SemaDecl.cpp revision 1f2023ab8b35e0f665eb6c0f11dd6d9b9bca12b8
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/AST/DeclObjC.h"
20#include "clang/AST/DeclTemplate.h"
21#include "clang/AST/ExprCXX.h"
22#include "clang/AST/StmtCXX.h"
23#include "clang/Parse/DeclSpec.h"
24#include "clang/Basic/TargetInfo.h"
25#include "clang/Basic/SourceManager.h"
26// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
27#include "clang/Lex/Preprocessor.h"
28#include "clang/Lex/HeaderSearch.h"
29#include "llvm/ADT/SmallSet.h"
30#include "llvm/ADT/STLExtras.h"
31#include <algorithm>
32#include <functional>
33using namespace clang;
34
35/// getDeclName - Return a pretty name for the specified decl if possible, or
36/// an empty string if not.  This is used for pretty crash reporting.
37std::string Sema::getDeclName(DeclPtrTy d) {
38  Decl *D = d.getAs<Decl>();
39  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
40    return DN->getQualifiedNameAsString();
41  return "";
42}
43
44Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
45  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
46}
47
48/// \brief If the identifier refers to a type name within this scope,
49/// return the declaration of that type.
50///
51/// This routine performs ordinary name lookup of the identifier II
52/// within the given scope, with optional C++ scope specifier SS, to
53/// determine whether the name refers to a type. If so, returns an
54/// opaque pointer (actually a QualType) corresponding to that
55/// type. Otherwise, returns NULL.
56///
57/// If name lookup results in an ambiguity, this routine will complain
58/// and then return NULL.
59Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
60                                Scope *S, const CXXScopeSpec *SS) {
61  // C++ [temp.res]p3:
62  //   A qualified-id that refers to a type and in which the
63  //   nested-name-specifier depends on a template-parameter (14.6.2)
64  //   shall be prefixed by the keyword typename to indicate that the
65  //   qualified-id denotes a type, forming an
66  //   elaborated-type-specifier (7.1.5.3).
67  //
68  // We therefore do not perform any name lookup if the result would
69  // refer to a member of an unknown specialization.
70  if (SS && isUnknownSpecialization(*SS))
71    return 0;
72
73  LookupResult Result
74    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
75
76  NamedDecl *IIDecl = 0;
77  switch (Result.getKind()) {
78  case LookupResult::NotFound:
79  case LookupResult::FoundOverloaded:
80    return 0;
81
82  case LookupResult::AmbiguousBaseSubobjectTypes:
83  case LookupResult::AmbiguousBaseSubobjects:
84  case LookupResult::AmbiguousReference: {
85    // Look to see if we have a type anywhere in the list of results.
86    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
87         Res != ResEnd; ++Res) {
88      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
89        if (!IIDecl ||
90            (*Res)->getLocation().getRawEncoding() <
91              IIDecl->getLocation().getRawEncoding())
92          IIDecl = *Res;
93      }
94    }
95
96    if (!IIDecl) {
97      // None of the entities we found is a type, so there is no way
98      // to even assume that the result is a type. In this case, don't
99      // complain about the ambiguity. The parser will either try to
100      // perform this lookup again (e.g., as an object name), which
101      // will produce the ambiguity, or will complain that it expected
102      // a type name.
103      Result.Destroy();
104      return 0;
105    }
106
107    // We found a type within the ambiguous lookup; diagnose the
108    // ambiguity and then return that type. This might be the right
109    // answer, or it might not be, but it suppresses any attempt to
110    // perform the name lookup again.
111    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
112    break;
113  }
114
115  case LookupResult::Found:
116    IIDecl = Result.getAsDecl();
117    break;
118  }
119
120  if (IIDecl) {
121    QualType T;
122
123    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
124      // Check whether we can use this type
125      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
126
127      if (getLangOptions().CPlusPlus) {
128        // C++ [temp.local]p2:
129        //   Within the scope of a class template specialization or
130        //   partial specialization, when the injected-class-name is
131        //   not followed by a <, it is equivalent to the
132        //   injected-class-name followed by the template-argument s
133        //   of the class template specialization or partial
134        //   specialization enclosed in <>.
135        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
136          if (RD->isInjectedClassName())
137            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
138              T = Template->getInjectedClassNameType(Context);
139      }
140
141      if (T.isNull())
142        T = Context.getTypeDeclType(TD);
143    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
144      // Check whether we can use this interface.
145      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
146
147      T = Context.getObjCInterfaceType(IDecl);
148    } else
149      return 0;
150
151    if (SS)
152      T = getQualifiedNameType(*SS, T);
153
154    return T.getAsOpaquePtr();
155  }
156
157  return 0;
158}
159
160/// isTagName() - This method is called *for error recovery purposes only*
161/// to determine if the specified name is a valid tag name ("struct foo").  If
162/// so, this returns the TST for the tag corresponding to it (TST_enum,
163/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
164/// where the user forgot to specify the tag.
165DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
166  // Do a tag name lookup in this scope.
167  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
168  if (R.getKind() == LookupResult::Found)
169    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
170      switch (TD->getTagKind()) {
171      case TagDecl::TK_struct: return DeclSpec::TST_struct;
172      case TagDecl::TK_union:  return DeclSpec::TST_union;
173      case TagDecl::TK_class:  return DeclSpec::TST_class;
174      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
175      }
176    }
177
178  return DeclSpec::TST_unspecified;
179}
180
181
182
183DeclContext *Sema::getContainingDC(DeclContext *DC) {
184  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
185    // A C++ out-of-line method will return to the file declaration context.
186    if (MD->isOutOfLine())
187      return MD->getLexicalDeclContext();
188
189    // A C++ inline method is parsed *after* the topmost class it was declared
190    // in is fully parsed (it's "complete").
191    // The parsing of a C++ inline method happens at the declaration context of
192    // the topmost (non-nested) class it is lexically declared in.
193    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
194    DC = MD->getParent();
195    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
196      DC = RD;
197
198    // Return the declaration context of the topmost class the inline method is
199    // declared in.
200    return DC;
201  }
202
203  if (isa<ObjCMethodDecl>(DC))
204    return Context.getTranslationUnitDecl();
205
206  return DC->getLexicalParent();
207}
208
209void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
210  assert(getContainingDC(DC) == CurContext &&
211      "The next DeclContext should be lexically contained in the current one.");
212  CurContext = DC;
213  S->setEntity(DC);
214}
215
216void Sema::PopDeclContext() {
217  assert(CurContext && "DeclContext imbalance!");
218
219  CurContext = getContainingDC(CurContext);
220}
221
222/// EnterDeclaratorContext - Used when we must lookup names in the context
223/// of a declarator's nested name specifier.
224void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
225  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
226  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
227  CurContext = DC;
228  assert(CurContext && "No context?");
229  S->setEntity(CurContext);
230}
231
232void Sema::ExitDeclaratorContext(Scope *S) {
233  S->setEntity(PreDeclaratorDC);
234  PreDeclaratorDC = 0;
235
236  // Reset CurContext to the nearest enclosing context.
237  while (!S->getEntity() && S->getParent())
238    S = S->getParent();
239  CurContext = static_cast<DeclContext*>(S->getEntity());
240  assert(CurContext && "No context?");
241}
242
243/// \brief Determine whether we allow overloading of the function
244/// PrevDecl with another declaration.
245///
246/// This routine determines whether overloading is possible, not
247/// whether some new function is actually an overload. It will return
248/// true in C++ (where we can always provide overloads) or, as an
249/// extension, in C when the previous function is already an
250/// overloaded function declaration or has the "overloadable"
251/// attribute.
252static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
253  if (Context.getLangOptions().CPlusPlus)
254    return true;
255
256  if (isa<OverloadedFunctionDecl>(PrevDecl))
257    return true;
258
259  return PrevDecl->getAttr<OverloadableAttr>() != 0;
260}
261
262/// Add this decl to the scope shadowed decl chains.
263void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
264  // Move up the scope chain until we find the nearest enclosing
265  // non-transparent context. The declaration will be introduced into this
266  // scope.
267  while (S->getEntity() &&
268         ((DeclContext *)S->getEntity())->isTransparentContext())
269    S = S->getParent();
270
271  S->AddDecl(DeclPtrTy::make(D));
272
273  // Add scoped declarations into their context, so that they can be
274  // found later. Declarations without a context won't be inserted
275  // into any context.
276  CurContext->addDecl(D);
277
278  // C++ [basic.scope]p4:
279  //   -- exactly one declaration shall declare a class name or
280  //   enumeration name that is not a typedef name and the other
281  //   declarations shall all refer to the same object or
282  //   enumerator, or all refer to functions and function templates;
283  //   in this case the class name or enumeration name is hidden.
284  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
285    // We are pushing the name of a tag (enum or class).
286    if (CurContext->getLookupContext()
287          == TD->getDeclContext()->getLookupContext()) {
288      // We're pushing the tag into the current context, which might
289      // require some reshuffling in the identifier resolver.
290      IdentifierResolver::iterator
291        I = IdResolver.begin(TD->getDeclName()),
292        IEnd = IdResolver.end();
293      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
294        NamedDecl *PrevDecl = *I;
295        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
296             PrevDecl = *I, ++I) {
297          if (TD->declarationReplaces(*I)) {
298            // This is a redeclaration. Remove it from the chain and
299            // break out, so that we'll add in the shadowed
300            // declaration.
301            S->RemoveDecl(DeclPtrTy::make(*I));
302            if (PrevDecl == *I) {
303              IdResolver.RemoveDecl(*I);
304              IdResolver.AddDecl(TD);
305              return;
306            } else {
307              IdResolver.RemoveDecl(*I);
308              break;
309            }
310          }
311        }
312
313        // There is already a declaration with the same name in the same
314        // scope, which is not a tag declaration. It must be found
315        // before we find the new declaration, so insert the new
316        // declaration at the end of the chain.
317        IdResolver.AddShadowedDecl(TD, PrevDecl);
318
319        return;
320      }
321    }
322  } else if ((isa<FunctionDecl>(D) &&
323              AllowOverloadingOfFunction(D, Context)) ||
324             isa<FunctionTemplateDecl>(D)) {
325    // We are pushing the name of a function or function template,
326    // which might be an overloaded name.
327    IdentifierResolver::iterator Redecl
328      = std::find_if(IdResolver.begin(D->getDeclName()),
329                     IdResolver.end(),
330                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
331                                  D));
332    if (Redecl != IdResolver.end() &&
333        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
334      // There is already a declaration of a function on our
335      // IdResolver chain. Replace it with this declaration.
336      S->RemoveDecl(DeclPtrTy::make(*Redecl));
337      IdResolver.RemoveDecl(*Redecl);
338    }
339  } else if (isa<ObjCInterfaceDecl>(D)) {
340    // We're pushing an Objective-C interface into the current
341    // context. If there is already an alias declaration, remove it first.
342    for (IdentifierResolver::iterator
343           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
344         I != IEnd; ++I) {
345      if (isa<ObjCCompatibleAliasDecl>(*I)) {
346        S->RemoveDecl(DeclPtrTy::make(*I));
347        IdResolver.RemoveDecl(*I);
348        break;
349      }
350    }
351  }
352
353  IdResolver.AddDecl(D);
354}
355
356void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
357  if (S->decl_empty()) return;
358  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
359	 "Scope shouldn't contain decls!");
360
361  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
362       I != E; ++I) {
363    Decl *TmpD = (*I).getAs<Decl>();
364    assert(TmpD && "This decl didn't get pushed??");
365
366    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
367    NamedDecl *D = cast<NamedDecl>(TmpD);
368
369    if (!D->getDeclName()) continue;
370
371    // Remove this name from our lexical scope.
372    IdResolver.RemoveDecl(D);
373  }
374}
375
376/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
377/// return 0 if one not found.
378ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
379  // The third "scope" argument is 0 since we aren't enabling lazy built-in
380  // creation from this context.
381  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
382
383  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
384}
385
386/// getNonFieldDeclScope - Retrieves the innermost scope, starting
387/// from S, where a non-field would be declared. This routine copes
388/// with the difference between C and C++ scoping rules in structs and
389/// unions. For example, the following code is well-formed in C but
390/// ill-formed in C++:
391/// @code
392/// struct S6 {
393///   enum { BAR } e;
394/// };
395///
396/// void test_S6() {
397///   struct S6 a;
398///   a.e = BAR;
399/// }
400/// @endcode
401/// For the declaration of BAR, this routine will return a different
402/// scope. The scope S will be the scope of the unnamed enumeration
403/// within S6. In C++, this routine will return the scope associated
404/// with S6, because the enumeration's scope is a transparent
405/// context but structures can contain non-field names. In C, this
406/// routine will return the translation unit scope, since the
407/// enumeration's scope is a transparent context and structures cannot
408/// contain non-field names.
409Scope *Sema::getNonFieldDeclScope(Scope *S) {
410  while (((S->getFlags() & Scope::DeclScope) == 0) ||
411         (S->getEntity() &&
412          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
413         (S->isClassScope() && !getLangOptions().CPlusPlus))
414    S = S->getParent();
415  return S;
416}
417
418void Sema::InitBuiltinVaListType() {
419  if (!Context.getBuiltinVaListType().isNull())
420    return;
421
422  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
423  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
424  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
425  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
426}
427
428/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
429/// file scope.  lazily create a decl for it. ForRedeclaration is true
430/// if we're creating this built-in in anticipation of redeclaring the
431/// built-in.
432NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
433                                     Scope *S, bool ForRedeclaration,
434                                     SourceLocation Loc) {
435  Builtin::ID BID = (Builtin::ID)bid;
436
437  if (Context.BuiltinInfo.hasVAListUse(BID))
438    InitBuiltinVaListType();
439
440  ASTContext::GetBuiltinTypeError Error;
441  QualType R = Context.GetBuiltinType(BID, Error);
442  switch (Error) {
443  case ASTContext::GE_None:
444    // Okay
445    break;
446
447  case ASTContext::GE_Missing_FILE:
448    if (ForRedeclaration)
449      Diag(Loc, diag::err_implicit_decl_requires_stdio)
450        << Context.BuiltinInfo.GetName(BID);
451    return 0;
452  }
453
454  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
455    Diag(Loc, diag::ext_implicit_lib_function_decl)
456      << Context.BuiltinInfo.GetName(BID)
457      << R;
458    if (Context.BuiltinInfo.getHeaderName(BID) &&
459        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
460          != Diagnostic::Ignored)
461      Diag(Loc, diag::note_please_include_header)
462        << Context.BuiltinInfo.getHeaderName(BID)
463        << Context.BuiltinInfo.GetName(BID);
464  }
465
466  FunctionDecl *New = FunctionDecl::Create(Context,
467                                           Context.getTranslationUnitDecl(),
468                                           Loc, II, R,
469                                           FunctionDecl::Extern, false,
470                                           /*hasPrototype=*/true);
471  New->setImplicit();
472
473  // Create Decl objects for each parameter, adding them to the
474  // FunctionDecl.
475  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
476    llvm::SmallVector<ParmVarDecl*, 16> Params;
477    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
478      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
479                                           FT->getArgType(i), VarDecl::None, 0));
480    New->setParams(Context, Params.data(), Params.size());
481  }
482
483  AddKnownFunctionAttributes(New);
484
485  // TUScope is the translation-unit scope to insert this function into.
486  // FIXME: This is hideous. We need to teach PushOnScopeChains to
487  // relate Scopes to DeclContexts, and probably eliminate CurContext
488  // entirely, but we're not there yet.
489  DeclContext *SavedContext = CurContext;
490  CurContext = Context.getTranslationUnitDecl();
491  PushOnScopeChains(New, TUScope);
492  CurContext = SavedContext;
493  return New;
494}
495
496/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
497/// everything from the standard library is defined.
498NamespaceDecl *Sema::GetStdNamespace() {
499  if (!StdNamespace) {
500    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
501    DeclContext *Global = Context.getTranslationUnitDecl();
502    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
503    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
504  }
505  return StdNamespace;
506}
507
508/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
509/// same name and scope as a previous declaration 'Old'.  Figure out
510/// how to resolve this situation, merging decls or emitting
511/// diagnostics as appropriate. If there was an error, set New to be invalid.
512///
513void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
514  // If either decl is known invalid already, set the new one to be invalid and
515  // don't bother doing any merging checks.
516  if (New->isInvalidDecl() || OldD->isInvalidDecl())
517    return New->setInvalidDecl();
518
519  // Allow multiple definitions for ObjC built-in typedefs.
520  // FIXME: Verify the underlying types are equivalent!
521  if (getLangOptions().ObjC1) {
522    const IdentifierInfo *TypeID = New->getIdentifier();
523    switch (TypeID->getLength()) {
524    default: break;
525    case 2:
526      if (!TypeID->isStr("id"))
527        break;
528      // Install the built-in type for 'id', ignoring the current definition.
529      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
530      return;
531    case 5:
532      if (!TypeID->isStr("Class"))
533        break;
534      // Install the built-in type for 'Class', ignoring the current definition.
535      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
536      return;
537    case 3:
538      if (!TypeID->isStr("SEL"))
539        break;
540      Context.setObjCSelType(Context.getTypeDeclType(New));
541      return;
542    case 8:
543      if (!TypeID->isStr("Protocol"))
544        break;
545      Context.setObjCProtoType(New->getUnderlyingType());
546      return;
547    }
548    // Fall through - the typedef name was not a builtin type.
549  }
550  // Verify the old decl was also a type.
551  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
552  if (!Old) {
553    Diag(New->getLocation(), diag::err_redefinition_different_kind)
554      << New->getDeclName();
555    if (OldD->getLocation().isValid())
556      Diag(OldD->getLocation(), diag::note_previous_definition);
557    return New->setInvalidDecl();
558  }
559
560  // Determine the "old" type we'll use for checking and diagnostics.
561  QualType OldType;
562  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
563    OldType = OldTypedef->getUnderlyingType();
564  else
565    OldType = Context.getTypeDeclType(Old);
566
567  // If the typedef types are not identical, reject them in all languages and
568  // with any extensions enabled.
569
570  if (OldType != New->getUnderlyingType() &&
571      Context.getCanonicalType(OldType) !=
572      Context.getCanonicalType(New->getUnderlyingType())) {
573    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
574      << New->getUnderlyingType() << OldType;
575    if (Old->getLocation().isValid())
576      Diag(Old->getLocation(), diag::note_previous_definition);
577    return New->setInvalidDecl();
578  }
579
580  if (getLangOptions().Microsoft)
581    return;
582
583  // C++ [dcl.typedef]p2:
584  //   In a given non-class scope, a typedef specifier can be used to
585  //   redefine the name of any type declared in that scope to refer
586  //   to the type to which it already refers.
587  if (getLangOptions().CPlusPlus) {
588    if (!isa<CXXRecordDecl>(CurContext))
589      return;
590    Diag(New->getLocation(), diag::err_redefinition)
591      << New->getDeclName();
592    Diag(Old->getLocation(), diag::note_previous_definition);
593    return New->setInvalidDecl();
594  }
595
596  // If we have a redefinition of a typedef in C, emit a warning.  This warning
597  // is normally mapped to an error, but can be controlled with
598  // -Wtypedef-redefinition.  If either the original or the redefinition is
599  // in a system header, don't emit this for compatibility with GCC.
600  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
601      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
602       Context.getSourceManager().isInSystemHeader(New->getLocation())))
603    return;
604
605  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
606    << New->getDeclName();
607  Diag(Old->getLocation(), diag::note_previous_definition);
608  return;
609}
610
611/// DeclhasAttr - returns true if decl Declaration already has the target
612/// attribute.
613static bool
614DeclHasAttr(const Decl *decl, const Attr *target) {
615  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
616    if (attr->getKind() == target->getKind())
617      return true;
618
619  return false;
620}
621
622/// MergeAttributes - append attributes from the Old decl to the New one.
623static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
624  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
625    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
626      Attr *NewAttr = attr->clone(C);
627      NewAttr->setInherited(true);
628      New->addAttr(NewAttr);
629    }
630  }
631}
632
633/// Used in MergeFunctionDecl to keep track of function parameters in
634/// C.
635struct GNUCompatibleParamWarning {
636  ParmVarDecl *OldParm;
637  ParmVarDecl *NewParm;
638  QualType PromotedType;
639};
640
641/// MergeFunctionDecl - We just parsed a function 'New' from
642/// declarator D which has the same name and scope as a previous
643/// declaration 'Old'.  Figure out how to resolve this situation,
644/// merging decls or emitting diagnostics as appropriate.
