SemaDecl.cpp revision 1f15e768983a614e45c3ca01df1ddb3339e746dd
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/TargetInfo.h"
27#include "clang/Basic/SourceManager.h"
28// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
29#include "clang/Lex/Preprocessor.h"
30#include "clang/Lex/HeaderSearch.h"
31#include "llvm/ADT/BitVector.h"
32#include "llvm/ADT/SmallSet.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS) {
65  // C++ [temp.res]p3:
66  //   A qualified-id that refers to a type and in which the
67  //   nested-name-specifier depends on a template-parameter (14.6.2)
68  //   shall be prefixed by the keyword typename to indicate that the
69  //   qualified-id denotes a type, forming an
70  //   elaborated-type-specifier (7.1.5.3).
71  //
72  // We therefore do not perform any name lookup if the result would
73  // refer to a member of an unknown specialization.
74  if (SS && isUnknownSpecialization(*SS))
75    return 0;
76
77  LookupResult Result
78    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
79
80  NamedDecl *IIDecl = 0;
81  switch (Result.getKind()) {
82  case LookupResult::NotFound:
83  case LookupResult::FoundOverloaded:
84    return 0;
85
86  case LookupResult::AmbiguousBaseSubobjectTypes:
87  case LookupResult::AmbiguousBaseSubobjects:
88  case LookupResult::AmbiguousReference: {
89    // Look to see if we have a type anywhere in the list of results.
90    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
91         Res != ResEnd; ++Res) {
92      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
93        if (!IIDecl ||
94            (*Res)->getLocation().getRawEncoding() <
95              IIDecl->getLocation().getRawEncoding())
96          IIDecl = *Res;
97      }
98    }
99
100    if (!IIDecl) {
101      // None of the entities we found is a type, so there is no way
102      // to even assume that the result is a type. In this case, don't
103      // complain about the ambiguity. The parser will either try to
104      // perform this lookup again (e.g., as an object name), which
105      // will produce the ambiguity, or will complain that it expected
106      // a type name.
107      Result.Destroy();
108      return 0;
109    }
110
111    // We found a type within the ambiguous lookup; diagnose the
112    // ambiguity and then return that type. This might be the right
113    // answer, or it might not be, but it suppresses any attempt to
114    // perform the name lookup again.
115    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
116    break;
117  }
118
119  case LookupResult::Found:
120    IIDecl = Result.getAsDecl();
121    break;
122  }
123
124  if (IIDecl) {
125    QualType T;
126
127    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
128      // Check whether we can use this type
129      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
130
131      if (getLangOptions().CPlusPlus) {
132        // C++ [temp.local]p2:
133        //   Within the scope of a class template specialization or
134        //   partial specialization, when the injected-class-name is
135        //   not followed by a <, it is equivalent to the
136        //   injected-class-name followed by the template-argument s
137        //   of the class template specialization or partial
138        //   specialization enclosed in <>.
139        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
140          if (RD->isInjectedClassName())
141            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
142              T = Template->getInjectedClassNameType(Context);
143      }
144
145      if (T.isNull())
146        T = Context.getTypeDeclType(TD);
147    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
148      // Check whether we can use this interface.
149      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
150
151      T = Context.getObjCInterfaceType(IDecl);
152    } else
153      return 0;
154
155    if (SS)
156      T = getQualifiedNameType(*SS, T);
157
158    return T.getAsOpaquePtr();
159  }
160
161  return 0;
162}
163
164/// isTagName() - This method is called *for error recovery purposes only*
165/// to determine if the specified name is a valid tag name ("struct foo").  If
166/// so, this returns the TST for the tag corresponding to it (TST_enum,
167/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
168/// where the user forgot to specify the tag.
169DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
170  // Do a tag name lookup in this scope.
171  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
172  if (R.getKind() == LookupResult::Found)
173    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
174      switch (TD->getTagKind()) {
175      case TagDecl::TK_struct: return DeclSpec::TST_struct;
176      case TagDecl::TK_union:  return DeclSpec::TST_union;
177      case TagDecl::TK_class:  return DeclSpec::TST_class;
178      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
179      }
180    }
181
182  return DeclSpec::TST_unspecified;
183}
184
185
186
187DeclContext *Sema::getContainingDC(DeclContext *DC) {
188  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
189    // A C++ out-of-line method will return to the file declaration context.
190    if (MD->isOutOfLine())
191      return MD->getLexicalDeclContext();
192
193    // A C++ inline method is parsed *after* the topmost class it was declared
194    // in is fully parsed (it's "complete").
195    // The parsing of a C++ inline method happens at the declaration context of
196    // the topmost (non-nested) class it is lexically declared in.
197    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
198    DC = MD->getParent();
199    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
200      DC = RD;
201
202    // Return the declaration context of the topmost class the inline method is
203    // declared in.
204    return DC;
205  }
206
207  if (isa<ObjCMethodDecl>(DC))
208    return Context.getTranslationUnitDecl();
209
210  return DC->getLexicalParent();
211}
212
213void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
214  assert(getContainingDC(DC) == CurContext &&
215      "The next DeclContext should be lexically contained in the current one.");
216  CurContext = DC;
217  S->setEntity(DC);
218}
219
220void Sema::PopDeclContext() {
221  assert(CurContext && "DeclContext imbalance!");
222
223  CurContext = getContainingDC(CurContext);
224}
225
226/// EnterDeclaratorContext - Used when we must lookup names in the context
227/// of a declarator's nested name specifier.
228void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
229  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
230  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
231  CurContext = DC;
232  assert(CurContext && "No context?");
233  S->setEntity(CurContext);
234}
235
236void Sema::ExitDeclaratorContext(Scope *S) {
237  S->setEntity(PreDeclaratorDC);
238  PreDeclaratorDC = 0;
239
240  // Reset CurContext to the nearest enclosing context.
241  while (!S->getEntity() && S->getParent())
242    S = S->getParent();
243  CurContext = static_cast<DeclContext*>(S->getEntity());
244  assert(CurContext && "No context?");
245}
246
247/// \brief Determine whether we allow overloading of the function
248/// PrevDecl with another declaration.
249///
250/// This routine determines whether overloading is possible, not
251/// whether some new function is actually an overload. It will return
252/// true in C++ (where we can always provide overloads) or, as an
253/// extension, in C when the previous function is already an
254/// overloaded function declaration or has the "overloadable"
255/// attribute.
256static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
257  if (Context.getLangOptions().CPlusPlus)
258    return true;
259
260  if (isa<OverloadedFunctionDecl>(PrevDecl))
261    return true;
262
263  return PrevDecl->getAttr<OverloadableAttr>() != 0;
264}
265
266/// Add this decl to the scope shadowed decl chains.
267void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
268  // Move up the scope chain until we find the nearest enclosing
269  // non-transparent context. The declaration will be introduced into this
270  // scope.
271  while (S->getEntity() &&
272         ((DeclContext *)S->getEntity())->isTransparentContext())
273    S = S->getParent();
274
275  S->AddDecl(DeclPtrTy::make(D));
276
277  // Add scoped declarations into their context, so that they can be
278  // found later. Declarations without a context won't be inserted
279  // into any context.
280  CurContext->addDecl(D);
281
282  // C++ [basic.scope]p4:
283  //   -- exactly one declaration shall declare a class name or
284  //   enumeration name that is not a typedef name and the other
285  //   declarations shall all refer to the same object or
286  //   enumerator, or all refer to functions and function templates;
287  //   in this case the class name or enumeration name is hidden.
288  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
289    // We are pushing the name of a tag (enum or class).
290    if (CurContext->getLookupContext()
291          == TD->getDeclContext()->getLookupContext()) {
292      // We're pushing the tag into the current context, which might
293      // require some reshuffling in the identifier resolver.
294      IdentifierResolver::iterator
295        I = IdResolver.begin(TD->getDeclName()),
296        IEnd = IdResolver.end();
297      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
298        NamedDecl *PrevDecl = *I;
299        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
300             PrevDecl = *I, ++I) {
301          if (TD->declarationReplaces(*I)) {
302            // This is a redeclaration. Remove it from the chain and
303            // break out, so that we'll add in the shadowed
304            // declaration.
305            S->RemoveDecl(DeclPtrTy::make(*I));
306            if (PrevDecl == *I) {
307              IdResolver.RemoveDecl(*I);
308              IdResolver.AddDecl(TD);
309              return;
310            } else {
311              IdResolver.RemoveDecl(*I);
312              break;
313            }
314          }
315        }
316
317        // There is already a declaration with the same name in the same
318        // scope, which is not a tag declaration. It must be found
319        // before we find the new declaration, so insert the new
320        // declaration at the end of the chain.
321        IdResolver.AddShadowedDecl(TD, PrevDecl);
322
323        return;
324      }
325    }
326  } else if ((isa<FunctionDecl>(D) &&
327              AllowOverloadingOfFunction(D, Context)) ||
328             isa<FunctionTemplateDecl>(D)) {
329    // We are pushing the name of a function or function template,
330    // which might be an overloaded name.
331    IdentifierResolver::iterator Redecl
332      = std::find_if(IdResolver.begin(D->getDeclName()),
333                     IdResolver.end(),
334                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
335                                  D));
336    if (Redecl != IdResolver.end() &&
337        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
338      // There is already a declaration of a function on our
339      // IdResolver chain. Replace it with this declaration.
340      S->RemoveDecl(DeclPtrTy::make(*Redecl));
341      IdResolver.RemoveDecl(*Redecl);
342    }
343  } else if (isa<ObjCInterfaceDecl>(D)) {
344    // We're pushing an Objective-C interface into the current
345    // context. If there is already an alias declaration, remove it first.
346    for (IdentifierResolver::iterator
347           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
348         I != IEnd; ++I) {
349      if (isa<ObjCCompatibleAliasDecl>(*I)) {
350        S->RemoveDecl(DeclPtrTy::make(*I));
351        IdResolver.RemoveDecl(*I);
352        break;
353      }
354    }
355  }
356
357  IdResolver.AddDecl(D);
358}
359
360void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
361  if (S->decl_empty()) return;
362  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
363	 "Scope shouldn't contain decls!");
364
365  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
366       I != E; ++I) {
367    Decl *TmpD = (*I).getAs<Decl>();
368    assert(TmpD && "This decl didn't get pushed??");
369
370    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
371    NamedDecl *D = cast<NamedDecl>(TmpD);
372
373    if (!D->getDeclName()) continue;
374
375    // Remove this name from our lexical scope.
376    IdResolver.RemoveDecl(D);
377  }
378}
379
380/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
381/// return 0 if one not found.
382ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
383  // The third "scope" argument is 0 since we aren't enabling lazy built-in
384  // creation from this context.
385  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
386
387  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
388}
389
390/// getNonFieldDeclScope - Retrieves the innermost scope, starting
391/// from S, where a non-field would be declared. This routine copes
392/// with the difference between C and C++ scoping rules in structs and
393/// unions. For example, the following code is well-formed in C but
394/// ill-formed in C++:
395/// @code
396/// struct S6 {
397///   enum { BAR } e;
398/// };
399///
400/// void test_S6() {
401///   struct S6 a;
402///   a.e = BAR;
403/// }
404/// @endcode
405/// For the declaration of BAR, this routine will return a different
406/// scope. The scope S will be the scope of the unnamed enumeration
407/// within S6. In C++, this routine will return the scope associated
408/// with S6, because the enumeration's scope is a transparent
409/// context but structures can contain non-field names. In C, this
410/// routine will return the translation unit scope, since the
411/// enumeration's scope is a transparent context and structures cannot
412/// contain non-field names.
413Scope *Sema::getNonFieldDeclScope(Scope *S) {
414  while (((S->getFlags() & Scope::DeclScope) == 0) ||
415         (S->getEntity() &&
416          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
417         (S->isClassScope() && !getLangOptions().CPlusPlus))
418    S = S->getParent();
419  return S;
420}
421
422void Sema::InitBuiltinVaListType() {
423  if (!Context.getBuiltinVaListType().isNull())
424    return;
425
426  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
427  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
428  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
429  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
430}
431
432/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
433/// file scope.  lazily create a decl for it. ForRedeclaration is true
434/// if we're creating this built-in in anticipation of redeclaring the
435/// built-in.
436NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
437                                     Scope *S, bool ForRedeclaration,
438                                     SourceLocation Loc) {
439  Builtin::ID BID = (Builtin::ID)bid;
440
441  if (Context.BuiltinInfo.hasVAListUse(BID))
442    InitBuiltinVaListType();
443
444  ASTContext::GetBuiltinTypeError Error;
445  QualType R = Context.GetBuiltinType(BID, Error);
446  switch (Error) {
447  case ASTContext::GE_None:
448    // Okay
449    break;
450
451  case ASTContext::GE_Missing_FILE:
452    if (ForRedeclaration)
453      Diag(Loc, diag::err_implicit_decl_requires_stdio)
454        << Context.BuiltinInfo.GetName(BID);
455    return 0;
456  }
457
458  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
459    Diag(Loc, diag::ext_implicit_lib_function_decl)
460      << Context.BuiltinInfo.GetName(BID)
461      << R;
462    if (Context.BuiltinInfo.getHeaderName(BID) &&
463        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
464          != Diagnostic::Ignored)
465      Diag(Loc, diag::note_please_include_header)
466        << Context.BuiltinInfo.getHeaderName(BID)
467        << Context.BuiltinInfo.GetName(BID);
468  }
469
470  FunctionDecl *New = FunctionDecl::Create(Context,
471                                           Context.getTranslationUnitDecl(),
472                                           Loc, II, R,
473                                           FunctionDecl::Extern, false,
474                                           /*hasPrototype=*/true);
475  New->setImplicit();
476
477  // Create Decl objects for each parameter, adding them to the
478  // FunctionDecl.
479  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
480    llvm::SmallVector<ParmVarDecl*, 16> Params;
481    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
482      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
483                                           FT->getArgType(i), VarDecl::None, 0));
484    New->setParams(Context, Params.data(), Params.size());
485  }
486
487  AddKnownFunctionAttributes(New);
488
489  // TUScope is the translation-unit scope to insert this function into.
490  // FIXME: This is hideous. We need to teach PushOnScopeChains to
491  // relate Scopes to DeclContexts, and probably eliminate CurContext
492  // entirely, but we're not there yet.
493  DeclContext *SavedContext = CurContext;
494  CurContext = Context.getTranslationUnitDecl();
495  PushOnScopeChains(New, TUScope);
496  CurContext = SavedContext;
497  return New;
498}
499
500/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
501/// everything from the standard library is defined.
502NamespaceDecl *Sema::GetStdNamespace() {
503  if (!StdNamespace) {
504    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
505    DeclContext *Global = Context.getTranslationUnitDecl();
506    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
507    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
508  }
509  return StdNamespace;
510}
511
512/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
513/// same name and scope as a previous declaration 'Old'.  Figure out
514/// how to resolve this situation, merging decls or emitting
515/// diagnostics as appropriate. If there was an error, set New to be invalid.
516///
517void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
518  // If either decl is known invalid already, set the new one to be invalid and
519  // don't bother doing any merging checks.
520  if (New->isInvalidDecl() || OldD->isInvalidDecl())
521    return New->setInvalidDecl();
522
523  // Allow multiple definitions for ObjC built-in typedefs.
524  // FIXME: Verify the underlying types are equivalent!
525  if (getLangOptions().ObjC1) {
526    const IdentifierInfo *TypeID = New->getIdentifier();
527    switch (TypeID->getLength()) {
528    default: break;
529    case 2:
530      if (!TypeID->isStr("id"))
531        break;
532      // Install the built-in type for 'id', ignoring the current definition.
533      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
534      return;
535    case 5:
536      if (!TypeID->isStr("Class"))
537        break;
538      // Install the built-in type for 'Class', ignoring the current definition.
539      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
540      return;
541    case 3:
542      if (!TypeID->isStr("SEL"))
543        break;
544      Context.setObjCSelType(Context.getTypeDeclType(New));
545      return;
546    case 8:
547      if (!TypeID->isStr("Protocol"))
548        break;
549      Context.setObjCProtoType(New->getUnderlyingType());
550      return;
551    }
552    // Fall through - the typedef name was not a builtin type.
553  }
554  // Verify the old decl was also a type.
555  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
556  if (!Old) {
557    Diag(New->getLocation(), diag::err_redefinition_different_kind)
558      << New->getDeclName();
559    if (OldD->getLocation().isValid())
560      Diag(OldD->getLocation(), diag::note_previous_definition);
561    return New->setInvalidDecl();
562  }
563
564  // Determine the "old" type we'll use for checking and diagnostics.
565  QualType OldType;
566  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
567    OldType = OldTypedef->getUnderlyingType();
568  else
569    OldType = Context.getTypeDeclType(Old);
570
571  // If the typedef types are not identical, reject them in all languages and
572  // with any extensions enabled.
573
574  if (OldType != New->getUnderlyingType() &&
575      Context.getCanonicalType(OldType) !=
576      Context.getCanonicalType(New->getUnderlyingType())) {
577    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
578      << New->getUnderlyingType() << OldType;
579    if (Old->getLocation().isValid())
580      Diag(Old->getLocation(), diag::note_previous_definition);
581    return New->setInvalidDecl();
582  }
583
584  if (getLangOptions().Microsoft)
585    return;
586
587  // C++ [dcl.typedef]p2:
588  //   In a given non-class scope, a typedef specifier can be used to
589  //   redefine the name of any type declared in that scope to refer
590  //   to the type to which it already refers.
591  if (getLangOptions().CPlusPlus) {
592    if (!isa<CXXRecordDecl>(CurContext))
593      return;
594    Diag(New->getLocation(), diag::err_redefinition)
595      << New->getDeclName();
596    Diag(Old->getLocation(), diag::note_previous_definition);
597    return New->setInvalidDecl();
598  }
599
600  // If we have a redefinition of a typedef in C, emit a warning.  This warning
601  // is normally mapped to an error, but can be controlled with
602  // -Wtypedef-redefinition.  If either the original or the redefinition is
603  // in a system header, don't emit this for compatibility with GCC.
604  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
605      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
606       Context.getSourceManager().isInSystemHeader(New->getLocation())))
607    return;
608
609  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
610    << New->getDeclName();
611  Diag(Old->getLocation(), diag::note_previous_definition);
612  return;
613}
614
615/// DeclhasAttr - returns true if decl Declaration already has the target
616/// attribute.
617static bool
618DeclHasAttr(const Decl *decl, const Attr *target) {
619  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
620    if (attr->getKind() == target->getKind())
621      return true;
622
623  return false;
624}
625
626/// MergeAttributes - append attributes from the Old decl to the New one.
627static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
628  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
629    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
630      Attr *NewAttr = attr->clone(C);
631      NewAttr->setInherited(true);
632      New->addAttr(NewAttr);
633    }
634  }
635}
636
637/// Used in MergeFunctionDecl to keep track of function parameters in
638/// C.
639struct GNUCompatibleParamWarning {
640  ParmVarDecl *OldParm;
641  ParmVarDecl *NewParm;
642  QualType PromotedType;
643};
644
645/// MergeFunctionDecl - We just parsed a function 'New' from
646/// declarator D which has the same name and scope as a previous
647/// declaration 'Old'.  Figure out how to resolve this situation,
648/// merging decls or emitting diagnostics as appropriate.
649///
650/// In C++, New and Old must be declarations that are not
651/// overloaded. Use IsOverload to determine whether New and Old are
652/// overloaded, and to select the Old declaration that New should be
653/// merged with.
654///
655/// Returns true if there was an error, false otherwise.
656bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
657  assert(!isa<OverloadedFunctionDecl>(OldD) &&
658         "Cannot merge with an overloaded function declaration");
659
660  // Verify the old decl was also a function.
661  FunctionDecl *Old = 0;
662  if (FunctionTemplateDecl *OldFunctionTemplate
663        = dyn_cast<FunctionTemplateDecl>(OldD))
664    Old = OldFunctionTemplate->getTemplatedDecl();
665  else
666    Old = dyn_cast<FunctionDecl>(OldD);
667  if (!Old) {
668    Diag(New->getLocation(), diag::err_redefinition_different_kind)
669      << New->getDeclName();
670    Diag(OldD->getLocation(), diag::note_previous_definition);
671    return true;
672  }
673
674  // Determine whether the previous declaration was a definition,
675  // implicit declaration, or a declaration.
