SemaDecl.cpp revision 1055393814ac989727aa7437a5f3c3c44b4f83e5
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149  case LookupResult::FoundOverloaded:
150  case LookupResult::FoundUnresolvedValue:
151    Result.suppressDiagnostics();
152    return ParsedType();
153
154  case LookupResult::Ambiguous:
155    // Recover from type-hiding ambiguities by hiding the type.  We'll
156    // do the lookup again when looking for an object, and we can
157    // diagnose the error then.  If we don't do this, then the error
158    // about hiding the type will be immediately followed by an error
159    // that only makes sense if the identifier was treated like a type.
160    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
161      Result.suppressDiagnostics();
162      return ParsedType();
163    }
164
165    // Look to see if we have a type anywhere in the list of results.
166    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
167         Res != ResEnd; ++Res) {
168      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
169        if (!IIDecl ||
170            (*Res)->getLocation().getRawEncoding() <
171              IIDecl->getLocation().getRawEncoding())
172          IIDecl = *Res;
173      }
174    }
175
176    if (!IIDecl) {
177      // None of the entities we found is a type, so there is no way
178      // to even assume that the result is a type. In this case, don't
179      // complain about the ambiguity. The parser will either try to
180      // perform this lookup again (e.g., as an object name), which
181      // will produce the ambiguity, or will complain that it expected
182      // a type name.
183      Result.suppressDiagnostics();
184      return ParsedType();
185    }
186
187    // We found a type within the ambiguous lookup; diagnose the
188    // ambiguity and then return that type. This might be the right
189    // answer, or it might not be, but it suppresses any attempt to
190    // perform the name lookup again.
191    break;
192
193  case LookupResult::Found:
194    IIDecl = Result.getFoundDecl();
195    break;
196  }
197
198  assert(IIDecl && "Didn't find decl");
199
200  QualType T;
201  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
202    DiagnoseUseOfDecl(IIDecl, NameLoc);
203
204    if (T.isNull())
205      T = Context.getTypeDeclType(TD);
206
207    if (SS && SS->isNotEmpty()) {
208      if (WantNontrivialTypeSourceInfo) {
209        // Construct a type with type-source information.
210        TypeLocBuilder Builder;
211        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
212
213        T = getElaboratedType(ETK_None, *SS, T);
214        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
215        ElabTL.setKeywordLoc(SourceLocation());
216        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
217        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
218      } else {
219        T = getElaboratedType(ETK_None, *SS, T);
220      }
221    }
222  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
223    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
224    if (!HasTrailingDot)
225      T = Context.getObjCInterfaceType(IDecl);
226  }
227
228  if (T.isNull()) {
229    // If it's not plausibly a type, suppress diagnostics.
230    Result.suppressDiagnostics();
231    return ParsedType();
232  }
233  return ParsedType::make(T);
234}
235
236/// isTagName() - This method is called *for error recovery purposes only*
237/// to determine if the specified name is a valid tag name ("struct foo").  If
238/// so, this returns the TST for the tag corresponding to it (TST_enum,
239/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
240/// where the user forgot to specify the tag.
241DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
242  // Do a tag name lookup in this scope.
243  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
244  LookupName(R, S, false);
245  R.suppressDiagnostics();
246  if (R.getResultKind() == LookupResult::Found)
247    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
248      switch (TD->getTagKind()) {
249      default:         return DeclSpec::TST_unspecified;
250      case TTK_Struct: return DeclSpec::TST_struct;
251      case TTK_Union:  return DeclSpec::TST_union;
252      case TTK_Class:  return DeclSpec::TST_class;
253      case TTK_Enum:   return DeclSpec::TST_enum;
254      }
255    }
256
257  return DeclSpec::TST_unspecified;
258}
259
260/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
261/// if a CXXScopeSpec's type is equal to the type of one of the base classes
262/// then downgrade the missing typename error to a warning.
263/// This is needed for MSVC compatibility; Example:
264/// @code
265/// template<class T> class A {
266/// public:
267///   typedef int TYPE;
268/// };
269/// template<class T> class B : public A<T> {
270/// public:
271///   A<T>::TYPE a; // no typename required because A<T> is a base class.
272/// };
273/// @endcode
274bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
275  if (CurContext->isRecord()) {
276    const Type *Ty = SS->getScopeRep()->getAsType();
277
278    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
279    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
280          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
281      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
282        return true;
283  }
284  return CurContext->isFunctionOrMethod();
285}
286
287bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
288                                   SourceLocation IILoc,
289                                   Scope *S,
290                                   CXXScopeSpec *SS,
291                                   ParsedType &SuggestedType) {
292  // We don't have anything to suggest (yet).
293  SuggestedType = ParsedType();
294
295  // There may have been a typo in the name of the type. Look up typo
296  // results, in case we have something that we can suggest.
297  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
298                                             LookupOrdinaryName, S, SS, NULL,
299                                             false, CTC_Type)) {
300    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
301    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
302
303    if (Corrected.isKeyword()) {
304      // We corrected to a keyword.
305      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
306      Diag(IILoc, diag::err_unknown_typename_suggest)
307        << &II << CorrectedQuotedStr;
308      return true;
309    } else {
310      NamedDecl *Result = Corrected.getCorrectionDecl();
311      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
312          !Result->isInvalidDecl()) {
313        // We found a similarly-named type or interface; suggest that.
314        if (!SS || !SS->isSet())
315          Diag(IILoc, diag::err_unknown_typename_suggest)
316            << &II << CorrectedQuotedStr
317            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
318        else if (DeclContext *DC = computeDeclContext(*SS, false))
319          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
320            << &II << DC << CorrectedQuotedStr << SS->getRange()
321            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
322        else
323          llvm_unreachable("could not have corrected a typo here");
324
325        Diag(Result->getLocation(), diag::note_previous_decl)
326          << CorrectedQuotedStr;
327
328        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
329                                    false, false, ParsedType(),
330                                    /*NonTrivialTypeSourceInfo=*/true);
331        return true;
332      }
333    }
334  }
335
336  if (getLangOptions().CPlusPlus) {
337    // See if II is a class template that the user forgot to pass arguments to.
338    UnqualifiedId Name;
339    Name.setIdentifier(&II, IILoc);
340    CXXScopeSpec EmptySS;
341    TemplateTy TemplateResult;
342    bool MemberOfUnknownSpecialization;
343    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
344                       Name, ParsedType(), true, TemplateResult,
345                       MemberOfUnknownSpecialization) == TNK_Type_template) {
346      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
347      Diag(IILoc, diag::err_template_missing_args) << TplName;
348      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
349        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
350          << TplDecl->getTemplateParameters()->getSourceRange();
351      }
352      return true;
353    }
354  }
355
356  // FIXME: Should we move the logic that tries to recover from a missing tag
357  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
358
359  if (!SS || (!SS->isSet() && !SS->isInvalid()))
360    Diag(IILoc, diag::err_unknown_typename) << &II;
361  else if (DeclContext *DC = computeDeclContext(*SS, false))
362    Diag(IILoc, diag::err_typename_nested_not_found)
363      << &II << DC << SS->getRange();
364  else if (isDependentScopeSpecifier(*SS)) {
365    unsigned DiagID = diag::err_typename_missing;
366    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS))
367      DiagID = diag::warn_typename_missing;
368
369    Diag(SS->getRange().getBegin(), DiagID)
370      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
371      << SourceRange(SS->getRange().getBegin(), IILoc)
372      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
373    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
374  } else {
375    assert(SS && SS->isInvalid() &&
376           "Invalid scope specifier has already been diagnosed");
377  }
378
379  return true;
380}
381
382/// \brief Determine whether the given result set contains either a type name
383/// or
384static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
385  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
386                       NextToken.is(tok::less);
387
388  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
389    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
390      return true;
391
392    if (CheckTemplate && isa<TemplateDecl>(*I))
393      return true;
394  }
395
396  return false;
397}
398
399Sema::NameClassification Sema::ClassifyName(Scope *S,
400                                            CXXScopeSpec &SS,
401                                            IdentifierInfo *&Name,
402                                            SourceLocation NameLoc,
403                                            const Token &NextToken) {
404  DeclarationNameInfo NameInfo(Name, NameLoc);
405  ObjCMethodDecl *CurMethod = getCurMethodDecl();
406
407  if (NextToken.is(tok::coloncolon)) {
408    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
409                                QualType(), false, SS, 0, false);
410
411  }
412
413  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
414  LookupParsedName(Result, S, &SS, !CurMethod);
415
416  // Perform lookup for Objective-C instance variables (including automatically
417  // synthesized instance variables), if we're in an Objective-C method.
418  // FIXME: This lookup really, really needs to be folded in to the normal
419  // unqualified lookup mechanism.
420  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
421    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
422    if (E.get() || E.isInvalid())
423      return E;
424  }
425
426  bool SecondTry = false;
427  bool IsFilteredTemplateName = false;
428
429Corrected:
430  switch (Result.getResultKind()) {
431  case LookupResult::NotFound:
432    // If an unqualified-id is followed by a '(', then we have a function
433    // call.
434    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
435      // In C++, this is an ADL-only call.
436      // FIXME: Reference?
437      if (getLangOptions().CPlusPlus)
438        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
439
440      // C90 6.3.2.2:
441      //   If the expression that precedes the parenthesized argument list in a
442      //   function call consists solely of an identifier, and if no
443      //   declaration is visible for this identifier, the identifier is
444      //   implicitly declared exactly as if, in the innermost block containing
445      //   the function call, the declaration
446      //
447      //     extern int identifier ();
448      //
449      //   appeared.
450      //
451      // We also allow this in C99 as an extension.
452      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
453        Result.addDecl(D);
454        Result.resolveKind();
455        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
456      }
457    }
458
459    // In C, we first see whether there is a tag type by the same name, in
460    // which case it's likely that the user just forget to write "enum",
461    // "struct", or "union".
462    if (!getLangOptions().CPlusPlus && !SecondTry) {
463      Result.clear(LookupTagName);
464      LookupParsedName(Result, S, &SS);
465      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
466        const char *TagName = 0;
467        const char *FixItTagName = 0;
468        switch (Tag->getTagKind()) {
469          case TTK_Class:
470            TagName = "class";
471            FixItTagName = "class ";
472            break;
473
474          case TTK_Enum:
475            TagName = "enum";
476            FixItTagName = "enum ";
477            break;
478
479          case TTK_Struct:
480            TagName = "struct";
481            FixItTagName = "struct ";
482            break;
483
484          case TTK_Union:
485            TagName = "union";
486            FixItTagName = "union ";
487            break;
488        }
489
490        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
491          << Name << TagName << getLangOptions().CPlusPlus
492          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
493        break;
494      }
495
496      Result.clear(LookupOrdinaryName);
497    }
498
499    // Perform typo correction to determine if there is another name that is
500    // close to this name.
501    if (!SecondTry) {
502      SecondTry = true;
503      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
504                                                 Result.getLookupKind(), S, &SS)) {
505        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
506        unsigned QualifiedDiag = diag::err_no_member_suggest;
507        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
508        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
509
510        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
511        NamedDecl *UnderlyingFirstDecl
512          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
513        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
514            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
515          UnqualifiedDiag = diag::err_no_template_suggest;
516          QualifiedDiag = diag::err_no_member_template_suggest;
517        } else if (UnderlyingFirstDecl &&
518                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
520                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
521           UnqualifiedDiag = diag::err_unknown_typename_suggest;
522           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
523         }
524
525        if (SS.isEmpty())
526          Diag(NameLoc, UnqualifiedDiag)
527            << Name << CorrectedQuotedStr
528            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
529        else
530          Diag(NameLoc, QualifiedDiag)
531            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
532            << SS.getRange()
533            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
534
535        // Update the name, so that the caller has the new name.
536        Name = Corrected.getCorrectionAsIdentifierInfo();
537
538        // Also update the LookupResult...
539        // FIXME: This should probably go away at some point
540        Result.clear();
541        Result.setLookupName(Corrected.getCorrection());
542        if (FirstDecl) Result.addDecl(FirstDecl);
543
544        // Typo correction corrected to a keyword.
545        if (Corrected.isKeyword())
546          return Corrected.getCorrectionAsIdentifierInfo();
547
548        if (FirstDecl)
549          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
550            << CorrectedQuotedStr;
551
552        // If we found an Objective-C instance variable, let
553        // LookupInObjCMethod build the appropriate expression to
554        // reference the ivar.
555        // FIXME: This is a gross hack.
556        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
557          Result.clear();
558          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
559          return move(E);
560        }
561
562        goto Corrected;
563      }
564    }
565
566    // We failed to correct; just fall through and let the parser deal with it.
567    Result.suppressDiagnostics();
568    return NameClassification::Unknown();
569
570  case LookupResult::NotFoundInCurrentInstantiation:
571    // We performed name lookup into the current instantiation, and there were
572    // dependent bases, so we treat this result the same way as any other
573    // dependent nested-name-specifier.
574
575    // C++ [temp.res]p2:
576    //   A name used in a template declaration or definition and that is
577    //   dependent on a template-parameter is assumed not to name a type
578    //   unless the applicable name lookup finds a type name or the name is
579    //   qualified by the keyword typename.
580    //
581    // FIXME: If the next token is '<', we might want to ask the parser to
582    // perform some heroics to see if we actually have a
583    // template-argument-list, which would indicate a missing 'template'
584    // keyword here.
585    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
586
587  case LookupResult::Found:
588  case LookupResult::FoundOverloaded:
589  case LookupResult::FoundUnresolvedValue:
590    break;
591
592  case LookupResult::Ambiguous:
593    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
594        hasAnyAcceptableTemplateNames(Result)) {
595      // C++ [temp.local]p3:
596      //   A lookup that finds an injected-class-name (10.2) can result in an
597      //   ambiguity in certain cases (for example, if it is found in more than
598      //   one base class). If all of the injected-class-names that are found
599      //   refer to specializations of the same class template, and if the name
600      //   is followed by a template-argument-list, the reference refers to the
601      //   class template itself and not a specialization thereof, and is not
602      //   ambiguous.
603      //
604      // This filtering can make an ambiguous result into an unambiguous one,
605      // so try again after filtering out template names.
606      FilterAcceptableTemplateNames(Result);
607      if (!Result.isAmbiguous()) {
608        IsFilteredTemplateName = true;
609        break;
610      }
611    }
612
613    // Diagnose the ambiguity and return an error.
614    return NameClassification::Error();
615  }
616
617  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
618      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
619    // C++ [temp.names]p3:
620    //   After name lookup (3.4) finds that a name is a template-name or that
621    //   an operator-function-id or a literal- operator-id refers to a set of
622    //   overloaded functions any member of which is a function template if
623    //   this is followed by a <, the < is always taken as the delimiter of a
624    //   template-argument-list and never as the less-than operator.
625    if (!IsFilteredTemplateName)
626      FilterAcceptableTemplateNames(Result);
627
628    if (!Result.empty()) {
629      bool IsFunctionTemplate;
630      TemplateName Template;
631      if (Result.end() - Result.begin() > 1) {
632        IsFunctionTemplate = true;
633        Template = Context.getOverloadedTemplateName(Result.begin(),
634                                                     Result.end());
635      } else {
636        TemplateDecl *TD
637          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
638        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
639
640        if (SS.isSet() && !SS.isInvalid())
641          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
642                                                    /*TemplateKeyword=*/false,
643                                                      TD);
644        else
645          Template = TemplateName(TD);
646      }
647
648      if (IsFunctionTemplate) {
649        // Function templates always go through overload resolution, at which
650        // point we'll perform the various checks (e.g., accessibility) we need
651        // to based on which function we selected.
652        Result.suppressDiagnostics();
653
654        return NameClassification::FunctionTemplate(Template);
655      }
656
657      return NameClassification::TypeTemplate(Template);
658    }
659  }
660
661  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
662  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
663    DiagnoseUseOfDecl(Type, NameLoc);
664    QualType T = Context.getTypeDeclType(Type);
665    return ParsedType::make(T);
666  }
667
668  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
669  if (!Class) {
670    // FIXME: It's unfortunate that we don't have a Type node for handling this.
671    if (ObjCCompatibleAliasDecl *Alias
672                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
673      Class = Alias->getClassInterface();
674  }
675
676  if (Class) {
677    DiagnoseUseOfDecl(Class, NameLoc);
678
679    if (NextToken.is(tok::period)) {
680      // Interface. <something> is parsed as a property reference expression.
681      // Just return "unknown" as a fall-through for now.
682      Result.suppressDiagnostics();
683      return NameClassification::Unknown();
684    }
685
686    QualType T = Context.getObjCInterfaceType(Class);
687    return ParsedType::make(T);
688  }
689
690  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
691    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
692
693  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
694  return BuildDeclarationNameExpr(SS, Result, ADL);
695}
696
697// Determines the context to return to after temporarily entering a
698// context.  This depends in an unnecessarily complicated way on the
699// exact ordering of callbacks from the parser.
700DeclContext *Sema::getContainingDC(DeclContext *DC) {
701
702  // Functions defined inline within classes aren't parsed until we've
703  // finished parsing the top-level class, so the top-level class is
704  // the context we'll need to return to.
705  if (isa<FunctionDecl>(DC)) {
706    DC = DC->getLexicalParent();
707
708    // A function not defined within a class will always return to its
709    // lexical context.
710    if (!isa<CXXRecordDecl>(DC))
711      return DC;
712
713    // A C++ inline method/friend is parsed *after* the topmost class
714    // it was declared in is fully parsed ("complete");  the topmost
715    // class is the context we need to return to.
716    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
717      DC = RD;
718
719    // Return the declaration context of the topmost class the inline method is
720    // declared in.
721    return DC;
722  }
723
724  return DC->getLexicalParent();
725}
726
727void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
728  assert(getContainingDC(DC) == CurContext &&
729      "The next DeclContext should be lexically contained in the current one.");
730  CurContext = DC;
731  S->setEntity(DC);
732}
733
734void Sema::PopDeclContext() {
735  assert(CurContext && "DeclContext imbalance!");
736
737  CurContext = getContainingDC(CurContext);
738  assert(CurContext && "Popped translation unit!");
739}
740
741/// EnterDeclaratorContext - Used when we must lookup names in the context
742/// of a declarator's nested name specifier.
743///
744void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
745  // C++0x [basic.lookup.unqual]p13:
746  //   A name used in the definition of a static data member of class
747  //   X (after the qualified-id of the static member) is looked up as
748  //   if the name was used in a member function of X.
749  // C++0x [basic.lookup.unqual]p14:
750  //   If a variable member of a namespace is defined outside of the
751  //   scope of its namespace then any name used in the definition of
752  //   the variable member (after the declarator-id) is looked up as
753  //   if the definition of the variable member occurred in its
754  //   namespace.
755  // Both of these imply that we should push a scope whose context
756  // is the semantic context of the declaration.  We can't use
757  // PushDeclContext here because that context is not necessarily
758  // lexically contained in the current context.  Fortunately,
759  // the containing scope should have the appropriate information.
760
761  assert(!S->getEntity() && "scope already has entity");
762
763#ifndef NDEBUG
764  Scope *Ancestor = S->getParent();
765  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
766  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
767#endif
768
769  CurContext = DC;
770  S->setEntity(DC);
771}
772
773void Sema::ExitDeclaratorContext(Scope *S) {
774  assert(S->getEntity() == CurContext && "Context imbalance!");
775
776  // Switch back to the lexical context.  The safety of this is
777  // enforced by an assert in EnterDeclaratorContext.
778  Scope *Ancestor = S->getParent();
779  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
780  CurContext = (DeclContext*) Ancestor->getEntity();
781
782  // We don't need to do anything with the scope, which is going to
783  // disappear.
784}
785
786
787void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
788  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
789  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
790    // We assume that the caller has already called
791    // ActOnReenterTemplateScope
792    FD = TFD->getTemplatedDecl();
793  }
794  if (!FD)
795    return;
796
797  PushDeclContext(S, FD);
798  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
799    ParmVarDecl *Param = FD->getParamDecl(P);
800    // If the parameter has an identifier, then add it to the scope
801    if (Param->getIdentifier()) {
802      S->AddDecl(Param);
803      IdResolver.AddDecl(Param);
804    }
805  }
806}
807
808
809/// \brief Determine whether we allow overloading of the function
810/// PrevDecl with another declaration.
811///
812/// This routine determines whether overloading is possible, not
813/// whether some new function is actually an overload. It will return
814/// true in C++ (where we can always provide overloads) or, as an
815/// extension, in C when the previous function is already an
816/// overloaded function declaration or has the "overloadable"
817/// attribute.
818static bool AllowOverloadingOfFunction(LookupResult &Previous,
819                                       ASTContext &Context) {
820  if (Context.getLangOptions().CPlusPlus)
821    return true;
822
823  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
824    return true;
825
826  return (Previous.getResultKind() == LookupResult::Found
827          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
828}
829
830/// Add this decl to the scope shadowed decl chains.
831void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
832  // Move up the scope chain until we find the nearest enclosing
833  // non-transparent context. The declaration will be introduced into this
834  // scope.
835  while (S->getEntity() &&
836         ((DeclContext *)S->getEntity())->isTransparentContext())
837    S = S->getParent();
838
839  // Add scoped declarations into their context, so that they can be
840  // found later. Declarations without a context won't be inserted
841  // into any context.
842  if (AddToContext)
843    CurContext->addDecl(D);
844
845  // Out-of-line definitions shouldn't be pushed into scope in C++.
846  // Out-of-line variable and function definitions shouldn't even in C.
847  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
848      D->isOutOfLine() &&
849      !D->getDeclContext()->getRedeclContext()->Equals(
850        D->getLexicalDeclContext()->getRedeclContext()))
851    return;
852
853  // Template instantiations should also not be pushed into scope.
854  if (isa<FunctionDecl>(D) &&
855      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
856    return;
857
858  // If this replaces anything in the current scope,
859  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
860                               IEnd = IdResolver.end();
861  for (; I != IEnd; ++I) {
862    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
863      S->RemoveDecl(*I);
864      IdResolver.RemoveDecl(*I);
865
866      // Should only need to replace one decl.
867      break;
868    }
869  }
870
871  S->AddDecl(D);
872
873  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
874    // Implicitly-generated labels may end up getting generated in an order that
875    // isn't strictly lexical, which breaks name lookup. Be careful to insert
876    // the label at the appropriate place in the identifier chain.
877    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
878      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
879      if (IDC == CurContext) {
880        if (!S->isDeclScope(*I))
881          continue;
882      } else if (IDC->Encloses(CurContext))
883        break;
884    }
885
886    IdResolver.InsertDeclAfter(I, D);
887  } else {
888    IdResolver.AddDecl(D);
889  }
890}
891
892bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
893                         bool ExplicitInstantiationOrSpecialization) {
894  return IdResolver.isDeclInScope(D, Ctx, Context, S,
895                                  ExplicitInstantiationOrSpecialization);
896}
897
898Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
899  DeclContext *TargetDC = DC->getPrimaryContext();
900  do {
901    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
902      if (ScopeDC->getPrimaryContext() == TargetDC)
903        return S;
904  } while ((S = S->getParent()));
905
906  return 0;
907}
908
909static bool isOutOfScopePreviousDeclaration(NamedDecl *,
910                                            DeclContext*,
911                                            ASTContext&);
912
913/// Filters out lookup results that don't fall within the given scope
914/// as determined by isDeclInScope.
915void Sema::FilterLookupForScope(LookupResult &R,
916                                DeclContext *Ctx, Scope *S,
917                                bool ConsiderLinkage,
918                                bool ExplicitInstantiationOrSpecialization) {
919  LookupResult::Filter F = R.makeFilter();
920  while (F.hasNext()) {
921    NamedDecl *D = F.next();
922
923    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
924      continue;
925
926    if (ConsiderLinkage &&
927        isOutOfScopePreviousDeclaration(D, Ctx, Context))
928      continue;
929
930    F.erase();
931  }
932
933  F.done();
934}
935
936static bool isUsingDecl(NamedDecl *D) {
937  return isa<UsingShadowDecl>(D) ||
938         isa<UnresolvedUsingTypenameDecl>(D) ||
939         isa<UnresolvedUsingValueDecl>(D);
940}
941
942/// Removes using shadow declarations from the lookup results.
943static void RemoveUsingDecls(LookupResult &R) {
944  LookupResult::Filter F = R.makeFilter();
945  while (F.hasNext())
946    if (isUsingDecl(F.next()))
947      F.erase();
948
949  F.done();
950}
951
952/// \brief Check for this common pattern:
953/// @code
954/// class S {
955///   S(const S&); // DO NOT IMPLEMENT
956///   void operator=(const S&); // DO NOT IMPLEMENT
957/// };
958/// @endcode
959static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
960  // FIXME: Should check for private access too but access is set after we get
961  // the decl here.
962  if (D->doesThisDeclarationHaveABody())
963    return false;
964
965  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
966    return CD->isCopyConstructor();
967  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
968    return Method->isCopyAssignmentOperator();
969  return false;
970}
971
972bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
973  assert(D);
974
975  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
976    return false;
977
978  // Ignore class templates.
979  if (D->getDeclContext()->isDependentContext() ||
980      D->getLexicalDeclContext()->isDependentContext())
981    return false;
982
983  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
984    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
985      return false;
986
987    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
988      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
989        return false;
990    } else {
991      // 'static inline' functions are used in headers; don't warn.
992      if (FD->getStorageClass() == SC_Static &&
993          FD->isInlineSpecified())
994        return false;
995    }
996
997    if (FD->doesThisDeclarationHaveABody() &&
998        Context.DeclMustBeEmitted(FD))
999      return false;
1000  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1001    if (!VD->isFileVarDecl() ||
1002        VD->getType().isConstant(Context) ||
1003        Context.DeclMustBeEmitted(VD))
1004      return false;
1005
1006    if (VD->isStaticDataMember() &&
1007        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1008      return false;
1009
1010  } else {
1011    return false;
1012  }
1013
1014  // Only warn for unused decls internal to the translation unit.
1015  if (D->getLinkage() == ExternalLinkage)
1016    return false;
1017
1018  return true;
1019}
1020
1021void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1022  if (!D)
1023    return;
1024
1025  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1026    const FunctionDecl *First = FD->getFirstDeclaration();
1027    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1028      return; // First should already be in the vector.
1029  }
1030
1031  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1032    const VarDecl *First = VD->getFirstDeclaration();
1033    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1034      return; // First should already be in the vector.
1035  }
1036
1037   if (ShouldWarnIfUnusedFileScopedDecl(D))
1038     UnusedFileScopedDecls.push_back(D);
1039 }
1040
1041static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1042  if (D->isInvalidDecl())
1043    return false;
1044
1045  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1046    return false;
1047
1048  if (isa<LabelDecl>(D))
1049    return true;
1050
1051  // White-list anything that isn't a local variable.
1052  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1053      !D->getDeclContext()->isFunctionOrMethod())
1054    return false;
1055
1056  // Types of valid local variables should be complete, so this should succeed.
1057  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1058
1059    // White-list anything with an __attribute__((unused)) type.
1060    QualType Ty = VD->getType();
1061
1062    // Only look at the outermost level of typedef.
1063    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1064      if (TT->getDecl()->hasAttr<UnusedAttr>())
1065        return false;
1066    }
1067
1068    // If we failed to complete the type for some reason, or if the type is
1069    // dependent, don't diagnose the variable.
1070    if (Ty->isIncompleteType() || Ty->isDependentType())
1071      return false;
1072
1073    if (const TagType *TT = Ty->getAs<TagType>()) {
1074      const TagDecl *Tag = TT->getDecl();
1075      if (Tag->hasAttr<UnusedAttr>())
1076        return false;
1077
1078      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1079        // FIXME: Checking for the presence of a user-declared constructor
1080        // isn't completely accurate; we'd prefer to check that the initializer
1081        // has no side effects.
1082        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1083          return false;
1084      }
1085    }
1086
1087    // TODO: __attribute__((unused)) templates?
1088  }
1089
1090  return true;
1091}
1092
1093static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1094                                     FixItHint &Hint) {
1095  if (isa<LabelDecl>(D)) {
1096    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1097                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1098    if (AfterColon.isInvalid())
1099      return;
1100    Hint = FixItHint::CreateRemoval(CharSourceRange::
1101                                    getCharRange(D->getLocStart(), AfterColon));
1102  }
1103  return;
1104}
1105
1106/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1107/// unless they are marked attr(unused).
1108void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1109  FixItHint Hint;
1110  if (!ShouldDiagnoseUnusedDecl(D))
1111    return;
1112
1113  GenerateFixForUnusedDecl(D, Context, Hint);
1114
1115  unsigned DiagID;
1116  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1117    DiagID = diag::warn_unused_exception_param;
1118  else if (isa<LabelDecl>(D))
1119    DiagID = diag::warn_unused_label;
1120  else
1121    DiagID = diag::warn_unused_variable;
1122
1123  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1124}
1125
1126static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1127  // Verify that we have no forward references left.  If so, there was a goto
1128  // or address of a label taken, but no definition of it.  Label fwd
1129  // definitions are indicated with a null substmt.
1130  if (L->getStmt() == 0)
1131    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1132}
1133
1134void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1135  if (S->decl_empty()) return;
1136  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1137         "Scope shouldn't contain decls!");
1138
1139  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1140       I != E; ++I) {
1141    Decl *TmpD = (*I);
1142    assert(TmpD && "This decl didn't get pushed??");
1143
1144    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1145    NamedDecl *D = cast<NamedDecl>(TmpD);
1146
1147    if (!D->getDeclName()) continue;
1148
1149    // Diagnose unused variables in this scope.
1150    if (!S->hasErrorOccurred())
1151      DiagnoseUnusedDecl(D);
1152
1153    // If this was a forward reference to a label, verify it was defined.
1154    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1155      CheckPoppedLabel(LD, *this);
1156
1157    // Remove this name from our lexical scope.
1158    IdResolver.RemoveDecl(D);
1159  }
1160}
1161
1162/// \brief Look for an Objective-C class in the translation unit.
1163///
1164/// \param Id The name of the Objective-C class we're looking for. If
1165/// typo-correction fixes this name, the Id will be updated
1166/// to the fixed name.
1167///
1168/// \param IdLoc The location of the name in the translation unit.
1169///
1170/// \param TypoCorrection If true, this routine will attempt typo correction
1171/// if there is no class with the given name.
1172///
1173/// \returns The declaration of the named Objective-C class, or NULL if the
1174/// class could not be found.
1175ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1176                                              SourceLocation IdLoc,
1177                                              bool DoTypoCorrection) {
1178  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1179  // creation from this context.
1180  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1181
1182  if (!IDecl && DoTypoCorrection) {
1183    // Perform typo correction at the given location, but only if we
1184    // find an Objective-C class name.
1185    TypoCorrection C;
1186    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1187                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1188        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1189      Diag(IdLoc, diag::err_undef_interface_suggest)
1190        << Id << IDecl->getDeclName()
1191        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1192      Diag(IDecl->getLocation(), diag::note_previous_decl)
1193        << IDecl->getDeclName();
1194
1195      Id = IDecl->getIdentifier();
1196    }
1197  }
1198
1199  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1200}
1201
1202/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1203/// from S, where a non-field would be declared. This routine copes
1204/// with the difference between C and C++ scoping rules in structs and
1205/// unions. For example, the following code is well-formed in C but
1206/// ill-formed in C++:
1207/// @code
1208/// struct S6 {
1209///   enum { BAR } e;
1210/// };
1211///
1212/// void test_S6() {
1213///   struct S6 a;
1214///   a.e = BAR;
1215/// }
1216/// @endcode
1217/// For the declaration of BAR, this routine will return a different
1218/// scope. The scope S will be the scope of the unnamed enumeration
1219/// within S6. In C++, this routine will return the scope associated
1220/// with S6, because the enumeration's scope is a transparent
1221/// context but structures can contain non-field names. In C, this
1222/// routine will return the translation unit scope, since the
1223/// enumeration's scope is a transparent context and structures cannot
1224/// contain non-field names.
1225Scope *Sema::getNonFieldDeclScope(Scope *S) {
1226  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1227         (S->getEntity() &&
1228          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1229         (S->isClassScope() && !getLangOptions().CPlusPlus))
1230    S = S->getParent();
1231  return S;
1232}
1233
1234/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1235/// file scope.  lazily create a decl for it. ForRedeclaration is true
1236/// if we're creating this built-in in anticipation of redeclaring the
1237/// built-in.
1238NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1239                                     Scope *S, bool ForRedeclaration,
1240                                     SourceLocation Loc) {
1241  Builtin::ID BID = (Builtin::ID)bid;
1242
1243  ASTContext::GetBuiltinTypeError Error;
1244  QualType R = Context.GetBuiltinType(BID, Error);
1245  switch (Error) {
1246  case ASTContext::GE_None:
1247    // Okay
1248    break;
1249
1250  case ASTContext::GE_Missing_stdio:
1251    if (ForRedeclaration)
1252      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1253        << Context.BuiltinInfo.GetName(BID);
1254    return 0;
1255
1256  case ASTContext::GE_Missing_setjmp:
1257    if (ForRedeclaration)
1258      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1259        << Context.BuiltinInfo.GetName(BID);
1260    return 0;
1261  }
1262
1263  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1264    Diag(Loc, diag::ext_implicit_lib_function_decl)
1265      << Context.BuiltinInfo.GetName(BID)
1266      << R;
1267    if (Context.BuiltinInfo.getHeaderName(BID) &&
1268        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1269          != DiagnosticsEngine::Ignored)
1270      Diag(Loc, diag::note_please_include_header)
1271        << Context.BuiltinInfo.getHeaderName(BID)
1272        << Context.BuiltinInfo.GetName(BID);
1273  }
1274
1275  FunctionDecl *New = FunctionDecl::Create(Context,
1276                                           Context.getTranslationUnitDecl(),
1277                                           Loc, Loc, II, R, /*TInfo=*/0,
1278                                           SC_Extern,
1279                                           SC_None, false,
1280                                           /*hasPrototype=*/true);
1281  New->setImplicit();
1282
1283  // Create Decl objects for each parameter, adding them to the
1284  // FunctionDecl.
1285  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1286    SmallVector<ParmVarDecl*, 16> Params;
1287    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1288      ParmVarDecl *parm =
1289        ParmVarDecl::Create(Context, New, SourceLocation(),
1290                            SourceLocation(), 0,
1291                            FT->getArgType(i), /*TInfo=*/0,
1292                            SC_None, SC_None, 0);
1293      parm->setScopeInfo(0, i);
1294      Params.push_back(parm);
1295    }
1296    New->setParams(Params);
1297  }
1298
1299  AddKnownFunctionAttributes(New);
1300
1301  // TUScope is the translation-unit scope to insert this function into.
1302  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1303  // relate Scopes to DeclContexts, and probably eliminate CurContext
1304  // entirely, but we're not there yet.
1305  DeclContext *SavedContext = CurContext;
1306  CurContext = Context.getTranslationUnitDecl();
1307  PushOnScopeChains(New, TUScope);
1308  CurContext = SavedContext;
1309  return New;
1310}
1311
1312/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1313/// same name and scope as a previous declaration 'Old'.  Figure out
1314/// how to resolve this situation, merging decls or emitting
1315/// diagnostics as appropriate. If there was an error, set New to be invalid.
1316///
1317void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1318  // If the new decl is known invalid already, don't bother doing any
1319  // merging checks.
1320  if (New->isInvalidDecl()) return;
1321
1322  // Allow multiple definitions for ObjC built-in typedefs.
1323  // FIXME: Verify the underlying types are equivalent!
1324  if (getLangOptions().ObjC1) {
1325    const IdentifierInfo *TypeID = New->getIdentifier();
1326    switch (TypeID->getLength()) {
1327    default: break;
1328    case 2:
1329      if (!TypeID->isStr("id"))
1330        break;
1331      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1332      // Install the built-in type for 'id', ignoring the current definition.
1333      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1334      return;
1335    case 5:
1336      if (!TypeID->isStr("Class"))
1337        break;
1338      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1339      // Install the built-in type for 'Class', ignoring the current definition.
1340      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1341      return;
1342    case 3:
1343      if (!TypeID->isStr("SEL"))
1344        break;
1345      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1346      // Install the built-in type for 'SEL', ignoring the current definition.
1347      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1348      return;
1349    }
1350    // Fall through - the typedef name was not a builtin type.
1351  }
1352
1353  // Verify the old decl was also a type.
1354  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1355  if (!Old) {
1356    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1357      << New->getDeclName();
1358
1359    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1360    if (OldD->getLocation().isValid())
1361      Diag(OldD->getLocation(), diag::note_previous_definition);
1362
1363    return New->setInvalidDecl();
1364  }
1365
1366  // If the old declaration is invalid, just give up here.
1367  if (Old->isInvalidDecl())
1368    return New->setInvalidDecl();
1369
1370  // Determine the "old" type we'll use for checking and diagnostics.
1371  QualType OldType;
1372  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1373    OldType = OldTypedef->getUnderlyingType();
1374  else
1375    OldType = Context.getTypeDeclType(Old);
1376
1377  // If the typedef types are not identical, reject them in all languages and
1378  // with any extensions enabled.
1379
1380  if (OldType != New->getUnderlyingType() &&
1381      Context.getCanonicalType(OldType) !=
1382      Context.getCanonicalType(New->getUnderlyingType())) {
1383    int Kind = 0;
1384    if (isa<TypeAliasDecl>(Old))
1385      Kind = 1;
1386    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1387      << Kind << New->getUnderlyingType() << OldType;
1388    if (Old->getLocation().isValid())
1389      Diag(Old->getLocation(), diag::note_previous_definition);
1390    return New->setInvalidDecl();
1391  }
1392
1393  // The types match.  Link up the redeclaration chain if the old
1394  // declaration was a typedef.
1395  // FIXME: this is a potential source of weirdness if the type
1396  // spellings don't match exactly.
1397  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1398    New->setPreviousDeclaration(Typedef);
1399
1400  // __module_private__ is propagated to later declarations.
1401  if (Old->isModulePrivate())
1402    New->setModulePrivate();
1403  else if (New->isModulePrivate())
1404    diagnoseModulePrivateRedeclaration(New, Old);
1405
1406  if (getLangOptions().MicrosoftExt)
1407    return;
1408
1409  if (getLangOptions().CPlusPlus) {
1410    // C++ [dcl.typedef]p2:
1411    //   In a given non-class scope, a typedef specifier can be used to
1412    //   redefine the name of any type declared in that scope to refer
1413    //   to the type to which it already refers.
1414    if (!isa<CXXRecordDecl>(CurContext))
1415      return;
1416
1417    // C++0x [dcl.typedef]p4:
1418    //   In a given class scope, a typedef specifier can be used to redefine
1419    //   any class-name declared in that scope that is not also a typedef-name
1420    //   to refer to the type to which it already refers.
