SemaDecl.cpp revision 159ef1ed9f024f73028aa3c9b27ae0717e43786c
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42#include <queue>
43using namespace clang;
44
45/// getDeclName - Return a pretty name for the specified decl if possible, or
46/// an empty string if not.  This is used for pretty crash reporting.
47std::string Sema::getDeclName(DeclPtrTy d) {
48  Decl *D = d.getAs<Decl>();
49  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
50    return DN->getQualifiedNameAsString();
51  return "";
52}
53
54Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
55  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
56}
57
58/// \brief If the identifier refers to a type name within this scope,
59/// return the declaration of that type.
60///
61/// This routine performs ordinary name lookup of the identifier II
62/// within the given scope, with optional C++ scope specifier SS, to
63/// determine whether the name refers to a type. If so, returns an
64/// opaque pointer (actually a QualType) corresponding to that
65/// type. Otherwise, returns NULL.
66///
67/// If name lookup results in an ambiguity, this routine will complain
68/// and then return NULL.
69Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
70                                Scope *S, const CXXScopeSpec *SS,
71                                bool isClassName,
72                                TypeTy *ObjectTypePtr) {
73  // Determine where we will perform name lookup.
74  DeclContext *LookupCtx = 0;
75  if (ObjectTypePtr) {
76    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
77    if (ObjectType->isRecordType())
78      LookupCtx = computeDeclContext(ObjectType);
79  } else if (SS && SS->isSet()) {
80    LookupCtx = computeDeclContext(*SS, false);
81
82    if (!LookupCtx) {
83      if (isDependentScopeSpecifier(*SS)) {
84        // C++ [temp.res]p3:
85        //   A qualified-id that refers to a type and in which the
86        //   nested-name-specifier depends on a template-parameter (14.6.2)
87        //   shall be prefixed by the keyword typename to indicate that the
88        //   qualified-id denotes a type, forming an
89        //   elaborated-type-specifier (7.1.5.3).
90        //
91        // We therefore do not perform any name lookup if the result would
92        // refer to a member of an unknown specialization.
93        if (!isClassName)
94          return 0;
95
96        // We know from the grammar that this name refers to a type, so build a
97        // TypenameType node to describe the type.
98        // FIXME: Record somewhere that this TypenameType node has no "typename"
99        // keyword associated with it.
100        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
101                                 II, SS->getRange()).getAsOpaquePtr();
102      }
103
104      return 0;
105    }
106
107    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
108      return 0;
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::FoundOverloaded:
141  case LookupResult::FoundUnresolvedValue:
142    return 0;
143
144  case LookupResult::Ambiguous:
145    // Recover from type-hiding ambiguities by hiding the type.  We'll
146    // do the lookup again when looking for an object, and we can
147    // diagnose the error then.  If we don't do this, then the error
148    // about hiding the type will be immediately followed by an error
149    // that only makes sense if the identifier was treated like a type.
150    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
151      Result.suppressDiagnostics();
152      return 0;
153    }
154
155    // Look to see if we have a type anywhere in the list of results.
156    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
157         Res != ResEnd; ++Res) {
158      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
159        if (!IIDecl ||
160            (*Res)->getLocation().getRawEncoding() <
161              IIDecl->getLocation().getRawEncoding())
162          IIDecl = *Res;
163      }
164    }
165
166    if (!IIDecl) {
167      // None of the entities we found is a type, so there is no way
168      // to even assume that the result is a type. In this case, don't
169      // complain about the ambiguity. The parser will either try to
170      // perform this lookup again (e.g., as an object name), which
171      // will produce the ambiguity, or will complain that it expected
172      // a type name.
173      Result.suppressDiagnostics();
174      return 0;
175    }
176
177    // We found a type within the ambiguous lookup; diagnose the
178    // ambiguity and then return that type. This might be the right
179    // answer, or it might not be, but it suppresses any attempt to
180    // perform the name lookup again.
181    break;
182
183  case LookupResult::Found:
184    IIDecl = Result.getFoundDecl();
185    break;
186  }
187
188  assert(IIDecl && "Didn't find decl");
189
190  QualType T;
191  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
192    DiagnoseUseOfDecl(IIDecl, NameLoc);
193
194    // C++ [temp.local]p2:
195    //   Within the scope of a class template specialization or
196    //   partial specialization, when the injected-class-name is
197    //   not followed by a <, it is equivalent to the
198    //   injected-class-name followed by the template-argument s
199    //   of the class template specialization or partial
200    //   specialization enclosed in <>.
201    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
202      if (RD->isInjectedClassName())
203        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
204          T = Template->getInjectedClassNameType(Context);
205
206    if (T.isNull())
207      T = Context.getTypeDeclType(TD);
208
209    if (SS)
210      T = getQualifiedNameType(*SS, T);
211
212  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
213    T = Context.getObjCInterfaceType(IDecl);
214  } else if (UnresolvedUsingTypenameDecl *UUDecl =
215               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
216    // FIXME: preserve source structure information.
217    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
218  } else {
219    // If it's not plausibly a type, suppress diagnostics.
220    Result.suppressDiagnostics();
221    return 0;
222  }
223
224  return T.getAsOpaquePtr();
225}
226
227/// isTagName() - This method is called *for error recovery purposes only*
228/// to determine if the specified name is a valid tag name ("struct foo").  If
229/// so, this returns the TST for the tag corresponding to it (TST_enum,
230/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
231/// where the user forgot to specify the tag.
232DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
233  // Do a tag name lookup in this scope.
234  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
235  LookupName(R, S, false);
236  R.suppressDiagnostics();
237  if (R.getResultKind() == LookupResult::Found)
238    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
239      switch (TD->getTagKind()) {
240      case TagDecl::TK_struct: return DeclSpec::TST_struct;
241      case TagDecl::TK_union:  return DeclSpec::TST_union;
242      case TagDecl::TK_class:  return DeclSpec::TST_class;
243      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
244      }
245    }
246
247  return DeclSpec::TST_unspecified;
248}
249
250bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
251                                   SourceLocation IILoc,
252                                   Scope *S,
253                                   const CXXScopeSpec *SS,
254                                   TypeTy *&SuggestedType) {
255  // We don't have anything to suggest (yet).
256  SuggestedType = 0;
257
258  // There may have been a typo in the name of the type. Look up typo
259  // results, in case we have something that we can suggest.
260  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
261                      NotForRedeclaration);
262
263  // FIXME: It would be nice if we could correct for typos in built-in
264  // names, such as "itn" for "int".
265
266  if (CorrectTypo(Lookup, S, SS) && Lookup.isSingleResult()) {
267    NamedDecl *Result = Lookup.getAsSingle<NamedDecl>();
268    if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
269        !Result->isInvalidDecl()) {
270      // We found a similarly-named type or interface; suggest that.
271      if (!SS || !SS->isSet())
272        Diag(IILoc, diag::err_unknown_typename_suggest)
273          << &II << Lookup.getLookupName()
274          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
275                                                     Result->getNameAsString());
276      else if (DeclContext *DC = computeDeclContext(*SS, false))
277        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
278          << &II << DC << Lookup.getLookupName() << SS->getRange()
279          << CodeModificationHint::CreateReplacement(SourceRange(IILoc),
280                                                     Result->getNameAsString());
281      else
282        llvm_unreachable("could not have corrected a typo here");
283
284      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
285      return true;
286    }
287  }
288
289  // FIXME: Should we move the logic that tries to recover from a missing tag
290  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
291
292  if (!SS || (!SS->isSet() && !SS->isInvalid()))
293    Diag(IILoc, diag::err_unknown_typename) << &II;
294  else if (DeclContext *DC = computeDeclContext(*SS, false))
295    Diag(IILoc, diag::err_typename_nested_not_found)
296      << &II << DC << SS->getRange();
297  else if (isDependentScopeSpecifier(*SS)) {
298    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
299      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
300      << SourceRange(SS->getRange().getBegin(), IILoc)
301      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
302                                               "typename ");
303    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
304  } else {
305    assert(SS && SS->isInvalid() &&
306           "Invalid scope specifier has already been diagnosed");
307  }
308
309  return true;
310}
311
312// Determines the context to return to after temporarily entering a
313// context.  This depends in an unnecessarily complicated way on the
314// exact ordering of callbacks from the parser.
315DeclContext *Sema::getContainingDC(DeclContext *DC) {
316
317  // Functions defined inline within classes aren't parsed until we've
318  // finished parsing the top-level class, so the top-level class is
319  // the context we'll need to return to.
320  if (isa<FunctionDecl>(DC)) {
321    DC = DC->getLexicalParent();
322
323    // A function not defined within a class will always return to its
324    // lexical context.
325    if (!isa<CXXRecordDecl>(DC))
326      return DC;
327
328    // A C++ inline method/friend is parsed *after* the topmost class
329    // it was declared in is fully parsed ("complete");  the topmost
330    // class is the context we need to return to.
331    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
332      DC = RD;
333
334    // Return the declaration context of the topmost class the inline method is
335    // declared in.
336    return DC;
337  }
338
339  if (isa<ObjCMethodDecl>(DC))
340    return Context.getTranslationUnitDecl();
341
342  return DC->getLexicalParent();
343}
344
345void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
346  assert(getContainingDC(DC) == CurContext &&
347      "The next DeclContext should be lexically contained in the current one.");
348  CurContext = DC;
349  S->setEntity(DC);
350}
351
352void Sema::PopDeclContext() {
353  assert(CurContext && "DeclContext imbalance!");
354
355  CurContext = getContainingDC(CurContext);
356}
357
358/// EnterDeclaratorContext - Used when we must lookup names in the context
359/// of a declarator's nested name specifier.
360///
361void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
362  // C++0x [basic.lookup.unqual]p13:
363  //   A name used in the definition of a static data member of class
364  //   X (after the qualified-id of the static member) is looked up as
365  //   if the name was used in a member function of X.
366  // C++0x [basic.lookup.unqual]p14:
367  //   If a variable member of a namespace is defined outside of the
368  //   scope of its namespace then any name used in the definition of
369  //   the variable member (after the declarator-id) is looked up as
370  //   if the definition of the variable member occurred in its
371  //   namespace.
372  // Both of these imply that we should push a scope whose context
373  // is the semantic context of the declaration.  We can't use
374  // PushDeclContext here because that context is not necessarily
375  // lexically contained in the current context.  Fortunately,
376  // the containing scope should have the appropriate information.
377
378  assert(!S->getEntity() && "scope already has entity");
379
380#ifndef NDEBUG
381  Scope *Ancestor = S->getParent();
382  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
383  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
384#endif
385
386  CurContext = DC;
387  S->setEntity(DC);
388}
389
390void Sema::ExitDeclaratorContext(Scope *S) {
391  assert(S->getEntity() == CurContext && "Context imbalance!");
392
393  // Switch back to the lexical context.  The safety of this is
394  // enforced by an assert in EnterDeclaratorContext.
395  Scope *Ancestor = S->getParent();
396  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
397  CurContext = (DeclContext*) Ancestor->getEntity();
398
399  // We don't need to do anything with the scope, which is going to
400  // disappear.
401}
402
403/// \brief Determine whether we allow overloading of the function
404/// PrevDecl with another declaration.
405///
406/// This routine determines whether overloading is possible, not
407/// whether some new function is actually an overload. It will return
408/// true in C++ (where we can always provide overloads) or, as an
409/// extension, in C when the previous function is already an
410/// overloaded function declaration or has the "overloadable"
411/// attribute.
412static bool AllowOverloadingOfFunction(LookupResult &Previous,
413                                       ASTContext &Context) {
414  if (Context.getLangOptions().CPlusPlus)
415    return true;
416
417  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
418    return true;
419
420  return (Previous.getResultKind() == LookupResult::Found
421          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
422}
423
424/// Add this decl to the scope shadowed decl chains.
425void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
426  // Move up the scope chain until we find the nearest enclosing
427  // non-transparent context. The declaration will be introduced into this
428  // scope.
429  while (S->getEntity() &&
430         ((DeclContext *)S->getEntity())->isTransparentContext())
431    S = S->getParent();
432
433  // Add scoped declarations into their context, so that they can be
434  // found later. Declarations without a context won't be inserted
435  // into any context.
436  if (AddToContext)
437    CurContext->addDecl(D);
438
439  // Out-of-line function and variable definitions should not be pushed into
440  // scope.
441  if ((isa<FunctionTemplateDecl>(D) &&
442       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
443      (isa<FunctionDecl>(D) &&
444       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
445        cast<FunctionDecl>(D)->isOutOfLine())) ||
446      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
447    return;
448
449  // If this replaces anything in the current scope,
450  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
451                               IEnd = IdResolver.end();
452  for (; I != IEnd; ++I) {
453    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
454      S->RemoveDecl(DeclPtrTy::make(*I));
455      IdResolver.RemoveDecl(*I);
456
457      // Should only need to replace one decl.
458      break;
459    }
460  }
461
462  S->AddDecl(DeclPtrTy::make(D));
463  IdResolver.AddDecl(D);
464}
465
466bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
467  return IdResolver.isDeclInScope(D, Ctx, Context, S);
468}
469
470static bool isOutOfScopePreviousDeclaration(NamedDecl *,
471                                            DeclContext*,
472                                            ASTContext&);
473
474/// Filters out lookup results that don't fall within the given scope
475/// as determined by isDeclInScope.
476static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
477                                 DeclContext *Ctx, Scope *S,
478                                 bool ConsiderLinkage) {
479  LookupResult::Filter F = R.makeFilter();
480  while (F.hasNext()) {
481    NamedDecl *D = F.next();
482
483    if (SemaRef.isDeclInScope(D, Ctx, S))
484      continue;
485
486    if (ConsiderLinkage &&
487        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
488      continue;
489
490    F.erase();
491  }
492
493  F.done();
494}
495
496static bool isUsingDecl(NamedDecl *D) {
497  return isa<UsingShadowDecl>(D) ||
498         isa<UnresolvedUsingTypenameDecl>(D) ||
499         isa<UnresolvedUsingValueDecl>(D);
500}
501
502/// Removes using shadow declarations from the lookup results.
503static void RemoveUsingDecls(LookupResult &R) {
504  LookupResult::Filter F = R.makeFilter();
505  while (F.hasNext())
506    if (isUsingDecl(F.next()))
507      F.erase();
508
509  F.done();
510}
511
512static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
513  if (D->isUsed() || D->hasAttr<UnusedAttr>())
514    return false;
515
516  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
517    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
518      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
519        if (!RD->hasTrivialConstructor())
520          return false;
521        if (!RD->hasTrivialDestructor())
522          return false;
523      }
524    }
525  }
526
527  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
528          !isa<ImplicitParamDecl>(D) &&
529          D->getDeclContext()->isFunctionOrMethod());
530}
531
532void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
533  if (S->decl_empty()) return;
534  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
535         "Scope shouldn't contain decls!");
536
537  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
538       I != E; ++I) {
539    Decl *TmpD = (*I).getAs<Decl>();
540    assert(TmpD && "This decl didn't get pushed??");
541
542    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
543    NamedDecl *D = cast<NamedDecl>(TmpD);
544
545    if (!D->getDeclName()) continue;
546
547    // Diagnose unused variables in this scope.
548    if (ShouldDiagnoseUnusedDecl(D))
549      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
550
551    // Remove this name from our lexical scope.
552    IdResolver.RemoveDecl(D);
553  }
554}
555
556/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
557/// return 0 if one not found.
558///
559/// \param Id the name of the Objective-C class we're looking for. If
560/// typo-correction fixes this name, the Id will be updated
561/// to the fixed name.
562///
563/// \param RecoverLoc if provided, this routine will attempt to
564/// recover from a typo in the name of an existing Objective-C class
565/// and, if successful, will return the lookup that results from
566/// typo-correction.
567ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
568                                              SourceLocation RecoverLoc) {
569  // The third "scope" argument is 0 since we aren't enabling lazy built-in
570  // creation from this context.
571  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
572
573  if (!IDecl && !RecoverLoc.isInvalid()) {
574    // Perform typo correction at the given location, but only if we
575    // find an Objective-C class name.
576    LookupResult R(*this, Id, RecoverLoc, LookupOrdinaryName);
577    if (CorrectTypo(R, TUScope, 0) &&
578        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
579      Diag(RecoverLoc, diag::err_undef_interface_suggest)
580        << Id << IDecl->getDeclName()
581        << CodeModificationHint::CreateReplacement(RecoverLoc,
582                                                   IDecl->getNameAsString());
583      Id = IDecl->getIdentifier();
584    }
585  }
586
587  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
588}
589
590/// getNonFieldDeclScope - Retrieves the innermost scope, starting
591/// from S, where a non-field would be declared. This routine copes
592/// with the difference between C and C++ scoping rules in structs and
593/// unions. For example, the following code is well-formed in C but
594/// ill-formed in C++:
595/// @code
596/// struct S6 {
597///   enum { BAR } e;
598/// };
599///
600/// void test_S6() {
601///   struct S6 a;
602///   a.e = BAR;
603/// }
604/// @endcode
605/// For the declaration of BAR, this routine will return a different
606/// scope. The scope S will be the scope of the unnamed enumeration
607/// within S6. In C++, this routine will return the scope associated
608/// with S6, because the enumeration's scope is a transparent
609/// context but structures can contain non-field names. In C, this
610/// routine will return the translation unit scope, since the
611/// enumeration's scope is a transparent context and structures cannot
612/// contain non-field names.
613Scope *Sema::getNonFieldDeclScope(Scope *S) {
614  while (((S->getFlags() & Scope::DeclScope) == 0) ||
615         (S->getEntity() &&
616          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
617         (S->isClassScope() && !getLangOptions().CPlusPlus))
618    S = S->getParent();
619  return S;
620}
621
622void Sema::InitBuiltinVaListType() {
623  if (!Context.getBuiltinVaListType().isNull())
624    return;
625
626  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
627  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
628  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
629  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
630}
631
632/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
633/// file scope.  lazily create a decl for it. ForRedeclaration is true
634/// if we're creating this built-in in anticipation of redeclaring the
635/// built-in.
636NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
637                                     Scope *S, bool ForRedeclaration,
638                                     SourceLocation Loc) {
639  Builtin::ID BID = (Builtin::ID)bid;
640
641  if (Context.BuiltinInfo.hasVAListUse(BID))
642    InitBuiltinVaListType();
643
644  ASTContext::GetBuiltinTypeError Error;
645  QualType R = Context.GetBuiltinType(BID, Error);
646  switch (Error) {
647  case ASTContext::GE_None:
648    // Okay
649    break;
650
651  case ASTContext::GE_Missing_stdio:
652    if (ForRedeclaration)
653      Diag(Loc, diag::err_implicit_decl_requires_stdio)
654        << Context.BuiltinInfo.GetName(BID);
655    return 0;
656
657  case ASTContext::GE_Missing_setjmp:
658    if (ForRedeclaration)
659      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
660        << Context.BuiltinInfo.GetName(BID);
661    return 0;
662  }
663
664  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
665    Diag(Loc, diag::ext_implicit_lib_function_decl)
666      << Context.BuiltinInfo.GetName(BID)
667      << R;
668    if (Context.BuiltinInfo.getHeaderName(BID) &&
669        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
670          != Diagnostic::Ignored)
671      Diag(Loc, diag::note_please_include_header)
672        << Context.BuiltinInfo.getHeaderName(BID)
673        << Context.BuiltinInfo.GetName(BID);
674  }
675
676  FunctionDecl *New = FunctionDecl::Create(Context,
677                                           Context.getTranslationUnitDecl(),
678                                           Loc, II, R, /*TInfo=*/0,
679                                           FunctionDecl::Extern, false,
680                                           /*hasPrototype=*/true);
681  New->setImplicit();
682
683  // Create Decl objects for each parameter, adding them to the
684  // FunctionDecl.
685  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
686    llvm::SmallVector<ParmVarDecl*, 16> Params;
687    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
688      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
689                                           FT->getArgType(i), /*TInfo=*/0,
690                                           VarDecl::None, 0));
691    New->setParams(Context, Params.data(), Params.size());
692  }
693
694  AddKnownFunctionAttributes(New);
695
696  // TUScope is the translation-unit scope to insert this function into.
697  // FIXME: This is hideous. We need to teach PushOnScopeChains to
698  // relate Scopes to DeclContexts, and probably eliminate CurContext
699  // entirely, but we're not there yet.
700  DeclContext *SavedContext = CurContext;
701  CurContext = Context.getTranslationUnitDecl();
702  PushOnScopeChains(New, TUScope);
703  CurContext = SavedContext;
704  return New;
705}
706
707/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
708/// same name and scope as a previous declaration 'Old'.  Figure out
709/// how to resolve this situation, merging decls or emitting
710/// diagnostics as appropriate. If there was an error, set New to be invalid.
711///
712void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
713  // If the new decl is known invalid already, don't bother doing any
714  // merging checks.
715  if (New->isInvalidDecl()) return;
716
717  // Allow multiple definitions for ObjC built-in typedefs.
718  // FIXME: Verify the underlying types are equivalent!
719  if (getLangOptions().ObjC1) {
720    const IdentifierInfo *TypeID = New->getIdentifier();
721    switch (TypeID->getLength()) {
722    default: break;
723    case 2:
724      if (!TypeID->isStr("id"))
725        break;
726      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
727      // Install the built-in type for 'id', ignoring the current definition.
728      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
729      return;
730    case 5:
731      if (!TypeID->isStr("Class"))
732        break;
733      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
734      // Install the built-in type for 'Class', ignoring the current definition.
735      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
736      return;
737    case 3:
738      if (!TypeID->isStr("SEL"))
739        break;
740      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
741      // Install the built-in type for 'SEL', ignoring the current definition.
742      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
743      return;
744    case 8:
745      if (!TypeID->isStr("Protocol"))
746        break;
747      Context.setObjCProtoType(New->getUnderlyingType());
748      return;
749    }
750    // Fall through - the typedef name was not a builtin type.
751  }
752
753  // Verify the old decl was also a type.
754  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
755  if (!Old) {
756    Diag(New->getLocation(), diag::err_redefinition_different_kind)
757      << New->getDeclName();
758
759    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
760    if (OldD->getLocation().isValid())
761      Diag(OldD->getLocation(), diag::note_previous_definition);
762
763    return New->setInvalidDecl();
764  }
765
766  // If the old declaration is invalid, just give up here.
767  if (Old->isInvalidDecl())
768    return New->setInvalidDecl();
769
770  // Determine the "old" type we'll use for checking and diagnostics.
771  QualType OldType;
772  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
773    OldType = OldTypedef->getUnderlyingType();
774  else
775    OldType = Context.getTypeDeclType(Old);
776
777  // If the typedef types are not identical, reject them in all languages and
778  // with any extensions enabled.
779
780  if (OldType != New->getUnderlyingType() &&
781      Context.getCanonicalType(OldType) !=
782      Context.getCanonicalType(New->getUnderlyingType())) {
783    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
784      << New->getUnderlyingType() << OldType;
785    if (Old->getLocation().isValid())
786      Diag(Old->getLocation(), diag::note_previous_definition);
787    return New->setInvalidDecl();
788  }
789
790  // The types match.  Link up the redeclaration chain if the old
791  // declaration was a typedef.
792  // FIXME: this is a potential source of wierdness if the type
793  // spellings don't match exactly.
794  if (isa<TypedefDecl>(Old))
795    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
796
797  if (getLangOptions().Microsoft)
798    return;
799
800  // C++ [dcl.typedef]p2:
801  //   In a given non-class scope, a typedef specifier can be used to
802  //   redefine the name of any type declared in that scope to refer
803  //   to the type to which it already refers.
804  if (getLangOptions().CPlusPlus) {
805    if (!isa<CXXRecordDecl>(CurContext))
806      return;
807    Diag(New->getLocation(), diag::err_redefinition)
808      << New->getDeclName();
809    Diag(Old->getLocation(), diag::note_previous_definition);
810    return New->setInvalidDecl();
811  }
812
813  // If we have a redefinition of a typedef in C, emit a warning.  This warning
814  // is normally mapped to an error, but can be controlled with
815  // -Wtypedef-redefinition.  If either the original or the redefinition is
816  // in a system header, don't emit this for compatibility with GCC.
817  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
818      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
819       Context.getSourceManager().isInSystemHeader(New->getLocation())))
820    return;
821
822  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
823    << New->getDeclName();
824  Diag(Old->getLocation(), diag::note_previous_definition);
825  return;
826}
827
828/// DeclhasAttr - returns true if decl Declaration already has the target
829/// attribute.
830static bool
831DeclHasAttr(const Decl *decl, const Attr *target) {
832  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
833    if (attr->getKind() == target->getKind())
834      return true;
835
836  return false;
837}
838
839/// MergeAttributes - append attributes from the Old decl to the New one.
840static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
841  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
842    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
843      Attr *NewAttr = attr->clone(C);
844      NewAttr->setInherited(true);
845      New->addAttr(NewAttr);
846    }
847  }
848}
849
850/// Used in MergeFunctionDecl to keep track of function parameters in
851/// C.
852struct GNUCompatibleParamWarning {
853  ParmVarDecl *OldParm;
854  ParmVarDecl *NewParm;
855  QualType PromotedType;
856};
857
858
859/// getSpecialMember - get the special member enum for a method.
