SemaDecl.cpp revision 18fe56863be253a27b940022d27a3101778adaf6
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/StringExtras.h"
29using namespace clang;
30
31Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
32  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
33
34  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
35                 isa<ObjCInterfaceDecl>(IIDecl) ||
36                 isa<TagDecl>(IIDecl)))
37    return IIDecl;
38  return 0;
39}
40
41DeclContext *Sema::getDCParent(DeclContext *DC) {
42  // If CurContext is a ObjC method, getParent() will return NULL.
43  if (isa<ObjCMethodDecl>(DC))
44    return Context.getTranslationUnitDecl();
45
46  // A C++ inline method is parsed *after* the topmost class it was declared in
47  // is fully parsed (it's "complete").
48  // The parsing of a C++ inline method happens at the declaration context of
49  // the topmost (non-nested) class it is declared in.
50  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
51    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
52    DC = MD->getParent();
53    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
54      DC = RD;
55
56    // Return the declaration context of the topmost class the inline method is
57    // declared in.
58    return DC;
59  }
60
61  return DC->getParent();
62}
63
64void Sema::PushDeclContext(DeclContext *DC) {
65  assert(getDCParent(DC) == CurContext &&
66       "The next DeclContext should be directly contained in the current one.");
67  CurContext = DC;
68}
69
70void Sema::PopDeclContext() {
71  assert(CurContext && "DeclContext imbalance!");
72  CurContext = getDCParent(CurContext);
73}
74
75/// Add this decl to the scope shadowed decl chains.
76void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
77  S->AddDecl(D);
78
79  // C++ [basic.scope]p4:
80  //   -- exactly one declaration shall declare a class name or
81  //   enumeration name that is not a typedef name and the other
82  //   declarations shall all refer to the same object or
83  //   enumerator, or all refer to functions and function templates;
84  //   in this case the class name or enumeration name is hidden.
85  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
86    // We are pushing the name of a tag (enum or class).
87    IdentifierResolver::iterator
88        I = IdResolver.begin(TD->getIdentifier(),
89                             TD->getDeclContext(), false/*LookInParentCtx*/);
90    if (I != IdResolver.end() && isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  } else if (getLangOptions().CPlusPlus && isa<FunctionDecl>(D)) {
99    FunctionDecl *FD = cast<FunctionDecl>(D);
100    // We are pushing the name of a function, which might be an
101    // overloaded name.
102    IdentifierResolver::iterator
103        I = IdResolver.begin(FD->getIdentifier(),
104                             FD->getDeclContext(), false/*LookInParentCtx*/);
105    if (I != IdResolver.end() &&
106        IdResolver.isDeclInScope(*I, FD->getDeclContext(), S) &&
107        (isa<OverloadedFunctionDecl>(*I) || isa<FunctionDecl>(*I))) {
108      // There is already a declaration with the same name in the same
109      // scope. It must be a function or an overloaded function.
110      OverloadedFunctionDecl* Ovl = dyn_cast<OverloadedFunctionDecl>(*I);
111      if (!Ovl) {
112        // We haven't yet overloaded this function. Take the existing
113        // FunctionDecl and put it into an OverloadedFunctionDecl.
114        Ovl = OverloadedFunctionDecl::Create(Context,
115                                             FD->getDeclContext(),
116                                             FD->getIdentifier());
117        Ovl->addOverload(dyn_cast<FunctionDecl>(*I));
118
119        // Remove the name binding to the existing FunctionDecl...
120        IdResolver.RemoveDecl(*I);
121
122        // ... and put the OverloadedFunctionDecl in its place.
123        IdResolver.AddDecl(Ovl);
124      }
125
126      // We have an OverloadedFunctionDecl. Add the new FunctionDecl
127      // to its list of overloads.
128      Ovl->addOverload(FD);
129
130      return;
131    }
132  }
133
134  IdResolver.AddDecl(D);
135}
136
137void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
138  if (S->decl_empty()) return;
139  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
140
141  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
142       I != E; ++I) {
143    Decl *TmpD = static_cast<Decl*>(*I);
144    assert(TmpD && "This decl didn't get pushed??");
145
146    if (isa<CXXFieldDecl>(TmpD)) continue;
147
148    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
149    ScopedDecl *D = cast<ScopedDecl>(TmpD);
150
151    IdentifierInfo *II = D->getIdentifier();
152    if (!II) continue;
153
154    // We only want to remove the decls from the identifier decl chains for
155    // local scopes, when inside a function/method.
156    if (S->getFnParent() != 0)
157      IdResolver.RemoveDecl(D);
158
159    // Chain this decl to the containing DeclContext.
160    D->setNext(CurContext->getDeclChain());
161    CurContext->setDeclChain(D);
162  }
163}
164
165/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
166/// return 0 if one not found.
167ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
168  // The third "scope" argument is 0 since we aren't enabling lazy built-in
169  // creation from this context.
170  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
171
172  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
173}
174
175/// LookupDecl - Look up the inner-most declaration in the specified
176/// namespace.
177Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
178                       Scope *S, bool enableLazyBuiltinCreation) {
179  if (II == 0) return 0;
180  unsigned NS = NSI;
181  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
182    NS |= Decl::IDNS_Tag;
183
184  // Scan up the scope chain looking for a decl that matches this identifier
185  // that is in the appropriate namespace.  This search should not take long, as
186  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
187  for (IdentifierResolver::iterator
188       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
189    if ((*I)->getIdentifierNamespace() & NS)
190      return *I;
191
192  // If we didn't find a use of this identifier, and if the identifier
193  // corresponds to a compiler builtin, create the decl object for the builtin
194  // now, injecting it into translation unit scope, and return it.
195  if (NS & Decl::IDNS_Ordinary) {
196    if (enableLazyBuiltinCreation) {
197      // If this is a builtin on this (or all) targets, create the decl.
198      if (unsigned BuiltinID = II->getBuiltinID())
199        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
200    }
201    if (getLangOptions().ObjC1) {
202      // @interface and @compatibility_alias introduce typedef-like names.
203      // Unlike typedef's, they can only be introduced at file-scope (and are
204      // therefore not scoped decls). They can, however, be shadowed by
205      // other names in IDNS_Ordinary.
206      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
207      if (IDI != ObjCInterfaceDecls.end())
208        return IDI->second;
209      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
210      if (I != ObjCAliasDecls.end())
211        return I->second->getClassInterface();
212    }
213  }
214  return 0;
215}
216
217void Sema::InitBuiltinVaListType() {
218  if (!Context.getBuiltinVaListType().isNull())
219    return;
220
221  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
222  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
223  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
224  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
225}
226
227/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
228/// lazily create a decl for it.
229ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
230                                      Scope *S) {
231  Builtin::ID BID = (Builtin::ID)bid;
232
233  if (Context.BuiltinInfo.hasVAListUse(BID))
234    InitBuiltinVaListType();
235
236  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
237  FunctionDecl *New = FunctionDecl::Create(Context,
238                                           Context.getTranslationUnitDecl(),
239                                           SourceLocation(), II, R,
240                                           FunctionDecl::Extern, false, 0);
241
242  // Create Decl objects for each parameter, adding them to the
243  // FunctionDecl.
244  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
245    llvm::SmallVector<ParmVarDecl*, 16> Params;
246    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
247      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
248                                           FT->getArgType(i), VarDecl::None, 0,
249                                           0));
250    New->setParams(&Params[0], Params.size());
251  }
252
253
254
255  // TUScope is the translation-unit scope to insert this function into.
256  PushOnScopeChains(New, TUScope);
257  return New;
258}
259
260/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
261/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
262/// situation, merging decls or emitting diagnostics as appropriate.
263///
264TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
265  // Allow multiple definitions for ObjC built-in typedefs.
266  // FIXME: Verify the underlying types are equivalent!
267  if (getLangOptions().ObjC1) {
268    const IdentifierInfo *typeIdent = New->getIdentifier();
269    if (typeIdent == Ident_id) {
270      Context.setObjCIdType(New);
271      return New;
272    } else if (typeIdent == Ident_Class) {
273      Context.setObjCClassType(New);
274      return New;
275    } else if (typeIdent == Ident_SEL) {
276      Context.setObjCSelType(New);
277      return New;
278    } else if (typeIdent == Ident_Protocol) {
279      Context.setObjCProtoType(New->getUnderlyingType());
280      return New;
281    }
282    // Fall through - the typedef name was not a builtin type.
283  }
284  // Verify the old decl was also a typedef.
285  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
286  if (!Old) {
287    Diag(New->getLocation(), diag::err_redefinition_different_kind,
288         New->getName());
289    Diag(OldD->getLocation(), diag::err_previous_definition);
290    return New;
291  }
292
293  // If the typedef types are not identical, reject them in all languages and
294  // with any extensions enabled.
295  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
296      Context.getCanonicalType(Old->getUnderlyingType()) !=
297      Context.getCanonicalType(New->getUnderlyingType())) {
298    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
299         New->getUnderlyingType().getAsString(),
300         Old->getUnderlyingType().getAsString());
301    Diag(Old->getLocation(), diag::err_previous_definition);
302    return Old;
303  }
304
305  if (getLangOptions().Microsoft) return New;
306
307  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
308  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
309  // *either* declaration is in a system header. The code below implements
310  // this adhoc compatibility rule. FIXME: The following code will not
311  // work properly when compiling ".i" files (containing preprocessed output).
312  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
313    SourceManager &SrcMgr = Context.getSourceManager();
314    if (SrcMgr.isInSystemHeader(Old->getLocation()))
315      return New;
316    if (SrcMgr.isInSystemHeader(New->getLocation()))
317      return New;
318  }
319
320  Diag(New->getLocation(), diag::err_redefinition, New->getName());
321  Diag(Old->getLocation(), diag::err_previous_definition);
322  return New;
323}
324
325/// DeclhasAttr - returns true if decl Declaration already has the target
326/// attribute.
327static bool DeclHasAttr(const Decl *decl, const Attr *target) {
328  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
329    if (attr->getKind() == target->getKind())
330      return true;
331
332  return false;
333}
334
335/// MergeAttributes - append attributes from the Old decl to the New one.
336static void MergeAttributes(Decl *New, Decl *Old) {
337  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
338
339  while (attr) {
340     tmp = attr;
341     attr = attr->getNext();
342
343    if (!DeclHasAttr(New, tmp)) {
344       New->addAttr(tmp);
345    } else {
346       tmp->setNext(0);
347       delete(tmp);
348    }
349  }
350
351  Old->invalidateAttrs();
352}
353
354/// MergeFunctionDecl - We just parsed a function 'New' from
355/// declarator D which has the same name and scope as a previous
356/// declaration 'Old'.  Figure out how to resolve this situation,
357/// merging decls or emitting diagnostics as appropriate.
358/// Redeclaration will be set true if this New is a redeclaration OldD.
359///
360/// In C++, New and Old must be declarations that are not
361/// overloaded. Use IsOverload to determine whether New and Old are
362/// overloaded, and to select the Old declaration that New should be
363/// merged with.
364FunctionDecl *
365Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
366  assert(!isa<OverloadedFunctionDecl>(OldD) &&
367         "Cannot merge with an overloaded function declaration");
368
369  Redeclaration = false;
370  // Verify the old decl was also a function.
371  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
372  if (!Old) {
373    Diag(New->getLocation(), diag::err_redefinition_different_kind,
374         New->getName());
375    Diag(OldD->getLocation(), diag::err_previous_definition);
376    return New;
377  }
378
379  // Determine whether the previous declaration was a definition,
380  // implicit declaration, or a declaration.
381  diag::kind PrevDiag;
382  if (Old->isThisDeclarationADefinition())
383    PrevDiag = diag::err_previous_definition;
384  else if (Old->isImplicit())
385    PrevDiag = diag::err_previous_implicit_declaration;
386  else
387    PrevDiag = diag::err_previous_declaration;
388
389  QualType OldQType = Context.getCanonicalType(Old->getType());
390  QualType NewQType = Context.getCanonicalType(New->getType());
391
392  if (getLangOptions().CPlusPlus) {
393    // (C++98 13.1p2):
394    //   Certain function declarations cannot be overloaded:
395    //     -- Function declarations that differ only in the return type
396    //        cannot be overloaded.
