.
1798    DC = 0;
1799  }
1800
1801  if (getLangOptions().CPlusPlus) {
1802    // Check that there are no default arguments (C++ only).
1803    CheckExtraCXXDefaultArguments(D);
1804  }
1805
1806  DiagnoseFunctionSpecifiers(D);
1807
1808  if (D.getDeclSpec().isThreadSpecified())
1809    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1810
1811  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1812  if (!NewTD) return 0;
1813
1814  if (D.isInvalidType())
1815    NewTD->setInvalidDecl();
1816
1817  // Handle attributes prior to checking for duplicates in MergeVarDecl
1818  ProcessDeclAttributes(S, NewTD, D);
1819  // Merge the decl with the existing one if appropriate. If the decl is
1820  // in an outer scope, it isn't the same thing.
1821  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1822    Redeclaration = true;
1823    MergeTypeDefDecl(NewTD, PrevDecl);
1824  }
1825
1826  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1827  // then it shall have block scope.
1828  QualType T = NewTD->getUnderlyingType();
1829  if (T->isVariablyModifiedType()) {
1830    CurFunctionNeedsScopeChecking = true;
1831
1832    if (S->getFnParent() == 0) {
1833      bool SizeIsNegative;
1834      QualType FixedTy =
1835          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1836      if (!FixedTy.isNull()) {
1837        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1838        NewTD->setUnderlyingType(FixedTy);
1839      } else {
1840        if (SizeIsNegative)
1841          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1842        else if (T->isVariableArrayType())
1843          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1844        else
1845          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1846        NewTD->setInvalidDecl();
1847      }
1848    }
1849  }
1850
1851  // If this is the C FILE type, notify the AST context.
1852  if (IdentifierInfo *II = NewTD->getIdentifier())
1853    if (!NewTD->isInvalidDecl() &&
1854        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1855        II->isStr("FILE"))
1856      Context.setFILEDecl(NewTD);
1857
1858  return NewTD;
1859}
1860
1861/// \brief Determines whether the given declaration is an out-of-scope
1862/// previous declaration.
1863///
1864/// This routine should be invoked when name lookup has found a
1865/// previous declaration (PrevDecl) that is not in the scope where a
1866/// new declaration by the same name is being introduced. If the new
1867/// declaration occurs in a local scope, previous declarations with
1868/// linkage may still be considered previous declarations (C99
1869/// 6.2.2p4-5, C++ [basic.link]p6).
1870///
1871/// \param PrevDecl the previous declaration found by name
1872/// lookup
1873///
1874/// \param DC the context in which the new declaration is being
1875/// declared.
1876///
1877/// \returns true if PrevDecl is an out-of-scope previous declaration
1878/// for a new delcaration with the same name.
1879static bool
1880isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1881                                ASTContext &Context) {
1882  if (!PrevDecl)
1883    return 0;
1884
1885  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1886  // case we need to check each of the overloaded functions.
1887  if (!PrevDecl->hasLinkage())
1888    return false;
1889
1890  if (Context.getLangOptions().CPlusPlus) {
1891    // C++ [basic.link]p6:
1892    //   If there is a visible declaration of an entity with linkage
1893    //   having the same name and type, ignoring entities declared
1894    //   outside the innermost enclosing namespace scope, the block
1895    //   scope declaration declares that same entity and receives the
1896    //   linkage of the previous declaration.
1897    DeclContext *OuterContext = DC->getLookupContext();
1898    if (!OuterContext->isFunctionOrMethod())
1899      // This rule only applies to block-scope declarations.
1900      return false;
1901    else {
1902      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1903      if (PrevOuterContext->isRecord())
1904        // We found a member function: ignore it.
1905        return false;
1906      else {
1907        // Find the innermost enclosing namespace for the new and
1908        // previous declarations.
1909        while (!OuterContext->isFileContext())
1910          OuterContext = OuterContext->getParent();
1911        while (!PrevOuterContext->isFileContext())
1912          PrevOuterContext = PrevOuterContext->getParent();
1913
1914        // The previous declaration is in a different namespace, so it
1915        // isn't the same function.
1916        if (OuterContext->getPrimaryContext() !=
1917            PrevOuterContext->getPrimaryContext())
1918          return false;
1919      }
1920    }
1921  }
1922
1923  return true;
1924}
1925
1926NamedDecl*
1927Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1928                              QualType R,NamedDecl* PrevDecl,
1929                              MultiTemplateParamsArg TemplateParamLists,
1930                              bool &Redeclaration) {
1931  DeclarationName Name = GetNameForDeclarator(D);
1932
1933  // Check that there are no default arguments (C++ only).
1934  if (getLangOptions().CPlusPlus)
1935    CheckExtraCXXDefaultArguments(D);
1936
1937  VarDecl *NewVD;
1938  VarDecl::StorageClass SC;
1939  switch (D.getDeclSpec().getStorageClassSpec()) {
1940  default: assert(0 && "Unknown storage class!");
1941  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1942  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1943  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1944  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1945  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1946  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1947  case DeclSpec::SCS_mutable:
1948    // mutable can only appear on non-static class members, so it's always
1949    // an error here
1950    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1951    D.setInvalidType();
1952    SC = VarDecl::None;
1953    break;
1954  }
1955
1956  IdentifierInfo *II = Name.getAsIdentifierInfo();
1957  if (!II) {
1958    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1959      << Name.getAsString();
1960    return 0;
1961  }
1962
1963  DiagnoseFunctionSpecifiers(D);
1964
1965  if (!DC->isRecord() && S->getFnParent() == 0) {
1966    // C99 6.9p2: The storage-class specifiers auto and register shall not
1967    // appear in the declaration specifiers in an external declaration.
1968    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1969
1970      // If this is a register variable with an asm label specified, then this
1971      // is a GNU extension.
1972      if (SC == VarDecl::Register && D.getAsmLabel())
1973        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1974      else
1975        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1976      D.setInvalidType();
1977    }
1978  }
1979  if (DC->isRecord() && !CurContext->isRecord()) {
1980    // This is an out-of-line definition of a static data member.
1981    if (SC == VarDecl::Static) {
1982      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1983           diag::err_static_out_of_line)
1984        << CodeModificationHint::CreateRemoval(
1985                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1986    } else if (SC == VarDecl::None)
1987      SC = VarDecl::Static;
1988  }
1989  if (SC == VarDecl::Static) {
1990    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1991      if (RD->isLocalClass())
1992        Diag(D.getIdentifierLoc(),
1993             diag::err_static_data_member_not_allowed_in_local_class)
1994          << Name << RD->getDeclName();
1995    }
1996  }
1997
1998  // Check that we can declare a template here.
1999  if (TemplateParamLists.size() &&
2000      CheckTemplateDeclScope(S, TemplateParamLists))
2001    return 0;
2002
2003  // Match up the template parameter lists with the scope specifier, then
2004  // determine whether we have a template or a template specialization.
2005  if (TemplateParameterList *TemplateParams
2006      = MatchTemplateParametersToScopeSpecifier(
2007                                  D.getDeclSpec().getSourceRange().getBegin(),
2008                                                D.getCXXScopeSpec(),
2009                        (TemplateParameterList**)TemplateParamLists.get(),
2010                                                 TemplateParamLists.size())) {
2011    if (TemplateParams->size() > 0) {
2012      // There is no such thing as a variable template.
2013      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2014        << II
2015        << SourceRange(TemplateParams->getTemplateLoc(),
2016                       TemplateParams->getRAngleLoc());
2017      return 0;
2018    } else {
2019      // There is an extraneous 'template<>' for this variable. Complain
2020      // about it, but allow the declaration of the variable.
2021      Diag(TemplateParams->getTemplateLoc(),
2022           diag::err_template_variable_noparams)
2023        << II
2024        << SourceRange(TemplateParams->getTemplateLoc(),
2025                       TemplateParams->getRAngleLoc());
2026    }
2027  }
2028
2029  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2030                          II, R, SC,
2031                          // FIXME: Move to DeclGroup...
2032                          D.getDeclSpec().getSourceRange().getBegin());
2033
2034  if (D.isInvalidType())
2035    NewVD->setInvalidDecl();
2036
2037  if (D.getDeclSpec().isThreadSpecified()) {
2038    if (NewVD->hasLocalStorage())
2039      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2040    else if (!Context.Target.isTLSSupported())
2041      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2042    else
2043      NewVD->setThreadSpecified(true);
2044  }
2045
2046  // Set the lexical context. If the declarator has a C++ scope specifier, the
2047  // lexical context will be different from the semantic context.
2048  NewVD->setLexicalDeclContext(CurContext);
2049
2050  // Handle attributes prior to checking for duplicates in MergeVarDecl
2051  ProcessDeclAttributes(S, NewVD, D);
2052
2053  // Handle GNU asm-label extension (encoded as an attribute).
2054  if (Expr *E = (Expr*) D.getAsmLabel()) {
2055    // The parser guarantees this is a string.
2056    StringLiteral *SE = cast<StringLiteral>(E);
2057    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2058                                                        SE->getByteLength())));
2059  }
2060
2061  // If name lookup finds a previous declaration that is not in the
2062  // same scope as the new declaration, this may still be an
2063  // acceptable redeclaration.
2064  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2065      !(NewVD->hasLinkage() &&
2066        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2067    PrevDecl = 0;
2068
2069  // Merge the decl with the existing one if appropriate.
2070  if (PrevDecl) {
2071    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2072      // The user tried to define a non-static data member
2073      // out-of-line (C++ [dcl.meaning]p1).
2074      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2075        << D.getCXXScopeSpec().getRange();
2076      PrevDecl = 0;
2077      NewVD->setInvalidDecl();
2078    }
2079  } else if (D.getCXXScopeSpec().isSet()) {
2080    // No previous declaration in the qualifying scope.
2081    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2082      << Name << D.getCXXScopeSpec().getRange();
2083    NewVD->setInvalidDecl();
2084  }
2085
2086  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2087
2088  // attributes declared post-definition are currently ignored
2089  if (PrevDecl) {
2090    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2091    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2092      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2093      Diag(Def->getLocation(), diag::note_previous_definition);
2094    }
2095  }
2096
2097  // If this is a locally-scoped extern C variable, update the map of
2098  // such variables.
2099  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2100      !NewVD->isInvalidDecl())
2101    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2102
2103  return NewVD;
2104}
2105
2106/// \brief Perform semantic checking on a newly-created variable
2107/// declaration.
2108///
2109/// This routine performs all of the type-checking required for a
2110/// variable declaration once it has been built. It is used both to
2111/// check variables after they have been parsed and their declarators
2112/// have been translated into a declaration, and to check variables
2113/// that have been instantiated from a template.
2114///
2115/// Sets NewVD->isInvalidDecl() if an error was encountered.
2116void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2117                                    bool &Redeclaration) {
2118  // If the decl is already known invalid, don't check it.
2119  if (NewVD->isInvalidDecl())
2120    return;
2121
2122  QualType T = NewVD->getType();
2123
2124  if (T->isObjCInterfaceType()) {
2125    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2126    return NewVD->setInvalidDecl();
2127  }
2128
2129  // The variable can not have an abstract class type.
2130  if (RequireNonAbstractType(NewVD->getLocation(), T,
2131                             diag::err_abstract_type_in_decl,
2132                             AbstractVariableType))
2133    return NewVD->setInvalidDecl();
2134
2135  // Emit an error if an address space was applied to decl with local storage.
2136  // This includes arrays of objects with address space qualifiers, but not
2137  // automatic variables that point to other address spaces.
2138  // ISO/IEC TR 18037 S5.1.2
2139  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2140    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2141    return NewVD->setInvalidDecl();
2142  }
2143
2144  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2145      && !NewVD->hasAttr<BlocksAttr>())
2146    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2147
2148  bool isVM = T->isVariablyModifiedType();
2149  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2150      NewVD->hasAttr<BlocksAttr>())
2151    CurFunctionNeedsScopeChecking = true;
2152
2153  if ((isVM && NewVD->hasLinkage()) ||
2154      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2155    bool SizeIsNegative;
2156    QualType FixedTy =
2157        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2158
2159    if (FixedTy.isNull() && T->isVariableArrayType()) {
2160      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2161      // FIXME: This won't give the correct result for
2162      // int a[10][n];
2163      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2164
2165      if (NewVD->isFileVarDecl())
2166        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2167        << SizeRange;
2168      else if (NewVD->getStorageClass() == VarDecl::Static)
2169        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2170        << SizeRange;
2171      else
2172        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2173        << SizeRange;
2174      return NewVD->setInvalidDecl();
2175    }
2176
2177    if (FixedTy.isNull()) {
2178      if (NewVD->isFileVarDecl())
2179        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2180      else
2181        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2182      return NewVD->setInvalidDecl();
2183    }
2184
2185    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2186    NewVD->setType(FixedTy);
2187  }
2188
2189  if (!PrevDecl && NewVD->isExternC(Context)) {
2190    // Since we did not find anything by this name and we're declaring
2191    // an extern "C" variable, look for a non-visible extern "C"
2192    // declaration with the same name.
2193    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2194      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2195    if (Pos != LocallyScopedExternalDecls.end())
2196      PrevDecl = Pos->second;
2197  }
2198
2199  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2200    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2201      << T;
2202    return NewVD->setInvalidDecl();
2203  }
2204
2205  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2206    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2207    return NewVD->setInvalidDecl();
2208  }
2209
2210  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2211    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2212    return NewVD->setInvalidDecl();
2213  }
2214
2215  if (PrevDecl) {
2216    Redeclaration = true;
2217    MergeVarDecl(NewVD, PrevDecl);
2218  }
2219}
2220
2221NamedDecl*
2222Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2223                              QualType R, NamedDecl* PrevDecl,
2224                              MultiTemplateParamsArg TemplateParamLists,
2225                              bool IsFunctionDefinition, bool &Redeclaration) {
2226  assert(R.getTypePtr()->isFunctionType());
2227
2228  DeclarationName Name = GetNameForDeclarator(D);
2229  FunctionDecl::StorageClass SC = FunctionDecl::None;
2230  switch (D.getDeclSpec().getStorageClassSpec()) {
2231  default: assert(0 && "Unknown storage class!");
2232  case DeclSpec::SCS_auto:
2233  case DeclSpec::SCS_register:
2234  case DeclSpec::SCS_mutable:
2235    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2236         diag::err_typecheck_sclass_func);
2237    D.setInvalidType();
2238    break;
2239  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2240  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2241  case DeclSpec::SCS_static: {
2242    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2243      // C99 6.7.1p5:
2244      //   The declaration of an identifier for a function that has
2245      //   block scope shall have no explicit storage-class specifier
2246      //   other than extern
2247      // See also (C++ [dcl.stc]p4).
