SemaDecl.cpp revision 175fb1070be0ee24a75064b118f0e13fbe354200
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149  case LookupResult::FoundOverloaded:
150  case LookupResult::FoundUnresolvedValue:
151    Result.suppressDiagnostics();
152    return ParsedType();
153
154  case LookupResult::Ambiguous:
155    // Recover from type-hiding ambiguities by hiding the type.  We'll
156    // do the lookup again when looking for an object, and we can
157    // diagnose the error then.  If we don't do this, then the error
158    // about hiding the type will be immediately followed by an error
159    // that only makes sense if the identifier was treated like a type.
160    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
161      Result.suppressDiagnostics();
162      return ParsedType();
163    }
164
165    // Look to see if we have a type anywhere in the list of results.
166    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
167         Res != ResEnd; ++Res) {
168      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
169        if (!IIDecl ||
170            (*Res)->getLocation().getRawEncoding() <
171              IIDecl->getLocation().getRawEncoding())
172          IIDecl = *Res;
173      }
174    }
175
176    if (!IIDecl) {
177      // None of the entities we found is a type, so there is no way
178      // to even assume that the result is a type. In this case, don't
179      // complain about the ambiguity. The parser will either try to
180      // perform this lookup again (e.g., as an object name), which
181      // will produce the ambiguity, or will complain that it expected
182      // a type name.
183      Result.suppressDiagnostics();
184      return ParsedType();
185    }
186
187    // We found a type within the ambiguous lookup; diagnose the
188    // ambiguity and then return that type. This might be the right
189    // answer, or it might not be, but it suppresses any attempt to
190    // perform the name lookup again.
191    break;
192
193  case LookupResult::Found:
194    IIDecl = Result.getFoundDecl();
195    break;
196  }
197
198  assert(IIDecl && "Didn't find decl");
199
200  QualType T;
201  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
202    DiagnoseUseOfDecl(IIDecl, NameLoc);
203
204    if (T.isNull())
205      T = Context.getTypeDeclType(TD);
206
207    if (SS && SS->isNotEmpty()) {
208      if (WantNontrivialTypeSourceInfo) {
209        // Construct a type with type-source information.
210        TypeLocBuilder Builder;
211        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
212
213        T = getElaboratedType(ETK_None, *SS, T);
214        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
215        ElabTL.setKeywordLoc(SourceLocation());
216        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
217        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
218      } else {
219        T = getElaboratedType(ETK_None, *SS, T);
220      }
221    }
222  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
223    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
224    if (!HasTrailingDot)
225      T = Context.getObjCInterfaceType(IDecl);
226  }
227
228  if (T.isNull()) {
229    // If it's not plausibly a type, suppress diagnostics.
230    Result.suppressDiagnostics();
231    return ParsedType();
232  }
233  return ParsedType::make(T);
234}
235
236/// isTagName() - This method is called *for error recovery purposes only*
237/// to determine if the specified name is a valid tag name ("struct foo").  If
238/// so, this returns the TST for the tag corresponding to it (TST_enum,
239/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
240/// where the user forgot to specify the tag.
241DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
242  // Do a tag name lookup in this scope.
243  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
244  LookupName(R, S, false);
245  R.suppressDiagnostics();
246  if (R.getResultKind() == LookupResult::Found)
247    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
248      switch (TD->getTagKind()) {
249      default:         return DeclSpec::TST_unspecified;
250      case TTK_Struct: return DeclSpec::TST_struct;
251      case TTK_Union:  return DeclSpec::TST_union;
252      case TTK_Class:  return DeclSpec::TST_class;
253      case TTK_Enum:   return DeclSpec::TST_enum;
254      }
255    }
256
257  return DeclSpec::TST_unspecified;
258}
259
260/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
261/// if a CXXScopeSpec's type is equal to the type of one of the base classes
262/// then downgrade the missing typename error to a warning.
263/// This is needed for MSVC compatibility; Example:
264/// @code
265/// template<class T> class A {
266/// public:
267///   typedef int TYPE;
268/// };
269/// template<class T> class B : public A<T> {
270/// public:
271///   A<T>::TYPE a; // no typename required because A<T> is a base class.
272/// };
273/// @endcode
274bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
275  if (CurContext->isRecord()) {
276    const Type *Ty = SS->getScopeRep()->getAsType();
277
278    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
279    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
280          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
281      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
282        return true;
283  }
284  return CurContext->isFunctionOrMethod();
285}
286
287bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
288                                   SourceLocation IILoc,
289                                   Scope *S,
290                                   CXXScopeSpec *SS,
291                                   ParsedType &SuggestedType) {
292  // We don't have anything to suggest (yet).
293  SuggestedType = ParsedType();
294
295  // There may have been a typo in the name of the type. Look up typo
296  // results, in case we have something that we can suggest.
297  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
298                                             LookupOrdinaryName, S, SS, NULL,
299                                             false, CTC_Type)) {
300    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
301    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
302
303    if (Corrected.isKeyword()) {
304      // We corrected to a keyword.
305      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
306      Diag(IILoc, diag::err_unknown_typename_suggest)
307        << &II << CorrectedQuotedStr;
308      return true;
309    } else {
310      NamedDecl *Result = Corrected.getCorrectionDecl();
311      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
312          !Result->isInvalidDecl()) {
313        // We found a similarly-named type or interface; suggest that.
314        if (!SS || !SS->isSet())
315          Diag(IILoc, diag::err_unknown_typename_suggest)
316            << &II << CorrectedQuotedStr
317            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
318        else if (DeclContext *DC = computeDeclContext(*SS, false))
319          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
320            << &II << DC << CorrectedQuotedStr << SS->getRange()
321            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
322        else
323          llvm_unreachable("could not have corrected a typo here");
324
325        Diag(Result->getLocation(), diag::note_previous_decl)
326          << CorrectedQuotedStr;
327
328        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
329                                    false, false, ParsedType(),
330                                    /*NonTrivialTypeSourceInfo=*/true);
331        return true;
332      }
333    }
334  }
335
336  if (getLangOptions().CPlusPlus) {
337    // See if II is a class template that the user forgot to pass arguments to.
338    UnqualifiedId Name;
339    Name.setIdentifier(&II, IILoc);
340    CXXScopeSpec EmptySS;
341    TemplateTy TemplateResult;
342    bool MemberOfUnknownSpecialization;
343    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
344                       Name, ParsedType(), true, TemplateResult,
345                       MemberOfUnknownSpecialization) == TNK_Type_template) {
346      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
347      Diag(IILoc, diag::err_template_missing_args) << TplName;
348      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
349        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
350          << TplDecl->getTemplateParameters()->getSourceRange();
351      }
352      return true;
353    }
354  }
355
356  // FIXME: Should we move the logic that tries to recover from a missing tag
357  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
358
359  if (!SS || (!SS->isSet() && !SS->isInvalid()))
360    Diag(IILoc, diag::err_unknown_typename) << &II;
361  else if (DeclContext *DC = computeDeclContext(*SS, false))
362    Diag(IILoc, diag::err_typename_nested_not_found)
363      << &II << DC << SS->getRange();
364  else if (isDependentScopeSpecifier(*SS)) {
365    unsigned DiagID = diag::err_typename_missing;
366    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS))
367      DiagID = diag::warn_typename_missing;
368
369    Diag(SS->getRange().getBegin(), DiagID)
370      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
371      << SourceRange(SS->getRange().getBegin(), IILoc)
372      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
373    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
374  } else {
375    assert(SS && SS->isInvalid() &&
376           "Invalid scope specifier has already been diagnosed");
377  }
378
379  return true;
380}
381
382/// \brief Determine whether the given result set contains either a type name
383/// or
384static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
385  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
386                       NextToken.is(tok::less);
387
388  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
389    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
390      return true;
391
392    if (CheckTemplate && isa<TemplateDecl>(*I))
393      return true;
394  }
395
396  return false;
397}
398
399Sema::NameClassification Sema::ClassifyName(Scope *S,
400                                            CXXScopeSpec &SS,
401                                            IdentifierInfo *&Name,
402                                            SourceLocation NameLoc,
403                                            const Token &NextToken) {
404  DeclarationNameInfo NameInfo(Name, NameLoc);
405  ObjCMethodDecl *CurMethod = getCurMethodDecl();
406
407  if (NextToken.is(tok::coloncolon)) {
408    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
409                                QualType(), false, SS, 0, false);
410
411  }
412
413  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
414  LookupParsedName(Result, S, &SS, !CurMethod);
415
416  // Perform lookup for Objective-C instance variables (including automatically
417  // synthesized instance variables), if we're in an Objective-C method.
418  // FIXME: This lookup really, really needs to be folded in to the normal
419  // unqualified lookup mechanism.
420  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
421    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
422    if (E.get() || E.isInvalid())
423      return E;
424  }
425
426  bool SecondTry = false;
427  bool IsFilteredTemplateName = false;
428
429Corrected:
430  switch (Result.getResultKind()) {
431  case LookupResult::NotFound:
432    // If an unqualified-id is followed by a '(', then we have a function
433    // call.
434    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
435      // In C++, this is an ADL-only call.
436      // FIXME: Reference?
437      if (getLangOptions().CPlusPlus)
438        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
439
440      // C90 6.3.2.2:
441      //   If the expression that precedes the parenthesized argument list in a
442      //   function call consists solely of an identifier, and if no
443      //   declaration is visible for this identifier, the identifier is
444      //   implicitly declared exactly as if, in the innermost block containing
445      //   the function call, the declaration
446      //
447      //     extern int identifier ();
448      //
449      //   appeared.
450      //
451      // We also allow this in C99 as an extension.
452      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
453        Result.addDecl(D);
454        Result.resolveKind();
455        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
456      }
457    }
458
459    // In C, we first see whether there is a tag type by the same name, in
460    // which case it's likely that the user just forget to write "enum",
461    // "struct", or "union".
462    if (!getLangOptions().CPlusPlus && !SecondTry) {
463      Result.clear(LookupTagName);
464      LookupParsedName(Result, S, &SS);
465      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
466        const char *TagName = 0;
467        const char *FixItTagName = 0;
468        switch (Tag->getTagKind()) {
469          case TTK_Class:
470            TagName = "class";
471            FixItTagName = "class ";
472            break;
473
474          case TTK_Enum:
475            TagName = "enum";
476            FixItTagName = "enum ";
477            break;
478
479          case TTK_Struct:
480            TagName = "struct";
481            FixItTagName = "struct ";
482            break;
483
484          case TTK_Union:
485            TagName = "union";
486            FixItTagName = "union ";
487            break;
488        }
489
490        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
491          << Name << TagName << getLangOptions().CPlusPlus
492          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
493        break;
494      }
495
496      Result.clear(LookupOrdinaryName);
497    }
498
499    // Perform typo correction to determine if there is another name that is
500    // close to this name.
501    if (!SecondTry) {
502      SecondTry = true;
503      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
504                                                 Result.getLookupKind(), S, &SS)) {
505        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
506        unsigned QualifiedDiag = diag::err_no_member_suggest;
507        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
508        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
509
510        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
511        NamedDecl *UnderlyingFirstDecl
512          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
513        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
514            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
515          UnqualifiedDiag = diag::err_no_template_suggest;
516          QualifiedDiag = diag::err_no_member_template_suggest;
517        } else if (UnderlyingFirstDecl &&
518                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
520                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
521           UnqualifiedDiag = diag::err_unknown_typename_suggest;
522           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
523         }
524
525        if (SS.isEmpty())
526          Diag(NameLoc, UnqualifiedDiag)
527            << Name << CorrectedQuotedStr
528            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
529        else
530          Diag(NameLoc, QualifiedDiag)
531            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
532            << SS.getRange()
533            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
534
535        // Update the name, so that the caller has the new name.
536        Name = Corrected.getCorrectionAsIdentifierInfo();
537
538        // Also update the LookupResult...
539        // FIXME: This should probably go away at some point
540        Result.clear();
541        Result.setLookupName(Corrected.getCorrection());
542        if (FirstDecl) Result.addDecl(FirstDecl);
543
544        // Typo correction corrected to a keyword.
545        if (Corrected.isKeyword())
546          return Corrected.getCorrectionAsIdentifierInfo();
547
548        if (FirstDecl)
549          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
550            << CorrectedQuotedStr;
551
552        // If we found an Objective-C instance variable, let
553        // LookupInObjCMethod build the appropriate expression to
554        // reference the ivar.
555        // FIXME: This is a gross hack.
556        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
557          Result.clear();
558          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
559          return move(E);
560        }
561
562        goto Corrected;
563      }
564    }
565
566    // We failed to correct; just fall through and let the parser deal with it.
567    Result.suppressDiagnostics();
568    return NameClassification::Unknown();
569
570  case LookupResult::NotFoundInCurrentInstantiation:
571    // We performed name lookup into the current instantiation, and there were
572    // dependent bases, so we treat this result the same way as any other
573    // dependent nested-name-specifier.
574
575    // C++ [temp.res]p2:
576    //   A name used in a template declaration or definition and that is
577    //   dependent on a template-parameter is assumed not to name a type
578    //   unless the applicable name lookup finds a type name or the name is
579    //   qualified by the keyword typename.
580    //
581    // FIXME: If the next token is '<', we might want to ask the parser to
582    // perform some heroics to see if we actually have a
583    // template-argument-list, which would indicate a missing 'template'
584    // keyword here.
585    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
586
587  case LookupResult::Found:
588  case LookupResult::FoundOverloaded:
589  case LookupResult::FoundUnresolvedValue:
590    break;
591
592  case LookupResult::Ambiguous:
593    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
594        hasAnyAcceptableTemplateNames(Result)) {
595      // C++ [temp.local]p3:
596      //   A lookup that finds an injected-class-name (10.2) can result in an
597      //   ambiguity in certain cases (for example, if it is found in more than
598      //   one base class). If all of the injected-class-names that are found
599      //   refer to specializations of the same class template, and if the name
600      //   is followed by a template-argument-list, the reference refers to the
601      //   class template itself and not a specialization thereof, and is not
602      //   ambiguous.
603      //
604      // This filtering can make an ambiguous result into an unambiguous one,
605      // so try again after filtering out template names.
606      FilterAcceptableTemplateNames(Result);
607      if (!Result.isAmbiguous()) {
608        IsFilteredTemplateName = true;
609        break;
610      }
611    }
612
613    // Diagnose the ambiguity and return an error.
614    return NameClassification::Error();
615  }
616
617  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
618      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
619    // C++ [temp.names]p3:
620    //   After name lookup (3.4) finds that a name is a template-name or that
621    //   an operator-function-id or a literal- operator-id refers to a set of
622    //   overloaded functions any member of which is a function template if
623    //   this is followed by a <, the < is always taken as the delimiter of a
624    //   template-argument-list and never as the less-than operator.
625    if (!IsFilteredTemplateName)
626      FilterAcceptableTemplateNames(Result);
627
628    if (!Result.empty()) {
629      bool IsFunctionTemplate;
630      TemplateName Template;
631      if (Result.end() - Result.begin() > 1) {
632        IsFunctionTemplate = true;
633        Template = Context.getOverloadedTemplateName(Result.begin(),
634                                                     Result.end());
635      } else {
636        TemplateDecl *TD
637          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
638        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
639
640        if (SS.isSet() && !SS.isInvalid())
641          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
642                                                    /*TemplateKeyword=*/false,
643                                                      TD);
644        else
645          Template = TemplateName(TD);
646      }
647
648      if (IsFunctionTemplate) {
649        // Function templates always go through overload resolution, at which
650        // point we'll perform the various checks (e.g., accessibility) we need
651        // to based on which function we selected.
652        Result.suppressDiagnostics();
653
654        return NameClassification::FunctionTemplate(Template);
655      }
656
657      return NameClassification::TypeTemplate(Template);
658    }
659  }
660
661  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
662  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
663    DiagnoseUseOfDecl(Type, NameLoc);
664    QualType T = Context.getTypeDeclType(Type);
665    return ParsedType::make(T);
666  }
667
668  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
669  if (!Class) {
670    // FIXME: It's unfortunate that we don't have a Type node for handling this.
671    if (ObjCCompatibleAliasDecl *Alias
672                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
673      Class = Alias->getClassInterface();
674  }
675
676  if (Class) {
677    DiagnoseUseOfDecl(Class, NameLoc);
678
679    if (NextToken.is(tok::period)) {
680      // Interface. <something> is parsed as a property reference expression.
681      // Just return "unknown" as a fall-through for now.
682      Result.suppressDiagnostics();
683      return NameClassification::Unknown();
684    }
685
686    QualType T = Context.getObjCInterfaceType(Class);
687    return ParsedType::make(T);
688  }
689
690  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
691    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
692
693  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
694  return BuildDeclarationNameExpr(SS, Result, ADL);
695}
696
697// Determines the context to return to after temporarily entering a
698// context.  This depends in an unnecessarily complicated way on the
699// exact ordering of callbacks from the parser.
700DeclContext *Sema::getContainingDC(DeclContext *DC) {
701
702  // Functions defined inline within classes aren't parsed until we've
703  // finished parsing the top-level class, so the top-level class is
704  // the context we'll need to return to.
705  if (isa<FunctionDecl>(DC)) {
706    DC = DC->getLexicalParent();
707
708    // A function not defined within a class will always return to its
709    // lexical context.
710    if (!isa<CXXRecordDecl>(DC))
711      return DC;
712
713    // A C++ inline method/friend is parsed *after* the topmost class
714    // it was declared in is fully parsed ("complete");  the topmost
715    // class is the context we need to return to.
716    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
717      DC = RD;
718
719    // Return the declaration context of the topmost class the inline method is
720    // declared in.
721    return DC;
722  }
723
724  return DC->getLexicalParent();
725}
726
727void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
728  assert(getContainingDC(DC) == CurContext &&
729      "The next DeclContext should be lexically contained in the current one.");
730  CurContext = DC;
731  S->setEntity(DC);
732}
733
734void Sema::PopDeclContext() {
735  assert(CurContext && "DeclContext imbalance!");
736
737  CurContext = getContainingDC(CurContext);
738  assert(CurContext && "Popped translation unit!");
739}
740
741/// EnterDeclaratorContext - Used when we must lookup names in the context
742/// of a declarator's nested name specifier.
743///
744void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
745  // C++0x [basic.lookup.unqual]p13:
746  //   A name used in the definition of a static data member of class
747  //   X (after the qualified-id of the static member) is looked up as
748  //   if the name was used in a member function of X.
749  // C++0x [basic.lookup.unqual]p14:
750  //   If a variable member of a namespace is defined outside of the
751  //   scope of its namespace then any name used in the definition of
752  //   the variable member (after the declarator-id) is looked up as
753  //   if the definition of the variable member occurred in its
754  //   namespace.
755  // Both of these imply that we should push a scope whose context
756  // is the semantic context of the declaration.  We can't use
757  // PushDeclContext here because that context is not necessarily
758  // lexically contained in the current context.  Fortunately,
759  // the containing scope should have the appropriate information.
760
761  assert(!S->getEntity() && "scope already has entity");
762
763#ifndef NDEBUG
764  Scope *Ancestor = S->getParent();
765  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
766  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
767#endif
768
769  CurContext = DC;
770  S->setEntity(DC);
771}
772
773void Sema::ExitDeclaratorContext(Scope *S) {
774  assert(S->getEntity() == CurContext && "Context imbalance!");
775
776  // Switch back to the lexical context.  The safety of this is
777  // enforced by an assert in EnterDeclaratorContext.
778  Scope *Ancestor = S->getParent();
779  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
780  CurContext = (DeclContext*) Ancestor->getEntity();
781
782  // We don't need to do anything with the scope, which is going to
783  // disappear.
784}
785
786
787void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
788  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
789  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
790    // We assume that the caller has already called
791    // ActOnReenterTemplateScope
792    FD = TFD->getTemplatedDecl();
793  }
794  if (!FD)
795    return;
796
797  PushDeclContext(S, FD);
798  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
799    ParmVarDecl *Param = FD->getParamDecl(P);
800    // If the parameter has an identifier, then add it to the scope
801    if (Param->getIdentifier()) {
802      S->AddDecl(Param);
803      IdResolver.AddDecl(Param);
804    }
805  }
806}
807
808
809/// \brief Determine whether we allow overloading of the function
810/// PrevDecl with another declaration.
811///
812/// This routine determines whether overloading is possible, not
813/// whether some new function is actually an overload. It will return
814/// true in C++ (where we can always provide overloads) or, as an
815/// extension, in C when the previous function is already an
816/// overloaded function declaration or has the "overloadable"
817/// attribute.
818static bool AllowOverloadingOfFunction(LookupResult &Previous,
819                                       ASTContext &Context) {
820  if (Context.getLangOptions().CPlusPlus)
821    return true;
822
823  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
824    return true;
825
826  return (Previous.getResultKind() == LookupResult::Found
827          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
828}
829
830/// Add this decl to the scope shadowed decl chains.
831void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
832  // Move up the scope chain until we find the nearest enclosing
833  // non-transparent context. The declaration will be introduced into this
834  // scope.
835  while (S->getEntity() &&
836         ((DeclContext *)S->getEntity())->isTransparentContext())
837    S = S->getParent();
838
839  // Add scoped declarations into their context, so that they can be
840  // found later. Declarations without a context won't be inserted
841  // into any context.
842  if (AddToContext)
843    CurContext->addDecl(D);
844
845  // Out-of-line definitions shouldn't be pushed into scope in C++.
846  // Out-of-line variable and function definitions shouldn't even in C.
847  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
848      D->isOutOfLine())
849    return;
850
851  // Template instantiations should also not be pushed into scope.
852  if (isa<FunctionDecl>(D) &&
853      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
854    return;
855
856  // If this replaces anything in the current scope,
857  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
858                               IEnd = IdResolver.end();
859  for (; I != IEnd; ++I) {
860    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
861      S->RemoveDecl(*I);
862      IdResolver.RemoveDecl(*I);
863
864      // Should only need to replace one decl.
865      break;
866    }
867  }
868
869  S->AddDecl(D);
870
871  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
872    // Implicitly-generated labels may end up getting generated in an order that
873    // isn't strictly lexical, which breaks name lookup. Be careful to insert
874    // the label at the appropriate place in the identifier chain.
875    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
876      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
877      if (IDC == CurContext) {
878        if (!S->isDeclScope(*I))
879          continue;
880      } else if (IDC->Encloses(CurContext))
881        break;
882    }
883
884    IdResolver.InsertDeclAfter(I, D);
885  } else {
886    IdResolver.AddDecl(D);
887  }
888}
889
890bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
891                         bool ExplicitInstantiationOrSpecialization) {
892  return IdResolver.isDeclInScope(D, Ctx, Context, S,
893                                  ExplicitInstantiationOrSpecialization);
894}
895
896Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
897  DeclContext *TargetDC = DC->getPrimaryContext();
898  do {
899    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
900      if (ScopeDC->getPrimaryContext() == TargetDC)
901        return S;
902  } while ((S = S->getParent()));
903
904  return 0;
905}
906
907static bool isOutOfScopePreviousDeclaration(NamedDecl *,
908                                            DeclContext*,
909                                            ASTContext&);
910
911/// Filters out lookup results that don't fall within the given scope
912/// as determined by isDeclInScope.
913void Sema::FilterLookupForScope(LookupResult &R,
914                                DeclContext *Ctx, Scope *S,
915                                bool ConsiderLinkage,
916                                bool ExplicitInstantiationOrSpecialization) {
917  LookupResult::Filter F = R.makeFilter();
918  while (F.hasNext()) {
919    NamedDecl *D = F.next();
920
921    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
922      continue;
923
924    if (ConsiderLinkage &&
925        isOutOfScopePreviousDeclaration(D, Ctx, Context))
926      continue;
927
928    F.erase();
929  }
930
931  F.done();
932}
933
934static bool isUsingDecl(NamedDecl *D) {
935  return isa<UsingShadowDecl>(D) ||
936         isa<UnresolvedUsingTypenameDecl>(D) ||
937         isa<UnresolvedUsingValueDecl>(D);
938}
939
940/// Removes using shadow declarations from the lookup results.
941static void RemoveUsingDecls(LookupResult &R) {
942  LookupResult::Filter F = R.makeFilter();
943  while (F.hasNext())
944    if (isUsingDecl(F.next()))
945      F.erase();
946
947  F.done();
948}
949
950/// \brief Check for this common pattern:
951/// @code
952/// class S {
953///   S(const S&); // DO NOT IMPLEMENT
954///   void operator=(const S&); // DO NOT IMPLEMENT
955/// };
956/// @endcode
957static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
958  // FIXME: Should check for private access too but access is set after we get
959  // the decl here.
960  if (D->doesThisDeclarationHaveABody())
961    return false;
962
963  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
964    return CD->isCopyConstructor();
965  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
966    return Method->isCopyAssignmentOperator();
967  return false;
968}
969
970bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
971  assert(D);
972
973  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
974    return false;
975
976  // Ignore class templates.
977  if (D->getDeclContext()->isDependentContext() ||
978      D->getLexicalDeclContext()->isDependentContext())
979    return false;
980
981  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
982    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
983      return false;
984
985    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
986      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
987        return false;
988    } else {
989      // 'static inline' functions are used in headers; don't warn.
990      if (FD->getStorageClass() == SC_Static &&
991          FD->isInlineSpecified())
992        return false;
993    }
994
995    if (FD->doesThisDeclarationHaveABody() &&
996        Context.DeclMustBeEmitted(FD))
997      return false;
998  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
999    if (!VD->isFileVarDecl() ||
1000        VD->getType().isConstant(Context) ||
1001        Context.DeclMustBeEmitted(VD))
1002      return false;
1003
1004    if (VD->isStaticDataMember() &&
1005        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1006      return false;
1007
1008  } else {
1009    return false;
1010  }
1011
1012  // Only warn for unused decls internal to the translation unit.
1013  if (D->getLinkage() == ExternalLinkage)
1014    return false;
1015
1016  return true;
1017}
1018
1019void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1020  if (!D)
1021    return;
1022
1023  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1024    const FunctionDecl *First = FD->getFirstDeclaration();
1025    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1026      return; // First should already be in the vector.
1027  }
1028
1029  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1030    const VarDecl *First = VD->getFirstDeclaration();
1031    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1032      return; // First should already be in the vector.
1033  }
1034
1035   if (ShouldWarnIfUnusedFileScopedDecl(D))
1036     UnusedFileScopedDecls.push_back(D);
1037 }
1038
1039static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1040  if (D->isInvalidDecl())
1041    return false;
1042
1043  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1044    return false;
1045
1046  if (isa<LabelDecl>(D))
1047    return true;
1048
1049  // White-list anything that isn't a local variable.
1050  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1051      !D->getDeclContext()->isFunctionOrMethod())
1052    return false;
1053
1054  // Types of valid local variables should be complete, so this should succeed.
1055  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1056
1057    // White-list anything with an __attribute__((unused)) type.
1058    QualType Ty = VD->getType();
1059
1060    // Only look at the outermost level of typedef.
1061    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1062      if (TT->getDecl()->hasAttr<UnusedAttr>())
1063        return false;
1064    }
1065
1066    // If we failed to complete the type for some reason, or if the type is
1067    // dependent, don't diagnose the variable.
1068    if (Ty->isIncompleteType() || Ty->isDependentType())
1069      return false;
1070
1071    if (const TagType *TT = Ty->getAs<TagType>()) {
1072      const TagDecl *Tag = TT->getDecl();
1073      if (Tag->hasAttr<UnusedAttr>())
1074        return false;
1075
1076      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1077        // FIXME: Checking for the presence of a user-declared constructor
1078        // isn't completely accurate; we'd prefer to check that the initializer
1079        // has no side effects.
1080        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1081          return false;
1082      }
1083    }
1084
1085    // TODO: __attribute__((unused)) templates?
1086  }
1087
1088  return true;
1089}
1090
1091static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1092                                     FixItHint &Hint) {
1093  if (isa<LabelDecl>(D)) {
1094    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1095                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1096    if (AfterColon.isInvalid())
1097      return;
1098    Hint = FixItHint::CreateRemoval(CharSourceRange::
1099                                    getCharRange(D->getLocStart(), AfterColon));
1100  }
1101  return;
1102}
1103
1104/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1105/// unless they are marked attr(unused).
1106void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1107  FixItHint Hint;
1108  if (!ShouldDiagnoseUnusedDecl(D))
1109    return;
1110
1111  GenerateFixForUnusedDecl(D, Context, Hint);
1112
1113  unsigned DiagID;
1114  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1115    DiagID = diag::warn_unused_exception_param;
1116  else if (isa<LabelDecl>(D))
1117    DiagID = diag::warn_unused_label;
1118  else
1119    DiagID = diag::warn_unused_variable;
1120
1121  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1122}
1123
1124static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1125  // Verify that we have no forward references left.  If so, there was a goto
1126  // or address of a label taken, but no definition of it.  Label fwd
1127  // definitions are indicated with a null substmt.
1128  if (L->getStmt() == 0)
1129    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1130}
1131
1132void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1133  if (S->decl_empty()) return;
1134  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1135         "Scope shouldn't contain decls!");
1136
1137  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1138       I != E; ++I) {
1139    Decl *TmpD = (*I);
1140    assert(TmpD && "This decl didn't get pushed??");
1141
1142    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1143    NamedDecl *D = cast<NamedDecl>(TmpD);
1144
1145    if (!D->getDeclName()) continue;
1146
1147    // Diagnose unused variables in this scope.
1148    if (!S->hasErrorOccurred())
1149      DiagnoseUnusedDecl(D);
1150
1151    // If this was a forward reference to a label, verify it was defined.
1152    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1153      CheckPoppedLabel(LD, *this);
1154
1155    // Remove this name from our lexical scope.
1156    IdResolver.RemoveDecl(D);
1157  }
1158}
1159
1160/// \brief Look for an Objective-C class in the translation unit.
1161///
1162/// \param Id The name of the Objective-C class we're looking for. If
1163/// typo-correction fixes this name, the Id will be updated
1164/// to the fixed name.
1165///
1166/// \param IdLoc The location of the name in the translation unit.
1167///
1168/// \param TypoCorrection If true, this routine will attempt typo correction
1169/// if there is no class with the given name.
1170///
1171/// \returns The declaration of the named Objective-C class, or NULL if the
1172/// class could not be found.
1173ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1174                                              SourceLocation IdLoc,
1175                                              bool DoTypoCorrection) {
1176  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1177  // creation from this context.
1178  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1179
1180  if (!IDecl && DoTypoCorrection) {
1181    // Perform typo correction at the given location, but only if we
1182    // find an Objective-C class name.
1183    TypoCorrection C;
1184    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1185                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1186        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1187      Diag(IdLoc, diag::err_undef_interface_suggest)
1188        << Id << IDecl->getDeclName()
1189        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1190      Diag(IDecl->getLocation(), diag::note_previous_decl)
1191        << IDecl->getDeclName();
1192
1193      Id = IDecl->getIdentifier();
1194    }
1195  }
1196
1197  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1198}
1199
1200/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1201/// from S, where a non-field would be declared. This routine copes
1202/// with the difference between C and C++ scoping rules in structs and
1203/// unions. For example, the following code is well-formed in C but
1204/// ill-formed in C++:
1205/// @code
1206/// struct S6 {
1207///   enum { BAR } e;
1208/// };
1209///
1210/// void test_S6() {
1211///   struct S6 a;
1212///   a.e = BAR;
1213/// }
1214/// @endcode
1215/// For the declaration of BAR, this routine will return a different
1216/// scope. The scope S will be the scope of the unnamed enumeration
1217/// within S6. In C++, this routine will return the scope associated
1218/// with S6, because the enumeration's scope is a transparent
1219/// context but structures can contain non-field names. In C, this
1220/// routine will return the translation unit scope, since the
1221/// enumeration's scope is a transparent context and structures cannot
1222/// contain non-field names.
1223Scope *Sema::getNonFieldDeclScope(Scope *S) {
1224  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1225         (S->getEntity() &&
1226          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1227         (S->isClassScope() && !getLangOptions().CPlusPlus))
1228    S = S->getParent();
1229  return S;
1230}
1231
1232/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1233/// file scope.  lazily create a decl for it. ForRedeclaration is true
1234/// if we're creating this built-in in anticipation of redeclaring the
1235/// built-in.
1236NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1237                                     Scope *S, bool ForRedeclaration,
1238                                     SourceLocation Loc) {
1239  Builtin::ID BID = (Builtin::ID)bid;
1240
1241  ASTContext::GetBuiltinTypeError Error;
1242  QualType R = Context.GetBuiltinType(BID, Error);
1243  switch (Error) {
1244  case ASTContext::GE_None:
1245    // Okay
1246    break;
1247
1248  case ASTContext::GE_Missing_stdio:
1249    if (ForRedeclaration)
1250      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1251        << Context.BuiltinInfo.GetName(BID);
1252    return 0;
1253
1254  case ASTContext::GE_Missing_setjmp:
1255    if (ForRedeclaration)
1256      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1257        << Context.BuiltinInfo.GetName(BID);
1258    return 0;
1259  }
1260
1261  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1262    Diag(Loc, diag::ext_implicit_lib_function_decl)
1263      << Context.BuiltinInfo.GetName(BID)
1264      << R;
1265    if (Context.BuiltinInfo.getHeaderName(BID) &&
1266        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1267          != DiagnosticsEngine::Ignored)
1268      Diag(Loc, diag::note_please_include_header)
1269        << Context.BuiltinInfo.getHeaderName(BID)
1270        << Context.BuiltinInfo.GetName(BID);
1271  }
1272
1273  FunctionDecl *New = FunctionDecl::Create(Context,
1274                                           Context.getTranslationUnitDecl(),
1275                                           Loc, Loc, II, R, /*TInfo=*/0,
1276                                           SC_Extern,
1277                                           SC_None, false,
1278                                           /*hasPrototype=*/true);
1279  New->setImplicit();
1280
1281  // Create Decl objects for each parameter, adding them to the
1282  // FunctionDecl.
1283  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1284    SmallVector<ParmVarDecl*, 16> Params;
1285    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1286      ParmVarDecl *parm =
1287        ParmVarDecl::Create(Context, New, SourceLocation(),
1288                            SourceLocation(), 0,
1289                            FT->getArgType(i), /*TInfo=*/0,
1290                            SC_None, SC_None, 0);
1291      parm->setScopeInfo(0, i);
1292      Params.push_back(parm);
1293    }
1294    New->setParams(Params);
1295  }
1296
1297  AddKnownFunctionAttributes(New);
1298
1299  // TUScope is the translation-unit scope to insert this function into.
1300  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1301  // relate Scopes to DeclContexts, and probably eliminate CurContext
1302  // entirely, but we're not there yet.
1303  DeclContext *SavedContext = CurContext;
1304  CurContext = Context.getTranslationUnitDecl();
1305  PushOnScopeChains(New, TUScope);
1306  CurContext = SavedContext;
1307  return New;
1308}
1309
1310/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1311/// same name and scope as a previous declaration 'Old'.  Figure out
1312/// how to resolve this situation, merging decls or emitting
1313/// diagnostics as appropriate. If there was an error, set New to be invalid.
1314///
1315void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1316  // If the new decl is known invalid already, don't bother doing any
1317  // merging checks.
1318  if (New->isInvalidDecl()) return;
1319
1320  // Allow multiple definitions for ObjC built-in typedefs.
1321  // FIXME: Verify the underlying types are equivalent!
1322  if (getLangOptions().ObjC1) {
1323    const IdentifierInfo *TypeID = New->getIdentifier();
1324    switch (TypeID->getLength()) {
1325    default: break;
1326    case 2:
1327      if (!TypeID->isStr("id"))
1328        break;
1329      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1330      // Install the built-in type for 'id', ignoring the current definition.
1331      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1332      return;
1333    case 5:
1334      if (!TypeID->isStr("Class"))
1335        break;
1336      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1337      // Install the built-in type for 'Class', ignoring the current definition.
1338      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1339      return;
1340    case 3:
1341      if (!TypeID->isStr("SEL"))
1342        break;
1343      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1344      // Install the built-in type for 'SEL', ignoring the current definition.
1345      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1346      return;
1347    }
1348    // Fall through - the typedef name was not a builtin type.
1349  }
1350
1351  // Verify the old decl was also a type.
1352  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1353  if (!Old) {
1354    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1355      << New->getDeclName();
1356
1357    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1358    if (OldD->getLocation().isValid())
1359      Diag(OldD->getLocation(), diag::note_previous_definition);
1360
1361    return New->setInvalidDecl();
1362  }
1363
1364  // If the old declaration is invalid, just give up here.
1365  if (Old->isInvalidDecl())
1366    return New->setInvalidDecl();
1367
1368  // Determine the "old" type we'll use for checking and diagnostics.
1369  QualType OldType;
1370  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1371    OldType = OldTypedef->getUnderlyingType();
1372  else
1373    OldType = Context.getTypeDeclType(Old);
1374
1375  // If the typedef types are not identical, reject them in all languages and
1376  // with any extensions enabled.
1377
1378  if (OldType != New->getUnderlyingType() &&
1379      Context.getCanonicalType(OldType) !=
1380      Context.getCanonicalType(New->getUnderlyingType())) {
1381    int Kind = 0;
1382    if (isa<TypeAliasDecl>(Old))
1383      Kind = 1;
1384    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1385      << Kind << New->getUnderlyingType() << OldType;
1386    if (Old->getLocation().isValid())
1387      Diag(Old->getLocation(), diag::note_previous_definition);
1388    return New->setInvalidDecl();
1389  }
1390
1391  // The types match.  Link up the redeclaration chain if the old
1392  // declaration was a typedef.
1393  // FIXME: this is a potential source of weirdness if the type
1394  // spellings don't match exactly.
1395  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1396    New->setPreviousDeclaration(Typedef);
1397
1398  // __module_private__ is propagated to later declarations.
1399  if (Old->isModulePrivate())
1400    New->setModulePrivate();
1401  else if (New->isModulePrivate())
1402    diagnoseModulePrivateRedeclaration(New, Old);
1403
1404  if (getLangOptions().MicrosoftExt)
1405    return;
1406
1407  if (getLangOptions().CPlusPlus) {
1408    // C++ [dcl.typedef]p2:
1409    //   In a given non-class scope, a typedef specifier can be used to
1410    //   redefine the name of any type declared in that scope to refer
1411    //   to the type to which it already refers.
1412    if (!isa<CXXRecordDecl>(CurContext))
1413      return;
1414
1415    // C++0x [dcl.typedef]p4:
1416    //   In a given class scope, a typedef specifier can be used to redefine
1417    //   any class-name declared in that scope that is not also a typedef-name
1418    //   to refer to the type to which it already refers.