397    QualType OldReturnType
398      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
399    QualType NewReturnType
400      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
401    if (OldReturnType != NewReturnType) {
402      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
403      Diag(Old->getLocation(), PrevDiag);
404      return New;
405    }
406
407    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
408    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
409    if (OldMethod && NewMethod) {
410      //    -- Member function declarations with the same name and the
411      //       same parameter types cannot be overloaded if any of them
412      //       is a static member function declaration.
413      if (OldMethod->isStatic() || NewMethod->isStatic()) {
414        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
415        Diag(Old->getLocation(), PrevDiag);
416        return New;
417      }
418    }
419
420    // (C++98 8.3.5p3):
421    //   All declarations for a function shall agree exactly in both the
422    //   return type and the parameter-type-list.
423    if (OldQType == NewQType) {
424      // We have a redeclaration.
425      MergeAttributes(New, Old);
426      Redeclaration = true;
427      return MergeCXXFunctionDecl(New, Old);
428    }
429
430    // Fall through for conflicting redeclarations and redefinitions.
431  }
432
433  // C: Function types need to be compatible, not identical. This handles
434  // duplicate function decls like "void f(int); void f(enum X);" properly.
435  if (!getLangOptions().CPlusPlus &&
436      Context.typesAreCompatible(OldQType, NewQType)) {
437    MergeAttributes(New, Old);
438    Redeclaration = true;
439    return New;
440  }
441
442  // A function that has already been declared has been redeclared or defined
443  // with a different type- show appropriate diagnostic
444
445  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
446  // TODO: This is totally simplistic.  It should handle merging functions
447  // together etc, merging extern int X; int X; ...
448  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
449  Diag(Old->getLocation(), PrevDiag);
450  return New;
451}
452
453/// Predicate for C "tentative" external object definitions (C99 6.9.2).
454static bool isTentativeDefinition(VarDecl *VD) {
455  if (VD->isFileVarDecl())
456    return (!VD->getInit() &&
457            (VD->getStorageClass() == VarDecl::None ||
458             VD->getStorageClass() == VarDecl::Static));
459  return false;
460}
461
462/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
463/// when dealing with C "tentative" external object definitions (C99 6.9.2).
464void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
465  bool VDIsTentative = isTentativeDefinition(VD);
466  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
467
468  for (IdentifierResolver::iterator
469       I = IdResolver.begin(VD->getIdentifier(),
470                            VD->getDeclContext(), false/*LookInParentCtx*/),
471       E = IdResolver.end(); I != E; ++I) {
472    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
473      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
474
475      // Handle the following case:
476      //   int a[10];
477      //   int a[];   - the code below makes sure we set the correct type.
478      //   int a[11]; - this is an error, size isn't 10.
479      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
480          OldDecl->getType()->isConstantArrayType())
481        VD->setType(OldDecl->getType());
482
483      // Check for "tentative" definitions. We can't accomplish this in
484      // MergeVarDecl since the initializer hasn't been attached.
485      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
486        continue;
487
488      // Handle __private_extern__ just like extern.
489      if (OldDecl->getStorageClass() != VarDecl::Extern &&
490          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
491          VD->getStorageClass() != VarDecl::Extern &&
492          VD->getStorageClass() != VarDecl::PrivateExtern) {
493        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
494        Diag(OldDecl->getLocation(), diag::err_previous_definition);
495      }
496    }
497  }
498}
499
500/// MergeVarDecl - We just parsed a variable 'New' which has the same name
501/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
502/// situation, merging decls or emitting diagnostics as appropriate.
503///
504/// Tentative definition rules (C99 6.9.2p2) are checked by
505/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
506/// definitions here, since the initializer hasn't been attached.
507///
508VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
509  // Verify the old decl was also a variable.
510  VarDecl *Old = dyn_cast<VarDecl>(OldD);
511  if (!Old) {
512    Diag(New->getLocation(), diag::err_redefinition_different_kind,
513         New->getName());
514    Diag(OldD->getLocation(), diag::err_previous_definition);
515    return New;
516  }
517
518  MergeAttributes(New, Old);
519
520  // Verify the types match.
521  QualType OldCType = Context.getCanonicalType(Old->getType());
522  QualType NewCType = Context.getCanonicalType(New->getType());
523  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
524    Diag(New->getLocation(), diag::err_redefinition, New->getName());
525    Diag(Old->getLocation(), diag::err_previous_definition);
526    return New;
527  }
528  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
529  if (New->getStorageClass() == VarDecl::Static &&
530      (Old->getStorageClass() == VarDecl::None ||
531       Old->getStorageClass() == VarDecl::Extern)) {
532    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
533    Diag(Old->getLocation(), diag::err_previous_definition);
534    return New;
535  }
536  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
537  if (New->getStorageClass() != VarDecl::Static &&
538      Old->getStorageClass() == VarDecl::Static) {
539    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
540    Diag(Old->getLocation(), diag::err_previous_definition);
541    return New;
542  }
543  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
544  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
545    Diag(New->getLocation(), diag::err_redefinition, New->getName());
546    Diag(Old->getLocation(), diag::err_previous_definition);
547  }
548  return New;
549}
550
551/// CheckParmsForFunctionDef - Check that the parameters of the given
552/// function are appropriate for the definition of a function. This
553/// takes care of any checks that cannot be performed on the
554/// declaration itself, e.g., that the types of each of the function
555/// parameters are complete.
556bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
557  bool HasInvalidParm = false;
558  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
559    ParmVarDecl *Param = FD->getParamDecl(p);
560
561    // C99 6.7.5.3p4: the parameters in a parameter type list in a
562    // function declarator that is part of a function definition of
563    // that function shall not have incomplete type.
564    if (Param->getType()->isIncompleteType() &&
565        !Param->isInvalidDecl()) {
566      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
567           Param->getType().getAsString());
568      Param->setInvalidDecl();
569      HasInvalidParm = true;
570    }
571  }
572
573  return HasInvalidParm;
574}
575
576/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
577/// no declarator (e.g. "struct foo;") is parsed.
578Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
579  // TODO: emit error on 'int;' or 'const enum foo;'.
580  // TODO: emit error on 'typedef int;'
581  // if (!DS.isMissingDeclaratorOk()) Diag(...);
582
583  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
584}
585
586bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
587  // Get the type before calling CheckSingleAssignmentConstraints(), since
588  // it can promote the expression.
589  QualType InitType = Init->getType();
590
591  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
592  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
593                                  InitType, Init, "initializing");
594}
595
596bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
597  const ArrayType *AT = Context.getAsArrayType(DeclT);
598
599  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
600    // C99 6.7.8p14. We have an array of character type with unknown size
601    // being initialized to a string literal.
602    llvm::APSInt ConstVal(32);
603    ConstVal = strLiteral->getByteLength() + 1;
604    // Return a new array type (C99 6.7.8p22).
605    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
606                                         ArrayType::Normal, 0);
607  } else {
608    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
609    // C99 6.7.8p14. We have an array of character type with known size.
610    // FIXME: Avoid truncation for 64-bit length strings.
611    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
612      Diag(strLiteral->getSourceRange().getBegin(),
613           diag::warn_initializer_string_for_char_array_too_long,
614           strLiteral->getSourceRange());
615  }
616  // Set type from "char *" to "constant array of char".
617  strLiteral->setType(DeclT);
618  // For now, we always return false (meaning success).
619  return false;
620}
621
622StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
623  const ArrayType *AT = Context.getAsArrayType(DeclType);
624  if (AT && AT->getElementType()->isCharType()) {
625    return dyn_cast<StringLiteral>(Init);
626  }
627  return 0;
628}
629
630bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
631  // C++ [dcl.init.ref]p1:
632  //   A variable declared to be a T&, that is “reference to type T”
633  //   (8.3.2), shall be initialized by an object, or function, of
634  //   type T or by an object that can be converted into a T.
635  if (DeclType->isReferenceType())
636    return CheckReferenceInit(Init, DeclType);
637
638  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
639  // of unknown size ("[]") or an object type that is not a variable array type.
640  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
641    return Diag(VAT->getSizeExpr()->getLocStart(),
642                diag::err_variable_object_no_init,
643                VAT->getSizeExpr()->getSourceRange());
644
645  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
646  if (!InitList) {
647    // FIXME: Handle wide strings
648    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
649      return CheckStringLiteralInit(strLiteral, DeclType);
650
651    // C99 6.7.8p16.
652    if (DeclType->isArrayType())
653      return Diag(Init->getLocStart(),
654                  diag::err_array_init_list_required,
655                  Init->getSourceRange());
656
657    return CheckSingleInitializer(Init, DeclType);
658  }
659
660  InitListChecker CheckInitList(this, InitList, DeclType);
661  return CheckInitList.HadError();
662}
663
664Sema::DeclTy *
665Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
666  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
667  IdentifierInfo *II = D.getIdentifier();
668
669  // All of these full declarators require an identifier.  If it doesn't have
670  // one, the ParsedFreeStandingDeclSpec action should be used.
671  if (II == 0) {
672    Diag(D.getDeclSpec().getSourceRange().getBegin(),
673         diag::err_declarator_need_ident,
674         D.getDeclSpec().getSourceRange(), D.getSourceRange());
675    return 0;
676  }
677
678  // The scope passed in may not be a decl scope.  Zip up the scope tree until
679  // we find one that is.
680  while ((S->getFlags() & Scope::DeclScope) == 0)
681    S = S->getParent();
682
683  // See if this is a redefinition of a variable in the same scope.
684  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
685  ScopedDecl *New;
686  bool InvalidDecl = false;
687
688  // In C++, the previous declaration we find might be a tag type
689  // (class or enum). In this case, the new declaration will hide the
690  // tag type.
691  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
692    PrevDecl = 0;
693
694  QualType R = GetTypeForDeclarator(D, S);
695  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
696
697  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
698    // Check that there are no default arguments (C++ only).
699    if (getLangOptions().CPlusPlus)
700      CheckExtraCXXDefaultArguments(D);
701
702    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
703    if (!NewTD) return 0;
704
705    // Handle attributes prior to checking for duplicates in MergeVarDecl
706    ProcessDeclAttributes(NewTD, D);
707    // Merge the decl with the existing one if appropriate. If the decl is
708    // in an outer scope, it isn't the same thing.
709    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
710      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
711      if (NewTD == 0) return 0;
712    }
713    New = NewTD;
714    if (S->getFnParent() == 0) {
715      // C99 6.7.7p2: If a typedef name specifies a variably modified type
716      // then it shall have block scope.
717      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
718        // FIXME: Diagnostic needs to be fixed.
719        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
720        InvalidDecl = true;
721      }
722    }
723  } else if (R.getTypePtr()->isFunctionType()) {
724    FunctionDecl::StorageClass SC = FunctionDecl::None;
725    switch (D.getDeclSpec().getStorageClassSpec()) {
726      default: assert(0 && "Unknown storage class!");
727      case DeclSpec::SCS_auto:
728      case DeclSpec::SCS_register:
729        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
730             R.getAsString());
731        InvalidDecl = true;
732        break;
733      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
734      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
735      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
736      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
737    }
738
739    bool isInline = D.getDeclSpec().isInlineSpecified();
740    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
741    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
742
743    FunctionDecl *NewFD;
744    if (isCurrentClassName(*II, S)) {
745      // This is a C++ constructor declaration.
746      assert(D.getContext() == Declarator::MemberContext &&
747             "Constructors can only be declared in a member context");
748
749      // C++ [class.ctor]p3:
750      //   A constructor shall not be virtual (10.3) or static (9.4). A
751      //   constructor can be invoked for a const, volatile or const
752      //   volatile object. A constructor shall not be declared const,
753      //   volatile, or const volatile (9.3.2).
754      if (isVirtual) {
755        Diag(D.getIdentifierLoc(),
756             diag::err_constructor_cannot_be,
757             "virtual",
758             SourceRange(D.getDeclSpec().getVirtualSpecLoc()),
759             SourceRange(D.getIdentifierLoc()));
760        isVirtual = false;
761      }
762      if (SC == FunctionDecl::Static) {
763        Diag(D.getIdentifierLoc(),
764             diag::err_constructor_cannot_be,
765             "static",
766             SourceRange(D.getDeclSpec().getStorageClassSpecLoc()),
767             SourceRange(D.getIdentifierLoc()));
768        isVirtual = false;
769      }
770      if (D.getDeclSpec().hasTypeSpecifier()) {
771        // Constructors don't have return types, but the parser will
772        // happily parse something like:
773        //
774        //   class X {
775        //     float X(float);
776        //   };
777        //
778        // The return type will be eliminated later.