676  diag::kind PrevDiag;
677  if (Old->isThisDeclarationADefinition())
678    PrevDiag = diag::note_previous_definition;
679  else if (Old->isImplicit())
680    PrevDiag = diag::note_previous_implicit_declaration;
681  else
682    PrevDiag = diag::note_previous_declaration;
683
684  QualType OldQType = Context.getCanonicalType(Old->getType());
685  QualType NewQType = Context.getCanonicalType(New->getType());
686
687  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
688      New->getStorageClass() == FunctionDecl::Static &&
689      Old->getStorageClass() != FunctionDecl::Static) {
690    Diag(New->getLocation(), diag::err_static_non_static)
691      << New;
692    Diag(Old->getLocation(), PrevDiag);
693    return true;
694  }
695
696  if (getLangOptions().CPlusPlus) {
697    // (C++98 13.1p2):
698    //   Certain function declarations cannot be overloaded:
699    //     -- Function declarations that differ only in the return type
700    //        cannot be overloaded.
701    QualType OldReturnType
702      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
703    QualType NewReturnType
704      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
705    if (OldReturnType != NewReturnType) {
706      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
707      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
708      return true;
709    }
710
711    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
712    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
713    if (OldMethod && NewMethod &&
714        NewMethod->getLexicalDeclContext()->isRecord()) {
715      //    -- Member function declarations with the same name and the
716      //       same parameter types cannot be overloaded if any of them
717      //       is a static member function declaration.
718      if (OldMethod->isStatic() || NewMethod->isStatic()) {
719        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
720        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
721        return true;
722      }
723
724      // C++ [class.mem]p1:
725      //   [...] A member shall not be declared twice in the
726      //   member-specification, except that a nested class or member
727      //   class template can be declared and then later defined.
728      unsigned NewDiag;
729      if (isa<CXXConstructorDecl>(OldMethod))
730        NewDiag = diag::err_constructor_redeclared;
731      else if (isa<CXXDestructorDecl>(NewMethod))
732        NewDiag = diag::err_destructor_redeclared;
733      else if (isa<CXXConversionDecl>(NewMethod))
734        NewDiag = diag::err_conv_function_redeclared;
735      else
736        NewDiag = diag::err_member_redeclared;
737
738      Diag(New->getLocation(), NewDiag);
739      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
740    }
741
742    // (C++98 8.3.5p3):
743    //   All declarations for a function shall agree exactly in both the
744    //   return type and the parameter-type-list.
745    if (OldQType == NewQType)
746      return MergeCompatibleFunctionDecls(New, Old);
747
748    // Fall through for conflicting redeclarations and redefinitions.
749  }
750
751  // C: Function types need to be compatible, not identical. This handles
752  // duplicate function decls like "void f(int); void f(enum X);" properly.
753  if (!getLangOptions().CPlusPlus &&
754      Context.typesAreCompatible(OldQType, NewQType)) {
755    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
756    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
757    const FunctionProtoType *OldProto = 0;
758    if (isa<FunctionNoProtoType>(NewFuncType) &&
759        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
760      // The old declaration provided a function prototype, but the
761      // new declaration does not. Merge in the prototype.
762      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
763      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
764                                                 OldProto->arg_type_end());
765      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
766                                         ParamTypes.data(), ParamTypes.size(),
767                                         OldProto->isVariadic(),
768                                         OldProto->getTypeQuals());
769      New->setType(NewQType);
770      New->setHasInheritedPrototype();
771
772      // Synthesize a parameter for each argument type.
773      llvm::SmallVector<ParmVarDecl*, 16> Params;
774      for (FunctionProtoType::arg_type_iterator
775             ParamType = OldProto->arg_type_begin(),
776             ParamEnd = OldProto->arg_type_end();
777           ParamType != ParamEnd; ++ParamType) {
778        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
779                                                 SourceLocation(), 0,
780                                                 *ParamType, VarDecl::None,
781                                                 0);
782        Param->setImplicit();
783        Params.push_back(Param);
784      }
785
786      New->setParams(Context, Params.data(), Params.size());
787    }
788
789    return MergeCompatibleFunctionDecls(New, Old);
790  }
791
792  // GNU C permits a K&R definition to follow a prototype declaration
793  // if the declared types of the parameters in the K&R definition
794  // match the types in the prototype declaration, even when the
795  // promoted types of the parameters from the K&R definition differ
796  // from the types in the prototype. GCC then keeps the types from
797  // the prototype.
798  //
799  // If a variadic prototype is followed by a non-variadic K&R definition,
800  // the K&R definition becomes variadic.  This is sort of an edge case, but
801  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
802  // C99 6.9.1p8.
803  if (!getLangOptions().CPlusPlus &&
804      Old->hasPrototype() && !New->hasPrototype() &&
805      New->getType()->getAsFunctionProtoType() &&
806      Old->getNumParams() == New->getNumParams()) {
807    llvm::SmallVector<QualType, 16> ArgTypes;
808    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
809    const FunctionProtoType *OldProto
810      = Old->getType()->getAsFunctionProtoType();
811    const FunctionProtoType *NewProto
812      = New->getType()->getAsFunctionProtoType();
813
814    // Determine whether this is the GNU C extension.
815    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
816                                               NewProto->getResultType());
817    bool LooseCompatible = !MergedReturn.isNull();
818    for (unsigned Idx = 0, End = Old->getNumParams();
819         LooseCompatible && Idx != End; ++Idx) {
820      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
821      ParmVarDecl *NewParm = New->getParamDecl(Idx);
822      if (Context.typesAreCompatible(OldParm->getType(),
823                                     NewProto->getArgType(Idx))) {
824        ArgTypes.push_back(NewParm->getType());
825      } else if (Context.typesAreCompatible(OldParm->getType(),
826                                            NewParm->getType())) {
827        GNUCompatibleParamWarning Warn
828          = { OldParm, NewParm, NewProto->getArgType(Idx) };
829        Warnings.push_back(Warn);
830        ArgTypes.push_back(NewParm->getType());
831      } else
832        LooseCompatible = false;
833    }
834
835    if (LooseCompatible) {
836      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
837        Diag(Warnings[Warn].NewParm->getLocation(),
838             diag::ext_param_promoted_not_compatible_with_prototype)
839          << Warnings[Warn].PromotedType
840          << Warnings[Warn].OldParm->getType();
841        Diag(Warnings[Warn].OldParm->getLocation(),
842             diag::note_previous_declaration);
843      }
844
845      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
846                                           ArgTypes.size(),
847                                           OldProto->isVariadic(), 0));
848      return MergeCompatibleFunctionDecls(New, Old);
849    }
850
851    // Fall through to diagnose conflicting types.
852  }
853
854  // A function that has already been declared has been redeclared or defined
855  // with a different type- show appropriate diagnostic
856  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
857    // The user has declared a builtin function with an incompatible
858    // signature.
859    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
860      // The function the user is redeclaring is a library-defined
861      // function like 'malloc' or 'printf'. Warn about the
862      // redeclaration, then pretend that we don't know about this
863      // library built-in.
864      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
865      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
866        << Old << Old->getType();
867      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
868      Old->setInvalidDecl();
869      return false;
870    }
871
872    PrevDiag = diag::note_previous_builtin_declaration;
873  }
874
875  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
876  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
877  return true;
878}
879
880/// \brief Completes the merge of two function declarations that are
881/// known to be compatible.
882///
883/// This routine handles the merging of attributes and other
884/// properties of function declarations form the old declaration to
885/// the new declaration, once we know that New is in fact a
886/// redeclaration of Old.
887///
888/// \returns false
889bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
890  // Merge the attributes
891  MergeAttributes(New, Old, Context);
892
893  // Merge the storage class.
894  if (Old->getStorageClass() != FunctionDecl::Extern)
895    New->setStorageClass(Old->getStorageClass());
896
897  // Merge "inline"
898  if (Old->isInline())
899    New->setInline(true);
900
901  // If this function declaration by itself qualifies as a C99 inline
902  // definition (C99 6.7.4p6), but the previous definition did not,
903  // then the function is not a C99 inline definition.
904  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
905    New->setC99InlineDefinition(false);
906  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
907    // Mark all preceding definitions as not being C99 inline definitions.
908    for (const FunctionDecl *Prev = Old; Prev;
909         Prev = Prev->getPreviousDeclaration())
910      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
911  }
912
913  // Merge "pure" flag.
914  if (Old->isPure())
915    New->setPure();
916
917  // Merge the "deleted" flag.
918  if (Old->isDeleted())
919    New->setDeleted();
920
921  if (getLangOptions().CPlusPlus)
922    return MergeCXXFunctionDecl(New, Old);
923
924  return false;
925}
926
927/// MergeVarDecl - We just parsed a variable 'New' which has the same name
928/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
929/// situation, merging decls or emitting diagnostics as appropriate.
930///
931/// Tentative definition rules (C99 6.9.2p2) are checked by
932/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
933/// definitions here, since the initializer hasn't been attached.
934///
935void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
936  // If either decl is invalid, make sure the new one is marked invalid and
937  // don't do any other checking.
938  if (New->isInvalidDecl() || OldD->isInvalidDecl())
939    return New->setInvalidDecl();
940
941  // Verify the old decl was also a variable.
942  VarDecl *Old = dyn_cast<VarDecl>(OldD);
943  if (!Old) {
944    Diag(New->getLocation(), diag::err_redefinition_different_kind)
945      << New->getDeclName();
946    Diag(OldD->getLocation(), diag::note_previous_definition);
947    return New->setInvalidDecl();
948  }
949
950  MergeAttributes(New, Old, Context);
951
952  // Merge the types
953  QualType MergedT;
954  if (getLangOptions().CPlusPlus) {
955    if (Context.hasSameType(New->getType(), Old->getType()))
956      MergedT = New->getType();
957  } else {
958    MergedT = Context.mergeTypes(New->getType(), Old->getType());
959  }
960  if (MergedT.isNull()) {
961    Diag(New->getLocation(), diag::err_redefinition_different_type)
962      << New->getDeclName();
963    Diag(Old->getLocation(), diag::note_previous_definition);
964    return New->setInvalidDecl();
965  }
966  New->setType(MergedT);
967
968  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
969  if (New->getStorageClass() == VarDecl::Static &&
970      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
971    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
972    Diag(Old->getLocation(), diag::note_previous_definition);
973    return New->setInvalidDecl();
974  }
975  // C99 6.2.2p4:
976  //   For an identifier declared with the storage-class specifier
977  //   extern in a scope in which a prior declaration of that
978  //   identifier is visible,23) if the prior declaration specifies
979  //   internal or external linkage, the linkage of the identifier at
980  //   the later declaration is the same as the linkage specified at
981  //   the prior declaration. If no prior declaration is visible, or
982  //   if the prior declaration specifies no linkage, then the
983  //   identifier has external linkage.
984  if (New->hasExternalStorage() && Old->hasLinkage())
985    /* Okay */;
986  else if (New->getStorageClass() != VarDecl::Static &&
987           Old->getStorageClass() == VarDecl::Static) {
988    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
989    Diag(Old->getLocation(), diag::note_previous_definition);
990    return New->setInvalidDecl();
991  }
992
993  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
994
995  // FIXME: The test for external storage here seems wrong? We still
996  // need to check for mismatches.
997  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
998      // Don't complain about out-of-line definitions of static members.
999      !(Old->getLexicalDeclContext()->isRecord() &&
1000        !New->getLexicalDeclContext()->isRecord())) {
1001    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1002    Diag(Old->getLocation(), diag::note_previous_definition);
1003    return New->setInvalidDecl();
1004  }
1005
1006  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1007    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1008    Diag(Old->getLocation(), diag::note_previous_definition);
1009  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1010    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1011    Diag(Old->getLocation(), diag::note_previous_definition);
1012  }
1013
1014  // Keep a chain of previous declarations.
1015  New->setPreviousDeclaration(Old);
1016}
1017
1018Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1019  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1020
1021  // FIXME: They should never return 0, fix that, delete this code.
1022  if (cfg == 0)
1023    return NeverFallThrough;
1024  // The CFG leaves in dead things, run a simple mark and sweep on it
1025  // to weed out the trivially dead things.
1026  std::queue<CFGBlock*> workq;
1027  llvm::BitVector live(cfg->getNumBlockIDs());
1028  // Prep work queue
1029  workq.push(&cfg->getEntry());
1030  // Solve
1031  while (!workq.empty()) {
1032    CFGBlock *item = workq.front();
1033    workq.pop();
1034    live.set(item->getBlockID());
1035    CFGBlock::succ_iterator i;
1036    for (i=item->succ_begin(); i != item->succ_end(); ++i) {
1037      if ((*i) && ! live[(*i)->getBlockID()]) {
1038        live.set((*i)->getBlockID());
1039        workq.push(*i);
1040      }
1041    }
1042  }
1043
1044  CFGBlock::succ_iterator i;
1045  bool HasLiveReturn = false;
1046  bool HasFakeEdge = false;
1047  bool HasPlainEdge = false;
1048  for (i=cfg->getExit().pred_begin(); i != cfg->getExit().pred_end(); ++i) {
1049    if (!live[(*i)->getBlockID()])
1050      continue;
1051    if ((*i)->size() == 0) {
1052      // A labeled empty statement, or the entry block...
1053      HasPlainEdge = true;
1054      continue;
1055    }
1056    Stmt *S = (**i)[(*i)->size()-1];
1057    if (isa<ReturnStmt>(S)) {
1058      HasLiveReturn = true;
1059      continue;
1060    }
1061    if (isa<ObjCAtThrowStmt>(S)) {
1062      HasFakeEdge = true;
1063      continue;
1064    }
1065    if (isa<CXXThrowExpr>(S)) {
1066      HasFakeEdge = true;
1067      continue;
1068    }
1069    bool NoReturnEdge = false;
1070    if (CallExpr *C = dyn_cast<CallExpr>(S))
1071      {
1072        Expr *CEE = C->getCallee()->IgnoreParenCasts();
1073        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1074          if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1075            if (FD->hasAttr<NoReturnAttr>()) {
1076              NoReturnEdge = true;
1077              HasFakeEdge = true;
1078            }
1079          }
1080        }
1081      }
1082    if (NoReturnEdge == false)
1083      HasPlainEdge = true;
1084  }
1085  if (HasPlainEdge) {
1086    if (HasFakeEdge|HasLiveReturn)
1087      return MaybeFallThrough;
1088    // This says never for calls to functions that are not marked noreturn, that
1089    // don't return.  For people that don't like this, we encourage marking the
1090    // functions as noreturn.
1091    return AlwaysFallThrough;
1092  }
1093  return NeverFallThrough;
1094}
1095
1096/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1097/// function that should return a value.
1098///
1099/// \returns Never iff we can never alter control flow (we always fall off the
1100/// end of the statement, Conditional iff we might or might not alter
1101/// control-flow and Always iff we always alter control flow (we never fall off
1102/// the end of the statement).
1103void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1104  // FIXME: Would be nice if we had a better way to control cascding errors, but
1105  // for now, avoid them.
1106  if (getDiagnostics().hasErrorOccurred())
1107    return;
1108  if (Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1109      == Diagnostic::Ignored)
1110    return;
1111  // FIXME: Funtion try block
1112  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1113    switch (CheckFallThrough(Body)) {
1114    case MaybeFallThrough:
1115      Diag(Compound->getRBracLoc(), diag::warn_maybe_falloff_nonvoid_function);
1116      break;
1117    case AlwaysFallThrough:
1118      Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1119      break;
1120    case NeverFallThrough:
1121      break;
1122    }
1123  }
1124}
1125
1126/// CheckParmsForFunctionDef - Check that the parameters of the given
1127/// function are appropriate for the definition of a function. This
1128/// takes care of any checks that cannot be performed on the
1129/// declaration itself, e.g., that the types of each of the function
1130/// parameters are complete.
1131bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1132  bool HasInvalidParm = false;
1133  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1134    ParmVarDecl *Param = FD->getParamDecl(p);
1135
1136    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1137    // function declarator that is part of a function definition of
1138    // that function shall not have incomplete type.
1139    //
1140    // This is also C++ [dcl.fct]p6.
1141    if (!Param->isInvalidDecl() &&
1142        RequireCompleteType(Param->getLocation(), Param->getType(),
1143                               diag::err_typecheck_decl_incomplete_type)) {
1144      Param->setInvalidDecl();
1145      HasInvalidParm = true;
1146    }
1147
1148    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1149    // declaration of each parameter shall include an identifier.
1150    if (Param->getIdentifier() == 0 &&
1151        !Param->isImplicit() &&
1152        !getLangOptions().CPlusPlus)
1153      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1154  }
1155
1156  return HasInvalidParm;
1157}
1158
1159/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1160/// no declarator (e.g. "struct foo;") is parsed.
1161Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1162  // FIXME: Error on auto/register at file scope
1163  // FIXME: Error on inline/virtual/explicit
1164  // FIXME: Error on invalid restrict
1165  // FIXME: Warn on useless __thread
1166  // FIXME: Warn on useless const/volatile
1167  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1168  // FIXME: Warn on useless attributes
1169  TagDecl *Tag = 0;
1170  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1171      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1172      DS.getTypeSpecType() == DeclSpec::TST_union ||
1173      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1174    if (!DS.getTypeRep()) // We probably had an error
1175      return DeclPtrTy();
1176
1177    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1178  }
1179
1180  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1181    if (!Record->getDeclName() && Record->isDefinition() &&
1182        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1183      if (getLangOptions().CPlusPlus ||
1184          Record->getDeclContext()->isRecord())
1185        return BuildAnonymousStructOrUnion(S, DS, Record);
1186
1187      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1188        << DS.getSourceRange();
1189    }
1190
1191    // Microsoft allows unnamed struct/union fields. Don't complain
1192    // about them.
1193    // FIXME: Should we support Microsoft's extensions in this area?
1194    if (Record->getDeclName() && getLangOptions().Microsoft)
1195      return DeclPtrTy::make(Tag);
1196  }
1197
1198  if (!DS.isMissingDeclaratorOk() &&
1199      DS.getTypeSpecType() != DeclSpec::TST_error) {
1200    // Warn about typedefs of enums without names, since this is an
1201    // extension in both Microsoft an GNU.
1202    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1203        Tag && isa<EnumDecl>(Tag)) {
1204      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1205        << DS.getSourceRange();
1206      return DeclPtrTy::make(Tag);
1207    }
1208
1209    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1210      << DS.getSourceRange();
1211    return DeclPtrTy();
1212  }
1213
1214  return DeclPtrTy::make(Tag);
1215}
1216
1217/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1218/// anonymous struct or union AnonRecord into the owning context Owner
1219/// and scope S. This routine will be invoked just after we realize
1220/// that an unnamed union or struct is actually an anonymous union or
1221/// struct, e.g.,
1222///
1223/// @code
1224/// union {
1225///   int i;
1226///   float f;
1227/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1228///    // f into the surrounding scope.x
1229/// @endcode
1230///
1231/// This routine is recursive, injecting the names of nested anonymous
1232/// structs/unions into the owning context and scope as well.
1233bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1234                                               RecordDecl *AnonRecord) {
1235  bool Invalid = false;
1236  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1237                               FEnd = AnonRecord->field_end();
1238       F != FEnd; ++F) {
1239    if ((*F)->getDeclName()) {
1240      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1241                                                LookupOrdinaryName, true);
1242      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1243        // C++ [class.union]p2:
1244        //   The names of the members of an anonymous union shall be
1245        //   distinct from the names of any other entity in the
1246        //   scope in which the anonymous union is declared.
1247        unsigned diagKind
1248          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1249                                 : diag::err_anonymous_struct_member_redecl;
1250        Diag((*F)->getLocation(), diagKind)
1251          << (*F)->getDeclName();
1252        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1253        Invalid = true;
1254      } else {
1255        // C++ [class.union]p2:
1256        //   For the purpose of name lookup, after the anonymous union
1257        //   definition, the members of the anonymous union are
1258        //   considered to have been defined in the scope in which the
1259        //   anonymous union is declared.
1260        Owner->makeDeclVisibleInContext(*F);
1261        S->AddDecl(DeclPtrTy::make(*F));
1262        IdResolver.AddDecl(*F);
1263      }
1264    } else if (const RecordType *InnerRecordType
1265                 = (*F)->getType()->getAsRecordType()) {
1266      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1267      if (InnerRecord->isAnonymousStructOrUnion())
1268        Invalid = Invalid ||
1269          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1270    }
1271  }
1272
1273  return Invalid;
1274}
1275
1276/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1277/// anonymous structure or union. Anonymous unions are a C++ feature
1278/// (C++ [class.union]) and a GNU C extension; anonymous structures
1279/// are a GNU C and GNU C++ extension.
1280Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1281                                                  RecordDecl *Record) {
1282  DeclContext *Owner = Record->getDeclContext();
1283
1284  // Diagnose whether this anonymous struct/union is an extension.
