SemaDecl.cpp revision 22bd905673a73ccb9b5e45a7038ec060c9650ffe
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/DeclTemplate.h"
20#include "clang/AST/ExprCXX.h"
21#include "clang/Parse/DeclSpec.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28#include "llvm/ADT/STLExtras.h"
29#include <algorithm>
30#include <functional>
31using namespace clang;
32
33/// \brief If the identifier refers to a type name within this scope,
34/// return the declaration of that type.
35///
36/// This routine performs ordinary name lookup of the identifier II
37/// within the given scope, with optional C++ scope specifier SS, to
38/// determine whether the name refers to a type. If so, returns an
39/// opaque pointer (actually a QualType) corresponding to that
40/// type. Otherwise, returns NULL.
41///
42/// If name lookup results in an ambiguity, this routine will complain
43/// and then return NULL.
44Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
45                                Scope *S, const CXXScopeSpec *SS) {
46  NamedDecl *IIDecl = 0;
47  LookupResult Result = LookupParsedName(S, SS, &II, LookupOrdinaryName,
48                                         false, false);
49  switch (Result.getKind()) {
50  case LookupResult::NotFound:
51  case LookupResult::FoundOverloaded:
52    return 0;
53
54  case LookupResult::AmbiguousBaseSubobjectTypes:
55  case LookupResult::AmbiguousBaseSubobjects:
56  case LookupResult::AmbiguousReference:
57    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
58    return 0;
59
60  case LookupResult::Found:
61    IIDecl = Result.getAsDecl();
62    break;
63  }
64
65  if (IIDecl) {
66    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
67      // If this typename is deprecated, emit a warning.
68      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
69
70      return Context.getTypeDeclType(TD).getAsOpaquePtr();
71    }
72
73    if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
74      // If this typename is deprecated, emit a warning.
75      DiagnoseUseOfDeprecatedDecl(IIDecl, NameLoc);
76
77      return Context.getObjCInterfaceType(IDecl).getAsOpaquePtr();
78    }
79
80    // Otherwise, could be a variable, function etc.
81  }
82  return 0;
83}
84
85DeclContext *Sema::getContainingDC(DeclContext *DC) {
86  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
87    // A C++ out-of-line method will return to the file declaration context.
88    if (MD->isOutOfLineDefinition())
89      return MD->getLexicalDeclContext();
90
91    // A C++ inline method is parsed *after* the topmost class it was declared
92    // in is fully parsed (it's "complete").
93    // The parsing of a C++ inline method happens at the declaration context of
94    // the topmost (non-nested) class it is lexically declared in.
95    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
96    DC = MD->getParent();
97    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
98      DC = RD;
99
100    // Return the declaration context of the topmost class the inline method is
101    // declared in.
102    return DC;
103  }
104
105  if (isa<ObjCMethodDecl>(DC))
106    return Context.getTranslationUnitDecl();
107
108  if (Decl *D = dyn_cast<Decl>(DC))
109    return D->getLexicalDeclContext();
110
111  return DC->getLexicalParent();
112}
113
114void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
115  assert(getContainingDC(DC) == CurContext &&
116      "The next DeclContext should be lexically contained in the current one.");
117  CurContext = DC;
118  S->setEntity(DC);
119}
120
121void Sema::PopDeclContext() {
122  assert(CurContext && "DeclContext imbalance!");
123
124  CurContext = getContainingDC(CurContext);
125}
126
127/// \brief Determine whether we allow overloading of the function
128/// PrevDecl with another declaration.
129///
130/// This routine determines whether overloading is possible, not
131/// whether some new function is actually an overload. It will return
132/// true in C++ (where we can always provide overloads) or, as an
133/// extension, in C when the previous function is already an
134/// overloaded function declaration or has the "overloadable"
135/// attribute.
136static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
137  if (Context.getLangOptions().CPlusPlus)
138    return true;
139
140  if (isa<OverloadedFunctionDecl>(PrevDecl))
141    return true;
142
143  return PrevDecl->getAttr<OverloadableAttr>() != 0;
144}
145
146/// Add this decl to the scope shadowed decl chains.
147void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
148  // Move up the scope chain until we find the nearest enclosing
149  // non-transparent context. The declaration will be introduced into this
150  // scope.