645///
646/// In C++, New and Old must be declarations that are not
647/// overloaded. Use IsOverload to determine whether New and Old are
648/// overloaded, and to select the Old declaration that New should be
649/// merged with.
650///
651/// Returns true if there was an error, false otherwise.
652bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
653  assert(!isa<OverloadedFunctionDecl>(OldD) &&
654         "Cannot merge with an overloaded function declaration");
655
656  // Verify the old decl was also a function.
657  FunctionDecl *Old = 0;
658  if (FunctionTemplateDecl *OldFunctionTemplate
659        = dyn_cast<FunctionTemplateDecl>(OldD))
660    Old = OldFunctionTemplate->getTemplatedDecl();
661  else
662    Old = dyn_cast<FunctionDecl>(OldD);
663  if (!Old) {
664    Diag(New->getLocation(), diag::err_redefinition_different_kind)
665      << New->getDeclName();
666    Diag(OldD->getLocation(), diag::note_previous_definition);
667    return true;
668  }
669
670  // Determine whether the previous declaration was a definition,
671  // implicit declaration, or a declaration.
672  diag::kind PrevDiag;
673  if (Old->isThisDeclarationADefinition())
674    PrevDiag = diag::note_previous_definition;
675  else if (Old->isImplicit())
676    PrevDiag = diag::note_previous_implicit_declaration;
677  else
678    PrevDiag = diag::note_previous_declaration;
679
680  QualType OldQType = Context.getCanonicalType(Old->getType());
681  QualType NewQType = Context.getCanonicalType(New->getType());
682
683  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
684      New->getStorageClass() == FunctionDecl::Static &&
685      Old->getStorageClass() != FunctionDecl::Static) {
686    Diag(New->getLocation(), diag::err_static_non_static)
687      << New;
688    Diag(Old->getLocation(), PrevDiag);
689    return true;
690  }
691
692  if (getLangOptions().CPlusPlus) {
693    // (C++98 13.1p2):
694    //   Certain function declarations cannot be overloaded:
695    //     -- Function declarations that differ only in the return type
696    //        cannot be overloaded.
697    QualType OldReturnType
698      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
699    QualType NewReturnType
700      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
701    if (OldReturnType != NewReturnType) {
702      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
703      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
704      return true;
705    }
706
707    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
708    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
709    if (OldMethod && NewMethod &&
710        NewMethod->getLexicalDeclContext()->isRecord()) {
711      //    -- Member function declarations with the same name and the
712      //       same parameter types cannot be overloaded if any of them
713      //       is a static member function declaration.
714      if (OldMethod->isStatic() || NewMethod->isStatic()) {
715        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
716        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
717        return true;
718      }
719
720      // C++ [class.mem]p1:
721      //   [...] A member shall not be declared twice in the
722      //   member-specification, except that a nested class or member
723      //   class template can be declared and then later defined.
724      unsigned NewDiag;
725      if (isa<CXXConstructorDecl>(OldMethod))
726        NewDiag = diag::err_constructor_redeclared;
727      else if (isa<CXXDestructorDecl>(NewMethod))
728        NewDiag = diag::err_destructor_redeclared;
729      else if (isa<CXXConversionDecl>(NewMethod))
730        NewDiag = diag::err_conv_function_redeclared;
731      else
732        NewDiag = diag::err_member_redeclared;
733
734      Diag(New->getLocation(), NewDiag);
735      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
736    }
737
738    // (C++98 8.3.5p3):
739    //   All declarations for a function shall agree exactly in both the
740    //   return type and the parameter-type-list.
741    if (OldQType == NewQType)
742      return MergeCompatibleFunctionDecls(New, Old);
743
744    // Fall through for conflicting redeclarations and redefinitions.
745  }
746
747  // C: Function types need to be compatible, not identical. This handles
748  // duplicate function decls like "void f(int); void f(enum X);" properly.
749  if (!getLangOptions().CPlusPlus &&
750      Context.typesAreCompatible(OldQType, NewQType)) {
751    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
752    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
753    const FunctionProtoType *OldProto = 0;
754    if (isa<FunctionNoProtoType>(NewFuncType) &&
755        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
756      // The old declaration provided a function prototype, but the
757      // new declaration does not. Merge in the prototype.
758      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
759      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
760                                                 OldProto->arg_type_end());
761      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
762                                         ParamTypes.data(), ParamTypes.size(),
763                                         OldProto->isVariadic(),
764                                         OldProto->getTypeQuals());
765      New->setType(NewQType);
766      New->setHasInheritedPrototype();
767
768      // Synthesize a parameter for each argument type.
769      llvm::SmallVector<ParmVarDecl*, 16> Params;
770      for (FunctionProtoType::arg_type_iterator
771             ParamType = OldProto->arg_type_begin(),
772             ParamEnd = OldProto->arg_type_end();
773           ParamType != ParamEnd; ++ParamType) {
774        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
775                                                 SourceLocation(), 0,
776                                                 *ParamType, VarDecl::None,
777                                                 0);
778        Param->setImplicit();
779        Params.push_back(Param);
780      }
781
782      New->setParams(Context, Params.data(), Params.size());
783    }
784
785    return MergeCompatibleFunctionDecls(New, Old);
786  }
787
788  // GNU C permits a K&R definition to follow a prototype declaration
789  // if the declared types of the parameters in the K&R definition
790  // match the types in the prototype declaration, even when the
791  // promoted types of the parameters from the K&R definition differ
792  // from the types in the prototype. GCC then keeps the types from
793  // the prototype.
794  //
795  // If a variadic prototype is followed by a non-variadic K&R definition,
796  // the K&R definition becomes variadic.  This is sort of an edge case, but
797  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
798  // C99 6.9.1p8.
799  if (!getLangOptions().CPlusPlus &&
800      Old->hasPrototype() && !New->hasPrototype() &&
801      New->getType()->getAsFunctionProtoType() &&
802      Old->getNumParams() == New->getNumParams()) {
803    llvm::SmallVector<QualType, 16> ArgTypes;
804    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
805    const FunctionProtoType *OldProto
806      = Old->getType()->getAsFunctionProtoType();
807    const FunctionProtoType *NewProto
808      = New->getType()->getAsFunctionProtoType();
809
810    // Determine whether this is the GNU C extension.
811    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
812                                               NewProto->getResultType());
813    bool LooseCompatible = !MergedReturn.isNull();
814    for (unsigned Idx = 0, End = Old->getNumParams();
815         LooseCompatible && Idx != End; ++Idx) {
816      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
817      ParmVarDecl *NewParm = New->getParamDecl(Idx);
818      if (Context.typesAreCompatible(OldParm->getType(),
819                                     NewProto->getArgType(Idx))) {
820        ArgTypes.push_back(NewParm->getType());
821      } else if (Context.typesAreCompatible(OldParm->getType(),
822                                            NewParm->getType())) {
823        GNUCompatibleParamWarning Warn
824          = { OldParm, NewParm, NewProto->getArgType(Idx) };
825        Warnings.push_back(Warn);
826        ArgTypes.push_back(NewParm->getType());
827      } else
828        LooseCompatible = false;
829    }
830
831    if (LooseCompatible) {
832      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
833        Diag(Warnings[Warn].NewParm->getLocation(),
834             diag::ext_param_promoted_not_compatible_with_prototype)
835          << Warnings[Warn].PromotedType
836          << Warnings[Warn].OldParm->getType();
837        Diag(Warnings[Warn].OldParm->getLocation(),
838             diag::note_previous_declaration);
839      }
840
841      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
842                                           ArgTypes.size(),
843                                           OldProto->isVariadic(), 0));
844      return MergeCompatibleFunctionDecls(New, Old);
845    }
846
847    // Fall through to diagnose conflicting types.
848  }
849
850  // A function that has already been declared has been redeclared or defined
851  // with a different type- show appropriate diagnostic
852  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
853    // The user has declared a builtin function with an incompatible
854    // signature.
855    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
856      // The function the user is redeclaring is a library-defined
857      // function like 'malloc' or 'printf'. Warn about the
858      // redeclaration, then pretend that we don't know about this
859      // library built-in.
860      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
861      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
862        << Old << Old->getType();
863      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
864      Old->setInvalidDecl();
865      return false;
866    }
867
868    PrevDiag = diag::note_previous_builtin_declaration;
869  }
870
871  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
872  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
873  return true;
874}
875
876/// \brief Completes the merge of two function declarations that are
877/// known to be compatible.
878///
879/// This routine handles the merging of attributes and other
880/// properties of function declarations form the old declaration to
881/// the new declaration, once we know that New is in fact a
882/// redeclaration of Old.
883///
884/// \returns false
885bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
886  // Merge the attributes
887  MergeAttributes(New, Old, Context);
888
889  // Merge the storage class.
890  if (Old->getStorageClass() != FunctionDecl::Extern)
891    New->setStorageClass(Old->getStorageClass());
892
893  // Merge "inline"
894  if (Old->isInline())
895    New->setInline(true);
896
897  // If this function declaration by itself qualifies as a C99 inline
898  // definition (C99 6.7.4p6), but the previous definition did not,
899  // then the function is not a C99 inline definition.
900  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
901    New->setC99InlineDefinition(false);
902  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
903    // Mark all preceding definitions as not being C99 inline definitions.
904    for (const FunctionDecl *Prev = Old; Prev;
905         Prev = Prev->getPreviousDeclaration())
906      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
907  }
908
909  // Merge "pure" flag.
910  if (Old->isPure())
911    New->setPure();
912
913  // Merge the "deleted" flag.
914  if (Old->isDeleted())
915    New->setDeleted();
916
917  if (getLangOptions().CPlusPlus)
918    return MergeCXXFunctionDecl(New, Old);
919
920  return false;
921}
922
923/// MergeVarDecl - We just parsed a variable 'New' which has the same name
924/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
925/// situation, merging decls or emitting diagnostics as appropriate.
926///
927/// Tentative definition rules (C99 6.9.2p2) are checked by
928/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
929/// definitions here, since the initializer hasn't been attached.
930///
931void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
932  // If either decl is invalid, make sure the new one is marked invalid and
933  // don't do any other checking.
934  if (New->isInvalidDecl() || OldD->isInvalidDecl())
935    return New->setInvalidDecl();
936
937  // Verify the old decl was also a variable.
938  VarDecl *Old = dyn_cast<VarDecl>(OldD);
939  if (!Old) {
940    Diag(New->getLocation(), diag::err_redefinition_different_kind)
941      << New->getDeclName();
942    Diag(OldD->getLocation(), diag::note_previous_definition);
943    return New->setInvalidDecl();
944  }
945
946  MergeAttributes(New, Old, Context);
947
948  // Merge the types
949  QualType MergedT;
950  if (getLangOptions().CPlusPlus) {
951    if (Context.hasSameType(New->getType(), Old->getType()))
952      MergedT = New->getType();
953  } else {
954    MergedT = Context.mergeTypes(New->getType(), Old->getType());
955  }
956  if (MergedT.isNull()) {
957    Diag(New->getLocation(), diag::err_redefinition_different_type)
958      << New->getDeclName();
959    Diag(Old->getLocation(), diag::note_previous_definition);
960    return New->setInvalidDecl();
961  }
962  New->setType(MergedT);
963
964  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
965  if (New->getStorageClass() == VarDecl::Static &&
966      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
967    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
968    Diag(Old->getLocation(), diag::note_previous_definition);
969    return New->setInvalidDecl();
970  }
971  // C99 6.2.2p4:
972  //   For an identifier declared with the storage-class specifier
973  //   extern in a scope in which a prior declaration of that
974  //   identifier is visible,23) if the prior declaration specifies
975  //   internal or external linkage, the linkage of the identifier at
976  //   the later declaration is the same as the linkage specified at
977  //   the prior declaration. If no prior declaration is visible, or
978  //   if the prior declaration specifies no linkage, then the
979  //   identifier has external linkage.
980  if (New->hasExternalStorage() && Old->hasLinkage())
981    /* Okay */;
982  else if (New->getStorageClass() != VarDecl::Static &&
983           Old->getStorageClass() == VarDecl::Static) {
984    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
985    Diag(Old->getLocation(), diag::note_previous_definition);
986    return New->setInvalidDecl();
987  }
988
989  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
990
991  // FIXME: The test for external storage here seems wrong? We still
992  // need to check for mismatches.
993  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
994      // Don't complain about out-of-line definitions of static members.
995      !(Old->getLexicalDeclContext()->isRecord() &&
996        !New->getLexicalDeclContext()->isRecord())) {
997    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
998    Diag(Old->getLocation(), diag::note_previous_definition);
999    return New->setInvalidDecl();
1000  }
1001
1002  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1003    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1004    Diag(Old->getLocation(), diag::note_previous_definition);
1005  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1006    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1007    Diag(Old->getLocation(), diag::note_previous_definition);
1008  }
1009
1010  // Keep a chain of previous declarations.
1011  New->setPreviousDeclaration(Old);
1012}
1013
1014/// CheckParmsForFunctionDef - Check that the parameters of the given
1015/// function are appropriate for the definition of a function. This
1016/// takes care of any checks that cannot be performed on the
1017/// declaration itself, e.g., that the types of each of the function
1018/// parameters are complete.
1019bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1020  bool HasInvalidParm = false;
1021  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1022    ParmVarDecl *Param = FD->getParamDecl(p);
1023
1024    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1025    // function declarator that is part of a function definition of
1026    // that function shall not have incomplete type.
1027    //
1028    // This is also C++ [dcl.fct]p6.
1029    if (!Param->isInvalidDecl() &&
1030        RequireCompleteType(Param->getLocation(), Param->getType(),
1031                               diag::err_typecheck_decl_incomplete_type)) {
1032      Param->setInvalidDecl();
1033      HasInvalidParm = true;
1034    }
1035
1036    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1037    // declaration of each parameter shall include an identifier.
1038    if (Param->getIdentifier() == 0 &&
1039        !Param->isImplicit() &&
1040        !getLangOptions().CPlusPlus)
1041      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1042  }
1043
1044  return HasInvalidParm;
1045}
1046
1047/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1048/// no declarator (e.g. "struct foo;") is parsed.
1049Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1050  // FIXME: Error on auto/register at file scope
1051  // FIXME: Error on inline/virtual/explicit
1052  // FIXME: Error on invalid restrict
1053  // FIXME: Warn on useless __thread
1054  // FIXME: Warn on useless const/volatile
1055  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1056  // FIXME: Warn on useless attributes
1057  TagDecl *Tag = 0;
1058  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1059      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1060      DS.getTypeSpecType() == DeclSpec::TST_union ||
1061      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1062    if (!DS.getTypeRep()) // We probably had an error
1063      return DeclPtrTy();
1064
1065    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1066  }
1067
1068  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1069    if (!Record->getDeclName() && Record->isDefinition() &&
1070        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1071      if (getLangOptions().CPlusPlus ||
1072          Record->getDeclContext()->isRecord())
1073        return BuildAnonymousStructOrUnion(S, DS, Record);
1074
1075      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1076        << DS.getSourceRange();
1077    }
1078
1079    // Microsoft allows unnamed struct/union fields. Don't complain
1080    // about them.
1081    // FIXME: Should we support Microsoft's extensions in this area?
1082    if (Record->getDeclName() && getLangOptions().Microsoft)
1083      return DeclPtrTy::make(Tag);
1084  }
1085
1086  if (!DS.isMissingDeclaratorOk() &&
1087      DS.getTypeSpecType() != DeclSpec::TST_error) {
1088    // Warn about typedefs of enums without names, since this is an
1089    // extension in both Microsoft an GNU.
1090    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1091        Tag && isa<EnumDecl>(Tag)) {
1092      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1093        << DS.getSourceRange();
1094      return DeclPtrTy::make(Tag);
1095    }
1096
1097    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1098      << DS.getSourceRange();
1099    return DeclPtrTy();
1100  }
1101
1102  return DeclPtrTy::make(Tag);
1103}
1104
1105/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1106/// anonymous struct or union AnonRecord into the owning context Owner
1107/// and scope S. This routine will be invoked just after we realize
1108/// that an unnamed union or struct is actually an anonymous union or
1109/// struct, e.g.,
1110///
1111/// @code
1112/// union {
1113///   int i;
1114///   float f;
1115/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1116///    // f into the surrounding scope.x
1117/// @endcode
1118///
1119/// This routine is recursive, injecting the names of nested anonymous
1120/// structs/unions into the owning context and scope as well.
1121bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1122                                               RecordDecl *AnonRecord) {
1123  bool Invalid = false;
1124  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1125                               FEnd = AnonRecord->field_end();
1126       F != FEnd; ++F) {
1127    if ((*F)->getDeclName()) {
1128      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1129                                                LookupOrdinaryName, true);
1130      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1131        // C++ [class.union]p2:
1132        //   The names of the members of an anonymous union shall be
1133        //   distinct from the names of any other entity in the
1134        //   scope in which the anonymous union is declared.
1135        unsigned diagKind
1136          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1137                                 : diag::err_anonymous_struct_member_redecl;
1138        Diag((*F)->getLocation(), diagKind)
1139          << (*F)->getDeclName();
1140        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1141        Invalid = true;
1142      } else {
1143        // C++ [class.union]p2:
1144        //   For the purpose of name lookup, after the anonymous union
1145        //   definition, the members of the anonymous union are
1146        //   considered to have been defined in the scope in which the
1147        //   anonymous union is declared.
1148        Owner->makeDeclVisibleInContext(*F);
1149        S->AddDecl(DeclPtrTy::make(*F));
1150        IdResolver.AddDecl(*F);
1151      }
1152    } else if (const RecordType *InnerRecordType
1153                 = (*F)->getType()->getAsRecordType()) {
1154      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1155      if (InnerRecord->isAnonymousStructOrUnion())
1156        Invalid = Invalid ||
1157          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1158    }
1159  }
1160
1161  return Invalid;
1162}
1163
1164/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1165/// anonymous structure or union. Anonymous unions are a C++ feature
1166/// (C++ [class.union]) and a GNU C extension; anonymous structures
1167/// are a GNU C and GNU C++ extension.
1168Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1169                                                  RecordDecl *Record) {
1170  DeclContext *Owner = Record->getDeclContext();
1171
1172  // Diagnose whether this anonymous struct/union is an extension.
1173  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1174    Diag(Record->getLocation(), diag::ext_anonymous_union);
1175  else if (!Record->isUnion())
1176    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1177
1178  // C and C++ require different kinds of checks for anonymous
1179  // structs/unions.
1180  bool Invalid = false;
1181  if (getLangOptions().CPlusPlus) {
1182    const char* PrevSpec = 0;
1183    // C++ [class.union]p3:
1184    //   Anonymous unions declared in a named namespace or in the
1185    //   global namespace shall be declared static.
1186    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1187        (isa<TranslationUnitDecl>(Owner) ||
1188         (isa<NamespaceDecl>(Owner) &&
1189          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1190      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1191      Invalid = true;
1192
1193      // Recover by adding 'static'.
1194      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
1195    }
1196    // C++ [class.union]p3:
1197    //   A storage class is not allowed in a declaration of an
1198    //   anonymous union in a class scope.
1199    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1200             isa<RecordDecl>(Owner)) {
1201      Diag(DS.getStorageClassSpecLoc(),
1202           diag::err_anonymous_union_with_storage_spec);
1203      Invalid = true;
1204
1205      // Recover by removing the storage specifier.
1206      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1207                             PrevSpec);
1208    }
1209
1210    // C++ [class.union]p2:
1211    //   The member-specification of an anonymous union shall only
1212    //   define non-static data members. [Note: nested types and
1213    //   functions cannot be declared within an anonymous union. ]
1214    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1215                                 MemEnd = Record->decls_end();
1216         Mem != MemEnd; ++Mem) {
1217      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1218        // C++ [class.union]p3:
1219        //   An anonymous union shall not have private or protected
1220        //   members (clause 11).
1221        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1222          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1223            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1224          Invalid = true;
1225        }
1226      } else if ((*Mem)->isImplicit()) {
1227        // Any implicit members are fine.
1228      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1229        // This is a type that showed up in an
1230        // elaborated-type-specifier inside the anonymous struct or
1231        // union, but which actually declares a type outside of the
1232        // anonymous struct or union. It's okay.
1233      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1234        if (!MemRecord->isAnonymousStructOrUnion() &&
1235            MemRecord->getDeclName()) {
1236          // This is a nested type declaration.
1237          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1238            << (int)Record->isUnion();
1239          Invalid = true;
1240        }
1241      } else {
1242        // We have something that isn't a non-static data
1243        // member. Complain about it.