2248      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2249           diag::err_static_block_func);
2250      SC = FunctionDecl::None;
2251    } else
2252      SC = FunctionDecl::Static;
2253    break;
2254  }
2255  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2256  }
2257
2258  if (D.getDeclSpec().isThreadSpecified())
2259    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2260
2261  bool isInline = D.getDeclSpec().isInlineSpecified();
2262  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2263  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2264
2265  // Check that the return type is not an abstract class type.
2266  // For record types, this is done by the AbstractClassUsageDiagnoser once
2267  // the class has been completely parsed.
2268  if (!DC->isRecord() &&
2269      RequireNonAbstractType(D.getIdentifierLoc(),
2270                             R->getAsFunctionType()->getResultType(),
2271                             diag::err_abstract_type_in_decl,
2272                             AbstractReturnType))
2273    D.setInvalidType();
2274
2275  // Do not allow returning a objc interface by-value.
2276  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2277    Diag(D.getIdentifierLoc(),
2278         diag::err_object_cannot_be_passed_returned_by_value) << 0
2279      << R->getAsFunctionType()->getResultType();
2280    D.setInvalidType();
2281  }
2282
2283  // Check that we can declare a template here.
2284  if (TemplateParamLists.size() &&
2285      CheckTemplateDeclScope(S, TemplateParamLists))
2286    return 0;
2287
2288  bool isVirtualOkay = false;
2289  FunctionDecl *NewFD;
2290  if (D.getKind() == Declarator::DK_Constructor) {
2291    // This is a C++ constructor declaration.
2292    assert(DC->isRecord() &&
2293           "Constructors can only be declared in a member context");
2294
2295    R = CheckConstructorDeclarator(D, R, SC);
2296
2297    // Create the new declaration
2298    NewFD = CXXConstructorDecl::Create(Context,
2299                                       cast<CXXRecordDecl>(DC),
2300                                       D.getIdentifierLoc(), Name, R,
2301                                       isExplicit, isInline,
2302                                       /*isImplicitlyDeclared=*/false);
2303  } else if (D.getKind() == Declarator::DK_Destructor) {
2304    // This is a C++ destructor declaration.
2305    if (DC->isRecord()) {
2306      R = CheckDestructorDeclarator(D, SC);
2307
2308      NewFD = CXXDestructorDecl::Create(Context,
2309                                        cast<CXXRecordDecl>(DC),
2310                                        D.getIdentifierLoc(), Name, R,
2311                                        isInline,
2312                                        /*isImplicitlyDeclared=*/false);
2313
2314      isVirtualOkay = true;
2315    } else {
2316      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2317
2318      // Create a FunctionDecl to satisfy the function definition parsing
2319      // code path.
2320      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2321                                   Name, R, SC, isInline,
2322                                   /*hasPrototype=*/true,
2323                                   // FIXME: Move to DeclGroup...
2324                                   D.getDeclSpec().getSourceRange().getBegin());
2325      D.setInvalidType();
2326    }
2327  } else if (D.getKind() == Declarator::DK_Conversion) {
2328    if (!DC->isRecord()) {
2329      Diag(D.getIdentifierLoc(),
2330           diag::err_conv_function_not_member);
2331      return 0;
2332    }
2333
2334    CheckConversionDeclarator(D, R, SC);
2335    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2336                                      D.getIdentifierLoc(), Name, R,
2337                                      isInline, isExplicit);
2338
2339    isVirtualOkay = true;
2340  } else if (DC->isRecord()) {
2341    // If the of the function is the same as the name of the record, then this
2342    // must be an invalid constructor that has a return type.
2343    // (The parser checks for a return type and makes the declarator a
2344    // constructor if it has no return type).
2345    // must have an invalid constructor that has a return type
2346    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2347      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2348        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2349        << SourceRange(D.getIdentifierLoc());
2350      return 0;
2351    }
2352
2353    // This is a C++ method declaration.
2354    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2355                                  D.getIdentifierLoc(), Name, R,
2356                                  (SC == FunctionDecl::Static), isInline);
2357
2358    isVirtualOkay = (SC != FunctionDecl::Static);
2359  } else {
2360    // Determine whether the function was written with a
2361    // prototype. This true when:
2362    //   - we're in C++ (where every function has a prototype),
2363    //   - there is a prototype in the declarator, or
2364    //   - the type R of the function is some kind of typedef or other reference
2365    //     to a type name (which eventually refers to a function type).
2366    bool HasPrototype =
2367       getLangOptions().CPlusPlus ||
2368       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2369       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2370
2371    NewFD = FunctionDecl::Create(Context, DC,
2372                                 D.getIdentifierLoc(),
2373                                 Name, R, SC, isInline, HasPrototype,
2374                                 // FIXME: Move to DeclGroup...
2375                                 D.getDeclSpec().getSourceRange().getBegin());
2376  }
2377
2378  if (D.isInvalidType())
2379    NewFD->setInvalidDecl();
2380
2381  // Set the lexical context. If the declarator has a C++
2382  // scope specifier, the lexical context will be different
2383  // from the semantic context.
2384  NewFD->setLexicalDeclContext(CurContext);
2385
2386  // Match up the template parameter lists with the scope specifier, then
2387  // determine whether we have a template or a template specialization.
2388  FunctionTemplateDecl *FunctionTemplate = 0;
2389  if (TemplateParameterList *TemplateParams
2390        = MatchTemplateParametersToScopeSpecifier(
2391                                  D.getDeclSpec().getSourceRange().getBegin(),
2392                                  D.getCXXScopeSpec(),
2393                           (TemplateParameterList**)TemplateParamLists.get(),
2394                                                  TemplateParamLists.size())) {
2395    if (TemplateParams->size() > 0) {
2396      // This is a function template
2397      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2398                                                      NewFD->getLocation(),
2399                                                      Name, TemplateParams,
2400                                                      NewFD);
2401      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2402    } else {
2403      // FIXME: Handle function template specializations
2404    }
2405
2406    // FIXME: Free this memory properly.
2407    TemplateParamLists.release();
2408  }
2409
2410  // C++ [dcl.fct.spec]p5:
2411  //   The virtual specifier shall only be used in declarations of
2412  //   nonstatic class member functions that appear within a
2413  //   member-specification of a class declaration; see 10.3.
2414  //
2415  if (isVirtual && !NewFD->isInvalidDecl()) {
2416    if (!isVirtualOkay) {
2417       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2418           diag::err_virtual_non_function);
2419    } else if (!CurContext->isRecord()) {
2420      // 'virtual' was specified outside of the class.
2421      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2422        << CodeModificationHint::CreateRemoval(
2423                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2424    } else {
2425      // Okay: Add virtual to the method.
2426      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2427      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2428      CurClass->setAggregate(false);
2429      CurClass->setPOD(false);
2430      CurClass->setPolymorphic(true);
2431      CurClass->setHasTrivialConstructor(false);
2432      CurClass->setHasTrivialCopyConstructor(false);
2433      CurClass->setHasTrivialCopyAssignment(false);
2434    }
2435  }
2436
2437  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2438    // Look for virtual methods in base classes that this method might override.
2439
2440    BasePaths Paths;
2441    if (LookupInBases(cast<CXXRecordDecl>(DC),
2442                      MemberLookupCriteria(NewMD), Paths)) {
2443      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2444           E = Paths.found_decls_end(); I != E; ++I) {
2445        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2446          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2447              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2448            NewMD->addOverriddenMethod(OldMD);
2449        }
2450      }
2451    }
2452  }
2453
2454  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2455      !CurContext->isRecord()) {
2456    // C++ [class.static]p1:
2457    //   A data or function member of a class may be declared static
2458    //   in a class definition, in which case it is a static member of
2459    //   the class.
2460
2461    // Complain about the 'static' specifier if it's on an out-of-line
2462    // member function definition.
2463    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2464         diag::err_static_out_of_line)
2465      << CodeModificationHint::CreateRemoval(
2466                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2467  }
2468
2469  // Handle GNU asm-label extension (encoded as an attribute).
2470  if (Expr *E = (Expr*) D.getAsmLabel()) {
2471    // The parser guarantees this is a string.
2472    StringLiteral *SE = cast<StringLiteral>(E);
2473    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2474                                                        SE->getByteLength())));
2475  }
2476
2477  // Copy the parameter declarations from the declarator D to the function
2478  // declaration NewFD, if they are available.  First scavenge them into Params.
2479  llvm::SmallVector<ParmVarDecl*, 16> Params;
2480  if (D.getNumTypeObjects() > 0) {
2481    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2482
2483    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2484    // function that takes no arguments, not a function that takes a
2485    // single void argument.
2486    // We let through "const void" here because Sema::GetTypeForDeclarator
2487    // already checks for that case.
2488    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2489        FTI.ArgInfo[0].Param &&
2490        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2491      // Empty arg list, don't push any params.
2492      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2493
2494      // In C++, the empty parameter-type-list must be spelled "void"; a
2495      // typedef of void is not permitted.
2496      if (getLangOptions().CPlusPlus &&
2497          Param->getType().getUnqualifiedType() != Context.VoidTy)
2498        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2499      // FIXME: Leaks decl?
2500    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2501      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2502        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2503        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2504        Param->setDeclContext(NewFD);
2505        Params.push_back(Param);
2506      }
2507    }
2508
2509  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2510    // When we're declaring a function with a typedef, typeof, etc as in the
2511    // following example, we'll need to synthesize (unnamed)
2512    // parameters for use in the declaration.
2513    //
2514    // @code
2515    // typedef void fn(int);
2516    // fn f;
2517    // @endcode
2518
2519    // Synthesize a parameter for each argument type.
2520    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2521         AE = FT->arg_type_end(); AI != AE; ++AI) {
2522      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2523                                               SourceLocation(), 0,
2524                                               *AI, VarDecl::None, 0);
2525      Param->setImplicit();
2526      Params.push_back(Param);
2527    }
2528  } else {
2529    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2530           "Should not need args for typedef of non-prototype fn");
2531  }
2532  // Finally, we know we have the right number of parameters, install them.
2533  NewFD->setParams(Context, Params.data(), Params.size());
2534
2535  // If name lookup finds a previous declaration that is not in the
2536  // same scope as the new declaration, this may still be an
2537  // acceptable redeclaration.
2538  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2539      !(NewFD->hasLinkage() &&
2540        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2541    PrevDecl = 0;
2542
2543  // Perform semantic checking on the function declaration.
2544  bool OverloadableAttrRequired = false; // FIXME: HACK!
2545  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2546                           /*FIXME:*/OverloadableAttrRequired);
2547
2548  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2549    // An out-of-line member function declaration must also be a
2550    // definition (C++ [dcl.meaning]p1).
2551    if (!IsFunctionDefinition) {
2552      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2553        << D.getCXXScopeSpec().getRange();
2554      NewFD->setInvalidDecl();
2555    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2556      // The user tried to provide an out-of-line definition for a
2557      // function that is a member of a class or namespace, but there
2558      // was no such member function declared (C++ [class.mfct]p2,
2559      // C++ [namespace.memdef]p2). For example:
2560      //
2561      // class X {
2562      //   void f() const;
2563      // };
2564      //
2565      // void X::f() { } // ill-formed
2566      //
2567      // Complain about this problem, and attempt to suggest close
2568      // matches (e.g., those that differ only in cv-qualifiers and
2569      // whether the parameter types are references).
2570      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2571        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2572      NewFD->setInvalidDecl();
2573
2574      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2575                                              true);
2576      assert(!Prev.isAmbiguous() &&
2577             "Cannot have an ambiguity in previous-declaration lookup");
2578      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2579           Func != FuncEnd; ++Func) {
2580        if (isa<FunctionDecl>(*Func) &&
2581            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2582          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2583      }
2584
2585      PrevDecl = 0;
2586    }
2587  }
2588
2589  // Handle attributes. We need to have merged decls when handling attributes
2590  // (for example to check for conflicts, etc).
2591  // FIXME: This needs to happen before we merge declarations. Then,
2592  // let attribute merging cope with attribute conflicts.
2593  ProcessDeclAttributes(S, NewFD, D);
2594
2595  // attributes declared post-definition are currently ignored
2596  if (PrevDecl) {
2597    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2598    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2599      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2600      Diag(Def->getLocation(), diag::note_previous_definition);
2601    }
2602  }
2603
2604  AddKnownFunctionAttributes(NewFD);
2605
2606  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2607    // If a function name is overloadable in C, then every function
2608    // with that name must be marked "overloadable".
2609    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2610      << Redeclaration << NewFD;
2611    if (PrevDecl)
2612      Diag(PrevDecl->getLocation(),
2613           diag::note_attribute_overloadable_prev_overload);
2614    NewFD->addAttr(::new (Context) OverloadableAttr());
2615  }
2616
2617  // If this is a locally-scoped extern C function, update the
2618  // map of such names.
2619  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2620      && !NewFD->isInvalidDecl())
2621    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2622
2623  // Set this FunctionDecl's range up to the right paren.
2624  NewFD->setLocEnd(D.getSourceRange().getEnd());
2625
2626  if (FunctionTemplate && NewFD->isInvalidDecl())
2627    FunctionTemplate->setInvalidDecl();
2628
2629  if (FunctionTemplate)
2630    return FunctionTemplate;
2631
2632  return NewFD;
2633}
2634
2635/// \brief Perform semantic checking of a new function declaration.
