SemaDecl.cpp revision 1af83c444e5a2f6f50a6e1c15e6ebc618ae18a5f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/EvaluatedExprVisitor.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Sema/DelayedDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "clang/Lex/ModuleLoader.h"
42#include "llvm/ADT/SmallString.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59namespace {
60
61class TypeNameValidatorCCC : public CorrectionCandidateCallback {
62 public:
63  TypeNameValidatorCCC(bool AllowInvalid) : AllowInvalidDecl(AllowInvalid) {
64    WantExpressionKeywords = false;
65    WantCXXNamedCasts = false;
66    WantRemainingKeywords = false;
67  }
68
69  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
70    if (NamedDecl *ND = candidate.getCorrectionDecl())
71      return (isa<TypeDecl>(ND) || isa<ObjCInterfaceDecl>(ND)) &&
72          (AllowInvalidDecl || !ND->isInvalidDecl());
73    else
74      return candidate.isKeyword();
75  }
76
77 private:
78  bool AllowInvalidDecl;
79};
80
81}
82
83/// \brief If the identifier refers to a type name within this scope,
84/// return the declaration of that type.
85///
86/// This routine performs ordinary name lookup of the identifier II
87/// within the given scope, with optional C++ scope specifier SS, to
88/// determine whether the name refers to a type. If so, returns an
89/// opaque pointer (actually a QualType) corresponding to that
90/// type. Otherwise, returns NULL.
91///
92/// If name lookup results in an ambiguity, this routine will complain
93/// and then return NULL.
94ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
95                             Scope *S, CXXScopeSpec *SS,
96                             bool isClassName, bool HasTrailingDot,
97                             ParsedType ObjectTypePtr,
98                             bool IsCtorOrDtorName,
99                             bool WantNontrivialTypeSourceInfo,
100                             IdentifierInfo **CorrectedII) {
101  // Determine where we will perform name lookup.
102  DeclContext *LookupCtx = 0;
103  if (ObjectTypePtr) {
104    QualType ObjectType = ObjectTypePtr.get();
105    if (ObjectType->isRecordType())
106      LookupCtx = computeDeclContext(ObjectType);
107  } else if (SS && SS->isNotEmpty()) {
108    LookupCtx = computeDeclContext(*SS, false);
109
110    if (!LookupCtx) {
111      if (isDependentScopeSpecifier(*SS)) {
112        // C++ [temp.res]p3:
113        //   A qualified-id that refers to a type and in which the
114        //   nested-name-specifier depends on a template-parameter (14.6.2)
115        //   shall be prefixed by the keyword typename to indicate that the
116        //   qualified-id denotes a type, forming an
117        //   elaborated-type-specifier (7.1.5.3).
118        //
119        // We therefore do not perform any name lookup if the result would
120        // refer to a member of an unknown specialization.
121        if (!isClassName)
122          return ParsedType();
123
124        // We know from the grammar that this name refers to a type,
125        // so build a dependent node to describe the type.
126        if (WantNontrivialTypeSourceInfo)
127          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
128
129        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
130        QualType T =
131          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
132                            II, NameLoc);
133
134          return ParsedType::make(T);
135      }
136
137      return ParsedType();
138    }
139
140    if (!LookupCtx->isDependentContext() &&
141        RequireCompleteDeclContext(*SS, LookupCtx))
142      return ParsedType();
143  }
144
145  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
146  // lookup for class-names.
147  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
148                                      LookupOrdinaryName;
149  LookupResult Result(*this, &II, NameLoc, Kind);
150  if (LookupCtx) {
151    // Perform "qualified" name lookup into the declaration context we
152    // computed, which is either the type of the base of a member access
153    // expression or the declaration context associated with a prior
154    // nested-name-specifier.
155    LookupQualifiedName(Result, LookupCtx);
156
157    if (ObjectTypePtr && Result.empty()) {
158      // C++ [basic.lookup.classref]p3:
159      //   If the unqualified-id is ~type-name, the type-name is looked up
160      //   in the context of the entire postfix-expression. If the type T of
161      //   the object expression is of a class type C, the type-name is also
162      //   looked up in the scope of class C. At least one of the lookups shall
163      //   find a name that refers to (possibly cv-qualified) T.
164      LookupName(Result, S);
165    }
166  } else {
167    // Perform unqualified name lookup.
168    LookupName(Result, S);
169  }
170
171  NamedDecl *IIDecl = 0;
172  switch (Result.getResultKind()) {
173  case LookupResult::NotFound:
174  case LookupResult::NotFoundInCurrentInstantiation:
175    if (CorrectedII) {
176      TypeNameValidatorCCC Validator(true);
177      TypoCorrection Correction = CorrectTypo(Result.getLookupNameInfo(),
178                                              Kind, S, SS, Validator);
179      IdentifierInfo *NewII = Correction.getCorrectionAsIdentifierInfo();
180      TemplateTy Template;
181      bool MemberOfUnknownSpecialization;
182      UnqualifiedId TemplateName;
183      TemplateName.setIdentifier(NewII, NameLoc);
184      NestedNameSpecifier *NNS = Correction.getCorrectionSpecifier();
185      CXXScopeSpec NewSS, *NewSSPtr = SS;
186      if (SS && NNS) {
187        NewSS.MakeTrivial(Context, NNS, SourceRange(NameLoc));
188        NewSSPtr = &NewSS;
189      }
190      if (Correction && (NNS || NewII != &II) &&
191          // Ignore a correction to a template type as the to-be-corrected
192          // identifier is not a template (typo correction for template names
193          // is handled elsewhere).
194          !(getLangOpts().CPlusPlus && NewSSPtr &&
195            isTemplateName(S, *NewSSPtr, false, TemplateName, ParsedType(),
196                           false, Template, MemberOfUnknownSpecialization))) {
197        ParsedType Ty = getTypeName(*NewII, NameLoc, S, NewSSPtr,
198                                    isClassName, HasTrailingDot, ObjectTypePtr,
199                                    IsCtorOrDtorName,
200                                    WantNontrivialTypeSourceInfo);
201        if (Ty) {
202          std::string CorrectedStr(Correction.getAsString(getLangOpts()));
203          std::string CorrectedQuotedStr(
204              Correction.getQuoted(getLangOpts()));
205          Diag(NameLoc, diag::err_unknown_typename_suggest)
206              << Result.getLookupName() << CorrectedQuotedStr
207              << FixItHint::CreateReplacement(SourceRange(NameLoc),
208                                              CorrectedStr);
209          if (NamedDecl *FirstDecl = Correction.getCorrectionDecl())
210            Diag(FirstDecl->getLocation(), diag::note_previous_decl)
211              << CorrectedQuotedStr;
212
213          if (SS && NNS)
214            SS->MakeTrivial(Context, NNS, SourceRange(NameLoc));
215          *CorrectedII = NewII;
216          return Ty;
217        }
218      }
219    }
220    // If typo correction failed or was not performed, fall through
221  case LookupResult::FoundOverloaded:
222  case LookupResult::FoundUnresolvedValue:
223    Result.suppressDiagnostics();
224    return ParsedType();
225
226  case LookupResult::Ambiguous:
227    // Recover from type-hiding ambiguities by hiding the type.  We'll
228    // do the lookup again when looking for an object, and we can
229    // diagnose the error then.  If we don't do this, then the error
230    // about hiding the type will be immediately followed by an error
231    // that only makes sense if the identifier was treated like a type.
232    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
233      Result.suppressDiagnostics();
234      return ParsedType();
235    }
236
237    // Look to see if we have a type anywhere in the list of results.
238    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
239         Res != ResEnd; ++Res) {
240      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
241        if (!IIDecl ||
242            (*Res)->getLocation().getRawEncoding() <
243              IIDecl->getLocation().getRawEncoding())
244          IIDecl = *Res;
245      }
246    }
247
248    if (!IIDecl) {
249      // None of the entities we found is a type, so there is no way
250      // to even assume that the result is a type. In this case, don't
251      // complain about the ambiguity. The parser will either try to
252      // perform this lookup again (e.g., as an object name), which
253      // will produce the ambiguity, or will complain that it expected
254      // a type name.
255      Result.suppressDiagnostics();
256      return ParsedType();
257    }
258
259    // We found a type within the ambiguous lookup; diagnose the
260    // ambiguity and then return that type. This might be the right
261    // answer, or it might not be, but it suppresses any attempt to
262    // perform the name lookup again.
263    break;
264
265  case LookupResult::Found:
266    IIDecl = Result.getFoundDecl();
267    break;
268  }
269
270  assert(IIDecl && "Didn't find decl");
271
272  QualType T;
273  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
274    DiagnoseUseOfDecl(IIDecl, NameLoc);
275
276    if (T.isNull())
277      T = Context.getTypeDeclType(TD);
278
279    // NOTE: avoid constructing an ElaboratedType(Loc) if this is a
280    // constructor or destructor name (in such a case, the scope specifier
281    // will be attached to the enclosing Expr or Decl node).
282    if (SS && SS->isNotEmpty() && !IsCtorOrDtorName) {
283      if (WantNontrivialTypeSourceInfo) {
284        // Construct a type with type-source information.
285        TypeLocBuilder Builder;
286        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
287
288        T = getElaboratedType(ETK_None, *SS, T);
289        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
290        ElabTL.setElaboratedKeywordLoc(SourceLocation());
291        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
292        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
293      } else {
294        T = getElaboratedType(ETK_None, *SS, T);
295      }
296    }
297  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
298    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
299    if (!HasTrailingDot)
300      T = Context.getObjCInterfaceType(IDecl);
301  }
302
303  if (T.isNull()) {
304    // If it's not plausibly a type, suppress diagnostics.
305    Result.suppressDiagnostics();
306    return ParsedType();
307  }
308  return ParsedType::make(T);
309}
310
311/// isTagName() - This method is called *for error recovery purposes only*
312/// to determine if the specified name is a valid tag name ("struct foo").  If
313/// so, this returns the TST for the tag corresponding to it (TST_enum,
314/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
315/// where the user forgot to specify the tag.
316DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
317  // Do a tag name lookup in this scope.
318  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
319  LookupName(R, S, false);
320  R.suppressDiagnostics();
321  if (R.getResultKind() == LookupResult::Found)
322    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
323      switch (TD->getTagKind()) {
324      case TTK_Struct: return DeclSpec::TST_struct;
325      case TTK_Union:  return DeclSpec::TST_union;
326      case TTK_Class:  return DeclSpec::TST_class;
327      case TTK_Enum:   return DeclSpec::TST_enum;
328      }
329    }
330
331  return DeclSpec::TST_unspecified;
332}
333
334/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
335/// if a CXXScopeSpec's type is equal to the type of one of the base classes
336/// then downgrade the missing typename error to a warning.
337/// This is needed for MSVC compatibility; Example:
338/// @code
339/// template<class T> class A {
340/// public:
341///   typedef int TYPE;
342/// };
343/// template<class T> class B : public A<T> {
344/// public:
345///   A<T>::TYPE a; // no typename required because A<T> is a base class.
346/// };
347/// @endcode
348bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS, Scope *S) {
349  if (CurContext->isRecord()) {
350    const Type *Ty = SS->getScopeRep()->getAsType();
351
352    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
353    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
354          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
355      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
356        return true;
357    return S->isFunctionPrototypeScope();
358  }
359  return CurContext->isFunctionOrMethod() || S->isFunctionPrototypeScope();
360}
361
362bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
363                                   SourceLocation IILoc,
364                                   Scope *S,
365                                   CXXScopeSpec *SS,
366                                   ParsedType &SuggestedType) {
367  // We don't have anything to suggest (yet).
368  SuggestedType = ParsedType();
369
370  // There may have been a typo in the name of the type. Look up typo
371  // results, in case we have something that we can suggest.
372  TypeNameValidatorCCC Validator(false);
373  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
374                                             LookupOrdinaryName, S, SS,
375                                             Validator)) {
376    std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
377    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
378
379    if (Corrected.isKeyword()) {
380      // We corrected to a keyword.
381      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
382      Diag(IILoc, diag::err_unknown_typename_suggest)
383        << &II << CorrectedQuotedStr;
384    } else {
385      NamedDecl *Result = Corrected.getCorrectionDecl();
386      // We found a similarly-named type or interface; suggest that.
387      if (!SS || !SS->isSet())
388        Diag(IILoc, diag::err_unknown_typename_suggest)
389          << &II << CorrectedQuotedStr
390          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
391      else if (DeclContext *DC = computeDeclContext(*SS, false))
392        Diag(IILoc, diag::err_unknown_nested_typename_suggest)
393          << &II << DC << CorrectedQuotedStr << SS->getRange()
394          << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
395      else
396        llvm_unreachable("could not have corrected a typo here");
397
398      Diag(Result->getLocation(), diag::note_previous_decl)
399        << CorrectedQuotedStr;
400
401      SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
402                                  false, false, ParsedType(),
403                                  /*IsCtorOrDtorName=*/false,
404                                  /*NonTrivialTypeSourceInfo=*/true);
405    }
406    return true;
407  }
408
409  if (getLangOpts().CPlusPlus) {
410    // See if II is a class template that the user forgot to pass arguments to.
411    UnqualifiedId Name;
412    Name.setIdentifier(&II, IILoc);
413    CXXScopeSpec EmptySS;
414    TemplateTy TemplateResult;
415    bool MemberOfUnknownSpecialization;
416    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
417                       Name, ParsedType(), true, TemplateResult,
418                       MemberOfUnknownSpecialization) == TNK_Type_template) {
419      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
420      Diag(IILoc, diag::err_template_missing_args) << TplName;
421      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
422        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
423          << TplDecl->getTemplateParameters()->getSourceRange();
424      }
425      return true;
426    }
427  }
428
429  // FIXME: Should we move the logic that tries to recover from a missing tag
430  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
431
432  if (!SS || (!SS->isSet() && !SS->isInvalid()))
433    Diag(IILoc, diag::err_unknown_typename) << &II;
434  else if (DeclContext *DC = computeDeclContext(*SS, false))
435    Diag(IILoc, diag::err_typename_nested_not_found)
436      << &II << DC << SS->getRange();
437  else if (isDependentScopeSpecifier(*SS)) {
438    unsigned DiagID = diag::err_typename_missing;
439    if (getLangOpts().MicrosoftMode && isMicrosoftMissingTypename(SS, S))
440      DiagID = diag::warn_typename_missing;
441
442    Diag(SS->getRange().getBegin(), DiagID)
443      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
444      << SourceRange(SS->getRange().getBegin(), IILoc)
445      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
446    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc)
447                                                                         .get();
448  } else {
449    assert(SS && SS->isInvalid() &&
450           "Invalid scope specifier has already been diagnosed");
451  }
452
453  return true;
454}
455
456/// \brief Determine whether the given result set contains either a type name
457/// or
458static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
459  bool CheckTemplate = R.getSema().getLangOpts().CPlusPlus &&
460                       NextToken.is(tok::less);
461
462  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
463    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
464      return true;
465
466    if (CheckTemplate && isa<TemplateDecl>(*I))
467      return true;
468  }
469
470  return false;
471}
472
473Sema::NameClassification Sema::ClassifyName(Scope *S,
474                                            CXXScopeSpec &SS,
475                                            IdentifierInfo *&Name,
476                                            SourceLocation NameLoc,
477                                            const Token &NextToken) {
478  DeclarationNameInfo NameInfo(Name, NameLoc);
479  ObjCMethodDecl *CurMethod = getCurMethodDecl();
480
481  if (NextToken.is(tok::coloncolon)) {
482    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
483                                QualType(), false, SS, 0, false);
484
485  }
486
487  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
488  LookupParsedName(Result, S, &SS, !CurMethod);
489
490  // Perform lookup for Objective-C instance variables (including automatically
491  // synthesized instance variables), if we're in an Objective-C method.
492  // FIXME: This lookup really, really needs to be folded in to the normal
493  // unqualified lookup mechanism.
494  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
495    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
496    if (E.get() || E.isInvalid())
497      return E;
498  }
499
500  bool SecondTry = false;
501  bool IsFilteredTemplateName = false;
502
503Corrected:
504  switch (Result.getResultKind()) {
505  case LookupResult::NotFound:
506    // If an unqualified-id is followed by a '(', then we have a function
507    // call.
508    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
509      // In C++, this is an ADL-only call.
510      // FIXME: Reference?
511      if (getLangOpts().CPlusPlus)
512        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
513
514      // C90 6.3.2.2:
515      //   If the expression that precedes the parenthesized argument list in a
516      //   function call consists solely of an identifier, and if no
517      //   declaration is visible for this identifier, the identifier is
518      //   implicitly declared exactly as if, in the innermost block containing
519      //   the function call, the declaration
520      //
521      //     extern int identifier ();
522      //
523      //   appeared.
524      //
525      // We also allow this in C99 as an extension.
526      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
527        Result.addDecl(D);
528        Result.resolveKind();
529        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
530      }
531    }
532
533    // In C, we first see whether there is a tag type by the same name, in
534    // which case it's likely that the user just forget to write "enum",
535    // "struct", or "union".
536    if (!getLangOpts().CPlusPlus && !SecondTry) {
537      Result.clear(LookupTagName);
538      LookupParsedName(Result, S, &SS);
539      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
540        const char *TagName = 0;
541        const char *FixItTagName = 0;
542        switch (Tag->getTagKind()) {
543          case TTK_Class:
544            TagName = "class";
545            FixItTagName = "class ";
546            break;
547
548          case TTK_Enum:
549            TagName = "enum";
550            FixItTagName = "enum ";
551            break;
552
553          case TTK_Struct:
554            TagName = "struct";
555            FixItTagName = "struct ";
556            break;
557
558          case TTK_Union:
559            TagName = "union";
560            FixItTagName = "union ";
561            break;
562        }
563
564        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
565          << Name << TagName << getLangOpts().CPlusPlus
566          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
567        break;
568      }
569
570      Result.clear(LookupOrdinaryName);
571    }
572
573    // Perform typo correction to determine if there is another name that is
574    // close to this name.
575    if (!SecondTry) {
576      SecondTry = true;
577      CorrectionCandidateCallback DefaultValidator;
578      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
579                                                 Result.getLookupKind(), S,
580                                                 &SS, DefaultValidator)) {
581        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
582        unsigned QualifiedDiag = diag::err_no_member_suggest;
583        std::string CorrectedStr(Corrected.getAsString(getLangOpts()));
584        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOpts()));
585
586        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
587        NamedDecl *UnderlyingFirstDecl
588          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
589        if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
590            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
591          UnqualifiedDiag = diag::err_no_template_suggest;
592          QualifiedDiag = diag::err_no_member_template_suggest;
593        } else if (UnderlyingFirstDecl &&
594                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
595                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
596                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
597           UnqualifiedDiag = diag::err_unknown_typename_suggest;
598           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
599         }
600
601        if (SS.isEmpty())
602          Diag(NameLoc, UnqualifiedDiag)
603            << Name << CorrectedQuotedStr
604            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
605        else
606          Diag(NameLoc, QualifiedDiag)
607            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
608            << SS.getRange()
609            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
610
611        // Update the name, so that the caller has the new name.
612        Name = Corrected.getCorrectionAsIdentifierInfo();
613
614        // Typo correction corrected to a keyword.
615        if (Corrected.isKeyword())
616          return Corrected.getCorrectionAsIdentifierInfo();
617
618        // Also update the LookupResult...
619        // FIXME: This should probably go away at some point
620        Result.clear();
621        Result.setLookupName(Corrected.getCorrection());
622        if (FirstDecl) {
623          Result.addDecl(FirstDecl);
624          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
625            << CorrectedQuotedStr;
626        }
627
628        // If we found an Objective-C instance variable, let
629        // LookupInObjCMethod build the appropriate expression to
630        // reference the ivar.
631        // FIXME: This is a gross hack.
632        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
633          Result.clear();
634          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
635          return move(E);
636        }
637
638        goto Corrected;
639      }
640    }
641
642    // We failed to correct; just fall through and let the parser deal with it.
643    Result.suppressDiagnostics();
644    return NameClassification::Unknown();
645
646  case LookupResult::NotFoundInCurrentInstantiation: {
647    // We performed name lookup into the current instantiation, and there were
648    // dependent bases, so we treat this result the same way as any other
649    // dependent nested-name-specifier.
650
651    // C++ [temp.res]p2:
652    //   A name used in a template declaration or definition and that is
653    //   dependent on a template-parameter is assumed not to name a type
654    //   unless the applicable name lookup finds a type name or the name is
655    //   qualified by the keyword typename.
656    //
657    // FIXME: If the next token is '<', we might want to ask the parser to
658    // perform some heroics to see if we actually have a
659    // template-argument-list, which would indicate a missing 'template'
660    // keyword here.
661    return BuildDependentDeclRefExpr(SS, /*TemplateKWLoc=*/SourceLocation(),
662                                     NameInfo, /*TemplateArgs=*/0);
663  }
664
665  case LookupResult::Found:
666  case LookupResult::FoundOverloaded:
667  case LookupResult::FoundUnresolvedValue:
668    break;
669
670  case LookupResult::Ambiguous:
671    if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
672        hasAnyAcceptableTemplateNames(Result)) {
673      // C++ [temp.local]p3:
674      //   A lookup that finds an injected-class-name (10.2) can result in an
675      //   ambiguity in certain cases (for example, if it is found in more than
676      //   one base class). If all of the injected-class-names that are found
677      //   refer to specializations of the same class template, and if the name
678      //   is followed by a template-argument-list, the reference refers to the
679      //   class template itself and not a specialization thereof, and is not
680      //   ambiguous.
681      //
682      // This filtering can make an ambiguous result into an unambiguous one,
683      // so try again after filtering out template names.
684      FilterAcceptableTemplateNames(Result);
685      if (!Result.isAmbiguous()) {
686        IsFilteredTemplateName = true;
687        break;
688      }
689    }
690
691    // Diagnose the ambiguity and return an error.
692    return NameClassification::Error();
693  }
694
695  if (getLangOpts().CPlusPlus && NextToken.is(tok::less) &&
696      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
697    // C++ [temp.names]p3:
698    //   After name lookup (3.4) finds that a name is a template-name or that
699    //   an operator-function-id or a literal- operator-id refers to a set of
700    //   overloaded functions any member of which is a function template if
701    //   this is followed by a <, the < is always taken as the delimiter of a
702    //   template-argument-list and never as the less-than operator.
703    if (!IsFilteredTemplateName)
704      FilterAcceptableTemplateNames(Result);
705
706    if (!Result.empty()) {
707      bool IsFunctionTemplate;
708      TemplateName Template;
709      if (Result.end() - Result.begin() > 1) {
710        IsFunctionTemplate = true;
711        Template = Context.getOverloadedTemplateName(Result.begin(),
712                                                     Result.end());
713      } else {
714        TemplateDecl *TD
715          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
716        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
717
718        if (SS.isSet() && !SS.isInvalid())
719          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
720                                                    /*TemplateKeyword=*/false,
721                                                      TD);
722        else
723          Template = TemplateName(TD);
724      }
725
726      if (IsFunctionTemplate) {
727        // Function templates always go through overload resolution, at which
728        // point we'll perform the various checks (e.g., accessibility) we need
729        // to based on which function we selected.
730        Result.suppressDiagnostics();
731
732        return NameClassification::FunctionTemplate(Template);
733      }
734
735      return NameClassification::TypeTemplate(Template);
736    }
737  }
738
739  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
740  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
741    DiagnoseUseOfDecl(Type, NameLoc);
742    QualType T = Context.getTypeDeclType(Type);
743    return ParsedType::make(T);
744  }
745
746  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
747  if (!Class) {
748    // FIXME: It's unfortunate that we don't have a Type node for handling this.
749    if (ObjCCompatibleAliasDecl *Alias
750                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
751      Class = Alias->getClassInterface();
752  }
753
754  if (Class) {
755    DiagnoseUseOfDecl(Class, NameLoc);
756
757    if (NextToken.is(tok::period)) {
758      // Interface. <something> is parsed as a property reference expression.
759      // Just return "unknown" as a fall-through for now.
760      Result.suppressDiagnostics();
761      return NameClassification::Unknown();
762    }
763
764    QualType T = Context.getObjCInterfaceType(Class);
765    return ParsedType::make(T);
766  }
767
768  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
769    return BuildPossibleImplicitMemberExpr(SS, SourceLocation(), Result, 0);
770
771  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
772  return BuildDeclarationNameExpr(SS, Result, ADL);
773}
774
775// Determines the context to return to after temporarily entering a
776// context.  This depends in an unnecessarily complicated way on the
777// exact ordering of callbacks from the parser.
778DeclContext *Sema::getContainingDC(DeclContext *DC) {
779
780  // Functions defined inline within classes aren't parsed until we've
781  // finished parsing the top-level class, so the top-level class is
782  // the context we'll need to return to.
783  if (isa<FunctionDecl>(DC)) {
784    DC = DC->getLexicalParent();
785
786    // A function not defined within a class will always return to its
787    // lexical context.
788    if (!isa<CXXRecordDecl>(DC))
789      return DC;
790
791    // A C++ inline method/friend is parsed *after* the topmost class
792    // it was declared in is fully parsed ("complete");  the topmost
793    // class is the context we need to return to.
794    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
795      DC = RD;
796
797    // Return the declaration context of the topmost class the inline method is
798    // declared in.
799    return DC;
800  }
801
802  return DC->getLexicalParent();
803}
804
805void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
806  assert(getContainingDC(DC) == CurContext &&
807      "The next DeclContext should be lexically contained in the current one.");
808  CurContext = DC;
809  S->setEntity(DC);
810}
811
812void Sema::PopDeclContext() {
813  assert(CurContext && "DeclContext imbalance!");
814
815  CurContext = getContainingDC(CurContext);
816  assert(CurContext && "Popped translation unit!");
817}
818
819/// EnterDeclaratorContext - Used when we must lookup names in the context
820/// of a declarator's nested name specifier.
821///
822void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
823  // C++0x [basic.lookup.unqual]p13:
824  //   A name used in the definition of a static data member of class
825  //   X (after the qualified-id of the static member) is looked up as
826  //   if the name was used in a member function of X.
827  // C++0x [basic.lookup.unqual]p14:
828  //   If a variable member of a namespace is defined outside of the
829  //   scope of its namespace then any name used in the definition of
830  //   the variable member (after the declarator-id) is looked up as
831  //   if the definition of the variable member occurred in its
832  //   namespace.
833  // Both of these imply that we should push a scope whose context
834  // is the semantic context of the declaration.  We can't use
835  // PushDeclContext here because that context is not necessarily
836  // lexically contained in the current context.  Fortunately,
837  // the containing scope should have the appropriate information.
838
839  assert(!S->getEntity() && "scope already has entity");
840
841#ifndef NDEBUG
842  Scope *Ancestor = S->getParent();
843  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
844  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
845#endif
846
847  CurContext = DC;
848  S->setEntity(DC);
849}
850
851void Sema::ExitDeclaratorContext(Scope *S) {
852  assert(S->getEntity() == CurContext && "Context imbalance!");
853
854  // Switch back to the lexical context.  The safety of this is
855  // enforced by an assert in EnterDeclaratorContext.
856  Scope *Ancestor = S->getParent();
857  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
858  CurContext = (DeclContext*) Ancestor->getEntity();
859
860  // We don't need to do anything with the scope, which is going to
861  // disappear.
862}
863
864
865void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
866  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
867  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
868    // We assume that the caller has already called
869    // ActOnReenterTemplateScope
870    FD = TFD->getTemplatedDecl();
871  }
872  if (!FD)
873    return;
874
875  PushDeclContext(S, FD);
876  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
877    ParmVarDecl *Param = FD->getParamDecl(P);
878    // If the parameter has an identifier, then add it to the scope
879    if (Param->getIdentifier()) {
880      S->AddDecl(Param);
881      IdResolver.AddDecl(Param);
882    }
883  }
884}
885
886
887/// \brief Determine whether we allow overloading of the function
888/// PrevDecl with another declaration.
889///
890/// This routine determines whether overloading is possible, not
891/// whether some new function is actually an overload. It will return
892/// true in C++ (where we can always provide overloads) or, as an
893/// extension, in C when the previous function is already an
894/// overloaded function declaration or has the "overloadable"
895/// attribute.
896static bool AllowOverloadingOfFunction(LookupResult &Previous,
897                                       ASTContext &Context) {
898  if (Context.getLangOpts().CPlusPlus)
899    return true;
900
901  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
902    return true;
903
904  return (Previous.getResultKind() == LookupResult::Found
905          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
906}
907
908/// Add this decl to the scope shadowed decl chains.
909void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
910  // Move up the scope chain until we find the nearest enclosing
911  // non-transparent context. The declaration will be introduced into this
912  // scope.
913  while (S->getEntity() &&
914         ((DeclContext *)S->getEntity())->isTransparentContext())
915    S = S->getParent();
916
917  // Add scoped declarations into their context, so that they can be
918  // found later. Declarations without a context won't be inserted
919  // into any context.
920  if (AddToContext)
921    CurContext->addDecl(D);
922
923  // Out-of-line definitions shouldn't be pushed into scope in C++.
924  // Out-of-line variable and function definitions shouldn't even in C.
925  if ((getLangOpts().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
926      D->isOutOfLine() &&
927      !D->getDeclContext()->getRedeclContext()->Equals(
928        D->getLexicalDeclContext()->getRedeclContext()))
929    return;
930
931  // Template instantiations should also not be pushed into scope.
932  if (isa<FunctionDecl>(D) &&
933      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
934    return;
935
936  // If this replaces anything in the current scope,
937  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
938                               IEnd = IdResolver.end();
939  for (; I != IEnd; ++I) {
940    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
941      S->RemoveDecl(*I);
942      IdResolver.RemoveDecl(*I);
943
944      // Should only need to replace one decl.
945      break;
946    }
947  }
948
949  S->AddDecl(D);
950
951  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
952    // Implicitly-generated labels may end up getting generated in an order that
953    // isn't strictly lexical, which breaks name lookup. Be careful to insert
954    // the label at the appropriate place in the identifier chain.
955    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
956      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
957      if (IDC == CurContext) {
958        if (!S->isDeclScope(*I))
959          continue;
960      } else if (IDC->Encloses(CurContext))
961        break;
962    }
963
964    IdResolver.InsertDeclAfter(I, D);
965  } else {
966    IdResolver.AddDecl(D);
967  }
968}
969
970void Sema::pushExternalDeclIntoScope(NamedDecl *D, DeclarationName Name) {
971  if (IdResolver.tryAddTopLevelDecl(D, Name) && TUScope)
972    TUScope->AddDecl(D);
973}
974
975bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
976                         bool ExplicitInstantiationOrSpecialization) {
977  return IdResolver.isDeclInScope(D, Ctx, Context, S,
978                                  ExplicitInstantiationOrSpecialization);
979}
980
981Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
982  DeclContext *TargetDC = DC->getPrimaryContext();
983  do {
984    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
985      if (ScopeDC->getPrimaryContext() == TargetDC)
986        return S;
987  } while ((S = S->getParent()));
988
989  return 0;
990}
991
992static bool isOutOfScopePreviousDeclaration(NamedDecl *,
993                                            DeclContext*,
994                                            ASTContext&);
995
996/// Filters out lookup results that don't fall within the given scope
997/// as determined by isDeclInScope.
998void Sema::FilterLookupForScope(LookupResult &R,
999                                DeclContext *Ctx, Scope *S,
1000                                bool ConsiderLinkage,
1001                                bool ExplicitInstantiationOrSpecialization) {
1002  LookupResult::Filter F = R.makeFilter();
1003  while (F.hasNext()) {
1004    NamedDecl *D = F.next();
1005
1006    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
1007      continue;
1008
1009    if (ConsiderLinkage &&
1010        isOutOfScopePreviousDeclaration(D, Ctx, Context))
1011      continue;
1012
1013    F.erase();
1014  }
1015
1016  F.done();
1017}
1018
1019static bool isUsingDecl(NamedDecl *D) {
1020  return isa<UsingShadowDecl>(D) ||
1021         isa<UnresolvedUsingTypenameDecl>(D) ||
1022         isa<UnresolvedUsingValueDecl>(D);
1023}
1024
1025/// Removes using shadow declarations from the lookup results.
1026static void RemoveUsingDecls(LookupResult &R) {
1027  LookupResult::Filter F = R.makeFilter();
1028  while (F.hasNext())
1029    if (isUsingDecl(F.next()))
1030      F.erase();
1031
1032  F.done();
1033}
1034
1035/// \brief Check for this common pattern:
1036/// @code
1037/// class S {
1038///   S(const S&); // DO NOT IMPLEMENT
1039///   void operator=(const S&); // DO NOT IMPLEMENT
1040/// };
1041/// @endcode
1042static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
1043  // FIXME: Should check for private access too but access is set after we get
1044  // the decl here.
1045  if (D->doesThisDeclarationHaveABody())
1046    return false;
1047
1048  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
1049    return CD->isCopyConstructor();
1050  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
1051    return Method->isCopyAssignmentOperator();
1052  return false;
1053}
1054
1055bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
1056  assert(D);
1057
1058  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
1059    return false;
1060
1061  // Ignore class templates.
1062  if (D->getDeclContext()->isDependentContext() ||
1063      D->getLexicalDeclContext()->isDependentContext())
1064    return false;
1065
1066  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1067    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1068      return false;
1069
1070    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
1071      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
1072        return false;
1073    } else {
1074      // 'static inline' functions are used in headers; don't warn.
1075      if (FD->getStorageClass() == SC_Static &&
1076          FD->isInlineSpecified())
1077        return false;
1078    }
1079
1080    if (FD->doesThisDeclarationHaveABody() &&
1081        Context.DeclMustBeEmitted(FD))
1082      return false;
1083  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1084    if (!VD->isFileVarDecl() ||
1085        VD->getType().isConstant(Context) ||
1086        Context.DeclMustBeEmitted(VD))
1087      return false;
1088
1089    if (VD->isStaticDataMember() &&
1090        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1091      return false;
1092
1093  } else {
1094    return false;
1095  }
1096
1097  // Only warn for unused decls internal to the translation unit.
1098  if (D->getLinkage() == ExternalLinkage)
1099    return false;
1100
1101  return true;
1102}
1103
1104void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1105  if (!D)
1106    return;
1107
1108  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1109    const FunctionDecl *First = FD->getFirstDeclaration();
1110    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1111      return; // First should already be in the vector.
1112  }
1113
1114  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1115    const VarDecl *First = VD->getFirstDeclaration();
1116    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1117      return; // First should already be in the vector.
1118  }
1119
1120   if (ShouldWarnIfUnusedFileScopedDecl(D))
1121     UnusedFileScopedDecls.push_back(D);
1122 }
1123
1124static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1125  if (D->isInvalidDecl())
1126    return false;
1127
1128  if (D->isReferenced() || D->isUsed() || D->hasAttr<UnusedAttr>())
1129    return false;
1130
1131  if (isa<LabelDecl>(D))
1132    return true;
1133
1134  // White-list anything that isn't a local variable.
1135  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1136      !D->getDeclContext()->isFunctionOrMethod())
1137    return false;
1138
1139  // Types of valid local variables should be complete, so this should succeed.
1140  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1141
1142    // White-list anything with an __attribute__((unused)) type.
1143    QualType Ty = VD->getType();
1144
1145    // Only look at the outermost level of typedef.
1146    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1147      if (TT->getDecl()->hasAttr<UnusedAttr>())
1148        return false;
1149    }
1150
1151    // If we failed to complete the type for some reason, or if the type is
1152    // dependent, don't diagnose the variable.
1153    if (Ty->isIncompleteType() || Ty->isDependentType())
1154      return false;
1155
1156    if (const TagType *TT = Ty->getAs<TagType>()) {
1157      const TagDecl *Tag = TT->getDecl();
1158      if (Tag->hasAttr<UnusedAttr>())
1159        return false;
1160
1161      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1162        if (!RD->hasTrivialDestructor())
1163          return false;
1164
1165        if (const Expr *Init = VD->getInit()) {
1166          const CXXConstructExpr *Construct =
1167            dyn_cast<CXXConstructExpr>(Init);
1168          if (Construct && !Construct->isElidable()) {
1169            CXXConstructorDecl *CD = Construct->getConstructor();
1170            if (!CD->isTrivial())
1171              return false;
1172          }
1173        }
1174      }
1175    }
1176
1177    // TODO: __attribute__((unused)) templates?
1178  }
1179
1180  return true;
1181}
1182
1183static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1184                                     FixItHint &Hint) {
1185  if (isa<LabelDecl>(D)) {
1186    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1187                tok::colon, Ctx.getSourceManager(), Ctx.getLangOpts(), true);
1188    if (AfterColon.isInvalid())
1189      return;
1190    Hint = FixItHint::CreateRemoval(CharSourceRange::
1191                                    getCharRange(D->getLocStart(), AfterColon));
1192  }
1193  return;
1194}
1195
1196/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1197/// unless they are marked attr(unused).
1198void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1199  FixItHint Hint;
1200  if (!ShouldDiagnoseUnusedDecl(D))
1201    return;
1202
1203  GenerateFixForUnusedDecl(D, Context, Hint);
1204
1205  unsigned DiagID;
1206  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1207    DiagID = diag::warn_unused_exception_param;
1208  else if (isa<LabelDecl>(D))
1209    DiagID = diag::warn_unused_label;
1210  else
1211    DiagID = diag::warn_unused_variable;
1212
1213  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1214}
1215
1216static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1217  // Verify that we have no forward references left.  If so, there was a goto
1218  // or address of a label taken, but no definition of it.  Label fwd
1219  // definitions are indicated with a null substmt.
1220  if (L->getStmt() == 0)
1221    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1222}
1223
1224void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1225  if (S->decl_empty()) return;
1226  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1227         "Scope shouldn't contain decls!");
1228
1229  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1230       I != E; ++I) {
1231    Decl *TmpD = (*I);
1232    assert(TmpD && "This decl didn't get pushed??");
1233
1234    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1235    NamedDecl *D = cast<NamedDecl>(TmpD);
1236
1237    if (!D->getDeclName()) continue;
1238
1239    // Diagnose unused variables in this scope.
1240    if (!S->hasErrorOccurred())
1241      DiagnoseUnusedDecl(D);
1242
1243    // If this was a forward reference to a label, verify it was defined.
1244    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1245      CheckPoppedLabel(LD, *this);
1246
1247    // Remove this name from our lexical scope.
1248    IdResolver.RemoveDecl(D);
1249  }
1250}
1251
1252void Sema::ActOnStartFunctionDeclarator() {
1253  ++InFunctionDeclarator;
1254}
1255
1256void Sema::ActOnEndFunctionDeclarator() {
1257  assert(InFunctionDeclarator);
1258  --InFunctionDeclarator;
1259}
1260
1261/// \brief Look for an Objective-C class in the translation unit.
1262///
1263/// \param Id The name of the Objective-C class we're looking for. If
1264/// typo-correction fixes this name, the Id will be updated
1265/// to the fixed name.
1266///
1267/// \param IdLoc The location of the name in the translation unit.
1268///
1269/// \param TypoCorrection If true, this routine will attempt typo correction
1270/// if there is no class with the given name.
1271///
1272/// \returns The declaration of the named Objective-C class, or NULL if the
1273/// class could not be found.
1274ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1275                                              SourceLocation IdLoc,
1276                                              bool DoTypoCorrection) {
1277  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1278  // creation from this context.
1279  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1280
1281  if (!IDecl && DoTypoCorrection) {
1282    // Perform typo correction at the given location, but only if we
1283    // find an Objective-C class name.
1284    DeclFilterCCC<ObjCInterfaceDecl> Validator;
1285    if (TypoCorrection C = CorrectTypo(DeclarationNameInfo(Id, IdLoc),
1286                                       LookupOrdinaryName, TUScope, NULL,
1287                                       Validator)) {
1288      IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>();
1289      Diag(IdLoc, diag::err_undef_interface_suggest)
1290        << Id << IDecl->getDeclName()
1291        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1292      Diag(IDecl->getLocation(), diag::note_previous_decl)
1293        << IDecl->getDeclName();
1294
1295      Id = IDecl->getIdentifier();
1296    }
1297  }
1298  ObjCInterfaceDecl *Def = dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1299  // This routine must always return a class definition, if any.
1300  if (Def && Def->getDefinition())
1301      Def = Def->getDefinition();
1302  return Def;
1303}
1304
1305/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1306/// from S, where a non-field would be declared. This routine copes
1307/// with the difference between C and C++ scoping rules in structs and
1308/// unions. For example, the following code is well-formed in C but
1309/// ill-formed in C++:
1310/// @code
1311/// struct S6 {
1312///   enum { BAR } e;
1313/// };
1314///
1315/// void test_S6() {
1316///   struct S6 a;
1317///   a.e = BAR;
1318/// }
1319/// @endcode
1320/// For the declaration of BAR, this routine will return a different
1321/// scope. The scope S will be the scope of the unnamed enumeration
1322/// within S6. In C++, this routine will return the scope associated
1323/// with S6, because the enumeration's scope is a transparent
1324/// context but structures can contain non-field names. In C, this
1325/// routine will return the translation unit scope, since the
1326/// enumeration's scope is a transparent context and structures cannot
1327/// contain non-field names.
1328Scope *Sema::getNonFieldDeclScope(Scope *S) {
1329  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1330         (S->getEntity() &&
1331          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1332         (S->isClassScope() && !getLangOpts().CPlusPlus))
1333    S = S->getParent();
1334  return S;
1335}
1336
1337/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1338/// file scope.  lazily create a decl for it. ForRedeclaration is true
1339/// if we're creating this built-in in anticipation of redeclaring the
1340/// built-in.
1341NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1342                                     Scope *S, bool ForRedeclaration,
1343                                     SourceLocation Loc) {
1344  Builtin::ID BID = (Builtin::ID)bid;
1345
1346  ASTContext::GetBuiltinTypeError Error;
1347  QualType R = Context.GetBuiltinType(BID, Error);
1348  switch (Error) {
1349  case ASTContext::GE_None:
1350    // Okay
1351    break;
1352
1353  case ASTContext::GE_Missing_stdio:
1354    if (ForRedeclaration)
1355      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1356        << Context.BuiltinInfo.GetName(BID);
1357    return 0;
1358
1359  case ASTContext::GE_Missing_setjmp:
1360    if (ForRedeclaration)
1361      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1362        << Context.BuiltinInfo.GetName(BID);
1363    return 0;
1364
1365  case ASTContext::GE_Missing_ucontext:
1366    if (ForRedeclaration)
1367      Diag(Loc, diag::warn_implicit_decl_requires_ucontext)
1368        << Context.BuiltinInfo.GetName(BID);
1369    return 0;
1370  }
1371
1372  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1373    Diag(Loc, diag::ext_implicit_lib_function_decl)
1374      << Context.BuiltinInfo.GetName(BID)
1375      << R;
1376    if (Context.BuiltinInfo.getHeaderName(BID) &&
1377        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1378          != DiagnosticsEngine::Ignored)
1379      Diag(Loc, diag::note_please_include_header)
1380        << Context.BuiltinInfo.getHeaderName(BID)
1381        << Context.BuiltinInfo.GetName(BID);
1382  }
1383
1384  FunctionDecl *New = FunctionDecl::Create(Context,
1385                                           Context.getTranslationUnitDecl(),
1386                                           Loc, Loc, II, R, /*TInfo=*/0,
1387                                           SC_Extern,
1388                                           SC_None, false,
1389                                           /*hasPrototype=*/true);
1390  New->setImplicit();
1391
1392  // Create Decl objects for each parameter, adding them to the
1393  // FunctionDecl.
1394  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1395    SmallVector<ParmVarDecl*, 16> Params;
1396    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1397      ParmVarDecl *parm =
1398        ParmVarDecl::Create(Context, New, SourceLocation(),
1399                            SourceLocation(), 0,
1400                            FT->getArgType(i), /*TInfo=*/0,
1401                            SC_None, SC_None, 0);
1402      parm->setScopeInfo(0, i);
1403      Params.push_back(parm);
1404    }
1405    New->setParams(Params);
1406  }
1407
1408  AddKnownFunctionAttributes(New);
1409
1410  // TUScope is the translation-unit scope to insert this function into.
1411  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1412  // relate Scopes to DeclContexts, and probably eliminate CurContext
1413  // entirely, but we're not there yet.
1414  DeclContext *SavedContext = CurContext;
1415  CurContext = Context.getTranslationUnitDecl();
1416  PushOnScopeChains(New, TUScope);
1417  CurContext = SavedContext;
1418  return New;
1419}
1420
1421bool Sema::isIncompatibleTypedef(TypeDecl *Old, TypedefNameDecl *New) {
1422  QualType OldType;
1423  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1424    OldType = OldTypedef->getUnderlyingType();
1425  else
1426    OldType = Context.getTypeDeclType(Old);
1427  QualType NewType = New->getUnderlyingType();
1428
1429  if (NewType->isVariablyModifiedType()) {
1430    // Must not redefine a typedef with a variably-modified type.