1285  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1286    Diag(Record->getLocation(), diag::ext_anonymous_union);
1287  else if (!Record->isUnion())
1288    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1289
1290  // C and C++ require different kinds of checks for anonymous
1291  // structs/unions.
1292  bool Invalid = false;
1293  if (getLangOptions().CPlusPlus) {
1294    const char* PrevSpec = 0;
1295    // C++ [class.union]p3:
1296    //   Anonymous unions declared in a named namespace or in the
1297    //   global namespace shall be declared static.
1298    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1299        (isa<TranslationUnitDecl>(Owner) ||
1300         (isa<NamespaceDecl>(Owner) &&
1301          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1302      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1303      Invalid = true;
1304
1305      // Recover by adding 'static'.
1306      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1307    }
1308    // C++ [class.union]p3:
1309    //   A storage class is not allowed in a declaration of an
1310    //   anonymous union in a class scope.
1311    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1312             isa<RecordDecl>(Owner)) {
1313      Diag(DS.getStorageClassSpecLoc(),
1314           diag::err_anonymous_union_with_storage_spec);
1315      Invalid = true;
1316
1317      // Recover by removing the storage specifier.
1318      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1319                             PrevSpec);
1320    }
1321
1322    // C++ [class.union]p2:
1323    //   The member-specification of an anonymous union shall only
1324    //   define non-static data members. [Note: nested types and
1325    //   functions cannot be declared within an anonymous union. ]
1326    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1327                                 MemEnd = Record->decls_end();
1328         Mem != MemEnd; ++Mem) {
1329      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1330        // C++ [class.union]p3:
1331        //   An anonymous union shall not have private or protected
1332        //   members (clause 11).
1333        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1334          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1335            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1336          Invalid = true;
1337        }
1338      } else if ((*Mem)->isImplicit()) {
1339        // Any implicit members are fine.
1340      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1341        // This is a type that showed up in an
1342        // elaborated-type-specifier inside the anonymous struct or
1343        // union, but which actually declares a type outside of the
1344        // anonymous struct or union. It's okay.
1345      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1346        if (!MemRecord->isAnonymousStructOrUnion() &&
1347            MemRecord->getDeclName()) {
1348          // This is a nested type declaration.
1349          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1350            << (int)Record->isUnion();
1351          Invalid = true;
1352        }
1353      } else {
1354        // We have something that isn't a non-static data
1355        // member. Complain about it.
1356        unsigned DK = diag::err_anonymous_record_bad_member;
1357        if (isa<TypeDecl>(*Mem))
1358          DK = diag::err_anonymous_record_with_type;
1359        else if (isa<FunctionDecl>(*Mem))
1360          DK = diag::err_anonymous_record_with_function;
1361        else if (isa<VarDecl>(*Mem))
1362          DK = diag::err_anonymous_record_with_static;
1363        Diag((*Mem)->getLocation(), DK)
1364            << (int)Record->isUnion();
1365          Invalid = true;
1366      }
1367    }
1368  }
1369
1370  if (!Record->isUnion() && !Owner->isRecord()) {
1371    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1372      << (int)getLangOptions().CPlusPlus;
1373    Invalid = true;
1374  }
1375
1376  // Create a declaration for this anonymous struct/union.
1377  NamedDecl *Anon = 0;
1378  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1379    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1380                             /*IdentifierInfo=*/0,
1381                             Context.getTypeDeclType(Record),
1382                             /*BitWidth=*/0, /*Mutable=*/false,
1383                             DS.getSourceRange().getBegin());
1384    Anon->setAccess(AS_public);
1385    if (getLangOptions().CPlusPlus)
1386      FieldCollector->Add(cast<FieldDecl>(Anon));
1387  } else {
1388    VarDecl::StorageClass SC;
1389    switch (DS.getStorageClassSpec()) {
1390    default: assert(0 && "Unknown storage class!");
1391    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1392    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1393    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1394    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1395    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1396    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1397    case DeclSpec::SCS_mutable:
1398      // mutable can only appear on non-static class members, so it's always
1399      // an error here
1400      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1401      Invalid = true;
1402      SC = VarDecl::None;
1403      break;
1404    }
1405
1406    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1407                           /*IdentifierInfo=*/0,
1408                           Context.getTypeDeclType(Record),
1409                           SC, DS.getSourceRange().getBegin());
1410  }
1411  Anon->setImplicit();
1412
1413  // Add the anonymous struct/union object to the current
1414  // context. We'll be referencing this object when we refer to one of
1415  // its members.
1416  Owner->addDecl(Anon);
1417
1418  // Inject the members of the anonymous struct/union into the owning
1419  // context and into the identifier resolver chain for name lookup
1420  // purposes.
1421  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1422    Invalid = true;
1423
1424  // Mark this as an anonymous struct/union type. Note that we do not
1425  // do this until after we have already checked and injected the
1426  // members of this anonymous struct/union type, because otherwise
1427  // the members could be injected twice: once by DeclContext when it
1428  // builds its lookup table, and once by
1429  // InjectAnonymousStructOrUnionMembers.
1430  Record->setAnonymousStructOrUnion(true);
1431
1432  if (Invalid)
1433    Anon->setInvalidDecl();
1434
1435  return DeclPtrTy::make(Anon);
1436}
1437
1438
1439/// GetNameForDeclarator - Determine the full declaration name for the
1440/// given Declarator.
1441DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1442  switch (D.getKind()) {
1443  case Declarator::DK_Abstract:
1444    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1445    return DeclarationName();
1446
1447  case Declarator::DK_Normal:
1448    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1449    return DeclarationName(D.getIdentifier());
1450
1451  case Declarator::DK_Constructor: {
1452    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1453    Ty = Context.getCanonicalType(Ty);
1454    return Context.DeclarationNames.getCXXConstructorName(Ty);
1455  }
1456
1457  case Declarator::DK_Destructor: {
1458    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1459    Ty = Context.getCanonicalType(Ty);
1460    return Context.DeclarationNames.getCXXDestructorName(Ty);
1461  }
1462
1463  case Declarator::DK_Conversion: {
1464    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1465    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1466    Ty = Context.getCanonicalType(Ty);
1467    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1468  }
1469
1470  case Declarator::DK_Operator:
1471    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1472    return Context.DeclarationNames.getCXXOperatorName(
1473                                                D.getOverloadedOperator());
1474  }
1475
1476  assert(false && "Unknown name kind");
1477  return DeclarationName();
1478}
1479
1480/// isNearlyMatchingFunction - Determine whether the C++ functions
1481/// Declaration and Definition are "nearly" matching. This heuristic
1482/// is used to improve diagnostics in the case where an out-of-line
1483/// function definition doesn't match any declaration within
1484/// the class or namespace.
1485static bool isNearlyMatchingFunction(ASTContext &Context,
1486                                     FunctionDecl *Declaration,
1487                                     FunctionDecl *Definition) {
1488  if (Declaration->param_size() != Definition->param_size())
1489    return false;
1490  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1491    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1492    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1493
1494    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1495    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1496    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1497      return false;
1498  }
1499
1500  return true;
1501}
1502
1503Sema::DeclPtrTy
1504Sema::HandleDeclarator(Scope *S, Declarator &D,
1505                       MultiTemplateParamsArg TemplateParamLists,
1506                       bool IsFunctionDefinition) {
1507  DeclarationName Name = GetNameForDeclarator(D);
1508
1509  // All of these full declarators require an identifier.  If it doesn't have
1510  // one, the ParsedFreeStandingDeclSpec action should be used.
1511  if (!Name) {
1512    if (!D.isInvalidType())  // Reject this if we think it is valid.
1513      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1514           diag::err_declarator_need_ident)
1515        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1516    return DeclPtrTy();
1517  }
1518
1519  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1520  // we find one that is.
1521  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1522         (S->getFlags() & Scope::TemplateParamScope) != 0)
1523    S = S->getParent();
1524
1525  DeclContext *DC;
1526  NamedDecl *PrevDecl;
1527  NamedDecl *New;
1528
1529  QualType R = GetTypeForDeclarator(D, S);
1530
1531  // See if this is a redefinition of a variable in the same scope.
1532  if (D.getCXXScopeSpec().isInvalid()) {
1533    DC = CurContext;
1534    PrevDecl = 0;
1535    D.setInvalidType();
1536  } else if (!D.getCXXScopeSpec().isSet()) {
1537    LookupNameKind NameKind = LookupOrdinaryName;
1538
1539    // If the declaration we're planning to build will be a function
1540    // or object with linkage, then look for another declaration with
1541    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1542    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1543      /* Do nothing*/;
1544    else if (R->isFunctionType()) {
1545      if (CurContext->isFunctionOrMethod() ||
1546          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1547        NameKind = LookupRedeclarationWithLinkage;
1548    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1549      NameKind = LookupRedeclarationWithLinkage;
1550    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1551             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1552      NameKind = LookupRedeclarationWithLinkage;
1553
1554    DC = CurContext;
1555    PrevDecl = LookupName(S, Name, NameKind, true,
1556                          NameKind == LookupRedeclarationWithLinkage,
1557                          D.getIdentifierLoc());
1558  } else { // Something like "int foo::x;"
1559    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1560    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1561    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1562
1563    // C++ 7.3.1.2p2:
1564    // Members (including explicit specializations of templates) of a named
1565    // namespace can also be defined outside that namespace by explicit
1566    // qualification of the name being defined, provided that the entity being
1567    // defined was already declared in the namespace and the definition appears
1568    // after the point of declaration in a namespace that encloses the
1569    // declarations namespace.
1570    //
1571    // Note that we only check the context at this point. We don't yet
1572    // have enough information to make sure that PrevDecl is actually
1573    // the declaration we want to match. For example, given:
1574    //
1575    //   class X {
1576    //     void f();
1577    //     void f(float);
1578    //   };
1579    //
1580    //   void X::f(int) { } // ill-formed
1581    //
1582    // In this case, PrevDecl will point to the overload set
1583    // containing the two f's declared in X, but neither of them
1584    // matches.
1585
1586    // First check whether we named the global scope.
1587    if (isa<TranslationUnitDecl>(DC)) {
1588      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1589        << Name << D.getCXXScopeSpec().getRange();
1590    } else if (!CurContext->Encloses(DC)) {
1591      // The qualifying scope doesn't enclose the original declaration.
1592      // Emit diagnostic based on current scope.
1593      SourceLocation L = D.getIdentifierLoc();
1594      SourceRange R = D.getCXXScopeSpec().getRange();
1595      if (isa<FunctionDecl>(CurContext))
1596        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1597      else
1598        Diag(L, diag::err_invalid_declarator_scope)
1599          << Name << cast<NamedDecl>(DC) << R;
1600      D.setInvalidType();
1601    }
1602  }
1603
1604  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1605    // Maybe we will complain about the shadowed template parameter.
1606    if (!D.isInvalidType())
1607      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1608        D.setInvalidType();
1609
1610    // Just pretend that we didn't see the previous declaration.
1611    PrevDecl = 0;
1612  }
1613
1614  // In C++, the previous declaration we find might be a tag type
1615  // (class or enum). In this case, the new declaration will hide the
1616  // tag type. Note that this does does not apply if we're declaring a
1617  // typedef (C++ [dcl.typedef]p4).
1618  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1619      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1620    PrevDecl = 0;
1621
1622  bool Redeclaration = false;
1623  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1624    if (TemplateParamLists.size()) {
1625      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1626      return DeclPtrTy();
1627    }
1628
1629    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1630  } else if (R->isFunctionType()) {
1631    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1632                                  move(TemplateParamLists),
1633                                  IsFunctionDefinition, Redeclaration);
1634  } else {
1635    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1636                                  move(TemplateParamLists),
1637                                  Redeclaration);
1638  }
1639
1640  if (New == 0)
1641    return DeclPtrTy();
1642
1643  // If this has an identifier and is not an invalid redeclaration,
1644  // add it to the scope stack.
1645  if (Name && !(Redeclaration && New->isInvalidDecl()))
1646    PushOnScopeChains(New, S);
1647
1648  return DeclPtrTy::make(New);
1649}
1650
1651/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1652/// types into constant array types in certain situations which would otherwise
1653/// be errors (for GCC compatibility).
1654static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1655                                                    ASTContext &Context,
1656                                                    bool &SizeIsNegative) {
1657  // This method tries to turn a variable array into a constant
1658  // array even when the size isn't an ICE.  This is necessary
1659  // for compatibility with code that depends on gcc's buggy
1660  // constant expression folding, like struct {char x[(int)(char*)2];}
1661  SizeIsNegative = false;
1662
1663  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1664    QualType Pointee = PTy->getPointeeType();
1665    QualType FixedType =
1666        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1667    if (FixedType.isNull()) return FixedType;
1668    FixedType = Context.getPointerType(FixedType);
1669    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1670    return FixedType;
1671  }
1672
1673  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1674  if (!VLATy)
1675    return QualType();
1676  // FIXME: We should probably handle this case
1677  if (VLATy->getElementType()->isVariablyModifiedType())
1678    return QualType();
1679
1680  Expr::EvalResult EvalResult;
1681  if (!VLATy->getSizeExpr() ||
1682      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1683      !EvalResult.Val.isInt())
1684    return QualType();
1685
1686  llvm::APSInt &Res = EvalResult.Val.getInt();
1687  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1688    Expr* ArySizeExpr = VLATy->getSizeExpr();
1689    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1690    // so as to transfer ownership to the ConstantArrayWithExpr.
1691    // Alternatively, we could "clone" it (how?).
1692    // Since we don't know how to do things above, we just use the
1693    // very same Expr*.
1694    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1695                                                Res, ArySizeExpr,
1696                                                ArrayType::Normal, 0,
1697                                                VLATy->getBracketsRange());
1698  }
1699
1700  SizeIsNegative = true;
1701  return QualType();
1702}
1703
1704/// \brief Register the given locally-scoped external C declaration so
1705/// that it can be found later for redeclarations
1706void
1707Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1708                                       Scope *S) {
1709  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1710         "Decl is not a locally-scoped decl!");
1711  // Note that we have a locally-scoped external with this name.
1712  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1713
1714  if (!PrevDecl)
1715    return;
1716
1717  // If there was a previous declaration of this variable, it may be
1718  // in our identifier chain. Update the identifier chain with the new
1719  // declaration.
1720  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1721    // The previous declaration was found on the identifer resolver
1722    // chain, so remove it from its scope.
1723    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1724      S = S->getParent();
1725
1726    if (S)
1727      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1728  }
1729}
1730
1731/// \brief Diagnose function specifiers on a declaration of an identifier that
1732/// does not identify a function.
1733void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1734  // FIXME: We should probably indicate the identifier in question to avoid
1735  // confusion for constructs like "inline int a(), b;"
1736  if (D.getDeclSpec().isInlineSpecified())
1737    Diag(D.getDeclSpec().getInlineSpecLoc(),
1738         diag::err_inline_non_function);
1739
1740  if (D.getDeclSpec().isVirtualSpecified())
1741    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1742         diag::err_virtual_non_function);
1743
1744  if (D.getDeclSpec().isExplicitSpecified())
1745    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1746         diag::err_explicit_non_function);
1747}
1748
1749NamedDecl*
1750Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1751                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1752  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1753  if (D.getCXXScopeSpec().isSet()) {
1754    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1755      << D.getCXXScopeSpec().getRange();
1756    D.setInvalidType();
1757    // Pretend we didn't see the scope specifier.
1758    DC = 0;
1759  }
1760
1761  if (getLangOptions().CPlusPlus) {
1762    // Check that there are no default arguments (C++ only).
1763    CheckExtraCXXDefaultArguments(D);
1764  }
1765
1766  DiagnoseFunctionSpecifiers(D);
1767
1768  if (D.getDeclSpec().isThreadSpecified())
1769    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1770
1771  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1772  if (!NewTD) return 0;
1773
1774  if (D.isInvalidType())
1775    NewTD->setInvalidDecl();
1776
1777  // Handle attributes prior to checking for duplicates in MergeVarDecl
1778  ProcessDeclAttributes(S, NewTD, D);
1779  // Merge the decl with the existing one if appropriate. If the decl is
1780  // in an outer scope, it isn't the same thing.
1781  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1782    Redeclaration = true;
1783    MergeTypeDefDecl(NewTD, PrevDecl);
1784  }
1785
1786  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1787  // then it shall have block scope.
1788  QualType T = NewTD->getUnderlyingType();
1789  if (T->isVariablyModifiedType()) {
1790    CurFunctionNeedsScopeChecking = true;
1791
1792    if (S->getFnParent() == 0) {
1793      bool SizeIsNegative;
1794      QualType FixedTy =
1795          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1796      if (!FixedTy.isNull()) {
1797        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1798        NewTD->setUnderlyingType(FixedTy);
1799      } else {
1800        if (SizeIsNegative)
1801          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1802        else if (T->isVariableArrayType())
1803          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1804        else
1805          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1806        NewTD->setInvalidDecl();
1807      }
1808    }
1809  }
1810
1811  // If this is the C FILE type, notify the AST context.
1812  if (IdentifierInfo *II = NewTD->getIdentifier())
1813    if (!NewTD->isInvalidDecl() &&
1814        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1815        II->isStr("FILE"))
1816      Context.setFILEDecl(NewTD);
1817
1818  return NewTD;
1819}
1820
1821/// \brief Determines whether the given declaration is an out-of-scope
1822/// previous declaration.
1823///
1824/// This routine should be invoked when name lookup has found a
1825/// previous declaration (PrevDecl) that is not in the scope where a
1826/// new declaration by the same name is being introduced. If the new
1827/// declaration occurs in a local scope, previous declarations with
1828/// linkage may still be considered previous declarations (C99
1829/// 6.2.2p4-5, C++ [basic.link]p6).
1830///
1831/// \param PrevDecl the previous declaration found by name
1832/// lookup
1833///
1834/// \param DC the context in which the new declaration is being
1835/// declared.
1836///
1837/// \returns true if PrevDecl is an out-of-scope previous declaration
1838/// for a new delcaration with the same name.
1839static bool
1840isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1841                                ASTContext &Context) {
1842  if (!PrevDecl)
1843    return 0;
1844
1845  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1846  // case we need to check each of the overloaded functions.
1847  if (!PrevDecl->hasLinkage())
1848    return false;
1849
1850  if (Context.getLangOptions().CPlusPlus) {
1851    // C++ [basic.link]p6:
1852    //   If there is a visible declaration of an entity with linkage
1853    //   having the same name and type, ignoring entities declared
1854    //   outside the innermost enclosing namespace scope, the block
1855    //   scope declaration declares that same entity and receives the
1856    //   linkage of the previous declaration.
1857    DeclContext *OuterContext = DC->getLookupContext();
1858    if (!OuterContext->isFunctionOrMethod())
1859      // This rule only applies to block-scope declarations.
1860      return false;
1861    else {
1862      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1863      if (PrevOuterContext->isRecord())
1864        // We found a member function: ignore it.
1865        return false;
1866      else {
1867        // Find the innermost enclosing namespace for the new and
1868        // previous declarations.
1869        while (!OuterContext->isFileContext())
1870          OuterContext = OuterContext->getParent();
1871        while (!PrevOuterContext->isFileContext())
1872          PrevOuterContext = PrevOuterContext->getParent();
1873
1874        // The previous declaration is in a different namespace, so it
1875        // isn't the same function.
1876        if (OuterContext->getPrimaryContext() !=
1877            PrevOuterContext->getPrimaryContext())
1878          return false;
1879      }
1880    }
1881  }
1882
1883  return true;
1884}
1885
1886NamedDecl*
1887Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1888                              QualType R,NamedDecl* PrevDecl,
1889                              MultiTemplateParamsArg TemplateParamLists,
1890                              bool &Redeclaration) {
1891  DeclarationName Name = GetNameForDeclarator(D);
1892
1893  // Check that there are no default arguments (C++ only).
1894  if (getLangOptions().CPlusPlus)
1895    CheckExtraCXXDefaultArguments(D);
1896
1897  VarDecl *NewVD;
1898  VarDecl::StorageClass SC;
1899  switch (D.getDeclSpec().getStorageClassSpec()) {
1900  default: assert(0 && "Unknown storage class!");
1901  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1902  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1903  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1904  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1905  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1906  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1907  case DeclSpec::SCS_mutable:
1908    // mutable can only appear on non-static class members, so it's always
1909    // an error here
1910    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1911    D.setInvalidType();
1912    SC = VarDecl::None;
1913    break;
1914  }
1915
1916  IdentifierInfo *II = Name.getAsIdentifierInfo();
1917  if (!II) {
1918    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1919      << Name.getAsString();
1920    return 0;
1921  }
1922
1923  DiagnoseFunctionSpecifiers(D);
1924
1925  if (!DC->isRecord() && S->getFnParent() == 0) {
1926    // C99 6.9p2: The storage-class specifiers auto and register shall not
1927    // appear in the declaration specifiers in an external declaration.