2636///
2637/// Performs semantic analysis of the new function declaration
2638/// NewFD. This routine performs all semantic checking that does not
2639/// require the actual declarator involved in the declaration, and is
2640/// used both for the declaration of functions as they are parsed
2641/// (called via ActOnDeclarator) and for the declaration of functions
2642/// that have been instantiated via C++ template instantiation (called
2643/// via InstantiateDecl).
2644///
2645/// This sets NewFD->isInvalidDecl() to true if there was an error.
2646void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2647                                    bool &Redeclaration,
2648                                    bool &OverloadableAttrRequired) {
2649  // If NewFD is already known erroneous, don't do any of this checking.
2650  if (NewFD->isInvalidDecl())
2651    return;
2652
2653  if (NewFD->getResultType()->isVariablyModifiedType()) {
2654    // Functions returning a variably modified type violate C99 6.7.5.2p2
2655    // because all functions have linkage.
2656    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2657    return NewFD->setInvalidDecl();
2658  }
2659
2660  if (NewFD->isMain()) CheckMain(NewFD);
2661
2662  // Semantic checking for this function declaration (in isolation).
2663  if (getLangOptions().CPlusPlus) {
2664    // C++-specific checks.
2665    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2666      CheckConstructor(Constructor);
2667    } else if (isa<CXXDestructorDecl>(NewFD)) {
2668      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2669      QualType ClassType = Context.getTypeDeclType(Record);
2670      if (!ClassType->isDependentType()) {
2671        ClassType = Context.getCanonicalType(ClassType);
2672        DeclarationName Name
2673          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2674        if (NewFD->getDeclName() != Name) {
2675          Diag(NewFD->getLocation(), diag::err_destructor_name);
2676          return NewFD->setInvalidDecl();
2677        }
2678      }
2679      Record->setUserDeclaredDestructor(true);
2680      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2681      // user-defined destructor.
2682      Record->setPOD(false);
2683
2684      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2685      // declared destructor.
2686      // FIXME: C++0x: don't do this for "= default" destructors
2687      Record->setHasTrivialDestructor(false);
2688    } else if (CXXConversionDecl *Conversion
2689               = dyn_cast<CXXConversionDecl>(NewFD))
2690      ActOnConversionDeclarator(Conversion);
2691
2692    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2693    if (NewFD->isOverloadedOperator() &&
2694        CheckOverloadedOperatorDeclaration(NewFD))
2695      return NewFD->setInvalidDecl();
2696  }
2697
2698  // C99 6.7.4p6:
2699  //   [... ] For a function with external linkage, the following
2700  //   restrictions apply: [...] If all of the file scope declarations
2701  //   for a function in a translation unit include the inline
2702  //   function specifier without extern, then the definition in that
2703  //   translation unit is an inline definition. An inline definition
2704  //   does not provide an external definition for the function, and
2705  //   does not forbid an external definition in another translation
2706  //   unit.
2707  //
2708  // Here we determine whether this function, in isolation, would be a
2709  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2710  // previous declarations.
2711  if (NewFD->isInline() && getLangOptions().C99 &&
2712      NewFD->getStorageClass() == FunctionDecl::None &&
2713      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2714    NewFD->setC99InlineDefinition(true);
2715
2716  // Check for a previous declaration of this name.
2717  if (!PrevDecl && NewFD->isExternC(Context)) {
2718    // Since we did not find anything by this name and we're declaring
2719    // an extern "C" function, look for a non-visible extern "C"
2720    // declaration with the same name.
2721    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2722      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2723    if (Pos != LocallyScopedExternalDecls.end())
2724      PrevDecl = Pos->second;
2725  }
2726
2727  // Merge or overload the declaration with an existing declaration of
2728  // the same name, if appropriate.
2729  if (PrevDecl) {
2730    // Determine whether NewFD is an overload of PrevDecl or
2731    // a declaration that requires merging. If it's an overload,
2732    // there's no more work to do here; we'll just add the new
2733    // function to the scope.
2734    OverloadedFunctionDecl::function_iterator MatchedDecl;
2735
2736    if (!getLangOptions().CPlusPlus &&
2737        AllowOverloadingOfFunction(PrevDecl, Context)) {
2738      OverloadableAttrRequired = true;
2739
2740      // Functions marked "overloadable" must have a prototype (that
2741      // we can't get through declaration merging).
2742      if (!NewFD->getType()->getAsFunctionProtoType()) {
2743        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2744          << NewFD;
2745        Redeclaration = true;
2746
2747        // Turn this into a variadic function with no parameters.
2748        QualType R = Context.getFunctionType(
2749                       NewFD->getType()->getAsFunctionType()->getResultType(),
2750                       0, 0, true, 0);
2751        NewFD->setType(R);
2752        return NewFD->setInvalidDecl();
2753      }
2754    }
2755
2756    if (PrevDecl &&
2757        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2758         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2759        !isa<UsingDecl>(PrevDecl)) {
2760      Redeclaration = true;
2761      Decl *OldDecl = PrevDecl;
2762
2763      // If PrevDecl was an overloaded function, extract the
2764      // FunctionDecl that matched.
2765      if (isa<OverloadedFunctionDecl>(PrevDecl))
2766        OldDecl = *MatchedDecl;
2767
2768      // NewFD and OldDecl represent declarations that need to be
2769      // merged.
2770      if (MergeFunctionDecl(NewFD, OldDecl))
2771        return NewFD->setInvalidDecl();
2772
2773      if (FunctionTemplateDecl *OldTemplateDecl
2774            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2775        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2776      else {
2777        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2778          NewFD->setAccess(OldDecl->getAccess());
2779        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2780      }
2781    }
2782  }
2783
2784  // In C++, check default arguments now that we have merged decls. Unless
2785  // the lexical context is the class, because in this case this is done
2786  // during delayed parsing anyway.
2787  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2788    CheckCXXDefaultArguments(NewFD);
2789}
2790
2791void Sema::CheckMain(FunctionDecl* FD) {
2792  // C++ [basic.start.main]p3:  A program that declares main to be inline
2793  //   or static is ill-formed.
2794  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2795  //   shall not appear in a declaration of main.
2796  // static main is not an error under C99, but we should warn about it.
2797  bool isInline = FD->isInline();
2798  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2799  if (isInline || isStatic) {
2800    unsigned diagID = diag::warn_unusual_main_decl;
2801    if (isInline || getLangOptions().CPlusPlus)
2802      diagID = diag::err_unusual_main_decl;
2803
2804    int which = isStatic + (isInline << 1) - 1;
2805    Diag(FD->getLocation(), diagID) << which;
2806  }
2807
2808  QualType T = FD->getType();
2809  assert(T->isFunctionType() && "function decl is not of function type");
2810  const FunctionType* FT = T->getAsFunctionType();
2811
2812  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2813    // TODO: add a replacement fixit to turn the return type into 'int'.
2814    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2815    FD->setInvalidDecl(true);
2816  }
2817
2818  // Treat protoless main() as nullary.
2819  if (isa<FunctionNoProtoType>(FT)) return;
2820
2821  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2822  unsigned nparams = FTP->getNumArgs();
2823  assert(FD->getNumParams() == nparams);
2824
2825  if (nparams > 3) {
2826    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2827    FD->setInvalidDecl(true);
2828    nparams = 3;
2829  }
2830
2831  // FIXME: a lot of the following diagnostics would be improved
2832  // if we had some location information about types.
2833
2834  QualType CharPP =
2835    Context.getPointerType(Context.getPointerType(Context.CharTy));
2836  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2837
2838  for (unsigned i = 0; i < nparams; ++i) {
2839    QualType AT = FTP->getArgType(i);
2840
2841    bool mismatch = true;
2842
2843    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2844      mismatch = false;
2845    else if (Expected[i] == CharPP) {
2846      // As an extension, the following forms are okay:
2847      //   char const **
2848      //   char const * const *
2849      //   char * const *
2850
2851      QualifierSet qs;
2852      const PointerType* PT;
2853      if ((PT = qs.strip(AT)->getAsPointerType()) &&
2854          (PT = qs.strip(PT->getPointeeType())->getAsPointerType()) &&
2855          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2856        qs.removeConst();
2857        mismatch = !qs.empty();
2858      }
2859    }
2860
2861    if (mismatch) {
2862      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
2863      // TODO: suggest replacing given type with expected type
2864      FD->setInvalidDecl(true);
2865    }
2866  }
2867
2868  if (nparams == 1 && !FD->isInvalidDecl()) {
2869    Diag(FD->getLocation(), diag::warn_main_one_arg);
2870  }
2871}
2872
2873bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2874  // FIXME: Need strict checking.  In C89, we need to check for
2875  // any assignment, increment, decrement, function-calls, or
2876  // commas outside of a sizeof.  In C99, it's the same list,
2877  // except that the aforementioned are allowed in unevaluated
2878  // expressions.  Everything else falls under the
2879  // "may accept other forms of constant expressions" exception.
2880  // (We never end up here for C++, so the constant expression
2881  // rules there don't matter.)
2882  if (Init->isConstantInitializer(Context))
2883    return false;
2884  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2885    << Init->getSourceRange();
2886  return true;
2887}
2888
2889void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2890  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2891}
2892
2893/// AddInitializerToDecl - Adds the initializer Init to the
2894/// declaration dcl. If DirectInit is true, this is C++ direct
2895/// initialization rather than copy initialization.
2896void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2897  Decl *RealDecl = dcl.getAs<Decl>();
2898  // If there is no declaration, there was an error parsing it.  Just ignore
2899  // the initializer.
2900  if (RealDecl == 0)
2901    return;
2902
2903  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2904    // With declarators parsed the way they are, the parser cannot
2905    // distinguish between a normal initializer and a pure-specifier.
2906    // Thus this grotesque test.
2907    IntegerLiteral *IL;
2908    Expr *Init = static_cast<Expr *>(init.get());
2909    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2910        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2911      if (Method->isVirtualAsWritten()) {
2912        Method->setPure();
2913
2914        // A class is abstract if at least one function is pure virtual.
2915        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2916      } else if (!Method->isInvalidDecl()) {
2917        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2918          << Method->getDeclName() << Init->getSourceRange();
2919        Method->setInvalidDecl();
2920      }
2921    } else {
2922      Diag(Method->getLocation(), diag::err_member_function_initialization)
2923        << Method->getDeclName() << Init->getSourceRange();
2924      Method->setInvalidDecl();
2925    }
2926    return;
2927  }
2928
2929  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2930  if (!VDecl) {
2931    if (getLangOptions().CPlusPlus &&
2932        RealDecl->getLexicalDeclContext()->isRecord() &&
2933        isa<NamedDecl>(RealDecl))
2934      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2935        << cast<NamedDecl>(RealDecl)->getDeclName();
2936    else
2937      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2938    RealDecl->setInvalidDecl();
2939    return;
2940  }
2941
2942  if (!VDecl->getType()->isArrayType() &&
2943      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2944                          diag::err_typecheck_decl_incomplete_type)) {
2945    RealDecl->setInvalidDecl();
2946    return;
2947  }
2948
2949  const VarDecl *Def = 0;
2950  if (VDecl->getDefinition(Def)) {
2951    Diag(VDecl->getLocation(), diag::err_redefinition)
2952      << VDecl->getDeclName();
2953    Diag(Def->getLocation(), diag::note_previous_definition);
2954    VDecl->setInvalidDecl();
2955    return;
2956  }
2957
2958  // Take ownership of the expression, now that we're sure we have somewhere
2959  // to put it.
2960  Expr *Init = init.takeAs<Expr>();
2961  assert(Init && "missing initializer");
2962
2963  // Get the decls type and save a reference for later, since
2964  // CheckInitializerTypes may change it.
2965  QualType DclT = VDecl->getType(), SavT = DclT;
2966  if (VDecl->isBlockVarDecl()) {
2967    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2968      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2969      VDecl->setInvalidDecl();
2970    } else if (!VDecl->isInvalidDecl()) {
2971      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2972                                VDecl->getDeclName(), DirectInit))
2973        VDecl->setInvalidDecl();
2974
2975      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2976      // Don't check invalid declarations to avoid emitting useless diagnostics.
2977      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2978        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2979          CheckForConstantInitializer(Init, DclT);
2980      }
2981    }
2982  } else if (VDecl->isStaticDataMember() &&
2983             VDecl->getLexicalDeclContext()->isRecord()) {
2984    // This is an in-class initialization for a static data member, e.g.,
2985    //
2986    // struct S {
2987    //   static const int value = 17;
2988    // };
2989
2990    // Attach the initializer
2991    VDecl->setInit(Context, Init);
2992
2993    // C++ [class.mem]p4:
2994    //   A member-declarator can contain a constant-initializer only
2995    //   if it declares a static member (9.4) of const integral or
2996    //   const enumeration type, see 9.4.2.
2997    QualType T = VDecl->getType();
2998    if (!T->isDependentType() &&
2999        (!Context.getCanonicalType(T).isConstQualified() ||
3000         !T->isIntegralType())) {
3001      Diag(VDecl->getLocation(), diag::err_member_initialization)
3002        << VDecl->getDeclName() << Init->getSourceRange();
3003      VDecl->setInvalidDecl();
3004    } else {
3005      // C++ [class.static.data]p4:
3006      //   If a static data member is of const integral or const
3007      //   enumeration type, its declaration in the class definition
3008      //   can specify a constant-initializer which shall be an
3009      //   integral constant expression (5.19).
3010      if (!Init->isTypeDependent() &&
3011          !Init->getType()->isIntegralType()) {
3012        // We have a non-dependent, non-integral or enumeration type.
3013        Diag(Init->getSourceRange().getBegin(),
3014             diag::err_in_class_initializer_non_integral_type)
3015          << Init->getType() << Init->getSourceRange();
3016        VDecl->setInvalidDecl();
3017      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3018        // Check whether the expression is a constant expression.