779        Diag(D.getIdentifierLoc(),
780             diag::err_constructor_return_type,
781             SourceRange(D.getDeclSpec().getTypeSpecTypeLoc()),
782             SourceRange(D.getIdentifierLoc()));
783      }
784      if (R->getAsFunctionTypeProto()->getTypeQuals() != 0) {
785        DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
786        if (FTI.TypeQuals & QualType::Const)
787          Diag(D.getIdentifierLoc(),
788               diag::err_invalid_qualified_constructor,
789               "const",
790               SourceRange(D.getIdentifierLoc()));
791        if (FTI.TypeQuals & QualType::Volatile)
792          Diag(D.getIdentifierLoc(),
793               diag::err_invalid_qualified_constructor,
794               "volatile",
795               SourceRange(D.getIdentifierLoc()));
796        if (FTI.TypeQuals & QualType::Restrict)
797          Diag(D.getIdentifierLoc(),
798               diag::err_invalid_qualified_constructor,
799               "restrict",
800               SourceRange(D.getIdentifierLoc()));
801      }
802
803      // Rebuild the function type "R" without any type qualifiers (in
804      // case any of the errors above fired) and with "void" as the
805      // return type, since constructors don't have return types. We
806      // *always* have to do this, because GetTypeForDeclarator will
807      // put in a result type of "int" when none was specified.
808      const FunctionTypeProto *Proto = R->getAsFunctionTypeProto();
809      R = Context.getFunctionType(Context.VoidTy, Proto->arg_type_begin(),
810                                  Proto->getNumArgs(),
811                                  Proto->isVariadic(),
812                                  0);
813
814      // Create the new declaration
815      NewFD = CXXConstructorDecl::Create(Context,
816                                         cast<CXXRecordDecl>(CurContext),
817                                         D.getIdentifierLoc(), II, R,
818                                         isExplicit, isInline,
819                                         /*isImplicitlyDeclared=*/false);
820
821    } else if (D.getContext() == Declarator::MemberContext) {
822      // This is a C++ method declaration.
823      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
824                                    D.getIdentifierLoc(), II, R,
825                                    (SC == FunctionDecl::Static), isInline,
826                                    LastDeclarator);
827    } else {
828      NewFD = FunctionDecl::Create(Context, CurContext,
829                                   D.getIdentifierLoc(),
830                                   II, R, SC, isInline, LastDeclarator,
831                                   // FIXME: Move to DeclGroup...
832                                   D.getDeclSpec().getSourceRange().getBegin());
833    }
834    // Handle attributes.
835    ProcessDeclAttributes(NewFD, D);
836
837    // Handle GNU asm-label extension (encoded as an attribute).
838    if (Expr *E = (Expr*) D.getAsmLabel()) {
839      // The parser guarantees this is a string.
840      StringLiteral *SE = cast<StringLiteral>(E);
841      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
842                                                  SE->getByteLength())));
843    }
844
845    // Copy the parameter declarations from the declarator D to
846    // the function declaration NewFD, if they are available.
847    if (D.getNumTypeObjects() > 0) {
848      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
849
850      // Create Decl objects for each parameter, adding them to the
851      // FunctionDecl.
852      llvm::SmallVector<ParmVarDecl*, 16> Params;
853
854      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
855      // function that takes no arguments, not a function that takes a
856      // single void argument.
857      // We let through "const void" here because Sema::GetTypeForDeclarator
858      // already checks for that case.
859      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
860          FTI.ArgInfo[0].Param &&
861          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
862        // empty arg list, don't push any params.
863        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
864
865        // In C++, the empty parameter-type-list must be spelled "void"; a
866        // typedef of void is not permitted.
867        if (getLangOptions().CPlusPlus &&
868            Param->getType().getUnqualifiedType() != Context.VoidTy) {
869          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
870        }
871      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
872        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
873          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
874      }
875
876      NewFD->setParams(&Params[0], Params.size());
877    } else if (R->getAsTypedefType()) {
878      // When we're declaring a function with a typedef, as in the
879      // following example, we'll need to synthesize (unnamed)
880      // parameters for use in the declaration.
881      //
882      // @code
883      // typedef void fn(int);
884      // fn f;
885      // @endcode
886      const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
887      if (!FT) {
888        // This is a typedef of a function with no prototype, so we
889        // don't need to do anything.
890      } else if ((FT->getNumArgs() == 0) ||
891          (FT->getNumArgs() == 1 && !FT->isVariadic() &&
892           FT->getArgType(0)->isVoidType())) {
893        // This is a zero-argument function. We don't need to do anything.
894      } else {
895        // Synthesize a parameter for each argument type.
896        llvm::SmallVector<ParmVarDecl*, 16> Params;
897        for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
898             ArgType != FT->arg_type_end(); ++ArgType) {
899          Params.push_back(ParmVarDecl::Create(Context, CurContext,
900                                               SourceLocation(), 0,
901                                               *ArgType, VarDecl::None,
902                                               0, 0));
903        }
904
905        NewFD->setParams(&Params[0], Params.size());
906      }
907    }
908
909    // C++ constructors are handled by a separate routine, since they
910    // don't require any declaration merging (C++ [class.mfct]p2) and
911    // they aren't ever pushed into scope, because they can't be found
912    // by name lookup anyway (C++ [class.ctor]p2).
913    if (CXXConstructorDecl *ConDecl = dyn_cast<CXXConstructorDecl>(NewFD))
914      return ActOnConstructorDeclarator(ConDecl);
915
916    // Merge the decl with the existing one if appropriate. Since C functions
917    // are in a flat namespace, make sure we consider decls in outer scopes.
918    if (PrevDecl &&
919        (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, CurContext, S))) {
920      bool Redeclaration = false;
921
922      // If C++, determine whether NewFD is an overload of PrevDecl or
923      // a declaration that requires merging. If it's an overload,
924      // there's no more work to do here; we'll just add the new
925      // function to the scope.
926      OverloadedFunctionDecl::function_iterator MatchedDecl;
927      if (!getLangOptions().CPlusPlus ||
928          !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
929        Decl *OldDecl = PrevDecl;
930
931        // If PrevDecl was an overloaded function, extract the
932        // FunctionDecl that matched.
933        if (isa<OverloadedFunctionDecl>(PrevDecl))
934          OldDecl = *MatchedDecl;
935
936        // NewFD and PrevDecl represent declarations that need to be
937        // merged.
938        NewFD = MergeFunctionDecl(NewFD, OldDecl, Redeclaration);
939
940        if (NewFD == 0) return 0;
941        if (Redeclaration) {
942          NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
943
944          if (OldDecl == PrevDecl) {
945            // Remove the name binding for the previous
946            // declaration. We'll add the binding back later, but then
947            // it will refer to the new declaration (which will
948            // contain more information).
949            IdResolver.RemoveDecl(cast<NamedDecl>(PrevDecl));
950          } else {
951            // We need to update the OverloadedFunctionDecl with the
952            // latest declaration of this function, so that name
953            // lookup will always refer to the latest declaration of
954            // this function.
955            *MatchedDecl = NewFD;
956
957            // Add the redeclaration to the current scope, since we'll
958            // be skipping PushOnScopeChains.
959            S->AddDecl(NewFD);
960
961            return NewFD;
962          }
963        }
964      }
965    }
966    New = NewFD;
967
968    // In C++, check default arguments now that we have merged decls.
969    if (getLangOptions().CPlusPlus)
970      CheckCXXDefaultArguments(NewFD);
971  } else {
972    // Check that there are no default arguments (C++ only).
973    if (getLangOptions().CPlusPlus)
974      CheckExtraCXXDefaultArguments(D);
975
976    if (R.getTypePtr()->isObjCInterfaceType()) {
977      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
978           D.getIdentifier()->getName());
979      InvalidDecl = true;
980    }
981
982    VarDecl *NewVD;
983    VarDecl::StorageClass SC;
984    switch (D.getDeclSpec().getStorageClassSpec()) {
985    default: assert(0 && "Unknown storage class!");
986    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
987    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
988    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
989    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
990    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
991    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
992    }
993    if (D.getContext() == Declarator::MemberContext) {
994      assert(SC == VarDecl::Static && "Invalid storage class for member!");
995      // This is a static data member for a C++ class.
996      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
997                                      D.getIdentifierLoc(), II,
998                                      R, LastDeclarator);
999    } else {
1000      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1001      if (S->getFnParent() == 0) {
1002        // C99 6.9p2: The storage-class specifiers auto and register shall not
1003        // appear in the declaration specifiers in an external declaration.
1004        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1005          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
1006               R.getAsString());
1007          InvalidDecl = true;
1008        }
1009      }
1010        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
1011                                II, R, SC, LastDeclarator,
1012                                // FIXME: Move to DeclGroup...
1013                                D.getDeclSpec().getSourceRange().getBegin());
1014        NewVD->setThreadSpecified(ThreadSpecified);
1015    }
1016    // Handle attributes prior to checking for duplicates in MergeVarDecl
1017    ProcessDeclAttributes(NewVD, D);
1018
1019    // Handle GNU asm-label extension (encoded as an attribute).
1020    if (Expr *E = (Expr*) D.getAsmLabel()) {
1021      // The parser guarantees this is a string.
1022      StringLiteral *SE = cast<StringLiteral>(E);
1023      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1024                                                  SE->getByteLength())));
1025    }
1026
1027    // Emit an error if an address space was applied to decl with local storage.
1028    // This includes arrays of objects with address space qualifiers, but not
1029    // automatic variables that point to other address spaces.
1030    // ISO/IEC TR 18037 S5.1.2
1031    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1032      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1033      InvalidDecl = true;
1034    }
1035    // Merge the decl with the existing one if appropriate. If the decl is
1036    // in an outer scope, it isn't the same thing.
1037    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)) {
1038      NewVD = MergeVarDecl(NewVD, PrevDecl);
1039      if (NewVD == 0) return 0;
1040    }
1041    New = NewVD;
1042  }
1043
1044  // If this has an identifier, add it to the scope stack.
1045  if (II)
1046    PushOnScopeChains(New, S);
1047  // If any semantic error occurred, mark the decl as invalid.
1048  if (D.getInvalidType() || InvalidDecl)
1049    New->setInvalidDecl();
1050
1051  return New;
1052}
1053
1054void Sema::InitializerElementNotConstant(const Expr *Init) {
1055  Diag(Init->getExprLoc(),
1056       diag::err_init_element_not_constant, Init->getSourceRange());
1057}
1058
1059bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1060  switch (Init->getStmtClass()) {
1061  default:
1062    InitializerElementNotConstant(Init);
1063    return true;
1064  case Expr::ParenExprClass: {
1065    const ParenExpr* PE = cast<ParenExpr>(Init);
1066    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1067  }
1068  case Expr::CompoundLiteralExprClass:
1069    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1070  case Expr::DeclRefExprClass: {
1071    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1072    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1073      if (VD->hasGlobalStorage())
1074        return false;
1075      InitializerElementNotConstant(Init);
1076      return true;
1077    }
1078    if (isa<FunctionDecl>(D))
1079      return false;
1080    InitializerElementNotConstant(Init);
1081    return true;
1082  }
1083  case Expr::MemberExprClass: {
1084    const MemberExpr *M = cast<MemberExpr>(Init);
1085    if (M->isArrow())
1086      return CheckAddressConstantExpression(M->getBase());
1087    return CheckAddressConstantExpressionLValue(M->getBase());
1088  }
1089  case Expr::ArraySubscriptExprClass: {
1090    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1091    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1092    return CheckAddressConstantExpression(ASE->getBase()) ||
1093           CheckArithmeticConstantExpression(ASE->getIdx());
1094  }
1095  case Expr::StringLiteralClass:
1096  case Expr::PredefinedExprClass:
1097    return false;
1098  case Expr::UnaryOperatorClass: {
1099    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1100
1101    // C99 6.6p9
1102    if (Exp->getOpcode() == UnaryOperator::Deref)
1103      return CheckAddressConstantExpression(Exp->getSubExpr());
1104
1105    InitializerElementNotConstant(Init);
1106    return true;
1107  }
1108  }
1109}
1110
1111bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1112  switch (Init->getStmtClass()) {
1113  default:
1114    InitializerElementNotConstant(Init);
1115    return true;
1116  case Expr::ParenExprClass:
1117    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1118  case Expr::StringLiteralClass:
1119  case Expr::ObjCStringLiteralClass:
1120    return false;
1121  case Expr::CallExprClass:
1122    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1123    if (cast<CallExpr>(Init)->isBuiltinCall() ==
1124           Builtin::BI__builtin___CFStringMakeConstantString)
1125      return false;
1126
1127    InitializerElementNotConstant(Init);
1128    return true;
1129
1130  case Expr::UnaryOperatorClass: {
1131    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1132
1133    // C99 6.6p9
1134    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1135      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1136
1137    if (Exp->getOpcode() == UnaryOperator::Extension)
1138      return CheckAddressConstantExpression(Exp->getSubExpr());
1139
1140    InitializerElementNotConstant(Init);
1141    return true;
1142  }
1143  case Expr::BinaryOperatorClass: {
1144    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1145    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1146
1147    Expr *PExp = Exp->getLHS();
1148    Expr *IExp = Exp->getRHS();
1149    if (IExp->getType()->isPointerType())
1150      std::swap(PExp, IExp);
1151
1152    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1153    return CheckAddressConstantExpression(PExp) ||
1154           CheckArithmeticConstantExpression(IExp);
1155  }
1156  case Expr::ImplicitCastExprClass:
1157  case Expr::CStyleCastExprClass: {
1158    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1159    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1160      // Check for implicit promotion
1161      if (SubExpr->getType()->isFunctionType() ||
1162          SubExpr->getType()->isArrayType())
1163        return CheckAddressConstantExpressionLValue(SubExpr);
1164    }
1165
1166    // Check for pointer->pointer cast
1167    if (SubExpr->getType()->isPointerType())
1168      return CheckAddressConstantExpression(SubExpr);
1169
1170    if (SubExpr->getType()->isIntegralType()) {
1171      // Check for the special-case of a pointer->int->pointer cast;
1172      // this isn't standard, but some code requires it. See
1173      // PR2720 for an example.