1431    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1432    Diag(New->getLocation(), diag::err_redefinition_variably_modified_typedef)
1433      << Kind << NewType;
1434    if (Old->getLocation().isValid())
1435      Diag(Old->getLocation(), diag::note_previous_definition);
1436    New->setInvalidDecl();
1437    return true;
1438  }
1439
1440  if (OldType != NewType &&
1441      !OldType->isDependentType() &&
1442      !NewType->isDependentType() &&
1443      !Context.hasSameType(OldType, NewType)) {
1444    int Kind = isa<TypeAliasDecl>(Old) ? 1 : 0;
1445    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1446      << Kind << NewType << OldType;
1447    if (Old->getLocation().isValid())
1448      Diag(Old->getLocation(), diag::note_previous_definition);
1449    New->setInvalidDecl();
1450    return true;
1451  }
1452  return false;
1453}
1454
1455/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1456/// same name and scope as a previous declaration 'Old'.  Figure out
1457/// how to resolve this situation, merging decls or emitting
1458/// diagnostics as appropriate. If there was an error, set New to be invalid.
1459///
1460void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1461  // If the new decl is known invalid already, don't bother doing any
1462  // merging checks.
1463  if (New->isInvalidDecl()) return;
1464
1465  // Allow multiple definitions for ObjC built-in typedefs.
1466  // FIXME: Verify the underlying types are equivalent!
1467  if (getLangOpts().ObjC1) {
1468    const IdentifierInfo *TypeID = New->getIdentifier();
1469    switch (TypeID->getLength()) {
1470    default: break;
1471    case 2:
1472      if (!TypeID->isStr("id"))
1473        break;
1474      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1475      // Install the built-in type for 'id', ignoring the current definition.
1476      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1477      return;
1478    case 5:
1479      if (!TypeID->isStr("Class"))
1480        break;
1481      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1482      // Install the built-in type for 'Class', ignoring the current definition.
1483      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1484      return;
1485    case 3:
1486      if (!TypeID->isStr("SEL"))
1487        break;
1488      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1489      // Install the built-in type for 'SEL', ignoring the current definition.
1490      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1491      return;
1492    }
1493    // Fall through - the typedef name was not a builtin type.
1494  }
1495
1496  // Verify the old decl was also a type.
1497  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1498  if (!Old) {
1499    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1500      << New->getDeclName();
1501
1502    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1503    if (OldD->getLocation().isValid())
1504      Diag(OldD->getLocation(), diag::note_previous_definition);
1505
1506    return New->setInvalidDecl();
1507  }
1508
1509  // If the old declaration is invalid, just give up here.
1510  if (Old->isInvalidDecl())
1511    return New->setInvalidDecl();
1512
1513  // If the typedef types are not identical, reject them in all languages and
1514  // with any extensions enabled.
1515  if (isIncompatibleTypedef(Old, New))
1516    return;
1517
1518  // The types match.  Link up the redeclaration chain if the old
1519  // declaration was a typedef.
1520  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1521    New->setPreviousDeclaration(Typedef);
1522
1523  if (getLangOpts().MicrosoftExt)
1524    return;
1525
1526  if (getLangOpts().CPlusPlus) {
1527    // C++ [dcl.typedef]p2:
1528    //   In a given non-class scope, a typedef specifier can be used to
1529    //   redefine the name of any type declared in that scope to refer
1530    //   to the type to which it already refers.
1531    if (!isa<CXXRecordDecl>(CurContext))
1532      return;
1533
1534    // C++0x [dcl.typedef]p4:
1535    //   In a given class scope, a typedef specifier can be used to redefine
1536    //   any class-name declared in that scope that is not also a typedef-name
1537    //   to refer to the type to which it already refers.
1538    //
1539    // This wording came in via DR424, which was a correction to the
1540    // wording in DR56, which accidentally banned code like:
1541    //
1542    //   struct S {
1543    //     typedef struct A { } A;
1544    //   };
1545    //
1546    // in the C++03 standard. We implement the C++0x semantics, which
1547    // allow the above but disallow
1548    //
1549    //   struct S {
1550    //     typedef int I;
1551    //     typedef int I;
1552    //   };
1553    //
1554    // since that was the intent of DR56.
1555    if (!isa<TypedefNameDecl>(Old))
1556      return;
1557
1558    Diag(New->getLocation(), diag::err_redefinition)
1559      << New->getDeclName();
1560    Diag(Old->getLocation(), diag::note_previous_definition);
1561    return New->setInvalidDecl();
1562  }
1563
1564  // Modules always permit redefinition of typedefs, as does C11.
1565  if (getLangOpts().Modules || getLangOpts().C11)
1566    return;
1567
1568  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1569  // is normally mapped to an error, but can be controlled with
1570  // -Wtypedef-redefinition.  If either the original or the redefinition is
1571  // in a system header, don't emit this for compatibility with GCC.
1572  if (getDiagnostics().getSuppressSystemWarnings() &&
1573      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1574       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1575    return;
1576
1577  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1578    << New->getDeclName();
1579  Diag(Old->getLocation(), diag::note_previous_definition);
1580  return;
1581}
1582
1583/// DeclhasAttr - returns true if decl Declaration already has the target
1584/// attribute.
1585static bool
1586DeclHasAttr(const Decl *D, const Attr *A) {
1587  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1588  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1589  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1590    if ((*i)->getKind() == A->getKind()) {
1591      if (Ann) {
1592        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1593          return true;
1594        continue;
1595      }
1596      // FIXME: Don't hardcode this check
1597      if (OA && isa<OwnershipAttr>(*i))
1598        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1599      return true;
1600    }
1601
1602  return false;
1603}
1604
1605/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1606void Sema::mergeDeclAttributes(Decl *New, Decl *Old,
1607                               bool MergeDeprecation) {
1608  if (!Old->hasAttrs())
1609    return;
1610
1611  bool foundAny = New->hasAttrs();
1612
1613  // Ensure that any moving of objects within the allocated map is done before
1614  // we process them.
1615  if (!foundAny) New->setAttrs(AttrVec());
1616
1617  for (specific_attr_iterator<InheritableAttr>
1618         i = Old->specific_attr_begin<InheritableAttr>(),
1619         e = Old->specific_attr_end<InheritableAttr>();
1620       i != e; ++i) {
1621    // Ignore deprecated/unavailable/availability attributes if requested.
1622    if (!MergeDeprecation &&
1623        (isa<DeprecatedAttr>(*i) ||
1624         isa<UnavailableAttr>(*i) ||
1625         isa<AvailabilityAttr>(*i)))
1626      continue;
1627
1628    if (!DeclHasAttr(New, *i)) {
1629      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(Context));
1630      newAttr->setInherited(true);
1631      New->addAttr(newAttr);
1632      foundAny = true;
1633    }
1634  }
1635
1636  if (!foundAny) New->dropAttrs();
1637}
1638
1639/// mergeParamDeclAttributes - Copy attributes from the old parameter
1640/// to the new one.
1641static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1642                                     const ParmVarDecl *oldDecl,
1643                                     ASTContext &C) {
1644  if (!oldDecl->hasAttrs())
1645    return;
1646
1647  bool foundAny = newDecl->hasAttrs();
1648
1649  // Ensure that any moving of objects within the allocated map is
1650  // done before we process them.
1651  if (!foundAny) newDecl->setAttrs(AttrVec());
1652
1653  for (specific_attr_iterator<InheritableParamAttr>
1654       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1655       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1656    if (!DeclHasAttr(newDecl, *i)) {
1657      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1658      newAttr->setInherited(true);
1659      newDecl->addAttr(newAttr);
1660      foundAny = true;
1661    }
1662  }
1663
1664  if (!foundAny) newDecl->dropAttrs();
1665}
1666
1667namespace {
1668
1669/// Used in MergeFunctionDecl to keep track of function parameters in
1670/// C.
1671struct GNUCompatibleParamWarning {
1672  ParmVarDecl *OldParm;
1673  ParmVarDecl *NewParm;
1674  QualType PromotedType;
1675};
1676
1677}
1678
1679/// getSpecialMember - get the special member enum for a method.
1680Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1681  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1682    if (Ctor->isDefaultConstructor())
1683      return Sema::CXXDefaultConstructor;
1684
1685    if (Ctor->isCopyConstructor())
1686      return Sema::CXXCopyConstructor;
1687
1688    if (Ctor->isMoveConstructor())
1689      return Sema::CXXMoveConstructor;
1690  } else if (isa<CXXDestructorDecl>(MD)) {
1691    return Sema::CXXDestructor;
1692  } else if (MD->isCopyAssignmentOperator()) {
1693    return Sema::CXXCopyAssignment;
1694  } else if (MD->isMoveAssignmentOperator()) {
1695    return Sema::CXXMoveAssignment;
1696  }
1697
1698  return Sema::CXXInvalid;
1699}
1700
1701/// canRedefineFunction - checks if a function can be redefined. Currently,
1702/// only extern inline functions can be redefined, and even then only in
1703/// GNU89 mode.
1704static bool canRedefineFunction(const FunctionDecl *FD,
1705                                const LangOptions& LangOpts) {
1706  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1707          !LangOpts.CPlusPlus &&
1708          FD->isInlineSpecified() &&
1709          FD->getStorageClass() == SC_Extern);
1710}
1711
1712/// MergeFunctionDecl - We just parsed a function 'New' from
1713/// declarator D which has the same name and scope as a previous
1714/// declaration 'Old'.  Figure out how to resolve this situation,
1715/// merging decls or emitting diagnostics as appropriate.
1716///
1717/// In C++, New and Old must be declarations that are not
1718/// overloaded. Use IsOverload to determine whether New and Old are
1719/// overloaded, and to select the Old declaration that New should be
1720/// merged with.
1721///
1722/// Returns true if there was an error, false otherwise.
1723bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, Scope *S) {
1724  // Verify the old decl was also a function.
1725  FunctionDecl *Old = 0;
1726  if (FunctionTemplateDecl *OldFunctionTemplate
1727        = dyn_cast<FunctionTemplateDecl>(OldD))
1728    Old = OldFunctionTemplate->getTemplatedDecl();
1729  else
1730    Old = dyn_cast<FunctionDecl>(OldD);
1731  if (!Old) {
1732    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1733      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1734      Diag(Shadow->getTargetDecl()->getLocation(),
1735           diag::note_using_decl_target);
1736      Diag(Shadow->getUsingDecl()->getLocation(),
1737           diag::note_using_decl) << 0;
1738      return true;
1739    }
1740
1741    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1742      << New->getDeclName();
1743    Diag(OldD->getLocation(), diag::note_previous_definition);
1744    return true;
1745  }
1746
1747  // Determine whether the previous declaration was a definition,
1748  // implicit declaration, or a declaration.
1749  diag::kind PrevDiag;
1750  if (Old->isThisDeclarationADefinition())
1751    PrevDiag = diag::note_previous_definition;
1752  else if (Old->isImplicit())
1753    PrevDiag = diag::note_previous_implicit_declaration;
1754  else
1755    PrevDiag = diag::note_previous_declaration;
1756
1757  QualType OldQType = Context.getCanonicalType(Old->getType());
1758  QualType NewQType = Context.getCanonicalType(New->getType());
1759
1760  // Don't complain about this if we're in GNU89 mode and the old function
1761  // is an extern inline function.
1762  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1763      New->getStorageClass() == SC_Static &&
1764      Old->getStorageClass() != SC_Static &&
1765      !canRedefineFunction(Old, getLangOpts())) {
1766    if (getLangOpts().MicrosoftExt) {
1767      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1768      Diag(Old->getLocation(), PrevDiag);
1769    } else {
1770      Diag(New->getLocation(), diag::err_static_non_static) << New;
1771      Diag(Old->getLocation(), PrevDiag);
1772      return true;
1773    }
1774  }
1775
1776  // If a function is first declared with a calling convention, but is
1777  // later declared or defined without one, the second decl assumes the
1778  // calling convention of the first.
1779  //
1780  // For the new decl, we have to look at the NON-canonical type to tell the
1781  // difference between a function that really doesn't have a calling
1782  // convention and one that is declared cdecl. That's because in
1783  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1784  // because it is the default calling convention.
1785  //
1786  // Note also that we DO NOT return at this point, because we still have
1787  // other tests to run.
1788  const FunctionType *OldType = cast<FunctionType>(OldQType);
1789  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1790  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1791  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1792  bool RequiresAdjustment = false;
1793  if (OldTypeInfo.getCC() != CC_Default &&
1794      NewTypeInfo.getCC() == CC_Default) {
1795    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1796    RequiresAdjustment = true;
1797  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1798                                     NewTypeInfo.getCC())) {
1799    // Calling conventions really aren't compatible, so complain.
1800    Diag(New->getLocation(), diag::err_cconv_change)
1801      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1802      << (OldTypeInfo.getCC() == CC_Default)
1803      << (OldTypeInfo.getCC() == CC_Default ? "" :
1804          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1805    Diag(Old->getLocation(), diag::note_previous_declaration);
1806    return true;
1807  }
1808
1809  // FIXME: diagnose the other way around?
1810  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1811    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1812    RequiresAdjustment = true;
1813  }
1814
1815  // Merge regparm attribute.
1816  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1817      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1818    if (NewTypeInfo.getHasRegParm()) {
1819      Diag(New->getLocation(), diag::err_regparm_mismatch)
1820        << NewType->getRegParmType()
1821        << OldType->getRegParmType();
1822      Diag(Old->getLocation(), diag::note_previous_declaration);
1823      return true;
1824    }
1825
1826    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1827    RequiresAdjustment = true;
1828  }
1829
1830  // Merge ns_returns_retained attribute.
1831  if (OldTypeInfo.getProducesResult() != NewTypeInfo.getProducesResult()) {
1832    if (NewTypeInfo.getProducesResult()) {
1833      Diag(New->getLocation(), diag::err_returns_retained_mismatch);
1834      Diag(Old->getLocation(), diag::note_previous_declaration);
1835      return true;
1836    }
1837
1838    NewTypeInfo = NewTypeInfo.withProducesResult(true);
1839    RequiresAdjustment = true;
1840  }
1841
1842  if (RequiresAdjustment) {
1843    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1844    New->setType(QualType(NewType, 0));
1845    NewQType = Context.getCanonicalType(New->getType());
1846  }
1847
1848  if (getLangOpts().CPlusPlus) {
1849    // (C++98 13.1p2):
1850    //   Certain function declarations cannot be overloaded:
1851    //     -- Function declarations that differ only in the return type
1852    //        cannot be overloaded.
1853    QualType OldReturnType = OldType->getResultType();
1854    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1855    QualType ResQT;
1856    if (OldReturnType != NewReturnType) {
1857      if (NewReturnType->isObjCObjectPointerType()
1858          && OldReturnType->isObjCObjectPointerType())
1859        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1860      if (ResQT.isNull()) {
1861        if (New->isCXXClassMember() && New->isOutOfLine())
1862          Diag(New->getLocation(),
1863               diag::err_member_def_does_not_match_ret_type) << New;
1864        else
1865          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1866        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1867        return true;
1868      }
1869      else
1870        NewQType = ResQT;
1871    }
1872
1873    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1874    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1875    if (OldMethod && NewMethod) {
1876      // Preserve triviality.
1877      NewMethod->setTrivial(OldMethod->isTrivial());
1878
1879      // MSVC allows explicit template specialization at class scope:
1880      // 2 CXMethodDecls referring to the same function will be injected.
1881      // We don't want a redeclartion error.
1882      bool IsClassScopeExplicitSpecialization =
1883                              OldMethod->isFunctionTemplateSpecialization() &&
1884                              NewMethod->isFunctionTemplateSpecialization();
1885      bool isFriend = NewMethod->getFriendObjectKind();
1886
1887      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1888          !IsClassScopeExplicitSpecialization) {
1889        //    -- Member function declarations with the same name and the
1890        //       same parameter types cannot be overloaded if any of them
1891        //       is a static member function declaration.
1892        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1893          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1894          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1895          return true;
1896        }
1897
1898        // C++ [class.mem]p1:
1899        //   [...] A member shall not be declared twice in the
1900        //   member-specification, except that a nested class or member
1901        //   class template can be declared and then later defined.
1902        unsigned NewDiag;
1903        if (isa<CXXConstructorDecl>(OldMethod))
1904          NewDiag = diag::err_constructor_redeclared;
1905        else if (isa<CXXDestructorDecl>(NewMethod))
1906          NewDiag = diag::err_destructor_redeclared;
1907        else if (isa<CXXConversionDecl>(NewMethod))
1908          NewDiag = diag::err_conv_function_redeclared;
1909        else
1910          NewDiag = diag::err_member_redeclared;
1911
1912        Diag(New->getLocation(), NewDiag);
1913        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1914
1915      // Complain if this is an explicit declaration of a special
1916      // member that was initially declared implicitly.
1917      //
1918      // As an exception, it's okay to befriend such methods in order
1919      // to permit the implicit constructor/destructor/operator calls.
1920      } else if (OldMethod->isImplicit()) {
1921        if (isFriend) {
1922          NewMethod->setImplicit();
1923        } else {
1924          Diag(NewMethod->getLocation(),
1925               diag::err_definition_of_implicitly_declared_member)
1926            << New << getSpecialMember(OldMethod);
1927          return true;
1928        }
1929      } else if (OldMethod->isExplicitlyDefaulted()) {
1930        Diag(NewMethod->getLocation(),
1931             diag::err_definition_of_explicitly_defaulted_member)
1932          << getSpecialMember(OldMethod);
1933        return true;
1934      }
1935    }
1936
1937    // (C++98 8.3.5p3):
1938    //   All declarations for a function shall agree exactly in both the
1939    //   return type and the parameter-type-list.
1940    // We also want to respect all the extended bits except noreturn.
1941
1942    // noreturn should now match unless the old type info didn't have it.
1943    QualType OldQTypeForComparison = OldQType;
1944    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1945      assert(OldQType == QualType(OldType, 0));
1946      const FunctionType *OldTypeForComparison
1947        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1948      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1949      assert(OldQTypeForComparison.isCanonical());
1950    }
1951
1952    if (OldQTypeForComparison == NewQType)
1953      return MergeCompatibleFunctionDecls(New, Old, S);
1954
1955    // Fall through for conflicting redeclarations and redefinitions.
1956  }
1957
1958  // C: Function types need to be compatible, not identical. This handles
1959  // duplicate function decls like "void f(int); void f(enum X);" properly.
1960  if (!getLangOpts().CPlusPlus &&
1961      Context.typesAreCompatible(OldQType, NewQType)) {
1962    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1963    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1964    const FunctionProtoType *OldProto = 0;
1965    if (isa<FunctionNoProtoType>(NewFuncType) &&
1966        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1967      // The old declaration provided a function prototype, but the
1968      // new declaration does not. Merge in the prototype.
1969      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1970      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1971                                                 OldProto->arg_type_end());
1972      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1973                                         ParamTypes.data(), ParamTypes.size(),
1974                                         OldProto->getExtProtoInfo());
1975      New->setType(NewQType);
1976      New->setHasInheritedPrototype();
1977
1978      // Synthesize a parameter for each argument type.
1979      SmallVector<ParmVarDecl*, 16> Params;
1980      for (FunctionProtoType::arg_type_iterator
1981             ParamType = OldProto->arg_type_begin(),
1982             ParamEnd = OldProto->arg_type_end();
1983           ParamType != ParamEnd; ++ParamType) {
1984        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1985                                                 SourceLocation(),
1986                                                 SourceLocation(), 0,
1987                                                 *ParamType, /*TInfo=*/0,
1988                                                 SC_None, SC_None,
1989                                                 0);
1990        Param->setScopeInfo(0, Params.size());
1991        Param->setImplicit();
1992        Params.push_back(Param);
1993      }
1994
1995      New->setParams(Params);
1996    }
1997
1998    return MergeCompatibleFunctionDecls(New, Old, S);
1999  }
2000
2001  // GNU C permits a K&R definition to follow a prototype declaration
2002  // if the declared types of the parameters in the K&R definition
2003  // match the types in the prototype declaration, even when the
2004  // promoted types of the parameters from the K&R definition differ
2005  // from the types in the prototype. GCC then keeps the types from
2006  // the prototype.
2007  //
2008  // If a variadic prototype is followed by a non-variadic K&R definition,
2009  // the K&R definition becomes variadic.  This is sort of an edge case, but
2010  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
2011  // C99 6.9.1p8.
2012  if (!getLangOpts().CPlusPlus &&
2013      Old->hasPrototype() && !New->hasPrototype() &&
2014      New->getType()->getAs<FunctionProtoType>() &&
2015      Old->getNumParams() == New->getNumParams()) {
2016    SmallVector<QualType, 16> ArgTypes;
2017    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
2018    const FunctionProtoType *OldProto
2019      = Old->getType()->getAs<FunctionProtoType>();
2020    const FunctionProtoType *NewProto
2021      = New->getType()->getAs<FunctionProtoType>();
2022
2023    // Determine whether this is the GNU C extension.
2024    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
2025                                               NewProto->getResultType());
2026    bool LooseCompatible = !MergedReturn.isNull();
2027    for (unsigned Idx = 0, End = Old->getNumParams();
2028         LooseCompatible && Idx != End; ++Idx) {
2029      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
2030      ParmVarDecl *NewParm = New->getParamDecl(Idx);
2031      if (Context.typesAreCompatible(OldParm->getType(),
2032                                     NewProto->getArgType(Idx))) {
2033        ArgTypes.push_back(NewParm->getType());
2034      } else if (Context.typesAreCompatible(OldParm->getType(),
2035                                            NewParm->getType(),
2036                                            /*CompareUnqualified=*/true)) {
2037        GNUCompatibleParamWarning Warn
2038          = { OldParm, NewParm, NewProto->getArgType(Idx) };
2039        Warnings.push_back(Warn);
2040        ArgTypes.push_back(NewParm->getType());
2041      } else
2042        LooseCompatible = false;
2043    }
2044
2045    if (LooseCompatible) {
2046      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
2047        Diag(Warnings[Warn].NewParm->getLocation(),
2048             diag::ext_param_promoted_not_compatible_with_prototype)
2049          << Warnings[Warn].PromotedType
2050          << Warnings[Warn].OldParm->getType();
2051        if (Warnings[Warn].OldParm->getLocation().isValid())
2052          Diag(Warnings[Warn].OldParm->getLocation(),
2053               diag::note_previous_declaration);
2054      }
2055
2056      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
2057                                           ArgTypes.size(),
2058                                           OldProto->getExtProtoInfo()));
2059      return MergeCompatibleFunctionDecls(New, Old, S);
2060    }
2061
2062    // Fall through to diagnose conflicting types.
2063  }
2064
2065  // A function that has already been declared has been redeclared or defined
2066  // with a different type- show appropriate diagnostic
2067  if (unsigned BuiltinID = Old->getBuiltinID()) {
2068    // The user has declared a builtin function with an incompatible
2069    // signature.
2070    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2071      // The function the user is redeclaring is a library-defined
2072      // function like 'malloc' or 'printf'. Warn about the
2073      // redeclaration, then pretend that we don't know about this
2074      // library built-in.
2075      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
2076      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
2077        << Old << Old->getType();
2078      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
2079      Old->setInvalidDecl();
2080      return false;
2081    }
2082
2083    PrevDiag = diag::note_previous_builtin_declaration;
2084  }
2085
2086  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
2087  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
2088  return true;
2089}
2090
2091/// \brief Completes the merge of two function declarations that are
2092/// known to be compatible.
2093///
2094/// This routine handles the merging of attributes and other
2095/// properties of function declarations form the old declaration to
2096/// the new declaration, once we know that New is in fact a
2097/// redeclaration of Old.
2098///
2099/// \returns false
2100bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old,
2101                                        Scope *S) {
2102  // Merge the attributes
2103  mergeDeclAttributes(New, Old);
2104
2105  // Merge the storage class.
2106  if (Old->getStorageClass() != SC_Extern &&
2107      Old->getStorageClass() != SC_None)
2108    New->setStorageClass(Old->getStorageClass());
2109
2110  // Merge "pure" flag.
2111  if (Old->isPure())
2112    New->setPure();
2113
2114  // Merge attributes from the parameters.  These can mismatch with K&R
2115  // declarations.
2116  if (New->getNumParams() == Old->getNumParams())
2117    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
2118      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
2119                               Context);
2120
2121  if (getLangOpts().CPlusPlus)
2122    return MergeCXXFunctionDecl(New, Old, S);
2123
2124  return false;
2125}
2126
2127
2128void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2129                                ObjCMethodDecl *oldMethod) {
2130  // We don't want to merge unavailable and deprecated attributes
2131  // except from interface to implementation.
2132  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2133
2134  // Merge the attributes.
2135  mergeDeclAttributes(newMethod, oldMethod, mergeDeprecation);
2136
2137  // Merge attributes from the parameters.
2138  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2139  for (ObjCMethodDecl::param_iterator
2140         ni = newMethod->param_begin(), ne = newMethod->param_end();
2141       ni != ne; ++ni, ++oi)
2142    mergeParamDeclAttributes(*ni, *oi, Context);
2143
2144  CheckObjCMethodOverride(newMethod, oldMethod, true);
2145}
2146
2147/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2148/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2149/// emitting diagnostics as appropriate.
2150///
2151/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2152/// to here in AddInitializerToDecl. We can't check them before the initializer
2153/// is attached.
2154void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2155  if (New->isInvalidDecl() || Old->isInvalidDecl())
2156    return;
2157
2158  QualType MergedT;
2159  if (getLangOpts().CPlusPlus) {
2160    AutoType *AT = New->getType()->getContainedAutoType();
2161    if (AT && !AT->isDeduced()) {
2162      // We don't know what the new type is until the initializer is attached.
2163      return;
2164    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2165      // These could still be something that needs exception specs checked.
2166      return MergeVarDeclExceptionSpecs(New, Old);
2167    }
2168    // C++ [basic.link]p10:
2169    //   [...] the types specified by all declarations referring to a given
2170    //   object or function shall be identical, except that declarations for an
2171    //   array object can specify array types that differ by the presence or
2172    //   absence of a major array bound (8.3.4).
2173    else if (Old->getType()->isIncompleteArrayType() &&
2174             New->getType()->isArrayType()) {
2175      CanQual<ArrayType> OldArray
2176        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2177      CanQual<ArrayType> NewArray
2178        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2179      if (OldArray->getElementType() == NewArray->getElementType())
2180        MergedT = New->getType();
2181    } else if (Old->getType()->isArrayType() &&
2182             New->getType()->isIncompleteArrayType()) {
2183      CanQual<ArrayType> OldArray
2184        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2185      CanQual<ArrayType> NewArray
2186        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2187      if (OldArray->getElementType() == NewArray->getElementType())
2188        MergedT = Old->getType();
2189    } else if (New->getType()->isObjCObjectPointerType()
2190               && Old->getType()->isObjCObjectPointerType()) {
2191        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2192                                                        Old->getType());
2193    }
2194  } else {
2195    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2196  }
2197  if (MergedT.isNull()) {
2198    Diag(New->getLocation(), diag::err_redefinition_different_type)
2199      << New->getDeclName();
2200    Diag(Old->getLocation(), diag::note_previous_definition);
2201    return New->setInvalidDecl();
2202  }
2203  New->setType(MergedT);
2204}
2205
2206/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2207/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2208/// situation, merging decls or emitting diagnostics as appropriate.
2209///
2210/// Tentative definition rules (C99 6.9.2p2) are checked by
2211/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2212/// definitions here, since the initializer hasn't been attached.
2213///
2214void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2215  // If the new decl is already invalid, don't do any other checking.
2216  if (New->isInvalidDecl())
2217    return;
2218
2219  // Verify the old decl was also a variable.
2220  VarDecl *Old = 0;
2221  if (!Previous.isSingleResult() ||
2222      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2223    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2224      << New->getDeclName();
2225    Diag(Previous.getRepresentativeDecl()->getLocation(),
2226         diag::note_previous_definition);
2227    return New->setInvalidDecl();
2228  }
2229
2230  // C++ [class.mem]p1:
2231  //   A member shall not be declared twice in the member-specification [...]
2232  //
2233  // Here, we need only consider static data members.
2234  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2235    Diag(New->getLocation(), diag::err_duplicate_member)
2236      << New->getIdentifier();
2237    Diag(Old->getLocation(), diag::note_previous_declaration);
2238    New->setInvalidDecl();
2239  }
2240
2241  mergeDeclAttributes(New, Old);
2242  // Warn if an already-declared variable is made a weak_import in a subsequent
2243  // declaration
2244  if (New->getAttr<WeakImportAttr>() &&
2245      Old->getStorageClass() == SC_None &&
2246      !Old->getAttr<WeakImportAttr>()) {
2247    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2248    Diag(Old->getLocation(), diag::note_previous_definition);
2249    // Remove weak_import attribute on new declaration.
2250    New->dropAttr<WeakImportAttr>();
2251  }
2252
2253  // Merge the types.
2254  MergeVarDeclTypes(New, Old);
2255  if (New->isInvalidDecl())
2256    return;
2257
2258  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2259  if (New->getStorageClass() == SC_Static &&
2260      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2261    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2262    Diag(Old->getLocation(), diag::note_previous_definition);
2263    return New->setInvalidDecl();
2264  }
2265  // C99 6.2.2p4:
2266  //   For an identifier declared with the storage-class specifier
2267  //   extern in a scope in which a prior declaration of that
2268  //   identifier is visible,23) if the prior declaration specifies
2269  //   internal or external linkage, the linkage of the identifier at
2270  //   the later declaration is the same as the linkage specified at
2271  //   the prior declaration. If no prior declaration is visible, or
2272  //   if the prior declaration specifies no linkage, then the
2273  //   identifier has external linkage.
2274  if (New->hasExternalStorage() && Old->hasLinkage())
2275    /* Okay */;
2276  else if (New->getStorageClass() != SC_Static &&
2277           Old->getStorageClass() == SC_Static) {
2278    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2279    Diag(Old->getLocation(), diag::note_previous_definition);
2280    return New->setInvalidDecl();
2281  }
2282
2283  // Check if extern is followed by non-extern and vice-versa.
2284  if (New->hasExternalStorage() &&
2285      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2286    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2287    Diag(Old->getLocation(), diag::note_previous_definition);
2288    return New->setInvalidDecl();
2289  }
2290  if (Old->hasExternalStorage() &&
2291      !New->hasLinkage() && New->isLocalVarDecl()) {
2292    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2293    Diag(Old->getLocation(), diag::note_previous_definition);
2294    return New->setInvalidDecl();
2295  }
2296
2297  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2298
2299  // FIXME: The test for external storage here seems wrong? We still
2300  // need to check for mismatches.
2301  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2302      // Don't complain about out-of-line definitions of static members.
2303      !(Old->getLexicalDeclContext()->isRecord() &&
2304        !New->getLexicalDeclContext()->isRecord())) {
2305    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2306    Diag(Old->getLocation(), diag::note_previous_definition);
2307    return New->setInvalidDecl();
2308  }
2309
2310  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2311    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2312    Diag(Old->getLocation(), diag::note_previous_definition);
2313  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2314    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2315    Diag(Old->getLocation(), diag::note_previous_definition);
2316  }
2317
2318  // C++ doesn't have tentative definitions, so go right ahead and check here.
2319  const VarDecl *Def;
2320  if (getLangOpts().CPlusPlus &&
2321      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2322      (Def = Old->getDefinition())) {
2323    Diag(New->getLocation(), diag::err_redefinition)
2324      << New->getDeclName();
2325    Diag(Def->getLocation(), diag::note_previous_definition);
2326    New->setInvalidDecl();
2327    return;
2328  }
2329  // c99 6.2.2 P4.
2330  // For an identifier declared with the storage-class specifier extern in a
2331  // scope in which a prior declaration of that identifier is visible, if
2332  // the prior declaration specifies internal or external linkage, the linkage
2333  // of the identifier at the later declaration is the same as the linkage
2334  // specified at the prior declaration.
2335  // FIXME. revisit this code.
2336  if (New->hasExternalStorage() &&
2337      Old->getLinkage() == InternalLinkage &&
2338      New->getDeclContext() == Old->getDeclContext())
2339    New->setStorageClass(Old->getStorageClass());
2340
2341  // Keep a chain of previous declarations.
2342  New->setPreviousDeclaration(Old);
2343
2344  // Inherit access appropriately.
2345  New->setAccess(Old->getAccess());
2346}
2347
2348/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2349/// no declarator (e.g. "struct foo;") is parsed.
2350Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2351                                       DeclSpec &DS) {
2352  return ParsedFreeStandingDeclSpec(S, AS, DS,
2353                                    MultiTemplateParamsArg(*this, 0, 0));
2354}
2355
2356/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2357/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2358/// parameters to cope with template friend declarations.
2359Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2360                                       DeclSpec &DS,
2361                                       MultiTemplateParamsArg TemplateParams) {
2362  Decl *TagD = 0;
2363  TagDecl *Tag = 0;
2364  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2365      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2366      DS.getTypeSpecType() == DeclSpec::TST_union ||
2367      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2368    TagD = DS.getRepAsDecl();
2369
2370    if (!TagD) // We probably had an error
2371      return 0;
2372
2373    // Note that the above type specs guarantee that the
2374    // type rep is a Decl, whereas in many of the others
2375    // it's a Type.
2376    if (isa<TagDecl>(TagD))
2377      Tag = cast<TagDecl>(TagD);
2378    else if (ClassTemplateDecl *CTD = dyn_cast<ClassTemplateDecl>(TagD))
2379      Tag = CTD->getTemplatedDecl();
2380  }
2381
2382  if (Tag) {
2383    Tag->setFreeStanding();
2384    if (Tag->isInvalidDecl())
2385      return Tag;
2386  }
2387
2388  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2389    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2390    // or incomplete types shall not be restrict-qualified."
2391    if (TypeQuals & DeclSpec::TQ_restrict)
2392      Diag(DS.getRestrictSpecLoc(),
2393           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2394           << DS.getSourceRange();
2395  }
2396
2397  if (DS.isConstexprSpecified()) {
2398    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2399    // and definitions of functions and variables.
2400    if (Tag)
2401      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2402        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2403            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2404            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2405    else
2406      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2407    // Don't emit warnings after this error.
2408    return TagD;
2409  }
2410
2411  if (DS.isFriendSpecified()) {
2412    // If we're dealing with a decl but not a TagDecl, assume that
2413    // whatever routines created it handled the friendship aspect.
2414    if (TagD && !Tag)
2415      return 0;
2416    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2417  }
2418
2419  // Track whether we warned about the fact that there aren't any
2420  // declarators.
2421  bool emittedWarning = false;
2422
2423  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2424    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2425        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2426      if (getLangOpts().CPlusPlus ||
2427          Record->getDeclContext()->isRecord())
2428        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2429
2430      Diag(DS.getLocStart(), diag::ext_no_declarators)
2431        << DS.getSourceRange();
2432      emittedWarning = true;
2433    }
2434  }
2435
2436  // Check for Microsoft C extension: anonymous struct.
2437  if (getLangOpts().MicrosoftExt && !getLangOpts().CPlusPlus &&
2438      CurContext->isRecord() &&
2439      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2440    // Handle 2 kinds of anonymous struct:
2441    //   struct STRUCT;
2442    // and
2443    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2444    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2445    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2446        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2447         DS.getRepAsType().get()->isStructureType())) {
2448      Diag(DS.getLocStart(), diag::ext_ms_anonymous_struct)
2449        << DS.getSourceRange();
2450      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2451    }
2452  }
2453
2454  if (getLangOpts().CPlusPlus &&
2455      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2456    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2457      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2458          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2459        Diag(Enum->getLocation(), diag::ext_no_declarators)
2460          << DS.getSourceRange();
2461        emittedWarning = true;
2462      }
2463
2464  // Skip all the checks below if we have a type error.
2465  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2466
2467  if (!DS.isMissingDeclaratorOk()) {
2468    // Warn about typedefs of enums without names, since this is an
2469    // extension in both Microsoft and GNU.
2470    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2471        Tag && isa<EnumDecl>(Tag)) {
2472      Diag(DS.getLocStart(), diag::ext_typedef_without_a_name)
2473        << DS.getSourceRange();
2474      return Tag;
2475    }
2476
2477    Diag(DS.getLocStart(), diag::ext_no_declarators)
2478      << DS.getSourceRange();
2479    emittedWarning = true;
2480  }
2481
2482  // We're going to complain about a bunch of spurious specifiers;
2483  // only do this if we're declaring a tag, because otherwise we
2484  // should be getting diag::ext_no_declarators.
2485  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2486    return TagD;
2487
2488  // Note that a linkage-specification sets a storage class, but
2489  // 'extern "C" struct foo;' is actually valid and not theoretically
2490  // useless.
2491  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2492    if (!DS.isExternInLinkageSpec())
2493      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2494        << DeclSpec::getSpecifierName(scs);
2495
2496  if (DS.isThreadSpecified())
2497    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2498  if (DS.getTypeQualifiers()) {
2499    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2500      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2501    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2502      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2503    // Restrict is covered above.
2504  }
2505  if (DS.isInlineSpecified())
2506    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2507  if (DS.isVirtualSpecified())
2508    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2509  if (DS.isExplicitSpecified())
2510    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2511
2512  if (DS.isModulePrivateSpecified() &&
2513      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2514    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2515      << Tag->getTagKind()
2516      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2517
2518  // Warn about ignored type attributes, for example:
2519  // __attribute__((aligned)) struct A;
2520  // Attributes should be placed after tag to apply to type declaration.
2521  if (!DS.getAttributes().empty()) {
2522    DeclSpec::TST TypeSpecType = DS.getTypeSpecType();
2523    if (TypeSpecType == DeclSpec::TST_class ||
2524        TypeSpecType == DeclSpec::TST_struct ||
2525        TypeSpecType == DeclSpec::TST_union ||
2526        TypeSpecType == DeclSpec::TST_enum) {
2527      AttributeList* attrs = DS.getAttributes().getList();
2528      while (attrs) {
2529        Diag(attrs->getScopeLoc(),
2530             diag::warn_declspec_attribute_ignored)
2531        << attrs->getName()
2532        << (TypeSpecType == DeclSpec::TST_class ? 0 :
2533            TypeSpecType == DeclSpec::TST_struct ? 1 :
2534            TypeSpecType == DeclSpec::TST_union ? 2 : 3);
2535        attrs = attrs->getNext();
2536      }
2537    }
2538  }
2539
2540  return TagD;
2541}
2542
2543/// We are trying to inject an anonymous member into the given scope;
2544/// check if there's an existing declaration that can't be overloaded.
2545///
2546/// \return true if this is a forbidden redeclaration
2547static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2548                                         Scope *S,
2549                                         DeclContext *Owner,
2550                                         DeclarationName Name,
2551                                         SourceLocation NameLoc,
2552                                         unsigned diagnostic) {
2553  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2554                 Sema::ForRedeclaration);
2555  if (!SemaRef.LookupName(R, S)) return false;
2556
2557  if (R.getAsSingle<TagDecl>())
2558    return false;
2559
2560  // Pick a representative declaration.
2561  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2562  assert(PrevDecl && "Expected a non-null Decl");
2563
2564  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2565    return false;
2566
2567  SemaRef.Diag(NameLoc, diagnostic) << Name;
2568  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2569
2570  return true;
2571}
2572
2573/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2574/// anonymous struct or union AnonRecord into the owning context Owner
2575/// and scope S. This routine will be invoked just after we realize
2576/// that an unnamed union or struct is actually an anonymous union or
2577/// struct, e.g.,
2578///
2579/// @code
2580/// union {
2581///   int i;
2582///   float f;
2583/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2584///    // f into the surrounding scope.x
2585/// @endcode
2586///
2587/// This routine is recursive, injecting the names of nested anonymous
2588/// structs/unions into the owning context and scope as well.
2589static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2590                                                DeclContext *Owner,
2591                                                RecordDecl *AnonRecord,
2592                                                AccessSpecifier AS,
2593                              SmallVector<NamedDecl*, 2> &Chaining,
2594                                                      bool MSAnonStruct) {
2595  unsigned diagKind
2596    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2597                            : diag::err_anonymous_struct_member_redecl;
2598
2599  bool Invalid = false;
2600
2601  // Look every FieldDecl and IndirectFieldDecl with a name.
2602  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2603                               DEnd = AnonRecord->decls_end();
2604       D != DEnd; ++D) {
2605    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2606        cast<NamedDecl>(*D)->getDeclName()) {
2607      ValueDecl *VD = cast<ValueDecl>(*D);
2608      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2609                                       VD->getLocation(), diagKind)) {
2610        // C++ [class.union]p2:
2611        //   The names of the members of an anonymous union shall be
2612        //   distinct from the names of any other entity in the
2613        //   scope in which the anonymous union is declared.
2614        Invalid = true;
2615      } else {
2616        // C++ [class.union]p2:
2617        //   For the purpose of name lookup, after the anonymous union
2618        //   definition, the members of the anonymous union are
2619        //   considered to have been defined in the scope in which the
2620        //   anonymous union is declared.
2621        unsigned OldChainingSize = Chaining.size();
2622        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2623          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2624               PE = IF->chain_end(); PI != PE; ++PI)
2625            Chaining.push_back(*PI);
2626        else
2627          Chaining.push_back(VD);
2628
2629        assert(Chaining.size() >= 2);
2630        NamedDecl **NamedChain =
2631          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2632        for (unsigned i = 0; i < Chaining.size(); i++)
2633          NamedChain[i] = Chaining[i];
2634
2635        IndirectFieldDecl* IndirectField =
2636          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2637                                    VD->getIdentifier(), VD->getType(),
2638                                    NamedChain, Chaining.size());
2639
2640        IndirectField->setAccess(AS);
2641        IndirectField->setImplicit();
2642        SemaRef.PushOnScopeChains(IndirectField, S);
2643
2644        // That includes picking up the appropriate access specifier.
2645        if (AS != AS_none) IndirectField->setAccess(AS);
2646
2647        Chaining.resize(OldChainingSize);
2648      }
2649    }
2650  }
2651
2652  return Invalid;
2653}
2654
2655/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2656/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2657/// illegal input values are mapped to SC_None.
2658static StorageClass
2659StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2660  switch (StorageClassSpec) {
2661  case DeclSpec::SCS_unspecified:    return SC_None;
2662  case DeclSpec::SCS_extern:         return SC_Extern;
2663  case DeclSpec::SCS_static:         return SC_Static;
2664  case DeclSpec::SCS_auto:           return SC_Auto;
2665  case DeclSpec::SCS_register:       return SC_Register;
2666  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2667    // Illegal SCSs map to None: error reporting is up to the caller.
2668  case DeclSpec::SCS_mutable:        // Fall through.
2669  case DeclSpec::SCS_typedef:        return SC_None;
2670  }
2671  llvm_unreachable("unknown storage class specifier");
2672}
2673
2674/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2675/// a StorageClass. Any error reporting is up to the caller:
2676/// illegal input values are mapped to SC_None.
2677static StorageClass
2678StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2679  switch (StorageClassSpec) {
2680  case DeclSpec::SCS_unspecified:    return SC_None;
2681  case DeclSpec::SCS_extern:         return SC_Extern;
2682  case DeclSpec::SCS_static:         return SC_Static;
2683  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2684    // Illegal SCSs map to None: error reporting is up to the caller.
2685  case DeclSpec::SCS_auto:           // Fall through.
2686  case DeclSpec::SCS_mutable:        // Fall through.
2687  case DeclSpec::SCS_register:       // Fall through.
2688  case DeclSpec::SCS_typedef:        return SC_None;
2689  }
2690  llvm_unreachable("unknown storage class specifier");
2691}
2692
2693/// BuildAnonymousStructOrUnion - Handle the declaration of an
2694/// anonymous structure or union. Anonymous unions are a C++ feature
2695/// (C++ [class.union]) and a C11 feature; anonymous structures
2696/// are a C11 feature and GNU C++ extension.
2697Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2698                                             AccessSpecifier AS,
2699                                             RecordDecl *Record) {
2700  DeclContext *Owner = Record->getDeclContext();
2701
2702  // Diagnose whether this anonymous struct/union is an extension.
2703  if (Record->isUnion() && !getLangOpts().CPlusPlus && !getLangOpts().C11)
2704    Diag(Record->getLocation(), diag::ext_anonymous_union);
2705  else if (!Record->isUnion() && getLangOpts().CPlusPlus)
2706    Diag(Record->getLocation(), diag::ext_gnu_anonymous_struct);
2707  else if (!Record->isUnion() && !getLangOpts().C11)
2708    Diag(Record->getLocation(), diag::ext_c11_anonymous_struct);
2709
2710  // C and C++ require different kinds of checks for anonymous
2711  // structs/unions.
2712  bool Invalid = false;
2713  if (getLangOpts().CPlusPlus) {
2714    const char* PrevSpec = 0;
2715    unsigned DiagID;
2716    if (Record->isUnion()) {
2717      // C++ [class.union]p6:
2718      //   Anonymous unions declared in a named namespace or in the
2719      //   global namespace shall be declared static.
2720      if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2721          (isa<TranslationUnitDecl>(Owner) ||
2722           (isa<NamespaceDecl>(Owner) &&
2723            cast<NamespaceDecl>(Owner)->getDeclName()))) {
2724        Diag(Record->getLocation(), diag::err_anonymous_union_not_static)
2725          << FixItHint::CreateInsertion(Record->getLocation(), "static ");
2726
2727        // Recover by adding 'static'.
2728        DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2729                               PrevSpec, DiagID);
2730      }
2731      // C++ [class.union]p6:
2732      //   A storage class is not allowed in a declaration of an
2733      //   anonymous union in a class scope.
2734      else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2735               isa<RecordDecl>(Owner)) {
2736        Diag(DS.getStorageClassSpecLoc(),
2737             diag::err_anonymous_union_with_storage_spec)
2738          << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2739
2740        // Recover by removing the storage specifier.