1244        unsigned DK = diag::err_anonymous_record_bad_member;
1245        if (isa<TypeDecl>(*Mem))
1246          DK = diag::err_anonymous_record_with_type;
1247        else if (isa<FunctionDecl>(*Mem))
1248          DK = diag::err_anonymous_record_with_function;
1249        else if (isa<VarDecl>(*Mem))
1250          DK = diag::err_anonymous_record_with_static;
1251        Diag((*Mem)->getLocation(), DK)
1252            << (int)Record->isUnion();
1253          Invalid = true;
1254      }
1255    }
1256  }
1257
1258  if (!Record->isUnion() && !Owner->isRecord()) {
1259    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1260      << (int)getLangOptions().CPlusPlus;
1261    Invalid = true;
1262  }
1263
1264  // Create a declaration for this anonymous struct/union.
1265  NamedDecl *Anon = 0;
1266  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1267    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1268                             /*IdentifierInfo=*/0,
1269                             Context.getTypeDeclType(Record),
1270                             /*BitWidth=*/0, /*Mutable=*/false,
1271                             DS.getSourceRange().getBegin());
1272    Anon->setAccess(AS_public);
1273    if (getLangOptions().CPlusPlus)
1274      FieldCollector->Add(cast<FieldDecl>(Anon));
1275  } else {
1276    VarDecl::StorageClass SC;
1277    switch (DS.getStorageClassSpec()) {
1278    default: assert(0 && "Unknown storage class!");
1279    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1280    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1281    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1282    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1283    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1284    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1285    case DeclSpec::SCS_mutable:
1286      // mutable can only appear on non-static class members, so it's always
1287      // an error here
1288      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1289      Invalid = true;
1290      SC = VarDecl::None;
1291      break;
1292    }
1293
1294    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1295                           /*IdentifierInfo=*/0,
1296                           Context.getTypeDeclType(Record),
1297                           SC, DS.getSourceRange().getBegin());
1298  }
1299  Anon->setImplicit();
1300
1301  // Add the anonymous struct/union object to the current
1302  // context. We'll be referencing this object when we refer to one of
1303  // its members.
1304  Owner->addDecl(Anon);
1305
1306  // Inject the members of the anonymous struct/union into the owning
1307  // context and into the identifier resolver chain for name lookup
1308  // purposes.
1309  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1310    Invalid = true;
1311
1312  // Mark this as an anonymous struct/union type. Note that we do not
1313  // do this until after we have already checked and injected the
1314  // members of this anonymous struct/union type, because otherwise
1315  // the members could be injected twice: once by DeclContext when it
1316  // builds its lookup table, and once by
1317  // InjectAnonymousStructOrUnionMembers.
1318  Record->setAnonymousStructOrUnion(true);
1319
1320  if (Invalid)
1321    Anon->setInvalidDecl();
1322
1323  return DeclPtrTy::make(Anon);
1324}
1325
1326
1327/// GetNameForDeclarator - Determine the full declaration name for the
1328/// given Declarator.
1329DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1330  switch (D.getKind()) {
1331  case Declarator::DK_Abstract:
1332    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1333    return DeclarationName();
1334
1335  case Declarator::DK_Normal:
1336    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1337    return DeclarationName(D.getIdentifier());
1338
1339  case Declarator::DK_Constructor: {
1340    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1341    Ty = Context.getCanonicalType(Ty);
1342    return Context.DeclarationNames.getCXXConstructorName(Ty);
1343  }
1344
1345  case Declarator::DK_Destructor: {
1346    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1347    Ty = Context.getCanonicalType(Ty);
1348    return Context.DeclarationNames.getCXXDestructorName(Ty);
1349  }
1350
1351  case Declarator::DK_Conversion: {
1352    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1353    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1354    Ty = Context.getCanonicalType(Ty);
1355    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1356  }
1357
1358  case Declarator::DK_Operator:
1359    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1360    return Context.DeclarationNames.getCXXOperatorName(
1361                                                D.getOverloadedOperator());
1362  }
1363
1364  assert(false && "Unknown name kind");
1365  return DeclarationName();
1366}
1367
1368/// isNearlyMatchingFunction - Determine whether the C++ functions
1369/// Declaration and Definition are "nearly" matching. This heuristic
1370/// is used to improve diagnostics in the case where an out-of-line
1371/// function definition doesn't match any declaration within
1372/// the class or namespace.
1373static bool isNearlyMatchingFunction(ASTContext &Context,
1374                                     FunctionDecl *Declaration,
1375                                     FunctionDecl *Definition) {
1376  if (Declaration->param_size() != Definition->param_size())
1377    return false;
1378  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1379    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1380    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1381
1382    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1383    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1384    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1385      return false;
1386  }
1387
1388  return true;
1389}
1390
1391Sema::DeclPtrTy
1392Sema::HandleDeclarator(Scope *S, Declarator &D,
1393                       MultiTemplateParamsArg TemplateParamLists,
1394                       bool IsFunctionDefinition) {
1395  DeclarationName Name = GetNameForDeclarator(D);
1396
1397  // All of these full declarators require an identifier.  If it doesn't have
1398  // one, the ParsedFreeStandingDeclSpec action should be used.
1399  if (!Name) {
1400    if (!D.isInvalidType())  // Reject this if we think it is valid.
1401      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1402           diag::err_declarator_need_ident)
1403        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1404    return DeclPtrTy();
1405  }
1406
1407  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1408  // we find one that is.
1409  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1410         (S->getFlags() & Scope::TemplateParamScope) != 0)
1411    S = S->getParent();
1412
1413  DeclContext *DC;
1414  NamedDecl *PrevDecl;
1415  NamedDecl *New;
1416
1417  QualType R = GetTypeForDeclarator(D, S);
1418
1419  // See if this is a redefinition of a variable in the same scope.
1420  if (D.getCXXScopeSpec().isInvalid()) {
1421    DC = CurContext;
1422    PrevDecl = 0;
1423    D.setInvalidType();
1424  } else if (!D.getCXXScopeSpec().isSet()) {
1425    LookupNameKind NameKind = LookupOrdinaryName;
1426
1427    // If the declaration we're planning to build will be a function
1428    // or object with linkage, then look for another declaration with
1429    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1430    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1431      /* Do nothing*/;
1432    else if (R->isFunctionType()) {
1433      if (CurContext->isFunctionOrMethod() ||
1434          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1435        NameKind = LookupRedeclarationWithLinkage;
1436    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1437      NameKind = LookupRedeclarationWithLinkage;
1438    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1439             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1440      NameKind = LookupRedeclarationWithLinkage;
1441
1442    DC = CurContext;
1443    PrevDecl = LookupName(S, Name, NameKind, true,
1444                          NameKind == LookupRedeclarationWithLinkage,
1445                          D.getIdentifierLoc());
1446  } else { // Something like "int foo::x;"
1447    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1448    // FIXME: RequireCompleteDeclContext(D.getCXXScopeSpec()); ?
1449    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1450
1451    // C++ 7.3.1.2p2:
1452    // Members (including explicit specializations of templates) of a named
1453    // namespace can also be defined outside that namespace by explicit
1454    // qualification of the name being defined, provided that the entity being
1455    // defined was already declared in the namespace and the definition appears
1456    // after the point of declaration in a namespace that encloses the
1457    // declarations namespace.
1458    //
1459    // Note that we only check the context at this point. We don't yet
1460    // have enough information to make sure that PrevDecl is actually
1461    // the declaration we want to match. For example, given:
1462    //
1463    //   class X {
1464    //     void f();
1465    //     void f(float);
1466    //   };
1467    //
1468    //   void X::f(int) { } // ill-formed
1469    //
1470    // In this case, PrevDecl will point to the overload set
1471    // containing the two f's declared in X, but neither of them
1472    // matches.
1473
1474    // First check whether we named the global scope.
1475    if (isa<TranslationUnitDecl>(DC)) {
1476      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1477        << Name << D.getCXXScopeSpec().getRange();
1478    } else if (!CurContext->Encloses(DC)) {
1479      // The qualifying scope doesn't enclose the original declaration.
1480      // Emit diagnostic based on current scope.
1481      SourceLocation L = D.getIdentifierLoc();
1482      SourceRange R = D.getCXXScopeSpec().getRange();
1483      if (isa<FunctionDecl>(CurContext))
1484        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1485      else
1486        Diag(L, diag::err_invalid_declarator_scope)
1487          << Name << cast<NamedDecl>(DC) << R;
1488      D.setInvalidType();
1489    }
1490  }
1491
1492  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1493    // Maybe we will complain about the shadowed template parameter.
1494    if (!D.isInvalidType())
1495      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1496        D.setInvalidType();
1497
1498    // Just pretend that we didn't see the previous declaration.
1499    PrevDecl = 0;
1500  }
1501
1502  // In C++, the previous declaration we find might be a tag type
1503  // (class or enum). In this case, the new declaration will hide the
1504  // tag type. Note that this does does not apply if we're declaring a
1505  // typedef (C++ [dcl.typedef]p4).
1506  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1507      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1508    PrevDecl = 0;
1509
1510  bool Redeclaration = false;
1511  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1512    if (TemplateParamLists.size()) {
1513      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1514      return DeclPtrTy();
1515    }
1516
1517    New = ActOnTypedefDeclarator(S, D, DC, R, PrevDecl, Redeclaration);
1518  } else if (R->isFunctionType()) {
1519    New = ActOnFunctionDeclarator(S, D, DC, R, PrevDecl,
1520                                  move(TemplateParamLists),
1521                                  IsFunctionDefinition, Redeclaration);
1522  } else {
1523    New = ActOnVariableDeclarator(S, D, DC, R, PrevDecl,
1524                                  move(TemplateParamLists),
1525                                  Redeclaration);
1526  }
1527
1528  if (New == 0)
1529    return DeclPtrTy();
1530
1531  // If this has an identifier and is not an invalid redeclaration,
1532  // add it to the scope stack.
1533  if (Name && !(Redeclaration && New->isInvalidDecl()))
1534    PushOnScopeChains(New, S);
1535
1536  return DeclPtrTy::make(New);
1537}
1538
1539/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1540/// types into constant array types in certain situations which would otherwise
1541/// be errors (for GCC compatibility).
1542static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1543                                                    ASTContext &Context,
1544                                                    bool &SizeIsNegative) {
1545  // This method tries to turn a variable array into a constant
1546  // array even when the size isn't an ICE.  This is necessary
1547  // for compatibility with code that depends on gcc's buggy
1548  // constant expression folding, like struct {char x[(int)(char*)2];}
1549  SizeIsNegative = false;
1550
1551  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1552    QualType Pointee = PTy->getPointeeType();
1553    QualType FixedType =
1554        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1555    if (FixedType.isNull()) return FixedType;
1556    FixedType = Context.getPointerType(FixedType);
1557    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1558    return FixedType;
1559  }
1560
1561  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1562  if (!VLATy)
1563    return QualType();
1564  // FIXME: We should probably handle this case
1565  if (VLATy->getElementType()->isVariablyModifiedType())
1566    return QualType();
1567
1568  Expr::EvalResult EvalResult;
1569  if (!VLATy->getSizeExpr() ||
1570      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1571      !EvalResult.Val.isInt())
1572    return QualType();
1573
1574  llvm::APSInt &Res = EvalResult.Val.getInt();
1575  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1576    Expr* ArySizeExpr = VLATy->getSizeExpr();
1577    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1578    // so as to transfer ownership to the ConstantArrayWithExpr.
1579    // Alternatively, we could "clone" it (how?).
1580    // Since we don't know how to do things above, we just use the
1581    // very same Expr*.
1582    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1583                                                Res, ArySizeExpr,
1584                                                ArrayType::Normal, 0,
1585                                                VLATy->getBracketsRange());
1586  }
1587
1588  SizeIsNegative = true;
1589  return QualType();
1590}
1591
1592/// \brief Register the given locally-scoped external C declaration so
1593/// that it can be found later for redeclarations
1594void
1595Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1596                                       Scope *S) {
1597  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1598         "Decl is not a locally-scoped decl!");
1599  // Note that we have a locally-scoped external with this name.
1600  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1601
1602  if (!PrevDecl)
1603    return;
1604
1605  // If there was a previous declaration of this variable, it may be
1606  // in our identifier chain. Update the identifier chain with the new
1607  // declaration.
1608  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1609    // The previous declaration was found on the identifer resolver
1610    // chain, so remove it from its scope.
1611    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1612      S = S->getParent();
1613
1614    if (S)
1615      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1616  }
1617}
1618
1619/// \brief Diagnose function specifiers on a declaration of an identifier that
1620/// does not identify a function.
1621void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1622  // FIXME: We should probably indicate the identifier in question to avoid
1623  // confusion for constructs like "inline int a(), b;"
1624  if (D.getDeclSpec().isInlineSpecified())
1625    Diag(D.getDeclSpec().getInlineSpecLoc(),
1626         diag::err_inline_non_function);
1627
1628  if (D.getDeclSpec().isVirtualSpecified())
1629    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1630         diag::err_virtual_non_function);
1631
1632  if (D.getDeclSpec().isExplicitSpecified())
1633    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1634         diag::err_explicit_non_function);
1635}
1636
1637NamedDecl*
1638Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1639                             QualType R, Decl* PrevDecl, bool &Redeclaration) {
1640  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1641  if (D.getCXXScopeSpec().isSet()) {
1642    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1643      << D.getCXXScopeSpec().getRange();
1644    D.setInvalidType();
1645    // Pretend we didn't see the scope specifier.
1646    DC = 0;
1647  }
1648
1649  if (getLangOptions().CPlusPlus) {
1650    // Check that there are no default arguments (C++ only).
1651    CheckExtraCXXDefaultArguments(D);
1652  }
1653
1654  DiagnoseFunctionSpecifiers(D);
1655
1656  if (D.getDeclSpec().isThreadSpecified())
1657    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1658
1659  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1660  if (!NewTD) return 0;
1661
1662  if (D.isInvalidType())
1663    NewTD->setInvalidDecl();
1664
1665  // Handle attributes prior to checking for duplicates in MergeVarDecl
1666  ProcessDeclAttributes(S, NewTD, D);
1667  // Merge the decl with the existing one if appropriate. If the decl is
1668  // in an outer scope, it isn't the same thing.
1669  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1670    Redeclaration = true;
1671    MergeTypeDefDecl(NewTD, PrevDecl);
1672  }
1673
1674  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1675  // then it shall have block scope.
1676  QualType T = NewTD->getUnderlyingType();
1677  if (T->isVariablyModifiedType()) {
1678    CurFunctionNeedsScopeChecking = true;
1679
1680    if (S->getFnParent() == 0) {
1681      bool SizeIsNegative;
1682      QualType FixedTy =
1683          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1684      if (!FixedTy.isNull()) {
1685        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1686        NewTD->setUnderlyingType(FixedTy);
1687      } else {
1688        if (SizeIsNegative)
1689          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1690        else if (T->isVariableArrayType())
1691          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1692        else
1693          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1694        NewTD->setInvalidDecl();
1695      }
1696    }
1697  }
1698
1699  // If this is the C FILE type, notify the AST context.
1700  if (IdentifierInfo *II = NewTD->getIdentifier())
1701    if (!NewTD->isInvalidDecl() &&
1702        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit() &&
1703        II->isStr("FILE"))
1704      Context.setFILEDecl(NewTD);
1705
1706  return NewTD;
1707}
1708
1709/// \brief Determines whether the given declaration is an out-of-scope
1710/// previous declaration.
1711///
1712/// This routine should be invoked when name lookup has found a
1713/// previous declaration (PrevDecl) that is not in the scope where a
1714/// new declaration by the same name is being introduced. If the new
1715/// declaration occurs in a local scope, previous declarations with
1716/// linkage may still be considered previous declarations (C99
1717/// 6.2.2p4-5, C++ [basic.link]p6).
1718///
1719/// \param PrevDecl the previous declaration found by name
1720/// lookup
1721///
1722/// \param DC the context in which the new declaration is being
1723/// declared.
1724///
1725/// \returns true if PrevDecl is an out-of-scope previous declaration
1726/// for a new delcaration with the same name.
1727static bool
1728isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
1729                                ASTContext &Context) {
1730  if (!PrevDecl)
1731    return 0;
1732
1733  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
1734  // case we need to check each of the overloaded functions.
1735  if (!PrevDecl->hasLinkage())
1736    return false;
1737
1738  if (Context.getLangOptions().CPlusPlus) {
1739    // C++ [basic.link]p6:
1740    //   If there is a visible declaration of an entity with linkage
1741    //   having the same name and type, ignoring entities declared
1742    //   outside the innermost enclosing namespace scope, the block
1743    //   scope declaration declares that same entity and receives the
1744    //   linkage of the previous declaration.
1745    DeclContext *OuterContext = DC->getLookupContext();
1746    if (!OuterContext->isFunctionOrMethod())
1747      // This rule only applies to block-scope declarations.
1748      return false;
1749    else {
1750      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
1751      if (PrevOuterContext->isRecord())
1752        // We found a member function: ignore it.
1753        return false;
1754      else {
1755        // Find the innermost enclosing namespace for the new and
1756        // previous declarations.
1757        while (!OuterContext->isFileContext())
1758          OuterContext = OuterContext->getParent();
1759        while (!PrevOuterContext->isFileContext())
1760          PrevOuterContext = PrevOuterContext->getParent();
1761
1762        // The previous declaration is in a different namespace, so it
1763        // isn't the same function.
1764        if (OuterContext->getPrimaryContext() !=
1765            PrevOuterContext->getPrimaryContext())
1766          return false;
1767      }
1768    }
1769  }
1770
1771  return true;
1772}
1773
1774NamedDecl*
1775Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1776                              QualType R,NamedDecl* PrevDecl,
1777                              MultiTemplateParamsArg TemplateParamLists,
1778                              bool &Redeclaration) {
1779  DeclarationName Name = GetNameForDeclarator(D);
1780
1781  // Check that there are no default arguments (C++ only).
1782  if (getLangOptions().CPlusPlus)
1783    CheckExtraCXXDefaultArguments(D);
1784
1785  VarDecl *NewVD;
1786  VarDecl::StorageClass SC;
1787  switch (D.getDeclSpec().getStorageClassSpec()) {
1788  default: assert(0 && "Unknown storage class!");
1789  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1790  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1791  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1792  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1793  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1794  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1795  case DeclSpec::SCS_mutable:
1796    // mutable can only appear on non-static class members, so it's always
1797    // an error here
1798    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1799    D.setInvalidType();
1800    SC = VarDecl::None;
1801    break;
1802  }
1803
1804  IdentifierInfo *II = Name.getAsIdentifierInfo();
1805  if (!II) {
1806    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1807      << Name.getAsString();
1808    return 0;
1809  }
1810
1811  DiagnoseFunctionSpecifiers(D);
1812
1813  if (!DC->isRecord() && S->getFnParent() == 0) {
1814    // C99 6.9p2: The storage-class specifiers auto and register shall not
1815    // appear in the declaration specifiers in an external declaration.
1816    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1817
1818      // If this is a register variable with an asm label specified, then this
1819      // is a GNU extension.
1820      if (SC == VarDecl::Register && D.getAsmLabel())
1821        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
1822      else
1823        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1824      D.setInvalidType();
1825    }
1826  }
1827  if (DC->isRecord() && !CurContext->isRecord()) {
1828    // This is an out-of-line definition of a static data member.
1829    if (SC == VarDecl::Static) {
1830      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
1831           diag::err_static_out_of_line)
1832        << CodeModificationHint::CreateRemoval(
1833                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
1834    } else if (SC == VarDecl::None)
1835      SC = VarDecl::Static;
1836  }
1837  if (SC == VarDecl::Static) {
1838    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
1839      if (RD->isLocalClass())
1840        Diag(D.getIdentifierLoc(),
1841             diag::err_static_data_member_not_allowed_in_local_class)
1842          << Name << RD->getDeclName();
1843    }
1844  }
1845
1846  // Check that we can declare a template here.
1847  if (TemplateParamLists.size() &&
1848      CheckTemplateDeclScope(S, TemplateParamLists))
1849    return 0;
1850
1851  // Match up the template parameter lists with the scope specifier, then
1852  // determine whether we have a template or a template specialization.
1853  if (TemplateParameterList *TemplateParams
1854      = MatchTemplateParametersToScopeSpecifier(
1855                                  D.getDeclSpec().getSourceRange().getBegin(),
1856                                                D.getCXXScopeSpec(),
1857                        (TemplateParameterList**)TemplateParamLists.release(),
1858                                                 TemplateParamLists.size())) {
1859    if (TemplateParams->size() > 0) {
1860      // There is no such thing as a variable template.