1174      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1175        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1176          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1177          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1178          if (IntWidth >= PointerWidth) {
1179            return CheckAddressConstantExpression(SubCast->getSubExpr());
1180          }
1181        }
1182      }
1183    }
1184    if (SubExpr->getType()->isArithmeticType()) {
1185      return CheckArithmeticConstantExpression(SubExpr);
1186    }
1187
1188    InitializerElementNotConstant(Init);
1189    return true;
1190  }
1191  case Expr::ConditionalOperatorClass: {
1192    // FIXME: Should we pedwarn here?
1193    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1194    if (!Exp->getCond()->getType()->isArithmeticType()) {
1195      InitializerElementNotConstant(Init);
1196      return true;
1197    }
1198    if (CheckArithmeticConstantExpression(Exp->getCond()))
1199      return true;
1200    if (Exp->getLHS() &&
1201        CheckAddressConstantExpression(Exp->getLHS()))
1202      return true;
1203    return CheckAddressConstantExpression(Exp->getRHS());
1204  }
1205  case Expr::AddrLabelExprClass:
1206    return false;
1207  }
1208}
1209
1210static const Expr* FindExpressionBaseAddress(const Expr* E);
1211
1212static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
1213  switch (E->getStmtClass()) {
1214  default:
1215    return E;
1216  case Expr::ParenExprClass: {
1217    const ParenExpr* PE = cast<ParenExpr>(E);
1218    return FindExpressionBaseAddressLValue(PE->getSubExpr());
1219  }
1220  case Expr::MemberExprClass: {
1221    const MemberExpr *M = cast<MemberExpr>(E);
1222    if (M->isArrow())
1223      return FindExpressionBaseAddress(M->getBase());
1224    return FindExpressionBaseAddressLValue(M->getBase());
1225  }
1226  case Expr::ArraySubscriptExprClass: {
1227    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
1228    return FindExpressionBaseAddress(ASE->getBase());
1229  }
1230  case Expr::UnaryOperatorClass: {
1231    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1232
1233    if (Exp->getOpcode() == UnaryOperator::Deref)
1234      return FindExpressionBaseAddress(Exp->getSubExpr());
1235
1236    return E;
1237  }
1238  }
1239}
1240
1241static const Expr* FindExpressionBaseAddress(const Expr* E) {
1242  switch (E->getStmtClass()) {
1243  default:
1244    return E;
1245  case Expr::ParenExprClass: {
1246    const ParenExpr* PE = cast<ParenExpr>(E);
1247    return FindExpressionBaseAddress(PE->getSubExpr());
1248  }
1249  case Expr::UnaryOperatorClass: {
1250    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1251
1252    // C99 6.6p9
1253    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1254      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1255
1256    if (Exp->getOpcode() == UnaryOperator::Extension)
1257      return FindExpressionBaseAddress(Exp->getSubExpr());
1258
1259    return E;
1260  }
1261  case Expr::BinaryOperatorClass: {
1262    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1263
1264    Expr *PExp = Exp->getLHS();
1265    Expr *IExp = Exp->getRHS();
1266    if (IExp->getType()->isPointerType())
1267      std::swap(PExp, IExp);
1268
1269    return FindExpressionBaseAddress(PExp);
1270  }
1271  case Expr::ImplicitCastExprClass: {
1272    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1273
1274    // Check for implicit promotion
1275    if (SubExpr->getType()->isFunctionType() ||
1276        SubExpr->getType()->isArrayType())
1277      return FindExpressionBaseAddressLValue(SubExpr);
1278
1279    // Check for pointer->pointer cast
1280    if (SubExpr->getType()->isPointerType())
1281      return FindExpressionBaseAddress(SubExpr);
1282
1283    // We assume that we have an arithmetic expression here;
1284    // if we don't, we'll figure it out later
1285    return 0;
1286  }
1287  case Expr::CStyleCastExprClass: {
1288    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1289
1290    // Check for pointer->pointer cast
1291    if (SubExpr->getType()->isPointerType())
1292      return FindExpressionBaseAddress(SubExpr);
1293
1294    // We assume that we have an arithmetic expression here;
1295    // if we don't, we'll figure it out later
1296    return 0;
1297  }
1298  }
1299}
1300
1301bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1302  switch (Init->getStmtClass()) {
1303  default:
1304    InitializerElementNotConstant(Init);
1305    return true;
1306  case Expr::ParenExprClass: {
1307    const ParenExpr* PE = cast<ParenExpr>(Init);
1308    return CheckArithmeticConstantExpression(PE->getSubExpr());
1309  }
1310  case Expr::FloatingLiteralClass:
1311  case Expr::IntegerLiteralClass:
1312  case Expr::CharacterLiteralClass:
1313  case Expr::ImaginaryLiteralClass:
1314  case Expr::TypesCompatibleExprClass:
1315  case Expr::CXXBoolLiteralExprClass:
1316    return false;
1317  case Expr::CallExprClass: {
1318    const CallExpr *CE = cast<CallExpr>(Init);
1319
1320    // Allow any constant foldable calls to builtins.
1321    if (CE->isBuiltinCall() && CE->isEvaluatable(Context))
1322      return false;
1323
1324    InitializerElementNotConstant(Init);
1325    return true;
1326  }
1327  case Expr::DeclRefExprClass: {
1328    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1329    if (isa<EnumConstantDecl>(D))
1330      return false;
1331    InitializerElementNotConstant(Init);
1332    return true;
1333  }
1334  case Expr::CompoundLiteralExprClass:
1335    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1336    // but vectors are allowed to be magic.
1337    if (Init->getType()->isVectorType())
1338      return false;
1339    InitializerElementNotConstant(Init);
1340    return true;
1341  case Expr::UnaryOperatorClass: {
1342    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1343
1344    switch (Exp->getOpcode()) {
1345    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1346    // See C99 6.6p3.
1347    default:
1348      InitializerElementNotConstant(Init);
1349      return true;
1350    case UnaryOperator::SizeOf:
1351    case UnaryOperator::AlignOf:
1352    case UnaryOperator::OffsetOf:
1353      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1354      // See C99 6.5.3.4p2 and 6.6p3.
1355      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1356        return false;
1357      InitializerElementNotConstant(Init);
1358      return true;
1359    case UnaryOperator::Extension:
1360    case UnaryOperator::LNot:
1361    case UnaryOperator::Plus:
1362    case UnaryOperator::Minus:
1363    case UnaryOperator::Not:
1364      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1365    }
1366  }
1367  case Expr::SizeOfAlignOfTypeExprClass: {
1368    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1369    // Special check for void types, which are allowed as an extension
1370    if (Exp->getArgumentType()->isVoidType())
1371      return false;
1372    // alignof always evaluates to a constant.
1373    // FIXME: is sizeof(int[3.0]) a constant expression?
1374    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1375      InitializerElementNotConstant(Init);
1376      return true;
1377    }
1378    return false;
1379  }
1380  case Expr::BinaryOperatorClass: {
1381    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1382
1383    if (Exp->getLHS()->getType()->isArithmeticType() &&
1384        Exp->getRHS()->getType()->isArithmeticType()) {
1385      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1386             CheckArithmeticConstantExpression(Exp->getRHS());
1387    }
1388
1389    if (Exp->getLHS()->getType()->isPointerType() &&
1390        Exp->getRHS()->getType()->isPointerType()) {
1391      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1392      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1393
1394      // Only allow a null (constant integer) base; we could
1395      // allow some additional cases if necessary, but this
1396      // is sufficient to cover offsetof-like constructs.
1397      if (!LHSBase && !RHSBase) {
1398        return CheckAddressConstantExpression(Exp->getLHS()) ||
1399               CheckAddressConstantExpression(Exp->getRHS());
1400      }
1401    }
1402
1403    InitializerElementNotConstant(Init);
1404    return true;
1405  }
1406  case Expr::ImplicitCastExprClass:
1407  case Expr::CStyleCastExprClass: {
1408    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1409    if (SubExpr->getType()->isArithmeticType())
1410      return CheckArithmeticConstantExpression(SubExpr);
1411
1412    if (SubExpr->getType()->isPointerType()) {
1413      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1414      // If the pointer has a null base, this is an offsetof-like construct
1415      if (!Base)
1416        return CheckAddressConstantExpression(SubExpr);
1417    }
1418
1419    InitializerElementNotConstant(Init);
1420    return true;
1421  }
1422  case Expr::ConditionalOperatorClass: {
1423    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1424
1425    // If GNU extensions are disabled, we require all operands to be arithmetic
1426    // constant expressions.
1427    if (getLangOptions().NoExtensions) {
1428      return CheckArithmeticConstantExpression(Exp->getCond()) ||
1429          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
1430             CheckArithmeticConstantExpression(Exp->getRHS());
1431    }
1432
1433    // Otherwise, we have to emulate some of the behavior of fold here.
1434    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
1435    // because it can constant fold things away.  To retain compatibility with
1436    // GCC code, we see if we can fold the condition to a constant (which we
1437    // should always be able to do in theory).  If so, we only require the
1438    // specified arm of the conditional to be a constant.  This is a horrible
1439    // hack, but is require by real world code that uses __builtin_constant_p.
1440    APValue Val;
1441    if (!Exp->getCond()->tryEvaluate(Val, Context)) {
1442      // If the tryEvaluate couldn't fold it, CheckArithmeticConstantExpression
1443      // won't be able to either.  Use it to emit the diagnostic though.
1444      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
1445      assert(Res && "tryEvaluate couldn't evaluate this constant?");
1446      return Res;
1447    }
1448
1449    // Verify that the side following the condition is also a constant.
1450    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
1451    if (Val.getInt() == 0)
1452      std::swap(TrueSide, FalseSide);
1453
1454    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
1455      return true;
1456
1457    // Okay, the evaluated side evaluates to a constant, so we accept this.
1458    // Check to see if the other side is obviously not a constant.  If so,
1459    // emit a warning that this is a GNU extension.
1460    if (FalseSide && !FalseSide->isEvaluatable(Context))
1461      Diag(Init->getExprLoc(),
1462           diag::ext_typecheck_expression_not_constant_but_accepted,
1463           FalseSide->getSourceRange());
1464    return false;
1465  }
1466  }
1467}
1468
1469bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1470  Init = Init->IgnoreParens();
1471
1472  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1473  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1474    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1475
1476  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1477    return CheckForConstantInitializer(e->getInitializer(), DclT);
1478
1479  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1480    unsigned numInits = Exp->getNumInits();
1481    for (unsigned i = 0; i < numInits; i++) {
1482      // FIXME: Need to get the type of the declaration for C++,
1483      // because it could be a reference?