3019        llvm::APSInt Value;
3020        SourceLocation Loc;
3021        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3022          Diag(Loc, diag::err_in_class_initializer_non_constant)
3023            << Init->getSourceRange();
3024          VDecl->setInvalidDecl();
3025        } else if (!VDecl->getType()->isDependentType())
3026          ImpCastExprToType(Init, VDecl->getType());
3027      }
3028    }
3029  } else if (VDecl->isFileVarDecl()) {
3030    if (VDecl->getStorageClass() == VarDecl::Extern)
3031      Diag(VDecl->getLocation(), diag::warn_extern_init);
3032    if (!VDecl->isInvalidDecl())
3033      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3034                                VDecl->getDeclName(), DirectInit))
3035        VDecl->setInvalidDecl();
3036
3037    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3038    // Don't check invalid declarations to avoid emitting useless diagnostics.
3039    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3040      // C99 6.7.8p4. All file scoped initializers need to be constant.
3041      CheckForConstantInitializer(Init, DclT);
3042    }
3043  }
3044  // If the type changed, it means we had an incomplete type that was
3045  // completed by the initializer. For example:
3046  //   int ary[] = { 1, 3, 5 };
3047  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3048  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3049    VDecl->setType(DclT);
3050    Init->setType(DclT);
3051  }
3052
3053  // Attach the initializer to the decl.
3054  VDecl->setInit(Context, Init);
3055
3056  // If the previous declaration of VDecl was a tentative definition,
3057  // remove it from the set of tentative definitions.
3058  if (VDecl->getPreviousDeclaration() &&
3059      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3060    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3061      = TentativeDefinitions.find(VDecl->getDeclName());
3062    assert(Pos != TentativeDefinitions.end() &&
3063           "Unrecorded tentative definition?");
3064    TentativeDefinitions.erase(Pos);
3065  }
3066
3067  return;
3068}
3069
3070void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3071                                  bool TypeContainsUndeducedAuto) {
3072  Decl *RealDecl = dcl.getAs<Decl>();
3073
3074  // If there is no declaration, there was an error parsing it. Just ignore it.
3075  if (RealDecl == 0)
3076    return;
3077
3078  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3079    QualType Type = Var->getType();
3080
3081    // Record tentative definitions.
3082    if (Var->isTentativeDefinition(Context))
3083      TentativeDefinitions[Var->getDeclName()] = Var;
3084
3085    // C++ [dcl.init.ref]p3:
3086    //   The initializer can be omitted for a reference only in a
3087    //   parameter declaration (8.3.5), in the declaration of a
3088    //   function return type, in the declaration of a class member
3089    //   within its class declaration (9.2), and where the extern
3090    //   specifier is explicitly used.
3091    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3092      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3093        << Var->getDeclName()
3094        << SourceRange(Var->getLocation(), Var->getLocation());
3095      Var->setInvalidDecl();
3096      return;
3097    }
3098
3099    // C++0x [dcl.spec.auto]p3
3100    if (TypeContainsUndeducedAuto) {
3101      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3102        << Var->getDeclName() << Type;
3103      Var->setInvalidDecl();
3104      return;
3105    }
3106
3107    // C++ [dcl.init]p9:
3108    //
3109    //   If no initializer is specified for an object, and the object
3110    //   is of (possibly cv-qualified) non-POD class type (or array
3111    //   thereof), the object shall be default-initialized; if the
3112    //   object is of const-qualified type, the underlying class type
3113    //   shall have a user-declared default constructor.
3114    if (getLangOptions().CPlusPlus) {
3115      QualType InitType = Type;
3116      if (const ArrayType *Array = Context.getAsArrayType(Type))
3117        InitType = Array->getElementType();
3118      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3119          InitType->isRecordType() && !InitType->isDependentType()) {
3120        CXXRecordDecl *RD =
3121          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
3122        CXXConstructorDecl *Constructor = 0;
3123        if (!RequireCompleteType(Var->getLocation(), InitType,
3124                                    diag::err_invalid_incomplete_type_use))
3125          Constructor
3126            = PerformInitializationByConstructor(InitType, 0, 0,
3127                                                 Var->getLocation(),
3128                                               SourceRange(Var->getLocation(),
3129                                                           Var->getLocation()),
3130                                                 Var->getDeclName(),
3131                                                 IK_Default);
3132        if (!Constructor)
3133          Var->setInvalidDecl();
3134        else {
3135          if (!RD->hasTrivialConstructor())
3136            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
3137          // FIXME. Must do all that is needed to destroy the object
3138          // on scope exit. For now, just mark the destructor as used.
3139          MarkDestructorReferenced(Var->getLocation(), InitType);
3140        }
3141      }
3142    }
3143
3144#if 0
3145    // FIXME: Temporarily disabled because we are not properly parsing
3146    // linkage specifications on declarations, e.g.,
3147    //
3148    //   extern "C" const CGPoint CGPointerZero;
3149    //
3150    // C++ [dcl.init]p9:
3151    //
3152    //     If no initializer is specified for an object, and the
3153    //     object is of (possibly cv-qualified) non-POD class type (or
3154    //     array thereof), the object shall be default-initialized; if
3155    //     the object is of const-qualified type, the underlying class
3156    //     type shall have a user-declared default
3157    //     constructor. Otherwise, if no initializer is specified for
3158    //     an object, the object and its subobjects, if any, have an
3159    //     indeterminate initial value; if the object or any of its
3160    //     subobjects are of const-qualified type, the program is
3161    //     ill-formed.
3162    //
3163    // This isn't technically an error in C, so we don't diagnose it.
3164    //
3165    // FIXME: Actually perform the POD/user-defined default
3166    // constructor check.
3167    if (getLangOptions().CPlusPlus &&
3168        Context.getCanonicalType(Type).isConstQualified() &&
3169        !Var->hasExternalStorage())
3170      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3171        << Var->getName()
3172        << SourceRange(Var->getLocation(), Var->getLocation());
3173#endif
3174  }
3175}
3176
3177Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3178                                                   DeclPtrTy *Group,
3179                                                   unsigned NumDecls) {
3180  llvm::SmallVector<Decl*, 8> Decls;
3181
3182  if (DS.isTypeSpecOwned())
3183    Decls.push_back((Decl*)DS.getTypeRep());
3184
3185  for (unsigned i = 0; i != NumDecls; ++i)
3186    if (Decl *D = Group[i].getAs<Decl>())
3187      Decls.push_back(D);
3188
3189  // Perform semantic analysis that depends on having fully processed both
3190  // the declarator and initializer.
3191  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3192    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3193    if (!IDecl)
3194      continue;
3195    QualType T = IDecl->getType();
3196
3197    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3198    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3199    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3200      if (!IDecl->isInvalidDecl() &&
3201          RequireCompleteType(IDecl->getLocation(), T,
3202                              diag::err_typecheck_decl_incomplete_type))
3203        IDecl->setInvalidDecl();
3204    }
3205    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3206    // object that has file scope without an initializer, and without a
3207    // storage-class specifier or with the storage-class specifier "static",
3208    // constitutes a tentative definition. Note: A tentative definition with
3209    // external linkage is valid (C99 6.2.2p5).
3210    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3211      if (const IncompleteArrayType *ArrayT
3212          = Context.getAsIncompleteArrayType(T)) {
3213        if (RequireCompleteType(IDecl->getLocation(),
3214                                ArrayT->getElementType(),
3215                                diag::err_illegal_decl_array_incomplete_type))
3216          IDecl->setInvalidDecl();
3217      }
3218      else if (IDecl->getStorageClass() == VarDecl::Static) {
3219        // C99 6.9.2p3: If the declaration of an identifier for an object is
3220        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3221        // declared type shall not be an incomplete type.
3222        // NOTE: code such as the following
3223        //     static struct s;
3224        //     struct s { int a; };
3225        // is accepted by gcc. Hence here we issue a warning instead of
3226        // an error and we do not invalidate the static declaration.
3227        // NOTE: to avoid multiple warnings, only check the first declaration.
3228        if (IDecl->getPreviousDeclaration() == 0)
3229          RequireCompleteType(IDecl->getLocation(), T,
3230                              diag::ext_typecheck_decl_incomplete_type);
3231      }
3232    }
3233  }
3234  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3235                                                   Decls.data(), Decls.size()));
3236}
3237
3238
3239/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3240/// to introduce parameters into function prototype scope.
3241Sema::DeclPtrTy
3242Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3243  const DeclSpec &DS = D.getDeclSpec();
3244
3245  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3246  VarDecl::StorageClass StorageClass = VarDecl::None;
3247  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3248    StorageClass = VarDecl::Register;
3249  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3250    Diag(DS.getStorageClassSpecLoc(),
3251         diag::err_invalid_storage_class_in_func_decl);
3252    D.getMutableDeclSpec().ClearStorageClassSpecs();
3253  }
3254
3255  if (D.getDeclSpec().isThreadSpecified())
3256    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3257
3258  DiagnoseFunctionSpecifiers(D);
3259
3260  // Check that there are no default arguments inside the type of this
3261  // parameter (C++ only).
3262  if (getLangOptions().CPlusPlus)
3263    CheckExtraCXXDefaultArguments(D);
3264
3265  TagDecl *OwnedDecl = 0;
3266  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3267
3268  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3269    // C++ [dcl.fct]p6:
3270    //   Types shall not be defined in return or parameter types.
3271    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3272      << Context.getTypeDeclType(OwnedDecl);
3273  }
3274
3275  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3276  // Can this happen for params?  We already checked that they don't conflict
3277  // among each other.  Here they can only shadow globals, which is ok.
3278  IdentifierInfo *II = D.getIdentifier();
3279  if (II) {
3280    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3281      if (PrevDecl->isTemplateParameter()) {
3282        // Maybe we will complain about the shadowed template parameter.
3283        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3284        // Just pretend that we didn't see the previous declaration.
3285        PrevDecl = 0;
3286      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3287        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3288
3289        // Recover by removing the name
3290        II = 0;
3291        D.SetIdentifier(0, D.getIdentifierLoc());
3292      }
3293    }
3294  }
3295
3296  // Parameters can not be abstract class types.
3297  // For record types, this is done by the AbstractClassUsageDiagnoser once
3298  // the class has been completely parsed.
3299  if (!CurContext->isRecord() &&
3300      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3301                             diag::err_abstract_type_in_decl,
3302                             AbstractParamType))
3303    D.setInvalidType(true);
3304
3305  QualType T = adjustParameterType(parmDeclType);
3306
3307  ParmVarDecl *New;
3308  if (T == parmDeclType) // parameter type did not need adjustment
3309    New = ParmVarDecl::Create(Context, CurContext,
3310                              D.getIdentifierLoc(), II,
3311                              parmDeclType, StorageClass,
3312                              0);
3313  else // keep track of both the adjusted and unadjusted types
3314    New = OriginalParmVarDecl::Create(Context, CurContext,
3315                                      D.getIdentifierLoc(), II, T,
3316                                      parmDeclType, StorageClass, 0);
3317
3318  if (D.isInvalidType())
3319    New->setInvalidDecl();
3320
3321  // Parameter declarators cannot be interface types. All ObjC objects are
3322  // passed by reference.
3323  if (T->isObjCInterfaceType()) {
3324    Diag(D.getIdentifierLoc(),
3325         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3326    New->setInvalidDecl();
3327  }
3328
3329  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3330  if (D.getCXXScopeSpec().isSet()) {
3331    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3332      << D.getCXXScopeSpec().getRange();
3333    New->setInvalidDecl();
3334  }
3335
3336  // Add the parameter declaration into this scope.
3337  S->AddDecl(DeclPtrTy::make(New));
3338  if (II)
3339    IdResolver.AddDecl(New);
3340
3341  ProcessDeclAttributes(S, New, D);
3342
3343  if (New->hasAttr<BlocksAttr>()) {
3344    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3345  }
3346  return DeclPtrTy::make(New);
3347}
3348
3349void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3350                                           SourceLocation LocAfterDecls) {
3351  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3352         "Not a function declarator!");
3353  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3354
3355  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3356  // for a K&R function.
3357  if (!FTI.hasPrototype) {
3358    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3359      --i;
3360      if (FTI.ArgInfo[i].Param == 0) {
3361        std::string Code = "  int ";
3362        Code += FTI.ArgInfo[i].Ident->getName();
3363        Code += ";\n";
3364        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3365          << FTI.ArgInfo[i].Ident
3366          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3367
3368        // Implicitly declare the argument as type 'int' for lack of a better
3369        // type.
3370        DeclSpec DS;
3371        const char* PrevSpec; // unused
3372        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3373                           PrevSpec);
3374        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3375        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3376        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3377      }
3378    }
3379  }
3380}
3381
3382Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3383                                              Declarator &D) {
3384  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3385  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3386         "Not a function declarator!");
3387  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3388
3389  if (FTI.hasPrototype) {
3390    // FIXME: Diagnose arguments without names in C.
3391  }
3392
3393  Scope *ParentScope = FnBodyScope->getParent();
3394
3395  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3396                                  MultiTemplateParamsArg(*this),
3397                                  /*IsFunctionDefinition=*/true);
3398  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3399}
3400
3401Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3402  if (!D)
3403    return D;
3404  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3405
3406  CurFunctionNeedsScopeChecking = false;
3407
3408  // See if this is a redefinition.
3409  const FunctionDecl *Definition;
3410  if (FD->getBody(Definition)) {
3411    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3412    Diag(Definition->getLocation(), diag::note_previous_definition);
3413  }
3414
3415  // Builtin functions cannot be defined.
3416  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3417    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3418      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3419      FD->setInvalidDecl();
3420    }
3421  }
3422
3423  // The return type of a function definition must be complete
3424  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3425  QualType ResultType = FD->getResultType();
3426  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3427      !FD->isInvalidDecl() &&
3428      RequireCompleteType(FD->getLocation(), ResultType,
3429                          diag::err_func_def_incomplete_result))
3430    FD->setInvalidDecl();
3431
3432  // GNU warning -Wmissing-prototypes:
3433  //   Warn if a global function is defined without a previous
3434  //   prototype declaration. This warning is issued even if the
3435  //   definition itself provides a prototype. The aim is to detect
3436  //   global functions that fail to be declared in header files.