1861      Diag(D.getIdentifierLoc(), diag::err_template_variable)
1862        << II
1863        << SourceRange(TemplateParams->getTemplateLoc(),
1864                       TemplateParams->getRAngleLoc());
1865      return 0;
1866    } else {
1867      // There is an extraneous 'template<>' for this variable. Complain
1868      // about it, but allow the declaration of the variable.
1869      Diag(TemplateParams->getTemplateLoc(), diag::err_template_variable)
1870        << II
1871        << SourceRange(TemplateParams->getTemplateLoc(),
1872                       TemplateParams->getRAngleLoc());
1873    }
1874  }
1875
1876  // The variable can not
1877  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1878                          II, R, SC,
1879                          // FIXME: Move to DeclGroup...
1880                          D.getDeclSpec().getSourceRange().getBegin());
1881
1882  if (D.isInvalidType())
1883    NewVD->setInvalidDecl();
1884
1885  if (D.getDeclSpec().isThreadSpecified()) {
1886    if (NewVD->hasLocalStorage())
1887      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
1888    else if (!Context.Target.isTLSSupported())
1889      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
1890    else
1891      NewVD->setThreadSpecified(true);
1892  }
1893
1894  // Set the lexical context. If the declarator has a C++ scope specifier, the
1895  // lexical context will be different from the semantic context.
1896  NewVD->setLexicalDeclContext(CurContext);
1897
1898  // Handle attributes prior to checking for duplicates in MergeVarDecl
1899  ProcessDeclAttributes(S, NewVD, D);
1900
1901  // Handle GNU asm-label extension (encoded as an attribute).
1902  if (Expr *E = (Expr*) D.getAsmLabel()) {
1903    // The parser guarantees this is a string.
1904    StringLiteral *SE = cast<StringLiteral>(E);
1905    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
1906                                                        SE->getByteLength())));
1907  }
1908
1909  // If name lookup finds a previous declaration that is not in the
1910  // same scope as the new declaration, this may still be an
1911  // acceptable redeclaration.
1912  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
1913      !(NewVD->hasLinkage() &&
1914        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
1915    PrevDecl = 0;
1916
1917  // Merge the decl with the existing one if appropriate.
1918  if (PrevDecl) {
1919    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1920      // The user tried to define a non-static data member
1921      // out-of-line (C++ [dcl.meaning]p1).
1922      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1923        << D.getCXXScopeSpec().getRange();
1924      PrevDecl = 0;
1925      NewVD->setInvalidDecl();
1926    }
1927  } else if (D.getCXXScopeSpec().isSet()) {
1928    // No previous declaration in the qualifying scope.
1929    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1930      << Name << D.getCXXScopeSpec().getRange();
1931    NewVD->setInvalidDecl();
1932  }
1933
1934  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
1935
1936  // If this is a locally-scoped extern C variable, update the map of
1937  // such variables.
1938  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
1939      !NewVD->isInvalidDecl())
1940    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
1941
1942  return NewVD;
1943}
1944
1945/// \brief Perform semantic checking on a newly-created variable
1946/// declaration.
1947///
1948/// This routine performs all of the type-checking required for a
1949/// variable declaration once it has been built. It is used both to
1950/// check variables after they have been parsed and their declarators
1951/// have been translated into a declaration, and to check variables
1952/// that have been instantiated from a template.
1953///
1954/// Sets NewVD->isInvalidDecl() if an error was encountered.
1955void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
1956                                    bool &Redeclaration) {
1957  // If the decl is already known invalid, don't check it.
1958  if (NewVD->isInvalidDecl())
1959    return;
1960
1961  QualType T = NewVD->getType();
1962
1963  if (T->isObjCInterfaceType()) {
1964    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
1965    return NewVD->setInvalidDecl();
1966  }
1967
1968  // The variable can not have an abstract class type.
1969  if (RequireNonAbstractType(NewVD->getLocation(), T,
1970                             diag::err_abstract_type_in_decl,
1971                             AbstractVariableType))
1972    return NewVD->setInvalidDecl();
1973
1974  // Emit an error if an address space was applied to decl with local storage.
1975  // This includes arrays of objects with address space qualifiers, but not
1976  // automatic variables that point to other address spaces.
1977  // ISO/IEC TR 18037 S5.1.2
1978  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
1979    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
1980    return NewVD->setInvalidDecl();
1981  }
1982
1983  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
1984      && !NewVD->hasAttr<BlocksAttr>())
1985    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
1986
1987  bool isVM = T->isVariablyModifiedType();
1988  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
1989      NewVD->hasAttr<BlocksAttr>())
1990    CurFunctionNeedsScopeChecking = true;
1991
1992  if ((isVM && NewVD->hasLinkage()) ||
1993      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
1994    bool SizeIsNegative;
1995    QualType FixedTy =
1996        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1997
1998    if (FixedTy.isNull() && T->isVariableArrayType()) {
1999      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2000      // FIXME: This won't give the correct result for
2001      // int a[10][n];
2002      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2003
2004      if (NewVD->isFileVarDecl())
2005        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2006        << SizeRange;
2007      else if (NewVD->getStorageClass() == VarDecl::Static)
2008        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2009        << SizeRange;
2010      else
2011        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2012        << SizeRange;
2013      return NewVD->setInvalidDecl();
2014    }
2015
2016    if (FixedTy.isNull()) {
2017      if (NewVD->isFileVarDecl())
2018        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2019      else
2020        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2021      return NewVD->setInvalidDecl();
2022    }
2023
2024    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2025    NewVD->setType(FixedTy);
2026  }
2027
2028  if (!PrevDecl && NewVD->isExternC(Context)) {
2029    // Since we did not find anything by this name and we're declaring
2030    // an extern "C" variable, look for a non-visible extern "C"
2031    // declaration with the same name.
2032    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2033      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2034    if (Pos != LocallyScopedExternalDecls.end())
2035      PrevDecl = Pos->second;
2036  }
2037
2038  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2039    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2040      << T;
2041    return NewVD->setInvalidDecl();
2042  }
2043
2044  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2045    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2046    return NewVD->setInvalidDecl();
2047  }
2048
2049  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2050    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2051    return NewVD->setInvalidDecl();
2052  }
2053
2054  if (PrevDecl) {
2055    Redeclaration = true;
2056    MergeVarDecl(NewVD, PrevDecl);
2057  }
2058}
2059
2060NamedDecl*
2061Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2062                              QualType R, NamedDecl* PrevDecl,
2063                              MultiTemplateParamsArg TemplateParamLists,
2064                              bool IsFunctionDefinition, bool &Redeclaration) {
2065  assert(R.getTypePtr()->isFunctionType());
2066
2067  DeclarationName Name = GetNameForDeclarator(D);
2068  FunctionDecl::StorageClass SC = FunctionDecl::None;
2069  switch (D.getDeclSpec().getStorageClassSpec()) {
2070  default: assert(0 && "Unknown storage class!");
2071  case DeclSpec::SCS_auto:
2072  case DeclSpec::SCS_register:
2073  case DeclSpec::SCS_mutable:
2074    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2075         diag::err_typecheck_sclass_func);
2076    D.setInvalidType();
2077    break;
2078  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2079  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2080  case DeclSpec::SCS_static: {
2081    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2082      // C99 6.7.1p5:
2083      //   The declaration of an identifier for a function that has
2084      //   block scope shall have no explicit storage-class specifier
2085      //   other than extern
2086      // See also (C++ [dcl.stc]p4).
2087      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2088           diag::err_static_block_func);
2089      SC = FunctionDecl::None;
2090    } else
2091      SC = FunctionDecl::Static;
2092    break;
2093  }
2094  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2095  }
2096
2097  if (D.getDeclSpec().isThreadSpecified())
2098    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2099
2100  bool isInline = D.getDeclSpec().isInlineSpecified();
2101  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2102  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2103
2104  // Check that the return type is not an abstract class type.
2105  // For record types, this is done by the AbstractClassUsageDiagnoser once
2106  // the class has been completely parsed.
2107  if (!DC->isRecord() &&
2108      RequireNonAbstractType(D.getIdentifierLoc(),
2109                             R->getAsFunctionType()->getResultType(),
2110                             diag::err_abstract_type_in_decl,
2111                             AbstractReturnType))
2112    D.setInvalidType();
2113
2114  // Do not allow returning a objc interface by-value.
2115  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2116    Diag(D.getIdentifierLoc(),
2117         diag::err_object_cannot_be_passed_returned_by_value) << 0
2118      << R->getAsFunctionType()->getResultType();
2119    D.setInvalidType();
2120  }
2121
2122  // Check that we can declare a template here.
2123  if (TemplateParamLists.size() &&
2124      CheckTemplateDeclScope(S, TemplateParamLists))
2125    return 0;
2126
2127  bool isVirtualOkay = false;
2128  FunctionDecl *NewFD;
2129  if (D.getKind() == Declarator::DK_Constructor) {
2130    // This is a C++ constructor declaration.
2131    assert(DC->isRecord() &&
2132           "Constructors can only be declared in a member context");
2133
2134    R = CheckConstructorDeclarator(D, R, SC);
2135
2136    // Create the new declaration
2137    NewFD = CXXConstructorDecl::Create(Context,
2138                                       cast<CXXRecordDecl>(DC),
2139                                       D.getIdentifierLoc(), Name, R,
2140                                       isExplicit, isInline,
2141                                       /*isImplicitlyDeclared=*/false);
2142  } else if (D.getKind() == Declarator::DK_Destructor) {
2143    // This is a C++ destructor declaration.
2144    if (DC->isRecord()) {
2145      R = CheckDestructorDeclarator(D, SC);
2146
2147      NewFD = CXXDestructorDecl::Create(Context,
2148                                        cast<CXXRecordDecl>(DC),
2149                                        D.getIdentifierLoc(), Name, R,
2150                                        isInline,
2151                                        /*isImplicitlyDeclared=*/false);
2152
2153      isVirtualOkay = true;
2154    } else {
2155      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2156
2157      // Create a FunctionDecl to satisfy the function definition parsing
2158      // code path.
2159      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2160                                   Name, R, SC, isInline,
2161                                   /*hasPrototype=*/true,
2162                                   // FIXME: Move to DeclGroup...
2163                                   D.getDeclSpec().getSourceRange().getBegin());
2164      D.setInvalidType();
2165    }
2166  } else if (D.getKind() == Declarator::DK_Conversion) {
2167    if (!DC->isRecord()) {
2168      Diag(D.getIdentifierLoc(),
2169           diag::err_conv_function_not_member);
2170      return 0;
2171    }
2172
2173    CheckConversionDeclarator(D, R, SC);
2174    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2175                                      D.getIdentifierLoc(), Name, R,
2176                                      isInline, isExplicit);
2177
2178    isVirtualOkay = true;
2179  } else if (DC->isRecord()) {
2180    // If the of the function is the same as the name of the record, then this
2181    // must be an invalid constructor that has a return type.
2182    // (The parser checks for a return type and makes the declarator a
2183    // constructor if it has no return type).
2184    // must have an invalid constructor that has a return type
2185    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2186      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2187        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2188        << SourceRange(D.getIdentifierLoc());
2189      return 0;
2190    }
2191
2192    // This is a C++ method declaration.
2193    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2194                                  D.getIdentifierLoc(), Name, R,
2195                                  (SC == FunctionDecl::Static), isInline);
2196
2197    isVirtualOkay = (SC != FunctionDecl::Static);
2198  } else {
2199    // Determine whether the function was written with a
2200    // prototype. This true when:
2201    //   - we're in C++ (where every function has a prototype),
2202    //   - there is a prototype in the declarator, or
2203    //   - the type R of the function is some kind of typedef or other reference
2204    //     to a type name (which eventually refers to a function type).
2205    bool HasPrototype =
2206       getLangOptions().CPlusPlus ||
2207       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2208       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2209
2210    NewFD = FunctionDecl::Create(Context, DC,
2211                                 D.getIdentifierLoc(),
2212                                 Name, R, SC, isInline, HasPrototype,
2213                                 // FIXME: Move to DeclGroup...
2214                                 D.getDeclSpec().getSourceRange().getBegin());
2215  }
2216
2217  if (D.isInvalidType())
2218    NewFD->setInvalidDecl();
2219
2220  // Set the lexical context. If the declarator has a C++
2221  // scope specifier, the lexical context will be different
2222  // from the semantic context.
2223  NewFD->setLexicalDeclContext(CurContext);
2224
2225  // Match up the template parameter lists with the scope specifier, then
2226  // determine whether we have a template or a template specialization.
2227  FunctionTemplateDecl *FunctionTemplate = 0;
2228  if (TemplateParameterList *TemplateParams
2229        = MatchTemplateParametersToScopeSpecifier(
2230                                  D.getDeclSpec().getSourceRange().getBegin(),
2231                                  D.getCXXScopeSpec(),
2232                        (TemplateParameterList**)TemplateParamLists.release(),
2233                                                  TemplateParamLists.size())) {
2234    if (TemplateParams->size() > 0) {
2235      // This is a function template
2236      FunctionTemplate = FunctionTemplateDecl::Create(Context, CurContext,
2237                                                      NewFD->getLocation(),
2238                                                      Name, TemplateParams,
2239                                                      NewFD);
2240      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2241    } else {
2242      // FIXME: Handle function template specializations
2243    }
2244  }
2245
2246  // C++ [dcl.fct.spec]p5:
2247  //   The virtual specifier shall only be used in declarations of
2248  //   nonstatic class member functions that appear within a
2249  //   member-specification of a class declaration; see 10.3.
2250  //
2251  if (isVirtual && !NewFD->isInvalidDecl()) {
2252    if (!isVirtualOkay) {
2253       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2254           diag::err_virtual_non_function);
2255    } else if (!CurContext->isRecord()) {
2256      // 'virtual' was specified outside of the class.
2257      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2258        << CodeModificationHint::CreateRemoval(
2259                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2260    } else {
2261      // Okay: Add virtual to the method.
2262      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2263      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2264      CurClass->setAggregate(false);
2265      CurClass->setPOD(false);
2266      CurClass->setPolymorphic(true);
2267      CurClass->setHasTrivialConstructor(false);
2268      CurClass->setHasTrivialCopyConstructor(false);
2269      CurClass->setHasTrivialCopyAssignment(false);
2270    }
2271  }
2272
2273  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2274    // Look for virtual methods in base classes that this method might override.
2275
2276    BasePaths Paths;
2277    if (LookupInBases(cast<CXXRecordDecl>(DC),
2278                      MemberLookupCriteria(NewMD), Paths)) {
2279      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2280           E = Paths.found_decls_end(); I != E; ++I) {
2281        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2282          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2283              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2284            NewMD->addOverriddenMethod(OldMD);
2285        }
2286      }
2287    }
2288  }
2289
2290  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2291      !CurContext->isRecord()) {
2292    // C++ [class.static]p1:
2293    //   A data or function member of a class may be declared static
2294    //   in a class definition, in which case it is a static member of
2295    //   the class.
2296
2297    // Complain about the 'static' specifier if it's on an out-of-line
2298    // member function definition.
2299    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2300         diag::err_static_out_of_line)
2301      << CodeModificationHint::CreateRemoval(
2302                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2303  }
2304
2305  // Handle GNU asm-label extension (encoded as an attribute).
2306  if (Expr *E = (Expr*) D.getAsmLabel()) {
2307    // The parser guarantees this is a string.
2308    StringLiteral *SE = cast<StringLiteral>(E);
2309    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2310                                                        SE->getByteLength())));
2311  }
2312
2313  // Copy the parameter declarations from the declarator D to the function
2314  // declaration NewFD, if they are available.  First scavenge them into Params.
2315  llvm::SmallVector<ParmVarDecl*, 16> Params;
2316  if (D.getNumTypeObjects() > 0) {
2317    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2318
2319    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2320    // function that takes no arguments, not a function that takes a
2321    // single void argument.
2322    // We let through "const void" here because Sema::GetTypeForDeclarator
2323    // already checks for that case.
2324    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2325        FTI.ArgInfo[0].Param &&
2326        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2327      // Empty arg list, don't push any params.
2328      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2329
2330      // In C++, the empty parameter-type-list must be spelled "void"; a
2331      // typedef of void is not permitted.
2332      if (getLangOptions().CPlusPlus &&
2333          Param->getType().getUnqualifiedType() != Context.VoidTy)
2334        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2335      // FIXME: Leaks decl?
2336    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2337      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2338        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2339        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2340        Param->setDeclContext(NewFD);
2341        Params.push_back(Param);
2342      }
2343    }
2344
2345  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2346    // When we're declaring a function with a typedef, typeof, etc as in the
2347    // following example, we'll need to synthesize (unnamed)
2348    // parameters for use in the declaration.
2349    //
2350    // @code
2351    // typedef void fn(int);
2352    // fn f;
2353    // @endcode
2354
2355    // Synthesize a parameter for each argument type.
2356    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2357         AE = FT->arg_type_end(); AI != AE; ++AI) {
2358      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2359                                               SourceLocation(), 0,
2360                                               *AI, VarDecl::None, 0);
2361      Param->setImplicit();
2362      Params.push_back(Param);
2363    }
2364  } else {
2365    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2366           "Should not need args for typedef of non-prototype fn");
2367  }
2368  // Finally, we know we have the right number of parameters, install them.
2369  NewFD->setParams(Context, Params.data(), Params.size());
2370
2371  // If name lookup finds a previous declaration that is not in the
2372  // same scope as the new declaration, this may still be an
2373  // acceptable redeclaration.
2374  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2375      !(NewFD->hasLinkage() &&
2376        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2377    PrevDecl = 0;
2378
2379  // Perform semantic checking on the function declaration.
2380  bool OverloadableAttrRequired = false; // FIXME: HACK!
2381  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2382                           /*FIXME:*/OverloadableAttrRequired);
2383
2384  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2385    // An out-of-line member function declaration must also be a
2386    // definition (C++ [dcl.meaning]p1).
2387    if (!IsFunctionDefinition) {
2388      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2389        << D.getCXXScopeSpec().getRange();
2390      NewFD->setInvalidDecl();
2391    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2392      // The user tried to provide an out-of-line definition for a
2393      // function that is a member of a class or namespace, but there
2394      // was no such member function declared (C++ [class.mfct]p2,
2395      // C++ [namespace.memdef]p2). For example:
2396      //
2397      // class X {
2398      //   void f() const;
2399      // };
2400      //
2401      // void X::f() { } // ill-formed
2402      //
2403      // Complain about this problem, and attempt to suggest close
2404      // matches (e.g., those that differ only in cv-qualifiers and
2405      // whether the parameter types are references).
2406      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2407        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2408      NewFD->setInvalidDecl();
2409
2410      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2411                                              true);
2412      assert(!Prev.isAmbiguous() &&
2413             "Cannot have an ambiguity in previous-declaration lookup");
2414      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2415           Func != FuncEnd; ++Func) {
2416        if (isa<FunctionDecl>(*Func) &&
2417            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2418          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2419      }
2420
2421      PrevDecl = 0;
2422    }
2423  }
2424
2425  // Handle attributes. We need to have merged decls when handling attributes
2426  // (for example to check for conflicts, etc).
2427  // FIXME: This needs to happen before we merge declarations. Then,
2428  // let attribute merging cope with attribute conflicts.
2429  ProcessDeclAttributes(S, NewFD, D);
2430  AddKnownFunctionAttributes(NewFD);
2431
2432  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2433    // If a function name is overloadable in C, then every function
2434    // with that name must be marked "overloadable".
2435    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2436      << Redeclaration << NewFD;
2437    if (PrevDecl)
2438      Diag(PrevDecl->getLocation(),
2439           diag::note_attribute_overloadable_prev_overload);
2440    NewFD->addAttr(::new (Context) OverloadableAttr());
2441  }
2442
2443  // If this is a locally-scoped extern C function, update the
2444  // map of such names.
2445  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2446      && !NewFD->isInvalidDecl())
2447    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2448
2449  // Set this FunctionDecl's range up to the right paren.
2450  NewFD->setLocEnd(D.getSourceRange().getEnd());
2451
2452  if (FunctionTemplate && NewFD->isInvalidDecl())
2453    FunctionTemplate->setInvalidDecl();
2454
2455  if (FunctionTemplate)
2456    return FunctionTemplate;
2457
2458  return NewFD;
2459}
2460
2461/// \brief Perform semantic checking of a new function declaration.