1928    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1929
1930      // If this is a register variable with an asm label specified, then this
1931      // is a GNU extension.
1932      if (SC == VarDecl::Register && D.getAsmLabel())
1933        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1934      else
1935        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1936      D.setInvalidType();
1937    }
1938  }
1939  if (DC->isRecord() && !CurContext->isRecord()) {
1940    // This is an out-of-line definition of a static data member.
1941    if (SC == VarDecl::Static) {
1942      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1943           diag::err_static_out_of_line)
1944        << CodeModificationHint::CreateRemoval(
1945                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1946    } else if (SC == VarDecl::None)
1947      SC = VarDecl::Static;
1948  }
1949  if (SC == VarDecl::Static) {
1950    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1951      if (RD->isLocalClass())
1952        Diag(D.getIdentifierLoc(),
1953             diag::err_static_data_member_not_allowed_in_local_class)
1954          << Name << RD->getDeclName();
1955    }
1956  }
1957
1958  // Check that we can declare a template here.
1959  if (TemplateParamLists.size() &&
1960      CheckTemplateDeclScope(S, TemplateParamLists))
1961    return 0;
1962
1963  // Match up the template parameter lists with the scope specifier, then
1964  // determine whether we have a template or a template specialization.
1965  if (TemplateParameterList *TemplateParams
1966      = MatchTemplateParametersToScopeSpecifier(
1967                                  D.getDeclSpec().getSourceRange().getBegin(),
1968                                                D.getCXXScopeSpec(),
1969                        (TemplateParameterList**)TemplateParamLists.get(),
1970                                                 TemplateParamLists.size())) {
1971    if (TemplateParams->size() > 0) {
1972      // There is no such thing as a variable template.
1973      Diag(D.getIdentifierLoc(), diag::err_template_variable)
1974        << II
1975        << SourceRange(TemplateParams->getTemplateLoc(),
1976                       TemplateParams->getRAngleLoc());
1977      return 0;
1978    } else {
1979      // There is an extraneous 'template<>' for this variable. Complain
1980      // about it, but allow the declaration of the variable.
1981      Diag(TemplateParams->getTemplateLoc(),
1982           diag::err_template_variable_noparams)
1983        << II
1984        << SourceRange(TemplateParams->getTemplateLoc(),
1985                       TemplateParams->getRAngleLoc());
1986    }
1987  }
1988
1989  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1990                          II, R, SC,
1991                          // FIXME: Move to DeclGroup...
1992                          D.getDeclSpec().getSourceRange().getBegin());
1993
1994  if (D.isInvalidType())
1995    NewVD->setInvalidDecl();
1996
1997  if (D.getDeclSpec().isThreadSpecified()) {
1998    if (NewVD->hasLocalStorage())
1999      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2000    else if (!Context.Target.isTLSSupported())
2001      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2002    else
2003      NewVD->setThreadSpecified(true);
2004  }
2005
2006  // Set the lexical context. If the declarator has a C++ scope specifier, the
2007  // lexical context will be different from the semantic context.
2008  NewVD->setLexicalDeclContext(CurContext);
2009
2010  // Handle attributes prior to checking for duplicates in MergeVarDecl
2011  ProcessDeclAttributes(S, NewVD, D);
2012
2013  // Handle GNU asm-label extension (encoded as an attribute).
2014  if (Expr *E = (Expr*) D.getAsmLabel()) {
2015    // The parser guarantees this is a string.
2016    StringLiteral *SE = cast<StringLiteral>(E);
2017    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2018                                                        SE->getByteLength())));
2019  }
2020
2021  // If name lookup finds a previous declaration that is not in the
2022  // same scope as the new declaration, this may still be an
2023  // acceptable redeclaration.
2024  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2025      !(NewVD->hasLinkage() &&
2026        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2027    PrevDecl = 0;
2028
2029  // Merge the decl with the existing one if appropriate.
2030  if (PrevDecl) {
2031    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2032      // The user tried to define a non-static data member
2033      // out-of-line (C++ [dcl.meaning]p1).
2034      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2035        << D.getCXXScopeSpec().getRange();
2036      PrevDecl = 0;
2037      NewVD->setInvalidDecl();
2038    }
2039  } else if (D.getCXXScopeSpec().isSet()) {
2040    // No previous declaration in the qualifying scope.
2041    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2042      << Name << D.getCXXScopeSpec().getRange();
2043    NewVD->setInvalidDecl();
2044  }
2045
2046  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2047
2048  // If this is a locally-scoped extern C variable, update the map of
2049  // such variables.
2050  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2051      !NewVD->isInvalidDecl())
2052    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2053
2054  return NewVD;
2055}
2056
2057/// \brief Perform semantic checking on a newly-created variable
2058/// declaration.
2059///
2060/// This routine performs all of the type-checking required for a
2061/// variable declaration once it has been built. It is used both to
2062/// check variables after they have been parsed and their declarators
2063/// have been translated into a declaration, and to check variables
2064/// that have been instantiated from a template.
2065///
2066/// Sets NewVD->isInvalidDecl() if an error was encountered.
2067void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2068                                    bool &Redeclaration) {
2069  // If the decl is already known invalid, don't check it.
2070  if (NewVD->isInvalidDecl())
2071    return;
2072
2073  QualType T = NewVD->getType();
2074
2075  if (T->isObjCInterfaceType()) {
2076    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2077    return NewVD->setInvalidDecl();
2078  }
2079
2080  // The variable can not have an abstract class type.
2081  if (RequireNonAbstractType(NewVD->getLocation(), T,
2082                             diag::err_abstract_type_in_decl,
2083                             AbstractVariableType))
2084    return NewVD->setInvalidDecl();
2085
2086  // Emit an error if an address space was applied to decl with local storage.
2087  // This includes arrays of objects with address space qualifiers, but not
2088  // automatic variables that point to other address spaces.
2089  // ISO/IEC TR 18037 S5.1.2
2090  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2091    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2092    return NewVD->setInvalidDecl();
2093  }
2094
2095  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2096      && !NewVD->hasAttr<BlocksAttr>())
2097    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2098
2099  bool isVM = T->isVariablyModifiedType();
2100  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2101      NewVD->hasAttr<BlocksAttr>())
2102    CurFunctionNeedsScopeChecking = true;
2103
2104  if ((isVM && NewVD->hasLinkage()) ||
2105      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2106    bool SizeIsNegative;
2107    QualType FixedTy =
2108        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2109
2110    if (FixedTy.isNull() && T->isVariableArrayType()) {
2111      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2112      // FIXME: This won't give the correct result for
2113      // int a[10][n];
2114      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2115
2116      if (NewVD->isFileVarDecl())
2117        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2118        << SizeRange;
2119      else if (NewVD->getStorageClass() == VarDecl::Static)
2120        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2121        << SizeRange;
2122      else
2123        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2124        << SizeRange;
2125      return NewVD->setInvalidDecl();
2126    }
2127
2128    if (FixedTy.isNull()) {
2129      if (NewVD->isFileVarDecl())
2130        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2131      else
2132        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2133      return NewVD->setInvalidDecl();
2134    }
2135
2136    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2137    NewVD->setType(FixedTy);
2138  }
2139
2140  if (!PrevDecl && NewVD->isExternC(Context)) {
2141    // Since we did not find anything by this name and we're declaring
2142    // an extern "C" variable, look for a non-visible extern "C"
2143    // declaration with the same name.
2144    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2145      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2146    if (Pos != LocallyScopedExternalDecls.end())
2147      PrevDecl = Pos->second;
2148  }
2149
2150  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2151    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2152      << T;
2153    return NewVD->setInvalidDecl();
2154  }
2155
2156  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2157    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2158    return NewVD->setInvalidDecl();
2159  }
2160
2161  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2162    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2163    return NewVD->setInvalidDecl();
2164  }
2165
2166  if (PrevDecl) {
2167    Redeclaration = true;
2168    MergeVarDecl(NewVD, PrevDecl);
2169  }
2170}
2171
2172NamedDecl*
2173Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2174                              QualType R, NamedDecl* PrevDecl,
2175                              MultiTemplateParamsArg TemplateParamLists,
2176                              bool IsFunctionDefinition, bool &Redeclaration) {
2177  assert(R.getTypePtr()->isFunctionType());
2178
2179  DeclarationName Name = GetNameForDeclarator(D);
2180  FunctionDecl::StorageClass SC = FunctionDecl::None;
2181  switch (D.getDeclSpec().getStorageClassSpec()) {
2182  default: assert(0 && "Unknown storage class!");
2183  case DeclSpec::SCS_auto:
2184  case DeclSpec::SCS_register:
2185  case DeclSpec::SCS_mutable:
2186    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2187         diag::err_typecheck_sclass_func);
2188    D.setInvalidType();
2189    break;
2190  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2191  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2192  case DeclSpec::SCS_static: {
2193    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2194      // C99 6.7.1p5:
2195      //   The declaration of an identifier for a function that has
2196      //   block scope shall have no explicit storage-class specifier
2197      //   other than extern
2198      // See also (C++ [dcl.stc]p4).
2199      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2200           diag::err_static_block_func);
2201      SC = FunctionDecl::None;
2202    } else
2203      SC = FunctionDecl::Static;
2204    break;
2205  }
2206  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2207  }
2208
2209  if (D.getDeclSpec().isThreadSpecified())
2210    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2211
2212  bool isInline = D.getDeclSpec().isInlineSpecified();
2213  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2214  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2215
2216  // Check that the return type is not an abstract class type.
2217  // For record types, this is done by the AbstractClassUsageDiagnoser once
2218  // the class has been completely parsed.
2219  if (!DC->isRecord() &&
2220      RequireNonAbstractType(D.getIdentifierLoc(),
2221                             R->getAsFunctionType()->getResultType(),
2222                             diag::err_abstract_type_in_decl,
2223                             AbstractReturnType))
2224    D.setInvalidType();
2225
2226  // Do not allow returning a objc interface by-value.
2227  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2228    Diag(D.getIdentifierLoc(),
2229         diag::err_object_cannot_be_passed_returned_by_value) << 0
2230      << R->getAsFunctionType()->getResultType();
2231    D.setInvalidType();
2232  }
2233
2234  // Check that we can declare a template here.
2235  if (TemplateParamLists.size() &&
2236      CheckTemplateDeclScope(S, TemplateParamLists))
2237    return 0;
2238
2239  bool isVirtualOkay = false;
2240  FunctionDecl *NewFD;
2241  if (D.getKind() == Declarator::DK_Constructor) {
2242    // This is a C++ constructor declaration.
2243    assert(DC->isRecord() &&
2244           "Constructors can only be declared in a member context");
2245
2246    R = CheckConstructorDeclarator(D, R, SC);
2247
2248    // Create the new declaration
2249    NewFD = CXXConstructorDecl::Create(Context,
2250                                       cast<CXXRecordDecl>(DC),
2251                                       D.getIdentifierLoc(), Name, R,
2252                                       isExplicit, isInline,
2253                                       /*isImplicitlyDeclared=*/false);
2254  } else if (D.getKind() == Declarator::DK_Destructor) {
2255    // This is a C++ destructor declaration.
2256    if (DC->isRecord()) {
2257      R = CheckDestructorDeclarator(D, SC);
2258
2259      NewFD = CXXDestructorDecl::Create(Context,
2260                                        cast<CXXRecordDecl>(DC),
2261                                        D.getIdentifierLoc(), Name, R,
2262                                        isInline,
2263                                        /*isImplicitlyDeclared=*/false);
2264
2265      isVirtualOkay = true;
2266    } else {
2267      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2268
2269      // Create a FunctionDecl to satisfy the function definition parsing
2270      // code path.
2271      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2272                                   Name, R, SC, isInline,
2273                                   /*hasPrototype=*/true,
2274                                   // FIXME: Move to DeclGroup...
2275                                   D.getDeclSpec().getSourceRange().getBegin());
2276      D.setInvalidType();
2277    }
2278  } else if (D.getKind() == Declarator::DK_Conversion) {
2279    if (!DC->isRecord()) {
2280      Diag(D.getIdentifierLoc(),
2281           diag::err_conv_function_not_member);
2282      return 0;
2283    }
2284
2285    CheckConversionDeclarator(D, R, SC);
2286    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2287                                      D.getIdentifierLoc(), Name, R,
2288                                      isInline, isExplicit);
2289
2290    isVirtualOkay = true;
2291  } else if (DC->isRecord()) {
2292    // If the of the function is the same as the name of the record, then this
2293    // must be an invalid constructor that has a return type.
2294    // (The parser checks for a return type and makes the declarator a
2295    // constructor if it has no return type).
2296    // must have an invalid constructor that has a return type
2297    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2298      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2299        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2300        << SourceRange(D.getIdentifierLoc());
2301      return 0;
2302    }
2303
2304    // This is a C++ method declaration.
2305    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2306                                  D.getIdentifierLoc(), Name, R,
2307                                  (SC == FunctionDecl::Static), isInline);
2308
2309    isVirtualOkay = (SC != FunctionDecl::Static);
2310  } else {
2311    // Determine whether the function was written with a
2312    // prototype. This true when:
2313    //   - we're in C++ (where every function has a prototype),
2314    //   - there is a prototype in the declarator, or
2315    //   - the type R of the function is some kind of typedef or other reference
2316    //     to a type name (which eventually refers to a function type).
2317    bool HasPrototype =
2318       getLangOptions().CPlusPlus ||
2319       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2320       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2321
2322    NewFD = FunctionDecl::Create(Context, DC,
2323                                 D.getIdentifierLoc(),
2324                                 Name, R, SC, isInline, HasPrototype,
2325                                 // FIXME: Move to DeclGroup...
2326                                 D.getDeclSpec().getSourceRange().getBegin());
2327  }
2328
2329  if (D.isInvalidType())
2330    NewFD->setInvalidDecl();
2331
2332  // Set the lexical context. If the declarator has a C++
2333  // scope specifier, the lexical context will be different
2334  // from the semantic context.
2335  NewFD->setLexicalDeclContext(CurContext);
2336
2337  // Match up the template parameter lists with the scope specifier, then
2338  // determine whether we have a template or a template specialization.
2339  FunctionTemplateDecl *FunctionTemplate = 0;
2340  if (TemplateParameterList *TemplateParams
2341        = MatchTemplateParametersToScopeSpecifier(
2342                                  D.getDeclSpec().getSourceRange().getBegin(),
2343                                  D.getCXXScopeSpec(),
2344                           (TemplateParameterList**)TemplateParamLists.get(),
2345                                                  TemplateParamLists.size())) {
2346    if (TemplateParams->size() > 0) {
2347      // This is a function template
2348      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2349                                                      NewFD->getLocation(),
2350                                                      Name, TemplateParams,
2351                                                      NewFD);
2352      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2353    } else {
2354      // FIXME: Handle function template specializations
2355    }
2356
2357    // FIXME: Free this memory properly.
2358    TemplateParamLists.release();
2359  }
2360
2361  // C++ [dcl.fct.spec]p5:
2362  //   The virtual specifier shall only be used in declarations of
2363  //   nonstatic class member functions that appear within a
2364  //   member-specification of a class declaration; see 10.3.
2365  //
2366  if (isVirtual && !NewFD->isInvalidDecl()) {
2367    if (!isVirtualOkay) {
2368       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2369           diag::err_virtual_non_function);
2370    } else if (!CurContext->isRecord()) {
2371      // 'virtual' was specified outside of the class.
2372      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2373        << CodeModificationHint::CreateRemoval(
2374                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2375    } else {
2376      // Okay: Add virtual to the method.
2377      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2378      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2379      CurClass->setAggregate(false);
2380      CurClass->setPOD(false);
2381      CurClass->setPolymorphic(true);
2382      CurClass->setHasTrivialConstructor(false);
2383      CurClass->setHasTrivialCopyConstructor(false);
2384      CurClass->setHasTrivialCopyAssignment(false);
2385    }
2386  }
2387
2388  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2389    // Look for virtual methods in base classes that this method might override.
2390
2391    BasePaths Paths;
2392    if (LookupInBases(cast<CXXRecordDecl>(DC),
2393                      MemberLookupCriteria(NewMD), Paths)) {
2394      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2395           E = Paths.found_decls_end(); I != E; ++I) {
2396        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2397          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2398              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2399            NewMD->addOverriddenMethod(OldMD);
2400        }
2401      }
2402    }
2403  }
2404
2405  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2406      !CurContext->isRecord()) {
2407    // C++ [class.static]p1:
2408    //   A data or function member of a class may be declared static
2409    //   in a class definition, in which case it is a static member of
2410    //   the class.
2411
2412    // Complain about the 'static' specifier if it's on an out-of-line
2413    // member function definition.
2414    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2415         diag::err_static_out_of_line)
2416      << CodeModificationHint::CreateRemoval(
2417                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2418  }
2419
2420  // Handle GNU asm-label extension (encoded as an attribute).
2421  if (Expr *E = (Expr*) D.getAsmLabel()) {
2422    // The parser guarantees this is a string.
2423    StringLiteral *SE = cast<StringLiteral>(E);
2424    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2425                                                        SE->getByteLength())));
2426  }
2427
2428  // Copy the parameter declarations from the declarator D to the function
2429  // declaration NewFD, if they are available.  First scavenge them into Params.
2430  llvm::SmallVector<ParmVarDecl*, 16> Params;
2431  if (D.getNumTypeObjects() > 0) {
2432    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2433
2434    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2435    // function that takes no arguments, not a function that takes a
2436    // single void argument.
2437    // We let through "const void" here because Sema::GetTypeForDeclarator
2438    // already checks for that case.
2439    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2440        FTI.ArgInfo[0].Param &&
2441        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2442      // Empty arg list, don't push any params.
2443      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2444
2445      // In C++, the empty parameter-type-list must be spelled "void"; a
2446      // typedef of void is not permitted.
2447      if (getLangOptions().CPlusPlus &&
2448          Param->getType().getUnqualifiedType() != Context.VoidTy)
2449        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2450      // FIXME: Leaks decl?
2451    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2452      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2453        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2454        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2455        Param->setDeclContext(NewFD);
2456        Params.push_back(Param);
2457      }
2458    }
2459
2460  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2461    // When we're declaring a function with a typedef, typeof, etc as in the
2462    // following example, we'll need to synthesize (unnamed)
2463    // parameters for use in the declaration.
2464    //
2465    // @code
2466    // typedef void fn(int);
2467    // fn f;
2468    // @endcode
2469
2470    // Synthesize a parameter for each argument type.
2471    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2472         AE = FT->arg_type_end(); AI != AE; ++AI) {
2473      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2474                                               SourceLocation(), 0,
2475                                               *AI, VarDecl::None, 0);
2476      Param->setImplicit();
2477      Params.push_back(Param);
2478    }
2479  } else {
2480    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2481           "Should not need args for typedef of non-prototype fn");
2482  }
2483  // Finally, we know we have the right number of parameters, install them.
2484  NewFD->setParams(Context, Params.data(), Params.size());
2485
2486  // If name lookup finds a previous declaration that is not in the
2487  // same scope as the new declaration, this may still be an
2488  // acceptable redeclaration.
2489  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2490      !(NewFD->hasLinkage() &&
2491        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2492    PrevDecl = 0;
2493
2494  // Perform semantic checking on the function declaration.
2495  bool OverloadableAttrRequired = false; // FIXME: HACK!
2496  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2497                           /*FIXME:*/OverloadableAttrRequired);
2498
2499  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2500    // An out-of-line member function declaration must also be a
2501    // definition (C++ [dcl.meaning]p1).
2502    if (!IsFunctionDefinition) {
2503      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2504        << D.getCXXScopeSpec().getRange();
2505      NewFD->setInvalidDecl();
2506    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2507      // The user tried to provide an out-of-line definition for a
2508      // function that is a member of a class or namespace, but there
2509      // was no such member function declared (C++ [class.mfct]p2,
2510      // C++ [namespace.memdef]p2). For example:
2511      //
2512      // class X {
2513      //   void f() const;
2514      // };
2515      //
2516      // void X::f() { } // ill-formed
2517      //
2518      // Complain about this problem, and attempt to suggest close
2519      // matches (e.g., those that differ only in cv-qualifiers and
2520      // whether the parameter types are references).
2521      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2522        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2523      NewFD->setInvalidDecl();
2524
2525      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2526                                              true);
2527      assert(!Prev.isAmbiguous() &&
2528             "Cannot have an ambiguity in previous-declaration lookup");
2529      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2530           Func != FuncEnd; ++Func) {
2531        if (isa<FunctionDecl>(*Func) &&
2532            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2533          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2534      }
2535
2536      PrevDecl = 0;
2537    }
2538  }
2539
2540  // Handle attributes. We need to have merged decls when handling attributes
2541  // (for example to check for conflicts, etc).