1419    //
1420    // This wording came in via DR424, which was a correction to the
1421    // wording in DR56, which accidentally banned code like:
1422    //
1423    //   struct S {
1424    //     typedef struct A { } A;
1425    //   };
1426    //
1427    // in the C++03 standard. We implement the C++0x semantics, which
1428    // allow the above but disallow
1429    //
1430    //   struct S {
1431    //     typedef int I;
1432    //     typedef int I;
1433    //   };
1434    //
1435    // since that was the intent of DR56.
1436    if (!isa<TypedefNameDecl>(Old))
1437      return;
1438
1439    Diag(New->getLocation(), diag::err_redefinition)
1440      << New->getDeclName();
1441    Diag(Old->getLocation(), diag::note_previous_definition);
1442    return New->setInvalidDecl();
1443  }
1444
1445  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1446  // is normally mapped to an error, but can be controlled with
1447  // -Wtypedef-redefinition.  If either the original or the redefinition is
1448  // in a system header, don't emit this for compatibility with GCC.
1449  if (getDiagnostics().getSuppressSystemWarnings() &&
1450      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1451       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1452    return;
1453
1454  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1455    << New->getDeclName();
1456  Diag(Old->getLocation(), diag::note_previous_definition);
1457  return;
1458}
1459
1460/// DeclhasAttr - returns true if decl Declaration already has the target
1461/// attribute.
1462static bool
1463DeclHasAttr(const Decl *D, const Attr *A) {
1464  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1465  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1466  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1467    if ((*i)->getKind() == A->getKind()) {
1468      if (Ann) {
1469        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1470          return true;
1471        continue;
1472      }
1473      // FIXME: Don't hardcode this check
1474      if (OA && isa<OwnershipAttr>(*i))
1475        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1476      return true;
1477    }
1478
1479  return false;
1480}
1481
1482/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1483static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1484                                ASTContext &C, bool mergeDeprecation = true) {
1485  if (!oldDecl->hasAttrs())
1486    return;
1487
1488  bool foundAny = newDecl->hasAttrs();
1489
1490  // Ensure that any moving of objects within the allocated map is done before
1491  // we process them.
1492  if (!foundAny) newDecl->setAttrs(AttrVec());
1493
1494  for (specific_attr_iterator<InheritableAttr>
1495       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1496       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1497    // Ignore deprecated/unavailable/availability attributes if requested.
1498    if (!mergeDeprecation &&
1499        (isa<DeprecatedAttr>(*i) ||
1500         isa<UnavailableAttr>(*i) ||
1501         isa<AvailabilityAttr>(*i)))
1502      continue;
1503
1504    if (!DeclHasAttr(newDecl, *i)) {
1505      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1506      newAttr->setInherited(true);
1507      newDecl->addAttr(newAttr);
1508      foundAny = true;
1509    }
1510  }
1511
1512  if (!foundAny) newDecl->dropAttrs();
1513}
1514
1515/// mergeParamDeclAttributes - Copy attributes from the old parameter
1516/// to the new one.
1517static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1518                                     const ParmVarDecl *oldDecl,
1519                                     ASTContext &C) {
1520  if (!oldDecl->hasAttrs())
1521    return;
1522
1523  bool foundAny = newDecl->hasAttrs();
1524
1525  // Ensure that any moving of objects within the allocated map is
1526  // done before we process them.
1527  if (!foundAny) newDecl->setAttrs(AttrVec());
1528
1529  for (specific_attr_iterator<InheritableParamAttr>
1530       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1531       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1532    if (!DeclHasAttr(newDecl, *i)) {
1533      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1534      newAttr->setInherited(true);
1535      newDecl->addAttr(newAttr);
1536      foundAny = true;
1537    }
1538  }
1539
1540  if (!foundAny) newDecl->dropAttrs();
1541}
1542
1543namespace {
1544
1545/// Used in MergeFunctionDecl to keep track of function parameters in
1546/// C.
1547struct GNUCompatibleParamWarning {
1548  ParmVarDecl *OldParm;
1549  ParmVarDecl *NewParm;
1550  QualType PromotedType;
1551};
1552
1553}
1554
1555/// getSpecialMember - get the special member enum for a method.
1556Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1557  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1558    if (Ctor->isDefaultConstructor())
1559      return Sema::CXXDefaultConstructor;
1560
1561    if (Ctor->isCopyConstructor())
1562      return Sema::CXXCopyConstructor;
1563
1564    if (Ctor->isMoveConstructor())
1565      return Sema::CXXMoveConstructor;
1566  } else if (isa<CXXDestructorDecl>(MD)) {
1567    return Sema::CXXDestructor;
1568  } else if (MD->isCopyAssignmentOperator()) {
1569    return Sema::CXXCopyAssignment;
1570  } else if (MD->isMoveAssignmentOperator()) {
1571    return Sema::CXXMoveAssignment;
1572  }
1573
1574  return Sema::CXXInvalid;
1575}
1576
1577/// canRedefineFunction - checks if a function can be redefined. Currently,
1578/// only extern inline functions can be redefined, and even then only in
1579/// GNU89 mode.
1580static bool canRedefineFunction(const FunctionDecl *FD,
1581                                const LangOptions& LangOpts) {
1582  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1583          !LangOpts.CPlusPlus &&
1584          FD->isInlineSpecified() &&
1585          FD->getStorageClass() == SC_Extern);
1586}
1587
1588/// MergeFunctionDecl - We just parsed a function 'New' from
1589/// declarator D which has the same name and scope as a previous
1590/// declaration 'Old'.  Figure out how to resolve this situation,
1591/// merging decls or emitting diagnostics as appropriate.
1592///
1593/// In C++, New and Old must be declarations that are not
1594/// overloaded. Use IsOverload to determine whether New and Old are
1595/// overloaded, and to select the Old declaration that New should be
1596/// merged with.
1597///
1598/// Returns true if there was an error, false otherwise.
1599bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1600  // Verify the old decl was also a function.
1601  FunctionDecl *Old = 0;
1602  if (FunctionTemplateDecl *OldFunctionTemplate
1603        = dyn_cast<FunctionTemplateDecl>(OldD))
1604    Old = OldFunctionTemplate->getTemplatedDecl();
1605  else
1606    Old = dyn_cast<FunctionDecl>(OldD);
1607  if (!Old) {
1608    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1609      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1610      Diag(Shadow->getTargetDecl()->getLocation(),
1611           diag::note_using_decl_target);
1612      Diag(Shadow->getUsingDecl()->getLocation(),
1613           diag::note_using_decl) << 0;
1614      return true;
1615    }
1616
1617    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1618      << New->getDeclName();
1619    Diag(OldD->getLocation(), diag::note_previous_definition);
1620    return true;
1621  }
1622
1623  // Determine whether the previous declaration was a definition,
1624  // implicit declaration, or a declaration.
1625  diag::kind PrevDiag;
1626  if (Old->isThisDeclarationADefinition())
1627    PrevDiag = diag::note_previous_definition;
1628  else if (Old->isImplicit())
1629    PrevDiag = diag::note_previous_implicit_declaration;
1630  else
1631    PrevDiag = diag::note_previous_declaration;
1632
1633  QualType OldQType = Context.getCanonicalType(Old->getType());
1634  QualType NewQType = Context.getCanonicalType(New->getType());
1635
1636  // Don't complain about this if we're in GNU89 mode and the old function
1637  // is an extern inline function.
1638  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1639      New->getStorageClass() == SC_Static &&
1640      Old->getStorageClass() != SC_Static &&
1641      !canRedefineFunction(Old, getLangOptions())) {
1642    if (getLangOptions().MicrosoftExt) {
1643      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1644      Diag(Old->getLocation(), PrevDiag);
1645    } else {
1646      Diag(New->getLocation(), diag::err_static_non_static) << New;
1647      Diag(Old->getLocation(), PrevDiag);
1648      return true;
1649    }
1650  }
1651
1652  // If a function is first declared with a calling convention, but is
1653  // later declared or defined without one, the second decl assumes the
1654  // calling convention of the first.
1655  //
1656  // For the new decl, we have to look at the NON-canonical type to tell the
1657  // difference between a function that really doesn't have a calling
1658  // convention and one that is declared cdecl. That's because in
1659  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1660  // because it is the default calling convention.
1661  //
1662  // Note also that we DO NOT return at this point, because we still have
1663  // other tests to run.
1664  const FunctionType *OldType = cast<FunctionType>(OldQType);
1665  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1666  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1667  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1668  bool RequiresAdjustment = false;
1669  if (OldTypeInfo.getCC() != CC_Default &&
1670      NewTypeInfo.getCC() == CC_Default) {
1671    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1672    RequiresAdjustment = true;
1673  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1674                                     NewTypeInfo.getCC())) {
1675    // Calling conventions really aren't compatible, so complain.
1676    Diag(New->getLocation(), diag::err_cconv_change)
1677      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1678      << (OldTypeInfo.getCC() == CC_Default)
1679      << (OldTypeInfo.getCC() == CC_Default ? "" :
1680          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1681    Diag(Old->getLocation(), diag::note_previous_declaration);
1682    return true;
1683  }
1684
1685  // FIXME: diagnose the other way around?
1686  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1687    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1688    RequiresAdjustment = true;
1689  }
1690
1691  // Merge regparm attribute.
1692  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1693      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1694    if (NewTypeInfo.getHasRegParm()) {
1695      Diag(New->getLocation(), diag::err_regparm_mismatch)
1696        << NewType->getRegParmType()
1697        << OldType->getRegParmType();
1698      Diag(Old->getLocation(), diag::note_previous_declaration);
1699      return true;
1700    }
1701
1702    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1703    RequiresAdjustment = true;
1704  }
1705
1706  if (RequiresAdjustment) {
1707    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1708    New->setType(QualType(NewType, 0));
1709    NewQType = Context.getCanonicalType(New->getType());
1710  }
1711
1712  if (getLangOptions().CPlusPlus) {
1713    // (C++98 13.1p2):
1714    //   Certain function declarations cannot be overloaded:
1715    //     -- Function declarations that differ only in the return type
1716    //        cannot be overloaded.
1717    QualType OldReturnType = OldType->getResultType();
1718    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1719    QualType ResQT;
1720    if (OldReturnType != NewReturnType) {
1721      if (NewReturnType->isObjCObjectPointerType()
1722          && OldReturnType->isObjCObjectPointerType())
1723        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1724      if (ResQT.isNull()) {
1725        if (New->isCXXClassMember() && New->isOutOfLine())
1726          Diag(New->getLocation(),
1727               diag::err_member_def_does_not_match_ret_type) << New;
1728        else
1729          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1730        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1731        return true;
1732      }
1733      else
1734        NewQType = ResQT;
1735    }
1736
1737    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1738    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1739    if (OldMethod && NewMethod) {
1740      // Preserve triviality.
1741      NewMethod->setTrivial(OldMethod->isTrivial());
1742
1743      // MSVC allows explicit template specialization at class scope:
1744      // 2 CXMethodDecls referring to the same function will be injected.
1745      // We don't want a redeclartion error.
1746      bool IsClassScopeExplicitSpecialization =
1747                              OldMethod->isFunctionTemplateSpecialization() &&
1748                              NewMethod->isFunctionTemplateSpecialization();
1749      bool isFriend = NewMethod->getFriendObjectKind();
1750
1751      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1752          !IsClassScopeExplicitSpecialization) {
1753        //    -- Member function declarations with the same name and the
1754        //       same parameter types cannot be overloaded if any of them
1755        //       is a static member function declaration.
1756        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1757          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1758          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1759          return true;
1760        }
1761
1762        // C++ [class.mem]p1:
1763        //   [...] A member shall not be declared twice in the
1764        //   member-specification, except that a nested class or member
1765        //   class template can be declared and then later defined.
1766        unsigned NewDiag;
1767        if (isa<CXXConstructorDecl>(OldMethod))
1768          NewDiag = diag::err_constructor_redeclared;
1769        else if (isa<CXXDestructorDecl>(NewMethod))
1770          NewDiag = diag::err_destructor_redeclared;
1771        else if (isa<CXXConversionDecl>(NewMethod))
1772          NewDiag = diag::err_conv_function_redeclared;
1773        else
1774          NewDiag = diag::err_member_redeclared;
1775
1776        Diag(New->getLocation(), NewDiag);
1777        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1778
1779      // Complain if this is an explicit declaration of a special
1780      // member that was initially declared implicitly.
1781      //
1782      // As an exception, it's okay to befriend such methods in order
1783      // to permit the implicit constructor/destructor/operator calls.
1784      } else if (OldMethod->isImplicit()) {
1785        if (isFriend) {
1786          NewMethod->setImplicit();
1787        } else {
1788          Diag(NewMethod->getLocation(),
1789               diag::err_definition_of_implicitly_declared_member)
1790            << New << getSpecialMember(OldMethod);
1791          return true;
1792        }
1793      } else if (OldMethod->isExplicitlyDefaulted()) {
1794        Diag(NewMethod->getLocation(),
1795             diag::err_definition_of_explicitly_defaulted_member)
1796          << getSpecialMember(OldMethod);
1797        return true;
1798      }
1799    }
1800
1801    // (C++98 8.3.5p3):
1802    //   All declarations for a function shall agree exactly in both the
1803    //   return type and the parameter-type-list.
1804    // We also want to respect all the extended bits except noreturn.
1805
1806    // noreturn should now match unless the old type info didn't have it.
1807    QualType OldQTypeForComparison = OldQType;
1808    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1809      assert(OldQType == QualType(OldType, 0));
1810      const FunctionType *OldTypeForComparison
1811        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1812      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1813      assert(OldQTypeForComparison.isCanonical());
1814    }
1815
1816    if (OldQTypeForComparison == NewQType)
1817      return MergeCompatibleFunctionDecls(New, Old);
1818
1819    // Fall through for conflicting redeclarations and redefinitions.
1820  }
1821
1822  // C: Function types need to be compatible, not identical. This handles
1823  // duplicate function decls like "void f(int); void f(enum X);" properly.
1824  if (!getLangOptions().CPlusPlus &&
1825      Context.typesAreCompatible(OldQType, NewQType)) {
1826    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1827    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1828    const FunctionProtoType *OldProto = 0;
1829    if (isa<FunctionNoProtoType>(NewFuncType) &&
1830        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1831      // The old declaration provided a function prototype, but the
1832      // new declaration does not. Merge in the prototype.
1833      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1834      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1835                                                 OldProto->arg_type_end());
1836      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1837                                         ParamTypes.data(), ParamTypes.size(),
1838                                         OldProto->getExtProtoInfo());
1839      New->setType(NewQType);
1840      New->setHasInheritedPrototype();
1841
1842      // Synthesize a parameter for each argument type.
1843      SmallVector<ParmVarDecl*, 16> Params;
1844      for (FunctionProtoType::arg_type_iterator
1845             ParamType = OldProto->arg_type_begin(),
1846             ParamEnd = OldProto->arg_type_end();
1847           ParamType != ParamEnd; ++ParamType) {
1848        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1849                                                 SourceLocation(),
1850                                                 SourceLocation(), 0,
1851                                                 *ParamType, /*TInfo=*/0,
1852                                                 SC_None, SC_None,
1853                                                 0);
1854        Param->setScopeInfo(0, Params.size());
1855        Param->setImplicit();
1856        Params.push_back(Param);
1857      }
1858
1859      New->setParams(Params);
1860    }
1861
1862    return MergeCompatibleFunctionDecls(New, Old);
1863  }
1864
1865  // GNU C permits a K&R definition to follow a prototype declaration
1866  // if the declared types of the parameters in the K&R definition
1867  // match the types in the prototype declaration, even when the
1868  // promoted types of the parameters from the K&R definition differ
1869  // from the types in the prototype. GCC then keeps the types from
1870  // the prototype.
1871  //
1872  // If a variadic prototype is followed by a non-variadic K&R definition,
1873  // the K&R definition becomes variadic.  This is sort of an edge case, but
1874  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1875  // C99 6.9.1p8.
1876  if (!getLangOptions().CPlusPlus &&
1877      Old->hasPrototype() && !New->hasPrototype() &&
1878      New->getType()->getAs<FunctionProtoType>() &&
1879      Old->getNumParams() == New->getNumParams()) {
1880    SmallVector<QualType, 16> ArgTypes;
1881    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1882    const FunctionProtoType *OldProto
1883      = Old->getType()->getAs<FunctionProtoType>();
1884    const FunctionProtoType *NewProto
1885      = New->getType()->getAs<FunctionProtoType>();
1886
1887    // Determine whether this is the GNU C extension.
1888    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1889                                               NewProto->getResultType());
1890    bool LooseCompatible = !MergedReturn.isNull();
1891    for (unsigned Idx = 0, End = Old->getNumParams();
1892         LooseCompatible && Idx != End; ++Idx) {
1893      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1894      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1895      if (Context.typesAreCompatible(OldParm->getType(),
1896                                     NewProto->getArgType(Idx))) {
1897        ArgTypes.push_back(NewParm->getType());
1898      } else if (Context.typesAreCompatible(OldParm->getType(),
1899                                            NewParm->getType(),
1900                                            /*CompareUnqualified=*/true)) {
1901        GNUCompatibleParamWarning Warn
1902          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1903        Warnings.push_back(Warn);
1904        ArgTypes.push_back(NewParm->getType());
1905      } else
1906        LooseCompatible = false;
1907    }
1908
1909    if (LooseCompatible) {
1910      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1911        Diag(Warnings[Warn].NewParm->getLocation(),
1912             diag::ext_param_promoted_not_compatible_with_prototype)
1913          << Warnings[Warn].PromotedType
1914          << Warnings[Warn].OldParm->getType();
1915        if (Warnings[Warn].OldParm->getLocation().isValid())
1916          Diag(Warnings[Warn].OldParm->getLocation(),
1917               diag::note_previous_declaration);
1918      }
1919
1920      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1921                                           ArgTypes.size(),
1922                                           OldProto->getExtProtoInfo()));
1923      return MergeCompatibleFunctionDecls(New, Old);
1924    }
1925
1926    // Fall through to diagnose conflicting types.
1927  }
1928
1929  // A function that has already been declared has been redeclared or defined
1930  // with a different type- show appropriate diagnostic
1931  if (unsigned BuiltinID = Old->getBuiltinID()) {
1932    // The user has declared a builtin function with an incompatible
1933    // signature.
1934    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1935      // The function the user is redeclaring is a library-defined
1936      // function like 'malloc' or 'printf'. Warn about the
1937      // redeclaration, then pretend that we don't know about this
1938      // library built-in.
1939      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1940      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1941        << Old << Old->getType();
1942      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1943      Old->setInvalidDecl();
1944      return false;
1945    }
1946
1947    PrevDiag = diag::note_previous_builtin_declaration;
1948  }
1949
1950  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1951  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1952  return true;
1953}
1954
1955/// \brief Completes the merge of two function declarations that are
1956/// known to be compatible.
1957///
1958/// This routine handles the merging of attributes and other
1959/// properties of function declarations form the old declaration to
1960/// the new declaration, once we know that New is in fact a
1961/// redeclaration of Old.
1962///
1963/// \returns false
1964bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1965  // Merge the attributes
1966  mergeDeclAttributes(New, Old, Context);
1967
1968  // Merge the storage class.
1969  if (Old->getStorageClass() != SC_Extern &&
1970      Old->getStorageClass() != SC_None)
1971    New->setStorageClass(Old->getStorageClass());
1972
1973  // Merge "pure" flag.
1974  if (Old->isPure())
1975    New->setPure();
1976
1977  // __module_private__ is propagated to later declarations.
1978  if (Old->isModulePrivate())
1979    New->setModulePrivate();
1980  else if (New->isModulePrivate())
1981    diagnoseModulePrivateRedeclaration(New, Old);
1982
1983  // Merge attributes from the parameters.  These can mismatch with K&R
1984  // declarations.
1985  if (New->getNumParams() == Old->getNumParams())
1986    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1987      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1988                               Context);
1989
1990  if (getLangOptions().CPlusPlus)
1991    return MergeCXXFunctionDecl(New, Old);
1992
1993  return false;
1994}
1995
1996
1997void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1998                                const ObjCMethodDecl *oldMethod) {
1999  // We don't want to merge unavailable and deprecated attributes
2000  // except from interface to implementation.
2001  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2002
2003  // Merge the attributes.
2004  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2005
2006  // Merge attributes from the parameters.
2007  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2008  for (ObjCMethodDecl::param_iterator
2009         ni = newMethod->param_begin(), ne = newMethod->param_end();
2010       ni != ne; ++ni, ++oi)
2011    mergeParamDeclAttributes(*ni, *oi, Context);
2012
2013  CheckObjCMethodOverride(newMethod, oldMethod, true);
2014}
2015
2016/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2017/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2018/// emitting diagnostics as appropriate.
2019///
2020/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2021/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2022/// check them before the initializer is attached.
2023///
2024void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2025  if (New->isInvalidDecl() || Old->isInvalidDecl())
2026    return;
2027
2028  QualType MergedT;
2029  if (getLangOptions().CPlusPlus) {
2030    AutoType *AT = New->getType()->getContainedAutoType();
2031    if (AT && !AT->isDeduced()) {
2032      // We don't know what the new type is until the initializer is attached.
2033      return;
2034    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2035      // These could still be something that needs exception specs checked.
2036      return MergeVarDeclExceptionSpecs(New, Old);
2037    }
2038    // C++ [basic.link]p10:
2039    //   [...] the types specified by all declarations referring to a given
2040    //   object or function shall be identical, except that declarations for an
2041    //   array object can specify array types that differ by the presence or
2042    //   absence of a major array bound (8.3.4).
2043    else if (Old->getType()->isIncompleteArrayType() &&
2044             New->getType()->isArrayType()) {
2045      CanQual<ArrayType> OldArray
2046        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2047      CanQual<ArrayType> NewArray
2048        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2049      if (OldArray->getElementType() == NewArray->getElementType())
2050        MergedT = New->getType();
2051    } else if (Old->getType()->isArrayType() &&
2052             New->getType()->isIncompleteArrayType()) {
2053      CanQual<ArrayType> OldArray
2054        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2055      CanQual<ArrayType> NewArray
2056        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2057      if (OldArray->getElementType() == NewArray->getElementType())
2058        MergedT = Old->getType();
2059    } else if (New->getType()->isObjCObjectPointerType()
2060               && Old->getType()->isObjCObjectPointerType()) {
2061        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2062                                                        Old->getType());
2063    }
2064  } else {
2065    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2066  }
2067  if (MergedT.isNull()) {
2068    Diag(New->getLocation(), diag::err_redefinition_different_type)
2069      << New->getDeclName();
2070    Diag(Old->getLocation(), diag::note_previous_definition);
2071    return New->setInvalidDecl();
2072  }
2073  New->setType(MergedT);
2074}
2075
2076/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2077/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2078/// situation, merging decls or emitting diagnostics as appropriate.
2079///
2080/// Tentative definition rules (C99 6.9.2p2) are checked by
2081/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2082/// definitions here, since the initializer hasn't been attached.
2083///
2084void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2085  // If the new decl is already invalid, don't do any other checking.
2086  if (New->isInvalidDecl())
2087    return;
2088
2089  // Verify the old decl was also a variable.
2090  VarDecl *Old = 0;
2091  if (!Previous.isSingleResult() ||
2092      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2093    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2094      << New->getDeclName();
2095    Diag(Previous.getRepresentativeDecl()->getLocation(),
2096         diag::note_previous_definition);
2097    return New->setInvalidDecl();
2098  }
2099
2100  // C++ [class.mem]p1:
2101  //   A member shall not be declared twice in the member-specification [...]
2102  //
2103  // Here, we need only consider static data members.
2104  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2105    Diag(New->getLocation(), diag::err_duplicate_member)
2106      << New->getIdentifier();
2107    Diag(Old->getLocation(), diag::note_previous_declaration);
2108    New->setInvalidDecl();
2109  }
2110
2111  mergeDeclAttributes(New, Old, Context);
2112  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2113  if (New->getAttr<WeakImportAttr>() &&
2114      Old->getStorageClass() == SC_None &&
2115      !Old->getAttr<WeakImportAttr>()) {
2116    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2117    Diag(Old->getLocation(), diag::note_previous_definition);
2118    // Remove weak_import attribute on new declaration.
2119    New->dropAttr<WeakImportAttr>();
2120  }
2121
2122  // Merge the types.
2123  MergeVarDeclTypes(New, Old);
2124  if (New->isInvalidDecl())
2125    return;
2126
2127  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2128  if (New->getStorageClass() == SC_Static &&
2129      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2130    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2131    Diag(Old->getLocation(), diag::note_previous_definition);
2132    return New->setInvalidDecl();
2133  }
2134  // C99 6.2.2p4:
2135  //   For an identifier declared with the storage-class specifier
2136  //   extern in a scope in which a prior declaration of that
2137  //   identifier is visible,23) if the prior declaration specifies
2138  //   internal or external linkage, the linkage of the identifier at
2139  //   the later declaration is the same as the linkage specified at
2140  //   the prior declaration. If no prior declaration is visible, or
2141  //   if the prior declaration specifies no linkage, then the
2142  //   identifier has external linkage.
2143  if (New->hasExternalStorage() && Old->hasLinkage())
2144    /* Okay */;
2145  else if (New->getStorageClass() != SC_Static &&
2146           Old->getStorageClass() == SC_Static) {
2147    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2148    Diag(Old->getLocation(), diag::note_previous_definition);
2149    return New->setInvalidDecl();
2150  }
2151
2152  // Check if extern is followed by non-extern and vice-versa.
2153  if (New->hasExternalStorage() &&
2154      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2155    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2156    Diag(Old->getLocation(), diag::note_previous_definition);
2157    return New->setInvalidDecl();
2158  }
2159  if (Old->hasExternalStorage() &&
2160      !New->hasLinkage() && New->isLocalVarDecl()) {
2161    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2162    Diag(Old->getLocation(), diag::note_previous_definition);
2163    return New->setInvalidDecl();
2164  }
2165
2166  // __module_private__ is propagated to later declarations.
2167  if (Old->isModulePrivate())
2168    New->setModulePrivate();
2169  else if (New->isModulePrivate())
2170    diagnoseModulePrivateRedeclaration(New, Old);
2171
2172  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2173
2174  // FIXME: The test for external storage here seems wrong? We still
2175  // need to check for mismatches.
2176  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2177      // Don't complain about out-of-line definitions of static members.
2178      !(Old->getLexicalDeclContext()->isRecord() &&
2179        !New->getLexicalDeclContext()->isRecord())) {
2180    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2181    Diag(Old->getLocation(), diag::note_previous_definition);
2182    return New->setInvalidDecl();
2183  }
2184
2185  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2186    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2187    Diag(Old->getLocation(), diag::note_previous_definition);
2188  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2189    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2190    Diag(Old->getLocation(), diag::note_previous_definition);
2191  }
2192
2193  // C++ doesn't have tentative definitions, so go right ahead and check here.
2194  const VarDecl *Def;
2195  if (getLangOptions().CPlusPlus &&
2196      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2197      (Def = Old->getDefinition())) {
2198    Diag(New->getLocation(), diag::err_redefinition)
2199      << New->getDeclName();
2200    Diag(Def->getLocation(), diag::note_previous_definition);
2201    New->setInvalidDecl();
2202    return;
2203  }
2204  // c99 6.2.2 P4.
2205  // For an identifier declared with the storage-class specifier extern in a
2206  // scope in which a prior declaration of that identifier is visible, if
2207  // the prior declaration specifies internal or external linkage, the linkage
2208  // of the identifier at the later declaration is the same as the linkage
2209  // specified at the prior declaration.
2210  // FIXME. revisit this code.
2211  if (New->hasExternalStorage() &&
2212      Old->getLinkage() == InternalLinkage &&
2213      New->getDeclContext() == Old->getDeclContext())
2214    New->setStorageClass(Old->getStorageClass());
2215
2216  // Keep a chain of previous declarations.
2217  New->setPreviousDeclaration(Old);
2218
2219  // Inherit access appropriately.
2220  New->setAccess(Old->getAccess());
2221}
2222
2223/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2224/// no declarator (e.g. "struct foo;") is parsed.
2225Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2226                                       DeclSpec &DS) {
2227  return ParsedFreeStandingDeclSpec(S, AS, DS,
2228                                    MultiTemplateParamsArg(*this, 0, 0));
2229}
2230
2231/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2232/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2233/// parameters to cope with template friend declarations.
2234Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2235                                       DeclSpec &DS,
2236                                       MultiTemplateParamsArg TemplateParams) {
2237  Decl *TagD = 0;
2238  TagDecl *Tag = 0;
2239  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2240      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2241      DS.getTypeSpecType() == DeclSpec::TST_union ||
2242      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2243    TagD = DS.getRepAsDecl();
2244
2245    if (!TagD) // We probably had an error
2246      return 0;
2247
2248    // Note that the above type specs guarantee that the
2249    // type rep is a Decl, whereas in many of the others
2250    // it's a Type.
2251    Tag = dyn_cast<TagDecl>(TagD);
2252  }
2253
2254  if (Tag)
2255    Tag->setFreeStanding();
2256
2257  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2258    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2259    // or incomplete types shall not be restrict-qualified."
2260    if (TypeQuals & DeclSpec::TQ_restrict)
2261      Diag(DS.getRestrictSpecLoc(),
2262           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2263           << DS.getSourceRange();
2264  }
2265
2266  if (DS.isConstexprSpecified()) {
2267    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2268    // and definitions of functions and variables.
2269    if (Tag)
2270      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2271        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2272            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2273            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2274    else
2275      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2276    // Don't emit warnings after this error.
2277    return TagD;
2278  }
2279
2280  if (DS.isFriendSpecified()) {
2281    // If we're dealing with a decl but not a TagDecl, assume that
2282    // whatever routines created it handled the friendship aspect.
2283    if (TagD && !Tag)
2284      return 0;
2285    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2286  }
2287
2288  // Track whether we warned about the fact that there aren't any
2289  // declarators.
2290  bool emittedWarning = false;
2291
2292  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2293    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2294
2295    if (!Record->getDeclName() && Record->isDefinition() &&
2296        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2297      if (getLangOptions().CPlusPlus ||
2298          Record->getDeclContext()->isRecord())
2299        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2300
2301      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2302        << DS.getSourceRange();
2303      emittedWarning = true;
2304    }
2305  }
2306
2307  // Check for Microsoft C extension: anonymous struct.
2308  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2309      CurContext->isRecord() &&
2310      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2311    // Handle 2 kinds of anonymous struct:
2312    //   struct STRUCT;
2313    // and
2314    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2315    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2316    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2317        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2318         DS.getRepAsType().get()->isStructureType())) {
2319      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2320        << DS.getSourceRange();
2321      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2322    }
2323  }
2324
2325  if (getLangOptions().CPlusPlus &&
2326      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2327    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2328      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2329          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2330        Diag(Enum->getLocation(), diag::ext_no_declarators)
2331          << DS.getSourceRange();
2332        emittedWarning = true;
2333      }
2334
2335  // Skip all the checks below if we have a type error.
2336  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2337
2338  if (!DS.isMissingDeclaratorOk()) {
2339    // Warn about typedefs of enums without names, since this is an
2340    // extension in both Microsoft and GNU.
2341    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2342        Tag && isa<EnumDecl>(Tag)) {
2343      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2344        << DS.getSourceRange();
2345      return Tag;
2346    }
2347
2348    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2349      << DS.getSourceRange();
2350    emittedWarning = true;
2351  }
2352
2353  // We're going to complain about a bunch of spurious specifiers;
2354  // only do this if we're declaring a tag, because otherwise we
2355  // should be getting diag::ext_no_declarators.
2356  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2357    return TagD;
2358
2359  // Note that a linkage-specification sets a storage class, but
2360  // 'extern "C" struct foo;' is actually valid and not theoretically
2361  // useless.
2362  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2363    if (!DS.isExternInLinkageSpec())
2364      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2365        << DeclSpec::getSpecifierName(scs);
2366
2367  if (DS.isThreadSpecified())
2368    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2369  if (DS.getTypeQualifiers()) {
2370    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2371      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2372    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2373      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2374    // Restrict is covered above.
2375  }
2376  if (DS.isInlineSpecified())
2377    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2378  if (DS.isVirtualSpecified())
2379    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2380  if (DS.isExplicitSpecified())
2381    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2382
2383  if (DS.isModulePrivateSpecified() &&
2384      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2385    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2386      << Tag->getTagKind()
2387      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2388
2389  // FIXME: Warn on useless attributes
2390
2391  return TagD;
2392}
2393
2394/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2395/// builds a statement for it and returns it so it is evaluated.
2396StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2397  StmtResult R;
2398  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2399    Expr *Exp = DS.getRepAsExpr();
2400    QualType Ty = Exp->getType();
2401    if (Ty->isPointerType()) {
2402      do
2403        Ty = Ty->getAs<PointerType>()->getPointeeType();
2404      while (Ty->isPointerType());
2405    }
2406    if (Ty->isVariableArrayType()) {
2407      R = ActOnExprStmt(MakeFullExpr(Exp));
2408    }
2409  }
2410  return R;
2411}
2412
2413/// We are trying to inject an anonymous member into the given scope;
2414/// check if there's an existing declaration that can't be overloaded.
2415///
2416/// \return true if this is a forbidden redeclaration
2417static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2418                                         Scope *S,
2419                                         DeclContext *Owner,
2420                                         DeclarationName Name,
2421                                         SourceLocation NameLoc,
2422                                         unsigned diagnostic) {
2423  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2424                 Sema::ForRedeclaration);
2425  if (!SemaRef.LookupName(R, S)) return false;
2426
2427  if (R.getAsSingle<TagDecl>())
2428    return false;
2429
2430  // Pick a representative declaration.
2431  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2432  assert(PrevDecl && "Expected a non-null Decl");
2433
2434  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2435    return false;
2436
2437  SemaRef.Diag(NameLoc, diagnostic) << Name;
2438  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2439
2440  return true;
2441}
2442
2443/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2444/// anonymous struct or union AnonRecord into the owning context Owner
2445/// and scope S. This routine will be invoked just after we realize
2446/// that an unnamed union or struct is actually an anonymous union or
2447/// struct, e.g.,
2448///
2449/// @code
2450/// union {
2451///   int i;
2452///   float f;
2453/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2454///    // f into the surrounding scope.x
2455/// @endcode
2456///
2457/// This routine is recursive, injecting the names of nested anonymous
2458/// structs/unions into the owning context and scope as well.
2459static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2460                                                DeclContext *Owner,
2461                                                RecordDecl *AnonRecord,
2462                                                AccessSpecifier AS,
2463                              SmallVector<NamedDecl*, 2> &Chaining,
2464                                                      bool MSAnonStruct) {
2465  unsigned diagKind
2466    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2467                            : diag::err_anonymous_struct_member_redecl;
2468
2469  bool Invalid = false;
2470
2471  // Look every FieldDecl and IndirectFieldDecl with a name.
2472  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2473                               DEnd = AnonRecord->decls_end();
2474       D != DEnd; ++D) {
2475    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2476        cast<NamedDecl>(*D)->getDeclName()) {
2477      ValueDecl *VD = cast<ValueDecl>(*D);
2478      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2479                                       VD->getLocation(), diagKind)) {
2480        // C++ [class.union]p2:
2481        //   The names of the members of an anonymous union shall be
2482        //   distinct from the names of any other entity in the
2483        //   scope in which the anonymous union is declared.
2484        Invalid = true;
2485      } else {
2486        // C++ [class.union]p2:
2487        //   For the purpose of name lookup, after the anonymous union
2488        //   definition, the members of the anonymous union are
2489        //   considered to have been defined in the scope in which the
2490        //   anonymous union is declared.
2491        unsigned OldChainingSize = Chaining.size();
2492        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2493          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2494               PE = IF->chain_end(); PI != PE; ++PI)
2495            Chaining.push_back(*PI);
2496        else
2497          Chaining.push_back(VD);
2498
2499        assert(Chaining.size() >= 2);
2500        NamedDecl **NamedChain =
2501          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2502        for (unsigned i = 0; i < Chaining.size(); i++)
2503          NamedChain[i] = Chaining[i];
2504
2505        IndirectFieldDecl* IndirectField =
2506          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2507                                    VD->getIdentifier(), VD->getType(),
2508                                    NamedChain, Chaining.size());
2509
2510        IndirectField->setAccess(AS);
2511        IndirectField->setImplicit();
2512        SemaRef.PushOnScopeChains(IndirectField, S);
2513
2514        // That includes picking up the appropriate access specifier.
2515        if (AS != AS_none) IndirectField->setAccess(AS);
2516
2517        Chaining.resize(OldChainingSize);
2518      }
2519    }
2520  }
2521
2522  return Invalid;
2523}
2524
2525/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2526/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2527/// illegal input values are mapped to SC_None.
2528static StorageClass
2529StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2530  switch (StorageClassSpec) {
2531  case DeclSpec::SCS_unspecified:    return SC_None;
2532  case DeclSpec::SCS_extern:         return SC_Extern;
2533  case DeclSpec::SCS_static:         return SC_Static;
2534  case DeclSpec::SCS_auto:           return SC_Auto;
2535  case DeclSpec::SCS_register:       return SC_Register;
2536  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2537    // Illegal SCSs map to None: error reporting is up to the caller.
2538  case DeclSpec::SCS_mutable:        // Fall through.
2539  case DeclSpec::SCS_typedef:        return SC_None;
2540  }
2541  llvm_unreachable("unknown storage class specifier");
2542}
2543
2544/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2545/// a StorageClass. Any error reporting is up to the caller:
2546/// illegal input values are mapped to SC_None.
2547static StorageClass
2548StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2549  switch (StorageClassSpec) {
2550  case DeclSpec::SCS_unspecified:    return SC_None;
2551  case DeclSpec::SCS_extern:         return SC_Extern;
2552  case DeclSpec::SCS_static:         return SC_Static;
2553  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2554    // Illegal SCSs map to None: error reporting is up to the caller.
2555  case DeclSpec::SCS_auto:           // Fall through.
2556  case DeclSpec::SCS_mutable:        // Fall through.
2557  case DeclSpec::SCS_register:       // Fall through.
2558  case DeclSpec::SCS_typedef:        return SC_None;
2559  }
2560  llvm_unreachable("unknown storage class specifier");
2561}
2562
2563/// BuildAnonymousStructOrUnion - Handle the declaration of an
2564/// anonymous structure or union. Anonymous unions are a C++ feature
2565/// (C++ [class.union]) and a GNU C extension; anonymous structures
2566/// are a GNU C and GNU C++ extension.
2567Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2568                                             AccessSpecifier AS,
2569                                             RecordDecl *Record) {
2570  DeclContext *Owner = Record->getDeclContext();
2571
2572  // Diagnose whether this anonymous struct/union is an extension.