2462///
2463/// Performs semantic analysis of the new function declaration
2464/// NewFD. This routine performs all semantic checking that does not
2465/// require the actual declarator involved in the declaration, and is
2466/// used both for the declaration of functions as they are parsed
2467/// (called via ActOnDeclarator) and for the declaration of functions
2468/// that have been instantiated via C++ template instantiation (called
2469/// via InstantiateDecl).
2470///
2471/// This sets NewFD->isInvalidDecl() to true if there was an error.
2472void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2473                                    bool &Redeclaration,
2474                                    bool &OverloadableAttrRequired) {
2475  // If NewFD is already known erroneous, don't do any of this checking.
2476  if (NewFD->isInvalidDecl())
2477    return;
2478
2479  if (NewFD->getResultType()->isVariablyModifiedType()) {
2480    // Functions returning a variably modified type violate C99 6.7.5.2p2
2481    // because all functions have linkage.
2482    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2483    return NewFD->setInvalidDecl();
2484  }
2485
2486  // Semantic checking for this function declaration (in isolation).
2487  if (getLangOptions().CPlusPlus) {
2488    // C++-specific checks.
2489    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2490      CheckConstructor(Constructor);
2491    } else if (isa<CXXDestructorDecl>(NewFD)) {
2492      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2493      QualType ClassType = Context.getTypeDeclType(Record);
2494      if (!ClassType->isDependentType()) {
2495        ClassType = Context.getCanonicalType(ClassType);
2496        DeclarationName Name
2497          = Context.DeclarationNames.getCXXDestructorName(ClassType);
2498        if (NewFD->getDeclName() != Name) {
2499          Diag(NewFD->getLocation(), diag::err_destructor_name);
2500          return NewFD->setInvalidDecl();
2501        }
2502      }
2503      Record->setUserDeclaredDestructor(true);
2504      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2505      // user-defined destructor.
2506      Record->setPOD(false);
2507
2508      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2509      // declared destructor.
2510      // FIXME: C++0x: don't do this for "= default" destructors
2511      Record->setHasTrivialDestructor(false);
2512    } else if (CXXConversionDecl *Conversion
2513               = dyn_cast<CXXConversionDecl>(NewFD))
2514      ActOnConversionDeclarator(Conversion);
2515
2516    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2517    if (NewFD->isOverloadedOperator() &&
2518        CheckOverloadedOperatorDeclaration(NewFD))
2519      return NewFD->setInvalidDecl();
2520  }
2521
2522  // C99 6.7.4p6:
2523  //   [... ] For a function with external linkage, the following
2524  //   restrictions apply: [...] If all of the file scope declarations
2525  //   for a function in a translation unit include the inline
2526  //   function specifier without extern, then the definition in that
2527  //   translation unit is an inline definition. An inline definition
2528  //   does not provide an external definition for the function, and
2529  //   does not forbid an external definition in another translation
2530  //   unit.
2531  //
2532  // Here we determine whether this function, in isolation, would be a
2533  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2534  // previous declarations.
2535  if (NewFD->isInline() && getLangOptions().C99 &&
2536      NewFD->getStorageClass() == FunctionDecl::None &&
2537      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2538    NewFD->setC99InlineDefinition(true);
2539
2540  // Check for a previous declaration of this name.
2541  if (!PrevDecl && NewFD->isExternC(Context)) {
2542    // Since we did not find anything by this name and we're declaring
2543    // an extern "C" function, look for a non-visible extern "C"
2544    // declaration with the same name.
2545    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2546      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2547    if (Pos != LocallyScopedExternalDecls.end())
2548      PrevDecl = Pos->second;
2549  }
2550
2551  // Merge or overload the declaration with an existing declaration of
2552  // the same name, if appropriate.
2553  if (PrevDecl) {
2554    // Determine whether NewFD is an overload of PrevDecl or
2555    // a declaration that requires merging. If it's an overload,
2556    // there's no more work to do here; we'll just add the new
2557    // function to the scope.
2558    OverloadedFunctionDecl::function_iterator MatchedDecl;
2559
2560    if (!getLangOptions().CPlusPlus &&
2561        AllowOverloadingOfFunction(PrevDecl, Context)) {
2562      OverloadableAttrRequired = true;
2563
2564      // Functions marked "overloadable" must have a prototype (that
2565      // we can't get through declaration merging).
2566      if (!NewFD->getType()->getAsFunctionProtoType()) {
2567        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2568          << NewFD;
2569        Redeclaration = true;
2570
2571        // Turn this into a variadic function with no parameters.
2572        QualType R = Context.getFunctionType(
2573                       NewFD->getType()->getAsFunctionType()->getResultType(),
2574                       0, 0, true, 0);
2575        NewFD->setType(R);
2576        return NewFD->setInvalidDecl();
2577      }
2578    }
2579
2580    if (PrevDecl &&
2581        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2582         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2583        !isa<UsingDecl>(PrevDecl)) {
2584      Redeclaration = true;
2585      Decl *OldDecl = PrevDecl;
2586
2587      // If PrevDecl was an overloaded function, extract the
2588      // FunctionDecl that matched.
2589      if (isa<OverloadedFunctionDecl>(PrevDecl))
2590        OldDecl = *MatchedDecl;
2591
2592      // NewFD and OldDecl represent declarations that need to be
2593      // merged.
2594      if (MergeFunctionDecl(NewFD, OldDecl))
2595        return NewFD->setInvalidDecl();
2596
2597      if (FunctionTemplateDecl *OldTemplateDecl
2598            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2599        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2600      else {
2601        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2602          NewFD->setAccess(OldDecl->getAccess());
2603        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2604      }
2605    }
2606  }
2607
2608  // In C++, check default arguments now that we have merged decls. Unless
2609  // the lexical context is the class, because in this case this is done
2610  // during delayed parsing anyway.
2611  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2612    CheckCXXDefaultArguments(NewFD);
2613}
2614
2615bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2616  // FIXME: Need strict checking.  In C89, we need to check for
2617  // any assignment, increment, decrement, function-calls, or
2618  // commas outside of a sizeof.  In C99, it's the same list,
2619  // except that the aforementioned are allowed in unevaluated
2620  // expressions.  Everything else falls under the
2621  // "may accept other forms of constant expressions" exception.
2622  // (We never end up here for C++, so the constant expression
2623  // rules there don't matter.)
2624  if (Init->isConstantInitializer(Context))
2625    return false;
2626  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
2627    << Init->getSourceRange();
2628  return true;
2629}
2630
2631void Sema::AddInitializerToDecl(DeclPtrTy dcl, FullExprArg init) {
2632  AddInitializerToDecl(dcl, init.release(), /*DirectInit=*/false);
2633}
2634
2635/// AddInitializerToDecl - Adds the initializer Init to the
2636/// declaration dcl. If DirectInit is true, this is C++ direct
2637/// initialization rather than copy initialization.
2638void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
2639  Decl *RealDecl = dcl.getAs<Decl>();
2640  // If there is no declaration, there was an error parsing it.  Just ignore
2641  // the initializer.
2642  if (RealDecl == 0)
2643    return;
2644
2645  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
2646    // With declarators parsed the way they are, the parser cannot
2647    // distinguish between a normal initializer and a pure-specifier.
2648    // Thus this grotesque test.
2649    IntegerLiteral *IL;
2650    Expr *Init = static_cast<Expr *>(init.get());
2651    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
2652        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
2653      if (Method->isVirtualAsWritten()) {
2654        Method->setPure();
2655
2656        // A class is abstract if at least one function is pure virtual.
2657        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
2658      } else if (!Method->isInvalidDecl()) {
2659        Diag(Method->getLocation(), diag::err_non_virtual_pure)
2660          << Method->getDeclName() << Init->getSourceRange();
2661        Method->setInvalidDecl();
2662      }
2663    } else {
2664      Diag(Method->getLocation(), diag::err_member_function_initialization)
2665        << Method->getDeclName() << Init->getSourceRange();
2666      Method->setInvalidDecl();
2667    }
2668    return;
2669  }
2670
2671  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2672  if (!VDecl) {
2673    if (getLangOptions().CPlusPlus &&
2674        RealDecl->getLexicalDeclContext()->isRecord() &&
2675        isa<NamedDecl>(RealDecl))
2676      Diag(RealDecl->getLocation(), diag::err_member_initialization)
2677        << cast<NamedDecl>(RealDecl)->getDeclName();
2678    else
2679      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2680    RealDecl->setInvalidDecl();
2681    return;
2682  }
2683
2684  if (!VDecl->getType()->isArrayType() &&
2685      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
2686                          diag::err_typecheck_decl_incomplete_type)) {
2687    RealDecl->setInvalidDecl();
2688    return;
2689  }
2690
2691  const VarDecl *Def = 0;
2692  if (VDecl->getDefinition(Def)) {
2693    Diag(VDecl->getLocation(), diag::err_redefinition)
2694      << VDecl->getDeclName();
2695    Diag(Def->getLocation(), diag::note_previous_definition);
2696    VDecl->setInvalidDecl();
2697    return;
2698  }
2699
2700  // Take ownership of the expression, now that we're sure we have somewhere
2701  // to put it.
2702  Expr *Init = init.takeAs<Expr>();
2703  assert(Init && "missing initializer");
2704
2705  // Get the decls type and save a reference for later, since
2706  // CheckInitializerTypes may change it.
2707  QualType DclT = VDecl->getType(), SavT = DclT;
2708  if (VDecl->isBlockVarDecl()) {
2709    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
2710      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2711      VDecl->setInvalidDecl();
2712    } else if (!VDecl->isInvalidDecl()) {
2713      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2714                                VDecl->getDeclName(), DirectInit))
2715        VDecl->setInvalidDecl();
2716
2717      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2718      // Don't check invalid declarations to avoid emitting useless diagnostics.
2719      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2720        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
2721          CheckForConstantInitializer(Init, DclT);
2722      }
2723    }
2724  } else if (VDecl->isStaticDataMember() &&
2725             VDecl->getLexicalDeclContext()->isRecord()) {
2726    // This is an in-class initialization for a static data member, e.g.,
2727    //
2728    // struct S {
2729    //   static const int value = 17;
2730    // };
2731
2732    // Attach the initializer
2733    VDecl->setInit(Context, Init);
2734
2735    // C++ [class.mem]p4:
2736    //   A member-declarator can contain a constant-initializer only
2737    //   if it declares a static member (9.4) of const integral or
2738    //   const enumeration type, see 9.4.2.
2739    QualType T = VDecl->getType();
2740    if (!T->isDependentType() &&
2741        (!Context.getCanonicalType(T).isConstQualified() ||
2742         !T->isIntegralType())) {
2743      Diag(VDecl->getLocation(), diag::err_member_initialization)
2744        << VDecl->getDeclName() << Init->getSourceRange();
2745      VDecl->setInvalidDecl();
2746    } else {
2747      // C++ [class.static.data]p4:
2748      //   If a static data member is of const integral or const
2749      //   enumeration type, its declaration in the class definition
2750      //   can specify a constant-initializer which shall be an
2751      //   integral constant expression (5.19).
2752      if (!Init->isTypeDependent() &&
2753          !Init->getType()->isIntegralType()) {
2754        // We have a non-dependent, non-integral or enumeration type.
2755        Diag(Init->getSourceRange().getBegin(),
2756             diag::err_in_class_initializer_non_integral_type)
2757          << Init->getType() << Init->getSourceRange();
2758        VDecl->setInvalidDecl();
2759      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
2760        // Check whether the expression is a constant expression.
2761        llvm::APSInt Value;
2762        SourceLocation Loc;
2763        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
2764          Diag(Loc, diag::err_in_class_initializer_non_constant)
2765            << Init->getSourceRange();
2766          VDecl->setInvalidDecl();
2767        } else if (!VDecl->getType()->isDependentType())
2768          ImpCastExprToType(Init, VDecl->getType());
2769      }
2770    }
2771  } else if (VDecl->isFileVarDecl()) {
2772    if (VDecl->getStorageClass() == VarDecl::Extern)
2773      Diag(VDecl->getLocation(), diag::warn_extern_init);
2774    if (!VDecl->isInvalidDecl())
2775      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2776                                VDecl->getDeclName(), DirectInit))
2777        VDecl->setInvalidDecl();
2778
2779    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2780    // Don't check invalid declarations to avoid emitting useless diagnostics.
2781    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
2782      // C99 6.7.8p4. All file scoped initializers need to be constant.
2783      CheckForConstantInitializer(Init, DclT);
2784    }
2785  }
2786  // If the type changed, it means we had an incomplete type that was
2787  // completed by the initializer. For example:
2788  //   int ary[] = { 1, 3, 5 };
2789  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2790  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2791    VDecl->setType(DclT);
2792    Init->setType(DclT);
2793  }
2794
2795  // Attach the initializer to the decl.
2796  VDecl->setInit(Context, Init);
2797
2798  // If the previous declaration of VDecl was a tentative definition,
2799  // remove it from the set of tentative definitions.
2800  if (VDecl->getPreviousDeclaration() &&
2801      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
2802    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
2803      = TentativeDefinitions.find(VDecl->getDeclName());
2804    assert(Pos != TentativeDefinitions.end() &&
2805           "Unrecorded tentative definition?");
2806    TentativeDefinitions.erase(Pos);
2807  }
2808
2809  return;
2810}
2811
2812void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
2813                                  bool TypeContainsUndeducedAuto) {
2814  Decl *RealDecl = dcl.getAs<Decl>();
2815
2816  // If there is no declaration, there was an error parsing it. Just ignore it.
2817  if (RealDecl == 0)
2818    return;
2819
2820  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2821    QualType Type = Var->getType();
2822
2823    // Record tentative definitions.
2824    if (Var->isTentativeDefinition(Context))
2825      TentativeDefinitions[Var->getDeclName()] = Var;
2826
2827    // C++ [dcl.init.ref]p3:
2828    //   The initializer can be omitted for a reference only in a
2829    //   parameter declaration (8.3.5), in the declaration of a
2830    //   function return type, in the declaration of a class member
2831    //   within its class declaration (9.2), and where the extern
2832    //   specifier is explicitly used.
2833    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
2834      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2835        << Var->getDeclName()
2836        << SourceRange(Var->getLocation(), Var->getLocation());
2837      Var->setInvalidDecl();
2838      return;
2839    }
2840
2841    // C++0x [dcl.spec.auto]p3
2842    if (TypeContainsUndeducedAuto) {
2843      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
2844        << Var->getDeclName() << Type;
2845      Var->setInvalidDecl();
2846      return;
2847    }
2848
2849    // C++ [dcl.init]p9:
2850    //
2851    //   If no initializer is specified for an object, and the object
2852    //   is of (possibly cv-qualified) non-POD class type (or array
2853    //   thereof), the object shall be default-initialized; if the
2854    //   object is of const-qualified type, the underlying class type
2855    //   shall have a user-declared default constructor.
2856    if (getLangOptions().CPlusPlus) {
2857      QualType InitType = Type;
2858      if (const ArrayType *Array = Context.getAsArrayType(Type))
2859        InitType = Array->getElementType();
2860      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
2861          InitType->isRecordType() && !InitType->isDependentType()) {
2862        CXXRecordDecl *RD =
2863          cast<CXXRecordDecl>(InitType->getAsRecordType()->getDecl());
2864        CXXConstructorDecl *Constructor = 0;
2865        if (!RequireCompleteType(Var->getLocation(), InitType,
2866                                    diag::err_invalid_incomplete_type_use))
2867          Constructor
2868            = PerformInitializationByConstructor(InitType, 0, 0,
2869                                                 Var->getLocation(),
2870                                               SourceRange(Var->getLocation(),
2871                                                           Var->getLocation()),
2872                                                 Var->getDeclName(),
2873                                                 IK_Default);
2874        if (!Constructor)
2875          Var->setInvalidDecl();
2876        else {
2877          if (!RD->hasTrivialConstructor())
2878            InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0);
2879          // FIXME. Must do all that is needed to destroy the object
2880          // on scope exit. For now, just mark the destructor as used.
2881          MarkDestructorReferenced(Var->getLocation(), InitType);
2882        }
2883      }
2884    }
2885
2886#if 0
2887    // FIXME: Temporarily disabled because we are not properly parsing
2888    // linkage specifications on declarations, e.g.,
2889    //
2890    //   extern "C" const CGPoint CGPointerZero;
2891    //
2892    // C++ [dcl.init]p9:
2893    //
2894    //     If no initializer is specified for an object, and the
2895    //     object is of (possibly cv-qualified) non-POD class type (or
2896    //     array thereof), the object shall be default-initialized; if
2897    //     the object is of const-qualified type, the underlying class
2898    //     type shall have a user-declared default
2899    //     constructor. Otherwise, if no initializer is specified for
2900    //     an object, the object and its subobjects, if any, have an
2901    //     indeterminate initial value; if the object or any of its
2902    //     subobjects are of const-qualified type, the program is
2903    //     ill-formed.
2904    //
2905    // This isn't technically an error in C, so we don't diagnose it.
2906    //
2907    // FIXME: Actually perform the POD/user-defined default
2908    // constructor check.
2909    if (getLangOptions().CPlusPlus &&
2910        Context.getCanonicalType(Type).isConstQualified() &&
2911        !Var->hasExternalStorage())
2912      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2913        << Var->getName()
2914        << SourceRange(Var->getLocation(), Var->getLocation());
2915#endif
2916  }
2917}
2918
2919Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
2920                                                   DeclPtrTy *Group,
2921                                                   unsigned NumDecls) {
2922  llvm::SmallVector<Decl*, 8> Decls;
2923
2924  if (DS.isTypeSpecOwned())
2925    Decls.push_back((Decl*)DS.getTypeRep());
2926
2927  for (unsigned i = 0; i != NumDecls; ++i)
2928    if (Decl *D = Group[i].getAs<Decl>())
2929      Decls.push_back(D);
2930
2931  // Perform semantic analysis that depends on having fully processed both
2932  // the declarator and initializer.
2933  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
2934    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
2935    if (!IDecl)
2936      continue;
2937    QualType T = IDecl->getType();
2938
2939    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2940    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2941    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
2942      if (!IDecl->isInvalidDecl() &&
2943          RequireCompleteType(IDecl->getLocation(), T,
2944                              diag::err_typecheck_decl_incomplete_type))
2945        IDecl->setInvalidDecl();
2946    }
2947    // File scope. C99 6.9.2p2: A declaration of an identifier for an
2948    // object that has file scope without an initializer, and without a
2949    // storage-class specifier or with the storage-class specifier "static",
2950    // constitutes a tentative definition. Note: A tentative definition with
2951    // external linkage is valid (C99 6.2.2p5).
2952    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
2953      if (const IncompleteArrayType *ArrayT
2954          = Context.getAsIncompleteArrayType(T)) {
2955        if (RequireCompleteType(IDecl->getLocation(),
2956                                ArrayT->getElementType(),
2957                                diag::err_illegal_decl_array_incomplete_type))
2958          IDecl->setInvalidDecl();
2959      }
2960      else if (IDecl->getStorageClass() == VarDecl::Static) {
2961        // C99 6.9.2p3: If the declaration of an identifier for an object is
2962        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2963        // declared type shall not be an incomplete type.
2964        // NOTE: code such as the following
2965        //     static struct s;
2966        //     struct s { int a; };
2967        // is accepted by gcc. Hence here we issue a warning instead of
2968        // an error and we do not invalidate the static declaration.
2969        // NOTE: to avoid multiple warnings, only check the first declaration.
2970        if (IDecl->getPreviousDeclaration() == 0)
2971          RequireCompleteType(IDecl->getLocation(), T,
2972                              diag::ext_typecheck_decl_incomplete_type);
2973      }
2974    }
2975  }
2976  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
2977                                                   Decls.data(), Decls.size()));
2978}
2979
2980
2981/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2982/// to introduce parameters into function prototype scope.
2983Sema::DeclPtrTy
2984Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2985  const DeclSpec &DS = D.getDeclSpec();
2986
2987  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2988  VarDecl::StorageClass StorageClass = VarDecl::None;
2989  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2990    StorageClass = VarDecl::Register;
2991  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2992    Diag(DS.getStorageClassSpecLoc(),
2993         diag::err_invalid_storage_class_in_func_decl);
2994    D.getMutableDeclSpec().ClearStorageClassSpecs();
2995  }
2996
2997  if (D.getDeclSpec().isThreadSpecified())
2998    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2999
3000  DiagnoseFunctionSpecifiers(D);
3001
3002  // Check that there are no default arguments inside the type of this
3003  // parameter (C++ only).