1421    //
1422    // This wording came in via DR424, which was a correction to the
1423    // wording in DR56, which accidentally banned code like:
1424    //
1425    //   struct S {
1426    //     typedef struct A { } A;
1427    //   };
1428    //
1429    // in the C++03 standard. We implement the C++0x semantics, which
1430    // allow the above but disallow
1431    //
1432    //   struct S {
1433    //     typedef int I;
1434    //     typedef int I;
1435    //   };
1436    //
1437    // since that was the intent of DR56.
1438    if (!isa<TypedefNameDecl>(Old))
1439      return;
1440
1441    Diag(New->getLocation(), diag::err_redefinition)
1442      << New->getDeclName();
1443    Diag(Old->getLocation(), diag::note_previous_definition);
1444    return New->setInvalidDecl();
1445  }
1446
1447  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1448  // is normally mapped to an error, but can be controlled with
1449  // -Wtypedef-redefinition.  If either the original or the redefinition is
1450  // in a system header, don't emit this for compatibility with GCC.
1451  if (getDiagnostics().getSuppressSystemWarnings() &&
1452      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1453       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1454    return;
1455
1456  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1457    << New->getDeclName();
1458  Diag(Old->getLocation(), diag::note_previous_definition);
1459  return;
1460}
1461
1462/// DeclhasAttr - returns true if decl Declaration already has the target
1463/// attribute.
1464static bool
1465DeclHasAttr(const Decl *D, const Attr *A) {
1466  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1467  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1468  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1469    if ((*i)->getKind() == A->getKind()) {
1470      if (Ann) {
1471        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1472          return true;
1473        continue;
1474      }
1475      // FIXME: Don't hardcode this check
1476      if (OA && isa<OwnershipAttr>(*i))
1477        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1478      return true;
1479    }
1480
1481  return false;
1482}
1483
1484/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1485static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1486                                ASTContext &C, bool mergeDeprecation = true) {
1487  if (!oldDecl->hasAttrs())
1488    return;
1489
1490  bool foundAny = newDecl->hasAttrs();
1491
1492  // Ensure that any moving of objects within the allocated map is done before
1493  // we process them.
1494  if (!foundAny) newDecl->setAttrs(AttrVec());
1495
1496  for (specific_attr_iterator<InheritableAttr>
1497       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1498       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1499    // Ignore deprecated/unavailable/availability attributes if requested.
1500    if (!mergeDeprecation &&
1501        (isa<DeprecatedAttr>(*i) ||
1502         isa<UnavailableAttr>(*i) ||
1503         isa<AvailabilityAttr>(*i)))
1504      continue;
1505
1506    if (!DeclHasAttr(newDecl, *i)) {
1507      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1508      newAttr->setInherited(true);
1509      newDecl->addAttr(newAttr);
1510      foundAny = true;
1511    }
1512  }
1513
1514  if (!foundAny) newDecl->dropAttrs();
1515}
1516
1517/// mergeParamDeclAttributes - Copy attributes from the old parameter
1518/// to the new one.
1519static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1520                                     const ParmVarDecl *oldDecl,
1521                                     ASTContext &C) {
1522  if (!oldDecl->hasAttrs())
1523    return;
1524
1525  bool foundAny = newDecl->hasAttrs();
1526
1527  // Ensure that any moving of objects within the allocated map is
1528  // done before we process them.
1529  if (!foundAny) newDecl->setAttrs(AttrVec());
1530
1531  for (specific_attr_iterator<InheritableParamAttr>
1532       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1533       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1534    if (!DeclHasAttr(newDecl, *i)) {
1535      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1536      newAttr->setInherited(true);
1537      newDecl->addAttr(newAttr);
1538      foundAny = true;
1539    }
1540  }
1541
1542  if (!foundAny) newDecl->dropAttrs();
1543}
1544
1545namespace {
1546
1547/// Used in MergeFunctionDecl to keep track of function parameters in
1548/// C.
1549struct GNUCompatibleParamWarning {
1550  ParmVarDecl *OldParm;
1551  ParmVarDecl *NewParm;
1552  QualType PromotedType;
1553};
1554
1555}
1556
1557/// getSpecialMember - get the special member enum for a method.
1558Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1559  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1560    if (Ctor->isDefaultConstructor())
1561      return Sema::CXXDefaultConstructor;
1562
1563    if (Ctor->isCopyConstructor())
1564      return Sema::CXXCopyConstructor;
1565
1566    if (Ctor->isMoveConstructor())
1567      return Sema::CXXMoveConstructor;
1568  } else if (isa<CXXDestructorDecl>(MD)) {
1569    return Sema::CXXDestructor;
1570  } else if (MD->isCopyAssignmentOperator()) {
1571    return Sema::CXXCopyAssignment;
1572  } else if (MD->isMoveAssignmentOperator()) {
1573    return Sema::CXXMoveAssignment;
1574  }
1575
1576  return Sema::CXXInvalid;
1577}
1578
1579/// canRedefineFunction - checks if a function can be redefined. Currently,
1580/// only extern inline functions can be redefined, and even then only in
1581/// GNU89 mode.
1582static bool canRedefineFunction(const FunctionDecl *FD,
1583                                const LangOptions& LangOpts) {
1584  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1585          !LangOpts.CPlusPlus &&
1586          FD->isInlineSpecified() &&
1587          FD->getStorageClass() == SC_Extern);
1588}
1589
1590/// MergeFunctionDecl - We just parsed a function 'New' from
1591/// declarator D which has the same name and scope as a previous
1592/// declaration 'Old'.  Figure out how to resolve this situation,
1593/// merging decls or emitting diagnostics as appropriate.
1594///
1595/// In C++, New and Old must be declarations that are not
1596/// overloaded. Use IsOverload to determine whether New and Old are
1597/// overloaded, and to select the Old declaration that New should be
1598/// merged with.
1599///
1600/// Returns true if there was an error, false otherwise.
1601bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1602  // Verify the old decl was also a function.
1603  FunctionDecl *Old = 0;
1604  if (FunctionTemplateDecl *OldFunctionTemplate
1605        = dyn_cast<FunctionTemplateDecl>(OldD))
1606    Old = OldFunctionTemplate->getTemplatedDecl();
1607  else
1608    Old = dyn_cast<FunctionDecl>(OldD);
1609  if (!Old) {
1610    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1611      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1612      Diag(Shadow->getTargetDecl()->getLocation(),
1613           diag::note_using_decl_target);
1614      Diag(Shadow->getUsingDecl()->getLocation(),
1615           diag::note_using_decl) << 0;
1616      return true;
1617    }
1618
1619    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1620      << New->getDeclName();
1621    Diag(OldD->getLocation(), diag::note_previous_definition);
1622    return true;
1623  }
1624
1625  // Determine whether the previous declaration was a definition,
1626  // implicit declaration, or a declaration.
1627  diag::kind PrevDiag;
1628  if (Old->isThisDeclarationADefinition())
1629    PrevDiag = diag::note_previous_definition;
1630  else if (Old->isImplicit())
1631    PrevDiag = diag::note_previous_implicit_declaration;
1632  else
1633    PrevDiag = diag::note_previous_declaration;
1634
1635  QualType OldQType = Context.getCanonicalType(Old->getType());
1636  QualType NewQType = Context.getCanonicalType(New->getType());
1637
1638  // Don't complain about this if we're in GNU89 mode and the old function
1639  // is an extern inline function.
1640  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1641      New->getStorageClass() == SC_Static &&
1642      Old->getStorageClass() != SC_Static &&
1643      !canRedefineFunction(Old, getLangOptions())) {
1644    if (getLangOptions().MicrosoftExt) {
1645      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1646      Diag(Old->getLocation(), PrevDiag);
1647    } else {
1648      Diag(New->getLocation(), diag::err_static_non_static) << New;
1649      Diag(Old->getLocation(), PrevDiag);
1650      return true;
1651    }
1652  }
1653
1654  // If a function is first declared with a calling convention, but is
1655  // later declared or defined without one, the second decl assumes the
1656  // calling convention of the first.
1657  //
1658  // For the new decl, we have to look at the NON-canonical type to tell the
1659  // difference between a function that really doesn't have a calling
1660  // convention and one that is declared cdecl. That's because in
1661  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1662  // because it is the default calling convention.
1663  //
1664  // Note also that we DO NOT return at this point, because we still have
1665  // other tests to run.
1666  const FunctionType *OldType = cast<FunctionType>(OldQType);
1667  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1668  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1669  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1670  bool RequiresAdjustment = false;
1671  if (OldTypeInfo.getCC() != CC_Default &&
1672      NewTypeInfo.getCC() == CC_Default) {
1673    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1674    RequiresAdjustment = true;
1675  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1676                                     NewTypeInfo.getCC())) {
1677    // Calling conventions really aren't compatible, so complain.
1678    Diag(New->getLocation(), diag::err_cconv_change)
1679      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1680      << (OldTypeInfo.getCC() == CC_Default)
1681      << (OldTypeInfo.getCC() == CC_Default ? "" :
1682          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1683    Diag(Old->getLocation(), diag::note_previous_declaration);
1684    return true;
1685  }
1686
1687  // FIXME: diagnose the other way around?
1688  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1689    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1690    RequiresAdjustment = true;
1691  }
1692
1693  // Merge regparm attribute.
1694  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1695      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1696    if (NewTypeInfo.getHasRegParm()) {
1697      Diag(New->getLocation(), diag::err_regparm_mismatch)
1698        << NewType->getRegParmType()
1699        << OldType->getRegParmType();
1700      Diag(Old->getLocation(), diag::note_previous_declaration);
1701      return true;
1702    }
1703
1704    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1705    RequiresAdjustment = true;
1706  }
1707
1708  if (RequiresAdjustment) {
1709    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1710    New->setType(QualType(NewType, 0));
1711    NewQType = Context.getCanonicalType(New->getType());
1712  }
1713
1714  if (getLangOptions().CPlusPlus) {
1715    // (C++98 13.1p2):
1716    //   Certain function declarations cannot be overloaded:
1717    //     -- Function declarations that differ only in the return type
1718    //        cannot be overloaded.
1719    QualType OldReturnType = OldType->getResultType();
1720    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1721    QualType ResQT;
1722    if (OldReturnType != NewReturnType) {
1723      if (NewReturnType->isObjCObjectPointerType()
1724          && OldReturnType->isObjCObjectPointerType())
1725        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1726      if (ResQT.isNull()) {
1727        if (New->isCXXClassMember() && New->isOutOfLine())
1728          Diag(New->getLocation(),
1729               diag::err_member_def_does_not_match_ret_type) << New;
1730        else
1731          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1732        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1733        return true;
1734      }
1735      else
1736        NewQType = ResQT;
1737    }
1738
1739    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1740    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1741    if (OldMethod && NewMethod) {
1742      // Preserve triviality.
1743      NewMethod->setTrivial(OldMethod->isTrivial());
1744
1745      // MSVC allows explicit template specialization at class scope:
1746      // 2 CXMethodDecls referring to the same function will be injected.
1747      // We don't want a redeclartion error.
1748      bool IsClassScopeExplicitSpecialization =
1749                              OldMethod->isFunctionTemplateSpecialization() &&
1750                              NewMethod->isFunctionTemplateSpecialization();
1751      bool isFriend = NewMethod->getFriendObjectKind();
1752
1753      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1754          !IsClassScopeExplicitSpecialization) {
1755        //    -- Member function declarations with the same name and the
1756        //       same parameter types cannot be overloaded if any of them
1757        //       is a static member function declaration.
1758        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1759          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1760          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1761          return true;
1762        }
1763
1764        // C++ [class.mem]p1:
1765        //   [...] A member shall not be declared twice in the
1766        //   member-specification, except that a nested class or member
1767        //   class template can be declared and then later defined.
1768        unsigned NewDiag;
1769        if (isa<CXXConstructorDecl>(OldMethod))
1770          NewDiag = diag::err_constructor_redeclared;
1771        else if (isa<CXXDestructorDecl>(NewMethod))
1772          NewDiag = diag::err_destructor_redeclared;
1773        else if (isa<CXXConversionDecl>(NewMethod))
1774          NewDiag = diag::err_conv_function_redeclared;
1775        else
1776          NewDiag = diag::err_member_redeclared;
1777
1778        Diag(New->getLocation(), NewDiag);
1779        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1780
1781      // Complain if this is an explicit declaration of a special
1782      // member that was initially declared implicitly.
1783      //
1784      // As an exception, it's okay to befriend such methods in order
1785      // to permit the implicit constructor/destructor/operator calls.
1786      } else if (OldMethod->isImplicit()) {
1787        if (isFriend) {
1788          NewMethod->setImplicit();
1789        } else {
1790          Diag(NewMethod->getLocation(),
1791               diag::err_definition_of_implicitly_declared_member)
1792            << New << getSpecialMember(OldMethod);
1793          return true;
1794        }
1795      } else if (OldMethod->isExplicitlyDefaulted()) {
1796        Diag(NewMethod->getLocation(),
1797             diag::err_definition_of_explicitly_defaulted_member)
1798          << getSpecialMember(OldMethod);
1799        return true;
1800      }
1801    }
1802
1803    // (C++98 8.3.5p3):
1804    //   All declarations for a function shall agree exactly in both the
1805    //   return type and the parameter-type-list.
1806    // We also want to respect all the extended bits except noreturn.
1807
1808    // noreturn should now match unless the old type info didn't have it.
1809    QualType OldQTypeForComparison = OldQType;
1810    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1811      assert(OldQType == QualType(OldType, 0));
1812      const FunctionType *OldTypeForComparison
1813        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1814      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1815      assert(OldQTypeForComparison.isCanonical());
1816    }
1817
1818    if (OldQTypeForComparison == NewQType)
1819      return MergeCompatibleFunctionDecls(New, Old);
1820
1821    // Fall through for conflicting redeclarations and redefinitions.
1822  }
1823
1824  // C: Function types need to be compatible, not identical. This handles
1825  // duplicate function decls like "void f(int); void f(enum X);" properly.
1826  if (!getLangOptions().CPlusPlus &&
1827      Context.typesAreCompatible(OldQType, NewQType)) {
1828    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1829    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1830    const FunctionProtoType *OldProto = 0;
1831    if (isa<FunctionNoProtoType>(NewFuncType) &&
1832        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1833      // The old declaration provided a function prototype, but the
1834      // new declaration does not. Merge in the prototype.
1835      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1836      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1837                                                 OldProto->arg_type_end());
1838      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1839                                         ParamTypes.data(), ParamTypes.size(),
1840                                         OldProto->getExtProtoInfo());
1841      New->setType(NewQType);
1842      New->setHasInheritedPrototype();
1843
1844      // Synthesize a parameter for each argument type.
1845      SmallVector<ParmVarDecl*, 16> Params;
1846      for (FunctionProtoType::arg_type_iterator
1847             ParamType = OldProto->arg_type_begin(),
1848             ParamEnd = OldProto->arg_type_end();
1849           ParamType != ParamEnd; ++ParamType) {
1850        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1851                                                 SourceLocation(),
1852                                                 SourceLocation(), 0,
1853                                                 *ParamType, /*TInfo=*/0,
1854                                                 SC_None, SC_None,
1855                                                 0);
1856        Param->setScopeInfo(0, Params.size());
1857        Param->setImplicit();
1858        Params.push_back(Param);
1859      }
1860
1861      New->setParams(Params);
1862    }
1863
1864    return MergeCompatibleFunctionDecls(New, Old);
1865  }
1866
1867  // GNU C permits a K&R definition to follow a prototype declaration
1868  // if the declared types of the parameters in the K&R definition
1869  // match the types in the prototype declaration, even when the
1870  // promoted types of the parameters from the K&R definition differ
1871  // from the types in the prototype. GCC then keeps the types from
1872  // the prototype.
1873  //
1874  // If a variadic prototype is followed by a non-variadic K&R definition,
1875  // the K&R definition becomes variadic.  This is sort of an edge case, but
1876  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1877  // C99 6.9.1p8.
1878  if (!getLangOptions().CPlusPlus &&
1879      Old->hasPrototype() && !New->hasPrototype() &&
1880      New->getType()->getAs<FunctionProtoType>() &&
1881      Old->getNumParams() == New->getNumParams()) {
1882    SmallVector<QualType, 16> ArgTypes;
1883    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1884    const FunctionProtoType *OldProto
1885      = Old->getType()->getAs<FunctionProtoType>();
1886    const FunctionProtoType *NewProto
1887      = New->getType()->getAs<FunctionProtoType>();
1888
1889    // Determine whether this is the GNU C extension.
1890    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1891                                               NewProto->getResultType());
1892    bool LooseCompatible = !MergedReturn.isNull();
1893    for (unsigned Idx = 0, End = Old->getNumParams();
1894         LooseCompatible && Idx != End; ++Idx) {
1895      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1896      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1897      if (Context.typesAreCompatible(OldParm->getType(),
1898                                     NewProto->getArgType(Idx))) {
1899        ArgTypes.push_back(NewParm->getType());
1900      } else if (Context.typesAreCompatible(OldParm->getType(),
1901                                            NewParm->getType(),
1902                                            /*CompareUnqualified=*/true)) {
1903        GNUCompatibleParamWarning Warn
1904          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1905        Warnings.push_back(Warn);
1906        ArgTypes.push_back(NewParm->getType());
1907      } else
1908        LooseCompatible = false;
1909    }
1910
1911    if (LooseCompatible) {
1912      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1913        Diag(Warnings[Warn].NewParm->getLocation(),
1914             diag::ext_param_promoted_not_compatible_with_prototype)
1915          << Warnings[Warn].PromotedType
1916          << Warnings[Warn].OldParm->getType();
1917        if (Warnings[Warn].OldParm->getLocation().isValid())
1918          Diag(Warnings[Warn].OldParm->getLocation(),
1919               diag::note_previous_declaration);
1920      }
1921
1922      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1923                                           ArgTypes.size(),
1924                                           OldProto->getExtProtoInfo()));
1925      return MergeCompatibleFunctionDecls(New, Old);
1926    }
1927
1928    // Fall through to diagnose conflicting types.
1929  }
1930
1931  // A function that has already been declared has been redeclared or defined
1932  // with a different type- show appropriate diagnostic
1933  if (unsigned BuiltinID = Old->getBuiltinID()) {
1934    // The user has declared a builtin function with an incompatible
1935    // signature.
1936    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1937      // The function the user is redeclaring is a library-defined
1938      // function like 'malloc' or 'printf'. Warn about the
1939      // redeclaration, then pretend that we don't know about this
1940      // library built-in.
1941      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1942      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1943        << Old << Old->getType();
1944      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1945      Old->setInvalidDecl();
1946      return false;
1947    }
1948
1949    PrevDiag = diag::note_previous_builtin_declaration;
1950  }
1951
1952  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1953  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1954  return true;
1955}
1956
1957/// \brief Completes the merge of two function declarations that are
1958/// known to be compatible.
1959///
1960/// This routine handles the merging of attributes and other
1961/// properties of function declarations form the old declaration to
1962/// the new declaration, once we know that New is in fact a
1963/// redeclaration of Old.
1964///
1965/// \returns false
1966bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1967  // Merge the attributes
1968  mergeDeclAttributes(New, Old, Context);
1969
1970  // Merge the storage class.
1971  if (Old->getStorageClass() != SC_Extern &&
1972      Old->getStorageClass() != SC_None)
1973    New->setStorageClass(Old->getStorageClass());
1974
1975  // Merge "pure" flag.
1976  if (Old->isPure())
1977    New->setPure();
1978
1979  // __module_private__ is propagated to later declarations.
1980  if (Old->isModulePrivate())
1981    New->setModulePrivate();
1982  else if (New->isModulePrivate())
1983    diagnoseModulePrivateRedeclaration(New, Old);
1984
1985  // Merge attributes from the parameters.  These can mismatch with K&R
1986  // declarations.
1987  if (New->getNumParams() == Old->getNumParams())
1988    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1989      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1990                               Context);
1991
1992  if (getLangOptions().CPlusPlus)
1993    return MergeCXXFunctionDecl(New, Old);
1994
1995  return false;
1996}
1997
1998
1999void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2000                                const ObjCMethodDecl *oldMethod) {
2001  // We don't want to merge unavailable and deprecated attributes
2002  // except from interface to implementation.
2003  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2004
2005  // Merge the attributes.
2006  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2007
2008  // Merge attributes from the parameters.
2009  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2010  for (ObjCMethodDecl::param_iterator
2011         ni = newMethod->param_begin(), ne = newMethod->param_end();
2012       ni != ne; ++ni, ++oi)
2013    mergeParamDeclAttributes(*ni, *oi, Context);
2014
2015  CheckObjCMethodOverride(newMethod, oldMethod, true);
2016}
2017
2018/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2019/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2020/// emitting diagnostics as appropriate.
2021///
2022/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2023/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2024/// check them before the initializer is attached.
2025///
2026void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2027  if (New->isInvalidDecl() || Old->isInvalidDecl())
2028    return;
2029
2030  QualType MergedT;
2031  if (getLangOptions().CPlusPlus) {
2032    AutoType *AT = New->getType()->getContainedAutoType();
2033    if (AT && !AT->isDeduced()) {
2034      // We don't know what the new type is until the initializer is attached.
2035      return;
2036    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2037      // These could still be something that needs exception specs checked.
2038      return MergeVarDeclExceptionSpecs(New, Old);
2039    }
2040    // C++ [basic.link]p10:
2041    //   [...] the types specified by all declarations referring to a given
2042    //   object or function shall be identical, except that declarations for an
2043    //   array object can specify array types that differ by the presence or
2044    //   absence of a major array bound (8.3.4).
2045    else if (Old->getType()->isIncompleteArrayType() &&
2046             New->getType()->isArrayType()) {
2047      CanQual<ArrayType> OldArray
2048        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2049      CanQual<ArrayType> NewArray
2050        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2051      if (OldArray->getElementType() == NewArray->getElementType())
2052        MergedT = New->getType();
2053    } else if (Old->getType()->isArrayType() &&
2054             New->getType()->isIncompleteArrayType()) {
2055      CanQual<ArrayType> OldArray
2056        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2057      CanQual<ArrayType> NewArray
2058        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2059      if (OldArray->getElementType() == NewArray->getElementType())
2060        MergedT = Old->getType();
2061    } else if (New->getType()->isObjCObjectPointerType()
2062               && Old->getType()->isObjCObjectPointerType()) {
2063        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2064                                                        Old->getType());
2065    }
2066  } else {
2067    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2068  }
2069  if (MergedT.isNull()) {
2070    Diag(New->getLocation(), diag::err_redefinition_different_type)
2071      << New->getDeclName();
2072    Diag(Old->getLocation(), diag::note_previous_definition);
2073    return New->setInvalidDecl();
2074  }
2075  New->setType(MergedT);
2076}
2077
2078/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2079/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2080/// situation, merging decls or emitting diagnostics as appropriate.
2081///
2082/// Tentative definition rules (C99 6.9.2p2) are checked by
2083/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2084/// definitions here, since the initializer hasn't been attached.
2085///
2086void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2087  // If the new decl is already invalid, don't do any other checking.
2088  if (New->isInvalidDecl())
2089    return;
2090
2091  // Verify the old decl was also a variable.
2092  VarDecl *Old = 0;
2093  if (!Previous.isSingleResult() ||
2094      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2095    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2096      << New->getDeclName();
2097    Diag(Previous.getRepresentativeDecl()->getLocation(),
2098         diag::note_previous_definition);
2099    return New->setInvalidDecl();
2100  }
2101
2102  // C++ [class.mem]p1:
2103  //   A member shall not be declared twice in the member-specification [...]
2104  //
2105  // Here, we need only consider static data members.
2106  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2107    Diag(New->getLocation(), diag::err_duplicate_member)
2108      << New->getIdentifier();
2109    Diag(Old->getLocation(), diag::note_previous_declaration);
2110    New->setInvalidDecl();
2111  }
2112
2113  mergeDeclAttributes(New, Old, Context);
2114  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2115  if (New->getAttr<WeakImportAttr>() &&
2116      Old->getStorageClass() == SC_None &&
2117      !Old->getAttr<WeakImportAttr>()) {
2118    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2119    Diag(Old->getLocation(), diag::note_previous_definition);
2120    // Remove weak_import attribute on new declaration.
2121    New->dropAttr<WeakImportAttr>();
2122  }
2123
2124  // Merge the types.
2125  MergeVarDeclTypes(New, Old);
2126  if (New->isInvalidDecl())
2127    return;
2128
2129  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2130  if (New->getStorageClass() == SC_Static &&
2131      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2132    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2133    Diag(Old->getLocation(), diag::note_previous_definition);
2134    return New->setInvalidDecl();
2135  }
2136  // C99 6.2.2p4:
2137  //   For an identifier declared with the storage-class specifier
2138  //   extern in a scope in which a prior declaration of that
2139  //   identifier is visible,23) if the prior declaration specifies
2140  //   internal or external linkage, the linkage of the identifier at
2141  //   the later declaration is the same as the linkage specified at
2142  //   the prior declaration. If no prior declaration is visible, or
2143  //   if the prior declaration specifies no linkage, then the
2144  //   identifier has external linkage.
2145  if (New->hasExternalStorage() && Old->hasLinkage())
2146    /* Okay */;
2147  else if (New->getStorageClass() != SC_Static &&
2148           Old->getStorageClass() == SC_Static) {
2149    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2150    Diag(Old->getLocation(), diag::note_previous_definition);
2151    return New->setInvalidDecl();
2152  }
2153
2154  // Check if extern is followed by non-extern and vice-versa.
2155  if (New->hasExternalStorage() &&
2156      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2157    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2158    Diag(Old->getLocation(), diag::note_previous_definition);
2159    return New->setInvalidDecl();
2160  }
2161  if (Old->hasExternalStorage() &&
2162      !New->hasLinkage() && New->isLocalVarDecl()) {
2163    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2164    Diag(Old->getLocation(), diag::note_previous_definition);
2165    return New->setInvalidDecl();
2166  }
2167
2168  // __module_private__ is propagated to later declarations.
2169  if (Old->isModulePrivate())
2170    New->setModulePrivate();
2171  else if (New->isModulePrivate())
2172    diagnoseModulePrivateRedeclaration(New, Old);
2173
2174  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2175
2176  // FIXME: The test for external storage here seems wrong? We still
2177  // need to check for mismatches.
2178  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2179      // Don't complain about out-of-line definitions of static members.
2180      !(Old->getLexicalDeclContext()->isRecord() &&
2181        !New->getLexicalDeclContext()->isRecord())) {
2182    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2183    Diag(Old->getLocation(), diag::note_previous_definition);
2184    return New->setInvalidDecl();
2185  }
2186
2187  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2188    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2189    Diag(Old->getLocation(), diag::note_previous_definition);
2190  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2191    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193  }
2194
2195  // C++ doesn't have tentative definitions, so go right ahead and check here.
2196  const VarDecl *Def;
2197  if (getLangOptions().CPlusPlus &&
2198      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2199      (Def = Old->getDefinition())) {
2200    Diag(New->getLocation(), diag::err_redefinition)
2201      << New->getDeclName();
2202    Diag(Def->getLocation(), diag::note_previous_definition);
2203    New->setInvalidDecl();
2204    return;
2205  }
2206  // c99 6.2.2 P4.
2207  // For an identifier declared with the storage-class specifier extern in a
2208  // scope in which a prior declaration of that identifier is visible, if
2209  // the prior declaration specifies internal or external linkage, the linkage
2210  // of the identifier at the later declaration is the same as the linkage
2211  // specified at the prior declaration.
2212  // FIXME. revisit this code.
2213  if (New->hasExternalStorage() &&
2214      Old->getLinkage() == InternalLinkage &&
2215      New->getDeclContext() == Old->getDeclContext())
2216    New->setStorageClass(Old->getStorageClass());
2217
2218  // Keep a chain of previous declarations.
2219  New->setPreviousDeclaration(Old);
2220
2221  // Inherit access appropriately.
2222  New->setAccess(Old->getAccess());
2223}
2224
2225/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2226/// no declarator (e.g. "struct foo;") is parsed.
2227Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2228                                       DeclSpec &DS) {
2229  return ParsedFreeStandingDeclSpec(S, AS, DS,
2230                                    MultiTemplateParamsArg(*this, 0, 0));
2231}
2232
2233/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2234/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2235/// parameters to cope with template friend declarations.
2236Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2237                                       DeclSpec &DS,
2238                                       MultiTemplateParamsArg TemplateParams) {
2239  Decl *TagD = 0;
2240  TagDecl *Tag = 0;
2241  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2242      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2243      DS.getTypeSpecType() == DeclSpec::TST_union ||
2244      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2245    TagD = DS.getRepAsDecl();
2246
2247    if (!TagD) // We probably had an error
2248      return 0;
2249
2250    // Note that the above type specs guarantee that the
2251    // type rep is a Decl, whereas in many of the others
2252    // it's a Type.
2253    Tag = dyn_cast<TagDecl>(TagD);
2254  }
2255
2256  if (Tag)
2257    Tag->setFreeStanding();
2258
2259  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2260    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2261    // or incomplete types shall not be restrict-qualified."
2262    if (TypeQuals & DeclSpec::TQ_restrict)
2263      Diag(DS.getRestrictSpecLoc(),
2264           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2265           << DS.getSourceRange();
2266  }
2267
2268  if (DS.isConstexprSpecified()) {
2269    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2270    // and definitions of functions and variables.
2271    if (Tag)
2272      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2273        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2274            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2275            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2276    else
2277      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2278    // Don't emit warnings after this error.
2279    return TagD;
2280  }
2281
2282  if (DS.isFriendSpecified()) {
2283    // If we're dealing with a decl but not a TagDecl, assume that
2284    // whatever routines created it handled the friendship aspect.
2285    if (TagD && !Tag)
2286      return 0;
2287    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2288  }
2289
2290  // Track whether we warned about the fact that there aren't any
2291  // declarators.
2292  bool emittedWarning = false;
2293
2294  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2295    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2296
2297    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2298        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2299      if (getLangOptions().CPlusPlus ||
2300          Record->getDeclContext()->isRecord())
2301        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2302
2303      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2304        << DS.getSourceRange();
2305      emittedWarning = true;
2306    }
2307  }
2308
2309  // Check for Microsoft C extension: anonymous struct.
2310  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2311      CurContext->isRecord() &&
2312      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2313    // Handle 2 kinds of anonymous struct:
2314    //   struct STRUCT;
2315    // and
2316    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2317    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2318    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2319        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2320         DS.getRepAsType().get()->isStructureType())) {
2321      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2322        << DS.getSourceRange();
2323      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2324    }
2325  }
2326
2327  if (getLangOptions().CPlusPlus &&
2328      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2329    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2330      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2331          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2332        Diag(Enum->getLocation(), diag::ext_no_declarators)
2333          << DS.getSourceRange();
2334        emittedWarning = true;
2335      }
2336
2337  // Skip all the checks below if we have a type error.
2338  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2339
2340  if (!DS.isMissingDeclaratorOk()) {
2341    // Warn about typedefs of enums without names, since this is an
2342    // extension in both Microsoft and GNU.
2343    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2344        Tag && isa<EnumDecl>(Tag)) {
2345      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2346        << DS.getSourceRange();
2347      return Tag;
2348    }
2349
2350    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2351      << DS.getSourceRange();
2352    emittedWarning = true;
2353  }
2354
2355  // We're going to complain about a bunch of spurious specifiers;
2356  // only do this if we're declaring a tag, because otherwise we
2357  // should be getting diag::ext_no_declarators.
2358  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2359    return TagD;
2360
2361  // Note that a linkage-specification sets a storage class, but
2362  // 'extern "C" struct foo;' is actually valid and not theoretically
2363  // useless.
2364  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2365    if (!DS.isExternInLinkageSpec())
2366      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2367        << DeclSpec::getSpecifierName(scs);
2368
2369  if (DS.isThreadSpecified())
2370    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2371  if (DS.getTypeQualifiers()) {
2372    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2373      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2374    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2375      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2376    // Restrict is covered above.
2377  }
2378  if (DS.isInlineSpecified())
2379    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2380  if (DS.isVirtualSpecified())
2381    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2382  if (DS.isExplicitSpecified())
2383    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2384
2385  if (DS.isModulePrivateSpecified() &&
2386      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2387    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2388      << Tag->getTagKind()
2389      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2390
2391  // FIXME: Warn on useless attributes
2392
2393  return TagD;
2394}
2395
2396/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2397/// builds a statement for it and returns it so it is evaluated.
2398StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2399  StmtResult R;
2400  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2401    Expr *Exp = DS.getRepAsExpr();
2402    QualType Ty = Exp->getType();
2403    if (Ty->isPointerType()) {
2404      do
2405        Ty = Ty->getAs<PointerType>()->getPointeeType();
2406      while (Ty->isPointerType());
2407    }
2408    if (Ty->isVariableArrayType()) {
2409      R = ActOnExprStmt(MakeFullExpr(Exp));
2410    }
2411  }
2412  return R;
2413}
2414
2415/// We are trying to inject an anonymous member into the given scope;
2416/// check if there's an existing declaration that can't be overloaded.
2417///
2418/// \return true if this is a forbidden redeclaration
2419static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2420                                         Scope *S,
2421                                         DeclContext *Owner,
2422                                         DeclarationName Name,
2423                                         SourceLocation NameLoc,
2424                                         unsigned diagnostic) {
2425  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2426                 Sema::ForRedeclaration);
2427  if (!SemaRef.LookupName(R, S)) return false;
2428
2429  if (R.getAsSingle<TagDecl>())
2430    return false;
2431
2432  // Pick a representative declaration.
2433  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2434  assert(PrevDecl && "Expected a non-null Decl");
2435
2436  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2437    return false;
2438
2439  SemaRef.Diag(NameLoc, diagnostic) << Name;
2440  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2441
2442  return true;
2443}
2444
2445/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2446/// anonymous struct or union AnonRecord into the owning context Owner
2447/// and scope S. This routine will be invoked just after we realize
2448/// that an unnamed union or struct is actually an anonymous union or
2449/// struct, e.g.,
2450///
2451/// @code
2452/// union {
2453///   int i;
2454///   float f;
2455/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2456///    // f into the surrounding scope.x
2457/// @endcode
2458///
2459/// This routine is recursive, injecting the names of nested anonymous
2460/// structs/unions into the owning context and scope as well.
2461static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2462                                                DeclContext *Owner,
2463                                                RecordDecl *AnonRecord,
2464                                                AccessSpecifier AS,
2465                              SmallVector<NamedDecl*, 2> &Chaining,
2466                                                      bool MSAnonStruct) {
2467  unsigned diagKind
2468    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2469                            : diag::err_anonymous_struct_member_redecl;
2470
2471  bool Invalid = false;
2472
2473  // Look every FieldDecl and IndirectFieldDecl with a name.
2474  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2475                               DEnd = AnonRecord->decls_end();
2476       D != DEnd; ++D) {
2477    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2478        cast<NamedDecl>(*D)->getDeclName()) {
2479      ValueDecl *VD = cast<ValueDecl>(*D);
2480      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2481                                       VD->getLocation(), diagKind)) {
2482        // C++ [class.union]p2:
2483        //   The names of the members of an anonymous union shall be
2484        //   distinct from the names of any other entity in the
2485        //   scope in which the anonymous union is declared.
2486        Invalid = true;
2487      } else {
2488        // C++ [class.union]p2:
2489        //   For the purpose of name lookup, after the anonymous union
2490        //   definition, the members of the anonymous union are
2491        //   considered to have been defined in the scope in which the
2492        //   anonymous union is declared.
2493        unsigned OldChainingSize = Chaining.size();
2494        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2495          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2496               PE = IF->chain_end(); PI != PE; ++PI)
2497            Chaining.push_back(*PI);
2498        else
2499          Chaining.push_back(VD);
2500
2501        assert(Chaining.size() >= 2);
2502        NamedDecl **NamedChain =
2503          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2504        for (unsigned i = 0; i < Chaining.size(); i++)
2505          NamedChain[i] = Chaining[i];
2506
2507        IndirectFieldDecl* IndirectField =
2508          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2509                                    VD->getIdentifier(), VD->getType(),
2510                                    NamedChain, Chaining.size());
2511
2512        IndirectField->setAccess(AS);
2513        IndirectField->setImplicit();
2514        SemaRef.PushOnScopeChains(IndirectField, S);
2515
2516        // That includes picking up the appropriate access specifier.
2517        if (AS != AS_none) IndirectField->setAccess(AS);
2518
2519        Chaining.resize(OldChainingSize);
2520      }
2521    }
2522  }
2523
2524  return Invalid;
2525}
2526
2527/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2528/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2529/// illegal input values are mapped to SC_None.
2530static StorageClass
2531StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2532  switch (StorageClassSpec) {
2533  case DeclSpec::SCS_unspecified:    return SC_None;
2534  case DeclSpec::SCS_extern:         return SC_Extern;
2535  case DeclSpec::SCS_static:         return SC_Static;
2536  case DeclSpec::SCS_auto:           return SC_Auto;
2537  case DeclSpec::SCS_register:       return SC_Register;
2538  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2539    // Illegal SCSs map to None: error reporting is up to the caller.
2540  case DeclSpec::SCS_mutable:        // Fall through.
2541  case DeclSpec::SCS_typedef:        return SC_None;
2542  }
2543  llvm_unreachable("unknown storage class specifier");
2544}
2545
2546/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2547/// a StorageClass. Any error reporting is up to the caller:
2548/// illegal input values are mapped to SC_None.
2549static StorageClass
2550StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2551  switch (StorageClassSpec) {
2552  case DeclSpec::SCS_unspecified:    return SC_None;
2553  case DeclSpec::SCS_extern:         return SC_Extern;
2554  case DeclSpec::SCS_static:         return SC_Static;
2555  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2556    // Illegal SCSs map to None: error reporting is up to the caller.
2557  case DeclSpec::SCS_auto:           // Fall through.
2558  case DeclSpec::SCS_mutable:        // Fall through.
2559  case DeclSpec::SCS_register:       // Fall through.
2560  case DeclSpec::SCS_typedef:        return SC_None;
2561  }
2562  llvm_unreachable("unknown storage class specifier");
2563}
2564
2565/// BuildAnonymousStructOrUnion - Handle the declaration of an
2566/// anonymous structure or union. Anonymous unions are a C++ feature
2567/// (C++ [class.union]) and a GNU C extension; anonymous structures
2568/// are a GNU C and GNU C++ extension.
2569Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2570                                             AccessSpecifier AS,
2571                                             RecordDecl *Record) {
2572  DeclContext *Owner = Record->getDeclContext();
2573
2574  // Diagnose whether this anonymous struct/union is an extension.
2575  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2576    Diag(Record->getLocation(), diag::ext_anonymous_union);
2577  else if (!Record->isUnion())
2578    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2579
2580  // C and C++ require different kinds of checks for anonymous
2581  // structs/unions.