3437  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3438      !FD->isMain()) {
3439    bool MissingPrototype = true;
3440    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3441         Prev; Prev = Prev->getPreviousDeclaration()) {
3442      // Ignore any declarations that occur in function or method
3443      // scope, because they aren't visible from the header.
3444      if (Prev->getDeclContext()->isFunctionOrMethod())
3445        continue;
3446
3447      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3448      break;
3449    }
3450
3451    if (MissingPrototype)
3452      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3453  }
3454
3455  if (FnBodyScope)
3456    PushDeclContext(FnBodyScope, FD);
3457
3458  // Check the validity of our function parameters
3459  CheckParmsForFunctionDef(FD);
3460
3461  // Introduce our parameters into the function scope
3462  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3463    ParmVarDecl *Param = FD->getParamDecl(p);
3464    Param->setOwningFunction(FD);
3465
3466    // If this has an identifier, add it to the scope stack.
3467    if (Param->getIdentifier() && FnBodyScope)
3468      PushOnScopeChains(Param, FnBodyScope);
3469  }
3470
3471  // Checking attributes of current function definition
3472  // dllimport attribute.
3473  if (FD->getAttr<DLLImportAttr>() &&
3474      (!FD->getAttr<DLLExportAttr>())) {
3475    // dllimport attribute cannot be applied to definition.
3476    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3477      Diag(FD->getLocation(),
3478           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3479        << "dllimport";
3480      FD->setInvalidDecl();
3481      return DeclPtrTy::make(FD);
3482    } else {
3483      // If a symbol previously declared dllimport is later defined, the
3484      // attribute is ignored in subsequent references, and a warning is
3485      // emitted.
3486      Diag(FD->getLocation(),
3487           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3488        << FD->getNameAsCString() << "dllimport";
3489    }
3490  }
3491  return DeclPtrTy::make(FD);
3492}
3493
3494Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3495  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3496}
3497
3498Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3499                                              bool IsInstantiation) {
3500  Decl *dcl = D.getAs<Decl>();
3501  Stmt *Body = BodyArg.takeAs<Stmt>();
3502  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3503    FD->setBody(Body);
3504    if (!FD->isMain())
3505      // C and C++ allow for main to automagically return 0.
3506      CheckFallThroughForFunctionDef(FD, Body);
3507
3508    if (!FD->isInvalidDecl())
3509      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3510
3511    // C++ [basic.def.odr]p2:
3512    //   [...] A virtual member function is used if it is not pure. [...]
3513    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3514      if (Method->isVirtual() && !Method->isPure())
3515        MarkDeclarationReferenced(Method->getLocation(), Method);
3516
3517    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3518  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3519    assert(MD == getCurMethodDecl() && "Method parsing confused");
3520    MD->setBody(Body);
3521    CheckFallThroughForFunctionDef(MD, Body);
3522    MD->setEndLoc(Body->getLocEnd());
3523
3524    if (!MD->isInvalidDecl())
3525      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3526  } else {
3527    Body->Destroy(Context);
3528    return DeclPtrTy();
3529  }
3530  if (!IsInstantiation)
3531    PopDeclContext();
3532
3533  // Verify and clean out per-function state.
3534
3535  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3536
3537  // Check goto/label use.
3538  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3539       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3540    LabelStmt *L = I->second;
3541
3542    // Verify that we have no forward references left.  If so, there was a goto
3543    // or address of a label taken, but no definition of it.  Label fwd
3544    // definitions are indicated with a null substmt.
3545    if (L->getSubStmt() != 0)
3546      continue;
3547
3548    // Emit error.
3549    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3550
3551    // At this point, we have gotos that use the bogus label.  Stitch it into
3552    // the function body so that they aren't leaked and that the AST is well
3553    // formed.
3554    if (Body == 0) {
3555      // The whole function wasn't parsed correctly, just delete this.
3556      L->Destroy(Context);
3557      continue;
3558    }
3559
3560    // Otherwise, the body is valid: we want to stitch the label decl into the
3561    // function somewhere so that it is properly owned and so that the goto
3562    // has a valid target.  Do this by creating a new compound stmt with the
3563    // label in it.
3564
3565    // Give the label a sub-statement.
3566    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3567
3568    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3569                               cast<CXXTryStmt>(Body)->getTryBlock() :
3570                               cast<CompoundStmt>(Body);
3571    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3572    Elements.push_back(L);
3573    Compound->setStmts(Context, &Elements[0], Elements.size());
3574  }
3575  FunctionLabelMap.clear();
3576
3577  if (!Body) return D;
3578
3579  // Verify that that gotos and switch cases don't jump into scopes illegally.
3580  if (CurFunctionNeedsScopeChecking)
3581    DiagnoseInvalidJumps(Body);
3582
3583  // C++ constructors that have function-try-blocks can't have return
3584  // statements in the handlers of that block. (C++ [except.handle]p14)
3585  // Verify this.
3586  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3587    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3588
3589  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3590    Destructor->computeBaseOrMembersToDestroy(Context);
3591  return D;
3592}
3593
3594/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3595/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3596NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3597                                          IdentifierInfo &II, Scope *S) {
3598  // Before we produce a declaration for an implicitly defined
3599  // function, see whether there was a locally-scoped declaration of
3600  // this name as a function or variable. If so, use that
3601  // (non-visible) declaration, and complain about it.
3602  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3603    = LocallyScopedExternalDecls.find(&II);
3604  if (Pos != LocallyScopedExternalDecls.end()) {
3605    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3606    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3607    return Pos->second;
3608  }
3609
3610  // Extension in C99.  Legal in C90, but warn about it.
3611  if (getLangOptions().C99)
3612    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3613  else
3614    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3615
3616  // FIXME: handle stuff like:
3617  // void foo() { extern float X(); }
3618  // void bar() { X(); }  <-- implicit decl for X in another scope.
3619
3620  // Set a Declarator for the implicit definition: int foo();
3621  const char *Dummy;
3622  DeclSpec DS;
3623  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3624  Error = Error; // Silence warning.
3625  assert(!Error && "Error setting up implicit decl!");
3626  Declarator D(DS, Declarator::BlockContext);
3627  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3628                                             0, 0, false, SourceLocation(),
3629                                             false, 0,0,0, Loc, D),
3630                SourceLocation());
3631  D.SetIdentifier(&II, Loc);
3632
3633  // Insert this function into translation-unit scope.
3634
3635  DeclContext *PrevDC = CurContext;
3636  CurContext = Context.getTranslationUnitDecl();
3637
3638  FunctionDecl *FD =
3639 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3640  FD->setImplicit();
3641
3642  CurContext = PrevDC;
3643
3644  AddKnownFunctionAttributes(FD);
3645
3646  return FD;
3647}
3648
3649/// \brief Adds any function attributes that we know a priori based on
3650/// the declaration of this function.
3651///
3652/// These attributes can apply both to implicitly-declared builtins
3653/// (like __builtin___printf_chk) or to library-declared functions
3654/// like NSLog or printf.
3655void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3656  if (FD->isInvalidDecl())
3657    return;
3658
3659  // If this is a built-in function, map its builtin attributes to
3660  // actual attributes.
3661  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3662    // Handle printf-formatting attributes.
3663    unsigned FormatIdx;
3664    bool HasVAListArg;
3665    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3666      if (!FD->getAttr<FormatAttr>())
3667        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3668                                             HasVAListArg ? 0 : FormatIdx + 2));
3669    }
3670
3671    // Mark const if we don't care about errno and that is the only
3672    // thing preventing the function from being const. This allows
3673    // IRgen to use LLVM intrinsics for such functions.
3674    if (!getLangOptions().MathErrno &&
3675        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3676      if (!FD->getAttr<ConstAttr>())
3677        FD->addAttr(::new (Context) ConstAttr());
3678    }
3679
3680    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3681      FD->addAttr(::new (Context) NoReturnAttr());
3682  }
3683
3684  IdentifierInfo *Name = FD->getIdentifier();
3685  if (!Name)
3686    return;
3687  if ((!getLangOptions().CPlusPlus &&
3688       FD->getDeclContext()->isTranslationUnit()) ||
3689      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3690       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3691       LinkageSpecDecl::lang_c)) {
3692    // Okay: this could be a libc/libm/Objective-C function we know
3693    // about.
3694  } else
3695    return;
3696
3697  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3698    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3699      // FIXME: We known better than our headers.
3700      const_cast<FormatAttr *>(Format)->setType("printf");
3701    } else
3702      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3703                                             Name->isStr("NSLogv") ? 0 : 2));
3704  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3705    if (!FD->getAttr<FormatAttr>())
3706      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3707                                             Name->isStr("vasprintf") ? 0 : 3));
3708  }
3709}
3710
3711TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3712  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3713  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3714
3715  // Scope manipulation handled by caller.
3716  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3717                                           D.getIdentifierLoc(),
3718                                           D.getIdentifier(),
3719                                           T);
3720
3721  if (TagType *TT = dyn_cast<TagType>(T)) {
3722    TagDecl *TD = TT->getDecl();
3723
3724    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3725    // keep track of the TypedefDecl.
3726    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3727      TD->setTypedefForAnonDecl(NewTD);
3728  }
3729
3730  if (D.isInvalidType())
3731    NewTD->setInvalidDecl();
3732  return NewTD;
3733}
3734
3735
3736/// \brief Determine whether a tag with a given kind is acceptable
3737/// as a redeclaration of the given tag declaration.
3738///
3739/// \returns true if the new tag kind is acceptable, false otherwise.
3740bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3741                                        TagDecl::TagKind NewTag,
3742                                        SourceLocation NewTagLoc,
3743                                        const IdentifierInfo &Name) {
3744  // C++ [dcl.type.elab]p3:
3745  //   The class-key or enum keyword present in the
3746  //   elaborated-type-specifier shall agree in kind with the
3747  //   declaration to which the name in theelaborated-type-specifier
3748  //   refers. This rule also applies to the form of
3749  //   elaborated-type-specifier that declares a class-name or
3750  //   friend class since it can be construed as referring to the
3751  //   definition of the class. Thus, in any
3752  //   elaborated-type-specifier, the enum keyword shall be used to
3753  //   refer to an enumeration (7.2), the union class-keyshall be
3754  //   used to refer to a union (clause 9), and either the class or
3755  //   struct class-key shall be used to refer to a class (clause 9)
3756  //   declared using the class or struct class-key.
3757  TagDecl::TagKind OldTag = Previous->getTagKind();
3758  if (OldTag == NewTag)
3759    return true;
3760
3761  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3762      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3763    // Warn about the struct/class tag mismatch.
3764    bool isTemplate = false;
3765    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3766      isTemplate = Record->getDescribedClassTemplate();
3767
3768    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3769      << (NewTag == TagDecl::TK_class)
3770      << isTemplate << &Name
3771      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3772                              OldTag == TagDecl::TK_class? "class" : "struct");
3773    Diag(Previous->getLocation(), diag::note_previous_use);
3774    return true;
3775  }
3776  return false;
3777}
3778
3779/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3780/// former case, Name will be non-null.  In the later case, Name will be null.
3781/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3782/// reference/declaration/definition of a tag.
3783Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3784                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3785                               IdentifierInfo *Name, SourceLocation NameLoc,
3786                               AttributeList *Attr, AccessSpecifier AS,
3787                               MultiTemplateParamsArg TemplateParameterLists,
3788                               bool &OwnedDecl) {
3789  // If this is not a definition, it must have a name.
3790  assert((Name != 0 || TK == TK_Definition) &&
3791         "Nameless record must be a definition!");
3792
3793  OwnedDecl = false;
3794  TagDecl::TagKind Kind;
3795  switch (TagSpec) {
3796  default: assert(0 && "Unknown tag type!");
3797  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3798  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3799  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3800  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3801  }
3802
3803  if (TK != TK_Reference) {
3804    if (TemplateParameterList *TemplateParams
3805          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3806                        (TemplateParameterList**)TemplateParameterLists.get(),
3807                                              TemplateParameterLists.size())) {
3808      if (TemplateParams->size() > 0) {
3809        // This is a declaration or definition of a class template (which may
3810        // be a member of another template).
3811        OwnedDecl = false;
3812        DeclResult Result = CheckClassTemplate(S, TagSpec, TK, KWLoc,
3813                                               SS, Name, NameLoc, Attr,
3814                                               move(TemplateParameterLists),
3815                                               AS);
3816        return Result.get();
3817      } else {
3818        // FIXME: diagnose the extraneous 'template<>', once we recover
3819        // slightly better in ParseTemplate.cpp from bogus template
3820        // parameters.
3821      }
3822    }
3823  }
3824
3825  DeclContext *SearchDC = CurContext;
3826  DeclContext *DC = CurContext;
3827  NamedDecl *PrevDecl = 0;
3828
3829  bool Invalid = false;
3830
3831  if (Name && SS.isNotEmpty()) {
3832    // We have a nested-name tag ('struct foo::bar').
3833
3834    // Check for invalid 'foo::'.
3835    if (SS.isInvalid()) {
3836      Name = 0;
3837      goto CreateNewDecl;
3838    }
3839
3840    if (RequireCompleteDeclContext(SS))
3841      return DeclPtrTy::make((Decl *)0);
3842
3843    DC = computeDeclContext(SS, true);
3844    SearchDC = DC;
3845    // Look-up name inside 'foo::'.
3846    PrevDecl
3847      = dyn_cast_or_null<TagDecl>(
3848               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3849
3850    // A tag 'foo::bar' must already exist.
3851    if (PrevDecl == 0) {
3852      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3853      Name = 0;
3854      Invalid = true;
3855      goto CreateNewDecl;
3856    }
3857  } else if (Name) {
3858    // If this is a named struct, check to see if there was a previous forward
3859    // declaration or definition.
3860    // FIXME: We're looking into outer scopes here, even when we
3861    // shouldn't be. Doing so can result in ambiguities that we
3862    // shouldn't be diagnosing.