3004  if (getLangOptions().CPlusPlus)
3005    CheckExtraCXXDefaultArguments(D);
3006
3007  TagDecl *OwnedDecl = 0;
3008  QualType parmDeclType = GetTypeForDeclarator(D, S, /*Skip=*/0, &OwnedDecl);
3009
3010  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3011    // C++ [dcl.fct]p6:
3012    //   Types shall not be defined in return or parameter types.
3013    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3014      << Context.getTypeDeclType(OwnedDecl);
3015  }
3016
3017  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3018  // Can this happen for params?  We already checked that they don't conflict
3019  // among each other.  Here they can only shadow globals, which is ok.
3020  IdentifierInfo *II = D.getIdentifier();
3021  if (II) {
3022    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3023      if (PrevDecl->isTemplateParameter()) {
3024        // Maybe we will complain about the shadowed template parameter.
3025        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3026        // Just pretend that we didn't see the previous declaration.
3027        PrevDecl = 0;
3028      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3029        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3030
3031        // Recover by removing the name
3032        II = 0;
3033        D.SetIdentifier(0, D.getIdentifierLoc());
3034      }
3035    }
3036  }
3037
3038  // Parameters can not be abstract class types.
3039  // For record types, this is done by the AbstractClassUsageDiagnoser once
3040  // the class has been completely parsed.
3041  if (!CurContext->isRecord() &&
3042      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3043                             diag::err_abstract_type_in_decl,
3044                             AbstractParamType))
3045    D.setInvalidType(true);
3046
3047  QualType T = adjustParameterType(parmDeclType);
3048
3049  ParmVarDecl *New;
3050  if (T == parmDeclType) // parameter type did not need adjustment
3051    New = ParmVarDecl::Create(Context, CurContext,
3052                              D.getIdentifierLoc(), II,
3053                              parmDeclType, StorageClass,
3054                              0);
3055  else // keep track of both the adjusted and unadjusted types
3056    New = OriginalParmVarDecl::Create(Context, CurContext,
3057                                      D.getIdentifierLoc(), II, T,
3058                                      parmDeclType, StorageClass, 0);
3059
3060  if (D.isInvalidType())
3061    New->setInvalidDecl();
3062
3063  // Parameter declarators cannot be interface types. All ObjC objects are
3064  // passed by reference.
3065  if (T->isObjCInterfaceType()) {
3066    Diag(D.getIdentifierLoc(),
3067         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3068    New->setInvalidDecl();
3069  }
3070
3071  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3072  if (D.getCXXScopeSpec().isSet()) {
3073    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3074      << D.getCXXScopeSpec().getRange();
3075    New->setInvalidDecl();
3076  }
3077
3078  // Add the parameter declaration into this scope.
3079  S->AddDecl(DeclPtrTy::make(New));
3080  if (II)
3081    IdResolver.AddDecl(New);
3082
3083  ProcessDeclAttributes(S, New, D);
3084
3085  if (New->hasAttr<BlocksAttr>()) {
3086    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3087  }
3088  return DeclPtrTy::make(New);
3089}
3090
3091void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3092                                           SourceLocation LocAfterDecls) {
3093  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3094         "Not a function declarator!");
3095  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3096
3097  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3098  // for a K&R function.
3099  if (!FTI.hasPrototype) {
3100    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3101      --i;
3102      if (FTI.ArgInfo[i].Param == 0) {
3103        std::string Code = "  int ";
3104        Code += FTI.ArgInfo[i].Ident->getName();
3105        Code += ";\n";
3106        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3107          << FTI.ArgInfo[i].Ident
3108          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3109
3110        // Implicitly declare the argument as type 'int' for lack of a better
3111        // type.
3112        DeclSpec DS;
3113        const char* PrevSpec; // unused
3114        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3115                           PrevSpec);
3116        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3117        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3118        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3119      }
3120    }
3121  }
3122}
3123
3124Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3125                                              Declarator &D) {
3126  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3127  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3128         "Not a function declarator!");
3129  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3130
3131  if (FTI.hasPrototype) {
3132    // FIXME: Diagnose arguments without names in C.
3133  }
3134
3135  Scope *ParentScope = FnBodyScope->getParent();
3136
3137  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3138                                  MultiTemplateParamsArg(*this),
3139                                  /*IsFunctionDefinition=*/true);
3140  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3141}
3142
3143Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3144  if (!D)
3145    return D;
3146  FunctionDecl *FD = cast<FunctionDecl>(D.getAs<Decl>());
3147
3148  CurFunctionNeedsScopeChecking = false;
3149
3150  // See if this is a redefinition.
3151  const FunctionDecl *Definition;
3152  if (FD->getBody(Definition)) {
3153    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3154    Diag(Definition->getLocation(), diag::note_previous_definition);
3155  }
3156
3157  // Builtin functions cannot be defined.
3158  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3159    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3160      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3161      FD->setInvalidDecl();
3162    }
3163  }
3164
3165  // The return type of a function definition must be complete
3166  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3167  QualType ResultType = FD->getResultType();
3168  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3169      !FD->isInvalidDecl() &&
3170      RequireCompleteType(FD->getLocation(), ResultType,
3171                          diag::err_func_def_incomplete_result))
3172    FD->setInvalidDecl();
3173
3174  // GNU warning -Wmissing-prototypes:
3175  //   Warn if a global function is defined without a previous
3176  //   prototype declaration. This warning is issued even if the
3177  //   definition itself provides a prototype. The aim is to detect
3178  //   global functions that fail to be declared in header files.
3179  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3180      !FD->isMain()) {
3181    bool MissingPrototype = true;
3182    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3183         Prev; Prev = Prev->getPreviousDeclaration()) {
3184      // Ignore any declarations that occur in function or method
3185      // scope, because they aren't visible from the header.
3186      if (Prev->getDeclContext()->isFunctionOrMethod())
3187        continue;
3188
3189      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3190      break;
3191    }
3192
3193    if (MissingPrototype)
3194      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3195  }
3196
3197  if (FnBodyScope)
3198    PushDeclContext(FnBodyScope, FD);
3199
3200  // Check the validity of our function parameters
3201  CheckParmsForFunctionDef(FD);
3202
3203  // Introduce our parameters into the function scope
3204  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3205    ParmVarDecl *Param = FD->getParamDecl(p);
3206    Param->setOwningFunction(FD);
3207
3208    // If this has an identifier, add it to the scope stack.
3209    if (Param->getIdentifier() && FnBodyScope)
3210      PushOnScopeChains(Param, FnBodyScope);
3211  }
3212
3213  // Checking attributes of current function definition
3214  // dllimport attribute.
3215  if (FD->getAttr<DLLImportAttr>() &&
3216      (!FD->getAttr<DLLExportAttr>())) {
3217    // dllimport attribute cannot be applied to definition.
3218    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3219      Diag(FD->getLocation(),
3220           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3221        << "dllimport";
3222      FD->setInvalidDecl();
3223      return DeclPtrTy::make(FD);
3224    } else {
3225      // If a symbol previously declared dllimport is later defined, the
3226      // attribute is ignored in subsequent references, and a warning is
3227      // emitted.
3228      Diag(FD->getLocation(),
3229           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3230        << FD->getNameAsCString() << "dllimport";
3231    }
3232  }
3233  return DeclPtrTy::make(FD);
3234}
3235
3236Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3237  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3238}
3239
3240Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3241                                              bool IsInstantiation) {
3242  Decl *dcl = D.getAs<Decl>();
3243  Stmt *Body = BodyArg.takeAs<Stmt>();
3244  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
3245    FD->setBody(Body);
3246
3247    if (!FD->isInvalidDecl())
3248      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3249
3250    // C++ [basic.def.odr]p2:
3251    //   [...] A virtual member function is used if it is not pure. [...]
3252    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3253      if (Method->isVirtual() && !Method->isPure())
3254        MarkDeclarationReferenced(Method->getLocation(), Method);
3255
3256    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3257  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3258    assert(MD == getCurMethodDecl() && "Method parsing confused");
3259    MD->setBody(Body);
3260    MD->setEndLoc(Body->getLocEnd());
3261
3262    if (!MD->isInvalidDecl())
3263      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3264  } else {
3265    Body->Destroy(Context);
3266    return DeclPtrTy();
3267  }
3268  if (!IsInstantiation)
3269    PopDeclContext();
3270
3271  // Verify and clean out per-function state.
3272
3273  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3274
3275  // Check goto/label use.
3276  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3277       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3278    LabelStmt *L = I->second;
3279
3280    // Verify that we have no forward references left.  If so, there was a goto
3281    // or address of a label taken, but no definition of it.  Label fwd
3282    // definitions are indicated with a null substmt.
3283    if (L->getSubStmt() != 0)
3284      continue;
3285
3286    // Emit error.
3287    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3288
3289    // At this point, we have gotos that use the bogus label.  Stitch it into
3290    // the function body so that they aren't leaked and that the AST is well
3291    // formed.
3292    if (Body == 0) {
3293      // The whole function wasn't parsed correctly, just delete this.
3294      L->Destroy(Context);
3295      continue;
3296    }
3297
3298    // Otherwise, the body is valid: we want to stitch the label decl into the
3299    // function somewhere so that it is properly owned and so that the goto
3300    // has a valid target.  Do this by creating a new compound stmt with the
3301    // label in it.
3302
3303    // Give the label a sub-statement.
3304    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3305
3306    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3307                               cast<CXXTryStmt>(Body)->getTryBlock() :
3308                               cast<CompoundStmt>(Body);
3309    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3310    Elements.push_back(L);
3311    Compound->setStmts(Context, &Elements[0], Elements.size());
3312  }
3313  FunctionLabelMap.clear();
3314
3315  if (!Body) return D;
3316
3317  // Verify that that gotos and switch cases don't jump into scopes illegally.
3318  if (CurFunctionNeedsScopeChecking)
3319    DiagnoseInvalidJumps(Body);
3320
3321  // C++ constructors that have function-try-blocks can't have return
3322  // statements in the handlers of that block. (C++ [except.handle]p14)
3323  // Verify this.
3324  if (isa<CXXConstructorDecl>(dcl) && isa<CXXTryStmt>(Body))
3325    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3326
3327  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3328    Destructor->computeBaseOrMembersToDestroy(Context);
3329  return D;
3330}
3331
3332/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3333/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3334NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3335                                          IdentifierInfo &II, Scope *S) {
3336  // Before we produce a declaration for an implicitly defined
3337  // function, see whether there was a locally-scoped declaration of
3338  // this name as a function or variable. If so, use that
3339  // (non-visible) declaration, and complain about it.
3340  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3341    = LocallyScopedExternalDecls.find(&II);
3342  if (Pos != LocallyScopedExternalDecls.end()) {
3343    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3344    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3345    return Pos->second;
3346  }
3347
3348  // Extension in C99.  Legal in C90, but warn about it.
3349  if (getLangOptions().C99)
3350    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3351  else
3352    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3353
3354  // FIXME: handle stuff like:
3355  // void foo() { extern float X(); }
3356  // void bar() { X(); }  <-- implicit decl for X in another scope.
3357
3358  // Set a Declarator for the implicit definition: int foo();
3359  const char *Dummy;
3360  DeclSpec DS;
3361  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
3362  Error = Error; // Silence warning.
3363  assert(!Error && "Error setting up implicit decl!");
3364  Declarator D(DS, Declarator::BlockContext);
3365  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3366                                             0, 0, false, SourceLocation(),
3367                                             false, 0,0,0, Loc, D),
3368                SourceLocation());
3369  D.SetIdentifier(&II, Loc);
3370
3371  // Insert this function into translation-unit scope.
3372
3373  DeclContext *PrevDC = CurContext;
3374  CurContext = Context.getTranslationUnitDecl();
3375
3376  FunctionDecl *FD =
3377 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3378  FD->setImplicit();
3379
3380  CurContext = PrevDC;
3381
3382  AddKnownFunctionAttributes(FD);
3383
3384  return FD;
3385}
3386
3387/// \brief Adds any function attributes that we know a priori based on
3388/// the declaration of this function.
3389///
3390/// These attributes can apply both to implicitly-declared builtins
3391/// (like __builtin___printf_chk) or to library-declared functions
3392/// like NSLog or printf.
3393void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3394  if (FD->isInvalidDecl())
3395    return;
3396
3397  // If this is a built-in function, map its builtin attributes to
3398  // actual attributes.
3399  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3400    // Handle printf-formatting attributes.
3401    unsigned FormatIdx;
3402    bool HasVAListArg;
3403    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3404      if (!FD->getAttr<FormatAttr>())
3405        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3406                                             HasVAListArg ? 0 : FormatIdx + 2));
3407    }
3408
3409    // Mark const if we don't care about errno and that is the only
3410    // thing preventing the function from being const. This allows
3411    // IRgen to use LLVM intrinsics for such functions.
3412    if (!getLangOptions().MathErrno &&
3413        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3414      if (!FD->getAttr<ConstAttr>())
3415        FD->addAttr(::new (Context) ConstAttr());
3416    }
3417  }
3418
3419  IdentifierInfo *Name = FD->getIdentifier();
3420  if (!Name)
3421    return;
3422  if ((!getLangOptions().CPlusPlus &&
3423       FD->getDeclContext()->isTranslationUnit()) ||
3424      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3425       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3426       LinkageSpecDecl::lang_c)) {
3427    // Okay: this could be a libc/libm/Objective-C function we know
3428    // about.
3429  } else
3430    return;
3431
3432  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3433    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3434      // FIXME: We known better than our headers.
3435      const_cast<FormatAttr *>(Format)->setType("printf");
3436    } else
3437      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3438                                             Name->isStr("NSLogv") ? 0 : 2));
3439  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3440    if (!FD->getAttr<FormatAttr>())
3441      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3442                                             Name->isStr("vasprintf") ? 0 : 3));
3443  }
3444}
3445
3446TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3447  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3448  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3449
3450  // Scope manipulation handled by caller.
3451  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3452                                           D.getIdentifierLoc(),
3453                                           D.getIdentifier(),
3454                                           T);
3455
3456  if (TagType *TT = dyn_cast<TagType>(T)) {
3457    TagDecl *TD = TT->getDecl();
3458
3459    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3460    // keep track of the TypedefDecl.
3461    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3462      TD->setTypedefForAnonDecl(NewTD);
3463  }
3464
3465  if (D.isInvalidType())
3466    NewTD->setInvalidDecl();
3467  return NewTD;
3468}
3469
3470
3471/// \brief Determine whether a tag with a given kind is acceptable
3472/// as a redeclaration of the given tag declaration.
3473///
3474/// \returns true if the new tag kind is acceptable, false otherwise.
3475bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3476                                        TagDecl::TagKind NewTag,
3477                                        SourceLocation NewTagLoc,
3478                                        const IdentifierInfo &Name) {
3479  // C++ [dcl.type.elab]p3:
3480  //   The class-key or enum keyword present in the
3481  //   elaborated-type-specifier shall agree in kind with the
3482  //   declaration to which the name in theelaborated-type-specifier
3483  //   refers. This rule also applies to the form of
3484  //   elaborated-type-specifier that declares a class-name or
3485  //   friend class since it can be construed as referring to the
3486  //   definition of the class. Thus, in any
3487  //   elaborated-type-specifier, the enum keyword shall be used to
3488  //   refer to an enumeration (7.2), the union class-keyshall be
3489  //   used to refer to a union (clause 9), and either the class or
3490  //   struct class-key shall be used to refer to a class (clause 9)
3491  //   declared using the class or struct class-key.
3492  TagDecl::TagKind OldTag = Previous->getTagKind();
3493  if (OldTag == NewTag)
3494    return true;
3495
3496  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3497      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3498    // Warn about the struct/class tag mismatch.
3499    bool isTemplate = false;
3500    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3501      isTemplate = Record->getDescribedClassTemplate();
3502
3503    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3504      << (NewTag == TagDecl::TK_class)
3505      << isTemplate << &Name
3506      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3507                              OldTag == TagDecl::TK_class? "class" : "struct");
3508    Diag(Previous->getLocation(), diag::note_previous_use);
3509    return true;
3510  }
3511  return false;
3512}
3513
3514/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3515/// former case, Name will be non-null.  In the later case, Name will be null.
3516/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3517/// reference/declaration/definition of a tag.
3518Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3519                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3520                               IdentifierInfo *Name, SourceLocation NameLoc,
3521                               AttributeList *Attr, AccessSpecifier AS,
3522                               bool &OwnedDecl) {
3523  // If this is not a definition, it must have a name.
3524  assert((Name != 0 || TK == TK_Definition) &&
3525         "Nameless record must be a definition!");
3526
3527  OwnedDecl = false;
3528  TagDecl::TagKind Kind;
3529  switch (TagSpec) {
3530  default: assert(0 && "Unknown tag type!");
3531  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3532  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3533  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3534  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3535  }
3536
3537  DeclContext *SearchDC = CurContext;
3538  DeclContext *DC = CurContext;
3539  NamedDecl *PrevDecl = 0;
3540
3541  bool Invalid = false;
3542
3543  if (Name && SS.isNotEmpty()) {
3544    // We have a nested-name tag ('struct foo::bar').
3545
3546    // Check for invalid 'foo::'.
3547    if (SS.isInvalid()) {
3548      Name = 0;
3549      goto CreateNewDecl;
3550    }
3551
3552    if (RequireCompleteDeclContext(SS))
3553      return DeclPtrTy::make((Decl *)0);
3554
3555    DC = computeDeclContext(SS, true);
3556    SearchDC = DC;
3557    // Look-up name inside 'foo::'.
3558    PrevDecl
3559      = dyn_cast_or_null<TagDecl>(
3560               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3561
3562    // A tag 'foo::bar' must already exist.
3563    if (PrevDecl == 0) {
3564      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3565      Name = 0;
3566      Invalid = true;
3567      goto CreateNewDecl;
3568    }
3569  } else if (Name) {
3570    // If this is a named struct, check to see if there was a previous forward
3571    // declaration or definition.
3572    // FIXME: We're looking into outer scopes here, even when we
3573    // shouldn't be. Doing so can result in ambiguities that we
3574    // shouldn't be diagnosing.
3575    LookupResult R = LookupName(S, Name, LookupTagName,
3576                                /*RedeclarationOnly=*/(TK != TK_Reference));
3577    if (R.isAmbiguous()) {
3578      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3579      // FIXME: This is not best way to recover from case like:
3580      //
3581      // struct S s;
3582      //
3583      // causes needless "incomplete type" error later.
3584      Name = 0;
3585      PrevDecl = 0;
3586      Invalid = true;
3587    }
3588    else
3589      PrevDecl = R;
3590
3591    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3592      // FIXME: This makes sure that we ignore the contexts associated
3593      // with C structs, unions, and enums when looking for a matching
3594      // tag declaration or definition. See the similar lookup tweak
3595      // in Sema::LookupName; is there a better way to deal with this?
3596      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3597        SearchDC = SearchDC->getParent();
3598    }
3599  }
3600
3601  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3602    // Maybe we will complain about the shadowed template parameter.
3603    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3604    // Just pretend that we didn't see the previous declaration.
3605    PrevDecl = 0;
3606  }
3607
3608  if (PrevDecl) {
3609    // Check whether the previous declaration is usable.
3610    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
3611
3612    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3613      // If this is a use of a previous tag, or if the tag is already declared
3614      // in the same scope (so that the definition/declaration completes or
3615      // rementions the tag), reuse the decl.
3616      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3617        // Make sure that this wasn't declared as an enum and now used as a
3618        // struct or something similar.
3619        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
3620          bool SafeToContinue
3621            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
3622               Kind != TagDecl::TK_enum);
3623          if (SafeToContinue)
3624            Diag(KWLoc, diag::err_use_with_wrong_tag)
3625              << Name
3626              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
3627                                                  PrevTagDecl->getKindName());
3628          else
3629            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3630          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3631
3632          if (SafeToContinue)
3633            Kind = PrevTagDecl->getTagKind();
3634          else {
3635            // Recover by making this an anonymous redefinition.
3636            Name = 0;
3637            PrevDecl = 0;
3638            Invalid = true;
3639          }
3640        }
3641
3642        if (!Invalid) {
3643          // If this is a use, just return the declaration we found.
3644
3645          // FIXME: In the future, return a variant or some other clue
3646          // for the consumer of this Decl to know it doesn't own it.
3647          // For our current ASTs this shouldn't be a problem, but will
3648          // need to be changed with DeclGroups.
3649          if (TK == TK_Reference)
3650            return DeclPtrTy::make(PrevDecl);
3651
3652          // Diagnose attempts to redefine a tag.