2582  bool Invalid = false;
2583  if (getLangOptions().CPlusPlus) {
2584    const char* PrevSpec = 0;
2585    unsigned DiagID;
2586    // C++ [class.union]p3:
2587    //   Anonymous unions declared in a named namespace or in the
2588    //   global namespace shall be declared static.
2589    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2590        (isa<TranslationUnitDecl>(Owner) ||
2591         (isa<NamespaceDecl>(Owner) &&
2592          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2593      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2594      Invalid = true;
2595
2596      // Recover by adding 'static'.
2597      DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2598                             PrevSpec, DiagID);
2599    }
2600    // C++ [class.union]p3:
2601    //   A storage class is not allowed in a declaration of an
2602    //   anonymous union in a class scope.
2603    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2604             isa<RecordDecl>(Owner)) {
2605      Diag(DS.getStorageClassSpecLoc(),
2606           diag::err_anonymous_union_with_storage_spec);
2607      Invalid = true;
2608
2609      // Recover by removing the storage specifier.
2610      DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, SourceLocation(),
2611                             PrevSpec, DiagID);
2612    }
2613
2614    // Ignore const/volatile/restrict qualifiers.
2615    if (DS.getTypeQualifiers()) {
2616      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2617        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2618          << Record->isUnion() << 0
2619          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2620      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2621        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2622          << Record->isUnion() << 1
2623          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2624      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2625        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2626          << Record->isUnion() << 2
2627          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2628
2629      DS.ClearTypeQualifiers();
2630    }
2631
2632    // C++ [class.union]p2:
2633    //   The member-specification of an anonymous union shall only
2634    //   define non-static data members. [Note: nested types and
2635    //   functions cannot be declared within an anonymous union. ]
2636    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2637                                 MemEnd = Record->decls_end();
2638         Mem != MemEnd; ++Mem) {
2639      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2640        // C++ [class.union]p3:
2641        //   An anonymous union shall not have private or protected
2642        //   members (clause 11).
2643        assert(FD->getAccess() != AS_none);
2644        if (FD->getAccess() != AS_public) {
2645          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2646            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2647          Invalid = true;
2648        }
2649
2650        // C++ [class.union]p1
2651        //   An object of a class with a non-trivial constructor, a non-trivial
2652        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2653        //   assignment operator cannot be a member of a union, nor can an
2654        //   array of such objects.
2655        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2656          Invalid = true;
2657      } else if ((*Mem)->isImplicit()) {
2658        // Any implicit members are fine.
2659      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2660        // This is a type that showed up in an
2661        // elaborated-type-specifier inside the anonymous struct or
2662        // union, but which actually declares a type outside of the
2663        // anonymous struct or union. It's okay.
2664      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2665        if (!MemRecord->isAnonymousStructOrUnion() &&
2666            MemRecord->getDeclName()) {
2667          // Visual C++ allows type definition in anonymous struct or union.
2668          if (getLangOptions().MicrosoftExt)
2669            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2670              << (int)Record->isUnion();
2671          else {
2672            // This is a nested type declaration.
2673            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2674              << (int)Record->isUnion();
2675            Invalid = true;
2676          }
2677        }
2678      } else if (isa<AccessSpecDecl>(*Mem)) {
2679        // Any access specifier is fine.
2680      } else {
2681        // We have something that isn't a non-static data
2682        // member. Complain about it.
2683        unsigned DK = diag::err_anonymous_record_bad_member;
2684        if (isa<TypeDecl>(*Mem))
2685          DK = diag::err_anonymous_record_with_type;
2686        else if (isa<FunctionDecl>(*Mem))
2687          DK = diag::err_anonymous_record_with_function;
2688        else if (isa<VarDecl>(*Mem))
2689          DK = diag::err_anonymous_record_with_static;
2690
2691        // Visual C++ allows type definition in anonymous struct or union.
2692        if (getLangOptions().MicrosoftExt &&
2693            DK == diag::err_anonymous_record_with_type)
2694          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2695            << (int)Record->isUnion();
2696        else {
2697          Diag((*Mem)->getLocation(), DK)
2698              << (int)Record->isUnion();
2699          Invalid = true;
2700        }
2701      }
2702    }
2703  }
2704
2705  if (!Record->isUnion() && !Owner->isRecord()) {
2706    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2707      << (int)getLangOptions().CPlusPlus;
2708    Invalid = true;
2709  }
2710
2711  // Mock up a declarator.
2712  Declarator Dc(DS, Declarator::MemberContext);
2713  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2714  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2715
2716  // Create a declaration for this anonymous struct/union.
2717  NamedDecl *Anon = 0;
2718  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2719    Anon = FieldDecl::Create(Context, OwningClass,
2720                             DS.getSourceRange().getBegin(),
2721                             Record->getLocation(),
2722                             /*IdentifierInfo=*/0,
2723                             Context.getTypeDeclType(Record),
2724                             TInfo,
2725                             /*BitWidth=*/0, /*Mutable=*/false,
2726                             /*HasInit=*/false);
2727    Anon->setAccess(AS);
2728    if (getLangOptions().CPlusPlus)
2729      FieldCollector->Add(cast<FieldDecl>(Anon));
2730  } else {
2731    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2732    assert(SCSpec != DeclSpec::SCS_typedef &&
2733           "Parser allowed 'typedef' as storage class VarDecl.");
2734    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2735    if (SCSpec == DeclSpec::SCS_mutable) {
2736      // mutable can only appear on non-static class members, so it's always
2737      // an error here
2738      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2739      Invalid = true;
2740      SC = SC_None;
2741    }
2742    SCSpec = DS.getStorageClassSpecAsWritten();
2743    VarDecl::StorageClass SCAsWritten
2744      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2745
2746    Anon = VarDecl::Create(Context, Owner,
2747                           DS.getSourceRange().getBegin(),
2748                           Record->getLocation(), /*IdentifierInfo=*/0,
2749                           Context.getTypeDeclType(Record),
2750                           TInfo, SC, SCAsWritten);
2751
2752    // Default-initialize the implicit variable. This initialization will be
2753    // trivial in almost all cases, except if a union member has an in-class
2754    // initializer:
2755    //   union { int n = 0; };
2756    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2757  }
2758  Anon->setImplicit();
2759
2760  // Add the anonymous struct/union object to the current
2761  // context. We'll be referencing this object when we refer to one of
2762  // its members.
2763  Owner->addDecl(Anon);
2764
2765  // Inject the members of the anonymous struct/union into the owning
2766  // context and into the identifier resolver chain for name lookup
2767  // purposes.
2768  SmallVector<NamedDecl*, 2> Chain;
2769  Chain.push_back(Anon);
2770
2771  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2772                                          Chain, false))
2773    Invalid = true;
2774
2775  // Mark this as an anonymous struct/union type. Note that we do not
2776  // do this until after we have already checked and injected the
2777  // members of this anonymous struct/union type, because otherwise
2778  // the members could be injected twice: once by DeclContext when it
2779  // builds its lookup table, and once by
2780  // InjectAnonymousStructOrUnionMembers.
2781  Record->setAnonymousStructOrUnion(true);
2782
2783  if (Invalid)
2784    Anon->setInvalidDecl();
2785
2786  return Anon;
2787}
2788
2789/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2790/// Microsoft C anonymous structure.
2791/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2792/// Example:
2793///
2794/// struct A { int a; };
2795/// struct B { struct A; int b; };
2796///
2797/// void foo() {
2798///   B var;
2799///   var.a = 3;
2800/// }
2801///
2802Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2803                                           RecordDecl *Record) {
2804
2805  // If there is no Record, get the record via the typedef.
2806  if (!Record)
2807    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2808
2809  // Mock up a declarator.
2810  Declarator Dc(DS, Declarator::TypeNameContext);
2811  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2812  assert(TInfo && "couldn't build declarator info for anonymous struct");
2813
2814  // Create a declaration for this anonymous struct.
2815  NamedDecl* Anon = FieldDecl::Create(Context,
2816                             cast<RecordDecl>(CurContext),
2817                             DS.getSourceRange().getBegin(),
2818                             DS.getSourceRange().getBegin(),
2819                             /*IdentifierInfo=*/0,
2820                             Context.getTypeDeclType(Record),
2821                             TInfo,
2822                             /*BitWidth=*/0, /*Mutable=*/false,
2823                             /*HasInit=*/false);
2824  Anon->setImplicit();
2825
2826  // Add the anonymous struct object to the current context.
2827  CurContext->addDecl(Anon);
2828
2829  // Inject the members of the anonymous struct into the current
2830  // context and into the identifier resolver chain for name lookup
2831  // purposes.
2832  SmallVector<NamedDecl*, 2> Chain;
2833  Chain.push_back(Anon);
2834
2835  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2836                                          Record->getDefinition(),
2837                                          AS_none, Chain, true))
2838    Anon->setInvalidDecl();
2839
2840  return Anon;
2841}
2842
2843/// GetNameForDeclarator - Determine the full declaration name for the
2844/// given Declarator.
2845DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2846  return GetNameFromUnqualifiedId(D.getName());
2847}
2848
2849/// \brief Retrieves the declaration name from a parsed unqualified-id.
2850DeclarationNameInfo
2851Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2852  DeclarationNameInfo NameInfo;
2853  NameInfo.setLoc(Name.StartLocation);
2854
2855  switch (Name.getKind()) {
2856
2857  case UnqualifiedId::IK_ImplicitSelfParam:
2858  case UnqualifiedId::IK_Identifier:
2859    NameInfo.setName(Name.Identifier);
2860    NameInfo.setLoc(Name.StartLocation);
2861    return NameInfo;
2862
2863  case UnqualifiedId::IK_OperatorFunctionId:
2864    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2865                                           Name.OperatorFunctionId.Operator));
2866    NameInfo.setLoc(Name.StartLocation);
2867    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2868      = Name.OperatorFunctionId.SymbolLocations[0];
2869    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2870      = Name.EndLocation.getRawEncoding();
2871    return NameInfo;
2872
2873  case UnqualifiedId::IK_LiteralOperatorId:
2874    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2875                                                           Name.Identifier));
2876    NameInfo.setLoc(Name.StartLocation);
2877    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2878    return NameInfo;
2879
2880  case UnqualifiedId::IK_ConversionFunctionId: {
2881    TypeSourceInfo *TInfo;
2882    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2883    if (Ty.isNull())
2884      return DeclarationNameInfo();
2885    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2886                                               Context.getCanonicalType(Ty)));
2887    NameInfo.setLoc(Name.StartLocation);
2888    NameInfo.setNamedTypeInfo(TInfo);
2889    return NameInfo;
2890  }
2891
2892  case UnqualifiedId::IK_ConstructorName: {
2893    TypeSourceInfo *TInfo;
2894    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2895    if (Ty.isNull())
2896      return DeclarationNameInfo();
2897    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2898                                              Context.getCanonicalType(Ty)));
2899    NameInfo.setLoc(Name.StartLocation);
2900    NameInfo.setNamedTypeInfo(TInfo);
2901    return NameInfo;
2902  }
2903
2904  case UnqualifiedId::IK_ConstructorTemplateId: {
2905    // In well-formed code, we can only have a constructor
2906    // template-id that refers to the current context, so go there
2907    // to find the actual type being constructed.
2908    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2909    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2910      return DeclarationNameInfo();
2911
2912    // Determine the type of the class being constructed.
2913    QualType CurClassType = Context.getTypeDeclType(CurClass);
2914
2915    // FIXME: Check two things: that the template-id names the same type as
2916    // CurClassType, and that the template-id does not occur when the name
2917    // was qualified.
2918
2919    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2920                                    Context.getCanonicalType(CurClassType)));
2921    NameInfo.setLoc(Name.StartLocation);
2922    // FIXME: should we retrieve TypeSourceInfo?
2923    NameInfo.setNamedTypeInfo(0);
2924    return NameInfo;
2925  }
2926
2927  case UnqualifiedId::IK_DestructorName: {
2928    TypeSourceInfo *TInfo;
2929    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2930    if (Ty.isNull())
2931      return DeclarationNameInfo();
2932    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2933                                              Context.getCanonicalType(Ty)));
2934    NameInfo.setLoc(Name.StartLocation);
2935    NameInfo.setNamedTypeInfo(TInfo);
2936    return NameInfo;
2937  }
2938
2939  case UnqualifiedId::IK_TemplateId: {
2940    TemplateName TName = Name.TemplateId->Template.get();
2941    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2942    return Context.getNameForTemplate(TName, TNameLoc);
2943  }
2944
2945  } // switch (Name.getKind())
2946
2947  llvm_unreachable("Unknown name kind");
2948}
2949
2950static QualType getCoreType(QualType Ty) {
2951  do {
2952    if (Ty->isPointerType() || Ty->isReferenceType())
2953      Ty = Ty->getPointeeType();
2954    else if (Ty->isArrayType())
2955      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2956    else
2957      return Ty.withoutLocalFastQualifiers();
2958  } while (true);
2959}
2960
2961/// isNearlyMatchingFunction - Determine whether the C++ functions
2962/// Declaration and Definition are "nearly" matching. This heuristic
2963/// is used to improve diagnostics in the case where an out-of-line
2964/// function definition doesn't match any declaration within the class
2965/// or namespace. Also sets Params to the list of indices to the
2966/// parameters that differ between the declaration and the definition.
2967static bool isNearlyMatchingFunction(ASTContext &Context,
2968                                     FunctionDecl *Declaration,
2969                                     FunctionDecl *Definition,
2970                                     llvm::SmallVectorImpl<unsigned> &Params) {
2971  Params.clear();
2972  if (Declaration->param_size() != Definition->param_size())
2973    return false;
2974  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2975    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2976    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2977
2978    // The parameter types are identical
2979    if (Context.hasSameType(DefParamTy, DeclParamTy))
2980      continue;
2981
2982    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2983    QualType DefParamBaseTy = getCoreType(DefParamTy);
2984    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2985    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2986
2987    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2988        (DeclTyName && DeclTyName == DefTyName))
2989      Params.push_back(Idx);
2990    else  // The two parameters aren't even close
2991      return false;
2992  }
2993
2994  return true;
2995}
2996
2997/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2998/// declarator needs to be rebuilt in the current instantiation.
2999/// Any bits of declarator which appear before the name are valid for
3000/// consideration here.  That's specifically the type in the decl spec
3001/// and the base type in any member-pointer chunks.
3002static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3003                                                    DeclarationName Name) {
3004  // The types we specifically need to rebuild are:
3005  //   - typenames, typeofs, and decltypes
3006  //   - types which will become injected class names
3007  // Of course, we also need to rebuild any type referencing such a
3008  // type.  It's safest to just say "dependent", but we call out a
3009  // few cases here.
3010
3011  DeclSpec &DS = D.getMutableDeclSpec();
3012  switch (DS.getTypeSpecType()) {
3013  case DeclSpec::TST_typename:
3014  case DeclSpec::TST_typeofType:
3015  case DeclSpec::TST_decltype:
3016  case DeclSpec::TST_underlyingType:
3017  case DeclSpec::TST_atomic: {
3018    // Grab the type from the parser.
3019    TypeSourceInfo *TSI = 0;
3020    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3021    if (T.isNull() || !T->isDependentType()) break;
3022
3023    // Make sure there's a type source info.  This isn't really much
3024    // of a waste; most dependent types should have type source info
3025    // attached already.
3026    if (!TSI)
3027      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3028
3029    // Rebuild the type in the current instantiation.
3030    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3031    if (!TSI) return true;
3032
3033    // Store the new type back in the decl spec.
3034    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3035    DS.UpdateTypeRep(LocType);
3036    break;
3037  }
3038
3039  case DeclSpec::TST_typeofExpr: {
3040    Expr *E = DS.getRepAsExpr();
3041    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3042    if (Result.isInvalid()) return true;
3043    DS.UpdateExprRep(Result.get());
3044    break;
3045  }
3046
3047  default:
3048    // Nothing to do for these decl specs.
3049    break;
3050  }
3051
3052  // It doesn't matter what order we do this in.
3053  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3054    DeclaratorChunk &Chunk = D.getTypeObject(I);
3055
3056    // The only type information in the declarator which can come
3057    // before the declaration name is the base type of a member
3058    // pointer.
3059    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3060      continue;
3061
3062    // Rebuild the scope specifier in-place.
3063    CXXScopeSpec &SS = Chunk.Mem.Scope();
3064    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3065      return true;
3066  }
3067
3068  return false;
3069}
3070
3071Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3072  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3073                          /*IsFunctionDefinition=*/false);
3074}
3075
3076/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3077///   If T is the name of a class, then each of the following shall have a
3078///   name different from T:
3079///     - every static data member of class T;
3080///     - every member function of class T
3081///     - every member of class T that is itself a type;
3082/// \returns true if the declaration name violates these rules.
3083bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3084                                   DeclarationNameInfo NameInfo) {
3085  DeclarationName Name = NameInfo.getName();
3086
3087  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3088    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3089      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3090      return true;
3091    }
3092
3093  return false;
3094}
3095
3096Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3097                             MultiTemplateParamsArg TemplateParamLists,
3098                             bool IsFunctionDefinition) {
3099  // TODO: consider using NameInfo for diagnostic.
3100  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3101  DeclarationName Name = NameInfo.getName();
3102
3103  // All of these full declarators require an identifier.  If it doesn't have
3104  // one, the ParsedFreeStandingDeclSpec action should be used.
3105  if (!Name) {
3106    if (!D.isInvalidType())  // Reject this if we think it is valid.
3107      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3108           diag::err_declarator_need_ident)
3109        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3110    return 0;
3111  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3112    return 0;
3113
3114  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3115  // we find one that is.
3116  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3117         (S->getFlags() & Scope::TemplateParamScope) != 0)
3118    S = S->getParent();
3119
3120  DeclContext *DC = CurContext;
3121  if (D.getCXXScopeSpec().isInvalid())
3122    D.setInvalidType();
3123  else if (D.getCXXScopeSpec().isSet()) {
3124    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3125                                        UPPC_DeclarationQualifier))
3126      return 0;
3127
3128    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3129    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3130    if (!DC) {
3131      // If we could not compute the declaration context, it's because the
3132      // declaration context is dependent but does not refer to a class,
3133      // class template, or class template partial specialization. Complain
3134      // and return early, to avoid the coming semantic disaster.
3135      Diag(D.getIdentifierLoc(),
3136           diag::err_template_qualified_declarator_no_match)
3137        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3138        << D.getCXXScopeSpec().getRange();
3139      return 0;
3140    }
3141    bool IsDependentContext = DC->isDependentContext();
3142
3143    if (!IsDependentContext &&
3144        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3145      return 0;
3146
3147    if (isa<CXXRecordDecl>(DC)) {
3148      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3149        Diag(D.getIdentifierLoc(),
3150             diag::err_member_def_undefined_record)
3151          << Name << DC << D.getCXXScopeSpec().getRange();
3152        D.setInvalidType();
3153      } else if (isa<CXXRecordDecl>(CurContext) &&
3154                 !D.getDeclSpec().isFriendSpecified()) {
3155        // The user provided a superfluous scope specifier inside a class
3156        // definition:
3157        //
3158        // class X {
3159        //   void X::f();
3160        // };
3161        if (CurContext->Equals(DC))
3162          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3163            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3164        else
3165          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3166            << Name << D.getCXXScopeSpec().getRange();
3167
3168        // Pretend that this qualifier was not here.
3169        D.getCXXScopeSpec().clear();
3170      }
3171    }
3172
3173    // Check whether we need to rebuild the type of the given
3174    // declaration in the current instantiation.
3175    if (EnteringContext && IsDependentContext &&
3176        TemplateParamLists.size() != 0) {
3177      ContextRAII SavedContext(*this, DC);
3178      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3179        D.setInvalidType();
3180    }
3181  }
3182
3183  if (DiagnoseClassNameShadow(DC, NameInfo))
3184    // If this is a typedef, we'll end up spewing multiple diagnostics.
3185    // Just return early; it's safer.
3186    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3187      return 0;
3188
3189  NamedDecl *New;
3190
3191  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3192  QualType R = TInfo->getType();
3193
3194  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3195                                      UPPC_DeclarationType))
3196    D.setInvalidType();
3197
3198  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3199                        ForRedeclaration);
3200
3201  // See if this is a redefinition of a variable in the same scope.
3202  if (!D.getCXXScopeSpec().isSet()) {
3203    bool IsLinkageLookup = false;
3204
3205    // If the declaration we're planning to build will be a function
3206    // or object with linkage, then look for another declaration with
3207    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3208    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3209      /* Do nothing*/;
3210    else if (R->isFunctionType()) {
3211      if (CurContext->isFunctionOrMethod() ||
3212          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3213        IsLinkageLookup = true;
3214    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3215      IsLinkageLookup = true;
3216    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3217             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3218      IsLinkageLookup = true;
3219
3220    if (IsLinkageLookup)
3221      Previous.clear(LookupRedeclarationWithLinkage);
3222
3223    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3224  } else { // Something like "int foo::x;"
3225    LookupQualifiedName(Previous, DC);
3226
3227    // Don't consider using declarations as previous declarations for
3228    // out-of-line members.
3229    RemoveUsingDecls(Previous);
3230
3231    // C++ 7.3.1.2p2:
3232    // Members (including explicit specializations of templates) of a named
3233    // namespace can also be defined outside that namespace by explicit
3234    // qualification of the name being defined, provided that the entity being
3235    // defined was already declared in the namespace and the definition appears
3236    // after the point of declaration in a namespace that encloses the
3237    // declarations namespace.
3238    //
3239    // Note that we only check the context at this point. We don't yet
3240    // have enough information to make sure that PrevDecl is actually
3241    // the declaration we want to match. For example, given:
3242    //
3243    //   class X {
3244    //     void f();
3245    //     void f(float);
3246    //   };
3247    //
3248    //   void X::f(int) { } // ill-formed
3249    //
3250    // In this case, PrevDecl will point to the overload set
3251    // containing the two f's declared in X, but neither of them
3252    // matches.
3253
3254    // First check whether we named the global scope.
3255    if (isa<TranslationUnitDecl>(DC)) {
3256      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3257        << Name << D.getCXXScopeSpec().getRange();
3258    } else {
3259      DeclContext *Cur = CurContext;
3260      while (isa<LinkageSpecDecl>(Cur))
3261        Cur = Cur->getParent();
3262      if (!Cur->Encloses(DC)) {
3263        // The qualifying scope doesn't enclose the original declaration.
3264        // Emit diagnostic based on current scope.
3265        SourceLocation L = D.getIdentifierLoc();
3266        SourceRange R = D.getCXXScopeSpec().getRange();
3267        if (isa<FunctionDecl>(Cur))
3268          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3269        else
3270          Diag(L, diag::err_invalid_declarator_scope)
3271            << Name << cast<NamedDecl>(DC) << R;
3272        D.setInvalidType();
3273      }
3274    }
3275  }
3276
3277  if (Previous.isSingleResult() &&
3278      Previous.getFoundDecl()->isTemplateParameter()) {
3279    // Maybe we will complain about the shadowed template parameter.
3280    if (!D.isInvalidType())
3281      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3282                                          Previous.getFoundDecl()))
3283        D.setInvalidType();
3284
3285    // Just pretend that we didn't see the previous declaration.
3286    Previous.clear();
3287  }
3288
3289  // In C++, the previous declaration we find might be a tag type
3290  // (class or enum). In this case, the new declaration will hide the
3291  // tag type. Note that this does does not apply if we're declaring a
3292  // typedef (C++ [dcl.typedef]p4).
3293  if (Previous.isSingleTagDecl() &&
3294      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3295    Previous.clear();
3296
3297  bool Redeclaration = false;
3298  bool AddToScope = true;
3299  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3300    if (TemplateParamLists.size()) {
3301      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3302      return 0;
3303    }
3304
3305    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3306  } else if (R->isFunctionType()) {
3307    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3308                                  move(TemplateParamLists),
3309                                  IsFunctionDefinition, Redeclaration,
3310                                  AddToScope);
3311  } else {
3312    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3313                                  move(TemplateParamLists),
3314                                  Redeclaration);
3315  }
3316
3317  if (New == 0)
3318    return 0;
3319
3320  // If this has an identifier and is not an invalid redeclaration or
3321  // function template specialization, add it to the scope stack.
3322  if (New->getDeclName() && AddToScope &&
3323       !(Redeclaration && New->isInvalidDecl()))
3324    PushOnScopeChains(New, S);
3325
3326  return New;
3327}
3328
3329/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3330/// types into constant array types in certain situations which would otherwise
3331/// be errors (for GCC compatibility).
3332static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3333                                                    ASTContext &Context,
3334                                                    bool &SizeIsNegative,
3335                                                    llvm::APSInt &Oversized) {
3336  // This method tries to turn a variable array into a constant
3337  // array even when the size isn't an ICE.  This is necessary
3338  // for compatibility with code that depends on gcc's buggy
3339  // constant expression folding, like struct {char x[(int)(char*)2];}
3340  SizeIsNegative = false;
3341  Oversized = 0;
3342
3343  if (T->isDependentType())
3344    return QualType();
3345
3346  QualifierCollector Qs;
3347  const Type *Ty = Qs.strip(T);
3348
3349  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3350    QualType Pointee = PTy->getPointeeType();
3351    QualType FixedType =
3352        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3353                                            Oversized);
3354    if (FixedType.isNull()) return FixedType;
3355    FixedType = Context.getPointerType(FixedType);
3356    return Qs.apply(Context, FixedType);
3357  }
3358  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3359    QualType Inner = PTy->getInnerType();
3360    QualType FixedType =
3361        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3362                                            Oversized);
3363    if (FixedType.isNull()) return FixedType;
3364    FixedType = Context.getParenType(FixedType);
3365    return Qs.apply(Context, FixedType);
3366  }
3367
3368  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3369  if (!VLATy)
3370    return QualType();
3371  // FIXME: We should probably handle this case
3372  if (VLATy->getElementType()->isVariablyModifiedType())
3373    return QualType();
3374
3375  Expr::EvalResult EvalResult;
3376  if (!VLATy->getSizeExpr() ||
3377      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3378      !EvalResult.Val.isInt())
3379    return QualType();
3380
3381  // Check whether the array size is negative.
3382  llvm::APSInt &Res = EvalResult.Val.getInt();
3383  if (Res.isSigned() && Res.isNegative()) {
3384    SizeIsNegative = true;
3385    return QualType();
3386  }
3387
3388  // Check whether the array is too large to be addressed.
3389  unsigned ActiveSizeBits
3390    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3391                                              Res);
3392  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3393    Oversized = Res;
3394    return QualType();
3395  }
3396
3397  return Context.getConstantArrayType(VLATy->getElementType(),
3398                                      Res, ArrayType::Normal, 0);
3399}
3400
3401/// \brief Register the given locally-scoped external C declaration so
3402/// that it can be found later for redeclarations
3403void
3404Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3405                                       const LookupResult &Previous,
3406                                       Scope *S) {
3407  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3408         "Decl is not a locally-scoped decl!");
3409  // Note that we have a locally-scoped external with this name.
3410  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3411
3412  if (!Previous.isSingleResult())
3413    return;
3414
3415  NamedDecl *PrevDecl = Previous.getFoundDecl();
3416
3417  // If there was a previous declaration of this variable, it may be
3418  // in our identifier chain. Update the identifier chain with the new
3419  // declaration.
3420  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3421    // The previous declaration was found on the identifer resolver
3422    // chain, so remove it from its scope.
3423
3424    if (S->isDeclScope(PrevDecl)) {
3425      // Special case for redeclarations in the SAME scope.
3426      // Because this declaration is going to be added to the identifier chain
3427      // later, we should temporarily take it OFF the chain.
3428      IdResolver.RemoveDecl(ND);
3429
3430    } else {
3431      // Find the scope for the original declaration.
3432      while (S && !S->isDeclScope(PrevDecl))
3433        S = S->getParent();
3434    }
3435
3436    if (S)
3437      S->RemoveDecl(PrevDecl);
3438  }
3439}
3440
3441llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3442Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3443  if (ExternalSource) {
3444    // Load locally-scoped external decls from the external source.
3445    SmallVector<NamedDecl *, 4> Decls;
3446    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3447    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3448      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3449        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3450      if (Pos == LocallyScopedExternalDecls.end())
3451        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3452    }
3453  }
3454
3455  return LocallyScopedExternalDecls.find(Name);
3456}
3457
3458/// \brief Diagnose function specifiers on a declaration of an identifier that
3459/// does not identify a function.
3460void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3461  // FIXME: We should probably indicate the identifier in question to avoid
3462  // confusion for constructs like "inline int a(), b;"
3463  if (D.getDeclSpec().isInlineSpecified())
3464    Diag(D.getDeclSpec().getInlineSpecLoc(),
3465         diag::err_inline_non_function);
3466
3467  if (D.getDeclSpec().isVirtualSpecified())
3468    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3469         diag::err_virtual_non_function);
3470
3471  if (D.getDeclSpec().isExplicitSpecified())
3472    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3473         diag::err_explicit_non_function);
3474}
3475
3476NamedDecl*
3477Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3478                             QualType R,  TypeSourceInfo *TInfo,
3479                             LookupResult &Previous, bool &Redeclaration) {
3480  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3481  if (D.getCXXScopeSpec().isSet()) {
3482    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3483      << D.getCXXScopeSpec().getRange();
3484    D.setInvalidType();
3485    // Pretend we didn't see the scope specifier.
3486    DC = CurContext;
3487    Previous.clear();
3488  }
3489
3490  if (getLangOptions().CPlusPlus) {
3491    // Check that there are no default arguments (C++ only).
3492    CheckExtraCXXDefaultArguments(D);
3493  }
3494
3495  DiagnoseFunctionSpecifiers(D);
3496
3497  if (D.getDeclSpec().isThreadSpecified())
3498    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3499  if (D.getDeclSpec().isConstexprSpecified())
3500    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3501      << 1;
3502
3503  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3504    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3505      << D.getName().getSourceRange();
3506    return 0;
3507  }
3508
3509  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3510  if (!NewTD) return 0;
3511
3512  // Handle attributes prior to checking for duplicates in MergeVarDecl
3513  ProcessDeclAttributes(S, NewTD, D);
3514
3515  CheckTypedefForVariablyModifiedType(S, NewTD);
3516
3517  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3518}
3519
3520void
3521Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3522  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3523  // then it shall have block scope.
3524  // Note that variably modified types must be fixed before merging the decl so
3525  // that redeclarations will match.
3526  QualType T = NewTD->getUnderlyingType();
3527  if (T->isVariablyModifiedType()) {
3528    getCurFunction()->setHasBranchProtectedScope();
3529
3530    if (S->getFnParent() == 0) {
3531      bool SizeIsNegative;
3532      llvm::APSInt Oversized;
3533      QualType FixedTy =
3534          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3535                                              Oversized);
3536      if (!FixedTy.isNull()) {
3537        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3538        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3539      } else {
3540        if (SizeIsNegative)
3541          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3542        else if (T->isVariableArrayType())
3543          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3544        else if (Oversized.getBoolValue())
3545          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3546        else
3547          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3548        NewTD->setInvalidDecl();
3549      }
3550    }
3551  }
3552}
3553
3554
3555/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3556/// declares a typedef-name, either using the 'typedef' type specifier or via
3557/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3558NamedDecl*
3559Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3560                           LookupResult &Previous, bool &Redeclaration) {
3561  // Merge the decl with the existing one if appropriate. If the decl is
3562  // in an outer scope, it isn't the same thing.
3563  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3564                       /*ExplicitInstantiationOrSpecialization=*/false);
3565  if (!Previous.empty()) {
3566    Redeclaration = true;
3567    MergeTypedefNameDecl(NewTD, Previous);
3568  }
3569
3570  // If this is the C FILE type, notify the AST context.
3571  if (IdentifierInfo *II = NewTD->getIdentifier())
3572    if (!NewTD->isInvalidDecl() &&
3573        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3574      if (II->isStr("FILE"))
3575        Context.setFILEDecl(NewTD);
3576      else if (II->isStr("jmp_buf"))
3577        Context.setjmp_bufDecl(NewTD);
3578      else if (II->isStr("sigjmp_buf"))
3579        Context.setsigjmp_bufDecl(NewTD);
3580      else if (II->isStr("__builtin_va_list"))
3581        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3582    }
3583
3584  return NewTD;
3585}
3586
3587/// \brief Determines whether the given declaration is an out-of-scope
3588/// previous declaration.
3589///
3590/// This routine should be invoked when name lookup has found a
3591/// previous declaration (PrevDecl) that is not in the scope where a
3592/// new declaration by the same name is being introduced. If the new
3593/// declaration occurs in a local scope, previous declarations with
3594/// linkage may still be considered previous declarations (C99
3595/// 6.2.2p4-5, C++ [basic.link]p6).
3596///
3597/// \param PrevDecl the previous declaration found by name
3598/// lookup
3599///
3600/// \param DC the context in which the new declaration is being
3601/// declared.
3602///
3603/// \returns true if PrevDecl is an out-of-scope previous declaration
3604/// for a new delcaration with the same name.
3605static bool
3606isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3607                                ASTContext &Context) {
3608  if (!PrevDecl)
3609    return false;
3610
3611  if (!PrevDecl->hasLinkage())
3612    return false;
3613
3614  if (Context.getLangOptions().CPlusPlus) {
3615    // C++ [basic.link]p6:
3616    //   If there is a visible declaration of an entity with linkage
3617    //   having the same name and type, ignoring entities declared
3618    //   outside the innermost enclosing namespace scope, the block
3619    //   scope declaration declares that same entity and receives the
3620    //   linkage of the previous declaration.
3621    DeclContext *OuterContext = DC->getRedeclContext();
3622    if (!OuterContext->isFunctionOrMethod())
3623      // This rule only applies to block-scope declarations.
3624      return false;
3625
3626    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3627    if (PrevOuterContext->isRecord())
3628      // We found a member function: ignore it.
3629      return false;
3630
3631    // Find the innermost enclosing namespace for the new and
3632    // previous declarations.
3633    OuterContext = OuterContext->getEnclosingNamespaceContext();
3634    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3635
3636    // The previous declaration is in a different namespace, so it
3637    // isn't the same function.
3638    if (!OuterContext->Equals(PrevOuterContext))
3639      return false;
3640  }
3641
3642  return true;
3643}
3644
3645static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3646  CXXScopeSpec &SS = D.getCXXScopeSpec();
3647  if (!SS.isSet()) return;
3648  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3649}
3650
3651bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3652  QualType type = decl->getType();
3653  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3654  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3655    // Various kinds of declaration aren't allowed to be __autoreleasing.
3656    unsigned kind = -1U;
3657    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3658      if (var->hasAttr<BlocksAttr>())
3659        kind = 0; // __block
3660      else if (!var->hasLocalStorage())
3661        kind = 1; // global
3662    } else if (isa<ObjCIvarDecl>(decl)) {
3663      kind = 3; // ivar
3664    } else if (isa<FieldDecl>(decl)) {
3665      kind = 2; // field
3666    }
3667
3668    if (kind != -1U) {
3669      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3670        << kind;
3671    }
3672  } else if (lifetime == Qualifiers::OCL_None) {
3673    // Try to infer lifetime.
3674    if (!type->isObjCLifetimeType())
3675      return false;
3676
3677    lifetime = type->getObjCARCImplicitLifetime();
3678    type = Context.getLifetimeQualifiedType(type, lifetime);
3679    decl->setType(type);
3680  }
3681
3682  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3683    // Thread-local variables cannot have lifetime.
3684    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3685        var->isThreadSpecified()) {
3686      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3687        << var->getType();
3688      return true;
3689    }
3690  }
3691
3692  return false;
3693}
3694
3695NamedDecl*
3696Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3697                              QualType R, TypeSourceInfo *TInfo,
3698                              LookupResult &Previous,
3699                              MultiTemplateParamsArg TemplateParamLists,
3700                              bool &Redeclaration) {
3701  DeclarationName Name = GetNameForDeclarator(D).getName();
3702
3703  // Check that there are no default arguments (C++ only).
3704  if (getLangOptions().CPlusPlus)
3705    CheckExtraCXXDefaultArguments(D);
3706
3707  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3708  assert(SCSpec != DeclSpec::SCS_typedef &&
3709         "Parser allowed 'typedef' as storage class VarDecl.");
3710  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3711  if (SCSpec == DeclSpec::SCS_mutable) {
3712    // mutable can only appear on non-static class members, so it's always
3713    // an error here
3714    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3715    D.setInvalidType();
3716    SC = SC_None;
3717  }
3718  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3719  VarDecl::StorageClass SCAsWritten
3720    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3721
3722  IdentifierInfo *II = Name.getAsIdentifierInfo();
3723  if (!II) {
3724    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3725      << Name;
3726    return 0;
3727  }
3728
3729  DiagnoseFunctionSpecifiers(D);
3730
3731  if (!DC->isRecord() && S->getFnParent() == 0) {
3732    // C99 6.9p2: The storage-class specifiers auto and register shall not
3733    // appear in the declaration specifiers in an external declaration.
3734    if (SC == SC_Auto || SC == SC_Register) {
3735
3736      // If this is a register variable with an asm label specified, then this
3737      // is a GNU extension.
3738      if (SC == SC_Register && D.getAsmLabel())
3739        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3740      else
3741        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3742      D.setInvalidType();
3743    }
3744  }
3745
3746  if (getLangOptions().OpenCL) {
3747    // Set up the special work-group-local storage class for variables in the
3748    // OpenCL __local address space.
3749    if (R.getAddressSpace() == LangAS::opencl_local)
3750      SC = SC_OpenCLWorkGroupLocal;
3751  }
3752
3753  bool isExplicitSpecialization = false;
3754  VarDecl *NewVD;
3755  if (!getLangOptions().CPlusPlus) {
3756    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3757                            D.getIdentifierLoc(), II,
3758                            R, TInfo, SC, SCAsWritten);
3759
3760    if (D.isInvalidType())
3761      NewVD->setInvalidDecl();
3762  } else {
3763    if (DC->isRecord() && !CurContext->isRecord()) {
3764      // This is an out-of-line definition of a static data member.
3765      if (SC == SC_Static) {
3766        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3767             diag::err_static_out_of_line)
3768          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3769      } else if (SC == SC_None)
3770        SC = SC_Static;
3771    }
3772    if (SC == SC_Static) {
3773      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3774        if (RD->isLocalClass())
3775          Diag(D.getIdentifierLoc(),
3776               diag::err_static_data_member_not_allowed_in_local_class)
3777            << Name << RD->getDeclName();
3778
3779        // C++ [class.union]p1: If a union contains a static data member,
3780        // the program is ill-formed.
3781        //
3782        // We also disallow static data members in anonymous structs.
3783        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3784          Diag(D.getIdentifierLoc(),
3785               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3786            << Name << RD->isUnion();
3787      }
3788    }
3789
3790    // Match up the template parameter lists with the scope specifier, then
3791    // determine whether we have a template or a template specialization.