2741        DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified,
2742                               SourceLocation(),
2743                               PrevSpec, DiagID);
2744      }
2745    }
2746
2747    // Ignore const/volatile/restrict qualifiers.
2748    if (DS.getTypeQualifiers()) {
2749      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2750        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2751          << Record->isUnion() << 0
2752          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2753      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2754        Diag(DS.getVolatileSpecLoc(),
2755             diag::ext_anonymous_struct_union_qualified)
2756          << Record->isUnion() << 1
2757          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2758      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2759        Diag(DS.getRestrictSpecLoc(),
2760             diag::ext_anonymous_struct_union_qualified)
2761          << Record->isUnion() << 2
2762          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2763
2764      DS.ClearTypeQualifiers();
2765    }
2766
2767    // C++ [class.union]p2:
2768    //   The member-specification of an anonymous union shall only
2769    //   define non-static data members. [Note: nested types and
2770    //   functions cannot be declared within an anonymous union. ]
2771    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2772                                 MemEnd = Record->decls_end();
2773         Mem != MemEnd; ++Mem) {
2774      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2775        // C++ [class.union]p3:
2776        //   An anonymous union shall not have private or protected
2777        //   members (clause 11).
2778        assert(FD->getAccess() != AS_none);
2779        if (FD->getAccess() != AS_public) {
2780          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2781            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2782          Invalid = true;
2783        }
2784
2785        // C++ [class.union]p1
2786        //   An object of a class with a non-trivial constructor, a non-trivial
2787        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2788        //   assignment operator cannot be a member of a union, nor can an
2789        //   array of such objects.
2790        if (CheckNontrivialField(FD))
2791          Invalid = true;
2792      } else if ((*Mem)->isImplicit()) {
2793        // Any implicit members are fine.
2794      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2795        // This is a type that showed up in an
2796        // elaborated-type-specifier inside the anonymous struct or
2797        // union, but which actually declares a type outside of the
2798        // anonymous struct or union. It's okay.
2799      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2800        if (!MemRecord->isAnonymousStructOrUnion() &&
2801            MemRecord->getDeclName()) {
2802          // Visual C++ allows type definition in anonymous struct or union.
2803          if (getLangOpts().MicrosoftExt)
2804            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2805              << (int)Record->isUnion();
2806          else {
2807            // This is a nested type declaration.
2808            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2809              << (int)Record->isUnion();
2810            Invalid = true;
2811          }
2812        }
2813      } else if (isa<AccessSpecDecl>(*Mem)) {
2814        // Any access specifier is fine.
2815      } else {
2816        // We have something that isn't a non-static data
2817        // member. Complain about it.
2818        unsigned DK = diag::err_anonymous_record_bad_member;
2819        if (isa<TypeDecl>(*Mem))
2820          DK = diag::err_anonymous_record_with_type;
2821        else if (isa<FunctionDecl>(*Mem))
2822          DK = diag::err_anonymous_record_with_function;
2823        else if (isa<VarDecl>(*Mem))
2824          DK = diag::err_anonymous_record_with_static;
2825
2826        // Visual C++ allows type definition in anonymous struct or union.
2827        if (getLangOpts().MicrosoftExt &&
2828            DK == diag::err_anonymous_record_with_type)
2829          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2830            << (int)Record->isUnion();
2831        else {
2832          Diag((*Mem)->getLocation(), DK)
2833              << (int)Record->isUnion();
2834          Invalid = true;
2835        }
2836      }
2837    }
2838  }
2839
2840  if (!Record->isUnion() && !Owner->isRecord()) {
2841    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2842      << (int)getLangOpts().CPlusPlus;
2843    Invalid = true;
2844  }
2845
2846  // Mock up a declarator.
2847  Declarator Dc(DS, Declarator::MemberContext);
2848  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2849  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2850
2851  // Create a declaration for this anonymous struct/union.
2852  NamedDecl *Anon = 0;
2853  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2854    Anon = FieldDecl::Create(Context, OwningClass,
2855                             DS.getLocStart(),
2856                             Record->getLocation(),
2857                             /*IdentifierInfo=*/0,
2858                             Context.getTypeDeclType(Record),
2859                             TInfo,
2860                             /*BitWidth=*/0, /*Mutable=*/false,
2861                             /*HasInit=*/false);
2862    Anon->setAccess(AS);
2863    if (getLangOpts().CPlusPlus)
2864      FieldCollector->Add(cast<FieldDecl>(Anon));
2865  } else {
2866    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2867    assert(SCSpec != DeclSpec::SCS_typedef &&
2868           "Parser allowed 'typedef' as storage class VarDecl.");
2869    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2870    if (SCSpec == DeclSpec::SCS_mutable) {
2871      // mutable can only appear on non-static class members, so it's always
2872      // an error here
2873      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2874      Invalid = true;
2875      SC = SC_None;
2876    }
2877    SCSpec = DS.getStorageClassSpecAsWritten();
2878    VarDecl::StorageClass SCAsWritten
2879      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2880
2881    Anon = VarDecl::Create(Context, Owner,
2882                           DS.getLocStart(),
2883                           Record->getLocation(), /*IdentifierInfo=*/0,
2884                           Context.getTypeDeclType(Record),
2885                           TInfo, SC, SCAsWritten);
2886
2887    // Default-initialize the implicit variable. This initialization will be
2888    // trivial in almost all cases, except if a union member has an in-class
2889    // initializer:
2890    //   union { int n = 0; };
2891    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2892  }
2893  Anon->setImplicit();
2894
2895  // Add the anonymous struct/union object to the current
2896  // context. We'll be referencing this object when we refer to one of
2897  // its members.
2898  Owner->addDecl(Anon);
2899
2900  // Inject the members of the anonymous struct/union into the owning
2901  // context and into the identifier resolver chain for name lookup
2902  // purposes.
2903  SmallVector<NamedDecl*, 2> Chain;
2904  Chain.push_back(Anon);
2905
2906  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2907                                          Chain, false))
2908    Invalid = true;
2909
2910  // Mark this as an anonymous struct/union type. Note that we do not
2911  // do this until after we have already checked and injected the
2912  // members of this anonymous struct/union type, because otherwise
2913  // the members could be injected twice: once by DeclContext when it
2914  // builds its lookup table, and once by
2915  // InjectAnonymousStructOrUnionMembers.
2916  Record->setAnonymousStructOrUnion(true);
2917
2918  if (Invalid)
2919    Anon->setInvalidDecl();
2920
2921  return Anon;
2922}
2923
2924/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2925/// Microsoft C anonymous structure.
2926/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2927/// Example:
2928///
2929/// struct A { int a; };
2930/// struct B { struct A; int b; };
2931///
2932/// void foo() {
2933///   B var;
2934///   var.a = 3;
2935/// }
2936///
2937Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2938                                           RecordDecl *Record) {
2939
2940  // If there is no Record, get the record via the typedef.
2941  if (!Record)
2942    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2943
2944  // Mock up a declarator.
2945  Declarator Dc(DS, Declarator::TypeNameContext);
2946  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2947  assert(TInfo && "couldn't build declarator info for anonymous struct");
2948
2949  // Create a declaration for this anonymous struct.
2950  NamedDecl* Anon = FieldDecl::Create(Context,
2951                             cast<RecordDecl>(CurContext),
2952                             DS.getLocStart(),
2953                             DS.getLocStart(),
2954                             /*IdentifierInfo=*/0,
2955                             Context.getTypeDeclType(Record),
2956                             TInfo,
2957                             /*BitWidth=*/0, /*Mutable=*/false,
2958                             /*HasInit=*/false);
2959  Anon->setImplicit();
2960
2961  // Add the anonymous struct object to the current context.
2962  CurContext->addDecl(Anon);
2963
2964  // Inject the members of the anonymous struct into the current
2965  // context and into the identifier resolver chain for name lookup
2966  // purposes.
2967  SmallVector<NamedDecl*, 2> Chain;
2968  Chain.push_back(Anon);
2969
2970  RecordDecl *RecordDef = Record->getDefinition();
2971  if (!RecordDef || InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2972                                                        RecordDef, AS_none,
2973                                                        Chain, true))
2974    Anon->setInvalidDecl();
2975
2976  return Anon;
2977}
2978
2979/// GetNameForDeclarator - Determine the full declaration name for the
2980/// given Declarator.
2981DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2982  return GetNameFromUnqualifiedId(D.getName());
2983}
2984
2985/// \brief Retrieves the declaration name from a parsed unqualified-id.
2986DeclarationNameInfo
2987Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2988  DeclarationNameInfo NameInfo;
2989  NameInfo.setLoc(Name.StartLocation);
2990
2991  switch (Name.getKind()) {
2992
2993  case UnqualifiedId::IK_ImplicitSelfParam:
2994  case UnqualifiedId::IK_Identifier:
2995    NameInfo.setName(Name.Identifier);
2996    NameInfo.setLoc(Name.StartLocation);
2997    return NameInfo;
2998
2999  case UnqualifiedId::IK_OperatorFunctionId:
3000    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
3001                                           Name.OperatorFunctionId.Operator));
3002    NameInfo.setLoc(Name.StartLocation);
3003    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
3004      = Name.OperatorFunctionId.SymbolLocations[0];
3005    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
3006      = Name.EndLocation.getRawEncoding();
3007    return NameInfo;
3008
3009  case UnqualifiedId::IK_LiteralOperatorId:
3010    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
3011                                                           Name.Identifier));
3012    NameInfo.setLoc(Name.StartLocation);
3013    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
3014    return NameInfo;
3015
3016  case UnqualifiedId::IK_ConversionFunctionId: {
3017    TypeSourceInfo *TInfo;
3018    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
3019    if (Ty.isNull())
3020      return DeclarationNameInfo();
3021    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
3022                                               Context.getCanonicalType(Ty)));
3023    NameInfo.setLoc(Name.StartLocation);
3024    NameInfo.setNamedTypeInfo(TInfo);
3025    return NameInfo;
3026  }
3027
3028  case UnqualifiedId::IK_ConstructorName: {
3029    TypeSourceInfo *TInfo;
3030    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
3031    if (Ty.isNull())
3032      return DeclarationNameInfo();
3033    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3034                                              Context.getCanonicalType(Ty)));
3035    NameInfo.setLoc(Name.StartLocation);
3036    NameInfo.setNamedTypeInfo(TInfo);
3037    return NameInfo;
3038  }
3039
3040  case UnqualifiedId::IK_ConstructorTemplateId: {
3041    // In well-formed code, we can only have a constructor
3042    // template-id that refers to the current context, so go there
3043    // to find the actual type being constructed.
3044    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
3045    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
3046      return DeclarationNameInfo();
3047
3048    // Determine the type of the class being constructed.
3049    QualType CurClassType = Context.getTypeDeclType(CurClass);
3050
3051    // FIXME: Check two things: that the template-id names the same type as
3052    // CurClassType, and that the template-id does not occur when the name
3053    // was qualified.
3054
3055    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
3056                                    Context.getCanonicalType(CurClassType)));
3057    NameInfo.setLoc(Name.StartLocation);
3058    // FIXME: should we retrieve TypeSourceInfo?
3059    NameInfo.setNamedTypeInfo(0);
3060    return NameInfo;
3061  }
3062
3063  case UnqualifiedId::IK_DestructorName: {
3064    TypeSourceInfo *TInfo;
3065    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
3066    if (Ty.isNull())
3067      return DeclarationNameInfo();
3068    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
3069                                              Context.getCanonicalType(Ty)));
3070    NameInfo.setLoc(Name.StartLocation);
3071    NameInfo.setNamedTypeInfo(TInfo);
3072    return NameInfo;
3073  }
3074
3075  case UnqualifiedId::IK_TemplateId: {
3076    TemplateName TName = Name.TemplateId->Template.get();
3077    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
3078    return Context.getNameForTemplate(TName, TNameLoc);
3079  }
3080
3081  } // switch (Name.getKind())
3082
3083  llvm_unreachable("Unknown name kind");
3084}
3085
3086static QualType getCoreType(QualType Ty) {
3087  do {
3088    if (Ty->isPointerType() || Ty->isReferenceType())
3089      Ty = Ty->getPointeeType();
3090    else if (Ty->isArrayType())
3091      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
3092    else
3093      return Ty.withoutLocalFastQualifiers();
3094  } while (true);
3095}
3096
3097/// hasSimilarParameters - Determine whether the C++ functions Declaration
3098/// and Definition have "nearly" matching parameters. This heuristic is
3099/// used to improve diagnostics in the case where an out-of-line function
3100/// definition doesn't match any declaration within the class or namespace.
3101/// Also sets Params to the list of indices to the parameters that differ
3102/// between the declaration and the definition. If hasSimilarParameters
3103/// returns true and Params is empty, then all of the parameters match.
3104static bool hasSimilarParameters(ASTContext &Context,
3105                                     FunctionDecl *Declaration,
3106                                     FunctionDecl *Definition,
3107                                     llvm::SmallVectorImpl<unsigned> &Params) {
3108  Params.clear();
3109  if (Declaration->param_size() != Definition->param_size())
3110    return false;
3111  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
3112    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
3113    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
3114
3115    // The parameter types are identical
3116    if (Context.hasSameType(DefParamTy, DeclParamTy))
3117      continue;
3118
3119    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
3120    QualType DefParamBaseTy = getCoreType(DefParamTy);
3121    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
3122    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
3123
3124    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
3125        (DeclTyName && DeclTyName == DefTyName))
3126      Params.push_back(Idx);
3127    else  // The two parameters aren't even close
3128      return false;
3129  }
3130
3131  return true;
3132}
3133
3134/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
3135/// declarator needs to be rebuilt in the current instantiation.
3136/// Any bits of declarator which appear before the name are valid for
3137/// consideration here.  That's specifically the type in the decl spec
3138/// and the base type in any member-pointer chunks.
3139static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3140                                                    DeclarationName Name) {
3141  // The types we specifically need to rebuild are:
3142  //   - typenames, typeofs, and decltypes
3143  //   - types which will become injected class names
3144  // Of course, we also need to rebuild any type referencing such a
3145  // type.  It's safest to just say "dependent", but we call out a
3146  // few cases here.
3147
3148  DeclSpec &DS = D.getMutableDeclSpec();
3149  switch (DS.getTypeSpecType()) {
3150  case DeclSpec::TST_typename:
3151  case DeclSpec::TST_typeofType:
3152  case DeclSpec::TST_decltype:
3153  case DeclSpec::TST_underlyingType:
3154  case DeclSpec::TST_atomic: {
3155    // Grab the type from the parser.
3156    TypeSourceInfo *TSI = 0;
3157    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3158    if (T.isNull() || !T->isDependentType()) break;
3159
3160    // Make sure there's a type source info.  This isn't really much
3161    // of a waste; most dependent types should have type source info
3162    // attached already.
3163    if (!TSI)
3164      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3165
3166    // Rebuild the type in the current instantiation.
3167    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3168    if (!TSI) return true;
3169
3170    // Store the new type back in the decl spec.
3171    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3172    DS.UpdateTypeRep(LocType);
3173    break;
3174  }
3175
3176  case DeclSpec::TST_typeofExpr: {
3177    Expr *E = DS.getRepAsExpr();
3178    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3179    if (Result.isInvalid()) return true;
3180    DS.UpdateExprRep(Result.get());
3181    break;
3182  }
3183
3184  default:
3185    // Nothing to do for these decl specs.
3186    break;
3187  }
3188
3189  // It doesn't matter what order we do this in.
3190  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3191    DeclaratorChunk &Chunk = D.getTypeObject(I);
3192
3193    // The only type information in the declarator which can come
3194    // before the declaration name is the base type of a member
3195    // pointer.
3196    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3197      continue;
3198
3199    // Rebuild the scope specifier in-place.
3200    CXXScopeSpec &SS = Chunk.Mem.Scope();
3201    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3202      return true;
3203  }
3204
3205  return false;
3206}
3207
3208Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3209  D.setFunctionDefinitionKind(FDK_Declaration);
3210  Decl *Dcl = HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3211
3212  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer() &&
3213      Dcl->getDeclContext()->isFileContext())
3214    Dcl->setTopLevelDeclInObjCContainer();
3215
3216  return Dcl;
3217}
3218
3219/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3220///   If T is the name of a class, then each of the following shall have a
3221///   name different from T:
3222///     - every static data member of class T;
3223///     - every member function of class T
3224///     - every member of class T that is itself a type;
3225/// \returns true if the declaration name violates these rules.
3226bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3227                                   DeclarationNameInfo NameInfo) {
3228  DeclarationName Name = NameInfo.getName();
3229
3230  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3231    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3232      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3233      return true;
3234    }
3235
3236  return false;
3237}
3238
3239/// \brief Diagnose a declaration that has a qualified name within a class,
3240/// which is ill-formed but often recoverable.
3241///
3242/// \returns true if we cannot safely recover from this error, false otherwise.
3243bool Sema::diagnoseQualifiedDeclInClass(CXXScopeSpec &SS, DeclContext *DC,
3244                                        DeclarationName Name,
3245                                        SourceLocation Loc) {
3246  // The user provided a superfluous scope specifier inside a class
3247  // definition:
3248  //
3249  // class X {
3250  //   void X::f();
3251  // };
3252  if (CurContext->Equals(DC)) {
3253    Diag(Loc, diag::warn_member_extra_qualification)
3254      << Name << FixItHint::CreateRemoval(SS.getRange());
3255    SS.clear();
3256    return false;
3257  }
3258
3259  Diag(Loc, diag::err_member_qualification)
3260    << Name << SS.getRange();
3261  SS.clear();
3262
3263  // C++ constructors and destructors with incorrect scopes can break
3264  // our AST invariants by having the wrong underlying types. If
3265  // that's the case, then drop this declaration entirely.
3266  if ((Name.getNameKind() == DeclarationName::CXXConstructorName ||
3267       Name.getNameKind() == DeclarationName::CXXDestructorName) &&
3268      !Context.hasSameType(Name.getCXXNameType(),
3269                          Context.getTypeDeclType(
3270                            cast<CXXRecordDecl>(CurContext))))
3271    return true;
3272
3273  return false;
3274}
3275
3276Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3277                             MultiTemplateParamsArg TemplateParamLists) {
3278  // TODO: consider using NameInfo for diagnostic.
3279  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3280  DeclarationName Name = NameInfo.getName();
3281
3282  // All of these full declarators require an identifier.  If it doesn't have
3283  // one, the ParsedFreeStandingDeclSpec action should be used.
3284  if (!Name) {
3285    if (!D.isInvalidType())  // Reject this if we think it is valid.
3286      Diag(D.getDeclSpec().getLocStart(),
3287           diag::err_declarator_need_ident)
3288        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3289    return 0;
3290  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3291    return 0;
3292
3293  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3294  // we find one that is.
3295  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3296         (S->getFlags() & Scope::TemplateParamScope) != 0)
3297    S = S->getParent();
3298
3299  DeclContext *DC = CurContext;
3300  if (D.getCXXScopeSpec().isInvalid())
3301    D.setInvalidType();
3302  else if (D.getCXXScopeSpec().isSet()) {
3303    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3304                                        UPPC_DeclarationQualifier))
3305      return 0;
3306
3307    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3308    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3309    if (!DC) {
3310      // If we could not compute the declaration context, it's because the
3311      // declaration context is dependent but does not refer to a class,
3312      // class template, or class template partial specialization. Complain
3313      // and return early, to avoid the coming semantic disaster.
3314      Diag(D.getIdentifierLoc(),
3315           diag::err_template_qualified_declarator_no_match)
3316        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3317        << D.getCXXScopeSpec().getRange();
3318      return 0;
3319    }
3320    bool IsDependentContext = DC->isDependentContext();
3321
3322    if (!IsDependentContext &&
3323        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3324      return 0;
3325
3326    if (isa<CXXRecordDecl>(DC)) {
3327      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3328        Diag(D.getIdentifierLoc(),
3329             diag::err_member_def_undefined_record)
3330          << Name << DC << D.getCXXScopeSpec().getRange();
3331        D.setInvalidType();
3332      } else if (isa<CXXRecordDecl>(CurContext) &&
3333                 !D.getDeclSpec().isFriendSpecified()) {
3334        if (diagnoseQualifiedDeclInClass(D.getCXXScopeSpec(), DC,
3335                                         Name, D.getIdentifierLoc()))
3336          return 0;
3337      }
3338    }
3339
3340    // Check whether we need to rebuild the type of the given
3341    // declaration in the current instantiation.
3342    if (EnteringContext && IsDependentContext &&
3343        TemplateParamLists.size() != 0) {
3344      ContextRAII SavedContext(*this, DC);
3345      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3346        D.setInvalidType();
3347    }
3348  }
3349
3350  if (DiagnoseClassNameShadow(DC, NameInfo))
3351    // If this is a typedef, we'll end up spewing multiple diagnostics.
3352    // Just return early; it's safer.
3353    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3354      return 0;
3355
3356  NamedDecl *New;
3357
3358  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3359  QualType R = TInfo->getType();
3360
3361  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3362                                      UPPC_DeclarationType))
3363    D.setInvalidType();
3364
3365  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3366                        ForRedeclaration);
3367
3368  // See if this is a redefinition of a variable in the same scope.
3369  if (!D.getCXXScopeSpec().isSet()) {
3370    bool IsLinkageLookup = false;
3371
3372    // If the declaration we're planning to build will be a function
3373    // or object with linkage, then look for another declaration with
3374    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3375    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3376      /* Do nothing*/;
3377    else if (R->isFunctionType()) {
3378      if (CurContext->isFunctionOrMethod() ||
3379          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3380        IsLinkageLookup = true;
3381    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3382      IsLinkageLookup = true;
3383    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3384             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3385      IsLinkageLookup = true;
3386
3387    if (IsLinkageLookup)
3388      Previous.clear(LookupRedeclarationWithLinkage);
3389
3390    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3391  } else { // Something like "int foo::x;"
3392    LookupQualifiedName(Previous, DC);
3393
3394    // Don't consider using declarations as previous declarations for
3395    // out-of-line members.
3396    RemoveUsingDecls(Previous);
3397
3398    // C++ 7.3.1.2p2:
3399    // Members (including explicit specializations of templates) of a named
3400    // namespace can also be defined outside that namespace by explicit
3401    // qualification of the name being defined, provided that the entity being
3402    // defined was already declared in the namespace and the definition appears
3403    // after the point of declaration in a namespace that encloses the
3404    // declarations namespace.
3405    //
3406    // Note that we only check the context at this point. We don't yet
3407    // have enough information to make sure that PrevDecl is actually
3408    // the declaration we want to match. For example, given:
3409    //
3410    //   class X {
3411    //     void f();
3412    //     void f(float);
3413    //   };
3414    //
3415    //   void X::f(int) { } // ill-formed
3416    //
3417    // In this case, PrevDecl will point to the overload set
3418    // containing the two f's declared in X, but neither of them
3419    // matches.
3420
3421    // First check whether we named the global scope.
3422    if (isa<TranslationUnitDecl>(DC)) {
3423      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3424        << Name << D.getCXXScopeSpec().getRange();
3425    } else {
3426      DeclContext *Cur = CurContext;
3427      while (isa<LinkageSpecDecl>(Cur))
3428        Cur = Cur->getParent();
3429      if (!Cur->Encloses(DC)) {
3430        // The qualifying scope doesn't enclose the original declaration.
3431        // Emit diagnostic based on current scope.
3432        SourceLocation L = D.getIdentifierLoc();
3433        SourceRange R = D.getCXXScopeSpec().getRange();
3434        if (isa<FunctionDecl>(Cur))
3435          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3436        else
3437          Diag(L, diag::err_invalid_declarator_scope)
3438            << Name << cast<NamedDecl>(DC) << R;
3439        D.setInvalidType();
3440      }
3441
3442      // C++11 8.3p1:
3443      // ... "The nested-name-specifier of the qualified declarator-id shall
3444      // not begin with a decltype-specifer"
3445      NestedNameSpecifierLoc SpecLoc =
3446            D.getCXXScopeSpec().getWithLocInContext(Context);
3447      assert(SpecLoc && "A non-empty CXXScopeSpec should have a non-empty "
3448                        "NestedNameSpecifierLoc");
3449      while (SpecLoc.getPrefix())
3450        SpecLoc = SpecLoc.getPrefix();
3451      if (dyn_cast_or_null<DecltypeType>(
3452            SpecLoc.getNestedNameSpecifier()->getAsType()))
3453        Diag(SpecLoc.getBeginLoc(), diag::err_decltype_in_declarator)
3454          << SpecLoc.getTypeLoc().getSourceRange();
3455    }
3456  }
3457
3458  if (Previous.isSingleResult() &&
3459      Previous.getFoundDecl()->isTemplateParameter()) {
3460    // Maybe we will complain about the shadowed template parameter.
3461    if (!D.isInvalidType())
3462      DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3463                                      Previous.getFoundDecl());
3464
3465    // Just pretend that we didn't see the previous declaration.
3466    Previous.clear();
3467  }
3468
3469  // In C++, the previous declaration we find might be a tag type
3470  // (class or enum). In this case, the new declaration will hide the
3471  // tag type. Note that this does does not apply if we're declaring a
3472  // typedef (C++ [dcl.typedef]p4).
3473  if (Previous.isSingleTagDecl() &&
3474      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3475    Previous.clear();
3476
3477  bool AddToScope = true;
3478  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3479    if (TemplateParamLists.size()) {
3480      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3481      return 0;
3482    }
3483
3484    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3485  } else if (R->isFunctionType()) {
3486    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3487                                  move(TemplateParamLists),
3488                                  AddToScope);
3489  } else {
3490    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3491                                  move(TemplateParamLists));
3492  }
3493
3494  if (New == 0)
3495    return 0;
3496
3497  // If this has an identifier and is not an invalid redeclaration or
3498  // function template specialization, add it to the scope stack.
3499  if (New->getDeclName() && AddToScope &&
3500       !(D.isRedeclaration() && New->isInvalidDecl()))
3501    PushOnScopeChains(New, S);
3502
3503  return New;
3504}
3505
3506/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3507/// types into constant array types in certain situations which would otherwise
3508/// be errors (for GCC compatibility).
3509static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3510                                                    ASTContext &Context,
3511                                                    bool &SizeIsNegative,
3512                                                    llvm::APSInt &Oversized) {
3513  // This method tries to turn a variable array into a constant
3514  // array even when the size isn't an ICE.  This is necessary
3515  // for compatibility with code that depends on gcc's buggy
3516  // constant expression folding, like struct {char x[(int)(char*)2];}
3517  SizeIsNegative = false;
3518  Oversized = 0;
3519
3520  if (T->isDependentType())
3521    return QualType();
3522
3523  QualifierCollector Qs;
3524  const Type *Ty = Qs.strip(T);
3525
3526  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3527    QualType Pointee = PTy->getPointeeType();
3528    QualType FixedType =
3529        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3530                                            Oversized);
3531    if (FixedType.isNull()) return FixedType;
3532    FixedType = Context.getPointerType(FixedType);
3533    return Qs.apply(Context, FixedType);
3534  }
3535  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3536    QualType Inner = PTy->getInnerType();
3537    QualType FixedType =
3538        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3539                                            Oversized);
3540    if (FixedType.isNull()) return FixedType;
3541    FixedType = Context.getParenType(FixedType);
3542    return Qs.apply(Context, FixedType);
3543  }
3544
3545  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3546  if (!VLATy)
3547    return QualType();
3548  // FIXME: We should probably handle this case
3549  if (VLATy->getElementType()->isVariablyModifiedType())
3550    return QualType();
3551
3552  llvm::APSInt Res;
3553  if (!VLATy->getSizeExpr() ||
3554      !VLATy->getSizeExpr()->EvaluateAsInt(Res, Context))
3555    return QualType();
3556
3557  // Check whether the array size is negative.
3558  if (Res.isSigned() && Res.isNegative()) {
3559    SizeIsNegative = true;
3560    return QualType();
3561  }
3562
3563  // Check whether the array is too large to be addressed.
3564  unsigned ActiveSizeBits
3565    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3566                                              Res);
3567  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3568    Oversized = Res;
3569    return QualType();
3570  }
3571
3572  return Context.getConstantArrayType(VLATy->getElementType(),
3573                                      Res, ArrayType::Normal, 0);
3574}
3575
3576/// \brief Register the given locally-scoped external C declaration so
3577/// that it can be found later for redeclarations
3578void
3579Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3580                                       const LookupResult &Previous,
3581                                       Scope *S) {
3582  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3583         "Decl is not a locally-scoped decl!");
3584  // Note that we have a locally-scoped external with this name.
3585  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3586
3587  if (!Previous.isSingleResult())
3588    return;
3589
3590  NamedDecl *PrevDecl = Previous.getFoundDecl();
3591
3592  // If there was a previous declaration of this variable, it may be
3593  // in our identifier chain. Update the identifier chain with the new
3594  // declaration.
3595  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3596    // The previous declaration was found on the identifer resolver
3597    // chain, so remove it from its scope.
3598
3599    if (S->isDeclScope(PrevDecl)) {
3600      // Special case for redeclarations in the SAME scope.
3601      // Because this declaration is going to be added to the identifier chain
3602      // later, we should temporarily take it OFF the chain.
3603      IdResolver.RemoveDecl(ND);
3604
3605    } else {
3606      // Find the scope for the original declaration.
3607      while (S && !S->isDeclScope(PrevDecl))
3608        S = S->getParent();
3609    }
3610
3611    if (S)
3612      S->RemoveDecl(PrevDecl);
3613  }
3614}
3615
3616llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3617Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3618  if (ExternalSource) {
3619    // Load locally-scoped external decls from the external source.
3620    SmallVector<NamedDecl *, 4> Decls;
3621    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3622    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3623      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3624        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3625      if (Pos == LocallyScopedExternalDecls.end())
3626        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3627    }
3628  }
3629
3630  return LocallyScopedExternalDecls.find(Name);
3631}
3632
3633/// \brief Diagnose function specifiers on a declaration of an identifier that
3634/// does not identify a function.
3635void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3636  // FIXME: We should probably indicate the identifier in question to avoid
3637  // confusion for constructs like "inline int a(), b;"
3638  if (D.getDeclSpec().isInlineSpecified())
3639    Diag(D.getDeclSpec().getInlineSpecLoc(),
3640         diag::err_inline_non_function);
3641
3642  if (D.getDeclSpec().isVirtualSpecified())
3643    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3644         diag::err_virtual_non_function);
3645
3646  if (D.getDeclSpec().isExplicitSpecified())
3647    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3648         diag::err_explicit_non_function);
3649}
3650
3651NamedDecl*
3652Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3653                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3654  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3655  if (D.getCXXScopeSpec().isSet()) {
3656    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3657      << D.getCXXScopeSpec().getRange();
3658    D.setInvalidType();
3659    // Pretend we didn't see the scope specifier.
3660    DC = CurContext;
3661    Previous.clear();
3662  }
3663
3664  if (getLangOpts().CPlusPlus) {
3665    // Check that there are no default arguments (C++ only).
3666    CheckExtraCXXDefaultArguments(D);
3667  }
3668
3669  DiagnoseFunctionSpecifiers(D);
3670
3671  if (D.getDeclSpec().isThreadSpecified())
3672    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3673  if (D.getDeclSpec().isConstexprSpecified())
3674    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3675      << 1;
3676
3677  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3678    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3679      << D.getName().getSourceRange();
3680    return 0;
3681  }
3682
3683  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3684  if (!NewTD) return 0;
3685
3686  // Handle attributes prior to checking for duplicates in MergeVarDecl
3687  ProcessDeclAttributes(S, NewTD, D);
3688
3689  CheckTypedefForVariablyModifiedType(S, NewTD);
3690
3691  bool Redeclaration = D.isRedeclaration();
3692  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3693  D.setRedeclaration(Redeclaration);
3694  return ND;
3695}
3696
3697void
3698Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3699  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3700  // then it shall have block scope.
3701  // Note that variably modified types must be fixed before merging the decl so
3702  // that redeclarations will match.
3703  QualType T = NewTD->getUnderlyingType();
3704  if (T->isVariablyModifiedType()) {
3705    getCurFunction()->setHasBranchProtectedScope();
3706
3707    if (S->getFnParent() == 0) {
3708      bool SizeIsNegative;
3709      llvm::APSInt Oversized;
3710      QualType FixedTy =
3711          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3712                                              Oversized);
3713      if (!FixedTy.isNull()) {
3714        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3715        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3716      } else {
3717        if (SizeIsNegative)
3718          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3719        else if (T->isVariableArrayType())
3720          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3721        else if (Oversized.getBoolValue())
3722          Diag(NewTD->getLocation(), diag::err_array_too_large)
3723            << Oversized.toString(10);
3724        else
3725          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3726        NewTD->setInvalidDecl();
3727      }
3728    }
3729  }
3730}
3731
3732
3733/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3734/// declares a typedef-name, either using the 'typedef' type specifier or via
3735/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3736NamedDecl*
3737Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3738                           LookupResult &Previous, bool &Redeclaration) {
3739  // Merge the decl with the existing one if appropriate. If the decl is
3740  // in an outer scope, it isn't the same thing.
3741  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3742                       /*ExplicitInstantiationOrSpecialization=*/false);
3743  if (!Previous.empty()) {
3744    Redeclaration = true;
3745    MergeTypedefNameDecl(NewTD, Previous);
3746  }
3747
3748  // If this is the C FILE type, notify the AST context.
3749  if (IdentifierInfo *II = NewTD->getIdentifier())
3750    if (!NewTD->isInvalidDecl() &&
3751        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3752      if (II->isStr("FILE"))
3753        Context.setFILEDecl(NewTD);
3754      else if (II->isStr("jmp_buf"))
3755        Context.setjmp_bufDecl(NewTD);
3756      else if (II->isStr("sigjmp_buf"))
3757        Context.setsigjmp_bufDecl(NewTD);
3758      else if (II->isStr("ucontext_t"))
3759        Context.setucontext_tDecl(NewTD);
3760      else if (II->isStr("__builtin_va_list"))
3761        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3762    }
3763
3764  return NewTD;
3765}
3766
3767/// \brief Determines whether the given declaration is an out-of-scope
3768/// previous declaration.
3769///
3770/// This routine should be invoked when name lookup has found a
3771/// previous declaration (PrevDecl) that is not in the scope where a
3772/// new declaration by the same name is being introduced. If the new
3773/// declaration occurs in a local scope, previous declarations with
3774/// linkage may still be considered previous declarations (C99
3775/// 6.2.2p4-5, C++ [basic.link]p6).
3776///
3777/// \param PrevDecl the previous declaration found by name
3778/// lookup
3779///
3780/// \param DC the context in which the new declaration is being
3781/// declared.
3782///
3783/// \returns true if PrevDecl is an out-of-scope previous declaration
3784/// for a new delcaration with the same name.
3785static bool
3786isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3787                                ASTContext &Context) {
3788  if (!PrevDecl)
3789    return false;
3790
3791  if (!PrevDecl->hasLinkage())
3792    return false;
3793
3794  if (Context.getLangOpts().CPlusPlus) {
3795    // C++ [basic.link]p6:
3796    //   If there is a visible declaration of an entity with linkage
3797    //   having the same name and type, ignoring entities declared
3798    //   outside the innermost enclosing namespace scope, the block
3799    //   scope declaration declares that same entity and receives the
3800    //   linkage of the previous declaration.
3801    DeclContext *OuterContext = DC->getRedeclContext();
3802    if (!OuterContext->isFunctionOrMethod())
3803      // This rule only applies to block-scope declarations.
3804      return false;
3805
3806    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3807    if (PrevOuterContext->isRecord())
3808      // We found a member function: ignore it.
3809      return false;
3810
3811    // Find the innermost enclosing namespace for the new and
3812    // previous declarations.
3813    OuterContext = OuterContext->getEnclosingNamespaceContext();
3814    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3815
3816    // The previous declaration is in a different namespace, so it
3817    // isn't the same function.
3818    if (!OuterContext->Equals(PrevOuterContext))
3819      return false;
3820  }
3821
3822  return true;
3823}
3824
3825static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3826  CXXScopeSpec &SS = D.getCXXScopeSpec();
3827  if (!SS.isSet()) return;
3828  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3829}
3830
3831bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3832  QualType type = decl->getType();
3833  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3834  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3835    // Various kinds of declaration aren't allowed to be __autoreleasing.
3836    unsigned kind = -1U;
3837    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3838      if (var->hasAttr<BlocksAttr>())
3839        kind = 0; // __block
3840      else if (!var->hasLocalStorage())
3841        kind = 1; // global
3842    } else if (isa<ObjCIvarDecl>(decl)) {
3843      kind = 3; // ivar
3844    } else if (isa<FieldDecl>(decl)) {
3845      kind = 2; // field
3846    }
3847
3848    if (kind != -1U) {
3849      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3850        << kind;
3851    }
3852  } else if (lifetime == Qualifiers::OCL_None) {
3853    // Try to infer lifetime.
3854    if (!type->isObjCLifetimeType())
3855      return false;
3856
3857    lifetime = type->getObjCARCImplicitLifetime();
3858    type = Context.getLifetimeQualifiedType(type, lifetime);
3859    decl->setType(type);
3860  }
3861
3862  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3863    // Thread-local variables cannot have lifetime.
3864    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3865        var->isThreadSpecified()) {
3866      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3867        << var->getType();
3868      return true;
3869    }
3870  }
3871
3872  return false;
3873}
3874
3875NamedDecl*
3876Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3877                              TypeSourceInfo *TInfo, LookupResult &Previous,
3878                              MultiTemplateParamsArg TemplateParamLists) {
3879  QualType R = TInfo->getType();
3880  DeclarationName Name = GetNameForDeclarator(D).getName();
3881
3882  // Check that there are no default arguments (C++ only).
3883  if (getLangOpts().CPlusPlus)
3884    CheckExtraCXXDefaultArguments(D);
3885
3886  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3887  assert(SCSpec != DeclSpec::SCS_typedef &&
3888         "Parser allowed 'typedef' as storage class VarDecl.");
3889  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3890  if (SCSpec == DeclSpec::SCS_mutable) {
3891    // mutable can only appear on non-static class members, so it's always
3892    // an error here
3893    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3894    D.setInvalidType();
3895    SC = SC_None;
3896  }
3897  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3898  VarDecl::StorageClass SCAsWritten
3899    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3900
3901  IdentifierInfo *II = Name.getAsIdentifierInfo();
3902  if (!II) {
3903    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3904      << Name;
3905    return 0;
3906  }
3907
3908  DiagnoseFunctionSpecifiers(D);
3909
3910  if (!DC->isRecord() && S->getFnParent() == 0) {
3911    // C99 6.9p2: The storage-class specifiers auto and register shall not
3912    // appear in the declaration specifiers in an external declaration.
3913    if (SC == SC_Auto || SC == SC_Register) {
3914
3915      // If this is a register variable with an asm label specified, then this
3916      // is a GNU extension.
3917      if (SC == SC_Register && D.getAsmLabel())
3918        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3919      else
3920        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3921      D.setInvalidType();
3922    }
3923  }
3924
3925  if (getLangOpts().OpenCL) {
3926    // Set up the special work-group-local storage class for variables in the
3927    // OpenCL __local address space.
3928    if (R.getAddressSpace() == LangAS::opencl_local)
3929      SC = SC_OpenCLWorkGroupLocal;
3930  }
3931
3932  bool isExplicitSpecialization = false;
3933  VarDecl *NewVD;
3934  if (!getLangOpts().CPlusPlus) {
3935    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
3936                            D.getIdentifierLoc(), II,
3937                            R, TInfo, SC, SCAsWritten);
3938
3939    if (D.isInvalidType())
3940      NewVD->setInvalidDecl();
3941  } else {
3942    if (DC->isRecord() && !CurContext->isRecord()) {
3943      // This is an out-of-line definition of a static data member.
3944      if (SC == SC_Static) {
3945        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3946             diag::err_static_out_of_line)
3947          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3948      } else if (SC == SC_None)
3949        SC = SC_Static;
3950    }
3951    if (SC == SC_Static && CurContext->isRecord()) {
3952      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3953        if (RD->isLocalClass())
3954          Diag(D.getIdentifierLoc(),
3955               diag::err_static_data_member_not_allowed_in_local_class)
3956            << Name << RD->getDeclName();
3957
3958        // C++98 [class.union]p1: If a union contains a static data member,
3959        // the program is ill-formed. C++11 drops this restriction.
3960        if (RD->isUnion())
3961          Diag(D.getIdentifierLoc(),
3962               getLangOpts().CPlusPlus0x
3963                 ? diag::warn_cxx98_compat_static_data_member_in_union
3964                 : diag::ext_static_data_member_in_union) << Name;
3965        // We conservatively disallow static data members in anonymous structs.
3966        else if (!RD->getDeclName())
3967          Diag(D.getIdentifierLoc(),
3968               diag::err_static_data_member_not_allowed_in_anon_struct)
3969            << Name << RD->isUnion();
3970      }
3971    }
3972
3973    // Match up the template parameter lists with the scope specifier, then
3974    // determine whether we have a template or a template specialization.
3975    isExplicitSpecialization = false;
3976    bool Invalid = false;
3977    if (TemplateParameterList *TemplateParams
3978        = MatchTemplateParametersToScopeSpecifier(
3979                                  D.getDeclSpec().getLocStart(),
3980                                                  D.getIdentifierLoc(),
3981                                                  D.getCXXScopeSpec(),
3982                                                  TemplateParamLists.get(),
3983                                                  TemplateParamLists.size(),
3984                                                  /*never a friend*/ false,
3985                                                  isExplicitSpecialization,
3986                                                  Invalid)) {
3987      if (TemplateParams->size() > 0) {
3988        // There is no such thing as a variable template.
3989        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3990          << II
3991          << SourceRange(TemplateParams->getTemplateLoc(),
3992                         TemplateParams->getRAngleLoc());
3993        return 0;
3994      } else {
3995        // There is an extraneous 'template<>' for this variable. Complain
3996        // about it, but allow the declaration of the variable.
3997        Diag(TemplateParams->getTemplateLoc(),
3998             diag::err_template_variable_noparams)
3999          << II
4000          << SourceRange(TemplateParams->getTemplateLoc(),
4001                         TemplateParams->getRAngleLoc());
4002      }
4003    }
4004
4005    NewVD = VarDecl::Create(Context, DC, D.getLocStart(),
4006                            D.getIdentifierLoc(), II,
4007                            R, TInfo, SC, SCAsWritten);
4008
4009    // If this decl has an auto type in need of deduction, make a note of the
4010    // Decl so we can diagnose uses of it in its own initializer.
4011    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
4012        R->getContainedAutoType())
4013      ParsingInitForAutoVars.insert(NewVD);
4014
4015    if (D.isInvalidType() || Invalid)
4016      NewVD->setInvalidDecl();
4017
4018    SetNestedNameSpecifier(NewVD, D);
4019
4020    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
4021      NewVD->setTemplateParameterListsInfo(Context,
4022                                           TemplateParamLists.size(),
4023                                           TemplateParamLists.release());
4024    }
4025
4026    if (D.getDeclSpec().isConstexprSpecified())
4027      NewVD->setConstexpr(true);
4028  }
4029
4030  // Set the lexical context. If the declarator has a C++ scope specifier, the
4031  // lexical context will be different from the semantic context.
4032  NewVD->setLexicalDeclContext(CurContext);
4033
4034  if (D.getDeclSpec().isThreadSpecified()) {
4035    if (NewVD->hasLocalStorage())
4036      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
4037    else if (!Context.getTargetInfo().isTLSSupported())
4038      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
4039    else
4040      NewVD->setThreadSpecified(true);
4041  }
4042
4043  if (D.getDeclSpec().isModulePrivateSpecified()) {
4044    if (isExplicitSpecialization)
4045      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
4046        << 2
4047        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4048    else if (NewVD->hasLocalStorage())
4049      Diag(NewVD->getLocation(), diag::err_module_private_local)
4050        << 0 << NewVD->getDeclName()
4051        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
4052        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
4053    else
4054      NewVD->setModulePrivate();
4055  }
4056
4057  // Handle attributes prior to checking for duplicates in MergeVarDecl
4058  ProcessDeclAttributes(S, NewVD, D);
4059
4060  // In auto-retain/release, infer strong retension for variables of
4061  // retainable type.
4062  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
4063    NewVD->setInvalidDecl();
4064
4065  // Handle GNU asm-label extension (encoded as an attribute).
4066  if (Expr *E = (Expr*)D.getAsmLabel()) {
4067    // The parser guarantees this is a string.
4068    StringLiteral *SE = cast<StringLiteral>(E);
4069    StringRef Label = SE->getString();
4070    if (S->getFnParent() != 0) {
4071      switch (SC) {
4072      case SC_None:
4073      case SC_Auto:
4074        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
4075        break;
4076      case SC_Register:
4077        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
4078          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
4079        break;
4080      case SC_Static:
4081      case SC_Extern:
4082      case SC_PrivateExtern:
4083      case SC_OpenCLWorkGroupLocal:
4084        break;
4085      }
4086    }
4087
4088    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
4089                                                Context, Label));
4090  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
4091    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
4092      ExtnameUndeclaredIdentifiers.find(NewVD->getIdentifier());
4093    if (I != ExtnameUndeclaredIdentifiers.end()) {
4094      NewVD->addAttr(I->second);
4095      ExtnameUndeclaredIdentifiers.erase(I);
4096    }
4097  }
4098
4099  // Diagnose shadowed variables before filtering for scope.
