SemaDecl.cpp revision 16f19306f9dd24cdc397ceae89a73a55086e5127
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>(Context) != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(Context, D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if (isa<FunctionDecl>(D) &&
323             AllowOverloadingOfFunction(D, Context)) {
324    // We are pushing the name of a function, which might be an
325    // overloaded name.
326    FunctionDecl *FD = cast<FunctionDecl>(D);
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(FD->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  FD));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  bool objc_types = false;
520
521  // Allow multiple definitions for ObjC built-in typedefs.
522  // FIXME: Verify the underlying types are equivalent!
523  if (getLangOptions().ObjC1) {
524    const IdentifierInfo *TypeID = New->getIdentifier();
525    switch (TypeID->getLength()) {
526    default: break;
527    case 2:
528      if (!TypeID->isStr("id"))
529        break;
530      Context.setObjCIdType(Context.getTypeDeclType(New));
531      objc_types = true;
532      break;
533    case 5:
534      if (!TypeID->isStr("Class"))
535        break;
536      Context.setObjCClassType(Context.getTypeDeclType(New));
537      return;
538    case 3:
539      if (!TypeID->isStr("SEL"))
540        break;
541      Context.setObjCSelType(Context.getTypeDeclType(New));
542      return;
543    case 8:
544      if (!TypeID->isStr("Protocol"))
545        break;
546      Context.setObjCProtoType(New->getUnderlyingType());
547      return;
548    }
549    // Fall through - the typedef name was not a builtin type.
550  }
551  // Verify the old decl was also a type.
552  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
553  if (!Old) {
554    Diag(New->getLocation(), diag::err_redefinition_different_kind)
555      << New->getDeclName();
556    if (OldD->getLocation().isValid())
557      Diag(OldD->getLocation(), diag::note_previous_definition);
558    return New->setInvalidDecl();
559  }
560
561  // Determine the "old" type we'll use for checking and diagnostics.
562  QualType OldType;
563  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
564    OldType = OldTypedef->getUnderlyingType();
565  else
566    OldType = Context.getTypeDeclType(Old);
567
568  // If the typedef types are not identical, reject them in all languages and
569  // with any extensions enabled.
570
571  if (OldType != New->getUnderlyingType() &&
572      Context.getCanonicalType(OldType) !=
573      Context.getCanonicalType(New->getUnderlyingType())) {
574    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
575      << New->getUnderlyingType() << OldType;
576    if (Old->getLocation().isValid())
577      Diag(Old->getLocation(), diag::note_previous_definition);
578    return New->setInvalidDecl();
579  }
580
581  if (objc_types || getLangOptions().Microsoft)
582    return;
583
584  // C++ [dcl.typedef]p2:
585  //   In a given non-class scope, a typedef specifier can be used to
586  //   redefine the name of any type declared in that scope to refer
587  //   to the type to which it already refers.
588  if (getLangOptions().CPlusPlus) {
589    if (!isa<CXXRecordDecl>(CurContext))
590      return;
591    Diag(New->getLocation(), diag::err_redefinition)
592      << New->getDeclName();
593    Diag(Old->getLocation(), diag::note_previous_definition);
594    return New->setInvalidDecl();
595  }
596
597  // If we have a redefinition of a typedef in C, emit a warning.  This warning
598  // is normally mapped to an error, but can be controlled with
599  // -Wtypedef-redefinition.  If either the original or the redefinition is
600  // in a system header, don't emit this for compatibility with GCC.
601  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
602      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
603       Context.getSourceManager().isInSystemHeader(New->getLocation())))
604    return;
605
606  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
607    << New->getDeclName();
608  Diag(Old->getLocation(), diag::note_previous_definition);
609  return;
610}
611
612/// DeclhasAttr - returns true if decl Declaration already has the target
613/// attribute.
614static bool
615DeclHasAttr(ASTContext &Context, const Decl *decl, const Attr *target) {
616  for (const Attr *attr = decl->getAttrs(Context); attr; attr = attr->getNext())
617    if (attr->getKind() == target->getKind())
618      return true;
619
620  return false;
621}
622
623/// MergeAttributes - append attributes from the Old decl to the New one.
624static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
625  for (const Attr *attr = Old->getAttrs(C); attr; attr = attr->getNext()) {
626    if (!DeclHasAttr(C, New, attr) && attr->isMerged()) {
627      Attr *NewAttr = attr->clone(C);
628      NewAttr->setInherited(true);
629      New->addAttr(C, NewAttr);
630    }
631  }
632}
633
634/// Used in MergeFunctionDecl to keep track of function parameters in
635/// C.
636struct GNUCompatibleParamWarning {
637  ParmVarDecl *OldParm;
638  ParmVarDecl *NewParm;
639  QualType PromotedType;
640};
641
642/// MergeFunctionDecl - We just parsed a function 'New' from
643/// declarator D which has the same name and scope as a previous
644/// declaration 'Old'.  Figure out how to resolve this situation,
645/// merging decls or emitting diagnostics as appropriate.
646///
647/// In C++, New and Old must be declarations that are not
648/// overloaded. Use IsOverload to determine whether New and Old are
649/// overloaded, and to select the Old declaration that New should be
650/// merged with.
651///
652/// Returns true if there was an error, false otherwise.
653bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
654  assert(!isa<OverloadedFunctionDecl>(OldD) &&
655         "Cannot merge with an overloaded function declaration");
656
657  // Verify the old decl was also a function.
658  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
659  if (!Old) {
660    Diag(New->getLocation(), diag::err_redefinition_different_kind)
661      << New->getDeclName();
662    Diag(OldD->getLocation(), diag::note_previous_definition);
663    return true;
664  }
665
666  // Determine whether the previous declaration was a definition,
667  // implicit declaration, or a declaration.
668  diag::kind PrevDiag;
669  if (Old->isThisDeclarationADefinition())
670    PrevDiag = diag::note_previous_definition;
671  else if (Old->isImplicit())
672    PrevDiag = diag::note_previous_implicit_declaration;
673  else
674    PrevDiag = diag::note_previous_declaration;
675
676  QualType OldQType = Context.getCanonicalType(Old->getType());
677  QualType NewQType = Context.getCanonicalType(New->getType());
678
679  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
680      New->getStorageClass() == FunctionDecl::Static &&
681      Old->getStorageClass() != FunctionDecl::Static) {
682    Diag(New->getLocation(), diag::err_static_non_static)
683      << New;
684    Diag(Old->getLocation(), PrevDiag);
685    return true;
686  }
687
688  if (getLangOptions().CPlusPlus) {
689    // (C++98 13.1p2):
690    //   Certain function declarations cannot be overloaded:
691    //     -- Function declarations that differ only in the return type
692    //        cannot be overloaded.
693    QualType OldReturnType
694      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
695    QualType NewReturnType
696      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
697    if (OldReturnType != NewReturnType) {
698      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
699      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
700      return true;
701    }
702
703    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
704    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
705    if (OldMethod && NewMethod &&
706        OldMethod->getLexicalDeclContext() ==
707          NewMethod->getLexicalDeclContext()) {
708      //    -- Member function declarations with the same name and the
709      //       same parameter types cannot be overloaded if any of them
710      //       is a static member function declaration.
711      if (OldMethod->isStatic() || NewMethod->isStatic()) {
712        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
713        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
714        return true;
715      }
716
717      // C++ [class.mem]p1:
718      //   [...] A member shall not be declared twice in the
719      //   member-specification, except that a nested class or member
720      //   class template can be declared and then later defined.
721      unsigned NewDiag;
722      if (isa<CXXConstructorDecl>(OldMethod))
723        NewDiag = diag::err_constructor_redeclared;
724      else if (isa<CXXDestructorDecl>(NewMethod))
725        NewDiag = diag::err_destructor_redeclared;
726      else if (isa<CXXConversionDecl>(NewMethod))
727        NewDiag = diag::err_conv_function_redeclared;
728      else
729        NewDiag = diag::err_member_redeclared;
730
731      Diag(New->getLocation(), NewDiag);
732      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
733    }
734
735    // (C++98 8.3.5p3):
736    //   All declarations for a function shall agree exactly in both the
737    //   return type and the parameter-type-list.
738    if (OldQType == NewQType)
739      return MergeCompatibleFunctionDecls(New, Old);
740
741    // Fall through for conflicting redeclarations and redefinitions.
742  }
743
744  // C: Function types need to be compatible, not identical. This handles
745  // duplicate function decls like "void f(int); void f(enum X);" properly.
746  if (!getLangOptions().CPlusPlus &&
747      Context.typesAreCompatible(OldQType, NewQType)) {
748    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
749    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
750    const FunctionProtoType *OldProto = 0;
751    if (isa<FunctionNoProtoType>(NewFuncType) &&
752        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
753      // The old declaration provided a function prototype, but the
754      // new declaration does not. Merge in the prototype.
755      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
756      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
757                                                 OldProto->arg_type_end());
758      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
759                                         ParamTypes.data(), ParamTypes.size(),
760                                         OldProto->isVariadic(),
761                                         OldProto->getTypeQuals());
762      New->setType(NewQType);
763      New->setHasInheritedPrototype();
764
765      // Synthesize a parameter for each argument type.
766      llvm::SmallVector<ParmVarDecl*, 16> Params;
767      for (FunctionProtoType::arg_type_iterator
768             ParamType = OldProto->arg_type_begin(),
769             ParamEnd = OldProto->arg_type_end();
770           ParamType != ParamEnd; ++ParamType) {
771        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
772                                                 SourceLocation(), 0,
773                                                 *ParamType, VarDecl::None,
774                                                 0);
775        Param->setImplicit();
776        Params.push_back(Param);
777      }
778
779      New->setParams(Context, Params.data(), Params.size());
780    }
781
782    return MergeCompatibleFunctionDecls(New, Old);
783  }
784
785  // GNU C permits a K&R definition to follow a prototype declaration
786  // if the declared types of the parameters in the K&R definition
787  // match the types in the prototype declaration, even when the
788  // promoted types of the parameters from the K&R definition differ
789  // from the types in the prototype. GCC then keeps the types from
790  // the prototype.
791  //
792  // If a variadic prototype is followed by a non-variadic K&R definition,
793  // the K&R definition becomes variadic.  This is sort of an edge case, but
794  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
795  // C99 6.9.1p8.
796  if (!getLangOptions().CPlusPlus &&
797      Old->hasPrototype() && !New->hasPrototype() &&
798      New->getType()->getAsFunctionProtoType() &&
799      Old->getNumParams() == New->getNumParams()) {
800    llvm::SmallVector<QualType, 16> ArgTypes;
801    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
802    const FunctionProtoType *OldProto
803      = Old->getType()->getAsFunctionProtoType();
804    const FunctionProtoType *NewProto
805      = New->getType()->getAsFunctionProtoType();
806
807    // Determine whether this is the GNU C extension.
808    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
809                                               NewProto->getResultType());
810    bool LooseCompatible = !MergedReturn.isNull();
811    for (unsigned Idx = 0, End = Old->getNumParams();
812         LooseCompatible && Idx != End; ++Idx) {
813      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
814      ParmVarDecl *NewParm = New->getParamDecl(Idx);
815      if (Context.typesAreCompatible(OldParm->getType(),
816                                     NewProto->getArgType(Idx))) {
817        ArgTypes.push_back(NewParm->getType());
818      } else if (Context.typesAreCompatible(OldParm->getType(),
819                                            NewParm->getType())) {
820        GNUCompatibleParamWarning Warn
821          = { OldParm, NewParm, NewProto->getArgType(Idx) };
822        Warnings.push_back(Warn);
823        ArgTypes.push_back(NewParm->getType());
824      } else
825        LooseCompatible = false;
826    }
827
828    if (LooseCompatible) {
829      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
830        Diag(Warnings[Warn].NewParm->getLocation(),
831             diag::ext_param_promoted_not_compatible_with_prototype)
832          << Warnings[Warn].PromotedType
833          << Warnings[Warn].OldParm->getType();
834        Diag(Warnings[Warn].OldParm->getLocation(),
835             diag::note_previous_declaration);
836      }
837
838      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
839                                           ArgTypes.size(),
840                                           OldProto->isVariadic(), 0));
841      return MergeCompatibleFunctionDecls(New, Old);
842    }
843
844    // Fall through to diagnose conflicting types.
845  }
846
847  // A function that has already been declared has been redeclared or defined
848  // with a different type- show appropriate diagnostic
849  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
850    // The user has declared a builtin function with an incompatible
851    // signature.
852    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
853      // The function the user is redeclaring is a library-defined
854      // function like 'malloc' or 'printf'. Warn about the
855      // redeclaration, then pretend that we don't know about this
856      // library built-in.
857      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
858      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
859        << Old << Old->getType();
860      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
861      Old->setInvalidDecl();
862      return false;
863    }
864
865    PrevDiag = diag::note_previous_builtin_declaration;
866  }
867
868  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
869  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
870  return true;
871}
872
873/// \brief Completes the merge of two function declarations that are
874/// known to be compatible.
875///
876/// This routine handles the merging of attributes and other
877/// properties of function declarations form the old declaration to
878/// the new declaration, once we know that New is in fact a
879/// redeclaration of Old.
880///
881/// \returns false
882bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
883  // Merge the attributes
884  MergeAttributes(New, Old, Context);
885
886  // Merge the storage class.
887  if (Old->getStorageClass() != FunctionDecl::Extern)
888    New->setStorageClass(Old->getStorageClass());
889
890  // Merge "inline"
891  if (Old->isInline())
892    New->setInline(true);
893
894  // If this function declaration by itself qualifies as a C99 inline
895  // definition (C99 6.7.4p6), but the previous definition did not,
896  // then the function is not a C99 inline definition.
897  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
898    New->setC99InlineDefinition(false);
899  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
900    // Mark all preceding definitions as not being C99 inline definitions.
901    for (const FunctionDecl *Prev = Old; Prev;
902         Prev = Prev->getPreviousDeclaration())
903      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
904  }
905
906  // Merge "pure" flag.
907  if (Old->isPure())
908    New->setPure();
909
910  // Merge the "deleted" flag.
911  if (Old->isDeleted())
912    New->setDeleted();
913
914  if (getLangOptions().CPlusPlus)
915    return MergeCXXFunctionDecl(New, Old);
916
917  return false;
918}
919
920/// MergeVarDecl - We just parsed a variable 'New' which has the same name
921/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
922/// situation, merging decls or emitting diagnostics as appropriate.
923///
924/// Tentative definition rules (C99 6.9.2p2) are checked by
925/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
926/// definitions here, since the initializer hasn't been attached.
927///
928void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
929  // If either decl is invalid, make sure the new one is marked invalid and
930  // don't do any other checking.
931  if (New->isInvalidDecl() || OldD->isInvalidDecl())
932    return New->setInvalidDecl();
933
934  // Verify the old decl was also a variable.
935  VarDecl *Old = dyn_cast<VarDecl>(OldD);
936  if (!Old) {
937    Diag(New->getLocation(), diag::err_redefinition_different_kind)
938      << New->getDeclName();
939    Diag(OldD->getLocation(), diag::note_previous_definition);
940    return New->setInvalidDecl();
941  }
942
943  MergeAttributes(New, Old, Context);
944
945  // Merge the types
946  QualType MergedT;
947  if (getLangOptions().CPlusPlus) {
948    if (Context.hasSameType(New->getType(), Old->getType()))
949      MergedT = New->getType();
950  } else {
951    MergedT = Context.mergeTypes(New->getType(), Old->getType());
952  }
953  if (MergedT.isNull()) {
954    Diag(New->getLocation(), diag::err_redefinition_different_type)
955      << New->getDeclName();
956    Diag(Old->getLocation(), diag::note_previous_definition);
957    return New->setInvalidDecl();
958  }
959  New->setType(MergedT);
960
961  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
962  if (New->getStorageClass() == VarDecl::Static &&
963      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
964    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
965    Diag(Old->getLocation(), diag::note_previous_definition);
966    return New->setInvalidDecl();
967  }
968  // C99 6.2.2p4:
969  //   For an identifier declared with the storage-class specifier
970  //   extern in a scope in which a prior declaration of that
971  //   identifier is visible,23) if the prior declaration specifies
972  //   internal or external linkage, the linkage of the identifier at
973  //   the later declaration is the same as the linkage specified at
974  //   the prior declaration. If no prior declaration is visible, or
975  //   if the prior declaration specifies no linkage, then the
976  //   identifier has external linkage.
977  if (New->hasExternalStorage() && Old->hasLinkage())
978    /* Okay */;
979  else if (New->getStorageClass() != VarDecl::Static &&
980           Old->getStorageClass() == VarDecl::Static) {
981    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
982    Diag(Old->getLocation(), diag::note_previous_definition);
983    return New->setInvalidDecl();
984  }
985
986  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
987
988  // FIXME: The test for external storage here seems wrong? We still
989  // need to check for mismatches.
990  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
991      // Don't complain about out-of-line definitions of static members.