2542  // FIXME: This needs to happen before we merge declarations. Then,
2543  // let attribute merging cope with attribute conflicts.
2544  ProcessDeclAttributes(S, NewFD, D);
2545  AddKnownFunctionAttributes(NewFD);
2546
2547  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2548    // If a function name is overloadable in C, then every function
2549    // with that name must be marked "overloadable".
2550    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2551      << Redeclaration << NewFD;
2552    if (PrevDecl)
2553      Diag(PrevDecl->getLocation(),
2554           diag::note_attribute_overloadable_prev_overload);
2555    NewFD->addAttr(::new (Context) OverloadableAttr());
2556  }
2557
2558  // If this is a locally-scoped extern C function, update the
2559  // map of such names.
2560  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2561      && !NewFD->isInvalidDecl())
2562    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2563
2564  // Set this FunctionDecl's range up to the right paren.
2565  NewFD->setLocEnd(D.getSourceRange().getEnd());
2566
2567  if (FunctionTemplate && NewFD->isInvalidDecl())
2568    FunctionTemplate->setInvalidDecl();
2569
2570  if (FunctionTemplate)
2571    return FunctionTemplate;
2572
2573  return NewFD;
2574}
2575
2576/// \brief Perform semantic checking of a new function declaration.
2577///
2578/// Performs semantic analysis of the new function declaration
2579/// NewFD. This routine performs all semantic checking that does not
2580/// require the actual declarator involved in the declaration, and is
2581/// used both for the declaration of functions as they are parsed
2582/// (called via ActOnDeclarator) and for the declaration of functions
2583/// that have been instantiated via C++ template instantiation (called
2584/// via InstantiateDecl).
2585///
2586/// This sets NewFD->isInvalidDecl() to true if there was an error.
2587void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2588                                    bool &Redeclaration,
2589                                    bool &OverloadableAttrRequired) {
2590  // If NewFD is already known erroneous, don't do any of this checking.
2591  if (NewFD->isInvalidDecl())
2592    return;
2593
2594  if (NewFD->getResultType()->isVariablyModifiedType()) {
2595    // Functions returning a variably modified type violate C99 6.7.5.2p2
2596    // because all functions have linkage.
2597    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2598    return NewFD->setInvalidDecl();
2599  }
2600
2601  // Semantic checking for this function declaration (in isolation).
2602  if (getLangOptions().CPlusPlus) {
2603    // C++-specific checks.
2604    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2605      CheckConstructor(Constructor);
2606    } else if (isa<CXXDestructorDecl>(NewFD)) {
2607      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2608      QualType ClassType = Context.getTypeDeclType(Record);
2609      if (!ClassType->isDependentType()) {
2610        ClassType = Context.getCanonicalType(ClassType);
2611        DeclarationName Name
2612          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2613        if (NewFD->getDeclName() != Name) {
2614          Diag(NewFD->getLocation(), diag::err_destructor_name);
2615          return NewFD->setInvalidDecl();
2616        }
2617      }
2618      Record->setUserDeclaredDestructor(true);
2619      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2620      // user-defined destructor.
2621      Record->setPOD(false);
2622
2623      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2624      // declared destructor.
2625      // FIXME: C++0x: don't do this for "= default" destructors
2626      Record->setHasTrivialDestructor(false);
2627    } else if (CXXConversionDecl *Conversion
2628               = dyn_cast<CXXConversionDecl>(NewFD))
2629      ActOnConversionDeclarator(Conversion);
2630
2631    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2632    if (NewFD->isOverloadedOperator() &&
2633        CheckOverloadedOperatorDeclaration(NewFD))
2634      return NewFD->setInvalidDecl();
2635  }
2636
2637  // C99 6.7.4p6:
2638  //   [... ] For a function with external linkage, the following
2639  //   restrictions apply: [...] If all of the file scope declarations
2640  //   for a function in a translation unit include the inline
2641  //   function specifier without extern, then the definition in that
2642  //   translation unit is an inline definition. An inline definition
2643  //   does not provide an external definition for the function, and
2644  //   does not forbid an external definition in another translation
2645  //   unit.
2646  //
2647  // Here we determine whether this function, in isolation, would be a
2648  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2649  // previous declarations.
2650  if (NewFD->isInline() && getLangOptions().C99 &&
2651      NewFD->getStorageClass() == FunctionDecl::None &&
2652      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2653    NewFD->setC99InlineDefinition(true);
2654
2655  // Check for a previous declaration of this name.
2656  if (!PrevDecl && NewFD->isExternC(Context)) {
2657    // Since we did not find anything by this name and we're declaring
2658    // an extern "C" function, look for a non-visible extern "C"
2659    // declaration with the same name.
2660    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2661      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2662    if (Pos != LocallyScopedExternalDecls.end())
2663      PrevDecl = Pos->second;
2664  }
2665
2666  // Merge or overload the declaration with an existing declaration of
2667  // the same name, if appropriate.
2668  if (PrevDecl) {
2669    // Determine whether NewFD is an overload of PrevDecl or
2670    // a declaration that requires merging. If it's an overload,
2671    // there's no more work to do here; we'll just add the new
2672    // function to the scope.
2673    OverloadedFunctionDecl::function_iterator MatchedDecl;
2674
2675    if (!getLangOptions().CPlusPlus &&
2676        AllowOverloadingOfFunction(PrevDecl, Context)) {
2677      OverloadableAttrRequired = true;
2678
2679      // Functions marked "overloadable" must have a prototype (that
2680      // we can't get through declaration merging).
2681      if (!NewFD->getType()->getAsFunctionProtoType()) {
2682        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2683          << NewFD;
2684        Redeclaration = true;
2685
2686        // Turn this into a variadic function with no parameters.
2687        QualType R = Context.getFunctionType(
2688                       NewFD->getType()->getAsFunctionType()->getResultType(),
2689                       0, 0, true, 0);
2690        NewFD->setType(R);
2691        return NewFD->setInvalidDecl();
2692      }
2693    }
2694
2695    if (PrevDecl &&
2696        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2697         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2698        !isa<UsingDecl>(PrevDecl)) {
2699      Redeclaration = true;
2700      Decl *OldDecl = PrevDecl;
2701
2702      // If PrevDecl was an overloaded function, extract the
2703      // FunctionDecl that matched.
2704      if (isa<OverloadedFunctionDecl>(PrevDecl))
2705        OldDecl = *MatchedDecl;
2706
2707      // NewFD and OldDecl represent declarations that need to be
2708      // merged.
2709      if (MergeFunctionDecl(NewFD, OldDecl))
2710        return NewFD->setInvalidDecl();
2711
2712      if (FunctionTemplateDecl *OldTemplateDecl
2713            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2714        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2715      else {
2716        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2717          NewFD->setAccess(OldDecl->getAccess());
2718        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2719      }
2720    }
2721  }
2722
2723  // In C++, check default arguments now that we have merged decls. Unless
2724  // the lexical context is the class, because in this case this is done
2725  // during delayed parsing anyway.
2726  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2727    CheckCXXDefaultArguments(NewFD);
2728}
2729
2730bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2731  // FIXME: Need strict checking.  In C89, we need to check for
2732  // any assignment, increment, decrement, function-calls, or
2733  // commas outside of a sizeof.  In C99, it's the same list,
2734  // except that the aforementioned are allowed in unevaluated
2735  // expressions.  Everything else falls under the
2736  // "may accept other forms of constant expressions" exception.
2737  // (We never end up here for C++, so the constant expression
2738  // rules there don't matter.)
2739  if (Init->isConstantInitializer(Context))
2740    return false;
2741  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2742    << Init->getSourceRange();
2743  return true;
2744}
2745
2746void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2747  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2748}
2749
2750/// AddInitializerToDecl - Adds the initializer Init to the
2751/// declaration dcl. If DirectInit is true, this is C++ direct
2752/// initialization rather than copy initialization.
2753void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2754  Decl *RealDecl = dcl.getAs<Decl>();
2755  // If there is no declaration, there was an error parsing it.  Just ignore
2756  // the initializer.
2757  if (RealDecl == 0)
2758    return;
2759
2760  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2761    // With declarators parsed the way they are, the parser cannot
2762    // distinguish between a normal initializer and a pure-specifier.
2763    // Thus this grotesque test.
2764    IntegerLiteral *IL;
2765    Expr *Init = static_cast<Expr *>(init.get());
2766    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2767        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2768      if (Method->isVirtualAsWritten()) {
2769        Method->setPure();
2770
2771        // A class is abstract if at least one function is pure virtual.
2772        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2773      } else if (!Method->isInvalidDecl()) {
2774        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2775          << Method->getDeclName() << Init->getSourceRange();
2776        Method->setInvalidDecl();
2777      }
2778    } else {
2779      Diag(Method->getLocation(), diag::err_member_function_initialization)
2780        << Method->getDeclName() << Init->getSourceRange();
2781      Method->setInvalidDecl();
2782    }
2783    return;
2784  }
2785
2786  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2787  if (!VDecl) {
2788    if (getLangOptions().CPlusPlus &&
2789        RealDecl->getLexicalDeclContext()->isRecord() &&
2790        isa<NamedDecl>(RealDecl))
2791      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2792        << cast<NamedDecl>(RealDecl)->getDeclName();
2793    else
2794      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2795    RealDecl->setInvalidDecl();
2796    return;
2797  }
2798
2799  if (!VDecl->getType()->isArrayType() &&
2800      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2801                          diag::err_typecheck_decl_incomplete_type)) {
2802    RealDecl->setInvalidDecl();
2803    return;
2804  }
2805
2806  const VarDecl *Def = 0;
2807  if (VDecl->getDefinition(Def)) {
2808    Diag(VDecl->getLocation(), diag::err_redefinition)
2809      << VDecl->getDeclName();
2810    Diag(Def->getLocation(), diag::note_previous_definition);
2811    VDecl->setInvalidDecl();
2812    return;
2813  }
2814
2815  // Take ownership of the expression, now that we're sure we have somewhere
2816  // to put it.
2817  Expr *Init = init.takeAs<Expr>();
2818  assert(Init && "missing initializer");
2819
2820  // Get the decls type and save a reference for later, since
2821  // CheckInitializerTypes may change it.
2822  QualType DclT = VDecl->getType(), SavT = DclT;
2823  if (VDecl->isBlockVarDecl()) {
2824    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2825      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2826      VDecl->setInvalidDecl();
2827    } else if (!VDecl->isInvalidDecl()) {
2828      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2829                                VDecl->getDeclName(), DirectInit))
2830        VDecl->setInvalidDecl();
2831
2832      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2833      // Don't check invalid declarations to avoid emitting useless diagnostics.
2834      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2835        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2836          CheckForConstantInitializer(Init, DclT);
2837      }
2838    }
2839  } else if (VDecl->isStaticDataMember() &&
2840             VDecl->getLexicalDeclContext()->isRecord()) {
2841    // This is an in-class initialization for a static data member, e.g.,
2842    //
2843    // struct S {
2844    //   static const int value = 17;
2845    // };
2846
2847    // Attach the initializer
2848    VDecl->setInit(Context, Init);
2849
2850    // C++ [class.mem]p4:
2851    //   A member-declarator can contain a constant-initializer only
2852    //   if it declares a static member (9.4) of const integral or
2853    //   const enumeration type, see 9.4.2.
2854    QualType T = VDecl->getType();
2855    if (!T->isDependentType() &&
2856        (!Context.getCanonicalType(T).isConstQualified() ||
2857         !T->isIntegralType())) {
2858      Diag(VDecl->getLocation(), diag::err_member_initialization)
2859        << VDecl->getDeclName() << Init->getSourceRange();
2860      VDecl->setInvalidDecl();
2861    } else {
2862      // C++ [class.static.data]p4:
2863      //   If a static data member is of const integral or const
2864      //   enumeration type, its declaration in the class definition
2865      //   can specify a constant-initializer which shall be an
2866      //   integral constant expression (5.19).
2867      if (!Init->isTypeDependent() &&
2868          !Init->getType()->isIntegralType()) {
2869        // We have a non-dependent, non-integral or enumeration type.
2870        Diag(Init->getSourceRange().getBegin(),
2871             diag::err_in_class_initializer_non_integral_type)
2872          << Init->getType() << Init->getSourceRange();
2873        VDecl->setInvalidDecl();
2874      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2875        // Check whether the expression is a constant expression.
2876        llvm::APSInt Value;
2877        SourceLocation Loc;
2878        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2879          Diag(Loc, diag::err_in_class_initializer_non_constant)
2880            << Init->getSourceRange();
2881          VDecl->setInvalidDecl();
2882        } else if (!VDecl->getType()->isDependentType())
2883          ImpCastExprToType(Init, VDecl->getType());
2884      }
2885    }
2886  } else if (VDecl->isFileVarDecl()) {
2887    if (VDecl->getStorageClass() == VarDecl::Extern)
2888      Diag(VDecl->getLocation(), diag::warn_extern_init);
2889    if (!VDecl->isInvalidDecl())
2890      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2891                                VDecl->getDeclName(), DirectInit))
2892        VDecl->setInvalidDecl();
2893
2894    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2895    // Don't check invalid declarations to avoid emitting useless diagnostics.
2896    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2897      // C99 6.7.8p4. All file scoped initializers need to be constant.
2898      CheckForConstantInitializer(Init, DclT);
2899    }
2900  }
2901  // If the type changed, it means we had an incomplete type that was
2902  // completed by the initializer. For example:
2903  //   int ary[] = { 1, 3, 5 };
2904  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2905  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2906    VDecl->setType(DclT);
2907    Init->setType(DclT);
2908  }
2909
2910  // Attach the initializer to the decl.
2911  VDecl->setInit(Context, Init);
2912
2913  // If the previous declaration of VDecl was a tentative definition,
2914  // remove it from the set of tentative definitions.
2915  if (VDecl->getPreviousDeclaration() &&
2916      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2917    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2918      = TentativeDefinitions.find(VDecl->getDeclName());
2919    assert(Pos != TentativeDefinitions.end() &&
2920           "Unrecorded tentative definition?");
2921    TentativeDefinitions.erase(Pos);
2922  }
2923
2924  return;
2925}
2926
2927void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
2928                                  bool TypeContainsUndeducedAuto) {
2929  Decl *RealDecl = dcl.getAs<Decl>();
2930
2931  // If there is no declaration, there was an error parsing it. Just ignore it.
2932  if (RealDecl == 0)
2933    return;
2934
2935  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2936    QualType Type = Var->getType();
2937
2938    // Record tentative definitions.
2939    if (Var->isTentativeDefinition(Context))
2940      TentativeDefinitions[Var->getDeclName()] = Var;
2941
2942    // C++ [dcl.init.ref]p3:
2943    //   The initializer can be omitted for a reference only in a
2944    //   parameter declaration (8.3.5), in the declaration of a
2945    //   function return type, in the declaration of a class member
2946    //   within its class declaration (9.2), and where the extern
2947    //   specifier is explicitly used.
2948    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2949      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2950        << Var->getDeclName()
2951        << SourceRange(Var->getLocation(), Var->getLocation());
2952      Var->setInvalidDecl();
2953      return;
2954    }
2955
2956    // C++0x [dcl.spec.auto]p3
2957    if (TypeContainsUndeducedAuto) {
2958      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
2959        << Var->getDeclName() << Type;
2960      Var->setInvalidDecl();
2961      return;
2962    }
2963
2964    // C++ [dcl.init]p9:
2965    //
2966    //   If no initializer is specified for an object, and the object
2967    //   is of (possibly cv-qualified) non-POD class type (or array
2968    //   thereof), the object shall be default-initialized; if the
2969    //   object is of const-qualified type, the underlying class type
2970    //   shall have a user-declared default constructor.
2971    if (getLangOptions().CPlusPlus) {
2972      QualType InitType = Type;
2973      if (const ArrayType *Array = Context.getAsArrayType(Type))
2974        InitType = Array->getElementType();
2975      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2976          InitType->isRecordType() && !InitType->isDependentType()) {
2977        CXXRecordDecl *RD =
2978          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2979        CXXConstructorDecl *Constructor = 0;
2980        if (!RequireCompleteType(Var->getLocation(), InitType,
2981                                    diag::err_invalid_incomplete_type_use))
2982          Constructor
2983            = PerformInitializationByConstructor(InitType, 0, 0,
2984                                                 Var->getLocation(),
2985                                               SourceRange(Var->getLocation(),
2986                                                           Var->getLocation()),
2987                                                 Var->getDeclName(),
2988                                                 IK_Default);
2989        if (!Constructor)
2990          Var->setInvalidDecl();
2991        else {
2992          if (!RD->hasTrivialConstructor())
2993            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2994          // FIXME. Must do all that is needed to destroy the object
2995          // on scope exit. For now, just mark the destructor as used.
2996          MarkDestructorReferenced(Var->getLocation(), InitType);
2997        }
2998      }
2999    }
3000
3001#if 0
3002    // FIXME: Temporarily disabled because we are not properly parsing
3003    // linkage specifications on declarations, e.g.,
3004    //
3005    //   extern "C" const CGPoint CGPointerZero;
3006    //
3007    // C++ [dcl.init]p9:
3008    //
3009    //     If no initializer is specified for an object, and the
3010    //     object is of (possibly cv-qualified) non-POD class type (or
3011    //     array thereof), the object shall be default-initialized; if
3012    //     the object is of const-qualified type, the underlying class
3013    //     type shall have a user-declared default
3014    //     constructor. Otherwise, if no initializer is specified for
3015    //     an object, the object and its subobjects, if any, have an
3016    //     indeterminate initial value; if the object or any of its
3017    //     subobjects are of const-qualified type, the program is
3018    //     ill-formed.
3019    //
3020    // This isn't technically an error in C, so we don't diagnose it.
3021    //
3022    // FIXME: Actually perform the POD/user-defined default
3023    // constructor check.
3024    if (getLangOptions().CPlusPlus &&
3025        Context.getCanonicalType(Type).isConstQualified() &&
3026        !Var->hasExternalStorage())
3027      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3028        << Var->getName()
3029        << SourceRange(Var->getLocation(), Var->getLocation());
3030#endif
3031  }
3032}
3033
3034Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3035                                                   DeclPtrTy *Group,
3036                                                   unsigned NumDecls) {
3037  llvm::SmallVector<Decl*, 8> Decls;
3038
3039  if (DS.isTypeSpecOwned())
3040    Decls.push_back((Decl*)DS.getTypeRep());
3041
3042  for (unsigned i = 0; i != NumDecls; ++i)
3043    if (Decl *D = Group[i].getAs<Decl>())
3044      Decls.push_back(D);
3045
3046  // Perform semantic analysis that depends on having fully processed both
3047  // the declarator and initializer.
3048  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3049    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3050    if (!IDecl)
3051      continue;
3052    QualType T = IDecl->getType();
3053
3054    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3055    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3056    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3057      if (!IDecl->isInvalidDecl() &&
3058          RequireCompleteType(IDecl->getLocation(), T,
3059                              diag::err_typecheck_decl_incomplete_type))
3060        IDecl->setInvalidDecl();
3061    }
3062    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3063    // object that has file scope without an initializer, and without a
3064    // storage-class specifier or with the storage-class specifier "static",
3065    // constitutes a tentative definition. Note: A tentative definition with
3066    // external linkage is valid (C99 6.2.2p5).
3067    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3068      if (const IncompleteArrayType *ArrayT
3069          = Context.getAsIncompleteArrayType(T)) {
3070        if (RequireCompleteType(IDecl->getLocation(),
3071                                ArrayT->getElementType(),
3072                                diag::err_illegal_decl_array_incomplete_type))
3073          IDecl->setInvalidDecl();
3074      }
3075      else if (IDecl->getStorageClass() == VarDecl::Static) {
3076        // C99 6.9.2p3: If the declaration of an identifier for an object is
3077        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3078        // declared type shall not be an incomplete type.
3079        // NOTE: code such as the following
3080        //     static struct s;
3081        //     struct s { int a; };
3082        // is accepted by gcc. Hence here we issue a warning instead of
3083        // an error and we do not invalidate the static declaration.
3084        // NOTE: to avoid multiple warnings, only check the first declaration.
3085        if (IDecl->getPreviousDeclaration() == 0)
3086          RequireCompleteType(IDecl->getLocation(), T,
3087                              diag::ext_typecheck_decl_incomplete_type);
3088      }
3089    }
3090  }
3091  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3092                                                   Decls.data(), Decls.size()));
3093}
3094
3095
3096/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3097/// to introduce parameters into function prototype scope.