1484      if (CheckForConstantInitializer(Exp->getInit(i),
1485                                      Exp->getInit(i)->getType()))
1486        return true;
1487    }
1488    return false;
1489  }
1490
1491  if (Init->isNullPointerConstant(Context))
1492    return false;
1493  if (Init->getType()->isArithmeticType()) {
1494    QualType InitTy = Context.getCanonicalType(Init->getType())
1495                             .getUnqualifiedType();
1496    if (InitTy == Context.BoolTy) {
1497      // Special handling for pointers implicitly cast to bool;
1498      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1499      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1500        Expr* SubE = ICE->getSubExpr();
1501        if (SubE->getType()->isPointerType() ||
1502            SubE->getType()->isArrayType() ||
1503            SubE->getType()->isFunctionType()) {
1504          return CheckAddressConstantExpression(Init);
1505        }
1506      }
1507    } else if (InitTy->isIntegralType()) {
1508      Expr* SubE = 0;
1509      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1510        SubE = CE->getSubExpr();
1511      // Special check for pointer cast to int; we allow as an extension
1512      // an address constant cast to an integer if the integer
1513      // is of an appropriate width (this sort of code is apparently used
1514      // in some places).
1515      // FIXME: Add pedwarn?
1516      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1517      if (SubE && (SubE->getType()->isPointerType() ||
1518                   SubE->getType()->isArrayType() ||
1519                   SubE->getType()->isFunctionType())) {
1520        unsigned IntWidth = Context.getTypeSize(Init->getType());
1521        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1522        if (IntWidth >= PointerWidth)
1523          return CheckAddressConstantExpression(Init);
1524      }
1525    }
1526
1527    return CheckArithmeticConstantExpression(Init);
1528  }
1529
1530  if (Init->getType()->isPointerType())
1531    return CheckAddressConstantExpression(Init);
1532
1533  // An array type at the top level that isn't an init-list must
1534  // be a string literal
1535  if (Init->getType()->isArrayType())
1536    return false;
1537
1538  if (Init->getType()->isFunctionType())
1539    return false;
1540
1541  // Allow block exprs at top level.
1542  if (Init->getType()->isBlockPointerType())
1543    return false;
1544
1545  InitializerElementNotConstant(Init);
1546  return true;
1547}
1548
1549void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1550  Decl *RealDecl = static_cast<Decl *>(dcl);
1551  Expr *Init = static_cast<Expr *>(init);
1552  assert(Init && "missing initializer");
1553
1554  // If there is no declaration, there was an error parsing it.  Just ignore
1555  // the initializer.
1556  if (RealDecl == 0) {
1557    delete Init;
1558    return;
1559  }
1560
1561  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1562  if (!VDecl) {
1563    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1564         diag::err_illegal_initializer);
1565    RealDecl->setInvalidDecl();
1566    return;
1567  }
1568  // Get the decls type and save a reference for later, since
1569  // CheckInitializerTypes may change it.
1570  QualType DclT = VDecl->getType(), SavT = DclT;
1571  if (VDecl->isBlockVarDecl()) {
1572    VarDecl::StorageClass SC = VDecl->getStorageClass();
1573    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1574      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1575      VDecl->setInvalidDecl();
1576    } else if (!VDecl->isInvalidDecl()) {
1577      if (CheckInitializerTypes(Init, DclT))
1578        VDecl->setInvalidDecl();
1579
1580      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1581      if (!getLangOptions().CPlusPlus) {
1582        if (SC == VarDecl::Static) // C99 6.7.8p4.
1583          CheckForConstantInitializer(Init, DclT);
1584      }
1585    }
1586  } else if (VDecl->isFileVarDecl()) {
1587    if (VDecl->getStorageClass() == VarDecl::Extern)
1588      Diag(VDecl->getLocation(), diag::warn_extern_init);
1589    if (!VDecl->isInvalidDecl())
1590      if (CheckInitializerTypes(Init, DclT))
1591        VDecl->setInvalidDecl();
1592
1593    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1594    if (!getLangOptions().CPlusPlus) {
1595      // C99 6.7.8p4. All file scoped initializers need to be constant.
1596      CheckForConstantInitializer(Init, DclT);
1597    }
1598  }
1599  // If the type changed, it means we had an incomplete type that was
1600  // completed by the initializer. For example:
1601  //   int ary[] = { 1, 3, 5 };
1602  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1603  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1604    VDecl->setType(DclT);
1605    Init->setType(DclT);
1606  }
1607
1608  // Attach the initializer to the decl.
1609  VDecl->setInit(Init);
1610  return;
1611}
1612
1613void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
1614  Decl *RealDecl = static_cast<Decl *>(dcl);
1615
1616  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
1617    QualType Type = Var->getType();
1618    // C++ [dcl.init.ref]p3:
1619    //   The initializer can be omitted for a reference only in a
1620    //   parameter declaration (8.3.5), in the declaration of a
1621    //   function return type, in the declaration of a class member
1622    //   within its class declaration (9.2), and where the extern
1623    //   specifier is explicitly used.
1624    if (Type->isReferenceType() && Var->getStorageClass() != VarDecl::Extern) {
1625      Diag(Var->getLocation(),
1626           diag::err_reference_var_requires_init,
1627           Var->getName(),
1628           SourceRange(Var->getLocation(), Var->getLocation()));
1629      Var->setInvalidDecl();
1630      return;
1631    }
1632
1633    // C++ [dcl.init]p9:
1634    //
1635    //   If no initializer is specified for an object, and the object
1636    //   is of (possibly cv-qualified) non-POD class type (or array
1637    //   thereof), the object shall be default-initialized; if the
1638    //   object is of const-qualified type, the underlying class type
1639    //   shall have a user-declared default constructor.
1640    if (getLangOptions().CPlusPlus) {
1641      QualType InitType = Type;
1642      if (const ArrayType *Array = Context.getAsArrayType(Type))
1643        InitType = Array->getElementType();
1644      if (InitType->isRecordType()) {
1645        CXXConstructorDecl *Constructor
1646          = PerformDirectInitForClassType(InitType, 0, 0, Var->getLocation(),
1647                                          SourceRange(Var->getLocation(),
1648                                                      Var->getLocation()),
1649                                          Var->getName(),
1650                                          /*HasInitializer=*/false);
1651        if (!Constructor)
1652          Var->setInvalidDecl();
1653      }
1654    }
1655
1656#if 0
1657    // FIXME: Temporarily disabled because we are not properly parsing
1658    // linkage specifications on declarations, e.g.,
1659    //
1660    //   extern "C" const CGPoint CGPointerZero;
1661    //
1662    // C++ [dcl.init]p9:
1663    //
1664    //     If no initializer is specified for an object, and the
1665    //     object is of (possibly cv-qualified) non-POD class type (or
1666    //     array thereof), the object shall be default-initialized; if
1667    //     the object is of const-qualified type, the underlying class
1668    //     type shall have a user-declared default
1669    //     constructor. Otherwise, if no initializer is specified for
1670    //     an object, the object and its subobjects, if any, have an
1671    //     indeterminate initial value; if the object or any of its
1672    //     subobjects are of const-qualified type, the program is
1673    //     ill-formed.
1674    //
1675    // This isn't technically an error in C, so we don't diagnose it.
1676    //
1677    // FIXME: Actually perform the POD/user-defined default
1678    // constructor check.
1679    if (getLangOptions().CPlusPlus &&
1680        Context.getCanonicalType(Type).isConstQualified() &&
1681        Var->getStorageClass() != VarDecl::Extern)
1682      Diag(Var->getLocation(),
1683           diag::err_const_var_requires_init,
1684           Var->getName(),
1685           SourceRange(Var->getLocation(), Var->getLocation()));
1686#endif
1687  }
1688}
1689
1690/// The declarators are chained together backwards, reverse the list.
1691Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1692  // Often we have single declarators, handle them quickly.
1693  Decl *GroupDecl = static_cast<Decl*>(group);
1694  if (GroupDecl == 0)
1695    return 0;
1696
1697  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1698  ScopedDecl *NewGroup = 0;
1699  if (Group->getNextDeclarator() == 0)
1700    NewGroup = Group;
1701  else { // reverse the list.
1702    while (Group) {
1703      ScopedDecl *Next = Group->getNextDeclarator();
1704      Group->setNextDeclarator(NewGroup);
1705      NewGroup = Group;
1706      Group = Next;
1707    }
1708  }
1709  // Perform semantic analysis that depends on having fully processed both
1710  // the declarator and initializer.
1711  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1712    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1713    if (!IDecl)
1714      continue;
1715    QualType T = IDecl->getType();
1716
1717    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1718    // static storage duration, it shall not have a variable length array.
1719    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1720        IDecl->getStorageClass() == VarDecl::Static) {
1721      if (T->isVariableArrayType()) {
1722        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1723        IDecl->setInvalidDecl();
1724      }
1725    }
1726    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1727    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1728    if (IDecl->isBlockVarDecl() &&
1729        IDecl->getStorageClass() != VarDecl::Extern) {
1730      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1731        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1732             T.getAsString());
1733        IDecl->setInvalidDecl();
1734      }
1735    }
1736    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1737    // object that has file scope without an initializer, and without a
1738    // storage-class specifier or with the storage-class specifier "static",
1739    // constitutes a tentative definition. Note: A tentative definition with
1740    // external linkage is valid (C99 6.2.2p5).
1741    if (isTentativeDefinition(IDecl)) {
1742      if (T->isIncompleteArrayType()) {
1743        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1744        // array to be completed. Don't issue a diagnostic.
1745      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1746        // C99 6.9.2p3: If the declaration of an identifier for an object is
1747        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1748        // declared type shall not be an incomplete type.
1749        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1750             T.getAsString());
1751        IDecl->setInvalidDecl();
1752      }
1753    }
1754    if (IDecl->isFileVarDecl())
1755      CheckForFileScopedRedefinitions(S, IDecl);
1756  }
1757  return NewGroup;
1758}
1759
1760/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1761/// to introduce parameters into function prototype scope.
1762Sema::DeclTy *
1763Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1764  const DeclSpec &DS = D.getDeclSpec();
1765
1766  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1767  VarDecl::StorageClass StorageClass = VarDecl::None;
1768  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1769    StorageClass = VarDecl::Register;
1770  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1771    Diag(DS.getStorageClassSpecLoc(),
1772         diag::err_invalid_storage_class_in_func_decl);
1773    D.getMutableDeclSpec().ClearStorageClassSpecs();
1774  }
1775  if (DS.isThreadSpecified()) {
1776    Diag(DS.getThreadSpecLoc(),
1777         diag::err_invalid_storage_class_in_func_decl);
1778    D.getMutableDeclSpec().ClearStorageClassSpecs();
1779  }
1780
1781  // Check that there are no default arguments inside the type of this
1782  // parameter (C++ only).
1783  if (getLangOptions().CPlusPlus)
1784    CheckExtraCXXDefaultArguments(D);
1785
1786  // In this context, we *do not* check D.getInvalidType(). If the declarator
1787  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1788  // though it will not reflect the user specified type.
1789  QualType parmDeclType = GetTypeForDeclarator(D, S);
1790
1791  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1792
1793  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1794  // Can this happen for params?  We already checked that they don't conflict
1795  // among each other.  Here they can only shadow globals, which is ok.
1796  IdentifierInfo *II = D.getIdentifier();
1797  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1798    if (S->isDeclScope(PrevDecl)) {
1799      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1800           dyn_cast<NamedDecl>(PrevDecl)->getName());
1801
1802      // Recover by removing the name
1803      II = 0;
1804      D.SetIdentifier(0, D.getIdentifierLoc());
1805    }
1806  }
1807
1808  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1809  // Doing the promotion here has a win and a loss. The win is the type for
1810  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1811  // code generator). The loss is the orginal type isn't preserved. For example:
1812  //
1813  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1814  //    int blockvardecl[5];
1815  //    sizeof(parmvardecl);  // size == 4
1816  //    sizeof(blockvardecl); // size == 20
1817  // }
1818  //
1819  // For expressions, all implicit conversions are captured using the
1820  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1821  //
1822  // FIXME: If a source translation tool needs to see the original type, then
1823  // we need to consider storing both types (in ParmVarDecl)...