992      !(Old->getLexicalDeclContext()->isRecord() &&
993        !New->getLexicalDeclContext()->isRecord())) {
994    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
995    Diag(Old->getLocation(), diag::note_previous_definition);
996    return New->setInvalidDecl();
997  }
998
999  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1000    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1001    Diag(Old->getLocation(), diag::note_previous_definition);
1002  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1003    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1004    Diag(Old->getLocation(), diag::note_previous_definition);
1005  }
1006
1007  // Keep a chain of previous declarations.
1008  New->setPreviousDeclaration(Old);
1009}
1010
1011/// CheckParmsForFunctionDef - Check that the parameters of the given
1012/// function are appropriate for the definition of a function. This
1013/// takes care of any checks that cannot be performed on the
1014/// declaration itself, e.g., that the types of each of the function
1015/// parameters are complete.
1016bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1017  bool HasInvalidParm = false;
1018  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1019    ParmVarDecl *Param = FD->getParamDecl(p);
1020
1021    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1022    // function declarator that is part of a function definition of
1023    // that function shall not have incomplete type.
1024    //
1025    // This is also C++ [dcl.fct]p6.
1026    if (!Param->isInvalidDecl() &&
1027        RequireCompleteType(Param->getLocation(), Param->getType(),
1028                               diag::err_typecheck_decl_incomplete_type)) {
1029      Param->setInvalidDecl();
1030      HasInvalidParm = true;
1031    }
1032
1033    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1034    // declaration of each parameter shall include an identifier.
1035    if (Param->getIdentifier() == 0 &&
1036        !Param->isImplicit() &&
1037        !getLangOptions().CPlusPlus)
1038      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1039  }
1040
1041  return HasInvalidParm;
1042}
1043
1044/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1045/// no declarator (e.g. "struct foo;") is parsed.
1046Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1047  // FIXME: Error on auto/register at file scope
1048  // FIXME: Error on inline/virtual/explicit
1049  // FIXME: Error on invalid restrict
1050  // FIXME: Warn on useless __thread
1051  // FIXME: Warn on useless const/volatile
1052  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1053  // FIXME: Warn on useless attributes
1054  TagDecl *Tag = 0;
1055  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1056      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1057      DS.getTypeSpecType() == DeclSpec::TST_union ||
1058      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1059    if (!DS.getTypeRep()) // We probably had an error
1060      return DeclPtrTy();
1061
1062    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1063  }
1064
1065  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1066    if (!Record->getDeclName() && Record->isDefinition() &&
1067        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1068      if (getLangOptions().CPlusPlus ||
1069          Record->getDeclContext()->isRecord())
1070        return BuildAnonymousStructOrUnion(S, DS, Record);
1071
1072      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1073        << DS.getSourceRange();
1074    }
1075
1076    // Microsoft allows unnamed struct/union fields. Don't complain
1077    // about them.
1078    // FIXME: Should we support Microsoft's extensions in this area?
1079    if (Record->getDeclName() && getLangOptions().Microsoft)
1080      return DeclPtrTy::make(Tag);
1081  }
1082
1083  if (!DS.isMissingDeclaratorOk() &&
1084      DS.getTypeSpecType() != DeclSpec::TST_error) {
1085    // Warn about typedefs of enums without names, since this is an
1086    // extension in both Microsoft an GNU.
1087    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1088        Tag && isa<EnumDecl>(Tag)) {
1089      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1090        << DS.getSourceRange();
1091      return DeclPtrTy::make(Tag);
1092    }
1093
1094    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1095      << DS.getSourceRange();
1096    return DeclPtrTy();
1097  }
1098
1099  return DeclPtrTy::make(Tag);
1100}
1101
1102/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1103/// anonymous struct or union AnonRecord into the owning context Owner
1104/// and scope S. This routine will be invoked just after we realize
1105/// that an unnamed union or struct is actually an anonymous union or
1106/// struct, e.g.,
1107///
1108/// @code
1109/// union {
1110///   int i;
1111///   float f;
1112/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1113///    // f into the surrounding scope.x
1114/// @endcode
1115///
1116/// This routine is recursive, injecting the names of nested anonymous
1117/// structs/unions into the owning context and scope as well.
1118bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1119                                               RecordDecl *AnonRecord) {
1120  bool Invalid = false;
1121  for (RecordDecl::field_iterator F = AnonRecord->field_begin(Context),
1122                               FEnd = AnonRecord->field_end(Context);
1123       F != FEnd; ++F) {
1124    if ((*F)->getDeclName()) {
1125      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1126                                                LookupOrdinaryName, true);
1127      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1128        // C++ [class.union]p2:
1129        //   The names of the members of an anonymous union shall be
1130        //   distinct from the names of any other entity in the
1131        //   scope in which the anonymous union is declared.
1132        unsigned diagKind
1133          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1134                                 : diag::err_anonymous_struct_member_redecl;
1135        Diag((*F)->getLocation(), diagKind)
1136          << (*F)->getDeclName();
1137        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1138        Invalid = true;
1139      } else {
1140        // C++ [class.union]p2:
1141        //   For the purpose of name lookup, after the anonymous union
1142        //   definition, the members of the anonymous union are
1143        //   considered to have been defined in the scope in which the
1144        //   anonymous union is declared.
1145        Owner->makeDeclVisibleInContext(Context, *F);
1146        S->AddDecl(DeclPtrTy::make(*F));
1147        IdResolver.AddDecl(*F);
1148      }
1149    } else if (const RecordType *InnerRecordType
1150                 = (*F)->getType()->getAsRecordType()) {
1151      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1152      if (InnerRecord->isAnonymousStructOrUnion())
1153        Invalid = Invalid ||
1154          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1155    }
1156  }
1157
1158  return Invalid;
1159}
1160
1161/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1162/// anonymous structure or union. Anonymous unions are a C++ feature
1163/// (C++ [class.union]) and a GNU C extension; anonymous structures
1164/// are a GNU C and GNU C++ extension.
1165Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1166                                                  RecordDecl *Record) {
1167  DeclContext *Owner = Record->getDeclContext();
1168
1169  // Diagnose whether this anonymous struct/union is an extension.
1170  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1171    Diag(Record->getLocation(), diag::ext_anonymous_union);
1172  else if (!Record->isUnion())
1173    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1174
1175  // C and C++ require different kinds of checks for anonymous
1176  // structs/unions.
1177  bool Invalid = false;
1178  if (getLangOptions().CPlusPlus) {
1179    const char* PrevSpec = 0;
1180    // C++ [class.union]p3:
1181    //   Anonymous unions declared in a named namespace or in the
1182    //   global namespace shall be declared static.
1183    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1184        (isa<TranslationUnitDecl>(Owner) ||
1185         (isa<NamespaceDecl>(Owner) &&
1186          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1187      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1188      Invalid = true;
1189
1190      // Recover by adding 'static'.
1191      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1192    }
1193    // C++ [class.union]p3:
1194    //   A storage class is not allowed in a declaration of an
1195    //   anonymous union in a class scope.
1196    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1197             isa<RecordDecl>(Owner)) {
1198      Diag(DS.getStorageClassSpecLoc(),
1199           diag::err_anonymous_union_with_storage_spec);
1200      Invalid = true;
1201
1202      // Recover by removing the storage specifier.
1203      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1204                             PrevSpec);
1205    }
1206
1207    // C++ [class.union]p2:
1208    //   The member-specification of an anonymous union shall only
1209    //   define non-static data members. [Note: nested types and
1210    //   functions cannot be declared within an anonymous union. ]
1211    for (DeclContext::decl_iterator Mem = Record->decls_begin(Context),
1212                                 MemEnd = Record->decls_end(Context);
1213         Mem != MemEnd; ++Mem) {
1214      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1215        // C++ [class.union]p3:
1216        //   An anonymous union shall not have private or protected
1217        //   members (clause 11).
1218        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1219          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1220            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1221          Invalid = true;
1222        }
1223      } else if ((*Mem)->isImplicit()) {
1224        // Any implicit members are fine.
1225      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1226        // This is a type that showed up in an
1227        // elaborated-type-specifier inside the anonymous struct or
1228        // union, but which actually declares a type outside of the
1229        // anonymous struct or union. It's okay.
1230      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1231        if (!MemRecord->isAnonymousStructOrUnion() &&
1232            MemRecord->getDeclName()) {
1233          // This is a nested type declaration.
1234          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1235            << (int)Record->isUnion();
1236          Invalid = true;
1237        }
1238      } else {
1239        // We have something that isn't a non-static data
1240        // member. Complain about it.
1241        unsigned DK = diag::err_anonymous_record_bad_member;
1242        if (isa<TypeDecl>(*Mem))
1243          DK = diag::err_anonymous_record_with_type;
1244        else if (isa<FunctionDecl>(*Mem))
1245          DK = diag::err_anonymous_record_with_function;
1246        else if (isa<VarDecl>(*Mem))
1247          DK = diag::err_anonymous_record_with_static;
1248        Diag((*Mem)->getLocation(), DK)
1249            << (int)Record->isUnion();
1250          Invalid = true;
1251      }
1252    }
1253  }
1254
1255  if (!Record->isUnion() && !Owner->isRecord()) {
1256    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1257      << (int)getLangOptions().CPlusPlus;
1258    Invalid = true;
1259  }
1260
1261  // Create a declaration for this anonymous struct/union.
1262  NamedDecl *Anon = 0;
1263  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1264    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1265                             /*IdentifierInfo=*/0,
1266                             Context.getTypeDeclType(Record),
1267                             /*BitWidth=*/0, /*Mutable=*/false);
1268    Anon->setAccess(AS_public);
1269    if (getLangOptions().CPlusPlus)
1270      FieldCollector->Add(cast<FieldDecl>(Anon));
1271  } else {
1272    VarDecl::StorageClass SC;
1273    switch (DS.getStorageClassSpec()) {
1274    default: assert(0 && "Unknown storage class!");
1275    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1276    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1277    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1278    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1279    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1280    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1281    case DeclSpec::SCS_mutable:
1282      // mutable can only appear on non-static class members, so it's always
1283      // an error here
1284      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1285      Invalid = true;
1286      SC = VarDecl::None;
1287      break;
1288    }
1289
1290    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1291                           /*IdentifierInfo=*/0,
1292                           Context.getTypeDeclType(Record),
1293                           SC, DS.getSourceRange().getBegin());
1294  }
1295  Anon->setImplicit();
1296
1297  // Add the anonymous struct/union object to the current
1298  // context. We'll be referencing this object when we refer to one of
1299  // its members.
1300  Owner->addDecl(Context, Anon);
1301
1302  // Inject the members of the anonymous struct/union into the owning
1303  // context and into the identifier resolver chain for name lookup
1304  // purposes.
1305  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1306    Invalid = true;
1307
1308  // Mark this as an anonymous struct/union type. Note that we do not
1309  // do this until after we have already checked and injected the
1310  // members of this anonymous struct/union type, because otherwise
1311  // the members could be injected twice: once by DeclContext when it
1312  // builds its lookup table, and once by
1313  // InjectAnonymousStructOrUnionMembers.
1314  Record->setAnonymousStructOrUnion(true);
1315
1316  if (Invalid)
1317    Anon->setInvalidDecl();
1318
1319  return DeclPtrTy::make(Anon);
1320}
1321
1322
1323/// GetNameForDeclarator - Determine the full declaration name for the
1324/// given Declarator.
1325DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1326  switch (D.getKind()) {
1327  case Declarator::DK_Abstract:
1328    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1329    return DeclarationName();
1330
1331  case Declarator::DK_Normal:
1332    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1333    return DeclarationName(D.getIdentifier());
1334
1335  case Declarator::DK_Constructor: {
1336    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1337    Ty = Context.getCanonicalType(Ty);
1338    return Context.DeclarationNames.getCXXConstructorName(Ty);
1339  }
1340
1341  case Declarator::DK_Destructor: {
1342    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1343    Ty = Context.getCanonicalType(Ty);
1344    return Context.DeclarationNames.getCXXDestructorName(Ty);
1345  }
1346
1347  case Declarator::DK_Conversion: {
1348    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1349    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1350    Ty = Context.getCanonicalType(Ty);
1351    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1352  }
1353
1354  case Declarator::DK_Operator:
1355    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1356    return Context.DeclarationNames.getCXXOperatorName(
1357                                                D.getOverloadedOperator());
1358  }
1359
1360  assert(false && "Unknown name kind");
1361  return DeclarationName();
1362}
1363
1364/// isNearlyMatchingFunction - Determine whether the C++ functions
1365/// Declaration and Definition are "nearly" matching. This heuristic
1366/// is used to improve diagnostics in the case where an out-of-line
1367/// function definition doesn't match any declaration within
1368/// the class or namespace.
1369static bool isNearlyMatchingFunction(ASTContext &Context,
1370                                     FunctionDecl *Declaration,
1371                                     FunctionDecl *Definition) {
1372  if (Declaration->param_size() != Definition->param_size())
1373    return false;
1374  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1375    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1376    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1377
1378    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1379    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1380    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1381      return false;
1382  }
1383
1384  return true;
1385}
1386
1387Sema::DeclPtrTy
1388Sema::HandleDeclarator(Scope *S, Declarator &D,
1389                       MultiTemplateParamsArg TemplateParamLists,
1390                       bool IsFunctionDefinition) {
1391  DeclarationName Name = GetNameForDeclarator(D);
1392
1393  // All of these full declarators require an identifier.  If it doesn't have
1394  // one, the ParsedFreeStandingDeclSpec action should be used.
1395  if (!Name) {
1396    if (!D.isInvalidType())  // Reject this if we think it is valid.
1397      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1398           diag::err_declarator_need_ident)
1399        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1400    return DeclPtrTy();
1401  }
1402
1403  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1404  // we find one that is.
1405  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1406         (S->getFlags() & Scope::TemplateParamScope) != 0)
1407    S = S->getParent();
1408
1409  DeclContext *DC;
1410  NamedDecl *PrevDecl;
1411  NamedDecl *New;
1412
1413  QualType R = GetTypeForDeclarator(D, S);
1414
1415  // See if this is a redefinition of a variable in the same scope.
1416  if (D.getCXXScopeSpec().isInvalid()) {
1417    DC = CurContext;
1418    PrevDecl = 0;
1419    D.setInvalidType();
1420  } else if (!D.getCXXScopeSpec().isSet()) {
1421    LookupNameKind NameKind = LookupOrdinaryName;
1422
1423    // If the declaration we're planning to build will be a function
1424    // or object with linkage, then look for another declaration with
1425    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1426    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1427      /* Do nothing*/;
1428    else if (R->isFunctionType()) {
1429      if (CurContext->isFunctionOrMethod())
1430        NameKind = LookupRedeclarationWithLinkage;
1431    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1432      NameKind = LookupRedeclarationWithLinkage;
1433
1434    DC = CurContext;
1435    PrevDecl = LookupName(S, Name, NameKind, true,
1436                          D.getDeclSpec().getStorageClassSpec() !=
1437                            DeclSpec::SCS_static,
1438                          D.getIdentifierLoc());
1439  } else { // Something like "int foo::x;"
1440    DC = computeDeclContext(D.getCXXScopeSpec());
1441    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1442    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1443
1444    // C++ 7.3.1.2p2:
1445    // Members (including explicit specializations of templates) of a named
1446    // namespace can also be defined outside that namespace by explicit
1447    // qualification of the name being defined, provided that the entity being
1448    // defined was already declared in the namespace and the definition appears
1449    // after the point of declaration in a namespace that encloses the
1450    // declarations namespace.
1451    //
1452    // Note that we only check the context at this point. We don't yet
1453    // have enough information to make sure that PrevDecl is actually
1454    // the declaration we want to match. For example, given:
1455    //
1456    //   class X {
1457    //     void f();
1458    //     void f(float);
1459    //   };
1460    //
1461    //   void X::f(int) { } // ill-formed
1462    //
1463    // In this case, PrevDecl will point to the overload set
1464    // containing the two f's declared in X, but neither of them
1465    // matches.
1466
1467    // First check whether we named the global scope.
1468    if (isa<TranslationUnitDecl>(DC)) {
1469      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1470        << Name << D.getCXXScopeSpec().getRange();
1471    } else if (!CurContext->Encloses(DC)) {
1472      // The qualifying scope doesn't enclose the original declaration.
1473      // Emit diagnostic based on current scope.
1474      SourceLocation L = D.getIdentifierLoc();
1475      SourceRange R = D.getCXXScopeSpec().getRange();
1476      if (isa<FunctionDecl>(CurContext))
1477        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1478      else
1479        Diag(L, diag::err_invalid_declarator_scope)
1480          << Name << cast<NamedDecl>(DC) << R;
1481      D.setInvalidType();
1482    }
1483  }
1484
1485  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1486    // Maybe we will complain about the shadowed template parameter.
1487    if (!D.isInvalidType())
1488      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1489        D.setInvalidType();
1490
1491    // Just pretend that we didn't see the previous declaration.
1492    PrevDecl = 0;
1493  }
1494
1495  // In C++, the previous declaration we find might be a tag type
1496  // (class or enum). In this case, the new declaration will hide the
1497  // tag type. Note that this does does not apply if we're declaring a
1498  // typedef (C++ [dcl.typedef]p4).