3098Sema::DeclPtrTy
3099Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3100  const DeclSpec &DS = D.getDeclSpec();
3101
3102  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3103  VarDecl::StorageClass StorageClass = VarDecl::None;
3104  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3105    StorageClass = VarDecl::Register;
3106  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3107    Diag(DS.getStorageClassSpecLoc(),
3108         diag::err_invalid_storage_class_in_func_decl);
3109    D.getMutableDeclSpec().ClearStorageClassSpecs();
3110  }
3111
3112  if (D.getDeclSpec().isThreadSpecified())
3113    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3114
3115  DiagnoseFunctionSpecifiers(D);
3116
3117  // Check that there are no default arguments inside the type of this
3118  // parameter (C++ only).
3119  if (getLangOptions().CPlusPlus)
3120    CheckExtraCXXDefaultArguments(D);
3121
3122  TagDecl *OwnedDecl = 0;
3123  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3124
3125  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3126    // C++ [dcl.fct]p6:
3127    //   Types shall not be defined in return or parameter types.
3128    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3129      << Context.getTypeDeclType(OwnedDecl);
3130  }
3131
3132  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3133  // Can this happen for params?  We already checked that they don't conflict
3134  // among each other.  Here they can only shadow globals, which is ok.
3135  IdentifierInfo *II = D.getIdentifier();
3136  if (II) {
3137    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3138      if (PrevDecl->isTemplateParameter()) {
3139        // Maybe we will complain about the shadowed template parameter.
3140        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3141        // Just pretend that we didn't see the previous declaration.
3142        PrevDecl = 0;
3143      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3144        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3145
3146        // Recover by removing the name
3147        II = 0;
3148        D.SetIdentifier(0, D.getIdentifierLoc());
3149      }
3150    }
3151  }
3152
3153  // Parameters can not be abstract class types.
3154  // For record types, this is done by the AbstractClassUsageDiagnoser once
3155  // the class has been completely parsed.
3156  if (!CurContext->isRecord() &&
3157      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3158                             diag::err_abstract_type_in_decl,
3159                             AbstractParamType))
3160    D.setInvalidType(true);
3161
3162  QualType T = adjustParameterType(parmDeclType);
3163
3164  ParmVarDecl *New;
3165  if (T == parmDeclType) // parameter type did not need adjustment
3166    New = ParmVarDecl::Create(Context, CurContext,
3167                              D.getIdentifierLoc(), II,
3168                              parmDeclType, StorageClass,
3169                              0);
3170  else // keep track of both the adjusted and unadjusted types
3171    New = OriginalParmVarDecl::Create(Context, CurContext,
3172                                      D.getIdentifierLoc(), II, T,
3173                                      parmDeclType, StorageClass, 0);
3174
3175  if (D.isInvalidType())
3176    New->setInvalidDecl();
3177
3178  // Parameter declarators cannot be interface types. All ObjC objects are
3179  // passed by reference.
3180  if (T->isObjCInterfaceType()) {
3181    Diag(D.getIdentifierLoc(),
3182         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3183    New->setInvalidDecl();
3184  }
3185
3186  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3187  if (D.getCXXScopeSpec().isSet()) {
3188    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3189      << D.getCXXScopeSpec().getRange();
3190    New->setInvalidDecl();
3191  }
3192
3193  // Add the parameter declaration into this scope.
3194  S->AddDecl(DeclPtrTy::make(New));
3195  if (II)
3196    IdResolver.AddDecl(New);
3197
3198  ProcessDeclAttributes(S, New, D);
3199
3200  if (New->hasAttr<BlocksAttr>()) {
3201    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3202  }
3203  return DeclPtrTy::make(New);
3204}
3205
3206void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3207                                           SourceLocation LocAfterDecls) {
3208  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3209         "Not a function declarator!");
3210  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3211
3212  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3213  // for a K&R function.
3214  if (!FTI.hasPrototype) {
3215    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3216      --i;
3217      if (FTI.ArgInfo[i].Param == 0) {
3218        std::string Code = "  int ";
3219        Code += FTI.ArgInfo[i].Ident->getName();
3220        Code += ";\n";
3221        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3222          << FTI.ArgInfo[i].Ident
3223          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3224
3225        // Implicitly declare the argument as type 'int' for lack of a better
3226        // type.
3227        DeclSpec DS;
3228        const char* PrevSpec; // unused
3229        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3230                           PrevSpec);
3231        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3232        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3233        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3234      }
3235    }
3236  }
3237}
3238
3239Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3240                                              Declarator &D) {
3241  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3242  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3243         "Not a function declarator!");
3244  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3245
3246  if (FTI.hasPrototype) {
3247    // FIXME: Diagnose arguments without names in C.
3248  }
3249
3250  Scope *ParentScope = FnBodyScope->getParent();
3251
3252  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3253                                  MultiTemplateParamsArg(*this),
3254                                  /*IsFunctionDefinition=*/true);
3255  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3256}
3257
3258Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3259  if (!D)
3260    return D;
3261  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3262
3263  CurFunctionNeedsScopeChecking = false;
3264
3265  // See if this is a redefinition.
3266  const FunctionDecl *Definition;
3267  if (FD->getBody(Definition)) {
3268    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3269    Diag(Definition->getLocation(), diag::note_previous_definition);
3270  }
3271
3272  // Builtin functions cannot be defined.
3273  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3274    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3275      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3276      FD->setInvalidDecl();
3277    }
3278  }
3279
3280  // The return type of a function definition must be complete
3281  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3282  QualType ResultType = FD->getResultType();
3283  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3284      !FD->isInvalidDecl() &&
3285      RequireCompleteType(FD->getLocation(), ResultType,
3286                          diag::err_func_def_incomplete_result))
3287    FD->setInvalidDecl();
3288
3289  // GNU warning -Wmissing-prototypes:
3290  //   Warn if a global function is defined without a previous
3291  //   prototype declaration. This warning is issued even if the
3292  //   definition itself provides a prototype. The aim is to detect
3293  //   global functions that fail to be declared in header files.
3294  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3295      !FD->isMain()) {
3296    bool MissingPrototype = true;
3297    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3298         Prev; Prev = Prev->getPreviousDeclaration()) {
3299      // Ignore any declarations that occur in function or method
3300      // scope, because they aren't visible from the header.
3301      if (Prev->getDeclContext()->isFunctionOrMethod())
3302        continue;
3303
3304      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3305      break;
3306    }
3307
3308    if (MissingPrototype)
3309      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3310  }
3311
3312  if (FnBodyScope)
3313    PushDeclContext(FnBodyScope, FD);
3314
3315  // Check the validity of our function parameters
3316  CheckParmsForFunctionDef(FD);
3317
3318  // Introduce our parameters into the function scope
3319  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3320    ParmVarDecl *Param = FD->getParamDecl(p);
3321    Param->setOwningFunction(FD);
3322
3323    // If this has an identifier, add it to the scope stack.
3324    if (Param->getIdentifier() && FnBodyScope)
3325      PushOnScopeChains(Param, FnBodyScope);
3326  }
3327
3328  // Checking attributes of current function definition
3329  // dllimport attribute.
3330  if (FD->getAttr<DLLImportAttr>() &&
3331      (!FD->getAttr<DLLExportAttr>())) {
3332    // dllimport attribute cannot be applied to definition.
3333    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3334      Diag(FD->getLocation(),
3335           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3336        << "dllimport";
3337      FD->setInvalidDecl();
3338      return DeclPtrTy::make(FD);
3339    } else {
3340      // If a symbol previously declared dllimport is later defined, the
3341      // attribute is ignored in subsequent references, and a warning is
3342      // emitted.
3343      Diag(FD->getLocation(),
3344           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3345        << FD->getNameAsCString() << "dllimport";
3346    }
3347  }
3348  return DeclPtrTy::make(FD);
3349}
3350
3351Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3352  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3353}
3354
3355Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3356                                              bool IsInstantiation) {
3357  Decl *dcl = D.getAs<Decl>();
3358  Stmt *Body = BodyArg.takeAs<Stmt>();
3359  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3360    FD->setBody(Body);
3361    if (!FD->getResultType()->isVoidType()
3362        // C and C++ allow for main to automagically return 0.
3363        && !FD->isMain())
3364      CheckFallThroughForFunctionDef(FD, Body);
3365
3366    if (!FD->isInvalidDecl())
3367      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3368
3369    // C++ [basic.def.odr]p2:
3370    //   [...] A virtual member function is used if it is not pure. [...]
3371    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3372      if (Method->isVirtual() && !Method->isPure())
3373        MarkDeclarationReferenced(Method->getLocation(), Method);
3374
3375    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3376  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3377    assert(MD == getCurMethodDecl() && "Method parsing confused");
3378    MD->setBody(Body);
3379    if (!MD->getResultType()->isVoidType())
3380      CheckFallThroughForFunctionDef(MD, Body);
3381    MD->setEndLoc(Body->getLocEnd());
3382
3383    if (!MD->isInvalidDecl())
3384      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3385  } else {
3386    Body->Destroy(Context);
3387    return DeclPtrTy();
3388  }
3389  if (!IsInstantiation)
3390    PopDeclContext();
3391
3392  // Verify and clean out per-function state.
3393
3394  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3395
3396  // Check goto/label use.
3397  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3398       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3399    LabelStmt *L = I->second;
3400
3401    // Verify that we have no forward references left.  If so, there was a goto
3402    // or address of a label taken, but no definition of it.  Label fwd
3403    // definitions are indicated with a null substmt.
3404    if (L->getSubStmt() != 0)
3405      continue;
3406
3407    // Emit error.
3408    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3409
3410    // At this point, we have gotos that use the bogus label.  Stitch it into
3411    // the function body so that they aren't leaked and that the AST is well
3412    // formed.
3413    if (Body == 0) {
3414      // The whole function wasn't parsed correctly, just delete this.
3415      L->Destroy(Context);
3416      continue;
3417    }
3418
3419    // Otherwise, the body is valid: we want to stitch the label decl into the
3420    // function somewhere so that it is properly owned and so that the goto
3421    // has a valid target.  Do this by creating a new compound stmt with the
3422    // label in it.
3423
3424    // Give the label a sub-statement.
3425    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3426
3427    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3428                               cast<CXXTryStmt>(Body)->getTryBlock() :
3429                               cast<CompoundStmt>(Body);
3430    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3431    Elements.push_back(L);
3432    Compound->setStmts(Context, &Elements[0], Elements.size());
3433  }
3434  FunctionLabelMap.clear();
3435
3436  if (!Body) return D;
3437
3438  // Verify that that gotos and switch cases don't jump into scopes illegally.
3439  if (CurFunctionNeedsScopeChecking)
3440    DiagnoseInvalidJumps(Body);
3441
3442  // C++ constructors that have function-try-blocks can't have return
3443  // statements in the handlers of that block. (C++ [except.handle]p14)
3444  // Verify this.
3445  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3446    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3447
3448  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3449    Destructor->computeBaseOrMembersToDestroy(Context);
3450  return D;
3451}
3452
3453/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3454/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3455NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3456                                          IdentifierInfo &II, Scope *S) {
3457  // Before we produce a declaration for an implicitly defined
3458  // function, see whether there was a locally-scoped declaration of
3459  // this name as a function or variable. If so, use that
3460  // (non-visible) declaration, and complain about it.
3461  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3462    = LocallyScopedExternalDecls.find(&II);
3463  if (Pos != LocallyScopedExternalDecls.end()) {
3464    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3465    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3466    return Pos->second;
3467  }
3468
3469  // Extension in C99.  Legal in C90, but warn about it.
3470  if (getLangOptions().C99)
3471    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3472  else
3473    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3474
3475  // FIXME: handle stuff like:
3476  // void foo() { extern float X(); }
3477  // void bar() { X(); }  <-- implicit decl for X in another scope.
3478
3479  // Set a Declarator for the implicit definition: int foo();
3480  const char *Dummy;
3481  DeclSpec DS;
3482  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3483  Error = Error; // Silence warning.
3484  assert(!Error && "Error setting up implicit decl!");
3485  Declarator D(DS, Declarator::BlockContext);
3486  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3487                                             0, 0, false, SourceLocation(),
3488                                             false, 0,0,0, Loc, D),
3489                SourceLocation());
3490  D.SetIdentifier(&II, Loc);
3491
3492  // Insert this function into translation-unit scope.
3493
3494  DeclContext *PrevDC = CurContext;
3495  CurContext = Context.getTranslationUnitDecl();
3496
3497  FunctionDecl *FD =
3498 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3499  FD->setImplicit();
3500
3501  CurContext = PrevDC;
3502
3503  AddKnownFunctionAttributes(FD);
3504
3505  return FD;
3506}
3507
3508/// \brief Adds any function attributes that we know a priori based on
3509/// the declaration of this function.
3510///
3511/// These attributes can apply both to implicitly-declared builtins
3512/// (like __builtin___printf_chk) or to library-declared functions
3513/// like NSLog or printf.
3514void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3515  if (FD->isInvalidDecl())
3516    return;
3517
3518  // If this is a built-in function, map its builtin attributes to
3519  // actual attributes.
3520  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3521    // Handle printf-formatting attributes.
3522    unsigned FormatIdx;
3523    bool HasVAListArg;
3524    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3525      if (!FD->getAttr<FormatAttr>())
3526        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3527                                             HasVAListArg ? 0 : FormatIdx + 2));
3528    }
3529
3530    // Mark const if we don't care about errno and that is the only
3531    // thing preventing the function from being const. This allows
3532    // IRgen to use LLVM intrinsics for such functions.
3533    if (!getLangOptions().MathErrno &&
3534        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3535      if (!FD->getAttr<ConstAttr>())
3536        FD->addAttr(::new (Context) ConstAttr());
3537    }
3538  }
3539
3540  IdentifierInfo *Name = FD->getIdentifier();
3541  if (!Name)
3542    return;
3543  if ((!getLangOptions().CPlusPlus &&
3544       FD->getDeclContext()->isTranslationUnit()) ||
3545      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3546       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3547       LinkageSpecDecl::lang_c)) {
3548    // Okay: this could be a libc/libm/Objective-C function we know
3549    // about.
3550  } else
3551    return;
3552
3553  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3554    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3555      // FIXME: We known better than our headers.
3556      const_cast<FormatAttr *>(Format)->setType("printf");
3557    } else
3558      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3559                                             Name->isStr("NSLogv") ? 0 : 2));
3560  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3561    if (!FD->getAttr<FormatAttr>())
3562      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3563                                             Name->isStr("vasprintf") ? 0 : 3));
3564  }
3565}
3566
3567TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3568  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3569  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3570
3571  // Scope manipulation handled by caller.
3572  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3573                                           D.getIdentifierLoc(),
3574                                           D.getIdentifier(),
3575                                           T);
3576
3577  if (TagType *TT = dyn_cast<TagType>(T)) {
3578    TagDecl *TD = TT->getDecl();
3579
3580    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3581    // keep track of the TypedefDecl.
3582    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3583      TD->setTypedefForAnonDecl(NewTD);
3584  }
3585
3586  if (D.isInvalidType())
3587    NewTD->setInvalidDecl();
3588  return NewTD;
3589}
3590
3591
3592/// \brief Determine whether a tag with a given kind is acceptable
3593/// as a redeclaration of the given tag declaration.
3594///
3595/// \returns true if the new tag kind is acceptable, false otherwise.
3596bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3597                                        TagDecl::TagKind NewTag,
3598                                        SourceLocation NewTagLoc,
3599                                        const IdentifierInfo &Name) {
3600  // C++ [dcl.type.elab]p3:
3601  //   The class-key or enum keyword present in the
3602  //   elaborated-type-specifier shall agree in kind with the
3603  //   declaration to which the name in theelaborated-type-specifier
3604  //   refers. This rule also applies to the form of
3605  //   elaborated-type-specifier that declares a class-name or
3606  //   friend class since it can be construed as referring to the
3607  //   definition of the class. Thus, in any
3608  //   elaborated-type-specifier, the enum keyword shall be used to
3609  //   refer to an enumeration (7.2), the union class-keyshall be
3610  //   used to refer to a union (clause 9), and either the class or
3611  //   struct class-key shall be used to refer to a class (clause 9)
3612  //   declared using the class or struct class-key.
3613  TagDecl::TagKind OldTag = Previous->getTagKind();
3614  if (OldTag == NewTag)
3615    return true;
3616
3617  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3618      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3619    // Warn about the struct/class tag mismatch.
3620    bool isTemplate = false;
3621    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3622      isTemplate = Record->getDescribedClassTemplate();
3623
3624    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3625      << (NewTag == TagDecl::TK_class)
3626      << isTemplate << &Name
3627      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3628                              OldTag == TagDecl::TK_class? "class" : "struct");
3629    Diag(Previous->getLocation(), diag::note_previous_use);
3630    return true;
3631  }
3632  return false;
3633}
3634
3635/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3636/// former case, Name will be non-null.  In the later case, Name will be null.
3637/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3638/// reference/declaration/definition of a tag.
3639Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3640                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3641                               IdentifierInfo *Name, SourceLocation NameLoc,
3642                               AttributeList *Attr, AccessSpecifier AS,
3643                               MultiTemplateParamsArg TemplateParameterLists,
3644                               bool &OwnedDecl) {
3645  // If this is not a definition, it must have a name.
3646  assert((Name != 0 || TK == TK_Definition) &&
3647         "Nameless record must be a definition!");
3648
3649  OwnedDecl = false;
3650  TagDecl::TagKind Kind;
3651  switch (TagSpec) {
3652  default: assert(0 && "Unknown tag type!");
3653  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3654  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3655  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3656  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3657  }
3658
3659  if (TK != TK_Reference) {
3660    if (TemplateParameterList *TemplateParams
3661          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3662                        (TemplateParameterList**)TemplateParameterLists.get(),
3663                                              TemplateParameterLists.size())) {
3664      if (TemplateParams->size() > 0) {
3665        // This is a declaration or definition of a class template (which may
3666        // be a member of another template).
3667        OwnedDecl = false;
3668        DeclResult Result = ActOnClassTemplate(S, TagSpec, TK, KWLoc,
3669                                               SS, Name, NameLoc, Attr,
3670                                               move(TemplateParameterLists),
3671                                               AS);
3672        return Result.get();
3673      } else {
3674        // FIXME: diagnose the extraneous 'template<>', once we recover
3675        // slightly better in ParseTemplate.cpp from bogus template
3676        // parameters.
3677      }
3678    }
3679  }
3680
3681  DeclContext *SearchDC = CurContext;
3682  DeclContext *DC = CurContext;
3683  NamedDecl *PrevDecl = 0;
3684
3685  bool Invalid = false;
3686
3687  if (Name && SS.isNotEmpty()) {
3688    // We have a nested-name tag ('struct foo::bar').
3689
3690    // Check for invalid 'foo::'.
3691    if (SS.isInvalid()) {
3692      Name = 0;
3693      goto CreateNewDecl;
3694    }
3695
3696    if (RequireCompleteDeclContext(SS))
3697      return DeclPtrTy::make((Decl *)0);
3698
3699    DC = computeDeclContext(SS, true);
3700    SearchDC = DC;
3701    // Look-up name inside 'foo::'.
3702    PrevDecl
3703      = dyn_cast_or_null<TagDecl>(
3704               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3705
3706    // A tag 'foo::bar' must already exist.
3707    if (PrevDecl == 0) {
3708      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3709      Name = 0;
3710      Invalid = true;
3711      goto CreateNewDecl;
3712    }
3713  } else if (Name) {
3714    // If this is a named struct, check to see if there was a previous forward
3715    // declaration or definition.
3716    // FIXME: We're looking into outer scopes here, even when we
3717    // shouldn't be. Doing so can result in ambiguities that we
3718    // shouldn't be diagnosing.
3719    LookupResult R = LookupName(S, Name, LookupTagName,
3720                                /*RedeclarationOnly=*/(TK != TK_Reference));
3721    if (R.isAmbiguous()) {
3722      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3723      // FIXME: This is not best way to recover from case like:
3724      //
3725      // struct S s;
3726      //
3727      // causes needless "incomplete type" error later.
3728      Name = 0;
3729      PrevDecl = 0;
3730      Invalid = true;
3731    }
3732    else
3733      PrevDecl = R;
3734
3735    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3736      // FIXME: This makes sure that we ignore the contexts associated
3737      // with C structs, unions, and enums when looking for a matching
3738      // tag declaration or definition. See the similar lookup tweak
3739      // in Sema::LookupName; is there a better way to deal with this?
3740      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3741        SearchDC = SearchDC->getParent();
3742    }
3743  }
3744
3745  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3746    // Maybe we will complain about the shadowed template parameter.