1824  //
1825  if (parmDeclType->isArrayType()) {
1826    // int x[restrict 4] ->  int *restrict
1827    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1828  } else if (parmDeclType->isFunctionType())
1829    parmDeclType = Context.getPointerType(parmDeclType);
1830
1831  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1832                                         D.getIdentifierLoc(), II,
1833                                         parmDeclType, StorageClass,
1834                                         0, 0);
1835
1836  if (D.getInvalidType())
1837    New->setInvalidDecl();
1838
1839  if (II)
1840    PushOnScopeChains(New, S);
1841
1842  ProcessDeclAttributes(New, D);
1843  return New;
1844
1845}
1846
1847Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1848  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1849  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1850         "Not a function declarator!");
1851  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1852
1853  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1854  // for a K&R function.
1855  if (!FTI.hasPrototype) {
1856    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1857      if (FTI.ArgInfo[i].Param == 0) {
1858        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1859             FTI.ArgInfo[i].Ident->getName());
1860        // Implicitly declare the argument as type 'int' for lack of a better
1861        // type.
1862        DeclSpec DS;
1863        const char* PrevSpec; // unused
1864        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1865                           PrevSpec);
1866        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1867        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1868        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1869      }
1870    }
1871  } else {
1872    // FIXME: Diagnose arguments without names in C.
1873  }
1874
1875  Scope *GlobalScope = FnBodyScope->getParent();
1876
1877  return ActOnStartOfFunctionDef(FnBodyScope,
1878                                 ActOnDeclarator(GlobalScope, D, 0));
1879}
1880
1881Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1882  Decl *decl = static_cast<Decl*>(D);
1883  FunctionDecl *FD = cast<FunctionDecl>(decl);
1884
1885  // See if this is a redefinition.
1886  const FunctionDecl *Definition;
1887  if (FD->getBody(Definition)) {
1888    Diag(FD->getLocation(), diag::err_redefinition,
1889         FD->getName());
1890    Diag(Definition->getLocation(), diag::err_previous_definition);
1891  }
1892
1893  PushDeclContext(FD);
1894
1895  // Check the validity of our function parameters
1896  CheckParmsForFunctionDef(FD);
1897
1898  // Introduce our parameters into the function scope
1899  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1900    ParmVarDecl *Param = FD->getParamDecl(p);
1901    // If this has an identifier, add it to the scope stack.
1902    if (Param->getIdentifier())
1903      PushOnScopeChains(Param, FnBodyScope);
1904  }
1905
1906  return FD;
1907}
1908
1909Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1910  Decl *dcl = static_cast<Decl *>(D);
1911  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1912    FD->setBody((Stmt*)Body);
1913    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1914  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1915    MD->setBody((Stmt*)Body);
1916  } else
1917    return 0;
1918  PopDeclContext();
1919  // Verify and clean out per-function state.
1920
1921  // Check goto/label use.
1922  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1923       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1924    // Verify that we have no forward references left.  If so, there was a goto
1925    // or address of a label taken, but no definition of it.  Label fwd
1926    // definitions are indicated with a null substmt.
1927    if (I->second->getSubStmt() == 0) {
1928      LabelStmt *L = I->second;
1929      // Emit error.
1930      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1931
1932      // At this point, we have gotos that use the bogus label.  Stitch it into
1933      // the function body so that they aren't leaked and that the AST is well
1934      // formed.
1935      if (Body) {
1936        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1937        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1938      } else {
1939        // The whole function wasn't parsed correctly, just delete this.
1940        delete L;
1941      }
1942    }
1943  }
1944  LabelMap.clear();
1945
1946  return D;
1947}
1948
1949/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1950/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1951ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1952                                           IdentifierInfo &II, Scope *S) {
1953  // Extension in C99.  Legal in C90, but warn about it.
1954  if (getLangOptions().C99)
1955    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1956  else
1957    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1958
1959  // FIXME: handle stuff like:
1960  // void foo() { extern float X(); }
1961  // void bar() { X(); }  <-- implicit decl for X in another scope.
1962
1963  // Set a Declarator for the implicit definition: int foo();
1964  const char *Dummy;
1965  DeclSpec DS;
1966  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1967  Error = Error; // Silence warning.
1968  assert(!Error && "Error setting up implicit decl!");
1969  Declarator D(DS, Declarator::BlockContext);
1970  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc));
1971  D.SetIdentifier(&II, Loc);
1972
1973  // Insert this function into translation-unit scope.
1974
1975  DeclContext *PrevDC = CurContext;
1976  CurContext = Context.getTranslationUnitDecl();
1977
1978  FunctionDecl *FD =
1979    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1980  FD->setImplicit();
1981
1982  CurContext = PrevDC;
1983
1984  return FD;
1985}
1986
1987
1988TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1989                                    ScopedDecl *LastDeclarator) {
1990  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1991  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1992
1993  // Scope manipulation handled by caller.
1994  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1995                                           D.getIdentifierLoc(),
1996                                           D.getIdentifier(),
1997                                           T, LastDeclarator);
1998  if (D.getInvalidType())
1999    NewTD->setInvalidDecl();
2000  return NewTD;
2001}
2002
2003/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
2004/// former case, Name will be non-null.  In the later case, Name will be null.
2005/// TagType indicates what kind of tag this is. TK indicates whether this is a
2006/// reference/declaration/definition of a tag.
2007Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
2008                             SourceLocation KWLoc, IdentifierInfo *Name,
2009                             SourceLocation NameLoc, AttributeList *Attr) {
2010  // If this is a use of an existing tag, it must have a name.
2011  assert((Name != 0 || TK == TK_Definition) &&
2012         "Nameless record must be a definition!");
2013
2014  TagDecl::TagKind Kind;
2015  switch (TagType) {
2016  default: assert(0 && "Unknown tag type!");
2017  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
2018  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
2019  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
2020  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
2021  }
2022
2023  // Two code paths: a new one for structs/unions/classes where we create
2024  //   separate decls for forward declarations, and an old (eventually to
2025  //   be removed) code path for enums.
2026  if (Kind != TagDecl::TK_enum)
2027    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
2028
2029  // If this is a named struct, check to see if there was a previous forward
2030  // declaration or definition.
2031  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2032  ScopedDecl *PrevDecl =
2033    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
2034
2035  if (PrevDecl) {
2036    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2037            "unexpected Decl type");
2038    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2039      // If this is a use of a previous tag, or if the tag is already declared
2040      // in the same scope (so that the definition/declaration completes or
2041      // rementions the tag), reuse the decl.
2042      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
2043        // Make sure that this wasn't declared as an enum and now used as a
2044        // struct or something similar.
2045        if (PrevTagDecl->getTagKind() != Kind) {
2046          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2047          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2048          // Recover by making this an anonymous redefinition.
2049          Name = 0;
2050          PrevDecl = 0;
2051        } else {
2052          // If this is a use or a forward declaration, we're good.
2053          if (TK != TK_Definition)
2054            return PrevDecl;
2055
2056          // Diagnose attempts to redefine a tag.
2057          if (PrevTagDecl->isDefinition()) {
2058            Diag(NameLoc, diag::err_redefinition, Name->getName());
2059            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2060            // If this is a redefinition, recover by making this struct be
2061            // anonymous, which will make any later references get the previous
2062            // definition.
2063            Name = 0;
2064          } else {
2065            // Okay, this is definition of a previously declared or referenced
2066            // tag. Move the location of the decl to be the definition site.
2067            PrevDecl->setLocation(NameLoc);
2068            return PrevDecl;
2069          }
2070        }
2071      }
2072      // If we get here, this is a definition of a new struct type in a nested
2073      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
2074      // type.
2075    } else {
2076      // PrevDecl is a namespace.
2077      if (isDeclInScope(PrevDecl, CurContext, S)) {
2078        // The tag name clashes with a namespace name, issue an error and
2079        // recover by making this tag be anonymous.
2080        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2081        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2082        Name = 0;
2083      }
2084    }
2085  }
2086
2087  // If there is an identifier, use the location of the identifier as the
2088  // location of the decl, otherwise use the location of the struct/union
2089  // keyword.
2090  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2091
2092  // Otherwise, if this is the first time we've seen this tag, create the decl.
2093  TagDecl *New;
2094  if (Kind == TagDecl::TK_enum) {
2095    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2096    // enum X { A, B, C } D;    D should chain to X.
2097    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
2098    // If this is an undefined enum, warn.
2099    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
2100  } else {
2101    // struct/union/class
2102
2103    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2104    // struct X { int A; } D;    D should chain to X.
2105    if (getLangOptions().CPlusPlus)
2106      // FIXME: Look for a way to use RecordDecl for simple structs.
2107      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
2108    else
2109      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
2110  }
2111
2112  // If this has an identifier, add it to the scope stack.
2113  if (Name) {
2114    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2115    // we find one that is.
2116    while ((S->getFlags() & Scope::DeclScope) == 0)
2117      S = S->getParent();
2118
2119    // Add it to the decl chain.
2120    PushOnScopeChains(New, S);
2121  }
2122
2123  if (Attr)
2124    ProcessDeclAttributeList(New, Attr);
2125  return New;
2126}
2127
2128/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
2129///  the logic for enums, we create separate decls for forward declarations.
2130///  This is called by ActOnTag, but eventually will replace its logic.
2131Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
2132                             SourceLocation KWLoc, IdentifierInfo *Name,
2133                             SourceLocation NameLoc, AttributeList *Attr) {
2134
2135  // If this is a named struct, check to see if there was a previous forward
2136  // declaration or definition.
2137  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
2138  ScopedDecl *PrevDecl =
2139    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
2140
2141  if (PrevDecl) {
2142    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
2143           "unexpected Decl type");
2144
2145    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
2146      // If this is a use of a previous tag, or if the tag is already declared
2147      // in the same scope (so that the definition/declaration completes or
2148      // rementions the tag), reuse the decl.
2149      if (TK == TK_Reference || isDeclInScope(PrevDecl, CurContext, S)) {
2150        // Make sure that this wasn't declared as an enum and now used as a
2151        // struct or something similar.
2152        if (PrevTagDecl->getTagKind() != Kind) {
2153          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
2154          Diag(PrevDecl->getLocation(), diag::err_previous_use);
2155          // Recover by making this an anonymous redefinition.
2156          Name = 0;
2157          PrevDecl = 0;
2158        } else {
2159          // If this is a use, return the original decl.
2160
2161          // FIXME: In the future, return a variant or some other clue
2162          //  for the consumer of this Decl to know it doesn't own it.
2163          //  For our current ASTs this shouldn't be a problem, but will
2164          //  need to be changed with DeclGroups.
2165          if (TK == TK_Reference)
2166            return PrevDecl;
2167
2168          // The new decl is a definition?
2169          if (TK == TK_Definition) {
2170            // Diagnose attempts to redefine a tag.
2171            if (RecordDecl* DefRecord =
2172                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
2173              Diag(NameLoc, diag::err_redefinition, Name->getName());
2174              Diag(DefRecord->getLocation(), diag::err_previous_definition);
2175              // If this is a redefinition, recover by making this struct be
2176              // anonymous, which will make any later references get the previous
2177              // definition.
2178              Name = 0;
2179              PrevDecl = 0;
2180            }
2181            // Okay, this is definition of a previously declared or referenced
2182            // tag.  We're going to create a new Decl.
2183          }
2184        }
2185        // If we get here we have (another) forward declaration.  Just create
2186        // a new decl.
2187      }
2188      else {
2189        // If we get here, this is a definition of a new struct type in a nested
2190        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
2191        // new decl/type.  We set PrevDecl to NULL so that the Records
2192        // have distinct types.
2193        PrevDecl = 0;
2194      }
2195    } else {
2196      // PrevDecl is a namespace.
2197      if (isDeclInScope(PrevDecl, CurContext, S)) {
2198        // The tag name clashes with a namespace name, issue an error and
2199        // recover by making this tag be anonymous.
2200        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
2201        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2202        Name = 0;
2203      }
2204    }
2205  }
2206
2207  // If there is an identifier, use the location of the identifier as the
2208  // location of the decl, otherwise use the location of the struct/union
2209  // keyword.
2210  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
2211
2212  // Otherwise, if this is the first time we've seen this tag, create the decl.