860static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
861                                               const CXXMethodDecl *MD) {
862  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
863    if (Ctor->isDefaultConstructor())
864      return Sema::CXXDefaultConstructor;
865    if (Ctor->isCopyConstructor())
866      return Sema::CXXCopyConstructor;
867  }
868
869  if (isa<CXXDestructorDecl>(MD))
870    return Sema::CXXDestructor;
871
872  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
873  return Sema::CXXCopyAssignment;
874}
875
876/// MergeFunctionDecl - We just parsed a function 'New' from
877/// declarator D which has the same name and scope as a previous
878/// declaration 'Old'.  Figure out how to resolve this situation,
879/// merging decls or emitting diagnostics as appropriate.
880///
881/// In C++, New and Old must be declarations that are not
882/// overloaded. Use IsOverload to determine whether New and Old are
883/// overloaded, and to select the Old declaration that New should be
884/// merged with.
885///
886/// Returns true if there was an error, false otherwise.
887bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
888  // Verify the old decl was also a function.
889  FunctionDecl *Old = 0;
890  if (FunctionTemplateDecl *OldFunctionTemplate
891        = dyn_cast<FunctionTemplateDecl>(OldD))
892    Old = OldFunctionTemplate->getTemplatedDecl();
893  else
894    Old = dyn_cast<FunctionDecl>(OldD);
895  if (!Old) {
896    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
897      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
898      Diag(Shadow->getTargetDecl()->getLocation(),
899           diag::note_using_decl_target);
900      Diag(Shadow->getUsingDecl()->getLocation(),
901           diag::note_using_decl) << 0;
902      return true;
903    }
904
905    Diag(New->getLocation(), diag::err_redefinition_different_kind)
906      << New->getDeclName();
907    Diag(OldD->getLocation(), diag::note_previous_definition);
908    return true;
909  }
910
911  // Determine whether the previous declaration was a definition,
912  // implicit declaration, or a declaration.
913  diag::kind PrevDiag;
914  if (Old->isThisDeclarationADefinition())
915    PrevDiag = diag::note_previous_definition;
916  else if (Old->isImplicit())
917    PrevDiag = diag::note_previous_implicit_declaration;
918  else
919    PrevDiag = diag::note_previous_declaration;
920
921  QualType OldQType = Context.getCanonicalType(Old->getType());
922  QualType NewQType = Context.getCanonicalType(New->getType());
923
924  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
925      New->getStorageClass() == FunctionDecl::Static &&
926      Old->getStorageClass() != FunctionDecl::Static) {
927    Diag(New->getLocation(), diag::err_static_non_static)
928      << New;
929    Diag(Old->getLocation(), PrevDiag);
930    return true;
931  }
932
933  if (getLangOptions().CPlusPlus) {
934    // (C++98 13.1p2):
935    //   Certain function declarations cannot be overloaded:
936    //     -- Function declarations that differ only in the return type
937    //        cannot be overloaded.
938    QualType OldReturnType
939      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
940    QualType NewReturnType
941      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
942    if (OldReturnType != NewReturnType) {
943      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
944      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
945      return true;
946    }
947
948    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
949    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
950    if (OldMethod && NewMethod) {
951      if (!NewMethod->getFriendObjectKind() &&
952          NewMethod->getLexicalDeclContext()->isRecord()) {
953        //    -- Member function declarations with the same name and the
954        //       same parameter types cannot be overloaded if any of them
955        //       is a static member function declaration.
956        if (OldMethod->isStatic() || NewMethod->isStatic()) {
957          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
958          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
959          return true;
960        }
961
962        // C++ [class.mem]p1:
963        //   [...] A member shall not be declared twice in the
964        //   member-specification, except that a nested class or member
965        //   class template can be declared and then later defined.
966        unsigned NewDiag;
967        if (isa<CXXConstructorDecl>(OldMethod))
968          NewDiag = diag::err_constructor_redeclared;
969        else if (isa<CXXDestructorDecl>(NewMethod))
970          NewDiag = diag::err_destructor_redeclared;
971        else if (isa<CXXConversionDecl>(NewMethod))
972          NewDiag = diag::err_conv_function_redeclared;
973        else
974          NewDiag = diag::err_member_redeclared;
975
976        Diag(New->getLocation(), NewDiag);
977        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
978      } else {
979        if (OldMethod->isImplicit()) {
980          Diag(NewMethod->getLocation(),
981               diag::err_definition_of_implicitly_declared_member)
982          << New << getSpecialMember(Context, OldMethod);
983
984          Diag(OldMethod->getLocation(),
985               diag::note_previous_implicit_declaration);
986          return true;
987        }
988      }
989    }
990
991    // (C++98 8.3.5p3):
992    //   All declarations for a function shall agree exactly in both the
993    //   return type and the parameter-type-list.
994    // attributes should be ignored when comparing.
995    if (Context.getNoReturnType(OldQType, false) ==
996        Context.getNoReturnType(NewQType, false))
997      return MergeCompatibleFunctionDecls(New, Old);
998
999    // Fall through for conflicting redeclarations and redefinitions.
1000  }
1001
1002  // C: Function types need to be compatible, not identical. This handles
1003  // duplicate function decls like "void f(int); void f(enum X);" properly.
1004  if (!getLangOptions().CPlusPlus &&
1005      Context.typesAreCompatible(OldQType, NewQType)) {
1006    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1007    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1008    const FunctionProtoType *OldProto = 0;
1009    if (isa<FunctionNoProtoType>(NewFuncType) &&
1010        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1011      // The old declaration provided a function prototype, but the
1012      // new declaration does not. Merge in the prototype.
1013      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1014      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1015                                                 OldProto->arg_type_end());
1016      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1017                                         ParamTypes.data(), ParamTypes.size(),
1018                                         OldProto->isVariadic(),
1019                                         OldProto->getTypeQuals());
1020      New->setType(NewQType);
1021      New->setHasInheritedPrototype();
1022
1023      // Synthesize a parameter for each argument type.
1024      llvm::SmallVector<ParmVarDecl*, 16> Params;
1025      for (FunctionProtoType::arg_type_iterator
1026             ParamType = OldProto->arg_type_begin(),
1027             ParamEnd = OldProto->arg_type_end();
1028           ParamType != ParamEnd; ++ParamType) {
1029        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1030                                                 SourceLocation(), 0,
1031                                                 *ParamType, /*TInfo=*/0,
1032                                                 VarDecl::None, 0);
1033        Param->setImplicit();
1034        Params.push_back(Param);
1035      }
1036
1037      New->setParams(Context, Params.data(), Params.size());
1038    }
1039
1040    return MergeCompatibleFunctionDecls(New, Old);
1041  }
1042
1043  // GNU C permits a K&R definition to follow a prototype declaration
1044  // if the declared types of the parameters in the K&R definition
1045  // match the types in the prototype declaration, even when the
1046  // promoted types of the parameters from the K&R definition differ
1047  // from the types in the prototype. GCC then keeps the types from
1048  // the prototype.
1049  //
1050  // If a variadic prototype is followed by a non-variadic K&R definition,
1051  // the K&R definition becomes variadic.  This is sort of an edge case, but
1052  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1053  // C99 6.9.1p8.
1054  if (!getLangOptions().CPlusPlus &&
1055      Old->hasPrototype() && !New->hasPrototype() &&
1056      New->getType()->getAs<FunctionProtoType>() &&
1057      Old->getNumParams() == New->getNumParams()) {
1058    llvm::SmallVector<QualType, 16> ArgTypes;
1059    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1060    const FunctionProtoType *OldProto
1061      = Old->getType()->getAs<FunctionProtoType>();
1062    const FunctionProtoType *NewProto
1063      = New->getType()->getAs<FunctionProtoType>();
1064
1065    // Determine whether this is the GNU C extension.
1066    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1067                                               NewProto->getResultType());
1068    bool LooseCompatible = !MergedReturn.isNull();
1069    for (unsigned Idx = 0, End = Old->getNumParams();
1070         LooseCompatible && Idx != End; ++Idx) {
1071      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1072      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1073      if (Context.typesAreCompatible(OldParm->getType(),
1074                                     NewProto->getArgType(Idx))) {
1075        ArgTypes.push_back(NewParm->getType());
1076      } else if (Context.typesAreCompatible(OldParm->getType(),
1077                                            NewParm->getType())) {
1078        GNUCompatibleParamWarning Warn
1079          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1080        Warnings.push_back(Warn);
1081        ArgTypes.push_back(NewParm->getType());
1082      } else
1083        LooseCompatible = false;
1084    }
1085
1086    if (LooseCompatible) {
1087      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1088        Diag(Warnings[Warn].NewParm->getLocation(),
1089             diag::ext_param_promoted_not_compatible_with_prototype)
1090          << Warnings[Warn].PromotedType
1091          << Warnings[Warn].OldParm->getType();
1092        Diag(Warnings[Warn].OldParm->getLocation(),
1093             diag::note_previous_declaration);
1094      }
1095
1096      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1097                                           ArgTypes.size(),
1098                                           OldProto->isVariadic(), 0));
1099      return MergeCompatibleFunctionDecls(New, Old);
1100    }
1101
1102    // Fall through to diagnose conflicting types.
1103  }
1104
1105  // A function that has already been declared has been redeclared or defined
1106  // with a different type- show appropriate diagnostic
1107  if (unsigned BuiltinID = Old->getBuiltinID()) {
1108    // The user has declared a builtin function with an incompatible
1109    // signature.
1110    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1111      // The function the user is redeclaring is a library-defined
1112      // function like 'malloc' or 'printf'. Warn about the
1113      // redeclaration, then pretend that we don't know about this
1114      // library built-in.
1115      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1116      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1117        << Old << Old->getType();
1118      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1119      Old->setInvalidDecl();
1120      return false;
1121    }
1122
1123    PrevDiag = diag::note_previous_builtin_declaration;
1124  }
1125
1126  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1127  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1128  return true;
1129}
1130
1131/// \brief Completes the merge of two function declarations that are
1132/// known to be compatible.
1133///
1134/// This routine handles the merging of attributes and other
1135/// properties of function declarations form the old declaration to
1136/// the new declaration, once we know that New is in fact a
1137/// redeclaration of Old.
1138///
1139/// \returns false
1140bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1141  // Merge the attributes
1142  MergeAttributes(New, Old, Context);
1143
1144  // Merge the storage class.
1145  if (Old->getStorageClass() != FunctionDecl::Extern &&
1146      Old->getStorageClass() != FunctionDecl::None)
1147    New->setStorageClass(Old->getStorageClass());
1148
1149  // Merge "pure" flag.
1150  if (Old->isPure())
1151    New->setPure();
1152
1153  // Merge the "deleted" flag.
1154  if (Old->isDeleted())
1155    New->setDeleted();
1156
1157  if (getLangOptions().CPlusPlus)
1158    return MergeCXXFunctionDecl(New, Old);
1159
1160  return false;
1161}
1162
1163/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1164/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1165/// situation, merging decls or emitting diagnostics as appropriate.
1166///
1167/// Tentative definition rules (C99 6.9.2p2) are checked by
1168/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1169/// definitions here, since the initializer hasn't been attached.
1170///
1171void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1172  // If the new decl is already invalid, don't do any other checking.
1173  if (New->isInvalidDecl())
1174    return;
1175
1176  // Verify the old decl was also a variable.
1177  VarDecl *Old = 0;
1178  if (!Previous.isSingleResult() ||
1179      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1180    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1181      << New->getDeclName();
1182    Diag(Previous.getRepresentativeDecl()->getLocation(),
1183         diag::note_previous_definition);
1184    return New->setInvalidDecl();
1185  }
1186
1187  MergeAttributes(New, Old, Context);
1188
1189  // Merge the types
1190  QualType MergedT;
1191  if (getLangOptions().CPlusPlus) {
1192    if (Context.hasSameType(New->getType(), Old->getType()))
1193      MergedT = New->getType();
1194    // C++ [basic.link]p10:
1195    //   [...] the types specified by all declarations referring to a given
1196    //   object or function shall be identical, except that declarations for an
1197    //   array object can specify array types that differ by the presence or
1198    //   absence of a major array bound (8.3.4).
1199    else if (Old->getType()->isIncompleteArrayType() &&
1200             New->getType()->isArrayType()) {
1201      CanQual<ArrayType> OldArray
1202        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1203      CanQual<ArrayType> NewArray
1204        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1205      if (OldArray->getElementType() == NewArray->getElementType())
1206        MergedT = New->getType();
1207    } else if (Old->getType()->isArrayType() &&
1208             New->getType()->isIncompleteArrayType()) {
1209      CanQual<ArrayType> OldArray
1210        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1211      CanQual<ArrayType> NewArray
1212        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1213      if (OldArray->getElementType() == NewArray->getElementType())
1214        MergedT = Old->getType();
1215    }
1216  } else {
1217    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1218  }
1219  if (MergedT.isNull()) {
1220    Diag(New->getLocation(), diag::err_redefinition_different_type)
1221      << New->getDeclName();
1222    Diag(Old->getLocation(), diag::note_previous_definition);
1223    return New->setInvalidDecl();
1224  }
1225  New->setType(MergedT);
1226
1227  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1228  if (New->getStorageClass() == VarDecl::Static &&
1229      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1230    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1231    Diag(Old->getLocation(), diag::note_previous_definition);
1232    return New->setInvalidDecl();
1233  }
1234  // C99 6.2.2p4:
1235  //   For an identifier declared with the storage-class specifier
1236  //   extern in a scope in which a prior declaration of that
1237  //   identifier is visible,23) if the prior declaration specifies
1238  //   internal or external linkage, the linkage of the identifier at
1239  //   the later declaration is the same as the linkage specified at
1240  //   the prior declaration. If no prior declaration is visible, or
1241  //   if the prior declaration specifies no linkage, then the
1242  //   identifier has external linkage.
1243  if (New->hasExternalStorage() && Old->hasLinkage())
1244    /* Okay */;
1245  else if (New->getStorageClass() != VarDecl::Static &&
1246           Old->getStorageClass() == VarDecl::Static) {
1247    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1248    Diag(Old->getLocation(), diag::note_previous_definition);
1249    return New->setInvalidDecl();
1250  }
1251
1252  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1253
1254  // FIXME: The test for external storage here seems wrong? We still
1255  // need to check for mismatches.
1256  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1257      // Don't complain about out-of-line definitions of static members.
1258      !(Old->getLexicalDeclContext()->isRecord() &&
1259        !New->getLexicalDeclContext()->isRecord())) {
1260    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1261    Diag(Old->getLocation(), diag::note_previous_definition);
1262    return New->setInvalidDecl();
1263  }
1264
1265  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1266    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1267    Diag(Old->getLocation(), diag::note_previous_definition);
1268  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1269    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1270    Diag(Old->getLocation(), diag::note_previous_definition);
1271  }
1272
1273  // Keep a chain of previous declarations.
1274  New->setPreviousDeclaration(Old);
1275}
1276
1277/// CheckFallThrough - Check that we don't fall off the end of a
1278/// Statement that should return a value.
1279///
1280/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1281/// MaybeFallThrough iff we might or might not fall off the end,
1282/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1283/// return.  We assume NeverFallThrough iff we never fall off the end of the
1284/// statement but we may return.  We assume that functions not marked noreturn
1285/// will return.
1286Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1287  // FIXME: Eventually share this CFG object when we have other warnings based
1288  // of the CFG.  This can be done using AnalysisContext.
1289  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1290
1291  // FIXME: They should never return 0, fix that, delete this code.
1292  if (cfg == 0)
1293    // FIXME: This should be NeverFallThrough
1294    return NeverFallThroughOrReturn;
1295  // The CFG leaves in dead things, and we don't want to dead code paths to
1296  // confuse us, so we mark all live things first.
1297  std::queue<CFGBlock*> workq;
1298  llvm::BitVector live(cfg->getNumBlockIDs());
1299  // Prep work queue
1300  workq.push(&cfg->getEntry());
1301  // Solve
1302  while (!workq.empty()) {
1303    CFGBlock *item = workq.front();
1304    workq.pop();
1305    live.set(item->getBlockID());
1306    for (CFGBlock::succ_iterator I=item->succ_begin(),
1307           E=item->succ_end();
1308         I != E;
1309         ++I) {
1310      if ((*I) && !live[(*I)->getBlockID()]) {
1311        live.set((*I)->getBlockID());
1312        workq.push(*I);
1313      }
1314    }
1315  }
1316
1317  // Now we know what is live, we check the live precessors of the exit block
1318  // and look for fall through paths, being careful to ignore normal returns,
1319  // and exceptional paths.
1320  bool HasLiveReturn = false;
1321  bool HasFakeEdge = false;
1322  bool HasPlainEdge = false;
1323  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1324         E = cfg->getExit().pred_end();
1325       I != E;
1326       ++I) {
1327    CFGBlock& B = **I;
1328    if (!live[B.getBlockID()])
1329      continue;
1330    if (B.size() == 0) {
1331      // A labeled empty statement, or the entry block...
1332      HasPlainEdge = true;
1333      continue;
1334    }
1335    Stmt *S = B[B.size()-1];
1336    if (isa<ReturnStmt>(S)) {
1337      HasLiveReturn = true;
1338      continue;
1339    }
1340    if (isa<ObjCAtThrowStmt>(S)) {
1341      HasFakeEdge = true;
1342      continue;
1343    }
1344    if (isa<CXXThrowExpr>(S)) {
1345      HasFakeEdge = true;
1346      continue;
1347    }
1348    if (const AsmStmt *AS = dyn_cast<AsmStmt>(S)) {
1349      if (AS->isMSAsm()) {
1350        HasFakeEdge = true;
1351        HasLiveReturn = true;
1352        continue;
1353      }
1354    }
1355
1356    bool NoReturnEdge = false;
1357    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1358      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1359      if (CEE->getType().getNoReturnAttr()) {
1360        NoReturnEdge = true;
1361        HasFakeEdge = true;
1362      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1363        ValueDecl *VD = DRE->getDecl();
1364        if (VD->hasAttr<NoReturnAttr>()) {
1365          NoReturnEdge = true;
1366          HasFakeEdge = true;
1367        }
1368      }
1369    }
1370    // FIXME: Add noreturn message sends.
1371    if (NoReturnEdge == false)
1372      HasPlainEdge = true;
1373  }
1374  if (!HasPlainEdge) {
1375    if (HasLiveReturn)
1376      return NeverFallThrough;
1377    return NeverFallThroughOrReturn;
1378  }
1379  if (HasFakeEdge || HasLiveReturn)
1380    return MaybeFallThrough;
1381  // This says AlwaysFallThrough for calls to functions that are not marked
1382  // noreturn, that don't return.  If people would like this warning to be more
1383  // accurate, such functions should be marked as noreturn.
1384  return AlwaysFallThrough;
1385}
1386
1387/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1388/// function that should return a value.  Check that we don't fall off the end
1389/// of a noreturn function.  We assume that functions and blocks not marked
1390/// noreturn will return.
1391void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1392  // FIXME: Would be nice if we had a better way to control cascading errors,
1393  // but for now, avoid them.  The problem is that when Parse sees:
1394  //   int foo() { return a; }
1395  // The return is eaten and the Sema code sees just:
1396  //   int foo() { }
1397  // which this code would then warn about.
1398  if (getDiagnostics().hasErrorOccurred())
1399    return;
1400
1401  bool ReturnsVoid = false;
1402  bool HasNoReturn = false;
1403  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1404    // If the result type of the function is a dependent type, we don't know
1405    // whether it will be void or not, so don't
1406    if (FD->getResultType()->isDependentType())
1407      return;
1408    if (FD->getResultType()->isVoidType())
1409      ReturnsVoid = true;
1410    if (FD->hasAttr<NoReturnAttr>())
1411      HasNoReturn = true;
1412  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1413    if (MD->getResultType()->isVoidType())
1414      ReturnsVoid = true;
1415    if (MD->hasAttr<NoReturnAttr>())
1416      HasNoReturn = true;
1417  }
1418
1419  // Short circuit for compilation speed.
1420  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1421       == Diagnostic::Ignored || ReturnsVoid)
1422      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1423          == Diagnostic::Ignored || !HasNoReturn)
1424      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1425          == Diagnostic::Ignored || !ReturnsVoid))
1426    return;
1427  // FIXME: Function try block
1428  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1429    switch (CheckFallThrough(Body)) {
1430    case MaybeFallThrough:
1431      if (HasNoReturn)
1432        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1433      else if (!ReturnsVoid)
1434        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1435      break;
1436    case AlwaysFallThrough:
1437      if (HasNoReturn)
1438        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1439      else if (!ReturnsVoid)
1440        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1441      break;
1442    case NeverFallThroughOrReturn:
1443      if (ReturnsVoid && !HasNoReturn)
1444        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1445      break;
1446    case NeverFallThrough:
1447      break;
1448    }
1449  }
1450}
1451
1452/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1453/// that should return a value.  Check that we don't fall off the end of a
1454/// noreturn block.  We assume that functions and blocks not marked noreturn
1455/// will return.
1456void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1457  // FIXME: Would be nice if we had a better way to control cascading errors,
1458  // but for now, avoid them.  The problem is that when Parse sees:
1459  //   int foo() { return a; }
1460  // The return is eaten and the Sema code sees just:
1461  //   int foo() { }
1462  // which this code would then warn about.
1463  if (getDiagnostics().hasErrorOccurred())
1464    return;
1465  bool ReturnsVoid = false;
1466  bool HasNoReturn = false;
1467  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1468    if (FT->getResultType()->isVoidType())
1469      ReturnsVoid = true;
1470    if (FT->getNoReturnAttr())
1471      HasNoReturn = true;
1472  }
1473
1474  // Short circuit for compilation speed.
1475  if (ReturnsVoid
1476      && !HasNoReturn
1477      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1478          == Diagnostic::Ignored || !ReturnsVoid))
1479    return;
1480  // FIXME: Funtion try block
1481  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1482    switch (CheckFallThrough(Body)) {
1483    case MaybeFallThrough:
1484      if (HasNoReturn)
1485        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1486      else if (!ReturnsVoid)
1487        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1488      break;
1489    case AlwaysFallThrough:
1490      if (HasNoReturn)
1491        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1492      else if (!ReturnsVoid)
1493        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1494      break;
1495    case NeverFallThroughOrReturn:
1496      if (ReturnsVoid)
1497        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1498      break;
1499    case NeverFallThrough:
1500      break;
1501    }
1502  }
1503}
1504
1505/// CheckParmsForFunctionDef - Check that the parameters of the given
1506/// function are appropriate for the definition of a function. This
1507/// takes care of any checks that cannot be performed on the
1508/// declaration itself, e.g., that the types of each of the function
1509/// parameters are complete.
1510bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1511  bool HasInvalidParm = false;
1512  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1513    ParmVarDecl *Param = FD->getParamDecl(p);
1514
1515    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1516    // function declarator that is part of a function definition of
1517    // that function shall not have incomplete type.
1518    //
1519    // This is also C++ [dcl.fct]p6.
1520    if (!Param->isInvalidDecl() &&
1521        RequireCompleteType(Param->getLocation(), Param->getType(),
1522                               diag::err_typecheck_decl_incomplete_type)) {
1523      Param->setInvalidDecl();
1524      HasInvalidParm = true;
1525    }
1526
1527    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1528    // declaration of each parameter shall include an identifier.
1529    if (Param->getIdentifier() == 0 &&
1530        !Param->isImplicit() &&
1531        !getLangOptions().CPlusPlus)
1532      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1533  }
1534
1535  return HasInvalidParm;
1536}
1537
1538/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1539/// no declarator (e.g. "struct foo;") is parsed.
1540Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1541  // FIXME: Error on auto/register at file scope
1542  // FIXME: Error on inline/virtual/explicit
1543  // FIXME: Warn on useless __thread
1544  // FIXME: Warn on useless const/volatile
1545  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1546  // FIXME: Warn on useless attributes
1547  Decl *TagD = 0;
1548  TagDecl *Tag = 0;
1549  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1550      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1551      DS.getTypeSpecType() == DeclSpec::TST_union ||
1552      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1553    TagD = static_cast<Decl *>(DS.getTypeRep());
1554
1555    if (!TagD) // We probably had an error
1556      return DeclPtrTy();
1557
1558    // Note that the above type specs guarantee that the
1559    // type rep is a Decl, whereas in many of the others
1560    // it's a Type.
1561    Tag = dyn_cast<TagDecl>(TagD);
1562  }
1563
1564  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1565    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1566    // or incomplete types shall not be restrict-qualified."
1567    if (TypeQuals & DeclSpec::TQ_restrict)
1568      Diag(DS.getRestrictSpecLoc(),
1569           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1570           << DS.getSourceRange();
1571  }
1572
1573  if (DS.isFriendSpecified()) {
1574    // If we're dealing with a class template decl, assume that the
1575    // template routines are handling it.
1576    if (TagD && isa<ClassTemplateDecl>(TagD))
1577      return DeclPtrTy();
1578    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1579  }
1580
1581  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1582    // If there are attributes in the DeclSpec, apply them to the record.
1583    if (const AttributeList *AL = DS.getAttributes())
1584      ProcessDeclAttributeList(S, Record, AL);
1585
1586    if (!Record->getDeclName() && Record->isDefinition() &&
1587        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1588      if (getLangOptions().CPlusPlus ||
1589          Record->getDeclContext()->isRecord())
1590        return BuildAnonymousStructOrUnion(S, DS, Record);
1591
1592      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1593        << DS.getSourceRange();
1594    }
1595
1596    // Microsoft allows unnamed struct/union fields. Don't complain
1597    // about them.