2573  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2574    Diag(Record->getLocation(), diag::ext_anonymous_union);
2575  else if (!Record->isUnion())
2576    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2577
2578  // C and C++ require different kinds of checks for anonymous
2579  // structs/unions.
2580  bool Invalid = false;
2581  if (getLangOptions().CPlusPlus) {
2582    const char* PrevSpec = 0;
2583    unsigned DiagID;
2584    // C++ [class.union]p3:
2585    //   Anonymous unions declared in a named namespace or in the
2586    //   global namespace shall be declared static.
2587    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2588        (isa<TranslationUnitDecl>(Owner) ||
2589         (isa<NamespaceDecl>(Owner) &&
2590          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2591      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2592      Invalid = true;
2593
2594      // Recover by adding 'static'.
2595      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2596                             PrevSpec, DiagID, getLangOptions());
2597    }
2598    // C++ [class.union]p3:
2599    //   A storage class is not allowed in a declaration of an
2600    //   anonymous union in a class scope.
2601    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2602             isa<RecordDecl>(Owner)) {
2603      Diag(DS.getStorageClassSpecLoc(),
2604           diag::err_anonymous_union_with_storage_spec);
2605      Invalid = true;
2606
2607      // Recover by removing the storage specifier.
2608      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2609                             PrevSpec, DiagID, getLangOptions());
2610    }
2611
2612    // Ignore const/volatile/restrict qualifiers.
2613    if (DS.getTypeQualifiers()) {
2614      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2615        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2616          << Record->isUnion() << 0
2617          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2618      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2619        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2620          << Record->isUnion() << 1
2621          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2622      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2623        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2624          << Record->isUnion() << 2
2625          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2626
2627      DS.ClearTypeQualifiers();
2628    }
2629
2630    // C++ [class.union]p2:
2631    //   The member-specification of an anonymous union shall only
2632    //   define non-static data members. [Note: nested types and
2633    //   functions cannot be declared within an anonymous union. ]
2634    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2635                                 MemEnd = Record->decls_end();
2636         Mem != MemEnd; ++Mem) {
2637      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2638        // C++ [class.union]p3:
2639        //   An anonymous union shall not have private or protected
2640        //   members (clause 11).
2641        assert(FD->getAccess() != AS_none);
2642        if (FD->getAccess() != AS_public) {
2643          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2644            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2645          Invalid = true;
2646        }
2647
2648        // C++ [class.union]p1
2649        //   An object of a class with a non-trivial constructor, a non-trivial
2650        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2651        //   assignment operator cannot be a member of a union, nor can an
2652        //   array of such objects.
2653        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2654          Invalid = true;
2655      } else if ((*Mem)->isImplicit()) {
2656        // Any implicit members are fine.
2657      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2658        // This is a type that showed up in an
2659        // elaborated-type-specifier inside the anonymous struct or
2660        // union, but which actually declares a type outside of the
2661        // anonymous struct or union. It's okay.
2662      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2663        if (!MemRecord->isAnonymousStructOrUnion() &&
2664            MemRecord->getDeclName()) {
2665          // Visual C++ allows type definition in anonymous struct or union.
2666          if (getLangOptions().MicrosoftExt)
2667            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2668              << (int)Record->isUnion();
2669          else {
2670            // This is a nested type declaration.
2671            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2672              << (int)Record->isUnion();
2673            Invalid = true;
2674          }
2675        }
2676      } else if (isa<AccessSpecDecl>(*Mem)) {
2677        // Any access specifier is fine.
2678      } else {
2679        // We have something that isn't a non-static data
2680        // member. Complain about it.
2681        unsigned DK = diag::err_anonymous_record_bad_member;
2682        if (isa<TypeDecl>(*Mem))
2683          DK = diag::err_anonymous_record_with_type;
2684        else if (isa<FunctionDecl>(*Mem))
2685          DK = diag::err_anonymous_record_with_function;
2686        else if (isa<VarDecl>(*Mem))
2687          DK = diag::err_anonymous_record_with_static;
2688
2689        // Visual C++ allows type definition in anonymous struct or union.
2690        if (getLangOptions().MicrosoftExt &&
2691            DK == diag::err_anonymous_record_with_type)
2692          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2693            << (int)Record->isUnion();
2694        else {
2695          Diag((*Mem)->getLocation(), DK)
2696              << (int)Record->isUnion();
2697          Invalid = true;
2698        }
2699      }
2700    }
2701  }
2702
2703  if (!Record->isUnion() && !Owner->isRecord()) {
2704    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2705      << (int)getLangOptions().CPlusPlus;
2706    Invalid = true;
2707  }
2708
2709  // Mock up a declarator.
2710  Declarator Dc(DS, Declarator::MemberContext);
2711  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2712  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2713
2714  // Create a declaration for this anonymous struct/union.
2715  NamedDecl *Anon = 0;
2716  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2717    Anon = FieldDecl::Create(Context, OwningClass,
2718                             DS.getSourceRange().getBegin(),
2719                             Record->getLocation(),
2720                             /*IdentifierInfo=*/0,
2721                             Context.getTypeDeclType(Record),
2722                             TInfo,
2723                             /*BitWidth=*/0, /*Mutable=*/false,
2724                             /*HasInit=*/false);
2725    Anon->setAccess(AS);
2726    if (getLangOptions().CPlusPlus)
2727      FieldCollector->Add(cast<FieldDecl>(Anon));
2728  } else {
2729    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2730    assert(SCSpec != DeclSpec::SCS_typedef &&
2731           "Parser allowed 'typedef' as storage class VarDecl.");
2732    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2733    if (SCSpec == DeclSpec::SCS_mutable) {
2734      // mutable can only appear on non-static class members, so it's always
2735      // an error here
2736      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2737      Invalid = true;
2738      SC = SC_None;
2739    }
2740    SCSpec = DS.getStorageClassSpecAsWritten();
2741    VarDecl::StorageClass SCAsWritten
2742      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2743
2744    Anon = VarDecl::Create(Context, Owner,
2745                           DS.getSourceRange().getBegin(),
2746                           Record->getLocation(), /*IdentifierInfo=*/0,
2747                           Context.getTypeDeclType(Record),
2748                           TInfo, SC, SCAsWritten);
2749
2750    // Default-initialize the implicit variable. This initialization will be
2751    // trivial in almost all cases, except if a union member has an in-class
2752    // initializer:
2753    //   union { int n = 0; };
2754    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2755  }
2756  Anon->setImplicit();
2757
2758  // Add the anonymous struct/union object to the current
2759  // context. We'll be referencing this object when we refer to one of
2760  // its members.
2761  Owner->addDecl(Anon);
2762
2763  // Inject the members of the anonymous struct/union into the owning
2764  // context and into the identifier resolver chain for name lookup
2765  // purposes.
2766  SmallVector<NamedDecl*, 2> Chain;
2767  Chain.push_back(Anon);
2768
2769  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2770                                          Chain, false))
2771    Invalid = true;
2772
2773  // Mark this as an anonymous struct/union type. Note that we do not
2774  // do this until after we have already checked and injected the
2775  // members of this anonymous struct/union type, because otherwise
2776  // the members could be injected twice: once by DeclContext when it
2777  // builds its lookup table, and once by
2778  // InjectAnonymousStructOrUnionMembers.
2779  Record->setAnonymousStructOrUnion(true);
2780
2781  if (Invalid)
2782    Anon->setInvalidDecl();
2783
2784  return Anon;
2785}
2786
2787/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2788/// Microsoft C anonymous structure.
2789/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2790/// Example:
2791///
2792/// struct A { int a; };
2793/// struct B { struct A; int b; };
2794///
2795/// void foo() {
2796///   B var;
2797///   var.a = 3;
2798/// }
2799///
2800Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2801                                           RecordDecl *Record) {
2802
2803  // If there is no Record, get the record via the typedef.
2804  if (!Record)
2805    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2806
2807  // Mock up a declarator.
2808  Declarator Dc(DS, Declarator::TypeNameContext);
2809  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2810  assert(TInfo && "couldn't build declarator info for anonymous struct");
2811
2812  // Create a declaration for this anonymous struct.
2813  NamedDecl* Anon = FieldDecl::Create(Context,
2814                             cast<RecordDecl>(CurContext),
2815                             DS.getSourceRange().getBegin(),
2816                             DS.getSourceRange().getBegin(),
2817                             /*IdentifierInfo=*/0,
2818                             Context.getTypeDeclType(Record),
2819                             TInfo,
2820                             /*BitWidth=*/0, /*Mutable=*/false,
2821                             /*HasInit=*/false);
2822  Anon->setImplicit();
2823
2824  // Add the anonymous struct object to the current context.
2825  CurContext->addDecl(Anon);
2826
2827  // Inject the members of the anonymous struct into the current
2828  // context and into the identifier resolver chain for name lookup
2829  // purposes.
2830  SmallVector<NamedDecl*, 2> Chain;
2831  Chain.push_back(Anon);
2832
2833  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2834                                          Record->getDefinition(),
2835                                          AS_none, Chain, true))
2836    Anon->setInvalidDecl();
2837
2838  return Anon;
2839}
2840
2841/// GetNameForDeclarator - Determine the full declaration name for the
2842/// given Declarator.
2843DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2844  return GetNameFromUnqualifiedId(D.getName());
2845}
2846
2847/// \brief Retrieves the declaration name from a parsed unqualified-id.
2848DeclarationNameInfo
2849Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2850  DeclarationNameInfo NameInfo;
2851  NameInfo.setLoc(Name.StartLocation);
2852
2853  switch (Name.getKind()) {
2854
2855  case UnqualifiedId::IK_ImplicitSelfParam:
2856  case UnqualifiedId::IK_Identifier:
2857    NameInfo.setName(Name.Identifier);
2858    NameInfo.setLoc(Name.StartLocation);
2859    return NameInfo;
2860
2861  case UnqualifiedId::IK_OperatorFunctionId:
2862    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2863                                           Name.OperatorFunctionId.Operator));
2864    NameInfo.setLoc(Name.StartLocation);
2865    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2866      = Name.OperatorFunctionId.SymbolLocations[0];
2867    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2868      = Name.EndLocation.getRawEncoding();
2869    return NameInfo;
2870
2871  case UnqualifiedId::IK_LiteralOperatorId:
2872    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2873                                                           Name.Identifier));
2874    NameInfo.setLoc(Name.StartLocation);
2875    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2876    return NameInfo;
2877
2878  case UnqualifiedId::IK_ConversionFunctionId: {
2879    TypeSourceInfo *TInfo;
2880    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2881    if (Ty.isNull())
2882      return DeclarationNameInfo();
2883    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2884                                               Context.getCanonicalType(Ty)));
2885    NameInfo.setLoc(Name.StartLocation);
2886    NameInfo.setNamedTypeInfo(TInfo);
2887    return NameInfo;
2888  }
2889
2890  case UnqualifiedId::IK_ConstructorName: {
2891    TypeSourceInfo *TInfo;
2892    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2893    if (Ty.isNull())
2894      return DeclarationNameInfo();
2895    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2896                                              Context.getCanonicalType(Ty)));
2897    NameInfo.setLoc(Name.StartLocation);
2898    NameInfo.setNamedTypeInfo(TInfo);
2899    return NameInfo;
2900  }
2901
2902  case UnqualifiedId::IK_ConstructorTemplateId: {
2903    // In well-formed code, we can only have a constructor
2904    // template-id that refers to the current context, so go there
2905    // to find the actual type being constructed.
2906    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2907    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2908      return DeclarationNameInfo();
2909
2910    // Determine the type of the class being constructed.
2911    QualType CurClassType = Context.getTypeDeclType(CurClass);
2912
2913    // FIXME: Check two things: that the template-id names the same type as
2914    // CurClassType, and that the template-id does not occur when the name
2915    // was qualified.
2916
2917    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2918                                    Context.getCanonicalType(CurClassType)));
2919    NameInfo.setLoc(Name.StartLocation);
2920    // FIXME: should we retrieve TypeSourceInfo?
2921    NameInfo.setNamedTypeInfo(0);
2922    return NameInfo;
2923  }
2924
2925  case UnqualifiedId::IK_DestructorName: {
2926    TypeSourceInfo *TInfo;
2927    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2928    if (Ty.isNull())
2929      return DeclarationNameInfo();
2930    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2931                                              Context.getCanonicalType(Ty)));
2932    NameInfo.setLoc(Name.StartLocation);
2933    NameInfo.setNamedTypeInfo(TInfo);
2934    return NameInfo;
2935  }
2936
2937  case UnqualifiedId::IK_TemplateId: {
2938    TemplateName TName = Name.TemplateId->Template.get();
2939    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2940    return Context.getNameForTemplate(TName, TNameLoc);
2941  }
2942
2943  } // switch (Name.getKind())
2944
2945  llvm_unreachable("Unknown name kind");
2946}
2947
2948static QualType getCoreType(QualType Ty) {
2949  do {
2950    if (Ty->isPointerType() || Ty->isReferenceType())
2951      Ty = Ty->getPointeeType();
2952    else if (Ty->isArrayType())
2953      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2954    else
2955      return Ty.withoutLocalFastQualifiers();
2956  } while (true);
2957}
2958
2959/// isNearlyMatchingFunction - Determine whether the C++ functions
2960/// Declaration and Definition are "nearly" matching. This heuristic
2961/// is used to improve diagnostics in the case where an out-of-line
2962/// function definition doesn't match any declaration within the class
2963/// or namespace. Also sets Params to the list of indices to the
2964/// parameters that differ between the declaration and the definition.
2965static bool isNearlyMatchingFunction(ASTContext &Context,
2966                                     FunctionDecl *Declaration,
2967                                     FunctionDecl *Definition,
2968                                     llvm::SmallVectorImpl<unsigned> &Params) {
2969  Params.clear();
2970  if (Declaration->param_size() != Definition->param_size())
2971    return false;
2972  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2973    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2974    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2975
2976    // The parameter types are identical
2977    if (Context.hasSameType(DefParamTy, DeclParamTy))
2978      continue;
2979
2980    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2981    QualType DefParamBaseTy = getCoreType(DefParamTy);
2982    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2983    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2984
2985    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2986        (DeclTyName && DeclTyName == DefTyName))
2987      Params.push_back(Idx);
2988    else  // The two parameters aren't even close
2989      return false;
2990  }
2991
2992  return true;
2993}
2994
2995/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2996/// declarator needs to be rebuilt in the current instantiation.
2997/// Any bits of declarator which appear before the name are valid for
2998/// consideration here.  That's specifically the type in the decl spec
2999/// and the base type in any member-pointer chunks.
3000static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3001                                                    DeclarationName Name) {
3002  // The types we specifically need to rebuild are:
3003  //   - typenames, typeofs, and decltypes
3004  //   - types which will become injected class names
3005  // Of course, we also need to rebuild any type referencing such a
3006  // type.  It's safest to just say "dependent", but we call out a
3007  // few cases here.
3008
3009  DeclSpec &DS = D.getMutableDeclSpec();
3010  switch (DS.getTypeSpecType()) {
3011  case DeclSpec::TST_typename:
3012  case DeclSpec::TST_typeofType:
3013  case DeclSpec::TST_decltype:
3014  case DeclSpec::TST_underlyingType: {
3015    // Grab the type from the parser.
3016    TypeSourceInfo *TSI = 0;
3017    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3018    if (T.isNull() || !T->isDependentType()) break;
3019
3020    // Make sure there's a type source info.  This isn't really much
3021    // of a waste; most dependent types should have type source info
3022    // attached already.
3023    if (!TSI)
3024      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3025
3026    // Rebuild the type in the current instantiation.
3027    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3028    if (!TSI) return true;
3029
3030    // Store the new type back in the decl spec.
3031    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3032    DS.UpdateTypeRep(LocType);
3033    break;
3034  }
3035
3036  case DeclSpec::TST_typeofExpr: {
3037    Expr *E = DS.getRepAsExpr();
3038    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3039    if (Result.isInvalid()) return true;
3040    DS.UpdateExprRep(Result.get());
3041    break;
3042  }
3043
3044  default:
3045    // Nothing to do for these decl specs.
3046    break;
3047  }
3048
3049  // It doesn't matter what order we do this in.
3050  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3051    DeclaratorChunk &Chunk = D.getTypeObject(I);
3052
3053    // The only type information in the declarator which can come
3054    // before the declaration name is the base type of a member
3055    // pointer.
3056    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3057      continue;
3058
3059    // Rebuild the scope specifier in-place.
3060    CXXScopeSpec &SS = Chunk.Mem.Scope();
3061    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3062      return true;
3063  }
3064
3065  return false;
3066}
3067
3068Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3069  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
3070                          /*IsFunctionDefinition=*/false);
3071}
3072
3073/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3074///   If T is the name of a class, then each of the following shall have a
3075///   name different from T:
3076///     - every static data member of class T;
3077///     - every member function of class T
3078///     - every member of class T that is itself a type;
3079/// \returns true if the declaration name violates these rules.
3080bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3081                                   DeclarationNameInfo NameInfo) {
3082  DeclarationName Name = NameInfo.getName();
3083
3084  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3085    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3086      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3087      return true;
3088    }
3089
3090  return false;
3091}
3092
3093Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3094                             MultiTemplateParamsArg TemplateParamLists,
3095                             bool IsFunctionDefinition) {
3096  // TODO: consider using NameInfo for diagnostic.
3097  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3098  DeclarationName Name = NameInfo.getName();
3099
3100  // All of these full declarators require an identifier.  If it doesn't have
3101  // one, the ParsedFreeStandingDeclSpec action should be used.
3102  if (!Name) {
3103    if (!D.isInvalidType())  // Reject this if we think it is valid.
3104      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3105           diag::err_declarator_need_ident)
3106        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3107    return 0;
3108  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3109    return 0;
3110
3111  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3112  // we find one that is.
3113  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3114         (S->getFlags() & Scope::TemplateParamScope) != 0)
3115    S = S->getParent();
3116
3117  DeclContext *DC = CurContext;
3118  if (D.getCXXScopeSpec().isInvalid())
3119    D.setInvalidType();
3120  else if (D.getCXXScopeSpec().isSet()) {
3121    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3122                                        UPPC_DeclarationQualifier))
3123      return 0;
3124
3125    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3126    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3127    if (!DC) {
3128      // If we could not compute the declaration context, it's because the
3129      // declaration context is dependent but does not refer to a class,
3130      // class template, or class template partial specialization. Complain
3131      // and return early, to avoid the coming semantic disaster.
3132      Diag(D.getIdentifierLoc(),
3133           diag::err_template_qualified_declarator_no_match)
3134        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3135        << D.getCXXScopeSpec().getRange();
3136      return 0;
3137    }
3138    bool IsDependentContext = DC->isDependentContext();
3139
3140    if (!IsDependentContext &&
3141        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3142      return 0;
3143
3144    if (isa<CXXRecordDecl>(DC)) {
3145      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3146        Diag(D.getIdentifierLoc(),
3147             diag::err_member_def_undefined_record)
3148          << Name << DC << D.getCXXScopeSpec().getRange();
3149        D.setInvalidType();
3150      } else if (isa<CXXRecordDecl>(CurContext) &&
3151                 !D.getDeclSpec().isFriendSpecified()) {
3152        // The user provided a superfluous scope specifier inside a class
3153        // definition:
3154        //
3155        // class X {
3156        //   void X::f();
3157        // };
3158        if (CurContext->Equals(DC))
3159          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3160            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3161        else
3162          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3163            << Name << D.getCXXScopeSpec().getRange();
3164
3165        // Pretend that this qualifier was not here.
3166        D.getCXXScopeSpec().clear();
3167      }
3168    }
3169
3170    // Check whether we need to rebuild the type of the given
3171    // declaration in the current instantiation.
3172    if (EnteringContext && IsDependentContext &&
3173        TemplateParamLists.size() != 0) {
3174      ContextRAII SavedContext(*this, DC);
3175      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3176        D.setInvalidType();
3177    }
3178  }
3179
3180  if (DiagnoseClassNameShadow(DC, NameInfo))
3181    // If this is a typedef, we'll end up spewing multiple diagnostics.
3182    // Just return early; it's safer.
3183    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3184      return 0;
3185
3186  NamedDecl *New;
3187
3188  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3189  QualType R = TInfo->getType();
3190
3191  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3192                                      UPPC_DeclarationType))
3193    D.setInvalidType();
3194
3195  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3196                        ForRedeclaration);
3197
3198  // See if this is a redefinition of a variable in the same scope.
3199  if (!D.getCXXScopeSpec().isSet()) {
3200    bool IsLinkageLookup = false;
3201
3202    // If the declaration we're planning to build will be a function
3203    // or object with linkage, then look for another declaration with
3204    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3205    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3206      /* Do nothing*/;
3207    else if (R->isFunctionType()) {
3208      if (CurContext->isFunctionOrMethod() ||
3209          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3210        IsLinkageLookup = true;
3211    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3212      IsLinkageLookup = true;
3213    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3214             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3215      IsLinkageLookup = true;
3216
3217    if (IsLinkageLookup)
3218      Previous.clear(LookupRedeclarationWithLinkage);
3219
3220    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3221  } else { // Something like "int foo::x;"
3222    LookupQualifiedName(Previous, DC);
3223
3224    // Don't consider using declarations as previous declarations for
3225    // out-of-line members.
3226    RemoveUsingDecls(Previous);
3227
3228    // C++ 7.3.1.2p2:
3229    // Members (including explicit specializations of templates) of a named
3230    // namespace can also be defined outside that namespace by explicit
3231    // qualification of the name being defined, provided that the entity being
3232    // defined was already declared in the namespace and the definition appears
3233    // after the point of declaration in a namespace that encloses the
3234    // declarations namespace.
3235    //
3236    // Note that we only check the context at this point. We don't yet
3237    // have enough information to make sure that PrevDecl is actually
3238    // the declaration we want to match. For example, given:
3239    //
3240    //   class X {
3241    //     void f();
3242    //     void f(float);
3243    //   };
3244    //
3245    //   void X::f(int) { } // ill-formed
3246    //
3247    // In this case, PrevDecl will point to the overload set
3248    // containing the two f's declared in X, but neither of them
3249    // matches.
3250
3251    // First check whether we named the global scope.
3252    if (isa<TranslationUnitDecl>(DC)) {
3253      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3254        << Name << D.getCXXScopeSpec().getRange();
3255    } else {
3256      DeclContext *Cur = CurContext;
3257      while (isa<LinkageSpecDecl>(Cur))
3258        Cur = Cur->getParent();
3259      if (!Cur->Encloses(DC)) {
3260        // The qualifying scope doesn't enclose the original declaration.
3261        // Emit diagnostic based on current scope.
3262        SourceLocation L = D.getIdentifierLoc();
3263        SourceRange R = D.getCXXScopeSpec().getRange();
3264        if (isa<FunctionDecl>(Cur))
3265          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3266        else
3267          Diag(L, diag::err_invalid_declarator_scope)
3268            << Name << cast<NamedDecl>(DC) << R;
3269        D.setInvalidType();
3270      }
3271    }
3272  }
3273
3274  if (Previous.isSingleResult() &&
3275      Previous.getFoundDecl()->isTemplateParameter()) {
3276    // Maybe we will complain about the shadowed template parameter.
3277    if (!D.isInvalidType())
3278      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3279                                          Previous.getFoundDecl()))
3280        D.setInvalidType();
3281
3282    // Just pretend that we didn't see the previous declaration.
3283    Previous.clear();
3284  }
3285
3286  // In C++, the previous declaration we find might be a tag type
3287  // (class or enum). In this case, the new declaration will hide the
3288  // tag type. Note that this does does not apply if we're declaring a
3289  // typedef (C++ [dcl.typedef]p4).
3290  if (Previous.isSingleTagDecl() &&
3291      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3292    Previous.clear();
3293
3294  bool Redeclaration = false;
3295  bool AddToScope = true;
3296  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3297    if (TemplateParamLists.size()) {
3298      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3299      return 0;
3300    }
3301
3302    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3303  } else if (R->isFunctionType()) {
3304    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3305                                  move(TemplateParamLists),
3306                                  IsFunctionDefinition, Redeclaration,
3307                                  AddToScope);
3308  } else {
3309    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3310                                  move(TemplateParamLists),
3311                                  Redeclaration);
3312  }
3313
3314  if (New == 0)
3315    return 0;
3316
3317  // If this has an identifier and is not an invalid redeclaration or
3318  // function template specialization, add it to the scope stack.
3319  if (New->getDeclName() && AddToScope &&
3320       !(Redeclaration && New->isInvalidDecl()))
3321    PushOnScopeChains(New, S);
3322
3323  return New;
3324}
3325
3326/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3327/// types into constant array types in certain situations which would otherwise
3328/// be errors (for GCC compatibility).
3329static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3330                                                    ASTContext &Context,
3331                                                    bool &SizeIsNegative,
3332                                                    llvm::APSInt &Oversized) {
3333  // This method tries to turn a variable array into a constant
3334  // array even when the size isn't an ICE.  This is necessary
3335  // for compatibility with code that depends on gcc's buggy
3336  // constant expression folding, like struct {char x[(int)(char*)2];}
3337  SizeIsNegative = false;
3338  Oversized = 0;
3339
3340  if (T->isDependentType())
3341    return QualType();
3342
3343  QualifierCollector Qs;
3344  const Type *Ty = Qs.strip(T);
3345
3346  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3347    QualType Pointee = PTy->getPointeeType();
3348    QualType FixedType =
3349        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3350                                            Oversized);
3351    if (FixedType.isNull()) return FixedType;
3352    FixedType = Context.getPointerType(FixedType);
3353    return Qs.apply(Context, FixedType);
3354  }
3355  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3356    QualType Inner = PTy->getInnerType();
3357    QualType FixedType =
3358        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3359                                            Oversized);
3360    if (FixedType.isNull()) return FixedType;
3361    FixedType = Context.getParenType(FixedType);
3362    return Qs.apply(Context, FixedType);
3363  }
3364
3365  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3366  if (!VLATy)
3367    return QualType();
3368  // FIXME: We should probably handle this case
3369  if (VLATy->getElementType()->isVariablyModifiedType())
3370    return QualType();
3371
3372  Expr::EvalResult EvalResult;
3373  if (!VLATy->getSizeExpr() ||
3374      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3375      !EvalResult.Val.isInt())
3376    return QualType();
3377
3378  // Check whether the array size is negative.
3379  llvm::APSInt &Res = EvalResult.Val.getInt();
3380  if (Res.isSigned() && Res.isNegative()) {
3381    SizeIsNegative = true;
3382    return QualType();
3383  }
3384
3385  // Check whether the array is too large to be addressed.
3386  unsigned ActiveSizeBits
3387    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3388                                              Res);
3389  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3390    Oversized = Res;
3391    return QualType();
3392  }
3393
3394  return Context.getConstantArrayType(VLATy->getElementType(),
3395                                      Res, ArrayType::Normal, 0);
3396}
3397
3398/// \brief Register the given locally-scoped external C declaration so
3399/// that it can be found later for redeclarations
3400void
3401Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3402                                       const LookupResult &Previous,
3403                                       Scope *S) {
3404  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3405         "Decl is not a locally-scoped decl!");
3406  // Note that we have a locally-scoped external with this name.
3407  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3408
3409  if (!Previous.isSingleResult())
3410    return;
3411
3412  NamedDecl *PrevDecl = Previous.getFoundDecl();
3413
3414  // If there was a previous declaration of this variable, it may be
3415  // in our identifier chain. Update the identifier chain with the new
3416  // declaration.
3417  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3418    // The previous declaration was found on the identifer resolver
3419    // chain, so remove it from its scope.
3420
3421    if (S->isDeclScope(PrevDecl)) {
3422      // Special case for redeclarations in the SAME scope.
3423      // Because this declaration is going to be added to the identifier chain
3424      // later, we should temporarily take it OFF the chain.
3425      IdResolver.RemoveDecl(ND);
3426
3427    } else {
3428      // Find the scope for the original declaration.
3429      while (S && !S->isDeclScope(PrevDecl))
3430        S = S->getParent();
3431    }
3432
3433    if (S)
3434      S->RemoveDecl(PrevDecl);
3435  }
3436}
3437
3438llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3439Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3440  if (ExternalSource) {
3441    // Load locally-scoped external decls from the external source.
3442    SmallVector<NamedDecl *, 4> Decls;
3443    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3444    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3445      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3446        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3447      if (Pos == LocallyScopedExternalDecls.end())
3448        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3449    }
3450  }
3451
3452  return LocallyScopedExternalDecls.find(Name);
3453}
3454
3455/// \brief Diagnose function specifiers on a declaration of an identifier that
3456/// does not identify a function.
3457void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3458  // FIXME: We should probably indicate the identifier in question to avoid
3459  // confusion for constructs like "inline int a(), b;"
3460  if (D.getDeclSpec().isInlineSpecified())
3461    Diag(D.getDeclSpec().getInlineSpecLoc(),
3462         diag::err_inline_non_function);
3463
3464  if (D.getDeclSpec().isVirtualSpecified())
3465    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3466         diag::err_virtual_non_function);
3467
3468  if (D.getDeclSpec().isExplicitSpecified())
3469    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3470         diag::err_explicit_non_function);
3471}
3472
3473NamedDecl*
3474Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3475                             QualType R,  TypeSourceInfo *TInfo,
3476                             LookupResult &Previous, bool &Redeclaration) {
3477  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3478  if (D.getCXXScopeSpec().isSet()) {
3479    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3480      << D.getCXXScopeSpec().getRange();
3481    D.setInvalidType();
3482    // Pretend we didn't see the scope specifier.
3483    DC = CurContext;
3484    Previous.clear();
3485  }
3486
3487  if (getLangOptions().CPlusPlus) {
3488    // Check that there are no default arguments (C++ only).
3489    CheckExtraCXXDefaultArguments(D);
3490  }
3491
3492  DiagnoseFunctionSpecifiers(D);
3493
3494  if (D.getDeclSpec().isThreadSpecified())
3495    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3496  if (D.getDeclSpec().isConstexprSpecified())
3497    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3498      << 1;
3499
3500  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3501    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3502      << D.getName().getSourceRange();
3503    return 0;
3504  }
3505
3506  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3507  if (!NewTD) return 0;
3508
3509  // Handle attributes prior to checking for duplicates in MergeVarDecl
3510  ProcessDeclAttributes(S, NewTD, D);
3511
3512  CheckTypedefForVariablyModifiedType(S, NewTD);
3513
3514  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3515}
3516
3517void
3518Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3519  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3520  // then it shall have block scope.
3521  // Note that variably modified types must be fixed before merging the decl so
3522  // that redeclarations will match.
3523  QualType T = NewTD->getUnderlyingType();
3524  if (T->isVariablyModifiedType()) {
3525    getCurFunction()->setHasBranchProtectedScope();
3526
3527    if (S->getFnParent() == 0) {
3528      bool SizeIsNegative;
3529      llvm::APSInt Oversized;
3530      QualType FixedTy =
3531          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3532                                              Oversized);
3533      if (!FixedTy.isNull()) {
3534        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3535        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3536      } else {
3537        if (SizeIsNegative)
3538          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3539        else if (T->isVariableArrayType())
3540          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3541        else if (Oversized.getBoolValue())
3542          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3543        else
3544          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3545        NewTD->setInvalidDecl();
3546      }
3547    }
3548  }
3549}
3550
3551
3552/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3553/// declares a typedef-name, either using the 'typedef' type specifier or via
3554/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3555NamedDecl*
3556Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3557                           LookupResult &Previous, bool &Redeclaration) {
3558  // Merge the decl with the existing one if appropriate. If the decl is
3559  // in an outer scope, it isn't the same thing.
3560  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3561                       /*ExplicitInstantiationOrSpecialization=*/false);
3562  if (!Previous.empty()) {
3563    Redeclaration = true;
3564    MergeTypedefNameDecl(NewTD, Previous);
3565  }
3566
3567  // If this is the C FILE type, notify the AST context.
3568  if (IdentifierInfo *II = NewTD->getIdentifier())
3569    if (!NewTD->isInvalidDecl() &&
3570        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3571      if (II->isStr("FILE"))
3572        Context.setFILEDecl(NewTD);
3573      else if (II->isStr("jmp_buf"))
3574        Context.setjmp_bufDecl(NewTD);
3575      else if (II->isStr("sigjmp_buf"))
3576        Context.setsigjmp_bufDecl(NewTD);
3577      else if (II->isStr("__builtin_va_list"))
3578        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3579    }
3580
3581  return NewTD;
3582}
3583
3584/// \brief Determines whether the given declaration is an out-of-scope
3585/// previous declaration.
3586///
3587/// This routine should be invoked when name lookup has found a
3588/// previous declaration (PrevDecl) that is not in the scope where a
3589/// new declaration by the same name is being introduced. If the new
3590/// declaration occurs in a local scope, previous declarations with
3591/// linkage may still be considered previous declarations (C99
3592/// 6.2.2p4-5, C++ [basic.link]p6).
3593///
3594/// \param PrevDecl the previous declaration found by name
3595/// lookup
3596///
3597/// \param DC the context in which the new declaration is being
3598/// declared.
3599///
3600/// \returns true if PrevDecl is an out-of-scope previous declaration
3601/// for a new delcaration with the same name.
3602static bool
3603isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3604                                ASTContext &Context) {
3605  if (!PrevDecl)
3606    return false;
3607
3608  if (!PrevDecl->hasLinkage())
3609    return false;
3610
3611  if (Context.getLangOptions().CPlusPlus) {
3612    // C++ [basic.link]p6:
3613    //   If there is a visible declaration of an entity with linkage
3614    //   having the same name and type, ignoring entities declared
3615    //   outside the innermost enclosing namespace scope, the block
3616    //   scope declaration declares that same entity and receives the
3617    //   linkage of the previous declaration.
3618    DeclContext *OuterContext = DC->getRedeclContext();
3619    if (!OuterContext->isFunctionOrMethod())
3620      // This rule only applies to block-scope declarations.
3621      return false;
3622
3623    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3624    if (PrevOuterContext->isRecord())
3625      // We found a member function: ignore it.
3626      return false;
3627
3628    // Find the innermost enclosing namespace for the new and
3629    // previous declarations.
3630    OuterContext = OuterContext->getEnclosingNamespaceContext();
3631    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3632
3633    // The previous declaration is in a different namespace, so it
3634    // isn't the same function.
3635    if (!OuterContext->Equals(PrevOuterContext))
3636      return false;
3637  }
3638
3639  return true;
3640}
3641
3642static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3643  CXXScopeSpec &SS = D.getCXXScopeSpec();
3644  if (!SS.isSet()) return;
3645  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3646}
3647
3648bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3649  QualType type = decl->getType();
3650  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3651  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3652    // Various kinds of declaration aren't allowed to be __autoreleasing.
3653    unsigned kind = -1U;
3654    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3655      if (var->hasAttr<BlocksAttr>())
3656        kind = 0; // __block
3657      else if (!var->hasLocalStorage())
3658        kind = 1; // global
3659    } else if (isa<ObjCIvarDecl>(decl)) {
3660      kind = 3; // ivar
3661    } else if (isa<FieldDecl>(decl)) {
3662      kind = 2; // field
3663    }
3664
3665    if (kind != -1U) {
3666      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3667        << kind;
3668    }
3669  } else if (lifetime == Qualifiers::OCL_None) {
3670    // Try to infer lifetime.
3671    if (!type->isObjCLifetimeType())
3672      return false;
3673
3674    lifetime = type->getObjCARCImplicitLifetime();
3675    type = Context.getLifetimeQualifiedType(type, lifetime);
3676    decl->setType(type);
3677  }
3678
3679  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3680    // Thread-local variables cannot have lifetime.
3681    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3682        var->isThreadSpecified()) {
3683      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3684        << var->getType();
3685      return true;
3686    }
3687  }
3688
3689  return false;
3690}
3691
3692NamedDecl*
3693Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3694                              QualType R, TypeSourceInfo *TInfo,
3695                              LookupResult &Previous,
3696                              MultiTemplateParamsArg TemplateParamLists,
3697                              bool &Redeclaration) {
3698  DeclarationName Name = GetNameForDeclarator(D).getName();
3699
3700  // Check that there are no default arguments (C++ only).
3701  if (getLangOptions().CPlusPlus)
3702    CheckExtraCXXDefaultArguments(D);
3703
3704  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3705  assert(SCSpec != DeclSpec::SCS_typedef &&
3706         "Parser allowed 'typedef' as storage class VarDecl.");
3707  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3708  if (SCSpec == DeclSpec::SCS_mutable) {
3709    // mutable can only appear on non-static class members, so it's always
3710    // an error here
3711    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3712    D.setInvalidType();
3713    SC = SC_None;
3714  }
3715  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3716  VarDecl::StorageClass SCAsWritten
3717    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3718
3719  IdentifierInfo *II = Name.getAsIdentifierInfo();
3720  if (!II) {
3721    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3722      << Name.getAsString();
3723    return 0;
3724  }
3725
3726  DiagnoseFunctionSpecifiers(D);
3727
3728  if (!DC->isRecord() && S->getFnParent() == 0) {
3729    // C99 6.9p2: The storage-class specifiers auto and register shall not
3730    // appear in the declaration specifiers in an external declaration.
3731    if (SC == SC_Auto || SC == SC_Register) {
3732
3733      // If this is a register variable with an asm label specified, then this
3734      // is a GNU extension.
3735      if (SC == SC_Register && D.getAsmLabel())
3736        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3737      else
3738        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3739      D.setInvalidType();
3740    }
3741  }
3742
3743  if (getLangOptions().OpenCL) {
3744    // Set up the special work-group-local storage class for variables in the
3745    // OpenCL __local address space.
3746    if (R.getAddressSpace() == LangAS::opencl_local)
3747      SC = SC_OpenCLWorkGroupLocal;
3748  }
3749
3750  bool isExplicitSpecialization = false;
3751  VarDecl *NewVD;
3752  if (!getLangOptions().CPlusPlus) {
3753    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3754                            D.getIdentifierLoc(), II,
3755                            R, TInfo, SC, SCAsWritten);
3756
3757    if (D.isInvalidType())
3758      NewVD->setInvalidDecl();
3759  } else {
3760    if (DC->isRecord() && !CurContext->isRecord()) {
3761      // This is an out-of-line definition of a static data member.
3762      if (SC == SC_Static) {
3763        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3764             diag::err_static_out_of_line)
3765          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3766      } else if (SC == SC_None)
3767        SC = SC_Static;
3768    }
3769    if (SC == SC_Static) {
3770      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3771        if (RD->isLocalClass())
3772          Diag(D.getIdentifierLoc(),
3773               diag::err_static_data_member_not_allowed_in_local_class)
3774            << Name << RD->getDeclName();
3775
3776        // C++ [class.union]p1: If a union contains a static data member,
3777        // the program is ill-formed.
3778        //
3779        // We also disallow static data members in anonymous structs.