2213  TagDecl *New;
2214
2215  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
2216  // struct X { int A; } D;    D should chain to X.
2217  if (getLangOptions().CPlusPlus)
2218    // FIXME: Look for a way to use RecordDecl for simple structs.
2219    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2220                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
2221  else
2222    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
2223                             dyn_cast_or_null<RecordDecl>(PrevDecl));
2224
2225  // If this has an identifier, add it to the scope stack.
2226  if ((TK == TK_Definition || !PrevDecl) && Name) {
2227    // The scope passed in may not be a decl scope.  Zip up the scope tree until
2228    // we find one that is.
2229    while ((S->getFlags() & Scope::DeclScope) == 0)
2230      S = S->getParent();
2231
2232    // Add it to the decl chain.
2233    PushOnScopeChains(New, S);
2234  }
2235
2236  // Handle #pragma pack: if the #pragma pack stack has non-default
2237  // alignment, make up a packed attribute for this decl. These
2238  // attributes are checked when the ASTContext lays out the
2239  // structure.
2240  //
2241  // It is important for implementing the correct semantics that this
2242  // happen here (in act on tag decl). The #pragma pack stack is
2243  // maintained as a result of parser callbacks which can occur at
2244  // many points during the parsing of a struct declaration (because
2245  // the #pragma tokens are effectively skipped over during the
2246  // parsing of the struct).
2247  if (unsigned Alignment = PackContext.getAlignment())
2248    New->addAttr(new PackedAttr(Alignment * 8));
2249
2250  if (Attr)
2251    ProcessDeclAttributeList(New, Attr);
2252
2253  return New;
2254}
2255
2256
2257/// Collect the instance variables declared in an Objective-C object.  Used in
2258/// the creation of structures from objects using the @defs directive.
2259static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
2260                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
2261  if (Class->getSuperClass())
2262    CollectIvars(Class->getSuperClass(), Ctx, ivars);
2263
2264  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
2265  for (ObjCInterfaceDecl::ivar_iterator
2266        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
2267
2268    ObjCIvarDecl* ID = *I;
2269    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
2270                                                ID->getIdentifier(),
2271                                                ID->getType(),
2272                                                ID->getBitWidth()));
2273  }
2274}
2275
2276/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
2277/// instance variables of ClassName into Decls.
2278void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
2279                     IdentifierInfo *ClassName,
2280                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
2281  // Check that ClassName is a valid class
2282  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
2283  if (!Class) {
2284    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
2285    return;
2286  }
2287  // Collect the instance variables
2288  CollectIvars(Class, Context, Decls);
2289}
2290
2291QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
2292  // This method tries to turn a variable array into a constant
2293  // array even when the size isn't an ICE.  This is necessary
2294  // for compatibility with code that depends on gcc's buggy
2295  // constant expression folding, like struct {char x[(int)(char*)2];}
2296  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
2297    APValue Result;
2298    if (VLATy->getSizeExpr() &&
2299        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
2300      llvm::APSInt &Res = Result.getInt();
2301      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
2302        return Context.getConstantArrayType(VLATy->getElementType(),
2303                                            Res, ArrayType::Normal, 0);
2304    }
2305  }
2306  return QualType();
2307}
2308
2309/// ActOnField - Each field of a struct/union/class is passed into this in order
2310/// to create a FieldDecl object for it.
2311Sema::DeclTy *Sema::ActOnField(Scope *S,
2312                               SourceLocation DeclStart,
2313                               Declarator &D, ExprTy *BitfieldWidth) {
2314  IdentifierInfo *II = D.getIdentifier();
2315  Expr *BitWidth = (Expr*)BitfieldWidth;
2316  SourceLocation Loc = DeclStart;
2317  if (II) Loc = D.getIdentifierLoc();
2318
2319  // FIXME: Unnamed fields can be handled in various different ways, for
2320  // example, unnamed unions inject all members into the struct namespace!
2321
2322  if (BitWidth) {
2323    // TODO: Validate.
2324    //printf("WARNING: BITFIELDS IGNORED!\n");
2325
2326    // 6.7.2.1p3
2327    // 6.7.2.1p4
2328
2329  } else {
2330    // Not a bitfield.
2331
2332    // validate II.
2333
2334  }
2335
2336  QualType T = GetTypeForDeclarator(D, S);
2337  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2338  bool InvalidDecl = false;
2339
2340  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2341  // than a variably modified type.
2342  if (T->isVariablyModifiedType()) {
2343    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2344    if (!FixedTy.isNull()) {
2345      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2346      T = FixedTy;
2347    } else {
2348      // FIXME: This diagnostic needs work
2349      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2350      InvalidDecl = true;
2351    }
2352  }
2353  // FIXME: Chain fielddecls together.
2354  FieldDecl *NewFD;
2355
2356  if (getLangOptions().CPlusPlus) {
2357    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2358    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2359                                 Loc, II, T, BitWidth);
2360    if (II)
2361      PushOnScopeChains(NewFD, S);
2362  }
2363  else
2364    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2365
2366  ProcessDeclAttributes(NewFD, D);
2367
2368  if (D.getInvalidType() || InvalidDecl)
2369    NewFD->setInvalidDecl();
2370  return NewFD;
2371}
2372
2373/// TranslateIvarVisibility - Translate visibility from a token ID to an
2374///  AST enum value.
2375static ObjCIvarDecl::AccessControl
2376TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2377  switch (ivarVisibility) {
2378  default: assert(0 && "Unknown visitibility kind");
2379  case tok::objc_private: return ObjCIvarDecl::Private;
2380  case tok::objc_public: return ObjCIvarDecl::Public;
2381  case tok::objc_protected: return ObjCIvarDecl::Protected;
2382  case tok::objc_package: return ObjCIvarDecl::Package;
2383  }
2384}
2385
2386/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2387/// in order to create an IvarDecl object for it.
2388Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2389                              SourceLocation DeclStart,
2390                              Declarator &D, ExprTy *BitfieldWidth,
2391                              tok::ObjCKeywordKind Visibility) {
2392  IdentifierInfo *II = D.getIdentifier();
2393  Expr *BitWidth = (Expr*)BitfieldWidth;
2394  SourceLocation Loc = DeclStart;
2395  if (II) Loc = D.getIdentifierLoc();
2396
2397  // FIXME: Unnamed fields can be handled in various different ways, for
2398  // example, unnamed unions inject all members into the struct namespace!
2399
2400
2401  if (BitWidth) {
2402    // TODO: Validate.
2403    //printf("WARNING: BITFIELDS IGNORED!\n");
2404
2405    // 6.7.2.1p3
2406    // 6.7.2.1p4
2407
2408  } else {
2409    // Not a bitfield.
2410
2411    // validate II.
2412
2413  }
2414
2415  QualType T = GetTypeForDeclarator(D, S);
2416  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2417  bool InvalidDecl = false;
2418
2419  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2420  // than a variably modified type.
2421  if (T->isVariablyModifiedType()) {
2422    // FIXME: This diagnostic needs work
2423    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2424    InvalidDecl = true;
2425  }
2426
2427  // Get the visibility (access control) for this ivar.
2428  ObjCIvarDecl::AccessControl ac =
2429    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2430                                        : ObjCIvarDecl::None;
2431
2432  // Construct the decl.
2433  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2434                                             (Expr *)BitfieldWidth);
2435
2436  // Process attributes attached to the ivar.
2437  ProcessDeclAttributes(NewID, D);
2438
2439  if (D.getInvalidType() || InvalidDecl)
2440    NewID->setInvalidDecl();
2441
2442  return NewID;
2443}
2444
2445void Sema::ActOnFields(Scope* S,
2446                       SourceLocation RecLoc, DeclTy *RecDecl,
2447                       DeclTy **Fields, unsigned NumFields,
2448                       SourceLocation LBrac, SourceLocation RBrac,
2449                       AttributeList *Attr) {
2450  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2451  assert(EnclosingDecl && "missing record or interface decl");
2452  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2453
2454  if (Record)
2455    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2456      // Diagnose code like:
2457      //     struct S { struct S {} X; };
2458      // We discover this when we complete the outer S.  Reject and ignore the
2459      // outer S.
2460      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2461           DefRecord->getKindName());
2462      Diag(RecLoc, diag::err_previous_definition);
2463      Record->setInvalidDecl();
2464      return;
2465    }
2466
2467  // Verify that all the fields are okay.
2468  unsigned NumNamedMembers = 0;
2469  llvm::SmallVector<FieldDecl*, 32> RecFields;
2470  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2471
2472  for (unsigned i = 0; i != NumFields; ++i) {
2473
2474    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2475    assert(FD && "missing field decl");
2476
2477    // Remember all fields.
2478    RecFields.push_back(FD);
2479
2480    // Get the type for the field.
2481    Type *FDTy = FD->getType().getTypePtr();
2482
2483    // C99 6.7.2.1p2 - A field may not be a function type.
2484    if (FDTy->isFunctionType()) {
2485      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2486           FD->getName());
2487      FD->setInvalidDecl();
2488      EnclosingDecl->setInvalidDecl();
2489      continue;
2490    }
2491    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2492    if (FDTy->isIncompleteType()) {
2493      if (!Record) {  // Incomplete ivar type is always an error.
2494        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2495        FD->setInvalidDecl();
2496        EnclosingDecl->setInvalidDecl();
2497        continue;
2498      }
2499      if (i != NumFields-1 ||                   // ... that the last member ...
2500          !Record->isStruct() ||  // ... of a structure ...
2501          !FDTy->isArrayType()) {         //... may have incomplete array type.
2502        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2503        FD->setInvalidDecl();
2504        EnclosingDecl->setInvalidDecl();
2505        continue;
2506      }
2507      if (NumNamedMembers < 1) {  //... must have more than named member ...
2508        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2509             FD->getName());
2510        FD->setInvalidDecl();
2511        EnclosingDecl->setInvalidDecl();
2512        continue;
2513      }
2514      // Okay, we have a legal flexible array member at the end of the struct.
2515      if (Record)
2516        Record->setHasFlexibleArrayMember(true);
2517    }
2518    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2519    /// field of another structure or the element of an array.
2520    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2521      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2522        // If this is a member of a union, then entire union becomes "flexible".
2523        if (Record && Record->isUnion()) {
2524          Record->setHasFlexibleArrayMember(true);
2525        } else {
2526          // If this is a struct/class and this is not the last element, reject
2527          // it.  Note that GCC supports variable sized arrays in the middle of
2528          // structures.
2529          if (i != NumFields-1) {
2530            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2531                 FD->getName());
2532            FD->setInvalidDecl();
2533            EnclosingDecl->setInvalidDecl();
2534            continue;
2535          }
2536          // We support flexible arrays at the end of structs in other structs
2537          // as an extension.
2538          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2539               FD->getName());
2540          if (Record)
2541            Record->setHasFlexibleArrayMember(true);
2542        }
2543      }
2544    }
2545    /// A field cannot be an Objective-c object
2546    if (FDTy->isObjCInterfaceType()) {
2547      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2548           FD->getName());
2549      FD->setInvalidDecl();
2550      EnclosingDecl->setInvalidDecl();
2551      continue;
2552    }
2553    // Keep track of the number of named members.
2554    if (IdentifierInfo *II = FD->getIdentifier()) {
2555      // Detect duplicate member names.
2556      if (!FieldIDs.insert(II)) {
2557        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2558        // Find the previous decl.
2559        SourceLocation PrevLoc;
2560        for (unsigned i = 0; ; ++i) {
2561          assert(i != RecFields.size() && "Didn't find previous def!");
2562          if (RecFields[i]->getIdentifier() == II) {
2563            PrevLoc = RecFields[i]->getLocation();
2564            break;
2565          }
2566        }
2567        Diag(PrevLoc, diag::err_previous_definition);
2568        FD->setInvalidDecl();
2569        EnclosingDecl->setInvalidDecl();
2570        continue;
2571      }
2572      ++NumNamedMembers;
2573    }
2574  }
2575
2576  // Okay, we successfully defined 'Record'.
2577  if (Record) {
2578    Record->defineBody(Context, &RecFields[0], RecFields.size());
2579    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2580    // Sema::ActOnFinishCXXClassDef.