1598    // FIXME: Should we support Microsoft's extensions in this area?
1599    if (Record->getDeclName() && getLangOptions().Microsoft)
1600      return DeclPtrTy::make(Tag);
1601  }
1602
1603  if (!DS.isMissingDeclaratorOk() &&
1604      DS.getTypeSpecType() != DeclSpec::TST_error) {
1605    // Warn about typedefs of enums without names, since this is an
1606    // extension in both Microsoft an GNU.
1607    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1608        Tag && isa<EnumDecl>(Tag)) {
1609      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1610        << DS.getSourceRange();
1611      return DeclPtrTy::make(Tag);
1612    }
1613
1614    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1615      << DS.getSourceRange();
1616    return DeclPtrTy();
1617  }
1618
1619  return DeclPtrTy::make(Tag);
1620}
1621
1622/// We are trying to inject an anonymous member into the given scope;
1623/// check if there's an existing declaration that can't be overloaded.
1624///
1625/// \return true if this is a forbidden redeclaration
1626static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1627                                         Scope *S,
1628                                         DeclarationName Name,
1629                                         SourceLocation NameLoc,
1630                                         unsigned diagnostic) {
1631  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1632                 Sema::ForRedeclaration);
1633  if (!SemaRef.LookupName(R, S)) return false;
1634
1635  if (R.getAsSingle<TagDecl>())
1636    return false;
1637
1638  // Pick a representative declaration.
1639  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1640
1641  SemaRef.Diag(NameLoc, diagnostic) << Name;
1642  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1643
1644  return true;
1645}
1646
1647/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1648/// anonymous struct or union AnonRecord into the owning context Owner
1649/// and scope S. This routine will be invoked just after we realize
1650/// that an unnamed union or struct is actually an anonymous union or
1651/// struct, e.g.,
1652///
1653/// @code
1654/// union {
1655///   int i;
1656///   float f;
1657/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1658///    // f into the surrounding scope.x
1659/// @endcode
1660///
1661/// This routine is recursive, injecting the names of nested anonymous
1662/// structs/unions into the owning context and scope as well.
1663bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1664                                               RecordDecl *AnonRecord) {
1665  unsigned diagKind
1666    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1667                            : diag::err_anonymous_struct_member_redecl;
1668
1669  bool Invalid = false;
1670  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1671                               FEnd = AnonRecord->field_end();
1672       F != FEnd; ++F) {
1673    if ((*F)->getDeclName()) {
1674      if (CheckAnonMemberRedeclaration(*this, S, (*F)->getDeclName(),
1675                                       (*F)->getLocation(), diagKind)) {
1676        // C++ [class.union]p2:
1677        //   The names of the members of an anonymous union shall be
1678        //   distinct from the names of any other entity in the
1679        //   scope in which the anonymous union is declared.
1680        Invalid = true;
1681      } else {
1682        // C++ [class.union]p2:
1683        //   For the purpose of name lookup, after the anonymous union
1684        //   definition, the members of the anonymous union are
1685        //   considered to have been defined in the scope in which the
1686        //   anonymous union is declared.
1687        Owner->makeDeclVisibleInContext(*F);
1688        S->AddDecl(DeclPtrTy::make(*F));
1689        IdResolver.AddDecl(*F);
1690      }
1691    } else if (const RecordType *InnerRecordType
1692                 = (*F)->getType()->getAs<RecordType>()) {
1693      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1694      if (InnerRecord->isAnonymousStructOrUnion())
1695        Invalid = Invalid ||
1696          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1697    }
1698  }
1699
1700  return Invalid;
1701}
1702
1703/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1704/// anonymous structure or union. Anonymous unions are a C++ feature
1705/// (C++ [class.union]) and a GNU C extension; anonymous structures
1706/// are a GNU C and GNU C++ extension.
1707Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1708                                                  RecordDecl *Record) {
1709  DeclContext *Owner = Record->getDeclContext();
1710
1711  // Diagnose whether this anonymous struct/union is an extension.
1712  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1713    Diag(Record->getLocation(), diag::ext_anonymous_union);
1714  else if (!Record->isUnion())
1715    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1716
1717  // C and C++ require different kinds of checks for anonymous
1718  // structs/unions.
1719  bool Invalid = false;
1720  if (getLangOptions().CPlusPlus) {
1721    const char* PrevSpec = 0;
1722    unsigned DiagID;
1723    // C++ [class.union]p3:
1724    //   Anonymous unions declared in a named namespace or in the
1725    //   global namespace shall be declared static.
1726    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1727        (isa<TranslationUnitDecl>(Owner) ||
1728         (isa<NamespaceDecl>(Owner) &&
1729          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1730      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1731      Invalid = true;
1732
1733      // Recover by adding 'static'.
1734      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1735                             PrevSpec, DiagID);
1736    }
1737    // C++ [class.union]p3:
1738    //   A storage class is not allowed in a declaration of an
1739    //   anonymous union in a class scope.
1740    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1741             isa<RecordDecl>(Owner)) {
1742      Diag(DS.getStorageClassSpecLoc(),
1743           diag::err_anonymous_union_with_storage_spec);
1744      Invalid = true;
1745
1746      // Recover by removing the storage specifier.
1747      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1748                             PrevSpec, DiagID);
1749    }
1750
1751    // C++ [class.union]p2:
1752    //   The member-specification of an anonymous union shall only
1753    //   define non-static data members. [Note: nested types and
1754    //   functions cannot be declared within an anonymous union. ]
1755    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1756                                 MemEnd = Record->decls_end();
1757         Mem != MemEnd; ++Mem) {
1758      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1759        // C++ [class.union]p3:
1760        //   An anonymous union shall not have private or protected
1761        //   members (clause 11).
1762        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1763          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1764            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1765          Invalid = true;
1766        }
1767      } else if ((*Mem)->isImplicit()) {
1768        // Any implicit members are fine.
1769      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1770        // This is a type that showed up in an
1771        // elaborated-type-specifier inside the anonymous struct or
1772        // union, but which actually declares a type outside of the
1773        // anonymous struct or union. It's okay.
1774      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1775        if (!MemRecord->isAnonymousStructOrUnion() &&
1776            MemRecord->getDeclName()) {
1777          // This is a nested type declaration.
1778          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1779            << (int)Record->isUnion();
1780          Invalid = true;
1781        }
1782      } else {
1783        // We have something that isn't a non-static data
1784        // member. Complain about it.
1785        unsigned DK = diag::err_anonymous_record_bad_member;
1786        if (isa<TypeDecl>(*Mem))
1787          DK = diag::err_anonymous_record_with_type;
1788        else if (isa<FunctionDecl>(*Mem))
1789          DK = diag::err_anonymous_record_with_function;
1790        else if (isa<VarDecl>(*Mem))
1791          DK = diag::err_anonymous_record_with_static;
1792        Diag((*Mem)->getLocation(), DK)
1793            << (int)Record->isUnion();
1794          Invalid = true;
1795      }
1796    }
1797  }
1798
1799  if (!Record->isUnion() && !Owner->isRecord()) {
1800    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1801      << (int)getLangOptions().CPlusPlus;
1802    Invalid = true;
1803  }
1804
1805  // Mock up a declarator.
1806  Declarator Dc(DS, Declarator::TypeNameContext);
1807  TypeSourceInfo *TInfo = 0;
1808  GetTypeForDeclarator(Dc, S, &TInfo);
1809  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1810
1811  // Create a declaration for this anonymous struct/union.
1812  NamedDecl *Anon = 0;
1813  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1814    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1815                             /*IdentifierInfo=*/0,
1816                             Context.getTypeDeclType(Record),
1817                             TInfo,
1818                             /*BitWidth=*/0, /*Mutable=*/false);
1819    Anon->setAccess(AS_public);
1820    if (getLangOptions().CPlusPlus)
1821      FieldCollector->Add(cast<FieldDecl>(Anon));
1822  } else {
1823    VarDecl::StorageClass SC;
1824    switch (DS.getStorageClassSpec()) {
1825    default: assert(0 && "Unknown storage class!");
1826    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1827    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1828    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1829    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1830    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1831    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1832    case DeclSpec::SCS_mutable:
1833      // mutable can only appear on non-static class members, so it's always
1834      // an error here
1835      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1836      Invalid = true;
1837      SC = VarDecl::None;
1838      break;
1839    }
1840
1841    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1842                           /*IdentifierInfo=*/0,
1843                           Context.getTypeDeclType(Record),
1844                           TInfo,
1845                           SC);
1846  }
1847  Anon->setImplicit();
1848
1849  // Add the anonymous struct/union object to the current
1850  // context. We'll be referencing this object when we refer to one of
1851  // its members.
1852  Owner->addDecl(Anon);
1853
1854  // Inject the members of the anonymous struct/union into the owning
1855  // context and into the identifier resolver chain for name lookup
1856  // purposes.
1857  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1858    Invalid = true;
1859
1860  // Mark this as an anonymous struct/union type. Note that we do not
1861  // do this until after we have already checked and injected the
1862  // members of this anonymous struct/union type, because otherwise
1863  // the members could be injected twice: once by DeclContext when it
1864  // builds its lookup table, and once by
1865  // InjectAnonymousStructOrUnionMembers.
1866  Record->setAnonymousStructOrUnion(true);
1867
1868  if (Invalid)
1869    Anon->setInvalidDecl();
1870
1871  return DeclPtrTy::make(Anon);
1872}
1873
1874
1875/// GetNameForDeclarator - Determine the full declaration name for the
1876/// given Declarator.
1877DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1878  return GetNameFromUnqualifiedId(D.getName());
1879}
1880
1881/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1882DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1883  switch (Name.getKind()) {
1884    case UnqualifiedId::IK_Identifier:
1885      return DeclarationName(Name.Identifier);
1886
1887    case UnqualifiedId::IK_OperatorFunctionId:
1888      return Context.DeclarationNames.getCXXOperatorName(
1889                                              Name.OperatorFunctionId.Operator);
1890
1891    case UnqualifiedId::IK_LiteralOperatorId:
1892      return Context.DeclarationNames.getCXXLiteralOperatorName(
1893                                                               Name.Identifier);
1894
1895    case UnqualifiedId::IK_ConversionFunctionId: {
1896      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1897      if (Ty.isNull())
1898        return DeclarationName();
1899
1900      return Context.DeclarationNames.getCXXConversionFunctionName(
1901                                                  Context.getCanonicalType(Ty));
1902    }
1903
1904    case UnqualifiedId::IK_ConstructorName: {
1905      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1906      if (Ty.isNull())
1907        return DeclarationName();
1908
1909      return Context.DeclarationNames.getCXXConstructorName(
1910                                                  Context.getCanonicalType(Ty));
1911    }
1912
1913    case UnqualifiedId::IK_DestructorName: {
1914      QualType Ty = GetTypeFromParser(Name.DestructorName);
1915      if (Ty.isNull())
1916        return DeclarationName();
1917
1918      return Context.DeclarationNames.getCXXDestructorName(
1919                                                           Context.getCanonicalType(Ty));
1920    }
1921
1922    case UnqualifiedId::IK_TemplateId: {
1923      TemplateName TName
1924        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1925      return Context.getNameForTemplate(TName);
1926    }
1927  }
1928
1929  assert(false && "Unknown name kind");
1930  return DeclarationName();
1931}
1932
1933/// isNearlyMatchingFunction - Determine whether the C++ functions
1934/// Declaration and Definition are "nearly" matching. This heuristic
1935/// is used to improve diagnostics in the case where an out-of-line
1936/// function definition doesn't match any declaration within
1937/// the class or namespace.
1938static bool isNearlyMatchingFunction(ASTContext &Context,
1939                                     FunctionDecl *Declaration,
1940                                     FunctionDecl *Definition) {
1941  if (Declaration->param_size() != Definition->param_size())
1942    return false;
1943  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1944    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1945    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1946
1947    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1948                                        DefParamTy.getNonReferenceType()))
1949      return false;
1950  }
1951
1952  return true;
1953}
1954
1955Sema::DeclPtrTy
1956Sema::HandleDeclarator(Scope *S, Declarator &D,
1957                       MultiTemplateParamsArg TemplateParamLists,
1958                       bool IsFunctionDefinition) {
1959  DeclarationName Name = GetNameForDeclarator(D);
1960
1961  // All of these full declarators require an identifier.  If it doesn't have
1962  // one, the ParsedFreeStandingDeclSpec action should be used.
1963  if (!Name) {
1964    if (!D.isInvalidType())  // Reject this if we think it is valid.
1965      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1966           diag::err_declarator_need_ident)
1967        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1968    return DeclPtrTy();
1969  }
1970
1971  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1972  // we find one that is.
1973  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1974         (S->getFlags() & Scope::TemplateParamScope) != 0)
1975    S = S->getParent();
1976
1977  // If this is an out-of-line definition of a member of a class template
1978  // or class template partial specialization, we may need to rebuild the
1979  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1980  // for more information.
1981  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1982  // handle expressions properly.
1983  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1984  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1985      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1986      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1987       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1988       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1989       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1990    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1991      // FIXME: Preserve type source info.
1992      QualType T = GetTypeFromParser(DS.getTypeRep());
1993
1994      DeclContext *SavedContext = CurContext;
1995      CurContext = DC;
1996      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1997      CurContext = SavedContext;
1998
1999      if (T.isNull())
2000        return DeclPtrTy();
2001      DS.UpdateTypeRep(T.getAsOpaquePtr());
2002    }
2003  }
2004
2005  DeclContext *DC;
2006  NamedDecl *New;
2007
2008  TypeSourceInfo *TInfo = 0;
2009  QualType R = GetTypeForDeclarator(D, S, &TInfo);
2010
2011  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
2012                        ForRedeclaration);
2013
2014  // See if this is a redefinition of a variable in the same scope.
2015  if (D.getCXXScopeSpec().isInvalid()) {
2016    DC = CurContext;
2017    D.setInvalidType();
2018  } else if (!D.getCXXScopeSpec().isSet()) {
2019    bool IsLinkageLookup = false;
2020
2021    // If the declaration we're planning to build will be a function
2022    // or object with linkage, then look for another declaration with
2023    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2024    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2025      /* Do nothing*/;
2026    else if (R->isFunctionType()) {
2027      if (CurContext->isFunctionOrMethod() ||
2028          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2029        IsLinkageLookup = true;
2030    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2031      IsLinkageLookup = true;
2032    else if (CurContext->getLookupContext()->isTranslationUnit() &&
2033             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2034      IsLinkageLookup = true;
2035
2036    if (IsLinkageLookup)
2037      Previous.clear(LookupRedeclarationWithLinkage);
2038
2039    DC = CurContext;
2040    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2041  } else { // Something like "int foo::x;"
2042    DC = computeDeclContext(D.getCXXScopeSpec(), true);
2043
2044    if (!DC) {
2045      // If we could not compute the declaration context, it's because the
2046      // declaration context is dependent but does not refer to a class,
2047      // class template, or class template partial specialization. Complain
2048      // and return early, to avoid the coming semantic disaster.
2049      Diag(D.getIdentifierLoc(),
2050           diag::err_template_qualified_declarator_no_match)
2051        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2052        << D.getCXXScopeSpec().getRange();
2053      return DeclPtrTy();
2054    }
2055
2056    if (!DC->isDependentContext() &&
2057        RequireCompleteDeclContext(D.getCXXScopeSpec()))
2058      return DeclPtrTy();
2059
2060    LookupQualifiedName(Previous, DC);
2061
2062    // Don't consider using declarations as previous declarations for
2063    // out-of-line members.
2064    RemoveUsingDecls(Previous);
2065
2066    // C++ 7.3.1.2p2:
2067    // Members (including explicit specializations of templates) of a named
2068    // namespace can also be defined outside that namespace by explicit
2069    // qualification of the name being defined, provided that the entity being
2070    // defined was already declared in the namespace and the definition appears
2071    // after the point of declaration in a namespace that encloses the
2072    // declarations namespace.
2073    //
2074    // Note that we only check the context at this point. We don't yet
2075    // have enough information to make sure that PrevDecl is actually
2076    // the declaration we want to match. For example, given:
2077    //
2078    //   class X {
2079    //     void f();
2080    //     void f(float);
2081    //   };
2082    //
2083    //   void X::f(int) { } // ill-formed
2084    //
2085    // In this case, PrevDecl will point to the overload set
2086    // containing the two f's declared in X, but neither of them
2087    // matches.
2088
2089    // First check whether we named the global scope.
2090    if (isa<TranslationUnitDecl>(DC)) {
2091      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2092        << Name << D.getCXXScopeSpec().getRange();
2093    } else {
2094      DeclContext *Cur = CurContext;
2095      while (isa<LinkageSpecDecl>(Cur))
2096        Cur = Cur->getParent();
2097      if (!Cur->Encloses(DC)) {
2098        // The qualifying scope doesn't enclose the original declaration.
2099        // Emit diagnostic based on current scope.
2100        SourceLocation L = D.getIdentifierLoc();
2101        SourceRange R = D.getCXXScopeSpec().getRange();
2102        if (isa<FunctionDecl>(Cur))
2103          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2104        else
2105          Diag(L, diag::err_invalid_declarator_scope)
2106            << Name << cast<NamedDecl>(DC) << R;
2107        D.setInvalidType();
2108      }
2109    }
2110  }
2111
2112  if (Previous.isSingleResult() &&
2113      Previous.getFoundDecl()->isTemplateParameter()) {
2114    // Maybe we will complain about the shadowed template parameter.
2115    if (!D.isInvalidType())
2116      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2117                                          Previous.getFoundDecl()))
2118        D.setInvalidType();
2119
2120    // Just pretend that we didn't see the previous declaration.
2121    Previous.clear();
2122  }
2123
2124  // In C++, the previous declaration we find might be a tag type
2125  // (class or enum). In this case, the new declaration will hide the
2126  // tag type. Note that this does does not apply if we're declaring a
2127  // typedef (C++ [dcl.typedef]p4).
2128  if (Previous.isSingleTagDecl() &&
2129      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2130    Previous.clear();
2131
2132  bool Redeclaration = false;
2133  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2134    if (TemplateParamLists.size()) {
2135      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2136      return DeclPtrTy();
2137    }
2138
2139    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2140  } else if (R->isFunctionType()) {
2141    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2142                                  move(TemplateParamLists),
2143                                  IsFunctionDefinition, Redeclaration);
2144  } else {
2145    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2146                                  move(TemplateParamLists),
2147                                  Redeclaration);
2148  }
2149
2150  if (New == 0)
2151    return DeclPtrTy();
2152
2153  // If this has an identifier and is not an invalid redeclaration or
2154  // function template specialization, add it to the scope stack.
2155  if (Name && !(Redeclaration && New->isInvalidDecl()))
2156    PushOnScopeChains(New, S);
2157
2158  return DeclPtrTy::make(New);
2159}
2160
2161/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2162/// types into constant array types in certain situations which would otherwise
2163/// be errors (for GCC compatibility).
2164static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2165                                                    ASTContext &Context,
2166                                                    bool &SizeIsNegative) {
2167  // This method tries to turn a variable array into a constant
2168  // array even when the size isn't an ICE.  This is necessary
2169  // for compatibility with code that depends on gcc's buggy
2170  // constant expression folding, like struct {char x[(int)(char*)2];}
2171  SizeIsNegative = false;
2172
2173  QualifierCollector Qs;
2174  const Type *Ty = Qs.strip(T);
2175
2176  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2177    QualType Pointee = PTy->getPointeeType();
2178    QualType FixedType =
2179        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2180    if (FixedType.isNull()) return FixedType;
2181    FixedType = Context.getPointerType(FixedType);
2182    return Qs.apply(FixedType);
2183  }
2184
2185  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2186  if (!VLATy)
2187    return QualType();
2188  // FIXME: We should probably handle this case
2189  if (VLATy->getElementType()->isVariablyModifiedType())
2190    return QualType();
2191
2192  Expr::EvalResult EvalResult;
2193  if (!VLATy->getSizeExpr() ||
2194      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2195      !EvalResult.Val.isInt())
2196    return QualType();
2197
2198  llvm::APSInt &Res = EvalResult.Val.getInt();
2199  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2200    // TODO: preserve the size expression in declarator info
2201    return Context.getConstantArrayType(VLATy->getElementType(),
2202                                        Res, ArrayType::Normal, 0);
2203  }
2204
2205  SizeIsNegative = true;
2206  return QualType();
2207}
2208
2209/// \brief Register the given locally-scoped external C declaration so
2210/// that it can be found later for redeclarations
2211void
2212Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2213                                       const LookupResult &Previous,
2214                                       Scope *S) {
2215  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2216         "Decl is not a locally-scoped decl!");
2217  // Note that we have a locally-scoped external with this name.
2218  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2219
2220  if (!Previous.isSingleResult())
2221    return;
2222
2223  NamedDecl *PrevDecl = Previous.getFoundDecl();
2224
2225  // If there was a previous declaration of this variable, it may be
2226  // in our identifier chain. Update the identifier chain with the new
2227  // declaration.
2228  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2229    // The previous declaration was found on the identifer resolver
2230    // chain, so remove it from its scope.
2231    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2232      S = S->getParent();
2233
2234    if (S)
2235      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2236  }
2237}
2238
2239/// \brief Diagnose function specifiers on a declaration of an identifier that
2240/// does not identify a function.
2241void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2242  // FIXME: We should probably indicate the identifier in question to avoid
2243  // confusion for constructs like "inline int a(), b;"
2244  if (D.getDeclSpec().isInlineSpecified())
2245    Diag(D.getDeclSpec().getInlineSpecLoc(),
2246         diag::err_inline_non_function);
2247
2248  if (D.getDeclSpec().isVirtualSpecified())
2249    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2250         diag::err_virtual_non_function);
2251
2252  if (D.getDeclSpec().isExplicitSpecified())
2253    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2254         diag::err_explicit_non_function);
2255}
2256
2257NamedDecl*
2258Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2259                             QualType R,  TypeSourceInfo *TInfo,
2260                             LookupResult &Previous, bool &Redeclaration) {
2261  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2262  if (D.getCXXScopeSpec().isSet()) {
2263    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2264      << D.getCXXScopeSpec().getRange();
2265    D.setInvalidType();
2266    // Pretend we didn't see the scope specifier.
2267    DC = 0;
2268  }
2269
2270  if (getLangOptions().CPlusPlus) {
2271    // Check that there are no default arguments (C++ only).
2272    CheckExtraCXXDefaultArguments(D);
2273  }
2274
2275  DiagnoseFunctionSpecifiers(D);
2276
2277  if (D.getDeclSpec().isThreadSpecified())
2278    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2279
2280  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2281  if (!NewTD) return 0;
2282
2283  // Handle attributes prior to checking for duplicates in MergeVarDecl
2284  ProcessDeclAttributes(S, NewTD, D);
2285
2286  // Merge the decl with the existing one if appropriate. If the decl is
2287  // in an outer scope, it isn't the same thing.
2288  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2289  if (!Previous.empty()) {
2290    Redeclaration = true;
2291    MergeTypeDefDecl(NewTD, Previous);
2292  }
2293
2294  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2295  // then it shall have block scope.
2296  QualType T = NewTD->getUnderlyingType();
2297  if (T->isVariablyModifiedType()) {
2298    CurFunctionNeedsScopeChecking = true;
2299
2300    if (S->getFnParent() == 0) {
2301      bool SizeIsNegative;
2302      QualType FixedTy =
2303          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2304      if (!FixedTy.isNull()) {
2305        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2306        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2307      } else {
2308        if (SizeIsNegative)
2309          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2310        else if (T->isVariableArrayType())
2311          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2312        else
2313          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2314        NewTD->setInvalidDecl();
2315      }
2316    }
2317  }
2318
2319  // If this is the C FILE type, notify the AST context.
2320  if (IdentifierInfo *II = NewTD->getIdentifier())
2321    if (!NewTD->isInvalidDecl() &&
2322        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2323      if (II->isStr("FILE"))
2324        Context.setFILEDecl(NewTD);
2325      else if (II->isStr("jmp_buf"))
2326        Context.setjmp_bufDecl(NewTD);
2327      else if (II->isStr("sigjmp_buf"))
2328        Context.setsigjmp_bufDecl(NewTD);
2329    }
2330
2331  return NewTD;
2332}
2333
2334/// \brief Determines whether the given declaration is an out-of-scope
2335/// previous declaration.
2336///
2337/// This routine should be invoked when name lookup has found a
2338/// previous declaration (PrevDecl) that is not in the scope where a
2339/// new declaration by the same name is being introduced. If the new
2340/// declaration occurs in a local scope, previous declarations with
2341/// linkage may still be considered previous declarations (C99
2342/// 6.2.2p4-5, C++ [basic.link]p6).
2343///
2344/// \param PrevDecl the previous declaration found by name
2345/// lookup
2346///
2347/// \param DC the context in which the new declaration is being
2348/// declared.
2349///
2350/// \returns true if PrevDecl is an out-of-scope previous declaration
2351/// for a new delcaration with the same name.