3780        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3781          Diag(D.getIdentifierLoc(),
3782               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3783            << Name << RD->isUnion();
3784      }
3785    }
3786
3787    // Match up the template parameter lists with the scope specifier, then
3788    // determine whether we have a template or a template specialization.
3789    isExplicitSpecialization = false;
3790    bool Invalid = false;
3791    if (TemplateParameterList *TemplateParams
3792        = MatchTemplateParametersToScopeSpecifier(
3793                                  D.getDeclSpec().getSourceRange().getBegin(),
3794                                                  D.getIdentifierLoc(),
3795                                                  D.getCXXScopeSpec(),
3796                                                  TemplateParamLists.get(),
3797                                                  TemplateParamLists.size(),
3798                                                  /*never a friend*/ false,
3799                                                  isExplicitSpecialization,
3800                                                  Invalid)) {
3801      if (TemplateParams->size() > 0) {
3802        // There is no such thing as a variable template.
3803        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3804          << II
3805          << SourceRange(TemplateParams->getTemplateLoc(),
3806                         TemplateParams->getRAngleLoc());
3807        return 0;
3808      } else {
3809        // There is an extraneous 'template<>' for this variable. Complain
3810        // about it, but allow the declaration of the variable.
3811        Diag(TemplateParams->getTemplateLoc(),
3812             diag::err_template_variable_noparams)
3813          << II
3814          << SourceRange(TemplateParams->getTemplateLoc(),
3815                         TemplateParams->getRAngleLoc());
3816      }
3817    }
3818
3819    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3820                            D.getIdentifierLoc(), II,
3821                            R, TInfo, SC, SCAsWritten);
3822
3823    // If this decl has an auto type in need of deduction, make a note of the
3824    // Decl so we can diagnose uses of it in its own initializer.
3825    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3826        R->getContainedAutoType())
3827      ParsingInitForAutoVars.insert(NewVD);
3828
3829    if (D.isInvalidType() || Invalid)
3830      NewVD->setInvalidDecl();
3831
3832    SetNestedNameSpecifier(NewVD, D);
3833
3834    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3835      NewVD->setTemplateParameterListsInfo(Context,
3836                                           TemplateParamLists.size(),
3837                                           TemplateParamLists.release());
3838    }
3839
3840    if (D.getDeclSpec().isConstexprSpecified()) {
3841      // FIXME: once we know whether there's an initializer, apply this to
3842      // static data members too.
3843      if (!NewVD->isStaticDataMember() &&
3844          !NewVD->isThisDeclarationADefinition()) {
3845        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3846        // of a variable. Suggest replacing it with 'const' if appropriate.
3847        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3848        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3849        // If the declarator is complex, we need to move the keyword to the
3850        // innermost chunk as we switch it from 'constexpr' to 'const'.
3851        int Kind = DeclaratorChunk::Paren;
3852        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3853          Kind = D.getTypeObject(I).Kind;
3854          if (Kind != DeclaratorChunk::Paren)
3855            break;
3856        }
3857        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3858            Kind == DeclaratorChunk::Reference)
3859          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3860            << FixItHint::CreateRemoval(ConstexprRange);
3861        else if (Kind == DeclaratorChunk::Paren)
3862          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3863            << FixItHint::CreateReplacement(ConstexprRange, "const");
3864        else
3865          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3866            << FixItHint::CreateRemoval(ConstexprRange)
3867            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3868      } else {
3869        NewVD->setConstexpr(true);
3870      }
3871    }
3872  }
3873
3874  // Set the lexical context. If the declarator has a C++ scope specifier, the
3875  // lexical context will be different from the semantic context.
3876  NewVD->setLexicalDeclContext(CurContext);
3877
3878  if (D.getDeclSpec().isThreadSpecified()) {
3879    if (NewVD->hasLocalStorage())
3880      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3881    else if (!Context.getTargetInfo().isTLSSupported())
3882      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3883    else
3884      NewVD->setThreadSpecified(true);
3885  }
3886
3887  if (D.getDeclSpec().isModulePrivateSpecified()) {
3888    if (isExplicitSpecialization)
3889      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3890        << 2
3891        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3892    else if (NewVD->hasLocalStorage())
3893      Diag(NewVD->getLocation(), diag::err_module_private_local)
3894        << 0 << NewVD->getDeclName()
3895        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3896        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3897    else
3898      NewVD->setModulePrivate();
3899  }
3900
3901  // Handle attributes prior to checking for duplicates in MergeVarDecl
3902  ProcessDeclAttributes(S, NewVD, D);
3903
3904  // In auto-retain/release, infer strong retension for variables of
3905  // retainable type.
3906  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3907    NewVD->setInvalidDecl();
3908
3909  // Handle GNU asm-label extension (encoded as an attribute).
3910  if (Expr *E = (Expr*)D.getAsmLabel()) {
3911    // The parser guarantees this is a string.
3912    StringLiteral *SE = cast<StringLiteral>(E);
3913    StringRef Label = SE->getString();
3914    if (S->getFnParent() != 0) {
3915      switch (SC) {
3916      case SC_None:
3917      case SC_Auto:
3918        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3919        break;
3920      case SC_Register:
3921        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3922          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3923        break;
3924      case SC_Static:
3925      case SC_Extern:
3926      case SC_PrivateExtern:
3927      case SC_OpenCLWorkGroupLocal:
3928        break;
3929      }
3930    }
3931
3932    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3933                                                Context, Label));
3934  }
3935
3936  // Diagnose shadowed variables before filtering for scope.
3937  if (!D.getCXXScopeSpec().isSet())
3938    CheckShadow(S, NewVD, Previous);
3939
3940  // Don't consider existing declarations that are in a different
3941  // scope and are out-of-semantic-context declarations (if the new
3942  // declaration has linkage).
3943  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3944                       isExplicitSpecialization);
3945
3946  if (!getLangOptions().CPlusPlus)
3947    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3948  else {
3949    // Merge the decl with the existing one if appropriate.
3950    if (!Previous.empty()) {
3951      if (Previous.isSingleResult() &&
3952          isa<FieldDecl>(Previous.getFoundDecl()) &&
3953          D.getCXXScopeSpec().isSet()) {
3954        // The user tried to define a non-static data member
3955        // out-of-line (C++ [dcl.meaning]p1).
3956        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3957          << D.getCXXScopeSpec().getRange();
3958        Previous.clear();
3959        NewVD->setInvalidDecl();
3960      }
3961    } else if (D.getCXXScopeSpec().isSet()) {
3962      // No previous declaration in the qualifying scope.
3963      Diag(D.getIdentifierLoc(), diag::err_no_member)
3964        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3965        << D.getCXXScopeSpec().getRange();
3966      NewVD->setInvalidDecl();
3967    }
3968
3969    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3970
3971    // This is an explicit specialization of a static data member. Check it.
3972    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3973        CheckMemberSpecialization(NewVD, Previous))
3974      NewVD->setInvalidDecl();
3975  }
3976
3977  // attributes declared post-definition are currently ignored
3978  // FIXME: This should be handled in attribute merging, not
3979  // here.
3980  if (Previous.isSingleResult()) {
3981    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3982    if (Def && (Def = Def->getDefinition()) &&
3983        Def != NewVD && D.hasAttributes()) {
3984      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3985      Diag(Def->getLocation(), diag::note_previous_definition);
3986    }
3987  }
3988
3989  // If this is a locally-scoped extern C variable, update the map of
3990  // such variables.
3991  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3992      !NewVD->isInvalidDecl())
3993    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3994
3995  // If there's a #pragma GCC visibility in scope, and this isn't a class
3996  // member, set the visibility of this variable.
3997  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3998    AddPushedVisibilityAttribute(NewVD);
3999
4000  MarkUnusedFileScopedDecl(NewVD);
4001
4002  return NewVD;
4003}
4004
4005/// \brief Diagnose variable or built-in function shadowing.  Implements
4006/// -Wshadow.
4007///
4008/// This method is called whenever a VarDecl is added to a "useful"
4009/// scope.
4010///
4011/// \param S the scope in which the shadowing name is being declared
4012/// \param R the lookup of the name
4013///
4014void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4015  // Return if warning is ignored.
4016  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4017        DiagnosticsEngine::Ignored)
4018    return;
4019
4020  // Don't diagnose declarations at file scope.
4021  if (D->hasGlobalStorage())
4022    return;
4023
4024  DeclContext *NewDC = D->getDeclContext();
4025
4026  // Only diagnose if we're shadowing an unambiguous field or variable.
4027  if (R.getResultKind() != LookupResult::Found)
4028    return;
4029
4030  NamedDecl* ShadowedDecl = R.getFoundDecl();
4031  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4032    return;
4033
4034  // Fields are not shadowed by variables in C++ static methods.
4035  if (isa<FieldDecl>(ShadowedDecl))
4036    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4037      if (MD->isStatic())
4038        return;
4039
4040  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4041    if (shadowedVar->isExternC()) {
4042      // For shadowing external vars, make sure that we point to the global
4043      // declaration, not a locally scoped extern declaration.
4044      for (VarDecl::redecl_iterator
4045             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4046           I != E; ++I)
4047        if (I->isFileVarDecl()) {
4048          ShadowedDecl = *I;
4049          break;
4050        }
4051    }
4052
4053  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4054
4055  // Only warn about certain kinds of shadowing for class members.
4056  if (NewDC && NewDC->isRecord()) {
4057    // In particular, don't warn about shadowing non-class members.
4058    if (!OldDC->isRecord())
4059      return;
4060
4061    // TODO: should we warn about static data members shadowing
4062    // static data members from base classes?
4063
4064    // TODO: don't diagnose for inaccessible shadowed members.
4065    // This is hard to do perfectly because we might friend the
4066    // shadowing context, but that's just a false negative.
4067  }
4068
4069  // Determine what kind of declaration we're shadowing.
4070  unsigned Kind;
4071  if (isa<RecordDecl>(OldDC)) {
4072    if (isa<FieldDecl>(ShadowedDecl))
4073      Kind = 3; // field
4074    else
4075      Kind = 2; // static data member
4076  } else if (OldDC->isFileContext())
4077    Kind = 1; // global
4078  else
4079    Kind = 0; // local
4080
4081  DeclarationName Name = R.getLookupName();
4082
4083  // Emit warning and note.
4084  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4085  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4086}
4087
4088/// \brief Check -Wshadow without the advantage of a previous lookup.
4089void Sema::CheckShadow(Scope *S, VarDecl *D) {
4090  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4091        DiagnosticsEngine::Ignored)
4092    return;
4093
4094  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4095                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4096  LookupName(R, S);
4097  CheckShadow(S, D, R);
4098}
4099
4100/// \brief Perform semantic checking on a newly-created variable
4101/// declaration.
4102///
4103/// This routine performs all of the type-checking required for a
4104/// variable declaration once it has been built. It is used both to
4105/// check variables after they have been parsed and their declarators
4106/// have been translated into a declaration, and to check variables
4107/// that have been instantiated from a template.
4108///
4109/// Sets NewVD->isInvalidDecl() if an error was encountered.
4110void Sema::CheckVariableDeclaration(VarDecl *NewVD,
4111                                    LookupResult &Previous,
4112                                    bool &Redeclaration) {
4113  // If the decl is already known invalid, don't check it.
4114  if (NewVD->isInvalidDecl())
4115    return;
4116
4117  QualType T = NewVD->getType();
4118
4119  if (T->isObjCObjectType()) {
4120    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4121      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4122    T = Context.getObjCObjectPointerType(T);
4123    NewVD->setType(T);
4124  }
4125
4126  // Emit an error if an address space was applied to decl with local storage.
4127  // This includes arrays of objects with address space qualifiers, but not
4128  // automatic variables that point to other address spaces.
4129  // ISO/IEC TR 18037 S5.1.2
4130  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4131    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4132    return NewVD->setInvalidDecl();
4133  }
4134
4135  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4136      && !NewVD->hasAttr<BlocksAttr>()) {
4137    if (getLangOptions().getGC() != LangOptions::NonGC)
4138      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4139    else
4140      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4141  }
4142
4143  bool isVM = T->isVariablyModifiedType();
4144  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4145      NewVD->hasAttr<BlocksAttr>())
4146    getCurFunction()->setHasBranchProtectedScope();
4147
4148  if ((isVM && NewVD->hasLinkage()) ||
4149      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4150    bool SizeIsNegative;
4151    llvm::APSInt Oversized;
4152    QualType FixedTy =
4153        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4154                                            Oversized);
4155
4156    if (FixedTy.isNull() && T->isVariableArrayType()) {
4157      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4158      // FIXME: This won't give the correct result for
4159      // int a[10][n];
4160      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4161
4162      if (NewVD->isFileVarDecl())
4163        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4164        << SizeRange;
4165      else if (NewVD->getStorageClass() == SC_Static)
4166        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4167        << SizeRange;
4168      else
4169        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4170        << SizeRange;
4171      return NewVD->setInvalidDecl();
4172    }
4173
4174    if (FixedTy.isNull()) {
4175      if (NewVD->isFileVarDecl())
4176        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4177      else
4178        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4179      return NewVD->setInvalidDecl();
4180    }
4181
4182    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4183    NewVD->setType(FixedTy);
4184  }
4185
4186  if (Previous.empty() && NewVD->isExternC()) {
4187    // Since we did not find anything by this name and we're declaring
4188    // an extern "C" variable, look for a non-visible extern "C"
4189    // declaration with the same name.
4190    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4191      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4192    if (Pos != LocallyScopedExternalDecls.end())
4193      Previous.addDecl(Pos->second);
4194  }
4195
4196  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4197    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4198      << T;
4199    return NewVD->setInvalidDecl();
4200  }
4201
4202  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4203    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4204    return NewVD->setInvalidDecl();
4205  }
4206
4207  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4208    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4209    return NewVD->setInvalidDecl();
4210  }
4211
4212  // Function pointers and references cannot have qualified function type, only
4213  // function pointer-to-members can do that.
4214  QualType Pointee;
4215  unsigned PtrOrRef = 0;
4216  if (const PointerType *Ptr = T->getAs<PointerType>())
4217    Pointee = Ptr->getPointeeType();
4218  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4219    Pointee = Ref->getPointeeType();
4220    PtrOrRef = 1;
4221  }
4222  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4223      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4224    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4225        << PtrOrRef;
4226    return NewVD->setInvalidDecl();
4227  }
4228
4229  if (!Previous.empty()) {
4230    Redeclaration = true;
4231    MergeVarDecl(NewVD, Previous);
4232  }
4233}
4234
4235/// \brief Data used with FindOverriddenMethod
4236struct FindOverriddenMethodData {
4237  Sema *S;
4238  CXXMethodDecl *Method;
4239};
4240
4241/// \brief Member lookup function that determines whether a given C++
4242/// method overrides a method in a base class, to be used with
4243/// CXXRecordDecl::lookupInBases().
4244static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4245                                 CXXBasePath &Path,
4246                                 void *UserData) {
4247  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4248
4249  FindOverriddenMethodData *Data
4250    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4251
4252  DeclarationName Name = Data->Method->getDeclName();
4253
4254  // FIXME: Do we care about other names here too?
4255  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4256    // We really want to find the base class destructor here.
4257    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4258    CanQualType CT = Data->S->Context.getCanonicalType(T);
4259
4260    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4261  }
4262
4263  for (Path.Decls = BaseRecord->lookup(Name);
4264       Path.Decls.first != Path.Decls.second;
4265       ++Path.Decls.first) {
4266    NamedDecl *D = *Path.Decls.first;
4267    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4268      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4269        return true;
4270    }
4271  }
4272
4273  return false;
4274}
4275
4276/// AddOverriddenMethods - See if a method overrides any in the base classes,
4277/// and if so, check that it's a valid override and remember it.
4278bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4279  // Look for virtual methods in base classes that this method might override.
4280  CXXBasePaths Paths;
4281  FindOverriddenMethodData Data;
4282  Data.Method = MD;
4283  Data.S = this;
4284  bool AddedAny = false;
4285  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4286    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4287         E = Paths.found_decls_end(); I != E; ++I) {
4288      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4289        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4290        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4291            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4292            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4293          AddedAny = true;
4294        }
4295      }
4296    }
4297  }
4298
4299  return AddedAny;
4300}
4301
4302static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD,
4303                                         bool isFriendDecl) {
4304  DeclarationName Name = NewFD->getDeclName();
4305  DeclContext *DC = NewFD->getDeclContext();
4306  LookupResult Prev(S, Name, NewFD->getLocation(),
4307                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4308  llvm::SmallVector<unsigned, 1> MismatchedParams;
4309  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4310  TypoCorrection Correction;
4311  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4312                                  : diag::err_member_def_does_not_match;
4313
4314  NewFD->setInvalidDecl();
4315  S.LookupQualifiedName(Prev, DC);
4316  assert(!Prev.isAmbiguous() &&
4317         "Cannot have an ambiguity in previous-declaration lookup");
4318  if (!Prev.empty()) {
4319    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4320         Func != FuncEnd; ++Func) {
4321      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4322      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4323                                         MismatchedParams)) {
4324        // Add 1 to the index so that 0 can mean the mismatch didn't
4325        // involve a parameter
4326        unsigned ParamNum =
4327            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4328        NearMatches.push_back(std::make_pair(FD, ParamNum));
4329      }
4330    }
4331  // If the qualified name lookup yielded nothing, try typo correction
4332  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4333                                         Prev.getLookupKind(), 0, 0, DC)) &&
4334             Correction.getCorrection() != Name) {
4335    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4336                                    CDeclEnd = Correction.end();
4337         CDecl != CDeclEnd; ++CDecl) {
4338      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4339      if (FD && isNearlyMatchingFunction(S.Context, FD, NewFD,
4340                                         MismatchedParams)) {
4341        // Add 1 to the index so that 0 can mean the mismatch didn't
4342        // involve a parameter
4343        unsigned ParamNum =
4344            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4345        NearMatches.push_back(std::make_pair(FD, ParamNum));
4346      }
4347    }
4348    if (!NearMatches.empty())
4349      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4350                             : diag::err_member_def_does_not_match_suggest;
4351  }
4352
4353  // Ignore the correction if it didn't yield any close FunctionDecl matches
4354  if (Correction && NearMatches.empty())
4355    Correction = TypoCorrection();
4356
4357  if (Correction)
4358    S.Diag(NewFD->getLocation(), DiagMsg)
4359        << Name << DC << Correction.getQuoted(S.getLangOptions())
4360        << FixItHint::CreateReplacement(
4361            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4362  else
4363    S.Diag(NewFD->getLocation(), DiagMsg) << Name << DC << NewFD->getLocation();
4364
4365  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4366       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4367       NearMatch != NearMatchEnd; ++NearMatch) {
4368    FunctionDecl *FD = NearMatch->first;
4369
4370    if (unsigned Idx = NearMatch->second) {
4371      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4372      S.Diag(FDParam->getTypeSpecStartLoc(),
4373             diag::note_member_def_close_param_match)
4374          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4375    } else if (Correction) {
4376      S.Diag(FD->getLocation(), diag::note_previous_decl)
4377        << Correction.getQuoted(S.getLangOptions());
4378    } else
4379      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4380  }
4381}
4382
4383NamedDecl*
4384Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4385                              QualType R, TypeSourceInfo *TInfo,
4386                              LookupResult &Previous,
4387                              MultiTemplateParamsArg TemplateParamLists,
4388                              bool IsFunctionDefinition, bool &Redeclaration,
4389                              bool &AddToScope) {
4390  assert(R.getTypePtr()->isFunctionType());
4391
4392  // TODO: consider using NameInfo for diagnostic.
4393  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4394  DeclarationName Name = NameInfo.getName();
4395  FunctionDecl::StorageClass SC = SC_None;
4396  switch (D.getDeclSpec().getStorageClassSpec()) {
4397  default: llvm_unreachable("Unknown storage class!");
4398  case DeclSpec::SCS_auto:
4399  case DeclSpec::SCS_register:
4400  case DeclSpec::SCS_mutable:
4401    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4402         diag::err_typecheck_sclass_func);
4403    D.setInvalidType();
4404    break;
4405  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4406  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4407  case DeclSpec::SCS_static: {
4408    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4409      // C99 6.7.1p5:
4410      //   The declaration of an identifier for a function that has
4411      //   block scope shall have no explicit storage-class specifier
4412      //   other than extern
4413      // See also (C++ [dcl.stc]p4).
4414      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4415           diag::err_static_block_func);
4416      SC = SC_None;
4417    } else
4418      SC = SC_Static;
4419    break;
4420  }
4421  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4422  }
4423
4424  if (D.getDeclSpec().isThreadSpecified())
4425    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4426
4427  // Do not allow returning a objc interface by-value.
4428  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4429    Diag(D.getIdentifierLoc(),
4430         diag::err_object_cannot_be_passed_returned_by_value) << 0
4431    << R->getAs<FunctionType>()->getResultType()
4432    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4433
4434    QualType T = R->getAs<FunctionType>()->getResultType();
4435    T = Context.getObjCObjectPointerType(T);
4436    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4437      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4438      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4439                                  FPT->getNumArgs(), EPI);
4440    }
4441    else if (isa<FunctionNoProtoType>(R))
4442      R = Context.getFunctionNoProtoType(T);
4443  }
4444
4445  FunctionDecl *NewFD;
4446  bool isInline = D.getDeclSpec().isInlineSpecified();
4447  bool isFriend = false;
4448  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4449  FunctionDecl::StorageClass SCAsWritten
4450    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4451  FunctionTemplateDecl *FunctionTemplate = 0;
4452  bool isExplicitSpecialization = false;
4453  bool isFunctionTemplateSpecialization = false;
4454  bool isDependentClassScopeExplicitSpecialization = false;
4455
4456  if (!getLangOptions().CPlusPlus) {
4457    // Determine whether the function was written with a
4458    // prototype. This true when:
4459    //   - there is a prototype in the declarator, or
4460    //   - the type R of the function is some kind of typedef or other reference
4461    //     to a type name (which eventually refers to a function type).
4462    bool HasPrototype =
4463    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4464    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4465
4466    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4467                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4468                                 HasPrototype);
4469    if (D.isInvalidType())
4470      NewFD->setInvalidDecl();
4471
4472    // Set the lexical context.
4473    NewFD->setLexicalDeclContext(CurContext);
4474    // Filter out previous declarations that don't match the scope.
4475    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4476                         /*ExplicitInstantiationOrSpecialization=*/false);
4477  } else {
4478    isFriend = D.getDeclSpec().isFriendSpecified();
4479    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4480    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4481    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4482    bool isVirtualOkay = false;
4483
4484    // Check that the return type is not an abstract class type.
4485    // For record types, this is done by the AbstractClassUsageDiagnoser once
4486    // the class has been completely parsed.
4487    if (!DC->isRecord() &&
4488      RequireNonAbstractType(D.getIdentifierLoc(),
4489                             R->getAs<FunctionType>()->getResultType(),
4490                             diag::err_abstract_type_in_decl,
4491                             AbstractReturnType))
4492      D.setInvalidType();
4493
4494    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4495      // This is a C++ constructor declaration.
4496      assert(DC->isRecord() &&
4497             "Constructors can only be declared in a member context");
4498
4499      R = CheckConstructorDeclarator(D, R, SC);
4500
4501      // Create the new declaration
4502      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4503                                         Context,
4504                                         cast<CXXRecordDecl>(DC),
4505                                         D.getSourceRange().getBegin(),
4506                                         NameInfo, R, TInfo,
4507                                         isExplicit, isInline,
4508                                         /*isImplicitlyDeclared=*/false,
4509                                         isConstexpr);
4510
4511      NewFD = NewCD;
4512    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4513      // This is a C++ destructor declaration.
4514      if (DC->isRecord()) {
4515        R = CheckDestructorDeclarator(D, R, SC);
4516        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4517
4518        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4519                                          D.getSourceRange().getBegin(),
4520                                          NameInfo, R, TInfo,
4521                                          isInline,
4522                                          /*isImplicitlyDeclared=*/false);
4523        NewFD = NewDD;
4524        isVirtualOkay = true;
4525
4526        // If the class is complete, then we now create the implicit exception
4527        // specification. If the class is incomplete or dependent, we can't do
4528        // it yet.
4529        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4530            Record->getDefinition() && !Record->isBeingDefined() &&
4531            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4532          AdjustDestructorExceptionSpec(Record, NewDD);
4533        }
4534
4535      } else {
4536        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4537
4538        // Create a FunctionDecl to satisfy the function definition parsing
4539        // code path.
4540        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4541                                     D.getIdentifierLoc(), Name, R, TInfo,
4542                                     SC, SCAsWritten, isInline,
4543                                     /*hasPrototype=*/true, isConstexpr);
4544        D.setInvalidType();
4545      }
4546    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4547      if (!DC->isRecord()) {
4548        Diag(D.getIdentifierLoc(),
4549             diag::err_conv_function_not_member);
4550        return 0;
4551      }
4552
4553      CheckConversionDeclarator(D, R, SC);
4554      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4555                                        D.getSourceRange().getBegin(),
4556                                        NameInfo, R, TInfo,
4557                                        isInline, isExplicit, isConstexpr,
4558                                        SourceLocation());
4559
4560      isVirtualOkay = true;
4561    } else if (DC->isRecord()) {
4562      // If the name of the function is the same as the name of the record,
4563      // then this must be an invalid constructor that has a return type.
4564      // (The parser checks for a return type and makes the declarator a
4565      // constructor if it has no return type).
4566      if (Name.getAsIdentifierInfo() &&
4567          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4568        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4569          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4570          << SourceRange(D.getIdentifierLoc());
4571        return 0;
4572      }
4573
4574      bool isStatic = SC == SC_Static;
4575
4576      // [class.free]p1:
4577      // Any allocation function for a class T is a static member
4578      // (even if not explicitly declared static).
4579      if (Name.getCXXOverloadedOperator() == OO_New ||
4580          Name.getCXXOverloadedOperator() == OO_Array_New)
4581        isStatic = true;
4582
4583      // [class.free]p6 Any deallocation function for a class X is a static member
4584      // (even if not explicitly declared static).
4585      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4586          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4587        isStatic = true;
4588
4589      // This is a C++ method declaration.
4590      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4591                                               Context, cast<CXXRecordDecl>(DC),
4592                                               D.getSourceRange().getBegin(),
4593                                               NameInfo, R, TInfo,
4594                                               isStatic, SCAsWritten, isInline,
4595                                               isConstexpr,
4596                                               SourceLocation());
4597      NewFD = NewMD;
4598
4599      isVirtualOkay = !isStatic;
4600    } else {
4601      // Determine whether the function was written with a
4602      // prototype. This true when:
4603      //   - we're in C++ (where every function has a prototype),
4604      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4605                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4606                                   true/*HasPrototype*/, isConstexpr);
4607    }
4608
4609    if (isFriend && !isInline && IsFunctionDefinition) {
4610      // C++ [class.friend]p5
4611      //   A function can be defined in a friend declaration of a
4612      //   class . . . . Such a function is implicitly inline.
4613      NewFD->setImplicitlyInline();
4614    }
4615
4616    SetNestedNameSpecifier(NewFD, D);
4617    isExplicitSpecialization = false;
4618    isFunctionTemplateSpecialization = false;
4619    if (D.isInvalidType())
4620      NewFD->setInvalidDecl();
4621
4622    // Set the lexical context. If the declarator has a C++
4623    // scope specifier, or is the object of a friend declaration, the
4624    // lexical context will be different from the semantic context.
4625    NewFD->setLexicalDeclContext(CurContext);
4626
4627    // Match up the template parameter lists with the scope specifier, then
4628    // determine whether we have a template or a template specialization.
4629    bool Invalid = false;
4630    if (TemplateParameterList *TemplateParams
4631          = MatchTemplateParametersToScopeSpecifier(
4632                                  D.getDeclSpec().getSourceRange().getBegin(),
4633                                  D.getIdentifierLoc(),
4634                                  D.getCXXScopeSpec(),
4635                                  TemplateParamLists.get(),
4636                                  TemplateParamLists.size(),
4637                                  isFriend,
4638                                  isExplicitSpecialization,
4639                                  Invalid)) {
4640      if (TemplateParams->size() > 0) {
4641        // This is a function template
4642
4643        // Check that we can declare a template here.
4644        if (CheckTemplateDeclScope(S, TemplateParams))
4645          return 0;
4646
4647        // A destructor cannot be a template.
4648        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4649          Diag(NewFD->getLocation(), diag::err_destructor_template);
4650          return 0;
4651        }
4652
4653        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4654                                                        NewFD->getLocation(),
4655                                                        Name, TemplateParams,
4656                                                        NewFD);
4657        FunctionTemplate->setLexicalDeclContext(CurContext);
4658        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4659
4660        // For source fidelity, store the other template param lists.
4661        if (TemplateParamLists.size() > 1) {
4662          NewFD->setTemplateParameterListsInfo(Context,
4663                                               TemplateParamLists.size() - 1,
4664                                               TemplateParamLists.release());
4665        }
4666      } else {
4667        // This is a function template specialization.
4668        isFunctionTemplateSpecialization = true;
4669        // For source fidelity, store all the template param lists.
4670        NewFD->setTemplateParameterListsInfo(Context,
4671                                             TemplateParamLists.size(),
4672                                             TemplateParamLists.release());
4673
4674        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4675        if (isFriend) {
4676          // We want to remove the "template<>", found here.
4677          SourceRange RemoveRange = TemplateParams->getSourceRange();
4678
4679          // If we remove the template<> and the name is not a
4680          // template-id, we're actually silently creating a problem:
4681          // the friend declaration will refer to an untemplated decl,
4682          // and clearly the user wants a template specialization.  So
4683          // we need to insert '<>' after the name.
4684          SourceLocation InsertLoc;
4685          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4686            InsertLoc = D.getName().getSourceRange().getEnd();
4687            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4688          }
4689
4690          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4691            << Name << RemoveRange
4692            << FixItHint::CreateRemoval(RemoveRange)
4693            << FixItHint::CreateInsertion(InsertLoc, "<>");
4694        }
4695      }
4696    }
4697    else {
4698      // All template param lists were matched against the scope specifier:
4699      // this is NOT (an explicit specialization of) a template.
4700      if (TemplateParamLists.size() > 0)
4701        // For source fidelity, store all the template param lists.
4702        NewFD->setTemplateParameterListsInfo(Context,
4703                                             TemplateParamLists.size(),
4704                                             TemplateParamLists.release());
4705    }
4706
4707    if (Invalid) {
4708      NewFD->setInvalidDecl();
4709      if (FunctionTemplate)
4710        FunctionTemplate->setInvalidDecl();
4711    }
4712
4713    // C++ [dcl.fct.spec]p5:
4714    //   The virtual specifier shall only be used in declarations of
4715    //   nonstatic class member functions that appear within a
4716    //   member-specification of a class declaration; see 10.3.
4717    //
4718    if (isVirtual && !NewFD->isInvalidDecl()) {
4719      if (!isVirtualOkay) {
4720        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4721             diag::err_virtual_non_function);
4722      } else if (!CurContext->isRecord()) {
4723        // 'virtual' was specified outside of the class.
4724        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4725             diag::err_virtual_out_of_class)
4726          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4727      } else if (NewFD->getDescribedFunctionTemplate()) {
4728        // C++ [temp.mem]p3:
4729        //  A member function template shall not be virtual.
4730        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4731             diag::err_virtual_member_function_template)
4732          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4733      } else {
4734        // Okay: Add virtual to the method.
4735        NewFD->setVirtualAsWritten(true);
4736      }
4737    }
4738
4739    // C++ [dcl.fct.spec]p3:
4740    //  The inline specifier shall not appear on a block scope function declaration.
4741    if (isInline && !NewFD->isInvalidDecl()) {
4742      if (CurContext->isFunctionOrMethod()) {
4743        // 'inline' is not allowed on block scope function declaration.
4744        Diag(D.getDeclSpec().getInlineSpecLoc(),
4745             diag::err_inline_declaration_block_scope) << Name
4746          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4747      }
4748    }
4749
4750    // C++ [dcl.fct.spec]p6:
4751    //  The explicit specifier shall be used only in the declaration of a
4752    //  constructor or conversion function within its class definition; see 12.3.1
4753    //  and 12.3.2.
4754    if (isExplicit && !NewFD->isInvalidDecl()) {
4755      if (!CurContext->isRecord()) {
4756        // 'explicit' was specified outside of the class.
4757        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4758             diag::err_explicit_out_of_class)
4759          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4760      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4761                 !isa<CXXConversionDecl>(NewFD)) {
4762        // 'explicit' was specified on a function that wasn't a constructor
4763        // or conversion function.
4764        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4765             diag::err_explicit_non_ctor_or_conv_function)
4766          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4767      }
4768    }
4769
4770    if (isConstexpr) {
4771      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4772      // are implicitly inline.
4773      NewFD->setImplicitlyInline();
4774
4775      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4776      // be either constructors or to return a literal type. Therefore,
4777      // destructors cannot be declared constexpr.
4778      if (isa<CXXDestructorDecl>(NewFD))
4779        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4780    }
4781
4782    // If __module_private__ was specified, mark the function accordingly.
4783    if (D.getDeclSpec().isModulePrivateSpecified()) {
4784      if (isFunctionTemplateSpecialization) {
4785        SourceLocation ModulePrivateLoc
4786          = D.getDeclSpec().getModulePrivateSpecLoc();
4787        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4788          << 0
4789          << FixItHint::CreateRemoval(ModulePrivateLoc);
4790      } else {
4791        NewFD->setModulePrivate();
4792        if (FunctionTemplate)
4793          FunctionTemplate->setModulePrivate();
4794      }
4795    }
4796
4797    // Filter out previous declarations that don't match the scope.
4798    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4799                         isExplicitSpecialization ||
4800                         isFunctionTemplateSpecialization);
4801
4802    if (isFriend) {
4803      // For now, claim that the objects have no previous declaration.
4804      if (FunctionTemplate) {
4805        FunctionTemplate->setObjectOfFriendDecl(false);
4806        FunctionTemplate->setAccess(AS_public);
4807      }
4808      NewFD->setObjectOfFriendDecl(false);
4809      NewFD->setAccess(AS_public);
4810    }
4811
4812    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4813      // A method is implicitly inline if it's defined in its class
4814      // definition.
4815      NewFD->setImplicitlyInline();
4816    }
4817
4818    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4819        !CurContext->isRecord()) {
4820      // C++ [class.static]p1:
4821      //   A data or function member of a class may be declared static
4822      //   in a class definition, in which case it is a static member of
4823      //   the class.
4824
4825      // Complain about the 'static' specifier if it's on an out-of-line
4826      // member function definition.
4827      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4828           diag::err_static_out_of_line)
4829        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4830    }
4831  }
4832
4833  // Handle GNU asm-label extension (encoded as an attribute).
4834  if (Expr *E = (Expr*) D.getAsmLabel()) {
4835    // The parser guarantees this is a string.
4836    StringLiteral *SE = cast<StringLiteral>(E);
4837    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4838                                                SE->getString()));
4839  }
4840
4841  // Copy the parameter declarations from the declarator D to the function
4842  // declaration NewFD, if they are available.  First scavenge them into Params.
4843  SmallVector<ParmVarDecl*, 16> Params;
4844  if (D.isFunctionDeclarator()) {
4845    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4846
4847    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4848    // function that takes no arguments, not a function that takes a
4849    // single void argument.
4850    // We let through "const void" here because Sema::GetTypeForDeclarator
4851    // already checks for that case.
4852    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4853        FTI.ArgInfo[0].Param &&
4854        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4855      // Empty arg list, don't push any params.
4856      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4857
4858      // In C++, the empty parameter-type-list must be spelled "void"; a
4859      // typedef of void is not permitted.
4860      if (getLangOptions().CPlusPlus &&
4861          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4862        bool IsTypeAlias = false;
4863        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4864          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4865        else if (const TemplateSpecializationType *TST =
4866                   Param->getType()->getAs<TemplateSpecializationType>())
4867          IsTypeAlias = TST->isTypeAlias();
4868        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4869          << IsTypeAlias;
4870      }
4871    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4872      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4873        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4874        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4875        Param->setDeclContext(NewFD);
4876        Params.push_back(Param);
4877
4878        if (Param->isInvalidDecl())
4879          NewFD->setInvalidDecl();
4880      }
4881    }
4882
4883  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4884    // When we're declaring a function with a typedef, typeof, etc as in the
4885    // following example, we'll need to synthesize (unnamed)
4886    // parameters for use in the declaration.
4887    //
4888    // @code
4889    // typedef void fn(int);
4890    // fn f;
4891    // @endcode
4892
4893    // Synthesize a parameter for each argument type.
4894    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4895         AE = FT->arg_type_end(); AI != AE; ++AI) {
4896      ParmVarDecl *Param =
4897        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4898      Param->setScopeInfo(0, Params.size());
4899      Params.push_back(Param);
4900    }
4901  } else {
4902    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4903           "Should not need args for typedef of non-prototype fn");
4904  }
4905  // Finally, we know we have the right number of parameters, install them.
4906  NewFD->setParams(Params);
4907
4908  // Process the non-inheritable attributes on this declaration.
4909  ProcessDeclAttributes(S, NewFD, D,
4910                        /*NonInheritable=*/true, /*Inheritable=*/false);
4911
4912  if (!getLangOptions().CPlusPlus) {
4913    // Perform semantic checking on the function declaration.
4914    bool isExplicitSpecialization=false;
4915    if (!NewFD->isInvalidDecl()) {
4916      if (NewFD->getResultType()->isVariablyModifiedType()) {
4917        // Functions returning a variably modified type violate C99 6.7.5.2p2
4918        // because all functions have linkage.
4919        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4920        NewFD->setInvalidDecl();
4921      } else {
4922        if (NewFD->isMain())
4923          CheckMain(NewFD, D.getDeclSpec());
4924        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4925                                 Redeclaration);
4926      }
4927    }
4928    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4929            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4930           "previous declaration set still overloaded");
4931  } else {
4932    // If the declarator is a template-id, translate the parser's template
4933    // argument list into our AST format.
4934    bool HasExplicitTemplateArgs = false;
4935    TemplateArgumentListInfo TemplateArgs;
4936    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4937      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4938      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4939      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4940      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4941                                         TemplateId->getTemplateArgs(),
4942                                         TemplateId->NumArgs);
4943      translateTemplateArguments(TemplateArgsPtr,
4944                                 TemplateArgs);
4945      TemplateArgsPtr.release();
4946
4947      HasExplicitTemplateArgs = true;
4948
4949      if (NewFD->isInvalidDecl()) {
4950        HasExplicitTemplateArgs = false;
4951      } else if (FunctionTemplate) {
4952        // Function template with explicit template arguments.