3863    LookupResult R = LookupName(S, Name, LookupTagName,
3864                                /*RedeclarationOnly=*/(TK != TK_Reference));
3865    if (R.isAmbiguous()) {
3866      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3867      // FIXME: This is not best way to recover from case like:
3868      //
3869      // struct S s;
3870      //
3871      // causes needless "incomplete type" error later.
3872      Name = 0;
3873      PrevDecl = 0;
3874      Invalid = true;
3875    }
3876    else
3877      PrevDecl = R;
3878
3879    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3880      // FIXME: This makes sure that we ignore the contexts associated
3881      // with C structs, unions, and enums when looking for a matching
3882      // tag declaration or definition. See the similar lookup tweak
3883      // in Sema::LookupName; is there a better way to deal with this?
3884      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3885        SearchDC = SearchDC->getParent();
3886    }
3887  }
3888
3889  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3890    // Maybe we will complain about the shadowed template parameter.
3891    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3892    // Just pretend that we didn't see the previous declaration.
3893    PrevDecl = 0;
3894  }
3895
3896  if (PrevDecl) {
3897    // Check whether the previous declaration is usable.
3898    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3899
3900    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3901      // If this is a use of a previous tag, or if the tag is already declared
3902      // in the same scope (so that the definition/declaration completes or
3903      // rementions the tag), reuse the decl.
3904      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3905        // Make sure that this wasn't declared as an enum and now used as a
3906        // struct or something similar.
3907        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3908          bool SafeToContinue
3909            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3910               Kind != TagDecl::TK_enum);
3911          if (SafeToContinue)
3912            Diag(KWLoc, diag::err_use_with_wrong_tag)
3913              << Name
3914              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3915                                                  PrevTagDecl->getKindName());
3916          else
3917            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3918          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3919
3920          if (SafeToContinue)
3921            Kind = PrevTagDecl->getTagKind();
3922          else {
3923            // Recover by making this an anonymous redefinition.
3924            Name = 0;
3925            PrevDecl = 0;
3926            Invalid = true;
3927          }
3928        }
3929
3930        if (!Invalid) {
3931          // If this is a use, just return the declaration we found.
3932
3933          // FIXME: In the future, return a variant or some other clue
3934          // for the consumer of this Decl to know it doesn't own it.
3935          // For our current ASTs this shouldn't be a problem, but will
3936          // need to be changed with DeclGroups.
3937          if (TK == TK_Reference)
3938            return DeclPtrTy::make(PrevDecl);
3939
3940          // Diagnose attempts to redefine a tag.
3941          if (TK == TK_Definition) {
3942            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3943              Diag(NameLoc, diag::err_redefinition) << Name;
3944              Diag(Def->getLocation(), diag::note_previous_definition);
3945              // If this is a redefinition, recover by making this
3946              // struct be anonymous, which will make any later
3947              // references get the previous definition.
3948              Name = 0;
3949              PrevDecl = 0;
3950              Invalid = true;
3951            } else {
3952              // If the type is currently being defined, complain
3953              // about a nested redefinition.
3954              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3955              if (Tag->isBeingDefined()) {
3956                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3957                Diag(PrevTagDecl->getLocation(),
3958                     diag::note_previous_definition);
3959                Name = 0;
3960                PrevDecl = 0;
3961                Invalid = true;
3962              }
3963            }
3964
3965            // Okay, this is definition of a previously declared or referenced
3966            // tag PrevDecl. We're going to create a new Decl for it.
3967          }
3968        }
3969        // If we get here we have (another) forward declaration or we
3970        // have a definition.  Just create a new decl.
3971      } else {
3972        // If we get here, this is a definition of a new tag type in a nested
3973        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3974        // new decl/type.  We set PrevDecl to NULL so that the entities
3975        // have distinct types.
3976        PrevDecl = 0;
3977      }
3978      // If we get here, we're going to create a new Decl. If PrevDecl
3979      // is non-NULL, it's a definition of the tag declared by
3980      // PrevDecl. If it's NULL, we have a new definition.
3981    } else {
3982      // PrevDecl is a namespace, template, or anything else
3983      // that lives in the IDNS_Tag identifier namespace.
3984      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3985        // The tag name clashes with a namespace name, issue an error and
3986        // recover by making this tag be anonymous.
3987        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3988        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3989        Name = 0;
3990        PrevDecl = 0;
3991        Invalid = true;
3992      } else {
3993        // The existing declaration isn't relevant to us; we're in a
3994        // new scope, so clear out the previous declaration.
3995        PrevDecl = 0;
3996      }
3997    }
3998  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3999             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4000    // C++ [basic.scope.pdecl]p5:
4001    //   -- for an elaborated-type-specifier of the form
4002    //
4003    //          class-key identifier
4004    //
4005    //      if the elaborated-type-specifier is used in the
4006    //      decl-specifier-seq or parameter-declaration-clause of a
4007    //      function defined in namespace scope, the identifier is
4008    //      declared as a class-name in the namespace that contains
4009    //      the declaration; otherwise, except as a friend
4010    //      declaration, the identifier is declared in the smallest
4011    //      non-class, non-function-prototype scope that contains the
4012    //      declaration.
4013    //
4014    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4015    // C structs and unions.
4016    //
4017    // GNU C also supports this behavior as part of its incomplete
4018    // enum types extension, while GNU C++ does not.
4019    //
4020    // Find the context where we'll be declaring the tag.
4021    // FIXME: We would like to maintain the current DeclContext as the
4022    // lexical context,
4023    while (SearchDC->isRecord())
4024      SearchDC = SearchDC->getParent();
4025
4026    // Find the scope where we'll be declaring the tag.
4027    while (S->isClassScope() ||
4028           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4029           ((S->getFlags() & Scope::DeclScope) == 0) ||
4030           (S->getEntity() &&
4031            ((DeclContext *)S->getEntity())->isTransparentContext()))
4032      S = S->getParent();
4033  }
4034
4035CreateNewDecl:
4036
4037  // If there is an identifier, use the location of the identifier as the
4038  // location of the decl, otherwise use the location of the struct/union
4039  // keyword.
4040  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4041
4042  // Otherwise, create a new declaration. If there is a previous
4043  // declaration of the same entity, the two will be linked via
4044  // PrevDecl.
4045  TagDecl *New;
4046
4047  if (Kind == TagDecl::TK_enum) {
4048    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4049    // enum X { A, B, C } D;    D should chain to X.
4050    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4051                           cast_or_null<EnumDecl>(PrevDecl));
4052    // If this is an undefined enum, warn.
4053    if (TK != TK_Definition && !Invalid)  {
4054      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4055                                              : diag::ext_forward_ref_enum;
4056      Diag(Loc, DK);
4057    }
4058  } else {
4059    // struct/union/class
4060
4061    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4062    // struct X { int A; } D;    D should chain to X.
4063    if (getLangOptions().CPlusPlus)
4064      // FIXME: Look for a way to use RecordDecl for simple structs.
4065      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4066                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4067    else
4068      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4069                               cast_or_null<RecordDecl>(PrevDecl));
4070  }
4071
4072  if (Kind != TagDecl::TK_enum) {
4073    // Handle #pragma pack: if the #pragma pack stack has non-default
4074    // alignment, make up a packed attribute for this decl. These
4075    // attributes are checked when the ASTContext lays out the
4076    // structure.
4077    //
4078    // It is important for implementing the correct semantics that this
4079    // happen here (in act on tag decl). The #pragma pack stack is
4080    // maintained as a result of parser callbacks which can occur at
4081    // many points during the parsing of a struct declaration (because
4082    // the #pragma tokens are effectively skipped over during the
4083    // parsing of the struct).
4084    if (unsigned Alignment = getPragmaPackAlignment())
4085      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
4086  }
4087
4088  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4089    // C++ [dcl.typedef]p3:
4090    //   [...] Similarly, in a given scope, a class or enumeration
4091    //   shall not be declared with the same name as a typedef-name
4092    //   that is declared in that scope and refers to a type other
4093    //   than the class or enumeration itself.
4094    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4095    TypedefDecl *PrevTypedef = 0;
4096    if (Lookup.getKind() == LookupResult::Found)
4097      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4098
4099    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4100        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4101          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4102      Diag(Loc, diag::err_tag_definition_of_typedef)
4103        << Context.getTypeDeclType(New)
4104        << PrevTypedef->getUnderlyingType();
4105      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4106      Invalid = true;
4107    }
4108  }
4109
4110  if (Invalid)
4111    New->setInvalidDecl();
4112
4113  if (Attr)
4114    ProcessDeclAttributeList(S, New, Attr);
4115
4116  // If we're declaring or defining a tag in function prototype scope
4117  // in C, note that this type can only be used within the function.
4118  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4119    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4120
4121  // Set the lexical context. If the tag has a C++ scope specifier, the
4122  // lexical context will be different from the semantic context.
4123  New->setLexicalDeclContext(CurContext);
4124
4125  // Set the access specifier.
4126  if (!Invalid)
4127    SetMemberAccessSpecifier(New, PrevDecl, AS);
4128
4129  if (TK == TK_Definition)
4130    New->startDefinition();
4131
4132  // If this has an identifier, add it to the scope stack.
4133  if (Name) {
4134    S = getNonFieldDeclScope(S);
4135    PushOnScopeChains(New, S);
4136  } else {
4137    CurContext->addDecl(New);
4138  }
4139
4140  // If this is the C FILE type, notify the AST context.
4141  if (IdentifierInfo *II = New->getIdentifier())
4142    if (!New->isInvalidDecl() &&
4143        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4144        II->isStr("FILE"))
4145      Context.setFILEDecl(New);
4146
4147  OwnedDecl = true;
4148  return DeclPtrTy::make(New);
4149}
4150
4151void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4152  AdjustDeclIfTemplate(TagD);
4153  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4154
4155  // Enter the tag context.
4156  PushDeclContext(S, Tag);
4157
4158  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4159    FieldCollector->StartClass();
4160
4161    if (Record->getIdentifier()) {
4162      // C++ [class]p2:
4163      //   [...] The class-name is also inserted into the scope of the
4164      //   class itself; this is known as the injected-class-name. For
4165      //   purposes of access checking, the injected-class-name is treated
4166      //   as if it were a public member name.
4167      CXXRecordDecl *InjectedClassName
4168        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4169                                CurContext, Record->getLocation(),
4170                                Record->getIdentifier(),
4171                                Record->getTagKeywordLoc(),
4172                                Record);
4173      InjectedClassName->setImplicit();
4174      InjectedClassName->setAccess(AS_public);
4175      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4176        InjectedClassName->setDescribedClassTemplate(Template);
4177      PushOnScopeChains(InjectedClassName, S);
4178      assert(InjectedClassName->isInjectedClassName() &&
4179             "Broken injected-class-name");
4180    }
4181  }
4182}
4183
4184void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4185                                    SourceLocation RBraceLoc) {
4186  AdjustDeclIfTemplate(TagD);
4187  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4188  Tag->setRBraceLoc(RBraceLoc);
4189
4190  if (isa<CXXRecordDecl>(Tag))
4191    FieldCollector->FinishClass();
4192
4193  // Exit this scope of this tag's definition.
4194  PopDeclContext();
4195
4196  // Notify the consumer that we've defined a tag.
4197  Consumer.HandleTagDeclDefinition(Tag);
4198}
4199
4200// Note that FieldName may be null for anonymous bitfields.
4201bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4202                          QualType FieldTy, const Expr *BitWidth) {
4203
4204  // C99 6.7.2.1p4 - verify the field type.
4205  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4206  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4207    // Handle incomplete types with specific error.
4208    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4209      return true;
4210    if (FieldName)
4211      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4212        << FieldName << FieldTy << BitWidth->getSourceRange();
4213    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4214      << FieldTy << BitWidth->getSourceRange();
4215  }
4216
4217  // If the bit-width is type- or value-dependent, don't try to check
4218  // it now.
4219  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4220    return false;
4221
4222  llvm::APSInt Value;
4223  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4224    return true;
4225
4226  // Zero-width bitfield is ok for anonymous field.
4227  if (Value == 0 && FieldName)
4228    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4229
4230  if (Value.isSigned() && Value.isNegative()) {
4231    if (FieldName)
4232      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4233               << FieldName << Value.toString(10);
4234    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4235      << Value.toString(10);
4236  }
4237
4238  if (!FieldTy->isDependentType()) {
4239    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4240    if (Value.getZExtValue() > TypeSize) {
4241      if (FieldName)
4242        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4243          << FieldName << (unsigned)TypeSize;
4244      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4245        << (unsigned)TypeSize;
4246    }
4247  }
4248
4249  return false;
4250}
4251
4252/// ActOnField - Each field of a struct/union/class is passed into this in order
4253/// to create a FieldDecl object for it.
4254Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4255                                 SourceLocation DeclStart,
4256                                 Declarator &D, ExprTy *BitfieldWidth) {
4257  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4258                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4259                               AS_public);
4260  return DeclPtrTy::make(Res);
4261}
4262
4263/// HandleField - Analyze a field of a C struct or a C++ data member.
4264///
4265FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4266                             SourceLocation DeclStart,
4267                             Declarator &D, Expr *BitWidth,
4268                             AccessSpecifier AS) {
4269  IdentifierInfo *II = D.getIdentifier();
4270  SourceLocation Loc = DeclStart;
4271  if (II) Loc = D.getIdentifierLoc();
4272
4273  QualType T = GetTypeForDeclarator(D, S);
4274  if (getLangOptions().CPlusPlus)
4275    CheckExtraCXXDefaultArguments(D);
4276
4277  DiagnoseFunctionSpecifiers(D);
4278
4279  if (D.getDeclSpec().isThreadSpecified())
4280    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4281
4282  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4283
4284  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4285    // Maybe we will complain about the shadowed template parameter.
4286    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4287    // Just pretend that we didn't see the previous declaration.
4288    PrevDecl = 0;
4289  }
4290
4291  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4292    PrevDecl = 0;
4293
4294  bool Mutable
4295    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4296  SourceLocation TSSL = D.getSourceRange().getBegin();
4297  FieldDecl *NewFD
4298    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4299                     AS, PrevDecl, &D);
4300  if (NewFD->isInvalidDecl() && PrevDecl) {
4301    // Don't introduce NewFD into scope; there's already something
4302    // with the same name in the same scope.