3747    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3748    // Just pretend that we didn't see the previous declaration.
3749    PrevDecl = 0;
3750  }
3751
3752  if (PrevDecl) {
3753    // Check whether the previous declaration is usable.
3754    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3755
3756    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3757      // If this is a use of a previous tag, or if the tag is already declared
3758      // in the same scope (so that the definition/declaration completes or
3759      // rementions the tag), reuse the decl.
3760      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3761        // Make sure that this wasn't declared as an enum and now used as a
3762        // struct or something similar.
3763        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3764          bool SafeToContinue
3765            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3766               Kind != TagDecl::TK_enum);
3767          if (SafeToContinue)
3768            Diag(KWLoc, diag::err_use_with_wrong_tag)
3769              << Name
3770              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3771                                                  PrevTagDecl->getKindName());
3772          else
3773            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3774          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3775
3776          if (SafeToContinue)
3777            Kind = PrevTagDecl->getTagKind();
3778          else {
3779            // Recover by making this an anonymous redefinition.
3780            Name = 0;
3781            PrevDecl = 0;
3782            Invalid = true;
3783          }
3784        }
3785
3786        if (!Invalid) {
3787          // If this is a use, just return the declaration we found.
3788
3789          // FIXME: In the future, return a variant or some other clue
3790          // for the consumer of this Decl to know it doesn't own it.
3791          // For our current ASTs this shouldn't be a problem, but will
3792          // need to be changed with DeclGroups.
3793          if (TK == TK_Reference)
3794            return DeclPtrTy::make(PrevDecl);
3795
3796          // Diagnose attempts to redefine a tag.
3797          if (TK == TK_Definition) {
3798            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3799              Diag(NameLoc, diag::err_redefinition) << Name;
3800              Diag(Def->getLocation(), diag::note_previous_definition);
3801              // If this is a redefinition, recover by making this
3802              // struct be anonymous, which will make any later
3803              // references get the previous definition.
3804              Name = 0;
3805              PrevDecl = 0;
3806              Invalid = true;
3807            } else {
3808              // If the type is currently being defined, complain
3809              // about a nested redefinition.
3810              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3811              if (Tag->isBeingDefined()) {
3812                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3813                Diag(PrevTagDecl->getLocation(),
3814                     diag::note_previous_definition);
3815                Name = 0;
3816                PrevDecl = 0;
3817                Invalid = true;
3818              }
3819            }
3820
3821            // Okay, this is definition of a previously declared or referenced
3822            // tag PrevDecl. We're going to create a new Decl for it.
3823          }
3824        }
3825        // If we get here we have (another) forward declaration or we
3826        // have a definition.  Just create a new decl.
3827      } else {
3828        // If we get here, this is a definition of a new tag type in a nested
3829        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3830        // new decl/type.  We set PrevDecl to NULL so that the entities
3831        // have distinct types.
3832        PrevDecl = 0;
3833      }
3834      // If we get here, we're going to create a new Decl. If PrevDecl
3835      // is non-NULL, it's a definition of the tag declared by
3836      // PrevDecl. If it's NULL, we have a new definition.
3837    } else {
3838      // PrevDecl is a namespace, template, or anything else
3839      // that lives in the IDNS_Tag identifier namespace.
3840      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3841        // The tag name clashes with a namespace name, issue an error and
3842        // recover by making this tag be anonymous.
3843        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3844        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3845        Name = 0;
3846        PrevDecl = 0;
3847        Invalid = true;
3848      } else {
3849        // The existing declaration isn't relevant to us; we're in a
3850        // new scope, so clear out the previous declaration.
3851        PrevDecl = 0;
3852      }
3853    }
3854  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3855             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3856    // C++ [basic.scope.pdecl]p5:
3857    //   -- for an elaborated-type-specifier of the form
3858    //
3859    //          class-key identifier
3860    //
3861    //      if the elaborated-type-specifier is used in the
3862    //      decl-specifier-seq or parameter-declaration-clause of a
3863    //      function defined in namespace scope, the identifier is
3864    //      declared as a class-name in the namespace that contains
3865    //      the declaration; otherwise, except as a friend
3866    //      declaration, the identifier is declared in the smallest
3867    //      non-class, non-function-prototype scope that contains the
3868    //      declaration.
3869    //
3870    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3871    // C structs and unions.
3872    //
3873    // GNU C also supports this behavior as part of its incomplete
3874    // enum types extension, while GNU C++ does not.
3875    //
3876    // Find the context where we'll be declaring the tag.
3877    // FIXME: We would like to maintain the current DeclContext as the
3878    // lexical context,
3879    while (SearchDC->isRecord())
3880      SearchDC = SearchDC->getParent();
3881
3882    // Find the scope where we'll be declaring the tag.
3883    while (S->isClassScope() ||
3884           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3885           ((S->getFlags() & Scope::DeclScope) == 0) ||
3886           (S->getEntity() &&
3887            ((DeclContext *)S->getEntity())->isTransparentContext()))
3888      S = S->getParent();
3889  }
3890
3891CreateNewDecl:
3892
3893  // If there is an identifier, use the location of the identifier as the
3894  // location of the decl, otherwise use the location of the struct/union
3895  // keyword.
3896  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3897
3898  // Otherwise, create a new declaration. If there is a previous
3899  // declaration of the same entity, the two will be linked via
3900  // PrevDecl.
3901  TagDecl *New;
3902
3903  if (Kind == TagDecl::TK_enum) {
3904    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3905    // enum X { A, B, C } D;    D should chain to X.
3906    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
3907                           cast_or_null<EnumDecl>(PrevDecl));
3908    // If this is an undefined enum, warn.
3909    if (TK != TK_Definition && !Invalid)  {
3910      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3911                                              : diag::ext_forward_ref_enum;
3912      Diag(Loc, DK);
3913    }
3914  } else {
3915    // struct/union/class
3916
3917    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3918    // struct X { int A; } D;    D should chain to X.
3919    if (getLangOptions().CPlusPlus)
3920      // FIXME: Look for a way to use RecordDecl for simple structs.
3921      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3922                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3923    else
3924      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3925                               cast_or_null<RecordDecl>(PrevDecl));
3926  }
3927
3928  if (Kind != TagDecl::TK_enum) {
3929    // Handle #pragma pack: if the #pragma pack stack has non-default
3930    // alignment, make up a packed attribute for this decl. These
3931    // attributes are checked when the ASTContext lays out the
3932    // structure.
3933    //
3934    // It is important for implementing the correct semantics that this
3935    // happen here (in act on tag decl). The #pragma pack stack is
3936    // maintained as a result of parser callbacks which can occur at
3937    // many points during the parsing of a struct declaration (because
3938    // the #pragma tokens are effectively skipped over during the
3939    // parsing of the struct).
3940    if (unsigned Alignment = getPragmaPackAlignment())
3941      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3942  }
3943
3944  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3945    // C++ [dcl.typedef]p3:
3946    //   [...] Similarly, in a given scope, a class or enumeration
3947    //   shall not be declared with the same name as a typedef-name
3948    //   that is declared in that scope and refers to a type other
3949    //   than the class or enumeration itself.
3950    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3951    TypedefDecl *PrevTypedef = 0;
3952    if (Lookup.getKind() == LookupResult::Found)
3953      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3954
3955    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3956        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3957          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3958      Diag(Loc, diag::err_tag_definition_of_typedef)
3959        << Context.getTypeDeclType(New)
3960        << PrevTypedef->getUnderlyingType();
3961      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3962      Invalid = true;
3963    }
3964  }
3965
3966  if (Invalid)
3967    New->setInvalidDecl();
3968
3969  if (Attr)
3970    ProcessDeclAttributeList(S, New, Attr);
3971
3972  // If we're declaring or defining a tag in function prototype scope
3973  // in C, note that this type can only be used within the function.
3974  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3975    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3976
3977  // Set the lexical context. If the tag has a C++ scope specifier, the
3978  // lexical context will be different from the semantic context.
3979  New->setLexicalDeclContext(CurContext);
3980
3981  // Set the access specifier.
3982  if (!Invalid)
3983    SetMemberAccessSpecifier(New, PrevDecl, AS);
3984
3985  if (TK == TK_Definition)
3986    New->startDefinition();
3987
3988  // If this has an identifier, add it to the scope stack.
3989  if (Name) {
3990    S = getNonFieldDeclScope(S);
3991    PushOnScopeChains(New, S);
3992  } else {
3993    CurContext->addDecl(New);
3994  }
3995
3996  // If this is the C FILE type, notify the AST context.
3997  if (IdentifierInfo *II = New->getIdentifier())
3998    if (!New->isInvalidDecl() &&
3999        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4000        II->isStr("FILE"))
4001      Context.setFILEDecl(New);
4002
4003  OwnedDecl = true;
4004  return DeclPtrTy::make(New);
4005}
4006
4007void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4008  AdjustDeclIfTemplate(TagD);
4009  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4010
4011  // Enter the tag context.
4012  PushDeclContext(S, Tag);
4013
4014  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4015    FieldCollector->StartClass();
4016
4017    if (Record->getIdentifier()) {
4018      // C++ [class]p2:
4019      //   [...] The class-name is also inserted into the scope of the
4020      //   class itself; this is known as the injected-class-name. For
4021      //   purposes of access checking, the injected-class-name is treated
4022      //   as if it were a public member name.
4023      CXXRecordDecl *InjectedClassName
4024        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4025                                CurContext, Record->getLocation(),
4026                                Record->getIdentifier(),
4027                                Record->getTagKeywordLoc(),
4028                                Record);
4029      InjectedClassName->setImplicit();
4030      InjectedClassName->setAccess(AS_public);
4031      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4032        InjectedClassName->setDescribedClassTemplate(Template);
4033      PushOnScopeChains(InjectedClassName, S);
4034      assert(InjectedClassName->isInjectedClassName() &&
4035             "Broken injected-class-name");
4036    }
4037  }
4038}
4039
4040void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4041                                    SourceLocation RBraceLoc) {
4042  AdjustDeclIfTemplate(TagD);
4043  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4044  Tag->setRBraceLoc(RBraceLoc);
4045
4046  if (isa<CXXRecordDecl>(Tag))
4047    FieldCollector->FinishClass();
4048
4049  // Exit this scope of this tag's definition.
4050  PopDeclContext();
4051
4052  // Notify the consumer that we've defined a tag.
4053  Consumer.HandleTagDeclDefinition(Tag);
4054}
4055
4056// Note that FieldName may be null for anonymous bitfields.
4057bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4058                          QualType FieldTy, const Expr *BitWidth) {
4059
4060  // C99 6.7.2.1p4 - verify the field type.
4061  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4062  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4063    // Handle incomplete types with specific error.
4064    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4065      return true;
4066    if (FieldName)
4067      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4068        << FieldName << FieldTy << BitWidth->getSourceRange();
4069    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4070      << FieldTy << BitWidth->getSourceRange();
4071  }
4072
4073  // If the bit-width is type- or value-dependent, don't try to check
4074  // it now.
4075  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4076    return false;
4077
4078  llvm::APSInt Value;
4079  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4080    return true;
4081
4082  // Zero-width bitfield is ok for anonymous field.
4083  if (Value == 0 && FieldName)
4084    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4085
4086  if (Value.isSigned() && Value.isNegative()) {
4087    if (FieldName)
4088      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4089               << FieldName << Value.toString(10);
4090    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4091      << Value.toString(10);
4092  }
4093
4094  if (!FieldTy->isDependentType()) {
4095    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4096    if (Value.getZExtValue() > TypeSize) {
4097      if (FieldName)
4098        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4099          << FieldName << (unsigned)TypeSize;
4100      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4101        << (unsigned)TypeSize;
4102    }
4103  }
4104
4105  return false;
4106}
4107
4108/// ActOnField - Each field of a struct/union/class is passed into this in order
4109/// to create a FieldDecl object for it.
4110Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4111                                 SourceLocation DeclStart,
4112                                 Declarator &D, ExprTy *BitfieldWidth) {
4113  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4114                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4115                               AS_public);
4116  return DeclPtrTy::make(Res);
4117}
4118
4119/// HandleField - Analyze a field of a C struct or a C++ data member.
4120///
4121FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4122                             SourceLocation DeclStart,
4123                             Declarator &D, Expr *BitWidth,
4124                             AccessSpecifier AS) {
4125  IdentifierInfo *II = D.getIdentifier();
4126  SourceLocation Loc = DeclStart;
4127  if (II) Loc = D.getIdentifierLoc();
4128
4129  QualType T = GetTypeForDeclarator(D, S);
4130  if (getLangOptions().CPlusPlus)
4131    CheckExtraCXXDefaultArguments(D);
4132
4133  DiagnoseFunctionSpecifiers(D);
4134
4135  if (D.getDeclSpec().isThreadSpecified())
4136    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4137
4138  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4139
4140  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4141    // Maybe we will complain about the shadowed template parameter.
4142    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4143    // Just pretend that we didn't see the previous declaration.
4144    PrevDecl = 0;
4145  }
4146
4147  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4148    PrevDecl = 0;
4149
4150  bool Mutable
4151    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4152  SourceLocation TSSL = D.getSourceRange().getBegin();
4153  FieldDecl *NewFD
4154    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4155                     AS, PrevDecl, &D);
4156  if (NewFD->isInvalidDecl() && PrevDecl) {
4157    // Don't introduce NewFD into scope; there's already something
4158    // with the same name in the same scope.
4159  } else if (II) {
4160    PushOnScopeChains(NewFD, S);
4161  } else
4162    Record->addDecl(NewFD);
4163
4164  return NewFD;
4165}
4166
4167/// \brief Build a new FieldDecl and check its well-formedness.
4168///
4169/// This routine builds a new FieldDecl given the fields name, type,
4170/// record, etc. \p PrevDecl should refer to any previous declaration
4171/// with the same name and in the same scope as the field to be
4172/// created.
4173///
4174/// \returns a new FieldDecl.
4175///
4176/// \todo The Declarator argument is a hack. It will be removed once
4177FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4178                                RecordDecl *Record, SourceLocation Loc,
4179                                bool Mutable, Expr *BitWidth,
4180                                SourceLocation TSSL,
4181                                AccessSpecifier AS, NamedDecl *PrevDecl,
4182                                Declarator *D) {
4183  IdentifierInfo *II = Name.getAsIdentifierInfo();
4184  bool InvalidDecl = false;
4185  if (D) InvalidDecl = D->isInvalidType();
4186
4187  // If we receive a broken type, recover by assuming 'int' and
4188  // marking this declaration as invalid.
4189  if (T.isNull()) {
4190    InvalidDecl = true;
4191    T = Context.IntTy;
4192  }
4193
4194  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4195  // than a variably modified type.
4196  if (T->isVariablyModifiedType()) {
4197    bool SizeIsNegative;
4198    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4199                                                           SizeIsNegative);
4200    if (!FixedTy.isNull()) {
4201      Diag(Loc, diag::warn_illegal_constant_array_size);
4202      T = FixedTy;
4203    } else {
4204      if (SizeIsNegative)
4205        Diag(Loc, diag::err_typecheck_negative_array_size);
4206      else
4207        Diag(Loc, diag::err_typecheck_field_variable_size);
4208      InvalidDecl = true;
4209    }
4210  }
4211
4212  // Fields can not have abstract class types
4213  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4214                             AbstractFieldType))
4215    InvalidDecl = true;
4216
4217  // If this is declared as a bit-field, check the bit-field.
4218  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4219    InvalidDecl = true;
4220    DeleteExpr(BitWidth);
4221    BitWidth = 0;
4222  }
4223
4224  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4225                                       Mutable, TSSL);
4226  if (InvalidDecl)
4227    NewFD->setInvalidDecl();
4228
4229  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4230    Diag(Loc, diag::err_duplicate_member) << II;
4231    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4232    NewFD->setInvalidDecl();
4233  }
4234
4235  if (getLangOptions().CPlusPlus) {
4236    QualType EltTy = T;
4237    while (const ArrayType *AT = Context.getAsArrayType(EltTy))
4238      EltTy = AT->getElementType();
4239
4240    if (const RecordType *RT = EltTy->getAsRecordType()) {
4241      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4242
4243      if (!RDecl->hasTrivialConstructor())
4244        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4245      if (!RDecl->hasTrivialCopyConstructor())
4246        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4247      if (!RDecl->hasTrivialCopyAssignment())
4248        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4249      if (!RDecl->hasTrivialDestructor())
4250        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4251
4252      // C++ 9.5p1: An object of a class with a non-trivial
4253      // constructor, a non-trivial copy constructor, a non-trivial
4254      // destructor, or a non-trivial copy assignment operator
4255      // cannot be a member of a union, nor can an array of such
4256      // objects.
4257      // TODO: C++0x alters this restriction significantly.
4258      if (Record->isUnion()) {
4259        // We check for copy constructors before constructors
4260        // because otherwise we'll never get complaints about
4261        // copy constructors.
4262
4263        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4264
4265        CXXSpecialMember member;
4266        if (!RDecl->hasTrivialCopyConstructor())
4267          member = CXXCopyConstructor;
4268        else if (!RDecl->hasTrivialConstructor())
4269          member = CXXDefaultConstructor;
4270        else if (!RDecl->hasTrivialCopyAssignment())
4271          member = CXXCopyAssignment;
4272        else if (!RDecl->hasTrivialDestructor())
4273          member = CXXDestructor;
4274        else
4275          member = invalid;
4276
4277        if (member != invalid) {
4278          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4279          DiagnoseNontrivial(RT, member);
4280          NewFD->setInvalidDecl();
4281        }
4282      }
4283    }
4284  }
4285
4286  if (getLangOptions().CPlusPlus && !T->isPODType())
4287    cast<CXXRecordDecl>(Record)->setPOD(false);
4288
4289  // FIXME: We need to pass in the attributes given an AST
4290  // representation, not a parser representation.
4291  if (D)
4292    // FIXME: What to pass instead of TUScope?
4293    ProcessDeclAttributes(TUScope, NewFD, *D);
4294
4295  if (T.isObjCGCWeak())
4296    Diag(Loc, diag::warn_attribute_weak_on_field);
4297
4298  NewFD->setAccess(AS);
4299
4300  // C++ [dcl.init.aggr]p1:
4301  //   An aggregate is an array or a class (clause 9) with [...] no
4302  //   private or protected non-static data members (clause 11).
4303  // A POD must be an aggregate.
4304  if (getLangOptions().CPlusPlus &&
4305      (AS == AS_private || AS == AS_protected)) {
4306    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4307    CXXRecord->setAggregate(false);
4308    CXXRecord->setPOD(false);
4309  }
4310
4311  return NewFD;
4312}
4313
4314/// DiagnoseNontrivial - Given that a class has a non-trivial
4315/// special member, figure out why.
4316void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4317  QualType QT(T, 0U);
4318  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4319
4320  // Check whether the member was user-declared.
4321  switch (member) {
4322  case CXXDefaultConstructor:
4323    if (RD->hasUserDeclaredConstructor()) {
4324      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4325      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4326        if (!ci->isImplicitlyDefined(Context)) {
4327          SourceLocation CtorLoc = ci->getLocation();
4328          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4329          return;
4330        }
4331
4332      assert(0 && "found no user-declared constructors");
4333      return;
4334    }
4335    break;
4336
4337  case CXXCopyConstructor:
4338    if (RD->hasUserDeclaredCopyConstructor()) {
4339      SourceLocation CtorLoc =
4340        RD->getCopyConstructor(Context, 0)->getLocation();
4341      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4342      return;
4343    }
4344    break;
4345
4346  case CXXCopyAssignment:
4347    if (RD->hasUserDeclaredCopyAssignment()) {
4348      // FIXME: this should use the location of the copy
4349      // assignment, not the type.
4350      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4351      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4352      return;
4353    }
4354    break;
4355
4356  case CXXDestructor:
4357    if (RD->hasUserDeclaredDestructor()) {
4358      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4359      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4360      return;
4361    }
4362    break;
4363  }
4364
4365  typedef CXXRecordDecl::base_class_iterator base_iter;
4366
4367  // Virtual bases and members inhibit trivial copying/construction,
4368  // but not trivial destruction.
4369  if (member != CXXDestructor) {
4370    // Check for virtual bases.  vbases includes indirect virtual bases,
4371    // so we just iterate through the direct bases.
4372    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4373      if (bi->isVirtual()) {
4374        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4375        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4376        return;
4377      }
4378
4379    // Check for virtual methods.