4953        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4954          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4955
4956        HasExplicitTemplateArgs = false;
4957      } else if (!isFunctionTemplateSpecialization &&
4958                 !D.getDeclSpec().isFriendSpecified()) {
4959        // We have encountered something that the user meant to be a
4960        // specialization (because it has explicitly-specified template
4961        // arguments) but that was not introduced with a "template<>" (or had
4962        // too few of them).
4963        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4964          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4965          << FixItHint::CreateInsertion(
4966                                        D.getDeclSpec().getSourceRange().getBegin(),
4967                                                  "template<> ");
4968        isFunctionTemplateSpecialization = true;
4969      } else {
4970        // "friend void foo<>(int);" is an implicit specialization decl.
4971        isFunctionTemplateSpecialization = true;
4972      }
4973    } else if (isFriend && isFunctionTemplateSpecialization) {
4974      // This combination is only possible in a recovery case;  the user
4975      // wrote something like:
4976      //   template <> friend void foo(int);
4977      // which we're recovering from as if the user had written:
4978      //   friend void foo<>(int);
4979      // Go ahead and fake up a template id.
4980      HasExplicitTemplateArgs = true;
4981        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4982      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4983    }
4984
4985    // If it's a friend (and only if it's a friend), it's possible
4986    // that either the specialized function type or the specialized
4987    // template is dependent, and therefore matching will fail.  In
4988    // this case, don't check the specialization yet.
4989    if (isFunctionTemplateSpecialization && isFriend &&
4990        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4991      assert(HasExplicitTemplateArgs &&
4992             "friend function specialization without template args");
4993      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4994                                                       Previous))
4995        NewFD->setInvalidDecl();
4996    } else if (isFunctionTemplateSpecialization) {
4997      if (CurContext->isDependentContext() && CurContext->isRecord()
4998          && !isFriend) {
4999        isDependentClassScopeExplicitSpecialization = true;
5000        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5001          diag::ext_function_specialization_in_class :
5002          diag::err_function_specialization_in_class)
5003          << NewFD->getDeclName();
5004      } else if (CheckFunctionTemplateSpecialization(NewFD,
5005                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5006                                                     Previous))
5007        NewFD->setInvalidDecl();
5008
5009      // C++ [dcl.stc]p1:
5010      //   A storage-class-specifier shall not be specified in an explicit
5011      //   specialization (14.7.3)
5012      if (SC != SC_None) {
5013        if (SC != NewFD->getStorageClass())
5014          Diag(NewFD->getLocation(),
5015               diag::err_explicit_specialization_inconsistent_storage_class)
5016            << SC
5017            << FixItHint::CreateRemoval(
5018                                      D.getDeclSpec().getStorageClassSpecLoc());
5019
5020        else
5021          Diag(NewFD->getLocation(),
5022               diag::ext_explicit_specialization_storage_class)
5023            << FixItHint::CreateRemoval(
5024                                      D.getDeclSpec().getStorageClassSpecLoc());
5025      }
5026
5027    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5028      if (CheckMemberSpecialization(NewFD, Previous))
5029          NewFD->setInvalidDecl();
5030    }
5031
5032    // Perform semantic checking on the function declaration.
5033    if (!isDependentClassScopeExplicitSpecialization) {
5034      if (NewFD->isInvalidDecl()) {
5035        // If this is a class member, mark the class invalid immediately.
5036        // This avoids some consistency errors later.
5037        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5038          methodDecl->getParent()->setInvalidDecl();
5039      } else {
5040        if (NewFD->isMain())
5041          CheckMain(NewFD, D.getDeclSpec());
5042        CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
5043                                 Redeclaration);
5044      }
5045    }
5046
5047    assert((NewFD->isInvalidDecl() || !Redeclaration ||
5048            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5049           "previous declaration set still overloaded");
5050
5051    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5052        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5053      NewFD->setInvalidDecl();
5054
5055    NamedDecl *PrincipalDecl = (FunctionTemplate
5056                                ? cast<NamedDecl>(FunctionTemplate)
5057                                : NewFD);
5058
5059    if (isFriend && Redeclaration) {
5060      AccessSpecifier Access = AS_public;
5061      if (!NewFD->isInvalidDecl())
5062        Access = NewFD->getPreviousDeclaration()->getAccess();
5063
5064      NewFD->setAccess(Access);
5065      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5066
5067      PrincipalDecl->setObjectOfFriendDecl(true);
5068    }
5069
5070    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5071        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5072      PrincipalDecl->setNonMemberOperator();
5073
5074    // If we have a function template, check the template parameter
5075    // list. This will check and merge default template arguments.
5076    if (FunctionTemplate) {
5077      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5078      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5079                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5080                            D.getDeclSpec().isFriendSpecified()
5081                              ? (IsFunctionDefinition
5082                                   ? TPC_FriendFunctionTemplateDefinition
5083                                   : TPC_FriendFunctionTemplate)
5084                              : (D.getCXXScopeSpec().isSet() &&
5085                                 DC && DC->isRecord() &&
5086                                 DC->isDependentContext())
5087                                  ? TPC_ClassTemplateMember
5088                                  : TPC_FunctionTemplate);
5089    }
5090
5091    if (NewFD->isInvalidDecl()) {
5092      // Ignore all the rest of this.
5093    } else if (!Redeclaration) {
5094      // Fake up an access specifier if it's supposed to be a class member.
5095      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5096        NewFD->setAccess(AS_public);
5097
5098      // Qualified decls generally require a previous declaration.
5099      if (D.getCXXScopeSpec().isSet()) {
5100        // ...with the major exception of templated-scope or
5101        // dependent-scope friend declarations.
5102
5103        // TODO: we currently also suppress this check in dependent
5104        // contexts because (1) the parameter depth will be off when
5105        // matching friend templates and (2) we might actually be
5106        // selecting a friend based on a dependent factor.  But there
5107        // are situations where these conditions don't apply and we
5108        // can actually do this check immediately.
5109        if (isFriend &&
5110            (TemplateParamLists.size() ||
5111             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5112             CurContext->isDependentContext())) {
5113          // ignore these
5114        } else {
5115          // The user tried to provide an out-of-line definition for a
5116          // function that is a member of a class or namespace, but there
5117          // was no such member function declared (C++ [class.mfct]p2,
5118          // C++ [namespace.memdef]p2). For example:
5119          //
5120          // class X {
5121          //   void f() const;
5122          // };
5123          //
5124          // void X::f() { } // ill-formed
5125          //
5126          // Complain about this problem, and attempt to suggest close
5127          // matches (e.g., those that differ only in cv-qualifiers and
5128          // whether the parameter types are references).
5129
5130          DiagnoseInvalidRedeclaration(*this, NewFD, false);
5131        }
5132
5133        // Unqualified local friend declarations are required to resolve
5134        // to something.
5135      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5136        DiagnoseInvalidRedeclaration(*this, NewFD, true);
5137      }
5138
5139    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
5140               !isFriend && !isFunctionTemplateSpecialization &&
5141               !isExplicitSpecialization) {
5142      // An out-of-line member function declaration must also be a
5143      // definition (C++ [dcl.meaning]p1).
5144      // Note that this is not the case for explicit specializations of
5145      // function templates or member functions of class templates, per
5146      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5147      // for compatibility with old SWIG code which likes to generate them.
5148      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5149        << D.getCXXScopeSpec().getRange();
5150    }
5151  }
5152
5153
5154  // Handle attributes. We need to have merged decls when handling attributes
5155  // (for example to check for conflicts, etc).
5156  // FIXME: This needs to happen before we merge declarations. Then,
5157  // let attribute merging cope with attribute conflicts.
5158  ProcessDeclAttributes(S, NewFD, D,
5159                        /*NonInheritable=*/false, /*Inheritable=*/true);
5160
5161  // attributes declared post-definition are currently ignored
5162  // FIXME: This should happen during attribute merging
5163  if (Redeclaration && Previous.isSingleResult()) {
5164    const FunctionDecl *Def;
5165    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5166    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5167      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5168      Diag(Def->getLocation(), diag::note_previous_definition);
5169    }
5170  }
5171
5172  AddKnownFunctionAttributes(NewFD);
5173
5174  if (NewFD->hasAttr<OverloadableAttr>() &&
5175      !NewFD->getType()->getAs<FunctionProtoType>()) {
5176    Diag(NewFD->getLocation(),
5177         diag::err_attribute_overloadable_no_prototype)
5178      << NewFD;
5179
5180    // Turn this into a variadic function with no parameters.
5181    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5182    FunctionProtoType::ExtProtoInfo EPI;
5183    EPI.Variadic = true;
5184    EPI.ExtInfo = FT->getExtInfo();
5185
5186    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5187    NewFD->setType(R);
5188  }
5189
5190  // If there's a #pragma GCC visibility in scope, and this isn't a class
5191  // member, set the visibility of this function.
5192  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5193    AddPushedVisibilityAttribute(NewFD);
5194
5195  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5196  // marking the function.
5197  AddCFAuditedAttribute(NewFD);
5198
5199  // If this is a locally-scoped extern C function, update the
5200  // map of such names.
5201  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5202      && !NewFD->isInvalidDecl())
5203    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5204
5205  // Set this FunctionDecl's range up to the right paren.
5206  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5207
5208  if (getLangOptions().CPlusPlus) {
5209    if (FunctionTemplate) {
5210      if (NewFD->isInvalidDecl())
5211        FunctionTemplate->setInvalidDecl();
5212      return FunctionTemplate;
5213    }
5214  }
5215
5216  MarkUnusedFileScopedDecl(NewFD);
5217
5218  if (getLangOptions().CUDA)
5219    if (IdentifierInfo *II = NewFD->getIdentifier())
5220      if (!NewFD->isInvalidDecl() &&
5221          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5222        if (II->isStr("cudaConfigureCall")) {
5223          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5224            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5225
5226          Context.setcudaConfigureCallDecl(NewFD);
5227        }
5228      }
5229
5230  // Here we have an function template explicit specialization at class scope.
5231  // The actually specialization will be postponed to template instatiation
5232  // time via the ClassScopeFunctionSpecializationDecl node.
5233  if (isDependentClassScopeExplicitSpecialization) {
5234    ClassScopeFunctionSpecializationDecl *NewSpec =
5235                         ClassScopeFunctionSpecializationDecl::Create(
5236                                Context, CurContext,  SourceLocation(),
5237                                cast<CXXMethodDecl>(NewFD));
5238    CurContext->addDecl(NewSpec);
5239    AddToScope = false;
5240  }
5241
5242  return NewFD;
5243}
5244
5245/// \brief Perform semantic checking of a new function declaration.
5246///
5247/// Performs semantic analysis of the new function declaration
5248/// NewFD. This routine performs all semantic checking that does not
5249/// require the actual declarator involved in the declaration, and is
5250/// used both for the declaration of functions as they are parsed
5251/// (called via ActOnDeclarator) and for the declaration of functions
5252/// that have been instantiated via C++ template instantiation (called
5253/// via InstantiateDecl).
5254///
5255/// \param IsExplicitSpecialiation whether this new function declaration is
5256/// an explicit specialization of the previous declaration.
5257///
5258/// This sets NewFD->isInvalidDecl() to true if there was an error.
5259void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5260                                    LookupResult &Previous,
5261                                    bool IsExplicitSpecialization,
5262                                    bool &Redeclaration) {
5263  assert(!NewFD->getResultType()->isVariablyModifiedType()
5264         && "Variably modified return types are not handled here");
5265
5266  // Check for a previous declaration of this name.
5267  if (Previous.empty() && NewFD->isExternC()) {
5268    // Since we did not find anything by this name and we're declaring
5269    // an extern "C" function, look for a non-visible extern "C"
5270    // declaration with the same name.
5271    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5272      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5273    if (Pos != LocallyScopedExternalDecls.end())
5274      Previous.addDecl(Pos->second);
5275  }
5276
5277  // Merge or overload the declaration with an existing declaration of
5278  // the same name, if appropriate.
5279  if (!Previous.empty()) {
5280    // Determine whether NewFD is an overload of PrevDecl or
5281    // a declaration that requires merging. If it's an overload,
5282    // there's no more work to do here; we'll just add the new
5283    // function to the scope.
5284
5285    NamedDecl *OldDecl = 0;
5286    if (!AllowOverloadingOfFunction(Previous, Context)) {
5287      Redeclaration = true;
5288      OldDecl = Previous.getFoundDecl();
5289    } else {
5290      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5291                            /*NewIsUsingDecl*/ false)) {
5292      case Ovl_Match:
5293        Redeclaration = true;
5294        break;
5295
5296      case Ovl_NonFunction:
5297        Redeclaration = true;
5298        break;
5299
5300      case Ovl_Overload:
5301        Redeclaration = false;
5302        break;
5303      }
5304
5305      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5306        // If a function name is overloadable in C, then every function
5307        // with that name must be marked "overloadable".
5308        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5309          << Redeclaration << NewFD;
5310        NamedDecl *OverloadedDecl = 0;
5311        if (Redeclaration)
5312          OverloadedDecl = OldDecl;
5313        else if (!Previous.empty())
5314          OverloadedDecl = Previous.getRepresentativeDecl();
5315        if (OverloadedDecl)
5316          Diag(OverloadedDecl->getLocation(),
5317               diag::note_attribute_overloadable_prev_overload);
5318        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5319                                                        Context));
5320      }
5321    }
5322
5323    if (Redeclaration) {
5324      // NewFD and OldDecl represent declarations that need to be
5325      // merged.
5326      if (MergeFunctionDecl(NewFD, OldDecl))
5327        return NewFD->setInvalidDecl();
5328
5329      Previous.clear();
5330      Previous.addDecl(OldDecl);
5331
5332      if (FunctionTemplateDecl *OldTemplateDecl
5333                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5334        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5335        FunctionTemplateDecl *NewTemplateDecl
5336          = NewFD->getDescribedFunctionTemplate();
5337        assert(NewTemplateDecl && "Template/non-template mismatch");
5338        if (CXXMethodDecl *Method
5339              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5340          Method->setAccess(OldTemplateDecl->getAccess());
5341          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5342        }
5343
5344        // If this is an explicit specialization of a member that is a function
5345        // template, mark it as a member specialization.
5346        if (IsExplicitSpecialization &&
5347            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5348          NewTemplateDecl->setMemberSpecialization();
5349          assert(OldTemplateDecl->isMemberSpecialization());
5350        }
5351
5352        if (OldTemplateDecl->isModulePrivate())
5353          NewTemplateDecl->setModulePrivate();
5354
5355      } else {
5356        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5357          NewFD->setAccess(OldDecl->getAccess());
5358        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5359      }
5360    }
5361  }
5362
5363  // Semantic checking for this function declaration (in isolation).
5364  if (getLangOptions().CPlusPlus) {
5365    // C++-specific checks.
5366    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5367      CheckConstructor(Constructor);
5368    } else if (CXXDestructorDecl *Destructor =
5369                dyn_cast<CXXDestructorDecl>(NewFD)) {
5370      CXXRecordDecl *Record = Destructor->getParent();
5371      QualType ClassType = Context.getTypeDeclType(Record);
5372
5373      // FIXME: Shouldn't we be able to perform this check even when the class
5374      // type is dependent? Both gcc and edg can handle that.
5375      if (!ClassType->isDependentType()) {
5376        DeclarationName Name
5377          = Context.DeclarationNames.getCXXDestructorName(
5378                                        Context.getCanonicalType(ClassType));
5379        if (NewFD->getDeclName() != Name) {
5380          Diag(NewFD->getLocation(), diag::err_destructor_name);
5381          return NewFD->setInvalidDecl();
5382        }
5383      }
5384    } else if (CXXConversionDecl *Conversion
5385               = dyn_cast<CXXConversionDecl>(NewFD)) {
5386      ActOnConversionDeclarator(Conversion);
5387    }
5388
5389    // Find any virtual functions that this function overrides.
5390    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5391      if (!Method->isFunctionTemplateSpecialization() &&
5392          !Method->getDescribedFunctionTemplate()) {
5393        if (AddOverriddenMethods(Method->getParent(), Method)) {
5394          // If the function was marked as "static", we have a problem.
5395          if (NewFD->getStorageClass() == SC_Static) {
5396            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5397              << NewFD->getDeclName();
5398            for (CXXMethodDecl::method_iterator
5399                      Overridden = Method->begin_overridden_methods(),
5400                   OverriddenEnd = Method->end_overridden_methods();
5401                 Overridden != OverriddenEnd;
5402                 ++Overridden) {
5403              Diag((*Overridden)->getLocation(),
5404                   diag::note_overridden_virtual_function);
5405            }
5406          }
5407        }
5408      }
5409    }
5410
5411    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5412    if (NewFD->isOverloadedOperator() &&
5413        CheckOverloadedOperatorDeclaration(NewFD))
5414      return NewFD->setInvalidDecl();
5415
5416    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5417    if (NewFD->getLiteralIdentifier() &&
5418        CheckLiteralOperatorDeclaration(NewFD))
5419      return NewFD->setInvalidDecl();
5420
5421    // In C++, check default arguments now that we have merged decls. Unless
5422    // the lexical context is the class, because in this case this is done
5423    // during delayed parsing anyway.
5424    if (!CurContext->isRecord())
5425      CheckCXXDefaultArguments(NewFD);
5426
5427    // If this function declares a builtin function, check the type of this
5428    // declaration against the expected type for the builtin.
5429    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5430      ASTContext::GetBuiltinTypeError Error;
5431      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5432      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5433        // The type of this function differs from the type of the builtin,
5434        // so forget about the builtin entirely.
5435        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5436      }
5437    }
5438  }
5439}
5440
5441void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5442  // C++ [basic.start.main]p3:  A program that declares main to be inline
5443  //   or static is ill-formed.
5444  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5445  //   shall not appear in a declaration of main.
5446  // static main is not an error under C99, but we should warn about it.
5447  if (FD->getStorageClass() == SC_Static)
5448    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5449         ? diag::err_static_main : diag::warn_static_main)
5450      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5451  if (FD->isInlineSpecified())
5452    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5453      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5454
5455  QualType T = FD->getType();
5456  assert(T->isFunctionType() && "function decl is not of function type");
5457  const FunctionType* FT = T->getAs<FunctionType>();
5458
5459  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5460    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5461    FD->setInvalidDecl(true);
5462  }
5463
5464  // Treat protoless main() as nullary.
5465  if (isa<FunctionNoProtoType>(FT)) return;
5466
5467  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5468  unsigned nparams = FTP->getNumArgs();
5469  assert(FD->getNumParams() == nparams);
5470
5471  bool HasExtraParameters = (nparams > 3);
5472
5473  // Darwin passes an undocumented fourth argument of type char**.  If
5474  // other platforms start sprouting these, the logic below will start
5475  // getting shifty.
5476  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5477    HasExtraParameters = false;
5478
5479  if (HasExtraParameters) {
5480    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5481    FD->setInvalidDecl(true);
5482    nparams = 3;
5483  }
5484
5485  // FIXME: a lot of the following diagnostics would be improved
5486  // if we had some location information about types.
5487
5488  QualType CharPP =
5489    Context.getPointerType(Context.getPointerType(Context.CharTy));
5490  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5491
5492  for (unsigned i = 0; i < nparams; ++i) {
5493    QualType AT = FTP->getArgType(i);
5494
5495    bool mismatch = true;
5496
5497    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5498      mismatch = false;
5499    else if (Expected[i] == CharPP) {
5500      // As an extension, the following forms are okay:
5501      //   char const **
5502      //   char const * const *
5503      //   char * const *
5504
5505      QualifierCollector qs;
5506      const PointerType* PT;
5507      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5508          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5509          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5510        qs.removeConst();
5511        mismatch = !qs.empty();
5512      }
5513    }
5514
5515    if (mismatch) {
5516      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5517      // TODO: suggest replacing given type with expected type
5518      FD->setInvalidDecl(true);
5519    }
5520  }
5521
5522  if (nparams == 1 && !FD->isInvalidDecl()) {
5523    Diag(FD->getLocation(), diag::warn_main_one_arg);
5524  }
5525
5526  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5527    Diag(FD->getLocation(), diag::err_main_template_decl);
5528    FD->setInvalidDecl();
5529  }
5530}
5531
5532bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5533  // FIXME: Need strict checking.  In C89, we need to check for
5534  // any assignment, increment, decrement, function-calls, or
5535  // commas outside of a sizeof.  In C99, it's the same list,
5536  // except that the aforementioned are allowed in unevaluated
5537  // expressions.  Everything else falls under the
5538  // "may accept other forms of constant expressions" exception.
5539  // (We never end up here for C++, so the constant expression
5540  // rules there don't matter.)
5541  if (Init->isConstantInitializer(Context, false))
5542    return false;
5543  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5544    << Init->getSourceRange();
5545  return true;
5546}
5547
5548namespace {
5549  // Visits an initialization expression to see if OrigDecl is evaluated in
5550  // its own initialization and throws a warning if it does.
5551  class SelfReferenceChecker
5552      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5553    Sema &S;
5554    Decl *OrigDecl;
5555    bool isRecordType;
5556    bool isPODType;
5557
5558  public:
5559    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5560
5561    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5562                                                    S(S), OrigDecl(OrigDecl) {
5563      isPODType = false;
5564      isRecordType = false;
5565      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5566        isPODType = VD->getType().isPODType(S.Context);
5567        isRecordType = VD->getType()->isRecordType();
5568      }
5569    }
5570
5571    void VisitExpr(Expr *E) {
5572      if (isa<ObjCMessageExpr>(*E)) return;
5573      if (isRecordType) {
5574        Expr *expr = E;
5575        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5576          ValueDecl *VD = ME->getMemberDecl();
5577          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5578          expr = ME->getBase();
5579        }
5580        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5581          HandleDeclRefExpr(DRE);
5582          return;
5583        }
5584      }
5585      Inherited::VisitExpr(E);
5586    }
5587
5588    void VisitMemberExpr(MemberExpr *E) {
5589      if (E->getType()->canDecayToPointerType()) return;
5590      if (isa<FieldDecl>(E->getMemberDecl()))
5591        if (DeclRefExpr *DRE
5592              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5593          HandleDeclRefExpr(DRE);
5594          return;
5595        }
5596      Inherited::VisitMemberExpr(E);
5597    }
5598
5599    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5600      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5601          (isRecordType && E->getCastKind() == CK_NoOp)) {
5602        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5603        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5604          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5605        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5606          HandleDeclRefExpr(DRE);
5607          return;
5608        }
5609      }
5610      Inherited::VisitImplicitCastExpr(E);
5611    }
5612
5613    void VisitUnaryOperator(UnaryOperator *E) {
5614      // For POD record types, addresses of its own members are well-defined.
5615      if (isRecordType && isPODType) return;
5616      Inherited::VisitUnaryOperator(E);
5617    }
5618
5619    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5620      Decl* ReferenceDecl = DRE->getDecl();
5621      if (OrigDecl != ReferenceDecl) return;
5622      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5623                          Sema::NotForRedeclaration);
5624      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5625                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5626                              << Result.getLookupName()
5627                              << OrigDecl->getLocation()
5628                              << DRE->getSourceRange());
5629    }
5630  };
5631}
5632
5633/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5634void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5635  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5636}
5637
5638/// AddInitializerToDecl - Adds the initializer Init to the
5639/// declaration dcl. If DirectInit is true, this is C++ direct
5640/// initialization rather than copy initialization.
5641void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5642                                bool DirectInit, bool TypeMayContainAuto) {
5643  // If there is no declaration, there was an error parsing it.  Just ignore
5644  // the initializer.
5645  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5646    return;
5647
5648  // Check for self-references within variable initializers.
5649  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5650    // Variables declared within a function/method body are handled
5651    // by a dataflow analysis.
5652    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5653      CheckSelfReference(RealDecl, Init);
5654  }
5655  else {
5656    CheckSelfReference(RealDecl, Init);
5657  }
5658
5659  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5660    // With declarators parsed the way they are, the parser cannot
5661    // distinguish between a normal initializer and a pure-specifier.
5662    // Thus this grotesque test.
5663    IntegerLiteral *IL;
5664    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5665        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5666      CheckPureMethod(Method, Init->getSourceRange());
5667    else {
5668      Diag(Method->getLocation(), diag::err_member_function_initialization)
5669        << Method->getDeclName() << Init->getSourceRange();
5670      Method->setInvalidDecl();
5671    }
5672    return;
5673  }
5674
5675  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5676  if (!VDecl) {
5677    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5678    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5679    RealDecl->setInvalidDecl();
5680    return;
5681  }
5682
5683  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5684  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5685    TypeSourceInfo *DeducedType = 0;
5686    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5687      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5688        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5689        << Init->getSourceRange();
5690    if (!DeducedType) {
5691      RealDecl->setInvalidDecl();
5692      return;
5693    }
5694    VDecl->setTypeSourceInfo(DeducedType);
5695    VDecl->setType(DeducedType->getType());
5696
5697    // In ARC, infer lifetime.
5698    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5699      VDecl->setInvalidDecl();
5700
5701    // If this is a redeclaration, check that the type we just deduced matches
5702    // the previously declared type.
5703    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5704      MergeVarDeclTypes(VDecl, Old);
5705  }
5706
5707
5708  // A definition must end up with a complete type, which means it must be
5709  // complete with the restriction that an array type might be completed by the
5710  // initializer; note that later code assumes this restriction.
5711  QualType BaseDeclType = VDecl->getType();
5712  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5713    BaseDeclType = Array->getElementType();
5714  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5715                          diag::err_typecheck_decl_incomplete_type)) {
5716    RealDecl->setInvalidDecl();
5717    return;
5718  }
5719
5720  // The variable can not have an abstract class type.
5721  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5722                             diag::err_abstract_type_in_decl,
5723                             AbstractVariableType))
5724    VDecl->setInvalidDecl();
5725
5726  const VarDecl *Def;
5727  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5728    Diag(VDecl->getLocation(), diag::err_redefinition)
5729      << VDecl->getDeclName();
5730    Diag(Def->getLocation(), diag::note_previous_definition);
5731    VDecl->setInvalidDecl();
5732    return;
5733  }
5734
5735  const VarDecl* PrevInit = 0;
5736  if (getLangOptions().CPlusPlus) {
5737    // C++ [class.static.data]p4
5738    //   If a static data member is of const integral or const
5739    //   enumeration type, its declaration in the class definition can
5740    //   specify a constant-initializer which shall be an integral
5741    //   constant expression (5.19). In that case, the member can appear
5742    //   in integral constant expressions. The member shall still be
5743    //   defined in a namespace scope if it is used in the program and the
5744    //   namespace scope definition shall not contain an initializer.
5745    //
5746    // We already performed a redefinition check above, but for static
5747    // data members we also need to check whether there was an in-class
5748    // declaration with an initializer.
5749    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5750      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5751      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5752      return;
5753    }
5754
5755    if (VDecl->hasLocalStorage())
5756      getCurFunction()->setHasBranchProtectedScope();
5757
5758    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5759      VDecl->setInvalidDecl();
5760      return;
5761    }
5762  }
5763
5764  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5765  // a kernel function cannot be initialized."
5766  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5767    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5768    VDecl->setInvalidDecl();
5769    return;
5770  }
5771
5772  // Capture the variable that is being initialized and the style of
5773  // initialization.
5774  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5775
5776  // FIXME: Poor source location information.
5777  InitializationKind Kind
5778    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5779                                                   Init->getLocStart(),
5780                                                   Init->getLocEnd())
5781                : InitializationKind::CreateCopy(VDecl->getLocation(),
5782                                                 Init->getLocStart());
5783
5784  // Get the decls type and save a reference for later, since
5785  // CheckInitializerTypes may change it.
5786  QualType DclT = VDecl->getType(), SavT = DclT;
5787  if (VDecl->isLocalVarDecl()) {
5788    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5789      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5790      VDecl->setInvalidDecl();
5791    } else if (!VDecl->isInvalidDecl()) {
5792      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5793      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5794                                                MultiExprArg(*this, &Init, 1),
5795                                                &DclT);
5796      if (Result.isInvalid()) {
5797        VDecl->setInvalidDecl();
5798        return;
5799      }
5800
5801      Init = Result.takeAs<Expr>();
5802
5803      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5804      // Don't check invalid declarations to avoid emitting useless diagnostics.
5805      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5806        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5807          CheckForConstantInitializer(Init, DclT);
5808      }
5809    }
5810  } else if (VDecl->isStaticDataMember() &&
5811             VDecl->getLexicalDeclContext()->isRecord()) {
5812    // This is an in-class initialization for a static data member, e.g.,
5813    //
5814    // struct S {
5815    //   static const int value = 17;
5816    // };
5817
5818    // Try to perform the initialization regardless.
5819    if (!VDecl->isInvalidDecl()) {
5820      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5821      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5822                                          MultiExprArg(*this, &Init, 1),
5823                                          &DclT);
5824      if (Result.isInvalid()) {
5825        VDecl->setInvalidDecl();
5826        return;
5827      }
5828
5829      Init = Result.takeAs<Expr>();
5830    }
5831
5832    // C++ [class.mem]p4:
5833    //   A member-declarator can contain a constant-initializer only
5834    //   if it declares a static member (9.4) of const integral or
5835    //   const enumeration type, see 9.4.2.
5836    //
5837    // C++0x [class.static.data]p3:
5838    //   If a non-volatile const static data member is of integral or
5839    //   enumeration type, its declaration in the class definition can
5840    //   specify a brace-or-equal-initializer in which every initalizer-clause
5841    //   that is an assignment-expression is a constant expression. A static
5842    //   data member of literal type can be declared in the class definition
5843    //   with the constexpr specifier; if so, its declaration shall specify a
5844    //   brace-or-equal-initializer in which every initializer-clause that is
5845    //   an assignment-expression is a constant expression.
5846    QualType T = VDecl->getType();
5847
5848    // Do nothing on dependent types.
5849    if (T->isDependentType()) {
5850
5851    // Allow any 'static constexpr' members, whether or not they are of literal
5852    // type. We separately check that the initializer is a constant expression,
5853    // which implicitly requires the member to be of literal type.
5854    } else if (VDecl->isConstexpr()) {
5855
5856    // Require constness.
5857    } else if (!T.isConstQualified()) {
5858      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5859        << Init->getSourceRange();
5860      VDecl->setInvalidDecl();
5861
5862    // We allow integer constant expressions in all cases.
5863    } else if (T->isIntegralOrEnumerationType()) {
5864      // Check whether the expression is a constant expression.
5865      SourceLocation Loc;
5866      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
5867        // In C++0x, a non-constexpr const static data member with an
5868        // in-class initializer cannot be volatile.
5869        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
5870      else if (Init->isValueDependent())
5871        ; // Nothing to check.
5872      else if (Init->isIntegerConstantExpr(Context, &Loc))
5873        ; // Ok, it's an ICE!
5874      else if (Init->isEvaluatable(Context)) {
5875        // If we can constant fold the initializer through heroics, accept it,
5876        // but report this as a use of an extension for -pedantic.
5877        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5878          << Init->getSourceRange();
5879      } else {
5880        // Otherwise, this is some crazy unknown case.  Report the issue at the
5881        // location provided by the isIntegerConstantExpr failed check.
5882        Diag(Loc, diag::err_in_class_initializer_non_constant)
5883          << Init->getSourceRange();
5884        VDecl->setInvalidDecl();
5885      }
5886
5887    // We allow floating-point constants as an extension.
5888    } else if (T->isFloatingType()) { // also permits complex, which is ok
5889      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5890        << T << Init->getSourceRange();
5891      if (getLangOptions().CPlusPlus0x)
5892        Diag(VDecl->getLocation(),
5893             diag::note_in_class_initializer_float_type_constexpr)
5894          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
5895
5896      if (!Init->isValueDependent() &&
5897          !Init->isConstantInitializer(Context, false)) {
5898        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5899          << Init->getSourceRange();
5900        VDecl->setInvalidDecl();
5901      }
5902
5903    // Suggest adding 'constexpr' in C++0x for literal types.
5904    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
5905      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
5906        << T << Init->getSourceRange()
5907        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
5908      VDecl->setConstexpr(true);
5909
5910    } else {
5911      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5912        << T << Init->getSourceRange();
5913      VDecl->setInvalidDecl();
5914    }
5915  } else if (VDecl->isFileVarDecl()) {
5916    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5917        (!getLangOptions().CPlusPlus ||
5918         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5919      Diag(VDecl->getLocation(), diag::warn_extern_init);
5920    if (!VDecl->isInvalidDecl()) {
5921      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5922      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5923                                                MultiExprArg(*this, &Init, 1),
5924                                                &DclT);
5925      if (Result.isInvalid()) {
5926        VDecl->setInvalidDecl();
5927        return;
5928      }
5929
5930      Init = Result.takeAs<Expr>();
5931    }
5932
5933    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5934    // Don't check invalid declarations to avoid emitting useless diagnostics.
5935    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5936      // C99 6.7.8p4. All file scoped initializers need to be constant.
5937      CheckForConstantInitializer(Init, DclT);
5938    }
5939  }
5940  // If the type changed, it means we had an incomplete type that was
5941  // completed by the initializer. For example:
5942  //   int ary[] = { 1, 3, 5 };
5943  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5944  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5945    VDecl->setType(DclT);
5946    Init->setType(DclT);
5947  }
5948
5949  // Check any implicit conversions within the expression.
5950  CheckImplicitConversions(Init, VDecl->getLocation());
5951
5952  if (!VDecl->isInvalidDecl())
5953    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5954
5955  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
5956      !VDecl->getType()->isDependentType() &&
5957      !Init->isTypeDependent() && !Init->isValueDependent() &&
5958      !Init->isConstantInitializer(Context,
5959                                   VDecl->getType()->isReferenceType())) {
5960    // FIXME: Improve this diagnostic to explain why the initializer is not
5961    // a constant expression.
5962    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
5963      << VDecl << Init->getSourceRange();
5964  }
5965
5966  Init = MaybeCreateExprWithCleanups(Init);
5967  // Attach the initializer to the decl.
5968  VDecl->setInit(Init);
5969
5970  CheckCompleteVariableDeclaration(VDecl);
5971}
5972
5973/// ActOnInitializerError - Given that there was an error parsing an
5974/// initializer for the given declaration, try to return to some form
5975/// of sanity.
5976void Sema::ActOnInitializerError(Decl *D) {
5977  // Our main concern here is re-establishing invariants like "a
5978  // variable's type is either dependent or complete".
5979  if (!D || D->isInvalidDecl()) return;
5980
5981  VarDecl *VD = dyn_cast<VarDecl>(D);
5982  if (!VD) return;
5983
5984  // Auto types are meaningless if we can't make sense of the initializer.
5985  if (ParsingInitForAutoVars.count(D)) {
5986    D->setInvalidDecl();
5987    return;
5988  }
5989
5990  QualType Ty = VD->getType();
5991  if (Ty->isDependentType()) return;
5992
5993  // Require a complete type.
5994  if (RequireCompleteType(VD->getLocation(),
5995                          Context.getBaseElementType(Ty),
5996                          diag::err_typecheck_decl_incomplete_type)) {
5997    VD->setInvalidDecl();
5998    return;
5999  }
6000
6001  // Require an abstract type.
6002  if (RequireNonAbstractType(VD->getLocation(), Ty,
6003                             diag::err_abstract_type_in_decl,
6004                             AbstractVariableType)) {
6005    VD->setInvalidDecl();
6006    return;
6007  }
6008
6009  // Don't bother complaining about constructors or destructors,
6010  // though.
6011}
6012
6013void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6014                                  bool TypeMayContainAuto) {
6015  // If there is no declaration, there was an error parsing it. Just ignore it.
6016  if (RealDecl == 0)
6017    return;
6018
6019  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6020    QualType Type = Var->getType();
6021
6022    // C++0x [dcl.spec.auto]p3
6023    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6024      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6025        << Var->getDeclName() << Type;
6026      Var->setInvalidDecl();
6027      return;
6028    }
6029
6030    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6031    // have an initializer.
6032    // C++0x [class.static.data]p3: A static data member can be declared with
6033    // the constexpr specifier; if so, its declaration shall specify
6034    // a brace-or-equal-initializer.
6035    if (Var->isConstexpr()) {
6036      // FIXME: Provide fix-its to convert the constexpr to const.
6037      if (Var->isStaticDataMember() && Var->getAnyInitializer()) {
6038        Diag(Var->getLocation(), diag::err_constexpr_initialized_static_member)
6039          << Var->getDeclName();
6040      } else {
6041        Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6042          << Var->getDeclName();
6043      }
6044      Var->setInvalidDecl();
6045      return;
6046    }
6047
6048    switch (Var->isThisDeclarationADefinition()) {
6049    case VarDecl::Definition:
6050      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6051        break;
6052
6053      // We have an out-of-line definition of a static data member
6054      // that has an in-class initializer, so we type-check this like
6055      // a declaration.
6056      //
6057      // Fall through
6058
6059    case VarDecl::DeclarationOnly:
6060      // It's only a declaration.
6061
6062      // Block scope. C99 6.7p7: If an identifier for an object is
6063      // declared with no linkage (C99 6.2.2p6), the type for the
6064      // object shall be complete.
6065      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6066          !Var->getLinkage() && !Var->isInvalidDecl() &&
6067          RequireCompleteType(Var->getLocation(), Type,
6068                              diag::err_typecheck_decl_incomplete_type))
6069        Var->setInvalidDecl();
6070
6071      // Make sure that the type is not abstract.
6072      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6073          RequireNonAbstractType(Var->getLocation(), Type,
6074                                 diag::err_abstract_type_in_decl,
6075                                 AbstractVariableType))
6076        Var->setInvalidDecl();
6077      return;
6078
6079    case VarDecl::TentativeDefinition:
6080      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6081      // object that has file scope without an initializer, and without a
6082      // storage-class specifier or with the storage-class specifier "static",
6083      // constitutes a tentative definition. Note: A tentative definition with
6084      // external linkage is valid (C99 6.2.2p5).
6085      if (!Var->isInvalidDecl()) {
6086        if (const IncompleteArrayType *ArrayT
6087                                    = Context.getAsIncompleteArrayType(Type)) {
6088          if (RequireCompleteType(Var->getLocation(),
6089                                  ArrayT->getElementType(),
6090                                  diag::err_illegal_decl_array_incomplete_type))
6091            Var->setInvalidDecl();
6092        } else if (Var->getStorageClass() == SC_Static) {
6093          // C99 6.9.2p3: If the declaration of an identifier for an object is
6094          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6095          // declared type shall not be an incomplete type.
6096          // NOTE: code such as the following
6097          //     static struct s;
6098          //     struct s { int a; };
6099          // is accepted by gcc. Hence here we issue a warning instead of
6100          // an error and we do not invalidate the static declaration.
6101          // NOTE: to avoid multiple warnings, only check the first declaration.