1499  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1500      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1501    PrevDecl = 0;
1502
1503  bool Redeclaration = false;
1504  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1505    if (TemplateParamLists.size()) {
1506      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1507      return DeclPtrTy();
1508    }
1509
1510    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1511  } else if (R->isFunctionType()) {
1512    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1513                                  move(TemplateParamLists),
1514                                  IsFunctionDefinition, Redeclaration);
1515  } else {
1516    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1517  }
1518
1519  if (New == 0)
1520    return DeclPtrTy();
1521
1522  // If this has an identifier and is not an invalid redeclaration,
1523  // add it to the scope stack.
1524  if (Name && !(Redeclaration && New->isInvalidDecl()))
1525    PushOnScopeChains(New, S);
1526
1527  return DeclPtrTy::make(New);
1528}
1529
1530/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1531/// types into constant array types in certain situations which would otherwise
1532/// be errors (for GCC compatibility).
1533static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1534                                                    ASTContext &Context,
1535                                                    bool &SizeIsNegative) {
1536  // This method tries to turn a variable array into a constant
1537  // array even when the size isn't an ICE.  This is necessary
1538  // for compatibility with code that depends on gcc's buggy
1539  // constant expression folding, like struct {char x[(int)(char*)2];}
1540  SizeIsNegative = false;
1541
1542  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1543    QualType Pointee = PTy->getPointeeType();
1544    QualType FixedType =
1545        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1546    if (FixedType.isNull()) return FixedType;
1547    FixedType = Context.getPointerType(FixedType);
1548    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1549    return FixedType;
1550  }
1551
1552  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1553  if (!VLATy)
1554    return QualType();
1555  // FIXME: We should probably handle this case
1556  if (VLATy->getElementType()->isVariablyModifiedType())
1557    return QualType();
1558
1559  Expr::EvalResult EvalResult;
1560  if (!VLATy->getSizeExpr() ||
1561      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1562      !EvalResult.Val.isInt())
1563    return QualType();
1564
1565  llvm::APSInt &Res = EvalResult.Val.getInt();
1566  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1567    return Context.getConstantArrayType(VLATy->getElementType(),
1568                                        Res, ArrayType::Normal, 0);
1569
1570  SizeIsNegative = true;
1571  return QualType();
1572}
1573
1574/// \brief Register the given locally-scoped external C declaration so
1575/// that it can be found later for redeclarations
1576void
1577Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1578                                       Scope *S) {
1579  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1580         "Decl is not a locally-scoped decl!");
1581  // Note that we have a locally-scoped external with this name.
1582  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1583
1584  if (!PrevDecl)
1585    return;
1586
1587  // If there was a previous declaration of this variable, it may be
1588  // in our identifier chain. Update the identifier chain with the new
1589  // declaration.
1590  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1591    // The previous declaration was found on the identifer resolver
1592    // chain, so remove it from its scope.
1593    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1594      S = S->getParent();
1595
1596    if (S)
1597      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1598  }
1599}
1600
1601/// \brief Diagnose function specifiers on a declaration of an identifier that
1602/// does not identify a function.
1603void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1604  // FIXME: We should probably indicate the identifier in question to avoid
1605  // confusion for constructs like "inline int a(), b;"
1606  if (D.getDeclSpec().isInlineSpecified())
1607    Diag(D.getDeclSpec().getInlineSpecLoc(),
1608         diag::err_inline_non_function);
1609
1610  if (D.getDeclSpec().isVirtualSpecified())
1611    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1612         diag::err_virtual_non_function);
1613
1614  if (D.getDeclSpec().isExplicitSpecified())
1615    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1616         diag::err_explicit_non_function);
1617}
1618
1619NamedDecl*
1620Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1621                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1622  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1623  if (D.getCXXScopeSpec().isSet()) {
1624    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1625      << D.getCXXScopeSpec().getRange();
1626    D.setInvalidType();
1627    // Pretend we didn't see the scope specifier.
1628    DC = 0;
1629  }
1630
1631  if (getLangOptions().CPlusPlus) {
1632    // Check that there are no default arguments (C++ only).
1633    CheckExtraCXXDefaultArguments(D);
1634  }
1635
1636  DiagnoseFunctionSpecifiers(D);
1637
1638  if (D.getDeclSpec().isThreadSpecified())
1639    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1640
1641  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1642  if (!NewTD) return 0;
1643
1644  if (D.isInvalidType())
1645    NewTD->setInvalidDecl();
1646
1647  // Handle attributes prior to checking for duplicates in MergeVarDecl
1648  ProcessDeclAttributes(S, NewTD, D);
1649  // Merge the decl with the existing one if appropriate. If the decl is
1650  // in an outer scope, it isn't the same thing.
1651  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1652    Redeclaration = true;
1653    MergeTypeDefDecl(NewTD, PrevDecl);
1654  }
1655
1656  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1657  // then it shall have block scope.
1658  QualType T = NewTD->getUnderlyingType();
1659  if (T->isVariablyModifiedType()) {
1660    CurFunctionNeedsScopeChecking = true;
1661
1662    if (S->getFnParent() == 0) {
1663      bool SizeIsNegative;
1664      QualType FixedTy =
1665          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1666      if (!FixedTy.isNull()) {
1667        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1668        NewTD->setUnderlyingType(FixedTy);
1669      } else {
1670        if (SizeIsNegative)
1671          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1672        else if (T->isVariableArrayType())
1673          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1674        else
1675          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1676        NewTD->setInvalidDecl();
1677      }
1678    }
1679  }
1680  return NewTD;
1681}
1682
1683/// \brief Determines whether the given declaration is an out-of-scope
1684/// previous declaration.
1685///
1686/// This routine should be invoked when name lookup has found a
1687/// previous declaration (PrevDecl) that is not in the scope where a
1688/// new declaration by the same name is being introduced. If the new
1689/// declaration occurs in a local scope, previous declarations with
1690/// linkage may still be considered previous declarations (C99
1691/// 6.2.2p4-5, C++ [basic.link]p6).
1692///
1693/// \param PrevDecl the previous declaration found by name
1694/// lookup
1695///
1696/// \param DC the context in which the new declaration is being
1697/// declared.
1698///
1699/// \returns true if PrevDecl is an out-of-scope previous declaration
1700/// for a new delcaration with the same name.
1701static bool
1702isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1703                                ASTContext &Context) {
1704  if (!PrevDecl)
1705    return 0;
1706
1707  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1708  // case we need to check each of the overloaded functions.
1709  if (!PrevDecl->hasLinkage())
1710    return false;
1711
1712  if (Context.getLangOptions().CPlusPlus) {
1713    // C++ [basic.link]p6:
1714    //   If there is a visible declaration of an entity with linkage
1715    //   having the same name and type, ignoring entities declared
1716    //   outside the innermost enclosing namespace scope, the block
1717    //   scope declaration declares that same entity and receives the
1718    //   linkage of the previous declaration.
1719    DeclContext *OuterContext = DC->getLookupContext();
1720    if (!OuterContext->isFunctionOrMethod())
1721      // This rule only applies to block-scope declarations.
1722      return false;
1723    else {
1724      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1725      if (PrevOuterContext->isRecord())
1726        // We found a member function: ignore it.
1727        return false;
1728      else {
1729        // Find the innermost enclosing namespace for the new and
1730        // previous declarations.
1731        while (!OuterContext->isFileContext())
1732          OuterContext = OuterContext->getParent();
1733        while (!PrevOuterContext->isFileContext())
1734          PrevOuterContext = PrevOuterContext->getParent();
1735
1736        // The previous declaration is in a different namespace, so it
1737        // isn't the same function.
1738        if (OuterContext->getPrimaryContext() !=
1739            PrevOuterContext->getPrimaryContext())
1740          return false;
1741      }
1742    }
1743  }
1744
1745  return true;
1746}
1747
1748NamedDecl*
1749Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1750                              QualType R,NamedDecl* PrevDecl,
1751                              bool &Redeclaration) {
1752  DeclarationName Name = GetNameForDeclarator(D);
1753
1754  // Check that there are no default arguments (C++ only).
1755  if (getLangOptions().CPlusPlus)
1756    CheckExtraCXXDefaultArguments(D);
1757
1758  VarDecl *NewVD;
1759  VarDecl::StorageClass SC;
1760  switch (D.getDeclSpec().getStorageClassSpec()) {
1761  default: assert(0 && "Unknown storage class!");
1762  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1763  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1764  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1765  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1766  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1767  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1768  case DeclSpec::SCS_mutable:
1769    // mutable can only appear on non-static class members, so it's always
1770    // an error here
1771    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1772    D.setInvalidType();
1773    SC = VarDecl::None;
1774    break;
1775  }
1776
1777  IdentifierInfo *II = Name.getAsIdentifierInfo();
1778  if (!II) {
1779    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1780      << Name.getAsString();
1781    return 0;
1782  }
1783
1784  DiagnoseFunctionSpecifiers(D);
1785
1786  if (!DC->isRecord() && S->getFnParent() == 0) {
1787    // C99 6.9p2: The storage-class specifiers auto and register shall not
1788    // appear in the declaration specifiers in an external declaration.
1789    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1790
1791      // If this is a register variable with an asm label specified, then this
1792      // is a GNU extension.
1793      if (SC == VarDecl::Register && D.getAsmLabel())
1794        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1795      else
1796        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1797      D.setInvalidType();
1798    }
1799  }
1800  if (DC->isRecord() && !CurContext->isRecord()) {
1801    // This is an out-of-line definition of a static data member.
1802    if (SC == VarDecl::Static) {
1803      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1804           diag::err_static_out_of_line)
1805        << CodeModificationHint::CreateRemoval(
1806                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1807    } else if (SC == VarDecl::None)
1808      SC = VarDecl::Static;
1809  }
1810  if (SC == VarDecl::Static) {
1811    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1812      if (RD->isLocalClass())
1813        Diag(D.getIdentifierLoc(),
1814             diag::err_static_data_member_not_allowed_in_local_class)
1815          << Name << RD->getDeclName();
1816    }
1817  }
1818
1819
1820  // The variable can not
1821  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1822                          II, R, SC,
1823                          // FIXME: Move to DeclGroup...
1824                          D.getDeclSpec().getSourceRange().getBegin());
1825
1826  if (D.isInvalidType())
1827    NewVD->setInvalidDecl();
1828
1829  if (D.getDeclSpec().isThreadSpecified()) {
1830    if (NewVD->hasLocalStorage())
1831      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1832    else if (!Context.Target.isTLSSupported())
1833      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1834    else
1835      NewVD->setThreadSpecified(true);
1836  }
1837
1838  // Set the lexical context. If the declarator has a C++ scope specifier, the
1839  // lexical context will be different from the semantic context.
1840  NewVD->setLexicalDeclContext(CurContext);
1841
1842  // Handle attributes prior to checking for duplicates in MergeVarDecl
1843  ProcessDeclAttributes(S, NewVD, D);
1844
1845  // Handle GNU asm-label extension (encoded as an attribute).
1846  if (Expr *E = (Expr*) D.getAsmLabel()) {
1847    // The parser guarantees this is a string.
1848    StringLiteral *SE = cast<StringLiteral>(E);
1849    NewVD->addAttr(Context,
1850                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1851                                                        SE->getByteLength())));
1852  }
1853
1854  // If name lookup finds a previous declaration that is not in the
1855  // same scope as the new declaration, this may still be an
1856  // acceptable redeclaration.
1857  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1858      !(NewVD->hasLinkage() &&
1859        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1860    PrevDecl = 0;
1861
1862  // Merge the decl with the existing one if appropriate.
1863  if (PrevDecl) {
1864    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1865      // The user tried to define a non-static data member
1866      // out-of-line (C++ [dcl.meaning]p1).
1867      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1868        << D.getCXXScopeSpec().getRange();
1869      PrevDecl = 0;
1870      NewVD->setInvalidDecl();
1871    }
1872  } else if (D.getCXXScopeSpec().isSet()) {
1873    // No previous declaration in the qualifying scope.
1874    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1875      << Name << D.getCXXScopeSpec().getRange();
1876    NewVD->setInvalidDecl();
1877  }
1878
1879  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1880
1881  // If this is a locally-scoped extern C variable, update the map of
1882  // such variables.
1883  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1884      !NewVD->isInvalidDecl())
1885    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1886
1887  return NewVD;
1888}
1889
1890/// \brief Perform semantic checking on a newly-created variable
1891/// declaration.
1892///
1893/// This routine performs all of the type-checking required for a
1894/// variable declaration once it has been built. It is used both to
1895/// check variables after they have been parsed and their declarators
1896/// have been translated into a declaration, and to check variables
1897/// that have been instantiated from a template.
1898///
1899/// Sets NewVD->isInvalidDecl() if an error was encountered.
1900void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1901                                    bool &Redeclaration) {
1902  // If the decl is already known invalid, don't check it.
1903  if (NewVD->isInvalidDecl())
1904    return;
1905
1906  QualType T = NewVD->getType();
1907
1908  if (T->isObjCInterfaceType()) {
1909    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1910    return NewVD->setInvalidDecl();
1911  }
1912
1913  // The variable can not have an abstract class type.
1914  if (RequireNonAbstractType(NewVD->getLocation(), T,
1915                             diag::err_abstract_type_in_decl,
1916                             AbstractVariableType))
1917    return NewVD->setInvalidDecl();
1918
1919  // Emit an error if an address space was applied to decl with local storage.
1920  // This includes arrays of objects with address space qualifiers, but not
1921  // automatic variables that point to other address spaces.
1922  // ISO/IEC TR 18037 S5.1.2
1923  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1924    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1925    return NewVD->setInvalidDecl();
1926  }
1927
1928  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1929      && !NewVD->hasAttr<BlocksAttr>(Context))
1930    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1931
1932  bool isVM = T->isVariablyModifiedType();
1933  if (isVM || NewVD->hasAttr<CleanupAttr>(Context))
1934    CurFunctionNeedsScopeChecking = true;
1935
1936  if ((isVM && NewVD->hasLinkage()) ||
1937      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1938    bool SizeIsNegative;
1939    QualType FixedTy =
1940        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1941
1942    if (FixedTy.isNull() && T->isVariableArrayType()) {
1943      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
1944      // FIXME: This won't give the correct result for
1945      // int a[10][n];
1946      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
1947
1948      if (NewVD->isFileVarDecl())
1949        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
1950        << SizeRange;
1951      else if (NewVD->getStorageClass() == VarDecl::Static)
1952        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
1953        << SizeRange;
1954      else
1955        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
1956        << SizeRange;
1957      return NewVD->setInvalidDecl();
1958    }
1959
1960    if (FixedTy.isNull()) {
1961      if (NewVD->isFileVarDecl())
1962        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
1963      else
1964        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
1965      return NewVD->setInvalidDecl();
1966    }
1967
1968    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
1969    NewVD->setType(FixedTy);
1970  }
1971
1972  if (!PrevDecl && NewVD->isExternC(Context)) {
1973    // Since we did not find anything by this name and we're declaring
1974    // an extern "C" variable, look for a non-visible extern "C"
1975    // declaration with the same name.
1976    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
1977      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
1978    if (Pos != LocallyScopedExternalDecls.end())
1979      PrevDecl = Pos->second;
1980  }
1981
1982  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
1983    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
1984      << T;
1985    return NewVD->setInvalidDecl();
1986  }
1987
1988  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>(Context)) {
1989    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
1990    return NewVD->setInvalidDecl();
1991  }
1992
1993  if (isVM && NewVD->hasAttr<BlocksAttr>(Context)) {
1994    Diag(NewVD->getLocation(), diag::err_block_on_vm);
1995    return NewVD->setInvalidDecl();
1996  }
1997
1998  if (PrevDecl) {
1999    Redeclaration = true;
2000    MergeVarDecl(NewVD, PrevDecl);
2001  }
2002}
2003
2004NamedDecl*
2005Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2006                              QualType R, NamedDecl* PrevDecl,
2007                              MultiTemplateParamsArg TemplateParamLists,
2008                              bool IsFunctionDefinition, bool &Redeclaration) {
2009  assert(R.getTypePtr()->isFunctionType());
2010
2011  DeclarationName Name = GetNameForDeclarator(D);
2012  FunctionDecl::StorageClass SC = FunctionDecl::None;
2013  switch (D.getDeclSpec().getStorageClassSpec()) {
2014  default: assert(0 && "Unknown storage class!");
2015  case DeclSpec::SCS_auto:
2016  case DeclSpec::SCS_register:
2017  case DeclSpec::SCS_mutable:
2018    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2019         diag::err_typecheck_sclass_func);
2020    D.setInvalidType();
2021    break;
2022  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2023  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2024  case DeclSpec::SCS_static: {
2025    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2026      // C99 6.7.1p5:
2027      //   The declaration of an identifier for a function that has
2028      //   block scope shall have no explicit storage-class specifier
2029      //   other than extern
2030      // See also (C++ [dcl.stc]p4).
2031      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2032           diag::err_static_block_func);
2033      SC = FunctionDecl::None;
2034    } else
2035      SC = FunctionDecl::Static;
2036    break;
2037  }
2038  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2039  }
2040
2041  if (D.getDeclSpec().isThreadSpecified())
2042    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2043
2044  bool isInline = D.getDeclSpec().isInlineSpecified();
2045  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2046  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2047
2048  // Check that the return type is not an abstract class type.