151  while (S->getEntity() &&
152         ((DeclContext *)S->getEntity())->isTransparentContext())
153    S = S->getParent();
154
155  S->AddDecl(D);
156
157  // Add scoped declarations into their context, so that they can be
158  // found later. Declarations without a context won't be inserted
159  // into any context.
160  CurContext->addDecl(D);
161
162  // C++ [basic.scope]p4:
163  //   -- exactly one declaration shall declare a class name or
164  //   enumeration name that is not a typedef name and the other
165  //   declarations shall all refer to the same object or
166  //   enumerator, or all refer to functions and function templates;
167  //   in this case the class name or enumeration name is hidden.
168  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
169    // We are pushing the name of a tag (enum or class).
170    if (CurContext->getLookupContext()
171          == TD->getDeclContext()->getLookupContext()) {
172      // We're pushing the tag into the current context, which might
173      // require some reshuffling in the identifier resolver.
174      IdentifierResolver::iterator
175        I = IdResolver.begin(TD->getDeclName()),
176        IEnd = IdResolver.end();
177      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
178        NamedDecl *PrevDecl = *I;
179        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
180             PrevDecl = *I, ++I) {
181          if (TD->declarationReplaces(*I)) {
182            // This is a redeclaration. Remove it from the chain and
183            // break out, so that we'll add in the shadowed
184            // declaration.
185            S->RemoveDecl(*I);
186            if (PrevDecl == *I) {
187              IdResolver.RemoveDecl(*I);
188              IdResolver.AddDecl(TD);
189              return;
190            } else {
191              IdResolver.RemoveDecl(*I);
192              break;
193            }
194          }
195        }
196
197        // There is already a declaration with the same name in the same
198        // scope, which is not a tag declaration. It must be found
199        // before we find the new declaration, so insert the new
200        // declaration at the end of the chain.
201        IdResolver.AddShadowedDecl(TD, PrevDecl);
202
203        return;
204      }
205    }
206  } else if (isa<FunctionDecl>(D) &&
207             AllowOverloadingOfFunction(D, Context)) {
208    // We are pushing the name of a function, which might be an
209    // overloaded name.
210    FunctionDecl *FD = cast<FunctionDecl>(D);
211    IdentifierResolver::iterator Redecl
212      = std::find_if(IdResolver.begin(FD->getDeclName()),
213                     IdResolver.end(),
214                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
215                                  FD));
216    if (Redecl != IdResolver.end()) {
217      // There is already a declaration of a function on our
218      // IdResolver chain. Replace it with this declaration.
219      S->RemoveDecl(*Redecl);
220      IdResolver.RemoveDecl(*Redecl);
221    }
222  }
223
224  IdResolver.AddDecl(D);
225}
226
227void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
228  if (S->decl_empty()) return;
229  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
230	 "Scope shouldn't contain decls!");
231
232  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
233       I != E; ++I) {
234    Decl *TmpD = static_cast<Decl*>(*I);
235    assert(TmpD && "This decl didn't get pushed??");
236
237    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
238    NamedDecl *D = cast<NamedDecl>(TmpD);
239
240    if (!D->getDeclName()) continue;
241
242    // Remove this name from our lexical scope.
243    IdResolver.RemoveDecl(D);
244  }
245}
246
247/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
248/// return 0 if one not found.
249ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
250  // The third "scope" argument is 0 since we aren't enabling lazy built-in
251  // creation from this context.
252  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
253
254  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
255}
256
257/// getNonFieldDeclScope - Retrieves the innermost scope, starting
258/// from S, where a non-field would be declared. This routine copes
259/// with the difference between C and C++ scoping rules in structs and
260/// unions. For example, the following code is well-formed in C but
261/// ill-formed in C++:
262/// @code
263/// struct S6 {
264///   enum { BAR } e;
265/// };
266///
267/// void test_S6() {
268///   struct S6 a;
269///   a.e = BAR;
270/// }
271/// @endcode
272/// For the declaration of BAR, this routine will return a different
273/// scope. The scope S will be the scope of the unnamed enumeration
274/// within S6. In C++, this routine will return the scope associated
275/// with S6, because the enumeration's scope is a transparent
276/// context but structures can contain non-field names. In C, this
277/// routine will return the translation unit scope, since the
278/// enumeration's scope is a transparent context and structures cannot
279/// contain non-field names.