4100  if (!D.getCXXScopeSpec().isSet())
4101    CheckShadow(S, NewVD, Previous);
4102
4103  // Don't consider existing declarations that are in a different
4104  // scope and are out-of-semantic-context declarations (if the new
4105  // declaration has linkage).
4106  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
4107                       isExplicitSpecialization);
4108
4109  if (!getLangOpts().CPlusPlus) {
4110    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4111  } else {
4112    // Merge the decl with the existing one if appropriate.
4113    if (!Previous.empty()) {
4114      if (Previous.isSingleResult() &&
4115          isa<FieldDecl>(Previous.getFoundDecl()) &&
4116          D.getCXXScopeSpec().isSet()) {
4117        // The user tried to define a non-static data member
4118        // out-of-line (C++ [dcl.meaning]p1).
4119        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
4120          << D.getCXXScopeSpec().getRange();
4121        Previous.clear();
4122        NewVD->setInvalidDecl();
4123      }
4124    } else if (D.getCXXScopeSpec().isSet()) {
4125      // No previous declaration in the qualifying scope.
4126      Diag(D.getIdentifierLoc(), diag::err_no_member)
4127        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
4128        << D.getCXXScopeSpec().getRange();
4129      NewVD->setInvalidDecl();
4130    }
4131
4132    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
4133
4134    // This is an explicit specialization of a static data member. Check it.
4135    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
4136        CheckMemberSpecialization(NewVD, Previous))
4137      NewVD->setInvalidDecl();
4138  }
4139
4140  // attributes declared post-definition are currently ignored
4141  // FIXME: This should be handled in attribute merging, not
4142  // here.
4143  if (Previous.isSingleResult()) {
4144    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
4145    if (Def && (Def = Def->getDefinition()) &&
4146        Def != NewVD && D.hasAttributes()) {
4147      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
4148      Diag(Def->getLocation(), diag::note_previous_definition);
4149    }
4150  }
4151
4152  // If this is a locally-scoped extern C variable, update the map of
4153  // such variables.
4154  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
4155      !NewVD->isInvalidDecl())
4156    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
4157
4158  // If there's a #pragma GCC visibility in scope, and this isn't a class
4159  // member, set the visibility of this variable.
4160  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
4161    AddPushedVisibilityAttribute(NewVD);
4162
4163  MarkUnusedFileScopedDecl(NewVD);
4164
4165  return NewVD;
4166}
4167
4168/// \brief Diagnose variable or built-in function shadowing.  Implements
4169/// -Wshadow.
4170///
4171/// This method is called whenever a VarDecl is added to a "useful"
4172/// scope.
4173///
4174/// \param S the scope in which the shadowing name is being declared
4175/// \param R the lookup of the name
4176///
4177void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4178  // Return if warning is ignored.
4179  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4180        DiagnosticsEngine::Ignored)
4181    return;
4182
4183  // Don't diagnose declarations at file scope.
4184  if (D->hasGlobalStorage())
4185    return;
4186
4187  DeclContext *NewDC = D->getDeclContext();
4188
4189  // Only diagnose if we're shadowing an unambiguous field or variable.
4190  if (R.getResultKind() != LookupResult::Found)
4191    return;
4192
4193  NamedDecl* ShadowedDecl = R.getFoundDecl();
4194  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4195    return;
4196
4197  // Fields are not shadowed by variables in C++ static methods.
4198  if (isa<FieldDecl>(ShadowedDecl))
4199    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4200      if (MD->isStatic())
4201        return;
4202
4203  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4204    if (shadowedVar->isExternC()) {
4205      // For shadowing external vars, make sure that we point to the global
4206      // declaration, not a locally scoped extern declaration.
4207      for (VarDecl::redecl_iterator
4208             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4209           I != E; ++I)
4210        if (I->isFileVarDecl()) {
4211          ShadowedDecl = *I;
4212          break;
4213        }
4214    }
4215
4216  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4217
4218  // Only warn about certain kinds of shadowing for class members.
4219  if (NewDC && NewDC->isRecord()) {
4220    // In particular, don't warn about shadowing non-class members.
4221    if (!OldDC->isRecord())
4222      return;
4223
4224    // TODO: should we warn about static data members shadowing
4225    // static data members from base classes?
4226
4227    // TODO: don't diagnose for inaccessible shadowed members.
4228    // This is hard to do perfectly because we might friend the
4229    // shadowing context, but that's just a false negative.
4230  }
4231
4232  // Determine what kind of declaration we're shadowing.
4233  unsigned Kind;
4234  if (isa<RecordDecl>(OldDC)) {
4235    if (isa<FieldDecl>(ShadowedDecl))
4236      Kind = 3; // field
4237    else
4238      Kind = 2; // static data member
4239  } else if (OldDC->isFileContext())
4240    Kind = 1; // global
4241  else
4242    Kind = 0; // local
4243
4244  DeclarationName Name = R.getLookupName();
4245
4246  // Emit warning and note.
4247  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4248  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4249}
4250
4251/// \brief Check -Wshadow without the advantage of a previous lookup.
4252void Sema::CheckShadow(Scope *S, VarDecl *D) {
4253  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4254        DiagnosticsEngine::Ignored)
4255    return;
4256
4257  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4258                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4259  LookupName(R, S);
4260  CheckShadow(S, D, R);
4261}
4262
4263/// \brief Perform semantic checking on a newly-created variable
4264/// declaration.
4265///
4266/// This routine performs all of the type-checking required for a
4267/// variable declaration once it has been built. It is used both to
4268/// check variables after they have been parsed and their declarators
4269/// have been translated into a declaration, and to check variables
4270/// that have been instantiated from a template.
4271///
4272/// Sets NewVD->isInvalidDecl() if an error was encountered.
4273///
4274/// Returns true if the variable declaration is a redeclaration.
4275bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4276                                    LookupResult &Previous) {
4277  // If the decl is already known invalid, don't check it.
4278  if (NewVD->isInvalidDecl())
4279    return false;
4280
4281  QualType T = NewVD->getType();
4282
4283  if (T->isObjCObjectType()) {
4284    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4285      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4286    T = Context.getObjCObjectPointerType(T);
4287    NewVD->setType(T);
4288  }
4289
4290  // Emit an error if an address space was applied to decl with local storage.
4291  // This includes arrays of objects with address space qualifiers, but not
4292  // automatic variables that point to other address spaces.
4293  // ISO/IEC TR 18037 S5.1.2
4294  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4295    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4296    NewVD->setInvalidDecl();
4297    return false;
4298  }
4299
4300  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4301      && !NewVD->hasAttr<BlocksAttr>()) {
4302    if (getLangOpts().getGC() != LangOptions::NonGC)
4303      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4304    else
4305      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4306  }
4307
4308  bool isVM = T->isVariablyModifiedType();
4309  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4310      NewVD->hasAttr<BlocksAttr>())
4311    getCurFunction()->setHasBranchProtectedScope();
4312
4313  if ((isVM && NewVD->hasLinkage()) ||
4314      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4315    bool SizeIsNegative;
4316    llvm::APSInt Oversized;
4317    QualType FixedTy =
4318        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4319                                            Oversized);
4320
4321    if (FixedTy.isNull() && T->isVariableArrayType()) {
4322      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4323      // FIXME: This won't give the correct result for
4324      // int a[10][n];
4325      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4326
4327      if (NewVD->isFileVarDecl())
4328        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4329        << SizeRange;
4330      else if (NewVD->getStorageClass() == SC_Static)
4331        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4332        << SizeRange;
4333      else
4334        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4335        << SizeRange;
4336      NewVD->setInvalidDecl();
4337      return false;
4338    }
4339
4340    if (FixedTy.isNull()) {
4341      if (NewVD->isFileVarDecl())
4342        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4343      else
4344        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4345      NewVD->setInvalidDecl();
4346      return false;
4347    }
4348
4349    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4350    NewVD->setType(FixedTy);
4351  }
4352
4353  if (Previous.empty() && NewVD->isExternC()) {
4354    // Since we did not find anything by this name and we're declaring
4355    // an extern "C" variable, look for a non-visible extern "C"
4356    // declaration with the same name.
4357    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4358      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4359    if (Pos != LocallyScopedExternalDecls.end())
4360      Previous.addDecl(Pos->second);
4361  }
4362
4363  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4364    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4365      << T;
4366    NewVD->setInvalidDecl();
4367    return false;
4368  }
4369
4370  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4371    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4372    NewVD->setInvalidDecl();
4373    return false;
4374  }
4375
4376  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4377    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4378    NewVD->setInvalidDecl();
4379    return false;
4380  }
4381
4382  if (NewVD->isConstexpr() && !T->isDependentType() &&
4383      RequireLiteralType(NewVD->getLocation(), T,
4384                         PDiag(diag::err_constexpr_var_non_literal))) {
4385    NewVD->setInvalidDecl();
4386    return false;
4387  }
4388
4389  if (!Previous.empty()) {
4390    MergeVarDecl(NewVD, Previous);
4391    return true;
4392  }
4393  return false;
4394}
4395
4396/// \brief Data used with FindOverriddenMethod
4397struct FindOverriddenMethodData {
4398  Sema *S;
4399  CXXMethodDecl *Method;
4400};
4401
4402/// \brief Member lookup function that determines whether a given C++
4403/// method overrides a method in a base class, to be used with
4404/// CXXRecordDecl::lookupInBases().
4405static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4406                                 CXXBasePath &Path,
4407                                 void *UserData) {
4408  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4409
4410  FindOverriddenMethodData *Data
4411    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4412
4413  DeclarationName Name = Data->Method->getDeclName();
4414
4415  // FIXME: Do we care about other names here too?
4416  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4417    // We really want to find the base class destructor here.
4418    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4419    CanQualType CT = Data->S->Context.getCanonicalType(T);
4420
4421    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4422  }
4423
4424  for (Path.Decls = BaseRecord->lookup(Name);
4425       Path.Decls.first != Path.Decls.second;
4426       ++Path.Decls.first) {
4427    NamedDecl *D = *Path.Decls.first;
4428    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4429      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4430        return true;
4431    }
4432  }
4433
4434  return false;
4435}
4436
4437/// AddOverriddenMethods - See if a method overrides any in the base classes,
4438/// and if so, check that it's a valid override and remember it.
4439bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4440  // Look for virtual methods in base classes that this method might override.
4441  CXXBasePaths Paths;
4442  FindOverriddenMethodData Data;
4443  Data.Method = MD;
4444  Data.S = this;
4445  bool AddedAny = false;
4446  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4447    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4448         E = Paths.found_decls_end(); I != E; ++I) {
4449      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4450        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4451        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4452            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4453            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4454          AddedAny = true;
4455        }
4456      }
4457    }
4458  }
4459
4460  return AddedAny;
4461}
4462
4463namespace {
4464  // Struct for holding all of the extra arguments needed by
4465  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4466  struct ActOnFDArgs {
4467    Scope *S;
4468    Declarator &D;
4469    MultiTemplateParamsArg TemplateParamLists;
4470    bool AddToScope;
4471  };
4472}
4473
4474namespace {
4475
4476// Callback to only accept typo corrections that have a non-zero edit distance.
4477// Also only accept corrections that have the same parent decl.
4478class DifferentNameValidatorCCC : public CorrectionCandidateCallback {
4479 public:
4480  DifferentNameValidatorCCC(CXXRecordDecl *Parent)
4481      : ExpectedParent(Parent ? Parent->getCanonicalDecl() : 0) {}
4482
4483  virtual bool ValidateCandidate(const TypoCorrection &candidate) {
4484    if (candidate.getEditDistance() == 0)
4485      return false;
4486
4487    if (CXXMethodDecl *MD = candidate.getCorrectionDeclAs<CXXMethodDecl>()) {
4488      CXXRecordDecl *Parent = MD->getParent();
4489      return Parent && Parent->getCanonicalDecl() == ExpectedParent;
4490    }
4491
4492    return !ExpectedParent;
4493  }
4494
4495 private:
4496  CXXRecordDecl *ExpectedParent;
4497};
4498
4499}
4500
4501/// \brief Generate diagnostics for an invalid function redeclaration.
4502///
4503/// This routine handles generating the diagnostic messages for an invalid
4504/// function redeclaration, including finding possible similar declarations
4505/// or performing typo correction if there are no previous declarations with
4506/// the same name.
4507///
4508/// Returns a NamedDecl iff typo correction was performed and substituting in
4509/// the new declaration name does not cause new errors.
4510static NamedDecl* DiagnoseInvalidRedeclaration(
4511    Sema &SemaRef, LookupResult &Previous, FunctionDecl *NewFD,
4512    ActOnFDArgs &ExtraArgs) {
4513  NamedDecl *Result = NULL;
4514  DeclarationName Name = NewFD->getDeclName();
4515  DeclContext *NewDC = NewFD->getDeclContext();
4516  LookupResult Prev(SemaRef, Name, NewFD->getLocation(),
4517                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4518  llvm::SmallVector<unsigned, 1> MismatchedParams;
4519  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4520  TypoCorrection Correction;
4521  bool isFriendDecl = (SemaRef.getLangOpts().CPlusPlus &&
4522                       ExtraArgs.D.getDeclSpec().isFriendSpecified());
4523  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4524                                  : diag::err_member_def_does_not_match;
4525
4526  NewFD->setInvalidDecl();
4527  SemaRef.LookupQualifiedName(Prev, NewDC);
4528  assert(!Prev.isAmbiguous() &&
4529         "Cannot have an ambiguity in previous-declaration lookup");
4530  CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewFD);
4531  DifferentNameValidatorCCC Validator(MD ? MD->getParent() : 0);
4532  if (!Prev.empty()) {
4533    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4534         Func != FuncEnd; ++Func) {
4535      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4536      if (FD &&
4537          hasSimilarParameters(SemaRef.Context, FD, NewFD, MismatchedParams)) {
4538        // Add 1 to the index so that 0 can mean the mismatch didn't
4539        // involve a parameter
4540        unsigned ParamNum =
4541            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4542        NearMatches.push_back(std::make_pair(FD, ParamNum));
4543      }
4544    }
4545  // If the qualified name lookup yielded nothing, try typo correction
4546  } else if ((Correction = SemaRef.CorrectTypo(Prev.getLookupNameInfo(),
4547                                         Prev.getLookupKind(), 0, 0,
4548                                         Validator, NewDC))) {
4549    // Trap errors.
4550    Sema::SFINAETrap Trap(SemaRef);
4551
4552    // Set up everything for the call to ActOnFunctionDeclarator
4553    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4554                              ExtraArgs.D.getIdentifierLoc());
4555    Previous.clear();
4556    Previous.setLookupName(Correction.getCorrection());
4557    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4558                                    CDeclEnd = Correction.end();
4559         CDecl != CDeclEnd; ++CDecl) {
4560      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4561      if (FD && hasSimilarParameters(SemaRef.Context, FD, NewFD,
4562                                     MismatchedParams)) {
4563        Previous.addDecl(FD);
4564      }
4565    }
4566    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4567    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4568    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4569    // eliminate the need for the parameter pack ExtraArgs.
4570    Result = SemaRef.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D,
4571                                             NewFD->getDeclContext(),
4572                                             NewFD->getTypeSourceInfo(),
4573                                             Previous,
4574                                             ExtraArgs.TemplateParamLists,
4575                                             ExtraArgs.AddToScope);
4576    if (Trap.hasErrorOccurred()) {
4577      // Pretend the typo correction never occurred
4578      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4579                                ExtraArgs.D.getIdentifierLoc());
4580      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4581      Previous.clear();
4582      Previous.setLookupName(Name);
4583      Result = NULL;
4584    } else {
4585      for (LookupResult::iterator Func = Previous.begin(),
4586                               FuncEnd = Previous.end();
4587           Func != FuncEnd; ++Func) {
4588        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4589          NearMatches.push_back(std::make_pair(FD, 0));
4590      }
4591    }
4592    if (NearMatches.empty()) {
4593      // Ignore the correction if it didn't yield any close FunctionDecl matches
4594      Correction = TypoCorrection();
4595    } else {
4596      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4597                             : diag::err_member_def_does_not_match_suggest;
4598    }
4599  }
4600
4601  if (Correction)
4602    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4603        << Name << NewDC << Correction.getQuoted(SemaRef.getLangOpts())
4604        << FixItHint::CreateReplacement(
4605            NewFD->getLocation(),
4606            Correction.getAsString(SemaRef.getLangOpts()));
4607  else
4608    SemaRef.Diag(NewFD->getLocation(), DiagMsg)
4609        << Name << NewDC << NewFD->getLocation();
4610
4611  bool NewFDisConst = false;
4612  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4613    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4614
4615  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4616       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4617       NearMatch != NearMatchEnd; ++NearMatch) {
4618    FunctionDecl *FD = NearMatch->first;
4619    bool FDisConst = false;
4620    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4621      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4622
4623    if (unsigned Idx = NearMatch->second) {
4624      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4625      SemaRef.Diag(FDParam->getTypeSpecStartLoc(),
4626             diag::note_member_def_close_param_match)
4627          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4628    } else if (Correction) {
4629      SemaRef.Diag(FD->getLocation(), diag::note_previous_decl)
4630          << Correction.getQuoted(SemaRef.getLangOpts());
4631    } else if (FDisConst != NewFDisConst) {
4632      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4633          << NewFDisConst << FD->getSourceRange().getEnd();
4634    } else
4635      SemaRef.Diag(FD->getLocation(), diag::note_member_def_close_match);
4636  }
4637  return Result;
4638}
4639
4640static FunctionDecl::StorageClass getFunctionStorageClass(Sema &SemaRef,
4641                                                          Declarator &D) {
4642  switch (D.getDeclSpec().getStorageClassSpec()) {
4643  default: llvm_unreachable("Unknown storage class!");
4644  case DeclSpec::SCS_auto:
4645  case DeclSpec::SCS_register:
4646  case DeclSpec::SCS_mutable:
4647    SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4648                 diag::err_typecheck_sclass_func);
4649    D.setInvalidType();
4650    break;
4651  case DeclSpec::SCS_unspecified: break;
4652  case DeclSpec::SCS_extern: return SC_Extern;
4653  case DeclSpec::SCS_static: {
4654    if (SemaRef.CurContext->getRedeclContext()->isFunctionOrMethod()) {
4655      // C99 6.7.1p5:
4656      //   The declaration of an identifier for a function that has
4657      //   block scope shall have no explicit storage-class specifier
4658      //   other than extern
4659      // See also (C++ [dcl.stc]p4).
4660      SemaRef.Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4661                   diag::err_static_block_func);
4662      break;
4663    } else
4664      return SC_Static;
4665  }
4666  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
4667  }
4668
4669  // No explicit storage class has already been returned
4670  return SC_None;
4671}
4672
4673static FunctionDecl* CreateNewFunctionDecl(Sema &SemaRef, Declarator &D,
4674                                           DeclContext *DC, QualType &R,
4675                                           TypeSourceInfo *TInfo,
4676                                           FunctionDecl::StorageClass SC,
4677                                           bool &IsVirtualOkay) {
4678  DeclarationNameInfo NameInfo = SemaRef.GetNameForDeclarator(D);
4679  DeclarationName Name = NameInfo.getName();
4680
4681  FunctionDecl *NewFD = 0;
4682  bool isInline = D.getDeclSpec().isInlineSpecified();
4683  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4684  FunctionDecl::StorageClass SCAsWritten
4685    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4686
4687  if (!SemaRef.getLangOpts().CPlusPlus) {
4688    // Determine whether the function was written with a
4689    // prototype. This true when:
4690    //   - there is a prototype in the declarator, or
4691    //   - the type R of the function is some kind of typedef or other reference
4692    //     to a type name (which eventually refers to a function type).
4693    bool HasPrototype =
4694      (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4695      (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4696
4697    NewFD = FunctionDecl::Create(SemaRef.Context, DC,
4698                                 D.getLocStart(), NameInfo, R,
4699                                 TInfo, SC, SCAsWritten, isInline,
4700                                 HasPrototype);
4701    if (D.isInvalidType())
4702      NewFD->setInvalidDecl();
4703
4704    // Set the lexical context.
4705    NewFD->setLexicalDeclContext(SemaRef.CurContext);
4706
4707    return NewFD;
4708  }
4709
4710  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4711  bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4712
4713  // Check that the return type is not an abstract class type.
4714  // For record types, this is done by the AbstractClassUsageDiagnoser once
4715  // the class has been completely parsed.
4716  if (!DC->isRecord() &&
4717      SemaRef.RequireNonAbstractType(D.getIdentifierLoc(),
4718                                     R->getAs<FunctionType>()->getResultType(),
4719                                     diag::err_abstract_type_in_decl,
4720                                     SemaRef.AbstractReturnType))
4721    D.setInvalidType();
4722
4723  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4724    // This is a C++ constructor declaration.
4725    assert(DC->isRecord() &&
4726           "Constructors can only be declared in a member context");
4727
4728    R = SemaRef.CheckConstructorDeclarator(D, R, SC);
4729    return CXXConstructorDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4730                                      D.getLocStart(), NameInfo,
4731                                      R, TInfo, isExplicit, isInline,
4732                                      /*isImplicitlyDeclared=*/false,
4733                                      isConstexpr);
4734
4735  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4736    // This is a C++ destructor declaration.
4737    if (DC->isRecord()) {
4738      R = SemaRef.CheckDestructorDeclarator(D, R, SC);
4739      CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4740      CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(
4741                                        SemaRef.Context, Record,
4742                                        D.getLocStart(),
4743                                        NameInfo, R, TInfo, isInline,
4744                                        /*isImplicitlyDeclared=*/false);
4745
4746      // If the class is complete, then we now create the implicit exception
4747      // specification. If the class is incomplete or dependent, we can't do
4748      // it yet.
4749      if (SemaRef.getLangOpts().CPlusPlus0x && !Record->isDependentType() &&
4750          Record->getDefinition() && !Record->isBeingDefined() &&
4751          R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4752        SemaRef.AdjustDestructorExceptionSpec(Record, NewDD);
4753      }
4754
4755      IsVirtualOkay = true;
4756      return NewDD;
4757
4758    } else {
4759      SemaRef.Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4760      D.setInvalidType();
4761
4762      // Create a FunctionDecl to satisfy the function definition parsing
4763      // code path.
4764      return FunctionDecl::Create(SemaRef.Context, DC,
4765                                  D.getLocStart(),
4766                                  D.getIdentifierLoc(), Name, R, TInfo,
4767                                  SC, SCAsWritten, isInline,
4768                                  /*hasPrototype=*/true, isConstexpr);
4769    }
4770
4771  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4772    if (!DC->isRecord()) {
4773      SemaRef.Diag(D.getIdentifierLoc(),
4774           diag::err_conv_function_not_member);
4775      return 0;
4776    }
4777
4778    SemaRef.CheckConversionDeclarator(D, R, SC);
4779    IsVirtualOkay = true;
4780    return CXXConversionDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4781                                     D.getLocStart(), NameInfo,
4782                                     R, TInfo, isInline, isExplicit,
4783                                     isConstexpr, SourceLocation());
4784
4785  } else if (DC->isRecord()) {
4786    // If the name of the function is the same as the name of the record,
4787    // then this must be an invalid constructor that has a return type.
4788    // (The parser checks for a return type and makes the declarator a
4789    // constructor if it has no return type).
4790    if (Name.getAsIdentifierInfo() &&
4791        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4792      SemaRef.Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4793        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4794        << SourceRange(D.getIdentifierLoc());
4795      return 0;
4796    }
4797
4798    bool isStatic = SC == SC_Static;
4799
4800    // [class.free]p1:
4801    // Any allocation function for a class T is a static member
4802    // (even if not explicitly declared static).
4803    if (Name.getCXXOverloadedOperator() == OO_New ||
4804        Name.getCXXOverloadedOperator() == OO_Array_New)
4805      isStatic = true;
4806
4807    // [class.free]p6 Any deallocation function for a class X is a static member
4808    // (even if not explicitly declared static).
4809    if (Name.getCXXOverloadedOperator() == OO_Delete ||
4810        Name.getCXXOverloadedOperator() == OO_Array_Delete)
4811      isStatic = true;
4812
4813    IsVirtualOkay = !isStatic;
4814
4815    // This is a C++ method declaration.
4816    return CXXMethodDecl::Create(SemaRef.Context, cast<CXXRecordDecl>(DC),
4817                                 D.getLocStart(), NameInfo, R,
4818                                 TInfo, isStatic, SCAsWritten, isInline,
4819                                 isConstexpr, SourceLocation());
4820
4821  } else {
4822    // Determine whether the function was written with a
4823    // prototype. This true when:
4824    //   - we're in C++ (where every function has a prototype),
4825    return FunctionDecl::Create(SemaRef.Context, DC,
4826                                D.getLocStart(),
4827                                NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4828                                true/*HasPrototype*/, isConstexpr);
4829  }
4830}
4831
4832NamedDecl*
4833Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4834                              TypeSourceInfo *TInfo, LookupResult &Previous,
4835                              MultiTemplateParamsArg TemplateParamLists,
4836                              bool &AddToScope) {
4837  QualType R = TInfo->getType();
4838
4839  assert(R.getTypePtr()->isFunctionType());
4840
4841  // TODO: consider using NameInfo for diagnostic.
4842  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4843  DeclarationName Name = NameInfo.getName();
4844  FunctionDecl::StorageClass SC = getFunctionStorageClass(*this, D);
4845
4846  if (D.getDeclSpec().isThreadSpecified())
4847    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4848
4849  // Do not allow returning a objc interface by-value.
4850  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4851    Diag(D.getIdentifierLoc(),
4852         diag::err_object_cannot_be_passed_returned_by_value) << 0
4853    << R->getAs<FunctionType>()->getResultType()
4854    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4855
4856    QualType T = R->getAs<FunctionType>()->getResultType();
4857    T = Context.getObjCObjectPointerType(T);
4858    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4859      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4860      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4861                                  FPT->getNumArgs(), EPI);
4862    }
4863    else if (isa<FunctionNoProtoType>(R))
4864      R = Context.getFunctionNoProtoType(T);
4865  }
4866
4867  bool isFriend = false;
4868  FunctionTemplateDecl *FunctionTemplate = 0;
4869  bool isExplicitSpecialization = false;
4870  bool isFunctionTemplateSpecialization = false;
4871  bool isDependentClassScopeExplicitSpecialization = false;
4872  bool isVirtualOkay = false;
4873
4874  FunctionDecl *NewFD = CreateNewFunctionDecl(*this, D, DC, R, TInfo, SC,
4875                                              isVirtualOkay);
4876  if (!NewFD) return 0;
4877
4878  if (OriginalLexicalContext && OriginalLexicalContext->isObjCContainer())
4879    NewFD->setTopLevelDeclInObjCContainer();
4880
4881  if (getLangOpts().CPlusPlus) {
4882    bool isInline = D.getDeclSpec().isInlineSpecified();
4883    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4884    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4885    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4886    isFriend = D.getDeclSpec().isFriendSpecified();
4887    if (isFriend && !isInline && D.isFunctionDefinition()) {
4888      // C++ [class.friend]p5
4889      //   A function can be defined in a friend declaration of a
4890      //   class . . . . Such a function is implicitly inline.
4891      NewFD->setImplicitlyInline();
4892    }
4893
4894    SetNestedNameSpecifier(NewFD, D);
4895    isExplicitSpecialization = false;
4896    isFunctionTemplateSpecialization = false;
4897    if (D.isInvalidType())
4898      NewFD->setInvalidDecl();
4899
4900    // Set the lexical context. If the declarator has a C++
4901    // scope specifier, or is the object of a friend declaration, the
4902    // lexical context will be different from the semantic context.
4903    NewFD->setLexicalDeclContext(CurContext);
4904
4905    // Match up the template parameter lists with the scope specifier, then
4906    // determine whether we have a template or a template specialization.
4907    bool Invalid = false;
4908    if (TemplateParameterList *TemplateParams
4909          = MatchTemplateParametersToScopeSpecifier(
4910                                  D.getDeclSpec().getLocStart(),
4911                                  D.getIdentifierLoc(),
4912                                  D.getCXXScopeSpec(),
4913                                  TemplateParamLists.get(),
4914                                  TemplateParamLists.size(),
4915                                  isFriend,
4916                                  isExplicitSpecialization,
4917                                  Invalid)) {
4918      if (TemplateParams->size() > 0) {
4919        // This is a function template
4920
4921        // Check that we can declare a template here.
4922        if (CheckTemplateDeclScope(S, TemplateParams))
4923          return 0;
4924
4925        // A destructor cannot be a template.
4926        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4927          Diag(NewFD->getLocation(), diag::err_destructor_template);
4928          return 0;
4929        }
4930
4931        // If we're adding a template to a dependent context, we may need to
4932        // rebuilding some of the types used within the template parameter list,
4933        // now that we know what the current instantiation is.
4934        if (DC->isDependentContext()) {
4935          ContextRAII SavedContext(*this, DC);
4936          if (RebuildTemplateParamsInCurrentInstantiation(TemplateParams))
4937            Invalid = true;
4938        }
4939
4940
4941        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4942                                                        NewFD->getLocation(),
4943                                                        Name, TemplateParams,
4944                                                        NewFD);
4945        FunctionTemplate->setLexicalDeclContext(CurContext);
4946        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4947
4948        // For source fidelity, store the other template param lists.
4949        if (TemplateParamLists.size() > 1) {
4950          NewFD->setTemplateParameterListsInfo(Context,
4951                                               TemplateParamLists.size() - 1,
4952                                               TemplateParamLists.release());
4953        }
4954      } else {
4955        // This is a function template specialization.
4956        isFunctionTemplateSpecialization = true;
4957        // For source fidelity, store all the template param lists.
4958        NewFD->setTemplateParameterListsInfo(Context,
4959                                             TemplateParamLists.size(),
4960                                             TemplateParamLists.release());
4961
4962        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4963        if (isFriend) {
4964          // We want to remove the "template<>", found here.
4965          SourceRange RemoveRange = TemplateParams->getSourceRange();
4966
4967          // If we remove the template<> and the name is not a
4968          // template-id, we're actually silently creating a problem:
4969          // the friend declaration will refer to an untemplated decl,
4970          // and clearly the user wants a template specialization.  So
4971          // we need to insert '<>' after the name.
4972          SourceLocation InsertLoc;
4973          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4974            InsertLoc = D.getName().getSourceRange().getEnd();
4975            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4976          }
4977
4978          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4979            << Name << RemoveRange
4980            << FixItHint::CreateRemoval(RemoveRange)
4981            << FixItHint::CreateInsertion(InsertLoc, "<>");
4982        }
4983      }
4984    }
4985    else {
4986      // All template param lists were matched against the scope specifier:
4987      // this is NOT (an explicit specialization of) a template.
4988      if (TemplateParamLists.size() > 0)
4989        // For source fidelity, store all the template param lists.
4990        NewFD->setTemplateParameterListsInfo(Context,
4991                                             TemplateParamLists.size(),
4992                                             TemplateParamLists.release());
4993    }
4994
4995    if (Invalid) {
4996      NewFD->setInvalidDecl();
4997      if (FunctionTemplate)
4998        FunctionTemplate->setInvalidDecl();
4999    }
5000
5001    // If we see "T var();" at block scope, where T is a class type, it is
5002    // probably an attempt to initialize a variable, not a function declaration.
5003    // We don't catch this case earlier, since there is no ambiguity here.
5004    if (!FunctionTemplate && D.getFunctionDefinitionKind() == FDK_Declaration &&
5005        CurContext->isFunctionOrMethod() &&
5006        D.getNumTypeObjects() == 1 && D.isFunctionDeclarator() &&
5007        D.getDeclSpec().getStorageClassSpecAsWritten()
5008          == DeclSpec::SCS_unspecified) {
5009      QualType T = R->getAs<FunctionType>()->getResultType();
5010      DeclaratorChunk &C = D.getTypeObject(0);
5011      if (!T->isVoidType() && C.Fun.NumArgs == 0 && !C.Fun.isVariadic &&
5012          !C.Fun.TrailingReturnType &&
5013          C.Fun.getExceptionSpecType() == EST_None) {
5014        SourceRange ParenRange(C.Loc, C.EndLoc);
5015        Diag(C.Loc, diag::warn_empty_parens_are_function_decl) << ParenRange;
5016
5017        // If the declaration looks like:
5018        //   T var1,
5019        //   f();
5020        // and name lookup finds a function named 'f', then the ',' was
5021        // probably intended to be a ';'.
5022        if (!D.isFirstDeclarator() && D.getIdentifier()) {
5023          FullSourceLoc Comma(D.getCommaLoc(), SourceMgr);
5024          FullSourceLoc Name(D.getIdentifierLoc(), SourceMgr);
5025          if (Comma.getFileID() != Name.getFileID() ||
5026              Comma.getSpellingLineNumber() != Name.getSpellingLineNumber()) {
5027            LookupResult Result(*this, D.getIdentifier(), SourceLocation(),
5028                                LookupOrdinaryName);
5029            if (LookupName(Result, S))
5030              Diag(D.getCommaLoc(), diag::note_empty_parens_function_call)
5031                << FixItHint::CreateReplacement(D.getCommaLoc(), ";") << NewFD;
5032          }
5033        }
5034        const CXXRecordDecl *RD = T->getAsCXXRecordDecl();
5035        // Empty parens mean value-initialization, and no parens mean default
5036        // initialization. These are equivalent if the default constructor is
5037        // user-provided, or if zero-initialization is a no-op.
5038        if (RD && RD->hasDefinition() &&
5039            (RD->isEmpty() || RD->hasUserProvidedDefaultConstructor()))
5040          Diag(C.Loc, diag::note_empty_parens_default_ctor)
5041            << FixItHint::CreateRemoval(ParenRange);
5042        else if (const char *Init = getFixItZeroInitializerForType(T))
5043          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5044            << FixItHint::CreateReplacement(ParenRange, Init);
5045        else if (LangOpts.CPlusPlus0x)
5046          Diag(C.Loc, diag::note_empty_parens_zero_initialize)
5047            << FixItHint::CreateReplacement(ParenRange, "{}");
5048      }
5049    }
5050
5051    // C++ [dcl.fct.spec]p5:
5052    //   The virtual specifier shall only be used in declarations of
5053    //   nonstatic class member functions that appear within a
5054    //   member-specification of a class declaration; see 10.3.
5055    //
5056    if (isVirtual && !NewFD->isInvalidDecl()) {
5057      if (!isVirtualOkay) {
5058        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5059             diag::err_virtual_non_function);
5060      } else if (!CurContext->isRecord()) {
5061        // 'virtual' was specified outside of the class.
5062        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5063             diag::err_virtual_out_of_class)
5064          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5065      } else if (NewFD->getDescribedFunctionTemplate()) {
5066        // C++ [temp.mem]p3:
5067        //  A member function template shall not be virtual.
5068        Diag(D.getDeclSpec().getVirtualSpecLoc(),
5069             diag::err_virtual_member_function_template)
5070          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
5071      } else {
5072        // Okay: Add virtual to the method.
5073        NewFD->setVirtualAsWritten(true);
5074      }
5075    }
5076
5077    // C++ [dcl.fct.spec]p3:
5078    //  The inline specifier shall not appear on a block scope function
5079    //  declaration.
5080    if (isInline && !NewFD->isInvalidDecl()) {
5081      if (CurContext->isFunctionOrMethod()) {
5082        // 'inline' is not allowed on block scope function declaration.
5083        Diag(D.getDeclSpec().getInlineSpecLoc(),
5084             diag::err_inline_declaration_block_scope) << Name
5085          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
5086      }
5087    }
5088
5089    // C++ [dcl.fct.spec]p6:
5090    //  The explicit specifier shall be used only in the declaration of a
5091    //  constructor or conversion function within its class definition;
5092    //  see 12.3.1 and 12.3.2.
5093    if (isExplicit && !NewFD->isInvalidDecl()) {
5094      if (!CurContext->isRecord()) {
5095        // 'explicit' was specified outside of the class.
5096        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5097             diag::err_explicit_out_of_class)
5098          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5099      } else if (!isa<CXXConstructorDecl>(NewFD) &&
5100                 !isa<CXXConversionDecl>(NewFD)) {
5101        // 'explicit' was specified on a function that wasn't a constructor
5102        // or conversion function.
5103        Diag(D.getDeclSpec().getExplicitSpecLoc(),
5104             diag::err_explicit_non_ctor_or_conv_function)
5105          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
5106      }
5107    }
5108
5109    if (isConstexpr) {
5110      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
5111      // are implicitly inline.
5112      NewFD->setImplicitlyInline();
5113
5114      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
5115      // be either constructors or to return a literal type. Therefore,
5116      // destructors cannot be declared constexpr.
5117      if (isa<CXXDestructorDecl>(NewFD))
5118        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
5119    }
5120
5121    // If __module_private__ was specified, mark the function accordingly.
5122    if (D.getDeclSpec().isModulePrivateSpecified()) {
5123      if (isFunctionTemplateSpecialization) {
5124        SourceLocation ModulePrivateLoc
5125          = D.getDeclSpec().getModulePrivateSpecLoc();
5126        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
5127          << 0
5128          << FixItHint::CreateRemoval(ModulePrivateLoc);
5129      } else {
5130        NewFD->setModulePrivate();
5131        if (FunctionTemplate)
5132          FunctionTemplate->setModulePrivate();
5133      }
5134    }
5135
5136    if (isFriend) {
5137      // For now, claim that the objects have no previous declaration.
5138      if (FunctionTemplate) {
5139        FunctionTemplate->setObjectOfFriendDecl(false);
5140        FunctionTemplate->setAccess(AS_public);
5141      }
5142      NewFD->setObjectOfFriendDecl(false);
5143      NewFD->setAccess(AS_public);
5144    }
5145
5146    // If a function is defined as defaulted or deleted, mark it as such now.
5147    switch (D.getFunctionDefinitionKind()) {
5148      case FDK_Declaration:
5149      case FDK_Definition:
5150        break;
5151
5152      case FDK_Defaulted:
5153        NewFD->setDefaulted();
5154        break;
5155
5156      case FDK_Deleted:
5157        NewFD->setDeletedAsWritten();
5158        break;
5159    }
5160
5161    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
5162        D.isFunctionDefinition()) {
5163      // C++ [class.mfct]p2:
5164      //   A member function may be defined (8.4) in its class definition, in
5165      //   which case it is an inline member function (7.1.2)
5166      NewFD->setImplicitlyInline();
5167    }
5168
5169    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
5170        !CurContext->isRecord()) {
5171      // C++ [class.static]p1:
5172      //   A data or function member of a class may be declared static
5173      //   in a class definition, in which case it is a static member of
5174      //   the class.
5175
5176      // Complain about the 'static' specifier if it's on an out-of-line
5177      // member function definition.
5178      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
5179           diag::err_static_out_of_line)
5180        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
5181    }
5182  }
5183
5184  // Filter out previous declarations that don't match the scope.
5185  FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
5186                       isExplicitSpecialization ||
5187                       isFunctionTemplateSpecialization);
5188
5189  // Handle GNU asm-label extension (encoded as an attribute).
5190  if (Expr *E = (Expr*) D.getAsmLabel()) {
5191    // The parser guarantees this is a string.
5192    StringLiteral *SE = cast<StringLiteral>(E);
5193    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
5194                                                SE->getString()));
5195  } else if (!ExtnameUndeclaredIdentifiers.empty()) {
5196    llvm::DenseMap<IdentifierInfo*,AsmLabelAttr*>::iterator I =
5197      ExtnameUndeclaredIdentifiers.find(NewFD->getIdentifier());
5198    if (I != ExtnameUndeclaredIdentifiers.end()) {
5199      NewFD->addAttr(I->second);
5200      ExtnameUndeclaredIdentifiers.erase(I);
5201    }
5202  }
5203
5204  // Copy the parameter declarations from the declarator D to the function
5205  // declaration NewFD, if they are available.  First scavenge them into Params.
5206  SmallVector<ParmVarDecl*, 16> Params;
5207  if (D.isFunctionDeclarator()) {
5208    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5209
5210    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
5211    // function that takes no arguments, not a function that takes a
5212    // single void argument.
5213    // We let through "const void" here because Sema::GetTypeForDeclarator
5214    // already checks for that case.
5215    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
5216        FTI.ArgInfo[0].Param &&
5217        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
5218      // Empty arg list, don't push any params.
5219      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
5220
5221      // In C++, the empty parameter-type-list must be spelled "void"; a
5222      // typedef of void is not permitted.
5223      if (getLangOpts().CPlusPlus &&
5224          Param->getType().getUnqualifiedType() != Context.VoidTy) {
5225        bool IsTypeAlias = false;
5226        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
5227          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
5228        else if (const TemplateSpecializationType *TST =
5229                   Param->getType()->getAs<TemplateSpecializationType>())
5230          IsTypeAlias = TST->isTypeAlias();
5231        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
5232          << IsTypeAlias;
5233      }
5234    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
5235      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
5236        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
5237        assert(Param->getDeclContext() != NewFD && "Was set before ?");
5238        Param->setDeclContext(NewFD);
5239        Params.push_back(Param);
5240
5241        if (Param->isInvalidDecl())
5242          NewFD->setInvalidDecl();
5243      }
5244    }
5245
5246  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
5247    // When we're declaring a function with a typedef, typeof, etc as in the
5248    // following example, we'll need to synthesize (unnamed)
5249    // parameters for use in the declaration.
5250    //
5251    // @code
5252    // typedef void fn(int);
5253    // fn f;
5254    // @endcode
5255
5256    // Synthesize a parameter for each argument type.
5257    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5258         AE = FT->arg_type_end(); AI != AE; ++AI) {
5259      ParmVarDecl *Param =
5260        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
5261      Param->setScopeInfo(0, Params.size());
5262      Params.push_back(Param);
5263    }
5264  } else {
5265    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
5266           "Should not need args for typedef of non-prototype fn");
5267  }
5268
5269  // Finally, we know we have the right number of parameters, install them.
5270  NewFD->setParams(Params);
5271
5272  // Find all anonymous symbols defined during the declaration of this function
5273  // and add to NewFD. This lets us track decls such 'enum Y' in:
5274  //
5275  //   void f(enum Y {AA} x) {}
5276  //
5277  // which would otherwise incorrectly end up in the translation unit scope.
5278  NewFD->setDeclsInPrototypeScope(DeclsInPrototypeScope);
5279  DeclsInPrototypeScope.clear();
5280
5281  // Process the non-inheritable attributes on this declaration.
5282  ProcessDeclAttributes(S, NewFD, D,
5283                        /*NonInheritable=*/true, /*Inheritable=*/false);
5284
5285  // Functions returning a variably modified type violate C99 6.7.5.2p2
5286  // because all functions have linkage.
5287  if (!NewFD->isInvalidDecl() &&
5288      NewFD->getResultType()->isVariablyModifiedType()) {
5289    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
5290    NewFD->setInvalidDecl();
5291  }
5292
5293  if (!getLangOpts().CPlusPlus) {
5294    // Perform semantic checking on the function declaration.
5295    bool isExplicitSpecialization=false;
5296    if (!NewFD->isInvalidDecl()) {
5297      if (NewFD->isMain())
5298        CheckMain(NewFD, D.getDeclSpec());
5299      D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5300                                                  isExplicitSpecialization));
5301    }
5302    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5303            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5304           "previous declaration set still overloaded");
5305  } else {
5306    // If the declarator is a template-id, translate the parser's template
5307    // argument list into our AST format.
5308    bool HasExplicitTemplateArgs = false;
5309    TemplateArgumentListInfo TemplateArgs;
5310    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5311      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5312      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5313      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5314      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5315                                         TemplateId->getTemplateArgs(),
5316                                         TemplateId->NumArgs);
5317      translateTemplateArguments(TemplateArgsPtr,
5318                                 TemplateArgs);
5319      TemplateArgsPtr.release();
5320
5321      HasExplicitTemplateArgs = true;
5322
5323      if (NewFD->isInvalidDecl()) {
5324        HasExplicitTemplateArgs = false;
5325      } else if (FunctionTemplate) {
5326        // Function template with explicit template arguments.
5327        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5328          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5329
5330        HasExplicitTemplateArgs = false;
5331      } else if (!isFunctionTemplateSpecialization &&
5332                 !D.getDeclSpec().isFriendSpecified()) {
5333        // We have encountered something that the user meant to be a
5334        // specialization (because it has explicitly-specified template
5335        // arguments) but that was not introduced with a "template<>" (or had
5336        // too few of them).
5337        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5338          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5339          << FixItHint::CreateInsertion(
5340                                    D.getDeclSpec().getLocStart(),
5341                                        "template<> ");
5342        isFunctionTemplateSpecialization = true;
5343      } else {
5344        // "friend void foo<>(int);" is an implicit specialization decl.
5345        isFunctionTemplateSpecialization = true;
5346      }
5347    } else if (isFriend && isFunctionTemplateSpecialization) {
5348      // This combination is only possible in a recovery case;  the user
5349      // wrote something like:
5350      //   template <> friend void foo(int);
5351      // which we're recovering from as if the user had written:
5352      //   friend void foo<>(int);
5353      // Go ahead and fake up a template id.
5354      HasExplicitTemplateArgs = true;
5355        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5356      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5357    }
5358
5359    // If it's a friend (and only if it's a friend), it's possible
5360    // that either the specialized function type or the specialized
5361    // template is dependent, and therefore matching will fail.  In
5362    // this case, don't check the specialization yet.