4303  } else if (II) {
4304    PushOnScopeChains(NewFD, S);
4305  } else
4306    Record->addDecl(NewFD);
4307
4308  return NewFD;
4309}
4310
4311/// \brief Build a new FieldDecl and check its well-formedness.
4312///
4313/// This routine builds a new FieldDecl given the fields name, type,
4314/// record, etc. \p PrevDecl should refer to any previous declaration
4315/// with the same name and in the same scope as the field to be
4316/// created.
4317///
4318/// \returns a new FieldDecl.
4319///
4320/// \todo The Declarator argument is a hack. It will be removed once
4321FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4322                                RecordDecl *Record, SourceLocation Loc,
4323                                bool Mutable, Expr *BitWidth,
4324                                SourceLocation TSSL,
4325                                AccessSpecifier AS, NamedDecl *PrevDecl,
4326                                Declarator *D) {
4327  IdentifierInfo *II = Name.getAsIdentifierInfo();
4328  bool InvalidDecl = false;
4329  if (D) InvalidDecl = D->isInvalidType();
4330
4331  // If we receive a broken type, recover by assuming 'int' and
4332  // marking this declaration as invalid.
4333  if (T.isNull()) {
4334    InvalidDecl = true;
4335    T = Context.IntTy;
4336  }
4337
4338  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4339  // than a variably modified type.
4340  if (T->isVariablyModifiedType()) {
4341    bool SizeIsNegative;
4342    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4343                                                           SizeIsNegative);
4344    if (!FixedTy.isNull()) {
4345      Diag(Loc, diag::warn_illegal_constant_array_size);
4346      T = FixedTy;
4347    } else {
4348      if (SizeIsNegative)
4349        Diag(Loc, diag::err_typecheck_negative_array_size);
4350      else
4351        Diag(Loc, diag::err_typecheck_field_variable_size);
4352      InvalidDecl = true;
4353    }
4354  }
4355
4356  // Fields can not have abstract class types
4357  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4358                             AbstractFieldType))
4359    InvalidDecl = true;
4360
4361  // If this is declared as a bit-field, check the bit-field.
4362  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4363    InvalidDecl = true;
4364    DeleteExpr(BitWidth);
4365    BitWidth = 0;
4366  }
4367
4368  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4369                                       Mutable, TSSL);
4370  if (InvalidDecl)
4371    NewFD->setInvalidDecl();
4372
4373  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4374    Diag(Loc, diag::err_duplicate_member) << II;
4375    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4376    NewFD->setInvalidDecl();
4377  }
4378
4379  if (getLangOptions().CPlusPlus) {
4380    QualType EltTy = Context.getBaseElementType(T);
4381
4382    if (const RecordType *RT = EltTy->getAsRecordType()) {
4383      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4384
4385      if (!RDecl->hasTrivialConstructor())
4386        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4387      if (!RDecl->hasTrivialCopyConstructor())
4388        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4389      if (!RDecl->hasTrivialCopyAssignment())
4390        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4391      if (!RDecl->hasTrivialDestructor())
4392        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4393
4394      // C++ 9.5p1: An object of a class with a non-trivial
4395      // constructor, a non-trivial copy constructor, a non-trivial
4396      // destructor, or a non-trivial copy assignment operator
4397      // cannot be a member of a union, nor can an array of such
4398      // objects.
4399      // TODO: C++0x alters this restriction significantly.
4400      if (Record->isUnion()) {
4401        // We check for copy constructors before constructors
4402        // because otherwise we'll never get complaints about
4403        // copy constructors.
4404
4405        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4406
4407        CXXSpecialMember member;
4408        if (!RDecl->hasTrivialCopyConstructor())
4409          member = CXXCopyConstructor;
4410        else if (!RDecl->hasTrivialConstructor())
4411          member = CXXDefaultConstructor;
4412        else if (!RDecl->hasTrivialCopyAssignment())
4413          member = CXXCopyAssignment;
4414        else if (!RDecl->hasTrivialDestructor())
4415          member = CXXDestructor;
4416        else
4417          member = invalid;
4418
4419        if (member != invalid) {
4420          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4421          DiagnoseNontrivial(RT, member);
4422          NewFD->setInvalidDecl();
4423        }
4424      }
4425    }
4426  }
4427
4428  if (getLangOptions().CPlusPlus && !T->isPODType())
4429    cast<CXXRecordDecl>(Record)->setPOD(false);
4430
4431  // FIXME: We need to pass in the attributes given an AST
4432  // representation, not a parser representation.
4433  if (D)
4434    // FIXME: What to pass instead of TUScope?
4435    ProcessDeclAttributes(TUScope, NewFD, *D);
4436
4437  if (T.isObjCGCWeak())
4438    Diag(Loc, diag::warn_attribute_weak_on_field);
4439
4440  NewFD->setAccess(AS);
4441
4442  // C++ [dcl.init.aggr]p1:
4443  //   An aggregate is an array or a class (clause 9) with [...] no
4444  //   private or protected non-static data members (clause 11).
4445  // A POD must be an aggregate.
4446  if (getLangOptions().CPlusPlus &&
4447      (AS == AS_private || AS == AS_protected)) {
4448    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4449    CXXRecord->setAggregate(false);
4450    CXXRecord->setPOD(false);
4451  }
4452
4453  return NewFD;
4454}
4455
4456/// DiagnoseNontrivial - Given that a class has a non-trivial
4457/// special member, figure out why.
4458void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4459  QualType QT(T, 0U);
4460  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4461
4462  // Check whether the member was user-declared.
4463  switch (member) {
4464  case CXXDefaultConstructor:
4465    if (RD->hasUserDeclaredConstructor()) {
4466      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4467      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4468        if (!ci->isImplicitlyDefined(Context)) {
4469          SourceLocation CtorLoc = ci->getLocation();
4470          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4471          return;
4472        }
4473
4474      assert(0 && "found no user-declared constructors");
4475      return;
4476    }
4477    break;
4478
4479  case CXXCopyConstructor:
4480    if (RD->hasUserDeclaredCopyConstructor()) {
4481      SourceLocation CtorLoc =
4482        RD->getCopyConstructor(Context, 0)->getLocation();
4483      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4484      return;
4485    }
4486    break;
4487
4488  case CXXCopyAssignment:
4489    if (RD->hasUserDeclaredCopyAssignment()) {
4490      // FIXME: this should use the location of the copy
4491      // assignment, not the type.
4492      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4493      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4494      return;
4495    }
4496    break;
4497
4498  case CXXDestructor:
4499    if (RD->hasUserDeclaredDestructor()) {
4500      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4501      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4502      return;
4503    }
4504    break;
4505  }
4506
4507  typedef CXXRecordDecl::base_class_iterator base_iter;
4508
4509  // Virtual bases and members inhibit trivial copying/construction,
4510  // but not trivial destruction.
4511  if (member != CXXDestructor) {
4512    // Check for virtual bases.  vbases includes indirect virtual bases,
4513    // so we just iterate through the direct bases.
4514    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4515      if (bi->isVirtual()) {
4516        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4517        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4518        return;
4519      }
4520
4521    // Check for virtual methods.
4522    typedef CXXRecordDecl::method_iterator meth_iter;
4523    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4524         ++mi) {
4525      if (mi->isVirtual()) {
4526        SourceLocation MLoc = mi->getSourceRange().getBegin();
4527        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4528        return;
4529      }
4530    }
4531  }
4532
4533  bool (CXXRecordDecl::*hasTrivial)() const;
4534  switch (member) {
4535  case CXXDefaultConstructor:
4536    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4537  case CXXCopyConstructor:
4538    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4539  case CXXCopyAssignment:
4540    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4541  case CXXDestructor:
4542    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4543  default:
4544    assert(0 && "unexpected special member"); return;
4545  }
4546
4547  // Check for nontrivial bases (and recurse).
4548  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4549    const RecordType *BaseRT = bi->getType()->getAsRecordType();
4550    assert(BaseRT);
4551    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4552    if (!(BaseRecTy->*hasTrivial)()) {
4553      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4554      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4555      DiagnoseNontrivial(BaseRT, member);
4556      return;
4557    }
4558  }
4559
4560  // Check for nontrivial members (and recurse).
4561  typedef RecordDecl::field_iterator field_iter;
4562  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4563       ++fi) {
4564    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4565    if (const RecordType *EltRT = EltTy->getAsRecordType()) {
4566      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4567
4568      if (!(EltRD->*hasTrivial)()) {
4569        SourceLocation FLoc = (*fi)->getLocation();
4570        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4571        DiagnoseNontrivial(EltRT, member);
4572        return;
4573      }
4574    }
4575  }
4576
4577  assert(0 && "found no explanation for non-trivial member");
4578}
4579
4580/// TranslateIvarVisibility - Translate visibility from a token ID to an
4581///  AST enum value.
4582static ObjCIvarDecl::AccessControl
4583TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4584  switch (ivarVisibility) {
4585  default: assert(0 && "Unknown visitibility kind");
4586  case tok::objc_private: return ObjCIvarDecl::Private;
4587  case tok::objc_public: return ObjCIvarDecl::Public;
4588  case tok::objc_protected: return ObjCIvarDecl::Protected;
4589  case tok::objc_package: return ObjCIvarDecl::Package;
4590  }
4591}
4592
4593/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4594/// in order to create an IvarDecl object for it.
4595Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4596                                SourceLocation DeclStart,
4597                                DeclPtrTy IntfDecl,
4598                                Declarator &D, ExprTy *BitfieldWidth,
4599                                tok::ObjCKeywordKind Visibility) {
4600
4601  IdentifierInfo *II = D.getIdentifier();
4602  Expr *BitWidth = (Expr*)BitfieldWidth;
4603  SourceLocation Loc = DeclStart;
4604  if (II) Loc = D.getIdentifierLoc();
4605
4606  // FIXME: Unnamed fields can be handled in various different ways, for
4607  // example, unnamed unions inject all members into the struct namespace!
4608
4609  QualType T = GetTypeForDeclarator(D, S);
4610
4611  if (BitWidth) {
4612    // 6.7.2.1p3, 6.7.2.1p4
4613    if (VerifyBitField(Loc, II, T, BitWidth)) {
4614      D.setInvalidType();
4615      DeleteExpr(BitWidth);
4616      BitWidth = 0;
4617    }
4618  } else {
4619    // Not a bitfield.
4620
4621    // validate II.
4622
4623  }
4624
4625  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4626  // than a variably modified type.
4627  if (T->isVariablyModifiedType()) {
4628    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4629    D.setInvalidType();
4630  }
4631
4632  // Get the visibility (access control) for this ivar.
4633  ObjCIvarDecl::AccessControl ac =
4634    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4635                                        : ObjCIvarDecl::None;
4636  // Must set ivar's DeclContext to its enclosing interface.
4637  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4638  DeclContext *EnclosingContext;
4639  if (ObjCImplementationDecl *IMPDecl =
4640      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4641    // Case of ivar declared in an implementation. Context is that of its class.
4642    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4643    assert(IDecl && "No class- ActOnIvar");
4644    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4645  }
4646  else
4647    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4648  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4649
4650  // Construct the decl.
4651  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4652                                             EnclosingContext, Loc, II, T,ac,
4653                                             (Expr *)BitfieldWidth);
4654
4655  if (II) {
4656    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4657    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4658        && !isa<TagDecl>(PrevDecl)) {
4659      Diag(Loc, diag::err_duplicate_member) << II;
4660      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4661      NewID->setInvalidDecl();
4662    }
4663  }
4664
4665  // Process attributes attached to the ivar.
4666  ProcessDeclAttributes(S, NewID, D);
4667
4668  if (D.isInvalidType())
4669    NewID->setInvalidDecl();
4670
4671  if (II) {
4672    // FIXME: When interfaces are DeclContexts, we'll need to add
4673    // these to the interface.
4674    S->AddDecl(DeclPtrTy::make(NewID));
4675    IdResolver.AddDecl(NewID);
4676  }
4677
4678  return DeclPtrTy::make(NewID);
4679}
4680
4681void Sema::ActOnFields(Scope* S,
4682                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4683                       DeclPtrTy *Fields, unsigned NumFields,
4684                       SourceLocation LBrac, SourceLocation RBrac,
4685                       AttributeList *Attr) {
4686  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4687  assert(EnclosingDecl && "missing record or interface decl");
4688
4689  // If the decl this is being inserted into is invalid, then it may be a
4690  // redeclaration or some other bogus case.  Don't try to add fields to it.
4691  if (EnclosingDecl->isInvalidDecl()) {
4692    // FIXME: Deallocate fields?
4693    return;
4694  }
4695
4696
4697  // Verify that all the fields are okay.
4698  unsigned NumNamedMembers = 0;
4699  llvm::SmallVector<FieldDecl*, 32> RecFields;
4700
4701  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4702  for (unsigned i = 0; i != NumFields; ++i) {
4703    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4704
4705    // Get the type for the field.
4706    Type *FDTy = FD->getType().getTypePtr();
4707
4708    if (!FD->isAnonymousStructOrUnion()) {
4709      // Remember all fields written by the user.
4710      RecFields.push_back(FD);
4711    }
4712
4713    // If the field is already invalid for some reason, don't emit more
4714    // diagnostics about it.
4715    if (FD->isInvalidDecl())
4716      continue;
4717
4718    // C99 6.7.2.1p2:
4719    //   A structure or union shall not contain a member with
4720    //   incomplete or function type (hence, a structure shall not
4721    //   contain an instance of itself, but may contain a pointer to
4722    //   an instance of itself), except that the last member of a
4723    //   structure with more than one named member may have incomplete
4724    //   array type; such a structure (and any union containing,
4725    //   possibly recursively, a member that is such a structure)
4726    //   shall not be a member of a structure or an element of an
4727    //   array.