280Scope *Sema::getNonFieldDeclScope(Scope *S) {
281  while (((S->getFlags() & Scope::DeclScope) == 0) ||
282         (S->getEntity() &&
283          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
284         (S->isClassScope() && !getLangOptions().CPlusPlus))
285    S = S->getParent();
286  return S;
287}
288
289void Sema::InitBuiltinVaListType() {
290  if (!Context.getBuiltinVaListType().isNull())
291    return;
292
293  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
294  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
295  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
296  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
297}
298
299/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
300/// file scope.  lazily create a decl for it. ForRedeclaration is true
301/// if we're creating this built-in in anticipation of redeclaring the
302/// built-in.
303NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
304                                     Scope *S, bool ForRedeclaration,
305                                     SourceLocation Loc) {
306  Builtin::ID BID = (Builtin::ID)bid;
307
308  if (Context.BuiltinInfo.hasVAListUse(BID))
309    InitBuiltinVaListType();
310
311  Builtin::Context::GetBuiltinTypeError Error;
312  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context, Error);
313  switch (Error) {
314  case Builtin::Context::GE_None:
315    // Okay
316    break;
317
318  case Builtin::Context::GE_Missing_FILE:
319    if (ForRedeclaration)
320      Diag(Loc, diag::err_implicit_decl_requires_stdio)
321        << Context.BuiltinInfo.GetName(BID);
322    return 0;
323  }
324
325  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
326    Diag(Loc, diag::ext_implicit_lib_function_decl)
327      << Context.BuiltinInfo.GetName(BID)
328      << R;
329    if (Context.BuiltinInfo.getHeaderName(BID) &&
330        Diags.getDiagnosticMapping(diag::ext_implicit_lib_function_decl)
331          != diag::MAP_IGNORE)
332      Diag(Loc, diag::note_please_include_header)
333        << Context.BuiltinInfo.getHeaderName(BID)
334        << Context.BuiltinInfo.GetName(BID);
335  }
336
337  FunctionDecl *New = FunctionDecl::Create(Context,
338                                           Context.getTranslationUnitDecl(),
339                                           Loc, II, R,
340                                           FunctionDecl::Extern, false);
341  New->setImplicit();
342
343  // Create Decl objects for each parameter, adding them to the
344  // FunctionDecl.
345  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
346    llvm::SmallVector<ParmVarDecl*, 16> Params;
347    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
348      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
349                                           FT->getArgType(i), VarDecl::None, 0));
350    New->setParams(Context, &Params[0], Params.size());
351  }
352
353  AddKnownFunctionAttributes(New);
354
355  // TUScope is the translation-unit scope to insert this function into.
356  // FIXME: This is hideous. We need to teach PushOnScopeChains to
357  // relate Scopes to DeclContexts, and probably eliminate CurContext
358  // entirely, but we're not there yet.
359  DeclContext *SavedContext = CurContext;
360  CurContext = Context.getTranslationUnitDecl();
361  PushOnScopeChains(New, TUScope);
362  CurContext = SavedContext;
363  return New;
364}
365
366/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
367/// everything from the standard library is defined.
368NamespaceDecl *Sema::GetStdNamespace() {
369  if (!StdNamespace) {
370    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
371    DeclContext *Global = Context.getTranslationUnitDecl();
372    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
373    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
374  }
375  return StdNamespace;
376}
377
378/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
379/// same name and scope as a previous declaration 'Old'.  Figure out
380/// how to resolve this situation, merging decls or emitting
381/// diagnostics as appropriate. Returns true if there was an error,
382/// false otherwise.
383///
384bool Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
385  bool objc_types = false;
386  // Allow multiple definitions for ObjC built-in typedefs.
387  // FIXME: Verify the underlying types are equivalent!
388  if (getLangOptions().ObjC1) {
389    const IdentifierInfo *TypeID = New->getIdentifier();
390    switch (TypeID->getLength()) {
391    default: break;
392    case 2:
393      if (!TypeID->isStr("id"))
394        break;
395      Context.setObjCIdType(New);
396      objc_types = true;
397      break;
398    case 5:
399      if (!TypeID->isStr("Class"))
400        break;
401      Context.setObjCClassType(New);
402      objc_types = true;
403      return false;
404    case 3:
405      if (!TypeID->isStr("SEL"))
406        break;
407      Context.setObjCSelType(New);
408      objc_types = true;
409      return false;
410    case 8:
411      if (!TypeID->isStr("Protocol"))
412        break;
413      Context.setObjCProtoType(New->getUnderlyingType());
414      objc_types = true;
415      return false;
416    }
417    // Fall through - the typedef name was not a builtin type.