3792    isExplicitSpecialization = false;
3793    bool Invalid = false;
3794    if (TemplateParameterList *TemplateParams
3795        = MatchTemplateParametersToScopeSpecifier(
3796                                  D.getDeclSpec().getSourceRange().getBegin(),
3797                                                  D.getIdentifierLoc(),
3798                                                  D.getCXXScopeSpec(),
3799                                                  TemplateParamLists.get(),
3800                                                  TemplateParamLists.size(),
3801                                                  /*never a friend*/ false,
3802                                                  isExplicitSpecialization,
3803                                                  Invalid)) {
3804      if (TemplateParams->size() > 0) {
3805        // There is no such thing as a variable template.
3806        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3807          << II
3808          << SourceRange(TemplateParams->getTemplateLoc(),
3809                         TemplateParams->getRAngleLoc());
3810        return 0;
3811      } else {
3812        // There is an extraneous 'template<>' for this variable. Complain
3813        // about it, but allow the declaration of the variable.
3814        Diag(TemplateParams->getTemplateLoc(),
3815             diag::err_template_variable_noparams)
3816          << II
3817          << SourceRange(TemplateParams->getTemplateLoc(),
3818                         TemplateParams->getRAngleLoc());
3819      }
3820    }
3821
3822    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3823                            D.getIdentifierLoc(), II,
3824                            R, TInfo, SC, SCAsWritten);
3825
3826    // If this decl has an auto type in need of deduction, make a note of the
3827    // Decl so we can diagnose uses of it in its own initializer.
3828    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3829        R->getContainedAutoType())
3830      ParsingInitForAutoVars.insert(NewVD);
3831
3832    if (D.isInvalidType() || Invalid)
3833      NewVD->setInvalidDecl();
3834
3835    SetNestedNameSpecifier(NewVD, D);
3836
3837    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3838      NewVD->setTemplateParameterListsInfo(Context,
3839                                           TemplateParamLists.size(),
3840                                           TemplateParamLists.release());
3841    }
3842
3843    if (D.getDeclSpec().isConstexprSpecified()) {
3844      // FIXME: once we know whether there's an initializer, apply this to
3845      // static data members too.
3846      if (!NewVD->isStaticDataMember() &&
3847          !NewVD->isThisDeclarationADefinition()) {
3848        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3849        // of a variable. Suggest replacing it with 'const' if appropriate.
3850        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3851        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3852        // If the declarator is complex, we need to move the keyword to the
3853        // innermost chunk as we switch it from 'constexpr' to 'const'.
3854        int Kind = DeclaratorChunk::Paren;
3855        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3856          Kind = D.getTypeObject(I).Kind;
3857          if (Kind != DeclaratorChunk::Paren)
3858            break;
3859        }
3860        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3861            Kind == DeclaratorChunk::Reference)
3862          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3863            << FixItHint::CreateRemoval(ConstexprRange);
3864        else if (Kind == DeclaratorChunk::Paren)
3865          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3866            << FixItHint::CreateReplacement(ConstexprRange, "const");
3867        else
3868          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3869            << FixItHint::CreateRemoval(ConstexprRange)
3870            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3871      } else {
3872        NewVD->setConstexpr(true);
3873      }
3874    }
3875  }
3876
3877  // Set the lexical context. If the declarator has a C++ scope specifier, the
3878  // lexical context will be different from the semantic context.
3879  NewVD->setLexicalDeclContext(CurContext);
3880
3881  if (D.getDeclSpec().isThreadSpecified()) {
3882    if (NewVD->hasLocalStorage())
3883      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3884    else if (!Context.getTargetInfo().isTLSSupported())
3885      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3886    else
3887      NewVD->setThreadSpecified(true);
3888  }
3889
3890  if (D.getDeclSpec().isModulePrivateSpecified()) {
3891    if (isExplicitSpecialization)
3892      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3893        << 2
3894        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3895    else if (NewVD->hasLocalStorage())
3896      Diag(NewVD->getLocation(), diag::err_module_private_local)
3897        << 0 << NewVD->getDeclName()
3898        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3899        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3900    else
3901      NewVD->setModulePrivate();
3902  }
3903
3904  // Handle attributes prior to checking for duplicates in MergeVarDecl
3905  ProcessDeclAttributes(S, NewVD, D);
3906
3907  // In auto-retain/release, infer strong retension for variables of
3908  // retainable type.
3909  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3910    NewVD->setInvalidDecl();
3911
3912  // Handle GNU asm-label extension (encoded as an attribute).
3913  if (Expr *E = (Expr*)D.getAsmLabel()) {
3914    // The parser guarantees this is a string.
3915    StringLiteral *SE = cast<StringLiteral>(E);
3916    StringRef Label = SE->getString();
3917    if (S->getFnParent() != 0) {
3918      switch (SC) {
3919      case SC_None:
3920      case SC_Auto:
3921        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3922        break;
3923      case SC_Register:
3924        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3925          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3926        break;
3927      case SC_Static:
3928      case SC_Extern:
3929      case SC_PrivateExtern:
3930      case SC_OpenCLWorkGroupLocal:
3931        break;
3932      }
3933    }
3934
3935    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3936                                                Context, Label));
3937  }
3938
3939  // Diagnose shadowed variables before filtering for scope.
3940  if (!D.getCXXScopeSpec().isSet())
3941    CheckShadow(S, NewVD, Previous);
3942
3943  // Don't consider existing declarations that are in a different
3944  // scope and are out-of-semantic-context declarations (if the new
3945  // declaration has linkage).
3946  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3947                       isExplicitSpecialization);
3948
3949  if (!getLangOptions().CPlusPlus)
3950    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3951  else {
3952    // Merge the decl with the existing one if appropriate.
3953    if (!Previous.empty()) {
3954      if (Previous.isSingleResult() &&
3955          isa<FieldDecl>(Previous.getFoundDecl()) &&
3956          D.getCXXScopeSpec().isSet()) {
3957        // The user tried to define a non-static data member
3958        // out-of-line (C++ [dcl.meaning]p1).
3959        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3960          << D.getCXXScopeSpec().getRange();
3961        Previous.clear();
3962        NewVD->setInvalidDecl();
3963      }
3964    } else if (D.getCXXScopeSpec().isSet()) {
3965      // No previous declaration in the qualifying scope.
3966      Diag(D.getIdentifierLoc(), diag::err_no_member)
3967        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3968        << D.getCXXScopeSpec().getRange();
3969      NewVD->setInvalidDecl();
3970    }
3971
3972    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3973
3974    // This is an explicit specialization of a static data member. Check it.
3975    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3976        CheckMemberSpecialization(NewVD, Previous))
3977      NewVD->setInvalidDecl();
3978  }
3979
3980  // attributes declared post-definition are currently ignored
3981  // FIXME: This should be handled in attribute merging, not
3982  // here.
3983  if (Previous.isSingleResult()) {
3984    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3985    if (Def && (Def = Def->getDefinition()) &&
3986        Def != NewVD && D.hasAttributes()) {
3987      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3988      Diag(Def->getLocation(), diag::note_previous_definition);
3989    }
3990  }
3991
3992  // If this is a locally-scoped extern C variable, update the map of
3993  // such variables.
3994  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3995      !NewVD->isInvalidDecl())
3996    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3997
3998  // If there's a #pragma GCC visibility in scope, and this isn't a class
3999  // member, set the visibility of this variable.
4000  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4001    AddPushedVisibilityAttribute(NewVD);
4002
4003  MarkUnusedFileScopedDecl(NewVD);
4004
4005  return NewVD;
4006}
4007
4008/// \brief Diagnose variable or built-in function shadowing.  Implements
4009/// -Wshadow.
4010///
4011/// This method is called whenever a VarDecl is added to a "useful"
4012/// scope.
4013///
4014/// \param S the scope in which the shadowing name is being declared
4015/// \param R the lookup of the name
4016///
4017void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4018  // Return if warning is ignored.
4019  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4020        DiagnosticsEngine::Ignored)
4021    return;
4022
4023  // Don't diagnose declarations at file scope.
4024  if (D->hasGlobalStorage())
4025    return;
4026
4027  DeclContext *NewDC = D->getDeclContext();
4028
4029  // Only diagnose if we're shadowing an unambiguous field or variable.
4030  if (R.getResultKind() != LookupResult::Found)
4031    return;
4032
4033  NamedDecl* ShadowedDecl = R.getFoundDecl();
4034  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4035    return;
4036
4037  // Fields are not shadowed by variables in C++ static methods.
4038  if (isa<FieldDecl>(ShadowedDecl))
4039    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4040      if (MD->isStatic())
4041        return;
4042
4043  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4044    if (shadowedVar->isExternC()) {
4045      // For shadowing external vars, make sure that we point to the global
4046      // declaration, not a locally scoped extern declaration.
4047      for (VarDecl::redecl_iterator
4048             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4049           I != E; ++I)
4050        if (I->isFileVarDecl()) {
4051          ShadowedDecl = *I;
4052          break;
4053        }
4054    }
4055
4056  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4057
4058  // Only warn about certain kinds of shadowing for class members.
4059  if (NewDC && NewDC->isRecord()) {
4060    // In particular, don't warn about shadowing non-class members.
4061    if (!OldDC->isRecord())
4062      return;
4063
4064    // TODO: should we warn about static data members shadowing
4065    // static data members from base classes?
4066
4067    // TODO: don't diagnose for inaccessible shadowed members.
4068    // This is hard to do perfectly because we might friend the
4069    // shadowing context, but that's just a false negative.
4070  }
4071
4072  // Determine what kind of declaration we're shadowing.
4073  unsigned Kind;
4074  if (isa<RecordDecl>(OldDC)) {
4075    if (isa<FieldDecl>(ShadowedDecl))
4076      Kind = 3; // field
4077    else
4078      Kind = 2; // static data member
4079  } else if (OldDC->isFileContext())
4080    Kind = 1; // global
4081  else
4082    Kind = 0; // local
4083
4084  DeclarationName Name = R.getLookupName();
4085
4086  // Emit warning and note.
4087  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4088  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4089}
4090
4091/// \brief Check -Wshadow without the advantage of a previous lookup.
4092void Sema::CheckShadow(Scope *S, VarDecl *D) {
4093  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4094        DiagnosticsEngine::Ignored)
4095    return;
4096
4097  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4098                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4099  LookupName(R, S);
4100  CheckShadow(S, D, R);
4101}
4102
4103/// \brief Perform semantic checking on a newly-created variable
4104/// declaration.
4105///
4106/// This routine performs all of the type-checking required for a
4107/// variable declaration once it has been built. It is used both to
4108/// check variables after they have been parsed and their declarators
4109/// have been translated into a declaration, and to check variables
4110/// that have been instantiated from a template.
4111///
4112/// Sets NewVD->isInvalidDecl() if an error was encountered.
4113void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4114                                    LookupResult &Previous,
4115                                    bool &Redeclaration) {
4116  // If the decl is already known invalid, don't check it.
4117  if (NewVD->isInvalidDecl())
4118    return;
4119
4120  QualType T = NewVD->getType();
4121
4122  if (T->isObjCObjectType()) {
4123    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4124      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4125    T = Context.getObjCObjectPointerType(T);
4126    NewVD->setType(T);
4127  }
4128
4129  // Emit an error if an address space was applied to decl with local storage.
4130  // This includes arrays of objects with address space qualifiers, but not
4131  // automatic variables that point to other address spaces.
4132  // ISO/IEC TR 18037 S5.1.2
4133  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4134    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4135    return NewVD->setInvalidDecl();
4136  }
4137
4138  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4139      && !NewVD->hasAttr<BlocksAttr>()) {
4140    if (getLangOptions().getGC() != LangOptions::NonGC)
4141      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4142    else
4143      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4144  }
4145
4146  bool isVM = T->isVariablyModifiedType();
4147  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4148      NewVD->hasAttr<BlocksAttr>())
4149    getCurFunction()->setHasBranchProtectedScope();
4150
4151  if ((isVM && NewVD->hasLinkage()) ||
4152      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4153    bool SizeIsNegative;
4154    llvm::APSInt Oversized;
4155    QualType FixedTy =
4156        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4157                                            Oversized);
4158
4159    if (FixedTy.isNull() && T->isVariableArrayType()) {
4160      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4161      // FIXME: This won't give the correct result for
4162      // int a[10][n];
4163      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4164
4165      if (NewVD->isFileVarDecl())
4166        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4167        << SizeRange;
4168      else if (NewVD->getStorageClass() == SC_Static)
4169        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4170        << SizeRange;
4171      else
4172        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4173        << SizeRange;
4174      return NewVD->setInvalidDecl();
4175    }
4176
4177    if (FixedTy.isNull()) {
4178      if (NewVD->isFileVarDecl())
4179        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4180      else
4181        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4182      return NewVD->setInvalidDecl();
4183    }
4184
4185    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4186    NewVD->setType(FixedTy);
4187  }
4188
4189  if (Previous.empty() && NewVD->isExternC()) {
4190    // Since we did not find anything by this name and we're declaring
4191    // an extern "C" variable, look for a non-visible extern "C"
4192    // declaration with the same name.
4193    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4194      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4195    if (Pos != LocallyScopedExternalDecls.end())
4196      Previous.addDecl(Pos->second);
4197  }
4198
4199  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4200    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4201      << T;
4202    return NewVD->setInvalidDecl();
4203  }
4204
4205  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4206    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4207    return NewVD->setInvalidDecl();
4208  }
4209
4210  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4211    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4212    return NewVD->setInvalidDecl();
4213  }
4214
4215  // Function pointers and references cannot have qualified function type, only
4216  // function pointer-to-members can do that.
4217  QualType Pointee;
4218  unsigned PtrOrRef = 0;
4219  if (const PointerType *Ptr = T->getAs<PointerType>())
4220    Pointee = Ptr->getPointeeType();
4221  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4222    Pointee = Ref->getPointeeType();
4223    PtrOrRef = 1;
4224  }
4225  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4226      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4227    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4228        << PtrOrRef;
4229    return NewVD->setInvalidDecl();
4230  }
4231
4232  if (!Previous.empty()) {
4233    Redeclaration = true;
4234    MergeVarDecl(NewVD, Previous);
4235  }
4236}
4237
4238/// \brief Data used with FindOverriddenMethod
4239struct FindOverriddenMethodData {
4240  Sema *S;
4241  CXXMethodDecl *Method;
4242};
4243
4244/// \brief Member lookup function that determines whether a given C++
4245/// method overrides a method in a base class, to be used with
4246/// CXXRecordDecl::lookupInBases().
4247static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4248                                 CXXBasePath &Path,
4249                                 void *UserData) {
4250  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4251
4252  FindOverriddenMethodData *Data
4253    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4254
4255  DeclarationName Name = Data->Method->getDeclName();
4256
4257  // FIXME: Do we care about other names here too?
4258  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4259    // We really want to find the base class destructor here.
4260    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4261    CanQualType CT = Data->S->Context.getCanonicalType(T);
4262
4263    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4264  }
4265
4266  for (Path.Decls = BaseRecord->lookup(Name);
4267       Path.Decls.first != Path.Decls.second;
4268       ++Path.Decls.first) {
4269    NamedDecl *D = *Path.Decls.first;
4270    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4271      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4272        return true;
4273    }
4274  }
4275
4276  return false;
4277}
4278
4279/// AddOverriddenMethods - See if a method overrides any in the base classes,
4280/// and if so, check that it's a valid override and remember it.
4281bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4282  // Look for virtual methods in base classes that this method might override.
4283  CXXBasePaths Paths;
4284  FindOverriddenMethodData Data;
4285  Data.Method = MD;
4286  Data.S = this;
4287  bool AddedAny = false;
4288  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4289    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4290         E = Paths.found_decls_end(); I != E; ++I) {
4291      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4292        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4293        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4294            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4295            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4296          AddedAny = true;
4297        }
4298      }
4299    }
4300  }
4301
4302  return AddedAny;
4303}
4304
4305static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4306                                         bool isFriendDecl) {
4307  DeclarationName Name = NewFD->getDeclName();
4308  DeclContext *DC = NewFD->getDeclContext();
4309  LookupResult Prev(S, Name, NewFD->getLocation(),
4310                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4311  llvm::SmallVector<unsigned, 1> MismatchedParams;
4312  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4313  TypoCorrection Correction;
4314  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4315                                  : diag::err_member_def_does_not_match;
4316
4317  NewFD->setInvalidDecl();
4318  S.LookupQualifiedName(Prev, DC);
4319  assert(!Prev.isAmbiguous() &&
4320         "Cannot have an ambiguity in previous-declaration lookup");
4321  if (!Prev.empty()) {
4322    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4323         Func != FuncEnd; ++Func) {
4324      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4325      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4326                                         MismatchedParams)) {
4327        // Add 1 to the index so that 0 can mean the mismatch didn't
4328        // involve a parameter
4329        unsigned ParamNum =
4330            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4331        NearMatches.push_back(std::make_pair(FD, ParamNum));
4332      }
4333    }
4334  // If the qualified name lookup yielded nothing, try typo correction
4335  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4336                                         Prev.getLookupKind(), 0, 0, DC)) &&
4337             Correction.getCorrection() != Name) {
4338    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4339                                    CDeclEnd = Correction.end();
4340         CDecl != CDeclEnd; ++CDecl) {
4341      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4342      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4343                                         MismatchedParams)) {
4344        // Add 1 to the index so that 0 can mean the mismatch didn't
4345        // involve a parameter
4346        unsigned ParamNum =
4347            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4348        NearMatches.push_back(std::make_pair(FD, ParamNum));
4349      }
4350    }
4351    if (!NearMatches.empty())
4352      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4353                             : diag::err_member_def_does_not_match_suggest;
4354  }
4355
4356  // Ignore the correction if it didn't yield any close FunctionDecl matches
4357  if (Correction && NearMatches.empty())
4358    Correction = TypoCorrection();
4359
4360  if (Correction)
4361    S.Diag(NewFD->getLocation(), DiagMsg)
4362        << Name << DC << Correction.getQuoted(S.getLangOptions())
4363        << FixItHint::CreateReplacement(
4364            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4365  else
4366    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4367
4368  bool NewFDisConst = false;
4369  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4370    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4371
4372  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4373       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4374       NearMatch != NearMatchEnd; ++NearMatch) {
4375    FunctionDecl *FD = NearMatch->first;
4376    bool FDisConst = false;
4377    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4378      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4379
4380    if (unsigned Idx = NearMatch->second) {
4381      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4382      S.Diag(FDParam->getTypeSpecStartLoc(),
4383             diag::note_member_def_close_param_match)
4384          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4385    } else if (Correction) {
4386      S.Diag(FD->getLocation(), diag::note_previous_decl)
4387          << Correction.getQuoted(S.getLangOptions());
4388    } else if (FDisConst != NewFDisConst) {
4389      S.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4390          << NewFDisConst << FD->getSourceRange().getEnd();
4391    } else
4392      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4393  }
4394}
4395
4396NamedDecl*
4397Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4398                              QualType R, TypeSourceInfo *TInfo,
4399                              LookupResult &Previous,
4400                              MultiTemplateParamsArg TemplateParamLists,
4401                              bool IsFunctionDefinition, bool &Redeclaration,
4402                              bool &AddToScope) {
4403  assert(R.getTypePtr()->isFunctionType());
4404
4405  // TODO: consider using NameInfo for diagnostic.
4406  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4407  DeclarationName Name = NameInfo.getName();
4408  FunctionDecl::StorageClass SC = SC_None;
4409  switch (D.getDeclSpec().getStorageClassSpec()) {
4410  default: llvm_unreachable("Unknown storage class!");
4411  case DeclSpec::SCS_auto:
4412  case DeclSpec::SCS_register:
4413  case DeclSpec::SCS_mutable:
4414    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4415         diag::err_typecheck_sclass_func);
4416    D.setInvalidType();
4417    break;
4418  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4419  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4420  case DeclSpec::SCS_static: {
4421    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4422      // C99 6.7.1p5:
4423      //   The declaration of an identifier for a function that has
4424      //   block scope shall have no explicit storage-class specifier
4425      //   other than extern
4426      // See also (C++ [dcl.stc]p4).
4427      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4428           diag::err_static_block_func);
4429      SC = SC_None;
4430    } else
4431      SC = SC_Static;
4432    break;
4433  }
4434  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4435  }
4436
4437  if (D.getDeclSpec().isThreadSpecified())
4438    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4439
4440  // Do not allow returning a objc interface by-value.
4441  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4442    Diag(D.getIdentifierLoc(),
4443         diag::err_object_cannot_be_passed_returned_by_value) << 0
4444    << R->getAs<FunctionType>()->getResultType()
4445    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4446
4447    QualType T = R->getAs<FunctionType>()->getResultType();
4448    T = Context.getObjCObjectPointerType(T);
4449    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4450      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4451      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4452                                  FPT->getNumArgs(), EPI);
4453    }
4454    else if (isa<FunctionNoProtoType>(R))
4455      R = Context.getFunctionNoProtoType(T);
4456  }
4457
4458  FunctionDecl *NewFD;
4459  bool isInline = D.getDeclSpec().isInlineSpecified();
4460  bool isFriend = false;
4461  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4462  FunctionDecl::StorageClass SCAsWritten
4463    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4464  FunctionTemplateDecl *FunctionTemplate = 0;
4465  bool isExplicitSpecialization = false;
4466  bool isFunctionTemplateSpecialization = false;
4467  bool isDependentClassScopeExplicitSpecialization = false;
4468
4469  if (!getLangOptions().CPlusPlus) {
4470    // Determine whether the function was written with a
4471    // prototype. This true when:
4472    //   - there is a prototype in the declarator, or
4473    //   - the type R of the function is some kind of typedef or other reference
4474    //     to a type name (which eventually refers to a function type).
4475    bool HasPrototype =
4476    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4477    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4478
4479    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4480                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4481                                 HasPrototype);
4482    if (D.isInvalidType())
4483      NewFD->setInvalidDecl();
4484
4485    // Set the lexical context.
4486    NewFD->setLexicalDeclContext(CurContext);
4487    // Filter out previous declarations that don't match the scope.
4488    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4489                         /*ExplicitInstantiationOrSpecialization=*/false);
4490  } else {
4491    isFriend = D.getDeclSpec().isFriendSpecified();
4492    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4493    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4494    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4495    bool isVirtualOkay = false;
4496
4497    // Check that the return type is not an abstract class type.
4498    // For record types, this is done by the AbstractClassUsageDiagnoser once
4499    // the class has been completely parsed.
4500    if (!DC->isRecord() &&
4501      RequireNonAbstractType(D.getIdentifierLoc(),
4502                             R->getAs<FunctionType>()->getResultType(),
4503                             diag::err_abstract_type_in_decl,
4504                             AbstractReturnType))
4505      D.setInvalidType();
4506
4507    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4508      // This is a C++ constructor declaration.
4509      assert(DC->isRecord() &&
4510             "Constructors can only be declared in a member context");
4511
4512      R = CheckConstructorDeclarator(D, R, SC);
4513
4514      // Create the new declaration
4515      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4516                                         Context,
4517                                         cast<CXXRecordDecl>(DC),
4518                                         D.getSourceRange().getBegin(),
4519                                         NameInfo, R, TInfo,
4520                                         isExplicit, isInline,
4521                                         /*isImplicitlyDeclared=*/false,
4522                                         isConstexpr);
4523
4524      NewFD = NewCD;
4525    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4526      // This is a C++ destructor declaration.
4527      if (DC->isRecord()) {
4528        R = CheckDestructorDeclarator(D, R, SC);
4529        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4530
4531        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4532                                          D.getSourceRange().getBegin(),
4533                                          NameInfo, R, TInfo,
4534                                          isInline,
4535                                          /*isImplicitlyDeclared=*/false);
4536        NewFD = NewDD;
4537        isVirtualOkay = true;
4538
4539        // If the class is complete, then we now create the implicit exception
4540        // specification. If the class is incomplete or dependent, we can't do
4541        // it yet.
4542        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4543            Record->getDefinition() && !Record->isBeingDefined() &&
4544            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4545          AdjustDestructorExceptionSpec(Record, NewDD);
4546        }
4547
4548      } else {
4549        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4550
4551        // Create a FunctionDecl to satisfy the function definition parsing
4552        // code path.
4553        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4554                                     D.getIdentifierLoc(), Name, R, TInfo,
4555                                     SC, SCAsWritten, isInline,
4556                                     /*hasPrototype=*/true, isConstexpr);
4557        D.setInvalidType();
4558      }
4559    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4560      if (!DC->isRecord()) {
4561        Diag(D.getIdentifierLoc(),
4562             diag::err_conv_function_not_member);
4563        return 0;
4564      }
4565
4566      CheckConversionDeclarator(D, R, SC);
4567      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4568                                        D.getSourceRange().getBegin(),
4569                                        NameInfo, R, TInfo,
4570                                        isInline, isExplicit, isConstexpr,
4571                                        SourceLocation());
4572
4573      isVirtualOkay = true;
4574    } else if (DC->isRecord()) {
4575      // If the name of the function is the same as the name of the record,
4576      // then this must be an invalid constructor that has a return type.
4577      // (The parser checks for a return type and makes the declarator a
4578      // constructor if it has no return type).
4579      if (Name.getAsIdentifierInfo() &&
4580          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4581        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4582          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4583          << SourceRange(D.getIdentifierLoc());
4584        return 0;
4585      }
4586
4587      bool isStatic = SC == SC_Static;
4588
4589      // [class.free]p1:
4590      // Any allocation function for a class T is a static member
4591      // (even if not explicitly declared static).
4592      if (Name.getCXXOverloadedOperator() == OO_New ||
4593          Name.getCXXOverloadedOperator() == OO_Array_New)
4594        isStatic = true;
4595
4596      // [class.free]p6 Any deallocation function for a class X is a static member
4597      // (even if not explicitly declared static).
4598      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4599          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4600        isStatic = true;
4601
4602      // This is a C++ method declaration.
4603      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4604                                               Context, cast<CXXRecordDecl>(DC),
4605                                               D.getSourceRange().getBegin(),
4606                                               NameInfo, R, TInfo,
4607                                               isStatic, SCAsWritten, isInline,
4608                                               isConstexpr,
4609                                               SourceLocation());
4610      NewFD = NewMD;
4611
4612      isVirtualOkay = !isStatic;
4613    } else {
4614      // Determine whether the function was written with a
4615      // prototype. This true when:
4616      //   - we're in C++ (where every function has a prototype),
4617      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4618                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4619                                   true/*HasPrototype*/, isConstexpr);
4620    }
4621
4622    if (isFriend && !isInline && IsFunctionDefinition) {
4623      // C++ [class.friend]p5
4624      //   A function can be defined in a friend declaration of a
4625      //   class . . . . Such a function is implicitly inline.
4626      NewFD->setImplicitlyInline();
4627    }
4628
4629    SetNestedNameSpecifier(NewFD, D);
4630    isExplicitSpecialization = false;
4631    isFunctionTemplateSpecialization = false;
4632    if (D.isInvalidType())
4633      NewFD->setInvalidDecl();
4634
4635    // Set the lexical context. If the declarator has a C++
4636    // scope specifier, or is the object of a friend declaration, the
4637    // lexical context will be different from the semantic context.
4638    NewFD->setLexicalDeclContext(CurContext);
4639
4640    // Match up the template parameter lists with the scope specifier, then
4641    // determine whether we have a template or a template specialization.
4642    bool Invalid = false;
4643    if (TemplateParameterList *TemplateParams
4644          = MatchTemplateParametersToScopeSpecifier(
4645                                  D.getDeclSpec().getSourceRange().getBegin(),
4646                                  D.getIdentifierLoc(),
4647                                  D.getCXXScopeSpec(),
4648                                  TemplateParamLists.get(),
4649                                  TemplateParamLists.size(),
4650                                  isFriend,
4651                                  isExplicitSpecialization,
4652                                  Invalid)) {
4653      if (TemplateParams->size() > 0) {
4654        // This is a function template
4655
4656        // Check that we can declare a template here.
4657        if (CheckTemplateDeclScope(S, TemplateParams))
4658          return 0;
4659
4660        // A destructor cannot be a template.
4661        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4662          Diag(NewFD->getLocation(), diag::err_destructor_template);
4663          return 0;
4664        }
4665
4666        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4667                                                        NewFD->getLocation(),
4668                                                        Name, TemplateParams,
4669                                                        NewFD);
4670        FunctionTemplate->setLexicalDeclContext(CurContext);
4671        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4672
4673        // For source fidelity, store the other template param lists.
4674        if (TemplateParamLists.size() > 1) {
4675          NewFD->setTemplateParameterListsInfo(Context,
4676                                               TemplateParamLists.size() - 1,
4677                                               TemplateParamLists.release());
4678        }
4679      } else {
4680        // This is a function template specialization.
4681        isFunctionTemplateSpecialization = true;
4682        // For source fidelity, store all the template param lists.
4683        NewFD->setTemplateParameterListsInfo(Context,
4684                                             TemplateParamLists.size(),
4685                                             TemplateParamLists.release());
4686
4687        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4688        if (isFriend) {
4689          // We want to remove the "template<>", found here.
4690          SourceRange RemoveRange = TemplateParams->getSourceRange();
4691
4692          // If we remove the template<> and the name is not a
4693          // template-id, we're actually silently creating a problem:
4694          // the friend declaration will refer to an untemplated decl,
4695          // and clearly the user wants a template specialization.  So
4696          // we need to insert '<>' after the name.
4697          SourceLocation InsertLoc;
4698          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4699            InsertLoc = D.getName().getSourceRange().getEnd();
4700            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4701          }
4702
4703          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4704            << Name << RemoveRange
4705            << FixItHint::CreateRemoval(RemoveRange)
4706            << FixItHint::CreateInsertion(InsertLoc, "<>");
4707        }
4708      }
4709    }
4710    else {
4711      // All template param lists were matched against the scope specifier:
4712      // this is NOT (an explicit specialization of) a template.
4713      if (TemplateParamLists.size() > 0)
4714        // For source fidelity, store all the template param lists.
4715        NewFD->setTemplateParameterListsInfo(Context,
4716                                             TemplateParamLists.size(),
4717                                             TemplateParamLists.release());
4718    }
4719
4720    if (Invalid) {
4721      NewFD->setInvalidDecl();
4722      if (FunctionTemplate)
4723        FunctionTemplate->setInvalidDecl();
4724    }
4725
4726    // C++ [dcl.fct.spec]p5:
4727    //   The virtual specifier shall only be used in declarations of
4728    //   nonstatic class member functions that appear within a
4729    //   member-specification of a class declaration; see 10.3.
4730    //
4731    if (isVirtual && !NewFD->isInvalidDecl()) {
4732      if (!isVirtualOkay) {
4733        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4734             diag::err_virtual_non_function);
4735      } else if (!CurContext->isRecord()) {
4736        // 'virtual' was specified outside of the class.
4737        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4738             diag::err_virtual_out_of_class)
4739          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4740      } else if (NewFD->getDescribedFunctionTemplate()) {
4741        // C++ [temp.mem]p3:
4742        //  A member function template shall not be virtual.
4743        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4744             diag::err_virtual_member_function_template)
4745          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4746      } else {
4747        // Okay: Add virtual to the method.
4748        NewFD->setVirtualAsWritten(true);
4749      }
4750    }
4751
4752    // C++ [dcl.fct.spec]p3:
4753    //  The inline specifier shall not appear on a block scope function declaration.
4754    if (isInline && !NewFD->isInvalidDecl()) {
4755      if (CurContext->isFunctionOrMethod()) {
4756        // 'inline' is not allowed on block scope function declaration.
4757        Diag(D.getDeclSpec().getInlineSpecLoc(),
4758             diag::err_inline_declaration_block_scope) << Name
4759          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4760      }
4761    }
4762
4763    // C++ [dcl.fct.spec]p6:
4764    //  The explicit specifier shall be used only in the declaration of a
4765    //  constructor or conversion function within its class definition; see 12.3.1
4766    //  and 12.3.2.
4767    if (isExplicit && !NewFD->isInvalidDecl()) {
4768      if (!CurContext->isRecord()) {
4769        // 'explicit' was specified outside of the class.
4770        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4771             diag::err_explicit_out_of_class)
4772          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4773      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4774                 !isa<CXXConversionDecl>(NewFD)) {
4775        // 'explicit' was specified on a function that wasn't a constructor
4776        // or conversion function.
4777        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4778             diag::err_explicit_non_ctor_or_conv_function)
4779          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4780      }
4781    }
4782
4783    if (isConstexpr) {
4784      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4785      // are implicitly inline.
4786      NewFD->setImplicitlyInline();
4787
4788      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4789      // be either constructors or to return a literal type. Therefore,
4790      // destructors cannot be declared constexpr.
4791      if (isa<CXXDestructorDecl>(NewFD))
4792        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4793    }
4794
4795    // If __module_private__ was specified, mark the function accordingly.
4796    if (D.getDeclSpec().isModulePrivateSpecified()) {
4797      if (isFunctionTemplateSpecialization) {
4798        SourceLocation ModulePrivateLoc
4799          = D.getDeclSpec().getModulePrivateSpecLoc();
4800        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4801          << 0
4802          << FixItHint::CreateRemoval(ModulePrivateLoc);
4803      } else {
4804        NewFD->setModulePrivate();
4805        if (FunctionTemplate)
4806          FunctionTemplate->setModulePrivate();
4807      }
4808    }
4809
4810    // Filter out previous declarations that don't match the scope.
4811    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4812                         isExplicitSpecialization ||
4813                         isFunctionTemplateSpecialization);
4814
4815    if (isFriend) {
4816      // For now, claim that the objects have no previous declaration.
4817      if (FunctionTemplate) {
4818        FunctionTemplate->setObjectOfFriendDecl(false);
4819        FunctionTemplate->setAccess(AS_public);
4820      }
4821      NewFD->setObjectOfFriendDecl(false);
4822      NewFD->setAccess(AS_public);
4823    }
4824
4825    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4826      // A method is implicitly inline if it's defined in its class
4827      // definition.
4828      NewFD->setImplicitlyInline();
4829    }
4830
4831    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4832        !CurContext->isRecord()) {
4833      // C++ [class.static]p1:
4834      //   A data or function member of a class may be declared static
4835      //   in a class definition, in which case it is a static member of
4836      //   the class.
4837
4838      // Complain about the 'static' specifier if it's on an out-of-line
4839      // member function definition.
4840      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4841           diag::err_static_out_of_line)
4842        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4843    }
4844  }
4845
4846  // Handle GNU asm-label extension (encoded as an attribute).
4847  if (Expr *E = (Expr*) D.getAsmLabel()) {
4848    // The parser guarantees this is a string.
4849    StringLiteral *SE = cast<StringLiteral>(E);
4850    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4851                                                SE->getString()));
4852  }
4853
4854  // Copy the parameter declarations from the declarator D to the function
4855  // declaration NewFD, if they are available.  First scavenge them into Params.
4856  SmallVector<ParmVarDecl*, 16> Params;
4857  if (D.isFunctionDeclarator()) {
4858    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4859
4860    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4861    // function that takes no arguments, not a function that takes a
4862    // single void argument.
4863    // We let through "const void" here because Sema::GetTypeForDeclarator
4864    // already checks for that case.
4865    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4866        FTI.ArgInfo[0].Param &&
4867        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4868      // Empty arg list, don't push any params.
4869      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4870
4871      // In C++, the empty parameter-type-list must be spelled "void"; a
4872      // typedef of void is not permitted.
4873      if (getLangOptions().CPlusPlus &&
4874          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4875        bool IsTypeAlias = false;
4876        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4877          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4878        else if (const TemplateSpecializationType *TST =
4879                   Param->getType()->getAs<TemplateSpecializationType>())
4880          IsTypeAlias = TST->isTypeAlias();
4881        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4882          << IsTypeAlias;
4883      }
4884    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4885      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4886        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4887        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4888        Param->setDeclContext(NewFD);
4889        Params.push_back(Param);
4890
4891        if (Param->isInvalidDecl())
4892          NewFD->setInvalidDecl();
4893      }
4894    }
4895
4896  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4897    // When we're declaring a function with a typedef, typeof, etc as in the
4898    // following example, we'll need to synthesize (unnamed)
4899    // parameters for use in the declaration.
4900    //
4901    // @code
4902    // typedef void fn(int);
4903    // fn f;
4904    // @endcode
4905
4906    // Synthesize a parameter for each argument type.
4907    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4908         AE = FT->arg_type_end(); AI != AE; ++AI) {
4909      ParmVarDecl *Param =
4910        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4911      Param->setScopeInfo(0, Params.size());
4912      Params.push_back(Param);
4913    }
4914  } else {
4915    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4916           "Should not need args for typedef of non-prototype fn");
4917  }
4918  // Finally, we know we have the right number of parameters, install them.
4919  NewFD->setParams(Params);
4920
4921  // Process the non-inheritable attributes on this declaration.
4922  ProcessDeclAttributes(S, NewFD, D,
4923                        /*NonInheritable=*/true, /*Inheritable=*/false);
4924
4925  if (!getLangOptions().CPlusPlus) {
4926    // Perform semantic checking on the function declaration.
4927    bool isExplicitSpecialization=false;
4928    if (!NewFD->isInvalidDecl()) {
4929      if (NewFD->getResultType()->isVariablyModifiedType()) {
4930        // Functions returning a variably modified type violate C99 6.7.5.2p2
4931        // because all functions have linkage.
4932        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4933        NewFD->setInvalidDecl();
4934      } else {
4935        if (NewFD->isMain())
4936          CheckMain(NewFD, D.getDeclSpec());
4937        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4938                                 Redeclaration);
4939      }
4940    }
4941    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4942            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4943           "previous declaration set still overloaded");
4944  } else {
4945    // If the declarator is a template-id, translate the parser's template
4946    // argument list into our AST format.
4947    bool HasExplicitTemplateArgs = false;
4948    TemplateArgumentListInfo TemplateArgs;
4949    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4950      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4951      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4952      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4953      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4954                                         TemplateId->getTemplateArgs(),
4955                                         TemplateId->NumArgs);
4956      translateTemplateArguments(TemplateArgsPtr,
4957                                 TemplateArgs);
4958      TemplateArgsPtr.release();
4959
4960      HasExplicitTemplateArgs = true;
4961
4962      if (NewFD->isInvalidDecl()) {
4963        HasExplicitTemplateArgs = false;
4964      } else if (FunctionTemplate) {
4965        // Function template with explicit template arguments.
4966        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4967          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4968
4969        HasExplicitTemplateArgs = false;
4970      } else if (!isFunctionTemplateSpecialization &&
4971                 !D.getDeclSpec().isFriendSpecified()) {
4972        // We have encountered something that the user meant to be a
4973        // specialization (because it has explicitly-specified template
4974        // arguments) but that was not introduced with a "template<>" (or had
4975        // too few of them).