2352static bool
2353isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2354                                ASTContext &Context) {
2355  if (!PrevDecl)
2356    return 0;
2357
2358  if (!PrevDecl->hasLinkage())
2359    return false;
2360
2361  if (Context.getLangOptions().CPlusPlus) {
2362    // C++ [basic.link]p6:
2363    //   If there is a visible declaration of an entity with linkage
2364    //   having the same name and type, ignoring entities declared
2365    //   outside the innermost enclosing namespace scope, the block
2366    //   scope declaration declares that same entity and receives the
2367    //   linkage of the previous declaration.
2368    DeclContext *OuterContext = DC->getLookupContext();
2369    if (!OuterContext->isFunctionOrMethod())
2370      // This rule only applies to block-scope declarations.
2371      return false;
2372    else {
2373      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2374      if (PrevOuterContext->isRecord())
2375        // We found a member function: ignore it.
2376        return false;
2377      else {
2378        // Find the innermost enclosing namespace for the new and
2379        // previous declarations.
2380        while (!OuterContext->isFileContext())
2381          OuterContext = OuterContext->getParent();
2382        while (!PrevOuterContext->isFileContext())
2383          PrevOuterContext = PrevOuterContext->getParent();
2384
2385        // The previous declaration is in a different namespace, so it
2386        // isn't the same function.
2387        if (OuterContext->getPrimaryContext() !=
2388            PrevOuterContext->getPrimaryContext())
2389          return false;
2390      }
2391    }
2392  }
2393
2394  return true;
2395}
2396
2397NamedDecl*
2398Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2399                              QualType R, TypeSourceInfo *TInfo,
2400                              LookupResult &Previous,
2401                              MultiTemplateParamsArg TemplateParamLists,
2402                              bool &Redeclaration) {
2403  DeclarationName Name = GetNameForDeclarator(D);
2404
2405  // Check that there are no default arguments (C++ only).
2406  if (getLangOptions().CPlusPlus)
2407    CheckExtraCXXDefaultArguments(D);
2408
2409  VarDecl *NewVD;
2410  VarDecl::StorageClass SC;
2411  switch (D.getDeclSpec().getStorageClassSpec()) {
2412  default: assert(0 && "Unknown storage class!");
2413  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2414  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2415  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2416  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2417  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2418  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2419  case DeclSpec::SCS_mutable:
2420    // mutable can only appear on non-static class members, so it's always
2421    // an error here
2422    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2423    D.setInvalidType();
2424    SC = VarDecl::None;
2425    break;
2426  }
2427
2428  IdentifierInfo *II = Name.getAsIdentifierInfo();
2429  if (!II) {
2430    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2431      << Name.getAsString();
2432    return 0;
2433  }
2434
2435  DiagnoseFunctionSpecifiers(D);
2436
2437  if (!DC->isRecord() && S->getFnParent() == 0) {
2438    // C99 6.9p2: The storage-class specifiers auto and register shall not
2439    // appear in the declaration specifiers in an external declaration.
2440    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2441
2442      // If this is a register variable with an asm label specified, then this
2443      // is a GNU extension.
2444      if (SC == VarDecl::Register && D.getAsmLabel())
2445        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2446      else
2447        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2448      D.setInvalidType();
2449    }
2450  }
2451  if (DC->isRecord() && !CurContext->isRecord()) {
2452    // This is an out-of-line definition of a static data member.
2453    if (SC == VarDecl::Static) {
2454      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2455           diag::err_static_out_of_line)
2456        << CodeModificationHint::CreateRemoval(
2457                                      D.getDeclSpec().getStorageClassSpecLoc());
2458    } else if (SC == VarDecl::None)
2459      SC = VarDecl::Static;
2460  }
2461  if (SC == VarDecl::Static) {
2462    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2463      if (RD->isLocalClass())
2464        Diag(D.getIdentifierLoc(),
2465             diag::err_static_data_member_not_allowed_in_local_class)
2466          << Name << RD->getDeclName();
2467    }
2468  }
2469
2470  // Match up the template parameter lists with the scope specifier, then
2471  // determine whether we have a template or a template specialization.
2472  bool isExplicitSpecialization = false;
2473  if (TemplateParameterList *TemplateParams
2474        = MatchTemplateParametersToScopeSpecifier(
2475                                  D.getDeclSpec().getSourceRange().getBegin(),
2476                                                  D.getCXXScopeSpec(),
2477                        (TemplateParameterList**)TemplateParamLists.get(),
2478                                                   TemplateParamLists.size(),
2479                                                  isExplicitSpecialization)) {
2480    if (TemplateParams->size() > 0) {
2481      // There is no such thing as a variable template.
2482      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2483        << II
2484        << SourceRange(TemplateParams->getTemplateLoc(),
2485                       TemplateParams->getRAngleLoc());
2486      return 0;
2487    } else {
2488      // There is an extraneous 'template<>' for this variable. Complain
2489      // about it, but allow the declaration of the variable.
2490      Diag(TemplateParams->getTemplateLoc(),
2491           diag::err_template_variable_noparams)
2492        << II
2493        << SourceRange(TemplateParams->getTemplateLoc(),
2494                       TemplateParams->getRAngleLoc());
2495
2496      isExplicitSpecialization = true;
2497    }
2498  }
2499
2500  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2501                          II, R, TInfo, SC);
2502
2503  if (D.isInvalidType())
2504    NewVD->setInvalidDecl();
2505
2506  if (D.getDeclSpec().isThreadSpecified()) {
2507    if (NewVD->hasLocalStorage())
2508      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2509    else if (!Context.Target.isTLSSupported())
2510      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2511    else
2512      NewVD->setThreadSpecified(true);
2513  }
2514
2515  // Set the lexical context. If the declarator has a C++ scope specifier, the
2516  // lexical context will be different from the semantic context.
2517  NewVD->setLexicalDeclContext(CurContext);
2518
2519  // Handle attributes prior to checking for duplicates in MergeVarDecl
2520  ProcessDeclAttributes(S, NewVD, D);
2521
2522  // Handle GNU asm-label extension (encoded as an attribute).
2523  if (Expr *E = (Expr*) D.getAsmLabel()) {
2524    // The parser guarantees this is a string.
2525    StringLiteral *SE = cast<StringLiteral>(E);
2526    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2527  }
2528
2529  // Don't consider existing declarations that are in a different
2530  // scope and are out-of-semantic-context declarations (if the new
2531  // declaration has linkage).
2532  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2533
2534  // Merge the decl with the existing one if appropriate.
2535  if (!Previous.empty()) {
2536    if (Previous.isSingleResult() &&
2537        isa<FieldDecl>(Previous.getFoundDecl()) &&
2538        D.getCXXScopeSpec().isSet()) {
2539      // The user tried to define a non-static data member
2540      // out-of-line (C++ [dcl.meaning]p1).
2541      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2542        << D.getCXXScopeSpec().getRange();
2543      Previous.clear();
2544      NewVD->setInvalidDecl();
2545    }
2546  } else if (D.getCXXScopeSpec().isSet()) {
2547    // No previous declaration in the qualifying scope.
2548    Diag(D.getIdentifierLoc(), diag::err_no_member)
2549      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2550      << D.getCXXScopeSpec().getRange();
2551    NewVD->setInvalidDecl();
2552  }
2553
2554  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2555
2556  // This is an explicit specialization of a static data member. Check it.
2557  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2558      CheckMemberSpecialization(NewVD, Previous))
2559    NewVD->setInvalidDecl();
2560
2561  // attributes declared post-definition are currently ignored
2562  if (Previous.isSingleResult()) {
2563    const VarDecl *Def = 0;
2564    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2565    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2566      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2567      Diag(Def->getLocation(), diag::note_previous_definition);
2568    }
2569  }
2570
2571  // If this is a locally-scoped extern C variable, update the map of
2572  // such variables.
2573  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2574      !NewVD->isInvalidDecl())
2575    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2576
2577  return NewVD;
2578}
2579
2580/// \brief Perform semantic checking on a newly-created variable
2581/// declaration.
2582///
2583/// This routine performs all of the type-checking required for a
2584/// variable declaration once it has been built. It is used both to
2585/// check variables after they have been parsed and their declarators
2586/// have been translated into a declaration, and to check variables
2587/// that have been instantiated from a template.
2588///
2589/// Sets NewVD->isInvalidDecl() if an error was encountered.
2590void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2591                                    LookupResult &Previous,
2592                                    bool &Redeclaration) {
2593  // If the decl is already known invalid, don't check it.
2594  if (NewVD->isInvalidDecl())
2595    return;
2596
2597  QualType T = NewVD->getType();
2598
2599  if (T->isObjCInterfaceType()) {
2600    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2601    return NewVD->setInvalidDecl();
2602  }
2603
2604  // Emit an error if an address space was applied to decl with local storage.
2605  // This includes arrays of objects with address space qualifiers, but not
2606  // automatic variables that point to other address spaces.
2607  // ISO/IEC TR 18037 S5.1.2
2608  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2609    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2610    return NewVD->setInvalidDecl();
2611  }
2612
2613  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2614      && !NewVD->hasAttr<BlocksAttr>())
2615    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2616
2617  bool isVM = T->isVariablyModifiedType();
2618  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2619      NewVD->hasAttr<BlocksAttr>())
2620    CurFunctionNeedsScopeChecking = true;
2621
2622  if ((isVM && NewVD->hasLinkage()) ||
2623      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2624    bool SizeIsNegative;
2625    QualType FixedTy =
2626        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2627
2628    if (FixedTy.isNull() && T->isVariableArrayType()) {
2629      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2630      // FIXME: This won't give the correct result for
2631      // int a[10][n];
2632      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2633
2634      if (NewVD->isFileVarDecl())
2635        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2636        << SizeRange;
2637      else if (NewVD->getStorageClass() == VarDecl::Static)
2638        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2639        << SizeRange;
2640      else
2641        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2642        << SizeRange;
2643      return NewVD->setInvalidDecl();
2644    }
2645
2646    if (FixedTy.isNull()) {
2647      if (NewVD->isFileVarDecl())
2648        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2649      else
2650        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2651      return NewVD->setInvalidDecl();
2652    }
2653
2654    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2655    NewVD->setType(FixedTy);
2656  }
2657
2658  if (Previous.empty() && NewVD->isExternC()) {
2659    // Since we did not find anything by this name and we're declaring
2660    // an extern "C" variable, look for a non-visible extern "C"
2661    // declaration with the same name.
2662    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2663      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2664    if (Pos != LocallyScopedExternalDecls.end())
2665      Previous.addDecl(Pos->second);
2666  }
2667
2668  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2669    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2670      << T;
2671    return NewVD->setInvalidDecl();
2672  }
2673
2674  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2675    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2676    return NewVD->setInvalidDecl();
2677  }
2678
2679  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2680    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2681    return NewVD->setInvalidDecl();
2682  }
2683
2684  if (!Previous.empty()) {
2685    Redeclaration = true;
2686    MergeVarDecl(NewVD, Previous);
2687  }
2688}
2689
2690/// \brief Data used with FindOverriddenMethod
2691struct FindOverriddenMethodData {
2692  Sema *S;
2693  CXXMethodDecl *Method;
2694};
2695
2696/// \brief Member lookup function that determines whether a given C++
2697/// method overrides a method in a base class, to be used with
2698/// CXXRecordDecl::lookupInBases().
2699static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2700                                 CXXBasePath &Path,
2701                                 void *UserData) {
2702  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2703
2704  FindOverriddenMethodData *Data
2705    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2706
2707  DeclarationName Name = Data->Method->getDeclName();
2708
2709  // FIXME: Do we care about other names here too?
2710  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2711    // We really want to find the base class constructor here.
2712    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2713    CanQualType CT = Data->S->Context.getCanonicalType(T);
2714
2715    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2716  }
2717
2718  for (Path.Decls = BaseRecord->lookup(Name);
2719       Path.Decls.first != Path.Decls.second;
2720       ++Path.Decls.first) {
2721    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2722      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2723        return true;
2724    }
2725  }
2726
2727  return false;
2728}
2729
2730/// AddOverriddenMethods - See if a method overrides any in the base classes,
2731/// and if so, check that it's a valid override and remember it.
2732void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2733  // Look for virtual methods in base classes that this method might override.
2734  CXXBasePaths Paths;
2735  FindOverriddenMethodData Data;
2736  Data.Method = MD;
2737  Data.S = this;
2738  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2739    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2740         E = Paths.found_decls_end(); I != E; ++I) {
2741      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2742        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2743            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2744            !CheckOverridingFunctionAttributes(MD, OldMD))
2745          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2746      }
2747    }
2748  }
2749}
2750
2751NamedDecl*
2752Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2753                              QualType R, TypeSourceInfo *TInfo,
2754                              LookupResult &Previous,
2755                              MultiTemplateParamsArg TemplateParamLists,
2756                              bool IsFunctionDefinition, bool &Redeclaration) {
2757  assert(R.getTypePtr()->isFunctionType());
2758
2759  DeclarationName Name = GetNameForDeclarator(D);
2760  FunctionDecl::StorageClass SC = FunctionDecl::None;
2761  switch (D.getDeclSpec().getStorageClassSpec()) {
2762  default: assert(0 && "Unknown storage class!");
2763  case DeclSpec::SCS_auto:
2764  case DeclSpec::SCS_register:
2765  case DeclSpec::SCS_mutable:
2766    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2767         diag::err_typecheck_sclass_func);
2768    D.setInvalidType();
2769    break;
2770  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2771  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2772  case DeclSpec::SCS_static: {
2773    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2774      // C99 6.7.1p5:
2775      //   The declaration of an identifier for a function that has
2776      //   block scope shall have no explicit storage-class specifier
2777      //   other than extern
2778      // See also (C++ [dcl.stc]p4).
2779      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2780           diag::err_static_block_func);
2781      SC = FunctionDecl::None;
2782    } else
2783      SC = FunctionDecl::Static;
2784    break;
2785  }
2786  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2787  }
2788
2789  if (D.getDeclSpec().isThreadSpecified())
2790    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2791
2792  bool isFriend = D.getDeclSpec().isFriendSpecified();
2793  bool isInline = D.getDeclSpec().isInlineSpecified();
2794  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2795  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2796
2797  // Check that the return type is not an abstract class type.
2798  // For record types, this is done by the AbstractClassUsageDiagnoser once
2799  // the class has been completely parsed.
2800  if (!DC->isRecord() &&
2801      RequireNonAbstractType(D.getIdentifierLoc(),
2802                             R->getAs<FunctionType>()->getResultType(),
2803                             diag::err_abstract_type_in_decl,
2804                             AbstractReturnType))
2805    D.setInvalidType();
2806
2807  // Do not allow returning a objc interface by-value.
2808  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2809    Diag(D.getIdentifierLoc(),
2810         diag::err_object_cannot_be_passed_returned_by_value) << 0
2811      << R->getAs<FunctionType>()->getResultType();
2812    D.setInvalidType();
2813  }
2814
2815  bool isVirtualOkay = false;
2816  FunctionDecl *NewFD;
2817
2818  if (isFriend) {
2819    // C++ [class.friend]p5
2820    //   A function can be defined in a friend declaration of a
2821    //   class . . . . Such a function is implicitly inline.
2822    isInline |= IsFunctionDefinition;
2823  }
2824
2825  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2826    // This is a C++ constructor declaration.
2827    assert(DC->isRecord() &&
2828           "Constructors can only be declared in a member context");
2829
2830    R = CheckConstructorDeclarator(D, R, SC);
2831
2832    // Create the new declaration
2833    NewFD = CXXConstructorDecl::Create(Context,
2834                                       cast<CXXRecordDecl>(DC),
2835                                       D.getIdentifierLoc(), Name, R, TInfo,
2836                                       isExplicit, isInline,
2837                                       /*isImplicitlyDeclared=*/false);
2838  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2839    // This is a C++ destructor declaration.
2840    if (DC->isRecord()) {
2841      R = CheckDestructorDeclarator(D, SC);
2842
2843      NewFD = CXXDestructorDecl::Create(Context,
2844                                        cast<CXXRecordDecl>(DC),
2845                                        D.getIdentifierLoc(), Name, R,
2846                                        isInline,
2847                                        /*isImplicitlyDeclared=*/false);
2848
2849      isVirtualOkay = true;
2850    } else {
2851      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2852
2853      // Create a FunctionDecl to satisfy the function definition parsing
2854      // code path.
2855      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2856                                   Name, R, TInfo, SC, isInline,
2857                                   /*hasPrototype=*/true);
2858      D.setInvalidType();
2859    }
2860  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2861    if (!DC->isRecord()) {
2862      Diag(D.getIdentifierLoc(),
2863           diag::err_conv_function_not_member);
2864      return 0;
2865    }
2866
2867    CheckConversionDeclarator(D, R, SC);
2868    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2869                                      D.getIdentifierLoc(), Name, R, TInfo,
2870                                      isInline, isExplicit);
2871
2872    isVirtualOkay = true;
2873  } else if (DC->isRecord()) {
2874    // If the of the function is the same as the name of the record, then this
2875    // must be an invalid constructor that has a return type.
2876    // (The parser checks for a return type and makes the declarator a
2877    // constructor if it has no return type).
2878    // must have an invalid constructor that has a return type
2879    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2880      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2881        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2882        << SourceRange(D.getIdentifierLoc());
2883      return 0;
2884    }
2885
2886    bool isStatic = SC == FunctionDecl::Static;
2887
2888    // [class.free]p1:
2889    // Any allocation function for a class T is a static member
2890    // (even if not explicitly declared static).
2891    if (Name.getCXXOverloadedOperator() == OO_New ||
2892        Name.getCXXOverloadedOperator() == OO_Array_New)
2893      isStatic = true;
2894
2895    // [class.free]p6 Any deallocation function for a class X is a static member
2896    // (even if not explicitly declared static).
2897    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2898        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2899      isStatic = true;
2900
2901    // This is a C++ method declaration.
2902    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2903                                  D.getIdentifierLoc(), Name, R, TInfo,
2904                                  isStatic, isInline);
2905
2906    isVirtualOkay = !isStatic;
2907  } else {
2908    // Determine whether the function was written with a
2909    // prototype. This true when:
2910    //   - we're in C++ (where every function has a prototype),
2911    //   - there is a prototype in the declarator, or
2912    //   - the type R of the function is some kind of typedef or other reference
2913    //     to a type name (which eventually refers to a function type).
2914    bool HasPrototype =
2915       getLangOptions().CPlusPlus ||
2916       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2917       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2918
2919    NewFD = FunctionDecl::Create(Context, DC,
2920                                 D.getIdentifierLoc(),
2921                                 Name, R, TInfo, SC, isInline, HasPrototype);
2922  }
2923
2924  if (D.isInvalidType())
2925    NewFD->setInvalidDecl();
2926
2927  // Set the lexical context. If the declarator has a C++
2928  // scope specifier, or is the object of a friend declaration, the
2929  // lexical context will be different from the semantic context.
2930  NewFD->setLexicalDeclContext(CurContext);
2931
2932  // Match up the template parameter lists with the scope specifier, then
2933  // determine whether we have a template or a template specialization.
2934  FunctionTemplateDecl *FunctionTemplate = 0;
2935  bool isExplicitSpecialization = false;
2936  bool isFunctionTemplateSpecialization = false;
2937  if (TemplateParameterList *TemplateParams
2938        = MatchTemplateParametersToScopeSpecifier(
2939                                  D.getDeclSpec().getSourceRange().getBegin(),
2940                                  D.getCXXScopeSpec(),
2941                           (TemplateParameterList**)TemplateParamLists.get(),
2942                                                  TemplateParamLists.size(),
2943                                                  isExplicitSpecialization)) {
2944    if (TemplateParams->size() > 0) {
2945      // This is a function template
2946
2947      // Check that we can declare a template here.
2948      if (CheckTemplateDeclScope(S, TemplateParams))
2949        return 0;
2950
2951      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2952                                                      NewFD->getLocation(),
2953                                                      Name, TemplateParams,
2954                                                      NewFD);
2955      FunctionTemplate->setLexicalDeclContext(CurContext);
2956      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2957    } else {
2958      // This is a function template specialization.
2959      isFunctionTemplateSpecialization = true;
2960    }
2961
2962    // FIXME: Free this memory properly.
2963    TemplateParamLists.release();
2964  }
2965
2966  // C++ [dcl.fct.spec]p5:
2967  //   The virtual specifier shall only be used in declarations of
2968  //   nonstatic class member functions that appear within a
2969  //   member-specification of a class declaration; see 10.3.
2970  //
2971  if (isVirtual && !NewFD->isInvalidDecl()) {
2972    if (!isVirtualOkay) {
2973       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2974           diag::err_virtual_non_function);
2975    } else if (!CurContext->isRecord()) {
2976      // 'virtual' was specified outside of the class.
2977      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2978        << CodeModificationHint::CreateRemoval(
2979                                           D.getDeclSpec().getVirtualSpecLoc());
2980    } else {
2981      // Okay: Add virtual to the method.
2982      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2983      CurClass->setMethodAsVirtual(NewFD);
2984    }
2985  }
2986
2987  // Filter out previous declarations that don't match the scope.
2988  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2989
2990  if (isFriend) {
2991    // DC is the namespace in which the function is being declared.
2992    assert((DC->isFileContext() || !Previous.empty()) &&
2993           "previously-undeclared friend function being created "
2994           "in a non-namespace context");
2995
2996    if (FunctionTemplate) {
2997      FunctionTemplate->setObjectOfFriendDecl(
2998                                   /* PreviouslyDeclared= */ !Previous.empty());
2999      FunctionTemplate->setAccess(AS_public);
3000    }
3001    else
3002      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
3003
3004    NewFD->setAccess(AS_public);
3005  }
3006
3007  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
3008      !CurContext->isRecord()) {
3009    // C++ [class.static]p1:
3010    //   A data or function member of a class may be declared static
3011    //   in a class definition, in which case it is a static member of
3012    //   the class.
3013
3014    // Complain about the 'static' specifier if it's on an out-of-line
3015    // member function definition.
3016    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3017         diag::err_static_out_of_line)
3018      << CodeModificationHint::CreateRemoval(
3019                                      D.getDeclSpec().getStorageClassSpecLoc());
3020  }
3021
3022  // Handle GNU asm-label extension (encoded as an attribute).
3023  if (Expr *E = (Expr*) D.getAsmLabel()) {
3024    // The parser guarantees this is a string.
3025    StringLiteral *SE = cast<StringLiteral>(E);
3026    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
3027  }
3028
3029  // Copy the parameter declarations from the declarator D to the function
3030  // declaration NewFD, if they are available.  First scavenge them into Params.
3031  llvm::SmallVector<ParmVarDecl*, 16> Params;
3032  if (D.getNumTypeObjects() > 0) {
3033    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3034
3035    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3036    // function that takes no arguments, not a function that takes a
3037    // single void argument.
3038    // We let through "const void" here because Sema::GetTypeForDeclarator
3039    // already checks for that case.
3040    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3041        FTI.ArgInfo[0].Param &&
3042        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
3043      // Empty arg list, don't push any params.
3044      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
3045
3046      // In C++, the empty parameter-type-list must be spelled "void"; a
3047      // typedef of void is not permitted.
3048      if (getLangOptions().CPlusPlus &&
3049          Param->getType().getUnqualifiedType() != Context.VoidTy)
3050        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3051      // FIXME: Leaks decl?
3052    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3053      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3054        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
3055        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3056        Param->setDeclContext(NewFD);
3057        Params.push_back(Param);
3058      }
3059    }
3060
3061  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3062    // When we're declaring a function with a typedef, typeof, etc as in the
3063    // following example, we'll need to synthesize (unnamed)
3064    // parameters for use in the declaration.
3065    //
3066    // @code
3067    // typedef void fn(int);
3068    // fn f;
3069    // @endcode
3070
3071    // Synthesize a parameter for each argument type.
3072    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3073         AE = FT->arg_type_end(); AI != AE; ++AI) {
3074      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
3075                                               SourceLocation(), 0,
3076                                               *AI, /*TInfo=*/0,
3077                                               VarDecl::None, 0);
3078      Param->setImplicit();
3079      Params.push_back(Param);
3080    }
3081  } else {
3082    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3083           "Should not need args for typedef of non-prototype fn");
3084  }
3085  // Finally, we know we have the right number of parameters, install them.
3086  NewFD->setParams(Context, Params.data(), Params.size());
3087
3088  // If the declarator is a template-id, translate the parser's template
3089  // argument list into our AST format.
3090  bool HasExplicitTemplateArgs = false;
3091  TemplateArgumentListInfo TemplateArgs;
3092  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3093    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3094    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3095    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3096    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3097                                       TemplateId->getTemplateArgs(),
3098                                       TemplateId->NumArgs);
3099    translateTemplateArguments(TemplateArgsPtr,
3100                               TemplateArgs);
3101    TemplateArgsPtr.release();
3102
3103    HasExplicitTemplateArgs = true;
3104
3105    if (FunctionTemplate) {
3106      // FIXME: Diagnose function template with explicit template
3107      // arguments.
3108      HasExplicitTemplateArgs = false;
3109    } else if (!isFunctionTemplateSpecialization &&
3110               !D.getDeclSpec().isFriendSpecified()) {
3111      // We have encountered something that the user meant to be a
3112      // specialization (because it has explicitly-specified template
3113      // arguments) but that was not introduced with a "template<>" (or had
3114      // too few of them).