4380    typedef CXXRecordDecl::method_iterator meth_iter;
4381    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4382         ++mi) {
4383      if (mi->isVirtual()) {
4384        SourceLocation MLoc = mi->getSourceRange().getBegin();
4385        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4386        return;
4387      }
4388    }
4389  }
4390
4391  bool (CXXRecordDecl::*hasTrivial)() const;
4392  switch (member) {
4393  case CXXDefaultConstructor:
4394    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4395  case CXXCopyConstructor:
4396    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4397  case CXXCopyAssignment:
4398    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4399  case CXXDestructor:
4400    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4401  default:
4402    assert(0 && "unexpected special member"); return;
4403  }
4404
4405  // Check for nontrivial bases (and recurse).
4406  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4407    const RecordType *BaseRT = bi->getType()->getAsRecordType();
4408    assert(BaseRT);
4409    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4410    if (!(BaseRecTy->*hasTrivial)()) {
4411      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4412      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4413      DiagnoseNontrivial(BaseRT, member);
4414      return;
4415    }
4416  }
4417
4418  // Check for nontrivial members (and recurse).
4419  typedef RecordDecl::field_iterator field_iter;
4420  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4421       ++fi) {
4422    QualType EltTy = (*fi)->getType();
4423    while (const ArrayType *AT = Context.getAsArrayType(EltTy))
4424      EltTy = AT->getElementType();
4425
4426    if (const RecordType *EltRT = EltTy->getAsRecordType()) {
4427      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4428
4429      if (!(EltRD->*hasTrivial)()) {
4430        SourceLocation FLoc = (*fi)->getLocation();
4431        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4432        DiagnoseNontrivial(EltRT, member);
4433        return;
4434      }
4435    }
4436  }
4437
4438  assert(0 && "found no explanation for non-trivial member");
4439}
4440
4441/// TranslateIvarVisibility - Translate visibility from a token ID to an
4442///  AST enum value.
4443static ObjCIvarDecl::AccessControl
4444TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4445  switch (ivarVisibility) {
4446  default: assert(0 && "Unknown visitibility kind");
4447  case tok::objc_private: return ObjCIvarDecl::Private;
4448  case tok::objc_public: return ObjCIvarDecl::Public;
4449  case tok::objc_protected: return ObjCIvarDecl::Protected;
4450  case tok::objc_package: return ObjCIvarDecl::Package;
4451  }
4452}
4453
4454/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4455/// in order to create an IvarDecl object for it.
4456Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4457                                SourceLocation DeclStart,
4458                                DeclPtrTy IntfDecl,
4459                                Declarator &D, ExprTy *BitfieldWidth,
4460                                tok::ObjCKeywordKind Visibility) {
4461
4462  IdentifierInfo *II = D.getIdentifier();
4463  Expr *BitWidth = (Expr*)BitfieldWidth;
4464  SourceLocation Loc = DeclStart;
4465  if (II) Loc = D.getIdentifierLoc();
4466
4467  // FIXME: Unnamed fields can be handled in various different ways, for
4468  // example, unnamed unions inject all members into the struct namespace!
4469
4470  QualType T = GetTypeForDeclarator(D, S);
4471
4472  if (BitWidth) {
4473    // 6.7.2.1p3, 6.7.2.1p4
4474    if (VerifyBitField(Loc, II, T, BitWidth)) {
4475      D.setInvalidType();
4476      DeleteExpr(BitWidth);
4477      BitWidth = 0;
4478    }
4479  } else {
4480    // Not a bitfield.
4481
4482    // validate II.
4483
4484  }
4485
4486  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4487  // than a variably modified type.
4488  if (T->isVariablyModifiedType()) {
4489    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4490    D.setInvalidType();
4491  }
4492
4493  // Get the visibility (access control) for this ivar.
4494  ObjCIvarDecl::AccessControl ac =
4495    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4496                                        : ObjCIvarDecl::None;
4497  // Must set ivar's DeclContext to its enclosing interface.
4498  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4499  DeclContext *EnclosingContext;
4500  if (ObjCImplementationDecl *IMPDecl =
4501      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4502    // Case of ivar declared in an implementation. Context is that of its class.
4503    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4504    assert(IDecl && "No class- ActOnIvar");
4505    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4506  }
4507  else
4508    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4509  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4510
4511  // Construct the decl.
4512  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4513                                             EnclosingContext, Loc, II, T,ac,
4514                                             (Expr *)BitfieldWidth);
4515
4516  if (II) {
4517    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4518    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4519        && !isa<TagDecl>(PrevDecl)) {
4520      Diag(Loc, diag::err_duplicate_member) << II;
4521      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4522      NewID->setInvalidDecl();
4523    }
4524  }
4525
4526  // Process attributes attached to the ivar.
4527  ProcessDeclAttributes(S, NewID, D);
4528
4529  if (D.isInvalidType())
4530    NewID->setInvalidDecl();
4531
4532  if (II) {
4533    // FIXME: When interfaces are DeclContexts, we'll need to add
4534    // these to the interface.
4535    S->AddDecl(DeclPtrTy::make(NewID));
4536    IdResolver.AddDecl(NewID);
4537  }
4538
4539  return DeclPtrTy::make(NewID);
4540}
4541
4542void Sema::ActOnFields(Scope* S,
4543                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4544                       DeclPtrTy *Fields, unsigned NumFields,
4545                       SourceLocation LBrac, SourceLocation RBrac,
4546                       AttributeList *Attr) {
4547  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4548  assert(EnclosingDecl && "missing record or interface decl");
4549
4550  // If the decl this is being inserted into is invalid, then it may be a
4551  // redeclaration or some other bogus case.  Don't try to add fields to it.
4552  if (EnclosingDecl->isInvalidDecl()) {
4553    // FIXME: Deallocate fields?
4554    return;
4555  }
4556
4557
4558  // Verify that all the fields are okay.
4559  unsigned NumNamedMembers = 0;
4560  llvm::SmallVector<FieldDecl*, 32> RecFields;
4561
4562  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4563  for (unsigned i = 0; i != NumFields; ++i) {
4564    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4565
4566    // Get the type for the field.
4567    Type *FDTy = FD->getType().getTypePtr();
4568
4569    if (!FD->isAnonymousStructOrUnion()) {
4570      // Remember all fields written by the user.
4571      RecFields.push_back(FD);
4572    }
4573
4574    // If the field is already invalid for some reason, don't emit more
4575    // diagnostics about it.
4576    if (FD->isInvalidDecl())
4577      continue;
4578
4579    // C99 6.7.2.1p2:
4580    //   A structure or union shall not contain a member with
4581    //   incomplete or function type (hence, a structure shall not
4582    //   contain an instance of itself, but may contain a pointer to
4583    //   an instance of itself), except that the last member of a
4584    //   structure with more than one named member may have incomplete
4585    //   array type; such a structure (and any union containing,
4586    //   possibly recursively, a member that is such a structure)
4587    //   shall not be a member of a structure or an element of an
4588    //   array.
4589    if (FDTy->isFunctionType()) {
4590      // Field declared as a function.
4591      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4592        << FD->getDeclName();
4593      FD->setInvalidDecl();
4594      EnclosingDecl->setInvalidDecl();
4595      continue;
4596    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4597               Record && Record->isStruct()) {
4598      // Flexible array member.
4599      if (NumNamedMembers < 1) {
4600        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4601          << FD->getDeclName();
4602        FD->setInvalidDecl();
4603        EnclosingDecl->setInvalidDecl();
4604        continue;
4605      }
4606      // Okay, we have a legal flexible array member at the end of the struct.
4607      if (Record)
4608        Record->setHasFlexibleArrayMember(true);
4609    } else if (!FDTy->isDependentType() &&
4610               RequireCompleteType(FD->getLocation(), FD->getType(),
4611                                   diag::err_field_incomplete)) {
4612      // Incomplete type
4613      FD->setInvalidDecl();
4614      EnclosingDecl->setInvalidDecl();
4615      continue;
4616    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4617      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4618        // If this is a member of a union, then entire union becomes "flexible".
4619        if (Record && Record->isUnion()) {
4620          Record->setHasFlexibleArrayMember(true);
4621        } else {
4622          // If this is a struct/class and this is not the last element, reject
4623          // it.  Note that GCC supports variable sized arrays in the middle of
4624          // structures.
4625          if (i != NumFields-1)
4626            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4627              << FD->getDeclName() << FD->getType();
4628          else {
4629            // We support flexible arrays at the end of structs in
4630            // other structs as an extension.
4631            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4632              << FD->getDeclName();
4633            if (Record)
4634              Record->setHasFlexibleArrayMember(true);
4635          }
4636        }
4637      }
4638      if (Record && FDTTy->getDecl()->hasObjectMember())
4639        Record->setHasObjectMember(true);
4640    } else if (FDTy->isObjCInterfaceType()) {
4641      /// A field cannot be an Objective-c object
4642      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4643      FD->setInvalidDecl();
4644      EnclosingDecl->setInvalidDecl();
4645      continue;
4646    }
4647    else if (getLangOptions().ObjC1 &&
4648             getLangOptions().getGCMode() != LangOptions::NonGC &&
4649             Record &&
4650             (FD->getType()->isObjCObjectPointerType() ||
4651              FD->getType().isObjCGCStrong()))
4652      Record->setHasObjectMember(true);
4653    // Keep track of the number of named members.
4654    if (FD->getIdentifier())
4655      ++NumNamedMembers;
4656  }
4657
4658  // Okay, we successfully defined 'Record'.
4659  if (Record) {
4660    Record->completeDefinition(Context);
4661  } else {
4662    ObjCIvarDecl **ClsFields =
4663      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4664    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4665      ID->setIVarList(ClsFields, RecFields.size(), Context);
4666      ID->setLocEnd(RBrac);
4667      // Add ivar's to class's DeclContext.
4668      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4669        ClsFields[i]->setLexicalDeclContext(ID);
4670        ID->addDecl(ClsFields[i]);
4671      }
4672      // Must enforce the rule that ivars in the base classes may not be
4673      // duplicates.
4674      if (ID->getSuperClass()) {
4675        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4676             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4677          ObjCIvarDecl* Ivar = (*IVI);
4678
4679          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4680            ObjCIvarDecl* prevIvar =
4681              ID->getSuperClass()->lookupInstanceVariable(II);
4682            if (prevIvar) {
4683              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4684              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4685            }
4686          }
4687        }
4688      }
4689    } else if (ObjCImplementationDecl *IMPDecl =
4690                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4691      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4692      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4693        // Ivar declared in @implementation never belongs to the implementation.
4694        // Only it is in implementation's lexical context.
4695        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4696      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4697    }
4698  }
4699
4700  if (Attr)
4701    ProcessDeclAttributeList(S, Record, Attr);
4702}
4703
4704EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4705                                          EnumConstantDecl *LastEnumConst,
4706                                          SourceLocation IdLoc,
4707                                          IdentifierInfo *Id,
4708                                          ExprArg val) {
4709  Expr *Val = (Expr *)val.get();
4710
4711  llvm::APSInt EnumVal(32);
4712  QualType EltTy;
4713  if (Val && !Val->isTypeDependent()) {
4714    // Make sure to promote the operand type to int.
4715    UsualUnaryConversions(Val);
4716    if (Val != val.get()) {
4717      val.release();
4718      val = Val;
4719    }
4720
4721    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4722    SourceLocation ExpLoc;
4723    if (!Val->isValueDependent() &&
4724        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4725      Val = 0;
4726    } else {
4727      EltTy = Val->getType();
4728    }
4729  }
4730
4731  if (!Val) {
4732    if (LastEnumConst) {
4733      // Assign the last value + 1.
4734      EnumVal = LastEnumConst->getInitVal();
4735      ++EnumVal;
4736
4737      // Check for overflow on increment.
4738      if (EnumVal < LastEnumConst->getInitVal())
4739        Diag(IdLoc, diag::warn_enum_value_overflow);
4740
4741      EltTy = LastEnumConst->getType();
4742    } else {
4743      // First value, set to zero.
4744      EltTy = Context.IntTy;
4745      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4746    }
4747  }
4748
4749  val.release();
4750  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4751                                  Val, EnumVal);
4752}
4753
4754
4755Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4756                                        DeclPtrTy lastEnumConst,
4757                                        SourceLocation IdLoc,
4758                                        IdentifierInfo *Id,
4759                                        SourceLocation EqualLoc, ExprTy *val) {
4760  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4761  EnumConstantDecl *LastEnumConst =
4762    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4763  Expr *Val = static_cast<Expr*>(val);
4764
4765  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4766  // we find one that is.
4767  S = getNonFieldDeclScope(S);
4768
4769  // Verify that there isn't already something declared with this name in this
4770  // scope.
4771  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4772  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4773    // Maybe we will complain about the shadowed template parameter.
4774    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4775    // Just pretend that we didn't see the previous declaration.
4776    PrevDecl = 0;
4777  }
4778
4779  if (PrevDecl) {
4780    // When in C++, we may get a TagDecl with the same name; in this case the
4781    // enum constant will 'hide' the tag.
4782    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4783           "Received TagDecl when not in C++!");
4784    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4785      if (isa<EnumConstantDecl>(PrevDecl))
4786        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4787      else
4788        Diag(IdLoc, diag::err_redefinition) << Id;
4789      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4790      if (Val) Val->Destroy(Context);
4791      return DeclPtrTy();
4792    }
4793  }
4794
4795  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4796                                            IdLoc, Id, Owned(Val));
4797
4798  // Register this decl in the current scope stack.
4799  if (New)
4800    PushOnScopeChains(New, S);
4801
4802  return DeclPtrTy::make(New);
4803}
4804
4805void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4806                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4807                         DeclPtrTy *Elements, unsigned NumElements) {
4808  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4809  QualType EnumType = Context.getTypeDeclType(Enum);
4810
4811  // TODO: If the result value doesn't fit in an int, it must be a long or long
4812  // long value.  ISO C does not support this, but GCC does as an extension,
4813  // emit a warning.
4814  unsigned IntWidth = Context.Target.getIntWidth();
4815
4816  // Verify that all the values are okay, compute the size of the values, and
4817  // reverse the list.
4818  unsigned NumNegativeBits = 0;
4819  unsigned NumPositiveBits = 0;
4820
4821  // Keep track of whether all elements have type int.
4822  bool AllElementsInt = true;
4823
4824  for (unsigned i = 0; i != NumElements; ++i) {
4825    EnumConstantDecl *ECD =
4826      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4827    if (!ECD) continue;  // Already issued a diagnostic.
4828
4829    // If the enum value doesn't fit in an int, emit an extension warning.
4830    const llvm::APSInt &InitVal = ECD->getInitVal();
4831    assert(InitVal.getBitWidth() >= IntWidth &&
4832           "Should have promoted value to int");
4833    if (InitVal.getBitWidth() > IntWidth) {
4834      llvm::APSInt V(InitVal);
4835      V.trunc(IntWidth);
4836      V.extend(InitVal.getBitWidth());
4837      if (V != InitVal)
4838        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4839          << InitVal.toString(10);
4840    }
4841
4842    // Keep track of the size of positive and negative values.
4843    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4844      NumPositiveBits = std::max(NumPositiveBits,
4845                                 (unsigned)InitVal.getActiveBits());
4846    else
4847      NumNegativeBits = std::max(NumNegativeBits,
4848                                 (unsigned)InitVal.getMinSignedBits());
4849
4850    // Keep track of whether every enum element has type int (very commmon).
4851    if (AllElementsInt)
4852      AllElementsInt = ECD->getType() == Context.IntTy;
4853  }
4854
4855  // Figure out the type that should be used for this enum.
4856  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4857  QualType BestType;
4858  unsigned BestWidth;
4859
4860  if (NumNegativeBits) {
4861    // If there is a negative value, figure out the smallest integer type (of
4862    // int/long/longlong) that fits.
4863    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4864      BestType = Context.IntTy;
4865      BestWidth = IntWidth;
4866    } else {
4867      BestWidth = Context.Target.getLongWidth();
4868
4869      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4870        BestType = Context.LongTy;
4871      else {
4872        BestWidth = Context.Target.getLongLongWidth();
4873
4874        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4875          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4876        BestType = Context.LongLongTy;
4877      }
4878    }
4879  } else {
4880    // If there is no negative value, figure out which of uint, ulong, ulonglong
4881    // fits.
4882    if (NumPositiveBits <= IntWidth) {
4883      BestType = Context.UnsignedIntTy;
4884      BestWidth = IntWidth;
4885    } else if (NumPositiveBits <=
4886               (BestWidth = Context.Target.getLongWidth())) {
4887      BestType = Context.UnsignedLongTy;
4888    } else {
4889      BestWidth = Context.Target.getLongLongWidth();
4890      assert(NumPositiveBits <= BestWidth &&
4891             "How could an initializer get larger than ULL?");
4892      BestType = Context.UnsignedLongLongTy;
4893    }
4894  }
4895
4896  // Loop over all of the enumerator constants, changing their types to match
4897  // the type of the enum if needed.
4898  for (unsigned i = 0; i != NumElements; ++i) {
4899    EnumConstantDecl *ECD =
4900      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4901    if (!ECD) continue;  // Already issued a diagnostic.
4902
4903    // Standard C says the enumerators have int type, but we allow, as an
4904    // extension, the enumerators to be larger than int size.  If each
4905    // enumerator value fits in an int, type it as an int, otherwise type it the
4906    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4907    // that X has type 'int', not 'unsigned'.
4908    if (ECD->getType() == Context.IntTy) {
4909      // Make sure the init value is signed.
4910      llvm::APSInt IV = ECD->getInitVal();
4911      IV.setIsSigned(true);
4912      ECD->setInitVal(IV);
4913
4914      if (getLangOptions().CPlusPlus)
4915        // C++ [dcl.enum]p4: Following the closing brace of an
4916        // enum-specifier, each enumerator has the type of its
4917        // enumeration.
4918        ECD->setType(EnumType);
4919      continue;  // Already int type.
4920    }
4921
4922    // Determine whether the value fits into an int.
4923    llvm::APSInt InitVal = ECD->getInitVal();
4924    bool FitsInInt;
4925    if (InitVal.isUnsigned() || !InitVal.isNegative())
4926      FitsInInt = InitVal.getActiveBits() < IntWidth;
4927    else
4928      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4929
4930    // If it fits into an integer type, force it.  Otherwise force it to match
4931    // the enum decl type.
4932    QualType NewTy;
4933    unsigned NewWidth;
4934    bool NewSign;
4935    if (FitsInInt) {
4936      NewTy = Context.IntTy;
4937      NewWidth = IntWidth;
4938      NewSign = true;
4939    } else if (ECD->getType() == BestType) {
4940      // Already the right type!
4941      if (getLangOptions().CPlusPlus)
4942        // C++ [dcl.enum]p4: Following the closing brace of an
4943        // enum-specifier, each enumerator has the type of its
4944        // enumeration.
4945        ECD->setType(EnumType);
4946      continue;
4947    } else {
4948      NewTy = BestType;
4949      NewWidth = BestWidth;
4950      NewSign = BestType->isSignedIntegerType();
4951    }
4952
4953    // Adjust the APSInt value.
4954    InitVal.extOrTrunc(NewWidth);
4955    InitVal.setIsSigned(NewSign);
4956    ECD->setInitVal(InitVal);
4957
4958    // Adjust the Expr initializer and type.
4959    if (ECD->getInitExpr())
4960      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4961                                                      /*isLvalue=*/false));
4962    if (getLangOptions().CPlusPlus)
4963      // C++ [dcl.enum]p4: Following the closing brace of an
4964      // enum-specifier, each enumerator has the type of its
4965      // enumeration.
4966      ECD->setType(EnumType);
4967    else
4968      ECD->setType(NewTy);
4969  }
4970
4971  Enum->completeDefinition(Context, BestType);
4972}
4973
4974Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4975                                            ExprArg expr) {
4976  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4977
4978  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4979                                                   Loc, AsmString);
4980  CurContext->addDecl(New);
4981  return DeclPtrTy::make(New);
4982}
4983
4984void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4985                             SourceLocation PragmaLoc,
4986                             SourceLocation NameLoc) {
4987  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4988
4989  // FIXME: This implementation is an ugly hack!
4990  if (PrevDecl) {
4991    PrevDecl->addAttr(::new (Context) WeakAttr());
4992    return;
4993  }
4994  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4995  return;
4996}
4997
4998void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4999                                IdentifierInfo* AliasName,
5000                                SourceLocation PragmaLoc,
5001                                SourceLocation NameLoc,
5002                                SourceLocation AliasNameLoc) {
5003  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5004
5005  // FIXME: This implementation is an ugly hack!
5006  if (PrevDecl) {
5007    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
5008    PrevDecl->addAttr(::new (Context) WeakAttr());
5009    return;
5010  }
5011  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
5012  return;
5013}
5014