4976        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4977          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4978          << FixItHint::CreateInsertion(
4979                                        D.getDeclSpec().getSourceRange().getBegin(),
4980                                                  "template<> ");
4981        isFunctionTemplateSpecialization = true;
4982      } else {
4983        // "friend void foo<>(int);" is an implicit specialization decl.
4984        isFunctionTemplateSpecialization = true;
4985      }
4986    } else if (isFriend && isFunctionTemplateSpecialization) {
4987      // This combination is only possible in a recovery case;  the user
4988      // wrote something like:
4989      //   template <> friend void foo(int);
4990      // which we're recovering from as if the user had written:
4991      //   friend void foo<>(int);
4992      // Go ahead and fake up a template id.
4993      HasExplicitTemplateArgs = true;
4994        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4995      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4996    }
4997
4998    // If it's a friend (and only if it's a friend), it's possible
4999    // that either the specialized function type or the specialized
5000    // template is dependent, and therefore matching will fail.  In
5001    // this case, don't check the specialization yet.
5002    bool InstantiationDependent = false;
5003    if (isFunctionTemplateSpecialization && isFriend &&
5004        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5005         TemplateSpecializationType::anyDependentTemplateArguments(
5006            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5007            InstantiationDependent))) {
5008      assert(HasExplicitTemplateArgs &&
5009             "friend function specialization without template args");
5010      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5011                                                       Previous))
5012        NewFD->setInvalidDecl();
5013    } else if (isFunctionTemplateSpecialization) {
5014      if (CurContext->isDependentContext() && CurContext->isRecord()
5015          && !isFriend) {
5016        isDependentClassScopeExplicitSpecialization = true;
5017        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5018          diag::ext_function_specialization_in_class :
5019          diag::err_function_specialization_in_class)
5020          << NewFD->getDeclName();
5021      } else if (CheckFunctionTemplateSpecialization(NewFD,
5022                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5023                                                     Previous))
5024        NewFD->setInvalidDecl();
5025
5026      // C++ [dcl.stc]p1:
5027      //   A storage-class-specifier shall not be specified in an explicit
5028      //   specialization (14.7.3)
5029      if (SC != SC_None) {
5030        if (SC != NewFD->getStorageClass())
5031          Diag(NewFD->getLocation(),
5032               diag::err_explicit_specialization_inconsistent_storage_class)
5033            << SC
5034            << FixItHint::CreateRemoval(
5035                                      D.getDeclSpec().getStorageClassSpecLoc());
5036
5037        else
5038          Diag(NewFD->getLocation(),
5039               diag::ext_explicit_specialization_storage_class)
5040            << FixItHint::CreateRemoval(
5041                                      D.getDeclSpec().getStorageClassSpecLoc());
5042      }
5043
5044    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5045      if (CheckMemberSpecialization(NewFD, Previous))
5046          NewFD->setInvalidDecl();
5047    }
5048
5049    // Perform semantic checking on the function declaration.
5050    if (!isDependentClassScopeExplicitSpecialization) {
5051      if (NewFD->isInvalidDecl()) {
5052        // If this is a class member, mark the class invalid immediately.
5053        // This avoids some consistency errors later.
5054        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5055          methodDecl->getParent()->setInvalidDecl();
5056      } else {
5057        if (NewFD->isMain())
5058          CheckMain(NewFD, D.getDeclSpec());
5059        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
5060                                 Redeclaration);
5061      }
5062    }
5063
5064    assert((NewFD->isInvalidDecl() || !Redeclaration ||
5065            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5066           "previous declaration set still overloaded");
5067
5068    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5069        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5070      NewFD->setInvalidDecl();
5071
5072    NamedDecl *PrincipalDecl = (FunctionTemplate
5073                                ? cast<NamedDecl>(FunctionTemplate)
5074                                : NewFD);
5075
5076    if (isFriend && Redeclaration) {
5077      AccessSpecifier Access = AS_public;
5078      if (!NewFD->isInvalidDecl())
5079        Access = NewFD->getPreviousDeclaration()->getAccess();
5080
5081      NewFD->setAccess(Access);
5082      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5083
5084      PrincipalDecl->setObjectOfFriendDecl(true);
5085    }
5086
5087    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5088        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5089      PrincipalDecl->setNonMemberOperator();
5090
5091    // If we have a function template, check the template parameter
5092    // list. This will check and merge default template arguments.
5093    if (FunctionTemplate) {
5094      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5095      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5096                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5097                            D.getDeclSpec().isFriendSpecified()
5098                              ? (IsFunctionDefinition
5099                                   ? TPC_FriendFunctionTemplateDefinition
5100                                   : TPC_FriendFunctionTemplate)
5101                              : (D.getCXXScopeSpec().isSet() &&
5102                                 DC && DC->isRecord() &&
5103                                 DC->isDependentContext())
5104                                  ? TPC_ClassTemplateMember
5105                                  : TPC_FunctionTemplate);
5106    }
5107
5108    if (NewFD->isInvalidDecl()) {
5109      // Ignore all the rest of this.
5110    } else if (!Redeclaration) {
5111      // Fake up an access specifier if it's supposed to be a class member.
5112      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5113        NewFD->setAccess(AS_public);
5114
5115      // Qualified decls generally require a previous declaration.
5116      if (D.getCXXScopeSpec().isSet()) {
5117        // ...with the major exception of templated-scope or
5118        // dependent-scope friend declarations.
5119
5120        // TODO: we currently also suppress this check in dependent
5121        // contexts because (1) the parameter depth will be off when
5122        // matching friend templates and (2) we might actually be
5123        // selecting a friend based on a dependent factor.  But there
5124        // are situations where these conditions don't apply and we
5125        // can actually do this check immediately.
5126        if (isFriend &&
5127            (TemplateParamLists.size() ||
5128             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5129             CurContext->isDependentContext())) {
5130          // ignore these
5131        } else {
5132          // The user tried to provide an out-of-line definition for a
5133          // function that is a member of a class or namespace, but there
5134          // was no such member function declared (C++ [class.mfct]p2,
5135          // C++ [namespace.memdef]p2). For example:
5136          //
5137          // class X {
5138          //   void f() const;
5139          // };
5140          //
5141          // void X::f() { } // ill-formed
5142          //
5143          // Complain about this problem, and attempt to suggest close
5144          // matches (e.g., those that differ only in cv-qualifiers and
5145          // whether the parameter types are references).
5146
5147          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5148        }
5149
5150        // Unqualified local friend declarations are required to resolve
5151        // to something.
5152      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5153        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5154      }
5155
5156    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5157               !isFriend && !isFunctionTemplateSpecialization &&
5158               !isExplicitSpecialization) {
5159      // An out-of-line member function declaration must also be a
5160      // definition (C++ [dcl.meaning]p1).
5161      // Note that this is not the case for explicit specializations of
5162      // function templates or member functions of class templates, per
5163      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5164      // for compatibility with old SWIG code which likes to generate them.
5165      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5166        << D.getCXXScopeSpec().getRange();
5167    }
5168  }
5169
5170
5171  // Handle attributes. We need to have merged decls when handling attributes
5172  // (for example to check for conflicts, etc).
5173  // FIXME: This needs to happen before we merge declarations. Then,
5174  // let attribute merging cope with attribute conflicts.
5175  ProcessDeclAttributes(S, NewFD, D,
5176                        /*NonInheritable=*/false, /*Inheritable=*/true);
5177
5178  // attributes declared post-definition are currently ignored
5179  // FIXME: This should happen during attribute merging
5180  if (Redeclaration && Previous.isSingleResult()) {
5181    const FunctionDecl *Def;
5182    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5183    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5184      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5185      Diag(Def->getLocation(), diag::note_previous_definition);
5186    }
5187  }
5188
5189  AddKnownFunctionAttributes(NewFD);
5190
5191  if (NewFD->hasAttr<OverloadableAttr>() &&
5192      !NewFD->getType()->getAs<FunctionProtoType>()) {
5193    Diag(NewFD->getLocation(),
5194         diag::err_attribute_overloadable_no_prototype)
5195      << NewFD;
5196
5197    // Turn this into a variadic function with no parameters.
5198    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5199    FunctionProtoType::ExtProtoInfo EPI;
5200    EPI.Variadic = true;
5201    EPI.ExtInfo = FT->getExtInfo();
5202
5203    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5204    NewFD->setType(R);
5205  }
5206
5207  // If there's a #pragma GCC visibility in scope, and this isn't a class
5208  // member, set the visibility of this function.
5209  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5210    AddPushedVisibilityAttribute(NewFD);
5211
5212  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5213  // marking the function.
5214  AddCFAuditedAttribute(NewFD);
5215
5216  // If this is a locally-scoped extern C function, update the
5217  // map of such names.
5218  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5219      && !NewFD->isInvalidDecl())
5220    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5221
5222  // Set this FunctionDecl's range up to the right paren.
5223  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5224
5225  if (getLangOptions().CPlusPlus) {
5226    if (FunctionTemplate) {
5227      if (NewFD->isInvalidDecl())
5228        FunctionTemplate->setInvalidDecl();
5229      return FunctionTemplate;
5230    }
5231  }
5232
5233  MarkUnusedFileScopedDecl(NewFD);
5234
5235  if (getLangOptions().CUDA)
5236    if (IdentifierInfo *II = NewFD->getIdentifier())
5237      if (!NewFD->isInvalidDecl() &&
5238          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5239        if (II->isStr("cudaConfigureCall")) {
5240          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5241            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5242
5243          Context.setcudaConfigureCallDecl(NewFD);
5244        }
5245      }
5246
5247  // Here we have an function template explicit specialization at class scope.
5248  // The actually specialization will be postponed to template instatiation
5249  // time via the ClassScopeFunctionSpecializationDecl node.
5250  if (isDependentClassScopeExplicitSpecialization) {
5251    ClassScopeFunctionSpecializationDecl *NewSpec =
5252                         ClassScopeFunctionSpecializationDecl::Create(
5253                                Context, CurContext,  SourceLocation(),
5254                                cast<CXXMethodDecl>(NewFD));
5255    CurContext->addDecl(NewSpec);
5256    AddToScope = false;
5257  }
5258
5259  return NewFD;
5260}
5261
5262/// \brief Perform semantic checking of a new function declaration.
5263///
5264/// Performs semantic analysis of the new function declaration
5265/// NewFD. This routine performs all semantic checking that does not
5266/// require the actual declarator involved in the declaration, and is
5267/// used both for the declaration of functions as they are parsed
5268/// (called via ActOnDeclarator) and for the declaration of functions
5269/// that have been instantiated via C++ template instantiation (called
5270/// via InstantiateDecl).
5271///
5272/// \param IsExplicitSpecialiation whether this new function declaration is
5273/// an explicit specialization of the previous declaration.
5274///
5275/// This sets NewFD->isInvalidDecl() to true if there was an error.
5276void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5277                                    LookupResult &Previous,
5278                                    bool IsExplicitSpecialization,
5279                                    bool &Redeclaration) {
5280  assert(!NewFD->getResultType()->isVariablyModifiedType()
5281         && "Variably modified return types are not handled here");
5282
5283  // Check for a previous declaration of this name.
5284  if (Previous.empty() && NewFD->isExternC()) {
5285    // Since we did not find anything by this name and we're declaring
5286    // an extern "C" function, look for a non-visible extern "C"
5287    // declaration with the same name.
5288    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5289      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5290    if (Pos != LocallyScopedExternalDecls.end())
5291      Previous.addDecl(Pos->second);
5292  }
5293
5294  // Merge or overload the declaration with an existing declaration of
5295  // the same name, if appropriate.
5296  if (!Previous.empty()) {
5297    // Determine whether NewFD is an overload of PrevDecl or
5298    // a declaration that requires merging. If it's an overload,
5299    // there's no more work to do here; we'll just add the new
5300    // function to the scope.
5301
5302    NamedDecl *OldDecl = 0;
5303    if (!AllowOverloadingOfFunction(Previous, Context)) {
5304      Redeclaration = true;
5305      OldDecl = Previous.getFoundDecl();
5306    } else {
5307      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5308                            /*NewIsUsingDecl*/ false)) {
5309      case Ovl_Match:
5310        Redeclaration = true;
5311        break;
5312
5313      case Ovl_NonFunction:
5314        Redeclaration = true;
5315        break;
5316
5317      case Ovl_Overload:
5318        Redeclaration = false;
5319        break;
5320      }
5321
5322      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5323        // If a function name is overloadable in C, then every function
5324        // with that name must be marked "overloadable".
5325        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5326          << Redeclaration << NewFD;
5327        NamedDecl *OverloadedDecl = 0;
5328        if (Redeclaration)
5329          OverloadedDecl = OldDecl;
5330        else if (!Previous.empty())
5331          OverloadedDecl = Previous.getRepresentativeDecl();
5332        if (OverloadedDecl)
5333          Diag(OverloadedDecl->getLocation(),
5334               diag::note_attribute_overloadable_prev_overload);
5335        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5336                                                        Context));
5337      }
5338    }
5339
5340    if (Redeclaration) {
5341      // NewFD and OldDecl represent declarations that need to be
5342      // merged.
5343      if (MergeFunctionDecl(NewFD, OldDecl))
5344        return NewFD->setInvalidDecl();
5345
5346      Previous.clear();
5347      Previous.addDecl(OldDecl);
5348
5349      if (FunctionTemplateDecl *OldTemplateDecl
5350                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5351        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5352        FunctionTemplateDecl *NewTemplateDecl
5353          = NewFD->getDescribedFunctionTemplate();
5354        assert(NewTemplateDecl && "Template/non-template mismatch");
5355        if (CXXMethodDecl *Method
5356              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5357          Method->setAccess(OldTemplateDecl->getAccess());
5358          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5359        }
5360
5361        // If this is an explicit specialization of a member that is a function
5362        // template, mark it as a member specialization.
5363        if (IsExplicitSpecialization &&
5364            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5365          NewTemplateDecl->setMemberSpecialization();
5366          assert(OldTemplateDecl->isMemberSpecialization());
5367        }
5368
5369        if (OldTemplateDecl->isModulePrivate())
5370          NewTemplateDecl->setModulePrivate();
5371
5372      } else {
5373        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5374          NewFD->setAccess(OldDecl->getAccess());
5375        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5376      }
5377    }
5378  }
5379
5380  // Semantic checking for this function declaration (in isolation).
5381  if (getLangOptions().CPlusPlus) {
5382    // C++-specific checks.
5383    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5384      CheckConstructor(Constructor);
5385    } else if (CXXDestructorDecl *Destructor =
5386                dyn_cast<CXXDestructorDecl>(NewFD)) {
5387      CXXRecordDecl *Record = Destructor->getParent();
5388      QualType ClassType = Context.getTypeDeclType(Record);
5389
5390      // FIXME: Shouldn't we be able to perform this check even when the class
5391      // type is dependent? Both gcc and edg can handle that.
5392      if (!ClassType->isDependentType()) {
5393        DeclarationName Name
5394          = Context.DeclarationNames.getCXXDestructorName(
5395                                        Context.getCanonicalType(ClassType));
5396        if (NewFD->getDeclName() != Name) {
5397          Diag(NewFD->getLocation(), diag::err_destructor_name);
5398          return NewFD->setInvalidDecl();
5399        }
5400      }
5401    } else if (CXXConversionDecl *Conversion
5402               = dyn_cast<CXXConversionDecl>(NewFD)) {
5403      ActOnConversionDeclarator(Conversion);
5404    }
5405
5406    // Find any virtual functions that this function overrides.
5407    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5408      if (!Method->isFunctionTemplateSpecialization() &&
5409          !Method->getDescribedFunctionTemplate()) {
5410        if (AddOverriddenMethods(Method->getParent(), Method)) {
5411          // If the function was marked as "static", we have a problem.
5412          if (NewFD->getStorageClass() == SC_Static) {
5413            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5414              << NewFD->getDeclName();
5415            for (CXXMethodDecl::method_iterator
5416                      Overridden = Method->begin_overridden_methods(),
5417                   OverriddenEnd = Method->end_overridden_methods();
5418                 Overridden != OverriddenEnd;
5419                 ++Overridden) {
5420              Diag((*Overridden)->getLocation(),
5421                   diag::note_overridden_virtual_function);
5422            }
5423          }
5424        }
5425      }
5426    }
5427
5428    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5429    if (NewFD->isOverloadedOperator() &&
5430        CheckOverloadedOperatorDeclaration(NewFD))
5431      return NewFD->setInvalidDecl();
5432
5433    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5434    if (NewFD->getLiteralIdentifier() &&
5435        CheckLiteralOperatorDeclaration(NewFD))
5436      return NewFD->setInvalidDecl();
5437
5438    // In C++, check default arguments now that we have merged decls. Unless
5439    // the lexical context is the class, because in this case this is done
5440    // during delayed parsing anyway.
5441    if (!CurContext->isRecord())
5442      CheckCXXDefaultArguments(NewFD);
5443
5444    // If this function declares a builtin function, check the type of this
5445    // declaration against the expected type for the builtin.
5446    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5447      ASTContext::GetBuiltinTypeError Error;
5448      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5449      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5450        // The type of this function differs from the type of the builtin,
5451        // so forget about the builtin entirely.
5452        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5453      }
5454    }
5455  }
5456}
5457
5458void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5459  // C++ [basic.start.main]p3:  A program that declares main to be inline
5460  //   or static is ill-formed.
5461  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5462  //   shall not appear in a declaration of main.
5463  // static main is not an error under C99, but we should warn about it.
5464  if (FD->getStorageClass() == SC_Static)
5465    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5466         ? diag::err_static_main : diag::warn_static_main)
5467      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5468  if (FD->isInlineSpecified())
5469    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5470      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5471
5472  QualType T = FD->getType();
5473  assert(T->isFunctionType() && "function decl is not of function type");
5474  const FunctionType* FT = T->getAs<FunctionType>();
5475
5476  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5477    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5478    FD->setInvalidDecl(true);
5479  }
5480
5481  // Treat protoless main() as nullary.
5482  if (isa<FunctionNoProtoType>(FT)) return;
5483
5484  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5485  unsigned nparams = FTP->getNumArgs();
5486  assert(FD->getNumParams() == nparams);
5487
5488  bool HasExtraParameters = (nparams > 3);
5489
5490  // Darwin passes an undocumented fourth argument of type char**.  If
5491  // other platforms start sprouting these, the logic below will start
5492  // getting shifty.
5493  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5494    HasExtraParameters = false;
5495
5496  if (HasExtraParameters) {
5497    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5498    FD->setInvalidDecl(true);
5499    nparams = 3;
5500  }
5501
5502  // FIXME: a lot of the following diagnostics would be improved
5503  // if we had some location information about types.
5504
5505  QualType CharPP =
5506    Context.getPointerType(Context.getPointerType(Context.CharTy));
5507  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5508
5509  for (unsigned i = 0; i < nparams; ++i) {
5510    QualType AT = FTP->getArgType(i);
5511
5512    bool mismatch = true;
5513
5514    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5515      mismatch = false;
5516    else if (Expected[i] == CharPP) {
5517      // As an extension, the following forms are okay:
5518      //   char const **
5519      //   char const * const *
5520      //   char * const *
5521
5522      QualifierCollector qs;
5523      const PointerType* PT;
5524      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5525          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5526          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5527        qs.removeConst();
5528        mismatch = !qs.empty();
5529      }
5530    }
5531
5532    if (mismatch) {
5533      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5534      // TODO: suggest replacing given type with expected type
5535      FD->setInvalidDecl(true);
5536    }
5537  }
5538
5539  if (nparams == 1 && !FD->isInvalidDecl()) {
5540    Diag(FD->getLocation(), diag::warn_main_one_arg);
5541  }
5542
5543  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5544    Diag(FD->getLocation(), diag::err_main_template_decl);
5545    FD->setInvalidDecl();
5546  }
5547}
5548
5549bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5550  // FIXME: Need strict checking.  In C89, we need to check for
5551  // any assignment, increment, decrement, function-calls, or
5552  // commas outside of a sizeof.  In C99, it's the same list,
5553  // except that the aforementioned are allowed in unevaluated
5554  // expressions.  Everything else falls under the
5555  // "may accept other forms of constant expressions" exception.
5556  // (We never end up here for C++, so the constant expression
5557  // rules there don't matter.)
5558  if (Init->isConstantInitializer(Context, false))
5559    return false;
5560  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5561    << Init->getSourceRange();
5562  return true;
5563}
5564
5565namespace {
5566  // Visits an initialization expression to see if OrigDecl is evaluated in
5567  // its own initialization and throws a warning if it does.
5568  class SelfReferenceChecker
5569      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5570    Sema &S;
5571    Decl *OrigDecl;
5572    bool isRecordType;
5573    bool isPODType;
5574
5575  public:
5576    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5577
5578    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5579                                                    S(S), OrigDecl(OrigDecl) {
5580      isPODType = false;
5581      isRecordType = false;
5582      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5583        isPODType = VD->getType().isPODType(S.Context);
5584        isRecordType = VD->getType()->isRecordType();
5585      }
5586    }
5587
5588    void VisitExpr(Expr *E) {
5589      if (isa<ObjCMessageExpr>(*E)) return;
5590      if (isRecordType) {
5591        Expr *expr = E;
5592        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5593          ValueDecl *VD = ME->getMemberDecl();
5594          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5595          expr = ME->getBase();
5596        }
5597        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5598          HandleDeclRefExpr(DRE);
5599          return;
5600        }
5601      }
5602      Inherited::VisitExpr(E);
5603    }
5604
5605    void VisitMemberExpr(MemberExpr *E) {
5606      if (E->getType()->canDecayToPointerType()) return;
5607      if (isa<FieldDecl>(E->getMemberDecl()))
5608        if (DeclRefExpr *DRE
5609              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5610          HandleDeclRefExpr(DRE);
5611          return;
5612        }
5613      Inherited::VisitMemberExpr(E);
5614    }
5615
5616    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5617      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5618          (isRecordType && E->getCastKind() == CK_NoOp)) {
5619        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5620        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5621          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5622        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5623          HandleDeclRefExpr(DRE);
5624          return;
5625        }
5626      }
5627      Inherited::VisitImplicitCastExpr(E);
5628    }
5629
5630    void VisitUnaryOperator(UnaryOperator *E) {
5631      // For POD record types, addresses of its own members are well-defined.
5632      if (isRecordType && isPODType) return;
5633      Inherited::VisitUnaryOperator(E);
5634    }
5635
5636    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5637      Decl* ReferenceDecl = DRE->getDecl();
5638      if (OrigDecl != ReferenceDecl) return;
5639      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5640                          Sema::NotForRedeclaration);
5641      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5642                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5643                              << Result.getLookupName()
5644                              << OrigDecl->getLocation()
5645                              << DRE->getSourceRange());
5646    }
5647  };
5648}
5649
5650/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5651void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5652  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5653}
5654
5655/// AddInitializerToDecl - Adds the initializer Init to the
5656/// declaration dcl. If DirectInit is true, this is C++ direct
5657/// initialization rather than copy initialization.
5658void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5659                                bool DirectInit, bool TypeMayContainAuto) {
5660  // If there is no declaration, there was an error parsing it.  Just ignore
5661  // the initializer.
5662  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5663    return;
5664
5665  // Check for self-references within variable initializers.
5666  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5667    // Variables declared within a function/method body are handled
5668    // by a dataflow analysis.
5669    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5670      CheckSelfReference(RealDecl, Init);
5671  }
5672  else {
5673    CheckSelfReference(RealDecl, Init);
5674  }
5675
5676  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5677    // With declarators parsed the way they are, the parser cannot
5678    // distinguish between a normal initializer and a pure-specifier.
5679    // Thus this grotesque test.
5680    IntegerLiteral *IL;
5681    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5682        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5683      CheckPureMethod(Method, Init->getSourceRange());
5684    else {
5685      Diag(Method->getLocation(), diag::err_member_function_initialization)
5686        << Method->getDeclName() << Init->getSourceRange();
5687      Method->setInvalidDecl();
5688    }
5689    return;
5690  }
5691
5692  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5693  if (!VDecl) {
5694    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5695    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5696    RealDecl->setInvalidDecl();
5697    return;
5698  }
5699
5700  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5701  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5702    TypeSourceInfo *DeducedType = 0;
5703    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5704      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5705        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5706        << Init->getSourceRange();
5707    if (!DeducedType) {
5708      RealDecl->setInvalidDecl();
5709      return;
5710    }
5711    VDecl->setTypeSourceInfo(DeducedType);
5712    VDecl->setType(DeducedType->getType());
5713
5714    // In ARC, infer lifetime.
5715    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5716      VDecl->setInvalidDecl();
5717
5718    // If this is a redeclaration, check that the type we just deduced matches
5719    // the previously declared type.
5720    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5721      MergeVarDeclTypes(VDecl, Old);
5722  }
5723
5724
5725  // A definition must end up with a complete type, which means it must be
5726  // complete with the restriction that an array type might be completed by the
5727  // initializer; note that later code assumes this restriction.
5728  QualType BaseDeclType = VDecl->getType();
5729  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5730    BaseDeclType = Array->getElementType();
5731  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5732                          diag::err_typecheck_decl_incomplete_type)) {
5733    RealDecl->setInvalidDecl();
5734    return;
5735  }
5736
5737  // The variable can not have an abstract class type.
5738  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5739                             diag::err_abstract_type_in_decl,
5740                             AbstractVariableType))
5741    VDecl->setInvalidDecl();
5742
5743  const VarDecl *Def;
5744  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5745    Diag(VDecl->getLocation(), diag::err_redefinition)
5746      << VDecl->getDeclName();
5747    Diag(Def->getLocation(), diag::note_previous_definition);
5748    VDecl->setInvalidDecl();
5749    return;
5750  }
5751
5752  const VarDecl* PrevInit = 0;
5753  if (getLangOptions().CPlusPlus) {
5754    // C++ [class.static.data]p4
5755    //   If a static data member is of const integral or const
5756    //   enumeration type, its declaration in the class definition can
5757    //   specify a constant-initializer which shall be an integral
5758    //   constant expression (5.19). In that case, the member can appear
5759    //   in integral constant expressions. The member shall still be
5760    //   defined in a namespace scope if it is used in the program and the
5761    //   namespace scope definition shall not contain an initializer.
5762    //
5763    // We already performed a redefinition check above, but for static
5764    // data members we also need to check whether there was an in-class
5765    // declaration with an initializer.
5766    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5767      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5768      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5769      return;
5770    }
5771
5772    if (VDecl->hasLocalStorage())
5773      getCurFunction()->setHasBranchProtectedScope();
5774
5775    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5776      VDecl->setInvalidDecl();
5777      return;
5778    }
5779  }
5780
5781  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5782  // a kernel function cannot be initialized."
5783  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5784    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5785    VDecl->setInvalidDecl();
5786    return;
5787  }
5788
5789  // Capture the variable that is being initialized and the style of
5790  // initialization.
5791  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5792
5793  // FIXME: Poor source location information.
5794  InitializationKind Kind
5795    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5796                                                   Init->getLocStart(),
5797                                                   Init->getLocEnd())
5798                : InitializationKind::CreateCopy(VDecl->getLocation(),
5799                                                 Init->getLocStart());
5800
5801  // Get the decls type and save a reference for later, since
5802  // CheckInitializerTypes may change it.
5803  QualType DclT = VDecl->getType(), SavT = DclT;
5804  if (VDecl->isLocalVarDecl()) {
5805    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5806      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5807      VDecl->setInvalidDecl();
5808    } else if (!VDecl->isInvalidDecl()) {
5809      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5810      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5811                                                MultiExprArg(*this, &Init, 1),
5812                                                &DclT);
5813      if (Result.isInvalid()) {
5814        VDecl->setInvalidDecl();
5815        return;
5816      }
5817
5818      Init = Result.takeAs<Expr>();
5819
5820      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5821      // Don't check invalid declarations to avoid emitting useless diagnostics.
5822      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5823        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5824          CheckForConstantInitializer(Init, DclT);
5825      }
5826    }
5827  } else if (VDecl->isStaticDataMember() &&
5828             VDecl->getLexicalDeclContext()->isRecord()) {
5829    // This is an in-class initialization for a static data member, e.g.,
5830    //
5831    // struct S {
5832    //   static const int value = 17;
5833    // };
5834
5835    // Try to perform the initialization regardless.
5836    if (!VDecl->isInvalidDecl()) {
5837      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5838      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5839                                          MultiExprArg(*this, &Init, 1),
5840                                          &DclT);
5841      if (Result.isInvalid()) {
5842        VDecl->setInvalidDecl();
5843        return;
5844      }
5845
5846      Init = Result.takeAs<Expr>();
5847    }
5848
5849    // C++ [class.mem]p4:
5850    //   A member-declarator can contain a constant-initializer only
5851    //   if it declares a static member (9.4) of const integral or
5852    //   const enumeration type, see 9.4.2.
5853    //
5854    // C++0x [class.static.data]p3:
5855    //   If a non-volatile const static data member is of integral or
5856    //   enumeration type, its declaration in the class definition can
5857    //   specify a brace-or-equal-initializer in which every initalizer-clause
5858    //   that is an assignment-expression is a constant expression. A static
5859    //   data member of literal type can be declared in the class definition
5860    //   with the constexpr specifier; if so, its declaration shall specify a
5861    //   brace-or-equal-initializer in which every initializer-clause that is
5862    //   an assignment-expression is a constant expression.
5863    QualType T = VDecl->getType();
5864
5865    // Do nothing on dependent types.
5866    if (T->isDependentType()) {
5867
5868    // Allow any 'static constexpr' members, whether or not they are of literal
5869    // type. We separately check that the initializer is a constant expression,
5870    // which implicitly requires the member to be of literal type.
5871    } else if (VDecl->isConstexpr()) {
5872
5873    // Require constness.
5874    } else if (!T.isConstQualified()) {
5875      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5876        << Init->getSourceRange();
5877      VDecl->setInvalidDecl();
5878
5879    // We allow integer constant expressions in all cases.
5880    } else if (T->isIntegralOrEnumerationType()) {
5881      // Check whether the expression is a constant expression.
5882      SourceLocation Loc;
5883      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
5884        // In C++0x, a non-constexpr const static data member with an
5885        // in-class initializer cannot be volatile.
5886        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
5887      else if (Init->isValueDependent())
5888        ; // Nothing to check.
5889      else if (Init->isIntegerConstantExpr(Context, &Loc))
5890        ; // Ok, it's an ICE!
5891      else if (Init->isEvaluatable(Context)) {
5892        // If we can constant fold the initializer through heroics, accept it,
5893        // but report this as a use of an extension for -pedantic.
5894        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5895          << Init->getSourceRange();
5896      } else {
5897        // Otherwise, this is some crazy unknown case.  Report the issue at the
5898        // location provided by the isIntegerConstantExpr failed check.
5899        Diag(Loc, diag::err_in_class_initializer_non_constant)
5900          << Init->getSourceRange();
5901        VDecl->setInvalidDecl();
5902      }
5903
5904    // We allow floating-point constants as an extension.
5905    } else if (T->isFloatingType()) { // also permits complex, which is ok
5906      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5907        << T << Init->getSourceRange();
5908      if (getLangOptions().CPlusPlus0x)
5909        Diag(VDecl->getLocation(),
5910             diag::note_in_class_initializer_float_type_constexpr)
5911          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
5912
5913      if (!Init->isValueDependent() &&
5914          !Init->isConstantInitializer(Context, false)) {
5915        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5916          << Init->getSourceRange();
5917        VDecl->setInvalidDecl();
5918      }
5919
5920    // Suggest adding 'constexpr' in C++0x for literal types.
5921    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
5922      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
5923        << T << Init->getSourceRange()
5924        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
5925      VDecl->setConstexpr(true);
5926
5927    } else {
5928      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5929        << T << Init->getSourceRange();
5930      VDecl->setInvalidDecl();
5931    }
5932  } else if (VDecl->isFileVarDecl()) {
5933    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5934        (!getLangOptions().CPlusPlus ||
5935         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5936      Diag(VDecl->getLocation(), diag::warn_extern_init);
5937    if (!VDecl->isInvalidDecl()) {
5938      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5939      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5940                                                MultiExprArg(*this, &Init, 1),
5941                                                &DclT);
5942      if (Result.isInvalid()) {
5943        VDecl->setInvalidDecl();
5944        return;
5945      }
5946
5947      Init = Result.takeAs<Expr>();
5948    }
5949
5950    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5951    // Don't check invalid declarations to avoid emitting useless diagnostics.
5952    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5953      // C99 6.7.8p4. All file scoped initializers need to be constant.
5954      CheckForConstantInitializer(Init, DclT);
5955    }
5956  }
5957  // If the type changed, it means we had an incomplete type that was
5958  // completed by the initializer. For example:
5959  //   int ary[] = { 1, 3, 5 };
5960  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5961  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5962    VDecl->setType(DclT);
5963    Init->setType(DclT);
5964  }
5965
5966  // Check any implicit conversions within the expression.
5967  CheckImplicitConversions(Init, VDecl->getLocation());
5968
5969  if (!VDecl->isInvalidDecl())
5970    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5971
5972  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
5973      !VDecl->getType()->isDependentType() &&
5974      !Init->isTypeDependent() && !Init->isValueDependent() &&
5975      !Init->isConstantInitializer(Context,
5976                                   VDecl->getType()->isReferenceType())) {
5977    // FIXME: Improve this diagnostic to explain why the initializer is not
5978    // a constant expression.
5979    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
5980      << VDecl << Init->getSourceRange();
5981  }
5982
5983  Init = MaybeCreateExprWithCleanups(Init);
5984  // Attach the initializer to the decl.
5985  VDecl->setInit(Init);
5986
5987  CheckCompleteVariableDeclaration(VDecl);
5988}
5989
5990/// ActOnInitializerError - Given that there was an error parsing an
5991/// initializer for the given declaration, try to return to some form
5992/// of sanity.
5993void Sema::ActOnInitializerError(Decl *D) {
5994  // Our main concern here is re-establishing invariants like "a
5995  // variable's type is either dependent or complete".
5996  if (!D || D->isInvalidDecl()) return;
5997
5998  VarDecl *VD = dyn_cast<VarDecl>(D);
5999  if (!VD) return;
6000
6001  // Auto types are meaningless if we can't make sense of the initializer.
6002  if (ParsingInitForAutoVars.count(D)) {
6003    D->setInvalidDecl();
6004    return;
6005  }
6006
6007  QualType Ty = VD->getType();
6008  if (Ty->isDependentType()) return;
6009
6010  // Require a complete type.
6011  if (RequireCompleteType(VD->getLocation(),
6012                          Context.getBaseElementType(Ty),
6013                          diag::err_typecheck_decl_incomplete_type)) {
6014    VD->setInvalidDecl();
6015    return;
6016  }
6017
6018  // Require an abstract type.
6019  if (RequireNonAbstractType(VD->getLocation(), Ty,
6020                             diag::err_abstract_type_in_decl,
6021                             AbstractVariableType)) {
6022    VD->setInvalidDecl();
6023    return;
6024  }
6025
6026  // Don't bother complaining about constructors or destructors,
6027  // though.
6028}
6029
6030void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6031                                  bool TypeMayContainAuto) {
6032  // If there is no declaration, there was an error parsing it. Just ignore it.
6033  if (RealDecl == 0)
6034    return;
6035
6036  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6037    QualType Type = Var->getType();
6038
6039    // C++0x [dcl.spec.auto]p3
6040    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6041      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6042        << Var->getDeclName() << Type;
6043      Var->setInvalidDecl();
6044      return;
6045    }
6046
6047    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6048    // have an initializer.
6049    // C++0x [class.static.data]p3: A static data member can be declared with
6050    // the constexpr specifier; if so, its declaration shall specify
6051    // a brace-or-equal-initializer.
6052    //
6053    // A static data member's definition may inherit an initializer from an
6054    // in-class declaration.
6055    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6056      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6057        << Var->getDeclName();
6058      Var->setInvalidDecl();
6059      return;
6060    }
6061
6062    switch (Var->isThisDeclarationADefinition()) {
6063    case VarDecl::Definition:
6064      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6065        break;
6066
6067      // We have an out-of-line definition of a static data member
6068      // that has an in-class initializer, so we type-check this like
6069      // a declaration.
6070      //
6071      // Fall through
6072
6073    case VarDecl::DeclarationOnly:
6074      // It's only a declaration.
6075
6076      // Block scope. C99 6.7p7: If an identifier for an object is
6077      // declared with no linkage (C99 6.2.2p6), the type for the
6078      // object shall be complete.
6079      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6080          !Var->getLinkage() && !Var->isInvalidDecl() &&
6081          RequireCompleteType(Var->getLocation(), Type,
6082                              diag::err_typecheck_decl_incomplete_type))
6083        Var->setInvalidDecl();
6084
6085      // Make sure that the type is not abstract.
6086      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6087          RequireNonAbstractType(Var->getLocation(), Type,
6088                                 diag::err_abstract_type_in_decl,
6089                                 AbstractVariableType))
6090        Var->setInvalidDecl();
6091      return;
6092
6093    case VarDecl::TentativeDefinition:
6094      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6095      // object that has file scope without an initializer, and without a
6096      // storage-class specifier or with the storage-class specifier "static",
6097      // constitutes a tentative definition. Note: A tentative definition with
6098      // external linkage is valid (C99 6.2.2p5).
6099      if (!Var->isInvalidDecl()) {
6100        if (const IncompleteArrayType *ArrayT
6101                                    = Context.getAsIncompleteArrayType(Type)) {
6102          if (RequireCompleteType(Var->getLocation(),
6103                                  ArrayT->getElementType(),
6104                                  diag::err_illegal_decl_array_incomplete_type))
6105            Var->setInvalidDecl();
6106        } else if (Var->getStorageClass() == SC_Static) {
6107          // C99 6.9.2p3: If the declaration of an identifier for an object is
6108          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6109          // declared type shall not be an incomplete type.
6110          // NOTE: code such as the following
6111          //     static struct s;
6112          //     struct s { int a; };
6113          // is accepted by gcc. Hence here we issue a warning instead of
6114          // an error and we do not invalidate the static declaration.
6115          // NOTE: to avoid multiple warnings, only check the first declaration.
6116          if (Var->getPreviousDeclaration() == 0)
6117            RequireCompleteType(Var->getLocation(), Type,
6118                                diag::ext_typecheck_decl_incomplete_type);
6119        }
6120      }
6121
6122      // Record the tentative definition; we're done.
6123      if (!Var->isInvalidDecl())
6124        TentativeDefinitions.push_back(Var);
6125      return;
6126    }
6127
6128    // Provide a specific diagnostic for uninitialized variable
6129    // definitions with incomplete array type.