4728    if (FDTy->isFunctionType()) {
4729      // Field declared as a function.
4730      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4731        << FD->getDeclName();
4732      FD->setInvalidDecl();
4733      EnclosingDecl->setInvalidDecl();
4734      continue;
4735    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4736               Record && Record->isStruct()) {
4737      // Flexible array member.
4738      if (NumNamedMembers < 1) {
4739        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4740          << FD->getDeclName();
4741        FD->setInvalidDecl();
4742        EnclosingDecl->setInvalidDecl();
4743        continue;
4744      }
4745      // Okay, we have a legal flexible array member at the end of the struct.
4746      if (Record)
4747        Record->setHasFlexibleArrayMember(true);
4748    } else if (!FDTy->isDependentType() &&
4749               RequireCompleteType(FD->getLocation(), FD->getType(),
4750                                   diag::err_field_incomplete)) {
4751      // Incomplete type
4752      FD->setInvalidDecl();
4753      EnclosingDecl->setInvalidDecl();
4754      continue;
4755    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4756      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4757        // If this is a member of a union, then entire union becomes "flexible".
4758        if (Record && Record->isUnion()) {
4759          Record->setHasFlexibleArrayMember(true);
4760        } else {
4761          // If this is a struct/class and this is not the last element, reject
4762          // it.  Note that GCC supports variable sized arrays in the middle of
4763          // structures.
4764          if (i != NumFields-1)
4765            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4766              << FD->getDeclName() << FD->getType();
4767          else {
4768            // We support flexible arrays at the end of structs in
4769            // other structs as an extension.
4770            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4771              << FD->getDeclName();
4772            if (Record)
4773              Record->setHasFlexibleArrayMember(true);
4774          }
4775        }
4776      }
4777      if (Record && FDTTy->getDecl()->hasObjectMember())
4778        Record->setHasObjectMember(true);
4779    } else if (FDTy->isObjCInterfaceType()) {
4780      /// A field cannot be an Objective-c object
4781      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4782      FD->setInvalidDecl();
4783      EnclosingDecl->setInvalidDecl();
4784      continue;
4785    }
4786    else if (getLangOptions().ObjC1 &&
4787             getLangOptions().getGCMode() != LangOptions::NonGC &&
4788             Record &&
4789             (FD->getType()->isObjCObjectPointerType() ||
4790              FD->getType().isObjCGCStrong()))
4791      Record->setHasObjectMember(true);
4792    // Keep track of the number of named members.
4793    if (FD->getIdentifier())
4794      ++NumNamedMembers;
4795  }
4796
4797  // Okay, we successfully defined 'Record'.
4798  if (Record) {
4799    Record->completeDefinition(Context);
4800  } else {
4801    ObjCIvarDecl **ClsFields =
4802      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4803    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4804      ID->setIVarList(ClsFields, RecFields.size(), Context);
4805      ID->setLocEnd(RBrac);
4806      // Add ivar's to class's DeclContext.
4807      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4808        ClsFields[i]->setLexicalDeclContext(ID);
4809        ID->addDecl(ClsFields[i]);
4810      }
4811      // Must enforce the rule that ivars in the base classes may not be
4812      // duplicates.
4813      if (ID->getSuperClass()) {
4814        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4815             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4816          ObjCIvarDecl* Ivar = (*IVI);
4817
4818          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4819            ObjCIvarDecl* prevIvar =
4820              ID->getSuperClass()->lookupInstanceVariable(II);
4821            if (prevIvar) {
4822              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4823              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4824            }
4825          }
4826        }
4827      }
4828    } else if (ObjCImplementationDecl *IMPDecl =
4829                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4830      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4831      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4832        // Ivar declared in @implementation never belongs to the implementation.
4833        // Only it is in implementation's lexical context.
4834        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4835      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4836    }
4837  }
4838
4839  if (Attr)
4840    ProcessDeclAttributeList(S, Record, Attr);
4841}
4842
4843EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4844                                          EnumConstantDecl *LastEnumConst,
4845                                          SourceLocation IdLoc,
4846                                          IdentifierInfo *Id,
4847                                          ExprArg val) {
4848  Expr *Val = (Expr *)val.get();
4849
4850  llvm::APSInt EnumVal(32);
4851  QualType EltTy;
4852  if (Val && !Val->isTypeDependent()) {
4853    // Make sure to promote the operand type to int.
4854    UsualUnaryConversions(Val);
4855    if (Val != val.get()) {
4856      val.release();
4857      val = Val;
4858    }
4859
4860    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4861    SourceLocation ExpLoc;
4862    if (!Val->isValueDependent() &&
4863        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4864      Val = 0;
4865    } else {
4866      EltTy = Val->getType();
4867    }
4868  }
4869
4870  if (!Val) {
4871    if (LastEnumConst) {
4872      // Assign the last value + 1.
4873      EnumVal = LastEnumConst->getInitVal();
4874      ++EnumVal;
4875
4876      // Check for overflow on increment.
4877      if (EnumVal < LastEnumConst->getInitVal())
4878        Diag(IdLoc, diag::warn_enum_value_overflow);
4879
4880      EltTy = LastEnumConst->getType();
4881    } else {
4882      // First value, set to zero.
4883      EltTy = Context.IntTy;
4884      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4885    }
4886  }
4887
4888  val.release();
4889  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4890                                  Val, EnumVal);
4891}
4892
4893
4894Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4895                                        DeclPtrTy lastEnumConst,
4896                                        SourceLocation IdLoc,
4897                                        IdentifierInfo *Id,
4898                                        SourceLocation EqualLoc, ExprTy *val) {
4899  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4900  EnumConstantDecl *LastEnumConst =
4901    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4902  Expr *Val = static_cast<Expr*>(val);
4903
4904  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4905  // we find one that is.
4906  S = getNonFieldDeclScope(S);
4907
4908  // Verify that there isn't already something declared with this name in this
4909  // scope.
4910  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4911  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4912    // Maybe we will complain about the shadowed template parameter.
4913    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4914    // Just pretend that we didn't see the previous declaration.
4915    PrevDecl = 0;
4916  }
4917
4918  if (PrevDecl) {
4919    // When in C++, we may get a TagDecl with the same name; in this case the
4920    // enum constant will 'hide' the tag.
4921    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4922           "Received TagDecl when not in C++!");
4923    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4924      if (isa<EnumConstantDecl>(PrevDecl))
4925        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4926      else
4927        Diag(IdLoc, diag::err_redefinition) << Id;
4928      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4929      if (Val) Val->Destroy(Context);
4930      return DeclPtrTy();
4931    }
4932  }
4933
4934  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4935                                            IdLoc, Id, Owned(Val));
4936
4937  // Register this decl in the current scope stack.
4938  if (New)
4939    PushOnScopeChains(New, S);
4940
4941  return DeclPtrTy::make(New);
4942}
4943
4944void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4945                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4946                         DeclPtrTy *Elements, unsigned NumElements) {
4947  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4948  QualType EnumType = Context.getTypeDeclType(Enum);
4949
4950  // TODO: If the result value doesn't fit in an int, it must be a long or long
4951  // long value.  ISO C does not support this, but GCC does as an extension,
4952  // emit a warning.
4953  unsigned IntWidth = Context.Target.getIntWidth();
4954
4955  // Verify that all the values are okay, compute the size of the values, and
4956  // reverse the list.
4957  unsigned NumNegativeBits = 0;
4958  unsigned NumPositiveBits = 0;
4959
4960  // Keep track of whether all elements have type int.
4961  bool AllElementsInt = true;
4962
4963  for (unsigned i = 0; i != NumElements; ++i) {
4964    EnumConstantDecl *ECD =
4965      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4966    if (!ECD) continue;  // Already issued a diagnostic.
4967
4968    // If the enum value doesn't fit in an int, emit an extension warning.
4969    const llvm::APSInt &InitVal = ECD->getInitVal();
4970    assert(InitVal.getBitWidth() >= IntWidth &&
4971           "Should have promoted value to int");
4972    if (InitVal.getBitWidth() > IntWidth) {
4973      llvm::APSInt V(InitVal);
4974      V.trunc(IntWidth);
4975      V.extend(InitVal.getBitWidth());
4976      if (V != InitVal)
4977        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4978          << InitVal.toString(10);
4979    }
4980
4981    // Keep track of the size of positive and negative values.
4982    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4983      NumPositiveBits = std::max(NumPositiveBits,
4984                                 (unsigned)InitVal.getActiveBits());
4985    else
4986      NumNegativeBits = std::max(NumNegativeBits,
4987                                 (unsigned)InitVal.getMinSignedBits());
4988
4989    // Keep track of whether every enum element has type int (very commmon).
4990    if (AllElementsInt)
4991      AllElementsInt = ECD->getType() == Context.IntTy;
4992  }
4993
4994  // Figure out the type that should be used for this enum.
4995  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4996  QualType BestType;
4997  unsigned BestWidth;
4998
4999  if (NumNegativeBits) {
5000    // If there is a negative value, figure out the smallest integer type (of
5001    // int/long/longlong) that fits.
5002    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5003      BestType = Context.IntTy;
5004      BestWidth = IntWidth;
5005    } else {
5006      BestWidth = Context.Target.getLongWidth();
5007
5008      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5009        BestType = Context.LongTy;
5010      else {
5011        BestWidth = Context.Target.getLongLongWidth();
5012
5013        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5014          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5015        BestType = Context.LongLongTy;
5016      }
5017    }
5018  } else {
5019    // If there is no negative value, figure out which of uint, ulong, ulonglong
5020    // fits.
5021    if (NumPositiveBits <= IntWidth) {
5022      BestType = Context.UnsignedIntTy;
5023      BestWidth = IntWidth;
5024    } else if (NumPositiveBits <=
5025               (BestWidth = Context.Target.getLongWidth())) {
5026      BestType = Context.UnsignedLongTy;
5027    } else {
5028      BestWidth = Context.Target.getLongLongWidth();
5029      assert(NumPositiveBits <= BestWidth &&
5030             "How could an initializer get larger than ULL?");
5031      BestType = Context.UnsignedLongLongTy;
5032    }
5033  }
5034
5035  // Loop over all of the enumerator constants, changing their types to match
5036  // the type of the enum if needed.
5037  for (unsigned i = 0; i != NumElements; ++i) {
5038    EnumConstantDecl *ECD =
5039      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5040    if (!ECD) continue;  // Already issued a diagnostic.
5041
5042    // Standard C says the enumerators have int type, but we allow, as an
5043    // extension, the enumerators to be larger than int size.  If each
5044    // enumerator value fits in an int, type it as an int, otherwise type it the
5045    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5046    // that X has type 'int', not 'unsigned'.
5047    if (ECD->getType() == Context.IntTy) {
5048      // Make sure the init value is signed.
5049      llvm::APSInt IV = ECD->getInitVal();
5050      IV.setIsSigned(true);
5051      ECD->setInitVal(IV);
5052
5053      if (getLangOptions().CPlusPlus)
5054        // C++ [dcl.enum]p4: Following the closing brace of an
5055        // enum-specifier, each enumerator has the type of its
5056        // enumeration.
5057        ECD->setType(EnumType);
5058      continue;  // Already int type.
5059    }
5060
5061    // Determine whether the value fits into an int.
5062    llvm::APSInt InitVal = ECD->getInitVal();
5063    bool FitsInInt;
5064    if (InitVal.isUnsigned() || !InitVal.isNegative())
5065      FitsInInt = InitVal.getActiveBits() < IntWidth;
5066    else
5067      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5068
5069    // If it fits into an integer type, force it.  Otherwise force it to match
5070    // the enum decl type.
5071    QualType NewTy;
5072    unsigned NewWidth;
5073    bool NewSign;
5074    if (FitsInInt) {
5075      NewTy = Context.IntTy;
5076      NewWidth = IntWidth;
5077      NewSign = true;
5078    } else if (ECD->getType() == BestType) {
5079      // Already the right type!
5080      if (getLangOptions().CPlusPlus)
5081        // C++ [dcl.enum]p4: Following the closing brace of an
5082        // enum-specifier, each enumerator has the type of its
5083        // enumeration.
5084        ECD->setType(EnumType);
5085      continue;
5086    } else {
5087      NewTy = BestType;
5088      NewWidth = BestWidth;
5089      NewSign = BestType->isSignedIntegerType();
5090    }
5091
5092    // Adjust the APSInt value.
5093    InitVal.extOrTrunc(NewWidth);
5094    InitVal.setIsSigned(NewSign);
5095    ECD->setInitVal(InitVal);
5096
5097    // Adjust the Expr initializer and type.
5098    if (ECD->getInitExpr())
5099      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
5100                                                      /*isLvalue=*/false));
5101    if (getLangOptions().CPlusPlus)
5102      // C++ [dcl.enum]p4: Following the closing brace of an
5103      // enum-specifier, each enumerator has the type of its
5104      // enumeration.
5105      ECD->setType(EnumType);
5106    else
5107      ECD->setType(NewTy);
5108  }
5109
5110  Enum->completeDefinition(Context, BestType);
5111}
5112
5113Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5114                                            ExprArg expr) {
5115  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5116
5117  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5118                                                   Loc, AsmString);
5119  CurContext->addDecl(New);
5120  return DeclPtrTy::make(New);
5121}
5122
5123void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5124                             SourceLocation PragmaLoc,
5125                             SourceLocation NameLoc) {
5126  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5127
5128  // FIXME: This implementation is an ugly hack!
5129  if (PrevDecl) {
5130    PrevDecl->addAttr(::new (Context) WeakAttr());
5131    return;
5132  }
5133  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5134  return;
5135}
5136
5137void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5138                                IdentifierInfo* AliasName,
5139                                SourceLocation PragmaLoc,
5140                                SourceLocation NameLoc,
5141                                SourceLocation AliasNameLoc) {
5142  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5143
5144  // FIXME: This implementation is an ugly hack!
5145  if (PrevDecl) {
5146    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
5147    PrevDecl->addAttr(::new (Context) WeakAttr());
5148    return;
5149  }
5150  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5151  return;
5152}
5153