2049  // For record types, this is done by the AbstractClassUsageDiagnoser once
2050  // the class has been completely parsed.
2051  if (!DC->isRecord() &&
2052      RequireNonAbstractType(D.getIdentifierLoc(),
2053                             R->getAsFunctionType()->getResultType(),
2054                             diag::err_abstract_type_in_decl,
2055                             AbstractReturnType))
2056    D.setInvalidType();
2057
2058  // Do not allow returning a objc interface by-value.
2059  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2060    Diag(D.getIdentifierLoc(),
2061         diag::err_object_cannot_be_passed_returned_by_value) << 0
2062      << R->getAsFunctionType()->getResultType();
2063    D.setInvalidType();
2064  }
2065
2066  // Check that we can declare a template here.
2067  if (TemplateParamLists.size() &&
2068      CheckTemplateDeclScope(S, TemplateParamLists))
2069    return 0;
2070
2071  bool isVirtualOkay = false;
2072  FunctionDecl *NewFD;
2073  if (D.getKind() == Declarator::DK_Constructor) {
2074    // This is a C++ constructor declaration.
2075    assert(DC->isRecord() &&
2076           "Constructors can only be declared in a member context");
2077
2078    R = CheckConstructorDeclarator(D, R, SC);
2079
2080    // Create the new declaration
2081    NewFD = CXXConstructorDecl::Create(Context,
2082                                       cast<CXXRecordDecl>(DC),
2083                                       D.getIdentifierLoc(), Name, R,
2084                                       isExplicit, isInline,
2085                                       /*isImplicitlyDeclared=*/false);
2086  } else if (D.getKind() == Declarator::DK_Destructor) {
2087    // This is a C++ destructor declaration.
2088    if (DC->isRecord()) {
2089      R = CheckDestructorDeclarator(D, SC);
2090
2091      NewFD = CXXDestructorDecl::Create(Context,
2092                                        cast<CXXRecordDecl>(DC),
2093                                        D.getIdentifierLoc(), Name, R,
2094                                        isInline,
2095                                        /*isImplicitlyDeclared=*/false);
2096
2097      isVirtualOkay = true;
2098    } else {
2099      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2100
2101      // Create a FunctionDecl to satisfy the function definition parsing
2102      // code path.
2103      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2104                                   Name, R, SC, isInline,
2105                                   /*hasPrototype=*/true,
2106                                   // FIXME: Move to DeclGroup...
2107                                   D.getDeclSpec().getSourceRange().getBegin());
2108      D.setInvalidType();
2109    }
2110  } else if (D.getKind() == Declarator::DK_Conversion) {
2111    if (!DC->isRecord()) {
2112      Diag(D.getIdentifierLoc(),
2113           diag::err_conv_function_not_member);
2114      return 0;
2115    }
2116
2117    CheckConversionDeclarator(D, R, SC);
2118    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2119                                      D.getIdentifierLoc(), Name, R,
2120                                      isInline, isExplicit);
2121
2122    isVirtualOkay = true;
2123  } else if (DC->isRecord()) {
2124    // If the of the function is the same as the name of the record, then this
2125    // must be an invalid constructor that has a return type.
2126    // (The parser checks for a return type and makes the declarator a
2127    // constructor if it has no return type).
2128    // must have an invalid constructor that has a return type
2129    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2130      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2131        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2132        << SourceRange(D.getIdentifierLoc());
2133      return 0;
2134    }
2135
2136    // This is a C++ method declaration.
2137    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2138                                  D.getIdentifierLoc(), Name, R,
2139                                  (SC == FunctionDecl::Static), isInline);
2140
2141    isVirtualOkay = (SC != FunctionDecl::Static);
2142  } else {
2143    // Determine whether the function was written with a
2144    // prototype. This true when:
2145    //   - we're in C++ (where every function has a prototype),
2146    //   - there is a prototype in the declarator, or
2147    //   - the type R of the function is some kind of typedef or other reference
2148    //     to a type name (which eventually refers to a function type).
2149    bool HasPrototype =
2150       getLangOptions().CPlusPlus ||
2151       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2152       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2153
2154    NewFD = FunctionDecl::Create(Context, DC,
2155                                 D.getIdentifierLoc(),
2156                                 Name, R, SC, isInline, HasPrototype,
2157                                 // FIXME: Move to DeclGroup...
2158                                 D.getDeclSpec().getSourceRange().getBegin());
2159  }
2160
2161  if (D.isInvalidType())
2162    NewFD->setInvalidDecl();
2163
2164  // Set the lexical context. If the declarator has a C++
2165  // scope specifier, the lexical context will be different
2166  // from the semantic context.
2167  NewFD->setLexicalDeclContext(CurContext);
2168
2169  // If there is a template parameter list, then we are dealing with a
2170  // template declaration or specialization.
2171  FunctionTemplateDecl *FunctionTemplate = 0;
2172  if (TemplateParamLists.size()) {
2173    // FIXME: member templates!
2174    TemplateParameterList *TemplateParams
2175      = static_cast<TemplateParameterList *>(*TemplateParamLists.release());
2176
2177    if (TemplateParams->size() > 0) {
2178      // This is a function template
2179      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2180                                                      NewFD->getLocation(),
2181                                                      Name, TemplateParams,
2182                                                      NewFD);
2183      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2184    } else {
2185      // FIXME: Handle function template specializations
2186    }
2187  }
2188
2189  // C++ [dcl.fct.spec]p5:
2190  //   The virtual specifier shall only be used in declarations of
2191  //   nonstatic class member functions that appear within a
2192  //   member-specification of a class declaration; see 10.3.
2193  //
2194  if (isVirtual && !NewFD->isInvalidDecl()) {
2195    if (!isVirtualOkay) {
2196       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2197           diag::err_virtual_non_function);
2198    } else if (!CurContext->isRecord()) {
2199      // 'virtual' was specified outside of the class.
2200      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2201        << CodeModificationHint::CreateRemoval(
2202                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2203    } else {
2204      // Okay: Add virtual to the method.
2205      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2206      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2207      CurClass->setAggregate(false);
2208      CurClass->setPOD(false);
2209      CurClass->setPolymorphic(true);
2210      CurClass->setHasTrivialConstructor(false);
2211    }
2212  }
2213
2214  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2215    // Look for virtual methods in base classes that this method might override.
2216
2217    BasePaths Paths;
2218    if (LookupInBases(cast<CXXRecordDecl>(DC),
2219                      MemberLookupCriteria(NewMD), Paths)) {
2220      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2221           E = Paths.found_decls_end(); I != E; ++I) {
2222        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2223          if (!CheckOverridingFunctionReturnType(NewMD, OldMD))
2224            NewMD->addOverriddenMethod(OldMD);
2225        }
2226      }
2227    }
2228  }
2229
2230  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2231      !CurContext->isRecord()) {
2232    // C++ [class.static]p1:
2233    //   A data or function member of a class may be declared static
2234    //   in a class definition, in which case it is a static member of
2235    //   the class.
2236
2237    // Complain about the 'static' specifier if it's on an out-of-line
2238    // member function definition.
2239    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2240         diag::err_static_out_of_line)
2241      << CodeModificationHint::CreateRemoval(
2242                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2243  }
2244
2245  // Handle GNU asm-label extension (encoded as an attribute).
2246  if (Expr *E = (Expr*) D.getAsmLabel()) {
2247    // The parser guarantees this is a string.
2248    StringLiteral *SE = cast<StringLiteral>(E);
2249    NewFD->addAttr(Context,
2250                   ::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2251                                                        SE->getByteLength())));
2252  }
2253
2254  // Copy the parameter declarations from the declarator D to the function
2255  // declaration NewFD, if they are available.  First scavenge them into Params.
2256  llvm::SmallVector<ParmVarDecl*, 16> Params;
2257  if (D.getNumTypeObjects() > 0) {
2258    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2259
2260    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2261    // function that takes no arguments, not a function that takes a
2262    // single void argument.
2263    // We let through "const void" here because Sema::GetTypeForDeclarator
2264    // already checks for that case.
2265    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2266        FTI.ArgInfo[0].Param &&
2267        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2268      // Empty arg list, don't push any params.
2269      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2270
2271      // In C++, the empty parameter-type-list must be spelled "void"; a
2272      // typedef of void is not permitted.
2273      if (getLangOptions().CPlusPlus &&
2274          Param->getType().getUnqualifiedType() != Context.VoidTy)
2275        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2276      // FIXME: Leaks decl?
2277    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2278      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
2279        Params.push_back(FTI.ArgInfo[i].Param.getAs<ParmVarDecl>());
2280    }
2281
2282  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2283    // When we're declaring a function with a typedef, typeof, etc as in the
2284    // following example, we'll need to synthesize (unnamed)
2285    // parameters for use in the declaration.
2286    //
2287    // @code
2288    // typedef void fn(int);
2289    // fn f;
2290    // @endcode
2291
2292    // Synthesize a parameter for each argument type.
2293    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2294         AE = FT->arg_type_end(); AI != AE; ++AI) {
2295      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2296                                               SourceLocation(), 0,
2297                                               *AI, VarDecl::None, 0);
2298      Param->setImplicit();
2299      Params.push_back(Param);
2300    }
2301  } else {
2302    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2303           "Should not need args for typedef of non-prototype fn");
2304  }
2305  // Finally, we know we have the right number of parameters, install them.
2306  NewFD->setParams(Context, Params.data(), Params.size());
2307
2308
2309
2310  // If name lookup finds a previous declaration that is not in the
2311  // same scope as the new declaration, this may still be an
2312  // acceptable redeclaration.
2313  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2314      !(NewFD->hasLinkage() &&
2315        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2316    PrevDecl = 0;
2317
2318  // Perform semantic checking on the function declaration.
2319  bool OverloadableAttrRequired = false; // FIXME: HACK!
2320  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2321                           /*FIXME:*/OverloadableAttrRequired);
2322
2323  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2324    // An out-of-line member function declaration must also be a
2325    // definition (C++ [dcl.meaning]p1).
2326    if (!IsFunctionDefinition) {
2327      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2328        << D.getCXXScopeSpec().getRange();
2329      NewFD->setInvalidDecl();
2330    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2331      // The user tried to provide an out-of-line definition for a
2332      // function that is a member of a class or namespace, but there
2333      // was no such member function declared (C++ [class.mfct]p2,
2334      // C++ [namespace.memdef]p2). For example:
2335      //
2336      // class X {
2337      //   void f() const;
2338      // };
2339      //
2340      // void X::f() { } // ill-formed
2341      //
2342      // Complain about this problem, and attempt to suggest close
2343      // matches (e.g., those that differ only in cv-qualifiers and
2344      // whether the parameter types are references).
2345      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2346        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2347      NewFD->setInvalidDecl();
2348
2349      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2350                                              true);
2351      assert(!Prev.isAmbiguous() &&
2352             "Cannot have an ambiguity in previous-declaration lookup");
2353      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2354           Func != FuncEnd; ++Func) {
2355        if (isa<FunctionDecl>(*Func) &&
2356            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2357          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2358      }
2359
2360      PrevDecl = 0;
2361    }
2362  }
2363
2364  // Handle attributes. We need to have merged decls when handling attributes
2365  // (for example to check for conflicts, etc).
2366  // FIXME: This needs to happen before we merge declarations. Then,
2367  // let attribute merging cope with attribute conflicts.
2368  ProcessDeclAttributes(S, NewFD, D);
2369  AddKnownFunctionAttributes(NewFD);
2370
2371  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>(Context)) {
2372    // If a function name is overloadable in C, then every function
2373    // with that name must be marked "overloadable".
2374    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2375      << Redeclaration << NewFD;
2376    if (PrevDecl)
2377      Diag(PrevDecl->getLocation(),
2378           diag::note_attribute_overloadable_prev_overload);
2379    NewFD->addAttr(Context, ::new (Context) OverloadableAttr());
2380  }
2381
2382  // If this is a locally-scoped extern C function, update the
2383  // map of such names.
2384  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2385      && !NewFD->isInvalidDecl())
2386    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2387
2388  // Set this FunctionDecl's range up to the right paren.
2389  NewFD->setLocEnd(D.getSourceRange().getEnd());
2390
2391  return NewFD;
2392}
2393
2394/// \brief Perform semantic checking of a new function declaration.
2395///
2396/// Performs semantic analysis of the new function declaration
2397/// NewFD. This routine performs all semantic checking that does not
2398/// require the actual declarator involved in the declaration, and is
2399/// used both for the declaration of functions as they are parsed
2400/// (called via ActOnDeclarator) and for the declaration of functions
2401/// that have been instantiated via C++ template instantiation (called
2402/// via InstantiateDecl).
2403///
2404/// This sets NewFD->isInvalidDecl() to true if there was an error.
2405void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2406                                    bool &Redeclaration,
2407                                    bool &OverloadableAttrRequired) {
2408  // If NewFD is already known erroneous, don't do any of this checking.
2409  if (NewFD->isInvalidDecl())
2410    return;
2411
2412  if (NewFD->getResultType()->isVariablyModifiedType()) {
2413    // Functions returning a variably modified type violate C99 6.7.5.2p2
2414    // because all functions have linkage.
2415    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2416    return NewFD->setInvalidDecl();
2417  }
2418
2419  // Semantic checking for this function declaration (in isolation).
2420  if (getLangOptions().CPlusPlus) {
2421    // C++-specific checks.
2422    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2423      CheckConstructor(Constructor);
2424    } else if (isa<CXXDestructorDecl>(NewFD)) {
2425      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2426      Record->setUserDeclaredDestructor(true);
2427      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2428      // user-defined destructor.
2429      Record->setPOD(false);
2430
2431      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2432      // declared destructor.
2433      Record->setHasTrivialDestructor(false);
2434    } else if (CXXConversionDecl *Conversion
2435               = dyn_cast<CXXConversionDecl>(NewFD))
2436      ActOnConversionDeclarator(Conversion);
2437
2438    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2439    if (NewFD->isOverloadedOperator() &&
2440        CheckOverloadedOperatorDeclaration(NewFD))
2441      return NewFD->setInvalidDecl();
2442  }
2443
2444  // C99 6.7.4p6:
2445  //   [... ] For a function with external linkage, the following
2446  //   restrictions apply: [...] If all of the file scope declarations
2447  //   for a function in a translation unit include the inline
2448  //   function specifier without extern, then the definition in that
2449  //   translation unit is an inline definition. An inline definition
2450  //   does not provide an external definition for the function, and
2451  //   does not forbid an external definition in another translation
2452  //   unit.
2453  //
2454  // Here we determine whether this function, in isolation, would be a
2455  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2456  // previous declarations.
2457  if (NewFD->isInline() && getLangOptions().C99 &&
2458      NewFD->getStorageClass() == FunctionDecl::None &&
2459      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2460    NewFD->setC99InlineDefinition(true);
2461
2462  // Check for a previous declaration of this name.
2463  if (!PrevDecl && NewFD->isExternC(Context)) {
2464    // Since we did not find anything by this name and we're declaring
2465    // an extern "C" function, look for a non-visible extern "C"
2466    // declaration with the same name.
2467    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2468      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2469    if (Pos != LocallyScopedExternalDecls.end())
2470      PrevDecl = Pos->second;
2471  }
2472
2473  // Merge or overload the declaration with an existing declaration of
2474  // the same name, if appropriate.
2475  if (PrevDecl) {
2476    // Determine whether NewFD is an overload of PrevDecl or
2477    // a declaration that requires merging. If it's an overload,
2478    // there's no more work to do here; we'll just add the new
2479    // function to the scope.
2480    OverloadedFunctionDecl::function_iterator MatchedDecl;
2481
2482    if (!getLangOptions().CPlusPlus &&
2483        AllowOverloadingOfFunction(PrevDecl, Context)) {
2484      OverloadableAttrRequired = true;
2485
2486      // Functions marked "overloadable" must have a prototype (that
2487      // we can't get through declaration merging).
2488      if (!NewFD->getType()->getAsFunctionProtoType()) {
2489        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2490          << NewFD;
2491        Redeclaration = true;
2492
2493        // Turn this into a variadic function with no parameters.
2494        QualType R = Context.getFunctionType(
2495                       NewFD->getType()->getAsFunctionType()->getResultType(),
2496                       0, 0, true, 0);
2497        NewFD->setType(R);
2498        return NewFD->setInvalidDecl();
2499      }
2500    }
2501
2502    if (PrevDecl &&
2503        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2504         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2505        !isa<UsingDecl>(PrevDecl)) {
2506      Redeclaration = true;
2507      Decl *OldDecl = PrevDecl;
2508
2509      // If PrevDecl was an overloaded function, extract the
2510      // FunctionDecl that matched.
2511      if (isa<OverloadedFunctionDecl>(PrevDecl))
2512        OldDecl = *MatchedDecl;
2513
2514      // NewFD and OldDecl represent declarations that need to be
2515      // merged.