3653          if (TK == TK_Definition) {
3654            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3655              Diag(NameLoc, diag::err_redefinition) << Name;
3656              Diag(Def->getLocation(), diag::note_previous_definition);
3657              // If this is a redefinition, recover by making this
3658              // struct be anonymous, which will make any later
3659              // references get the previous definition.
3660              Name = 0;
3661              PrevDecl = 0;
3662              Invalid = true;
3663            } else {
3664              // If the type is currently being defined, complain
3665              // about a nested redefinition.
3666              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3667              if (Tag->isBeingDefined()) {
3668                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3669                Diag(PrevTagDecl->getLocation(),
3670                     diag::note_previous_definition);
3671                Name = 0;
3672                PrevDecl = 0;
3673                Invalid = true;
3674              }
3675            }
3676
3677            // Okay, this is definition of a previously declared or referenced
3678            // tag PrevDecl. We're going to create a new Decl for it.
3679          }
3680        }
3681        // If we get here we have (another) forward declaration or we
3682        // have a definition.  Just create a new decl.
3683      } else {
3684        // If we get here, this is a definition of a new tag type in a nested
3685        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3686        // new decl/type.  We set PrevDecl to NULL so that the entities
3687        // have distinct types.
3688        PrevDecl = 0;
3689      }
3690      // If we get here, we're going to create a new Decl. If PrevDecl
3691      // is non-NULL, it's a definition of the tag declared by
3692      // PrevDecl. If it's NULL, we have a new definition.
3693    } else {
3694      // PrevDecl is a namespace, template, or anything else
3695      // that lives in the IDNS_Tag identifier namespace.
3696      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3697        // The tag name clashes with a namespace name, issue an error and
3698        // recover by making this tag be anonymous.
3699        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3700        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3701        Name = 0;
3702        PrevDecl = 0;
3703        Invalid = true;
3704      } else {
3705        // The existing declaration isn't relevant to us; we're in a
3706        // new scope, so clear out the previous declaration.
3707        PrevDecl = 0;
3708      }
3709    }
3710  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3711             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
3712    // C++ [basic.scope.pdecl]p5:
3713    //   -- for an elaborated-type-specifier of the form
3714    //
3715    //          class-key identifier
3716    //
3717    //      if the elaborated-type-specifier is used in the
3718    //      decl-specifier-seq or parameter-declaration-clause of a
3719    //      function defined in namespace scope, the identifier is
3720    //      declared as a class-name in the namespace that contains
3721    //      the declaration; otherwise, except as a friend
3722    //      declaration, the identifier is declared in the smallest
3723    //      non-class, non-function-prototype scope that contains the
3724    //      declaration.
3725    //
3726    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3727    // C structs and unions.
3728    //
3729    // GNU C also supports this behavior as part of its incomplete
3730    // enum types extension, while GNU C++ does not.
3731    //
3732    // Find the context where we'll be declaring the tag.
3733    // FIXME: We would like to maintain the current DeclContext as the
3734    // lexical context,
3735    while (SearchDC->isRecord())
3736      SearchDC = SearchDC->getParent();
3737
3738    // Find the scope where we'll be declaring the tag.
3739    while (S->isClassScope() ||
3740           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3741           ((S->getFlags() & Scope::DeclScope) == 0) ||
3742           (S->getEntity() &&
3743            ((DeclContext *)S->getEntity())->isTransparentContext()))
3744      S = S->getParent();
3745  }
3746
3747CreateNewDecl:
3748
3749  // If there is an identifier, use the location of the identifier as the
3750  // location of the decl, otherwise use the location of the struct/union
3751  // keyword.
3752  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3753
3754  // Otherwise, create a new declaration. If there is a previous
3755  // declaration of the same entity, the two will be linked via
3756  // PrevDecl.
3757  TagDecl *New;
3758
3759  if (Kind == TagDecl::TK_enum) {
3760    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3761    // enum X { A, B, C } D;    D should chain to X.
3762    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
3763                           cast_or_null<EnumDecl>(PrevDecl));
3764    // If this is an undefined enum, warn.
3765    if (TK != TK_Definition && !Invalid)  {
3766      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
3767                                              : diag::ext_forward_ref_enum;
3768      Diag(Loc, DK);
3769    }
3770  } else {
3771    // struct/union/class
3772
3773    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3774    // struct X { int A; } D;    D should chain to X.
3775    if (getLangOptions().CPlusPlus)
3776      // FIXME: Look for a way to use RecordDecl for simple structs.
3777      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3778                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3779    else
3780      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
3781                               cast_or_null<RecordDecl>(PrevDecl));
3782  }
3783
3784  if (Kind != TagDecl::TK_enum) {
3785    // Handle #pragma pack: if the #pragma pack stack has non-default
3786    // alignment, make up a packed attribute for this decl. These
3787    // attributes are checked when the ASTContext lays out the
3788    // structure.
3789    //
3790    // It is important for implementing the correct semantics that this
3791    // happen here (in act on tag decl). The #pragma pack stack is
3792    // maintained as a result of parser callbacks which can occur at
3793    // many points during the parsing of a struct declaration (because
3794    // the #pragma tokens are effectively skipped over during the
3795    // parsing of the struct).
3796    if (unsigned Alignment = getPragmaPackAlignment())
3797      New->addAttr(::new (Context) PackedAttr(Alignment * 8));
3798  }
3799
3800  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3801    // C++ [dcl.typedef]p3:
3802    //   [...] Similarly, in a given scope, a class or enumeration
3803    //   shall not be declared with the same name as a typedef-name
3804    //   that is declared in that scope and refers to a type other
3805    //   than the class or enumeration itself.
3806    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3807    TypedefDecl *PrevTypedef = 0;
3808    if (Lookup.getKind() == LookupResult::Found)
3809      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3810
3811    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3812        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3813          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3814      Diag(Loc, diag::err_tag_definition_of_typedef)
3815        << Context.getTypeDeclType(New)
3816        << PrevTypedef->getUnderlyingType();
3817      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3818      Invalid = true;
3819    }
3820  }
3821
3822  if (Invalid)
3823    New->setInvalidDecl();
3824
3825  if (Attr)
3826    ProcessDeclAttributeList(S, New, Attr);
3827
3828  // If we're declaring or defining a tag in function prototype scope
3829  // in C, note that this type can only be used within the function.
3830  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3831    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3832
3833  // Set the lexical context. If the tag has a C++ scope specifier, the
3834  // lexical context will be different from the semantic context.
3835  New->setLexicalDeclContext(CurContext);
3836
3837  // Set the access specifier.
3838  if (!Invalid)
3839    SetMemberAccessSpecifier(New, PrevDecl, AS);
3840
3841  if (TK == TK_Definition)
3842    New->startDefinition();
3843
3844  // If this has an identifier, add it to the scope stack.
3845  if (Name) {
3846    S = getNonFieldDeclScope(S);
3847    PushOnScopeChains(New, S);
3848  } else {
3849    CurContext->addDecl(New);
3850  }
3851
3852  // If this is the C FILE type, notify the AST context.
3853  if (IdentifierInfo *II = New->getIdentifier())
3854    if (!New->isInvalidDecl() &&
3855        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
3856        II->isStr("FILE"))
3857      Context.setFILEDecl(New);
3858
3859  OwnedDecl = true;
3860  return DeclPtrTy::make(New);
3861}
3862
3863void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
3864  AdjustDeclIfTemplate(TagD);
3865  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3866
3867  // Enter the tag context.
3868  PushDeclContext(S, Tag);
3869
3870  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3871    FieldCollector->StartClass();
3872
3873    if (Record->getIdentifier()) {
3874      // C++ [class]p2:
3875      //   [...] The class-name is also inserted into the scope of the
3876      //   class itself; this is known as the injected-class-name. For
3877      //   purposes of access checking, the injected-class-name is treated
3878      //   as if it were a public member name.
3879      CXXRecordDecl *InjectedClassName
3880        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3881                                CurContext, Record->getLocation(),
3882                                Record->getIdentifier(),
3883                                Record->getTagKeywordLoc(),
3884                                Record);
3885      InjectedClassName->setImplicit();
3886      InjectedClassName->setAccess(AS_public);
3887      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
3888        InjectedClassName->setDescribedClassTemplate(Template);
3889      PushOnScopeChains(InjectedClassName, S);
3890      assert(InjectedClassName->isInjectedClassName() &&
3891             "Broken injected-class-name");
3892    }
3893  }
3894}
3895
3896void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
3897                                    SourceLocation RBraceLoc) {
3898  AdjustDeclIfTemplate(TagD);
3899  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
3900  Tag->setRBraceLoc(RBraceLoc);
3901
3902  if (isa<CXXRecordDecl>(Tag))
3903    FieldCollector->FinishClass();
3904
3905  // Exit this scope of this tag's definition.
3906  PopDeclContext();
3907
3908  // Notify the consumer that we've defined a tag.
3909  Consumer.HandleTagDeclDefinition(Tag);
3910}
3911
3912// Note that FieldName may be null for anonymous bitfields.
3913bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3914                          QualType FieldTy, const Expr *BitWidth) {
3915
3916  // C99 6.7.2.1p4 - verify the field type.
3917  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
3918  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
3919    // Handle incomplete types with specific error.
3920    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
3921      return true;
3922    if (FieldName)
3923      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
3924        << FieldName << FieldTy << BitWidth->getSourceRange();
3925    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
3926      << FieldTy << BitWidth->getSourceRange();
3927  }
3928
3929  // If the bit-width is type- or value-dependent, don't try to check
3930  // it now.
3931  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
3932    return false;
3933
3934  llvm::APSInt Value;
3935  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3936    return true;
3937
3938  // Zero-width bitfield is ok for anonymous field.
3939  if (Value == 0 && FieldName)
3940    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3941
3942  if (Value.isSigned() && Value.isNegative()) {
3943    if (FieldName)
3944      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
3945               << FieldName << Value.toString(10);
3946    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
3947      << Value.toString(10);
3948  }
3949
3950  if (!FieldTy->isDependentType()) {
3951    uint64_t TypeSize = Context.getTypeSize(FieldTy);
3952    if (Value.getZExtValue() > TypeSize) {
3953      if (FieldName)
3954        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3955          << FieldName << (unsigned)TypeSize;
3956      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
3957        << (unsigned)TypeSize;
3958    }
3959  }
3960
3961  return false;
3962}
3963
3964/// ActOnField - Each field of a struct/union/class is passed into this in order
3965/// to create a FieldDecl object for it.
3966Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
3967                                 SourceLocation DeclStart,
3968                                 Declarator &D, ExprTy *BitfieldWidth) {
3969  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
3970                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
3971                               AS_public);
3972  return DeclPtrTy::make(Res);
3973}
3974
3975/// HandleField - Analyze a field of a C struct or a C++ data member.
3976///
3977FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
3978                             SourceLocation DeclStart,
3979                             Declarator &D, Expr *BitWidth,
3980                             AccessSpecifier AS) {
3981  IdentifierInfo *II = D.getIdentifier();
3982  SourceLocation Loc = DeclStart;
3983  if (II) Loc = D.getIdentifierLoc();
3984
3985  QualType T = GetTypeForDeclarator(D, S);
3986  if (getLangOptions().CPlusPlus)
3987    CheckExtraCXXDefaultArguments(D);
3988
3989  DiagnoseFunctionSpecifiers(D);
3990
3991  if (D.getDeclSpec().isThreadSpecified())
3992    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3993
3994  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3995
3996  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3997    // Maybe we will complain about the shadowed template parameter.
3998    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3999    // Just pretend that we didn't see the previous declaration.
4000    PrevDecl = 0;
4001  }
4002
4003  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4004    PrevDecl = 0;
4005
4006  bool Mutable
4007    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4008  SourceLocation TSSL = D.getSourceRange().getBegin();
4009  FieldDecl *NewFD
4010    = CheckFieldDecl(II, T, Record, Loc, Mutable, BitWidth, TSSL,
4011                     AS, PrevDecl, &D);
4012  if (NewFD->isInvalidDecl() && PrevDecl) {
4013    // Don't introduce NewFD into scope; there's already something
4014    // with the same name in the same scope.
4015  } else if (II) {
4016    PushOnScopeChains(NewFD, S);
4017  } else
4018    Record->addDecl(NewFD);
4019
4020  return NewFD;
4021}
4022
4023/// \brief Build a new FieldDecl and check its well-formedness.
4024///
4025/// This routine builds a new FieldDecl given the fields name, type,
4026/// record, etc. \p PrevDecl should refer to any previous declaration
4027/// with the same name and in the same scope as the field to be
4028/// created.
4029///
4030/// \returns a new FieldDecl.
4031///
4032/// \todo The Declarator argument is a hack. It will be removed once
4033FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4034                                RecordDecl *Record, SourceLocation Loc,
4035                                bool Mutable, Expr *BitWidth,
4036                                SourceLocation TSSL,
4037                                AccessSpecifier AS, NamedDecl *PrevDecl,
4038                                Declarator *D) {
4039  IdentifierInfo *II = Name.getAsIdentifierInfo();
4040  bool InvalidDecl = false;
4041  if (D) InvalidDecl = D->isInvalidType();
4042
4043  // If we receive a broken type, recover by assuming 'int' and
4044  // marking this declaration as invalid.
4045  if (T.isNull()) {
4046    InvalidDecl = true;
4047    T = Context.IntTy;
4048  }
4049
4050  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4051  // than a variably modified type.
4052  if (T->isVariablyModifiedType()) {
4053    bool SizeIsNegative;
4054    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4055                                                           SizeIsNegative);
4056    if (!FixedTy.isNull()) {
4057      Diag(Loc, diag::warn_illegal_constant_array_size);
4058      T = FixedTy;
4059    } else {
4060      if (SizeIsNegative)
4061        Diag(Loc, diag::err_typecheck_negative_array_size);
4062      else
4063        Diag(Loc, diag::err_typecheck_field_variable_size);
4064      InvalidDecl = true;
4065    }
4066  }
4067
4068  // Fields can not have abstract class types
4069  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4070                             AbstractFieldType))
4071    InvalidDecl = true;
4072
4073  // If this is declared as a bit-field, check the bit-field.
4074  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth)) {
4075    InvalidDecl = true;
4076    DeleteExpr(BitWidth);
4077    BitWidth = 0;
4078  }
4079
4080  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, BitWidth,
4081                                       Mutable, TSSL);
4082  if (InvalidDecl)
4083    NewFD->setInvalidDecl();
4084
4085  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4086    Diag(Loc, diag::err_duplicate_member) << II;
4087    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4088    NewFD->setInvalidDecl();
4089  }
4090
4091  if (getLangOptions().CPlusPlus) {
4092    QualType EltTy = T;
4093    while (const ArrayType *AT = Context.getAsArrayType(EltTy))
4094      EltTy = AT->getElementType();
4095
4096    if (const RecordType *RT = EltTy->getAsRecordType()) {
4097      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4098
4099      if (!RDecl->hasTrivialConstructor())
4100        cast<CXXRecordDecl>(Record)->setHasTrivialConstructor(false);
4101      if (!RDecl->hasTrivialCopyConstructor())
4102        cast<CXXRecordDecl>(Record)->setHasTrivialCopyConstructor(false);
4103      if (!RDecl->hasTrivialCopyAssignment())
4104        cast<CXXRecordDecl>(Record)->setHasTrivialCopyAssignment(false);
4105      if (!RDecl->hasTrivialDestructor())
4106        cast<CXXRecordDecl>(Record)->setHasTrivialDestructor(false);
4107
4108      // C++ 9.5p1: An object of a class with a non-trivial
4109      // constructor, a non-trivial copy constructor, a non-trivial
4110      // destructor, or a non-trivial copy assignment operator
4111      // cannot be a member of a union, nor can an array of such
4112      // objects.
4113      // TODO: C++0x alters this restriction significantly.
4114      if (Record->isUnion()) {
4115        // We check for copy constructors before constructors
4116        // because otherwise we'll never get complaints about
4117        // copy constructors.
4118
4119        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4120
4121        CXXSpecialMember member;
4122        if (!RDecl->hasTrivialCopyConstructor())
4123          member = CXXCopyConstructor;
4124        else if (!RDecl->hasTrivialConstructor())
4125          member = CXXDefaultConstructor;
4126        else if (!RDecl->hasTrivialCopyAssignment())
4127          member = CXXCopyAssignment;
4128        else if (!RDecl->hasTrivialDestructor())
4129          member = CXXDestructor;
4130        else
4131          member = invalid;
4132
4133        if (member != invalid) {
4134          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4135          DiagnoseNontrivial(RT, member);
4136          NewFD->setInvalidDecl();
4137        }
4138      }
4139    }
4140  }
4141
4142  if (getLangOptions().CPlusPlus && !T->isPODType())
4143    cast<CXXRecordDecl>(Record)->setPOD(false);
4144
4145  // FIXME: We need to pass in the attributes given an AST
4146  // representation, not a parser representation.
4147  if (D)
4148    // FIXME: What to pass instead of TUScope?
4149    ProcessDeclAttributes(TUScope, NewFD, *D);
4150
4151  if (T.isObjCGCWeak())
4152    Diag(Loc, diag::warn_attribute_weak_on_field);
4153
4154  NewFD->setAccess(AS);
4155
4156  // C++ [dcl.init.aggr]p1:
4157  //   An aggregate is an array or a class (clause 9) with [...] no
4158  //   private or protected non-static data members (clause 11).
4159  // A POD must be an aggregate.
4160  if (getLangOptions().CPlusPlus &&
4161      (AS == AS_private || AS == AS_protected)) {
4162    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4163    CXXRecord->setAggregate(false);
4164    CXXRecord->setPOD(false);
4165  }
4166
4167  return NewFD;
4168}
4169
4170/// DiagnoseNontrivial - Given that a class has a non-trivial
4171/// special member, figure out why.
4172void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4173  QualType QT(T, 0U);
4174  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4175
4176  // Check whether the member was user-declared.
4177  switch (member) {
4178  case CXXDefaultConstructor:
4179    if (RD->hasUserDeclaredConstructor()) {
4180      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4181      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4182        if (!ci->isImplicitlyDefined(Context)) {
4183          SourceLocation CtorLoc = ci->getLocation();
4184          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4185          return;
4186        }
4187
4188      assert(0 && "found no user-declared constructors");
4189      return;
4190    }
4191    break;
4192
4193  case CXXCopyConstructor:
4194    if (RD->hasUserDeclaredCopyConstructor()) {
4195      SourceLocation CtorLoc =
4196        RD->getCopyConstructor(Context, 0)->getLocation();
4197      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4198      return;
4199    }
4200    break;
4201
4202  case CXXCopyAssignment:
4203    if (RD->hasUserDeclaredCopyAssignment()) {
4204      // FIXME: this should use the location of the copy
4205      // assignment, not the type.
4206      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4207      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4208      return;
4209    }
4210    break;
4211
4212  case CXXDestructor:
4213    if (RD->hasUserDeclaredDestructor()) {
4214      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4215      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4216      return;
4217    }
4218    break;
4219  }
4220
4221  typedef CXXRecordDecl::base_class_iterator base_iter;
4222
4223  // Virtual bases and members inhibit trivial copying/construction,
4224  // but not trivial destruction.
4225  if (member != CXXDestructor) {
4226    // Check for virtual bases.  vbases includes indirect virtual bases,
4227    // so we just iterate through the direct bases.
4228    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4229      if (bi->isVirtual()) {
4230        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4231        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4232        return;
4233      }
4234
4235    // Check for virtual methods.
4236    typedef CXXRecordDecl::method_iterator meth_iter;
4237    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4238         ++mi) {
4239      if (mi->isVirtual()) {
4240        SourceLocation MLoc = mi->getSourceRange().getBegin();
4241        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4242        return;
4243      }
4244    }
4245  }
4246
4247  bool (CXXRecordDecl::*hasTrivial)() const;
4248  switch (member) {
4249  case CXXDefaultConstructor:
4250    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4251  case CXXCopyConstructor:
4252    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4253  case CXXCopyAssignment:
4254    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4255  case CXXDestructor:
4256    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4257  default:
4258    assert(0 && "unexpected special member"); return;
4259  }
4260
4261  // Check for nontrivial bases (and recurse).
4262  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4263    const RecordType *BaseRT = bi->getType()->getAsRecordType();
4264    assert(BaseRT);
4265    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4266    if (!(BaseRecTy->*hasTrivial)()) {
4267      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4268      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4269      DiagnoseNontrivial(BaseRT, member);
4270      return;
4271    }
4272  }
4273
4274  // Check for nontrivial members (and recurse).