418  }
419  // Verify the old decl was also a type.
420  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
421  if (!Old) {
422    Diag(New->getLocation(), diag::err_redefinition_different_kind)
423      << New->getDeclName();
424    if (!objc_types)
425      Diag(OldD->getLocation(), diag::note_previous_definition);
426    return true;
427  }
428
429  // Determine the "old" type we'll use for checking and diagnostics.
430  QualType OldType;
431  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
432    OldType = OldTypedef->getUnderlyingType();
433  else
434    OldType = Context.getTypeDeclType(Old);
435
436  // If the typedef types are not identical, reject them in all languages and
437  // with any extensions enabled.
438
439  if (OldType != New->getUnderlyingType() &&
440      Context.getCanonicalType(OldType) !=
441      Context.getCanonicalType(New->getUnderlyingType())) {
442    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
443      << New->getUnderlyingType() << OldType;
444    if (!objc_types)
445      Diag(Old->getLocation(), diag::note_previous_definition);
446    return true;
447  }
448  if (objc_types) return false;
449  if (getLangOptions().Microsoft) return false;
450
451  // C++ [dcl.typedef]p2:
452  //   In a given non-class scope, a typedef specifier can be used to
453  //   redefine the name of any type declared in that scope to refer
454  //   to the type to which it already refers.
455  if (getLangOptions().CPlusPlus && !isa<CXXRecordDecl>(CurContext))
456    return false;
457
458  // In C, redeclaration of a type is a constraint violation (6.7.2.3p1).
459  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
460  // *either* declaration is in a system header. The code below implements
461  // this adhoc compatibility rule. FIXME: The following code will not
462  // work properly when compiling ".i" files (containing preprocessed output).
463  if (PP.getDiagnostics().getSuppressSystemWarnings()) {
464    SourceManager &SrcMgr = Context.getSourceManager();
465    if (SrcMgr.isInSystemHeader(Old->getLocation()))
466      return false;
467    if (SrcMgr.isInSystemHeader(New->getLocation()))
468      return false;
469  }
470
471  Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
472  Diag(Old->getLocation(), diag::note_previous_definition);
473  return true;
474}
475
476/// DeclhasAttr - returns true if decl Declaration already has the target
477/// attribute.
478static bool DeclHasAttr(const Decl *decl, const Attr *target) {
479  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
480    if (attr->getKind() == target->getKind())
481      return true;
482
483  return false;
484}
485
486/// MergeAttributes - append attributes from the Old decl to the New one.
487static void MergeAttributes(Decl *New, Decl *Old) {
488  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
489
490  while (attr) {
491    tmp = attr;
492    attr = attr->getNext();
493
494    if (!DeclHasAttr(New, tmp) && tmp->isMerged()) {
495      tmp->setInherited(true);
496      New->addAttr(tmp);
497    } else {
498      tmp->setNext(0);
499      delete(tmp);
500    }
501  }
502
503  Old->invalidateAttrs();
504}
505
506/// MergeFunctionDecl - We just parsed a function 'New' from
507/// declarator D which has the same name and scope as a previous
508/// declaration 'Old'.  Figure out how to resolve this situation,
509/// merging decls or emitting diagnostics as appropriate.
510///
511/// In C++, New and Old must be declarations that are not
512/// overloaded. Use IsOverload to determine whether New and Old are
513/// overloaded, and to select the Old declaration that New should be
514/// merged with.
515///
516/// Returns true if there was an error, false otherwise.
517bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
518  assert(!isa<OverloadedFunctionDecl>(OldD) &&
519         "Cannot merge with an overloaded function declaration");
520
521  // Verify the old decl was also a function.
522  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
523  if (!Old) {
524    Diag(New->getLocation(), diag::err_redefinition_different_kind)
525      << New->getDeclName();
526    Diag(OldD->getLocation(), diag::note_previous_definition);
527    return true;
528  }
529
530  // Determine whether the previous declaration was a definition,
531  // implicit declaration, or a declaration.