2516      if (MergeFunctionDecl(NewFD, OldDecl))
2517        return NewFD->setInvalidDecl();
2518
2519      NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2520    }
2521  }
2522
2523  // In C++, check default arguments now that we have merged decls. Unless
2524  // the lexical context is the class, because in this case this is done
2525  // during delayed parsing anyway.
2526  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2527    CheckCXXDefaultArguments(NewFD);
2528}
2529
2530bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2531  // FIXME: Need strict checking.  In C89, we need to check for
2532  // any assignment, increment, decrement, function-calls, or
2533  // commas outside of a sizeof.  In C99, it's the same list,
2534  // except that the aforementioned are allowed in unevaluated
2535  // expressions.  Everything else falls under the
2536  // "may accept other forms of constant expressions" exception.
2537  // (We never end up here for C++, so the constant expression
2538  // rules there don't matter.)
2539  if (Init->isConstantInitializer(Context))
2540    return false;
2541  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2542    << Init->getSourceRange();
2543  return true;
2544}
2545
2546void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2547  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2548}
2549
2550/// AddInitializerToDecl - Adds the initializer Init to the
2551/// declaration dcl. If DirectInit is true, this is C++ direct
2552/// initialization rather than copy initialization.
2553void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2554  Decl *RealDecl = dcl.getAs<Decl>();
2555  // If there is no declaration, there was an error parsing it.  Just ignore
2556  // the initializer.
2557  if (RealDecl == 0)
2558    return;
2559
2560  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2561    // With declarators parsed the way they are, the parser cannot
2562    // distinguish between a normal initializer and a pure-specifier.
2563    // Thus this grotesque test.
2564    IntegerLiteral *IL;
2565    Expr *Init = static_cast<Expr *>(init.get());
2566    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2567        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2568      if (Method->isVirtualAsWritten()) {
2569        Method->setPure();
2570
2571        // A class is abstract if at least one function is pure virtual.
2572        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2573      } else if (!Method->isInvalidDecl()) {
2574        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2575          << Method->getDeclName() << Init->getSourceRange();
2576        Method->setInvalidDecl();
2577      }
2578    } else {
2579      Diag(Method->getLocation(), diag::err_member_function_initialization)
2580        << Method->getDeclName() << Init->getSourceRange();
2581      Method->setInvalidDecl();
2582    }
2583    return;
2584  }
2585
2586  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2587  if (!VDecl) {
2588    if (getLangOptions().CPlusPlus &&
2589        RealDecl->getLexicalDeclContext()->isRecord() &&
2590        isa<NamedDecl>(RealDecl))
2591      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2592        << cast<NamedDecl>(RealDecl)->getDeclName();
2593    else
2594      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2595    RealDecl->setInvalidDecl();
2596    return;
2597  }
2598
2599  if (!VDecl->getType()->isArrayType() &&
2600      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2601                          diag::err_typecheck_decl_incomplete_type)) {
2602    RealDecl->setInvalidDecl();
2603    return;
2604  }
2605
2606  const VarDecl *Def = 0;
2607  if (VDecl->getDefinition(Def)) {
2608    Diag(VDecl->getLocation(), diag::err_redefinition)
2609      << VDecl->getDeclName();
2610    Diag(Def->getLocation(), diag::note_previous_definition);
2611    VDecl->setInvalidDecl();
2612    return;
2613  }
2614
2615  // Take ownership of the expression, now that we're sure we have somewhere
2616  // to put it.
2617  Expr *Init = init.takeAs<Expr>();
2618  assert(Init && "missing initializer");
2619
2620  // Get the decls type and save a reference for later, since
2621  // CheckInitializerTypes may change it.
2622  QualType DclT = VDecl->getType(), SavT = DclT;
2623  if (VDecl->isBlockVarDecl()) {
2624    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2625      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2626      VDecl->setInvalidDecl();
2627    } else if (!VDecl->isInvalidDecl()) {
2628      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2629                                VDecl->getDeclName(), DirectInit))
2630        VDecl->setInvalidDecl();
2631
2632      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2633      // Don't check invalid declarations to avoid emitting useless diagnostics.
2634      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2635        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2636          CheckForConstantInitializer(Init, DclT);
2637      }
2638    }
2639  } else if (VDecl->isStaticDataMember() &&
2640             VDecl->getLexicalDeclContext()->isRecord()) {
2641    // This is an in-class initialization for a static data member, e.g.,
2642    //
2643    // struct S {
2644    //   static const int value = 17;
2645    // };
2646
2647    // Attach the initializer
2648    VDecl->setInit(Context, Init);
2649
2650    // C++ [class.mem]p4:
2651    //   A member-declarator can contain a constant-initializer only
2652    //   if it declares a static member (9.4) of const integral or
2653    //   const enumeration type, see 9.4.2.
2654    QualType T = VDecl->getType();
2655    if (!T->isDependentType() &&
2656        (!Context.getCanonicalType(T).isConstQualified() ||
2657         !T->isIntegralType())) {
2658      Diag(VDecl->getLocation(), diag::err_member_initialization)
2659        << VDecl->getDeclName() << Init->getSourceRange();
2660      VDecl->setInvalidDecl();
2661    } else {
2662      // C++ [class.static.data]p4:
2663      //   If a static data member is of const integral or const
2664      //   enumeration type, its declaration in the class definition
2665      //   can specify a constant-initializer which shall be an
2666      //   integral constant expression (5.19).
2667      if (!Init->isTypeDependent() &&
2668          !Init->getType()->isIntegralType()) {
2669        // We have a non-dependent, non-integral or enumeration type.
2670        Diag(Init->getSourceRange().getBegin(),
2671             diag::err_in_class_initializer_non_integral_type)
2672          << Init->getType() << Init->getSourceRange();
2673        VDecl->setInvalidDecl();
2674      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2675        // Check whether the expression is a constant expression.
2676        llvm::APSInt Value;
2677        SourceLocation Loc;
2678        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2679          Diag(Loc, diag::err_in_class_initializer_non_constant)
2680            << Init->getSourceRange();
2681          VDecl->setInvalidDecl();
2682        } else if (!VDecl->getType()->isDependentType())
2683          ImpCastExprToType(Init, VDecl->getType());
2684      }
2685    }
2686  } else if (VDecl->isFileVarDecl()) {
2687    if (VDecl->getStorageClass() == VarDecl::Extern)
2688      Diag(VDecl->getLocation(), diag::warn_extern_init);
2689    if (!VDecl->isInvalidDecl())
2690      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2691                                VDecl->getDeclName(), DirectInit))
2692        VDecl->setInvalidDecl();
2693
2694    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2695    // Don't check invalid declarations to avoid emitting useless diagnostics.
2696    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2697      // C99 6.7.8p4. All file scoped initializers need to be constant.
2698      CheckForConstantInitializer(Init, DclT);
2699    }
2700  }
2701  // If the type changed, it means we had an incomplete type that was
2702  // completed by the initializer. For example:
2703  //   int ary[] = { 1, 3, 5 };
2704  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2705  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2706    VDecl->setType(DclT);
2707    Init->setType(DclT);
2708  }
2709
2710  // Attach the initializer to the decl.
2711  VDecl->setInit(Context, Init);
2712
2713  // If the previous declaration of VDecl was a tentative definition,
2714  // remove it from the set of tentative definitions.
2715  if (VDecl->getPreviousDeclaration() &&
2716      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2717    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2718      = TentativeDefinitions.find(VDecl->getDeclName());
2719    assert(Pos != TentativeDefinitions.end() &&
2720           "Unrecorded tentative definition?");
2721    TentativeDefinitions.erase(Pos);
2722  }
2723
2724  return;
2725}
2726
2727void Sema::ActOnUninitializedDecl(DeclPtrTy dcl) {
2728  Decl *RealDecl = dcl.getAs<Decl>();
2729
2730  // If there is no declaration, there was an error parsing it. Just ignore it.
2731  if (RealDecl == 0)
2732    return;
2733
2734  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2735    QualType Type = Var->getType();
2736
2737    // Record tentative definitions.
2738    if (Var->isTentativeDefinition(Context))
2739      TentativeDefinitions[Var->getDeclName()] = Var;
2740
2741    // C++ [dcl.init.ref]p3:
2742    //   The initializer can be omitted for a reference only in a
2743    //   parameter declaration (8.3.5), in the declaration of a
2744    //   function return type, in the declaration of a class member
2745    //   within its class declaration (9.2), and where the extern
2746    //   specifier is explicitly used.
2747    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2748      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2749        << Var->getDeclName()
2750        << SourceRange(Var->getLocation(), Var->getLocation());
2751      Var->setInvalidDecl();
2752      return;
2753    }
2754
2755    // C++ [dcl.init]p9:
2756    //
2757    //   If no initializer is specified for an object, and the object
2758    //   is of (possibly cv-qualified) non-POD class type (or array
2759    //   thereof), the object shall be default-initialized; if the
2760    //   object is of const-qualified type, the underlying class type
2761    //   shall have a user-declared default constructor.
2762    if (getLangOptions().CPlusPlus) {
2763      QualType InitType = Type;
2764      if (const ArrayType *Array = Context.getAsArrayType(Type))
2765        InitType = Array->getElementType();
2766      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2767          InitType->isRecordType() && !InitType->isDependentType()) {
2768        CXXRecordDecl *RD =
2769          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2770        CXXConstructorDecl *Constructor = 0;
2771        if (!RequireCompleteType(Var->getLocation(), InitType,
2772                                    diag::err_invalid_incomplete_type_use))
2773          Constructor
2774            = PerformInitializationByConstructor(InitType, 0, 0,
2775                                                 Var->getLocation(),
2776                                               SourceRange(Var->getLocation(),
2777                                                           Var->getLocation()),
2778                                                 Var->getDeclName(),
2779                                                 IK_Default);
2780        if (!Constructor)
2781          Var->setInvalidDecl();
2782        else
2783          if (!RD->hasTrivialConstructor())
2784            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2785      }
2786    }
2787
2788#if 0
2789    // FIXME: Temporarily disabled because we are not properly parsing
2790    // linkage specifications on declarations, e.g.,
2791    //
2792    //   extern "C" const CGPoint CGPointerZero;
2793    //
2794    // C++ [dcl.init]p9:
2795    //
2796    //     If no initializer is specified for an object, and the
2797    //     object is of (possibly cv-qualified) non-POD class type (or
2798    //     array thereof), the object shall be default-initialized; if
2799    //     the object is of const-qualified type, the underlying class
2800    //     type shall have a user-declared default
2801    //     constructor. Otherwise, if no initializer is specified for
2802    //     an object, the object and its subobjects, if any, have an
2803    //     indeterminate initial value; if the object or any of its
2804    //     subobjects are of const-qualified type, the program is
2805    //     ill-formed.
2806    //
2807    // This isn't technically an error in C, so we don't diagnose it.
2808    //
2809    // FIXME: Actually perform the POD/user-defined default
2810    // constructor check.
2811    if (getLangOptions().CPlusPlus &&
2812        Context.getCanonicalType(Type).isConstQualified() &&
2813        !Var->hasExternalStorage())
2814      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2815        << Var->getName()
2816        << SourceRange(Var->getLocation(), Var->getLocation());
2817#endif
2818  }
2819}
2820
2821Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2822                                                   DeclPtrTy *Group,
2823                                                   unsigned NumDecls) {
2824  llvm::SmallVector<Decl*, 8> Decls;
2825
2826  if (DS.isTypeSpecOwned())
2827    Decls.push_back((Decl*)DS.getTypeRep());
2828
2829  for (unsigned i = 0; i != NumDecls; ++i)
2830    if (Decl *D = Group[i].getAs<Decl>())
2831      Decls.push_back(D);
2832
2833  // Perform semantic analysis that depends on having fully processed both
2834  // the declarator and initializer.
2835  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2836    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2837    if (!IDecl)
2838      continue;
2839    QualType T = IDecl->getType();
2840
2841    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2842    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2843    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2844      if (!IDecl->isInvalidDecl() &&
2845          RequireCompleteType(IDecl->getLocation(), T,
2846                              diag::err_typecheck_decl_incomplete_type))
2847        IDecl->setInvalidDecl();
2848    }
2849    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2850    // object that has file scope without an initializer, and without a
2851    // storage-class specifier or with the storage-class specifier "static",
2852    // constitutes a tentative definition. Note: A tentative definition with
2853    // external linkage is valid (C99 6.2.2p5).
2854    if (IDecl->isTentativeDefinition(Context)) {
2855      QualType CheckType = T;
2856      unsigned DiagID = diag::err_typecheck_decl_incomplete_type;
2857
2858      const IncompleteArrayType *ArrayT = Context.getAsIncompleteArrayType(T);
2859      if (ArrayT) {
2860        CheckType = ArrayT->getElementType();
2861        DiagID = diag::err_illegal_decl_array_incomplete_type;
2862      }
2863
2864      if (IDecl->isInvalidDecl()) {
2865        // Do nothing with invalid declarations
2866      } else if ((ArrayT || IDecl->getStorageClass() == VarDecl::Static) &&
2867                 RequireCompleteType(IDecl->getLocation(), CheckType, DiagID)) {
2868        // C99 6.9.2p3: If the declaration of an identifier for an object is
2869        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2870        // declared type shall not be an incomplete type.
2871        IDecl->setInvalidDecl();
2872      }
2873    }
2874  }
2875  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2876                                                   Decls.data(), Decls.size()));
2877}
2878
2879
2880/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2881/// to introduce parameters into function prototype scope.
2882Sema::DeclPtrTy
2883Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2884  const DeclSpec &DS = D.getDeclSpec();
2885
2886  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2887  VarDecl::StorageClass StorageClass = VarDecl::None;
2888  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2889    StorageClass = VarDecl::Register;
2890  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2891    Diag(DS.getStorageClassSpecLoc(),
2892         diag::err_invalid_storage_class_in_func_decl);
2893    D.getMutableDeclSpec().ClearStorageClassSpecs();
2894  }
2895
2896  if (D.getDeclSpec().isThreadSpecified())
2897    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2898
2899  DiagnoseFunctionSpecifiers(D);
2900
2901  // Check that there are no default arguments inside the type of this
2902  // parameter (C++ only).
2903  if (getLangOptions().CPlusPlus)
2904    CheckExtraCXXDefaultArguments(D);
2905
2906  TagDecl *OwnedDecl = 0;
2907  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
2908
2909  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
2910    // C++ [dcl.fct]p6:
2911    //   Types shall not be defined in return or parameter types.
2912    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
2913      << Context.getTypeDeclType(OwnedDecl);
2914  }
2915
2916  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2917  // Can this happen for params?  We already checked that they don't conflict
2918  // among each other.  Here they can only shadow globals, which is ok.
2919  IdentifierInfo *II = D.getIdentifier();
2920  if (II) {
2921    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2922      if (PrevDecl->isTemplateParameter()) {
2923        // Maybe we will complain about the shadowed template parameter.
2924        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2925        // Just pretend that we didn't see the previous declaration.
2926        PrevDecl = 0;
2927      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
2928        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2929
2930        // Recover by removing the name
2931        II = 0;
2932        D.SetIdentifier(0, D.getIdentifierLoc());
2933      }
2934    }
2935  }
2936
2937  // Parameters can not be abstract class types.
2938  // For record types, this is done by the AbstractClassUsageDiagnoser once
2939  // the class has been completely parsed.
2940  if (!CurContext->isRecord() &&
2941      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
2942                             diag::err_abstract_type_in_decl,
2943                             AbstractParamType))
2944    D.setInvalidType(true);
2945
2946  QualType T = adjustParameterType(parmDeclType);
2947
2948  ParmVarDecl *New;
2949  if (T == parmDeclType) // parameter type did not need adjustment
2950    New = ParmVarDecl::Create(Context, CurContext,
2951                              D.getIdentifierLoc(), II,
2952                              parmDeclType, StorageClass,
2953                              0);
2954  else // keep track of both the adjusted and unadjusted types
2955    New = OriginalParmVarDecl::Create(Context, CurContext,
2956                                      D.getIdentifierLoc(), II, T,
2957                                      parmDeclType, StorageClass, 0);
2958
2959  if (D.isInvalidType())
2960    New->setInvalidDecl();
2961
2962  // Parameter declarators cannot be interface types. All ObjC objects are
2963  // passed by reference.
2964  if (T->isObjCInterfaceType()) {
2965    Diag(D.getIdentifierLoc(),
2966         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
2967    New->setInvalidDecl();
2968  }
2969
2970  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2971  if (D.getCXXScopeSpec().isSet()) {
2972    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2973      << D.getCXXScopeSpec().getRange();
2974    New->setInvalidDecl();
2975  }
2976
2977  // Add the parameter declaration into this scope.
2978  S->AddDecl(DeclPtrTy::make(New));
2979  if (II)
2980    IdResolver.AddDecl(New);
2981
2982  ProcessDeclAttributes(S, New, D);
2983
2984  if (New->hasAttr<BlocksAttr>(Context)) {
2985    Diag(New->getLocation(), diag::err_block_on_nonlocal);
2986  }
2987  return DeclPtrTy::make(New);
2988}
2989
2990void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
2991                                           SourceLocation LocAfterDecls) {
2992  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2993         "Not a function declarator!");
2994  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2995
2996  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2997  // for a K&R function.