6130    if (Type->isIncompleteArrayType()) {
6131      Diag(Var->getLocation(),
6132           diag::err_typecheck_incomplete_array_needs_initializer);
6133      Var->setInvalidDecl();
6134      return;
6135    }
6136
6137    // Provide a specific diagnostic for uninitialized variable
6138    // definitions with reference type.
6139    if (Type->isReferenceType()) {
6140      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6141        << Var->getDeclName()
6142        << SourceRange(Var->getLocation(), Var->getLocation());
6143      Var->setInvalidDecl();
6144      return;
6145    }
6146
6147    // Do not attempt to type-check the default initializer for a
6148    // variable with dependent type.
6149    if (Type->isDependentType())
6150      return;
6151
6152    if (Var->isInvalidDecl())
6153      return;
6154
6155    if (RequireCompleteType(Var->getLocation(),
6156                            Context.getBaseElementType(Type),
6157                            diag::err_typecheck_decl_incomplete_type)) {
6158      Var->setInvalidDecl();
6159      return;
6160    }
6161
6162    // The variable can not have an abstract class type.
6163    if (RequireNonAbstractType(Var->getLocation(), Type,
6164                               diag::err_abstract_type_in_decl,
6165                               AbstractVariableType)) {
6166      Var->setInvalidDecl();
6167      return;
6168    }
6169
6170    // Check for jumps past the implicit initializer.  C++0x
6171    // clarifies that this applies to a "variable with automatic
6172    // storage duration", not a "local variable".
6173    // C++0x [stmt.dcl]p3
6174    //   A program that jumps from a point where a variable with automatic
6175    //   storage duration is not in scope to a point where it is in scope is
6176    //   ill-formed unless the variable has scalar type, class type with a
6177    //   trivial default constructor and a trivial destructor, a cv-qualified
6178    //   version of one of these types, or an array of one of the preceding
6179    //   types and is declared without an initializer.
6180    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6181      if (const RecordType *Record
6182            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6183        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6184        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6185            (getLangOptions().CPlusPlus0x &&
6186             (!CXXRecord->hasTrivialDefaultConstructor() ||
6187              !CXXRecord->hasTrivialDestructor())))
6188          getCurFunction()->setHasBranchProtectedScope();
6189      }
6190    }
6191
6192    // C++03 [dcl.init]p9:
6193    //   If no initializer is specified for an object, and the
6194    //   object is of (possibly cv-qualified) non-POD class type (or
6195    //   array thereof), the object shall be default-initialized; if
6196    //   the object is of const-qualified type, the underlying class
6197    //   type shall have a user-declared default
6198    //   constructor. Otherwise, if no initializer is specified for
6199    //   a non- static object, the object and its subobjects, if
6200    //   any, have an indeterminate initial value); if the object
6201    //   or any of its subobjects are of const-qualified type, the
6202    //   program is ill-formed.
6203    // C++0x [dcl.init]p11:
6204    //   If no initializer is specified for an object, the object is
6205    //   default-initialized; [...].
6206    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6207    InitializationKind Kind
6208      = InitializationKind::CreateDefault(Var->getLocation());
6209
6210    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6211    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6212                                      MultiExprArg(*this, 0, 0));
6213    if (Init.isInvalid())
6214      Var->setInvalidDecl();
6215    else if (Init.get())
6216      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6217
6218    CheckCompleteVariableDeclaration(Var);
6219  }
6220}
6221
6222void Sema::ActOnCXXForRangeDecl(Decl *D) {
6223  VarDecl *VD = dyn_cast<VarDecl>(D);
6224  if (!VD) {
6225    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6226    D->setInvalidDecl();
6227    return;
6228  }
6229
6230  VD->setCXXForRangeDecl(true);
6231
6232  // for-range-declaration cannot be given a storage class specifier.
6233  int Error = -1;
6234  switch (VD->getStorageClassAsWritten()) {
6235  case SC_None:
6236    break;
6237  case SC_Extern:
6238    Error = 0;
6239    break;
6240  case SC_Static:
6241    Error = 1;
6242    break;
6243  case SC_PrivateExtern:
6244    Error = 2;
6245    break;
6246  case SC_Auto:
6247    Error = 3;
6248    break;
6249  case SC_Register:
6250    Error = 4;
6251    break;
6252  case SC_OpenCLWorkGroupLocal:
6253    llvm_unreachable("Unexpected storage class");
6254  }
6255  if (VD->isConstexpr())
6256    Error = 5;
6257  if (Error != -1) {
6258    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6259      << VD->getDeclName() << Error;
6260    D->setInvalidDecl();
6261  }
6262}
6263
6264void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6265  if (var->isInvalidDecl()) return;
6266
6267  // In ARC, don't allow jumps past the implicit initialization of a
6268  // local retaining variable.
6269  if (getLangOptions().ObjCAutoRefCount &&
6270      var->hasLocalStorage()) {
6271    switch (var->getType().getObjCLifetime()) {
6272    case Qualifiers::OCL_None:
6273    case Qualifiers::OCL_ExplicitNone:
6274    case Qualifiers::OCL_Autoreleasing:
6275      break;
6276
6277    case Qualifiers::OCL_Weak:
6278    case Qualifiers::OCL_Strong:
6279      getCurFunction()->setHasBranchProtectedScope();
6280      break;
6281    }
6282  }
6283
6284  // All the following checks are C++ only.
6285  if (!getLangOptions().CPlusPlus) return;
6286
6287  QualType baseType = Context.getBaseElementType(var->getType());
6288  if (baseType->isDependentType()) return;
6289
6290  // __block variables might require us to capture a copy-initializer.
6291  if (var->hasAttr<BlocksAttr>()) {
6292    // It's currently invalid to ever have a __block variable with an
6293    // array type; should we diagnose that here?
6294
6295    // Regardless, we don't want to ignore array nesting when
6296    // constructing this copy.
6297    QualType type = var->getType();
6298
6299    if (type->isStructureOrClassType()) {
6300      SourceLocation poi = var->getLocation();
6301      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6302      ExprResult result =
6303        PerformCopyInitialization(
6304                        InitializedEntity::InitializeBlock(poi, type, false),
6305                                  poi, Owned(varRef));
6306      if (!result.isInvalid()) {
6307        result = MaybeCreateExprWithCleanups(result);
6308        Expr *init = result.takeAs<Expr>();
6309        Context.setBlockVarCopyInits(var, init);
6310      }
6311    }
6312  }
6313
6314  // Check for global constructors.
6315  if (!var->getDeclContext()->isDependentContext() &&
6316      var->hasGlobalStorage() &&
6317      !var->isStaticLocal() &&
6318      var->getInit() &&
6319      !var->getInit()->isConstantInitializer(Context,
6320                                             baseType->isReferenceType()))
6321    Diag(var->getLocation(), diag::warn_global_constructor)
6322      << var->getInit()->getSourceRange();
6323
6324  // Require the destructor.
6325  if (const RecordType *recordType = baseType->getAs<RecordType>())
6326    FinalizeVarWithDestructor(var, recordType);
6327}
6328
6329/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6330/// any semantic actions necessary after any initializer has been attached.
6331void
6332Sema::FinalizeDeclaration(Decl *ThisDecl) {
6333  // Note that we are no longer parsing the initializer for this declaration.
6334  ParsingInitForAutoVars.erase(ThisDecl);
6335}
6336
6337Sema::DeclGroupPtrTy
6338Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6339                              Decl **Group, unsigned NumDecls) {
6340  SmallVector<Decl*, 8> Decls;
6341
6342  if (DS.isTypeSpecOwned())
6343    Decls.push_back(DS.getRepAsDecl());
6344
6345  for (unsigned i = 0; i != NumDecls; ++i)
6346    if (Decl *D = Group[i])
6347      Decls.push_back(D);
6348
6349  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6350                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6351}
6352
6353/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6354/// group, performing any necessary semantic checking.
6355Sema::DeclGroupPtrTy
6356Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6357                           bool TypeMayContainAuto) {
6358  // C++0x [dcl.spec.auto]p7:
6359  //   If the type deduced for the template parameter U is not the same in each
6360  //   deduction, the program is ill-formed.
6361  // FIXME: When initializer-list support is added, a distinction is needed
6362  // between the deduced type U and the deduced type which 'auto' stands for.
6363  //   auto a = 0, b = { 1, 2, 3 };
6364  // is legal because the deduced type U is 'int' in both cases.
6365  if (TypeMayContainAuto && NumDecls > 1) {
6366    QualType Deduced;
6367    CanQualType DeducedCanon;
6368    VarDecl *DeducedDecl = 0;
6369    for (unsigned i = 0; i != NumDecls; ++i) {
6370      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6371        AutoType *AT = D->getType()->getContainedAutoType();
6372        // Don't reissue diagnostics when instantiating a template.
6373        if (AT && D->isInvalidDecl())
6374          break;
6375        if (AT && AT->isDeduced()) {
6376          QualType U = AT->getDeducedType();
6377          CanQualType UCanon = Context.getCanonicalType(U);
6378          if (Deduced.isNull()) {
6379            Deduced = U;
6380            DeducedCanon = UCanon;
6381            DeducedDecl = D;
6382          } else if (DeducedCanon != UCanon) {
6383            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6384                 diag::err_auto_different_deductions)
6385              << Deduced << DeducedDecl->getDeclName()
6386              << U << D->getDeclName()
6387              << DeducedDecl->getInit()->getSourceRange()
6388              << D->getInit()->getSourceRange();
6389            D->setInvalidDecl();
6390            break;
6391          }
6392        }
6393      }
6394    }
6395  }
6396
6397  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6398}
6399
6400
6401/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6402/// to introduce parameters into function prototype scope.
6403Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6404  const DeclSpec &DS = D.getDeclSpec();
6405
6406  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6407  VarDecl::StorageClass StorageClass = SC_None;
6408  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6409  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6410    StorageClass = SC_Register;
6411    StorageClassAsWritten = SC_Register;
6412  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6413    Diag(DS.getStorageClassSpecLoc(),
6414         diag::err_invalid_storage_class_in_func_decl);
6415    D.getMutableDeclSpec().ClearStorageClassSpecs();
6416  }
6417
6418  if (D.getDeclSpec().isThreadSpecified())
6419    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6420  if (D.getDeclSpec().isConstexprSpecified())
6421    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6422      << 0;
6423
6424  DiagnoseFunctionSpecifiers(D);
6425
6426  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6427  QualType parmDeclType = TInfo->getType();
6428
6429  if (getLangOptions().CPlusPlus) {
6430    // Check that there are no default arguments inside the type of this
6431    // parameter.
6432    CheckExtraCXXDefaultArguments(D);
6433
6434    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6435    if (D.getCXXScopeSpec().isSet()) {
6436      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6437        << D.getCXXScopeSpec().getRange();
6438      D.getCXXScopeSpec().clear();
6439    }
6440  }
6441
6442  // Ensure we have a valid name
6443  IdentifierInfo *II = 0;
6444  if (D.hasName()) {
6445    II = D.getIdentifier();
6446    if (!II) {
6447      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6448        << GetNameForDeclarator(D).getName().getAsString();
6449      D.setInvalidType(true);
6450    }
6451  }
6452
6453  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6454  if (II) {
6455    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6456                   ForRedeclaration);
6457    LookupName(R, S);
6458    if (R.isSingleResult()) {
6459      NamedDecl *PrevDecl = R.getFoundDecl();
6460      if (PrevDecl->isTemplateParameter()) {
6461        // Maybe we will complain about the shadowed template parameter.
6462        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6463        // Just pretend that we didn't see the previous declaration.
6464        PrevDecl = 0;
6465      } else if (S->isDeclScope(PrevDecl)) {
6466        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6467        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6468
6469        // Recover by removing the name
6470        II = 0;
6471        D.SetIdentifier(0, D.getIdentifierLoc());
6472        D.setInvalidType(true);
6473      }
6474    }
6475  }
6476
6477  // Temporarily put parameter variables in the translation unit, not
6478  // the enclosing context.  This prevents them from accidentally
6479  // looking like class members in C++.
6480  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6481                                    D.getSourceRange().getBegin(),
6482                                    D.getIdentifierLoc(), II,
6483                                    parmDeclType, TInfo,
6484                                    StorageClass, StorageClassAsWritten);
6485
6486  if (D.isInvalidType())
6487    New->setInvalidDecl();
6488
6489  assert(S->isFunctionPrototypeScope());
6490  assert(S->getFunctionPrototypeDepth() >= 1);
6491  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6492                    S->getNextFunctionPrototypeIndex());
6493
6494  // Add the parameter declaration into this scope.
6495  S->AddDecl(New);
6496  if (II)
6497    IdResolver.AddDecl(New);
6498
6499  ProcessDeclAttributes(S, New, D);
6500
6501  if (D.getDeclSpec().isModulePrivateSpecified())
6502    Diag(New->getLocation(), diag::err_module_private_local)
6503      << 1 << New->getDeclName()
6504      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6505      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6506
6507  if (New->hasAttr<BlocksAttr>()) {
6508    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6509  }
6510  return New;
6511}
6512
6513/// \brief Synthesizes a variable for a parameter arising from a
6514/// typedef.
6515ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6516                                              SourceLocation Loc,
6517                                              QualType T) {
6518  /* FIXME: setting StartLoc == Loc.
6519     Would it be worth to modify callers so as to provide proper source
6520     location for the unnamed parameters, embedding the parameter's type? */
6521  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6522                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6523                                           SC_None, SC_None, 0);
6524  Param->setImplicit();
6525  return Param;
6526}
6527
6528void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6529                                    ParmVarDecl * const *ParamEnd) {
6530  // Don't diagnose unused-parameter errors in template instantiations; we
6531  // will already have done so in the template itself.
6532  if (!ActiveTemplateInstantiations.empty())
6533    return;
6534
6535  for (; Param != ParamEnd; ++Param) {
6536    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6537        !(*Param)->hasAttr<UnusedAttr>()) {
6538      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6539        << (*Param)->getDeclName();
6540    }
6541  }
6542}
6543
6544void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6545                                                  ParmVarDecl * const *ParamEnd,
6546                                                  QualType ReturnTy,
6547                                                  NamedDecl *D) {
6548  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6549    return;
6550
6551  // Warn if the return value is pass-by-value and larger than the specified
6552  // threshold.
6553  if (ReturnTy.isPODType(Context)) {
6554    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6555    if (Size > LangOpts.NumLargeByValueCopy)
6556      Diag(D->getLocation(), diag::warn_return_value_size)
6557          << D->getDeclName() << Size;
6558  }
6559
6560  // Warn if any parameter is pass-by-value and larger than the specified
6561  // threshold.
6562  for (; Param != ParamEnd; ++Param) {
6563    QualType T = (*Param)->getType();
6564    if (!T.isPODType(Context))
6565      continue;
6566    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6567    if (Size > LangOpts.NumLargeByValueCopy)
6568      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6569          << (*Param)->getDeclName() << Size;
6570  }
6571}
6572
6573ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6574                                  SourceLocation NameLoc, IdentifierInfo *Name,
6575                                  QualType T, TypeSourceInfo *TSInfo,
6576                                  VarDecl::StorageClass StorageClass,
6577                                  VarDecl::StorageClass StorageClassAsWritten) {
6578  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6579  if (getLangOptions().ObjCAutoRefCount &&
6580      T.getObjCLifetime() == Qualifiers::OCL_None &&
6581      T->isObjCLifetimeType()) {
6582
6583    Qualifiers::ObjCLifetime lifetime;
6584
6585    // Special cases for arrays:
6586    //   - if it's const, use __unsafe_unretained
6587    //   - otherwise, it's an error
6588    if (T->isArrayType()) {
6589      if (!T.isConstQualified()) {
6590        DelayedDiagnostics.add(
6591            sema::DelayedDiagnostic::makeForbiddenType(
6592            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6593      }
6594      lifetime = Qualifiers::OCL_ExplicitNone;
6595    } else {
6596      lifetime = T->getObjCARCImplicitLifetime();
6597    }
6598    T = Context.getLifetimeQualifiedType(T, lifetime);
6599  }
6600
6601  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6602                                         Context.getAdjustedParameterType(T),
6603                                         TSInfo,
6604                                         StorageClass, StorageClassAsWritten,
6605                                         0);
6606
6607  // Parameters can not be abstract class types.
6608  // For record types, this is done by the AbstractClassUsageDiagnoser once
6609  // the class has been completely parsed.
6610  if (!CurContext->isRecord() &&
6611      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6612                             AbstractParamType))
6613    New->setInvalidDecl();
6614
6615  // Parameter declarators cannot be interface types. All ObjC objects are
6616  // passed by reference.
6617  if (T->isObjCObjectType()) {
6618    Diag(NameLoc,
6619         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6620      << FixItHint::CreateInsertion(NameLoc, "*");
6621    T = Context.getObjCObjectPointerType(T);
6622    New->setType(T);
6623  }
6624
6625  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6626  // duration shall not be qualified by an address-space qualifier."
6627  // Since all parameters have automatic store duration, they can not have
6628  // an address space.
6629  if (T.getAddressSpace() != 0) {
6630    Diag(NameLoc, diag::err_arg_with_address_space);
6631    New->setInvalidDecl();
6632  }
6633
6634  return New;
6635}
6636
6637void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6638                                           SourceLocation LocAfterDecls) {
6639  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6640
6641  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6642  // for a K&R function.
6643  if (!FTI.hasPrototype) {
6644    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6645      --i;
6646      if (FTI.ArgInfo[i].Param == 0) {
6647        llvm::SmallString<256> Code;
6648        llvm::raw_svector_ostream(Code) << "  int "
6649                                        << FTI.ArgInfo[i].Ident->getName()
6650                                        << ";\n";
6651        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6652          << FTI.ArgInfo[i].Ident
6653          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6654
6655        // Implicitly declare the argument as type 'int' for lack of a better
6656        // type.
6657        AttributeFactory attrs;
6658        DeclSpec DS(attrs);
6659        const char* PrevSpec; // unused
6660        unsigned DiagID; // unused
6661        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6662                           PrevSpec, DiagID);
6663        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6664        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6665        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6666      }
6667    }
6668  }
6669}
6670
6671Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6672                                         Declarator &D) {
6673  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6674  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6675  Scope *ParentScope = FnBodyScope->getParent();
6676
6677  Decl *DP = HandleDeclarator(ParentScope, D,
6678                              MultiTemplateParamsArg(*this),
6679                              /*IsFunctionDefinition=*/true);
6680  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6681}
6682
6683static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6684  // Don't warn about invalid declarations.
6685  if (FD->isInvalidDecl())
6686    return false;
6687
6688  // Or declarations that aren't global.
6689  if (!FD->isGlobal())
6690    return false;
6691
6692  // Don't warn about C++ member functions.
6693  if (isa<CXXMethodDecl>(FD))
6694    return false;
6695
6696  // Don't warn about 'main'.
6697  if (FD->isMain())
6698    return false;
6699
6700  // Don't warn about inline functions.
6701  if (FD->isInlined())
6702    return false;
6703
6704  // Don't warn about function templates.
6705  if (FD->getDescribedFunctionTemplate())
6706    return false;
6707
6708  // Don't warn about function template specializations.
6709  if (FD->isFunctionTemplateSpecialization())
6710    return false;
6711
6712  bool MissingPrototype = true;
6713  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6714       Prev; Prev = Prev->getPreviousDeclaration()) {
6715    // Ignore any declarations that occur in function or method
6716    // scope, because they aren't visible from the header.
6717    if (Prev->getDeclContext()->isFunctionOrMethod())
6718      continue;
6719
6720    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6721    break;
6722  }
6723
6724  return MissingPrototype;
6725}
6726
6727void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6728  // Don't complain if we're in GNU89 mode and the previous definition
6729  // was an extern inline function.
6730  const FunctionDecl *Definition;
6731  if (FD->isDefined(Definition) &&
6732      !canRedefineFunction(Definition, getLangOptions())) {
6733    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6734        Definition->getStorageClass() == SC_Extern)
6735      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6736        << FD->getDeclName() << getLangOptions().CPlusPlus;
6737    else
6738      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6739    Diag(Definition->getLocation(), diag::note_previous_definition);
6740  }
6741}
6742
6743Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6744  // Clear the last template instantiation error context.
6745  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6746
6747  if (!D)
6748    return D;
6749  FunctionDecl *FD = 0;
6750
6751  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6752    FD = FunTmpl->getTemplatedDecl();
6753  else
6754    FD = cast<FunctionDecl>(D);
6755
6756  // Enter a new function scope
6757  PushFunctionScope();
6758
6759  // See if this is a redefinition.
6760  if (!FD->isLateTemplateParsed())
6761    CheckForFunctionRedefinition(FD);
6762
6763  // Builtin functions cannot be defined.
6764  if (unsigned BuiltinID = FD->getBuiltinID()) {
6765    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6766      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6767      FD->setInvalidDecl();
6768    }
6769  }
6770
6771  // The return type of a function definition must be complete
6772  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6773  QualType ResultType = FD->getResultType();
6774  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6775      !FD->isInvalidDecl() &&
6776      RequireCompleteType(FD->getLocation(), ResultType,
6777                          diag::err_func_def_incomplete_result))
6778    FD->setInvalidDecl();
6779
6780  // GNU warning -Wmissing-prototypes:
6781  //   Warn if a global function is defined without a previous
6782  //   prototype declaration. This warning is issued even if the
6783  //   definition itself provides a prototype. The aim is to detect
6784  //   global functions that fail to be declared in header files.
6785  if (ShouldWarnAboutMissingPrototype(FD))
6786    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6787
6788  if (FnBodyScope)
6789    PushDeclContext(FnBodyScope, FD);
6790
6791  // Check the validity of our function parameters
6792  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6793                           /*CheckParameterNames=*/true);
6794
6795  // Introduce our parameters into the function scope
6796  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6797    ParmVarDecl *Param = FD->getParamDecl(p);
6798    Param->setOwningFunction(FD);
6799
6800    // If this has an identifier, add it to the scope stack.
6801    if (Param->getIdentifier() && FnBodyScope) {
6802      CheckShadow(FnBodyScope, Param);
6803
6804      PushOnScopeChains(Param, FnBodyScope);
6805    }
6806  }
6807
6808  // Checking attributes of current function definition
6809  // dllimport attribute.
6810  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6811  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6812    // dllimport attribute cannot be directly applied to definition.
6813    // Microsoft accepts dllimport for functions defined within class scope.
6814    if (!DA->isInherited() &&
6815        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6816      Diag(FD->getLocation(),
6817           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6818        << "dllimport";
6819      FD->setInvalidDecl();
6820      return FD;
6821    }
6822
6823    // Visual C++ appears to not think this is an issue, so only issue
6824    // a warning when Microsoft extensions are disabled.
6825    if (!LangOpts.MicrosoftExt) {
6826      // If a symbol previously declared dllimport is later defined, the
6827      // attribute is ignored in subsequent references, and a warning is
6828      // emitted.
6829      Diag(FD->getLocation(),
6830           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6831        << FD->getName() << "dllimport";
6832    }
6833  }
6834  return FD;
6835}
6836
6837/// \brief Given the set of return statements within a function body,
6838/// compute the variables that are subject to the named return value
6839/// optimization.
6840///
6841/// Each of the variables that is subject to the named return value
6842/// optimization will be marked as NRVO variables in the AST, and any
6843/// return statement that has a marked NRVO variable as its NRVO candidate can
6844/// use the named return value optimization.
6845///
6846/// This function applies a very simplistic algorithm for NRVO: if every return
6847/// statement in the function has the same NRVO candidate, that candidate is
6848/// the NRVO variable.
6849///
6850/// FIXME: Employ a smarter algorithm that accounts for multiple return
6851/// statements and the lifetimes of the NRVO candidates. We should be able to
6852/// find a maximal set of NRVO variables.
6853void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6854  ReturnStmt **Returns = Scope->Returns.data();
6855
6856  const VarDecl *NRVOCandidate = 0;
6857  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6858    if (!Returns[I]->getNRVOCandidate())
6859      return;
6860
6861    if (!NRVOCandidate)
6862      NRVOCandidate = Returns[I]->getNRVOCandidate();
6863    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6864      return;
6865  }
6866
6867  if (NRVOCandidate)
6868    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6869}
6870
6871Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6872  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6873}
6874
6875Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6876                                    bool IsInstantiation) {
6877  FunctionDecl *FD = 0;
6878  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6879  if (FunTmpl)
6880    FD = FunTmpl->getTemplatedDecl();
6881  else
6882    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6883
6884  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6885  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6886
6887  if (FD) {
6888    FD->setBody(Body);
6889    if (FD->isMain()) {
6890      // C and C++ allow for main to automagically return 0.
6891      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6892      FD->setHasImplicitReturnZero(true);
6893      WP.disableCheckFallThrough();
6894    } else if (FD->hasAttr<NakedAttr>()) {
6895      // If the function is marked 'naked', don't complain about missing return
6896      // statements.
6897      WP.disableCheckFallThrough();
6898    }
6899
6900    // MSVC permits the use of pure specifier (=0) on function definition,
6901    // defined at class scope, warn about this non standard construct.
6902    if (getLangOptions().MicrosoftExt && FD->isPure())
6903      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6904
6905    if (!FD->isInvalidDecl()) {
6906      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6907      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6908                                             FD->getResultType(), FD);
6909
6910      // If this is a constructor, we need a vtable.
6911      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6912        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6913
6914      computeNRVO(Body, getCurFunction());
6915    }
6916
6917    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6918  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6919    assert(MD == getCurMethodDecl() && "Method parsing confused");
6920    MD->setBody(Body);
6921    if (Body)
6922      MD->setEndLoc(Body->getLocEnd());
6923    if (!MD->isInvalidDecl()) {
6924      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6925      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6926                                             MD->getResultType(), MD);
6927
6928      if (Body)
6929        computeNRVO(Body, getCurFunction());
6930    }
6931    if (ObjCShouldCallSuperDealloc) {
6932      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6933      ObjCShouldCallSuperDealloc = false;
6934    }
6935    if (ObjCShouldCallSuperFinalize) {
6936      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6937      ObjCShouldCallSuperFinalize = false;
6938    }
6939  } else {
6940    return 0;
6941  }
6942
6943  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6944         "ObjC methods, which should have been handled in the block above.");
6945  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6946         "ObjC methods, which should have been handled in the block above.");
6947
6948  // Verify and clean out per-function state.
6949  if (Body) {
6950    // C++ constructors that have function-try-blocks can't have return
6951    // statements in the handlers of that block. (C++ [except.handle]p14)
6952    // Verify this.
6953    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6954      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6955
6956    // Verify that gotos and switch cases don't jump into scopes illegally.
6957    if (getCurFunction()->NeedsScopeChecking() &&
6958        !dcl->isInvalidDecl() &&
6959        !hasAnyUnrecoverableErrorsInThisFunction())
6960      DiagnoseInvalidJumps(Body);
6961
6962    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6963      if (!Destructor->getParent()->isDependentType())
6964        CheckDestructor(Destructor);
6965
6966      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6967                                             Destructor->getParent());
6968    }
6969
6970    // If any errors have occurred, clear out any temporaries that may have
6971    // been leftover. This ensures that these temporaries won't be picked up for
6972    // deletion in some later function.
6973    if (PP.getDiagnostics().hasErrorOccurred() ||
6974        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6975      ExprTemporaries.clear();
6976      ExprNeedsCleanups = false;
6977    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6978      // Since the body is valid, issue any analysis-based warnings that are
6979      // enabled.
6980      ActivePolicy = &WP;
6981    }
6982
6983    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
6984        !CheckConstexprFunctionBody(FD, Body))
6985      FD->setInvalidDecl();
6986
6987    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6988    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6989  }
6990
6991  if (!IsInstantiation)
6992    PopDeclContext();
6993
6994  PopFunctionOrBlockScope(ActivePolicy, dcl);
6995
6996  // If any errors have occurred, clear out any temporaries that may have
6997  // been leftover. This ensures that these temporaries won't be picked up for
6998  // deletion in some later function.
6999  if (getDiagnostics().hasErrorOccurred()) {
7000    ExprTemporaries.clear();
7001    ExprNeedsCleanups = false;
7002  }
7003
7004  return dcl;
7005}
7006
7007
7008/// When we finish delayed parsing of an attribute, we must attach it to the
7009/// relevant Decl.
7010void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7011                                       ParsedAttributes &Attrs) {
7012  ProcessDeclAttributeList(S, D, Attrs.getList());
7013}
7014
7015
7016/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7017/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7018NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7019                                          IdentifierInfo &II, Scope *S) {
7020  // Before we produce a declaration for an implicitly defined
7021  // function, see whether there was a locally-scoped declaration of
7022  // this name as a function or variable. If so, use that
7023  // (non-visible) declaration, and complain about it.
7024  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7025    = findLocallyScopedExternalDecl(&II);
7026  if (Pos != LocallyScopedExternalDecls.end()) {
7027    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7028    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7029    return Pos->second;
7030  }
7031
7032  // Extension in C99.  Legal in C90, but warn about it.
7033  if (II.getName().startswith("__builtin_"))
7034    Diag(Loc, diag::warn_builtin_unknown) << &II;
7035  else if (getLangOptions().C99)
7036    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7037  else
7038    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7039
7040  // Set a Declarator for the implicit definition: int foo();
7041  const char *Dummy;
7042  AttributeFactory attrFactory;
7043  DeclSpec DS(attrFactory);
7044  unsigned DiagID;
7045  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7046  (void)Error; // Silence warning.
7047  assert(!Error && "Error setting up implicit decl!");
7048  Declarator D(DS, Declarator::BlockContext);
7049  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7050                                             0, 0, true, SourceLocation(),
7051                                             SourceLocation(),
7052                                             EST_None, SourceLocation(),
7053                                             0, 0, 0, 0, Loc, Loc, D),
7054                DS.getAttributes(),
7055                SourceLocation());
7056  D.SetIdentifier(&II, Loc);
7057
7058  // Insert this function into translation-unit scope.
7059
7060  DeclContext *PrevDC = CurContext;
7061  CurContext = Context.getTranslationUnitDecl();
7062
7063  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7064  FD->setImplicit();
7065
7066  CurContext = PrevDC;
7067
7068  AddKnownFunctionAttributes(FD);
7069
7070  return FD;
7071}
7072
7073/// \brief Adds any function attributes that we know a priori based on
7074/// the declaration of this function.
7075///
7076/// These attributes can apply both to implicitly-declared builtins
7077/// (like __builtin___printf_chk) or to library-declared functions
7078/// like NSLog or printf.
7079///
7080/// We need to check for duplicate attributes both here and where user-written
7081/// attributes are applied to declarations.
7082void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7083  if (FD->isInvalidDecl())
7084    return;
7085
7086  // If this is a built-in function, map its builtin attributes to
7087  // actual attributes.
7088  if (unsigned BuiltinID = FD->getBuiltinID()) {
7089    // Handle printf-formatting attributes.
7090    unsigned FormatIdx;
7091    bool HasVAListArg;
7092    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7093      if (!FD->getAttr<FormatAttr>())
7094        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7095                                                "printf", FormatIdx+1,
7096                                               HasVAListArg ? 0 : FormatIdx+2));
7097    }
7098    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7099                                             HasVAListArg)) {
7100     if (!FD->getAttr<FormatAttr>())
7101       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7102                                              "scanf", FormatIdx+1,
7103                                              HasVAListArg ? 0 : FormatIdx+2));
7104    }
7105
7106    // Mark const if we don't care about errno and that is the only
7107    // thing preventing the function from being const. This allows
7108    // IRgen to use LLVM intrinsics for such functions.
7109    if (!getLangOptions().MathErrno &&
7110        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7111      if (!FD->getAttr<ConstAttr>())
7112        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7113    }
7114
7115    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7116      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7117    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7118      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7119  }
7120
7121  IdentifierInfo *Name = FD->getIdentifier();
7122  if (!Name)
7123    return;
7124  if ((!getLangOptions().CPlusPlus &&
7125       FD->getDeclContext()->isTranslationUnit()) ||
7126      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7127       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7128       LinkageSpecDecl::lang_c)) {
7129    // Okay: this could be a libc/libm/Objective-C function we know
7130    // about.
7131  } else
7132    return;
7133
7134  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7135    // FIXME: NSLog and NSLogv should be target specific
7136    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7137      // FIXME: We known better than our headers.
7138      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7139    } else
7140      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7141                                             "printf", 1,
7142                                             Name->isStr("NSLogv") ? 0 : 2));
7143  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7144    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7145    // target-specific builtins, perhaps?
7146    if (!FD->getAttr<FormatAttr>())
7147      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7148                                             "printf", 2,
7149                                             Name->isStr("vasprintf") ? 0 : 3));
7150  }
7151}
7152
7153TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7154                                    TypeSourceInfo *TInfo) {
7155  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7156  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7157
7158  if (!TInfo) {
7159    assert(D.isInvalidType() && "no declarator info for valid type");
7160    TInfo = Context.getTrivialTypeSourceInfo(T);
7161  }
7162
7163  // Scope manipulation handled by caller.
7164  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7165                                           D.getSourceRange().getBegin(),
7166                                           D.getIdentifierLoc(),
7167                                           D.getIdentifier(),
7168                                           TInfo);
7169
7170  // Bail out immediately if we have an invalid declaration.
7171  if (D.isInvalidType()) {
7172    NewTD->setInvalidDecl();
7173    return NewTD;
7174  }
7175
7176  if (D.getDeclSpec().isModulePrivateSpecified()) {
7177    if (CurContext->isFunctionOrMethod())
7178      Diag(NewTD->getLocation(), diag::err_module_private_local)
7179        << 2 << NewTD->getDeclName()
7180        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7181        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7182    else
7183      NewTD->setModulePrivate();
7184  }
7185
7186  // C++ [dcl.typedef]p8:
7187  //   If the typedef declaration defines an unnamed class (or
7188  //   enum), the first typedef-name declared by the declaration
7189  //   to be that class type (or enum type) is used to denote the
7190  //   class type (or enum type) for linkage purposes only.
7191  // We need to check whether the type was declared in the declaration.
7192  switch (D.getDeclSpec().getTypeSpecType()) {
7193  case TST_enum:
7194  case TST_struct:
7195  case TST_union:
7196  case TST_class: {
7197    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7198
7199    // Do nothing if the tag is not anonymous or already has an
7200    // associated typedef (from an earlier typedef in this decl group).
7201    if (tagFromDeclSpec->getIdentifier()) break;
7202    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7203
7204    // A well-formed anonymous tag must always be a TUK_Definition.
7205    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7206
7207    // The type must match the tag exactly;  no qualifiers allowed.
7208    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7209      break;
7210
7211    // Otherwise, set this is the anon-decl typedef for the tag.
7212    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7213    break;
7214  }
7215
7216  default:
7217    break;
7218  }
7219
7220  return NewTD;
7221}
7222
7223
7224/// \brief Determine whether a tag with a given kind is acceptable
7225/// as a redeclaration of the given tag declaration.
7226///
7227/// \returns true if the new tag kind is acceptable, false otherwise.
7228bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7229                                        TagTypeKind NewTag, bool isDefinition,
7230                                        SourceLocation NewTagLoc,
7231                                        const IdentifierInfo &Name) {
7232  // C++ [dcl.type.elab]p3:
7233  //   The class-key or enum keyword present in the
7234  //   elaborated-type-specifier shall agree in kind with the
7235  //   declaration to which the name in the elaborated-type-specifier
7236  //   refers. This rule also applies to the form of
7237  //   elaborated-type-specifier that declares a class-name or
7238  //   friend class since it can be construed as referring to the
7239  //   definition of the class. Thus, in any
7240  //   elaborated-type-specifier, the enum keyword shall be used to
7241  //   refer to an enumeration (7.2), the union class-key shall be
7242  //   used to refer to a union (clause 9), and either the class or
7243  //   struct class-key shall be used to refer to a class (clause 9)
7244  //   declared using the class or struct class-key.
7245  TagTypeKind OldTag = Previous->getTagKind();
7246  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7247    if (OldTag == NewTag)
7248      return true;
7249
7250  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7251      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7252    // Warn about the struct/class tag mismatch.
7253    bool isTemplate = false;
7254    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7255      isTemplate = Record->getDescribedClassTemplate();
7256
7257    if (!ActiveTemplateInstantiations.empty()) {
7258      // In a template instantiation, do not offer fix-its for tag mismatches
7259      // since they usually mess up the template instead of fixing the problem.
7260      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7261        << (NewTag == TTK_Class) << isTemplate << &Name;
7262      return true;
7263    }
7264
7265    if (isDefinition) {
7266      // On definitions, check previous tags and issue a fix-it for each
7267      // one that doesn't match the current tag.
7268      if (Previous->getDefinition()) {
7269        // Don't suggest fix-its for redefinitions.
7270        return true;
7271      }
7272
7273      bool previousMismatch = false;
7274      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7275           E(Previous->redecls_end()); I != E; ++I) {
7276        if (I->getTagKind() != NewTag) {
7277          if (!previousMismatch) {
7278            previousMismatch = true;
7279            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7280              << (NewTag == TTK_Class) << isTemplate << &Name;
7281          }
7282          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7283            << (NewTag == TTK_Class)
7284            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7285                                            NewTag == TTK_Class?
7286                                            "class" : "struct");
7287        }
7288      }
7289      return true;
7290    }
7291
7292    // Check for a previous definition.  If current tag and definition
7293    // are same type, do nothing.  If no definition, but disagree with
7294    // with previous tag type, give a warning, but no fix-it.
7295    const TagDecl *Redecl = Previous->getDefinition() ?
7296                            Previous->getDefinition() : Previous;
7297    if (Redecl->getTagKind() == NewTag) {
7298      return true;
7299    }
7300
7301    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7302      << (NewTag == TTK_Class)
7303      << isTemplate << &Name;
7304    Diag(Redecl->getLocation(), diag::note_previous_use);
7305
7306    // If there is a previous defintion, suggest a fix-it.
7307    if (Previous->getDefinition()) {
7308        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7309          << (Redecl->getTagKind() == TTK_Class)
7310          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7311                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7312    }
7313
7314    return true;
7315  }
7316  return false;
7317}
7318
7319/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7320/// former case, Name will be non-null.  In the later case, Name will be null.
7321/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7322/// reference/declaration/definition of a tag.
7323Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7324                     SourceLocation KWLoc, CXXScopeSpec &SS,
7325                     IdentifierInfo *Name, SourceLocation NameLoc,
7326                     AttributeList *Attr, AccessSpecifier AS,
7327                     SourceLocation ModulePrivateLoc,
7328                     MultiTemplateParamsArg TemplateParameterLists,
7329                     bool &OwnedDecl, bool &IsDependent,
7330                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7331                     TypeResult UnderlyingType) {
7332  // If this is not a definition, it must have a name.
7333  assert((Name != 0 || TUK == TUK_Definition) &&
7334         "Nameless record must be a definition!");
7335  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7336
7337  OwnedDecl = false;
7338  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7339
7340  // FIXME: Check explicit specializations more carefully.