3115      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3116        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3117        << CodeModificationHint::CreateInsertion(
3118                                   D.getDeclSpec().getSourceRange().getBegin(),
3119                                                 "template<> ");
3120      isFunctionTemplateSpecialization = true;
3121    }
3122  }
3123
3124  if (isFunctionTemplateSpecialization) {
3125      if (CheckFunctionTemplateSpecialization(NewFD,
3126                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3127                                              Previous))
3128        NewFD->setInvalidDecl();
3129  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3130             CheckMemberSpecialization(NewFD, Previous))
3131    NewFD->setInvalidDecl();
3132
3133  // Perform semantic checking on the function declaration.
3134  bool OverloadableAttrRequired = false; // FIXME: HACK!
3135  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3136                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3137
3138  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3139          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3140         "previous declaration set still overloaded");
3141
3142  // If we have a function template, check the template parameter
3143  // list. This will check and merge default template arguments.
3144  if (FunctionTemplate) {
3145    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3146    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3147                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3148             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3149                                                : TPC_FunctionTemplate);
3150  }
3151
3152  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3153    // An out-of-line member function declaration must also be a
3154    // definition (C++ [dcl.meaning]p1).
3155    // Note that this is not the case for explicit specializations of
3156    // function templates or member functions of class templates, per
3157    // C++ [temp.expl.spec]p2.
3158    if (!IsFunctionDefinition && !isFriend &&
3159        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3160      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3161        << D.getCXXScopeSpec().getRange();
3162      NewFD->setInvalidDecl();
3163    } else if (!Redeclaration) {
3164      // The user tried to provide an out-of-line definition for a
3165      // function that is a member of a class or namespace, but there
3166      // was no such member function declared (C++ [class.mfct]p2,
3167      // C++ [namespace.memdef]p2). For example:
3168      //
3169      // class X {
3170      //   void f() const;
3171      // };
3172      //
3173      // void X::f() { } // ill-formed
3174      //
3175      // Complain about this problem, and attempt to suggest close
3176      // matches (e.g., those that differ only in cv-qualifiers and
3177      // whether the parameter types are references).
3178      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3179        << Name << DC << D.getCXXScopeSpec().getRange();
3180      NewFD->setInvalidDecl();
3181
3182      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3183                        ForRedeclaration);
3184      LookupQualifiedName(Prev, DC);
3185      assert(!Prev.isAmbiguous() &&
3186             "Cannot have an ambiguity in previous-declaration lookup");
3187      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3188           Func != FuncEnd; ++Func) {
3189        if (isa<FunctionDecl>(*Func) &&
3190            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3191          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3192      }
3193    }
3194  }
3195
3196  // Handle attributes. We need to have merged decls when handling attributes
3197  // (for example to check for conflicts, etc).
3198  // FIXME: This needs to happen before we merge declarations. Then,
3199  // let attribute merging cope with attribute conflicts.
3200  ProcessDeclAttributes(S, NewFD, D);
3201
3202  // attributes declared post-definition are currently ignored
3203  if (Redeclaration && Previous.isSingleResult()) {
3204    const FunctionDecl *Def;
3205    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3206    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3207      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3208      Diag(Def->getLocation(), diag::note_previous_definition);
3209    }
3210  }
3211
3212  AddKnownFunctionAttributes(NewFD);
3213
3214  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3215    // If a function name is overloadable in C, then every function
3216    // with that name must be marked "overloadable".
3217    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3218      << Redeclaration << NewFD;
3219    if (!Previous.empty())
3220      Diag(Previous.getRepresentativeDecl()->getLocation(),
3221           diag::note_attribute_overloadable_prev_overload);
3222    NewFD->addAttr(::new (Context) OverloadableAttr());
3223  }
3224
3225  // If this is a locally-scoped extern C function, update the
3226  // map of such names.
3227  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3228      && !NewFD->isInvalidDecl())
3229    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3230
3231  // Set this FunctionDecl's range up to the right paren.
3232  NewFD->setLocEnd(D.getSourceRange().getEnd());
3233
3234  if (FunctionTemplate && NewFD->isInvalidDecl())
3235    FunctionTemplate->setInvalidDecl();
3236
3237  if (FunctionTemplate)
3238    return FunctionTemplate;
3239
3240  return NewFD;
3241}
3242
3243/// \brief Perform semantic checking of a new function declaration.
3244///
3245/// Performs semantic analysis of the new function declaration
3246/// NewFD. This routine performs all semantic checking that does not
3247/// require the actual declarator involved in the declaration, and is
3248/// used both for the declaration of functions as they are parsed
3249/// (called via ActOnDeclarator) and for the declaration of functions
3250/// that have been instantiated via C++ template instantiation (called
3251/// via InstantiateDecl).
3252///
3253/// \param IsExplicitSpecialiation whether this new function declaration is
3254/// an explicit specialization of the previous declaration.
3255///
3256/// This sets NewFD->isInvalidDecl() to true if there was an error.
3257void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3258                                    LookupResult &Previous,
3259                                    bool IsExplicitSpecialization,
3260                                    bool &Redeclaration,
3261                                    bool &OverloadableAttrRequired) {
3262  // If NewFD is already known erroneous, don't do any of this checking.
3263  if (NewFD->isInvalidDecl())
3264    return;
3265
3266  if (NewFD->getResultType()->isVariablyModifiedType()) {
3267    // Functions returning a variably modified type violate C99 6.7.5.2p2
3268    // because all functions have linkage.
3269    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3270    return NewFD->setInvalidDecl();
3271  }
3272
3273  if (NewFD->isMain())
3274    CheckMain(NewFD);
3275
3276  // Check for a previous declaration of this name.
3277  if (Previous.empty() && NewFD->isExternC()) {
3278    // Since we did not find anything by this name and we're declaring
3279    // an extern "C" function, look for a non-visible extern "C"
3280    // declaration with the same name.
3281    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3282      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3283    if (Pos != LocallyScopedExternalDecls.end())
3284      Previous.addDecl(Pos->second);
3285  }
3286
3287  // Merge or overload the declaration with an existing declaration of
3288  // the same name, if appropriate.
3289  if (!Previous.empty()) {
3290    // Determine whether NewFD is an overload of PrevDecl or
3291    // a declaration that requires merging. If it's an overload,
3292    // there's no more work to do here; we'll just add the new
3293    // function to the scope.
3294
3295    NamedDecl *OldDecl = 0;
3296    if (!AllowOverloadingOfFunction(Previous, Context)) {
3297      Redeclaration = true;
3298      OldDecl = Previous.getFoundDecl();
3299    } else {
3300      if (!getLangOptions().CPlusPlus) {
3301        OverloadableAttrRequired = true;
3302
3303        // Functions marked "overloadable" must have a prototype (that
3304        // we can't get through declaration merging).
3305        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3306          Diag(NewFD->getLocation(),
3307               diag::err_attribute_overloadable_no_prototype)
3308            << NewFD;
3309          Redeclaration = true;
3310
3311          // Turn this into a variadic function with no parameters.
3312          QualType R = Context.getFunctionType(
3313                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3314                     0, 0, true, 0);
3315          NewFD->setType(R);
3316          return NewFD->setInvalidDecl();
3317        }
3318      }
3319
3320      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3321      case Ovl_Match:
3322        Redeclaration = true;
3323        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3324          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3325          Redeclaration = false;
3326        }
3327        break;
3328
3329      case Ovl_NonFunction:
3330        Redeclaration = true;
3331        break;
3332
3333      case Ovl_Overload:
3334        Redeclaration = false;
3335        break;
3336      }
3337    }
3338
3339    if (Redeclaration) {
3340      // NewFD and OldDecl represent declarations that need to be
3341      // merged.
3342      if (MergeFunctionDecl(NewFD, OldDecl))
3343        return NewFD->setInvalidDecl();
3344
3345      Previous.clear();
3346      Previous.addDecl(OldDecl);
3347
3348      if (FunctionTemplateDecl *OldTemplateDecl
3349                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3350        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3351        FunctionTemplateDecl *NewTemplateDecl
3352          = NewFD->getDescribedFunctionTemplate();
3353        assert(NewTemplateDecl && "Template/non-template mismatch");
3354        if (CXXMethodDecl *Method
3355              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3356          Method->setAccess(OldTemplateDecl->getAccess());
3357          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3358        }
3359
3360        // If this is an explicit specialization of a member that is a function
3361        // template, mark it as a member specialization.
3362        if (IsExplicitSpecialization &&
3363            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3364          NewTemplateDecl->setMemberSpecialization();
3365          assert(OldTemplateDecl->isMemberSpecialization());
3366        }
3367      } else {
3368        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3369          NewFD->setAccess(OldDecl->getAccess());
3370        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3371      }
3372    }
3373  }
3374
3375  // Semantic checking for this function declaration (in isolation).
3376  if (getLangOptions().CPlusPlus) {
3377    // C++-specific checks.
3378    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3379      CheckConstructor(Constructor);
3380    } else if (CXXDestructorDecl *Destructor =
3381                dyn_cast<CXXDestructorDecl>(NewFD)) {
3382      CXXRecordDecl *Record = Destructor->getParent();
3383      QualType ClassType = Context.getTypeDeclType(Record);
3384
3385      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3386      // type is dependent? Both gcc and edg can handle that.
3387      if (!ClassType->isDependentType()) {
3388        DeclarationName Name
3389          = Context.DeclarationNames.getCXXDestructorName(
3390                                        Context.getCanonicalType(ClassType));
3391        if (NewFD->getDeclName() != Name) {
3392          Diag(NewFD->getLocation(), diag::err_destructor_name);
3393          return NewFD->setInvalidDecl();
3394        }
3395      }
3396
3397      Record->setUserDeclaredDestructor(true);
3398      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3399      // user-defined destructor.
3400      Record->setPOD(false);
3401
3402      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3403      // declared destructor.
3404      // FIXME: C++0x: don't do this for "= default" destructors
3405      Record->setHasTrivialDestructor(false);
3406    } else if (CXXConversionDecl *Conversion
3407               = dyn_cast<CXXConversionDecl>(NewFD)) {
3408      ActOnConversionDeclarator(Conversion);
3409    }
3410
3411    // Find any virtual functions that this function overrides.
3412    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3413      if (!Method->isFunctionTemplateSpecialization() &&
3414          !Method->getDescribedFunctionTemplate())
3415        AddOverriddenMethods(Method->getParent(), Method);
3416    }
3417
3418    // Additional checks for the destructor; make sure we do this after we
3419    // figure out whether the destructor is virtual.
3420    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3421      if (!Destructor->getParent()->isDependentType())
3422        CheckDestructor(Destructor);
3423
3424    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3425    if (NewFD->isOverloadedOperator() &&
3426        CheckOverloadedOperatorDeclaration(NewFD))
3427      return NewFD->setInvalidDecl();
3428
3429    // In C++, check default arguments now that we have merged decls. Unless
3430    // the lexical context is the class, because in this case this is done
3431    // during delayed parsing anyway.
3432    if (!CurContext->isRecord())
3433      CheckCXXDefaultArguments(NewFD);
3434  }
3435}
3436
3437void Sema::CheckMain(FunctionDecl* FD) {
3438  // C++ [basic.start.main]p3:  A program that declares main to be inline
3439  //   or static is ill-formed.
3440  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3441  //   shall not appear in a declaration of main.
3442  // static main is not an error under C99, but we should warn about it.
3443  bool isInline = FD->isInlineSpecified();
3444  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3445  if (isInline || isStatic) {
3446    unsigned diagID = diag::warn_unusual_main_decl;
3447    if (isInline || getLangOptions().CPlusPlus)
3448      diagID = diag::err_unusual_main_decl;
3449
3450    int which = isStatic + (isInline << 1) - 1;
3451    Diag(FD->getLocation(), diagID) << which;
3452  }
3453
3454  QualType T = FD->getType();
3455  assert(T->isFunctionType() && "function decl is not of function type");
3456  const FunctionType* FT = T->getAs<FunctionType>();
3457
3458  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3459    // TODO: add a replacement fixit to turn the return type into 'int'.
3460    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3461    FD->setInvalidDecl(true);
3462  }
3463
3464  // Treat protoless main() as nullary.
3465  if (isa<FunctionNoProtoType>(FT)) return;
3466
3467  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3468  unsigned nparams = FTP->getNumArgs();
3469  assert(FD->getNumParams() == nparams);
3470
3471  bool HasExtraParameters = (nparams > 3);
3472
3473  // Darwin passes an undocumented fourth argument of type char**.  If
3474  // other platforms start sprouting these, the logic below will start
3475  // getting shifty.
3476  if (nparams == 4 &&
3477      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
3478    HasExtraParameters = false;
3479
3480  if (HasExtraParameters) {
3481    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3482    FD->setInvalidDecl(true);
3483    nparams = 3;
3484  }
3485
3486  // FIXME: a lot of the following diagnostics would be improved
3487  // if we had some location information about types.
3488
3489  QualType CharPP =
3490    Context.getPointerType(Context.getPointerType(Context.CharTy));
3491  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
3492
3493  for (unsigned i = 0; i < nparams; ++i) {
3494    QualType AT = FTP->getArgType(i);
3495
3496    bool mismatch = true;
3497
3498    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3499      mismatch = false;
3500    else if (Expected[i] == CharPP) {
3501      // As an extension, the following forms are okay:
3502      //   char const **
3503      //   char const * const *
3504      //   char * const *
3505
3506      QualifierCollector qs;
3507      const PointerType* PT;
3508      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3509          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3510          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3511        qs.removeConst();
3512        mismatch = !qs.empty();
3513      }
3514    }
3515
3516    if (mismatch) {
3517      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3518      // TODO: suggest replacing given type with expected type
3519      FD->setInvalidDecl(true);
3520    }
3521  }
3522
3523  if (nparams == 1 && !FD->isInvalidDecl()) {
3524    Diag(FD->getLocation(), diag::warn_main_one_arg);
3525  }
3526}
3527
3528bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3529  // FIXME: Need strict checking.  In C89, we need to check for
3530  // any assignment, increment, decrement, function-calls, or
3531  // commas outside of a sizeof.  In C99, it's the same list,
3532  // except that the aforementioned are allowed in unevaluated
3533  // expressions.  Everything else falls under the
3534  // "may accept other forms of constant expressions" exception.
3535  // (We never end up here for C++, so the constant expression
3536  // rules there don't matter.)
3537  if (Init->isConstantInitializer(Context))
3538    return false;
3539  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3540    << Init->getSourceRange();
3541  return true;
3542}
3543
3544void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3545  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3546}
3547
3548/// AddInitializerToDecl - Adds the initializer Init to the
3549/// declaration dcl. If DirectInit is true, this is C++ direct
3550/// initialization rather than copy initialization.
3551void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3552  Decl *RealDecl = dcl.getAs<Decl>();
3553  // If there is no declaration, there was an error parsing it.  Just ignore
3554  // the initializer.
3555  if (RealDecl == 0)
3556    return;
3557
3558  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3559    // With declarators parsed the way they are, the parser cannot
3560    // distinguish between a normal initializer and a pure-specifier.
3561    // Thus this grotesque test.
3562    IntegerLiteral *IL;
3563    Expr *Init = static_cast<Expr *>(init.get());
3564    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3565        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3566      CheckPureMethod(Method, Init->getSourceRange());
3567    else {
3568      Diag(Method->getLocation(), diag::err_member_function_initialization)
3569        << Method->getDeclName() << Init->getSourceRange();
3570      Method->setInvalidDecl();
3571    }
3572    return;
3573  }
3574
3575  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3576  if (!VDecl) {
3577    if (getLangOptions().CPlusPlus &&
3578        RealDecl->getLexicalDeclContext()->isRecord() &&
3579        isa<NamedDecl>(RealDecl))
3580      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3581        << cast<NamedDecl>(RealDecl)->getDeclName();
3582    else
3583      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3584    RealDecl->setInvalidDecl();
3585    return;
3586  }
3587
3588  // A definition must end up with a complete type, which means it must be
3589  // complete with the restriction that an array type might be completed by the
3590  // initializer; note that later code assumes this restriction.
3591  QualType BaseDeclType = VDecl->getType();
3592  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3593    BaseDeclType = Array->getElementType();
3594  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3595                          diag::err_typecheck_decl_incomplete_type)) {
3596    RealDecl->setInvalidDecl();
3597    return;
3598  }
3599
3600  // The variable can not have an abstract class type.
3601  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3602                             diag::err_abstract_type_in_decl,
3603                             AbstractVariableType))
3604    VDecl->setInvalidDecl();
3605
3606  const VarDecl *Def = 0;
3607  if (VDecl->getDefinition(Def)) {
3608    Diag(VDecl->getLocation(), diag::err_redefinition)
3609      << VDecl->getDeclName();
3610    Diag(Def->getLocation(), diag::note_previous_definition);
3611    VDecl->setInvalidDecl();
3612    return;
3613  }
3614
3615  // Take ownership of the expression, now that we're sure we have somewhere
3616  // to put it.
3617  Expr *Init = init.takeAs<Expr>();
3618  assert(Init && "missing initializer");
3619
3620  // Capture the variable that is being initialized and the style of
3621  // initialization.
3622  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3623
3624  // FIXME: Poor source location information.
3625  InitializationKind Kind
3626    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3627                                                   Init->getLocStart(),
3628                                                   Init->getLocEnd())
3629                : InitializationKind::CreateCopy(VDecl->getLocation(),
3630                                                 Init->getLocStart());
3631
3632  // Get the decls type and save a reference for later, since
3633  // CheckInitializerTypes may change it.
3634  QualType DclT = VDecl->getType(), SavT = DclT;
3635  if (VDecl->isBlockVarDecl()) {
3636    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3637      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3638      VDecl->setInvalidDecl();
3639    } else if (!VDecl->isInvalidDecl()) {
3640      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3641      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3642                                          MultiExprArg(*this, (void**)&Init, 1),
3643                                                &DclT);
3644      if (Result.isInvalid()) {
3645        VDecl->setInvalidDecl();
3646        return;
3647      }
3648
3649      Init = Result.takeAs<Expr>();
3650
3651      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3652      // Don't check invalid declarations to avoid emitting useless diagnostics.
3653      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3654        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3655          CheckForConstantInitializer(Init, DclT);
3656      }
3657    }
3658  } else if (VDecl->isStaticDataMember() &&
3659             VDecl->getLexicalDeclContext()->isRecord()) {
3660    // This is an in-class initialization for a static data member, e.g.,
3661    //
3662    // struct S {
3663    //   static const int value = 17;
3664    // };
3665
3666    // Attach the initializer
3667    VDecl->setInit(Context, Init);
3668
3669    // C++ [class.mem]p4:
3670    //   A member-declarator can contain a constant-initializer only
3671    //   if it declares a static member (9.4) of const integral or
3672    //   const enumeration type, see 9.4.2.
3673    QualType T = VDecl->getType();
3674    if (!T->isDependentType() &&
3675        (!Context.getCanonicalType(T).isConstQualified() ||
3676         !T->isIntegralType())) {
3677      Diag(VDecl->getLocation(), diag::err_member_initialization)
3678        << VDecl->getDeclName() << Init->getSourceRange();
3679      VDecl->setInvalidDecl();
3680    } else {
3681      // C++ [class.static.data]p4:
3682      //   If a static data member is of const integral or const
3683      //   enumeration type, its declaration in the class definition
3684      //   can specify a constant-initializer which shall be an
3685      //   integral constant expression (5.19).
3686      if (!Init->isTypeDependent() &&
3687          !Init->getType()->isIntegralType()) {
3688        // We have a non-dependent, non-integral or enumeration type.
3689        Diag(Init->getSourceRange().getBegin(),
3690             diag::err_in_class_initializer_non_integral_type)
3691          << Init->getType() << Init->getSourceRange();
3692        VDecl->setInvalidDecl();
3693      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3694        // Check whether the expression is a constant expression.
3695        llvm::APSInt Value;
3696        SourceLocation Loc;
3697        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3698          Diag(Loc, diag::err_in_class_initializer_non_constant)
3699            << Init->getSourceRange();
3700          VDecl->setInvalidDecl();
3701        } else if (!VDecl->getType()->isDependentType())
3702          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3703      }
3704    }
3705  } else if (VDecl->isFileVarDecl()) {
3706    if (VDecl->getStorageClass() == VarDecl::Extern)
3707      Diag(VDecl->getLocation(), diag::warn_extern_init);
3708    if (!VDecl->isInvalidDecl()) {
3709      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3710      OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3711                                          MultiExprArg(*this, (void**)&Init, 1),
3712                                                &DclT);
3713      if (Result.isInvalid()) {
3714        VDecl->setInvalidDecl();
3715        return;
3716      }
3717
3718      Init = Result.takeAs<Expr>();
3719    }
3720
3721    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3722    // Don't check invalid declarations to avoid emitting useless diagnostics.
3723    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3724      // C99 6.7.8p4. All file scoped initializers need to be constant.
3725      CheckForConstantInitializer(Init, DclT);
3726    }
3727  }
3728  // If the type changed, it means we had an incomplete type that was
3729  // completed by the initializer. For example:
3730  //   int ary[] = { 1, 3, 5 };
3731  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3732  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3733    VDecl->setType(DclT);
3734    Init->setType(DclT);
3735  }
3736
3737  Init = MaybeCreateCXXExprWithTemporaries(Init);
3738  // Attach the initializer to the decl.
3739  VDecl->setInit(Context, Init);
3740
3741  // If the previous declaration of VDecl was a tentative definition,
3742  // remove it from the set of tentative definitions.
3743  if (VDecl->getPreviousDeclaration() &&
3744      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3745    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3746    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3747  }
3748
3749  if (getLangOptions().CPlusPlus) {
3750    // Make sure we mark the destructor as used if necessary.
3751    QualType InitType = VDecl->getType();
3752    while (const ArrayType *Array = Context.getAsArrayType(InitType))
3753      InitType = Context.getBaseElementType(Array);
3754    if (InitType->isRecordType())
3755      FinalizeVarWithDestructor(VDecl, InitType);
3756  }
3757
3758  return;
3759}
3760
3761void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3762                                  bool TypeContainsUndeducedAuto) {
3763  Decl *RealDecl = dcl.getAs<Decl>();
3764
3765  // If there is no declaration, there was an error parsing it. Just ignore it.
3766  if (RealDecl == 0)
3767    return;
3768
3769  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3770    QualType Type = Var->getType();
3771
3772    // Record tentative definitions.
3773    if (Var->isTentativeDefinition(Context)) {
3774      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3775        InsertPair =
3776           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3777
3778      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3779      // want the second one in the map.
3780      InsertPair.first->second = Var;
3781
3782      // However, for the list, we don't care about the order, just make sure
3783      // that there are no dupes for a given declaration name.
3784      if (InsertPair.second)
3785        TentativeDefinitionList.push_back(Var->getDeclName());
3786    }
3787
3788    // C++ [dcl.init.ref]p3:
3789    //   The initializer can be omitted for a reference only in a
3790    //   parameter declaration (8.3.5), in the declaration of a
3791    //   function return type, in the declaration of a class member
3792    //   within its class declaration (9.2), and where the extern
3793    //   specifier is explicitly used.
3794    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3795      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3796        << Var->getDeclName()
3797        << SourceRange(Var->getLocation(), Var->getLocation());
3798      Var->setInvalidDecl();
3799      return;
3800    }
3801
3802    // C++0x [dcl.spec.auto]p3
3803    if (TypeContainsUndeducedAuto) {
3804      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3805        << Var->getDeclName() << Type;
3806      Var->setInvalidDecl();
3807      return;
3808    }
3809
3810    // An array without size is an incomplete type, and there are no special
3811    // rules in C++ to make such a definition acceptable.
3812    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3813        !Var->hasExternalStorage()) {
3814      Diag(Var->getLocation(),
3815           diag::err_typecheck_incomplete_array_needs_initializer);
3816      Var->setInvalidDecl();
3817      return;
3818    }
3819
3820    // C++ [temp.expl.spec]p15:
3821    //   An explicit specialization of a static data member of a template is a
3822    //   definition if the declaration includes an initializer; otherwise, it
3823    //   is a declaration.
3824    if (Var->isStaticDataMember() &&
3825        Var->getInstantiatedFromStaticDataMember() &&
3826        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3827      return;
3828
3829    // C++ [dcl.init]p9:
3830    //   If no initializer is specified for an object, and the object
3831    //   is of (possibly cv-qualified) non-POD class type (or array
3832    //   thereof), the object shall be default-initialized; if the
3833    //   object is of const-qualified type, the underlying class type
3834    //   shall have a user-declared default constructor.
3835    //
3836    // FIXME: Diagnose the "user-declared default constructor" bit.
3837    if (getLangOptions().CPlusPlus) {
3838      QualType InitType = Type;
3839      if (const ArrayType *Array = Context.getAsArrayType(Type))
3840        InitType = Context.getBaseElementType(Array);
3841      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3842          InitType->isRecordType() && !InitType->isDependentType()) {
3843        if (!RequireCompleteType(Var->getLocation(), InitType,
3844                                 diag::err_invalid_incomplete_type_use)) {
3845          InitializedEntity Entity
3846            = InitializedEntity::InitializeVariable(Var);
3847          InitializationKind Kind
3848            = InitializationKind::CreateDefault(Var->getLocation());
3849
3850          InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
3851          OwningExprResult Init = InitSeq.Perform(*this, Entity, Kind,
3852                                                  MultiExprArg(*this, 0, 0));
3853          if (Init.isInvalid())
3854            Var->setInvalidDecl();
3855          else {
3856            Var->setInit(Context,
3857                       MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
3858            FinalizeVarWithDestructor(Var, InitType);
3859          }
3860        } else {
3861          Var->setInvalidDecl();
3862        }
3863      }
3864
3865      // The variable can not have an abstract class type.