2998  if (!FTI.hasPrototype) {
2999    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3000      --i;
3001      if (FTI.ArgInfo[i].Param == 0) {
3002        std::string Code = "  int ";
3003        Code += FTI.ArgInfo[i].Ident->getName();
3004        Code += ";\n";
3005        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3006          << FTI.ArgInfo[i].Ident
3007          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3008
3009        // Implicitly declare the argument as type 'int' for lack of a better
3010        // type.
3011        DeclSpec DS;
3012        const char* PrevSpec; // unused
3013        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3014                           PrevSpec);
3015        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3016        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3017        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3018      }
3019    }
3020  }
3021}
3022
3023Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3024                                              Declarator &D) {
3025  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3026  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3027         "Not a function declarator!");
3028  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3029
3030  if (FTI.hasPrototype) {
3031    // FIXME: Diagnose arguments without names in C.
3032  }
3033
3034  Scope *ParentScope = FnBodyScope->getParent();
3035
3036  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3037                                  MultiTemplateParamsArg(*this),
3038                                  /*IsFunctionDefinition=*/true);
3039  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3040}
3041
3042Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3043  if (!D)
3044    return D;
3045  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3046
3047  CurFunctionNeedsScopeChecking = false;
3048
3049  // See if this is a redefinition.
3050  const FunctionDecl *Definition;
3051  if (FD->getBody(Context, Definition)) {
3052    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3053    Diag(Definition->getLocation(), diag::note_previous_definition);
3054  }
3055
3056  // Builtin functions cannot be defined.
3057  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3058    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3059      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3060      FD->setInvalidDecl();
3061    }
3062  }
3063
3064  // The return type of a function definition must be complete
3065  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3066  QualType ResultType = FD->getResultType();
3067  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3068      !FD->isInvalidDecl() &&
3069      RequireCompleteType(FD->getLocation(), ResultType,
3070                          diag::err_func_def_incomplete_result))
3071    FD->setInvalidDecl();
3072
3073  // GNU warning -Wmissing-prototypes:
3074  //   Warn if a global function is defined without a previous
3075  //   prototype declaration. This warning is issued even if the
3076  //   definition itself provides a prototype. The aim is to detect
3077  //   global functions that fail to be declared in header files.
3078  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3079      !FD->isMain()) {
3080    bool MissingPrototype = true;
3081    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3082         Prev; Prev = Prev->getPreviousDeclaration()) {
3083      // Ignore any declarations that occur in function or method
3084      // scope, because they aren't visible from the header.
3085      if (Prev->getDeclContext()->isFunctionOrMethod())
3086        continue;
3087
3088      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3089      break;
3090    }
3091
3092    if (MissingPrototype)
3093      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3094  }
3095
3096  if (FnBodyScope)
3097    PushDeclContext(FnBodyScope, FD);
3098
3099  // Check the validity of our function parameters
3100  CheckParmsForFunctionDef(FD);
3101
3102  // Introduce our parameters into the function scope
3103  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3104    ParmVarDecl *Param = FD->getParamDecl(p);
3105    Param->setOwningFunction(FD);
3106
3107    // If this has an identifier, add it to the scope stack.
3108    if (Param->getIdentifier() && FnBodyScope)
3109      PushOnScopeChains(Param, FnBodyScope);
3110  }
3111
3112  // Checking attributes of current function definition
3113  // dllimport attribute.
3114  if (FD->getAttr<DLLImportAttr>(Context) &&
3115      (!FD->getAttr<DLLExportAttr>(Context))) {
3116    // dllimport attribute cannot be applied to definition.
3117    if (!(FD->getAttr<DLLImportAttr>(Context))->isInherited()) {
3118      Diag(FD->getLocation(),
3119           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3120        << "dllimport";
3121      FD->setInvalidDecl();
3122      return DeclPtrTy::make(FD);
3123    } else {
3124      // If a symbol previously declared dllimport is later defined, the
3125      // attribute is ignored in subsequent references, and a warning is
3126      // emitted.
3127      Diag(FD->getLocation(),
3128           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3129        << FD->getNameAsCString() << "dllimport";
3130    }
3131  }
3132  return DeclPtrTy::make(FD);
3133}
3134
3135Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3136  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3137}
3138
3139Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3140                                              bool IsInstantiation) {
3141  Decl *dcl = D.getAs<Decl>();
3142  Stmt *Body = BodyArg.takeAs<Stmt>();
3143  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3144    FD->setBody(Body);
3145
3146    if (!FD->isInvalidDecl())
3147      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3148
3149    // C++ [basic.def.odr]p2:
3150    //   [...] A virtual member function is used if it is not pure. [...]
3151    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3152      if (Method->isVirtual() && !Method->isPure())
3153        MarkDeclarationReferenced(Method->getLocation(), Method);
3154
3155    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3156  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3157    assert(MD == getCurMethodDecl() && "Method parsing confused");
3158    MD->setBody(Body);
3159
3160    if (!MD->isInvalidDecl())
3161      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3162  } else {
3163    Body->Destroy(Context);
3164    return DeclPtrTy();
3165  }
3166  if (!IsInstantiation)
3167    PopDeclContext();
3168
3169  // Verify and clean out per-function state.
3170
3171  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3172
3173  // Check goto/label use.
3174  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3175       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3176    LabelStmt *L = I->second;
3177
3178    // Verify that we have no forward references left.  If so, there was a goto
3179    // or address of a label taken, but no definition of it.  Label fwd
3180    // definitions are indicated with a null substmt.
3181    if (L->getSubStmt() != 0)
3182      continue;
3183
3184    // Emit error.
3185    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3186
3187    // At this point, we have gotos that use the bogus label.  Stitch it into
3188    // the function body so that they aren't leaked and that the AST is well
3189    // formed.
3190    if (Body == 0) {
3191      // The whole function wasn't parsed correctly, just delete this.
3192      L->Destroy(Context);
3193      continue;
3194    }
3195
3196    // Otherwise, the body is valid: we want to stitch the label decl into the
3197    // function somewhere so that it is properly owned and so that the goto
3198    // has a valid target.  Do this by creating a new compound stmt with the
3199    // label in it.
3200
3201    // Give the label a sub-statement.
3202    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3203
3204    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3205                               cast<CXXTryStmt>(Body)->getTryBlock() :
3206                               cast<CompoundStmt>(Body);
3207    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3208    Elements.push_back(L);
3209    Compound->setStmts(Context, &Elements[0], Elements.size());
3210  }
3211  FunctionLabelMap.clear();
3212
3213  if (!Body) return D;
3214
3215  // Verify that that gotos and switch cases don't jump into scopes illegally.
3216  if (CurFunctionNeedsScopeChecking)
3217    DiagnoseInvalidJumps(Body);
3218
3219  // C++ constructors that have function-try-blocks can't have return statements
3220  // in the handlers of that block. (C++ [except.handle]p14) Verify this.
3221  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3222    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3223
3224  return D;
3225}
3226
3227/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3228/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3229NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3230                                          IdentifierInfo &II, Scope *S) {
3231  // Before we produce a declaration for an implicitly defined
3232  // function, see whether there was a locally-scoped declaration of
3233  // this name as a function or variable. If so, use that
3234  // (non-visible) declaration, and complain about it.
3235  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3236    = LocallyScopedExternalDecls.find(&II);
3237  if (Pos != LocallyScopedExternalDecls.end()) {
3238    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3239    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3240    return Pos->second;
3241  }
3242
3243  // Extension in C99.  Legal in C90, but warn about it.
3244  if (getLangOptions().C99)
3245    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3246  else
3247    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3248
3249  // FIXME: handle stuff like:
3250  // void foo() { extern float X(); }
3251  // void bar() { X(); }  <-- implicit decl for X in another scope.
3252
3253  // Set a Declarator for the implicit definition: int foo();
3254  const char *Dummy;
3255  DeclSpec DS;
3256  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3257  Error = Error; // Silence warning.
3258  assert(!Error && "Error setting up implicit decl!");
3259  Declarator D(DS, Declarator::BlockContext);
3260  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3261                                             0, 0, false, SourceLocation(),
3262                                             false, 0,0,0, Loc, D),
3263                SourceLocation());
3264  D.SetIdentifier(&II, Loc);
3265
3266  // Insert this function into translation-unit scope.
3267
3268  DeclContext *PrevDC = CurContext;
3269  CurContext = Context.getTranslationUnitDecl();
3270
3271  FunctionDecl *FD =
3272 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3273  FD->setImplicit();
3274
3275  CurContext = PrevDC;
3276
3277  AddKnownFunctionAttributes(FD);
3278
3279  return FD;
3280}
3281
3282/// \brief Adds any function attributes that we know a priori based on
3283/// the declaration of this function.
3284///
3285/// These attributes can apply both to implicitly-declared builtins
3286/// (like __builtin___printf_chk) or to library-declared functions
3287/// like NSLog or printf.
3288void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3289  if (FD->isInvalidDecl())
3290    return;
3291
3292  // If this is a built-in function, map its builtin attributes to
3293  // actual attributes.
3294  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3295    // Handle printf-formatting attributes.
3296    unsigned FormatIdx;
3297    bool HasVAListArg;
3298    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3299      if (!FD->getAttr<FormatAttr>(Context))
3300        FD->addAttr(Context,
3301                    ::new (Context) FormatAttr("printf", FormatIdx + 1,
3302                                             HasVAListArg ? 0 : FormatIdx + 2));
3303    }
3304
3305    // Mark const if we don't care about errno and that is the only
3306    // thing preventing the function from being const. This allows
3307    // IRgen to use LLVM intrinsics for such functions.
3308    if (!getLangOptions().MathErrno &&
3309        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3310      if (!FD->getAttr<ConstAttr>(Context))
3311        FD->addAttr(Context, ::new (Context) ConstAttr());
3312    }
3313  }
3314
3315  IdentifierInfo *Name = FD->getIdentifier();
3316  if (!Name)
3317    return;
3318  if ((!getLangOptions().CPlusPlus &&
3319       FD->getDeclContext()->isTranslationUnit()) ||
3320      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3321       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3322       LinkageSpecDecl::lang_c)) {
3323    // Okay: this could be a libc/libm/Objective-C function we know
3324    // about.
3325  } else
3326    return;
3327
3328  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3329    if (const FormatAttr *Format = FD->getAttr<FormatAttr>(Context)) {
3330      // FIXME: We known better than our headers.
3331      const_cast<FormatAttr *>(Format)->setType("printf");
3332    } else
3333      FD->addAttr(Context,
3334                  ::new (Context) FormatAttr("printf", 1,
3335                                             Name->isStr("NSLogv") ? 0 : 2));
3336  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3337    if (!FD->getAttr<FormatAttr>(Context))
3338      FD->addAttr(Context,
3339                  ::new (Context) FormatAttr("printf", 2,
3340                                             Name->isStr("vasprintf") ? 0 : 3));
3341  }
3342}
3343
3344TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3345  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3346  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3347
3348  // Scope manipulation handled by caller.
3349  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3350                                           D.getIdentifierLoc(),
3351                                           D.getIdentifier(),
3352                                           T);
3353
3354  if (TagType *TT = dyn_cast<TagType>(T)) {
3355    TagDecl *TD = TT->getDecl();
3356
3357    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3358    // keep track of the TypedefDecl.
3359    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3360      TD->setTypedefForAnonDecl(NewTD);
3361  }
3362
3363  if (D.isInvalidType())
3364    NewTD->setInvalidDecl();
3365  return NewTD;
3366}
3367
3368
3369/// \brief Determine whether a tag with a given kind is acceptable
3370/// as a redeclaration of the given tag declaration.
3371///
3372/// \returns true if the new tag kind is acceptable, false otherwise.
3373bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3374                                        TagDecl::TagKind NewTag,
3375                                        SourceLocation NewTagLoc,
3376                                        const IdentifierInfo &Name) {
3377  // C++ [dcl.type.elab]p3:
3378  //   The class-key or enum keyword present in the
3379  //   elaborated-type-specifier shall agree in kind with the
3380  //   declaration to which the name in theelaborated-type-specifier
3381  //   refers. This rule also applies to the form of
3382  //   elaborated-type-specifier that declares a class-name or
3383  //   friend class since it can be construed as referring to the
3384  //   definition of the class. Thus, in any
3385  //   elaborated-type-specifier, the enum keyword shall be used to
3386  //   refer to an enumeration (7.2), the union class-keyshall be
3387  //   used to refer to a union (clause 9), and either the class or
3388  //   struct class-key shall be used to refer to a class (clause 9)
3389  //   declared using the class or struct class-key.
3390  TagDecl::TagKind OldTag = Previous->getTagKind();
3391  if (OldTag == NewTag)
3392    return true;
3393
3394  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3395      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3396    // Warn about the struct/class tag mismatch.
3397    bool isTemplate = false;
3398    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3399      isTemplate = Record->getDescribedClassTemplate();
3400
3401    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3402      << (NewTag == TagDecl::TK_class)
3403      << isTemplate << &Name
3404      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3405                              OldTag == TagDecl::TK_class? "class" : "struct");
3406    Diag(Previous->getLocation(), diag::note_previous_use);
3407    return true;
3408  }
3409  return false;
3410}
3411
3412/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3413/// former case, Name will be non-null.  In the later case, Name will be null.
3414/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3415/// reference/declaration/definition of a tag.
3416Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3417                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3418                               IdentifierInfo *Name, SourceLocation NameLoc,
3419                               AttributeList *Attr, AccessSpecifier AS,
3420                               bool &OwnedDecl) {
3421  // If this is not a definition, it must have a name.
3422  assert((Name != 0 || TK == TK_Definition) &&
3423         "Nameless record must be a definition!");
3424
3425  OwnedDecl = false;
3426  TagDecl::TagKind Kind;
3427  switch (TagSpec) {
3428  default: assert(0 && "Unknown tag type!");
3429  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3430  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3431  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3432  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3433  }
3434
3435  DeclContext *SearchDC = CurContext;
3436  DeclContext *DC = CurContext;
3437  NamedDecl *PrevDecl = 0;
3438
3439  bool Invalid = false;
3440
3441  if (Name && SS.isNotEmpty()) {
3442    // We have a nested-name tag ('struct foo::bar').
3443
3444    // Check for invalid 'foo::'.
3445    if (SS.isInvalid()) {
3446      Name = 0;
3447      goto CreateNewDecl;
3448    }
3449
3450    if (RequireCompleteDeclContext(SS))
3451      return DeclPtrTy::make((Decl *)0);
3452
3453    DC = computeDeclContext(SS);
3454    SearchDC = DC;
3455    // Look-up name inside 'foo::'.
3456    PrevDecl
3457      = dyn_cast_or_null<TagDecl>(
3458               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3459
3460    // A tag 'foo::bar' must already exist.
3461    if (PrevDecl == 0) {
3462      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3463      Name = 0;
3464      Invalid = true;
3465      goto CreateNewDecl;
3466    }
3467  } else if (Name) {
3468    // If this is a named struct, check to see if there was a previous forward
3469    // declaration or definition.
3470    // FIXME: We're looking into outer scopes here, even when we
3471    // shouldn't be. Doing so can result in ambiguities that we
3472    // shouldn't be diagnosing.
3473    LookupResult R = LookupName(S, Name, LookupTagName,
3474                                /*RedeclarationOnly=*/(TK != TK_Reference));
3475    if (R.isAmbiguous()) {
3476      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3477      // FIXME: This is not best way to recover from case like:
3478      //
3479      // struct S s;
3480      //
3481      // causes needless "incomplete type" error later.
3482      Name = 0;
3483      PrevDecl = 0;
3484      Invalid = true;
3485    }
3486    else
3487      PrevDecl = R;
3488
3489    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3490      // FIXME: This makes sure that we ignore the contexts associated
3491      // with C structs, unions, and enums when looking for a matching
3492      // tag declaration or definition. See the similar lookup tweak
3493      // in Sema::LookupName; is there a better way to deal with this?
3494      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3495        SearchDC = SearchDC->getParent();
3496    }
3497  }
3498
3499  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3500    // Maybe we will complain about the shadowed template parameter.
3501    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3502    // Just pretend that we didn't see the previous declaration.
3503    PrevDecl = 0;
3504  }
3505
3506  if (PrevDecl) {
3507    // Check whether the previous declaration is usable.
3508    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3509
3510    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3511      // If this is a use of a previous tag, or if the tag is already declared
3512      // in the same scope (so that the definition/declaration completes or
3513      // rementions the tag), reuse the decl.
3514      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3515        // Make sure that this wasn't declared as an enum and now used as a
3516        // struct or something similar.
3517        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3518          bool SafeToContinue
3519            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3520               Kind != TagDecl::TK_enum);
3521          if (SafeToContinue)
3522            Diag(KWLoc, diag::err_use_with_wrong_tag)
3523              << Name
3524              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3525                                                  PrevTagDecl->getKindName());
3526          else
3527            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3528          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3529
3530          if (SafeToContinue)
3531            Kind = PrevTagDecl->getTagKind();
3532          else {
3533            // Recover by making this an anonymous redefinition.