2581    if (!isa<CXXRecordDecl>(Record))
2582      Consumer.HandleTagDeclDefinition(Record);
2583  } else {
2584    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2585    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2586      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2587    else if (ObjCImplementationDecl *IMPDecl =
2588               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2589      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2590      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2591      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2592    }
2593  }
2594
2595  if (Attr)
2596    ProcessDeclAttributeList(Record, Attr);
2597}
2598
2599Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2600                                      DeclTy *lastEnumConst,
2601                                      SourceLocation IdLoc, IdentifierInfo *Id,
2602                                      SourceLocation EqualLoc, ExprTy *val) {
2603  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2604  EnumConstantDecl *LastEnumConst =
2605    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2606  Expr *Val = static_cast<Expr*>(val);
2607
2608  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2609  // we find one that is.
2610  while ((S->getFlags() & Scope::DeclScope) == 0)
2611    S = S->getParent();
2612
2613  // Verify that there isn't already something declared with this name in this
2614  // scope.
2615  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2616    // When in C++, we may get a TagDecl with the same name; in this case the
2617    // enum constant will 'hide' the tag.
2618    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2619           "Received TagDecl when not in C++!");
2620    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
2621      if (isa<EnumConstantDecl>(PrevDecl))
2622        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2623      else
2624        Diag(IdLoc, diag::err_redefinition, Id->getName());
2625      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2626      delete Val;
2627      return 0;
2628    }
2629  }
2630
2631  llvm::APSInt EnumVal(32);
2632  QualType EltTy;
2633  if (Val) {
2634    // Make sure to promote the operand type to int.
2635    UsualUnaryConversions(Val);
2636
2637    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2638    SourceLocation ExpLoc;
2639    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2640      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2641           Id->getName());
2642      delete Val;
2643      Val = 0;  // Just forget about it.
2644    } else {
2645      EltTy = Val->getType();
2646    }
2647  }
2648
2649  if (!Val) {
2650    if (LastEnumConst) {
2651      // Assign the last value + 1.
2652      EnumVal = LastEnumConst->getInitVal();
2653      ++EnumVal;
2654
2655      // Check for overflow on increment.
2656      if (EnumVal < LastEnumConst->getInitVal())
2657        Diag(IdLoc, diag::warn_enum_value_overflow);
2658
2659      EltTy = LastEnumConst->getType();
2660    } else {
2661      // First value, set to zero.
2662      EltTy = Context.IntTy;
2663      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2664    }
2665  }
2666
2667  EnumConstantDecl *New =
2668    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2669                             Val, EnumVal,
2670                             LastEnumConst);
2671
2672  // Register this decl in the current scope stack.
2673  PushOnScopeChains(New, S);
2674  return New;
2675}
2676
2677// FIXME: For consistency with ActOnFields(), we should have the parser
2678// pass in the source location for the left/right braces.
2679void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2680                         DeclTy **Elements, unsigned NumElements) {
2681  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2682
2683  if (Enum && Enum->isDefinition()) {
2684    // Diagnose code like:
2685    //   enum e0 {
2686    //     E0 = sizeof(enum e0 { E1 })
2687    //   };
2688    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2689         Enum->getName());
2690    Diag(EnumLoc, diag::err_previous_definition);
2691    Enum->setInvalidDecl();
2692    return;
2693  }
2694  // TODO: If the result value doesn't fit in an int, it must be a long or long
2695  // long value.  ISO C does not support this, but GCC does as an extension,
2696  // emit a warning.
2697  unsigned IntWidth = Context.Target.getIntWidth();
2698
2699  // Verify that all the values are okay, compute the size of the values, and
2700  // reverse the list.
2701  unsigned NumNegativeBits = 0;
2702  unsigned NumPositiveBits = 0;
2703
2704  // Keep track of whether all elements have type int.
2705  bool AllElementsInt = true;
2706
2707  EnumConstantDecl *EltList = 0;
2708  for (unsigned i = 0; i != NumElements; ++i) {
2709    EnumConstantDecl *ECD =
2710      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2711    if (!ECD) continue;  // Already issued a diagnostic.
2712
2713    // If the enum value doesn't fit in an int, emit an extension warning.
2714    const llvm::APSInt &InitVal = ECD->getInitVal();
2715    assert(InitVal.getBitWidth() >= IntWidth &&
2716           "Should have promoted value to int");
2717    if (InitVal.getBitWidth() > IntWidth) {
2718      llvm::APSInt V(InitVal);
2719      V.trunc(IntWidth);
2720      V.extend(InitVal.getBitWidth());
2721      if (V != InitVal)
2722        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2723             InitVal.toString(10));
2724    }
2725
2726    // Keep track of the size of positive and negative values.
2727    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2728      NumPositiveBits = std::max(NumPositiveBits,
2729                                 (unsigned)InitVal.getActiveBits());
2730    else
2731      NumNegativeBits = std::max(NumNegativeBits,
2732                                 (unsigned)InitVal.getMinSignedBits());
2733
2734    // Keep track of whether every enum element has type int (very commmon).
2735    if (AllElementsInt)
2736      AllElementsInt = ECD->getType() == Context.IntTy;
2737
2738    ECD->setNextDeclarator(EltList);
2739    EltList = ECD;
2740  }
2741
2742  // Figure out the type that should be used for this enum.
2743  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2744  QualType BestType;
2745  unsigned BestWidth;
2746
2747  if (NumNegativeBits) {
2748    // If there is a negative value, figure out the smallest integer type (of
2749    // int/long/longlong) that fits.
2750    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2751      BestType = Context.IntTy;
2752      BestWidth = IntWidth;
2753    } else {
2754      BestWidth = Context.Target.getLongWidth();
2755
2756      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2757        BestType = Context.LongTy;
2758      else {
2759        BestWidth = Context.Target.getLongLongWidth();
2760
2761        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2762          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2763        BestType = Context.LongLongTy;
2764      }
2765    }
2766  } else {
2767    // If there is no negative value, figure out which of uint, ulong, ulonglong
2768    // fits.
2769    if (NumPositiveBits <= IntWidth) {
2770      BestType = Context.UnsignedIntTy;
2771      BestWidth = IntWidth;
2772    } else if (NumPositiveBits <=
2773               (BestWidth = Context.Target.getLongWidth())) {
2774      BestType = Context.UnsignedLongTy;
2775    } else {
2776      BestWidth = Context.Target.getLongLongWidth();
2777      assert(NumPositiveBits <= BestWidth &&
2778             "How could an initializer get larger than ULL?");
2779      BestType = Context.UnsignedLongLongTy;
2780    }
2781  }
2782
2783  // Loop over all of the enumerator constants, changing their types to match
2784  // the type of the enum if needed.
2785  for (unsigned i = 0; i != NumElements; ++i) {
2786    EnumConstantDecl *ECD =
2787      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2788    if (!ECD) continue;  // Already issued a diagnostic.
2789
2790    // Standard C says the enumerators have int type, but we allow, as an
2791    // extension, the enumerators to be larger than int size.  If each
2792    // enumerator value fits in an int, type it as an int, otherwise type it the
2793    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2794    // that X has type 'int', not 'unsigned'.
2795    if (ECD->getType() == Context.IntTy) {
2796      // Make sure the init value is signed.
2797      llvm::APSInt IV = ECD->getInitVal();
2798      IV.setIsSigned(true);
2799      ECD->setInitVal(IV);
2800      continue;  // Already int type.
2801    }
2802
2803    // Determine whether the value fits into an int.
2804    llvm::APSInt InitVal = ECD->getInitVal();
2805    bool FitsInInt;
2806    if (InitVal.isUnsigned() || !InitVal.isNegative())
2807      FitsInInt = InitVal.getActiveBits() < IntWidth;
2808    else
2809      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2810
2811    // If it fits into an integer type, force it.  Otherwise force it to match
2812    // the enum decl type.
2813    QualType NewTy;
2814    unsigned NewWidth;
2815    bool NewSign;
2816    if (FitsInInt) {
2817      NewTy = Context.IntTy;
2818      NewWidth = IntWidth;
2819      NewSign = true;
2820    } else if (ECD->getType() == BestType) {
2821      // Already the right type!
2822      continue;
2823    } else {
2824      NewTy = BestType;
2825      NewWidth = BestWidth;
2826      NewSign = BestType->isSignedIntegerType();
2827    }
2828
2829    // Adjust the APSInt value.
2830    InitVal.extOrTrunc(NewWidth);
2831    InitVal.setIsSigned(NewSign);
2832    ECD->setInitVal(InitVal);
2833
2834    // Adjust the Expr initializer and type.
2835    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2836    ECD->setType(NewTy);
2837  }
2838
2839  Enum->defineElements(EltList, BestType);
2840  Consumer.HandleTagDeclDefinition(Enum);
2841}
2842
2843Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2844                                          ExprTy *expr) {
2845  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2846
2847  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2848}
2849
2850Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2851                                     SourceLocation LBrace,
2852                                     SourceLocation RBrace,
2853                                     const char *Lang,
2854                                     unsigned StrSize,
2855                                     DeclTy *D) {
2856  LinkageSpecDecl::LanguageIDs Language;
2857  Decl *dcl = static_cast<Decl *>(D);
2858  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2859    Language = LinkageSpecDecl::lang_c;
2860  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2861    Language = LinkageSpecDecl::lang_cxx;
2862  else {
2863    Diag(Loc, diag::err_bad_language);
2864    return 0;
2865  }
2866
2867  // FIXME: Add all the various semantics of linkage specifications
2868  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2869}
2870
2871void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
2872                           ExprTy *alignment, SourceLocation PragmaLoc,
2873                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
2874  Expr *Alignment = static_cast<Expr *>(alignment);
2875
2876  // If specified then alignment must be a "small" power of two.
2877  unsigned AlignmentVal = 0;
2878  if (Alignment) {
2879    llvm::APSInt Val;
2880    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
2881        !Val.isPowerOf2() ||
2882        Val.getZExtValue() > 16) {
2883      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
2884      delete Alignment;
2885      return; // Ignore
2886    }
2887
2888    AlignmentVal = (unsigned) Val.getZExtValue();
2889  }
2890
2891  switch (Kind) {
2892  case Action::PPK_Default: // pack([n])
2893    PackContext.setAlignment(AlignmentVal);
2894    break;
2895
2896  case Action::PPK_Show: // pack(show)
2897    // Show the current alignment, making sure to show the right value
2898    // for the default.
2899    AlignmentVal = PackContext.getAlignment();
2900    // FIXME: This should come from the target.
2901    if (AlignmentVal == 0)
2902      AlignmentVal = 8;
2903    Diag(PragmaLoc, diag::warn_pragma_pack_show, llvm::utostr(AlignmentVal));
2904    break;
2905
2906  case Action::PPK_Push: // pack(push [, id] [, [n])
2907    PackContext.push(Name);
2908    // Set the new alignment if specified.
2909    if (Alignment)
2910      PackContext.setAlignment(AlignmentVal);
2911    break;
2912
2913  case Action::PPK_Pop: // pack(pop [, id] [,  n])
2914    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
2915    // "#pragma pack(pop, identifier, n) is undefined"
2916    if (Alignment && Name)
2917      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
2918
2919    // Do the pop.
2920    if (!PackContext.pop(Name)) {
2921      // If a name was specified then failure indicates the name
2922      // wasn't found. Otherwise failure indicates the stack was
2923      // empty.
2924      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed,
2925           Name ? "no record matching name" : "stack empty");
2926
2927      // FIXME: Warn about popping named records as MSVC does.
2928    } else {
2929      // Pop succeeded, set the new alignment if specified.
2930      if (Alignment)
2931        PackContext.setAlignment(AlignmentVal);
2932    }
2933    break;
2934
2935  default:
2936    assert(0 && "Invalid #pragma pack kind.");
2937  }
2938}
2939
2940bool PragmaPackStack::pop(IdentifierInfo *Name) {
2941  if (Stack.empty())
2942    return false;
2943
2944  // If name is empty just pop top.
2945  if (!Name) {
2946    Alignment = Stack.back().first;
2947    Stack.pop_back();
2948    return true;
2949  }
2950
2951  // Otherwise, find the named record.
2952  for (unsigned i = Stack.size(); i != 0; ) {
2953    --i;
2954    if (strcmp(Stack[i].second.c_str(), Name->getName()) == 0) {
2955      // Found it, pop up to and including this record.
2956      Alignment = Stack[i].first;
2957      Stack.erase(Stack.begin() + i, Stack.end());
2958      return true;
2959    }
2960  }
2961
2962  return false;
2963}
2964