5363    bool InstantiationDependent = false;
5364    if (isFunctionTemplateSpecialization && isFriend &&
5365        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5366         TemplateSpecializationType::anyDependentTemplateArguments(
5367            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5368            InstantiationDependent))) {
5369      assert(HasExplicitTemplateArgs &&
5370             "friend function specialization without template args");
5371      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5372                                                       Previous))
5373        NewFD->setInvalidDecl();
5374    } else if (isFunctionTemplateSpecialization) {
5375      if (CurContext->isDependentContext() && CurContext->isRecord()
5376          && !isFriend) {
5377        isDependentClassScopeExplicitSpecialization = true;
5378        Diag(NewFD->getLocation(), getLangOpts().MicrosoftExt ?
5379          diag::ext_function_specialization_in_class :
5380          diag::err_function_specialization_in_class)
5381          << NewFD->getDeclName();
5382      } else if (CheckFunctionTemplateSpecialization(NewFD,
5383                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5384                                                     Previous))
5385        NewFD->setInvalidDecl();
5386
5387      // C++ [dcl.stc]p1:
5388      //   A storage-class-specifier shall not be specified in an explicit
5389      //   specialization (14.7.3)
5390      if (SC != SC_None) {
5391        if (SC != NewFD->getStorageClass())
5392          Diag(NewFD->getLocation(),
5393               diag::err_explicit_specialization_inconsistent_storage_class)
5394            << SC
5395            << FixItHint::CreateRemoval(
5396                                      D.getDeclSpec().getStorageClassSpecLoc());
5397
5398        else
5399          Diag(NewFD->getLocation(),
5400               diag::ext_explicit_specialization_storage_class)
5401            << FixItHint::CreateRemoval(
5402                                      D.getDeclSpec().getStorageClassSpecLoc());
5403      }
5404
5405    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5406      if (CheckMemberSpecialization(NewFD, Previous))
5407          NewFD->setInvalidDecl();
5408    }
5409
5410    // Perform semantic checking on the function declaration.
5411    if (!isDependentClassScopeExplicitSpecialization) {
5412      if (NewFD->isInvalidDecl()) {
5413        // If this is a class member, mark the class invalid immediately.
5414        // This avoids some consistency errors later.
5415        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5416          methodDecl->getParent()->setInvalidDecl();
5417      } else {
5418        if (NewFD->isMain())
5419          CheckMain(NewFD, D.getDeclSpec());
5420        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5421                                                    isExplicitSpecialization));
5422      }
5423    }
5424
5425    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5426            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5427           "previous declaration set still overloaded");
5428
5429    NamedDecl *PrincipalDecl = (FunctionTemplate
5430                                ? cast<NamedDecl>(FunctionTemplate)
5431                                : NewFD);
5432
5433    if (isFriend && D.isRedeclaration()) {
5434      AccessSpecifier Access = AS_public;
5435      if (!NewFD->isInvalidDecl())
5436        Access = NewFD->getPreviousDecl()->getAccess();
5437
5438      NewFD->setAccess(Access);
5439      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5440
5441      PrincipalDecl->setObjectOfFriendDecl(true);
5442    }
5443
5444    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5445        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5446      PrincipalDecl->setNonMemberOperator();
5447
5448    // If we have a function template, check the template parameter
5449    // list. This will check and merge default template arguments.
5450    if (FunctionTemplate) {
5451      FunctionTemplateDecl *PrevTemplate =
5452                                     FunctionTemplate->getPreviousDecl();
5453      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5454                       PrevTemplate ? PrevTemplate->getTemplateParameters() : 0,
5455                            D.getDeclSpec().isFriendSpecified()
5456                              ? (D.isFunctionDefinition()
5457                                   ? TPC_FriendFunctionTemplateDefinition
5458                                   : TPC_FriendFunctionTemplate)
5459                              : (D.getCXXScopeSpec().isSet() &&
5460                                 DC && DC->isRecord() &&
5461                                 DC->isDependentContext())
5462                                  ? TPC_ClassTemplateMember
5463                                  : TPC_FunctionTemplate);
5464    }
5465
5466    if (NewFD->isInvalidDecl()) {
5467      // Ignore all the rest of this.
5468    } else if (!D.isRedeclaration()) {
5469      struct ActOnFDArgs ExtraArgs = { S, D, TemplateParamLists,
5470                                       AddToScope };
5471      // Fake up an access specifier if it's supposed to be a class member.
5472      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5473        NewFD->setAccess(AS_public);
5474
5475      // Qualified decls generally require a previous declaration.
5476      if (D.getCXXScopeSpec().isSet()) {
5477        // ...with the major exception of templated-scope or
5478        // dependent-scope friend declarations.
5479
5480        // TODO: we currently also suppress this check in dependent
5481        // contexts because (1) the parameter depth will be off when
5482        // matching friend templates and (2) we might actually be
5483        // selecting a friend based on a dependent factor.  But there
5484        // are situations where these conditions don't apply and we
5485        // can actually do this check immediately.
5486        if (isFriend &&
5487            (TemplateParamLists.size() ||
5488             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5489             CurContext->isDependentContext())) {
5490          // ignore these
5491        } else {
5492          // The user tried to provide an out-of-line definition for a
5493          // function that is a member of a class or namespace, but there
5494          // was no such member function declared (C++ [class.mfct]p2,
5495          // C++ [namespace.memdef]p2). For example:
5496          //
5497          // class X {
5498          //   void f() const;
5499          // };
5500          //
5501          // void X::f() { } // ill-formed
5502          //
5503          // Complain about this problem, and attempt to suggest close
5504          // matches (e.g., those that differ only in cv-qualifiers and
5505          // whether the parameter types are references).
5506
5507          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5508                                                               NewFD,
5509                                                               ExtraArgs)) {
5510            AddToScope = ExtraArgs.AddToScope;
5511            return Result;
5512          }
5513        }
5514
5515        // Unqualified local friend declarations are required to resolve
5516        // to something.
5517      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5518        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5519                                                             NewFD,
5520                                                             ExtraArgs)) {
5521          AddToScope = ExtraArgs.AddToScope;
5522          return Result;
5523        }
5524      }
5525
5526    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5527               !isFriend && !isFunctionTemplateSpecialization &&
5528               !isExplicitSpecialization) {
5529      // An out-of-line member function declaration must also be a
5530      // definition (C++ [dcl.meaning]p1).
5531      // Note that this is not the case for explicit specializations of
5532      // function templates or member functions of class templates, per
5533      // C++ [temp.expl.spec]p2. We also allow these declarations as an
5534      // extension for compatibility with old SWIG code which likes to
5535      // generate them.
5536      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5537        << D.getCXXScopeSpec().getRange();
5538    }
5539  }
5540
5541
5542  // Handle attributes. We need to have merged decls when handling attributes
5543  // (for example to check for conflicts, etc).
5544  // FIXME: This needs to happen before we merge declarations. Then,
5545  // let attribute merging cope with attribute conflicts.
5546  ProcessDeclAttributes(S, NewFD, D,
5547                        /*NonInheritable=*/false, /*Inheritable=*/true);
5548
5549  // attributes declared post-definition are currently ignored
5550  // FIXME: This should happen during attribute merging
5551  if (D.isRedeclaration() && Previous.isSingleResult()) {
5552    const FunctionDecl *Def;
5553    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5554    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5555      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5556      Diag(Def->getLocation(), diag::note_previous_definition);
5557    }
5558  }
5559
5560  AddKnownFunctionAttributes(NewFD);
5561
5562  if (NewFD->hasAttr<OverloadableAttr>() &&
5563      !NewFD->getType()->getAs<FunctionProtoType>()) {
5564    Diag(NewFD->getLocation(),
5565         diag::err_attribute_overloadable_no_prototype)
5566      << NewFD;
5567
5568    // Turn this into a variadic function with no parameters.
5569    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5570    FunctionProtoType::ExtProtoInfo EPI;
5571    EPI.Variadic = true;
5572    EPI.ExtInfo = FT->getExtInfo();
5573
5574    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5575    NewFD->setType(R);
5576  }
5577
5578  // If there's a #pragma GCC visibility in scope, and this isn't a class
5579  // member, set the visibility of this function.
5580  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5581    AddPushedVisibilityAttribute(NewFD);
5582
5583  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5584  // marking the function.
5585  AddCFAuditedAttribute(NewFD);
5586
5587  // If this is a locally-scoped extern C function, update the
5588  // map of such names.
5589  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5590      && !NewFD->isInvalidDecl())
5591    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5592
5593  // Set this FunctionDecl's range up to the right paren.
5594  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5595
5596  if (getLangOpts().CPlusPlus) {
5597    if (FunctionTemplate) {
5598      if (NewFD->isInvalidDecl())
5599        FunctionTemplate->setInvalidDecl();
5600      return FunctionTemplate;
5601    }
5602  }
5603
5604  MarkUnusedFileScopedDecl(NewFD);
5605
5606  if (getLangOpts().CUDA)
5607    if (IdentifierInfo *II = NewFD->getIdentifier())
5608      if (!NewFD->isInvalidDecl() &&
5609          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5610        if (II->isStr("cudaConfigureCall")) {
5611          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5612            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5613
5614          Context.setcudaConfigureCallDecl(NewFD);
5615        }
5616      }
5617
5618  // Here we have an function template explicit specialization at class scope.
5619  // The actually specialization will be postponed to template instatiation
5620  // time via the ClassScopeFunctionSpecializationDecl node.
5621  if (isDependentClassScopeExplicitSpecialization) {
5622    ClassScopeFunctionSpecializationDecl *NewSpec =
5623                         ClassScopeFunctionSpecializationDecl::Create(
5624                                Context, CurContext,  SourceLocation(),
5625                                cast<CXXMethodDecl>(NewFD));
5626    CurContext->addDecl(NewSpec);
5627    AddToScope = false;
5628  }
5629
5630  return NewFD;
5631}
5632
5633/// \brief Perform semantic checking of a new function declaration.
5634///
5635/// Performs semantic analysis of the new function declaration
5636/// NewFD. This routine performs all semantic checking that does not
5637/// require the actual declarator involved in the declaration, and is
5638/// used both for the declaration of functions as they are parsed
5639/// (called via ActOnDeclarator) and for the declaration of functions
5640/// that have been instantiated via C++ template instantiation (called
5641/// via InstantiateDecl).
5642///
5643/// \param IsExplicitSpecialiation whether this new function declaration is
5644/// an explicit specialization of the previous declaration.
5645///
5646/// This sets NewFD->isInvalidDecl() to true if there was an error.
5647///
5648/// Returns true if the function declaration is a redeclaration.
5649bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5650                                    LookupResult &Previous,
5651                                    bool IsExplicitSpecialization) {
5652  assert(!NewFD->getResultType()->isVariablyModifiedType()
5653         && "Variably modified return types are not handled here");
5654
5655  // Check for a previous declaration of this name.
5656  if (Previous.empty() && NewFD->isExternC()) {
5657    // Since we did not find anything by this name and we're declaring
5658    // an extern "C" function, look for a non-visible extern "C"
5659    // declaration with the same name.
5660    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5661      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5662    if (Pos != LocallyScopedExternalDecls.end())
5663      Previous.addDecl(Pos->second);
5664  }
5665
5666  bool Redeclaration = false;
5667
5668  // Merge or overload the declaration with an existing declaration of
5669  // the same name, if appropriate.
5670  if (!Previous.empty()) {
5671    // Determine whether NewFD is an overload of PrevDecl or
5672    // a declaration that requires merging. If it's an overload,
5673    // there's no more work to do here; we'll just add the new
5674    // function to the scope.
5675
5676    NamedDecl *OldDecl = 0;
5677    if (!AllowOverloadingOfFunction(Previous, Context)) {
5678      Redeclaration = true;
5679      OldDecl = Previous.getFoundDecl();
5680    } else {
5681      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5682                            /*NewIsUsingDecl*/ false)) {
5683      case Ovl_Match:
5684        Redeclaration = true;
5685        break;
5686
5687      case Ovl_NonFunction:
5688        Redeclaration = true;
5689        break;
5690
5691      case Ovl_Overload:
5692        Redeclaration = false;
5693        break;
5694      }
5695
5696      if (!getLangOpts().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5697        // If a function name is overloadable in C, then every function
5698        // with that name must be marked "overloadable".
5699        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5700          << Redeclaration << NewFD;
5701        NamedDecl *OverloadedDecl = 0;
5702        if (Redeclaration)
5703          OverloadedDecl = OldDecl;
5704        else if (!Previous.empty())
5705          OverloadedDecl = Previous.getRepresentativeDecl();
5706        if (OverloadedDecl)
5707          Diag(OverloadedDecl->getLocation(),
5708               diag::note_attribute_overloadable_prev_overload);
5709        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5710                                                        Context));
5711      }
5712    }
5713
5714    if (Redeclaration) {
5715      // NewFD and OldDecl represent declarations that need to be
5716      // merged.
5717      if (MergeFunctionDecl(NewFD, OldDecl, S)) {
5718        NewFD->setInvalidDecl();
5719        return Redeclaration;
5720      }
5721
5722      Previous.clear();
5723      Previous.addDecl(OldDecl);
5724
5725      if (FunctionTemplateDecl *OldTemplateDecl
5726                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5727        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5728        FunctionTemplateDecl *NewTemplateDecl
5729          = NewFD->getDescribedFunctionTemplate();
5730        assert(NewTemplateDecl && "Template/non-template mismatch");
5731        if (CXXMethodDecl *Method
5732              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5733          Method->setAccess(OldTemplateDecl->getAccess());
5734          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5735        }
5736
5737        // If this is an explicit specialization of a member that is a function
5738        // template, mark it as a member specialization.
5739        if (IsExplicitSpecialization &&
5740            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5741          NewTemplateDecl->setMemberSpecialization();
5742          assert(OldTemplateDecl->isMemberSpecialization());
5743        }
5744
5745      } else {
5746        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5747          NewFD->setAccess(OldDecl->getAccess());
5748        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5749      }
5750    }
5751  }
5752
5753  // Semantic checking for this function declaration (in isolation).
5754  if (getLangOpts().CPlusPlus) {
5755    // C++-specific checks.
5756    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5757      CheckConstructor(Constructor);
5758    } else if (CXXDestructorDecl *Destructor =
5759                dyn_cast<CXXDestructorDecl>(NewFD)) {
5760      CXXRecordDecl *Record = Destructor->getParent();
5761      QualType ClassType = Context.getTypeDeclType(Record);
5762
5763      // FIXME: Shouldn't we be able to perform this check even when the class
5764      // type is dependent? Both gcc and edg can handle that.
5765      if (!ClassType->isDependentType()) {
5766        DeclarationName Name
5767          = Context.DeclarationNames.getCXXDestructorName(
5768                                        Context.getCanonicalType(ClassType));
5769        if (NewFD->getDeclName() != Name) {
5770          Diag(NewFD->getLocation(), diag::err_destructor_name);
5771          NewFD->setInvalidDecl();
5772          return Redeclaration;
5773        }
5774      }
5775    } else if (CXXConversionDecl *Conversion
5776               = dyn_cast<CXXConversionDecl>(NewFD)) {
5777      ActOnConversionDeclarator(Conversion);
5778    }
5779
5780    // Find any virtual functions that this function overrides.
5781    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5782      if (!Method->isFunctionTemplateSpecialization() &&
5783          !Method->getDescribedFunctionTemplate()) {
5784        if (AddOverriddenMethods(Method->getParent(), Method)) {
5785          // If the function was marked as "static", we have a problem.
5786          if (NewFD->getStorageClass() == SC_Static) {
5787            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5788              << NewFD->getDeclName();
5789            for (CXXMethodDecl::method_iterator
5790                      Overridden = Method->begin_overridden_methods(),
5791                   OverriddenEnd = Method->end_overridden_methods();
5792                 Overridden != OverriddenEnd;
5793                 ++Overridden) {
5794              Diag((*Overridden)->getLocation(),
5795                   diag::note_overridden_virtual_function);
5796            }
5797          }
5798        }
5799      }
5800    }
5801
5802    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5803    if (NewFD->isOverloadedOperator() &&
5804        CheckOverloadedOperatorDeclaration(NewFD)) {
5805      NewFD->setInvalidDecl();
5806      return Redeclaration;
5807    }
5808
5809    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5810    if (NewFD->getLiteralIdentifier() &&
5811        CheckLiteralOperatorDeclaration(NewFD)) {
5812      NewFD->setInvalidDecl();
5813      return Redeclaration;
5814    }
5815
5816    // In C++, check default arguments now that we have merged decls. Unless
5817    // the lexical context is the class, because in this case this is done
5818    // during delayed parsing anyway.
5819    if (!CurContext->isRecord())
5820      CheckCXXDefaultArguments(NewFD);
5821
5822    // If this function declares a builtin function, check the type of this
5823    // declaration against the expected type for the builtin.
5824    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5825      ASTContext::GetBuiltinTypeError Error;
5826      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5827      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5828        // The type of this function differs from the type of the builtin,
5829        // so forget about the builtin entirely.
5830        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5831      }
5832    }
5833
5834    // If this function is declared as being extern "C", then check to see if
5835    // the function returns a UDT (class, struct, or union type) that is not C
5836    // compatible, and if it does, warn the user.
5837    if (NewFD->isExternC()) {
5838      QualType R = NewFD->getResultType();
5839      if (!R.isPODType(Context) &&
5840          !R->isVoidType())
5841        Diag( NewFD->getLocation(), diag::warn_return_value_udt )
5842          << NewFD << R;
5843    }
5844  }
5845  return Redeclaration;
5846}
5847
5848void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5849  // C++11 [basic.start.main]p3:  A program that declares main to be inline,
5850  //   static or constexpr is ill-formed.
5851  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5852  //   shall not appear in a declaration of main.
5853  // static main is not an error under C99, but we should warn about it.
5854  if (FD->getStorageClass() == SC_Static)
5855    Diag(DS.getStorageClassSpecLoc(), getLangOpts().CPlusPlus
5856         ? diag::err_static_main : diag::warn_static_main)
5857      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5858  if (FD->isInlineSpecified())
5859    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5860      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5861  if (FD->isConstexpr()) {
5862    Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_main)
5863      << FixItHint::CreateRemoval(DS.getConstexprSpecLoc());
5864    FD->setConstexpr(false);
5865  }
5866
5867  QualType T = FD->getType();
5868  assert(T->isFunctionType() && "function decl is not of function type");
5869  const FunctionType* FT = T->castAs<FunctionType>();
5870
5871  // All the standards say that main() should should return 'int'.
5872  if (Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5873    // In C and C++, main magically returns 0 if you fall off the end;
5874    // set the flag which tells us that.
5875    // This is C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5876    FD->setHasImplicitReturnZero(true);
5877
5878  // In C with GNU extensions we allow main() to have non-integer return
5879  // type, but we should warn about the extension, and we disable the
5880  // implicit-return-zero rule.
5881  } else if (getLangOpts().GNUMode && !getLangOpts().CPlusPlus) {
5882    Diag(FD->getTypeSpecStartLoc(), diag::ext_main_returns_nonint);
5883
5884  // Otherwise, this is just a flat-out error.
5885  } else {
5886    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5887    FD->setInvalidDecl(true);
5888  }
5889
5890  // Treat protoless main() as nullary.
5891  if (isa<FunctionNoProtoType>(FT)) return;
5892
5893  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5894  unsigned nparams = FTP->getNumArgs();
5895  assert(FD->getNumParams() == nparams);
5896
5897  bool HasExtraParameters = (nparams > 3);
5898
5899  // Darwin passes an undocumented fourth argument of type char**.  If
5900  // other platforms start sprouting these, the logic below will start
5901  // getting shifty.
5902  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5903    HasExtraParameters = false;
5904
5905  if (HasExtraParameters) {
5906    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5907    FD->setInvalidDecl(true);
5908    nparams = 3;
5909  }
5910
5911  // FIXME: a lot of the following diagnostics would be improved
5912  // if we had some location information about types.
5913
5914  QualType CharPP =
5915    Context.getPointerType(Context.getPointerType(Context.CharTy));
5916  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5917
5918  for (unsigned i = 0; i < nparams; ++i) {
5919    QualType AT = FTP->getArgType(i);
5920
5921    bool mismatch = true;
5922
5923    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5924      mismatch = false;
5925    else if (Expected[i] == CharPP) {
5926      // As an extension, the following forms are okay:
5927      //   char const **
5928      //   char const * const *
5929      //   char * const *
5930
5931      QualifierCollector qs;
5932      const PointerType* PT;
5933      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5934          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5935          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5936        qs.removeConst();
5937        mismatch = !qs.empty();
5938      }
5939    }
5940
5941    if (mismatch) {
5942      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5943      // TODO: suggest replacing given type with expected type
5944      FD->setInvalidDecl(true);
5945    }
5946  }
5947
5948  if (nparams == 1 && !FD->isInvalidDecl()) {
5949    Diag(FD->getLocation(), diag::warn_main_one_arg);
5950  }
5951
5952  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5953    Diag(FD->getLocation(), diag::err_main_template_decl);
5954    FD->setInvalidDecl();
5955  }
5956}
5957
5958bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5959  // FIXME: Need strict checking.  In C89, we need to check for
5960  // any assignment, increment, decrement, function-calls, or
5961  // commas outside of a sizeof.  In C99, it's the same list,
5962  // except that the aforementioned are allowed in unevaluated
5963  // expressions.  Everything else falls under the
5964  // "may accept other forms of constant expressions" exception.
5965  // (We never end up here for C++, so the constant expression
5966  // rules there don't matter.)
5967  if (Init->isConstantInitializer(Context, false))
5968    return false;
5969  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5970    << Init->getSourceRange();
5971  return true;
5972}
5973
5974namespace {
5975  // Visits an initialization expression to see if OrigDecl is evaluated in
5976  // its own initialization and throws a warning if it does.
5977  class SelfReferenceChecker
5978      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5979    Sema &S;
5980    Decl *OrigDecl;
5981    bool isRecordType;
5982    bool isPODType;
5983
5984  public:
5985    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5986
5987    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5988                                                    S(S), OrigDecl(OrigDecl) {
5989      isPODType = false;
5990      isRecordType = false;
5991      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5992        isPODType = VD->getType().isPODType(S.Context);
5993        isRecordType = VD->getType()->isRecordType();
5994      }
5995    }
5996
5997    void VisitExpr(Expr *E) {
5998      if (isa<ObjCMessageExpr>(*E)) return;
5999      if (isRecordType) {
6000        Expr *expr = E;
6001        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
6002          ValueDecl *VD = ME->getMemberDecl();
6003          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
6004          expr = ME->getBase();
6005        }
6006        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
6007          HandleDeclRefExpr(DRE);
6008          return;
6009        }
6010      }
6011      Inherited::VisitExpr(E);
6012    }
6013
6014    void VisitMemberExpr(MemberExpr *E) {
6015      if (E->getType()->canDecayToPointerType()) return;
6016      ValueDecl *VD = E->getMemberDecl();
6017      if (isa<FieldDecl>(VD) || isa<CXXMethodDecl>(VD))
6018        if (DeclRefExpr *DRE
6019              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
6020          HandleDeclRefExpr(DRE);
6021          return;
6022        }
6023      Inherited::VisitMemberExpr(E);
6024    }
6025
6026    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
6027      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
6028          (isRecordType && E->getCastKind() == CK_NoOp)) {
6029        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
6030        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
6031          SubExpr = ME->getBase()->IgnoreParenImpCasts();
6032        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
6033          HandleDeclRefExpr(DRE);
6034          return;
6035        }
6036      }
6037      Inherited::VisitImplicitCastExpr(E);
6038    }
6039
6040    void VisitUnaryOperator(UnaryOperator *E) {
6041      // For POD record types, addresses of its own members are well-defined.
6042      if (isRecordType && isPODType) return;
6043      Inherited::VisitUnaryOperator(E);
6044    }
6045
6046    void HandleDeclRefExpr(DeclRefExpr *DRE) {
6047      Decl* ReferenceDecl = DRE->getDecl();
6048      if (OrigDecl != ReferenceDecl) return;
6049      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
6050                          Sema::NotForRedeclaration);
6051      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
6052                            S.PDiag(diag::warn_uninit_self_reference_in_init)
6053                              << Result.getLookupName()
6054                              << OrigDecl->getLocation()
6055                              << DRE->getSourceRange());
6056    }
6057  };
6058}
6059
6060/// CheckSelfReference - Warns if OrigDecl is used in expression E.
6061void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
6062  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
6063}
6064
6065/// AddInitializerToDecl - Adds the initializer Init to the
6066/// declaration dcl. If DirectInit is true, this is C++ direct
6067/// initialization rather than copy initialization.
6068void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
6069                                bool DirectInit, bool TypeMayContainAuto) {
6070  // If there is no declaration, there was an error parsing it.  Just ignore
6071  // the initializer.
6072  if (RealDecl == 0 || RealDecl->isInvalidDecl())
6073    return;
6074
6075  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
6076    // With declarators parsed the way they are, the parser cannot
6077    // distinguish between a normal initializer and a pure-specifier.
6078    // Thus this grotesque test.
6079    IntegerLiteral *IL;
6080    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
6081        Context.getCanonicalType(IL->getType()) == Context.IntTy)
6082      CheckPureMethod(Method, Init->getSourceRange());
6083    else {
6084      Diag(Method->getLocation(), diag::err_member_function_initialization)
6085        << Method->getDeclName() << Init->getSourceRange();
6086      Method->setInvalidDecl();
6087    }
6088    return;
6089  }
6090
6091  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
6092  if (!VDecl) {
6093    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
6094    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
6095    RealDecl->setInvalidDecl();
6096    return;
6097  }
6098
6099  // Check for self-references within variable initializers.
6100  // Variables declared within a function/method body are handled
6101  // by a dataflow analysis.
6102  if (!VDecl->hasLocalStorage() && !VDecl->isStaticLocal())
6103    CheckSelfReference(RealDecl, Init);
6104
6105  ParenListExpr *CXXDirectInit = dyn_cast<ParenListExpr>(Init);
6106
6107  // C++11 [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
6108  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
6109    Expr *DeduceInit = Init;
6110    // Initializer could be a C++ direct-initializer. Deduction only works if it
6111    // contains exactly one expression.
6112    if (CXXDirectInit) {
6113      if (CXXDirectInit->getNumExprs() == 0) {
6114        // It isn't possible to write this directly, but it is possible to
6115        // end up in this situation with "auto x(some_pack...);"
6116        Diag(CXXDirectInit->getLocStart(),
6117             diag::err_auto_var_init_no_expression)
6118          << VDecl->getDeclName() << VDecl->getType()
6119          << VDecl->getSourceRange();
6120        RealDecl->setInvalidDecl();
6121        return;
6122      } else if (CXXDirectInit->getNumExprs() > 1) {
6123        Diag(CXXDirectInit->getExpr(1)->getLocStart(),
6124             diag::err_auto_var_init_multiple_expressions)
6125          << VDecl->getDeclName() << VDecl->getType()
6126          << VDecl->getSourceRange();
6127        RealDecl->setInvalidDecl();
6128        return;
6129      } else {
6130        DeduceInit = CXXDirectInit->getExpr(0);
6131      }
6132    }
6133    TypeSourceInfo *DeducedType = 0;
6134    if (DeduceAutoType(VDecl->getTypeSourceInfo(), DeduceInit, DeducedType) ==
6135            DAR_Failed)
6136      DiagnoseAutoDeductionFailure(VDecl, DeduceInit);
6137    if (!DeducedType) {
6138      RealDecl->setInvalidDecl();
6139      return;
6140    }
6141    VDecl->setTypeSourceInfo(DeducedType);
6142    VDecl->setType(DeducedType->getType());
6143    VDecl->ClearLinkageCache();
6144
6145    // In ARC, infer lifetime.
6146    if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
6147      VDecl->setInvalidDecl();
6148
6149    // If this is a redeclaration, check that the type we just deduced matches
6150    // the previously declared type.
6151    if (VarDecl *Old = VDecl->getPreviousDecl())
6152      MergeVarDeclTypes(VDecl, Old);
6153  }
6154
6155  if (VDecl->isLocalVarDecl() && VDecl->hasExternalStorage()) {
6156    // C99 6.7.8p5. C++ has no such restriction, but that is a defect.
6157    Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
6158    VDecl->setInvalidDecl();
6159    return;
6160  }
6161
6162  if (!VDecl->getType()->isDependentType()) {
6163    // A definition must end up with a complete type, which means it must be
6164    // complete with the restriction that an array type might be completed by
6165    // the initializer; note that later code assumes this restriction.
6166    QualType BaseDeclType = VDecl->getType();
6167    if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
6168      BaseDeclType = Array->getElementType();
6169    if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
6170                            diag::err_typecheck_decl_incomplete_type)) {
6171      RealDecl->setInvalidDecl();
6172      return;
6173    }
6174
6175    // The variable can not have an abstract class type.
6176    if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
6177                               diag::err_abstract_type_in_decl,
6178                               AbstractVariableType))
6179      VDecl->setInvalidDecl();
6180  }
6181
6182  const VarDecl *Def;
6183  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
6184    Diag(VDecl->getLocation(), diag::err_redefinition)
6185      << VDecl->getDeclName();
6186    Diag(Def->getLocation(), diag::note_previous_definition);
6187    VDecl->setInvalidDecl();
6188    return;
6189  }
6190
6191  const VarDecl* PrevInit = 0;
6192  if (getLangOpts().CPlusPlus) {
6193    // C++ [class.static.data]p4
6194    //   If a static data member is of const integral or const
6195    //   enumeration type, its declaration in the class definition can
6196    //   specify a constant-initializer which shall be an integral
6197    //   constant expression (5.19). In that case, the member can appear
6198    //   in integral constant expressions. The member shall still be
6199    //   defined in a namespace scope if it is used in the program and the
6200    //   namespace scope definition shall not contain an initializer.
6201    //
6202    // We already performed a redefinition check above, but for static
6203    // data members we also need to check whether there was an in-class
6204    // declaration with an initializer.
6205    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
6206      Diag(VDecl->getLocation(), diag::err_redefinition)
6207        << VDecl->getDeclName();
6208      Diag(PrevInit->getLocation(), diag::note_previous_definition);
6209      return;
6210    }
6211
6212    if (VDecl->hasLocalStorage())
6213      getCurFunction()->setHasBranchProtectedScope();
6214
6215    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
6216      VDecl->setInvalidDecl();
6217      return;
6218    }
6219  }
6220
6221  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
6222  // a kernel function cannot be initialized."
6223  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
6224    Diag(VDecl->getLocation(), diag::err_local_cant_init);
6225    VDecl->setInvalidDecl();
6226    return;
6227  }
6228
6229  // Get the decls type and save a reference for later, since
6230  // CheckInitializerTypes may change it.
6231  QualType DclT = VDecl->getType(), SavT = DclT;
6232
6233  // Top-level message sends default to 'id' when we're in a debugger
6234  // and we are assigning it to a variable of 'id' type.
6235  if (getLangOpts().DebuggerCastResultToId && DclT->isObjCIdType())
6236    if (Init->getType() == Context.UnknownAnyTy && isa<ObjCMessageExpr>(Init)) {
6237      ExprResult Result = forceUnknownAnyToType(Init, Context.getObjCIdType());
6238      if (Result.isInvalid()) {
6239        VDecl->setInvalidDecl();
6240        return;
6241      }
6242      Init = Result.take();
6243    }
6244
6245  // Perform the initialization.
6246  if (!VDecl->isInvalidDecl()) {
6247    InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
6248    InitializationKind Kind
6249      = DirectInit ?
6250          CXXDirectInit ? InitializationKind::CreateDirect(VDecl->getLocation(),
6251                                                           Init->getLocStart(),
6252                                                           Init->getLocEnd())
6253                        : InitializationKind::CreateDirectList(
6254                                                          VDecl->getLocation())
6255                   : InitializationKind::CreateCopy(VDecl->getLocation(),
6256                                                    Init->getLocStart());
6257
6258    Expr **Args = &Init;
6259    unsigned NumArgs = 1;
6260    if (CXXDirectInit) {
6261      Args = CXXDirectInit->getExprs();
6262      NumArgs = CXXDirectInit->getNumExprs();
6263    }
6264    InitializationSequence InitSeq(*this, Entity, Kind, Args, NumArgs);
6265    ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6266                                              MultiExprArg(*this, Args,NumArgs),
6267                                              &DclT);
6268    if (Result.isInvalid()) {
6269      VDecl->setInvalidDecl();
6270      return;
6271    }
6272
6273    Init = Result.takeAs<Expr>();
6274  }
6275
6276  // If the type changed, it means we had an incomplete type that was
6277  // completed by the initializer. For example:
6278  //   int ary[] = { 1, 3, 5 };
6279  // "ary" transitions from an IncompleteArrayType to a ConstantArrayType.
6280  if (!VDecl->isInvalidDecl() && (DclT != SavT))
6281    VDecl->setType(DclT);
6282
6283  // Check any implicit conversions within the expression.
6284  CheckImplicitConversions(Init, VDecl->getLocation());
6285
6286  if (!VDecl->isInvalidDecl())
6287    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6288
6289  Init = MaybeCreateExprWithCleanups(Init);
6290  // Attach the initializer to the decl.
6291  VDecl->setInit(Init);
6292
6293  if (VDecl->isLocalVarDecl()) {
6294    // C99 6.7.8p4: All the expressions in an initializer for an object that has
6295    // static storage duration shall be constant expressions or string literals.
6296    // C++ does not have this restriction.
6297    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl() &&
6298        VDecl->getStorageClass() == SC_Static)
6299      CheckForConstantInitializer(Init, DclT);
6300  } else if (VDecl->isStaticDataMember() &&
6301             VDecl->getLexicalDeclContext()->isRecord()) {
6302    // This is an in-class initialization for a static data member, e.g.,
6303    //
6304    // struct S {
6305    //   static const int value = 17;
6306    // };
6307
6308    // C++ [class.mem]p4:
6309    //   A member-declarator can contain a constant-initializer only
6310    //   if it declares a static member (9.4) of const integral or
6311    //   const enumeration type, see 9.4.2.
6312    //
6313    // C++11 [class.static.data]p3:
6314    //   If a non-volatile const static data member is of integral or
6315    //   enumeration type, its declaration in the class definition can
6316    //   specify a brace-or-equal-initializer in which every initalizer-clause
6317    //   that is an assignment-expression is a constant expression. A static
6318    //   data member of literal type can be declared in the class definition
6319    //   with the constexpr specifier; if so, its declaration shall specify a
6320    //   brace-or-equal-initializer in which every initializer-clause that is
6321    //   an assignment-expression is a constant expression.
6322
6323    // Do nothing on dependent types.
6324    if (DclT->isDependentType()) {
6325
6326    // Allow any 'static constexpr' members, whether or not they are of literal
6327    // type. We separately check that every constexpr variable is of literal
6328    // type.
6329    } else if (VDecl->isConstexpr()) {
6330
6331    // Require constness.
6332    } else if (!DclT.isConstQualified()) {
6333      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
6334        << Init->getSourceRange();
6335      VDecl->setInvalidDecl();
6336
6337    // We allow integer constant expressions in all cases.
6338    } else if (DclT->isIntegralOrEnumerationType()) {
6339      // Check whether the expression is a constant expression.
6340      SourceLocation Loc;
6341      if (getLangOpts().CPlusPlus0x && DclT.isVolatileQualified())
6342        // In C++11, a non-constexpr const static data member with an
6343        // in-class initializer cannot be volatile.
6344        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
6345      else if (Init->isValueDependent())
6346        ; // Nothing to check.
6347      else if (Init->isIntegerConstantExpr(Context, &Loc))
6348        ; // Ok, it's an ICE!
6349      else if (Init->isEvaluatable(Context)) {
6350        // If we can constant fold the initializer through heroics, accept it,
6351        // but report this as a use of an extension for -pedantic.
6352        Diag(Loc, diag::ext_in_class_initializer_non_constant)
6353          << Init->getSourceRange();
6354      } else {
6355        // Otherwise, this is some crazy unknown case.  Report the issue at the
6356        // location provided by the isIntegerConstantExpr failed check.
6357        Diag(Loc, diag::err_in_class_initializer_non_constant)
6358          << Init->getSourceRange();
6359        VDecl->setInvalidDecl();
6360      }
6361
6362    // We allow foldable floating-point constants as an extension.
6363    } else if (DclT->isFloatingType()) { // also permits complex, which is ok
6364      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
6365        << DclT << Init->getSourceRange();
6366      if (getLangOpts().CPlusPlus0x)
6367        Diag(VDecl->getLocation(),
6368             diag::note_in_class_initializer_float_type_constexpr)
6369          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6370
6371      if (!Init->isValueDependent() && !Init->isEvaluatable(Context)) {
6372        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
6373          << Init->getSourceRange();
6374        VDecl->setInvalidDecl();
6375      }
6376
6377    // Suggest adding 'constexpr' in C++11 for literal types.
6378    } else if (getLangOpts().CPlusPlus0x && DclT->isLiteralType()) {
6379      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6380        << DclT << Init->getSourceRange()
6381        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6382      VDecl->setConstexpr(true);
6383
6384    } else {
6385      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6386        << DclT << Init->getSourceRange();
6387      VDecl->setInvalidDecl();
6388    }
6389  } else if (VDecl->isFileVarDecl()) {
6390    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6391        (!getLangOpts().CPlusPlus ||
6392         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6393      Diag(VDecl->getLocation(), diag::warn_extern_init);
6394
6395    // C99 6.7.8p4. All file scoped initializers need to be constant.
6396    if (!getLangOpts().CPlusPlus && !VDecl->isInvalidDecl())
6397      CheckForConstantInitializer(Init, DclT);
6398  }
6399
6400  // We will represent direct-initialization similarly to copy-initialization:
6401  //    int x(1);  -as-> int x = 1;
6402  //    ClassType x(a,b,c); -as-> ClassType x = ClassType(a,b,c);
6403  //
6404  // Clients that want to distinguish between the two forms, can check for
6405  // direct initializer using VarDecl::getInitStyle().
6406  // A major benefit is that clients that don't particularly care about which
6407  // exactly form was it (like the CodeGen) can handle both cases without
6408  // special case code.
6409
6410  // C++ 8.5p11:
6411  // The form of initialization (using parentheses or '=') is generally
6412  // insignificant, but does matter when the entity being initialized has a
6413  // class type.
6414  if (CXXDirectInit) {
6415    assert(DirectInit && "Call-style initializer must be direct init.");
6416    VDecl->setInitStyle(VarDecl::CallInit);
6417  } else if (DirectInit) {
6418    // This must be list-initialization. No other way is direct-initialization.
6419    VDecl->setInitStyle(VarDecl::ListInit);
6420  }
6421
6422  CheckCompleteVariableDeclaration(VDecl);
6423}
6424
6425/// ActOnInitializerError - Given that there was an error parsing an
6426/// initializer for the given declaration, try to return to some form
6427/// of sanity.
6428void Sema::ActOnInitializerError(Decl *D) {
6429  // Our main concern here is re-establishing invariants like "a
6430  // variable's type is either dependent or complete".
6431  if (!D || D->isInvalidDecl()) return;
6432
6433  VarDecl *VD = dyn_cast<VarDecl>(D);
6434  if (!VD) return;
6435
6436  // Auto types are meaningless if we can't make sense of the initializer.
6437  if (ParsingInitForAutoVars.count(D)) {
6438    D->setInvalidDecl();
6439    return;
6440  }
6441
6442  QualType Ty = VD->getType();
6443  if (Ty->isDependentType()) return;
6444
6445  // Require a complete type.
6446  if (RequireCompleteType(VD->getLocation(),
6447                          Context.getBaseElementType(Ty),
6448                          diag::err_typecheck_decl_incomplete_type)) {
6449    VD->setInvalidDecl();
6450    return;
6451  }
6452
6453  // Require an abstract type.
6454  if (RequireNonAbstractType(VD->getLocation(), Ty,
6455                             diag::err_abstract_type_in_decl,
6456                             AbstractVariableType)) {
6457    VD->setInvalidDecl();
6458    return;
6459  }
6460
6461  // Don't bother complaining about constructors or destructors,
6462  // though.
6463}
6464
6465void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6466                                  bool TypeMayContainAuto) {
6467  // If there is no declaration, there was an error parsing it. Just ignore it.
6468  if (RealDecl == 0)
6469    return;
6470
6471  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6472    QualType Type = Var->getType();
6473
6474    // C++11 [dcl.spec.auto]p3
6475    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6476      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6477        << Var->getDeclName() << Type;
6478      Var->setInvalidDecl();
6479      return;
6480    }
6481
6482    // C++11 [class.static.data]p3: A static data member can be declared with
6483    // the constexpr specifier; if so, its declaration shall specify
6484    // a brace-or-equal-initializer.
6485    // C++11 [dcl.constexpr]p1: The constexpr specifier shall be applied only to
6486    // the definition of a variable [...] or the declaration of a static data
6487    // member.
6488    if (Var->isConstexpr() && !Var->isThisDeclarationADefinition()) {
6489      if (Var->isStaticDataMember())
6490        Diag(Var->getLocation(),
6491             diag::err_constexpr_static_mem_var_requires_init)
6492          << Var->getDeclName();
6493      else
6494        Diag(Var->getLocation(), diag::err_invalid_constexpr_var_decl);
6495      Var->setInvalidDecl();
6496      return;
6497    }
6498
6499    switch (Var->isThisDeclarationADefinition()) {
6500    case VarDecl::Definition:
6501      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6502        break;
6503
6504      // We have an out-of-line definition of a static data member
6505      // that has an in-class initializer, so we type-check this like
6506      // a declaration.
6507      //
6508      // Fall through
6509
6510    case VarDecl::DeclarationOnly:
6511      // It's only a declaration.
6512
6513      // Block scope. C99 6.7p7: If an identifier for an object is
6514      // declared with no linkage (C99 6.2.2p6), the type for the
6515      // object shall be complete.
6516      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6517          !Var->getLinkage() && !Var->isInvalidDecl() &&
6518          RequireCompleteType(Var->getLocation(), Type,
6519                              diag::err_typecheck_decl_incomplete_type))
6520        Var->setInvalidDecl();
6521
6522      // Make sure that the type is not abstract.
6523      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6524          RequireNonAbstractType(Var->getLocation(), Type,
6525                                 diag::err_abstract_type_in_decl,
6526                                 AbstractVariableType))
6527        Var->setInvalidDecl();
6528      return;
6529
6530    case VarDecl::TentativeDefinition:
6531      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6532      // object that has file scope without an initializer, and without a
6533      // storage-class specifier or with the storage-class specifier "static",
6534      // constitutes a tentative definition. Note: A tentative definition with
6535      // external linkage is valid (C99 6.2.2p5).
6536      if (!Var->isInvalidDecl()) {
6537        if (const IncompleteArrayType *ArrayT
6538                                    = Context.getAsIncompleteArrayType(Type)) {
6539          if (RequireCompleteType(Var->getLocation(),
6540                                  ArrayT->getElementType(),
6541                                  diag::err_illegal_decl_array_incomplete_type))
6542            Var->setInvalidDecl();
6543        } else if (Var->getStorageClass() == SC_Static) {
6544          // C99 6.9.2p3: If the declaration of an identifier for an object is
6545          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6546          // declared type shall not be an incomplete type.
6547          // NOTE: code such as the following
6548          //     static struct s;
6549          //     struct s { int a; };
6550          // is accepted by gcc. Hence here we issue a warning instead of
6551          // an error and we do not invalidate the static declaration.
6552          // NOTE: to avoid multiple warnings, only check the first declaration.
6553          if (Var->getPreviousDecl() == 0)
6554            RequireCompleteType(Var->getLocation(), Type,
6555                                diag::ext_typecheck_decl_incomplete_type);
6556        }
6557      }
6558
6559      // Record the tentative definition; we're done.
6560      if (!Var->isInvalidDecl())
6561        TentativeDefinitions.push_back(Var);
6562      return;
6563    }
6564
6565    // Provide a specific diagnostic for uninitialized variable
6566    // definitions with incomplete array type.
6567    if (Type->isIncompleteArrayType()) {
6568      Diag(Var->getLocation(),
6569           diag::err_typecheck_incomplete_array_needs_initializer);
6570      Var->setInvalidDecl();
6571      return;
6572    }
6573
6574    // Provide a specific diagnostic for uninitialized variable
6575    // definitions with reference type.
6576    if (Type->isReferenceType()) {
6577      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6578        << Var->getDeclName()
6579        << SourceRange(Var->getLocation(), Var->getLocation());
6580      Var->setInvalidDecl();
6581      return;
6582    }
6583
6584    // Do not attempt to type-check the default initializer for a
6585    // variable with dependent type.
6586    if (Type->isDependentType())
6587      return;
6588
6589    if (Var->isInvalidDecl())
6590      return;
6591
6592    if (RequireCompleteType(Var->getLocation(),
6593                            Context.getBaseElementType(Type),
6594                            diag::err_typecheck_decl_incomplete_type)) {
6595      Var->setInvalidDecl();
6596      return;
6597    }
6598
6599    // The variable can not have an abstract class type.
6600    if (RequireNonAbstractType(Var->getLocation(), Type,
6601                               diag::err_abstract_type_in_decl,
6602                               AbstractVariableType)) {
6603      Var->setInvalidDecl();
6604      return;
6605    }
6606
6607    // Check for jumps past the implicit initializer.  C++0x
6608    // clarifies that this applies to a "variable with automatic
6609    // storage duration", not a "local variable".