3534            Name = 0;
3535            PrevDecl = 0;
3536            Invalid = true;
3537          }
3538        }
3539
3540        if (!Invalid) {
3541          // If this is a use, just return the declaration we found.
3542
3543          // FIXME: In the future, return a variant or some other clue
3544          // for the consumer of this Decl to know it doesn't own it.
3545          // For our current ASTs this shouldn't be a problem, but will
3546          // need to be changed with DeclGroups.
3547          if (TK == TK_Reference)
3548            return DeclPtrTy::make(PrevDecl);
3549
3550          // Diagnose attempts to redefine a tag.
3551          if (TK == TK_Definition) {
3552            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3553              Diag(NameLoc, diag::err_redefinition) << Name;
3554              Diag(Def->getLocation(), diag::note_previous_definition);
3555              // If this is a redefinition, recover by making this
3556              // struct be anonymous, which will make any later
3557              // references get the previous definition.
3558              Name = 0;
3559              PrevDecl = 0;
3560              Invalid = true;
3561            } else {
3562              // If the type is currently being defined, complain
3563              // about a nested redefinition.
3564              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3565              if (Tag->isBeingDefined()) {
3566                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3567                Diag(PrevTagDecl->getLocation(),
3568                     diag::note_previous_definition);
3569                Name = 0;
3570                PrevDecl = 0;
3571                Invalid = true;
3572              }
3573            }
3574
3575            // Okay, this is definition of a previously declared or referenced
3576            // tag PrevDecl. We're going to create a new Decl for it.
3577          }
3578        }
3579        // If we get here we have (another) forward declaration or we
3580        // have a definition.  Just create a new decl.
3581      } else {
3582        // If we get here, this is a definition of a new tag type in a nested
3583        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3584        // new decl/type.  We set PrevDecl to NULL so that the entities
3585        // have distinct types.
3586        PrevDecl = 0;
3587      }
3588      // If we get here, we're going to create a new Decl. If PrevDecl
3589      // is non-NULL, it's a definition of the tag declared by
3590      // PrevDecl. If it's NULL, we have a new definition.
3591    } else {
3592      // PrevDecl is a namespace, template, or anything else
3593      // that lives in the IDNS_Tag identifier namespace.
3594      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3595        // The tag name clashes with a namespace name, issue an error and
3596        // recover by making this tag be anonymous.
3597        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3598        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3599        Name = 0;
3600        PrevDecl = 0;
3601        Invalid = true;
3602      } else {
3603        // The existing declaration isn't relevant to us; we're in a
3604        // new scope, so clear out the previous declaration.
3605        PrevDecl = 0;
3606      }
3607    }
3608  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3609             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3610    // C++ [basic.scope.pdecl]p5:
3611    //   -- for an elaborated-type-specifier of the form
3612    //
3613    //          class-key identifier
3614    //
3615    //      if the elaborated-type-specifier is used in the
3616    //      decl-specifier-seq or parameter-declaration-clause of a
3617    //      function defined in namespace scope, the identifier is
3618    //      declared as a class-name in the namespace that contains
3619    //      the declaration; otherwise, except as a friend
3620    //      declaration, the identifier is declared in the smallest
3621    //      non-class, non-function-prototype scope that contains the
3622    //      declaration.
3623    //
3624    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3625    // C structs and unions.
3626    //
3627    // GNU C also supports this behavior as part of its incomplete
3628    // enum types extension, while GNU C++ does not.
3629    //
3630    // Find the context where we'll be declaring the tag.
3631    // FIXME: We would like to maintain the current DeclContext as the
3632    // lexical context,
3633    while (SearchDC->isRecord())
3634      SearchDC = SearchDC->getParent();
3635
3636    // Find the scope where we'll be declaring the tag.
3637    while (S->isClassScope() ||
3638           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3639           ((S->getFlags() & Scope::DeclScope) == 0) ||
3640           (S->getEntity() &&
3641            ((DeclContext *)S->getEntity())->isTransparentContext()))
3642      S = S->getParent();
3643  }
3644
3645CreateNewDecl:
3646
3647  // If there is an identifier, use the location of the identifier as the
3648  // location of the decl, otherwise use the location of the struct/union
3649  // keyword.
3650  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3651
3652  // Otherwise, create a new declaration. If there is a previous
3653  // declaration of the same entity, the two will be linked via
3654  // PrevDecl.
3655  TagDecl *New;
3656
3657  if (Kind == TagDecl::TK_enum) {
3658    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3659    // enum X { A, B, C } D;    D should chain to X.
3660    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3661                           cast_or_null<EnumDecl>(PrevDecl));
3662    // If this is an undefined enum, warn.
3663    if (TK != TK_Definition && !Invalid)  {
3664      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3665                                              : diag::ext_forward_ref_enum;
3666      Diag(Loc, DK);
3667    }
3668  } else {
3669    // struct/union/class
3670
3671    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3672    // struct X { int A; } D;    D should chain to X.
3673    if (getLangOptions().CPlusPlus)
3674      // FIXME: Look for a way to use RecordDecl for simple structs.
3675      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3676                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3677    else
3678      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3679                               cast_or_null<RecordDecl>(PrevDecl));
3680  }
3681
3682  if (Kind != TagDecl::TK_enum) {
3683    // Handle #pragma pack: if the #pragma pack stack has non-default
3684    // alignment, make up a packed attribute for this decl. These
3685    // attributes are checked when the ASTContext lays out the
3686    // structure.
3687    //
3688    // It is important for implementing the correct semantics that this
3689    // happen here (in act on tag decl). The #pragma pack stack is
3690    // maintained as a result of parser callbacks which can occur at
3691    // many points during the parsing of a struct declaration (because
3692    // the #pragma tokens are effectively skipped over during the
3693    // parsing of the struct).
3694    if (unsigned Alignment = getPragmaPackAlignment())
3695      New->addAttr(Context, ::new (Context) PackedAttr(Alignment * 8));
3696  }
3697
3698  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3699    // C++ [dcl.typedef]p3:
3700    //   [...] Similarly, in a given scope, a class or enumeration
3701    //   shall not be declared with the same name as a typedef-name
3702    //   that is declared in that scope and refers to a type other
3703    //   than the class or enumeration itself.
3704    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3705    TypedefDecl *PrevTypedef = 0;
3706    if (Lookup.getKind() == LookupResult::Found)
3707      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3708
3709    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3710        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3711          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3712      Diag(Loc, diag::err_tag_definition_of_typedef)
3713        << Context.getTypeDeclType(New)
3714        << PrevTypedef->getUnderlyingType();
3715      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3716      Invalid = true;
3717    }
3718  }
3719
3720  if (Invalid)
3721    New->setInvalidDecl();
3722
3723  if (Attr)
3724    ProcessDeclAttributeList(S, New, Attr);
3725
3726  // If we're declaring or defining a tag in function prototype scope
3727  // in C, note that this type can only be used within the function.
3728  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3729    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3730
3731  // Set the lexical context. If the tag has a C++ scope specifier, the
3732  // lexical context will be different from the semantic context.
3733  New->setLexicalDeclContext(CurContext);
3734
3735  // Set the access specifier.
3736  if (!Invalid)
3737    SetMemberAccessSpecifier(New, PrevDecl, AS);
3738
3739  if (TK == TK_Definition)
3740    New->startDefinition();
3741
3742  // If this has an identifier, add it to the scope stack.
3743  if (Name) {
3744    S = getNonFieldDeclScope(S);
3745    PushOnScopeChains(New, S);
3746  } else {
3747    CurContext->addDecl(Context, New);
3748  }
3749
3750  OwnedDecl = true;
3751  return DeclPtrTy::make(New);
3752}
3753
3754void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3755  AdjustDeclIfTemplate(TagD);
3756  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3757
3758  // Enter the tag context.
3759  PushDeclContext(S, Tag);
3760
3761  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3762    FieldCollector->StartClass();
3763
3764    if (Record->getIdentifier()) {
3765      // C++ [class]p2:
3766      //   [...] The class-name is also inserted into the scope of the
3767      //   class itself; this is known as the injected-class-name. For
3768      //   purposes of access checking, the injected-class-name is treated
3769      //   as if it were a public member name.
3770      CXXRecordDecl *InjectedClassName
3771        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3772                                CurContext, Record->getLocation(),
3773                                Record->getIdentifier(), Record);
3774      InjectedClassName->setImplicit();
3775      InjectedClassName->setAccess(AS_public);
3776      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3777        InjectedClassName->setDescribedClassTemplate(Template);
3778      PushOnScopeChains(InjectedClassName, S);
3779      assert(InjectedClassName->isInjectedClassName() &&
3780             "Broken injected-class-name");
3781    }
3782  }
3783}
3784
3785void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD) {
3786  AdjustDeclIfTemplate(TagD);
3787  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3788
3789  if (isa<CXXRecordDecl>(Tag))
3790    FieldCollector->FinishClass();
3791
3792  // Exit this scope of this tag's definition.
3793  PopDeclContext();
3794
3795  // Notify the consumer that we've defined a tag.
3796  Consumer.HandleTagDeclDefinition(Tag);
3797}
3798
3799// Note that FieldName may be null for anonymous bitfields.
3800bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3801                          QualType FieldTy, const Expr *BitWidth) {
3802
3803  // C99 6.7.2.1p4 - verify the field type.
3804  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3805  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3806    // Handle incomplete types with specific error.
3807    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3808      return true;
3809    if (FieldName)
3810      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3811        << FieldName << FieldTy << BitWidth->getSourceRange();
3812    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3813      << FieldTy << BitWidth->getSourceRange();
3814  }
3815
3816  // If the bit-width is type- or value-dependent, don't try to check
3817  // it now.
3818  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3819    return false;
3820
3821  llvm::APSInt Value;
3822  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3823    return true;
3824
3825  // Zero-width bitfield is ok for anonymous field.
3826  if (Value == 0 && FieldName)
3827    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3828
3829  if (Value.isSigned() && Value.isNegative()) {
3830    if (FieldName)
3831      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3832               << FieldName << Value.toString(10);
3833    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3834      << Value.toString(10);
3835  }
3836
3837  if (!FieldTy->isDependentType()) {
3838    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3839    if (Value.getZExtValue() > TypeSize) {
3840      if (FieldName)
3841        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3842          << FieldName << (unsigned)TypeSize;
3843      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3844        << (unsigned)TypeSize;
3845    }
3846  }
3847
3848  return false;
3849}
3850
3851/// ActOnField - Each field of a struct/union/class is passed into this in order
3852/// to create a FieldDecl object for it.
3853Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3854                                 SourceLocation DeclStart,
3855                                 Declarator &D, ExprTy *BitfieldWidth) {
3856  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3857                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3858                               AS_public);
3859  return DeclPtrTy::make(Res);
3860}
3861
3862/// HandleField - Analyze a field of a C struct or a C++ data member.
3863///
3864FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3865                             SourceLocation DeclStart,
3866                             Declarator &D, Expr *BitWidth,
3867                             AccessSpecifier AS) {
3868  IdentifierInfo *II = D.getIdentifier();
3869  SourceLocation Loc = DeclStart;
3870  if (II) Loc = D.getIdentifierLoc();
3871
3872  QualType T = GetTypeForDeclarator(D, S);
3873  if (getLangOptions().CPlusPlus)
3874    CheckExtraCXXDefaultArguments(D);
3875
3876  DiagnoseFunctionSpecifiers(D);
3877
3878  if (D.getDeclSpec().isThreadSpecified())
3879    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3880
3881  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3882
3883  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3884    // Maybe we will complain about the shadowed template parameter.
3885    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3886    // Just pretend that we didn't see the previous declaration.
3887    PrevDecl = 0;
3888  }
3889
3890  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
3891    PrevDecl = 0;
3892
3893  FieldDecl *NewFD
3894    = CheckFieldDecl(II, T, Record, Loc,
3895               D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable,
3896                     BitWidth, AS, PrevDecl, &D);
3897  if (NewFD->isInvalidDecl() && PrevDecl) {
3898    // Don't introduce NewFD into scope; there's already something
3899    // with the same name in the same scope.
3900  } else if (II) {
3901    PushOnScopeChains(NewFD, S);
3902  } else
3903    Record->addDecl(Context, NewFD);
3904
3905  return NewFD;
3906}
3907
3908/// \brief Build a new FieldDecl and check its well-formedness.
3909///
3910/// This routine builds a new FieldDecl given the fields name, type,
3911/// record, etc. \p PrevDecl should refer to any previous declaration
3912/// with the same name and in the same scope as the field to be
3913/// created.
3914///
3915/// \returns a new FieldDecl.
3916///
3917/// \todo The Declarator argument is a hack. It will be removed once
3918FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
3919                                RecordDecl *Record, SourceLocation Loc,
3920                                bool Mutable, Expr *BitWidth,
3921                                AccessSpecifier AS, NamedDecl *PrevDecl,
3922                                Declarator *D) {
3923  IdentifierInfo *II = Name.getAsIdentifierInfo();
3924  bool InvalidDecl = false;
3925  if (D) InvalidDecl = D->isInvalidType();
3926
3927  // If we receive a broken type, recover by assuming 'int' and
3928  // marking this declaration as invalid.
3929  if (T.isNull()) {
3930    InvalidDecl = true;
3931    T = Context.IntTy;
3932  }
3933
3934  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3935  // than a variably modified type.
3936  if (T->isVariablyModifiedType()) {
3937    bool SizeIsNegative;
3938    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
3939                                                           SizeIsNegative);
3940    if (!FixedTy.isNull()) {
3941      Diag(Loc, diag::warn_illegal_constant_array_size);
3942      T = FixedTy;
3943    } else {
3944      if (SizeIsNegative)
3945        Diag(Loc, diag::err_typecheck_negative_array_size);
3946      else
3947        Diag(Loc, diag::err_typecheck_field_variable_size);
3948      T = Context.IntTy;
3949      InvalidDecl = true;
3950    }
3951  }
3952
3953  // Fields can not have abstract class types
3954  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
3955                             AbstractFieldType))
3956    InvalidDecl = true;
3957
3958  // If this is declared as a bit-field, check the bit-field.
3959  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
3960    InvalidDecl = true;
3961    DeleteExpr(BitWidth);
3962    BitWidth = 0;
3963  }
3964
3965  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
3966                                       Mutable);
3967  if (InvalidDecl)
3968    NewFD->setInvalidDecl();
3969
3970  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
3971    Diag(Loc, diag::err_duplicate_member) << II;
3972    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3973    NewFD->setInvalidDecl();
3974  }
3975
3976  if (getLangOptions().CPlusPlus && !T->isPODType())
3977    cast<CXXRecordDecl>(Record)->setPOD(false);
3978
3979  // FIXME: We need to pass in the attributes given an AST
3980  // representation, not a parser representation.
3981  if (D)
3982    // FIXME: What to pass instead of TUScope?
3983    ProcessDeclAttributes(TUScope, NewFD, *D);
3984
3985  if (T.isObjCGCWeak())
3986    Diag(Loc, diag::warn_attribute_weak_on_field);
3987
3988  NewFD->setAccess(AS);
3989
3990  // C++ [dcl.init.aggr]p1:
3991  //   An aggregate is an array or a class (clause 9) with [...] no
3992  //   private or protected non-static data members (clause 11).
3993  // A POD must be an aggregate.
3994  if (getLangOptions().CPlusPlus &&
3995      (AS == AS_private || AS == AS_protected)) {
3996    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
3997    CXXRecord->setAggregate(false);
3998    CXXRecord->setPOD(false);
3999  }
4000
4001  return NewFD;
4002}
4003
4004/// TranslateIvarVisibility - Translate visibility from a token ID to an
4005///  AST enum value.
4006static ObjCIvarDecl::AccessControl
4007TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4008  switch (ivarVisibility) {
4009  default: assert(0 && "Unknown visitibility kind");
4010  case tok::objc_private: return ObjCIvarDecl::Private;
4011  case tok::objc_public: return ObjCIvarDecl::Public;
4012  case tok::objc_protected: return ObjCIvarDecl::Protected;
4013  case tok::objc_package: return ObjCIvarDecl::Package;
4014  }
4015}
4016
4017/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4018/// in order to create an IvarDecl object for it.
4019Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4020                                SourceLocation DeclStart,
4021                                DeclPtrTy IntfDecl,
4022                                Declarator &D, ExprTy *BitfieldWidth,
4023                                tok::ObjCKeywordKind Visibility) {
4024
4025  IdentifierInfo *II = D.getIdentifier();
4026  Expr *BitWidth = (Expr*)BitfieldWidth;
4027  SourceLocation Loc = DeclStart;
4028  if (II) Loc = D.getIdentifierLoc();
4029
4030  // FIXME: Unnamed fields can be handled in various different ways, for
4031  // example, unnamed unions inject all members into the struct namespace!
4032
4033  QualType T = GetTypeForDeclarator(D, S);
4034
4035  if (BitWidth) {
4036    // 6.7.2.1p3, 6.7.2.1p4
4037    if (VerifyBitField(Loc, II, T, BitWidth)) {
4038      D.setInvalidType();
4039      DeleteExpr(BitWidth);
4040      BitWidth = 0;
4041    }
4042  } else {
4043    // Not a bitfield.