6102          if (Var->getPreviousDeclaration() == 0)
6103            RequireCompleteType(Var->getLocation(), Type,
6104                                diag::ext_typecheck_decl_incomplete_type);
6105        }
6106      }
6107
6108      // Record the tentative definition; we're done.
6109      if (!Var->isInvalidDecl())
6110        TentativeDefinitions.push_back(Var);
6111      return;
6112    }
6113
6114    // Provide a specific diagnostic for uninitialized variable
6115    // definitions with incomplete array type.
6116    if (Type->isIncompleteArrayType()) {
6117      Diag(Var->getLocation(),
6118           diag::err_typecheck_incomplete_array_needs_initializer);
6119      Var->setInvalidDecl();
6120      return;
6121    }
6122
6123    // Provide a specific diagnostic for uninitialized variable
6124    // definitions with reference type.
6125    if (Type->isReferenceType()) {
6126      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6127        << Var->getDeclName()
6128        << SourceRange(Var->getLocation(), Var->getLocation());
6129      Var->setInvalidDecl();
6130      return;
6131    }
6132
6133    // Do not attempt to type-check the default initializer for a
6134    // variable with dependent type.
6135    if (Type->isDependentType())
6136      return;
6137
6138    if (Var->isInvalidDecl())
6139      return;
6140
6141    if (RequireCompleteType(Var->getLocation(),
6142                            Context.getBaseElementType(Type),
6143                            diag::err_typecheck_decl_incomplete_type)) {
6144      Var->setInvalidDecl();
6145      return;
6146    }
6147
6148    // The variable can not have an abstract class type.
6149    if (RequireNonAbstractType(Var->getLocation(), Type,
6150                               diag::err_abstract_type_in_decl,
6151                               AbstractVariableType)) {
6152      Var->setInvalidDecl();
6153      return;
6154    }
6155
6156    // Check for jumps past the implicit initializer.  C++0x
6157    // clarifies that this applies to a "variable with automatic
6158    // storage duration", not a "local variable".
6159    // C++0x [stmt.dcl]p3
6160    //   A program that jumps from a point where a variable with automatic
6161    //   storage duration is not in scope to a point where it is in scope is
6162    //   ill-formed unless the variable has scalar type, class type with a
6163    //   trivial default constructor and a trivial destructor, a cv-qualified
6164    //   version of one of these types, or an array of one of the preceding
6165    //   types and is declared without an initializer.
6166    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6167      if (const RecordType *Record
6168            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6169        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6170        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6171            (getLangOptions().CPlusPlus0x &&
6172             (!CXXRecord->hasTrivialDefaultConstructor() ||
6173              !CXXRecord->hasTrivialDestructor())))
6174          getCurFunction()->setHasBranchProtectedScope();
6175      }
6176    }
6177
6178    // C++03 [dcl.init]p9:
6179    //   If no initializer is specified for an object, and the
6180    //   object is of (possibly cv-qualified) non-POD class type (or
6181    //   array thereof), the object shall be default-initialized; if
6182    //   the object is of const-qualified type, the underlying class
6183    //   type shall have a user-declared default
6184    //   constructor. Otherwise, if no initializer is specified for
6185    //   a non- static object, the object and its subobjects, if
6186    //   any, have an indeterminate initial value); if the object
6187    //   or any of its subobjects are of const-qualified type, the
6188    //   program is ill-formed.
6189    // C++0x [dcl.init]p11:
6190    //   If no initializer is specified for an object, the object is
6191    //   default-initialized; [...].
6192    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6193    InitializationKind Kind
6194      = InitializationKind::CreateDefault(Var->getLocation());
6195
6196    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6197    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6198                                      MultiExprArg(*this, 0, 0));
6199    if (Init.isInvalid())
6200      Var->setInvalidDecl();
6201    else if (Init.get())
6202      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6203
6204    CheckCompleteVariableDeclaration(Var);
6205  }
6206}
6207
6208void Sema::ActOnCXXForRangeDecl(Decl *D) {
6209  VarDecl *VD = dyn_cast<VarDecl>(D);
6210  if (!VD) {
6211    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6212    D->setInvalidDecl();
6213    return;
6214  }
6215
6216  VD->setCXXForRangeDecl(true);
6217
6218  // for-range-declaration cannot be given a storage class specifier.
6219  int Error = -1;
6220  switch (VD->getStorageClassAsWritten()) {
6221  case SC_None:
6222    break;
6223  case SC_Extern:
6224    Error = 0;
6225    break;
6226  case SC_Static:
6227    Error = 1;
6228    break;
6229  case SC_PrivateExtern:
6230    Error = 2;
6231    break;
6232  case SC_Auto:
6233    Error = 3;
6234    break;
6235  case SC_Register:
6236    Error = 4;
6237    break;
6238  case SC_OpenCLWorkGroupLocal:
6239    llvm_unreachable("Unexpected storage class");
6240  }
6241  if (VD->isConstexpr())
6242    Error = 5;
6243  if (Error != -1) {
6244    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6245      << VD->getDeclName() << Error;
6246    D->setInvalidDecl();
6247  }
6248}
6249
6250void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6251  if (var->isInvalidDecl()) return;
6252
6253  // In ARC, don't allow jumps past the implicit initialization of a
6254  // local retaining variable.
6255  if (getLangOptions().ObjCAutoRefCount &&
6256      var->hasLocalStorage()) {
6257    switch (var->getType().getObjCLifetime()) {
6258    case Qualifiers::OCL_None:
6259    case Qualifiers::OCL_ExplicitNone:
6260    case Qualifiers::OCL_Autoreleasing:
6261      break;
6262
6263    case Qualifiers::OCL_Weak:
6264    case Qualifiers::OCL_Strong:
6265      getCurFunction()->setHasBranchProtectedScope();
6266      break;
6267    }
6268  }
6269
6270  // All the following checks are C++ only.
6271  if (!getLangOptions().CPlusPlus) return;
6272
6273  QualType baseType = Context.getBaseElementType(var->getType());
6274  if (baseType->isDependentType()) return;
6275
6276  // __block variables might require us to capture a copy-initializer.
6277  if (var->hasAttr<BlocksAttr>()) {
6278    // It's currently invalid to ever have a __block variable with an
6279    // array type; should we diagnose that here?
6280
6281    // Regardless, we don't want to ignore array nesting when
6282    // constructing this copy.
6283    QualType type = var->getType();
6284
6285    if (type->isStructureOrClassType()) {
6286      SourceLocation poi = var->getLocation();
6287      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6288      ExprResult result =
6289        PerformCopyInitialization(
6290                        InitializedEntity::InitializeBlock(poi, type, false),
6291                                  poi, Owned(varRef));
6292      if (!result.isInvalid()) {
6293        result = MaybeCreateExprWithCleanups(result);
6294        Expr *init = result.takeAs<Expr>();
6295        Context.setBlockVarCopyInits(var, init);
6296      }
6297    }
6298  }
6299
6300  // Check for global constructors.
6301  if (!var->getDeclContext()->isDependentContext() &&
6302      var->hasGlobalStorage() &&
6303      !var->isStaticLocal() &&
6304      var->getInit() &&
6305      !var->getInit()->isConstantInitializer(Context,
6306                                             baseType->isReferenceType()))
6307    Diag(var->getLocation(), diag::warn_global_constructor)
6308      << var->getInit()->getSourceRange();
6309
6310  // Require the destructor.
6311  if (const RecordType *recordType = baseType->getAs<RecordType>())
6312    FinalizeVarWithDestructor(var, recordType);
6313}
6314
6315/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6316/// any semantic actions necessary after any initializer has been attached.
6317void
6318Sema::FinalizeDeclaration(Decl *ThisDecl) {
6319  // Note that we are no longer parsing the initializer for this declaration.
6320  ParsingInitForAutoVars.erase(ThisDecl);
6321}
6322
6323Sema::DeclGroupPtrTy
6324Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6325                              Decl **Group, unsigned NumDecls) {
6326  SmallVector<Decl*, 8> Decls;
6327
6328  if (DS.isTypeSpecOwned())
6329    Decls.push_back(DS.getRepAsDecl());
6330
6331  for (unsigned i = 0; i != NumDecls; ++i)
6332    if (Decl *D = Group[i])
6333      Decls.push_back(D);
6334
6335  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6336                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6337}
6338
6339/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6340/// group, performing any necessary semantic checking.
6341Sema::DeclGroupPtrTy
6342Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6343                           bool TypeMayContainAuto) {
6344  // C++0x [dcl.spec.auto]p7:
6345  //   If the type deduced for the template parameter U is not the same in each
6346  //   deduction, the program is ill-formed.
6347  // FIXME: When initializer-list support is added, a distinction is needed
6348  // between the deduced type U and the deduced type which 'auto' stands for.
6349  //   auto a = 0, b = { 1, 2, 3 };
6350  // is legal because the deduced type U is 'int' in both cases.
6351  if (TypeMayContainAuto && NumDecls > 1) {
6352    QualType Deduced;
6353    CanQualType DeducedCanon;
6354    VarDecl *DeducedDecl = 0;
6355    for (unsigned i = 0; i != NumDecls; ++i) {
6356      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6357        AutoType *AT = D->getType()->getContainedAutoType();
6358        // Don't reissue diagnostics when instantiating a template.
6359        if (AT && D->isInvalidDecl())
6360          break;
6361        if (AT && AT->isDeduced()) {
6362          QualType U = AT->getDeducedType();
6363          CanQualType UCanon = Context.getCanonicalType(U);
6364          if (Deduced.isNull()) {
6365            Deduced = U;
6366            DeducedCanon = UCanon;
6367            DeducedDecl = D;
6368          } else if (DeducedCanon != UCanon) {
6369            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6370                 diag::err_auto_different_deductions)
6371              << Deduced << DeducedDecl->getDeclName()
6372              << U << D->getDeclName()
6373              << DeducedDecl->getInit()->getSourceRange()
6374              << D->getInit()->getSourceRange();
6375            D->setInvalidDecl();
6376            break;
6377          }
6378        }
6379      }
6380    }
6381  }
6382
6383  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6384}
6385
6386
6387/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6388/// to introduce parameters into function prototype scope.
6389Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6390  const DeclSpec &DS = D.getDeclSpec();
6391
6392  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6393  VarDecl::StorageClass StorageClass = SC_None;
6394  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6395  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6396    StorageClass = SC_Register;
6397    StorageClassAsWritten = SC_Register;
6398  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6399    Diag(DS.getStorageClassSpecLoc(),
6400         diag::err_invalid_storage_class_in_func_decl);
6401    D.getMutableDeclSpec().ClearStorageClassSpecs();
6402  }
6403
6404  if (D.getDeclSpec().isThreadSpecified())
6405    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6406  if (D.getDeclSpec().isConstexprSpecified())
6407    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6408      << 0;
6409
6410  DiagnoseFunctionSpecifiers(D);
6411
6412  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6413  QualType parmDeclType = TInfo->getType();
6414
6415  if (getLangOptions().CPlusPlus) {
6416    // Check that there are no default arguments inside the type of this
6417    // parameter.
6418    CheckExtraCXXDefaultArguments(D);
6419
6420    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6421    if (D.getCXXScopeSpec().isSet()) {
6422      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6423        << D.getCXXScopeSpec().getRange();
6424      D.getCXXScopeSpec().clear();
6425    }
6426  }
6427
6428  // Ensure we have a valid name
6429  IdentifierInfo *II = 0;
6430  if (D.hasName()) {
6431    II = D.getIdentifier();
6432    if (!II) {
6433      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6434        << GetNameForDeclarator(D).getName().getAsString();
6435      D.setInvalidType(true);
6436    }
6437  }
6438
6439  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6440  if (II) {
6441    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6442                   ForRedeclaration);
6443    LookupName(R, S);
6444    if (R.isSingleResult()) {
6445      NamedDecl *PrevDecl = R.getFoundDecl();
6446      if (PrevDecl->isTemplateParameter()) {
6447        // Maybe we will complain about the shadowed template parameter.
6448        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6449        // Just pretend that we didn't see the previous declaration.
6450        PrevDecl = 0;
6451      } else if (S->isDeclScope(PrevDecl)) {
6452        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6453        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6454
6455        // Recover by removing the name
6456        II = 0;
6457        D.SetIdentifier(0, D.getIdentifierLoc());
6458        D.setInvalidType(true);
6459      }
6460    }
6461  }
6462
6463  // Temporarily put parameter variables in the translation unit, not
6464  // the enclosing context.  This prevents them from accidentally
6465  // looking like class members in C++.
6466  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6467                                    D.getSourceRange().getBegin(),
6468                                    D.getIdentifierLoc(), II,
6469                                    parmDeclType, TInfo,
6470                                    StorageClass, StorageClassAsWritten);
6471
6472  if (D.isInvalidType())
6473    New->setInvalidDecl();
6474
6475  assert(S->isFunctionPrototypeScope());
6476  assert(S->getFunctionPrototypeDepth() >= 1);
6477  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6478                    S->getNextFunctionPrototypeIndex());
6479
6480  // Add the parameter declaration into this scope.
6481  S->AddDecl(New);
6482  if (II)
6483    IdResolver.AddDecl(New);
6484
6485  ProcessDeclAttributes(S, New, D);
6486
6487  if (D.getDeclSpec().isModulePrivateSpecified())
6488    Diag(New->getLocation(), diag::err_module_private_local)
6489      << 1 << New->getDeclName()
6490      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6491      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6492
6493  if (New->hasAttr<BlocksAttr>()) {
6494    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6495  }
6496  return New;
6497}
6498
6499/// \brief Synthesizes a variable for a parameter arising from a
6500/// typedef.
6501ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6502                                              SourceLocation Loc,
6503                                              QualType T) {
6504  /* FIXME: setting StartLoc == Loc.
6505     Would it be worth to modify callers so as to provide proper source
6506     location for the unnamed parameters, embedding the parameter's type? */
6507  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6508                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6509                                           SC_None, SC_None, 0);
6510  Param->setImplicit();
6511  return Param;
6512}
6513
6514void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6515                                    ParmVarDecl * const *ParamEnd) {
6516  // Don't diagnose unused-parameter errors in template instantiations; we
6517  // will already have done so in the template itself.
6518  if (!ActiveTemplateInstantiations.empty())
6519    return;
6520
6521  for (; Param != ParamEnd; ++Param) {
6522    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6523        !(*Param)->hasAttr<UnusedAttr>()) {
6524      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6525        << (*Param)->getDeclName();
6526    }
6527  }
6528}
6529
6530void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6531                                                  ParmVarDecl * const *ParamEnd,
6532                                                  QualType ReturnTy,
6533                                                  NamedDecl *D) {
6534  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6535    return;
6536
6537  // Warn if the return value is pass-by-value and larger than the specified
6538  // threshold.
6539  if (ReturnTy.isPODType(Context)) {
6540    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6541    if (Size > LangOpts.NumLargeByValueCopy)
6542      Diag(D->getLocation(), diag::warn_return_value_size)
6543          << D->getDeclName() << Size;
6544  }
6545
6546  // Warn if any parameter is pass-by-value and larger than the specified
6547  // threshold.
6548  for (; Param != ParamEnd; ++Param) {
6549    QualType T = (*Param)->getType();
6550    if (!T.isPODType(Context))
6551      continue;
6552    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6553    if (Size > LangOpts.NumLargeByValueCopy)
6554      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6555          << (*Param)->getDeclName() << Size;
6556  }
6557}
6558
6559ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6560                                  SourceLocation NameLoc, IdentifierInfo *Name,
6561                                  QualType T, TypeSourceInfo *TSInfo,
6562                                  VarDecl::StorageClass StorageClass,
6563                                  VarDecl::StorageClass StorageClassAsWritten) {
6564  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6565  if (getLangOptions().ObjCAutoRefCount &&
6566      T.getObjCLifetime() == Qualifiers::OCL_None &&
6567      T->isObjCLifetimeType()) {
6568
6569    Qualifiers::ObjCLifetime lifetime;
6570
6571    // Special cases for arrays:
6572    //   - if it's const, use __unsafe_unretained
6573    //   - otherwise, it's an error
6574    if (T->isArrayType()) {
6575      if (!T.isConstQualified()) {
6576        DelayedDiagnostics.add(
6577            sema::DelayedDiagnostic::makeForbiddenType(
6578            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6579      }
6580      lifetime = Qualifiers::OCL_ExplicitNone;
6581    } else {
6582      lifetime = T->getObjCARCImplicitLifetime();
6583    }
6584    T = Context.getLifetimeQualifiedType(T, lifetime);
6585  }
6586
6587  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6588                                         Context.getAdjustedParameterType(T),
6589                                         TSInfo,
6590                                         StorageClass, StorageClassAsWritten,
6591                                         0);
6592
6593  // Parameters can not be abstract class types.
6594  // For record types, this is done by the AbstractClassUsageDiagnoser once
6595  // the class has been completely parsed.
6596  if (!CurContext->isRecord() &&
6597      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6598                             AbstractParamType))
6599    New->setInvalidDecl();
6600
6601  // Parameter declarators cannot be interface types. All ObjC objects are
6602  // passed by reference.
6603  if (T->isObjCObjectType()) {
6604    Diag(NameLoc,
6605         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6606      << FixItHint::CreateInsertion(NameLoc, "*");
6607    T = Context.getObjCObjectPointerType(T);
6608    New->setType(T);
6609  }
6610
6611  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6612  // duration shall not be qualified by an address-space qualifier."
6613  // Since all parameters have automatic store duration, they can not have
6614  // an address space.
6615  if (T.getAddressSpace() != 0) {
6616    Diag(NameLoc, diag::err_arg_with_address_space);
6617    New->setInvalidDecl();
6618  }
6619
6620  return New;
6621}
6622
6623void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6624                                           SourceLocation LocAfterDecls) {
6625  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6626
6627  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6628  // for a K&R function.
6629  if (!FTI.hasPrototype) {
6630    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6631      --i;
6632      if (FTI.ArgInfo[i].Param == 0) {
6633        llvm::SmallString<256> Code;
6634        llvm::raw_svector_ostream(Code) << "  int "
6635                                        << FTI.ArgInfo[i].Ident->getName()
6636                                        << ";\n";
6637        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6638          << FTI.ArgInfo[i].Ident
6639          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6640
6641        // Implicitly declare the argument as type 'int' for lack of a better
6642        // type.
6643        AttributeFactory attrs;
6644        DeclSpec DS(attrs);
6645        const char* PrevSpec; // unused
6646        unsigned DiagID; // unused
6647        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6648                           PrevSpec, DiagID);
6649        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6650        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6651        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6652      }
6653    }
6654  }
6655}
6656
6657Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6658                                         Declarator &D) {
6659  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6660  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6661  Scope *ParentScope = FnBodyScope->getParent();
6662
6663  Decl *DP = HandleDeclarator(ParentScope, D,
6664                              MultiTemplateParamsArg(*this),
6665                              /*IsFunctionDefinition=*/true);
6666  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6667}
6668
6669static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6670  // Don't warn about invalid declarations.
6671  if (FD->isInvalidDecl())
6672    return false;
6673
6674  // Or declarations that aren't global.
6675  if (!FD->isGlobal())
6676    return false;
6677
6678  // Don't warn about C++ member functions.
6679  if (isa<CXXMethodDecl>(FD))
6680    return false;
6681
6682  // Don't warn about 'main'.
6683  if (FD->isMain())
6684    return false;
6685
6686  // Don't warn about inline functions.
6687  if (FD->isInlined())
6688    return false;
6689
6690  // Don't warn about function templates.
6691  if (FD->getDescribedFunctionTemplate())
6692    return false;
6693
6694  // Don't warn about function template specializations.
6695  if (FD->isFunctionTemplateSpecialization())
6696    return false;
6697
6698  bool MissingPrototype = true;
6699  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6700       Prev; Prev = Prev->getPreviousDeclaration()) {
6701    // Ignore any declarations that occur in function or method
6702    // scope, because they aren't visible from the header.
6703    if (Prev->getDeclContext()->isFunctionOrMethod())
6704      continue;
6705
6706    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6707    break;
6708  }
6709
6710  return MissingPrototype;
6711}
6712
6713void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6714  // Don't complain if we're in GNU89 mode and the previous definition
6715  // was an extern inline function.
6716  const FunctionDecl *Definition;
6717  if (FD->isDefined(Definition) &&
6718      !canRedefineFunction(Definition, getLangOptions())) {
6719    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6720        Definition->getStorageClass() == SC_Extern)
6721      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6722        << FD->getDeclName() << getLangOptions().CPlusPlus;
6723    else
6724      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6725    Diag(Definition->getLocation(), diag::note_previous_definition);
6726  }
6727}
6728
6729Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6730  // Clear the last template instantiation error context.
6731  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6732
6733  if (!D)
6734    return D;
6735  FunctionDecl *FD = 0;
6736
6737  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6738    FD = FunTmpl->getTemplatedDecl();
6739  else
6740    FD = cast<FunctionDecl>(D);
6741
6742  // Enter a new function scope
6743  PushFunctionScope();
6744
6745  // See if this is a redefinition.
6746  if (!FD->isLateTemplateParsed())
6747    CheckForFunctionRedefinition(FD);
6748
6749  // Builtin functions cannot be defined.
6750  if (unsigned BuiltinID = FD->getBuiltinID()) {
6751    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6752      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6753      FD->setInvalidDecl();
6754    }
6755  }
6756
6757  // The return type of a function definition must be complete
6758  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6759  QualType ResultType = FD->getResultType();
6760  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6761      !FD->isInvalidDecl() &&
6762      RequireCompleteType(FD->getLocation(), ResultType,
6763                          diag::err_func_def_incomplete_result))
6764    FD->setInvalidDecl();
6765
6766  // GNU warning -Wmissing-prototypes:
6767  //   Warn if a global function is defined without a previous
6768  //   prototype declaration. This warning is issued even if the
6769  //   definition itself provides a prototype. The aim is to detect
6770  //   global functions that fail to be declared in header files.
6771  if (ShouldWarnAboutMissingPrototype(FD))
6772    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6773
6774  if (FnBodyScope)
6775    PushDeclContext(FnBodyScope, FD);
6776
6777  // Check the validity of our function parameters
6778  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6779                           /*CheckParameterNames=*/true);
6780
6781  // Introduce our parameters into the function scope
6782  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6783    ParmVarDecl *Param = FD->getParamDecl(p);
6784    Param->setOwningFunction(FD);
6785
6786    // If this has an identifier, add it to the scope stack.
6787    if (Param->getIdentifier() && FnBodyScope) {
6788      CheckShadow(FnBodyScope, Param);
6789
6790      PushOnScopeChains(Param, FnBodyScope);
6791    }
6792  }
6793
6794  // Checking attributes of current function definition
6795  // dllimport attribute.
6796  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6797  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6798    // dllimport attribute cannot be directly applied to definition.
6799    // Microsoft accepts dllimport for functions defined within class scope.
6800    if (!DA->isInherited() &&
6801        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6802      Diag(FD->getLocation(),
6803           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6804        << "dllimport";
6805      FD->setInvalidDecl();
6806      return FD;
6807    }
6808
6809    // Visual C++ appears to not think this is an issue, so only issue
6810    // a warning when Microsoft extensions are disabled.
6811    if (!LangOpts.MicrosoftExt) {
6812      // If a symbol previously declared dllimport is later defined, the
6813      // attribute is ignored in subsequent references, and a warning is
6814      // emitted.
6815      Diag(FD->getLocation(),
6816           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6817        << FD->getName() << "dllimport";
6818    }
6819  }
6820  return FD;
6821}
6822
6823/// \brief Given the set of return statements within a function body,
6824/// compute the variables that are subject to the named return value
6825/// optimization.
6826///
6827/// Each of the variables that is subject to the named return value
6828/// optimization will be marked as NRVO variables in the AST, and any
6829/// return statement that has a marked NRVO variable as its NRVO candidate can
6830/// use the named return value optimization.
6831///
6832/// This function applies a very simplistic algorithm for NRVO: if every return
6833/// statement in the function has the same NRVO candidate, that candidate is
6834/// the NRVO variable.
6835///
6836/// FIXME: Employ a smarter algorithm that accounts for multiple return
6837/// statements and the lifetimes of the NRVO candidates. We should be able to
6838/// find a maximal set of NRVO variables.
6839void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6840  ReturnStmt **Returns = Scope->Returns.data();
6841
6842  const VarDecl *NRVOCandidate = 0;
6843  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6844    if (!Returns[I]->getNRVOCandidate())
6845      return;
6846
6847    if (!NRVOCandidate)
6848      NRVOCandidate = Returns[I]->getNRVOCandidate();
6849    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6850      return;
6851  }
6852
6853  if (NRVOCandidate)
6854    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6855}
6856
6857Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6858  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6859}
6860
6861Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6862                                    bool IsInstantiation) {
6863  FunctionDecl *FD = 0;
6864  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6865  if (FunTmpl)
6866    FD = FunTmpl->getTemplatedDecl();
6867  else
6868    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6869
6870  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6871  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6872
6873  if (FD) {
6874    FD->setBody(Body);
6875    if (FD->isMain()) {
6876      // C and C++ allow for main to automagically return 0.
6877      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6878      FD->setHasImplicitReturnZero(true);
6879      WP.disableCheckFallThrough();
6880    } else if (FD->hasAttr<NakedAttr>()) {
6881      // If the function is marked 'naked', don't complain about missing return
6882      // statements.
6883      WP.disableCheckFallThrough();
6884    }
6885
6886    // MSVC permits the use of pure specifier (=0) on function definition,
6887    // defined at class scope, warn about this non standard construct.
6888    if (getLangOptions().MicrosoftExt && FD->isPure())
6889      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6890
6891    if (!FD->isInvalidDecl()) {
6892      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6893      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6894                                             FD->getResultType(), FD);
6895
6896      // If this is a constructor, we need a vtable.
6897      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6898        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6899
6900      computeNRVO(Body, getCurFunction());
6901    }
6902
6903    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6904  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6905    assert(MD == getCurMethodDecl() && "Method parsing confused");
6906    MD->setBody(Body);
6907    if (Body)
6908      MD->setEndLoc(Body->getLocEnd());
6909    if (!MD->isInvalidDecl()) {
6910      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6911      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6912                                             MD->getResultType(), MD);
6913
6914      if (Body)
6915        computeNRVO(Body, getCurFunction());
6916    }
6917    if (ObjCShouldCallSuperDealloc) {
6918      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
6919      ObjCShouldCallSuperDealloc = false;
6920    }
6921    if (ObjCShouldCallSuperFinalize) {
6922      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
6923      ObjCShouldCallSuperFinalize = false;
6924    }
6925  } else {
6926    return 0;
6927  }
6928
6929  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
6930         "ObjC methods, which should have been handled in the block above.");
6931  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
6932         "ObjC methods, which should have been handled in the block above.");
6933
6934  // Verify and clean out per-function state.
6935  if (Body) {
6936    // C++ constructors that have function-try-blocks can't have return
6937    // statements in the handlers of that block. (C++ [except.handle]p14)
6938    // Verify this.
6939    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6940      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6941
6942    // Verify that gotos and switch cases don't jump into scopes illegally.
6943    if (getCurFunction()->NeedsScopeChecking() &&
6944        !dcl->isInvalidDecl() &&
6945        !hasAnyUnrecoverableErrorsInThisFunction())
6946      DiagnoseInvalidJumps(Body);
6947
6948    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6949      if (!Destructor->getParent()->isDependentType())
6950        CheckDestructor(Destructor);
6951
6952      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6953                                             Destructor->getParent());
6954    }
6955
6956    // If any errors have occurred, clear out any temporaries that may have
6957    // been leftover. This ensures that these temporaries won't be picked up for
6958    // deletion in some later function.
6959    if (PP.getDiagnostics().hasErrorOccurred() ||
6960        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6961      ExprTemporaries.clear();
6962      ExprNeedsCleanups = false;
6963    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6964      // Since the body is valid, issue any analysis-based warnings that are
6965      // enabled.
6966      ActivePolicy = &WP;
6967    }
6968
6969    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
6970        !CheckConstexprFunctionBody(FD, Body))
6971      FD->setInvalidDecl();
6972
6973    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6974    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6975  }
6976
6977  if (!IsInstantiation)
6978    PopDeclContext();
6979
6980  PopFunctionOrBlockScope(ActivePolicy, dcl);
6981
6982  // If any errors have occurred, clear out any temporaries that may have
6983  // been leftover. This ensures that these temporaries won't be picked up for
6984  // deletion in some later function.
6985  if (getDiagnostics().hasErrorOccurred()) {
6986    ExprTemporaries.clear();
6987    ExprNeedsCleanups = false;
6988  }
6989
6990  return dcl;
6991}
6992
6993
6994/// When we finish delayed parsing of an attribute, we must attach it to the
6995/// relevant Decl.
6996void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
6997                                       ParsedAttributes &Attrs) {
6998  ProcessDeclAttributeList(S, D, Attrs.getList());
6999}
7000
7001
7002/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7003/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7004NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7005                                          IdentifierInfo &II, Scope *S) {
7006  // Before we produce a declaration for an implicitly defined
7007  // function, see whether there was a locally-scoped declaration of
7008  // this name as a function or variable. If so, use that
7009  // (non-visible) declaration, and complain about it.
7010  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7011    = findLocallyScopedExternalDecl(&II);
7012  if (Pos != LocallyScopedExternalDecls.end()) {
7013    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7014    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7015    return Pos->second;
7016  }
7017
7018  // Extension in C99.  Legal in C90, but warn about it.
7019  if (II.getName().startswith("__builtin_"))
7020    Diag(Loc, diag::warn_builtin_unknown) << &II;
7021  else if (getLangOptions().C99)
7022    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7023  else
7024    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7025
7026  // Set a Declarator for the implicit definition: int foo();
7027  const char *Dummy;
7028  AttributeFactory attrFactory;
7029  DeclSpec DS(attrFactory);
7030  unsigned DiagID;
7031  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7032  (void)Error; // Silence warning.
7033  assert(!Error && "Error setting up implicit decl!");
7034  Declarator D(DS, Declarator::BlockContext);
7035  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7036                                             0, 0, true, SourceLocation(),
7037                                             SourceLocation(),
7038                                             EST_None, SourceLocation(),
7039                                             0, 0, 0, 0, Loc, Loc, D),
7040                DS.getAttributes(),
7041                SourceLocation());
7042  D.SetIdentifier(&II, Loc);
7043
7044  // Insert this function into translation-unit scope.
7045
7046  DeclContext *PrevDC = CurContext;
7047  CurContext = Context.getTranslationUnitDecl();
7048
7049  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7050  FD->setImplicit();
7051
7052  CurContext = PrevDC;
7053
7054  AddKnownFunctionAttributes(FD);
7055
7056  return FD;
7057}
7058
7059/// \brief Adds any function attributes that we know a priori based on
7060/// the declaration of this function.
7061///
7062/// These attributes can apply both to implicitly-declared builtins
7063/// (like __builtin___printf_chk) or to library-declared functions
7064/// like NSLog or printf.
7065///
7066/// We need to check for duplicate attributes both here and where user-written
7067/// attributes are applied to declarations.
7068void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7069  if (FD->isInvalidDecl())
7070    return;
7071
7072  // If this is a built-in function, map its builtin attributes to
7073  // actual attributes.
7074  if (unsigned BuiltinID = FD->getBuiltinID()) {
7075    // Handle printf-formatting attributes.
7076    unsigned FormatIdx;
7077    bool HasVAListArg;
7078    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7079      if (!FD->getAttr<FormatAttr>())
7080        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7081                                                "printf", FormatIdx+1,
7082                                               HasVAListArg ? 0 : FormatIdx+2));
7083    }
7084    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7085                                             HasVAListArg)) {
7086     if (!FD->getAttr<FormatAttr>())
7087       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7088                                              "scanf", FormatIdx+1,
7089                                              HasVAListArg ? 0 : FormatIdx+2));
7090    }
7091
7092    // Mark const if we don't care about errno and that is the only
7093    // thing preventing the function from being const. This allows
7094    // IRgen to use LLVM intrinsics for such functions.
7095    if (!getLangOptions().MathErrno &&
7096        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7097      if (!FD->getAttr<ConstAttr>())
7098        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7099    }
7100
7101    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7102      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7103    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7104      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7105  }
7106
7107  IdentifierInfo *Name = FD->getIdentifier();
7108  if (!Name)
7109    return;
7110  if ((!getLangOptions().CPlusPlus &&
7111       FD->getDeclContext()->isTranslationUnit()) ||
7112      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7113       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7114       LinkageSpecDecl::lang_c)) {
7115    // Okay: this could be a libc/libm/Objective-C function we know
7116    // about.
7117  } else
7118    return;
7119
7120  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7121    // FIXME: NSLog and NSLogv should be target specific
7122    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7123      // FIXME: We known better than our headers.
7124      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7125    } else
7126      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7127                                             "printf", 1,
7128                                             Name->isStr("NSLogv") ? 0 : 2));
7129  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7130    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7131    // target-specific builtins, perhaps?
7132    if (!FD->getAttr<FormatAttr>())
7133      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7134                                             "printf", 2,
7135                                             Name->isStr("vasprintf") ? 0 : 3));
7136  }
7137}
7138
7139TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7140                                    TypeSourceInfo *TInfo) {
7141  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7142  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7143
7144  if (!TInfo) {
7145    assert(D.isInvalidType() && "no declarator info for valid type");
7146    TInfo = Context.getTrivialTypeSourceInfo(T);
7147  }
7148
7149  // Scope manipulation handled by caller.
7150  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7151                                           D.getSourceRange().getBegin(),
7152                                           D.getIdentifierLoc(),
7153                                           D.getIdentifier(),
7154                                           TInfo);
7155
7156  // Bail out immediately if we have an invalid declaration.
7157  if (D.isInvalidType()) {
7158    NewTD->setInvalidDecl();
7159    return NewTD;
7160  }
7161
7162  if (D.getDeclSpec().isModulePrivateSpecified()) {
7163    if (CurContext->isFunctionOrMethod())
7164      Diag(NewTD->getLocation(), diag::err_module_private_local)
7165        << 2 << NewTD->getDeclName()
7166        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7167        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7168    else
7169      NewTD->setModulePrivate();
7170  }
7171
7172  // C++ [dcl.typedef]p8:
7173  //   If the typedef declaration defines an unnamed class (or
7174  //   enum), the first typedef-name declared by the declaration
7175  //   to be that class type (or enum type) is used to denote the
7176  //   class type (or enum type) for linkage purposes only.
7177  // We need to check whether the type was declared in the declaration.
7178  switch (D.getDeclSpec().getTypeSpecType()) {
7179  case TST_enum:
7180  case TST_struct:
7181  case TST_union:
7182  case TST_class: {
7183    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7184
7185    // Do nothing if the tag is not anonymous or already has an
7186    // associated typedef (from an earlier typedef in this decl group).
7187    if (tagFromDeclSpec->getIdentifier()) break;
7188    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7189
7190    // A well-formed anonymous tag must always be a TUK_Definition.
7191    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7192
7193    // The type must match the tag exactly;  no qualifiers allowed.
7194    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7195      break;
7196
7197    // Otherwise, set this is the anon-decl typedef for the tag.
7198    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7199    break;
7200  }
7201
7202  default:
7203    break;
7204  }
7205
7206  return NewTD;
7207}
7208
7209
7210/// \brief Determine whether a tag with a given kind is acceptable
7211/// as a redeclaration of the given tag declaration.
7212///
7213/// \returns true if the new tag kind is acceptable, false otherwise.
7214bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7215                                        TagTypeKind NewTag, bool isDefinition,
7216                                        SourceLocation NewTagLoc,
7217                                        const IdentifierInfo &Name) {
7218  // C++ [dcl.type.elab]p3:
7219  //   The class-key or enum keyword present in the
7220  //   elaborated-type-specifier shall agree in kind with the
7221  //   declaration to which the name in the elaborated-type-specifier
7222  //   refers. This rule also applies to the form of
7223  //   elaborated-type-specifier that declares a class-name or
7224  //   friend class since it can be construed as referring to the
7225  //   definition of the class. Thus, in any
7226  //   elaborated-type-specifier, the enum keyword shall be used to
7227  //   refer to an enumeration (7.2), the union class-key shall be
7228  //   used to refer to a union (clause 9), and either the class or
7229  //   struct class-key shall be used to refer to a class (clause 9)
7230  //   declared using the class or struct class-key.
7231  TagTypeKind OldTag = Previous->getTagKind();
7232  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7233    if (OldTag == NewTag)
7234      return true;
7235
7236  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7237      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7238    // Warn about the struct/class tag mismatch.
7239    bool isTemplate = false;
7240    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7241      isTemplate = Record->getDescribedClassTemplate();
7242
7243    if (!ActiveTemplateInstantiations.empty()) {
7244      // In a template instantiation, do not offer fix-its for tag mismatches
7245      // since they usually mess up the template instead of fixing the problem.
7246      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7247        << (NewTag == TTK_Class) << isTemplate << &Name;
7248      return true;
7249    }
7250
7251    if (isDefinition) {
7252      // On definitions, check previous tags and issue a fix-it for each
7253      // one that doesn't match the current tag.
7254      if (Previous->getDefinition()) {
7255        // Don't suggest fix-its for redefinitions.
7256        return true;
7257      }
7258
7259      bool previousMismatch = false;
7260      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7261           E(Previous->redecls_end()); I != E; ++I) {
7262        if (I->getTagKind() != NewTag) {
7263          if (!previousMismatch) {
7264            previousMismatch = true;
7265            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7266              << (NewTag == TTK_Class) << isTemplate << &Name;
7267          }
7268          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7269            << (NewTag == TTK_Class)
7270            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7271                                            NewTag == TTK_Class?
7272                                            "class" : "struct");
7273        }
7274      }
7275      return true;
7276    }
7277
7278    // Check for a previous definition.  If current tag and definition
7279    // are same type, do nothing.  If no definition, but disagree with
7280    // with previous tag type, give a warning, but no fix-it.
7281    const TagDecl *Redecl = Previous->getDefinition() ?
7282                            Previous->getDefinition() : Previous;
7283    if (Redecl->getTagKind() == NewTag) {
7284      return true;
7285    }
7286
7287    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7288      << (NewTag == TTK_Class)
7289      << isTemplate << &Name;
7290    Diag(Redecl->getLocation(), diag::note_previous_use);
7291
7292    // If there is a previous defintion, suggest a fix-it.
7293    if (Previous->getDefinition()) {
7294        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7295          << (Redecl->getTagKind() == TTK_Class)
7296          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7297                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7298    }
7299
7300    return true;
7301  }
7302  return false;
7303}
7304
7305/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7306/// former case, Name will be non-null.  In the later case, Name will be null.
7307/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7308/// reference/declaration/definition of a tag.