6610    // C++11 [stmt.dcl]p3
6611    //   A program that jumps from a point where a variable with automatic
6612    //   storage duration is not in scope to a point where it is in scope is
6613    //   ill-formed unless the variable has scalar type, class type with a
6614    //   trivial default constructor and a trivial destructor, a cv-qualified
6615    //   version of one of these types, or an array of one of the preceding
6616    //   types and is declared without an initializer.
6617    if (getLangOpts().CPlusPlus && Var->hasLocalStorage()) {
6618      if (const RecordType *Record
6619            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6620        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6621        // Mark the function for further checking even if the looser rules of
6622        // C++11 do not require such checks, so that we can diagnose
6623        // incompatibilities with C++98.
6624        if (!CXXRecord->isPOD())
6625          getCurFunction()->setHasBranchProtectedScope();
6626      }
6627    }
6628
6629    // C++03 [dcl.init]p9:
6630    //   If no initializer is specified for an object, and the
6631    //   object is of (possibly cv-qualified) non-POD class type (or
6632    //   array thereof), the object shall be default-initialized; if
6633    //   the object is of const-qualified type, the underlying class
6634    //   type shall have a user-declared default
6635    //   constructor. Otherwise, if no initializer is specified for
6636    //   a non- static object, the object and its subobjects, if
6637    //   any, have an indeterminate initial value); if the object
6638    //   or any of its subobjects are of const-qualified type, the
6639    //   program is ill-formed.
6640    // C++0x [dcl.init]p11:
6641    //   If no initializer is specified for an object, the object is
6642    //   default-initialized; [...].
6643    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6644    InitializationKind Kind
6645      = InitializationKind::CreateDefault(Var->getLocation());
6646
6647    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6648    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6649                                      MultiExprArg(*this, 0, 0));
6650    if (Init.isInvalid())
6651      Var->setInvalidDecl();
6652    else if (Init.get()) {
6653      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6654      // This is important for template substitution.
6655      Var->setInitStyle(VarDecl::CallInit);
6656    }
6657
6658    CheckCompleteVariableDeclaration(Var);
6659  }
6660}
6661
6662void Sema::ActOnCXXForRangeDecl(Decl *D) {
6663  VarDecl *VD = dyn_cast<VarDecl>(D);
6664  if (!VD) {
6665    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6666    D->setInvalidDecl();
6667    return;
6668  }
6669
6670  VD->setCXXForRangeDecl(true);
6671
6672  // for-range-declaration cannot be given a storage class specifier.
6673  int Error = -1;
6674  switch (VD->getStorageClassAsWritten()) {
6675  case SC_None:
6676    break;
6677  case SC_Extern:
6678    Error = 0;
6679    break;
6680  case SC_Static:
6681    Error = 1;
6682    break;
6683  case SC_PrivateExtern:
6684    Error = 2;
6685    break;
6686  case SC_Auto:
6687    Error = 3;
6688    break;
6689  case SC_Register:
6690    Error = 4;
6691    break;
6692  case SC_OpenCLWorkGroupLocal:
6693    llvm_unreachable("Unexpected storage class");
6694  }
6695  if (VD->isConstexpr())
6696    Error = 5;
6697  if (Error != -1) {
6698    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6699      << VD->getDeclName() << Error;
6700    D->setInvalidDecl();
6701  }
6702}
6703
6704void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6705  if (var->isInvalidDecl()) return;
6706
6707  // In ARC, don't allow jumps past the implicit initialization of a
6708  // local retaining variable.
6709  if (getLangOpts().ObjCAutoRefCount &&
6710      var->hasLocalStorage()) {
6711    switch (var->getType().getObjCLifetime()) {
6712    case Qualifiers::OCL_None:
6713    case Qualifiers::OCL_ExplicitNone:
6714    case Qualifiers::OCL_Autoreleasing:
6715      break;
6716
6717    case Qualifiers::OCL_Weak:
6718    case Qualifiers::OCL_Strong:
6719      getCurFunction()->setHasBranchProtectedScope();
6720      break;
6721    }
6722  }
6723
6724  // All the following checks are C++ only.
6725  if (!getLangOpts().CPlusPlus) return;
6726
6727  QualType baseType = Context.getBaseElementType(var->getType());
6728  if (baseType->isDependentType()) return;
6729
6730  // __block variables might require us to capture a copy-initializer.
6731  if (var->hasAttr<BlocksAttr>()) {
6732    // It's currently invalid to ever have a __block variable with an
6733    // array type; should we diagnose that here?
6734
6735    // Regardless, we don't want to ignore array nesting when
6736    // constructing this copy.
6737    QualType type = var->getType();
6738
6739    if (type->isStructureOrClassType()) {
6740      SourceLocation poi = var->getLocation();
6741      Expr *varRef =new (Context) DeclRefExpr(var, false, type, VK_LValue, poi);
6742      ExprResult result =
6743        PerformCopyInitialization(
6744                        InitializedEntity::InitializeBlock(poi, type, false),
6745                                  poi, Owned(varRef));
6746      if (!result.isInvalid()) {
6747        result = MaybeCreateExprWithCleanups(result);
6748        Expr *init = result.takeAs<Expr>();
6749        Context.setBlockVarCopyInits(var, init);
6750      }
6751    }
6752  }
6753
6754  Expr *Init = var->getInit();
6755  bool IsGlobal = var->hasGlobalStorage() && !var->isStaticLocal();
6756
6757  if (!var->getDeclContext()->isDependentContext() && Init) {
6758    if (IsGlobal && !var->isConstexpr() &&
6759        getDiagnostics().getDiagnosticLevel(diag::warn_global_constructor,
6760                                            var->getLocation())
6761          != DiagnosticsEngine::Ignored &&
6762        !Init->isConstantInitializer(Context, baseType->isReferenceType()))
6763      Diag(var->getLocation(), diag::warn_global_constructor)
6764        << Init->getSourceRange();
6765
6766    if (var->isConstexpr()) {
6767      llvm::SmallVector<PartialDiagnosticAt, 8> Notes;
6768      if (!var->evaluateValue(Notes) || !var->isInitICE()) {
6769        SourceLocation DiagLoc = var->getLocation();
6770        // If the note doesn't add any useful information other than a source
6771        // location, fold it into the primary diagnostic.
6772        if (Notes.size() == 1 && Notes[0].second.getDiagID() ==
6773              diag::note_invalid_subexpr_in_const_expr) {
6774          DiagLoc = Notes[0].first;
6775          Notes.clear();
6776        }
6777        Diag(DiagLoc, diag::err_constexpr_var_requires_const_init)
6778          << var << Init->getSourceRange();
6779        for (unsigned I = 0, N = Notes.size(); I != N; ++I)
6780          Diag(Notes[I].first, Notes[I].second);
6781      }
6782    } else if (var->isUsableInConstantExpressions(Context)) {
6783      // Check whether the initializer of a const variable of integral or
6784      // enumeration type is an ICE now, since we can't tell whether it was
6785      // initialized by a constant expression if we check later.
6786      var->checkInitIsICE();
6787    }
6788  }
6789
6790  // Require the destructor.
6791  if (const RecordType *recordType = baseType->getAs<RecordType>())
6792    FinalizeVarWithDestructor(var, recordType);
6793}
6794
6795/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6796/// any semantic actions necessary after any initializer has been attached.
6797void
6798Sema::FinalizeDeclaration(Decl *ThisDecl) {
6799  // Note that we are no longer parsing the initializer for this declaration.
6800  ParsingInitForAutoVars.erase(ThisDecl);
6801}
6802
6803Sema::DeclGroupPtrTy
6804Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6805                              Decl **Group, unsigned NumDecls) {
6806  SmallVector<Decl*, 8> Decls;
6807
6808  if (DS.isTypeSpecOwned())
6809    Decls.push_back(DS.getRepAsDecl());
6810
6811  for (unsigned i = 0; i != NumDecls; ++i)
6812    if (Decl *D = Group[i])
6813      Decls.push_back(D);
6814
6815  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6816                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6817}
6818
6819/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6820/// group, performing any necessary semantic checking.
6821Sema::DeclGroupPtrTy
6822Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6823                           bool TypeMayContainAuto) {
6824  // C++0x [dcl.spec.auto]p7:
6825  //   If the type deduced for the template parameter U is not the same in each
6826  //   deduction, the program is ill-formed.
6827  // FIXME: When initializer-list support is added, a distinction is needed
6828  // between the deduced type U and the deduced type which 'auto' stands for.
6829  //   auto a = 0, b = { 1, 2, 3 };
6830  // is legal because the deduced type U is 'int' in both cases.
6831  if (TypeMayContainAuto && NumDecls > 1) {
6832    QualType Deduced;
6833    CanQualType DeducedCanon;
6834    VarDecl *DeducedDecl = 0;
6835    for (unsigned i = 0; i != NumDecls; ++i) {
6836      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6837        AutoType *AT = D->getType()->getContainedAutoType();
6838        // Don't reissue diagnostics when instantiating a template.
6839        if (AT && D->isInvalidDecl())
6840          break;
6841        if (AT && AT->isDeduced()) {
6842          QualType U = AT->getDeducedType();
6843          CanQualType UCanon = Context.getCanonicalType(U);
6844          if (Deduced.isNull()) {
6845            Deduced = U;
6846            DeducedCanon = UCanon;
6847            DeducedDecl = D;
6848          } else if (DeducedCanon != UCanon) {
6849            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6850                 diag::err_auto_different_deductions)
6851              << Deduced << DeducedDecl->getDeclName()
6852              << U << D->getDeclName()
6853              << DeducedDecl->getInit()->getSourceRange()
6854              << D->getInit()->getSourceRange();
6855            D->setInvalidDecl();
6856            break;
6857          }
6858        }
6859      }
6860    }
6861  }
6862
6863  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6864}
6865
6866
6867/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6868/// to introduce parameters into function prototype scope.
6869Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6870  const DeclSpec &DS = D.getDeclSpec();
6871
6872  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6873  // C++03 [dcl.stc]p2 also permits 'auto'.
6874  VarDecl::StorageClass StorageClass = SC_None;
6875  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6876  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6877    StorageClass = SC_Register;
6878    StorageClassAsWritten = SC_Register;
6879  } else if (getLangOpts().CPlusPlus &&
6880             DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
6881    StorageClass = SC_Auto;
6882    StorageClassAsWritten = SC_Auto;
6883  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6884    Diag(DS.getStorageClassSpecLoc(),
6885         diag::err_invalid_storage_class_in_func_decl);
6886    D.getMutableDeclSpec().ClearStorageClassSpecs();
6887  }
6888
6889  if (D.getDeclSpec().isThreadSpecified())
6890    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6891  if (D.getDeclSpec().isConstexprSpecified())
6892    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6893      << 0;
6894
6895  DiagnoseFunctionSpecifiers(D);
6896
6897  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6898  QualType parmDeclType = TInfo->getType();
6899
6900  if (getLangOpts().CPlusPlus) {
6901    // Check that there are no default arguments inside the type of this
6902    // parameter.
6903    CheckExtraCXXDefaultArguments(D);
6904
6905    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6906    if (D.getCXXScopeSpec().isSet()) {
6907      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6908        << D.getCXXScopeSpec().getRange();
6909      D.getCXXScopeSpec().clear();
6910    }
6911  }
6912
6913  // Ensure we have a valid name
6914  IdentifierInfo *II = 0;
6915  if (D.hasName()) {
6916    II = D.getIdentifier();
6917    if (!II) {
6918      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6919        << GetNameForDeclarator(D).getName().getAsString();
6920      D.setInvalidType(true);
6921    }
6922  }
6923
6924  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6925  if (II) {
6926    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6927                   ForRedeclaration);
6928    LookupName(R, S);
6929    if (R.isSingleResult()) {
6930      NamedDecl *PrevDecl = R.getFoundDecl();
6931      if (PrevDecl->isTemplateParameter()) {
6932        // Maybe we will complain about the shadowed template parameter.
6933        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6934        // Just pretend that we didn't see the previous declaration.
6935        PrevDecl = 0;
6936      } else if (S->isDeclScope(PrevDecl)) {
6937        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6938        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6939
6940        // Recover by removing the name
6941        II = 0;
6942        D.SetIdentifier(0, D.getIdentifierLoc());
6943        D.setInvalidType(true);
6944      }
6945    }
6946  }
6947
6948  // Temporarily put parameter variables in the translation unit, not
6949  // the enclosing context.  This prevents them from accidentally
6950  // looking like class members in C++.
6951  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6952                                    D.getLocStart(),
6953                                    D.getIdentifierLoc(), II,
6954                                    parmDeclType, TInfo,
6955                                    StorageClass, StorageClassAsWritten);
6956
6957  if (D.isInvalidType())
6958    New->setInvalidDecl();
6959
6960  assert(S->isFunctionPrototypeScope());
6961  assert(S->getFunctionPrototypeDepth() >= 1);
6962  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6963                    S->getNextFunctionPrototypeIndex());
6964
6965  // Add the parameter declaration into this scope.
6966  S->AddDecl(New);
6967  if (II)
6968    IdResolver.AddDecl(New);
6969
6970  ProcessDeclAttributes(S, New, D);
6971
6972  if (D.getDeclSpec().isModulePrivateSpecified())
6973    Diag(New->getLocation(), diag::err_module_private_local)
6974      << 1 << New->getDeclName()
6975      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6976      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6977
6978  if (New->hasAttr<BlocksAttr>()) {
6979    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6980  }
6981  return New;
6982}
6983
6984/// \brief Synthesizes a variable for a parameter arising from a
6985/// typedef.
6986ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6987                                              SourceLocation Loc,
6988                                              QualType T) {
6989  /* FIXME: setting StartLoc == Loc.
6990     Would it be worth to modify callers so as to provide proper source
6991     location for the unnamed parameters, embedding the parameter's type? */
6992  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6993                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6994                                           SC_None, SC_None, 0);
6995  Param->setImplicit();
6996  return Param;
6997}
6998
6999void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
7000                                    ParmVarDecl * const *ParamEnd) {
7001  // Don't diagnose unused-parameter errors in template instantiations; we
7002  // will already have done so in the template itself.
7003  if (!ActiveTemplateInstantiations.empty())
7004    return;
7005
7006  for (; Param != ParamEnd; ++Param) {
7007    if (!(*Param)->isReferenced() && (*Param)->getDeclName() &&
7008        !(*Param)->hasAttr<UnusedAttr>()) {
7009      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
7010        << (*Param)->getDeclName();
7011    }
7012  }
7013}
7014
7015void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
7016                                                  ParmVarDecl * const *ParamEnd,
7017                                                  QualType ReturnTy,
7018                                                  NamedDecl *D) {
7019  if (LangOpts.NumLargeByValueCopy == 0) // No check.
7020    return;
7021
7022  // Warn if the return value is pass-by-value and larger than the specified
7023  // threshold.
7024  if (!ReturnTy->isDependentType() && ReturnTy.isPODType(Context)) {
7025    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
7026    if (Size > LangOpts.NumLargeByValueCopy)
7027      Diag(D->getLocation(), diag::warn_return_value_size)
7028          << D->getDeclName() << Size;
7029  }
7030
7031  // Warn if any parameter is pass-by-value and larger than the specified
7032  // threshold.
7033  for (; Param != ParamEnd; ++Param) {
7034    QualType T = (*Param)->getType();
7035    if (T->isDependentType() || !T.isPODType(Context))
7036      continue;
7037    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
7038    if (Size > LangOpts.NumLargeByValueCopy)
7039      Diag((*Param)->getLocation(), diag::warn_parameter_size)
7040          << (*Param)->getDeclName() << Size;
7041  }
7042}
7043
7044ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
7045                                  SourceLocation NameLoc, IdentifierInfo *Name,
7046                                  QualType T, TypeSourceInfo *TSInfo,
7047                                  VarDecl::StorageClass StorageClass,
7048                                  VarDecl::StorageClass StorageClassAsWritten) {
7049  // In ARC, infer a lifetime qualifier for appropriate parameter types.
7050  if (getLangOpts().ObjCAutoRefCount &&
7051      T.getObjCLifetime() == Qualifiers::OCL_None &&
7052      T->isObjCLifetimeType()) {
7053
7054    Qualifiers::ObjCLifetime lifetime;
7055
7056    // Special cases for arrays:
7057    //   - if it's const, use __unsafe_unretained
7058    //   - otherwise, it's an error
7059    if (T->isArrayType()) {
7060      if (!T.isConstQualified()) {
7061        DelayedDiagnostics.add(
7062            sema::DelayedDiagnostic::makeForbiddenType(
7063            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
7064      }
7065      lifetime = Qualifiers::OCL_ExplicitNone;
7066    } else {
7067      lifetime = T->getObjCARCImplicitLifetime();
7068    }
7069    T = Context.getLifetimeQualifiedType(T, lifetime);
7070  }
7071
7072  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
7073                                         Context.getAdjustedParameterType(T),
7074                                         TSInfo,
7075                                         StorageClass, StorageClassAsWritten,
7076                                         0);
7077
7078  // Parameters can not be abstract class types.
7079  // For record types, this is done by the AbstractClassUsageDiagnoser once
7080  // the class has been completely parsed.
7081  if (!CurContext->isRecord() &&
7082      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
7083                             AbstractParamType))
7084    New->setInvalidDecl();
7085
7086  // Parameter declarators cannot be interface types. All ObjC objects are
7087  // passed by reference.
7088  if (T->isObjCObjectType()) {
7089    Diag(NameLoc,
7090         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
7091      << FixItHint::CreateInsertion(NameLoc, "*");
7092    T = Context.getObjCObjectPointerType(T);
7093    New->setType(T);
7094  }
7095
7096  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
7097  // duration shall not be qualified by an address-space qualifier."
7098  // Since all parameters have automatic store duration, they can not have
7099  // an address space.
7100  if (T.getAddressSpace() != 0) {
7101    Diag(NameLoc, diag::err_arg_with_address_space);
7102    New->setInvalidDecl();
7103  }
7104
7105  return New;
7106}
7107
7108void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
7109                                           SourceLocation LocAfterDecls) {
7110  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
7111
7112  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
7113  // for a K&R function.
7114  if (!FTI.hasPrototype) {
7115    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
7116      --i;
7117      if (FTI.ArgInfo[i].Param == 0) {
7118        SmallString<256> Code;
7119        llvm::raw_svector_ostream(Code) << "  int "
7120                                        << FTI.ArgInfo[i].Ident->getName()
7121                                        << ";\n";
7122        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
7123          << FTI.ArgInfo[i].Ident
7124          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
7125
7126        // Implicitly declare the argument as type 'int' for lack of a better
7127        // type.
7128        AttributeFactory attrs;
7129        DeclSpec DS(attrs);
7130        const char* PrevSpec; // unused
7131        unsigned DiagID; // unused
7132        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
7133                           PrevSpec, DiagID);
7134        Declarator ParamD(DS, Declarator::KNRTypeListContext);
7135        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
7136        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
7137      }
7138    }
7139  }
7140}
7141
7142Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
7143                                         Declarator &D) {
7144  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
7145  assert(D.isFunctionDeclarator() && "Not a function declarator!");
7146  Scope *ParentScope = FnBodyScope->getParent();
7147
7148  D.setFunctionDefinitionKind(FDK_Definition);
7149  Decl *DP = HandleDeclarator(ParentScope, D,
7150                              MultiTemplateParamsArg(*this));
7151  return ActOnStartOfFunctionDef(FnBodyScope, DP);
7152}
7153
7154static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
7155  // Don't warn about invalid declarations.
7156  if (FD->isInvalidDecl())
7157    return false;
7158
7159  // Or declarations that aren't global.
7160  if (!FD->isGlobal())
7161    return false;
7162
7163  // Don't warn about C++ member functions.
7164  if (isa<CXXMethodDecl>(FD))
7165    return false;
7166
7167  // Don't warn about 'main'.
7168  if (FD->isMain())
7169    return false;
7170
7171  // Don't warn about inline functions.
7172  if (FD->isInlined())
7173    return false;
7174
7175  // Don't warn about function templates.
7176  if (FD->getDescribedFunctionTemplate())
7177    return false;
7178
7179  // Don't warn about function template specializations.
7180  if (FD->isFunctionTemplateSpecialization())
7181    return false;
7182
7183  bool MissingPrototype = true;
7184  for (const FunctionDecl *Prev = FD->getPreviousDecl();
7185       Prev; Prev = Prev->getPreviousDecl()) {
7186    // Ignore any declarations that occur in function or method
7187    // scope, because they aren't visible from the header.
7188    if (Prev->getDeclContext()->isFunctionOrMethod())
7189      continue;
7190
7191    MissingPrototype = !Prev->getType()->isFunctionProtoType();
7192    break;
7193  }
7194
7195  return MissingPrototype;
7196}
7197
7198void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
7199  // Don't complain if we're in GNU89 mode and the previous definition
7200  // was an extern inline function.
7201  const FunctionDecl *Definition;
7202  if (FD->isDefined(Definition) &&
7203      !canRedefineFunction(Definition, getLangOpts())) {
7204    if (getLangOpts().GNUMode && Definition->isInlineSpecified() &&
7205        Definition->getStorageClass() == SC_Extern)
7206      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
7207        << FD->getDeclName() << getLangOpts().CPlusPlus;
7208    else
7209      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
7210    Diag(Definition->getLocation(), diag::note_previous_definition);
7211  }
7212}
7213
7214Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
7215  // Clear the last template instantiation error context.
7216  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
7217
7218  if (!D)
7219    return D;
7220  FunctionDecl *FD = 0;
7221
7222  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
7223    FD = FunTmpl->getTemplatedDecl();
7224  else
7225    FD = cast<FunctionDecl>(D);
7226
7227  // Enter a new function scope
7228  PushFunctionScope();
7229
7230  // See if this is a redefinition.
7231  if (!FD->isLateTemplateParsed())
7232    CheckForFunctionRedefinition(FD);
7233
7234  // Builtin functions cannot be defined.
7235  if (unsigned BuiltinID = FD->getBuiltinID()) {
7236    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
7237      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
7238      FD->setInvalidDecl();
7239    }
7240  }
7241
7242  // The return type of a function definition must be complete
7243  // (C99 6.9.1p3, C++ [dcl.fct]p6).
7244  QualType ResultType = FD->getResultType();
7245  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
7246      !FD->isInvalidDecl() &&
7247      RequireCompleteType(FD->getLocation(), ResultType,
7248                          diag::err_func_def_incomplete_result))
7249    FD->setInvalidDecl();
7250
7251  // GNU warning -Wmissing-prototypes:
7252  //   Warn if a global function is defined without a previous
7253  //   prototype declaration. This warning is issued even if the
7254  //   definition itself provides a prototype. The aim is to detect
7255  //   global functions that fail to be declared in header files.
7256  if (ShouldWarnAboutMissingPrototype(FD))
7257    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
7258
7259  if (FnBodyScope)
7260    PushDeclContext(FnBodyScope, FD);
7261
7262  // Check the validity of our function parameters
7263  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
7264                           /*CheckParameterNames=*/true);
7265
7266  // Introduce our parameters into the function scope
7267  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
7268    ParmVarDecl *Param = FD->getParamDecl(p);
7269    Param->setOwningFunction(FD);
7270
7271    // If this has an identifier, add it to the scope stack.
7272    if (Param->getIdentifier() && FnBodyScope) {
7273      CheckShadow(FnBodyScope, Param);
7274
7275      PushOnScopeChains(Param, FnBodyScope);
7276    }
7277  }
7278
7279  // If we had any tags defined in the function prototype,
7280  // introduce them into the function scope.
7281  if (FnBodyScope) {
7282    for (llvm::ArrayRef<NamedDecl*>::iterator I = FD->getDeclsInPrototypeScope().begin(),
7283           E = FD->getDeclsInPrototypeScope().end(); I != E; ++I) {
7284      NamedDecl *D = *I;
7285
7286      // Some of these decls (like enums) may have been pinned to the translation unit
7287      // for lack of a real context earlier. If so, remove from the translation unit
7288      // and reattach to the current context.
7289      if (D->getLexicalDeclContext() == Context.getTranslationUnitDecl()) {
7290        // Is the decl actually in the context?
7291        for (DeclContext::decl_iterator DI = Context.getTranslationUnitDecl()->decls_begin(),
7292               DE = Context.getTranslationUnitDecl()->decls_end(); DI != DE; ++DI) {
7293          if (*DI == D) {
7294            Context.getTranslationUnitDecl()->removeDecl(D);
7295            break;
7296          }
7297        }
7298        // Either way, reassign the lexical decl context to our FunctionDecl.
7299        D->setLexicalDeclContext(CurContext);
7300      }
7301
7302      // If the decl has a non-null name, make accessible in the current scope.
7303      if (!D->getName().empty())
7304        PushOnScopeChains(D, FnBodyScope, /*AddToContext=*/false);
7305
7306      // Similarly, dive into enums and fish their constants out, making them
7307      // accessible in this scope.
7308      if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
7309        for (EnumDecl::enumerator_iterator EI = ED->enumerator_begin(),
7310               EE = ED->enumerator_end(); EI != EE; ++EI)
7311          PushOnScopeChains(*EI, FnBodyScope, /*AddToContext=*/false);
7312      }
7313    }
7314  }
7315
7316  // Checking attributes of current function definition
7317  // dllimport attribute.
7318  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
7319  if (DA && (!FD->getAttr<DLLExportAttr>())) {
7320    // dllimport attribute cannot be directly applied to definition.
7321    // Microsoft accepts dllimport for functions defined within class scope.
7322    if (!DA->isInherited() &&
7323        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
7324      Diag(FD->getLocation(),
7325           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
7326        << "dllimport";
7327      FD->setInvalidDecl();
7328      return FD;
7329    }
7330
7331    // Visual C++ appears to not think this is an issue, so only issue
7332    // a warning when Microsoft extensions are disabled.
7333    if (!LangOpts.MicrosoftExt) {
7334      // If a symbol previously declared dllimport is later defined, the
7335      // attribute is ignored in subsequent references, and a warning is
7336      // emitted.
7337      Diag(FD->getLocation(),
7338           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
7339        << FD->getName() << "dllimport";
7340    }
7341  }
7342  return FD;
7343}
7344
7345/// \brief Given the set of return statements within a function body,
7346/// compute the variables that are subject to the named return value
7347/// optimization.
7348///
7349/// Each of the variables that is subject to the named return value
7350/// optimization will be marked as NRVO variables in the AST, and any
7351/// return statement that has a marked NRVO variable as its NRVO candidate can
7352/// use the named return value optimization.
7353///
7354/// This function applies a very simplistic algorithm for NRVO: if every return
7355/// statement in the function has the same NRVO candidate, that candidate is
7356/// the NRVO variable.
7357///
7358/// FIXME: Employ a smarter algorithm that accounts for multiple return
7359/// statements and the lifetimes of the NRVO candidates. We should be able to
7360/// find a maximal set of NRVO variables.
7361void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
7362  ReturnStmt **Returns = Scope->Returns.data();
7363
7364  const VarDecl *NRVOCandidate = 0;
7365  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
7366    if (!Returns[I]->getNRVOCandidate())
7367      return;
7368
7369    if (!NRVOCandidate)
7370      NRVOCandidate = Returns[I]->getNRVOCandidate();
7371    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
7372      return;
7373  }
7374
7375  if (NRVOCandidate)
7376    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
7377}
7378
7379Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
7380  return ActOnFinishFunctionBody(D, move(BodyArg), false);
7381}
7382
7383Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
7384                                    bool IsInstantiation) {
7385  FunctionDecl *FD = 0;
7386  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
7387  if (FunTmpl)
7388    FD = FunTmpl->getTemplatedDecl();
7389  else
7390    FD = dyn_cast_or_null<FunctionDecl>(dcl);
7391
7392  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
7393  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
7394
7395  if (FD) {
7396    FD->setBody(Body);
7397
7398    // If the function implicitly returns zero (like 'main') or is naked,
7399    // don't complain about missing return statements.
7400    if (FD->hasImplicitReturnZero() || FD->hasAttr<NakedAttr>())
7401      WP.disableCheckFallThrough();
7402
7403    // MSVC permits the use of pure specifier (=0) on function definition,
7404    // defined at class scope, warn about this non standard construct.
7405    if (getLangOpts().MicrosoftExt && FD->isPure())
7406      Diag(FD->getLocation(), diag::warn_pure_function_definition);
7407
7408    if (!FD->isInvalidDecl()) {
7409      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
7410      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
7411                                             FD->getResultType(), FD);
7412
7413      // If this is a constructor, we need a vtable.
7414      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
7415        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
7416
7417      computeNRVO(Body, getCurFunction());
7418    }
7419
7420    assert((FD == getCurFunctionDecl() || getCurLambda()->CallOperator == FD) &&
7421           "Function parsing confused");
7422  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7423    assert(MD == getCurMethodDecl() && "Method parsing confused");
7424    MD->setBody(Body);
7425    if (Body)
7426      MD->setEndLoc(Body->getLocEnd());
7427    if (!MD->isInvalidDecl()) {
7428      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7429      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7430                                             MD->getResultType(), MD);
7431
7432      if (Body)
7433        computeNRVO(Body, getCurFunction());
7434    }
7435    if (ObjCShouldCallSuperDealloc) {
7436      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7437      ObjCShouldCallSuperDealloc = false;
7438    }
7439    if (ObjCShouldCallSuperFinalize) {
7440      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7441      ObjCShouldCallSuperFinalize = false;
7442    }
7443  } else {
7444    return 0;
7445  }
7446
7447  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7448         "ObjC methods, which should have been handled in the block above.");
7449  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7450         "ObjC methods, which should have been handled in the block above.");
7451
7452  // Verify and clean out per-function state.
7453  if (Body) {
7454    // C++ constructors that have function-try-blocks can't have return
7455    // statements in the handlers of that block. (C++ [except.handle]p14)
7456    // Verify this.
7457    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7458      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7459
7460    // Verify that gotos and switch cases don't jump into scopes illegally.
7461    if (getCurFunction()->NeedsScopeChecking() &&
7462        !dcl->isInvalidDecl() &&
7463        !hasAnyUnrecoverableErrorsInThisFunction())
7464      DiagnoseInvalidJumps(Body);
7465
7466    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7467      if (!Destructor->getParent()->isDependentType())
7468        CheckDestructor(Destructor);
7469
7470      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7471                                             Destructor->getParent());
7472    }
7473
7474    // If any errors have occurred, clear out any temporaries that may have
7475    // been leftover. This ensures that these temporaries won't be picked up for
7476    // deletion in some later function.
7477    if (PP.getDiagnostics().hasErrorOccurred() ||
7478        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7479      DiscardCleanupsInEvaluationContext();
7480    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7481      // Since the body is valid, issue any analysis-based warnings that are
7482      // enabled.
7483      ActivePolicy = &WP;
7484    }
7485
7486    if (!IsInstantiation && FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7487        (!CheckConstexprFunctionDecl(FD) ||
7488         !CheckConstexprFunctionBody(FD, Body)))
7489      FD->setInvalidDecl();
7490
7491    assert(ExprCleanupObjects.empty() && "Leftover temporaries in function");
7492    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7493    assert(MaybeODRUseExprs.empty() &&
7494           "Leftover expressions for odr-use checking");
7495  }
7496
7497  if (!IsInstantiation)
7498    PopDeclContext();
7499
7500  PopFunctionScopeInfo(ActivePolicy, dcl);
7501
7502  // If any errors have occurred, clear out any temporaries that may have
7503  // been leftover. This ensures that these temporaries won't be picked up for
7504  // deletion in some later function.
7505  if (getDiagnostics().hasErrorOccurred()) {
7506    DiscardCleanupsInEvaluationContext();
7507  }
7508
7509  return dcl;
7510}
7511
7512
7513/// When we finish delayed parsing of an attribute, we must attach it to the
7514/// relevant Decl.
7515void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7516                                       ParsedAttributes &Attrs) {
7517  // Always attach attributes to the underlying decl.
7518  if (TemplateDecl *TD = dyn_cast<TemplateDecl>(D))
7519    D = TD->getTemplatedDecl();
7520  ProcessDeclAttributeList(S, D, Attrs.getList());
7521}
7522
7523
7524/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7525/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7526NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7527                                          IdentifierInfo &II, Scope *S) {
7528  // Before we produce a declaration for an implicitly defined
7529  // function, see whether there was a locally-scoped declaration of
7530  // this name as a function or variable. If so, use that
7531  // (non-visible) declaration, and complain about it.
7532  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7533    = findLocallyScopedExternalDecl(&II);
7534  if (Pos != LocallyScopedExternalDecls.end()) {
7535    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7536    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7537    return Pos->second;
7538  }
7539
7540  // Extension in C99.  Legal in C90, but warn about it.
7541  unsigned diag_id;
7542  if (II.getName().startswith("__builtin_"))
7543    diag_id = diag::warn_builtin_unknown;
7544  else if (getLangOpts().C99)
7545    diag_id = diag::ext_implicit_function_decl;
7546  else
7547    diag_id = diag::warn_implicit_function_decl;
7548  Diag(Loc, diag_id) << &II;
7549
7550  // Because typo correction is expensive, only do it if the implicit
7551  // function declaration is going to be treated as an error.
7552  if (Diags.getDiagnosticLevel(diag_id, Loc) >= DiagnosticsEngine::Error) {
7553    TypoCorrection Corrected;
7554    DeclFilterCCC<FunctionDecl> Validator;
7555    if (S && (Corrected = CorrectTypo(DeclarationNameInfo(&II, Loc),
7556                                      LookupOrdinaryName, S, 0, Validator))) {
7557      std::string CorrectedStr = Corrected.getAsString(getLangOpts());
7558      std::string CorrectedQuotedStr = Corrected.getQuoted(getLangOpts());
7559      FunctionDecl *Func = Corrected.getCorrectionDeclAs<FunctionDecl>();
7560
7561      Diag(Loc, diag::note_function_suggestion) << CorrectedQuotedStr
7562          << FixItHint::CreateReplacement(Loc, CorrectedStr);
7563
7564      if (Func->getLocation().isValid()
7565          && !II.getName().startswith("__builtin_"))
7566        Diag(Func->getLocation(), diag::note_previous_decl)
7567            << CorrectedQuotedStr;
7568    }
7569  }
7570
7571  // Set a Declarator for the implicit definition: int foo();
7572  const char *Dummy;
7573  AttributeFactory attrFactory;
7574  DeclSpec DS(attrFactory);
7575  unsigned DiagID;
7576  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7577  (void)Error; // Silence warning.
7578  assert(!Error && "Error setting up implicit decl!");
7579  Declarator D(DS, Declarator::BlockContext);
7580  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7581                                             0, 0, true, SourceLocation(),
7582                                             SourceLocation(), SourceLocation(),
7583                                             SourceLocation(),
7584                                             EST_None, SourceLocation(),
7585                                             0, 0, 0, 0, Loc, Loc, D),
7586                DS.getAttributes(),
7587                SourceLocation());
7588  D.SetIdentifier(&II, Loc);
7589
7590  // Insert this function into translation-unit scope.
7591
7592  DeclContext *PrevDC = CurContext;
7593  CurContext = Context.getTranslationUnitDecl();
7594
7595  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7596  FD->setImplicit();
7597
7598  CurContext = PrevDC;
7599
7600  AddKnownFunctionAttributes(FD);
7601
7602  return FD;
7603}
7604
7605/// \brief Adds any function attributes that we know a priori based on
7606/// the declaration of this function.
7607///
7608/// These attributes can apply both to implicitly-declared builtins
7609/// (like __builtin___printf_chk) or to library-declared functions
7610/// like NSLog or printf.
7611///
7612/// We need to check for duplicate attributes both here and where user-written
7613/// attributes are applied to declarations.
7614void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7615  if (FD->isInvalidDecl())
7616    return;
7617
7618  // If this is a built-in function, map its builtin attributes to
7619  // actual attributes.
7620  if (unsigned BuiltinID = FD->getBuiltinID()) {
7621    // Handle printf-formatting attributes.
7622    unsigned FormatIdx;
7623    bool HasVAListArg;
7624    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7625      if (!FD->getAttr<FormatAttr>()) {
7626        const char *fmt = "printf";
7627        unsigned int NumParams = FD->getNumParams();
7628        if (FormatIdx < NumParams && // NumParams may be 0 (e.g. vfprintf)
7629            FD->getParamDecl(FormatIdx)->getType()->isObjCObjectPointerType())
7630          fmt = "NSString";
7631        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7632                                               fmt, FormatIdx+1,
7633                                               HasVAListArg ? 0 : FormatIdx+2));
7634      }
7635    }
7636    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7637                                             HasVAListArg)) {
7638     if (!FD->getAttr<FormatAttr>())
7639       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7640                                              "scanf", FormatIdx+1,
7641                                              HasVAListArg ? 0 : FormatIdx+2));
7642    }
7643
7644    // Mark const if we don't care about errno and that is the only
7645    // thing preventing the function from being const. This allows
7646    // IRgen to use LLVM intrinsics for such functions.
7647    if (!getLangOpts().MathErrno &&
7648        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7649      if (!FD->getAttr<ConstAttr>())
7650        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7651    }
7652
7653    if (Context.BuiltinInfo.isReturnsTwice(BuiltinID) &&
7654        !FD->getAttr<ReturnsTwiceAttr>())
7655      FD->addAttr(::new (Context) ReturnsTwiceAttr(FD->getLocation(), Context));
7656    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7657      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7658    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7659      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7660  }
7661
7662  IdentifierInfo *Name = FD->getIdentifier();
7663  if (!Name)
7664    return;
7665  if ((!getLangOpts().CPlusPlus &&
7666       FD->getDeclContext()->isTranslationUnit()) ||
7667      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7668       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7669       LinkageSpecDecl::lang_c)) {
7670    // Okay: this could be a libc/libm/Objective-C function we know
7671    // about.
7672  } else
7673    return;
7674
7675  if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7676    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7677    // target-specific builtins, perhaps?
7678    if (!FD->getAttr<FormatAttr>())
7679      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7680                                             "printf", 2,
7681                                             Name->isStr("vasprintf") ? 0 : 3));
7682  }
7683}
7684
7685TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7686                                    TypeSourceInfo *TInfo) {
7687  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7688  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7689
7690  if (!TInfo) {
7691    assert(D.isInvalidType() && "no declarator info for valid type");
7692    TInfo = Context.getTrivialTypeSourceInfo(T);
7693  }
7694
7695  // Scope manipulation handled by caller.
7696  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7697                                           D.getLocStart(),
7698                                           D.getIdentifierLoc(),
7699                                           D.getIdentifier(),
7700                                           TInfo);
7701
7702  // Bail out immediately if we have an invalid declaration.
7703  if (D.isInvalidType()) {
7704    NewTD->setInvalidDecl();
7705    return NewTD;
7706  }
7707
7708  if (D.getDeclSpec().isModulePrivateSpecified()) {
7709    if (CurContext->isFunctionOrMethod())
7710      Diag(NewTD->getLocation(), diag::err_module_private_local)
7711        << 2 << NewTD->getDeclName()
7712        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7713        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7714    else
7715      NewTD->setModulePrivate();
7716  }
7717
7718  // C++ [dcl.typedef]p8:
7719  //   If the typedef declaration defines an unnamed class (or
7720  //   enum), the first typedef-name declared by the declaration
7721  //   to be that class type (or enum type) is used to denote the
7722  //   class type (or enum type) for linkage purposes only.
7723  // We need to check whether the type was declared in the declaration.
7724  switch (D.getDeclSpec().getTypeSpecType()) {
7725  case TST_enum:
7726  case TST_struct:
7727  case TST_union:
7728  case TST_class: {
7729    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7730
7731    // Do nothing if the tag is not anonymous or already has an
7732    // associated typedef (from an earlier typedef in this decl group).
7733    if (tagFromDeclSpec->getIdentifier()) break;
7734    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7735
7736    // A well-formed anonymous tag must always be a TUK_Definition.
7737    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7738
7739    // The type must match the tag exactly;  no qualifiers allowed.
7740    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7741      break;
7742
7743    // Otherwise, set this is the anon-decl typedef for the tag.
7744    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7745    break;
7746  }
7747
7748  default:
7749    break;
7750  }
7751
7752  return NewTD;
7753}
7754
7755
7756/// \brief Check that this is a valid underlying type for an enum declaration.
7757bool Sema::CheckEnumUnderlyingType(TypeSourceInfo *TI) {
7758  SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7759  QualType T = TI->getType();
7760
7761  if (T->isDependentType() || T->isIntegralType(Context))
7762    return false;
7763
7764  Diag(UnderlyingLoc, diag::err_enum_invalid_underlying) << T;
7765  return true;
7766}
7767
7768/// Check whether this is a valid redeclaration of a previous enumeration.
7769/// \return true if the redeclaration was invalid.
7770bool Sema::CheckEnumRedeclaration(SourceLocation EnumLoc, bool IsScoped,
7771                                  QualType EnumUnderlyingTy,
7772                                  const EnumDecl *Prev) {
7773  bool IsFixed = !EnumUnderlyingTy.isNull();
7774
7775  if (IsScoped != Prev->isScoped()) {
7776    Diag(EnumLoc, diag::err_enum_redeclare_scoped_mismatch)
7777      << Prev->isScoped();
7778    Diag(Prev->getLocation(), diag::note_previous_use);
7779    return true;
7780  }
7781
7782  if (IsFixed && Prev->isFixed()) {
7783    if (!Context.hasSameUnqualifiedType(EnumUnderlyingTy,
7784                                        Prev->getIntegerType())) {
7785      Diag(EnumLoc, diag::err_enum_redeclare_type_mismatch)
7786        << EnumUnderlyingTy << Prev->getIntegerType();
7787      Diag(Prev->getLocation(), diag::note_previous_use);
7788      return true;
7789    }
7790  } else if (IsFixed != Prev->isFixed()) {
7791    Diag(EnumLoc, diag::err_enum_redeclare_fixed_mismatch)
7792      << Prev->isFixed();
7793    Diag(Prev->getLocation(), diag::note_previous_use);
7794    return true;
7795  }
7796
7797  return false;
7798}
7799
7800/// \brief Determine whether a tag with a given kind is acceptable
7801/// as a redeclaration of the given tag declaration.
7802///
7803/// \returns true if the new tag kind is acceptable, false otherwise.
7804bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7805                                        TagTypeKind NewTag, bool isDefinition,
7806                                        SourceLocation NewTagLoc,
7807                                        const IdentifierInfo &Name) {
7808  // C++ [dcl.type.elab]p3:
7809  //   The class-key or enum keyword present in the
7810  //   elaborated-type-specifier shall agree in kind with the
7811  //   declaration to which the name in the elaborated-type-specifier
7812  //   refers. This rule also applies to the form of
7813  //   elaborated-type-specifier that declares a class-name or
7814  //   friend class since it can be construed as referring to the
7815  //   definition of the class. Thus, in any
7816  //   elaborated-type-specifier, the enum keyword shall be used to
7817  //   refer to an enumeration (7.2), the union class-key shall be
7818  //   used to refer to a union (clause 9), and either the class or
7819  //   struct class-key shall be used to refer to a class (clause 9)
7820  //   declared using the class or struct class-key.
7821  TagTypeKind OldTag = Previous->getTagKind();
7822  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7823    if (OldTag == NewTag)
7824      return true;
7825
7826  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7827      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7828    // Warn about the struct/class tag mismatch.
7829    bool isTemplate = false;
7830    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7831      isTemplate = Record->getDescribedClassTemplate();
7832
7833    if (!ActiveTemplateInstantiations.empty()) {
7834      // In a template instantiation, do not offer fix-its for tag mismatches
7835      // since they usually mess up the template instead of fixing the problem.
7836      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7837        << (NewTag == TTK_Class) << isTemplate << &Name;
7838      return true;
7839    }
7840
7841    if (isDefinition) {
7842      // On definitions, check previous tags and issue a fix-it for each
7843      // one that doesn't match the current tag.
7844      if (Previous->getDefinition()) {
7845        // Don't suggest fix-its for redefinitions.
7846        return true;
7847      }
7848
7849      bool previousMismatch = false;
7850      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7851           E(Previous->redecls_end()); I != E; ++I) {
7852        if (I->getTagKind() != NewTag) {
7853          if (!previousMismatch) {
7854            previousMismatch = true;
7855            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7856              << (NewTag == TTK_Class) << isTemplate << &Name;
7857          }
7858          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7859            << (NewTag == TTK_Class)
7860            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7861                                            NewTag == TTK_Class?
7862                                            "class" : "struct");
7863        }
7864      }
7865      return true;
7866    }
7867
7868    // Check for a previous definition.  If current tag and definition
7869    // are same type, do nothing.  If no definition, but disagree with
7870    // with previous tag type, give a warning, but no fix-it.
7871    const TagDecl *Redecl = Previous->getDefinition() ?
7872                            Previous->getDefinition() : Previous;
7873    if (Redecl->getTagKind() == NewTag) {
7874      return true;
7875    }
7876
7877    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7878      << (NewTag == TTK_Class)
7879      << isTemplate << &Name;
7880    Diag(Redecl->getLocation(), diag::note_previous_use);
7881
7882    // If there is a previous defintion, suggest a fix-it.
7883    if (Previous->getDefinition()) {
7884        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7885          << (Redecl->getTagKind() == TTK_Class)
7886          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7887                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7888    }
7889
7890    return true;
7891  }
7892  return false;
7893}
7894
7895/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7896/// former case, Name will be non-null.  In the later case, Name will be null.
7897/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7898/// reference/declaration/definition of a tag.