3866      if (RequireNonAbstractType(Var->getLocation(), Type,
3867                                 diag::err_abstract_type_in_decl,
3868                                 AbstractVariableType))
3869        Var->setInvalidDecl();
3870    }
3871
3872#if 0
3873    // FIXME: Temporarily disabled because we are not properly parsing
3874    // linkage specifications on declarations, e.g.,
3875    //
3876    //   extern "C" const CGPoint CGPointerZero;
3877    //
3878    // C++ [dcl.init]p9:
3879    //
3880    //     If no initializer is specified for an object, and the
3881    //     object is of (possibly cv-qualified) non-POD class type (or
3882    //     array thereof), the object shall be default-initialized; if
3883    //     the object is of const-qualified type, the underlying class
3884    //     type shall have a user-declared default
3885    //     constructor. Otherwise, if no initializer is specified for
3886    //     an object, the object and its subobjects, if any, have an
3887    //     indeterminate initial value; if the object or any of its
3888    //     subobjects are of const-qualified type, the program is
3889    //     ill-formed.
3890    //
3891    // This isn't technically an error in C, so we don't diagnose it.
3892    //
3893    // FIXME: Actually perform the POD/user-defined default
3894    // constructor check.
3895    if (getLangOptions().CPlusPlus &&
3896        Context.getCanonicalType(Type).isConstQualified() &&
3897        !Var->hasExternalStorage())
3898      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3899        << Var->getName()
3900        << SourceRange(Var->getLocation(), Var->getLocation());
3901#endif
3902  }
3903}
3904
3905Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3906                                                   DeclPtrTy *Group,
3907                                                   unsigned NumDecls) {
3908  llvm::SmallVector<Decl*, 8> Decls;
3909
3910  if (DS.isTypeSpecOwned())
3911    Decls.push_back((Decl*)DS.getTypeRep());
3912
3913  for (unsigned i = 0; i != NumDecls; ++i)
3914    if (Decl *D = Group[i].getAs<Decl>())
3915      Decls.push_back(D);
3916
3917  // Perform semantic analysis that depends on having fully processed both
3918  // the declarator and initializer.
3919  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3920    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3921    if (!IDecl)
3922      continue;
3923    QualType T = IDecl->getType();
3924
3925    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3926    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3927    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3928      if (T->isDependentType()) {
3929        // If T is dependent, we should not require a complete type.
3930        // (RequireCompleteType shouldn't be called with dependent types.)
3931        // But we still can at least check if we've got an array of unspecified
3932        // size without an initializer.
3933        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3934            !IDecl->getInit()) {
3935          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3936            << T;
3937          IDecl->setInvalidDecl();
3938        }
3939      } else if (!IDecl->isInvalidDecl()) {
3940        // If T is an incomplete array type with an initializer list that is
3941        // dependent on something, its size has not been fixed. We could attempt
3942        // to fix the size for such arrays, but we would still have to check
3943        // here for initializers containing a C++0x vararg expansion, e.g.
3944        // template <typename... Args> void f(Args... args) {
3945        //   int vals[] = { args };
3946        // }
3947        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3948        Expr *Init = IDecl->getInit();
3949        if (IAT && Init &&
3950            (Init->isTypeDependent() || Init->isValueDependent())) {
3951          // Check that the member type of the array is complete, at least.
3952          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3953                                  diag::err_typecheck_decl_incomplete_type))
3954            IDecl->setInvalidDecl();
3955        } else if (RequireCompleteType(IDecl->getLocation(), T,
3956                                      diag::err_typecheck_decl_incomplete_type))
3957          IDecl->setInvalidDecl();
3958      }
3959    }
3960    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3961    // object that has file scope without an initializer, and without a
3962    // storage-class specifier or with the storage-class specifier "static",
3963    // constitutes a tentative definition. Note: A tentative definition with
3964    // external linkage is valid (C99 6.2.2p5).
3965    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3966      if (const IncompleteArrayType *ArrayT
3967          = Context.getAsIncompleteArrayType(T)) {
3968        if (RequireCompleteType(IDecl->getLocation(),
3969                                ArrayT->getElementType(),
3970                                diag::err_illegal_decl_array_incomplete_type))
3971          IDecl->setInvalidDecl();
3972      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3973        // C99 6.9.2p3: If the declaration of an identifier for an object is
3974        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3975        // declared type shall not be an incomplete type.
3976        // NOTE: code such as the following
3977        //     static struct s;
3978        //     struct s { int a; };
3979        // is accepted by gcc. Hence here we issue a warning instead of
3980        // an error and we do not invalidate the static declaration.
3981        // NOTE: to avoid multiple warnings, only check the first declaration.
3982        if (IDecl->getPreviousDeclaration() == 0)
3983          RequireCompleteType(IDecl->getLocation(), T,
3984                              diag::ext_typecheck_decl_incomplete_type);
3985      }
3986    }
3987  }
3988  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3989                                                   Decls.data(), Decls.size()));
3990}
3991
3992
3993/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3994/// to introduce parameters into function prototype scope.
3995Sema::DeclPtrTy
3996Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3997  const DeclSpec &DS = D.getDeclSpec();
3998
3999  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4000  VarDecl::StorageClass StorageClass = VarDecl::None;
4001  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4002    StorageClass = VarDecl::Register;
4003  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4004    Diag(DS.getStorageClassSpecLoc(),
4005         diag::err_invalid_storage_class_in_func_decl);
4006    D.getMutableDeclSpec().ClearStorageClassSpecs();
4007  }
4008
4009  if (D.getDeclSpec().isThreadSpecified())
4010    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4011
4012  DiagnoseFunctionSpecifiers(D);
4013
4014  // Check that there are no default arguments inside the type of this
4015  // parameter (C++ only).
4016  if (getLangOptions().CPlusPlus)
4017    CheckExtraCXXDefaultArguments(D);
4018
4019  TypeSourceInfo *TInfo = 0;
4020  TagDecl *OwnedDecl = 0;
4021  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
4022
4023  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4024    // C++ [dcl.fct]p6:
4025    //   Types shall not be defined in return or parameter types.
4026    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4027      << Context.getTypeDeclType(OwnedDecl);
4028  }
4029
4030  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
4031  // Can this happen for params?  We already checked that they don't conflict
4032  // among each other.  Here they can only shadow globals, which is ok.
4033  IdentifierInfo *II = D.getIdentifier();
4034  if (II) {
4035    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
4036      if (PrevDecl->isTemplateParameter()) {
4037        // Maybe we will complain about the shadowed template parameter.
4038        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4039        // Just pretend that we didn't see the previous declaration.
4040        PrevDecl = 0;
4041      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
4042        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4043
4044        // Recover by removing the name
4045        II = 0;
4046        D.SetIdentifier(0, D.getIdentifierLoc());
4047      }
4048    }
4049  }
4050
4051  // Parameters can not be abstract class types.
4052  // For record types, this is done by the AbstractClassUsageDiagnoser once
4053  // the class has been completely parsed.
4054  if (!CurContext->isRecord() &&
4055      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
4056                             diag::err_abstract_type_in_decl,
4057                             AbstractParamType))
4058    D.setInvalidType(true);
4059
4060  QualType T = adjustParameterType(parmDeclType);
4061
4062  ParmVarDecl *New
4063    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
4064                          T, TInfo, StorageClass, 0);
4065
4066  if (D.isInvalidType())
4067    New->setInvalidDecl();
4068
4069  // Parameter declarators cannot be interface types. All ObjC objects are
4070  // passed by reference.
4071  if (T->isObjCInterfaceType()) {
4072    Diag(D.getIdentifierLoc(),
4073         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4074    New->setInvalidDecl();
4075  }
4076
4077  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4078  if (D.getCXXScopeSpec().isSet()) {
4079    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4080      << D.getCXXScopeSpec().getRange();
4081    New->setInvalidDecl();
4082  }
4083
4084  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4085  // duration shall not be qualified by an address-space qualifier."
4086  // Since all parameters have automatic store duration, they can not have
4087  // an address space.
4088  if (T.getAddressSpace() != 0) {
4089    Diag(D.getIdentifierLoc(),
4090         diag::err_arg_with_address_space);
4091    New->setInvalidDecl();
4092  }
4093
4094
4095  // Add the parameter declaration into this scope.
4096  S->AddDecl(DeclPtrTy::make(New));
4097  if (II)
4098    IdResolver.AddDecl(New);
4099
4100  ProcessDeclAttributes(S, New, D);
4101
4102  if (New->hasAttr<BlocksAttr>()) {
4103    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4104  }
4105  return DeclPtrTy::make(New);
4106}
4107
4108void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4109                                           SourceLocation LocAfterDecls) {
4110  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4111         "Not a function declarator!");
4112  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4113
4114  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4115  // for a K&R function.
4116  if (!FTI.hasPrototype) {
4117    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4118      --i;
4119      if (FTI.ArgInfo[i].Param == 0) {
4120        llvm::SmallString<256> Code;
4121        llvm::raw_svector_ostream(Code) << "  int "
4122                                        << FTI.ArgInfo[i].Ident->getName()
4123                                        << ";\n";
4124        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4125          << FTI.ArgInfo[i].Ident
4126          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4127
4128        // Implicitly declare the argument as type 'int' for lack of a better
4129        // type.
4130        DeclSpec DS;
4131        const char* PrevSpec; // unused
4132        unsigned DiagID; // unused
4133        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4134                           PrevSpec, DiagID);
4135        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4136        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4137        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4138      }
4139    }
4140  }
4141}
4142
4143Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4144                                              Declarator &D) {
4145  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4146  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4147         "Not a function declarator!");
4148  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4149
4150  if (FTI.hasPrototype) {
4151    // FIXME: Diagnose arguments without names in C.
4152  }
4153
4154  Scope *ParentScope = FnBodyScope->getParent();
4155
4156  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4157                                  MultiTemplateParamsArg(*this),
4158                                  /*IsFunctionDefinition=*/true);
4159  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4160}
4161
4162static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4163  // Don't warn about invalid declarations.
4164  if (FD->isInvalidDecl())
4165    return false;
4166
4167  // Or declarations that aren't global.
4168  if (!FD->isGlobal())
4169    return false;
4170
4171  // Don't warn about C++ member functions.
4172  if (isa<CXXMethodDecl>(FD))
4173    return false;
4174
4175  // Don't warn about 'main'.
4176  if (FD->isMain())
4177    return false;
4178
4179  // Don't warn about inline functions.
4180  if (FD->isInlineSpecified())
4181    return false;
4182
4183  // Don't warn about function templates.
4184  if (FD->getDescribedFunctionTemplate())
4185    return false;
4186
4187  // Don't warn about function template specializations.
4188  if (FD->isFunctionTemplateSpecialization())
4189    return false;
4190
4191  bool MissingPrototype = true;
4192  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4193       Prev; Prev = Prev->getPreviousDeclaration()) {
4194    // Ignore any declarations that occur in function or method
4195    // scope, because they aren't visible from the header.
4196    if (Prev->getDeclContext()->isFunctionOrMethod())
4197      continue;
4198
4199    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4200    break;
4201  }
4202
4203  return MissingPrototype;
4204}
4205
4206Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4207  // Clear the last template instantiation error context.
4208  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4209
4210  if (!D)
4211    return D;
4212  FunctionDecl *FD = 0;
4213
4214  if (FunctionTemplateDecl *FunTmpl
4215        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4216    FD = FunTmpl->getTemplatedDecl();
4217  else
4218    FD = cast<FunctionDecl>(D.getAs<Decl>());
4219
4220  CurFunctionNeedsScopeChecking = false;
4221
4222  // See if this is a redefinition.
4223  const FunctionDecl *Definition;
4224  if (FD->getBody(Definition)) {
4225    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4226    Diag(Definition->getLocation(), diag::note_previous_definition);
4227  }
4228
4229  // Builtin functions cannot be defined.
4230  if (unsigned BuiltinID = FD->getBuiltinID()) {
4231    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4232      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4233      FD->setInvalidDecl();
4234    }
4235  }
4236
4237  // The return type of a function definition must be complete
4238  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4239  QualType ResultType = FD->getResultType();
4240  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4241      !FD->isInvalidDecl() &&
4242      RequireCompleteType(FD->getLocation(), ResultType,
4243                          diag::err_func_def_incomplete_result))
4244    FD->setInvalidDecl();
4245
4246  // GNU warning -Wmissing-prototypes:
4247  //   Warn if a global function is defined without a previous
4248  //   prototype declaration. This warning is issued even if the
4249  //   definition itself provides a prototype. The aim is to detect
4250  //   global functions that fail to be declared in header files.
4251  if (ShouldWarnAboutMissingPrototype(FD))
4252    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4253
4254  if (FnBodyScope)
4255    PushDeclContext(FnBodyScope, FD);
4256
4257  // Check the validity of our function parameters
4258  CheckParmsForFunctionDef(FD);
4259
4260  // Introduce our parameters into the function scope
4261  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4262    ParmVarDecl *Param = FD->getParamDecl(p);
4263    Param->setOwningFunction(FD);
4264
4265    // If this has an identifier, add it to the scope stack.
4266    if (Param->getIdentifier() && FnBodyScope)
4267      PushOnScopeChains(Param, FnBodyScope);
4268  }
4269
4270  // Checking attributes of current function definition
4271  // dllimport attribute.
4272  if (FD->getAttr<DLLImportAttr>() &&
4273      (!FD->getAttr<DLLExportAttr>())) {
4274    // dllimport attribute cannot be applied to definition.
4275    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4276      Diag(FD->getLocation(),
4277           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4278        << "dllimport";
4279      FD->setInvalidDecl();
4280      return DeclPtrTy::make(FD);
4281    } else {
4282      // If a symbol previously declared dllimport is later defined, the
4283      // attribute is ignored in subsequent references, and a warning is
4284      // emitted.
4285      Diag(FD->getLocation(),
4286           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4287        << FD->getNameAsCString() << "dllimport";
4288    }
4289  }
4290  return DeclPtrTy::make(FD);
4291}
4292
4293Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4294  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4295}
4296
4297Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4298                                              bool IsInstantiation) {
4299  Decl *dcl = D.getAs<Decl>();
4300  Stmt *Body = BodyArg.takeAs<Stmt>();
4301
4302  FunctionDecl *FD = 0;
4303  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4304  if (FunTmpl)
4305    FD = FunTmpl->getTemplatedDecl();
4306  else
4307    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4308
4309  if (FD) {
4310    FD->setBody(Body);
4311    if (FD->isMain())
4312      // C and C++ allow for main to automagically return 0.
4313      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4314      FD->setHasImplicitReturnZero(true);
4315    else
4316      CheckFallThroughForFunctionDef(FD, Body);
4317
4318    if (!FD->isInvalidDecl())
4319      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4320
4321    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4322      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4323
4324    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4325  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4326    assert(MD == getCurMethodDecl() && "Method parsing confused");
4327    MD->setBody(Body);
4328    CheckFallThroughForFunctionDef(MD, Body);
4329    MD->setEndLoc(Body->getLocEnd());
4330
4331    if (!MD->isInvalidDecl())
4332      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4333  } else {
4334    Body->Destroy(Context);
4335    return DeclPtrTy();
4336  }
4337  if (!IsInstantiation)
4338    PopDeclContext();
4339
4340  // Verify and clean out per-function state.
4341
4342  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4343
4344  // Check goto/label use.
4345  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4346       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4347    LabelStmt *L = I->second;
4348
4349    // Verify that we have no forward references left.  If so, there was a goto
4350    // or address of a label taken, but no definition of it.  Label fwd
4351    // definitions are indicated with a null substmt.
4352    if (L->getSubStmt() != 0)
4353      continue;
4354
4355    // Emit error.
4356    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4357
4358    // At this point, we have gotos that use the bogus label.  Stitch it into
4359    // the function body so that they aren't leaked and that the AST is well
4360    // formed.
4361    if (Body == 0) {
4362      // The whole function wasn't parsed correctly, just delete this.
4363      L->Destroy(Context);
4364      continue;
4365    }
4366
4367    // Otherwise, the body is valid: we want to stitch the label decl into the
4368    // function somewhere so that it is properly owned and so that the goto
4369    // has a valid target.  Do this by creating a new compound stmt with the
4370    // label in it.
4371
4372    // Give the label a sub-statement.
4373    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4374
4375    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4376                               cast<CXXTryStmt>(Body)->getTryBlock() :
4377                               cast<CompoundStmt>(Body);
4378    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4379    Elements.push_back(L);
4380    Compound->setStmts(Context, &Elements[0], Elements.size());
4381  }
4382  FunctionLabelMap.clear();
4383
4384  if (!Body) return D;
4385
4386  // Verify that that gotos and switch cases don't jump into scopes illegally.
4387  if (CurFunctionNeedsScopeChecking)
4388    DiagnoseInvalidJumps(Body);
4389
4390  // C++ constructors that have function-try-blocks can't have return
4391  // statements in the handlers of that block. (C++ [except.handle]p14)
4392  // Verify this.
4393  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4394    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4395
4396  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4397    MarkBaseAndMemberDestructorsReferenced(Destructor);
4398
4399  // If any errors have occurred, clear out any temporaries that may have
4400  // been leftover. This ensures that these temporaries won't be picked up for
4401  // deletion in some later function.
4402  if (PP.getDiagnostics().hasErrorOccurred())
4403    ExprTemporaries.clear();
4404
4405  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4406  return D;
4407}
4408
4409/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4410/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4411NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4412                                          IdentifierInfo &II, Scope *S) {
4413  // Before we produce a declaration for an implicitly defined
4414  // function, see whether there was a locally-scoped declaration of
4415  // this name as a function or variable. If so, use that
4416  // (non-visible) declaration, and complain about it.
4417  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4418    = LocallyScopedExternalDecls.find(&II);
4419  if (Pos != LocallyScopedExternalDecls.end()) {
4420    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4421    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4422    return Pos->second;
4423  }
4424
4425  // Extension in C99.  Legal in C90, but warn about it.
4426  if (II.getName().startswith("__builtin_"))
4427    Diag(Loc, diag::warn_builtin_unknown) << &II;
4428  else if (getLangOptions().C99)
4429    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4430  else
4431    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4432
4433  // Set a Declarator for the implicit definition: int foo();
4434  const char *Dummy;
4435  DeclSpec DS;
4436  unsigned DiagID;
4437  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4438  Error = Error; // Silence warning.
4439  assert(!Error && "Error setting up implicit decl!");
4440  Declarator D(DS, Declarator::BlockContext);
4441  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4442                                             0, 0, false, SourceLocation(),
4443                                             false, 0,0,0, Loc, Loc, D),
4444                SourceLocation());
4445  D.SetIdentifier(&II, Loc);
4446
4447  // Insert this function into translation-unit scope.
4448
4449  DeclContext *PrevDC = CurContext;
4450  CurContext = Context.getTranslationUnitDecl();
4451
4452  FunctionDecl *FD =
4453 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4454  FD->setImplicit();
4455
4456  CurContext = PrevDC;
4457
4458  AddKnownFunctionAttributes(FD);
4459
4460  return FD;
4461}
4462
4463/// \brief Adds any function attributes that we know a priori based on
4464/// the declaration of this function.
4465///
4466/// These attributes can apply both to implicitly-declared builtins
4467/// (like __builtin___printf_chk) or to library-declared functions
4468/// like NSLog or printf.
4469void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4470  if (FD->isInvalidDecl())
4471    return;
4472
4473  // If this is a built-in function, map its builtin attributes to
4474  // actual attributes.
4475  if (unsigned BuiltinID = FD->getBuiltinID()) {
4476    // Handle printf-formatting attributes.
4477    unsigned FormatIdx;
4478    bool HasVAListArg;
4479    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4480      if (!FD->getAttr<FormatAttr>())
4481        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4482                                             HasVAListArg ? 0 : FormatIdx + 2));
4483    }
4484
4485    // Mark const if we don't care about errno and that is the only
4486    // thing preventing the function from being const. This allows
4487    // IRgen to use LLVM intrinsics for such functions.
4488    if (!getLangOptions().MathErrno &&
4489        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4490      if (!FD->getAttr<ConstAttr>())
4491        FD->addAttr(::new (Context) ConstAttr());
4492    }
4493
4494    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4495      FD->addAttr(::new (Context) NoReturnAttr());
4496    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
4497      FD->addAttr(::new (Context) NoThrowAttr());
4498    if (Context.BuiltinInfo.isConst(BuiltinID))
4499      FD->addAttr(::new (Context) ConstAttr());
4500  }
4501
4502  IdentifierInfo *Name = FD->getIdentifier();
4503  if (!Name)
4504    return;
4505  if ((!getLangOptions().CPlusPlus &&
4506       FD->getDeclContext()->isTranslationUnit()) ||
4507      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4508       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4509       LinkageSpecDecl::lang_c)) {
4510    // Okay: this could be a libc/libm/Objective-C function we know
4511    // about.
4512  } else
4513    return;
4514
4515  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4516    // FIXME: NSLog and NSLogv should be target specific
4517    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4518      // FIXME: We known better than our headers.
4519      const_cast<FormatAttr *>(Format)->setType("printf");
4520    } else
4521      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4522                                             Name->isStr("NSLogv") ? 0 : 2));
4523  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4524    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4525    // target-specific builtins, perhaps?
4526    if (!FD->getAttr<FormatAttr>())
4527      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4528                                             Name->isStr("vasprintf") ? 0 : 3));
4529  }
4530}
4531
4532TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4533                                    TypeSourceInfo *TInfo) {
4534  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4535  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4536
4537  if (!TInfo) {
4538    assert(D.isInvalidType() && "no declarator info for valid type");
4539    TInfo = Context.getTrivialTypeSourceInfo(T);
4540  }
4541
4542  // Scope manipulation handled by caller.
4543  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4544                                           D.getIdentifierLoc(),
4545                                           D.getIdentifier(),
4546                                           TInfo);
4547
4548  if (const TagType *TT = T->getAs<TagType>()) {
4549    TagDecl *TD = TT->getDecl();
4550
4551    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4552    // keep track of the TypedefDecl.
4553    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4554      TD->setTypedefForAnonDecl(NewTD);
4555  }
4556
4557  if (D.isInvalidType())
4558    NewTD->setInvalidDecl();
4559  return NewTD;
4560}
4561
4562
4563/// \brief Determine whether a tag with a given kind is acceptable
4564/// as a redeclaration of the given tag declaration.
4565///
4566/// \returns true if the new tag kind is acceptable, false otherwise.
4567bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4568                                        TagDecl::TagKind NewTag,
4569                                        SourceLocation NewTagLoc,
4570                                        const IdentifierInfo &Name) {
4571  // C++ [dcl.type.elab]p3:
4572  //   The class-key or enum keyword present in the
4573  //   elaborated-type-specifier shall agree in kind with the
4574  //   declaration to which the name in theelaborated-type-specifier
4575  //   refers. This rule also applies to the form of
4576  //   elaborated-type-specifier that declares a class-name or
4577  //   friend class since it can be construed as referring to the
4578  //   definition of the class. Thus, in any
4579  //   elaborated-type-specifier, the enum keyword shall be used to
4580  //   refer to an enumeration (7.2), the union class-keyshall be
4581  //   used to refer to a union (clause 9), and either the class or
4582  //   struct class-key shall be used to refer to a class (clause 9)
4583  //   declared using the class or struct class-key.
4584  TagDecl::TagKind OldTag = Previous->getTagKind();
4585  if (OldTag == NewTag)
4586    return true;
4587
4588  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4589      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4590    // Warn about the struct/class tag mismatch.
4591    bool isTemplate = false;
4592    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4593      isTemplate = Record->getDescribedClassTemplate();
4594
4595    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4596      << (NewTag == TagDecl::TK_class)
4597      << isTemplate << &Name
4598      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4599                              OldTag == TagDecl::TK_class? "class" : "struct");
4600    Diag(Previous->getLocation(), diag::note_previous_use);
4601    return true;
4602  }
4603  return false;
4604}
4605
4606/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4607/// former case, Name will be non-null.  In the later case, Name will be null.
4608/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4609/// reference/declaration/definition of a tag.
4610Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4611                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4612                               IdentifierInfo *Name, SourceLocation NameLoc,
4613                               AttributeList *Attr, AccessSpecifier AS,
4614                               MultiTemplateParamsArg TemplateParameterLists,
4615                               bool &OwnedDecl, bool &IsDependent) {
4616  // If this is not a definition, it must have a name.
4617  assert((Name != 0 || TUK == TUK_Definition) &&
4618         "Nameless record must be a definition!");
4619
4620  OwnedDecl = false;
4621  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4622
4623  // FIXME: Check explicit specializations more carefully.
4624  bool isExplicitSpecialization = false;
4625  if (TUK != TUK_Reference) {
4626    if (TemplateParameterList *TemplateParams
4627          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4628                        (TemplateParameterList**)TemplateParameterLists.get(),
4629                                              TemplateParameterLists.size(),
4630                                                    isExplicitSpecialization)) {
4631      if (TemplateParams->size() > 0) {
4632        // This is a declaration or definition of a class template (which may
4633        // be a member of another template).