532  diag::kind PrevDiag;
533  if (Old->isThisDeclarationADefinition())
534    PrevDiag = diag::note_previous_definition;
535  else if (Old->isImplicit())
536    PrevDiag = diag::note_previous_implicit_declaration;
537  else
538    PrevDiag = diag::note_previous_declaration;
539
540  QualType OldQType = Context.getCanonicalType(Old->getType());
541  QualType NewQType = Context.getCanonicalType(New->getType());
542
543  if (getLangOptions().CPlusPlus) {
544    // (C++98 13.1p2):
545    //   Certain function declarations cannot be overloaded:
546    //     -- Function declarations that differ only in the return type
547    //        cannot be overloaded.
548    QualType OldReturnType
549      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
550    QualType NewReturnType
551      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
552    if (OldReturnType != NewReturnType) {
553      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
554      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
555      return true;
556    }
557
558    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
559    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
560    if (OldMethod && NewMethod) {
561      //    -- Member function declarations with the same name and the
562      //       same parameter types cannot be overloaded if any of them
563      //       is a static member function declaration.
564      if (OldMethod->isStatic() || NewMethod->isStatic()) {
565        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
566        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
567        return true;
568      }
569
570      // C++ [class.mem]p1:
571      //   [...] A member shall not be declared twice in the
572      //   member-specification, except that a nested class or member
573      //   class template can be declared and then later defined.
574      if (OldMethod->getLexicalDeclContext() ==
575            NewMethod->getLexicalDeclContext()) {
576        unsigned NewDiag;
577        if (isa<CXXConstructorDecl>(OldMethod))
578          NewDiag = diag::err_constructor_redeclared;
579        else if (isa<CXXDestructorDecl>(NewMethod))
580          NewDiag = diag::err_destructor_redeclared;
581        else if (isa<CXXConversionDecl>(NewMethod))
582          NewDiag = diag::err_conv_function_redeclared;
583        else
584          NewDiag = diag::err_member_redeclared;
585
586        Diag(New->getLocation(), NewDiag);
587        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
588      }
589    }
590
591    // (C++98 8.3.5p3):
592    //   All declarations for a function shall agree exactly in both the
593    //   return type and the parameter-type-list.
594    if (OldQType == NewQType) {
595      // We have a redeclaration.
596      MergeAttributes(New, Old);
597      return MergeCXXFunctionDecl(New, Old);
598    }
599
600    // Fall through for conflicting redeclarations and redefinitions.
601  }
602
603  // C: Function types need to be compatible, not identical. This handles
604  // duplicate function decls like "void f(int); void f(enum X);" properly.
605  if (!getLangOptions().CPlusPlus &&
606      Context.typesAreCompatible(OldQType, NewQType)) {
607    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
608    const FunctionTypeProto *OldProto = 0;
609    if (isa<FunctionTypeNoProto>(NewFuncType) &&
610        (OldProto = OldQType->getAsFunctionTypeProto())) {
611      // The old declaration provided a function prototype, but the
612      // new declaration does not. Merge in the prototype.
613      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
614                                                 OldProto->arg_type_end());
615      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
616                                         &ParamTypes[0], ParamTypes.size(),
617                                         OldProto->isVariadic(),
618                                         OldProto->getTypeQuals());
619      New->setType(NewQType);
620      New->setInheritedPrototype();
621
622      // Synthesize a parameter for each argument type.
623      llvm::SmallVector<ParmVarDecl*, 16> Params;
624      for (FunctionTypeProto::arg_type_iterator
625             ParamType = OldProto->arg_type_begin(),
626             ParamEnd = OldProto->arg_type_end();
627           ParamType != ParamEnd; ++ParamType) {
628        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
629                                                 SourceLocation(), 0,
630                                                 *ParamType, VarDecl::None,
631                                                 0);
632        Param->setImplicit();
633        Params.push_back(Param);
634      }
635
636      New->setParams(Context, &Params[0], Params.size());
637
638    }
639
640    MergeAttributes(New, Old);
641
642    return false;
643  }
644
645  // A function that has already been declared has been redeclared or defined
646  // with a different type- show appropriate diagnostic
647  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
648    // The user has declared a builtin function with an incompatible
649    // signature.
650    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
651      // The function the user is redeclaring is a library-defined
652      // function like 'malloc' or 'printf'. Warn about the
653      // redeclaration, then ignore it.