7309Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7310                     SourceLocation KWLoc, CXXScopeSpec &SS,
7311                     IdentifierInfo *Name, SourceLocation NameLoc,
7312                     AttributeList *Attr, AccessSpecifier AS,
7313                     SourceLocation ModulePrivateLoc,
7314                     MultiTemplateParamsArg TemplateParameterLists,
7315                     bool &OwnedDecl, bool &IsDependent,
7316                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7317                     TypeResult UnderlyingType) {
7318  // If this is not a definition, it must have a name.
7319  assert((Name != 0 || TUK == TUK_Definition) &&
7320         "Nameless record must be a definition!");
7321  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7322
7323  OwnedDecl = false;
7324  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7325
7326  // FIXME: Check explicit specializations more carefully.
7327  bool isExplicitSpecialization = false;
7328  bool Invalid = false;
7329
7330  // We only need to do this matching if we have template parameters
7331  // or a scope specifier, which also conveniently avoids this work
7332  // for non-C++ cases.
7333  if (TemplateParameterLists.size() > 0 ||
7334      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7335    if (TemplateParameterList *TemplateParams
7336          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7337                                                TemplateParameterLists.get(),
7338                                                TemplateParameterLists.size(),
7339                                                    TUK == TUK_Friend,
7340                                                    isExplicitSpecialization,
7341                                                    Invalid)) {
7342      if (TemplateParams->size() > 0) {
7343        // This is a declaration or definition of a class template (which may
7344        // be a member of another template).
7345
7346        if (Invalid)
7347          return 0;
7348
7349        OwnedDecl = false;
7350        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7351                                               SS, Name, NameLoc, Attr,
7352                                               TemplateParams, AS,
7353                                               ModulePrivateLoc,
7354                                           TemplateParameterLists.size() - 1,
7355                 (TemplateParameterList**) TemplateParameterLists.release());
7356        return Result.get();
7357      } else {
7358        // The "template<>" header is extraneous.
7359        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7360          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7361        isExplicitSpecialization = true;
7362      }
7363    }
7364  }
7365
7366  // Figure out the underlying type if this a enum declaration. We need to do
7367  // this early, because it's needed to detect if this is an incompatible
7368  // redeclaration.
7369  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7370
7371  if (Kind == TTK_Enum) {
7372    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7373      // No underlying type explicitly specified, or we failed to parse the
7374      // type, default to int.
7375      EnumUnderlying = Context.IntTy.getTypePtr();
7376    else if (UnderlyingType.get()) {
7377      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7378      // integral type; any cv-qualification is ignored.
7379      TypeSourceInfo *TI = 0;
7380      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7381      EnumUnderlying = TI;
7382
7383      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7384
7385      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7386        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7387          << T;
7388        // Recover by falling back to int.
7389        EnumUnderlying = Context.IntTy.getTypePtr();
7390      }
7391
7392      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7393                                          UPPC_FixedUnderlyingType))
7394        EnumUnderlying = Context.IntTy.getTypePtr();
7395
7396    } else if (getLangOptions().MicrosoftExt)
7397      // Microsoft enums are always of int type.
7398      EnumUnderlying = Context.IntTy.getTypePtr();
7399  }
7400
7401  DeclContext *SearchDC = CurContext;
7402  DeclContext *DC = CurContext;
7403  bool isStdBadAlloc = false;
7404
7405  RedeclarationKind Redecl = ForRedeclaration;
7406  if (TUK == TUK_Friend || TUK == TUK_Reference)
7407    Redecl = NotForRedeclaration;
7408
7409  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7410
7411  if (Name && SS.isNotEmpty()) {
7412    // We have a nested-name tag ('struct foo::bar').
7413
7414    // Check for invalid 'foo::'.
7415    if (SS.isInvalid()) {
7416      Name = 0;
7417      goto CreateNewDecl;
7418    }
7419
7420    // If this is a friend or a reference to a class in a dependent
7421    // context, don't try to make a decl for it.
7422    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7423      DC = computeDeclContext(SS, false);
7424      if (!DC) {
7425        IsDependent = true;
7426        return 0;
7427      }
7428    } else {
7429      DC = computeDeclContext(SS, true);
7430      if (!DC) {
7431        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7432          << SS.getRange();
7433        return 0;
7434      }
7435    }
7436
7437    if (RequireCompleteDeclContext(SS, DC))
7438      return 0;
7439
7440    SearchDC = DC;
7441    // Look-up name inside 'foo::'.
7442    LookupQualifiedName(Previous, DC);
7443
7444    if (Previous.isAmbiguous())
7445      return 0;
7446
7447    if (Previous.empty()) {
7448      // Name lookup did not find anything. However, if the
7449      // nested-name-specifier refers to the current instantiation,
7450      // and that current instantiation has any dependent base
7451      // classes, we might find something at instantiation time: treat
7452      // this as a dependent elaborated-type-specifier.
7453      // But this only makes any sense for reference-like lookups.
7454      if (Previous.wasNotFoundInCurrentInstantiation() &&
7455          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7456        IsDependent = true;
7457        return 0;
7458      }
7459
7460      // A tag 'foo::bar' must already exist.
7461      Diag(NameLoc, diag::err_not_tag_in_scope)
7462        << Kind << Name << DC << SS.getRange();
7463      Name = 0;
7464      Invalid = true;
7465      goto CreateNewDecl;
7466    }
7467  } else if (Name) {
7468    // If this is a named struct, check to see if there was a previous forward
7469    // declaration or definition.
7470    // FIXME: We're looking into outer scopes here, even when we
7471    // shouldn't be. Doing so can result in ambiguities that we
7472    // shouldn't be diagnosing.
7473    LookupName(Previous, S);
7474
7475    if (Previous.isAmbiguous() &&
7476        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7477      LookupResult::Filter F = Previous.makeFilter();
7478      while (F.hasNext()) {
7479        NamedDecl *ND = F.next();
7480        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7481          F.erase();
7482      }
7483      F.done();
7484    }
7485
7486    // Note:  there used to be some attempt at recovery here.
7487    if (Previous.isAmbiguous())
7488      return 0;
7489
7490    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7491      // FIXME: This makes sure that we ignore the contexts associated
7492      // with C structs, unions, and enums when looking for a matching
7493      // tag declaration or definition. See the similar lookup tweak
7494      // in Sema::LookupName; is there a better way to deal with this?
7495      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7496        SearchDC = SearchDC->getParent();
7497    }
7498  } else if (S->isFunctionPrototypeScope()) {
7499    // If this is an enum declaration in function prototype scope, set its
7500    // initial context to the translation unit.
7501    SearchDC = Context.getTranslationUnitDecl();
7502  }
7503
7504  if (Previous.isSingleResult() &&
7505      Previous.getFoundDecl()->isTemplateParameter()) {
7506    // Maybe we will complain about the shadowed template parameter.
7507    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7508    // Just pretend that we didn't see the previous declaration.
7509    Previous.clear();
7510  }
7511
7512  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7513      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7514    // This is a declaration of or a reference to "std::bad_alloc".
7515    isStdBadAlloc = true;
7516
7517    if (Previous.empty() && StdBadAlloc) {
7518      // std::bad_alloc has been implicitly declared (but made invisible to
7519      // name lookup). Fill in this implicit declaration as the previous
7520      // declaration, so that the declarations get chained appropriately.
7521      Previous.addDecl(getStdBadAlloc());
7522    }
7523  }
7524
7525  // If we didn't find a previous declaration, and this is a reference
7526  // (or friend reference), move to the correct scope.  In C++, we
7527  // also need to do a redeclaration lookup there, just in case
7528  // there's a shadow friend decl.
7529  if (Name && Previous.empty() &&
7530      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7531    if (Invalid) goto CreateNewDecl;
7532    assert(SS.isEmpty());
7533
7534    if (TUK == TUK_Reference) {
7535      // C++ [basic.scope.pdecl]p5:
7536      //   -- for an elaborated-type-specifier of the form
7537      //
7538      //          class-key identifier
7539      //
7540      //      if the elaborated-type-specifier is used in the
7541      //      decl-specifier-seq or parameter-declaration-clause of a
7542      //      function defined in namespace scope, the identifier is
7543      //      declared as a class-name in the namespace that contains
7544      //      the declaration; otherwise, except as a friend
7545      //      declaration, the identifier is declared in the smallest
7546      //      non-class, non-function-prototype scope that contains the
7547      //      declaration.
7548      //
7549      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7550      // C structs and unions.
7551      //
7552      // It is an error in C++ to declare (rather than define) an enum
7553      // type, including via an elaborated type specifier.  We'll
7554      // diagnose that later; for now, declare the enum in the same
7555      // scope as we would have picked for any other tag type.
7556      //
7557      // GNU C also supports this behavior as part of its incomplete
7558      // enum types extension, while GNU C++ does not.
7559      //
7560      // Find the context where we'll be declaring the tag.
7561      // FIXME: We would like to maintain the current DeclContext as the
7562      // lexical context,
7563      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7564        SearchDC = SearchDC->getParent();
7565
7566      // Find the scope where we'll be declaring the tag.
7567      while (S->isClassScope() ||
7568             (getLangOptions().CPlusPlus &&
7569              S->isFunctionPrototypeScope()) ||
7570             ((S->getFlags() & Scope::DeclScope) == 0) ||
7571             (S->getEntity() &&
7572              ((DeclContext *)S->getEntity())->isTransparentContext()))
7573        S = S->getParent();
7574    } else {
7575      assert(TUK == TUK_Friend);
7576      // C++ [namespace.memdef]p3:
7577      //   If a friend declaration in a non-local class first declares a
7578      //   class or function, the friend class or function is a member of
7579      //   the innermost enclosing namespace.
7580      SearchDC = SearchDC->getEnclosingNamespaceContext();
7581    }
7582
7583    // In C++, we need to do a redeclaration lookup to properly
7584    // diagnose some problems.
7585    if (getLangOptions().CPlusPlus) {
7586      Previous.setRedeclarationKind(ForRedeclaration);
7587      LookupQualifiedName(Previous, SearchDC);
7588    }
7589  }
7590
7591  if (!Previous.empty()) {
7592    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7593
7594    // It's okay to have a tag decl in the same scope as a typedef
7595    // which hides a tag decl in the same scope.  Finding this
7596    // insanity with a redeclaration lookup can only actually happen
7597    // in C++.
7598    //
7599    // This is also okay for elaborated-type-specifiers, which is
7600    // technically forbidden by the current standard but which is
7601    // okay according to the likely resolution of an open issue;
7602    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7603    if (getLangOptions().CPlusPlus) {
7604      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7605        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7606          TagDecl *Tag = TT->getDecl();
7607          if (Tag->getDeclName() == Name &&
7608              Tag->getDeclContext()->getRedeclContext()
7609                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7610            PrevDecl = Tag;
7611            Previous.clear();
7612            Previous.addDecl(Tag);
7613            Previous.resolveKind();
7614          }
7615        }
7616      }
7617    }
7618
7619    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7620      // If this is a use of a previous tag, or if the tag is already declared
7621      // in the same scope (so that the definition/declaration completes or
7622      // rementions the tag), reuse the decl.
7623      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7624          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7625        // Make sure that this wasn't declared as an enum and now used as a
7626        // struct or something similar.
7627        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7628                                          TUK == TUK_Definition, KWLoc,
7629                                          *Name)) {
7630          bool SafeToContinue
7631            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7632               Kind != TTK_Enum);
7633          if (SafeToContinue)
7634            Diag(KWLoc, diag::err_use_with_wrong_tag)
7635              << Name
7636              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7637                                              PrevTagDecl->getKindName());
7638          else
7639            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7640          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7641
7642          if (SafeToContinue)
7643            Kind = PrevTagDecl->getTagKind();
7644          else {
7645            // Recover by making this an anonymous redefinition.
7646            Name = 0;
7647            Previous.clear();
7648            Invalid = true;
7649          }
7650        }
7651
7652        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7653          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7654
7655          // All conflicts with previous declarations are recovered by
7656          // returning the previous declaration.
7657          if (ScopedEnum != PrevEnum->isScoped()) {
7658            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7659              << PrevEnum->isScoped();
7660            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7661            return PrevTagDecl;
7662          }
7663          else if (EnumUnderlying && PrevEnum->isFixed()) {
7664            QualType T;
7665            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7666                T = TI->getType();
7667            else
7668                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7669
7670            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7671              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7672                   diag::err_enum_redeclare_type_mismatch)
7673                << T
7674                << PrevEnum->getIntegerType();
7675              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7676              return PrevTagDecl;
7677            }
7678          }
7679          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7680            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7681              << PrevEnum->isFixed();
7682            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7683            return PrevTagDecl;
7684          }
7685        }
7686
7687        if (!Invalid) {
7688          // If this is a use, just return the declaration we found.
7689
7690          // FIXME: In the future, return a variant or some other clue
7691          // for the consumer of this Decl to know it doesn't own it.
7692          // For our current ASTs this shouldn't be a problem, but will
7693          // need to be changed with DeclGroups.
7694          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7695               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7696            return PrevTagDecl;
7697
7698          // Diagnose attempts to redefine a tag.
7699          if (TUK == TUK_Definition) {
7700            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7701              // If we're defining a specialization and the previous definition
7702              // is from an implicit instantiation, don't emit an error
7703              // here; we'll catch this in the general case below.
7704              if (!isExplicitSpecialization ||
7705                  !isa<CXXRecordDecl>(Def) ||
7706                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7707                                               == TSK_ExplicitSpecialization) {
7708                Diag(NameLoc, diag::err_redefinition) << Name;
7709                Diag(Def->getLocation(), diag::note_previous_definition);
7710                // If this is a redefinition, recover by making this
7711                // struct be anonymous, which will make any later
7712                // references get the previous definition.
7713                Name = 0;
7714                Previous.clear();
7715                Invalid = true;
7716              }
7717            } else {
7718              // If the type is currently being defined, complain
7719              // about a nested redefinition.
7720              const TagType *Tag
7721                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7722              if (Tag->isBeingDefined()) {
7723                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7724                Diag(PrevTagDecl->getLocation(),
7725                     diag::note_previous_definition);
7726                Name = 0;
7727                Previous.clear();
7728                Invalid = true;
7729              }
7730            }
7731
7732            // Okay, this is definition of a previously declared or referenced
7733            // tag PrevDecl. We're going to create a new Decl for it.
7734          }
7735        }
7736        // If we get here we have (another) forward declaration or we
7737        // have a definition.  Just create a new decl.
7738
7739      } else {
7740        // If we get here, this is a definition of a new tag type in a nested
7741        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7742        // new decl/type.  We set PrevDecl to NULL so that the entities
7743        // have distinct types.
7744        Previous.clear();
7745      }
7746      // If we get here, we're going to create a new Decl. If PrevDecl
7747      // is non-NULL, it's a definition of the tag declared by
7748      // PrevDecl. If it's NULL, we have a new definition.
7749
7750
7751    // Otherwise, PrevDecl is not a tag, but was found with tag
7752    // lookup.  This is only actually possible in C++, where a few
7753    // things like templates still live in the tag namespace.
7754    } else {
7755      assert(getLangOptions().CPlusPlus);
7756
7757      // Use a better diagnostic if an elaborated-type-specifier
7758      // found the wrong kind of type on the first
7759      // (non-redeclaration) lookup.
7760      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7761          !Previous.isForRedeclaration()) {
7762        unsigned Kind = 0;
7763        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7764        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7765        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7766        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7767        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7768        Invalid = true;
7769
7770      // Otherwise, only diagnose if the declaration is in scope.
7771      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7772                                isExplicitSpecialization)) {
7773        // do nothing
7774
7775      // Diagnose implicit declarations introduced by elaborated types.
7776      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7777        unsigned Kind = 0;
7778        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7779        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7780        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7781        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7782        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7783        Invalid = true;
7784
7785      // Otherwise it's a declaration.  Call out a particularly common
7786      // case here.
7787      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7788        unsigned Kind = 0;
7789        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7790        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7791          << Name << Kind << TND->getUnderlyingType();
7792        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7793        Invalid = true;
7794
7795      // Otherwise, diagnose.
7796      } else {
7797        // The tag name clashes with something else in the target scope,
7798        // issue an error and recover by making this tag be anonymous.
7799        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7800        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7801        Name = 0;
7802        Invalid = true;
7803      }
7804
7805      // The existing declaration isn't relevant to us; we're in a
7806      // new scope, so clear out the previous declaration.
7807      Previous.clear();
7808    }
7809  }
7810
7811CreateNewDecl:
7812
7813  TagDecl *PrevDecl = 0;
7814  if (Previous.isSingleResult())
7815    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7816
7817  // If there is an identifier, use the location of the identifier as the
7818  // location of the decl, otherwise use the location of the struct/union
7819  // keyword.
7820  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7821
7822  // Otherwise, create a new declaration. If there is a previous
7823  // declaration of the same entity, the two will be linked via
7824  // PrevDecl.
7825  TagDecl *New;
7826
7827  bool IsForwardReference = false;
7828  if (Kind == TTK_Enum) {
7829    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7830    // enum X { A, B, C } D;    D should chain to X.
7831    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7832                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7833                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7834    // If this is an undefined enum, warn.
7835    if (TUK != TUK_Definition && !Invalid) {
7836      TagDecl *Def;
7837      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7838        // C++0x: 7.2p2: opaque-enum-declaration.
7839        // Conflicts are diagnosed above. Do nothing.
7840      }
7841      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7842        Diag(Loc, diag::ext_forward_ref_enum_def)
7843          << New;
7844        Diag(Def->getLocation(), diag::note_previous_definition);
7845      } else {
7846        unsigned DiagID = diag::ext_forward_ref_enum;
7847        if (getLangOptions().MicrosoftExt)
7848          DiagID = diag::ext_ms_forward_ref_enum;
7849        else if (getLangOptions().CPlusPlus)
7850          DiagID = diag::err_forward_ref_enum;
7851        Diag(Loc, DiagID);
7852
7853        // If this is a forward-declared reference to an enumeration, make a
7854        // note of it; we won't actually be introducing the declaration into
7855        // the declaration context.
7856        if (TUK == TUK_Reference)
7857          IsForwardReference = true;
7858      }
7859    }
7860
7861    if (EnumUnderlying) {
7862      EnumDecl *ED = cast<EnumDecl>(New);
7863      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7864        ED->setIntegerTypeSourceInfo(TI);
7865      else
7866        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7867      ED->setPromotionType(ED->getIntegerType());
7868    }
7869
7870  } else {
7871    // struct/union/class
7872
7873    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7874    // struct X { int A; } D;    D should chain to X.
7875    if (getLangOptions().CPlusPlus) {
7876      // FIXME: Look for a way to use RecordDecl for simple structs.
7877      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7878                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7879
7880      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7881        StdBadAlloc = cast<CXXRecordDecl>(New);
7882    } else
7883      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7884                               cast_or_null<RecordDecl>(PrevDecl));
7885  }
7886
7887  // Maybe add qualifier info.
7888  if (SS.isNotEmpty()) {
7889    if (SS.isSet()) {
7890      New->setQualifierInfo(SS.getWithLocInContext(Context));
7891      if (TemplateParameterLists.size() > 0) {
7892        New->setTemplateParameterListsInfo(Context,
7893                                           TemplateParameterLists.size(),
7894                    (TemplateParameterList**) TemplateParameterLists.release());
7895      }
7896    }
7897    else
7898      Invalid = true;
7899  }
7900
7901  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7902    // Add alignment attributes if necessary; these attributes are checked when
7903    // the ASTContext lays out the structure.
7904    //
7905    // It is important for implementing the correct semantics that this
7906    // happen here (in act on tag decl). The #pragma pack stack is
7907    // maintained as a result of parser callbacks which can occur at
7908    // many points during the parsing of a struct declaration (because
7909    // the #pragma tokens are effectively skipped over during the
7910    // parsing of the struct).
7911    AddAlignmentAttributesForRecord(RD);
7912
7913    AddMsStructLayoutForRecord(RD);
7914  }
7915
7916  if (PrevDecl && PrevDecl->isModulePrivate())
7917    New->setModulePrivate();
7918  else if (ModulePrivateLoc.isValid()) {
7919    if (isExplicitSpecialization)
7920      Diag(New->getLocation(), diag::err_module_private_specialization)
7921        << 2
7922        << FixItHint::CreateRemoval(ModulePrivateLoc);
7923    else if (PrevDecl && !PrevDecl->isModulePrivate())
7924      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
7925    // __module_private__ does not apply to local classes. However, we only
7926    // diagnose this as an error when the declaration specifiers are
7927    // freestanding. Here, we just ignore the __module_private__.
7928    // foobar
7929    else if (!SearchDC->isFunctionOrMethod())
7930      New->setModulePrivate();
7931  }
7932
7933  // If this is a specialization of a member class (of a class template),
7934  // check the specialization.
7935  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7936    Invalid = true;
7937
7938  if (Invalid)
7939    New->setInvalidDecl();
7940
7941  if (Attr)
7942    ProcessDeclAttributeList(S, New, Attr);
7943
7944  // If we're declaring or defining a tag in function prototype scope
7945  // in C, note that this type can only be used within the function.
7946  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7947    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7948
7949  // Set the lexical context. If the tag has a C++ scope specifier, the
7950  // lexical context will be different from the semantic context.
7951  New->setLexicalDeclContext(CurContext);
7952
7953  // Mark this as a friend decl if applicable.
7954  // In Microsoft mode, a friend declaration also acts as a forward
7955  // declaration so we always pass true to setObjectOfFriendDecl to make
7956  // the tag name visible.
7957  if (TUK == TUK_Friend)
7958    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7959                               getLangOptions().MicrosoftExt);
7960
7961  // Set the access specifier.
7962  if (!Invalid && SearchDC->isRecord())
7963    SetMemberAccessSpecifier(New, PrevDecl, AS);
7964
7965  if (TUK == TUK_Definition)
7966    New->startDefinition();
7967
7968  // If this has an identifier, add it to the scope stack.
7969  if (TUK == TUK_Friend) {
7970    // We might be replacing an existing declaration in the lookup tables;
7971    // if so, borrow its access specifier.
7972    if (PrevDecl)
7973      New->setAccess(PrevDecl->getAccess());
7974
7975    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7976    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7977    if (Name) // can be null along some error paths
7978      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7979        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7980  } else if (Name) {
7981    S = getNonFieldDeclScope(S);
7982    PushOnScopeChains(New, S, !IsForwardReference);
7983    if (IsForwardReference)
7984      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7985
7986  } else {
7987    CurContext->addDecl(New);
7988  }
7989
7990  // If this is the C FILE type, notify the AST context.
7991  if (IdentifierInfo *II = New->getIdentifier())
7992    if (!New->isInvalidDecl() &&
7993        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7994        II->isStr("FILE"))
7995      Context.setFILEDecl(New);
7996
7997  OwnedDecl = true;
7998  return New;
7999}
8000
8001void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8002  AdjustDeclIfTemplate(TagD);
8003  TagDecl *Tag = cast<TagDecl>(TagD);
8004
8005  // Enter the tag context.
8006  PushDeclContext(S, Tag);
8007}
8008
8009void Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8010  assert(isa<ObjCContainerDecl>(IDecl) &&
8011         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8012  DeclContext *OCD = cast<DeclContext>(IDecl);
8013  assert(getContainingDC(OCD) == CurContext &&
8014      "The next DeclContext should be lexically contained in the current one.");
8015  CurContext = OCD;
8016}
8017
8018void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8019                                           SourceLocation FinalLoc,
8020                                           SourceLocation LBraceLoc) {
8021  AdjustDeclIfTemplate(TagD);
8022  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8023
8024  FieldCollector->StartClass();
8025
8026  if (!Record->getIdentifier())
8027    return;
8028
8029  if (FinalLoc.isValid())
8030    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8031
8032  // C++ [class]p2:
8033  //   [...] The class-name is also inserted into the scope of the
8034  //   class itself; this is known as the injected-class-name. For
8035  //   purposes of access checking, the injected-class-name is treated
8036  //   as if it were a public member name.
8037  CXXRecordDecl *InjectedClassName
8038    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8039                            Record->getLocStart(), Record->getLocation(),
8040                            Record->getIdentifier(),
8041                            /*PrevDecl=*/0,
8042                            /*DelayTypeCreation=*/true);
8043  Context.getTypeDeclType(InjectedClassName, Record);
8044  InjectedClassName->setImplicit();
8045  InjectedClassName->setAccess(AS_public);
8046  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8047      InjectedClassName->setDescribedClassTemplate(Template);
8048  PushOnScopeChains(InjectedClassName, S);
8049  assert(InjectedClassName->isInjectedClassName() &&
8050         "Broken injected-class-name");
8051}
8052
8053void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8054                                    SourceLocation RBraceLoc) {
8055  AdjustDeclIfTemplate(TagD);
8056  TagDecl *Tag = cast<TagDecl>(TagD);
8057  Tag->setRBraceLoc(RBraceLoc);
8058
8059  if (isa<CXXRecordDecl>(Tag))
8060    FieldCollector->FinishClass();
8061
8062  // Exit this scope of this tag's definition.
8063  PopDeclContext();
8064
8065  // Notify the consumer that we've defined a tag.
8066  Consumer.HandleTagDeclDefinition(Tag);
8067}
8068
8069void Sema::ActOnObjCContainerFinishDefinition() {
8070  // Exit this scope of this interface definition.
8071  PopDeclContext();
8072}
8073
8074void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8075  AdjustDeclIfTemplate(TagD);
8076  TagDecl *Tag = cast<TagDecl>(TagD);
8077  Tag->setInvalidDecl();
8078
8079  // We're undoing ActOnTagStartDefinition here, not
8080  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8081  // the FieldCollector.
8082
8083  PopDeclContext();
8084}
8085
8086// Note that FieldName may be null for anonymous bitfields.
8087bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8088                          QualType FieldTy, const Expr *BitWidth,
8089                          bool *ZeroWidth) {
8090  // Default to true; that shouldn't confuse checks for emptiness
8091  if (ZeroWidth)
8092    *ZeroWidth = true;
8093
8094  // C99 6.7.2.1p4 - verify the field type.
8095  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8096  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8097    // Handle incomplete types with specific error.
8098    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8099      return true;
8100    if (FieldName)
8101      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8102        << FieldName << FieldTy << BitWidth->getSourceRange();
8103    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8104      << FieldTy << BitWidth->getSourceRange();
8105  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8106                                             UPPC_BitFieldWidth))
8107    return true;
8108
8109  // If the bit-width is type- or value-dependent, don't try to check
8110  // it now.
8111  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8112    return false;
8113
8114  llvm::APSInt Value;
8115  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8116    return true;
8117
8118  if (Value != 0 && ZeroWidth)
8119    *ZeroWidth = false;
8120
8121  // Zero-width bitfield is ok for anonymous field.
8122  if (Value == 0 && FieldName)
8123    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8124
8125  if (Value.isSigned() && Value.isNegative()) {
8126    if (FieldName)
8127      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8128               << FieldName << Value.toString(10);
8129    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8130      << Value.toString(10);
8131  }
8132
8133  if (!FieldTy->isDependentType()) {
8134    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8135    if (Value.getZExtValue() > TypeSize) {
8136      if (!getLangOptions().CPlusPlus) {
8137        if (FieldName)
8138          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8139            << FieldName << (unsigned)Value.getZExtValue()
8140            << (unsigned)TypeSize;
8141
8142        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8143          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8144      }
8145
8146      if (FieldName)
8147        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8148          << FieldName << (unsigned)Value.getZExtValue()
8149          << (unsigned)TypeSize;
8150      else
8151        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8152          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8153    }
8154  }
8155
8156  return false;
8157}
8158
8159/// ActOnField - Each field of a C struct/union is passed into this in order
8160/// to create a FieldDecl object for it.
8161Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8162                       Declarator &D, Expr *BitfieldWidth) {
8163  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8164                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8165                               /*HasInit=*/false, AS_public);
8166  return Res;
8167}
8168
8169/// HandleField - Analyze a field of a C struct or a C++ data member.
8170///
8171FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8172                             SourceLocation DeclStart,
8173                             Declarator &D, Expr *BitWidth, bool HasInit,
8174                             AccessSpecifier AS) {
8175  IdentifierInfo *II = D.getIdentifier();
8176  SourceLocation Loc = DeclStart;
8177  if (II) Loc = D.getIdentifierLoc();
8178
8179  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8180  QualType T = TInfo->getType();
8181  if (getLangOptions().CPlusPlus) {
8182    CheckExtraCXXDefaultArguments(D);
8183
8184    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8185                                        UPPC_DataMemberType)) {
8186      D.setInvalidType();
8187      T = Context.IntTy;
8188      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8189    }
8190  }
8191
8192  DiagnoseFunctionSpecifiers(D);
8193
8194  if (D.getDeclSpec().isThreadSpecified())
8195    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8196  if (D.getDeclSpec().isConstexprSpecified())
8197    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8198      << 2;
8199
8200  // Check to see if this name was declared as a member previously
8201  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8202  LookupName(Previous, S);
8203  assert((Previous.empty() || Previous.isOverloadedResult() ||
8204          Previous.isSingleResult())
8205    && "Lookup of member name should be either overloaded, single or null");
8206
8207  // If the name is overloaded then get any declaration else get the single result
8208  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8209    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8210
8211  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8212    // Maybe we will complain about the shadowed template parameter.
8213    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8214    // Just pretend that we didn't see the previous declaration.
8215    PrevDecl = 0;
8216  }
8217
8218  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8219    PrevDecl = 0;
8220
8221  bool Mutable
8222    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8223  SourceLocation TSSL = D.getSourceRange().getBegin();
8224  FieldDecl *NewFD
8225    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8226                     TSSL, AS, PrevDecl, &D);
8227
8228  if (NewFD->isInvalidDecl())
8229    Record->setInvalidDecl();
8230
8231  if (D.getDeclSpec().isModulePrivateSpecified())
8232    NewFD->setModulePrivate();
8233
8234  if (NewFD->isInvalidDecl() && PrevDecl) {
8235    // Don't introduce NewFD into scope; there's already something
8236    // with the same name in the same scope.
8237  } else if (II) {
8238    PushOnScopeChains(NewFD, S);
8239  } else
8240    Record->addDecl(NewFD);
8241
8242  return NewFD;
8243}
8244
8245/// \brief Build a new FieldDecl and check its well-formedness.
8246///
8247/// This routine builds a new FieldDecl given the fields name, type,
8248/// record, etc. \p PrevDecl should refer to any previous declaration
8249/// with the same name and in the same scope as the field to be
8250/// created.
8251///
8252/// \returns a new FieldDecl.
8253///
8254/// \todo The Declarator argument is a hack. It will be removed once
8255FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8256                                TypeSourceInfo *TInfo,
8257                                RecordDecl *Record, SourceLocation Loc,
8258                                bool Mutable, Expr *BitWidth, bool HasInit,
8259                                SourceLocation TSSL,
8260                                AccessSpecifier AS, NamedDecl *PrevDecl,
8261                                Declarator *D) {
8262  IdentifierInfo *II = Name.getAsIdentifierInfo();
8263  bool InvalidDecl = false;
8264  if (D) InvalidDecl = D->isInvalidType();
8265
8266  // If we receive a broken type, recover by assuming 'int' and
8267  // marking this declaration as invalid.
8268  if (T.isNull()) {
8269    InvalidDecl = true;
8270    T = Context.IntTy;
8271  }
8272
8273  QualType EltTy = Context.getBaseElementType(T);
8274  if (!EltTy->isDependentType() &&
8275      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8276    // Fields of incomplete type force their record to be invalid.
8277    Record->setInvalidDecl();
8278    InvalidDecl = true;
8279  }
8280
8281  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8282  // than a variably modified type.
8283  if (!InvalidDecl && T->isVariablyModifiedType()) {
8284    bool SizeIsNegative;
8285    llvm::APSInt Oversized;
8286    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8287                                                           SizeIsNegative,
8288                                                           Oversized);
8289    if (!FixedTy.isNull()) {
8290      Diag(Loc, diag::warn_illegal_constant_array_size);
8291      T = FixedTy;
8292    } else {
8293      if (SizeIsNegative)
8294        Diag(Loc, diag::err_typecheck_negative_array_size);
8295      else if (Oversized.getBoolValue())
8296        Diag(Loc, diag::err_array_too_large)
8297          << Oversized.toString(10);
8298      else
8299        Diag(Loc, diag::err_typecheck_field_variable_size);
8300      InvalidDecl = true;
8301    }
8302  }
8303
8304  // Fields can not have abstract class types
8305  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8306                                             diag::err_abstract_type_in_decl,
8307                                             AbstractFieldType))
8308    InvalidDecl = true;
8309
8310  bool ZeroWidth = false;
8311  // If this is declared as a bit-field, check the bit-field.
8312  if (!InvalidDecl && BitWidth &&
8313      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8314    InvalidDecl = true;
8315    BitWidth = 0;
8316    ZeroWidth = false;
8317  }
8318
8319  // Check that 'mutable' is consistent with the type of the declaration.
8320  if (!InvalidDecl && Mutable) {
8321    unsigned DiagID = 0;
8322    if (T->isReferenceType())
8323      DiagID = diag::err_mutable_reference;
8324    else if (T.isConstQualified())
8325      DiagID = diag::err_mutable_const;
8326
8327    if (DiagID) {
8328      SourceLocation ErrLoc = Loc;
8329      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8330        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8331      Diag(ErrLoc, DiagID);
8332      Mutable = false;
8333      InvalidDecl = true;
8334    }
8335  }
8336
8337  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8338                                       BitWidth, Mutable, HasInit);
8339  if (InvalidDecl)
8340    NewFD->setInvalidDecl();
8341
8342  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8343    Diag(Loc, diag::err_duplicate_member) << II;
8344    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8345    NewFD->setInvalidDecl();
8346  }
8347
8348  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8349    if (Record->isUnion()) {
8350      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8351        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8352        if (RDecl->getDefinition()) {
8353          // C++ [class.union]p1: An object of a class with a non-trivial
8354          // constructor, a non-trivial copy constructor, a non-trivial
8355          // destructor, or a non-trivial copy assignment operator
8356          // cannot be a member of a union, nor can an array of such
8357          // objects.
8358          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8359            NewFD->setInvalidDecl();
8360        }
8361      }
8362
8363      // C++ [class.union]p1: If a union contains a member of reference type,
8364      // the program is ill-formed.
8365      if (EltTy->isReferenceType()) {
8366        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8367          << NewFD->getDeclName() << EltTy;
8368        NewFD->setInvalidDecl();
8369      }
8370    }
8371  }
8372
8373  // FIXME: We need to pass in the attributes given an AST
8374  // representation, not a parser representation.
8375  if (D)
8376    // FIXME: What to pass instead of TUScope?
8377    ProcessDeclAttributes(TUScope, NewFD, *D);
8378
8379  // In auto-retain/release, infer strong retension for fields of
8380  // retainable type.
8381  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8382    NewFD->setInvalidDecl();
8383
8384  if (T.isObjCGCWeak())
8385    Diag(Loc, diag::warn_attribute_weak_on_field);
8386
8387  NewFD->setAccess(AS);
8388  return NewFD;
8389}
8390
8391bool Sema::CheckNontrivialField(FieldDecl *FD) {
8392  assert(FD);
8393  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8394
8395  if (FD->isInvalidDecl())
8396    return true;
8397
8398  QualType EltTy = Context.getBaseElementType(FD->getType());
8399  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8400    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8401    if (RDecl->getDefinition()) {
8402      // We check for copy constructors before constructors
8403      // because otherwise we'll never get complaints about
8404      // copy constructors.
8405
8406      CXXSpecialMember member = CXXInvalid;
8407      if (!RDecl->hasTrivialCopyConstructor())
8408        member = CXXCopyConstructor;
8409      else if (!RDecl->hasTrivialDefaultConstructor())
8410        member = CXXDefaultConstructor;
8411      else if (!RDecl->hasTrivialCopyAssignment())
8412        member = CXXCopyAssignment;
8413      else if (!RDecl->hasTrivialDestructor())
8414        member = CXXDestructor;
8415
8416      if (member != CXXInvalid) {
8417        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8418          // Objective-C++ ARC: it is an error to have a non-trivial field of
8419          // a union. However, system headers in Objective-C programs
8420          // occasionally have Objective-C lifetime objects within unions,
8421          // and rather than cause the program to fail, we make those
8422          // members unavailable.
8423          SourceLocation Loc = FD->getLocation();
8424          if (getSourceManager().isInSystemHeader(Loc)) {
8425            if (!FD->hasAttr<UnavailableAttr>())
8426              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8427                                  "this system field has retaining ownership"));
8428            return false;
8429          }
8430        }
8431
8432        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8433              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8434        DiagnoseNontrivial(RT, member);
8435        return true;
8436      }
8437    }
8438  }
8439
8440  return false;
8441}
8442
8443/// DiagnoseNontrivial - Given that a class has a non-trivial
8444/// special member, figure out why.
8445void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8446  QualType QT(T, 0U);
8447  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8448
8449  // Check whether the member was user-declared.
8450  switch (member) {
8451  case CXXInvalid:
8452    break;
8453
8454  case CXXDefaultConstructor:
8455    if (RD->hasUserDeclaredConstructor()) {
8456      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8457      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8458        const FunctionDecl *body = 0;
8459        ci->hasBody(body);
8460        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8461          SourceLocation CtorLoc = ci->getLocation();
8462          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8463          return;
8464        }
8465      }
8466
8467      llvm_unreachable("found no user-declared constructors");
8468    }
8469    break;
8470
8471  case CXXCopyConstructor:
8472    if (RD->hasUserDeclaredCopyConstructor()) {
8473      SourceLocation CtorLoc =
8474        RD->getCopyConstructor(0)->getLocation();
8475      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8476      return;
8477    }
8478    break;
8479
8480  case CXXMoveConstructor:
8481    if (RD->hasUserDeclaredMoveConstructor()) {
8482      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8483      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8484      return;
8485    }
8486    break;
8487
8488  case CXXCopyAssignment:
8489    if (RD->hasUserDeclaredCopyAssignment()) {
8490      // FIXME: this should use the location of the copy
8491      // assignment, not the type.
8492      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8493      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8494      return;
8495    }
8496    break;
8497
8498  case CXXMoveAssignment:
8499    if (RD->hasUserDeclaredMoveAssignment()) {
8500      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8501      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8502      return;
8503    }
8504    break;
8505
8506  case CXXDestructor:
8507    if (RD->hasUserDeclaredDestructor()) {
8508      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8509      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8510      return;
8511    }
8512    break;
8513  }
8514
8515  typedef CXXRecordDecl::base_class_iterator base_iter;
8516
8517  // Virtual bases and members inhibit trivial copying/construction,
8518  // but not trivial destruction.
8519  if (member != CXXDestructor) {
8520    // Check for virtual bases.  vbases includes indirect virtual bases,
8521    // so we just iterate through the direct bases.