7899Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7900                     SourceLocation KWLoc, CXXScopeSpec &SS,
7901                     IdentifierInfo *Name, SourceLocation NameLoc,
7902                     AttributeList *Attr, AccessSpecifier AS,
7903                     SourceLocation ModulePrivateLoc,
7904                     MultiTemplateParamsArg TemplateParameterLists,
7905                     bool &OwnedDecl, bool &IsDependent,
7906                     SourceLocation ScopedEnumKWLoc,
7907                     bool ScopedEnumUsesClassTag,
7908                     TypeResult UnderlyingType) {
7909  // If this is not a definition, it must have a name.
7910  assert((Name != 0 || TUK == TUK_Definition) &&
7911         "Nameless record must be a definition!");
7912  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7913
7914  OwnedDecl = false;
7915  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7916  bool ScopedEnum = ScopedEnumKWLoc.isValid();
7917
7918  // FIXME: Check explicit specializations more carefully.
7919  bool isExplicitSpecialization = false;
7920  bool Invalid = false;
7921
7922  // We only need to do this matching if we have template parameters
7923  // or a scope specifier, which also conveniently avoids this work
7924  // for non-C++ cases.
7925  if (TemplateParameterLists.size() > 0 ||
7926      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7927    if (TemplateParameterList *TemplateParams
7928          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7929                                                TemplateParameterLists.get(),
7930                                                TemplateParameterLists.size(),
7931                                                    TUK == TUK_Friend,
7932                                                    isExplicitSpecialization,
7933                                                    Invalid)) {
7934      if (TemplateParams->size() > 0) {
7935        // This is a declaration or definition of a class template (which may
7936        // be a member of another template).
7937
7938        if (Invalid)
7939          return 0;
7940
7941        OwnedDecl = false;
7942        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7943                                               SS, Name, NameLoc, Attr,
7944                                               TemplateParams, AS,
7945                                               ModulePrivateLoc,
7946                                           TemplateParameterLists.size() - 1,
7947                 (TemplateParameterList**) TemplateParameterLists.release());
7948        return Result.get();
7949      } else {
7950        // The "template<>" header is extraneous.
7951        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7952          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7953        isExplicitSpecialization = true;
7954      }
7955    }
7956  }
7957
7958  // Figure out the underlying type if this a enum declaration. We need to do
7959  // this early, because it's needed to detect if this is an incompatible
7960  // redeclaration.
7961  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7962
7963  if (Kind == TTK_Enum) {
7964    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7965      // No underlying type explicitly specified, or we failed to parse the
7966      // type, default to int.
7967      EnumUnderlying = Context.IntTy.getTypePtr();
7968    else if (UnderlyingType.get()) {
7969      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7970      // integral type; any cv-qualification is ignored.
7971      TypeSourceInfo *TI = 0;
7972      GetTypeFromParser(UnderlyingType.get(), &TI);
7973      EnumUnderlying = TI;
7974
7975      if (CheckEnumUnderlyingType(TI))
7976        // Recover by falling back to int.
7977        EnumUnderlying = Context.IntTy.getTypePtr();
7978
7979      if (DiagnoseUnexpandedParameterPack(TI->getTypeLoc().getBeginLoc(), TI,
7980                                          UPPC_FixedUnderlyingType))
7981        EnumUnderlying = Context.IntTy.getTypePtr();
7982
7983    } else if (getLangOpts().MicrosoftMode)
7984      // Microsoft enums are always of int type.
7985      EnumUnderlying = Context.IntTy.getTypePtr();
7986  }
7987
7988  DeclContext *SearchDC = CurContext;
7989  DeclContext *DC = CurContext;
7990  bool isStdBadAlloc = false;
7991
7992  RedeclarationKind Redecl = ForRedeclaration;
7993  if (TUK == TUK_Friend || TUK == TUK_Reference)
7994    Redecl = NotForRedeclaration;
7995
7996  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7997
7998  if (Name && SS.isNotEmpty()) {
7999    // We have a nested-name tag ('struct foo::bar').
8000
8001    // Check for invalid 'foo::'.
8002    if (SS.isInvalid()) {
8003      Name = 0;
8004      goto CreateNewDecl;
8005    }
8006
8007    // If this is a friend or a reference to a class in a dependent
8008    // context, don't try to make a decl for it.
8009    if (TUK == TUK_Friend || TUK == TUK_Reference) {
8010      DC = computeDeclContext(SS, false);
8011      if (!DC) {
8012        IsDependent = true;
8013        return 0;
8014      }
8015    } else {
8016      DC = computeDeclContext(SS, true);
8017      if (!DC) {
8018        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
8019          << SS.getRange();
8020        return 0;
8021      }
8022
8023      if (isa<CXXRecordDecl>(CurContext))
8024        diagnoseQualifiedDeclInClass(SS, DC, Name, NameLoc);
8025    }
8026
8027    if (RequireCompleteDeclContext(SS, DC))
8028      return 0;
8029
8030    SearchDC = DC;
8031    // Look-up name inside 'foo::'.
8032    LookupQualifiedName(Previous, DC);
8033
8034    if (Previous.isAmbiguous())
8035      return 0;
8036
8037    if (Previous.empty()) {
8038      // Name lookup did not find anything. However, if the
8039      // nested-name-specifier refers to the current instantiation,
8040      // and that current instantiation has any dependent base
8041      // classes, we might find something at instantiation time: treat
8042      // this as a dependent elaborated-type-specifier.
8043      // But this only makes any sense for reference-like lookups.
8044      if (Previous.wasNotFoundInCurrentInstantiation() &&
8045          (TUK == TUK_Reference || TUK == TUK_Friend)) {
8046        IsDependent = true;
8047        return 0;
8048      }
8049
8050      // A tag 'foo::bar' must already exist.
8051      Diag(NameLoc, diag::err_not_tag_in_scope)
8052        << Kind << Name << DC << SS.getRange();
8053      Name = 0;
8054      Invalid = true;
8055      goto CreateNewDecl;
8056    }
8057  } else if (Name) {
8058    // If this is a named struct, check to see if there was a previous forward
8059    // declaration or definition.
8060    // FIXME: We're looking into outer scopes here, even when we
8061    // shouldn't be. Doing so can result in ambiguities that we
8062    // shouldn't be diagnosing.
8063    LookupName(Previous, S);
8064
8065    if (Previous.isAmbiguous() &&
8066        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
8067      LookupResult::Filter F = Previous.makeFilter();
8068      while (F.hasNext()) {
8069        NamedDecl *ND = F.next();
8070        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
8071          F.erase();
8072      }
8073      F.done();
8074    }
8075
8076    // Note:  there used to be some attempt at recovery here.
8077    if (Previous.isAmbiguous())
8078      return 0;
8079
8080    if (!getLangOpts().CPlusPlus && TUK != TUK_Reference) {
8081      // FIXME: This makes sure that we ignore the contexts associated
8082      // with C structs, unions, and enums when looking for a matching
8083      // tag declaration or definition. See the similar lookup tweak
8084      // in Sema::LookupName; is there a better way to deal with this?
8085      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
8086        SearchDC = SearchDC->getParent();
8087    }
8088  } else if (S->isFunctionPrototypeScope()) {
8089    // If this is an enum declaration in function prototype scope, set its
8090    // initial context to the translation unit.
8091    // FIXME: [citation needed]
8092    SearchDC = Context.getTranslationUnitDecl();
8093  }
8094
8095  if (Previous.isSingleResult() &&
8096      Previous.getFoundDecl()->isTemplateParameter()) {
8097    // Maybe we will complain about the shadowed template parameter.
8098    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
8099    // Just pretend that we didn't see the previous declaration.
8100    Previous.clear();
8101  }
8102
8103  if (getLangOpts().CPlusPlus && Name && DC && StdNamespace &&
8104      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
8105    // This is a declaration of or a reference to "std::bad_alloc".
8106    isStdBadAlloc = true;
8107
8108    if (Previous.empty() && StdBadAlloc) {
8109      // std::bad_alloc has been implicitly declared (but made invisible to
8110      // name lookup). Fill in this implicit declaration as the previous
8111      // declaration, so that the declarations get chained appropriately.
8112      Previous.addDecl(getStdBadAlloc());
8113    }
8114  }
8115
8116  // If we didn't find a previous declaration, and this is a reference
8117  // (or friend reference), move to the correct scope.  In C++, we
8118  // also need to do a redeclaration lookup there, just in case
8119  // there's a shadow friend decl.
8120  if (Name && Previous.empty() &&
8121      (TUK == TUK_Reference || TUK == TUK_Friend)) {
8122    if (Invalid) goto CreateNewDecl;
8123    assert(SS.isEmpty());
8124
8125    if (TUK == TUK_Reference) {
8126      // C++ [basic.scope.pdecl]p5:
8127      //   -- for an elaborated-type-specifier of the form
8128      //
8129      //          class-key identifier
8130      //
8131      //      if the elaborated-type-specifier is used in the
8132      //      decl-specifier-seq or parameter-declaration-clause of a
8133      //      function defined in namespace scope, the identifier is
8134      //      declared as a class-name in the namespace that contains
8135      //      the declaration; otherwise, except as a friend
8136      //      declaration, the identifier is declared in the smallest
8137      //      non-class, non-function-prototype scope that contains the
8138      //      declaration.
8139      //
8140      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
8141      // C structs and unions.
8142      //
8143      // It is an error in C++ to declare (rather than define) an enum
8144      // type, including via an elaborated type specifier.  We'll
8145      // diagnose that later; for now, declare the enum in the same
8146      // scope as we would have picked for any other tag type.
8147      //
8148      // GNU C also supports this behavior as part of its incomplete
8149      // enum types extension, while GNU C++ does not.
8150      //
8151      // Find the context where we'll be declaring the tag.
8152      // FIXME: We would like to maintain the current DeclContext as the
8153      // lexical context,
8154      while (!SearchDC->isFileContext() && !SearchDC->isFunctionOrMethod())
8155        SearchDC = SearchDC->getParent();
8156
8157      // Find the scope where we'll be declaring the tag.
8158      while (S->isClassScope() ||
8159             (getLangOpts().CPlusPlus &&
8160              S->isFunctionPrototypeScope()) ||
8161             ((S->getFlags() & Scope::DeclScope) == 0) ||
8162             (S->getEntity() &&
8163              ((DeclContext *)S->getEntity())->isTransparentContext()))
8164        S = S->getParent();
8165    } else {
8166      assert(TUK == TUK_Friend);
8167      // C++ [namespace.memdef]p3:
8168      //   If a friend declaration in a non-local class first declares a
8169      //   class or function, the friend class or function is a member of
8170      //   the innermost enclosing namespace.
8171      SearchDC = SearchDC->getEnclosingNamespaceContext();
8172    }
8173
8174    // In C++, we need to do a redeclaration lookup to properly
8175    // diagnose some problems.
8176    if (getLangOpts().CPlusPlus) {
8177      Previous.setRedeclarationKind(ForRedeclaration);
8178      LookupQualifiedName(Previous, SearchDC);
8179    }
8180  }
8181
8182  if (!Previous.empty()) {
8183    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
8184
8185    // It's okay to have a tag decl in the same scope as a typedef
8186    // which hides a tag decl in the same scope.  Finding this
8187    // insanity with a redeclaration lookup can only actually happen
8188    // in C++.
8189    //
8190    // This is also okay for elaborated-type-specifiers, which is
8191    // technically forbidden by the current standard but which is
8192    // okay according to the likely resolution of an open issue;
8193    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
8194    if (getLangOpts().CPlusPlus) {
8195      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8196        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
8197          TagDecl *Tag = TT->getDecl();
8198          if (Tag->getDeclName() == Name &&
8199              Tag->getDeclContext()->getRedeclContext()
8200                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
8201            PrevDecl = Tag;
8202            Previous.clear();
8203            Previous.addDecl(Tag);
8204            Previous.resolveKind();
8205          }
8206        }
8207      }
8208    }
8209
8210    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
8211      // If this is a use of a previous tag, or if the tag is already declared
8212      // in the same scope (so that the definition/declaration completes or
8213      // rementions the tag), reuse the decl.
8214      if (TUK == TUK_Reference || TUK == TUK_Friend ||
8215          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
8216        // Make sure that this wasn't declared as an enum and now used as a
8217        // struct or something similar.
8218        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
8219                                          TUK == TUK_Definition, KWLoc,
8220                                          *Name)) {
8221          bool SafeToContinue
8222            = (PrevTagDecl->getTagKind() != TTK_Enum &&
8223               Kind != TTK_Enum);
8224          if (SafeToContinue)
8225            Diag(KWLoc, diag::err_use_with_wrong_tag)
8226              << Name
8227              << FixItHint::CreateReplacement(SourceRange(KWLoc),
8228                                              PrevTagDecl->getKindName());
8229          else
8230            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
8231          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
8232
8233          if (SafeToContinue)
8234            Kind = PrevTagDecl->getTagKind();
8235          else {
8236            // Recover by making this an anonymous redefinition.
8237            Name = 0;
8238            Previous.clear();
8239            Invalid = true;
8240          }
8241        }
8242
8243        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
8244          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
8245
8246          // If this is an elaborated-type-specifier for a scoped enumeration,
8247          // the 'class' keyword is not necessary and not permitted.
8248          if (TUK == TUK_Reference || TUK == TUK_Friend) {
8249            if (ScopedEnum)
8250              Diag(ScopedEnumKWLoc, diag::err_enum_class_reference)
8251                << PrevEnum->isScoped()
8252                << FixItHint::CreateRemoval(ScopedEnumKWLoc);
8253            return PrevTagDecl;
8254          }
8255
8256          QualType EnumUnderlyingTy;
8257          if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8258            EnumUnderlyingTy = TI->getType();
8259          else if (const Type *T = EnumUnderlying.dyn_cast<const Type*>())
8260            EnumUnderlyingTy = QualType(T, 0);
8261
8262          // All conflicts with previous declarations are recovered by
8263          // returning the previous declaration.
8264          if (CheckEnumRedeclaration(NameLoc.isValid() ? NameLoc : KWLoc,
8265                                     ScopedEnum, EnumUnderlyingTy, PrevEnum))
8266            return PrevTagDecl;
8267        }
8268
8269        if (!Invalid) {
8270          // If this is a use, just return the declaration we found.
8271
8272          // FIXME: In the future, return a variant or some other clue
8273          // for the consumer of this Decl to know it doesn't own it.
8274          // For our current ASTs this shouldn't be a problem, but will
8275          // need to be changed with DeclGroups.
8276          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
8277               getLangOpts().MicrosoftExt)) || TUK == TUK_Friend)
8278            return PrevTagDecl;
8279
8280          // Diagnose attempts to redefine a tag.
8281          if (TUK == TUK_Definition) {
8282            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
8283              // If we're defining a specialization and the previous definition
8284              // is from an implicit instantiation, don't emit an error
8285              // here; we'll catch this in the general case below.
8286              bool IsExplicitSpecializationAfterInstantiation = false;
8287              if (isExplicitSpecialization) {
8288                if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Def))
8289                  IsExplicitSpecializationAfterInstantiation =
8290                    RD->getTemplateSpecializationKind() !=
8291                    TSK_ExplicitSpecialization;
8292                else if (EnumDecl *ED = dyn_cast<EnumDecl>(Def))
8293                  IsExplicitSpecializationAfterInstantiation =
8294                    ED->getTemplateSpecializationKind() !=
8295                    TSK_ExplicitSpecialization;
8296              }
8297
8298              if (!IsExplicitSpecializationAfterInstantiation) {
8299                // A redeclaration in function prototype scope in C isn't
8300                // visible elsewhere, so merely issue a warning.
8301                if (!getLangOpts().CPlusPlus && S->containedInPrototypeScope())
8302                  Diag(NameLoc, diag::warn_redefinition_in_param_list) << Name;
8303                else
8304                  Diag(NameLoc, diag::err_redefinition) << Name;
8305                Diag(Def->getLocation(), diag::note_previous_definition);
8306                // If this is a redefinition, recover by making this
8307                // struct be anonymous, which will make any later
8308                // references get the previous definition.
8309                Name = 0;
8310                Previous.clear();
8311                Invalid = true;
8312              }
8313            } else {
8314              // If the type is currently being defined, complain
8315              // about a nested redefinition.
8316              const TagType *Tag
8317                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
8318              if (Tag->isBeingDefined()) {
8319                Diag(NameLoc, diag::err_nested_redefinition) << Name;
8320                Diag(PrevTagDecl->getLocation(),
8321                     diag::note_previous_definition);
8322                Name = 0;
8323                Previous.clear();
8324                Invalid = true;
8325              }
8326            }
8327
8328            // Okay, this is definition of a previously declared or referenced
8329            // tag PrevDecl. We're going to create a new Decl for it.
8330          }
8331        }
8332        // If we get here we have (another) forward declaration or we
8333        // have a definition.  Just create a new decl.
8334
8335      } else {
8336        // If we get here, this is a definition of a new tag type in a nested
8337        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
8338        // new decl/type.  We set PrevDecl to NULL so that the entities
8339        // have distinct types.
8340        Previous.clear();
8341      }
8342      // If we get here, we're going to create a new Decl. If PrevDecl
8343      // is non-NULL, it's a definition of the tag declared by
8344      // PrevDecl. If it's NULL, we have a new definition.
8345
8346
8347    // Otherwise, PrevDecl is not a tag, but was found with tag
8348    // lookup.  This is only actually possible in C++, where a few
8349    // things like templates still live in the tag namespace.
8350    } else {
8351      // Use a better diagnostic if an elaborated-type-specifier
8352      // found the wrong kind of type on the first
8353      // (non-redeclaration) lookup.
8354      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
8355          !Previous.isForRedeclaration()) {
8356        unsigned Kind = 0;
8357        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8358        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8359        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8360        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
8361        Diag(PrevDecl->getLocation(), diag::note_declared_at);
8362        Invalid = true;
8363
8364      // Otherwise, only diagnose if the declaration is in scope.
8365      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
8366                                isExplicitSpecialization)) {
8367        // do nothing
8368
8369      // Diagnose implicit declarations introduced by elaborated types.
8370      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
8371        unsigned Kind = 0;
8372        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
8373        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
8374        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
8375        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
8376        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8377        Invalid = true;
8378
8379      // Otherwise it's a declaration.  Call out a particularly common
8380      // case here.
8381      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
8382        unsigned Kind = 0;
8383        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
8384        Diag(NameLoc, diag::err_tag_definition_of_typedef)
8385          << Name << Kind << TND->getUnderlyingType();
8386        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
8387        Invalid = true;
8388
8389      // Otherwise, diagnose.
8390      } else {
8391        // The tag name clashes with something else in the target scope,
8392        // issue an error and recover by making this tag be anonymous.
8393        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
8394        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8395        Name = 0;
8396        Invalid = true;
8397      }
8398
8399      // The existing declaration isn't relevant to us; we're in a
8400      // new scope, so clear out the previous declaration.
8401      Previous.clear();
8402    }
8403  }
8404
8405CreateNewDecl:
8406
8407  TagDecl *PrevDecl = 0;
8408  if (Previous.isSingleResult())
8409    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
8410
8411  // If there is an identifier, use the location of the identifier as the
8412  // location of the decl, otherwise use the location of the struct/union
8413  // keyword.
8414  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
8415
8416  // Otherwise, create a new declaration. If there is a previous
8417  // declaration of the same entity, the two will be linked via
8418  // PrevDecl.
8419  TagDecl *New;
8420
8421  bool IsForwardReference = false;
8422  if (Kind == TTK_Enum) {
8423    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8424    // enum X { A, B, C } D;    D should chain to X.
8425    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
8426                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
8427                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
8428    // If this is an undefined enum, warn.
8429    if (TUK != TUK_Definition && !Invalid) {
8430      TagDecl *Def;
8431      if (getLangOpts().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
8432        // C++0x: 7.2p2: opaque-enum-declaration.
8433        // Conflicts are diagnosed above. Do nothing.
8434      }
8435      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
8436        Diag(Loc, diag::ext_forward_ref_enum_def)
8437          << New;
8438        Diag(Def->getLocation(), diag::note_previous_definition);
8439      } else {
8440        unsigned DiagID = diag::ext_forward_ref_enum;
8441        if (getLangOpts().MicrosoftMode)
8442          DiagID = diag::ext_ms_forward_ref_enum;
8443        else if (getLangOpts().CPlusPlus)
8444          DiagID = diag::err_forward_ref_enum;
8445        Diag(Loc, DiagID);
8446
8447        // If this is a forward-declared reference to an enumeration, make a
8448        // note of it; we won't actually be introducing the declaration into
8449        // the declaration context.
8450        if (TUK == TUK_Reference)
8451          IsForwardReference = true;
8452      }
8453    }
8454
8455    if (EnumUnderlying) {
8456      EnumDecl *ED = cast<EnumDecl>(New);
8457      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
8458        ED->setIntegerTypeSourceInfo(TI);
8459      else
8460        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
8461      ED->setPromotionType(ED->getIntegerType());
8462    }
8463
8464  } else {
8465    // struct/union/class
8466
8467    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
8468    // struct X { int A; } D;    D should chain to X.
8469    if (getLangOpts().CPlusPlus) {
8470      // FIXME: Look for a way to use RecordDecl for simple structs.
8471      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8472                                  cast_or_null<CXXRecordDecl>(PrevDecl));
8473
8474      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
8475        StdBadAlloc = cast<CXXRecordDecl>(New);
8476    } else
8477      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
8478                               cast_or_null<RecordDecl>(PrevDecl));
8479  }
8480
8481  // Maybe add qualifier info.
8482  if (SS.isNotEmpty()) {
8483    if (SS.isSet()) {
8484      New->setQualifierInfo(SS.getWithLocInContext(Context));
8485      if (TemplateParameterLists.size() > 0) {
8486        New->setTemplateParameterListsInfo(Context,
8487                                           TemplateParameterLists.size(),
8488                    (TemplateParameterList**) TemplateParameterLists.release());
8489      }
8490    }
8491    else
8492      Invalid = true;
8493  }
8494
8495  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
8496    // Add alignment attributes if necessary; these attributes are checked when
8497    // the ASTContext lays out the structure.
8498    //
8499    // It is important for implementing the correct semantics that this
8500    // happen here (in act on tag decl). The #pragma pack stack is
8501    // maintained as a result of parser callbacks which can occur at
8502    // many points during the parsing of a struct declaration (because
8503    // the #pragma tokens are effectively skipped over during the
8504    // parsing of the struct).
8505    AddAlignmentAttributesForRecord(RD);
8506
8507    AddMsStructLayoutForRecord(RD);
8508  }
8509
8510  if (ModulePrivateLoc.isValid()) {
8511    if (isExplicitSpecialization)
8512      Diag(New->getLocation(), diag::err_module_private_specialization)
8513        << 2
8514        << FixItHint::CreateRemoval(ModulePrivateLoc);
8515    // __module_private__ does not apply to local classes. However, we only
8516    // diagnose this as an error when the declaration specifiers are
8517    // freestanding. Here, we just ignore the __module_private__.
8518    else if (!SearchDC->isFunctionOrMethod())
8519      New->setModulePrivate();
8520  }
8521
8522  // If this is a specialization of a member class (of a class template),
8523  // check the specialization.
8524  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8525    Invalid = true;
8526
8527  if (Invalid)
8528    New->setInvalidDecl();
8529
8530  if (Attr)
8531    ProcessDeclAttributeList(S, New, Attr);
8532
8533  // If we're declaring or defining a tag in function prototype scope
8534  // in C, note that this type can only be used within the function.
8535  if (Name && S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus)
8536    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8537
8538  // Set the lexical context. If the tag has a C++ scope specifier, the
8539  // lexical context will be different from the semantic context.
8540  New->setLexicalDeclContext(CurContext);
8541
8542  // Mark this as a friend decl if applicable.
8543  // In Microsoft mode, a friend declaration also acts as a forward
8544  // declaration so we always pass true to setObjectOfFriendDecl to make
8545  // the tag name visible.
8546  if (TUK == TUK_Friend)
8547    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8548                               getLangOpts().MicrosoftExt);
8549
8550  // Set the access specifier.
8551  if (!Invalid && SearchDC->isRecord())
8552    SetMemberAccessSpecifier(New, PrevDecl, AS);
8553
8554  if (TUK == TUK_Definition)
8555    New->startDefinition();
8556
8557  // If this has an identifier, add it to the scope stack.
8558  if (TUK == TUK_Friend) {
8559    // We might be replacing an existing declaration in the lookup tables;
8560    // if so, borrow its access specifier.
8561    if (PrevDecl)
8562      New->setAccess(PrevDecl->getAccess());
8563
8564    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8565    DC->makeDeclVisibleInContext(New);
8566    if (Name) // can be null along some error paths
8567      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8568        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8569  } else if (Name) {
8570    S = getNonFieldDeclScope(S);
8571    PushOnScopeChains(New, S, !IsForwardReference);
8572    if (IsForwardReference)
8573      SearchDC->makeDeclVisibleInContext(New);
8574
8575  } else {
8576    CurContext->addDecl(New);
8577  }
8578
8579  // If this is the C FILE type, notify the AST context.
8580  if (IdentifierInfo *II = New->getIdentifier())
8581    if (!New->isInvalidDecl() &&
8582        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8583        II->isStr("FILE"))
8584      Context.setFILEDecl(New);
8585
8586  // If we were in function prototype scope (and not in C++ mode), add this
8587  // tag to the list of decls to inject into the function definition scope.
8588  if (S->isFunctionPrototypeScope() && !getLangOpts().CPlusPlus &&
8589      InFunctionDeclarator && Name)
8590    DeclsInPrototypeScope.push_back(New);
8591
8592  OwnedDecl = true;
8593  return New;
8594}
8595
8596void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8597  AdjustDeclIfTemplate(TagD);
8598  TagDecl *Tag = cast<TagDecl>(TagD);
8599
8600  // Enter the tag context.
8601  PushDeclContext(S, Tag);
8602}
8603
8604Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8605  assert(isa<ObjCContainerDecl>(IDecl) &&
8606         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8607  DeclContext *OCD = cast<DeclContext>(IDecl);
8608  assert(getContainingDC(OCD) == CurContext &&
8609      "The next DeclContext should be lexically contained in the current one.");
8610  CurContext = OCD;
8611  return IDecl;
8612}
8613
8614void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8615                                           SourceLocation FinalLoc,
8616                                           SourceLocation LBraceLoc) {
8617  AdjustDeclIfTemplate(TagD);
8618  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8619
8620  FieldCollector->StartClass();
8621
8622  if (!Record->getIdentifier())
8623    return;
8624
8625  if (FinalLoc.isValid())
8626    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8627
8628  // C++ [class]p2:
8629  //   [...] The class-name is also inserted into the scope of the
8630  //   class itself; this is known as the injected-class-name. For
8631  //   purposes of access checking, the injected-class-name is treated
8632  //   as if it were a public member name.
8633  CXXRecordDecl *InjectedClassName
8634    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8635                            Record->getLocStart(), Record->getLocation(),
8636                            Record->getIdentifier(),
8637                            /*PrevDecl=*/0,
8638                            /*DelayTypeCreation=*/true);
8639  Context.getTypeDeclType(InjectedClassName, Record);
8640  InjectedClassName->setImplicit();
8641  InjectedClassName->setAccess(AS_public);
8642  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8643      InjectedClassName->setDescribedClassTemplate(Template);
8644  PushOnScopeChains(InjectedClassName, S);
8645  assert(InjectedClassName->isInjectedClassName() &&
8646         "Broken injected-class-name");
8647}
8648
8649void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8650                                    SourceLocation RBraceLoc) {
8651  AdjustDeclIfTemplate(TagD);
8652  TagDecl *Tag = cast<TagDecl>(TagD);
8653  Tag->setRBraceLoc(RBraceLoc);
8654
8655  // Make sure we "complete" the definition even it is invalid.
8656  if (Tag->isBeingDefined()) {
8657    assert(Tag->isInvalidDecl() && "We should already have completed it");
8658    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8659      RD->completeDefinition();
8660  }
8661
8662  if (isa<CXXRecordDecl>(Tag))
8663    FieldCollector->FinishClass();
8664
8665  // Exit this scope of this tag's definition.
8666  PopDeclContext();
8667
8668  // Notify the consumer that we've defined a tag.
8669  Consumer.HandleTagDeclDefinition(Tag);
8670}
8671
8672void Sema::ActOnObjCContainerFinishDefinition() {
8673  // Exit this scope of this interface definition.
8674  PopDeclContext();
8675}
8676
8677void Sema::ActOnObjCTemporaryExitContainerContext(DeclContext *DC) {
8678  assert(DC == CurContext && "Mismatch of container contexts");
8679  OriginalLexicalContext = DC;
8680  ActOnObjCContainerFinishDefinition();
8681}
8682
8683void Sema::ActOnObjCReenterContainerContext(DeclContext *DC) {
8684  ActOnObjCContainerStartDefinition(cast<Decl>(DC));
8685  OriginalLexicalContext = 0;
8686}
8687
8688void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8689  AdjustDeclIfTemplate(TagD);
8690  TagDecl *Tag = cast<TagDecl>(TagD);
8691  Tag->setInvalidDecl();
8692
8693  // Make sure we "complete" the definition even it is invalid.
8694  if (Tag->isBeingDefined()) {
8695    if (RecordDecl *RD = dyn_cast<RecordDecl>(Tag))
8696      RD->completeDefinition();
8697  }
8698
8699  // We're undoing ActOnTagStartDefinition here, not
8700  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8701  // the FieldCollector.
8702
8703  PopDeclContext();
8704}
8705
8706// Note that FieldName may be null for anonymous bitfields.
8707ExprResult Sema::VerifyBitField(SourceLocation FieldLoc,
8708                                IdentifierInfo *FieldName,
8709                                QualType FieldTy, Expr *BitWidth,
8710                                bool *ZeroWidth) {
8711  // Default to true; that shouldn't confuse checks for emptiness
8712  if (ZeroWidth)
8713    *ZeroWidth = true;
8714
8715  // C99 6.7.2.1p4 - verify the field type.
8716  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8717  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8718    // Handle incomplete types with specific error.
8719    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8720      return ExprError();
8721    if (FieldName)
8722      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8723        << FieldName << FieldTy << BitWidth->getSourceRange();
8724    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8725      << FieldTy << BitWidth->getSourceRange();
8726  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8727                                             UPPC_BitFieldWidth))
8728    return ExprError();
8729
8730  // If the bit-width is type- or value-dependent, don't try to check
8731  // it now.
8732  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8733    return Owned(BitWidth);
8734
8735  llvm::APSInt Value;
8736  ExprResult ICE = VerifyIntegerConstantExpression(BitWidth, &Value);
8737  if (ICE.isInvalid())
8738    return ICE;
8739  BitWidth = ICE.take();
8740
8741  if (Value != 0 && ZeroWidth)
8742    *ZeroWidth = false;
8743
8744  // Zero-width bitfield is ok for anonymous field.
8745  if (Value == 0 && FieldName)
8746    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8747
8748  if (Value.isSigned() && Value.isNegative()) {
8749    if (FieldName)
8750      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8751               << FieldName << Value.toString(10);
8752    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8753      << Value.toString(10);
8754  }
8755
8756  if (!FieldTy->isDependentType()) {
8757    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8758    if (Value.getZExtValue() > TypeSize) {
8759      if (!getLangOpts().CPlusPlus) {
8760        if (FieldName)
8761          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8762            << FieldName << (unsigned)Value.getZExtValue()
8763            << (unsigned)TypeSize;
8764
8765        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8766          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8767      }
8768
8769      if (FieldName)
8770        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8771          << FieldName << (unsigned)Value.getZExtValue()
8772          << (unsigned)TypeSize;
8773      else
8774        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8775          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8776    }
8777  }
8778
8779  return Owned(BitWidth);
8780}
8781
8782/// ActOnField - Each field of a C struct/union is passed into this in order
8783/// to create a FieldDecl object for it.
8784Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8785                       Declarator &D, Expr *BitfieldWidth) {
8786  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8787                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8788                               /*HasInit=*/false, AS_public);
8789  return Res;
8790}
8791
8792/// HandleField - Analyze a field of a C struct or a C++ data member.
8793///
8794FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8795                             SourceLocation DeclStart,
8796                             Declarator &D, Expr *BitWidth, bool HasInit,
8797                             AccessSpecifier AS) {
8798  IdentifierInfo *II = D.getIdentifier();
8799  SourceLocation Loc = DeclStart;
8800  if (II) Loc = D.getIdentifierLoc();
8801
8802  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8803  QualType T = TInfo->getType();
8804  if (getLangOpts().CPlusPlus) {
8805    CheckExtraCXXDefaultArguments(D);
8806
8807    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8808                                        UPPC_DataMemberType)) {
8809      D.setInvalidType();
8810      T = Context.IntTy;
8811      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8812    }
8813  }
8814
8815  DiagnoseFunctionSpecifiers(D);
8816
8817  if (D.getDeclSpec().isThreadSpecified())
8818    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8819  if (D.getDeclSpec().isConstexprSpecified())
8820    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8821      << 2;
8822
8823  // Check to see if this name was declared as a member previously
8824  NamedDecl *PrevDecl = 0;
8825  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8826  LookupName(Previous, S);
8827  switch (Previous.getResultKind()) {
8828    case LookupResult::Found:
8829    case LookupResult::FoundUnresolvedValue:
8830      PrevDecl = Previous.getAsSingle<NamedDecl>();
8831      break;
8832
8833    case LookupResult::FoundOverloaded:
8834      PrevDecl = Previous.getRepresentativeDecl();
8835      break;
8836
8837    case LookupResult::NotFound:
8838    case LookupResult::NotFoundInCurrentInstantiation:
8839    case LookupResult::Ambiguous:
8840      break;
8841  }
8842  Previous.suppressDiagnostics();
8843
8844  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8845    // Maybe we will complain about the shadowed template parameter.
8846    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8847    // Just pretend that we didn't see the previous declaration.
8848    PrevDecl = 0;
8849  }
8850
8851  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8852    PrevDecl = 0;
8853
8854  bool Mutable
8855    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8856  SourceLocation TSSL = D.getLocStart();
8857  FieldDecl *NewFD
8858    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8859                     TSSL, AS, PrevDecl, &D);
8860
8861  if (NewFD->isInvalidDecl())
8862    Record->setInvalidDecl();
8863
8864  if (D.getDeclSpec().isModulePrivateSpecified())
8865    NewFD->setModulePrivate();
8866
8867  if (NewFD->isInvalidDecl() && PrevDecl) {
8868    // Don't introduce NewFD into scope; there's already something
8869    // with the same name in the same scope.
8870  } else if (II) {
8871    PushOnScopeChains(NewFD, S);
8872  } else
8873    Record->addDecl(NewFD);
8874
8875  return NewFD;
8876}
8877
8878/// \brief Build a new FieldDecl and check its well-formedness.
8879///
8880/// This routine builds a new FieldDecl given the fields name, type,
8881/// record, etc. \p PrevDecl should refer to any previous declaration
8882/// with the same name and in the same scope as the field to be
8883/// created.
8884///
8885/// \returns a new FieldDecl.
8886///
8887/// \todo The Declarator argument is a hack. It will be removed once
8888FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8889                                TypeSourceInfo *TInfo,
8890                                RecordDecl *Record, SourceLocation Loc,
8891                                bool Mutable, Expr *BitWidth, bool HasInit,
8892                                SourceLocation TSSL,
8893                                AccessSpecifier AS, NamedDecl *PrevDecl,
8894                                Declarator *D) {
8895  IdentifierInfo *II = Name.getAsIdentifierInfo();
8896  bool InvalidDecl = false;
8897  if (D) InvalidDecl = D->isInvalidType();
8898
8899  // If we receive a broken type, recover by assuming 'int' and
8900  // marking this declaration as invalid.
8901  if (T.isNull()) {
8902    InvalidDecl = true;
8903    T = Context.IntTy;
8904  }
8905
8906  QualType EltTy = Context.getBaseElementType(T);
8907  if (!EltTy->isDependentType()) {
8908    if (RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8909      // Fields of incomplete type force their record to be invalid.
8910      Record->setInvalidDecl();
8911      InvalidDecl = true;
8912    } else {
8913      NamedDecl *Def;
8914      EltTy->isIncompleteType(&Def);
8915      if (Def && Def->isInvalidDecl()) {
8916        Record->setInvalidDecl();
8917        InvalidDecl = true;
8918      }
8919    }
8920  }
8921
8922  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8923  // than a variably modified type.
8924  if (!InvalidDecl && T->isVariablyModifiedType()) {
8925    bool SizeIsNegative;
8926    llvm::APSInt Oversized;
8927    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8928                                                           SizeIsNegative,
8929                                                           Oversized);
8930    if (!FixedTy.isNull()) {
8931      Diag(Loc, diag::warn_illegal_constant_array_size);
8932      T = FixedTy;
8933    } else {
8934      if (SizeIsNegative)
8935        Diag(Loc, diag::err_typecheck_negative_array_size);
8936      else if (Oversized.getBoolValue())
8937        Diag(Loc, diag::err_array_too_large)
8938          << Oversized.toString(10);
8939      else
8940        Diag(Loc, diag::err_typecheck_field_variable_size);
8941      InvalidDecl = true;
8942    }
8943  }
8944
8945  // Fields can not have abstract class types
8946  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8947                                             diag::err_abstract_type_in_decl,
8948                                             AbstractFieldType))
8949    InvalidDecl = true;
8950
8951  bool ZeroWidth = false;
8952  // If this is declared as a bit-field, check the bit-field.
8953  if (!InvalidDecl && BitWidth) {
8954    BitWidth = VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth).take();
8955    if (!BitWidth) {
8956      InvalidDecl = true;
8957      BitWidth = 0;
8958      ZeroWidth = false;
8959    }
8960  }
8961
8962  // Check that 'mutable' is consistent with the type of the declaration.
8963  if (!InvalidDecl && Mutable) {
8964    unsigned DiagID = 0;
8965    if (T->isReferenceType())
8966      DiagID = diag::err_mutable_reference;
8967    else if (T.isConstQualified())
8968      DiagID = diag::err_mutable_const;
8969
8970    if (DiagID) {
8971      SourceLocation ErrLoc = Loc;
8972      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8973        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8974      Diag(ErrLoc, DiagID);
8975      Mutable = false;
8976      InvalidDecl = true;
8977    }
8978  }
8979
8980  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8981                                       BitWidth, Mutable, HasInit);
8982  if (InvalidDecl)
8983    NewFD->setInvalidDecl();
8984
8985  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8986    Diag(Loc, diag::err_duplicate_member) << II;
8987    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8988    NewFD->setInvalidDecl();
8989  }
8990
8991  if (!InvalidDecl && getLangOpts().CPlusPlus) {
8992    if (Record->isUnion()) {
8993      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8994        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8995        if (RDecl->getDefinition()) {
8996          // C++ [class.union]p1: An object of a class with a non-trivial
8997          // constructor, a non-trivial copy constructor, a non-trivial
8998          // destructor, or a non-trivial copy assignment operator
8999          // cannot be a member of a union, nor can an array of such
9000          // objects.
9001          if (CheckNontrivialField(NewFD))
9002            NewFD->setInvalidDecl();
9003        }
9004      }
9005
9006      // C++ [class.union]p1: If a union contains a member of reference type,
9007      // the program is ill-formed.
9008      if (EltTy->isReferenceType()) {
9009        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
9010          << NewFD->getDeclName() << EltTy;
9011        NewFD->setInvalidDecl();
9012      }
9013    }
9014  }
9015
9016  // FIXME: We need to pass in the attributes given an AST
9017  // representation, not a parser representation.
9018  if (D)
9019    // FIXME: What to pass instead of TUScope?
9020    ProcessDeclAttributes(TUScope, NewFD, *D);
9021
9022  // In auto-retain/release, infer strong retension for fields of
9023  // retainable type.
9024  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
9025    NewFD->setInvalidDecl();
9026
9027  if (T.isObjCGCWeak())
9028    Diag(Loc, diag::warn_attribute_weak_on_field);
9029
9030  NewFD->setAccess(AS);
9031  return NewFD;
9032}
9033
9034bool Sema::CheckNontrivialField(FieldDecl *FD) {
9035  assert(FD);
9036  assert(getLangOpts().CPlusPlus && "valid check only for C++");
9037
9038  if (FD->isInvalidDecl())
9039    return true;
9040
9041  QualType EltTy = Context.getBaseElementType(FD->getType());
9042  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
9043    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
9044    if (RDecl->getDefinition()) {
9045      // We check for copy constructors before constructors
9046      // because otherwise we'll never get complaints about
9047      // copy constructors.
9048
9049      CXXSpecialMember member = CXXInvalid;
9050      if (!RDecl->hasTrivialCopyConstructor())
9051        member = CXXCopyConstructor;
9052      else if (!RDecl->hasTrivialDefaultConstructor())
9053        member = CXXDefaultConstructor;
9054      else if (!RDecl->hasTrivialCopyAssignment())
9055        member = CXXCopyAssignment;
9056      else if (!RDecl->hasTrivialDestructor())
9057        member = CXXDestructor;
9058
9059      if (member != CXXInvalid) {
9060        if (!getLangOpts().CPlusPlus0x &&
9061            getLangOpts().ObjCAutoRefCount && RDecl->hasObjectMember()) {
9062          // Objective-C++ ARC: it is an error to have a non-trivial field of
9063          // a union. However, system headers in Objective-C programs
9064          // occasionally have Objective-C lifetime objects within unions,
9065          // and rather than cause the program to fail, we make those
9066          // members unavailable.
9067          SourceLocation Loc = FD->getLocation();
9068          if (getSourceManager().isInSystemHeader(Loc)) {
9069            if (!FD->hasAttr<UnavailableAttr>())
9070              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
9071                                  "this system field has retaining ownership"));
9072            return false;
9073          }
9074        }
9075
9076        Diag(FD->getLocation(), getLangOpts().CPlusPlus0x ?
9077               diag::warn_cxx98_compat_nontrivial_union_or_anon_struct_member :
9078               diag::err_illegal_union_or_anon_struct_member)
9079          << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
9080        DiagnoseNontrivial(RT, member);
9081        return !getLangOpts().CPlusPlus0x;
9082      }
9083    }
9084  }
9085
9086  return false;
9087}
9088
9089/// If the given constructor is user-provided, produce a diagnostic explaining
9090/// that it makes the class non-trivial.
9091static bool DiagnoseNontrivialUserProvidedCtor(Sema &S, QualType QT,
9092                                               CXXConstructorDecl *CD,
9093                                               Sema::CXXSpecialMember CSM) {
9094  if (!CD->isUserProvided())
9095    return false;
9096
9097  SourceLocation CtorLoc = CD->getLocation();
9098  S.Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << CSM;
9099  return true;
9100}
9101
9102/// DiagnoseNontrivial - Given that a class has a non-trivial
9103/// special member, figure out why.
9104void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
9105  QualType QT(T, 0U);
9106  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
9107
9108  // Check whether the member was user-declared.
9109  switch (member) {
9110  case CXXInvalid:
9111    break;
9112
9113  case CXXDefaultConstructor:
9114    if (RD->hasUserDeclaredConstructor()) {
9115      typedef CXXRecordDecl::ctor_iterator ctor_iter;
9116      for (ctor_iter CI = RD->ctor_begin(), CE = RD->ctor_end(); CI != CE; ++CI)
9117        if (DiagnoseNontrivialUserProvidedCtor(*this, QT, *CI, member))
9118          return;
9119
9120      // No user-provided constructors; look for constructor templates.
9121      typedef CXXRecordDecl::specific_decl_iterator<FunctionTemplateDecl>
9122          tmpl_iter;
9123      for (tmpl_iter TI(RD->decls_begin()), TE(RD->decls_end());
9124           TI != TE; ++TI) {
9125        CXXConstructorDecl *CD =
9126            dyn_cast<CXXConstructorDecl>(TI->getTemplatedDecl());
9127        if (CD && DiagnoseNontrivialUserProvidedCtor(*this, QT, CD, member))
9128          return;
9129      }
9130    }
9131    break;
9132
9133  case CXXCopyConstructor:
9134    if (RD->hasUserDeclaredCopyConstructor()) {
9135      SourceLocation CtorLoc =
9136        RD->getCopyConstructor(0)->getLocation();
9137      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9138      return;
9139    }
9140    break;
9141
9142  case CXXMoveConstructor:
9143    if (RD->hasUserDeclaredMoveConstructor()) {
9144      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
9145      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9146      return;
9147    }
9148    break;
9149
9150  case CXXCopyAssignment:
9151    if (RD->hasUserDeclaredCopyAssignment()) {
9152      // FIXME: this should use the location of the copy
9153      // assignment, not the type.
9154      SourceLocation TyLoc = RD->getLocStart();
9155      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
9156      return;
9157    }
9158    break;
9159
9160  case CXXMoveAssignment:
9161    if (RD->hasUserDeclaredMoveAssignment()) {
9162      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
9163      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
9164      return;
9165    }
9166    break;
9167
9168  case CXXDestructor:
9169    if (RD->hasUserDeclaredDestructor()) {
9170      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
9171      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
9172      return;
9173    }
9174    break;
9175  }
9176
9177  typedef CXXRecordDecl::base_class_iterator base_iter;
9178
9179  // Virtual bases and members inhibit trivial copying/construction,
9180  // but not trivial destruction.
9181  if (member != CXXDestructor) {
9182    // Check for virtual bases.  vbases includes indirect virtual bases,
9183    // so we just iterate through the direct bases.