654      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
655      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
656        << Old << Old->getType();
657      return false;
658    }
659
660    PrevDiag = diag::note_previous_builtin_declaration;
661  }
662
663  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
664  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
665  return true;
666}
667
668/// Predicate for C "tentative" external object definitions (C99 6.9.2).
669static bool isTentativeDefinition(VarDecl *VD) {
670  if (VD->isFileVarDecl())
671    return (!VD->getInit() &&
672            (VD->getStorageClass() == VarDecl::None ||
673             VD->getStorageClass() == VarDecl::Static));
674  return false;
675}
676
677/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
678/// when dealing with C "tentative" external object definitions (C99 6.9.2).
679void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
680  bool VDIsTentative = isTentativeDefinition(VD);
681  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
682
683  // FIXME: I don't think this will actually see all of the
684  // redefinitions. Can't we check this property on-the-fly?
685  for (IdentifierResolver::iterator I = IdResolver.begin(VD->getIdentifier()),
686                                    E = IdResolver.end();
687       I != E; ++I) {
688    if (*I != VD && isDeclInScope(*I, VD->getDeclContext(), S)) {
689      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
690
691      // Handle the following case:
692      //   int a[10];
693      //   int a[];   - the code below makes sure we set the correct type.
694      //   int a[11]; - this is an error, size isn't 10.
695      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
696          OldDecl->getType()->isConstantArrayType())
697        VD->setType(OldDecl->getType());
698
699      // Check for "tentative" definitions. We can't accomplish this in
700      // MergeVarDecl since the initializer hasn't been attached.
701      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
702        continue;
703
704      // Handle __private_extern__ just like extern.
705      if (OldDecl->getStorageClass() != VarDecl::Extern &&
706          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
707          VD->getStorageClass() != VarDecl::Extern &&
708          VD->getStorageClass() != VarDecl::PrivateExtern) {
709        Diag(VD->getLocation(), diag::err_redefinition) << VD->getDeclName();
710        Diag(OldDecl->getLocation(), diag::note_previous_definition);
711        // One redefinition error is enough.
712        break;
713      }
714    }
715  }
716}
717
718/// MergeVarDecl - We just parsed a variable 'New' which has the same name
719/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
720/// situation, merging decls or emitting diagnostics as appropriate.
721///
722/// Tentative definition rules (C99 6.9.2p2) are checked by
723/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
724/// definitions here, since the initializer hasn't been attached.
725///
726bool Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
727  // Verify the old decl was also a variable.
728  VarDecl *Old = dyn_cast<VarDecl>(OldD);
729  if (!Old) {
730    Diag(New->getLocation(), diag::err_redefinition_different_kind)
731      << New->getDeclName();
732    Diag(OldD->getLocation(), diag::note_previous_definition);
733    return true;
734  }
735
736  MergeAttributes(New, Old);
737
738  // Merge the types
739  QualType MergedT = Context.mergeTypes(New->getType(), Old->getType());
740  if (MergedT.isNull()) {
741    Diag(New->getLocation(), diag::err_redefinition_different_type)
742      << New->getDeclName();
743    Diag(Old->getLocation(), diag::note_previous_definition);
744    return true;
745  }
746  New->setType(MergedT);
747  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
748  if (New->getStorageClass() == VarDecl::Static &&
749      (Old->getStorageClass() == VarDecl::None ||
750       Old->getStorageClass() == VarDecl::Extern)) {
751    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
752    Diag(Old->getLocation(), diag::note_previous_definition);
753    return true;
754  }
755  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
756  if (New->getStorageClass() != VarDecl::Static &&
757      Old->getStorageClass() == VarDecl::Static) {
758    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
759    Diag(Old->getLocation(), diag::note_previous_definition);
760    return true;
761  }
762  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
763  if (New->getStorageClass() != VarDecl::Extern && !New->isFileVarDecl()) {
764    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
765    Diag(Old->getLocation(), diag::note_previous_definition);
766    return true;
767  }
768  return false;
769}
770
771/// CheckParmsForFunctionDef - Check that the parameters of the given
772/// function are appropriate for the definition of a function. This
773/// takes care of any checks that cannot be performed on the
774/// declaration itself, e.g., that the types of each of the function
775/// parameters are complete.
776bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
777  bool HasInvalidParm = false;
778  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
779    ParmVarDecl *Param = FD->getParamDecl(p);
780
781    // C99 6.7.5.3p4: the parameters in a parameter type list in a
782    // function declarator that is part of a function definition of
783    // that function shall not have incomplete type.
784    if (!Param->isInvalidDecl() &&
785        DiagnoseIncompleteType(Param->getLocation(), Param->getType(),
786                               diag::err_typecheck_decl_incomplete_type)) {
787      Param->setInvalidDecl();
788      HasInvalidParm = true;
789    }
790
791    // C99 6.9.1p5: If the declarator includes a parameter type list, the
792    // declaration of each parameter shall include an identifier.
793    if (Param->getIdentifier() == 0 &&
794        !Param->isImplicit() &&
795        !getLangOptions().CPlusPlus)
796      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
797  }
798
799  return HasInvalidParm;
800}
801
802/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
803/// no declarator (e.g. "struct foo;") is parsed.
804Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
805  TagDecl *Tag = 0;
806  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
807      DS.getTypeSpecType() == DeclSpec::TST_struct ||
808      DS.getTypeSpecType() == DeclSpec::TST_union ||
809      DS.getTypeSpecType() == DeclSpec::TST_enum)
810    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
811
812  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
813    if (!Record->getDeclName() && Record->isDefinition() &&
814        DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
815      return BuildAnonymousStructOrUnion(S, DS, Record);
816
817    // Microsoft allows unnamed struct/union fields. Don't complain
818    // about them.
819    // FIXME: Should we support Microsoft's extensions in this area?
820    if (Record->getDeclName() && getLangOptions().Microsoft)
821      return Tag;
822  }
823
824  if (!DS.isMissingDeclaratorOk() &&
825      DS.getTypeSpecType() != DeclSpec::TST_error) {
826    // Warn about typedefs of enums without names, since this is an
827    // extension in both Microsoft an GNU.
828    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
829        Tag && isa<EnumDecl>(Tag)) {
830      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
831        << DS.getSourceRange();
832      return Tag;
833    }
834
835    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
836      << DS.getSourceRange();
837    return 0;
838  }
839
840  return Tag;
841}
842
843/// InjectAnonymousStructOrUnionMembers - Inject the members of the
844/// anonymous struct or union AnonRecord into the owning context Owner
845/// and scope S. This routine will be invoked just after we realize
846/// that an unnamed union or struct is actually an anonymous union or
847/// struct, e.g.,
848///
849/// @code
850/// union {
851///   int i;
852///   float f;
853/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
854///    // f into the surrounding scope.x
855/// @endcode
856///
857/// This routine is recursive, injecting the names of nested anonymous
858/// structs/unions into the owning context and scope as well.
859bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
860                                               RecordDecl *AnonRecord) {
861  bool Invalid = false;
862  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
863                               FEnd = AnonRecord->field_end();
864       F != FEnd; ++F) {
865    if ((*F)->getDeclName()) {
866      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
867                                                LookupOrdinaryName, true);
868      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
869        // C++ [class.union]p2:
870        //   The names of the members of an anonymous union shall be
871        //   distinct from the names of any other entity in the
872        //   scope in which the anonymous union is declared.
873        unsigned diagKind
874          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
875                                 : diag::err_anonymous_struct_member_redecl;
876        Diag((*F)->getLocation(), diagKind)
877          << (*F)->getDeclName();
878        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
879        Invalid = true;
880      } else {
881        // C++ [class.union]p2:
882        //   For the purpose of name lookup, after the anonymous union
883        //   definition, the members of the anonymous union are
884        //   considered to have been defined in the scope in which the
885        //   anonymous union is declared.
886        Owner->makeDeclVisibleInContext(*F);
887        S->AddDecl(*F);
888        IdResolver.AddDecl(*F);
889      }
890    } else if (const RecordType *InnerRecordType
891                 = (*F)->getType()->getAsRecordType()) {
892      RecordDecl *InnerRecord = InnerRecordType->getDecl();
893      if (InnerRecord->isAnonymousStructOrUnion())
894        Invalid = Invalid ||
895          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
896    }
897  }
898
899  return Invalid;
900}
901
902/// ActOnAnonymousStructOrUnion - Handle the declaration of an
903/// anonymous structure or union. Anonymous unions are a C++ feature
904/// (C++ [class.union]) and a GNU C extension; anonymous structures
905/// are a GNU C and GNU C++ extension.