4634        OwnedDecl = false;
4635        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4636                                               SS, Name, NameLoc, Attr,
4637                                               TemplateParams,
4638                                               AS);
4639        TemplateParameterLists.release();
4640        return Result.get();
4641      } else {
4642        // The "template<>" header is extraneous.
4643        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4644          << ElaboratedType::getNameForTagKind(Kind) << Name;
4645        isExplicitSpecialization = true;
4646      }
4647    }
4648
4649    TemplateParameterLists.release();
4650  }
4651
4652  DeclContext *SearchDC = CurContext;
4653  DeclContext *DC = CurContext;
4654  bool isStdBadAlloc = false;
4655  bool Invalid = false;
4656
4657  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4658                                                   : NotForRedeclaration);
4659
4660  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4661
4662  if (Name && SS.isNotEmpty()) {
4663    // We have a nested-name tag ('struct foo::bar').
4664
4665    // Check for invalid 'foo::'.
4666    if (SS.isInvalid()) {
4667      Name = 0;
4668      goto CreateNewDecl;
4669    }
4670
4671    // If this is a friend or a reference to a class in a dependent
4672    // context, don't try to make a decl for it.
4673    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4674      DC = computeDeclContext(SS, false);
4675      if (!DC) {
4676        IsDependent = true;
4677        return DeclPtrTy();
4678      }
4679    }
4680
4681    if (RequireCompleteDeclContext(SS))
4682      return DeclPtrTy::make((Decl *)0);
4683
4684    DC = computeDeclContext(SS, true);
4685    SearchDC = DC;
4686    // Look-up name inside 'foo::'.
4687    LookupQualifiedName(Previous, DC);
4688
4689    if (Previous.isAmbiguous())
4690      return DeclPtrTy();
4691
4692    // A tag 'foo::bar' must already exist.
4693    if (Previous.empty()) {
4694      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4695      Name = 0;
4696      Invalid = true;
4697      goto CreateNewDecl;
4698    }
4699  } else if (Name) {
4700    // If this is a named struct, check to see if there was a previous forward
4701    // declaration or definition.
4702    // FIXME: We're looking into outer scopes here, even when we
4703    // shouldn't be. Doing so can result in ambiguities that we
4704    // shouldn't be diagnosing.
4705    LookupName(Previous, S);
4706
4707    // Note:  there used to be some attempt at recovery here.
4708    if (Previous.isAmbiguous())
4709      return DeclPtrTy();
4710
4711    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4712      // FIXME: This makes sure that we ignore the contexts associated
4713      // with C structs, unions, and enums when looking for a matching
4714      // tag declaration or definition. See the similar lookup tweak
4715      // in Sema::LookupName; is there a better way to deal with this?
4716      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4717        SearchDC = SearchDC->getParent();
4718    }
4719  }
4720
4721  if (Previous.isSingleResult() &&
4722      Previous.getFoundDecl()->isTemplateParameter()) {
4723    // Maybe we will complain about the shadowed template parameter.
4724    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4725    // Just pretend that we didn't see the previous declaration.
4726    Previous.clear();
4727  }
4728
4729  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4730      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4731    // This is a declaration of or a reference to "std::bad_alloc".
4732    isStdBadAlloc = true;
4733
4734    if (Previous.empty() && StdBadAlloc) {
4735      // std::bad_alloc has been implicitly declared (but made invisible to
4736      // name lookup). Fill in this implicit declaration as the previous
4737      // declaration, so that the declarations get chained appropriately.
4738      Previous.addDecl(StdBadAlloc);
4739    }
4740  }
4741
4742  if (!Previous.empty()) {
4743    assert(Previous.isSingleResult());
4744    NamedDecl *PrevDecl = Previous.getFoundDecl();
4745    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4746      // If this is a use of a previous tag, or if the tag is already declared
4747      // in the same scope (so that the definition/declaration completes or
4748      // rementions the tag), reuse the decl.
4749      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4750          isDeclInScope(PrevDecl, SearchDC, S)) {
4751        // Make sure that this wasn't declared as an enum and now used as a
4752        // struct or something similar.
4753        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4754          bool SafeToContinue
4755            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4756               Kind != TagDecl::TK_enum);
4757          if (SafeToContinue)
4758            Diag(KWLoc, diag::err_use_with_wrong_tag)
4759              << Name
4760              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4761                                                  PrevTagDecl->getKindName());
4762          else
4763            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4764          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4765
4766          if (SafeToContinue)
4767            Kind = PrevTagDecl->getTagKind();
4768          else {
4769            // Recover by making this an anonymous redefinition.
4770            Name = 0;
4771            Previous.clear();
4772            Invalid = true;
4773          }
4774        }
4775
4776        if (!Invalid) {
4777          // If this is a use, just return the declaration we found.
4778
4779          // FIXME: In the future, return a variant or some other clue
4780          // for the consumer of this Decl to know it doesn't own it.
4781          // For our current ASTs this shouldn't be a problem, but will
4782          // need to be changed with DeclGroups.
4783          if (TUK == TUK_Reference || TUK == TUK_Friend)
4784            return DeclPtrTy::make(PrevTagDecl);
4785
4786          // Diagnose attempts to redefine a tag.
4787          if (TUK == TUK_Definition) {
4788            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4789              // If we're defining a specialization and the previous definition
4790              // is from an implicit instantiation, don't emit an error
4791              // here; we'll catch this in the general case below.
4792              if (!isExplicitSpecialization ||
4793                  !isa<CXXRecordDecl>(Def) ||
4794                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4795                                               == TSK_ExplicitSpecialization) {
4796                Diag(NameLoc, diag::err_redefinition) << Name;
4797                Diag(Def->getLocation(), diag::note_previous_definition);
4798                // If this is a redefinition, recover by making this
4799                // struct be anonymous, which will make any later
4800                // references get the previous definition.
4801                Name = 0;
4802                Previous.clear();
4803                Invalid = true;
4804              }
4805            } else {
4806              // If the type is currently being defined, complain
4807              // about a nested redefinition.
4808              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4809              if (Tag->isBeingDefined()) {
4810                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4811                Diag(PrevTagDecl->getLocation(),
4812                     diag::note_previous_definition);
4813                Name = 0;
4814                Previous.clear();
4815                Invalid = true;
4816              }
4817            }
4818
4819            // Okay, this is definition of a previously declared or referenced
4820            // tag PrevDecl. We're going to create a new Decl for it.
4821          }
4822        }
4823        // If we get here we have (another) forward declaration or we
4824        // have a definition.  Just create a new decl.
4825
4826      } else {
4827        // If we get here, this is a definition of a new tag type in a nested
4828        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4829        // new decl/type.  We set PrevDecl to NULL so that the entities
4830        // have distinct types.
4831        Previous.clear();
4832      }
4833      // If we get here, we're going to create a new Decl. If PrevDecl
4834      // is non-NULL, it's a definition of the tag declared by
4835      // PrevDecl. If it's NULL, we have a new definition.
4836    } else {
4837      // PrevDecl is a namespace, template, or anything else
4838      // that lives in the IDNS_Tag identifier namespace.
4839      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4840        // The tag name clashes with a namespace name, issue an error and
4841        // recover by making this tag be anonymous.
4842        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4843        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4844        Name = 0;
4845        Previous.clear();
4846        Invalid = true;
4847      } else {
4848        // The existing declaration isn't relevant to us; we're in a
4849        // new scope, so clear out the previous declaration.
4850        Previous.clear();
4851      }
4852    }
4853  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4854    // C++ [basic.scope.pdecl]p5:
4855    //   -- for an elaborated-type-specifier of the form
4856    //
4857    //          class-key identifier
4858    //
4859    //      if the elaborated-type-specifier is used in the
4860    //      decl-specifier-seq or parameter-declaration-clause of a
4861    //      function defined in namespace scope, the identifier is
4862    //      declared as a class-name in the namespace that contains
4863    //      the declaration; otherwise, except as a friend
4864    //      declaration, the identifier is declared in the smallest
4865    //      non-class, non-function-prototype scope that contains the
4866    //      declaration.
4867    //
4868    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4869    // C structs and unions.
4870    //
4871    // It is an error in C++ to declare (rather than define) an enum
4872    // type, including via an elaborated type specifier.  We'll
4873    // diagnose that later; for now, declare the enum in the same
4874    // scope as we would have picked for any other tag type.
4875    //
4876    // GNU C also supports this behavior as part of its incomplete
4877    // enum types extension, while GNU C++ does not.
4878    //
4879    // Find the context where we'll be declaring the tag.
4880    // FIXME: We would like to maintain the current DeclContext as the
4881    // lexical context,
4882    while (SearchDC->isRecord())
4883      SearchDC = SearchDC->getParent();
4884
4885    // Find the scope where we'll be declaring the tag.
4886    while (S->isClassScope() ||
4887           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4888           ((S->getFlags() & Scope::DeclScope) == 0) ||
4889           (S->getEntity() &&
4890            ((DeclContext *)S->getEntity())->isTransparentContext()))
4891      S = S->getParent();
4892
4893  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4894    // C++ [namespace.memdef]p3:
4895    //   If a friend declaration in a non-local class first declares a
4896    //   class or function, the friend class or function is a member of
4897    //   the innermost enclosing namespace.
4898    while (!SearchDC->isFileContext())
4899      SearchDC = SearchDC->getParent();
4900
4901    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4902    while (S->getEntity() != SearchDC)
4903      S = S->getParent();
4904  }
4905
4906CreateNewDecl:
4907
4908  TagDecl *PrevDecl = 0;
4909  if (Previous.isSingleResult())
4910    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4911
4912  // If there is an identifier, use the location of the identifier as the
4913  // location of the decl, otherwise use the location of the struct/union
4914  // keyword.
4915  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4916
4917  // Otherwise, create a new declaration. If there is a previous
4918  // declaration of the same entity, the two will be linked via
4919  // PrevDecl.
4920  TagDecl *New;
4921
4922  if (Kind == TagDecl::TK_enum) {
4923    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4924    // enum X { A, B, C } D;    D should chain to X.
4925    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4926                           cast_or_null<EnumDecl>(PrevDecl));
4927    // If this is an undefined enum, warn.
4928    if (TUK != TUK_Definition && !Invalid)  {
4929      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4930                                              : diag::ext_forward_ref_enum;
4931      Diag(Loc, DK);
4932    }
4933  } else {
4934    // struct/union/class
4935
4936    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4937    // struct X { int A; } D;    D should chain to X.
4938    if (getLangOptions().CPlusPlus) {
4939      // FIXME: Look for a way to use RecordDecl for simple structs.
4940      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4941                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4942
4943      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4944        StdBadAlloc = cast<CXXRecordDecl>(New);
4945    } else
4946      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4947                               cast_or_null<RecordDecl>(PrevDecl));
4948  }
4949
4950  if (Kind != TagDecl::TK_enum) {
4951    // Handle #pragma pack: if the #pragma pack stack has non-default
4952    // alignment, make up a packed attribute for this decl. These
4953    // attributes are checked when the ASTContext lays out the
4954    // structure.
4955    //
4956    // It is important for implementing the correct semantics that this
4957    // happen here (in act on tag decl). The #pragma pack stack is
4958    // maintained as a result of parser callbacks which can occur at
4959    // many points during the parsing of a struct declaration (because
4960    // the #pragma tokens are effectively skipped over during the
4961    // parsing of the struct).
4962    if (unsigned Alignment = getPragmaPackAlignment())
4963      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4964  }
4965
4966  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4967    // C++ [dcl.typedef]p3:
4968    //   [...] Similarly, in a given scope, a class or enumeration
4969    //   shall not be declared with the same name as a typedef-name
4970    //   that is declared in that scope and refers to a type other
4971    //   than the class or enumeration itself.
4972    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4973                        ForRedeclaration);
4974    LookupName(Lookup, S);
4975    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4976    NamedDecl *PrevTypedefNamed = PrevTypedef;
4977    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4978        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4979          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4980      Diag(Loc, diag::err_tag_definition_of_typedef)
4981        << Context.getTypeDeclType(New)
4982        << PrevTypedef->getUnderlyingType();
4983      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4984      Invalid = true;
4985    }
4986  }
4987
4988  // If this is a specialization of a member class (of a class template),
4989  // check the specialization.
4990  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4991    Invalid = true;
4992
4993  if (Invalid)
4994    New->setInvalidDecl();
4995
4996  if (Attr)
4997    ProcessDeclAttributeList(S, New, Attr);
4998
4999  // If we're declaring or defining a tag in function prototype scope
5000  // in C, note that this type can only be used within the function.
5001  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5002    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5003
5004  // Set the lexical context. If the tag has a C++ scope specifier, the
5005  // lexical context will be different from the semantic context.
5006  New->setLexicalDeclContext(CurContext);
5007
5008  // Mark this as a friend decl if applicable.
5009  if (TUK == TUK_Friend)
5010    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5011
5012  // Set the access specifier.
5013  if (!Invalid && TUK != TUK_Friend)
5014    SetMemberAccessSpecifier(New, PrevDecl, AS);
5015
5016  if (TUK == TUK_Definition)
5017    New->startDefinition();
5018
5019  // If this has an identifier, add it to the scope stack.
5020  if (TUK == TUK_Friend) {
5021    // We might be replacing an existing declaration in the lookup tables;
5022    // if so, borrow its access specifier.
5023    if (PrevDecl)
5024      New->setAccess(PrevDecl->getAccess());
5025
5026    // Friend tag decls are visible in fairly strange ways.
5027    if (!CurContext->isDependentContext()) {
5028      DeclContext *DC = New->getDeclContext()->getLookupContext();
5029      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5030      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5031        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5032    }
5033  } else if (Name) {
5034    S = getNonFieldDeclScope(S);
5035    PushOnScopeChains(New, S);
5036  } else {
5037    CurContext->addDecl(New);
5038  }
5039
5040  // If this is the C FILE type, notify the AST context.
5041  if (IdentifierInfo *II = New->getIdentifier())
5042    if (!New->isInvalidDecl() &&
5043        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
5044        II->isStr("FILE"))
5045      Context.setFILEDecl(New);
5046
5047  OwnedDecl = true;
5048  return DeclPtrTy::make(New);
5049}
5050
5051void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
5052  AdjustDeclIfTemplate(TagD);
5053  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5054
5055  // Enter the tag context.
5056  PushDeclContext(S, Tag);
5057}
5058
5059void Sema::ActOnStartCXXMemberDeclarations(Scope *S, DeclPtrTy TagD,
5060                                           SourceLocation LBraceLoc) {
5061  AdjustDeclIfTemplate(TagD);
5062  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD.getAs<Decl>());
5063
5064  FieldCollector->StartClass();
5065
5066  if (!Record->getIdentifier())
5067    return;
5068
5069  // C++ [class]p2:
5070  //   [...] The class-name is also inserted into the scope of the
5071  //   class itself; this is known as the injected-class-name. For
5072  //   purposes of access checking, the injected-class-name is treated
5073  //   as if it were a public member name.
5074  CXXRecordDecl *InjectedClassName
5075    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5076                            CurContext, Record->getLocation(),
5077                            Record->getIdentifier(),
5078                            Record->getTagKeywordLoc(),
5079                            Record);
5080  InjectedClassName->setImplicit();
5081  InjectedClassName->setAccess(AS_public);
5082  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5083      InjectedClassName->setDescribedClassTemplate(Template);
5084  PushOnScopeChains(InjectedClassName, S);
5085  assert(InjectedClassName->isInjectedClassName() &&
5086         "Broken injected-class-name");
5087}
5088
5089void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
5090                                    SourceLocation RBraceLoc) {
5091  AdjustDeclIfTemplate(TagD);
5092  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
5093  Tag->setRBraceLoc(RBraceLoc);
5094
5095  if (isa<CXXRecordDecl>(Tag))
5096    FieldCollector->FinishClass();
5097
5098  // Exit this scope of this tag's definition.
5099  PopDeclContext();
5100
5101  // If this is a polymorphic C++ class without a key function, we'll
5102  // have to mark all of the virtual members to allow emission of a vtable
5103  // in this translation unit.
5104  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
5105    if (!Record->isDependentContext() && Record->isDynamicClass() &&
5106        !Context.getKeyFunction(Record))
5107      ClassesWithUnmarkedVirtualMembers.push_back(std::make_pair(Record,
5108                                                                 RBraceLoc));
5109  }
5110
5111  // Notify the consumer that we've defined a tag.
5112  Consumer.HandleTagDeclDefinition(Tag);
5113}
5114
5115// Note that FieldName may be null for anonymous bitfields.
5116bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5117                          QualType FieldTy, const Expr *BitWidth,
5118                          bool *ZeroWidth) {
5119  // Default to true; that shouldn't confuse checks for emptiness
5120  if (ZeroWidth)
5121    *ZeroWidth = true;
5122
5123  // C99 6.7.2.1p4 - verify the field type.
5124  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5125  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5126    // Handle incomplete types with specific error.
5127    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5128      return true;
5129    if (FieldName)
5130      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5131        << FieldName << FieldTy << BitWidth->getSourceRange();
5132    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5133      << FieldTy << BitWidth->getSourceRange();
5134  }
5135
5136  // If the bit-width is type- or value-dependent, don't try to check
5137  // it now.
5138  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5139    return false;
5140
5141  llvm::APSInt Value;
5142  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5143    return true;
5144
5145  if (Value != 0 && ZeroWidth)
5146    *ZeroWidth = false;
5147
5148  // Zero-width bitfield is ok for anonymous field.
5149  if (Value == 0 && FieldName)
5150    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5151
5152  if (Value.isSigned() && Value.isNegative()) {
5153    if (FieldName)
5154      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5155               << FieldName << Value.toString(10);
5156    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5157      << Value.toString(10);
5158  }
5159
5160  if (!FieldTy->isDependentType()) {
5161    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5162    if (Value.getZExtValue() > TypeSize) {
5163      if (FieldName)
5164        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5165          << FieldName << (unsigned)TypeSize;
5166      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5167        << (unsigned)TypeSize;
5168    }
5169  }
5170
5171  return false;
5172}
5173
5174/// ActOnField - Each field of a struct/union/class is passed into this in order
5175/// to create a FieldDecl object for it.
5176Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5177                                 SourceLocation DeclStart,
5178                                 Declarator &D, ExprTy *BitfieldWidth) {
5179  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5180                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5181                               AS_public);
5182  return DeclPtrTy::make(Res);
5183}
5184
5185/// HandleField - Analyze a field of a C struct or a C++ data member.
5186///
5187FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5188                             SourceLocation DeclStart,
5189                             Declarator &D, Expr *BitWidth,
5190                             AccessSpecifier AS) {
5191  IdentifierInfo *II = D.getIdentifier();
5192  SourceLocation Loc = DeclStart;
5193  if (II) Loc = D.getIdentifierLoc();
5194
5195  TypeSourceInfo *TInfo = 0;
5196  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5197  if (getLangOptions().CPlusPlus)
5198    CheckExtraCXXDefaultArguments(D);
5199
5200  DiagnoseFunctionSpecifiers(D);
5201
5202  if (D.getDeclSpec().isThreadSpecified())
5203    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5204
5205  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5206                                         ForRedeclaration);
5207
5208  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5209    // Maybe we will complain about the shadowed template parameter.
5210    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5211    // Just pretend that we didn't see the previous declaration.
5212    PrevDecl = 0;
5213  }
5214
5215  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5216    PrevDecl = 0;
5217
5218  bool Mutable
5219    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5220  SourceLocation TSSL = D.getSourceRange().getBegin();
5221  FieldDecl *NewFD
5222    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5223                     AS, PrevDecl, &D);
5224  if (NewFD->isInvalidDecl() && PrevDecl) {
5225    // Don't introduce NewFD into scope; there's already something
5226    // with the same name in the same scope.
5227  } else if (II) {
5228    PushOnScopeChains(NewFD, S);
5229  } else
5230    Record->addDecl(NewFD);
5231
5232  return NewFD;
5233}
5234
5235/// \brief Build a new FieldDecl and check its well-formedness.
5236///
5237/// This routine builds a new FieldDecl given the fields name, type,
5238/// record, etc. \p PrevDecl should refer to any previous declaration
5239/// with the same name and in the same scope as the field to be
5240/// created.
5241///
5242/// \returns a new FieldDecl.
5243///
5244/// \todo The Declarator argument is a hack. It will be removed once
5245FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5246                                TypeSourceInfo *TInfo,
5247                                RecordDecl *Record, SourceLocation Loc,
5248                                bool Mutable, Expr *BitWidth,
5249                                SourceLocation TSSL,
5250                                AccessSpecifier AS, NamedDecl *PrevDecl,
5251                                Declarator *D) {
5252  IdentifierInfo *II = Name.getAsIdentifierInfo();
5253  bool InvalidDecl = false;
5254  if (D) InvalidDecl = D->isInvalidType();
5255
5256  // If we receive a broken type, recover by assuming 'int' and
5257  // marking this declaration as invalid.
5258  if (T.isNull()) {
5259    InvalidDecl = true;
5260    T = Context.IntTy;
5261  }
5262
5263  QualType EltTy = Context.getBaseElementType(T);
5264  if (!EltTy->isDependentType() &&
5265      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5266    InvalidDecl = true;
5267
5268  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5269  // than a variably modified type.
5270  if (!InvalidDecl && T->isVariablyModifiedType()) {
5271    bool SizeIsNegative;
5272    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5273                                                           SizeIsNegative);
5274    if (!FixedTy.isNull()) {
5275      Diag(Loc, diag::warn_illegal_constant_array_size);
5276      T = FixedTy;
5277    } else {
5278      if (SizeIsNegative)
5279        Diag(Loc, diag::err_typecheck_negative_array_size);
5280      else
5281        Diag(Loc, diag::err_typecheck_field_variable_size);
5282      InvalidDecl = true;
5283    }
5284  }
5285
5286  // Fields can not have abstract class types
5287  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5288                                             diag::err_abstract_type_in_decl,
5289                                             AbstractFieldType))
5290    InvalidDecl = true;
5291
5292  bool ZeroWidth = false;
5293  // If this is declared as a bit-field, check the bit-field.
5294  if (!InvalidDecl && BitWidth &&
5295      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5296    InvalidDecl = true;
5297    DeleteExpr(BitWidth);
5298    BitWidth = 0;
5299    ZeroWidth = false;
5300  }
5301
5302  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5303                                       BitWidth, Mutable);
5304  if (InvalidDecl)
5305    NewFD->setInvalidDecl();
5306
5307  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5308    Diag(Loc, diag::err_duplicate_member) << II;
5309    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5310    NewFD->setInvalidDecl();
5311  }
5312
5313  if (getLangOptions().CPlusPlus) {
5314    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5315
5316    if (!T->isPODType())
5317      CXXRecord->setPOD(false);
5318    if (!ZeroWidth)
5319      CXXRecord->setEmpty(false);
5320
5321    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5322      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5323
5324      if (!RDecl->hasTrivialConstructor())
5325        CXXRecord->setHasTrivialConstructor(false);
5326      if (!RDecl->hasTrivialCopyConstructor())
5327        CXXRecord->setHasTrivialCopyConstructor(false);
5328      if (!RDecl->hasTrivialCopyAssignment())
5329        CXXRecord->setHasTrivialCopyAssignment(false);
5330      if (!RDecl->hasTrivialDestructor())
5331        CXXRecord->setHasTrivialDestructor(false);
5332
5333      // C++ 9.5p1: An object of a class with a non-trivial
5334      // constructor, a non-trivial copy constructor, a non-trivial
5335      // destructor, or a non-trivial copy assignment operator
5336      // cannot be a member of a union, nor can an array of such
5337      // objects.
5338      // TODO: C++0x alters this restriction significantly.
5339      if (Record->isUnion()) {
5340        // We check for copy constructors before constructors
5341        // because otherwise we'll never get complaints about
5342        // copy constructors.
5343
5344        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5345
5346        CXXSpecialMember member;
5347        if (!RDecl->hasTrivialCopyConstructor())
5348          member = CXXCopyConstructor;
5349        else if (!RDecl->hasTrivialConstructor())
5350          member = CXXDefaultConstructor;
5351        else if (!RDecl->hasTrivialCopyAssignment())
5352          member = CXXCopyAssignment;
5353        else if (!RDecl->hasTrivialDestructor())
5354          member = CXXDestructor;
5355        else
5356          member = invalid;
5357
5358        if (member != invalid) {
5359          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5360          DiagnoseNontrivial(RT, member);
5361          NewFD->setInvalidDecl();
5362        }
5363      }
5364    }
5365  }
5366
5367  // FIXME: We need to pass in the attributes given an AST
5368  // representation, not a parser representation.
5369  if (D)
5370    // FIXME: What to pass instead of TUScope?
5371    ProcessDeclAttributes(TUScope, NewFD, *D);
5372
5373  if (T.isObjCGCWeak())
5374    Diag(Loc, diag::warn_attribute_weak_on_field);
5375
5376  NewFD->setAccess(AS);
5377
5378  // C++ [dcl.init.aggr]p1:
5379  //   An aggregate is an array or a class (clause 9) with [...] no
5380  //   private or protected non-static data members (clause 11).
5381  // A POD must be an aggregate.