4275  typedef RecordDecl::field_iterator field_iter;
4276  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4277       ++fi) {
4278    QualType EltTy = (*fi)->getType();
4279    while (const ArrayType *AT = Context.getAsArrayType(EltTy))
4280      EltTy = AT->getElementType();
4281
4282    if (const RecordType *EltRT = EltTy->getAsRecordType()) {
4283      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4284
4285      if (!(EltRD->*hasTrivial)()) {
4286        SourceLocation FLoc = (*fi)->getLocation();
4287        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4288        DiagnoseNontrivial(EltRT, member);
4289        return;
4290      }
4291    }
4292  }
4293
4294  assert(0 && "found no explanation for non-trivial member");
4295}
4296
4297/// TranslateIvarVisibility - Translate visibility from a token ID to an
4298///  AST enum value.
4299static ObjCIvarDecl::AccessControl
4300TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4301  switch (ivarVisibility) {
4302  default: assert(0 && "Unknown visitibility kind");
4303  case tok::objc_private: return ObjCIvarDecl::Private;
4304  case tok::objc_public: return ObjCIvarDecl::Public;
4305  case tok::objc_protected: return ObjCIvarDecl::Protected;
4306  case tok::objc_package: return ObjCIvarDecl::Package;
4307  }
4308}
4309
4310/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4311/// in order to create an IvarDecl object for it.
4312Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4313                                SourceLocation DeclStart,
4314                                DeclPtrTy IntfDecl,
4315                                Declarator &D, ExprTy *BitfieldWidth,
4316                                tok::ObjCKeywordKind Visibility) {
4317
4318  IdentifierInfo *II = D.getIdentifier();
4319  Expr *BitWidth = (Expr*)BitfieldWidth;
4320  SourceLocation Loc = DeclStart;
4321  if (II) Loc = D.getIdentifierLoc();
4322
4323  // FIXME: Unnamed fields can be handled in various different ways, for
4324  // example, unnamed unions inject all members into the struct namespace!
4325
4326  QualType T = GetTypeForDeclarator(D, S);
4327
4328  if (BitWidth) {
4329    // 6.7.2.1p3, 6.7.2.1p4
4330    if (VerifyBitField(Loc, II, T, BitWidth)) {
4331      D.setInvalidType();
4332      DeleteExpr(BitWidth);
4333      BitWidth = 0;
4334    }
4335  } else {
4336    // Not a bitfield.
4337
4338    // validate II.
4339
4340  }
4341
4342  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4343  // than a variably modified type.
4344  if (T->isVariablyModifiedType()) {
4345    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4346    D.setInvalidType();
4347  }
4348
4349  // Get the visibility (access control) for this ivar.
4350  ObjCIvarDecl::AccessControl ac =
4351    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4352                                        : ObjCIvarDecl::None;
4353  // Must set ivar's DeclContext to its enclosing interface.
4354  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4355  DeclContext *EnclosingContext;
4356  if (ObjCImplementationDecl *IMPDecl =
4357      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4358    // Case of ivar declared in an implementation. Context is that of its class.
4359    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4360    assert(IDecl && "No class- ActOnIvar");
4361    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4362  }
4363  else
4364    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4365  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4366
4367  // Construct the decl.
4368  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4369                                             EnclosingContext, Loc, II, T,ac,
4370                                             (Expr *)BitfieldWidth);
4371
4372  if (II) {
4373    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4374    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4375        && !isa<TagDecl>(PrevDecl)) {
4376      Diag(Loc, diag::err_duplicate_member) << II;
4377      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4378      NewID->setInvalidDecl();
4379    }
4380  }
4381
4382  // Process attributes attached to the ivar.
4383  ProcessDeclAttributes(S, NewID, D);
4384
4385  if (D.isInvalidType())
4386    NewID->setInvalidDecl();
4387
4388  if (II) {
4389    // FIXME: When interfaces are DeclContexts, we'll need to add
4390    // these to the interface.
4391    S->AddDecl(DeclPtrTy::make(NewID));
4392    IdResolver.AddDecl(NewID);
4393  }
4394
4395  return DeclPtrTy::make(NewID);
4396}
4397
4398void Sema::ActOnFields(Scope* S,
4399                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4400                       DeclPtrTy *Fields, unsigned NumFields,
4401                       SourceLocation LBrac, SourceLocation RBrac,
4402                       AttributeList *Attr) {
4403  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4404  assert(EnclosingDecl && "missing record or interface decl");
4405
4406  // If the decl this is being inserted into is invalid, then it may be a
4407  // redeclaration or some other bogus case.  Don't try to add fields to it.
4408  if (EnclosingDecl->isInvalidDecl()) {
4409    // FIXME: Deallocate fields?
4410    return;
4411  }
4412
4413
4414  // Verify that all the fields are okay.
4415  unsigned NumNamedMembers = 0;
4416  llvm::SmallVector<FieldDecl*, 32> RecFields;
4417
4418  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4419  for (unsigned i = 0; i != NumFields; ++i) {
4420    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4421
4422    // Get the type for the field.
4423    Type *FDTy = FD->getType().getTypePtr();
4424
4425    if (!FD->isAnonymousStructOrUnion()) {
4426      // Remember all fields written by the user.
4427      RecFields.push_back(FD);
4428    }
4429
4430    // If the field is already invalid for some reason, don't emit more
4431    // diagnostics about it.
4432    if (FD->isInvalidDecl())
4433      continue;
4434
4435    // C99 6.7.2.1p2:
4436    //   A structure or union shall not contain a member with
4437    //   incomplete or function type (hence, a structure shall not
4438    //   contain an instance of itself, but may contain a pointer to
4439    //   an instance of itself), except that the last member of a
4440    //   structure with more than one named member may have incomplete
4441    //   array type; such a structure (and any union containing,
4442    //   possibly recursively, a member that is such a structure)
4443    //   shall not be a member of a structure or an element of an
4444    //   array.
4445    if (FDTy->isFunctionType()) {
4446      // Field declared as a function.
4447      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4448        << FD->getDeclName();
4449      FD->setInvalidDecl();
4450      EnclosingDecl->setInvalidDecl();
4451      continue;
4452    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4453               Record && Record->isStruct()) {
4454      // Flexible array member.
4455      if (NumNamedMembers < 1) {
4456        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4457          << FD->getDeclName();
4458        FD->setInvalidDecl();
4459        EnclosingDecl->setInvalidDecl();
4460        continue;
4461      }
4462      // Okay, we have a legal flexible array member at the end of the struct.
4463      if (Record)
4464        Record->setHasFlexibleArrayMember(true);
4465    } else if (!FDTy->isDependentType() &&
4466               RequireCompleteType(FD->getLocation(), FD->getType(),
4467                                   diag::err_field_incomplete)) {
4468      // Incomplete type
4469      FD->setInvalidDecl();
4470      EnclosingDecl->setInvalidDecl();
4471      continue;
4472    } else if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
4473      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4474        // If this is a member of a union, then entire union becomes "flexible".
4475        if (Record && Record->isUnion()) {
4476          Record->setHasFlexibleArrayMember(true);
4477        } else {
4478          // If this is a struct/class and this is not the last element, reject
4479          // it.  Note that GCC supports variable sized arrays in the middle of
4480          // structures.
4481          if (i != NumFields-1)
4482            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4483              << FD->getDeclName() << FD->getType();
4484          else {
4485            // We support flexible arrays at the end of structs in
4486            // other structs as an extension.
4487            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4488              << FD->getDeclName();
4489            if (Record)
4490              Record->setHasFlexibleArrayMember(true);
4491          }
4492        }
4493      }
4494      if (Record && FDTTy->getDecl()->hasObjectMember())
4495        Record->setHasObjectMember(true);
4496    } else if (FDTy->isObjCInterfaceType()) {
4497      /// A field cannot be an Objective-c object
4498      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4499      FD->setInvalidDecl();
4500      EnclosingDecl->setInvalidDecl();
4501      continue;
4502    }
4503    else if (getLangOptions().ObjC1 &&
4504             getLangOptions().getGCMode() != LangOptions::NonGC &&
4505             Record &&
4506             (FD->getType()->isObjCObjectPointerType() ||
4507              FD->getType().isObjCGCStrong()))
4508      Record->setHasObjectMember(true);
4509    // Keep track of the number of named members.
4510    if (FD->getIdentifier())
4511      ++NumNamedMembers;
4512  }
4513
4514  // Okay, we successfully defined 'Record'.
4515  if (Record) {
4516    Record->completeDefinition(Context);
4517  } else {
4518    ObjCIvarDecl **ClsFields =
4519      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
4520    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
4521      ID->setIVarList(ClsFields, RecFields.size(), Context);
4522      ID->setLocEnd(RBrac);
4523      // Add ivar's to class's DeclContext.
4524      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
4525        ClsFields[i]->setLexicalDeclContext(ID);
4526        ID->addDecl(ClsFields[i]);
4527      }
4528      // Must enforce the rule that ivars in the base classes may not be
4529      // duplicates.
4530      if (ID->getSuperClass()) {
4531        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
4532             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
4533          ObjCIvarDecl* Ivar = (*IVI);
4534
4535          if (IdentifierInfo *II = Ivar->getIdentifier()) {
4536            ObjCIvarDecl* prevIvar =
4537              ID->getSuperClass()->lookupInstanceVariable(II);
4538            if (prevIvar) {
4539              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
4540              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
4541            }
4542          }
4543        }
4544      }
4545    } else if (ObjCImplementationDecl *IMPDecl =
4546                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4547      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
4548      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
4549        // Ivar declared in @implementation never belongs to the implementation.
4550        // Only it is in implementation's lexical context.
4551        ClsFields[I]->setLexicalDeclContext(IMPDecl);
4552      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
4553    }
4554  }
4555
4556  if (Attr)
4557    ProcessDeclAttributeList(S, Record, Attr);
4558}
4559
4560EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
4561                                          EnumConstantDecl *LastEnumConst,
4562                                          SourceLocation IdLoc,
4563                                          IdentifierInfo *Id,
4564                                          ExprArg val) {
4565  Expr *Val = (Expr *)val.get();
4566
4567  llvm::APSInt EnumVal(32);
4568  QualType EltTy;
4569  if (Val && !Val->isTypeDependent()) {
4570    // Make sure to promote the operand type to int.
4571    UsualUnaryConversions(Val);
4572    if (Val != val.get()) {
4573      val.release();
4574      val = Val;
4575    }
4576
4577    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
4578    SourceLocation ExpLoc;
4579    if (!Val->isValueDependent() &&
4580        VerifyIntegerConstantExpression(Val, &EnumVal)) {
4581      Val = 0;
4582    } else {
4583      EltTy = Val->getType();
4584    }
4585  }
4586
4587  if (!Val) {
4588    if (LastEnumConst) {
4589      // Assign the last value + 1.
4590      EnumVal = LastEnumConst->getInitVal();
4591      ++EnumVal;
4592
4593      // Check for overflow on increment.
4594      if (EnumVal < LastEnumConst->getInitVal())
4595        Diag(IdLoc, diag::warn_enum_value_overflow);
4596
4597      EltTy = LastEnumConst->getType();
4598    } else {
4599      // First value, set to zero.
4600      EltTy = Context.IntTy;
4601      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
4602    }
4603  }
4604
4605  val.release();
4606  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
4607                                  Val, EnumVal);
4608}
4609
4610
4611Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
4612                                        DeclPtrTy lastEnumConst,
4613                                        SourceLocation IdLoc,
4614                                        IdentifierInfo *Id,
4615                                        SourceLocation EqualLoc, ExprTy *val) {
4616  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
4617  EnumConstantDecl *LastEnumConst =
4618    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
4619  Expr *Val = static_cast<Expr*>(val);
4620
4621  // The scope passed in may not be a decl scope.  Zip up the scope tree until
4622  // we find one that is.
4623  S = getNonFieldDeclScope(S);
4624
4625  // Verify that there isn't already something declared with this name in this
4626  // scope.
4627  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
4628  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4629    // Maybe we will complain about the shadowed template parameter.
4630    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
4631    // Just pretend that we didn't see the previous declaration.
4632    PrevDecl = 0;
4633  }
4634
4635  if (PrevDecl) {
4636    // When in C++, we may get a TagDecl with the same name; in this case the
4637    // enum constant will 'hide' the tag.
4638    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
4639           "Received TagDecl when not in C++!");
4640    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
4641      if (isa<EnumConstantDecl>(PrevDecl))
4642        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
4643      else
4644        Diag(IdLoc, diag::err_redefinition) << Id;
4645      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4646      if (Val) Val->Destroy(Context);
4647      return DeclPtrTy();
4648    }
4649  }
4650
4651  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
4652                                            IdLoc, Id, Owned(Val));
4653
4654  // Register this decl in the current scope stack.
4655  if (New)
4656    PushOnScopeChains(New, S);
4657
4658  return DeclPtrTy::make(New);
4659}
4660
4661void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
4662                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
4663                         DeclPtrTy *Elements, unsigned NumElements) {
4664  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
4665  QualType EnumType = Context.getTypeDeclType(Enum);
4666
4667  // TODO: If the result value doesn't fit in an int, it must be a long or long
4668  // long value.  ISO C does not support this, but GCC does as an extension,
4669  // emit a warning.
4670  unsigned IntWidth = Context.Target.getIntWidth();
4671
4672  // Verify that all the values are okay, compute the size of the values, and
4673  // reverse the list.
4674  unsigned NumNegativeBits = 0;
4675  unsigned NumPositiveBits = 0;
4676
4677  // Keep track of whether all elements have type int.
4678  bool AllElementsInt = true;
4679
4680  for (unsigned i = 0; i != NumElements; ++i) {
4681    EnumConstantDecl *ECD =
4682      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4683    if (!ECD) continue;  // Already issued a diagnostic.
4684
4685    // If the enum value doesn't fit in an int, emit an extension warning.
4686    const llvm::APSInt &InitVal = ECD->getInitVal();
4687    assert(InitVal.getBitWidth() >= IntWidth &&
4688           "Should have promoted value to int");
4689    if (InitVal.getBitWidth() > IntWidth) {
4690      llvm::APSInt V(InitVal);
4691      V.trunc(IntWidth);
4692      V.extend(InitVal.getBitWidth());
4693      if (V != InitVal)
4694        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
4695          << InitVal.toString(10);
4696    }
4697
4698    // Keep track of the size of positive and negative values.
4699    if (InitVal.isUnsigned() || InitVal.isNonNegative())
4700      NumPositiveBits = std::max(NumPositiveBits,
4701                                 (unsigned)InitVal.getActiveBits());
4702    else
4703      NumNegativeBits = std::max(NumNegativeBits,
4704                                 (unsigned)InitVal.getMinSignedBits());
4705
4706    // Keep track of whether every enum element has type int (very commmon).
4707    if (AllElementsInt)
4708      AllElementsInt = ECD->getType() == Context.IntTy;
4709  }
4710
4711  // Figure out the type that should be used for this enum.
4712  // FIXME: Support attribute(packed) on enums and -fshort-enums.
4713  QualType BestType;
4714  unsigned BestWidth;
4715
4716  if (NumNegativeBits) {
4717    // If there is a negative value, figure out the smallest integer type (of
4718    // int/long/longlong) that fits.
4719    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
4720      BestType = Context.IntTy;
4721      BestWidth = IntWidth;
4722    } else {
4723      BestWidth = Context.Target.getLongWidth();
4724
4725      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
4726        BestType = Context.LongTy;
4727      else {
4728        BestWidth = Context.Target.getLongLongWidth();
4729
4730        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
4731          Diag(Enum->getLocation(), diag::warn_enum_too_large);
4732        BestType = Context.LongLongTy;
4733      }
4734    }
4735  } else {
4736    // If there is no negative value, figure out which of uint, ulong, ulonglong
4737    // fits.
4738    if (NumPositiveBits <= IntWidth) {
4739      BestType = Context.UnsignedIntTy;
4740      BestWidth = IntWidth;
4741    } else if (NumPositiveBits <=
4742               (BestWidth = Context.Target.getLongWidth())) {
4743      BestType = Context.UnsignedLongTy;
4744    } else {
4745      BestWidth = Context.Target.getLongLongWidth();
4746      assert(NumPositiveBits <= BestWidth &&
4747             "How could an initializer get larger than ULL?");
4748      BestType = Context.UnsignedLongLongTy;
4749    }
4750  }
4751
4752  // Loop over all of the enumerator constants, changing their types to match
4753  // the type of the enum if needed.
4754  for (unsigned i = 0; i != NumElements; ++i) {
4755    EnumConstantDecl *ECD =
4756      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
4757    if (!ECD) continue;  // Already issued a diagnostic.
4758
4759    // Standard C says the enumerators have int type, but we allow, as an
4760    // extension, the enumerators to be larger than int size.  If each
4761    // enumerator value fits in an int, type it as an int, otherwise type it the
4762    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
4763    // that X has type 'int', not 'unsigned'.
4764    if (ECD->getType() == Context.IntTy) {
4765      // Make sure the init value is signed.
4766      llvm::APSInt IV = ECD->getInitVal();
4767      IV.setIsSigned(true);
4768      ECD->setInitVal(IV);
4769
4770      if (getLangOptions().CPlusPlus)
4771        // C++ [dcl.enum]p4: Following the closing brace of an
4772        // enum-specifier, each enumerator has the type of its
4773        // enumeration.
4774        ECD->setType(EnumType);
4775      continue;  // Already int type.
4776    }
4777
4778    // Determine whether the value fits into an int.
4779    llvm::APSInt InitVal = ECD->getInitVal();
4780    bool FitsInInt;
4781    if (InitVal.isUnsigned() || !InitVal.isNegative())
4782      FitsInInt = InitVal.getActiveBits() < IntWidth;
4783    else
4784      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
4785
4786    // If it fits into an integer type, force it.  Otherwise force it to match
4787    // the enum decl type.
4788    QualType NewTy;
4789    unsigned NewWidth;
4790    bool NewSign;
4791    if (FitsInInt) {
4792      NewTy = Context.IntTy;
4793      NewWidth = IntWidth;
4794      NewSign = true;
4795    } else if (ECD->getType() == BestType) {
4796      // Already the right type!
4797      if (getLangOptions().CPlusPlus)
4798        // C++ [dcl.enum]p4: Following the closing brace of an
4799        // enum-specifier, each enumerator has the type of its
4800        // enumeration.
4801        ECD->setType(EnumType);
4802      continue;
4803    } else {
4804      NewTy = BestType;
4805      NewWidth = BestWidth;
4806      NewSign = BestType->isSignedIntegerType();
4807    }
4808
4809    // Adjust the APSInt value.
4810    InitVal.extOrTrunc(NewWidth);
4811    InitVal.setIsSigned(NewSign);
4812    ECD->setInitVal(InitVal);
4813
4814    // Adjust the Expr initializer and type.
4815    if (ECD->getInitExpr())
4816      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
4817                                                      /*isLvalue=*/false));
4818    if (getLangOptions().CPlusPlus)
4819      // C++ [dcl.enum]p4: Following the closing brace of an
4820      // enum-specifier, each enumerator has the type of its
4821      // enumeration.
4822      ECD->setType(EnumType);
4823    else
4824      ECD->setType(NewTy);
4825  }
4826
4827  Enum->completeDefinition(Context, BestType);
4828}
4829
4830Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
4831                                            ExprArg expr) {
4832  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
4833
4834  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
4835                                                   Loc, AsmString);
4836  CurContext->addDecl(New);
4837  return DeclPtrTy::make(New);
4838}
4839
4840void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
4841                             SourceLocation PragmaLoc,
4842                             SourceLocation NameLoc) {
4843  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4844
4845  // FIXME: This implementation is an ugly hack!
4846  if (PrevDecl) {
4847    PrevDecl->addAttr(::new (Context) WeakAttr());
4848    return;
4849  }
4850  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4851  return;
4852}
4853
4854void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
4855                                IdentifierInfo* AliasName,
4856                                SourceLocation PragmaLoc,
4857                                SourceLocation NameLoc,
4858                                SourceLocation AliasNameLoc) {
4859  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
4860
4861  // FIXME: This implementation is an ugly hack!
4862  if (PrevDecl) {
4863    PrevDecl->addAttr(::new (Context) AliasAttr(AliasName->getName()));
4864    PrevDecl->addAttr(::new (Context) WeakAttr());
4865    return;
4866  }
4867  Diag(PragmaLoc, diag::err_unsupported_pragma_weak);
4868  return;
4869}
4870