7341  bool isExplicitSpecialization = false;
7342  bool Invalid = false;
7343
7344  // We only need to do this matching if we have template parameters
7345  // or a scope specifier, which also conveniently avoids this work
7346  // for non-C++ cases.
7347  if (TemplateParameterLists.size() > 0 ||
7348      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7349    if (TemplateParameterList *TemplateParams
7350          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7351                                                TemplateParameterLists.get(),
7352                                                TemplateParameterLists.size(),
7353                                                    TUK == TUK_Friend,
7354                                                    isExplicitSpecialization,
7355                                                    Invalid)) {
7356      if (TemplateParams->size() > 0) {
7357        // This is a declaration or definition of a class template (which may
7358        // be a member of another template).
7359
7360        if (Invalid)
7361          return 0;
7362
7363        OwnedDecl = false;
7364        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7365                                               SS, Name, NameLoc, Attr,
7366                                               TemplateParams, AS,
7367                                               ModulePrivateLoc,
7368                                           TemplateParameterLists.size() - 1,
7369                 (TemplateParameterList**) TemplateParameterLists.release());
7370        return Result.get();
7371      } else {
7372        // The "template<>" header is extraneous.
7373        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7374          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7375        isExplicitSpecialization = true;
7376      }
7377    }
7378  }
7379
7380  // Figure out the underlying type if this a enum declaration. We need to do
7381  // this early, because it's needed to detect if this is an incompatible
7382  // redeclaration.
7383  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7384
7385  if (Kind == TTK_Enum) {
7386    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7387      // No underlying type explicitly specified, or we failed to parse the
7388      // type, default to int.
7389      EnumUnderlying = Context.IntTy.getTypePtr();
7390    else if (UnderlyingType.get()) {
7391      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7392      // integral type; any cv-qualification is ignored.
7393      TypeSourceInfo *TI = 0;
7394      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7395      EnumUnderlying = TI;
7396
7397      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7398
7399      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7400        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7401          << T;
7402        // Recover by falling back to int.
7403        EnumUnderlying = Context.IntTy.getTypePtr();
7404      }
7405
7406      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7407                                          UPPC_FixedUnderlyingType))
7408        EnumUnderlying = Context.IntTy.getTypePtr();
7409
7410    } else if (getLangOptions().MicrosoftExt)
7411      // Microsoft enums are always of int type.
7412      EnumUnderlying = Context.IntTy.getTypePtr();
7413  }
7414
7415  DeclContext *SearchDC = CurContext;
7416  DeclContext *DC = CurContext;
7417  bool isStdBadAlloc = false;
7418
7419  RedeclarationKind Redecl = ForRedeclaration;
7420  if (TUK == TUK_Friend || TUK == TUK_Reference)
7421    Redecl = NotForRedeclaration;
7422
7423  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7424
7425  if (Name && SS.isNotEmpty()) {
7426    // We have a nested-name tag ('struct foo::bar').
7427
7428    // Check for invalid 'foo::'.
7429    if (SS.isInvalid()) {
7430      Name = 0;
7431      goto CreateNewDecl;
7432    }
7433
7434    // If this is a friend or a reference to a class in a dependent
7435    // context, don't try to make a decl for it.
7436    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7437      DC = computeDeclContext(SS, false);
7438      if (!DC) {
7439        IsDependent = true;
7440        return 0;
7441      }
7442    } else {
7443      DC = computeDeclContext(SS, true);
7444      if (!DC) {
7445        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7446          << SS.getRange();
7447        return 0;
7448      }
7449    }
7450
7451    if (RequireCompleteDeclContext(SS, DC))
7452      return 0;
7453
7454    SearchDC = DC;
7455    // Look-up name inside 'foo::'.
7456    LookupQualifiedName(Previous, DC);
7457
7458    if (Previous.isAmbiguous())
7459      return 0;
7460
7461    if (Previous.empty()) {
7462      // Name lookup did not find anything. However, if the
7463      // nested-name-specifier refers to the current instantiation,
7464      // and that current instantiation has any dependent base
7465      // classes, we might find something at instantiation time: treat
7466      // this as a dependent elaborated-type-specifier.
7467      // But this only makes any sense for reference-like lookups.
7468      if (Previous.wasNotFoundInCurrentInstantiation() &&
7469          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7470        IsDependent = true;
7471        return 0;
7472      }
7473
7474      // A tag 'foo::bar' must already exist.
7475      Diag(NameLoc, diag::err_not_tag_in_scope)
7476        << Kind << Name << DC << SS.getRange();
7477      Name = 0;
7478      Invalid = true;
7479      goto CreateNewDecl;
7480    }
7481  } else if (Name) {
7482    // If this is a named struct, check to see if there was a previous forward
7483    // declaration or definition.
7484    // FIXME: We're looking into outer scopes here, even when we
7485    // shouldn't be. Doing so can result in ambiguities that we
7486    // shouldn't be diagnosing.
7487    LookupName(Previous, S);
7488
7489    if (Previous.isAmbiguous() &&
7490        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7491      LookupResult::Filter F = Previous.makeFilter();
7492      while (F.hasNext()) {
7493        NamedDecl *ND = F.next();
7494        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7495          F.erase();
7496      }
7497      F.done();
7498    }
7499
7500    // Note:  there used to be some attempt at recovery here.
7501    if (Previous.isAmbiguous())
7502      return 0;
7503
7504    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7505      // FIXME: This makes sure that we ignore the contexts associated
7506      // with C structs, unions, and enums when looking for a matching
7507      // tag declaration or definition. See the similar lookup tweak
7508      // in Sema::LookupName; is there a better way to deal with this?
7509      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7510        SearchDC = SearchDC->getParent();
7511    }
7512  } else if (S->isFunctionPrototypeScope()) {
7513    // If this is an enum declaration in function prototype scope, set its
7514    // initial context to the translation unit.
7515    SearchDC = Context.getTranslationUnitDecl();
7516  }
7517
7518  if (Previous.isSingleResult() &&
7519      Previous.getFoundDecl()->isTemplateParameter()) {
7520    // Maybe we will complain about the shadowed template parameter.
7521    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7522    // Just pretend that we didn't see the previous declaration.
7523    Previous.clear();
7524  }
7525
7526  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7527      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7528    // This is a declaration of or a reference to "std::bad_alloc".
7529    isStdBadAlloc = true;
7530
7531    if (Previous.empty() && StdBadAlloc) {
7532      // std::bad_alloc has been implicitly declared (but made invisible to
7533      // name lookup). Fill in this implicit declaration as the previous
7534      // declaration, so that the declarations get chained appropriately.
7535      Previous.addDecl(getStdBadAlloc());
7536    }
7537  }
7538
7539  // If we didn't find a previous declaration, and this is a reference
7540  // (or friend reference), move to the correct scope.  In C++, we
7541  // also need to do a redeclaration lookup there, just in case
7542  // there's a shadow friend decl.
7543  if (Name && Previous.empty() &&
7544      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7545    if (Invalid) goto CreateNewDecl;
7546    assert(SS.isEmpty());
7547
7548    if (TUK == TUK_Reference) {
7549      // C++ [basic.scope.pdecl]p5:
7550      //   -- for an elaborated-type-specifier of the form
7551      //
7552      //          class-key identifier
7553      //
7554      //      if the elaborated-type-specifier is used in the
7555      //      decl-specifier-seq or parameter-declaration-clause of a
7556      //      function defined in namespace scope, the identifier is
7557      //      declared as a class-name in the namespace that contains
7558      //      the declaration; otherwise, except as a friend
7559      //      declaration, the identifier is declared in the smallest
7560      //      non-class, non-function-prototype scope that contains the
7561      //      declaration.
7562      //
7563      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7564      // C structs and unions.
7565      //
7566      // It is an error in C++ to declare (rather than define) an enum
7567      // type, including via an elaborated type specifier.  We'll
7568      // diagnose that later; for now, declare the enum in the same
7569      // scope as we would have picked for any other tag type.
7570      //
7571      // GNU C also supports this behavior as part of its incomplete
7572      // enum types extension, while GNU C++ does not.
7573      //
7574      // Find the context where we'll be declaring the tag.
7575      // FIXME: We would like to maintain the current DeclContext as the
7576      // lexical context,
7577      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7578        SearchDC = SearchDC->getParent();
7579
7580      // Find the scope where we'll be declaring the tag.
7581      while (S->isClassScope() ||
7582             (getLangOptions().CPlusPlus &&
7583              S->isFunctionPrototypeScope()) ||
7584             ((S->getFlags() & Scope::DeclScope) == 0) ||
7585             (S->getEntity() &&
7586              ((DeclContext *)S->getEntity())->isTransparentContext()))
7587        S = S->getParent();
7588    } else {
7589      assert(TUK == TUK_Friend);
7590      // C++ [namespace.memdef]p3:
7591      //   If a friend declaration in a non-local class first declares a
7592      //   class or function, the friend class or function is a member of
7593      //   the innermost enclosing namespace.
7594      SearchDC = SearchDC->getEnclosingNamespaceContext();
7595    }
7596
7597    // In C++, we need to do a redeclaration lookup to properly
7598    // diagnose some problems.
7599    if (getLangOptions().CPlusPlus) {
7600      Previous.setRedeclarationKind(ForRedeclaration);
7601      LookupQualifiedName(Previous, SearchDC);
7602    }
7603  }
7604
7605  if (!Previous.empty()) {
7606    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7607
7608    // It's okay to have a tag decl in the same scope as a typedef
7609    // which hides a tag decl in the same scope.  Finding this
7610    // insanity with a redeclaration lookup can only actually happen
7611    // in C++.
7612    //
7613    // This is also okay for elaborated-type-specifiers, which is
7614    // technically forbidden by the current standard but which is
7615    // okay according to the likely resolution of an open issue;
7616    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7617    if (getLangOptions().CPlusPlus) {
7618      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7619        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7620          TagDecl *Tag = TT->getDecl();
7621          if (Tag->getDeclName() == Name &&
7622              Tag->getDeclContext()->getRedeclContext()
7623                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7624            PrevDecl = Tag;
7625            Previous.clear();
7626            Previous.addDecl(Tag);
7627            Previous.resolveKind();
7628          }
7629        }
7630      }
7631    }
7632
7633    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7634      // If this is a use of a previous tag, or if the tag is already declared
7635      // in the same scope (so that the definition/declaration completes or
7636      // rementions the tag), reuse the decl.
7637      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7638          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7639        // Make sure that this wasn't declared as an enum and now used as a
7640        // struct or something similar.
7641        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7642                                          TUK == TUK_Definition, KWLoc,
7643                                          *Name)) {
7644          bool SafeToContinue
7645            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7646               Kind != TTK_Enum);
7647          if (SafeToContinue)
7648            Diag(KWLoc, diag::err_use_with_wrong_tag)
7649              << Name
7650              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7651                                              PrevTagDecl->getKindName());
7652          else
7653            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7654          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7655
7656          if (SafeToContinue)
7657            Kind = PrevTagDecl->getTagKind();
7658          else {
7659            // Recover by making this an anonymous redefinition.
7660            Name = 0;
7661            Previous.clear();
7662            Invalid = true;
7663          }
7664        }
7665
7666        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7667          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7668
7669          // All conflicts with previous declarations are recovered by
7670          // returning the previous declaration.
7671          if (ScopedEnum != PrevEnum->isScoped()) {
7672            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7673              << PrevEnum->isScoped();
7674            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7675            return PrevTagDecl;
7676          }
7677          else if (EnumUnderlying && PrevEnum->isFixed()) {
7678            QualType T;
7679            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7680                T = TI->getType();
7681            else
7682                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7683
7684            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7685              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7686                   diag::err_enum_redeclare_type_mismatch)
7687                << T
7688                << PrevEnum->getIntegerType();
7689              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7690              return PrevTagDecl;
7691            }
7692          }
7693          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7694            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7695              << PrevEnum->isFixed();
7696            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7697            return PrevTagDecl;
7698          }
7699        }
7700
7701        if (!Invalid) {
7702          // If this is a use, just return the declaration we found.
7703
7704          // FIXME: In the future, return a variant or some other clue
7705          // for the consumer of this Decl to know it doesn't own it.
7706          // For our current ASTs this shouldn't be a problem, but will
7707          // need to be changed with DeclGroups.
7708          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7709               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7710            return PrevTagDecl;
7711
7712          // Diagnose attempts to redefine a tag.
7713          if (TUK == TUK_Definition) {
7714            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7715              // If we're defining a specialization and the previous definition
7716              // is from an implicit instantiation, don't emit an error
7717              // here; we'll catch this in the general case below.
7718              if (!isExplicitSpecialization ||
7719                  !isa<CXXRecordDecl>(Def) ||
7720                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7721                                               == TSK_ExplicitSpecialization) {
7722                Diag(NameLoc, diag::err_redefinition) << Name;
7723                Diag(Def->getLocation(), diag::note_previous_definition);
7724                // If this is a redefinition, recover by making this
7725                // struct be anonymous, which will make any later
7726                // references get the previous definition.
7727                Name = 0;
7728                Previous.clear();
7729                Invalid = true;
7730              }
7731            } else {
7732              // If the type is currently being defined, complain
7733              // about a nested redefinition.
7734              const TagType *Tag
7735                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7736              if (Tag->isBeingDefined()) {
7737                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7738                Diag(PrevTagDecl->getLocation(),
7739                     diag::note_previous_definition);
7740                Name = 0;
7741                Previous.clear();
7742                Invalid = true;
7743              }
7744            }
7745
7746            // Okay, this is definition of a previously declared or referenced
7747            // tag PrevDecl. We're going to create a new Decl for it.
7748          }
7749        }
7750        // If we get here we have (another) forward declaration or we
7751        // have a definition.  Just create a new decl.
7752
7753      } else {
7754        // If we get here, this is a definition of a new tag type in a nested
7755        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7756        // new decl/type.  We set PrevDecl to NULL so that the entities
7757        // have distinct types.
7758        Previous.clear();
7759      }
7760      // If we get here, we're going to create a new Decl. If PrevDecl
7761      // is non-NULL, it's a definition of the tag declared by
7762      // PrevDecl. If it's NULL, we have a new definition.
7763
7764
7765    // Otherwise, PrevDecl is not a tag, but was found with tag
7766    // lookup.  This is only actually possible in C++, where a few
7767    // things like templates still live in the tag namespace.
7768    } else {
7769      assert(getLangOptions().CPlusPlus);
7770
7771      // Use a better diagnostic if an elaborated-type-specifier
7772      // found the wrong kind of type on the first
7773      // (non-redeclaration) lookup.
7774      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7775          !Previous.isForRedeclaration()) {
7776        unsigned Kind = 0;
7777        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7778        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7779        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7780        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7781        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7782        Invalid = true;
7783
7784      // Otherwise, only diagnose if the declaration is in scope.
7785      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7786                                isExplicitSpecialization)) {
7787        // do nothing
7788
7789      // Diagnose implicit declarations introduced by elaborated types.
7790      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7791        unsigned Kind = 0;
7792        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7793        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7794        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7795        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7796        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7797        Invalid = true;
7798
7799      // Otherwise it's a declaration.  Call out a particularly common
7800      // case here.
7801      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7802        unsigned Kind = 0;
7803        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7804        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7805          << Name << Kind << TND->getUnderlyingType();
7806        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7807        Invalid = true;
7808
7809      // Otherwise, diagnose.
7810      } else {
7811        // The tag name clashes with something else in the target scope,
7812        // issue an error and recover by making this tag be anonymous.
7813        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7814        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7815        Name = 0;
7816        Invalid = true;
7817      }
7818
7819      // The existing declaration isn't relevant to us; we're in a
7820      // new scope, so clear out the previous declaration.
7821      Previous.clear();
7822    }
7823  }
7824
7825CreateNewDecl:
7826
7827  TagDecl *PrevDecl = 0;
7828  if (Previous.isSingleResult())
7829    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7830
7831  // If there is an identifier, use the location of the identifier as the
7832  // location of the decl, otherwise use the location of the struct/union
7833  // keyword.
7834  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7835
7836  // Otherwise, create a new declaration. If there is a previous
7837  // declaration of the same entity, the two will be linked via
7838  // PrevDecl.
7839  TagDecl *New;
7840
7841  bool IsForwardReference = false;
7842  if (Kind == TTK_Enum) {
7843    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7844    // enum X { A, B, C } D;    D should chain to X.
7845    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7846                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7847                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7848    // If this is an undefined enum, warn.
7849    if (TUK != TUK_Definition && !Invalid) {
7850      TagDecl *Def;
7851      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7852        // C++0x: 7.2p2: opaque-enum-declaration.
7853        // Conflicts are diagnosed above. Do nothing.
7854      }
7855      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7856        Diag(Loc, diag::ext_forward_ref_enum_def)
7857          << New;
7858        Diag(Def->getLocation(), diag::note_previous_definition);
7859      } else {
7860        unsigned DiagID = diag::ext_forward_ref_enum;
7861        if (getLangOptions().MicrosoftExt)
7862          DiagID = diag::ext_ms_forward_ref_enum;
7863        else if (getLangOptions().CPlusPlus)
7864          DiagID = diag::err_forward_ref_enum;
7865        Diag(Loc, DiagID);
7866
7867        // If this is a forward-declared reference to an enumeration, make a
7868        // note of it; we won't actually be introducing the declaration into
7869        // the declaration context.
7870        if (TUK == TUK_Reference)
7871          IsForwardReference = true;
7872      }
7873    }
7874
7875    if (EnumUnderlying) {
7876      EnumDecl *ED = cast<EnumDecl>(New);
7877      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7878        ED->setIntegerTypeSourceInfo(TI);
7879      else
7880        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7881      ED->setPromotionType(ED->getIntegerType());
7882    }
7883
7884  } else {
7885    // struct/union/class
7886
7887    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7888    // struct X { int A; } D;    D should chain to X.
7889    if (getLangOptions().CPlusPlus) {
7890      // FIXME: Look for a way to use RecordDecl for simple structs.
7891      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7892                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7893
7894      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7895        StdBadAlloc = cast<CXXRecordDecl>(New);
7896    } else
7897      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7898                               cast_or_null<RecordDecl>(PrevDecl));
7899  }
7900
7901  // Maybe add qualifier info.
7902  if (SS.isNotEmpty()) {
7903    if (SS.isSet()) {
7904      New->setQualifierInfo(SS.getWithLocInContext(Context));
7905      if (TemplateParameterLists.size() > 0) {
7906        New->setTemplateParameterListsInfo(Context,
7907                                           TemplateParameterLists.size(),
7908                    (TemplateParameterList**) TemplateParameterLists.release());
7909      }
7910    }
7911    else
7912      Invalid = true;
7913  }
7914
7915  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7916    // Add alignment attributes if necessary; these attributes are checked when
7917    // the ASTContext lays out the structure.
7918    //
7919    // It is important for implementing the correct semantics that this
7920    // happen here (in act on tag decl). The #pragma pack stack is
7921    // maintained as a result of parser callbacks which can occur at
7922    // many points during the parsing of a struct declaration (because
7923    // the #pragma tokens are effectively skipped over during the
7924    // parsing of the struct).
7925    AddAlignmentAttributesForRecord(RD);
7926
7927    AddMsStructLayoutForRecord(RD);
7928  }
7929
7930  if (PrevDecl && PrevDecl->isModulePrivate())
7931    New->setModulePrivate();
7932  else if (ModulePrivateLoc.isValid()) {
7933    if (isExplicitSpecialization)
7934      Diag(New->getLocation(), diag::err_module_private_specialization)
7935        << 2
7936        << FixItHint::CreateRemoval(ModulePrivateLoc);
7937    else if (PrevDecl && !PrevDecl->isModulePrivate())
7938      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
7939    // __module_private__ does not apply to local classes. However, we only
7940    // diagnose this as an error when the declaration specifiers are
7941    // freestanding. Here, we just ignore the __module_private__.
7942    // foobar
7943    else if (!SearchDC->isFunctionOrMethod())
7944      New->setModulePrivate();
7945  }
7946
7947  // If this is a specialization of a member class (of a class template),
7948  // check the specialization.
7949  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7950    Invalid = true;
7951
7952  if (Invalid)
7953    New->setInvalidDecl();
7954
7955  if (Attr)
7956    ProcessDeclAttributeList(S, New, Attr);
7957
7958  // If we're declaring or defining a tag in function prototype scope
7959  // in C, note that this type can only be used within the function.
7960  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7961    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7962
7963  // Set the lexical context. If the tag has a C++ scope specifier, the
7964  // lexical context will be different from the semantic context.
7965  New->setLexicalDeclContext(CurContext);
7966
7967  // Mark this as a friend decl if applicable.
7968  // In Microsoft mode, a friend declaration also acts as a forward
7969  // declaration so we always pass true to setObjectOfFriendDecl to make
7970  // the tag name visible.
7971  if (TUK == TUK_Friend)
7972    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7973                               getLangOptions().MicrosoftExt);
7974
7975  // Set the access specifier.
7976  if (!Invalid && SearchDC->isRecord())
7977    SetMemberAccessSpecifier(New, PrevDecl, AS);
7978
7979  if (TUK == TUK_Definition)
7980    New->startDefinition();
7981
7982  // If this has an identifier, add it to the scope stack.
7983  if (TUK == TUK_Friend) {
7984    // We might be replacing an existing declaration in the lookup tables;
7985    // if so, borrow its access specifier.
7986    if (PrevDecl)
7987      New->setAccess(PrevDecl->getAccess());
7988
7989    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7990    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7991    if (Name) // can be null along some error paths
7992      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7993        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7994  } else if (Name) {
7995    S = getNonFieldDeclScope(S);
7996    PushOnScopeChains(New, S, !IsForwardReference);
7997    if (IsForwardReference)
7998      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7999
8000  } else {
8001    CurContext->addDecl(New);
8002  }
8003
8004  // If this is the C FILE type, notify the AST context.
8005  if (IdentifierInfo *II = New->getIdentifier())
8006    if (!New->isInvalidDecl() &&
8007        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8008        II->isStr("FILE"))
8009      Context.setFILEDecl(New);
8010
8011  OwnedDecl = true;
8012  return New;
8013}
8014
8015void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8016  AdjustDeclIfTemplate(TagD);
8017  TagDecl *Tag = cast<TagDecl>(TagD);
8018
8019  // Enter the tag context.
8020  PushDeclContext(S, Tag);
8021}
8022
8023Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8024  assert(isa<ObjCContainerDecl>(IDecl) &&
8025         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8026  DeclContext *OCD = cast<DeclContext>(IDecl);
8027  assert(getContainingDC(OCD) == CurContext &&
8028      "The next DeclContext should be lexically contained in the current one.");
8029  CurContext = OCD;
8030  return IDecl;
8031}
8032
8033void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8034                                           SourceLocation FinalLoc,
8035                                           SourceLocation LBraceLoc) {
8036  AdjustDeclIfTemplate(TagD);
8037  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8038
8039  FieldCollector->StartClass();
8040
8041  if (!Record->getIdentifier())
8042    return;
8043
8044  if (FinalLoc.isValid())
8045    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8046
8047  // C++ [class]p2:
8048  //   [...] The class-name is also inserted into the scope of the
8049  //   class itself; this is known as the injected-class-name. For
8050  //   purposes of access checking, the injected-class-name is treated
8051  //   as if it were a public member name.
8052  CXXRecordDecl *InjectedClassName
8053    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8054                            Record->getLocStart(), Record->getLocation(),
8055                            Record->getIdentifier(),
8056                            /*PrevDecl=*/0,
8057                            /*DelayTypeCreation=*/true);
8058  Context.getTypeDeclType(InjectedClassName, Record);
8059  InjectedClassName->setImplicit();
8060  InjectedClassName->setAccess(AS_public);
8061  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8062      InjectedClassName->setDescribedClassTemplate(Template);
8063  PushOnScopeChains(InjectedClassName, S);
8064  assert(InjectedClassName->isInjectedClassName() &&
8065         "Broken injected-class-name");
8066}
8067
8068void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8069                                    SourceLocation RBraceLoc) {
8070  AdjustDeclIfTemplate(TagD);
8071  TagDecl *Tag = cast<TagDecl>(TagD);
8072  Tag->setRBraceLoc(RBraceLoc);
8073
8074  if (isa<CXXRecordDecl>(Tag))
8075    FieldCollector->FinishClass();
8076
8077  // Exit this scope of this tag's definition.
8078  PopDeclContext();
8079
8080  // Notify the consumer that we've defined a tag.
8081  Consumer.HandleTagDeclDefinition(Tag);
8082}
8083
8084void Sema::ActOnObjCContainerFinishDefinition() {
8085  // Exit this scope of this interface definition.
8086  PopDeclContext();
8087}
8088
8089void Sema::ActOnObjCTemporaryExitContainerContext() {
8090  OriginalLexicalContext = CurContext;
8091  ActOnObjCContainerFinishDefinition();
8092}
8093
8094void Sema::ActOnObjCReenterContainerContext() {
8095  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8096  OriginalLexicalContext = 0;
8097}
8098
8099void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8100  AdjustDeclIfTemplate(TagD);
8101  TagDecl *Tag = cast<TagDecl>(TagD);
8102  Tag->setInvalidDecl();
8103
8104  // We're undoing ActOnTagStartDefinition here, not
8105  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8106  // the FieldCollector.
8107
8108  PopDeclContext();
8109}
8110
8111// Note that FieldName may be null for anonymous bitfields.
8112bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8113                          QualType FieldTy, const Expr *BitWidth,
8114                          bool *ZeroWidth) {
8115  // Default to true; that shouldn't confuse checks for emptiness
8116  if (ZeroWidth)
8117    *ZeroWidth = true;
8118
8119  // C99 6.7.2.1p4 - verify the field type.
8120  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8121  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8122    // Handle incomplete types with specific error.
8123    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8124      return true;
8125    if (FieldName)
8126      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8127        << FieldName << FieldTy << BitWidth->getSourceRange();
8128    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8129      << FieldTy << BitWidth->getSourceRange();
8130  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8131                                             UPPC_BitFieldWidth))
8132    return true;
8133
8134  // If the bit-width is type- or value-dependent, don't try to check
8135  // it now.
8136  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8137    return false;
8138
8139  llvm::APSInt Value;
8140  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8141    return true;
8142
8143  if (Value != 0 && ZeroWidth)
8144    *ZeroWidth = false;
8145
8146  // Zero-width bitfield is ok for anonymous field.
8147  if (Value == 0 && FieldName)
8148    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8149
8150  if (Value.isSigned() && Value.isNegative()) {
8151    if (FieldName)
8152      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8153               << FieldName << Value.toString(10);
8154    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8155      << Value.toString(10);
8156  }
8157
8158  if (!FieldTy->isDependentType()) {
8159    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8160    if (Value.getZExtValue() > TypeSize) {
8161      if (!getLangOptions().CPlusPlus) {
8162        if (FieldName)
8163          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8164            << FieldName << (unsigned)Value.getZExtValue()
8165            << (unsigned)TypeSize;
8166
8167        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8168          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8169      }
8170
8171      if (FieldName)
8172        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8173          << FieldName << (unsigned)Value.getZExtValue()
8174          << (unsigned)TypeSize;
8175      else
8176        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8177          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8178    }
8179  }
8180
8181  return false;
8182}
8183
8184/// ActOnField - Each field of a C struct/union is passed into this in order
8185/// to create a FieldDecl object for it.
8186Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8187                       Declarator &D, Expr *BitfieldWidth) {
8188  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8189                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8190                               /*HasInit=*/false, AS_public);
8191  return Res;
8192}
8193
8194/// HandleField - Analyze a field of a C struct or a C++ data member.
8195///
8196FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8197                             SourceLocation DeclStart,
8198                             Declarator &D, Expr *BitWidth, bool HasInit,
8199                             AccessSpecifier AS) {
8200  IdentifierInfo *II = D.getIdentifier();
8201  SourceLocation Loc = DeclStart;
8202  if (II) Loc = D.getIdentifierLoc();
8203
8204  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8205  QualType T = TInfo->getType();
8206  if (getLangOptions().CPlusPlus) {
8207    CheckExtraCXXDefaultArguments(D);
8208
8209    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8210                                        UPPC_DataMemberType)) {
8211      D.setInvalidType();
8212      T = Context.IntTy;
8213      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8214    }
8215  }
8216
8217  DiagnoseFunctionSpecifiers(D);
8218
8219  if (D.getDeclSpec().isThreadSpecified())
8220    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8221  if (D.getDeclSpec().isConstexprSpecified())
8222    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8223      << 2;
8224
8225  // Check to see if this name was declared as a member previously
8226  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8227  LookupName(Previous, S);
8228  assert((Previous.empty() || Previous.isOverloadedResult() ||
8229          Previous.isSingleResult())
8230    && "Lookup of member name should be either overloaded, single or null");
8231
8232  // If the name is overloaded then get any declaration else get the single result
8233  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8234    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8235
8236  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8237    // Maybe we will complain about the shadowed template parameter.
8238    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8239    // Just pretend that we didn't see the previous declaration.
8240    PrevDecl = 0;
8241  }
8242
8243  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8244    PrevDecl = 0;
8245
8246  bool Mutable
8247    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8248  SourceLocation TSSL = D.getSourceRange().getBegin();
8249  FieldDecl *NewFD
8250    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8251                     TSSL, AS, PrevDecl, &D);
8252
8253  if (NewFD->isInvalidDecl())
8254    Record->setInvalidDecl();
8255
8256  if (D.getDeclSpec().isModulePrivateSpecified())
8257    NewFD->setModulePrivate();
8258
8259  if (NewFD->isInvalidDecl() && PrevDecl) {
8260    // Don't introduce NewFD into scope; there's already something
8261    // with the same name in the same scope.
8262  } else if (II) {
8263    PushOnScopeChains(NewFD, S);
8264  } else
8265    Record->addDecl(NewFD);
8266
8267  return NewFD;
8268}
8269
8270/// \brief Build a new FieldDecl and check its well-formedness.
8271///
8272/// This routine builds a new FieldDecl given the fields name, type,
8273/// record, etc. \p PrevDecl should refer to any previous declaration
8274/// with the same name and in the same scope as the field to be
8275/// created.
8276///
8277/// \returns a new FieldDecl.
8278///
8279/// \todo The Declarator argument is a hack. It will be removed once
8280FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8281                                TypeSourceInfo *TInfo,
8282                                RecordDecl *Record, SourceLocation Loc,
8283                                bool Mutable, Expr *BitWidth, bool HasInit,
8284                                SourceLocation TSSL,
8285                                AccessSpecifier AS, NamedDecl *PrevDecl,
8286                                Declarator *D) {
8287  IdentifierInfo *II = Name.getAsIdentifierInfo();
8288  bool InvalidDecl = false;
8289  if (D) InvalidDecl = D->isInvalidType();
8290
8291  // If we receive a broken type, recover by assuming 'int' and
8292  // marking this declaration as invalid.
8293  if (T.isNull()) {
8294    InvalidDecl = true;
8295    T = Context.IntTy;
8296  }
8297
8298  QualType EltTy = Context.getBaseElementType(T);
8299  if (!EltTy->isDependentType() &&
8300      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8301    // Fields of incomplete type force their record to be invalid.
8302    Record->setInvalidDecl();
8303    InvalidDecl = true;
8304  }
8305
8306  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8307  // than a variably modified type.
8308  if (!InvalidDecl && T->isVariablyModifiedType()) {
8309    bool SizeIsNegative;
8310    llvm::APSInt Oversized;
8311    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8312                                                           SizeIsNegative,
8313                                                           Oversized);
8314    if (!FixedTy.isNull()) {
8315      Diag(Loc, diag::warn_illegal_constant_array_size);
8316      T = FixedTy;
8317    } else {
8318      if (SizeIsNegative)
8319        Diag(Loc, diag::err_typecheck_negative_array_size);
8320      else if (Oversized.getBoolValue())
8321        Diag(Loc, diag::err_array_too_large)
8322          << Oversized.toString(10);
8323      else
8324        Diag(Loc, diag::err_typecheck_field_variable_size);
8325      InvalidDecl = true;
8326    }
8327  }
8328
8329  // Fields can not have abstract class types
8330  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8331                                             diag::err_abstract_type_in_decl,
8332                                             AbstractFieldType))
8333    InvalidDecl = true;
8334
8335  bool ZeroWidth = false;
8336  // If this is declared as a bit-field, check the bit-field.
8337  if (!InvalidDecl && BitWidth &&
8338      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8339    InvalidDecl = true;
8340    BitWidth = 0;
8341    ZeroWidth = false;
8342  }
8343
8344  // Check that 'mutable' is consistent with the type of the declaration.
8345  if (!InvalidDecl && Mutable) {
8346    unsigned DiagID = 0;
8347    if (T->isReferenceType())
8348      DiagID = diag::err_mutable_reference;
8349    else if (T.isConstQualified())
8350      DiagID = diag::err_mutable_const;
8351
8352    if (DiagID) {
8353      SourceLocation ErrLoc = Loc;
8354      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8355        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8356      Diag(ErrLoc, DiagID);
8357      Mutable = false;
8358      InvalidDecl = true;
8359    }
8360  }
8361
8362  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8363                                       BitWidth, Mutable, HasInit);
8364  if (InvalidDecl)
8365    NewFD->setInvalidDecl();
8366
8367  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8368    Diag(Loc, diag::err_duplicate_member) << II;
8369    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8370    NewFD->setInvalidDecl();
8371  }
8372
8373  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8374    if (Record->isUnion()) {
8375      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8376        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8377        if (RDecl->getDefinition()) {
8378          // C++ [class.union]p1: An object of a class with a non-trivial
8379          // constructor, a non-trivial copy constructor, a non-trivial
8380          // destructor, or a non-trivial copy assignment operator
8381          // cannot be a member of a union, nor can an array of such
8382          // objects.
8383          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8384            NewFD->setInvalidDecl();
8385        }
8386      }
8387
8388      // C++ [class.union]p1: If a union contains a member of reference type,
8389      // the program is ill-formed.
8390      if (EltTy->isReferenceType()) {
8391        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8392          << NewFD->getDeclName() << EltTy;
8393        NewFD->setInvalidDecl();
8394      }
8395    }
8396  }
8397
8398  // FIXME: We need to pass in the attributes given an AST
8399  // representation, not a parser representation.
8400  if (D)
8401    // FIXME: What to pass instead of TUScope?
8402    ProcessDeclAttributes(TUScope, NewFD, *D);
8403
8404  // In auto-retain/release, infer strong retension for fields of
8405  // retainable type.
8406  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8407    NewFD->setInvalidDecl();
8408
8409  if (T.isObjCGCWeak())
8410    Diag(Loc, diag::warn_attribute_weak_on_field);
8411
8412  NewFD->setAccess(AS);
8413  return NewFD;
8414}
8415
8416bool Sema::CheckNontrivialField(FieldDecl *FD) {
8417  assert(FD);
8418  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8419
8420  if (FD->isInvalidDecl())
8421    return true;
8422
8423  QualType EltTy = Context.getBaseElementType(FD->getType());
8424  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8425    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8426    if (RDecl->getDefinition()) {
8427      // We check for copy constructors before constructors
8428      // because otherwise we'll never get complaints about
8429      // copy constructors.
8430
8431      CXXSpecialMember member = CXXInvalid;
8432      if (!RDecl->hasTrivialCopyConstructor())
8433        member = CXXCopyConstructor;
8434      else if (!RDecl->hasTrivialDefaultConstructor())
8435        member = CXXDefaultConstructor;
8436      else if (!RDecl->hasTrivialCopyAssignment())
8437        member = CXXCopyAssignment;
8438      else if (!RDecl->hasTrivialDestructor())
8439        member = CXXDestructor;
8440
8441      if (member != CXXInvalid) {
8442        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8443          // Objective-C++ ARC: it is an error to have a non-trivial field of
8444          // a union. However, system headers in Objective-C programs
8445          // occasionally have Objective-C lifetime objects within unions,
8446          // and rather than cause the program to fail, we make those
8447          // members unavailable.
8448          SourceLocation Loc = FD->getLocation();
8449          if (getSourceManager().isInSystemHeader(Loc)) {
8450            if (!FD->hasAttr<UnavailableAttr>())
8451              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8452                                  "this system field has retaining ownership"));
8453            return false;
8454          }
8455        }
8456
8457        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8458              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8459        DiagnoseNontrivial(RT, member);
8460        return true;
8461      }
8462    }
8463  }
8464
8465  return false;
8466}
8467
8468/// DiagnoseNontrivial - Given that a class has a non-trivial
8469/// special member, figure out why.
8470void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8471  QualType QT(T, 0U);
8472  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8473
8474  // Check whether the member was user-declared.
8475  switch (member) {
8476  case CXXInvalid:
8477    break;
8478
8479  case CXXDefaultConstructor:
8480    if (RD->hasUserDeclaredConstructor()) {
8481      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8482      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8483        const FunctionDecl *body = 0;
8484        ci->hasBody(body);
8485        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8486          SourceLocation CtorLoc = ci->getLocation();
8487          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8488          return;
8489        }
8490      }
8491
8492      llvm_unreachable("found no user-declared constructors");
8493    }
8494    break;
8495
8496  case CXXCopyConstructor:
8497    if (RD->hasUserDeclaredCopyConstructor()) {
8498      SourceLocation CtorLoc =
8499        RD->getCopyConstructor(0)->getLocation();
8500      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8501      return;
8502    }
8503    break;
8504
8505  case CXXMoveConstructor:
8506    if (RD->hasUserDeclaredMoveConstructor()) {
8507      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8508      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8509      return;
8510    }
8511    break;
8512
8513  case CXXCopyAssignment:
8514    if (RD->hasUserDeclaredCopyAssignment()) {
8515      // FIXME: this should use the location of the copy
8516      // assignment, not the type.
8517      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8518      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8519      return;
8520    }
8521    break;
8522
8523  case CXXMoveAssignment:
8524    if (RD->hasUserDeclaredMoveAssignment()) {
8525      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8526      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8527      return;
8528    }
8529    break;
8530
8531  case CXXDestructor:
8532    if (RD->hasUserDeclaredDestructor()) {
8533      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8534      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8535      return;
8536    }
8537    break;
8538  }
8539
8540  typedef CXXRecordDecl::base_class_iterator base_iter;
8541
8542  // Virtual bases and members inhibit trivial copying/construction,
8543  // but not trivial destruction.
8544  if (member != CXXDestructor) {
8545    // Check for virtual bases.  vbases includes indirect virtual bases,
8546    // so we just iterate through the direct bases.
8547    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8548      if (bi->isVirtual()) {
8549        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8550        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8551        return;
8552      }
8553
8554    // Check for virtual methods.