4044
4045    // validate II.
4046
4047  }
4048
4049  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4050  // than a variably modified type.
4051  if (T->isVariablyModifiedType()) {
4052    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4053    D.setInvalidType();
4054  }
4055
4056  // Get the visibility (access control) for this ivar.
4057  ObjCIvarDecl::AccessControl ac =
4058    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4059                                        : ObjCIvarDecl::None;
4060  // Must set ivar's DeclContext to its enclosing interface.
4061  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4062  DeclContext *EnclosingContext;
4063  if (ObjCImplementationDecl *IMPDecl =
4064      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4065    // Case of ivar declared in an implementation. Context is that of its class.
4066    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4067    assert(IDecl && "No class- ActOnIvar");
4068    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4069  }
4070  else
4071    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4072  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4073
4074  // Construct the decl.
4075  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4076                                             EnclosingContext, Loc, II, T,ac,
4077                                             (Expr *)BitfieldWidth);
4078
4079  if (II) {
4080    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4081    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4082        && !isa<TagDecl>(PrevDecl)) {
4083      Diag(Loc, diag::err_duplicate_member) << II;
4084      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4085      NewID->setInvalidDecl();
4086    }
4087  }
4088
4089  // Process attributes attached to the ivar.
4090  ProcessDeclAttributes(S, NewID, D);
4091
4092  if (D.isInvalidType())
4093    NewID->setInvalidDecl();
4094
4095  if (II) {
4096    // FIXME: When interfaces are DeclContexts, we'll need to add
4097    // these to the interface.
4098    S->AddDecl(DeclPtrTy::make(NewID));
4099    IdResolver.AddDecl(NewID);
4100  }
4101
4102  return DeclPtrTy::make(NewID);
4103}
4104
4105void Sema::ActOnFields(Scope* S,
4106                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4107                       DeclPtrTy *Fields, unsigned NumFields,
4108                       SourceLocation LBrac, SourceLocation RBrac,
4109                       AttributeList *Attr) {
4110  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4111  assert(EnclosingDecl && "missing record or interface decl");
4112
4113  // If the decl this is being inserted into is invalid, then it may be a
4114  // redeclaration or some other bogus case.  Don't try to add fields to it.
4115  if (EnclosingDecl->isInvalidDecl()) {
4116    // FIXME: Deallocate fields?
4117    return;
4118  }
4119
4120
4121  // Verify that all the fields are okay.
4122  unsigned NumNamedMembers = 0;
4123  llvm::SmallVector<FieldDecl*, 32> RecFields;
4124
4125  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4126  for (unsigned i = 0; i != NumFields; ++i) {
4127    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4128
4129    // Get the type for the field.
4130    Type *FDTy = FD->getType().getTypePtr();
4131
4132    if (!FD->isAnonymousStructOrUnion()) {
4133      // Remember all fields written by the user.
4134      RecFields.push_back(FD);
4135    }
4136
4137    // If the field is already invalid for some reason, don't emit more
4138    // diagnostics about it.
4139    if (FD->isInvalidDecl())
4140      continue;
4141
4142    // C99 6.7.2.1p2:
4143    //   A structure or union shall not contain a member with
4144    //   incomplete or function type (hence, a structure shall not
4145    //   contain an instance of itself, but may contain a pointer to
4146    //   an instance of itself), except that the last member of a
4147    //   structure with more than one named member may have incomplete
4148    //   array type; such a structure (and any union containing,
4149    //   possibly recursively, a member that is such a structure)
4150    //   shall not be a member of a structure or an element of an
4151    //   array.
4152    if (FDTy->isFunctionType()) {
4153      // Field declared as a function.
4154      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4155        << FD->getDeclName();
4156      FD->setInvalidDecl();
4157      EnclosingDecl->setInvalidDecl();
4158      continue;
4159    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4160               Record && Record->isStruct()) {
4161      // Flexible array member.
4162      if (NumNamedMembers < 1) {
4163        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4164          << FD->getDeclName();
4165        FD->setInvalidDecl();
4166        EnclosingDecl->setInvalidDecl();
4167        continue;
4168      }
4169      // Okay, we have a legal flexible array member at the end of the struct.
4170      if (Record)
4171        Record->setHasFlexibleArrayMember(true);
4172    } else if (!FDTy->isDependentType() &&
4173               RequireCompleteType(FD->getLocation(), FD->getType(),
4174                                   diag::err_field_incomplete)) {
4175      // Incomplete type
4176      FD->setInvalidDecl();
4177      EnclosingDecl->setInvalidDecl();
4178      continue;
4179    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4180      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4181        // If this is a member of a union, then entire union becomes "flexible".
4182        if (Record && Record->isUnion()) {
4183          Record->setHasFlexibleArrayMember(true);
4184        } else {
4185          // If this is a struct/class and this is not the last element, reject
4186          // it.  Note that GCC supports variable sized arrays in the middle of
4187          // structures.
4188          if (i != NumFields-1)
4189            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4190              << FD->getDeclName() << FD->getType();
4191          else {
4192            // We support flexible arrays at the end of structs in
4193            // other structs as an extension.
4194            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4195              << FD->getDeclName();
4196            if (Record)
4197              Record->setHasFlexibleArrayMember(true);
4198          }
4199        }
4200      }
4201    } else if (FDTy->isObjCInterfaceType()) {
4202      /// A field cannot be an Objective-c object
4203      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4204      FD->setInvalidDecl();
4205      EnclosingDecl->setInvalidDecl();
4206      continue;
4207    }
4208    // Keep track of the number of named members.
4209    if (FD->getIdentifier())
4210      ++NumNamedMembers;
4211  }
4212
4213  // Okay, we successfully defined 'Record'.
4214  if (Record) {
4215    Record->completeDefinition(Context);
4216  } else {
4217    ObjCIvarDecl **ClsFields =
4218      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4219    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4220      ID->setIVarList(ClsFields, RecFields.size(), Context);
4221      ID->setLocEnd(RBrac);
4222      // Add ivar's to class's DeclContext.
4223      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4224        ClsFields[i]->setLexicalDeclContext(ID);
4225        ID->addDecl(Context, ClsFields[i]);
4226      }
4227      // Must enforce the rule that ivars in the base classes may not be
4228      // duplicates.
4229      if (ID->getSuperClass()) {
4230        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4231             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4232          ObjCIvarDecl* Ivar = (*IVI);
4233
4234          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4235            ObjCIvarDecl* prevIvar =
4236              ID->getSuperClass()->lookupInstanceVariable(Context, II);
4237            if (prevIvar) {
4238              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4239              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4240            }
4241          }
4242        }
4243      }
4244    } else if (ObjCImplementationDecl *IMPDecl =
4245                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4246      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4247      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4248        // Ivar declared in @implementation never belongs to the implementation.
4249        // Only it is in implementation's lexical context.
4250        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4251      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4252    }
4253  }
4254
4255  if (Attr)
4256    ProcessDeclAttributeList(S, Record, Attr);
4257}
4258
4259EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4260                                          EnumConstantDecl *LastEnumConst,
4261                                          SourceLocation IdLoc,
4262                                          IdentifierInfo *Id,
4263                                          ExprArg val) {
4264  Expr *Val = (Expr *)val.get();
4265
4266  llvm::APSInt EnumVal(32);
4267  QualType EltTy;
4268  if (Val && !Val->isTypeDependent()) {
4269    // Make sure to promote the operand type to int.
4270    UsualUnaryConversions(Val);
4271    if (Val != val.get()) {
4272      val.release();
4273      val = Val;
4274    }
4275
4276    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4277    SourceLocation ExpLoc;
4278    if (!Val->isValueDependent() &&
4279        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4280      Val = 0;
4281    } else {
4282      EltTy = Val->getType();
4283    }
4284  }
4285
4286  if (!Val) {
4287    if (LastEnumConst) {
4288      // Assign the last value + 1.
4289      EnumVal = LastEnumConst->getInitVal();
4290      ++EnumVal;
4291
4292      // Check for overflow on increment.
4293      if (EnumVal < LastEnumConst->getInitVal())
4294        Diag(IdLoc, diag::warn_enum_value_overflow);
4295
4296      EltTy = LastEnumConst->getType();
4297    } else {
4298      // First value, set to zero.
4299      EltTy = Context.IntTy;
4300      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4301    }
4302  }
4303
4304  val.release();
4305  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4306                                  Val, EnumVal);
4307}
4308
4309
4310Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4311                                        DeclPtrTy lastEnumConst,
4312                                        SourceLocation IdLoc,
4313                                        IdentifierInfo *Id,
4314                                        SourceLocation EqualLoc, ExprTy *val) {
4315  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4316  EnumConstantDecl *LastEnumConst =
4317    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4318  Expr *Val = static_cast<Expr*>(val);
4319
4320  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4321  // we find one that is.
4322  S = getNonFieldDeclScope(S);
4323
4324  // Verify that there isn't already something declared with this name in this
4325  // scope.
4326  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4327  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4328    // Maybe we will complain about the shadowed template parameter.
4329    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4330    // Just pretend that we didn't see the previous declaration.
4331    PrevDecl = 0;
4332  }
4333
4334  if (PrevDecl) {
4335    // When in C++, we may get a TagDecl with the same name; in this case the
4336    // enum constant will 'hide' the tag.
4337    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4338           "Received TagDecl when not in C++!");
4339    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4340      if (isa<EnumConstantDecl>(PrevDecl))
4341        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4342      else
4343        Diag(IdLoc, diag::err_redefinition) << Id;
4344      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4345      if (Val) Val->Destroy(Context);
4346      return DeclPtrTy();
4347    }
4348  }
4349
4350  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4351                                            IdLoc, Id, Owned(Val));
4352
4353  // Register this decl in the current scope stack.
4354  if (New)
4355    PushOnScopeChains(New, S);
4356
4357  return DeclPtrTy::make(New);
4358}
4359
4360void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4361                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4362                         DeclPtrTy *Elements, unsigned NumElements) {
4363  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4364  QualType EnumType = Context.getTypeDeclType(Enum);
4365
4366  // TODO: If the result value doesn't fit in an int, it must be a long or long
4367  // long value.  ISO C does not support this, but GCC does as an extension,
4368  // emit a warning.
4369  unsigned IntWidth = Context.Target.getIntWidth();
4370
4371  // Verify that all the values are okay, compute the size of the values, and
4372  // reverse the list.
4373  unsigned NumNegativeBits = 0;
4374  unsigned NumPositiveBits = 0;
4375
4376  // Keep track of whether all elements have type int.
4377  bool AllElementsInt = true;
4378
4379  for (unsigned i = 0; i != NumElements; ++i) {
4380    EnumConstantDecl *ECD =
4381      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4382    if (!ECD) continue;  // Already issued a diagnostic.
4383
4384    // If the enum value doesn't fit in an int, emit an extension warning.
4385    const llvm::APSInt &InitVal = ECD->getInitVal();
4386    assert(InitVal.getBitWidth() >= IntWidth &&
4387           "Should have promoted value to int");
4388    if (InitVal.getBitWidth() > IntWidth) {
4389      llvm::APSInt V(InitVal);
4390      V.trunc(IntWidth);
4391      V.extend(InitVal.getBitWidth());
4392      if (V != InitVal)
4393        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4394          << InitVal.toString(10);
4395    }
4396
4397    // Keep track of the size of positive and negative values.
4398    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4399      NumPositiveBits = std::max(NumPositiveBits,
4400                                 (unsigned)InitVal.getActiveBits());
4401    else
4402      NumNegativeBits = std::max(NumNegativeBits,
4403                                 (unsigned)InitVal.getMinSignedBits());
4404
4405    // Keep track of whether every enum element has type int (very commmon).
4406    if (AllElementsInt)
4407      AllElementsInt = ECD->getType() == Context.IntTy;
4408  }
4409
4410  // Figure out the type that should be used for this enum.
4411  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4412  QualType BestType;
4413  unsigned BestWidth;
4414
4415  if (NumNegativeBits) {
4416    // If there is a negative value, figure out the smallest integer type (of
4417    // int/long/longlong) that fits.
4418    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4419      BestType = Context.IntTy;
4420      BestWidth = IntWidth;
4421    } else {
4422      BestWidth = Context.Target.getLongWidth();
4423
4424      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4425        BestType = Context.LongTy;
4426      else {
4427        BestWidth = Context.Target.getLongLongWidth();
4428
4429        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4430          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4431        BestType = Context.LongLongTy;
4432      }
4433    }
4434  } else {
4435    // If there is no negative value, figure out which of uint, ulong, ulonglong
4436    // fits.
4437    if (NumPositiveBits <= IntWidth) {
4438      BestType = Context.UnsignedIntTy;
4439      BestWidth = IntWidth;
4440    } else if (NumPositiveBits <=
4441               (BestWidth = Context.Target.getLongWidth())) {
4442      BestType = Context.UnsignedLongTy;
4443    } else {
4444      BestWidth = Context.Target.getLongLongWidth();
4445      assert(NumPositiveBits <= BestWidth &&
4446             "How could an initializer get larger than ULL?");
4447      BestType = Context.UnsignedLongLongTy;
4448    }
4449  }
4450
4451  // Loop over all of the enumerator constants, changing their types to match
4452  // the type of the enum if needed.
4453  for (unsigned i = 0; i != NumElements; ++i) {
4454    EnumConstantDecl *ECD =
4455      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4456    if (!ECD) continue;  // Already issued a diagnostic.
4457
4458    // Standard C says the enumerators have int type, but we allow, as an
4459    // extension, the enumerators to be larger than int size.  If each
4460    // enumerator value fits in an int, type it as an int, otherwise type it the
4461    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4462    // that X has type 'int', not 'unsigned'.
4463    if (ECD->getType() == Context.IntTy) {
4464      // Make sure the init value is signed.
4465      llvm::APSInt IV = ECD->getInitVal();
4466      IV.setIsSigned(true);
4467      ECD->setInitVal(IV);
4468
4469      if (getLangOptions().CPlusPlus)
4470        // C++ [dcl.enum]p4: Following the closing brace of an
4471        // enum-specifier, each enumerator has the type of its
4472        // enumeration.
4473        ECD->setType(EnumType);
4474      continue;  // Already int type.
4475    }
4476
4477    // Determine whether the value fits into an int.
4478    llvm::APSInt InitVal = ECD->getInitVal();
4479    bool FitsInInt;
4480    if (InitVal.isUnsigned() || !InitVal.isNegative())
4481      FitsInInt = InitVal.getActiveBits() < IntWidth;
4482    else
4483      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4484
4485    // If it fits into an integer type, force it.  Otherwise force it to match
4486    // the enum decl type.
4487    QualType NewTy;
4488    unsigned NewWidth;
4489    bool NewSign;
4490    if (FitsInInt) {
4491      NewTy = Context.IntTy;
4492      NewWidth = IntWidth;
4493      NewSign = true;
4494    } else if (ECD->getType() == BestType) {
4495      // Already the right type!
4496      if (getLangOptions().CPlusPlus)
4497        // C++ [dcl.enum]p4: Following the closing brace of an
4498        // enum-specifier, each enumerator has the type of its
4499        // enumeration.
4500        ECD->setType(EnumType);
4501      continue;
4502    } else {
4503      NewTy = BestType;
4504      NewWidth = BestWidth;
4505      NewSign = BestType->isSignedIntegerType();
4506    }
4507
4508    // Adjust the APSInt value.
4509    InitVal.extOrTrunc(NewWidth);
4510    InitVal.setIsSigned(NewSign);
4511    ECD->setInitVal(InitVal);
4512
4513    // Adjust the Expr initializer and type.
4514    if (ECD->getInitExpr())
4515      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4516                                                      /*isLvalue=*/false));
4517    if (getLangOptions().CPlusPlus)
4518      // C++ [dcl.enum]p4: Following the closing brace of an
4519      // enum-specifier, each enumerator has the type of its
4520      // enumeration.
4521      ECD->setType(EnumType);
4522    else
4523      ECD->setType(NewTy);
4524  }
4525
4526  Enum->completeDefinition(Context, BestType);
4527}
4528
4529Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4530                                            ExprArg expr) {
4531  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4532
4533  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4534                                                   Loc, AsmString);
4535  CurContext->addDecl(Context, New);
4536  return DeclPtrTy::make(New);
4537}
4538
4539void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4540                             SourceLocation PragmaLoc,
4541                             SourceLocation NameLoc) {
4542  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4543
4544  // FIXME: This implementation is an ugly hack!
4545  if (PrevDecl) {
4546    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4547    return;
4548  }
4549  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4550  return;
4551}
4552
4553void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4554                                IdentifierInfo* AliasName,
4555                                SourceLocation PragmaLoc,
4556                                SourceLocation NameLoc,
4557                                SourceLocation AliasNameLoc) {
4558  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4559
4560  // FIXME: This implementation is an ugly hack!
4561  if (PrevDecl) {
4562    PrevDecl->addAttr(Context, ::new (Context) AliasAttr(AliasName->getName()));
4563    PrevDecl->addAttr(Context, ::new (Context) WeakAttr());
4564    return;
4565  }
4566  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4567  return;
4568}
4569