9184    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
9185      if (bi->isVirtual()) {
9186        SourceLocation BaseLoc = bi->getLocStart();
9187        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
9188        return;
9189      }
9190
9191    // Check for virtual methods.
9192    typedef CXXRecordDecl::method_iterator meth_iter;
9193    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
9194         ++mi) {
9195      if (mi->isVirtual()) {
9196        SourceLocation MLoc = mi->getLocStart();
9197        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
9198        return;
9199      }
9200    }
9201  }
9202
9203  bool (CXXRecordDecl::*hasTrivial)() const;
9204  switch (member) {
9205  case CXXDefaultConstructor:
9206    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
9207  case CXXCopyConstructor:
9208    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
9209  case CXXCopyAssignment:
9210    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
9211  case CXXDestructor:
9212    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
9213  default:
9214    llvm_unreachable("unexpected special member");
9215  }
9216
9217  // Check for nontrivial bases (and recurse).
9218  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
9219    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
9220    assert(BaseRT && "Don't know how to handle dependent bases");
9221    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
9222    if (!(BaseRecTy->*hasTrivial)()) {
9223      SourceLocation BaseLoc = bi->getLocStart();
9224      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
9225      DiagnoseNontrivial(BaseRT, member);
9226      return;
9227    }
9228  }
9229
9230  // Check for nontrivial members (and recurse).
9231  typedef RecordDecl::field_iterator field_iter;
9232  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
9233       ++fi) {
9234    QualType EltTy = Context.getBaseElementType((*fi)->getType());
9235    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
9236      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
9237
9238      if (!(EltRD->*hasTrivial)()) {
9239        SourceLocation FLoc = (*fi)->getLocation();
9240        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
9241        DiagnoseNontrivial(EltRT, member);
9242        return;
9243      }
9244    }
9245
9246    if (EltTy->isObjCLifetimeType()) {
9247      switch (EltTy.getObjCLifetime()) {
9248      case Qualifiers::OCL_None:
9249      case Qualifiers::OCL_ExplicitNone:
9250        break;
9251
9252      case Qualifiers::OCL_Autoreleasing:
9253      case Qualifiers::OCL_Weak:
9254      case Qualifiers::OCL_Strong:
9255        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
9256          << QT << EltTy.getObjCLifetime();
9257        return;
9258      }
9259    }
9260  }
9261
9262  llvm_unreachable("found no explanation for non-trivial member");
9263}
9264
9265/// TranslateIvarVisibility - Translate visibility from a token ID to an
9266///  AST enum value.
9267static ObjCIvarDecl::AccessControl
9268TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
9269  switch (ivarVisibility) {
9270  default: llvm_unreachable("Unknown visitibility kind");
9271  case tok::objc_private: return ObjCIvarDecl::Private;
9272  case tok::objc_public: return ObjCIvarDecl::Public;
9273  case tok::objc_protected: return ObjCIvarDecl::Protected;
9274  case tok::objc_package: return ObjCIvarDecl::Package;
9275  }
9276}
9277
9278/// ActOnIvar - Each ivar field of an objective-c class is passed into this
9279/// in order to create an IvarDecl object for it.
9280Decl *Sema::ActOnIvar(Scope *S,
9281                                SourceLocation DeclStart,
9282                                Declarator &D, Expr *BitfieldWidth,
9283                                tok::ObjCKeywordKind Visibility) {
9284
9285  IdentifierInfo *II = D.getIdentifier();
9286  Expr *BitWidth = (Expr*)BitfieldWidth;
9287  SourceLocation Loc = DeclStart;
9288  if (II) Loc = D.getIdentifierLoc();
9289
9290  // FIXME: Unnamed fields can be handled in various different ways, for
9291  // example, unnamed unions inject all members into the struct namespace!
9292
9293  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
9294  QualType T = TInfo->getType();
9295
9296  if (BitWidth) {
9297    // 6.7.2.1p3, 6.7.2.1p4
9298    BitWidth = VerifyBitField(Loc, II, T, BitWidth).take();
9299    if (!BitWidth)
9300      D.setInvalidType();
9301  } else {
9302    // Not a bitfield.
9303
9304    // validate II.
9305
9306  }
9307  if (T->isReferenceType()) {
9308    Diag(Loc, diag::err_ivar_reference_type);
9309    D.setInvalidType();
9310  }
9311  // C99 6.7.2.1p8: A member of a structure or union may have any type other
9312  // than a variably modified type.
9313  else if (T->isVariablyModifiedType()) {
9314    Diag(Loc, diag::err_typecheck_ivar_variable_size);
9315    D.setInvalidType();
9316  }
9317
9318  // Get the visibility (access control) for this ivar.
9319  ObjCIvarDecl::AccessControl ac =
9320    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
9321                                        : ObjCIvarDecl::None;
9322  // Must set ivar's DeclContext to its enclosing interface.
9323  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
9324  if (!EnclosingDecl || EnclosingDecl->isInvalidDecl())
9325    return 0;
9326  ObjCContainerDecl *EnclosingContext;
9327  if (ObjCImplementationDecl *IMPDecl =
9328      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9329    if (!LangOpts.ObjCNonFragileABI2) {
9330    // Case of ivar declared in an implementation. Context is that of its class.
9331      EnclosingContext = IMPDecl->getClassInterface();
9332      assert(EnclosingContext && "Implementation has no class interface!");
9333    }
9334    else
9335      EnclosingContext = EnclosingDecl;
9336  } else {
9337    if (ObjCCategoryDecl *CDecl =
9338        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9339      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
9340        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
9341        return 0;
9342      }
9343    }
9344    EnclosingContext = EnclosingDecl;
9345  }
9346
9347  // Construct the decl.
9348  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
9349                                             DeclStart, Loc, II, T,
9350                                             TInfo, ac, (Expr *)BitfieldWidth);
9351
9352  if (II) {
9353    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
9354                                           ForRedeclaration);
9355    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
9356        && !isa<TagDecl>(PrevDecl)) {
9357      Diag(Loc, diag::err_duplicate_member) << II;
9358      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
9359      NewID->setInvalidDecl();
9360    }
9361  }
9362
9363  // Process attributes attached to the ivar.
9364  ProcessDeclAttributes(S, NewID, D);
9365
9366  if (D.isInvalidType())
9367    NewID->setInvalidDecl();
9368
9369  // In ARC, infer 'retaining' for ivars of retainable type.
9370  if (getLangOpts().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
9371    NewID->setInvalidDecl();
9372
9373  if (D.getDeclSpec().isModulePrivateSpecified())
9374    NewID->setModulePrivate();
9375
9376  if (II) {
9377    // FIXME: When interfaces are DeclContexts, we'll need to add
9378    // these to the interface.
9379    S->AddDecl(NewID);
9380    IdResolver.AddDecl(NewID);
9381  }
9382
9383  return NewID;
9384}
9385
9386/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
9387/// class and class extensions. For every class @interface and class
9388/// extension @interface, if the last ivar is a bitfield of any type,
9389/// then add an implicit `char :0` ivar to the end of that interface.
9390void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
9391                             SmallVectorImpl<Decl *> &AllIvarDecls) {
9392  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
9393    return;
9394
9395  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
9396  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
9397
9398  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
9399    return;
9400  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
9401  if (!ID) {
9402    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
9403      if (!CD->IsClassExtension())
9404        return;
9405    }
9406    // No need to add this to end of @implementation.
9407    else
9408      return;
9409  }
9410  // All conditions are met. Add a new bitfield to the tail end of ivars.
9411  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
9412  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
9413
9414  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
9415                              DeclLoc, DeclLoc, 0,
9416                              Context.CharTy,
9417                              Context.getTrivialTypeSourceInfo(Context.CharTy,
9418                                                               DeclLoc),
9419                              ObjCIvarDecl::Private, BW,
9420                              true);
9421  AllIvarDecls.push_back(Ivar);
9422}
9423
9424void Sema::ActOnFields(Scope* S,
9425                       SourceLocation RecLoc, Decl *EnclosingDecl,
9426                       llvm::ArrayRef<Decl *> Fields,
9427                       SourceLocation LBrac, SourceLocation RBrac,
9428                       AttributeList *Attr) {
9429  assert(EnclosingDecl && "missing record or interface decl");
9430
9431  // If the decl this is being inserted into is invalid, then it may be a
9432  // redeclaration or some other bogus case.  Don't try to add fields to it.
9433  if (EnclosingDecl->isInvalidDecl())
9434    return;
9435
9436  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
9437
9438  // Start counting up the number of named members; make sure to include
9439  // members of anonymous structs and unions in the total.
9440  unsigned NumNamedMembers = 0;
9441  if (Record) {
9442    for (RecordDecl::decl_iterator i = Record->decls_begin(),
9443                                   e = Record->decls_end(); i != e; i++) {
9444      if (IndirectFieldDecl *IFD = dyn_cast<IndirectFieldDecl>(*i))
9445        if (IFD->getDeclName())
9446          ++NumNamedMembers;
9447    }
9448  }
9449
9450  // Verify that all the fields are okay.
9451  SmallVector<FieldDecl*, 32> RecFields;
9452
9453  bool ARCErrReported = false;
9454  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
9455       i != end; ++i) {
9456    FieldDecl *FD = cast<FieldDecl>(*i);
9457
9458    // Get the type for the field.
9459    const Type *FDTy = FD->getType().getTypePtr();
9460
9461    if (!FD->isAnonymousStructOrUnion()) {
9462      // Remember all fields written by the user.
9463      RecFields.push_back(FD);
9464    }
9465
9466    // If the field is already invalid for some reason, don't emit more
9467    // diagnostics about it.
9468    if (FD->isInvalidDecl()) {
9469      EnclosingDecl->setInvalidDecl();
9470      continue;
9471    }
9472
9473    // C99 6.7.2.1p2:
9474    //   A structure or union shall not contain a member with
9475    //   incomplete or function type (hence, a structure shall not
9476    //   contain an instance of itself, but may contain a pointer to
9477    //   an instance of itself), except that the last member of a
9478    //   structure with more than one named member may have incomplete
9479    //   array type; such a structure (and any union containing,
9480    //   possibly recursively, a member that is such a structure)
9481    //   shall not be a member of a structure or an element of an
9482    //   array.
9483    if (FDTy->isFunctionType()) {
9484      // Field declared as a function.
9485      Diag(FD->getLocation(), diag::err_field_declared_as_function)
9486        << FD->getDeclName();
9487      FD->setInvalidDecl();
9488      EnclosingDecl->setInvalidDecl();
9489      continue;
9490    } else if (FDTy->isIncompleteArrayType() && Record &&
9491               ((i + 1 == Fields.end() && !Record->isUnion()) ||
9492                ((getLangOpts().MicrosoftExt ||
9493                  getLangOpts().CPlusPlus) &&
9494                 (i + 1 == Fields.end() || Record->isUnion())))) {
9495      // Flexible array member.
9496      // Microsoft and g++ is more permissive regarding flexible array.
9497      // It will accept flexible array in union and also
9498      // as the sole element of a struct/class.
9499      if (getLangOpts().MicrosoftExt) {
9500        if (Record->isUnion())
9501          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
9502            << FD->getDeclName();
9503        else if (Fields.size() == 1)
9504          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
9505            << FD->getDeclName() << Record->getTagKind();
9506      } else if (getLangOpts().CPlusPlus) {
9507        if (Record->isUnion())
9508          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9509            << FD->getDeclName();
9510        else if (Fields.size() == 1)
9511          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
9512            << FD->getDeclName() << Record->getTagKind();
9513      } else if (!getLangOpts().C99) {
9514      if (Record->isUnion())
9515        Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
9516          << FD->getDeclName();
9517      else
9518        Diag(FD->getLocation(), diag::ext_c99_flexible_array_member)
9519          << FD->getDeclName() << Record->getTagKind();
9520      } else if (NumNamedMembers < 1) {
9521        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
9522          << FD->getDeclName();
9523        FD->setInvalidDecl();
9524        EnclosingDecl->setInvalidDecl();
9525        continue;
9526      }
9527      if (!FD->getType()->isDependentType() &&
9528          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
9529        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
9530          << FD->getDeclName() << FD->getType();
9531        FD->setInvalidDecl();
9532        EnclosingDecl->setInvalidDecl();
9533        continue;
9534      }
9535      // Okay, we have a legal flexible array member at the end of the struct.
9536      if (Record)
9537        Record->setHasFlexibleArrayMember(true);
9538    } else if (!FDTy->isDependentType() &&
9539               RequireCompleteType(FD->getLocation(), FD->getType(),
9540                                   diag::err_field_incomplete)) {
9541      // Incomplete type
9542      FD->setInvalidDecl();
9543      EnclosingDecl->setInvalidDecl();
9544      continue;
9545    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
9546      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
9547        // If this is a member of a union, then entire union becomes "flexible".
9548        if (Record && Record->isUnion()) {
9549          Record->setHasFlexibleArrayMember(true);
9550        } else {
9551          // If this is a struct/class and this is not the last element, reject
9552          // it.  Note that GCC supports variable sized arrays in the middle of
9553          // structures.
9554          if (i + 1 != Fields.end())
9555            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
9556              << FD->getDeclName() << FD->getType();
9557          else {
9558            // We support flexible arrays at the end of structs in
9559            // other structs as an extension.
9560            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
9561              << FD->getDeclName();
9562            if (Record)
9563              Record->setHasFlexibleArrayMember(true);
9564          }
9565        }
9566      }
9567      if (Record && FDTTy->getDecl()->hasObjectMember())
9568        Record->setHasObjectMember(true);
9569    } else if (FDTy->isObjCObjectType()) {
9570      /// A field cannot be an Objective-c object
9571      Diag(FD->getLocation(), diag::err_statically_allocated_object)
9572        << FixItHint::CreateInsertion(FD->getLocation(), "*");
9573      QualType T = Context.getObjCObjectPointerType(FD->getType());
9574      FD->setType(T);
9575    }
9576    else if (!getLangOpts().CPlusPlus) {
9577      if (getLangOpts().ObjCAutoRefCount && Record && !ARCErrReported) {
9578        // It's an error in ARC if a field has lifetime.
9579        // We don't want to report this in a system header, though,
9580        // so we just make the field unavailable.
9581        // FIXME: that's really not sufficient; we need to make the type
9582        // itself invalid to, say, initialize or copy.
9583        QualType T = FD->getType();
9584        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9585        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9586          SourceLocation loc = FD->getLocation();
9587          if (getSourceManager().isInSystemHeader(loc)) {
9588            if (!FD->hasAttr<UnavailableAttr>()) {
9589              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9590                                "this system field has retaining ownership"));
9591            }
9592          } else {
9593            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct)
9594              << T->isBlockPointerType();
9595          }
9596          ARCErrReported = true;
9597        }
9598      }
9599      else if (getLangOpts().ObjC1 &&
9600               getLangOpts().getGC() != LangOptions::NonGC &&
9601               Record && !Record->hasObjectMember()) {
9602        if (FD->getType()->isObjCObjectPointerType() ||
9603            FD->getType().isObjCGCStrong())
9604          Record->setHasObjectMember(true);
9605        else if (Context.getAsArrayType(FD->getType())) {
9606          QualType BaseType = Context.getBaseElementType(FD->getType());
9607          if (BaseType->isRecordType() &&
9608              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9609            Record->setHasObjectMember(true);
9610          else if (BaseType->isObjCObjectPointerType() ||
9611                   BaseType.isObjCGCStrong())
9612                 Record->setHasObjectMember(true);
9613        }
9614      }
9615    }
9616    // Keep track of the number of named members.
9617    if (FD->getIdentifier())
9618      ++NumNamedMembers;
9619  }
9620
9621  // Okay, we successfully defined 'Record'.
9622  if (Record) {
9623    bool Completed = false;
9624    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9625      if (!CXXRecord->isInvalidDecl()) {
9626        // Set access bits correctly on the directly-declared conversions.
9627        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9628        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9629             I != E; ++I)
9630          Convs->setAccess(I, (*I)->getAccess());
9631
9632        if (!CXXRecord->isDependentType()) {
9633          // Objective-C Automatic Reference Counting:
9634          //   If a class has a non-static data member of Objective-C pointer
9635          //   type (or array thereof), it is a non-POD type and its
9636          //   default constructor (if any), copy constructor, copy assignment
9637          //   operator, and destructor are non-trivial.
9638          //
9639          // This rule is also handled by CXXRecordDecl::completeDefinition().
9640          // However, here we check whether this particular class is only
9641          // non-POD because of the presence of an Objective-C pointer member.
9642          // If so, objects of this type cannot be shared between code compiled
9643          // with instant objects and code compiled with manual retain/release.
9644          if (getLangOpts().ObjCAutoRefCount &&
9645              CXXRecord->hasObjectMember() &&
9646              CXXRecord->getLinkage() == ExternalLinkage) {
9647            if (CXXRecord->isPOD()) {
9648              Diag(CXXRecord->getLocation(),
9649                   diag::warn_arc_non_pod_class_with_object_member)
9650               << CXXRecord;
9651            } else {
9652              // FIXME: Fix-Its would be nice here, but finding a good location
9653              // for them is going to be tricky.
9654              if (CXXRecord->hasTrivialCopyConstructor())
9655                Diag(CXXRecord->getLocation(),
9656                     diag::warn_arc_trivial_member_function_with_object_member)
9657                  << CXXRecord << 0;
9658              if (CXXRecord->hasTrivialCopyAssignment())
9659                Diag(CXXRecord->getLocation(),
9660                     diag::warn_arc_trivial_member_function_with_object_member)
9661                << CXXRecord << 1;
9662              if (CXXRecord->hasTrivialDestructor())
9663                Diag(CXXRecord->getLocation(),
9664                     diag::warn_arc_trivial_member_function_with_object_member)
9665                << CXXRecord << 2;
9666            }
9667          }
9668
9669          // Adjust user-defined destructor exception spec.
9670          if (getLangOpts().CPlusPlus0x &&
9671              CXXRecord->hasUserDeclaredDestructor())
9672            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9673
9674          // Add any implicitly-declared members to this class.
9675          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9676
9677          // If we have virtual base classes, we may end up finding multiple
9678          // final overriders for a given virtual function. Check for this
9679          // problem now.
9680          if (CXXRecord->getNumVBases()) {
9681            CXXFinalOverriderMap FinalOverriders;
9682            CXXRecord->getFinalOverriders(FinalOverriders);
9683
9684            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9685                                             MEnd = FinalOverriders.end();
9686                 M != MEnd; ++M) {
9687              for (OverridingMethods::iterator SO = M->second.begin(),
9688                                            SOEnd = M->second.end();
9689                   SO != SOEnd; ++SO) {
9690                assert(SO->second.size() > 0 &&
9691                       "Virtual function without overridding functions?");
9692                if (SO->second.size() == 1)
9693                  continue;
9694
9695                // C++ [class.virtual]p2:
9696                //   In a derived class, if a virtual member function of a base
9697                //   class subobject has more than one final overrider the
9698                //   program is ill-formed.
9699                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9700                  << (NamedDecl *)M->first << Record;
9701                Diag(M->first->getLocation(),
9702                     diag::note_overridden_virtual_function);
9703                for (OverridingMethods::overriding_iterator
9704                          OM = SO->second.begin(),
9705                       OMEnd = SO->second.end();
9706                     OM != OMEnd; ++OM)
9707                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9708                    << (NamedDecl *)M->first << OM->Method->getParent();
9709
9710                Record->setInvalidDecl();
9711              }
9712            }
9713            CXXRecord->completeDefinition(&FinalOverriders);
9714            Completed = true;
9715          }
9716        }
9717      }
9718    }
9719
9720    if (!Completed)
9721      Record->completeDefinition();
9722
9723    // Now that the record is complete, do any delayed exception spec checks
9724    // we were missing.
9725    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9726      const CXXDestructorDecl *Dtor =
9727              DelayedDestructorExceptionSpecChecks.back().first;
9728      if (Dtor->getParent() != Record)
9729        break;
9730
9731      assert(!Dtor->getParent()->isDependentType() &&
9732          "Should not ever add destructors of templates into the list.");
9733      CheckOverridingFunctionExceptionSpec(Dtor,
9734          DelayedDestructorExceptionSpecChecks.back().second);
9735      DelayedDestructorExceptionSpecChecks.pop_back();
9736    }
9737
9738  } else {
9739    ObjCIvarDecl **ClsFields =
9740      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9741    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9742      ID->setEndOfDefinitionLoc(RBrac);
9743      // Add ivar's to class's DeclContext.
9744      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9745        ClsFields[i]->setLexicalDeclContext(ID);
9746        ID->addDecl(ClsFields[i]);
9747      }
9748      // Must enforce the rule that ivars in the base classes may not be
9749      // duplicates.
9750      if (ID->getSuperClass())
9751        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9752    } else if (ObjCImplementationDecl *IMPDecl =
9753                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9754      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9755      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9756        // Ivar declared in @implementation never belongs to the implementation.
9757        // Only it is in implementation's lexical context.
9758        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9759      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9760      IMPDecl->setIvarLBraceLoc(LBrac);
9761      IMPDecl->setIvarRBraceLoc(RBrac);
9762    } else if (ObjCCategoryDecl *CDecl =
9763                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9764      // case of ivars in class extension; all other cases have been
9765      // reported as errors elsewhere.
9766      // FIXME. Class extension does not have a LocEnd field.
9767      // CDecl->setLocEnd(RBrac);
9768      // Add ivar's to class extension's DeclContext.
9769      // Diagnose redeclaration of private ivars.
9770      ObjCInterfaceDecl *IDecl = CDecl->getClassInterface();
9771      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9772        if (IDecl) {
9773          if (const ObjCIvarDecl *ClsIvar =
9774              IDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9775            Diag(ClsFields[i]->getLocation(),
9776                 diag::err_duplicate_ivar_declaration);
9777            Diag(ClsIvar->getLocation(), diag::note_previous_definition);
9778            continue;
9779          }
9780          for (const ObjCCategoryDecl *ClsExtDecl =
9781                IDecl->getFirstClassExtension();
9782               ClsExtDecl; ClsExtDecl = ClsExtDecl->getNextClassExtension()) {
9783            if (const ObjCIvarDecl *ClsExtIvar =
9784                ClsExtDecl->getIvarDecl(ClsFields[i]->getIdentifier())) {
9785              Diag(ClsFields[i]->getLocation(),
9786                   diag::err_duplicate_ivar_declaration);
9787              Diag(ClsExtIvar->getLocation(), diag::note_previous_definition);
9788              continue;
9789            }
9790          }
9791        }
9792        ClsFields[i]->setLexicalDeclContext(CDecl);
9793        CDecl->addDecl(ClsFields[i]);
9794      }
9795      CDecl->setIvarLBraceLoc(LBrac);
9796      CDecl->setIvarRBraceLoc(RBrac);
9797    }
9798  }
9799
9800  if (Attr)
9801    ProcessDeclAttributeList(S, Record, Attr);
9802
9803  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9804  // set the visibility of this record.
9805  if (Record && !Record->getDeclContext()->isRecord())
9806    AddPushedVisibilityAttribute(Record);
9807}
9808
9809/// \brief Determine whether the given integral value is representable within
9810/// the given type T.
9811static bool isRepresentableIntegerValue(ASTContext &Context,
9812                                        llvm::APSInt &Value,
9813                                        QualType T) {
9814  assert(T->isIntegralType(Context) && "Integral type required!");
9815  unsigned BitWidth = Context.getIntWidth(T);
9816
9817  if (Value.isUnsigned() || Value.isNonNegative()) {
9818    if (T->isSignedIntegerOrEnumerationType())
9819      --BitWidth;
9820    return Value.getActiveBits() <= BitWidth;
9821  }
9822  return Value.getMinSignedBits() <= BitWidth;
9823}
9824
9825// \brief Given an integral type, return the next larger integral type
9826// (or a NULL type of no such type exists).
9827static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9828  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9829  // enum checking below.
9830  assert(T->isIntegralType(Context) && "Integral type required!");
9831  const unsigned NumTypes = 4;
9832  QualType SignedIntegralTypes[NumTypes] = {
9833    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9834  };
9835  QualType UnsignedIntegralTypes[NumTypes] = {
9836    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9837    Context.UnsignedLongLongTy
9838  };
9839
9840  unsigned BitWidth = Context.getTypeSize(T);
9841  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9842                                                        : UnsignedIntegralTypes;
9843  for (unsigned I = 0; I != NumTypes; ++I)
9844    if (Context.getTypeSize(Types[I]) > BitWidth)
9845      return Types[I];
9846
9847  return QualType();
9848}
9849
9850EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9851                                          EnumConstantDecl *LastEnumConst,
9852                                          SourceLocation IdLoc,
9853                                          IdentifierInfo *Id,
9854                                          Expr *Val) {
9855  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9856  llvm::APSInt EnumVal(IntWidth);
9857  QualType EltTy;
9858
9859  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9860    Val = 0;
9861
9862  if (Val)
9863    Val = DefaultLvalueConversion(Val).take();
9864
9865  if (Val) {
9866    if (Enum->isDependentType() || Val->isTypeDependent())
9867      EltTy = Context.DependentTy;
9868    else {
9869      SourceLocation ExpLoc;
9870      if (getLangOpts().CPlusPlus0x && Enum->isFixed() &&
9871          !getLangOpts().MicrosoftMode) {
9872        // C++11 [dcl.enum]p5: If the underlying type is fixed, [...] the
9873        // constant-expression in the enumerator-definition shall be a converted
9874        // constant expression of the underlying type.
9875        EltTy = Enum->getIntegerType();
9876        ExprResult Converted =
9877          CheckConvertedConstantExpression(Val, EltTy, EnumVal,
9878                                           CCEK_Enumerator);
9879        if (Converted.isInvalid())
9880          Val = 0;
9881        else
9882          Val = Converted.take();
9883      } else if (!Val->isValueDependent() &&
9884                 !(Val = VerifyIntegerConstantExpression(Val,
9885                                                         &EnumVal).take())) {
9886        // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9887      } else {
9888        if (Enum->isFixed()) {
9889          EltTy = Enum->getIntegerType();
9890
9891          // In Obj-C and Microsoft mode, require the enumeration value to be
9892          // representable in the underlying type of the enumeration. In C++11,
9893          // we perform a non-narrowing conversion as part of converted constant
9894          // expression checking.
9895          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9896            if (getLangOpts().MicrosoftMode) {
9897              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9898              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9899            } else
9900              Diag(IdLoc, diag::err_enumerator_too_large) << EltTy;
9901          } else
9902            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9903        } else if (getLangOpts().CPlusPlus) {
9904          // C++11 [dcl.enum]p5:
9905          //   If the underlying type is not fixed, the type of each enumerator
9906          //   is the type of its initializing value:
9907          //     - If an initializer is specified for an enumerator, the
9908          //       initializing value has the same type as the expression.
9909          EltTy = Val->getType();
9910        } else {
9911          // C99 6.7.2.2p2:
9912          //   The expression that defines the value of an enumeration constant
9913          //   shall be an integer constant expression that has a value
9914          //   representable as an int.
9915
9916          // Complain if the value is not representable in an int.
9917          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9918            Diag(IdLoc, diag::ext_enum_value_not_int)
9919              << EnumVal.toString(10) << Val->getSourceRange()
9920              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9921          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9922            // Force the type of the expression to 'int'.
9923            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9924          }
9925          EltTy = Val->getType();
9926        }
9927      }
9928    }
9929  }
9930
9931  if (!Val) {
9932    if (Enum->isDependentType())
9933      EltTy = Context.DependentTy;
9934    else if (!LastEnumConst) {
9935      // C++0x [dcl.enum]p5:
9936      //   If the underlying type is not fixed, the type of each enumerator
9937      //   is the type of its initializing value:
9938      //     - If no initializer is specified for the first enumerator, the
9939      //       initializing value has an unspecified integral type.
9940      //
9941      // GCC uses 'int' for its unspecified integral type, as does
9942      // C99 6.7.2.2p3.
9943      if (Enum->isFixed()) {
9944        EltTy = Enum->getIntegerType();
9945      }
9946      else {
9947        EltTy = Context.IntTy;
9948      }
9949    } else {
9950      // Assign the last value + 1.
9951      EnumVal = LastEnumConst->getInitVal();
9952      ++EnumVal;
9953      EltTy = LastEnumConst->getType();
9954
9955      // Check for overflow on increment.
9956      if (EnumVal < LastEnumConst->getInitVal()) {
9957        // C++0x [dcl.enum]p5:
9958        //   If the underlying type is not fixed, the type of each enumerator
9959        //   is the type of its initializing value:
9960        //
9961        //     - Otherwise the type of the initializing value is the same as
9962        //       the type of the initializing value of the preceding enumerator
9963        //       unless the incremented value is not representable in that type,
9964        //       in which case the type is an unspecified integral type
9965        //       sufficient to contain the incremented value. If no such type
9966        //       exists, the program is ill-formed.
9967        QualType T = getNextLargerIntegralType(Context, EltTy);
9968        if (T.isNull() || Enum->isFixed()) {
9969          // There is no integral type larger enough to represent this
9970          // value. Complain, then allow the value to wrap around.
9971          EnumVal = LastEnumConst->getInitVal();
9972          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9973          ++EnumVal;
9974          if (Enum->isFixed())
9975            // When the underlying type is fixed, this is ill-formed.
9976            Diag(IdLoc, diag::err_enumerator_wrapped)
9977              << EnumVal.toString(10)
9978              << EltTy;
9979          else
9980            Diag(IdLoc, diag::warn_enumerator_too_large)
9981              << EnumVal.toString(10);
9982        } else {
9983          EltTy = T;
9984        }
9985
9986        // Retrieve the last enumerator's value, extent that type to the
9987        // type that is supposed to be large enough to represent the incremented
9988        // value, then increment.
9989        EnumVal = LastEnumConst->getInitVal();
9990        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9991        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9992        ++EnumVal;
9993
9994        // If we're not in C++, diagnose the overflow of enumerator values,
9995        // which in C99 means that the enumerator value is not representable in
9996        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9997        // permits enumerator values that are representable in some larger
9998        // integral type.
9999        if (!getLangOpts().CPlusPlus && !T.isNull())
10000          Diag(IdLoc, diag::warn_enum_value_overflow);
10001      } else if (!getLangOpts().CPlusPlus &&
10002                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
10003        // Enforce C99 6.7.2.2p2 even when we compute the next value.
10004        Diag(IdLoc, diag::ext_enum_value_not_int)
10005          << EnumVal.toString(10) << 1;
10006      }
10007    }
10008  }
10009
10010  if (!EltTy->isDependentType()) {
10011    // Make the enumerator value match the signedness and size of the
10012    // enumerator's type.
10013    EnumVal = EnumVal.extOrTrunc(Context.getIntWidth(EltTy));
10014    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
10015  }
10016
10017  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
10018                                  Val, EnumVal);
10019}
10020
10021
10022Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
10023                              SourceLocation IdLoc, IdentifierInfo *Id,
10024                              AttributeList *Attr,
10025                              SourceLocation EqualLoc, Expr *Val) {
10026  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
10027  EnumConstantDecl *LastEnumConst =
10028    cast_or_null<EnumConstantDecl>(lastEnumConst);
10029
10030  // The scope passed in may not be a decl scope.  Zip up the scope tree until
10031  // we find one that is.
10032  S = getNonFieldDeclScope(S);
10033
10034  // Verify that there isn't already something declared with this name in this
10035  // scope.
10036  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
10037                                         ForRedeclaration);
10038  if (PrevDecl && PrevDecl->isTemplateParameter()) {
10039    // Maybe we will complain about the shadowed template parameter.
10040    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
10041    // Just pretend that we didn't see the previous declaration.
10042    PrevDecl = 0;
10043  }
10044
10045  if (PrevDecl) {
10046    // When in C++, we may get a TagDecl with the same name; in this case the
10047    // enum constant will 'hide' the tag.
10048    assert((getLangOpts().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
10049           "Received TagDecl when not in C++!");
10050    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
10051      if (isa<EnumConstantDecl>(PrevDecl))
10052        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
10053      else
10054        Diag(IdLoc, diag::err_redefinition) << Id;
10055      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
10056      return 0;
10057    }
10058  }
10059
10060  // C++ [class.mem]p13:
10061  //   If T is the name of a class, then each of the following shall have a
10062  //   name different from T:
10063  //     - every enumerator of every member of class T that is an enumerated
10064  //       type
10065  if (CXXRecordDecl *Record
10066                      = dyn_cast<CXXRecordDecl>(
10067                             TheEnumDecl->getDeclContext()->getRedeclContext()))
10068    if (Record->getIdentifier() && Record->getIdentifier() == Id)
10069      Diag(IdLoc, diag::err_member_name_of_class) << Id;
10070
10071  EnumConstantDecl *New =
10072    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
10073
10074  if (New) {
10075    // Process attributes.
10076    if (Attr) ProcessDeclAttributeList(S, New, Attr);
10077
10078    // Register this decl in the current scope stack.
10079    New->setAccess(TheEnumDecl->getAccess());
10080    PushOnScopeChains(New, S);
10081  }
10082
10083  return New;
10084}
10085
10086void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
10087                         SourceLocation RBraceLoc, Decl *EnumDeclX,
10088                         Decl **Elements, unsigned NumElements,
10089                         Scope *S, AttributeList *Attr) {
10090  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
10091  QualType EnumType = Context.getTypeDeclType(Enum);
10092
10093  if (Attr)
10094    ProcessDeclAttributeList(S, Enum, Attr);
10095
10096  if (Enum->isDependentType()) {
10097    for (unsigned i = 0; i != NumElements; ++i) {
10098      EnumConstantDecl *ECD =
10099        cast_or_null<EnumConstantDecl>(Elements[i]);
10100      if (!ECD) continue;
10101
10102      ECD->setType(EnumType);
10103    }
10104
10105    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
10106    return;
10107  }
10108
10109  // TODO: If the result value doesn't fit in an int, it must be a long or long
10110  // long value.  ISO C does not support this, but GCC does as an extension,
10111  // emit a warning.
10112  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
10113  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
10114  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
10115
10116  // Verify that all the values are okay, compute the size of the values, and
10117  // reverse the list.
10118  unsigned NumNegativeBits = 0;
10119  unsigned NumPositiveBits = 0;
10120
10121  // Keep track of whether all elements have type int.
10122  bool AllElementsInt = true;
10123
10124  for (unsigned i = 0; i != NumElements; ++i) {
10125    EnumConstantDecl *ECD =
10126      cast_or_null<EnumConstantDecl>(Elements[i]);
10127    if (!ECD) continue;  // Already issued a diagnostic.
10128
10129    const llvm::APSInt &InitVal = ECD->getInitVal();
10130
10131    // Keep track of the size of positive and negative values.
10132    if (InitVal.isUnsigned() || InitVal.isNonNegative())
10133      NumPositiveBits = std::max(NumPositiveBits,
10134                                 (unsigned)InitVal.getActiveBits());
10135    else
10136      NumNegativeBits = std::max(NumNegativeBits,
10137                                 (unsigned)InitVal.getMinSignedBits());
10138
10139    // Keep track of whether every enum element has type int (very commmon).
10140    if (AllElementsInt)
10141      AllElementsInt = ECD->getType() == Context.IntTy;
10142  }
10143
10144  // Figure out the type that should be used for this enum.
10145  QualType BestType;
10146  unsigned BestWidth;
10147
10148  // C++0x N3000 [conv.prom]p3:
10149  //   An rvalue of an unscoped enumeration type whose underlying
10150  //   type is not fixed can be converted to an rvalue of the first
10151  //   of the following types that can represent all the values of
10152  //   the enumeration: int, unsigned int, long int, unsigned long
10153  //   int, long long int, or unsigned long long int.
10154  // C99 6.4.4.3p2:
10155  //   An identifier declared as an enumeration constant has type int.
10156  // The C99 rule is modified by a gcc extension
10157  QualType BestPromotionType;
10158
10159  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
10160  // -fshort-enums is the equivalent to specifying the packed attribute on all
10161  // enum definitions.
10162  if (LangOpts.ShortEnums)
10163    Packed = true;
10164
10165  if (Enum->isFixed()) {
10166    BestType = Enum->getIntegerType();
10167    if (BestType->isPromotableIntegerType())
10168      BestPromotionType = Context.getPromotedIntegerType(BestType);
10169    else
10170      BestPromotionType = BestType;
10171    // We don't need to set BestWidth, because BestType is going to be the type
10172    // of the enumerators, but we do anyway because otherwise some compilers
10173    // warn that it might be used uninitialized.
10174    BestWidth = CharWidth;
10175  }
10176  else if (NumNegativeBits) {
10177    // If there is a negative value, figure out the smallest integer type (of
10178    // int/long/longlong) that fits.
10179    // If it's packed, check also if it fits a char or a short.
10180    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
10181      BestType = Context.SignedCharTy;
10182      BestWidth = CharWidth;
10183    } else if (Packed && NumNegativeBits <= ShortWidth &&
10184               NumPositiveBits < ShortWidth) {
10185      BestType = Context.ShortTy;
10186      BestWidth = ShortWidth;
10187    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
10188      BestType = Context.IntTy;
10189      BestWidth = IntWidth;
10190    } else {
10191      BestWidth = Context.getTargetInfo().getLongWidth();
10192
10193      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
10194        BestType = Context.LongTy;
10195      } else {
10196        BestWidth = Context.getTargetInfo().getLongLongWidth();
10197
10198        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
10199          Diag(Enum->getLocation(), diag::warn_enum_too_large);
10200        BestType = Context.LongLongTy;
10201      }
10202    }
10203    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
10204  } else {
10205    // If there is no negative value, figure out the smallest type that fits
10206    // all of the enumerator values.
10207    // If it's packed, check also if it fits a char or a short.
10208    if (Packed && NumPositiveBits <= CharWidth) {
10209      BestType = Context.UnsignedCharTy;
10210      BestPromotionType = Context.IntTy;
10211      BestWidth = CharWidth;
10212    } else if (Packed && NumPositiveBits <= ShortWidth) {
10213      BestType = Context.UnsignedShortTy;
10214      BestPromotionType = Context.IntTy;
10215      BestWidth = ShortWidth;
10216    } else if (NumPositiveBits <= IntWidth) {
10217      BestType = Context.UnsignedIntTy;
10218      BestWidth = IntWidth;
10219      BestPromotionType
10220        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10221                           ? Context.UnsignedIntTy : Context.IntTy;
10222    } else if (NumPositiveBits <=
10223               (BestWidth = Context.getTargetInfo().getLongWidth())) {
10224      BestType = Context.UnsignedLongTy;
10225      BestPromotionType
10226        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10227                           ? Context.UnsignedLongTy : Context.LongTy;
10228    } else {
10229      BestWidth = Context.getTargetInfo().getLongLongWidth();
10230      assert(NumPositiveBits <= BestWidth &&
10231             "How could an initializer get larger than ULL?");
10232      BestType = Context.UnsignedLongLongTy;
10233      BestPromotionType
10234        = (NumPositiveBits == BestWidth || !getLangOpts().CPlusPlus)
10235                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
10236    }
10237  }
10238
10239  // Loop over all of the enumerator constants, changing their types to match
10240  // the type of the enum if needed.
10241  for (unsigned i = 0; i != NumElements; ++i) {
10242    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
10243    if (!ECD) continue;  // Already issued a diagnostic.
10244
10245    // Standard C says the enumerators have int type, but we allow, as an
10246    // extension, the enumerators to be larger than int size.  If each
10247    // enumerator value fits in an int, type it as an int, otherwise type it the
10248    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
10249    // that X has type 'int', not 'unsigned'.
10250
10251    // Determine whether the value fits into an int.
10252    llvm::APSInt InitVal = ECD->getInitVal();
10253
10254    // If it fits into an integer type, force it.  Otherwise force it to match
10255    // the enum decl type.
10256    QualType NewTy;
10257    unsigned NewWidth;
10258    bool NewSign;
10259    if (!getLangOpts().CPlusPlus &&
10260        !Enum->isFixed() &&
10261        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
10262      NewTy = Context.IntTy;
10263      NewWidth = IntWidth;
10264      NewSign = true;
10265    } else if (ECD->getType() == BestType) {
10266      // Already the right type!
10267      if (getLangOpts().CPlusPlus)
10268        // C++ [dcl.enum]p4: Following the closing brace of an
10269        // enum-specifier, each enumerator has the type of its
10270        // enumeration.
10271        ECD->setType(EnumType);
10272      continue;
10273    } else {
10274      NewTy = BestType;
10275      NewWidth = BestWidth;
10276      NewSign = BestType->isSignedIntegerOrEnumerationType();
10277    }
10278
10279    // Adjust the APSInt value.
10280    InitVal = InitVal.extOrTrunc(NewWidth);
10281    InitVal.setIsSigned(NewSign);
10282    ECD->setInitVal(InitVal);
10283
10284    // Adjust the Expr initializer and type.
10285    if (ECD->getInitExpr() &&
10286        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
10287      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
10288                                                CK_IntegralCast,
10289                                                ECD->getInitExpr(),
10290                                                /*base paths*/ 0,
10291                                                VK_RValue));
10292    if (getLangOpts().CPlusPlus)
10293      // C++ [dcl.enum]p4: Following the closing brace of an
10294      // enum-specifier, each enumerator has the type of its
10295      // enumeration.
10296      ECD->setType(EnumType);
10297    else
10298      ECD->setType(NewTy);
10299  }
10300
10301  Enum->completeDefinition(BestType, BestPromotionType,
10302                           NumPositiveBits, NumNegativeBits);
10303
10304  // If we're declaring a function, ensure this decl isn't forgotten about -
10305  // it needs to go into the function scope.
10306  if (InFunctionDeclarator)
10307    DeclsInPrototypeScope.push_back(Enum);
10308
10309}
10310
10311Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
10312                                  SourceLocation StartLoc,
10313                                  SourceLocation EndLoc) {
10314  StringLiteral *AsmString = cast<StringLiteral>(expr);
10315
10316  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
10317                                                   AsmString, StartLoc,
10318                                                   EndLoc);
10319  CurContext->addDecl(New);
10320  return New;
10321}
10322
10323DeclResult Sema::ActOnModuleImport(SourceLocation AtLoc,
10324                                   SourceLocation ImportLoc,
10325                                   ModuleIdPath Path) {
10326  Module *Mod = PP.getModuleLoader().loadModule(ImportLoc, Path,
10327                                                Module::AllVisible,
10328                                                /*IsIncludeDirective=*/false);
10329  if (!Mod)
10330    return true;
10331
10332  llvm::SmallVector<SourceLocation, 2> IdentifierLocs;
10333  Module *ModCheck = Mod;
10334  for (unsigned I = 0, N = Path.size(); I != N; ++I) {
10335    // If we've run out of module parents, just drop the remaining identifiers.
10336    // We need the length to be consistent.
10337    if (!ModCheck)
10338      break;
10339    ModCheck = ModCheck->Parent;
10340
10341    IdentifierLocs.push_back(Path[I].second);
10342  }
10343
10344  ImportDecl *Import = ImportDecl::Create(Context,
10345                                          Context.getTranslationUnitDecl(),
10346                                          AtLoc.isValid()? AtLoc : ImportLoc,
10347                                          Mod, IdentifierLocs);
10348  Context.getTranslationUnitDecl()->addDecl(Import);
10349  return Import;
10350}
10351
10352void Sema::ActOnPragmaRedefineExtname(IdentifierInfo* Name,
10353                                      IdentifierInfo* AliasName,
10354                                      SourceLocation PragmaLoc,
10355                                      SourceLocation NameLoc,
10356                                      SourceLocation AliasNameLoc) {
10357  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc,
10358                                    LookupOrdinaryName);
10359  AsmLabelAttr *Attr =
10360     ::new (Context) AsmLabelAttr(AliasNameLoc, Context, AliasName->getName());
10361
10362  if (PrevDecl)
10363    PrevDecl->addAttr(Attr);
10364  else
10365    (void)ExtnameUndeclaredIdentifiers.insert(
10366      std::pair<IdentifierInfo*,AsmLabelAttr*>(Name, Attr));
10367}
10368
10369void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
10370                             SourceLocation PragmaLoc,
10371                             SourceLocation NameLoc) {
10372  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
10373
10374  if (PrevDecl) {
10375    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
10376  } else {
10377    (void)WeakUndeclaredIdentifiers.insert(
10378      std::pair<IdentifierInfo*,WeakInfo>
10379        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
10380  }
10381}
10382
10383void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
10384                                IdentifierInfo* AliasName,
10385                                SourceLocation PragmaLoc,
10386                                SourceLocation NameLoc,
10387                                SourceLocation AliasNameLoc) {
10388  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
10389                                    LookupOrdinaryName);
10390  WeakInfo W = WeakInfo(Name, NameLoc);
10391
10392  if (PrevDecl) {
10393    if (!PrevDecl->hasAttr<AliasAttr>())
10394      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
10395        DeclApplyPragmaWeak(TUScope, ND, W);
10396  } else {
10397    (void)WeakUndeclaredIdentifiers.insert(
10398      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
10399  }
10400}
10401
10402Decl *Sema::getObjCDeclContext() const {
10403  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
10404}
10405
10406AvailabilityResult Sema::getCurContextAvailability() const {
10407  const Decl *D = cast<Decl>(getCurLexicalContext());
10408  // A category implicitly has the availability of the interface.
10409  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
10410    D = CatD->getClassInterface();
10411
10412  return D->getAvailability();
10413}
10414