8522    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8523      if (bi->isVirtual()) {
8524        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8525        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8526        return;
8527      }
8528
8529    // Check for virtual methods.
8530    typedef CXXRecordDecl::method_iterator meth_iter;
8531    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8532         ++mi) {
8533      if (mi->isVirtual()) {
8534        SourceLocation MLoc = mi->getSourceRange().getBegin();
8535        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8536        return;
8537      }
8538    }
8539  }
8540
8541  bool (CXXRecordDecl::*hasTrivial)() const;
8542  switch (member) {
8543  case CXXDefaultConstructor:
8544    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8545  case CXXCopyConstructor:
8546    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8547  case CXXCopyAssignment:
8548    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8549  case CXXDestructor:
8550    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8551  default:
8552    llvm_unreachable("unexpected special member");
8553  }
8554
8555  // Check for nontrivial bases (and recurse).
8556  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8557    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8558    assert(BaseRT && "Don't know how to handle dependent bases");
8559    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8560    if (!(BaseRecTy->*hasTrivial)()) {
8561      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8562      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8563      DiagnoseNontrivial(BaseRT, member);
8564      return;
8565    }
8566  }
8567
8568  // Check for nontrivial members (and recurse).
8569  typedef RecordDecl::field_iterator field_iter;
8570  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8571       ++fi) {
8572    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8573    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8574      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8575
8576      if (!(EltRD->*hasTrivial)()) {
8577        SourceLocation FLoc = (*fi)->getLocation();
8578        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8579        DiagnoseNontrivial(EltRT, member);
8580        return;
8581      }
8582    }
8583
8584    if (EltTy->isObjCLifetimeType()) {
8585      switch (EltTy.getObjCLifetime()) {
8586      case Qualifiers::OCL_None:
8587      case Qualifiers::OCL_ExplicitNone:
8588        break;
8589
8590      case Qualifiers::OCL_Autoreleasing:
8591      case Qualifiers::OCL_Weak:
8592      case Qualifiers::OCL_Strong:
8593        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8594          << QT << EltTy.getObjCLifetime();
8595        return;
8596      }
8597    }
8598  }
8599
8600  llvm_unreachable("found no explanation for non-trivial member");
8601}
8602
8603/// TranslateIvarVisibility - Translate visibility from a token ID to an
8604///  AST enum value.
8605static ObjCIvarDecl::AccessControl
8606TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8607  switch (ivarVisibility) {
8608  default: llvm_unreachable("Unknown visitibility kind");
8609  case tok::objc_private: return ObjCIvarDecl::Private;
8610  case tok::objc_public: return ObjCIvarDecl::Public;
8611  case tok::objc_protected: return ObjCIvarDecl::Protected;
8612  case tok::objc_package: return ObjCIvarDecl::Package;
8613  }
8614}
8615
8616/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8617/// in order to create an IvarDecl object for it.
8618Decl *Sema::ActOnIvar(Scope *S,
8619                                SourceLocation DeclStart,
8620                                Declarator &D, Expr *BitfieldWidth,
8621                                tok::ObjCKeywordKind Visibility) {
8622
8623  IdentifierInfo *II = D.getIdentifier();
8624  Expr *BitWidth = (Expr*)BitfieldWidth;
8625  SourceLocation Loc = DeclStart;
8626  if (II) Loc = D.getIdentifierLoc();
8627
8628  // FIXME: Unnamed fields can be handled in various different ways, for
8629  // example, unnamed unions inject all members into the struct namespace!
8630
8631  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8632  QualType T = TInfo->getType();
8633
8634  if (BitWidth) {
8635    // 6.7.2.1p3, 6.7.2.1p4
8636    if (VerifyBitField(Loc, II, T, BitWidth)) {
8637      D.setInvalidType();
8638      BitWidth = 0;
8639    }
8640  } else {
8641    // Not a bitfield.
8642
8643    // validate II.
8644
8645  }
8646  if (T->isReferenceType()) {
8647    Diag(Loc, diag::err_ivar_reference_type);
8648    D.setInvalidType();
8649  }
8650  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8651  // than a variably modified type.
8652  else if (T->isVariablyModifiedType()) {
8653    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8654    D.setInvalidType();
8655  }
8656
8657  // Get the visibility (access control) for this ivar.
8658  ObjCIvarDecl::AccessControl ac =
8659    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8660                                        : ObjCIvarDecl::None;
8661  // Must set ivar's DeclContext to its enclosing interface.
8662  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8663  ObjCContainerDecl *EnclosingContext;
8664  if (ObjCImplementationDecl *IMPDecl =
8665      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8666    if (!LangOpts.ObjCNonFragileABI2) {
8667    // Case of ivar declared in an implementation. Context is that of its class.
8668      EnclosingContext = IMPDecl->getClassInterface();
8669      assert(EnclosingContext && "Implementation has no class interface!");
8670    }
8671    else
8672      EnclosingContext = EnclosingDecl;
8673  } else {
8674    if (ObjCCategoryDecl *CDecl =
8675        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8676      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8677        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8678        return 0;
8679      }
8680    }
8681    EnclosingContext = EnclosingDecl;
8682  }
8683
8684  // Construct the decl.
8685  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8686                                             DeclStart, Loc, II, T,
8687                                             TInfo, ac, (Expr *)BitfieldWidth);
8688
8689  if (II) {
8690    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8691                                           ForRedeclaration);
8692    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8693        && !isa<TagDecl>(PrevDecl)) {
8694      Diag(Loc, diag::err_duplicate_member) << II;
8695      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8696      NewID->setInvalidDecl();
8697    }
8698  }
8699
8700  // Process attributes attached to the ivar.
8701  ProcessDeclAttributes(S, NewID, D);
8702
8703  if (D.isInvalidType())
8704    NewID->setInvalidDecl();
8705
8706  // In ARC, infer 'retaining' for ivars of retainable type.
8707  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8708    NewID->setInvalidDecl();
8709
8710  if (D.getDeclSpec().isModulePrivateSpecified())
8711    NewID->setModulePrivate();
8712
8713  if (II) {
8714    // FIXME: When interfaces are DeclContexts, we'll need to add
8715    // these to the interface.
8716    S->AddDecl(NewID);
8717    IdResolver.AddDecl(NewID);
8718  }
8719
8720  return NewID;
8721}
8722
8723/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8724/// class and class extensions. For every class @interface and class
8725/// extension @interface, if the last ivar is a bitfield of any type,
8726/// then add an implicit `char :0` ivar to the end of that interface.
8727void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8728                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8729  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8730    return;
8731
8732  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8733  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8734
8735  if (!Ivar->isBitField())
8736    return;
8737  uint64_t BitFieldSize =
8738    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8739  if (BitFieldSize == 0)
8740    return;
8741  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8742  if (!ID) {
8743    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8744      if (!CD->IsClassExtension())
8745        return;
8746    }
8747    // No need to add this to end of @implementation.
8748    else
8749      return;
8750  }
8751  // All conditions are met. Add a new bitfield to the tail end of ivars.
8752  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8753  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8754
8755  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8756                              DeclLoc, DeclLoc, 0,
8757                              Context.CharTy,
8758                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8759                                                               DeclLoc),
8760                              ObjCIvarDecl::Private, BW,
8761                              true);
8762  AllIvarDecls.push_back(Ivar);
8763}
8764
8765void Sema::ActOnFields(Scope* S,
8766                       SourceLocation RecLoc, Decl *EnclosingDecl,
8767                       llvm::ArrayRef<Decl *> Fields,
8768                       SourceLocation LBrac, SourceLocation RBrac,
8769                       AttributeList *Attr) {
8770  assert(EnclosingDecl && "missing record or interface decl");
8771
8772  // If the decl this is being inserted into is invalid, then it may be a
8773  // redeclaration or some other bogus case.  Don't try to add fields to it.
8774  if (EnclosingDecl->isInvalidDecl())
8775    return;
8776
8777  // Verify that all the fields are okay.
8778  unsigned NumNamedMembers = 0;
8779  SmallVector<FieldDecl*, 32> RecFields;
8780
8781  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8782  bool ARCErrReported = false;
8783  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8784       i != end; ++i) {
8785    FieldDecl *FD = cast<FieldDecl>(*i);
8786
8787    // Get the type for the field.
8788    const Type *FDTy = FD->getType().getTypePtr();
8789
8790    if (!FD->isAnonymousStructOrUnion()) {
8791      // Remember all fields written by the user.
8792      RecFields.push_back(FD);
8793    }
8794
8795    // If the field is already invalid for some reason, don't emit more
8796    // diagnostics about it.
8797    if (FD->isInvalidDecl()) {
8798      EnclosingDecl->setInvalidDecl();
8799      continue;
8800    }
8801
8802    // C99 6.7.2.1p2:
8803    //   A structure or union shall not contain a member with
8804    //   incomplete or function type (hence, a structure shall not
8805    //   contain an instance of itself, but may contain a pointer to
8806    //   an instance of itself), except that the last member of a
8807    //   structure with more than one named member may have incomplete
8808    //   array type; such a structure (and any union containing,
8809    //   possibly recursively, a member that is such a structure)
8810    //   shall not be a member of a structure or an element of an
8811    //   array.
8812    if (FDTy->isFunctionType()) {
8813      // Field declared as a function.
8814      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8815        << FD->getDeclName();
8816      FD->setInvalidDecl();
8817      EnclosingDecl->setInvalidDecl();
8818      continue;
8819    } else if (FDTy->isIncompleteArrayType() && Record &&
8820               ((i + 1 == Fields.end() && !Record->isUnion()) ||
8821                ((getLangOptions().MicrosoftExt ||
8822                  getLangOptions().CPlusPlus) &&
8823                 (i + 1 == Fields.end() || Record->isUnion())))) {
8824      // Flexible array member.
8825      // Microsoft and g++ is more permissive regarding flexible array.
8826      // It will accept flexible array in union and also
8827      // as the sole element of a struct/class.
8828      if (getLangOptions().MicrosoftExt) {
8829        if (Record->isUnion())
8830          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8831            << FD->getDeclName();
8832        else if (Fields.size() == 1)
8833          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8834            << FD->getDeclName() << Record->getTagKind();
8835      } else if (getLangOptions().CPlusPlus) {
8836        if (Record->isUnion())
8837          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8838            << FD->getDeclName();
8839        else if (Fields.size() == 1)
8840          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8841            << FD->getDeclName() << Record->getTagKind();
8842      } else if (NumNamedMembers < 1) {
8843        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8844          << FD->getDeclName();
8845        FD->setInvalidDecl();
8846        EnclosingDecl->setInvalidDecl();
8847        continue;
8848      }
8849      if (!FD->getType()->isDependentType() &&
8850          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8851        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8852          << FD->getDeclName() << FD->getType();
8853        FD->setInvalidDecl();
8854        EnclosingDecl->setInvalidDecl();
8855        continue;
8856      }
8857      // Okay, we have a legal flexible array member at the end of the struct.
8858      if (Record)
8859        Record->setHasFlexibleArrayMember(true);
8860    } else if (!FDTy->isDependentType() &&
8861               RequireCompleteType(FD->getLocation(), FD->getType(),
8862                                   diag::err_field_incomplete)) {
8863      // Incomplete type
8864      FD->setInvalidDecl();
8865      EnclosingDecl->setInvalidDecl();
8866      continue;
8867    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8868      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8869        // If this is a member of a union, then entire union becomes "flexible".
8870        if (Record && Record->isUnion()) {
8871          Record->setHasFlexibleArrayMember(true);
8872        } else {
8873          // If this is a struct/class and this is not the last element, reject
8874          // it.  Note that GCC supports variable sized arrays in the middle of
8875          // structures.
8876          if (i + 1 != Fields.end())
8877            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8878              << FD->getDeclName() << FD->getType();
8879          else {
8880            // We support flexible arrays at the end of structs in
8881            // other structs as an extension.
8882            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8883              << FD->getDeclName();
8884            if (Record)
8885              Record->setHasFlexibleArrayMember(true);
8886          }
8887        }
8888      }
8889      if (Record && FDTTy->getDecl()->hasObjectMember())
8890        Record->setHasObjectMember(true);
8891    } else if (FDTy->isObjCObjectType()) {
8892      /// A field cannot be an Objective-c object
8893      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8894        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8895      QualType T = Context.getObjCObjectPointerType(FD->getType());
8896      FD->setType(T);
8897    }
8898    else if (!getLangOptions().CPlusPlus) {
8899      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8900        // It's an error in ARC if a field has lifetime.
8901        // We don't want to report this in a system header, though,
8902        // so we just make the field unavailable.
8903        // FIXME: that's really not sufficient; we need to make the type
8904        // itself invalid to, say, initialize or copy.
8905        QualType T = FD->getType();
8906        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8907        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8908          SourceLocation loc = FD->getLocation();
8909          if (getSourceManager().isInSystemHeader(loc)) {
8910            if (!FD->hasAttr<UnavailableAttr>()) {
8911              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8912                                "this system field has retaining ownership"));
8913            }
8914          } else {
8915            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8916          }
8917          ARCErrReported = true;
8918        }
8919      }
8920      else if (getLangOptions().ObjC1 &&
8921               getLangOptions().getGC() != LangOptions::NonGC &&
8922               Record && !Record->hasObjectMember()) {
8923        if (FD->getType()->isObjCObjectPointerType() ||
8924            FD->getType().isObjCGCStrong())
8925          Record->setHasObjectMember(true);
8926        else if (Context.getAsArrayType(FD->getType())) {
8927          QualType BaseType = Context.getBaseElementType(FD->getType());
8928          if (BaseType->isRecordType() &&
8929              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8930            Record->setHasObjectMember(true);
8931          else if (BaseType->isObjCObjectPointerType() ||
8932                   BaseType.isObjCGCStrong())
8933                 Record->setHasObjectMember(true);
8934        }
8935      }
8936    }
8937    // Keep track of the number of named members.
8938    if (FD->getIdentifier())
8939      ++NumNamedMembers;
8940  }
8941
8942  // Okay, we successfully defined 'Record'.
8943  if (Record) {
8944    bool Completed = false;
8945    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8946      if (!CXXRecord->isInvalidDecl()) {
8947        // Set access bits correctly on the directly-declared conversions.
8948        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8949        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8950             I != E; ++I)
8951          Convs->setAccess(I, (*I)->getAccess());
8952
8953        if (!CXXRecord->isDependentType()) {
8954          // Objective-C Automatic Reference Counting:
8955          //   If a class has a non-static data member of Objective-C pointer
8956          //   type (or array thereof), it is a non-POD type and its
8957          //   default constructor (if any), copy constructor, copy assignment
8958          //   operator, and destructor are non-trivial.
8959          //
8960          // This rule is also handled by CXXRecordDecl::completeDefinition().
8961          // However, here we check whether this particular class is only
8962          // non-POD because of the presence of an Objective-C pointer member.
8963          // If so, objects of this type cannot be shared between code compiled
8964          // with instant objects and code compiled with manual retain/release.
8965          if (getLangOptions().ObjCAutoRefCount &&
8966              CXXRecord->hasObjectMember() &&
8967              CXXRecord->getLinkage() == ExternalLinkage) {
8968            if (CXXRecord->isPOD()) {
8969              Diag(CXXRecord->getLocation(),
8970                   diag::warn_arc_non_pod_class_with_object_member)
8971               << CXXRecord;
8972            } else {
8973              // FIXME: Fix-Its would be nice here, but finding a good location
8974              // for them is going to be tricky.
8975              if (CXXRecord->hasTrivialCopyConstructor())
8976                Diag(CXXRecord->getLocation(),
8977                     diag::warn_arc_trivial_member_function_with_object_member)
8978                  << CXXRecord << 0;
8979              if (CXXRecord->hasTrivialCopyAssignment())
8980                Diag(CXXRecord->getLocation(),
8981                     diag::warn_arc_trivial_member_function_with_object_member)
8982                << CXXRecord << 1;
8983              if (CXXRecord->hasTrivialDestructor())
8984                Diag(CXXRecord->getLocation(),
8985                     diag::warn_arc_trivial_member_function_with_object_member)
8986                << CXXRecord << 2;
8987            }
8988          }
8989
8990          // Adjust user-defined destructor exception spec.
8991          if (getLangOptions().CPlusPlus0x &&
8992              CXXRecord->hasUserDeclaredDestructor())
8993            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8994
8995          // Add any implicitly-declared members to this class.
8996          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8997
8998          // If we have virtual base classes, we may end up finding multiple
8999          // final overriders for a given virtual function. Check for this
9000          // problem now.
9001          if (CXXRecord->getNumVBases()) {
9002            CXXFinalOverriderMap FinalOverriders;
9003            CXXRecord->getFinalOverriders(FinalOverriders);
9004
9005            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9006                                             MEnd = FinalOverriders.end();
9007                 M != MEnd; ++M) {
9008              for (OverridingMethods::iterator SO = M->second.begin(),
9009                                            SOEnd = M->second.end();
9010                   SO != SOEnd; ++SO) {
9011                assert(SO->second.size() > 0 &&
9012                       "Virtual function without overridding functions?");
9013                if (SO->second.size() == 1)
9014                  continue;
9015
9016                // C++ [class.virtual]p2:
9017                //   In a derived class, if a virtual member function of a base
9018                //   class subobject has more than one final overrider the
9019                //   program is ill-formed.
9020                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9021                  << (NamedDecl *)M->first << Record;
9022                Diag(M->first->getLocation(),
9023                     diag::note_overridden_virtual_function);
9024                for (OverridingMethods::overriding_iterator
9025                          OM = SO->second.begin(),
9026                       OMEnd = SO->second.end();
9027                     OM != OMEnd; ++OM)
9028                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9029                    << (NamedDecl *)M->first << OM->Method->getParent();
9030
9031                Record->setInvalidDecl();
9032              }
9033            }
9034            CXXRecord->completeDefinition(&FinalOverriders);
9035            Completed = true;
9036          }
9037        }
9038      }
9039    }
9040
9041    if (!Completed)
9042      Record->completeDefinition();
9043
9044    // Now that the record is complete, do any delayed exception spec checks
9045    // we were missing.
9046    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9047      const CXXDestructorDecl *Dtor =
9048              DelayedDestructorExceptionSpecChecks.back().first;
9049      if (Dtor->getParent() != Record)
9050        break;
9051
9052      assert(!Dtor->getParent()->isDependentType() &&
9053          "Should not ever add destructors of templates into the list.");
9054      CheckOverridingFunctionExceptionSpec(Dtor,
9055          DelayedDestructorExceptionSpecChecks.back().second);
9056      DelayedDestructorExceptionSpecChecks.pop_back();
9057    }
9058
9059  } else {
9060    ObjCIvarDecl **ClsFields =
9061      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9062    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9063      ID->setLocEnd(RBrac);
9064      // Add ivar's to class's DeclContext.
9065      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9066        ClsFields[i]->setLexicalDeclContext(ID);
9067        ID->addDecl(ClsFields[i]);
9068      }
9069      // Must enforce the rule that ivars in the base classes may not be
9070      // duplicates.
9071      if (ID->getSuperClass())
9072        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9073    } else if (ObjCImplementationDecl *IMPDecl =
9074                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9075      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9076      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9077        // Ivar declared in @implementation never belongs to the implementation.
9078        // Only it is in implementation's lexical context.
9079        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9080      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9081    } else if (ObjCCategoryDecl *CDecl =
9082                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9083      // case of ivars in class extension; all other cases have been
9084      // reported as errors elsewhere.
9085      // FIXME. Class extension does not have a LocEnd field.
9086      // CDecl->setLocEnd(RBrac);
9087      // Add ivar's to class extension's DeclContext.
9088      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9089        ClsFields[i]->setLexicalDeclContext(CDecl);
9090        CDecl->addDecl(ClsFields[i]);
9091      }
9092    }
9093  }
9094
9095  if (Attr)
9096    ProcessDeclAttributeList(S, Record, Attr);
9097
9098  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9099  // set the visibility of this record.
9100  if (Record && !Record->getDeclContext()->isRecord())
9101    AddPushedVisibilityAttribute(Record);
9102}
9103
9104/// \brief Determine whether the given integral value is representable within
9105/// the given type T.
9106static bool isRepresentableIntegerValue(ASTContext &Context,
9107                                        llvm::APSInt &Value,
9108                                        QualType T) {
9109  assert(T->isIntegralType(Context) && "Integral type required!");
9110  unsigned BitWidth = Context.getIntWidth(T);
9111
9112  if (Value.isUnsigned() || Value.isNonNegative()) {
9113    if (T->isSignedIntegerOrEnumerationType())
9114      --BitWidth;
9115    return Value.getActiveBits() <= BitWidth;
9116  }
9117  return Value.getMinSignedBits() <= BitWidth;
9118}
9119
9120// \brief Given an integral type, return the next larger integral type
9121// (or a NULL type of no such type exists).
9122static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9123  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9124  // enum checking below.
9125  assert(T->isIntegralType(Context) && "Integral type required!");
9126  const unsigned NumTypes = 4;
9127  QualType SignedIntegralTypes[NumTypes] = {
9128    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9129  };
9130  QualType UnsignedIntegralTypes[NumTypes] = {
9131    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9132    Context.UnsignedLongLongTy
9133  };
9134
9135  unsigned BitWidth = Context.getTypeSize(T);
9136  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9137                                                        : UnsignedIntegralTypes;
9138  for (unsigned I = 0; I != NumTypes; ++I)
9139    if (Context.getTypeSize(Types[I]) > BitWidth)
9140      return Types[I];
9141
9142  return QualType();
9143}
9144
9145EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9146                                          EnumConstantDecl *LastEnumConst,
9147                                          SourceLocation IdLoc,
9148                                          IdentifierInfo *Id,
9149                                          Expr *Val) {
9150  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9151  llvm::APSInt EnumVal(IntWidth);
9152  QualType EltTy;
9153
9154  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9155    Val = 0;
9156
9157  if (Val) {
9158    if (Enum->isDependentType() || Val->isTypeDependent())
9159      EltTy = Context.DependentTy;
9160    else {
9161      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9162      SourceLocation ExpLoc;
9163      if (!Val->isValueDependent() &&
9164          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9165        Val = 0;
9166      } else {
9167        if (!getLangOptions().CPlusPlus) {
9168          // C99 6.7.2.2p2:
9169          //   The expression that defines the value of an enumeration constant
9170          //   shall be an integer constant expression that has a value
9171          //   representable as an int.
9172
9173          // Complain if the value is not representable in an int.
9174          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9175            Diag(IdLoc, diag::ext_enum_value_not_int)
9176              << EnumVal.toString(10) << Val->getSourceRange()
9177              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9178          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9179            // Force the type of the expression to 'int'.
9180            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9181          }
9182        }
9183
9184        if (Enum->isFixed()) {
9185          EltTy = Enum->getIntegerType();
9186
9187          // C++0x [dcl.enum]p5:
9188          //   ... if the initializing value of an enumerator cannot be
9189          //   represented by the underlying type, the program is ill-formed.
9190          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9191            if (getLangOptions().MicrosoftExt) {
9192              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9193              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9194            } else
9195              Diag(IdLoc, diag::err_enumerator_too_large)
9196                << EltTy;
9197          } else
9198            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9199        }
9200        else {
9201          // C++0x [dcl.enum]p5:
9202          //   If the underlying type is not fixed, the type of each enumerator
9203          //   is the type of its initializing value:
9204          //     - If an initializer is specified for an enumerator, the
9205          //       initializing value has the same type as the expression.
9206          EltTy = Val->getType();
9207        }
9208      }
9209    }
9210  }
9211
9212  if (!Val) {
9213    if (Enum->isDependentType())
9214      EltTy = Context.DependentTy;
9215    else if (!LastEnumConst) {
9216      // C++0x [dcl.enum]p5:
9217      //   If the underlying type is not fixed, the type of each enumerator
9218      //   is the type of its initializing value:
9219      //     - If no initializer is specified for the first enumerator, the
9220      //       initializing value has an unspecified integral type.
9221      //
9222      // GCC uses 'int' for its unspecified integral type, as does
9223      // C99 6.7.2.2p3.
9224      if (Enum->isFixed()) {
9225        EltTy = Enum->getIntegerType();
9226      }
9227      else {
9228        EltTy = Context.IntTy;
9229      }
9230    } else {
9231      // Assign the last value + 1.
9232      EnumVal = LastEnumConst->getInitVal();
9233      ++EnumVal;
9234      EltTy = LastEnumConst->getType();
9235
9236      // Check for overflow on increment.
9237      if (EnumVal < LastEnumConst->getInitVal()) {
9238        // C++0x [dcl.enum]p5:
9239        //   If the underlying type is not fixed, the type of each enumerator
9240        //   is the type of its initializing value:
9241        //
9242        //     - Otherwise the type of the initializing value is the same as
9243        //       the type of the initializing value of the preceding enumerator
9244        //       unless the incremented value is not representable in that type,
9245        //       in which case the type is an unspecified integral type
9246        //       sufficient to contain the incremented value. If no such type
9247        //       exists, the program is ill-formed.
9248        QualType T = getNextLargerIntegralType(Context, EltTy);
9249        if (T.isNull() || Enum->isFixed()) {
9250          // There is no integral type larger enough to represent this
9251          // value. Complain, then allow the value to wrap around.
9252          EnumVal = LastEnumConst->getInitVal();
9253          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9254          ++EnumVal;
9255          if (Enum->isFixed())
9256            // When the underlying type is fixed, this is ill-formed.
9257            Diag(IdLoc, diag::err_enumerator_wrapped)
9258              << EnumVal.toString(10)
9259              << EltTy;
9260          else
9261            Diag(IdLoc, diag::warn_enumerator_too_large)
9262              << EnumVal.toString(10);
9263        } else {
9264          EltTy = T;
9265        }
9266
9267        // Retrieve the last enumerator's value, extent that type to the
9268        // type that is supposed to be large enough to represent the incremented
9269        // value, then increment.
9270        EnumVal = LastEnumConst->getInitVal();
9271        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9272        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9273        ++EnumVal;
9274
9275        // If we're not in C++, diagnose the overflow of enumerator values,
9276        // which in C99 means that the enumerator value is not representable in
9277        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9278        // permits enumerator values that are representable in some larger
9279        // integral type.
9280        if (!getLangOptions().CPlusPlus && !T.isNull())
9281          Diag(IdLoc, diag::warn_enum_value_overflow);
9282      } else if (!getLangOptions().CPlusPlus &&
9283                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9284        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9285        Diag(IdLoc, diag::ext_enum_value_not_int)
9286          << EnumVal.toString(10) << 1;
9287      }
9288    }
9289  }
9290
9291  if (!EltTy->isDependentType()) {
9292    // Make the enumerator value match the signedness and size of the
9293    // enumerator's type.
9294    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9295    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9296  }
9297
9298  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9299                                  Val, EnumVal);
9300}
9301
9302
9303Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9304                              SourceLocation IdLoc, IdentifierInfo *Id,
9305                              AttributeList *Attr,
9306                              SourceLocation EqualLoc, Expr *val) {
9307  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9308  EnumConstantDecl *LastEnumConst =
9309    cast_or_null<EnumConstantDecl>(lastEnumConst);
9310  Expr *Val = static_cast<Expr*>(val);
9311
9312  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9313  // we find one that is.
9314  S = getNonFieldDeclScope(S);
9315
9316  // Verify that there isn't already something declared with this name in this
9317  // scope.
9318  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9319                                         ForRedeclaration);
9320  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9321    // Maybe we will complain about the shadowed template parameter.
9322    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9323    // Just pretend that we didn't see the previous declaration.
9324    PrevDecl = 0;
9325  }
9326
9327  if (PrevDecl) {
9328    // When in C++, we may get a TagDecl with the same name; in this case the
9329    // enum constant will 'hide' the tag.
9330    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9331           "Received TagDecl when not in C++!");
9332    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9333      if (isa<EnumConstantDecl>(PrevDecl))
9334        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9335      else
9336        Diag(IdLoc, diag::err_redefinition) << Id;
9337      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9338      return 0;
9339    }
9340  }
9341
9342  // C++ [class.mem]p13:
9343  //   If T is the name of a class, then each of the following shall have a
9344  //   name different from T:
9345  //     - every enumerator of every member of class T that is an enumerated
9346  //       type
9347  if (CXXRecordDecl *Record
9348                      = dyn_cast<CXXRecordDecl>(
9349                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9350    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9351      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9352
9353  EnumConstantDecl *New =
9354    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9355
9356  if (New) {
9357    // Process attributes.
9358    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9359
9360    // Register this decl in the current scope stack.
9361    New->setAccess(TheEnumDecl->getAccess());
9362    PushOnScopeChains(New, S);
9363  }
9364
9365  return New;
9366}
9367
9368void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9369                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9370                         Decl **Elements, unsigned NumElements,
9371                         Scope *S, AttributeList *Attr) {
9372  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9373  QualType EnumType = Context.getTypeDeclType(Enum);
9374
9375  if (Attr)
9376    ProcessDeclAttributeList(S, Enum, Attr);
9377
9378  if (Enum->isDependentType()) {
9379    for (unsigned i = 0; i != NumElements; ++i) {
9380      EnumConstantDecl *ECD =
9381        cast_or_null<EnumConstantDecl>(Elements[i]);
9382      if (!ECD) continue;
9383
9384      ECD->setType(EnumType);
9385    }
9386
9387    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9388    return;
9389  }
9390
9391  // TODO: If the result value doesn't fit in an int, it must be a long or long
9392  // long value.  ISO C does not support this, but GCC does as an extension,
9393  // emit a warning.
9394  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9395  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9396  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9397
9398  // Verify that all the values are okay, compute the size of the values, and
9399  // reverse the list.
9400  unsigned NumNegativeBits = 0;
9401  unsigned NumPositiveBits = 0;
9402
9403  // Keep track of whether all elements have type int.
9404  bool AllElementsInt = true;
9405
9406  for (unsigned i = 0; i != NumElements; ++i) {
9407    EnumConstantDecl *ECD =
9408      cast_or_null<EnumConstantDecl>(Elements[i]);
9409    if (!ECD) continue;  // Already issued a diagnostic.
9410
9411    const llvm::APSInt &InitVal = ECD->getInitVal();
9412
9413    // Keep track of the size of positive and negative values.
9414    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9415      NumPositiveBits = std::max(NumPositiveBits,
9416                                 (unsigned)InitVal.getActiveBits());
9417    else
9418      NumNegativeBits = std::max(NumNegativeBits,
9419                                 (unsigned)InitVal.getMinSignedBits());
9420
9421    // Keep track of whether every enum element has type int (very commmon).
9422    if (AllElementsInt)
9423      AllElementsInt = ECD->getType() == Context.IntTy;
9424  }
9425
9426  // Figure out the type that should be used for this enum.
9427  QualType BestType;
9428  unsigned BestWidth;
9429
9430  // C++0x N3000 [conv.prom]p3:
9431  //   An rvalue of an unscoped enumeration type whose underlying
9432  //   type is not fixed can be converted to an rvalue of the first
9433  //   of the following types that can represent all the values of
9434  //   the enumeration: int, unsigned int, long int, unsigned long
9435  //   int, long long int, or unsigned long long int.
9436  // C99 6.4.4.3p2:
9437  //   An identifier declared as an enumeration constant has type int.
9438  // The C99 rule is modified by a gcc extension
9439  QualType BestPromotionType;
9440
9441  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9442  // -fshort-enums is the equivalent to specifying the packed attribute on all
9443  // enum definitions.
9444  if (LangOpts.ShortEnums)
9445    Packed = true;
9446
9447  if (Enum->isFixed()) {
9448    BestType = BestPromotionType = Enum->getIntegerType();
9449    // We don't need to set BestWidth, because BestType is going to be the type
9450    // of the enumerators, but we do anyway because otherwise some compilers
9451    // warn that it might be used uninitialized.
9452    BestWidth = CharWidth;
9453  }
9454  else if (NumNegativeBits) {
9455    // If there is a negative value, figure out the smallest integer type (of
9456    // int/long/longlong) that fits.
9457    // If it's packed, check also if it fits a char or a short.
9458    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9459      BestType = Context.SignedCharTy;
9460      BestWidth = CharWidth;
9461    } else if (Packed && NumNegativeBits <= ShortWidth &&
9462               NumPositiveBits < ShortWidth) {
9463      BestType = Context.ShortTy;
9464      BestWidth = ShortWidth;
9465    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9466      BestType = Context.IntTy;
9467      BestWidth = IntWidth;
9468    } else {
9469      BestWidth = Context.getTargetInfo().getLongWidth();
9470
9471      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9472        BestType = Context.LongTy;
9473      } else {
9474        BestWidth = Context.getTargetInfo().getLongLongWidth();
9475
9476        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9477          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9478        BestType = Context.LongLongTy;
9479      }
9480    }
9481    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9482  } else {
9483    // If there is no negative value, figure out the smallest type that fits
9484    // all of the enumerator values.
9485    // If it's packed, check also if it fits a char or a short.
9486    if (Packed && NumPositiveBits <= CharWidth) {
9487      BestType = Context.UnsignedCharTy;
9488      BestPromotionType = Context.IntTy;
9489      BestWidth = CharWidth;
9490    } else if (Packed && NumPositiveBits <= ShortWidth) {
9491      BestType = Context.UnsignedShortTy;
9492      BestPromotionType = Context.IntTy;
9493      BestWidth = ShortWidth;
9494    } else if (NumPositiveBits <= IntWidth) {
9495      BestType = Context.UnsignedIntTy;
9496      BestWidth = IntWidth;
9497      BestPromotionType
9498        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9499                           ? Context.UnsignedIntTy : Context.IntTy;
9500    } else if (NumPositiveBits <=
9501               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9502      BestType = Context.UnsignedLongTy;
9503      BestPromotionType
9504        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9505                           ? Context.UnsignedLongTy : Context.LongTy;
9506    } else {
9507      BestWidth = Context.getTargetInfo().getLongLongWidth();
9508      assert(NumPositiveBits <= BestWidth &&
9509             "How could an initializer get larger than ULL?");
9510      BestType = Context.UnsignedLongLongTy;
9511      BestPromotionType
9512        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9513                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9514    }
9515  }
9516
9517  // Loop over all of the enumerator constants, changing their types to match
9518  // the type of the enum if needed.
9519  for (unsigned i = 0; i != NumElements; ++i) {
9520    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9521    if (!ECD) continue;  // Already issued a diagnostic.
9522
9523    // Standard C says the enumerators have int type, but we allow, as an
9524    // extension, the enumerators to be larger than int size.  If each
9525    // enumerator value fits in an int, type it as an int, otherwise type it the
9526    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9527    // that X has type 'int', not 'unsigned'.
9528
9529    // Determine whether the value fits into an int.
9530    llvm::APSInt InitVal = ECD->getInitVal();
9531
9532    // If it fits into an integer type, force it.  Otherwise force it to match
9533    // the enum decl type.
9534    QualType NewTy;
9535    unsigned NewWidth;
9536    bool NewSign;
9537    if (!getLangOptions().CPlusPlus &&
9538        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9539      NewTy = Context.IntTy;
9540      NewWidth = IntWidth;
9541      NewSign = true;
9542    } else if (ECD->getType() == BestType) {
9543      // Already the right type!
9544      if (getLangOptions().CPlusPlus)
9545        // C++ [dcl.enum]p4: Following the closing brace of an
9546        // enum-specifier, each enumerator has the type of its
9547        // enumeration.
9548        ECD->setType(EnumType);
9549      continue;
9550    } else {
9551      NewTy = BestType;
9552      NewWidth = BestWidth;
9553      NewSign = BestType->isSignedIntegerOrEnumerationType();
9554    }
9555
9556    // Adjust the APSInt value.
9557    InitVal = InitVal.extOrTrunc(NewWidth);
9558    InitVal.setIsSigned(NewSign);
9559    ECD->setInitVal(InitVal);
9560
9561    // Adjust the Expr initializer and type.
9562    if (ECD->getInitExpr() &&
9563        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9564      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9565                                                CK_IntegralCast,
9566                                                ECD->getInitExpr(),
9567                                                /*base paths*/ 0,
9568                                                VK_RValue));
9569    if (getLangOptions().CPlusPlus)
9570      // C++ [dcl.enum]p4: Following the closing brace of an
9571      // enum-specifier, each enumerator has the type of its
9572      // enumeration.
9573      ECD->setType(EnumType);
9574    else
9575      ECD->setType(NewTy);
9576  }
9577
9578  Enum->completeDefinition(BestType, BestPromotionType,
9579                           NumPositiveBits, NumNegativeBits);
9580}
9581
9582Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9583                                  SourceLocation StartLoc,
9584                                  SourceLocation EndLoc) {
9585  StringLiteral *AsmString = cast<StringLiteral>(expr);
9586
9587  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9588                                                   AsmString, StartLoc,
9589                                                   EndLoc);
9590  CurContext->addDecl(New);
9591  return New;
9592}
9593
9594DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9595                                   IdentifierInfo &ModuleName,
9596                                   SourceLocation ModuleNameLoc) {
9597  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9598                                                     ModuleName, ModuleNameLoc);
9599  if (!Module)
9600    return true;
9601
9602  // FIXME: Actually create a declaration to describe the module import.
9603  (void)Module;
9604  return DeclResult((Decl *)0);
9605}
9606
9607void
9608Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9609                                         SourceLocation ModulePrivateKeyword) {
9610  assert(!Old->isModulePrivate() && "Old is module-private!");
9611
9612  Diag(New->getLocation(), diag::err_module_private_follows_public)
9613    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9614  Diag(Old->getLocation(), diag::note_previous_declaration)
9615    << Old->getDeclName();
9616
9617  // Drop the __module_private__ from the new declaration, since it's invalid.
9618  New->setModulePrivate(false);
9619}
9620
9621void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9622                             SourceLocation PragmaLoc,
9623                             SourceLocation NameLoc) {
9624  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9625
9626  if (PrevDecl) {
9627    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9628  } else {
9629    (void)WeakUndeclaredIdentifiers.insert(
9630      std::pair<IdentifierInfo*,WeakInfo>
9631        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9632  }
9633}
9634
9635void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9636                                IdentifierInfo* AliasName,
9637                                SourceLocation PragmaLoc,
9638                                SourceLocation NameLoc,
9639                                SourceLocation AliasNameLoc) {
9640  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9641                                    LookupOrdinaryName);
9642  WeakInfo W = WeakInfo(Name, NameLoc);
9643
9644  if (PrevDecl) {
9645    if (!PrevDecl->hasAttr<AliasAttr>())
9646      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9647        DeclApplyPragmaWeak(TUScope, ND, W);
9648  } else {
9649    (void)WeakUndeclaredIdentifiers.insert(
9650      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9651  }
9652}
9653
9654Decl *Sema::getObjCDeclContext() const {
9655  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9656}
9657