8555    typedef CXXRecordDecl::method_iterator meth_iter;
8556    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8557         ++mi) {
8558      if (mi->isVirtual()) {
8559        SourceLocation MLoc = mi->getSourceRange().getBegin();
8560        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8561        return;
8562      }
8563    }
8564  }
8565
8566  bool (CXXRecordDecl::*hasTrivial)() const;
8567  switch (member) {
8568  case CXXDefaultConstructor:
8569    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8570  case CXXCopyConstructor:
8571    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8572  case CXXCopyAssignment:
8573    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8574  case CXXDestructor:
8575    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8576  default:
8577    llvm_unreachable("unexpected special member");
8578  }
8579
8580  // Check for nontrivial bases (and recurse).
8581  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8582    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8583    assert(BaseRT && "Don't know how to handle dependent bases");
8584    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8585    if (!(BaseRecTy->*hasTrivial)()) {
8586      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8587      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8588      DiagnoseNontrivial(BaseRT, member);
8589      return;
8590    }
8591  }
8592
8593  // Check for nontrivial members (and recurse).
8594  typedef RecordDecl::field_iterator field_iter;
8595  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8596       ++fi) {
8597    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8598    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8599      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8600
8601      if (!(EltRD->*hasTrivial)()) {
8602        SourceLocation FLoc = (*fi)->getLocation();
8603        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8604        DiagnoseNontrivial(EltRT, member);
8605        return;
8606      }
8607    }
8608
8609    if (EltTy->isObjCLifetimeType()) {
8610      switch (EltTy.getObjCLifetime()) {
8611      case Qualifiers::OCL_None:
8612      case Qualifiers::OCL_ExplicitNone:
8613        break;
8614
8615      case Qualifiers::OCL_Autoreleasing:
8616      case Qualifiers::OCL_Weak:
8617      case Qualifiers::OCL_Strong:
8618        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8619          << QT << EltTy.getObjCLifetime();
8620        return;
8621      }
8622    }
8623  }
8624
8625  llvm_unreachable("found no explanation for non-trivial member");
8626}
8627
8628/// TranslateIvarVisibility - Translate visibility from a token ID to an
8629///  AST enum value.
8630static ObjCIvarDecl::AccessControl
8631TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8632  switch (ivarVisibility) {
8633  default: llvm_unreachable("Unknown visitibility kind");
8634  case tok::objc_private: return ObjCIvarDecl::Private;
8635  case tok::objc_public: return ObjCIvarDecl::Public;
8636  case tok::objc_protected: return ObjCIvarDecl::Protected;
8637  case tok::objc_package: return ObjCIvarDecl::Package;
8638  }
8639}
8640
8641/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8642/// in order to create an IvarDecl object for it.
8643Decl *Sema::ActOnIvar(Scope *S,
8644                                SourceLocation DeclStart,
8645                                Declarator &D, Expr *BitfieldWidth,
8646                                tok::ObjCKeywordKind Visibility) {
8647
8648  IdentifierInfo *II = D.getIdentifier();
8649  Expr *BitWidth = (Expr*)BitfieldWidth;
8650  SourceLocation Loc = DeclStart;
8651  if (II) Loc = D.getIdentifierLoc();
8652
8653  // FIXME: Unnamed fields can be handled in various different ways, for
8654  // example, unnamed unions inject all members into the struct namespace!
8655
8656  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8657  QualType T = TInfo->getType();
8658
8659  if (BitWidth) {
8660    // 6.7.2.1p3, 6.7.2.1p4
8661    if (VerifyBitField(Loc, II, T, BitWidth)) {
8662      D.setInvalidType();
8663      BitWidth = 0;
8664    }
8665  } else {
8666    // Not a bitfield.
8667
8668    // validate II.
8669
8670  }
8671  if (T->isReferenceType()) {
8672    Diag(Loc, diag::err_ivar_reference_type);
8673    D.setInvalidType();
8674  }
8675  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8676  // than a variably modified type.
8677  else if (T->isVariablyModifiedType()) {
8678    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8679    D.setInvalidType();
8680  }
8681
8682  // Get the visibility (access control) for this ivar.
8683  ObjCIvarDecl::AccessControl ac =
8684    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8685                                        : ObjCIvarDecl::None;
8686  // Must set ivar's DeclContext to its enclosing interface.
8687  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8688  ObjCContainerDecl *EnclosingContext;
8689  if (ObjCImplementationDecl *IMPDecl =
8690      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8691    if (!LangOpts.ObjCNonFragileABI2) {
8692    // Case of ivar declared in an implementation. Context is that of its class.
8693      EnclosingContext = IMPDecl->getClassInterface();
8694      assert(EnclosingContext && "Implementation has no class interface!");
8695    }
8696    else
8697      EnclosingContext = EnclosingDecl;
8698  } else {
8699    if (ObjCCategoryDecl *CDecl =
8700        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8701      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8702        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8703        return 0;
8704      }
8705    }
8706    EnclosingContext = EnclosingDecl;
8707  }
8708
8709  // Construct the decl.
8710  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8711                                             DeclStart, Loc, II, T,
8712                                             TInfo, ac, (Expr *)BitfieldWidth);
8713
8714  if (II) {
8715    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8716                                           ForRedeclaration);
8717    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8718        && !isa<TagDecl>(PrevDecl)) {
8719      Diag(Loc, diag::err_duplicate_member) << II;
8720      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8721      NewID->setInvalidDecl();
8722    }
8723  }
8724
8725  // Process attributes attached to the ivar.
8726  ProcessDeclAttributes(S, NewID, D);
8727
8728  if (D.isInvalidType())
8729    NewID->setInvalidDecl();
8730
8731  // In ARC, infer 'retaining' for ivars of retainable type.
8732  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8733    NewID->setInvalidDecl();
8734
8735  if (D.getDeclSpec().isModulePrivateSpecified())
8736    NewID->setModulePrivate();
8737
8738  if (II) {
8739    // FIXME: When interfaces are DeclContexts, we'll need to add
8740    // these to the interface.
8741    S->AddDecl(NewID);
8742    IdResolver.AddDecl(NewID);
8743  }
8744
8745  return NewID;
8746}
8747
8748/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8749/// class and class extensions. For every class @interface and class
8750/// extension @interface, if the last ivar is a bitfield of any type,
8751/// then add an implicit `char :0` ivar to the end of that interface.
8752void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8753                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8754  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8755    return;
8756
8757  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8758  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8759
8760  if (!Ivar->isBitField())
8761    return;
8762  uint64_t BitFieldSize =
8763    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8764  if (BitFieldSize == 0)
8765    return;
8766  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8767  if (!ID) {
8768    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8769      if (!CD->IsClassExtension())
8770        return;
8771    }
8772    // No need to add this to end of @implementation.
8773    else
8774      return;
8775  }
8776  // All conditions are met. Add a new bitfield to the tail end of ivars.
8777  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8778  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8779
8780  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8781                              DeclLoc, DeclLoc, 0,
8782                              Context.CharTy,
8783                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8784                                                               DeclLoc),
8785                              ObjCIvarDecl::Private, BW,
8786                              true);
8787  AllIvarDecls.push_back(Ivar);
8788}
8789
8790void Sema::ActOnFields(Scope* S,
8791                       SourceLocation RecLoc, Decl *EnclosingDecl,
8792                       llvm::ArrayRef<Decl *> Fields,
8793                       SourceLocation LBrac, SourceLocation RBrac,
8794                       AttributeList *Attr) {
8795  assert(EnclosingDecl && "missing record or interface decl");
8796
8797  // If the decl this is being inserted into is invalid, then it may be a
8798  // redeclaration or some other bogus case.  Don't try to add fields to it.
8799  if (EnclosingDecl->isInvalidDecl())
8800    return;
8801
8802  // Verify that all the fields are okay.
8803  unsigned NumNamedMembers = 0;
8804  SmallVector<FieldDecl*, 32> RecFields;
8805
8806  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8807  bool ARCErrReported = false;
8808  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8809       i != end; ++i) {
8810    FieldDecl *FD = cast<FieldDecl>(*i);
8811
8812    // Get the type for the field.
8813    const Type *FDTy = FD->getType().getTypePtr();
8814
8815    if (!FD->isAnonymousStructOrUnion()) {
8816      // Remember all fields written by the user.
8817      RecFields.push_back(FD);
8818    }
8819
8820    // If the field is already invalid for some reason, don't emit more
8821    // diagnostics about it.
8822    if (FD->isInvalidDecl()) {
8823      EnclosingDecl->setInvalidDecl();
8824      continue;
8825    }
8826
8827    // C99 6.7.2.1p2:
8828    //   A structure or union shall not contain a member with
8829    //   incomplete or function type (hence, a structure shall not
8830    //   contain an instance of itself, but may contain a pointer to
8831    //   an instance of itself), except that the last member of a
8832    //   structure with more than one named member may have incomplete
8833    //   array type; such a structure (and any union containing,
8834    //   possibly recursively, a member that is such a structure)
8835    //   shall not be a member of a structure or an element of an
8836    //   array.
8837    if (FDTy->isFunctionType()) {
8838      // Field declared as a function.
8839      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8840        << FD->getDeclName();
8841      FD->setInvalidDecl();
8842      EnclosingDecl->setInvalidDecl();
8843      continue;
8844    } else if (FDTy->isIncompleteArrayType() && Record &&
8845               ((i + 1 == Fields.end() && !Record->isUnion()) ||
8846                ((getLangOptions().MicrosoftExt ||
8847                  getLangOptions().CPlusPlus) &&
8848                 (i + 1 == Fields.end() || Record->isUnion())))) {
8849      // Flexible array member.
8850      // Microsoft and g++ is more permissive regarding flexible array.
8851      // It will accept flexible array in union and also
8852      // as the sole element of a struct/class.
8853      if (getLangOptions().MicrosoftExt) {
8854        if (Record->isUnion())
8855          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8856            << FD->getDeclName();
8857        else if (Fields.size() == 1)
8858          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8859            << FD->getDeclName() << Record->getTagKind();
8860      } else if (getLangOptions().CPlusPlus) {
8861        if (Record->isUnion())
8862          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8863            << FD->getDeclName();
8864        else if (Fields.size() == 1)
8865          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8866            << FD->getDeclName() << Record->getTagKind();
8867      } else if (NumNamedMembers < 1) {
8868        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8869          << FD->getDeclName();
8870        FD->setInvalidDecl();
8871        EnclosingDecl->setInvalidDecl();
8872        continue;
8873      }
8874      if (!FD->getType()->isDependentType() &&
8875          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8876        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8877          << FD->getDeclName() << FD->getType();
8878        FD->setInvalidDecl();
8879        EnclosingDecl->setInvalidDecl();
8880        continue;
8881      }
8882      // Okay, we have a legal flexible array member at the end of the struct.
8883      if (Record)
8884        Record->setHasFlexibleArrayMember(true);
8885    } else if (!FDTy->isDependentType() &&
8886               RequireCompleteType(FD->getLocation(), FD->getType(),
8887                                   diag::err_field_incomplete)) {
8888      // Incomplete type
8889      FD->setInvalidDecl();
8890      EnclosingDecl->setInvalidDecl();
8891      continue;
8892    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8893      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8894        // If this is a member of a union, then entire union becomes "flexible".
8895        if (Record && Record->isUnion()) {
8896          Record->setHasFlexibleArrayMember(true);
8897        } else {
8898          // If this is a struct/class and this is not the last element, reject
8899          // it.  Note that GCC supports variable sized arrays in the middle of
8900          // structures.
8901          if (i + 1 != Fields.end())
8902            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8903              << FD->getDeclName() << FD->getType();
8904          else {
8905            // We support flexible arrays at the end of structs in
8906            // other structs as an extension.
8907            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8908              << FD->getDeclName();
8909            if (Record)
8910              Record->setHasFlexibleArrayMember(true);
8911          }
8912        }
8913      }
8914      if (Record && FDTTy->getDecl()->hasObjectMember())
8915        Record->setHasObjectMember(true);
8916    } else if (FDTy->isObjCObjectType()) {
8917      /// A field cannot be an Objective-c object
8918      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8919        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8920      QualType T = Context.getObjCObjectPointerType(FD->getType());
8921      FD->setType(T);
8922    }
8923    else if (!getLangOptions().CPlusPlus) {
8924      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8925        // It's an error in ARC if a field has lifetime.
8926        // We don't want to report this in a system header, though,
8927        // so we just make the field unavailable.
8928        // FIXME: that's really not sufficient; we need to make the type
8929        // itself invalid to, say, initialize or copy.
8930        QualType T = FD->getType();
8931        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8932        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8933          SourceLocation loc = FD->getLocation();
8934          if (getSourceManager().isInSystemHeader(loc)) {
8935            if (!FD->hasAttr<UnavailableAttr>()) {
8936              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8937                                "this system field has retaining ownership"));
8938            }
8939          } else {
8940            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8941          }
8942          ARCErrReported = true;
8943        }
8944      }
8945      else if (getLangOptions().ObjC1 &&
8946               getLangOptions().getGC() != LangOptions::NonGC &&
8947               Record && !Record->hasObjectMember()) {
8948        if (FD->getType()->isObjCObjectPointerType() ||
8949            FD->getType().isObjCGCStrong())
8950          Record->setHasObjectMember(true);
8951        else if (Context.getAsArrayType(FD->getType())) {
8952          QualType BaseType = Context.getBaseElementType(FD->getType());
8953          if (BaseType->isRecordType() &&
8954              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8955            Record->setHasObjectMember(true);
8956          else if (BaseType->isObjCObjectPointerType() ||
8957                   BaseType.isObjCGCStrong())
8958                 Record->setHasObjectMember(true);
8959        }
8960      }
8961    }
8962    // Keep track of the number of named members.
8963    if (FD->getIdentifier())
8964      ++NumNamedMembers;
8965  }
8966
8967  // Okay, we successfully defined 'Record'.
8968  if (Record) {
8969    bool Completed = false;
8970    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8971      if (!CXXRecord->isInvalidDecl()) {
8972        // Set access bits correctly on the directly-declared conversions.
8973        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8974        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8975             I != E; ++I)
8976          Convs->setAccess(I, (*I)->getAccess());
8977
8978        if (!CXXRecord->isDependentType()) {
8979          // Objective-C Automatic Reference Counting:
8980          //   If a class has a non-static data member of Objective-C pointer
8981          //   type (or array thereof), it is a non-POD type and its
8982          //   default constructor (if any), copy constructor, copy assignment
8983          //   operator, and destructor are non-trivial.
8984          //
8985          // This rule is also handled by CXXRecordDecl::completeDefinition().
8986          // However, here we check whether this particular class is only
8987          // non-POD because of the presence of an Objective-C pointer member.
8988          // If so, objects of this type cannot be shared between code compiled
8989          // with instant objects and code compiled with manual retain/release.
8990          if (getLangOptions().ObjCAutoRefCount &&
8991              CXXRecord->hasObjectMember() &&
8992              CXXRecord->getLinkage() == ExternalLinkage) {
8993            if (CXXRecord->isPOD()) {
8994              Diag(CXXRecord->getLocation(),
8995                   diag::warn_arc_non_pod_class_with_object_member)
8996               << CXXRecord;
8997            } else {
8998              // FIXME: Fix-Its would be nice here, but finding a good location
8999              // for them is going to be tricky.
9000              if (CXXRecord->hasTrivialCopyConstructor())
9001                Diag(CXXRecord->getLocation(),
9002                     diag::warn_arc_trivial_member_function_with_object_member)
9003                  << CXXRecord << 0;
9004              if (CXXRecord->hasTrivialCopyAssignment())
9005                Diag(CXXRecord->getLocation(),
9006                     diag::warn_arc_trivial_member_function_with_object_member)
9007                << CXXRecord << 1;
9008              if (CXXRecord->hasTrivialDestructor())
9009                Diag(CXXRecord->getLocation(),
9010                     diag::warn_arc_trivial_member_function_with_object_member)
9011                << CXXRecord << 2;
9012            }
9013          }
9014
9015          // Adjust user-defined destructor exception spec.
9016          if (getLangOptions().CPlusPlus0x &&
9017              CXXRecord->hasUserDeclaredDestructor())
9018            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9019
9020          // Add any implicitly-declared members to this class.
9021          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9022
9023          // If we have virtual base classes, we may end up finding multiple
9024          // final overriders for a given virtual function. Check for this
9025          // problem now.
9026          if (CXXRecord->getNumVBases()) {
9027            CXXFinalOverriderMap FinalOverriders;
9028            CXXRecord->getFinalOverriders(FinalOverriders);
9029
9030            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9031                                             MEnd = FinalOverriders.end();
9032                 M != MEnd; ++M) {
9033              for (OverridingMethods::iterator SO = M->second.begin(),
9034                                            SOEnd = M->second.end();
9035                   SO != SOEnd; ++SO) {
9036                assert(SO->second.size() > 0 &&
9037                       "Virtual function without overridding functions?");
9038                if (SO->second.size() == 1)
9039                  continue;
9040
9041                // C++ [class.virtual]p2:
9042                //   In a derived class, if a virtual member function of a base
9043                //   class subobject has more than one final overrider the
9044                //   program is ill-formed.
9045                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9046                  << (NamedDecl *)M->first << Record;
9047                Diag(M->first->getLocation(),
9048                     diag::note_overridden_virtual_function);
9049                for (OverridingMethods::overriding_iterator
9050                          OM = SO->second.begin(),
9051                       OMEnd = SO->second.end();
9052                     OM != OMEnd; ++OM)
9053                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9054                    << (NamedDecl *)M->first << OM->Method->getParent();
9055
9056                Record->setInvalidDecl();
9057              }
9058            }
9059            CXXRecord->completeDefinition(&FinalOverriders);
9060            Completed = true;
9061          }
9062        }
9063      }
9064    }
9065
9066    if (!Completed)
9067      Record->completeDefinition();
9068
9069    // Now that the record is complete, do any delayed exception spec checks
9070    // we were missing.
9071    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9072      const CXXDestructorDecl *Dtor =
9073              DelayedDestructorExceptionSpecChecks.back().first;
9074      if (Dtor->getParent() != Record)
9075        break;
9076
9077      assert(!Dtor->getParent()->isDependentType() &&
9078          "Should not ever add destructors of templates into the list.");
9079      CheckOverridingFunctionExceptionSpec(Dtor,
9080          DelayedDestructorExceptionSpecChecks.back().second);
9081      DelayedDestructorExceptionSpecChecks.pop_back();
9082    }
9083
9084  } else {
9085    ObjCIvarDecl **ClsFields =
9086      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9087    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9088      ID->setLocEnd(RBrac);
9089      // Add ivar's to class's DeclContext.
9090      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9091        ClsFields[i]->setLexicalDeclContext(ID);
9092        ID->addDecl(ClsFields[i]);
9093      }
9094      // Must enforce the rule that ivars in the base classes may not be
9095      // duplicates.
9096      if (ID->getSuperClass())
9097        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9098    } else if (ObjCImplementationDecl *IMPDecl =
9099                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9100      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9101      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9102        // Ivar declared in @implementation never belongs to the implementation.
9103        // Only it is in implementation's lexical context.
9104        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9105      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9106    } else if (ObjCCategoryDecl *CDecl =
9107                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9108      // case of ivars in class extension; all other cases have been
9109      // reported as errors elsewhere.
9110      // FIXME. Class extension does not have a LocEnd field.
9111      // CDecl->setLocEnd(RBrac);
9112      // Add ivar's to class extension's DeclContext.
9113      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9114        ClsFields[i]->setLexicalDeclContext(CDecl);
9115        CDecl->addDecl(ClsFields[i]);
9116      }
9117    }
9118  }
9119
9120  if (Attr)
9121    ProcessDeclAttributeList(S, Record, Attr);
9122
9123  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9124  // set the visibility of this record.
9125  if (Record && !Record->getDeclContext()->isRecord())
9126    AddPushedVisibilityAttribute(Record);
9127}
9128
9129/// \brief Determine whether the given integral value is representable within
9130/// the given type T.
9131static bool isRepresentableIntegerValue(ASTContext &Context,
9132                                        llvm::APSInt &Value,
9133                                        QualType T) {
9134  assert(T->isIntegralType(Context) && "Integral type required!");
9135  unsigned BitWidth = Context.getIntWidth(T);
9136
9137  if (Value.isUnsigned() || Value.isNonNegative()) {
9138    if (T->isSignedIntegerOrEnumerationType())
9139      --BitWidth;
9140    return Value.getActiveBits() <= BitWidth;
9141  }
9142  return Value.getMinSignedBits() <= BitWidth;
9143}
9144
9145// \brief Given an integral type, return the next larger integral type
9146// (or a NULL type of no such type exists).
9147static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9148  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9149  // enum checking below.
9150  assert(T->isIntegralType(Context) && "Integral type required!");
9151  const unsigned NumTypes = 4;
9152  QualType SignedIntegralTypes[NumTypes] = {
9153    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9154  };
9155  QualType UnsignedIntegralTypes[NumTypes] = {
9156    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9157    Context.UnsignedLongLongTy
9158  };
9159
9160  unsigned BitWidth = Context.getTypeSize(T);
9161  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9162                                                        : UnsignedIntegralTypes;
9163  for (unsigned I = 0; I != NumTypes; ++I)
9164    if (Context.getTypeSize(Types[I]) > BitWidth)
9165      return Types[I];
9166
9167  return QualType();
9168}
9169
9170EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9171                                          EnumConstantDecl *LastEnumConst,
9172                                          SourceLocation IdLoc,
9173                                          IdentifierInfo *Id,
9174                                          Expr *Val) {
9175  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9176  llvm::APSInt EnumVal(IntWidth);
9177  QualType EltTy;
9178
9179  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9180    Val = 0;
9181
9182  if (Val) {
9183    if (Enum->isDependentType() || Val->isTypeDependent())
9184      EltTy = Context.DependentTy;
9185    else {
9186      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9187      SourceLocation ExpLoc;
9188      if (!Val->isValueDependent() &&
9189          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9190        Val = 0;
9191      } else {
9192        if (!getLangOptions().CPlusPlus) {
9193          // C99 6.7.2.2p2:
9194          //   The expression that defines the value of an enumeration constant
9195          //   shall be an integer constant expression that has a value
9196          //   representable as an int.
9197
9198          // Complain if the value is not representable in an int.
9199          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9200            Diag(IdLoc, diag::ext_enum_value_not_int)
9201              << EnumVal.toString(10) << Val->getSourceRange()
9202              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9203          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9204            // Force the type of the expression to 'int'.
9205            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9206          }
9207        }
9208
9209        if (Enum->isFixed()) {
9210          EltTy = Enum->getIntegerType();
9211
9212          // C++0x [dcl.enum]p5:
9213          //   ... if the initializing value of an enumerator cannot be
9214          //   represented by the underlying type, the program is ill-formed.
9215          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9216            if (getLangOptions().MicrosoftExt) {
9217              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9218              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9219            } else
9220              Diag(IdLoc, diag::err_enumerator_too_large)
9221                << EltTy;
9222          } else
9223            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9224        }
9225        else {
9226          // C++0x [dcl.enum]p5:
9227          //   If the underlying type is not fixed, the type of each enumerator
9228          //   is the type of its initializing value:
9229          //     - If an initializer is specified for an enumerator, the
9230          //       initializing value has the same type as the expression.
9231          EltTy = Val->getType();
9232        }
9233      }
9234    }
9235  }
9236
9237  if (!Val) {
9238    if (Enum->isDependentType())
9239      EltTy = Context.DependentTy;
9240    else if (!LastEnumConst) {
9241      // C++0x [dcl.enum]p5:
9242      //   If the underlying type is not fixed, the type of each enumerator
9243      //   is the type of its initializing value:
9244      //     - If no initializer is specified for the first enumerator, the
9245      //       initializing value has an unspecified integral type.
9246      //
9247      // GCC uses 'int' for its unspecified integral type, as does
9248      // C99 6.7.2.2p3.
9249      if (Enum->isFixed()) {
9250        EltTy = Enum->getIntegerType();
9251      }
9252      else {
9253        EltTy = Context.IntTy;
9254      }
9255    } else {
9256      // Assign the last value + 1.
9257      EnumVal = LastEnumConst->getInitVal();
9258      ++EnumVal;
9259      EltTy = LastEnumConst->getType();
9260
9261      // Check for overflow on increment.
9262      if (EnumVal < LastEnumConst->getInitVal()) {
9263        // C++0x [dcl.enum]p5:
9264        //   If the underlying type is not fixed, the type of each enumerator
9265        //   is the type of its initializing value:
9266        //
9267        //     - Otherwise the type of the initializing value is the same as
9268        //       the type of the initializing value of the preceding enumerator
9269        //       unless the incremented value is not representable in that type,
9270        //       in which case the type is an unspecified integral type
9271        //       sufficient to contain the incremented value. If no such type
9272        //       exists, the program is ill-formed.
9273        QualType T = getNextLargerIntegralType(Context, EltTy);
9274        if (T.isNull() || Enum->isFixed()) {
9275          // There is no integral type larger enough to represent this
9276          // value. Complain, then allow the value to wrap around.
9277          EnumVal = LastEnumConst->getInitVal();
9278          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9279          ++EnumVal;
9280          if (Enum->isFixed())
9281            // When the underlying type is fixed, this is ill-formed.
9282            Diag(IdLoc, diag::err_enumerator_wrapped)
9283              << EnumVal.toString(10)
9284              << EltTy;
9285          else
9286            Diag(IdLoc, diag::warn_enumerator_too_large)
9287              << EnumVal.toString(10);
9288        } else {
9289          EltTy = T;
9290        }
9291
9292        // Retrieve the last enumerator's value, extent that type to the
9293        // type that is supposed to be large enough to represent the incremented
9294        // value, then increment.
9295        EnumVal = LastEnumConst->getInitVal();
9296        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9297        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9298        ++EnumVal;
9299
9300        // If we're not in C++, diagnose the overflow of enumerator values,
9301        // which in C99 means that the enumerator value is not representable in
9302        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9303        // permits enumerator values that are representable in some larger
9304        // integral type.
9305        if (!getLangOptions().CPlusPlus && !T.isNull())
9306          Diag(IdLoc, diag::warn_enum_value_overflow);
9307      } else if (!getLangOptions().CPlusPlus &&
9308                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9309        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9310        Diag(IdLoc, diag::ext_enum_value_not_int)
9311          << EnumVal.toString(10) << 1;
9312      }
9313    }
9314  }
9315
9316  if (!EltTy->isDependentType()) {
9317    // Make the enumerator value match the signedness and size of the
9318    // enumerator's type.
9319    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9320    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9321  }
9322
9323  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9324                                  Val, EnumVal);
9325}
9326
9327
9328Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9329                              SourceLocation IdLoc, IdentifierInfo *Id,
9330                              AttributeList *Attr,
9331                              SourceLocation EqualLoc, Expr *val) {
9332  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9333  EnumConstantDecl *LastEnumConst =
9334    cast_or_null<EnumConstantDecl>(lastEnumConst);
9335  Expr *Val = static_cast<Expr*>(val);
9336
9337  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9338  // we find one that is.
9339  S = getNonFieldDeclScope(S);
9340
9341  // Verify that there isn't already something declared with this name in this
9342  // scope.
9343  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9344                                         ForRedeclaration);
9345  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9346    // Maybe we will complain about the shadowed template parameter.
9347    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9348    // Just pretend that we didn't see the previous declaration.
9349    PrevDecl = 0;
9350  }
9351
9352  if (PrevDecl) {
9353    // When in C++, we may get a TagDecl with the same name; in this case the
9354    // enum constant will 'hide' the tag.
9355    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9356           "Received TagDecl when not in C++!");
9357    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9358      if (isa<EnumConstantDecl>(PrevDecl))
9359        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9360      else
9361        Diag(IdLoc, diag::err_redefinition) << Id;
9362      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9363      return 0;
9364    }
9365  }
9366
9367  // C++ [class.mem]p13:
9368  //   If T is the name of a class, then each of the following shall have a
9369  //   name different from T:
9370  //     - every enumerator of every member of class T that is an enumerated
9371  //       type
9372  if (CXXRecordDecl *Record
9373                      = dyn_cast<CXXRecordDecl>(
9374                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9375    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9376      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9377
9378  EnumConstantDecl *New =
9379    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9380
9381  if (New) {
9382    // Process attributes.
9383    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9384
9385    // Register this decl in the current scope stack.
9386    New->setAccess(TheEnumDecl->getAccess());
9387    PushOnScopeChains(New, S);
9388  }
9389
9390  return New;
9391}
9392
9393void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9394                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9395                         Decl **Elements, unsigned NumElements,
9396                         Scope *S, AttributeList *Attr) {
9397  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9398  QualType EnumType = Context.getTypeDeclType(Enum);
9399
9400  if (Attr)
9401    ProcessDeclAttributeList(S, Enum, Attr);
9402
9403  if (Enum->isDependentType()) {
9404    for (unsigned i = 0; i != NumElements; ++i) {
9405      EnumConstantDecl *ECD =
9406        cast_or_null<EnumConstantDecl>(Elements[i]);
9407      if (!ECD) continue;
9408
9409      ECD->setType(EnumType);
9410    }
9411
9412    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9413    return;
9414  }
9415
9416  // TODO: If the result value doesn't fit in an int, it must be a long or long
9417  // long value.  ISO C does not support this, but GCC does as an extension,
9418  // emit a warning.
9419  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9420  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9421  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9422
9423  // Verify that all the values are okay, compute the size of the values, and
9424  // reverse the list.
9425  unsigned NumNegativeBits = 0;
9426  unsigned NumPositiveBits = 0;
9427
9428  // Keep track of whether all elements have type int.
9429  bool AllElementsInt = true;
9430
9431  for (unsigned i = 0; i != NumElements; ++i) {
9432    EnumConstantDecl *ECD =
9433      cast_or_null<EnumConstantDecl>(Elements[i]);
9434    if (!ECD) continue;  // Already issued a diagnostic.
9435
9436    const llvm::APSInt &InitVal = ECD->getInitVal();
9437
9438    // Keep track of the size of positive and negative values.
9439    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9440      NumPositiveBits = std::max(NumPositiveBits,
9441                                 (unsigned)InitVal.getActiveBits());
9442    else
9443      NumNegativeBits = std::max(NumNegativeBits,
9444                                 (unsigned)InitVal.getMinSignedBits());
9445
9446    // Keep track of whether every enum element has type int (very commmon).
9447    if (AllElementsInt)
9448      AllElementsInt = ECD->getType() == Context.IntTy;
9449  }
9450
9451  // Figure out the type that should be used for this enum.
9452  QualType BestType;
9453  unsigned BestWidth;
9454
9455  // C++0x N3000 [conv.prom]p3:
9456  //   An rvalue of an unscoped enumeration type whose underlying
9457  //   type is not fixed can be converted to an rvalue of the first
9458  //   of the following types that can represent all the values of
9459  //   the enumeration: int, unsigned int, long int, unsigned long
9460  //   int, long long int, or unsigned long long int.
9461  // C99 6.4.4.3p2:
9462  //   An identifier declared as an enumeration constant has type int.
9463  // The C99 rule is modified by a gcc extension
9464  QualType BestPromotionType;
9465
9466  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9467  // -fshort-enums is the equivalent to specifying the packed attribute on all
9468  // enum definitions.
9469  if (LangOpts.ShortEnums)
9470    Packed = true;
9471
9472  if (Enum->isFixed()) {
9473    BestType = BestPromotionType = Enum->getIntegerType();
9474    // We don't need to set BestWidth, because BestType is going to be the type
9475    // of the enumerators, but we do anyway because otherwise some compilers
9476    // warn that it might be used uninitialized.
9477    BestWidth = CharWidth;
9478  }
9479  else if (NumNegativeBits) {
9480    // If there is a negative value, figure out the smallest integer type (of
9481    // int/long/longlong) that fits.
9482    // If it's packed, check also if it fits a char or a short.
9483    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9484      BestType = Context.SignedCharTy;
9485      BestWidth = CharWidth;
9486    } else if (Packed && NumNegativeBits <= ShortWidth &&
9487               NumPositiveBits < ShortWidth) {
9488      BestType = Context.ShortTy;
9489      BestWidth = ShortWidth;
9490    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9491      BestType = Context.IntTy;
9492      BestWidth = IntWidth;
9493    } else {
9494      BestWidth = Context.getTargetInfo().getLongWidth();
9495
9496      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9497        BestType = Context.LongTy;
9498      } else {
9499        BestWidth = Context.getTargetInfo().getLongLongWidth();
9500
9501        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9502          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9503        BestType = Context.LongLongTy;
9504      }
9505    }
9506    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9507  } else {
9508    // If there is no negative value, figure out the smallest type that fits
9509    // all of the enumerator values.
9510    // If it's packed, check also if it fits a char or a short.
9511    if (Packed && NumPositiveBits <= CharWidth) {
9512      BestType = Context.UnsignedCharTy;
9513      BestPromotionType = Context.IntTy;
9514      BestWidth = CharWidth;
9515    } else if (Packed && NumPositiveBits <= ShortWidth) {
9516      BestType = Context.UnsignedShortTy;
9517      BestPromotionType = Context.IntTy;
9518      BestWidth = ShortWidth;
9519    } else if (NumPositiveBits <= IntWidth) {
9520      BestType = Context.UnsignedIntTy;
9521      BestWidth = IntWidth;
9522      BestPromotionType
9523        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9524                           ? Context.UnsignedIntTy : Context.IntTy;
9525    } else if (NumPositiveBits <=
9526               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9527      BestType = Context.UnsignedLongTy;
9528      BestPromotionType
9529        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9530                           ? Context.UnsignedLongTy : Context.LongTy;
9531    } else {
9532      BestWidth = Context.getTargetInfo().getLongLongWidth();
9533      assert(NumPositiveBits <= BestWidth &&
9534             "How could an initializer get larger than ULL?");
9535      BestType = Context.UnsignedLongLongTy;
9536      BestPromotionType
9537        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9538                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9539    }
9540  }
9541
9542  // Loop over all of the enumerator constants, changing their types to match
9543  // the type of the enum if needed.
9544  for (unsigned i = 0; i != NumElements; ++i) {
9545    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9546    if (!ECD) continue;  // Already issued a diagnostic.
9547
9548    // Standard C says the enumerators have int type, but we allow, as an
9549    // extension, the enumerators to be larger than int size.  If each
9550    // enumerator value fits in an int, type it as an int, otherwise type it the
9551    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9552    // that X has type 'int', not 'unsigned'.
9553
9554    // Determine whether the value fits into an int.
9555    llvm::APSInt InitVal = ECD->getInitVal();
9556
9557    // If it fits into an integer type, force it.  Otherwise force it to match
9558    // the enum decl type.
9559    QualType NewTy;
9560    unsigned NewWidth;
9561    bool NewSign;
9562    if (!getLangOptions().CPlusPlus &&
9563        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9564      NewTy = Context.IntTy;
9565      NewWidth = IntWidth;
9566      NewSign = true;
9567    } else if (ECD->getType() == BestType) {
9568      // Already the right type!
9569      if (getLangOptions().CPlusPlus)
9570        // C++ [dcl.enum]p4: Following the closing brace of an
9571        // enum-specifier, each enumerator has the type of its
9572        // enumeration.
9573        ECD->setType(EnumType);
9574      continue;
9575    } else {
9576      NewTy = BestType;
9577      NewWidth = BestWidth;
9578      NewSign = BestType->isSignedIntegerOrEnumerationType();
9579    }
9580
9581    // Adjust the APSInt value.
9582    InitVal = InitVal.extOrTrunc(NewWidth);
9583    InitVal.setIsSigned(NewSign);
9584    ECD->setInitVal(InitVal);
9585
9586    // Adjust the Expr initializer and type.
9587    if (ECD->getInitExpr() &&
9588        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9589      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9590                                                CK_IntegralCast,
9591                                                ECD->getInitExpr(),
9592                                                /*base paths*/ 0,
9593                                                VK_RValue));
9594    if (getLangOptions().CPlusPlus)
9595      // C++ [dcl.enum]p4: Following the closing brace of an
9596      // enum-specifier, each enumerator has the type of its
9597      // enumeration.
9598      ECD->setType(EnumType);
9599    else
9600      ECD->setType(NewTy);
9601  }
9602
9603  Enum->completeDefinition(BestType, BestPromotionType,
9604                           NumPositiveBits, NumNegativeBits);
9605}
9606
9607Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9608                                  SourceLocation StartLoc,
9609                                  SourceLocation EndLoc) {
9610  StringLiteral *AsmString = cast<StringLiteral>(expr);
9611
9612  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9613                                                   AsmString, StartLoc,
9614                                                   EndLoc);
9615  CurContext->addDecl(New);
9616  return New;
9617}
9618
9619DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9620                                   IdentifierInfo &ModuleName,
9621                                   SourceLocation ModuleNameLoc) {
9622  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9623                                                     ModuleName, ModuleNameLoc);
9624  if (!Module)
9625    return true;
9626
9627  // FIXME: Actually create a declaration to describe the module import.
9628  (void)Module;
9629  return DeclResult((Decl *)0);
9630}
9631
9632void
9633Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9634                                         SourceLocation ModulePrivateKeyword) {
9635  assert(!Old->isModulePrivate() && "Old is module-private!");
9636
9637  Diag(New->getLocation(), diag::err_module_private_follows_public)
9638    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9639  Diag(Old->getLocation(), diag::note_previous_declaration)
9640    << Old->getDeclName();
9641
9642  // Drop the __module_private__ from the new declaration, since it's invalid.
9643  New->setModulePrivate(false);
9644}
9645
9646void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9647                             SourceLocation PragmaLoc,
9648                             SourceLocation NameLoc) {
9649  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9650
9651  if (PrevDecl) {
9652    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9653  } else {
9654    (void)WeakUndeclaredIdentifiers.insert(
9655      std::pair<IdentifierInfo*,WeakInfo>
9656        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9657  }
9658}
9659
9660void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9661                                IdentifierInfo* AliasName,
9662                                SourceLocation PragmaLoc,
9663                                SourceLocation NameLoc,
9664                                SourceLocation AliasNameLoc) {
9665  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9666                                    LookupOrdinaryName);
9667  WeakInfo W = WeakInfo(Name, NameLoc);
9668
9669  if (PrevDecl) {
9670    if (!PrevDecl->hasAttr<AliasAttr>())
9671      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9672        DeclApplyPragmaWeak(TUScope, ND, W);
9673  } else {
9674    (void)WeakUndeclaredIdentifiers.insert(
9675      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9676  }
9677}
9678
9679Decl *Sema::getObjCDeclContext() const {
9680  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9681}
9682
9683AvailabilityResult Sema::getCurContextAvailability() const {
9684  const Decl *D = cast<Decl>(getCurLexicalContext());
9685  // A category implicitly has the availability of the interface.
9686  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9687    D = CatD->getClassInterface();
9688
9689  return D->getAvailability();
9690}
9691