5382  if (getLangOptions().CPlusPlus &&
5383      (AS == AS_private || AS == AS_protected)) {
5384    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5385    CXXRecord->setAggregate(false);
5386    CXXRecord->setPOD(false);
5387  }
5388
5389  return NewFD;
5390}
5391
5392/// DiagnoseNontrivial - Given that a class has a non-trivial
5393/// special member, figure out why.
5394void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5395  QualType QT(T, 0U);
5396  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5397
5398  // Check whether the member was user-declared.
5399  switch (member) {
5400  case CXXDefaultConstructor:
5401    if (RD->hasUserDeclaredConstructor()) {
5402      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5403      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5404        const FunctionDecl *body = 0;
5405        ci->getBody(body);
5406        if (!body ||
5407            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5408          SourceLocation CtorLoc = ci->getLocation();
5409          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5410          return;
5411        }
5412      }
5413
5414      assert(0 && "found no user-declared constructors");
5415      return;
5416    }
5417    break;
5418
5419  case CXXCopyConstructor:
5420    if (RD->hasUserDeclaredCopyConstructor()) {
5421      SourceLocation CtorLoc =
5422        RD->getCopyConstructor(Context, 0)->getLocation();
5423      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5424      return;
5425    }
5426    break;
5427
5428  case CXXCopyAssignment:
5429    if (RD->hasUserDeclaredCopyAssignment()) {
5430      // FIXME: this should use the location of the copy
5431      // assignment, not the type.
5432      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5433      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5434      return;
5435    }
5436    break;
5437
5438  case CXXDestructor:
5439    if (RD->hasUserDeclaredDestructor()) {
5440      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5441      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5442      return;
5443    }
5444    break;
5445  }
5446
5447  typedef CXXRecordDecl::base_class_iterator base_iter;
5448
5449  // Virtual bases and members inhibit trivial copying/construction,
5450  // but not trivial destruction.
5451  if (member != CXXDestructor) {
5452    // Check for virtual bases.  vbases includes indirect virtual bases,
5453    // so we just iterate through the direct bases.
5454    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5455      if (bi->isVirtual()) {
5456        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5457        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5458        return;
5459      }
5460
5461    // Check for virtual methods.
5462    typedef CXXRecordDecl::method_iterator meth_iter;
5463    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5464         ++mi) {
5465      if (mi->isVirtual()) {
5466        SourceLocation MLoc = mi->getSourceRange().getBegin();
5467        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5468        return;
5469      }
5470    }
5471  }
5472
5473  bool (CXXRecordDecl::*hasTrivial)() const;
5474  switch (member) {
5475  case CXXDefaultConstructor:
5476    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5477  case CXXCopyConstructor:
5478    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5479  case CXXCopyAssignment:
5480    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5481  case CXXDestructor:
5482    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5483  default:
5484    assert(0 && "unexpected special member"); return;
5485  }
5486
5487  // Check for nontrivial bases (and recurse).
5488  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5489    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5490    assert(BaseRT && "Don't know how to handle dependent bases");
5491    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5492    if (!(BaseRecTy->*hasTrivial)()) {
5493      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5494      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5495      DiagnoseNontrivial(BaseRT, member);
5496      return;
5497    }
5498  }
5499
5500  // Check for nontrivial members (and recurse).
5501  typedef RecordDecl::field_iterator field_iter;
5502  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5503       ++fi) {
5504    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5505    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5506      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5507
5508      if (!(EltRD->*hasTrivial)()) {
5509        SourceLocation FLoc = (*fi)->getLocation();
5510        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5511        DiagnoseNontrivial(EltRT, member);
5512        return;
5513      }
5514    }
5515  }
5516
5517  assert(0 && "found no explanation for non-trivial member");
5518}
5519
5520/// TranslateIvarVisibility - Translate visibility from a token ID to an
5521///  AST enum value.
5522static ObjCIvarDecl::AccessControl
5523TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5524  switch (ivarVisibility) {
5525  default: assert(0 && "Unknown visitibility kind");
5526  case tok::objc_private: return ObjCIvarDecl::Private;
5527  case tok::objc_public: return ObjCIvarDecl::Public;
5528  case tok::objc_protected: return ObjCIvarDecl::Protected;
5529  case tok::objc_package: return ObjCIvarDecl::Package;
5530  }
5531}
5532
5533/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5534/// in order to create an IvarDecl object for it.
5535Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5536                                SourceLocation DeclStart,
5537                                DeclPtrTy IntfDecl,
5538                                Declarator &D, ExprTy *BitfieldWidth,
5539                                tok::ObjCKeywordKind Visibility) {
5540
5541  IdentifierInfo *II = D.getIdentifier();
5542  Expr *BitWidth = (Expr*)BitfieldWidth;
5543  SourceLocation Loc = DeclStart;
5544  if (II) Loc = D.getIdentifierLoc();
5545
5546  // FIXME: Unnamed fields can be handled in various different ways, for
5547  // example, unnamed unions inject all members into the struct namespace!
5548
5549  TypeSourceInfo *TInfo = 0;
5550  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5551
5552  if (BitWidth) {
5553    // 6.7.2.1p3, 6.7.2.1p4
5554    if (VerifyBitField(Loc, II, T, BitWidth)) {
5555      D.setInvalidType();
5556      DeleteExpr(BitWidth);
5557      BitWidth = 0;
5558    }
5559  } else {
5560    // Not a bitfield.
5561
5562    // validate II.
5563
5564  }
5565
5566  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5567  // than a variably modified type.
5568  if (T->isVariablyModifiedType()) {
5569    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5570    D.setInvalidType();
5571  }
5572
5573  // Get the visibility (access control) for this ivar.
5574  ObjCIvarDecl::AccessControl ac =
5575    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5576                                        : ObjCIvarDecl::None;
5577  // Must set ivar's DeclContext to its enclosing interface.
5578  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5579  DeclContext *EnclosingContext;
5580  if (ObjCImplementationDecl *IMPDecl =
5581      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5582    // Case of ivar declared in an implementation. Context is that of its class.
5583    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5584    assert(IDecl && "No class- ActOnIvar");
5585    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5586  } else
5587    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5588  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5589
5590  // Construct the decl.
5591  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5592                                             EnclosingContext, Loc, II, T,
5593                                             TInfo, ac, (Expr *)BitfieldWidth);
5594
5595  if (II) {
5596    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5597                                           ForRedeclaration);
5598    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5599        && !isa<TagDecl>(PrevDecl)) {
5600      Diag(Loc, diag::err_duplicate_member) << II;
5601      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5602      NewID->setInvalidDecl();
5603    }
5604  }
5605
5606  // Process attributes attached to the ivar.
5607  ProcessDeclAttributes(S, NewID, D);
5608
5609  if (D.isInvalidType())
5610    NewID->setInvalidDecl();
5611
5612  if (II) {
5613    // FIXME: When interfaces are DeclContexts, we'll need to add
5614    // these to the interface.
5615    S->AddDecl(DeclPtrTy::make(NewID));
5616    IdResolver.AddDecl(NewID);
5617  }
5618
5619  return DeclPtrTy::make(NewID);
5620}
5621
5622void Sema::ActOnFields(Scope* S,
5623                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5624                       DeclPtrTy *Fields, unsigned NumFields,
5625                       SourceLocation LBrac, SourceLocation RBrac,
5626                       AttributeList *Attr) {
5627  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5628  assert(EnclosingDecl && "missing record or interface decl");
5629
5630  // If the decl this is being inserted into is invalid, then it may be a
5631  // redeclaration or some other bogus case.  Don't try to add fields to it.
5632  if (EnclosingDecl->isInvalidDecl()) {
5633    // FIXME: Deallocate fields?
5634    return;
5635  }
5636
5637
5638  // Verify that all the fields are okay.
5639  unsigned NumNamedMembers = 0;
5640  llvm::SmallVector<FieldDecl*, 32> RecFields;
5641
5642  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5643  for (unsigned i = 0; i != NumFields; ++i) {
5644    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5645
5646    // Get the type for the field.
5647    Type *FDTy = FD->getType().getTypePtr();
5648
5649    if (!FD->isAnonymousStructOrUnion()) {
5650      // Remember all fields written by the user.
5651      RecFields.push_back(FD);
5652    }
5653
5654    // If the field is already invalid for some reason, don't emit more
5655    // diagnostics about it.
5656    if (FD->isInvalidDecl()) {
5657      EnclosingDecl->setInvalidDecl();
5658      continue;
5659    }
5660
5661    // C99 6.7.2.1p2:
5662    //   A structure or union shall not contain a member with
5663    //   incomplete or function type (hence, a structure shall not
5664    //   contain an instance of itself, but may contain a pointer to
5665    //   an instance of itself), except that the last member of a
5666    //   structure with more than one named member may have incomplete
5667    //   array type; such a structure (and any union containing,
5668    //   possibly recursively, a member that is such a structure)
5669    //   shall not be a member of a structure or an element of an
5670    //   array.
5671    if (FDTy->isFunctionType()) {
5672      // Field declared as a function.
5673      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5674        << FD->getDeclName();
5675      FD->setInvalidDecl();
5676      EnclosingDecl->setInvalidDecl();
5677      continue;
5678    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5679               Record && Record->isStruct()) {
5680      // Flexible array member.
5681      if (NumNamedMembers < 1) {
5682        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5683          << FD->getDeclName();
5684        FD->setInvalidDecl();
5685        EnclosingDecl->setInvalidDecl();
5686        continue;
5687      }
5688      // Okay, we have a legal flexible array member at the end of the struct.
5689      if (Record)
5690        Record->setHasFlexibleArrayMember(true);
5691    } else if (!FDTy->isDependentType() &&
5692               RequireCompleteType(FD->getLocation(), FD->getType(),
5693                                   diag::err_field_incomplete)) {
5694      // Incomplete type
5695      FD->setInvalidDecl();
5696      EnclosingDecl->setInvalidDecl();
5697      continue;
5698    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5699      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5700        // If this is a member of a union, then entire union becomes "flexible".
5701        if (Record && Record->isUnion()) {
5702          Record->setHasFlexibleArrayMember(true);
5703        } else {
5704          // If this is a struct/class and this is not the last element, reject
5705          // it.  Note that GCC supports variable sized arrays in the middle of
5706          // structures.
5707          if (i != NumFields-1)
5708            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5709              << FD->getDeclName() << FD->getType();
5710          else {
5711            // We support flexible arrays at the end of structs in
5712            // other structs as an extension.
5713            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5714              << FD->getDeclName();
5715            if (Record)
5716              Record->setHasFlexibleArrayMember(true);
5717          }
5718        }
5719      }
5720      if (Record && FDTTy->getDecl()->hasObjectMember())
5721        Record->setHasObjectMember(true);
5722    } else if (FDTy->isObjCInterfaceType()) {
5723      /// A field cannot be an Objective-c object
5724      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5725      FD->setInvalidDecl();
5726      EnclosingDecl->setInvalidDecl();
5727      continue;
5728    } else if (getLangOptions().ObjC1 &&
5729               getLangOptions().getGCMode() != LangOptions::NonGC &&
5730               Record &&
5731               (FD->getType()->isObjCObjectPointerType() ||
5732                FD->getType().isObjCGCStrong()))
5733      Record->setHasObjectMember(true);
5734    // Keep track of the number of named members.
5735    if (FD->getIdentifier())
5736      ++NumNamedMembers;
5737  }
5738
5739  // Okay, we successfully defined 'Record'.
5740  if (Record) {
5741    Record->completeDefinition(Context);
5742  } else {
5743    ObjCIvarDecl **ClsFields =
5744      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5745    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5746      ID->setIVarList(ClsFields, RecFields.size(), Context);
5747      ID->setLocEnd(RBrac);
5748      // Add ivar's to class's DeclContext.
5749      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5750        ClsFields[i]->setLexicalDeclContext(ID);
5751        ID->addDecl(ClsFields[i]);
5752      }
5753      // Must enforce the rule that ivars in the base classes may not be
5754      // duplicates.
5755      if (ID->getSuperClass()) {
5756        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5757             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5758          ObjCIvarDecl* Ivar = (*IVI);
5759
5760          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5761            ObjCIvarDecl* prevIvar =
5762              ID->getSuperClass()->lookupInstanceVariable(II);
5763            if (prevIvar) {
5764              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5765              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5766            }
5767          }
5768        }
5769      }
5770    } else if (ObjCImplementationDecl *IMPDecl =
5771                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5772      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5773      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5774        // Ivar declared in @implementation never belongs to the implementation.
5775        // Only it is in implementation's lexical context.
5776        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5777      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5778    }
5779  }
5780
5781  if (Attr)
5782    ProcessDeclAttributeList(S, Record, Attr);
5783}
5784
5785EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5786                                          EnumConstantDecl *LastEnumConst,
5787                                          SourceLocation IdLoc,
5788                                          IdentifierInfo *Id,
5789                                          ExprArg val) {
5790  Expr *Val = (Expr *)val.get();
5791
5792  llvm::APSInt EnumVal(32);
5793  QualType EltTy;
5794  if (Val) {
5795    if (Enum->isDependentType())
5796      EltTy = Context.DependentTy;
5797    else {
5798      // Make sure to promote the operand type to int.
5799      UsualUnaryConversions(Val);
5800      if (Val != val.get()) {
5801        val.release();
5802        val = Val;
5803      }
5804
5805      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5806      SourceLocation ExpLoc;
5807      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5808        Val = 0;
5809      } else {
5810        EltTy = Val->getType();
5811      }
5812    }
5813  }
5814
5815  if (!Val) {
5816    if (Enum->isDependentType())
5817      EltTy = Context.DependentTy;
5818    else if (LastEnumConst) {
5819      // Assign the last value + 1.
5820      EnumVal = LastEnumConst->getInitVal();
5821      ++EnumVal;
5822
5823      // Check for overflow on increment.
5824      if (EnumVal < LastEnumConst->getInitVal())
5825        Diag(IdLoc, diag::warn_enum_value_overflow);
5826
5827      EltTy = LastEnumConst->getType();
5828    } else {
5829      // First value, set to zero.
5830      EltTy = Context.IntTy;
5831      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5832      EnumVal.setIsSigned(true);
5833    }
5834  }
5835
5836  assert(!EltTy.isNull() && "Enum constant with NULL type");
5837
5838  val.release();
5839  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5840                                  Val, EnumVal);
5841}
5842
5843
5844Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5845                                        DeclPtrTy lastEnumConst,
5846                                        SourceLocation IdLoc,
5847                                        IdentifierInfo *Id,
5848                                        SourceLocation EqualLoc, ExprTy *val) {
5849  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5850  EnumConstantDecl *LastEnumConst =
5851    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5852  Expr *Val = static_cast<Expr*>(val);
5853
5854  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5855  // we find one that is.
5856  S = getNonFieldDeclScope(S);
5857
5858  // Verify that there isn't already something declared with this name in this
5859  // scope.
5860  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5861  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5862    // Maybe we will complain about the shadowed template parameter.
5863    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5864    // Just pretend that we didn't see the previous declaration.
5865    PrevDecl = 0;
5866  }
5867
5868  if (PrevDecl) {
5869    // When in C++, we may get a TagDecl with the same name; in this case the
5870    // enum constant will 'hide' the tag.
5871    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5872           "Received TagDecl when not in C++!");
5873    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5874      if (isa<EnumConstantDecl>(PrevDecl))
5875        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5876      else
5877        Diag(IdLoc, diag::err_redefinition) << Id;
5878      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5879      if (Val) Val->Destroy(Context);
5880      return DeclPtrTy();
5881    }
5882  }
5883
5884  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5885                                            IdLoc, Id, Owned(Val));
5886
5887  // Register this decl in the current scope stack.
5888  if (New)
5889    PushOnScopeChains(New, S);
5890
5891  return DeclPtrTy::make(New);
5892}
5893
5894void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5895                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5896                         DeclPtrTy *Elements, unsigned NumElements,
5897                         Scope *S, AttributeList *Attr) {
5898  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5899  QualType EnumType = Context.getTypeDeclType(Enum);
5900
5901  if (Attr)
5902    ProcessDeclAttributeList(S, Enum, Attr);
5903
5904  if (Enum->isDependentType()) {
5905    for (unsigned i = 0; i != NumElements; ++i) {
5906      EnumConstantDecl *ECD =
5907        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5908      if (!ECD) continue;
5909
5910      ECD->setType(EnumType);
5911    }
5912
5913    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5914    return;
5915  }
5916
5917  // TODO: If the result value doesn't fit in an int, it must be a long or long
5918  // long value.  ISO C does not support this, but GCC does as an extension,
5919  // emit a warning.
5920  unsigned IntWidth = Context.Target.getIntWidth();
5921  unsigned CharWidth = Context.Target.getCharWidth();
5922  unsigned ShortWidth = Context.Target.getShortWidth();
5923
5924  // Verify that all the values are okay, compute the size of the values, and
5925  // reverse the list.
5926  unsigned NumNegativeBits = 0;
5927  unsigned NumPositiveBits = 0;
5928
5929  // Keep track of whether all elements have type int.
5930  bool AllElementsInt = true;
5931
5932  for (unsigned i = 0; i != NumElements; ++i) {
5933    EnumConstantDecl *ECD =
5934      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5935    if (!ECD) continue;  // Already issued a diagnostic.
5936
5937    // If the enum value doesn't fit in an int, emit an extension warning.
5938    const llvm::APSInt &InitVal = ECD->getInitVal();
5939    assert(InitVal.getBitWidth() >= IntWidth &&
5940           "Should have promoted value to int");
5941    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5942      llvm::APSInt V(InitVal);
5943      V.trunc(IntWidth);
5944      V.extend(InitVal.getBitWidth());
5945      if (V != InitVal)
5946        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5947          << InitVal.toString(10);
5948    }
5949
5950    // Keep track of the size of positive and negative values.
5951    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5952      NumPositiveBits = std::max(NumPositiveBits,
5953                                 (unsigned)InitVal.getActiveBits());
5954    else
5955      NumNegativeBits = std::max(NumNegativeBits,
5956                                 (unsigned)InitVal.getMinSignedBits());
5957
5958    // Keep track of whether every enum element has type int (very commmon).
5959    if (AllElementsInt)
5960      AllElementsInt = ECD->getType() == Context.IntTy;
5961  }
5962
5963  // Figure out the type that should be used for this enum.
5964  // FIXME: Support -fshort-enums.
5965  QualType BestType;
5966  unsigned BestWidth;
5967
5968  // C++0x N3000 [conv.prom]p3:
5969  //   An rvalue of an unscoped enumeration type whose underlying
5970  //   type is not fixed can be converted to an rvalue of the first
5971  //   of the following types that can represent all the values of
5972  //   the enumeration: int, unsigned int, long int, unsigned long
5973  //   int, long long int, or unsigned long long int.
5974  // C99 6.4.4.3p2:
5975  //   An identifier declared as an enumeration constant has type int.
5976  // The C99 rule is modified by a gcc extension
5977  QualType BestPromotionType;
5978
5979  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5980
5981  if (NumNegativeBits) {
5982    // If there is a negative value, figure out the smallest integer type (of
5983    // int/long/longlong) that fits.
5984    // If it's packed, check also if it fits a char or a short.
5985    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5986      BestType = Context.SignedCharTy;
5987      BestWidth = CharWidth;
5988    } else if (Packed && NumNegativeBits <= ShortWidth &&
5989               NumPositiveBits < ShortWidth) {
5990      BestType = Context.ShortTy;
5991      BestWidth = ShortWidth;
5992    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5993      BestType = Context.IntTy;
5994      BestWidth = IntWidth;
5995    } else {
5996      BestWidth = Context.Target.getLongWidth();
5997
5998      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5999        BestType = Context.LongTy;
6000      } else {
6001        BestWidth = Context.Target.getLongLongWidth();
6002
6003        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
6004          Diag(Enum->getLocation(), diag::warn_enum_too_large);
6005        BestType = Context.LongLongTy;
6006      }
6007    }
6008    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
6009  } else {
6010    // If there is no negative value, figure out which of uint, ulong, ulonglong
6011    // fits.
6012    // If it's packed, check also if it fits a char or a short.
6013    if (Packed && NumPositiveBits <= CharWidth) {
6014      BestType = Context.UnsignedCharTy;
6015      BestPromotionType = Context.IntTy;
6016      BestWidth = CharWidth;
6017    } else if (Packed && NumPositiveBits <= ShortWidth) {
6018      BestType = Context.UnsignedShortTy;
6019      BestPromotionType = Context.IntTy;
6020      BestWidth = ShortWidth;
6021    } else if (NumPositiveBits <= IntWidth) {
6022      BestType = Context.UnsignedIntTy;
6023      BestWidth = IntWidth;
6024      BestPromotionType = (NumPositiveBits == BestWidth
6025                           ? Context.UnsignedIntTy : Context.IntTy);
6026    } else if (NumPositiveBits <=
6027               (BestWidth = Context.Target.getLongWidth())) {
6028      BestType = Context.UnsignedLongTy;
6029      BestPromotionType = (NumPositiveBits == BestWidth
6030                           ? Context.UnsignedLongTy : Context.LongTy);
6031    } else {
6032      BestWidth = Context.Target.getLongLongWidth();
6033      assert(NumPositiveBits <= BestWidth &&
6034             "How could an initializer get larger than ULL?");
6035      BestType = Context.UnsignedLongLongTy;
6036      BestPromotionType = (NumPositiveBits == BestWidth
6037                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
6038    }
6039  }
6040
6041  // If we're in C and the promotion type is larger than an int, just
6042  // use the underlying type, which is generally the unsigned integer
6043  // type of the same rank as the promotion type.  This is how the gcc
6044  // extension works.
6045  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
6046    BestPromotionType = BestType;
6047
6048  // Loop over all of the enumerator constants, changing their types to match
6049  // the type of the enum if needed.
6050  for (unsigned i = 0; i != NumElements; ++i) {
6051    EnumConstantDecl *ECD =
6052      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
6053    if (!ECD) continue;  // Already issued a diagnostic.
6054
6055    // Standard C says the enumerators have int type, but we allow, as an
6056    // extension, the enumerators to be larger than int size.  If each
6057    // enumerator value fits in an int, type it as an int, otherwise type it the
6058    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
6059    // that X has type 'int', not 'unsigned'.
6060    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
6061      continue;
6062
6063    // Determine whether the value fits into an int.
6064    llvm::APSInt InitVal = ECD->getInitVal();
6065    bool FitsInInt;
6066    if (InitVal.isUnsigned() || !InitVal.isNegative())
6067      FitsInInt = InitVal.getActiveBits() < IntWidth;
6068    else
6069      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
6070
6071    // If it fits into an integer type, force it.  Otherwise force it to match
6072    // the enum decl type.
6073    QualType NewTy;
6074    unsigned NewWidth;
6075    bool NewSign;
6076    if (FitsInInt && !getLangOptions().CPlusPlus) {
6077      NewTy = Context.IntTy;
6078      NewWidth = IntWidth;
6079      NewSign = true;
6080    } else if (ECD->getType() == BestType) {
6081      // Already the right type!
6082      if (getLangOptions().CPlusPlus)
6083        // C++ [dcl.enum]p4: Following the closing brace of an
6084        // enum-specifier, each enumerator has the type of its
6085        // enumeration.
6086        ECD->setType(EnumType);
6087      continue;
6088    } else {
6089      NewTy = BestType;
6090      NewWidth = BestWidth;
6091      NewSign = BestType->isSignedIntegerType();
6092    }
6093
6094    // Adjust the APSInt value.
6095    InitVal.extOrTrunc(NewWidth);
6096    InitVal.setIsSigned(NewSign);
6097    ECD->setInitVal(InitVal);
6098
6099    // Adjust the Expr initializer and type.
6100    if (ECD->getInitExpr())
6101      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
6102                                                      CastExpr::CK_IntegralCast,
6103                                                      ECD->getInitExpr(),
6104                                                      /*isLvalue=*/false));
6105    if (getLangOptions().CPlusPlus)
6106      // C++ [dcl.enum]p4: Following the closing brace of an
6107      // enum-specifier, each enumerator has the type of its
6108      // enumeration.
6109      ECD->setType(EnumType);
6110    else
6111      ECD->setType(NewTy);
6112  }
6113
6114  Enum->completeDefinition(Context, BestType, BestPromotionType);
6115}
6116
6117Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
6118                                            ExprArg expr) {
6119  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
6120
6121  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
6122                                                   Loc, AsmString);
6123  CurContext->addDecl(New);
6124  return DeclPtrTy::make(New);
6125}
6126
6127void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6128                             SourceLocation PragmaLoc,
6129                             SourceLocation NameLoc) {
6130  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6131
6132  if (PrevDecl) {
6133    PrevDecl->addAttr(::new (Context) WeakAttr());
6134  } else {
6135    (void)WeakUndeclaredIdentifiers.insert(
6136      std::pair<IdentifierInfo*,WeakInfo>
6137        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6138  }
6139}
6140
6141void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6142                                IdentifierInfo* AliasName,
6143                                SourceLocation PragmaLoc,
6144                                SourceLocation NameLoc,
6145                                SourceLocation AliasNameLoc) {
6146  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6147  WeakInfo W = WeakInfo(Name, NameLoc);
6148
6149  if (PrevDecl) {
6150    if (!PrevDecl->hasAttr<AliasAttr>())
6151      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6152        DeclApplyPragmaWeak(TUScope, ND, W);
6153  } else {
6154    (void)WeakUndeclaredIdentifiers.insert(
6155      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6156  }
6157}
6158