906Sema::DeclTy *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
907                                                RecordDecl *Record) {
908  DeclContext *Owner = Record->getDeclContext();
909
910  // Diagnose whether this anonymous struct/union is an extension.
911  if (Record->isUnion() && !getLangOptions().CPlusPlus)
912    Diag(Record->getLocation(), diag::ext_anonymous_union);
913  else if (!Record->isUnion())
914    Diag(Record->getLocation(), diag::ext_anonymous_struct);
915
916  // C and C++ require different kinds of checks for anonymous
917  // structs/unions.
918  bool Invalid = false;
919  if (getLangOptions().CPlusPlus) {
920    const char* PrevSpec = 0;
921    // C++ [class.union]p3:
922    //   Anonymous unions declared in a named namespace or in the
923    //   global namespace shall be declared static.
924    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
925        (isa<TranslationUnitDecl>(Owner) ||
926         (isa<NamespaceDecl>(Owner) &&
927          cast<NamespaceDecl>(Owner)->getDeclName()))) {
928      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
929      Invalid = true;
930
931      // Recover by adding 'static'.
932      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(), PrevSpec);
933    }
934    // C++ [class.union]p3:
935    //   A storage class is not allowed in a declaration of an
936    //   anonymous union in a class scope.
937    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
938             isa<RecordDecl>(Owner)) {
939      Diag(DS.getStorageClassSpecLoc(),
940           diag::err_anonymous_union_with_storage_spec);
941      Invalid = true;
942
943      // Recover by removing the storage specifier.
944      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
945                             PrevSpec);
946    }
947
948    // C++ [class.union]p2:
949    //   The member-specification of an anonymous union shall only
950    //   define non-static data members. [Note: nested types and
951    //   functions cannot be declared within an anonymous union. ]
952    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
953                                 MemEnd = Record->decls_end();
954         Mem != MemEnd; ++Mem) {
955      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
956        // C++ [class.union]p3:
957        //   An anonymous union shall not have private or protected
958        //   members (clause 11).
959        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
960          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
961            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
962          Invalid = true;
963        }
964      } else if ((*Mem)->isImplicit()) {
965        // Any implicit members are fine.
966      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
967        // This is a type that showed up in an
968        // elaborated-type-specifier inside the anonymous struct or
969        // union, but which actually declares a type outside of the
970        // anonymous struct or union. It's okay.
971      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
972        if (!MemRecord->isAnonymousStructOrUnion() &&
973            MemRecord->getDeclName()) {
974          // This is a nested type declaration.
975          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
976            << (int)Record->isUnion();
977          Invalid = true;
978        }
979      } else {
980        // We have something that isn't a non-static data
981        // member. Complain about it.
982        unsigned DK = diag::err_anonymous_record_bad_member;
983        if (isa<TypeDecl>(*Mem))
984          DK = diag::err_anonymous_record_with_type;
985        else if (isa<FunctionDecl>(*Mem))
986          DK = diag::err_anonymous_record_with_function;
987        else if (isa<VarDecl>(*Mem))
988          DK = diag::err_anonymous_record_with_static;
989        Diag((*Mem)->getLocation(), DK)
990            << (int)Record->isUnion();
991          Invalid = true;
992      }
993    }
994  } else {
995    // FIXME: Check GNU C semantics
996    if (Record->isUnion() && !Owner->isRecord()) {
997      Diag(Record->getLocation(), diag::err_anonymous_union_not_member)
998        << (int)getLangOptions().CPlusPlus;
999      Invalid = true;
1000    }
1001  }
1002
1003  if (!Record->isUnion() && !Owner->isRecord()) {
1004    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1005      << (int)getLangOptions().CPlusPlus;
1006    Invalid = true;
1007  }
1008
1009  // Create a declaration for this anonymous struct/union.
1010  NamedDecl *Anon = 0;
1011  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1012    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1013                             /*IdentifierInfo=*/0,
1014                             Context.getTypeDeclType(Record),
1015                             /*BitWidth=*/0, /*Mutable=*/false);
1016    Anon->setAccess(AS_public);
1017    if (getLangOptions().CPlusPlus)
1018      FieldCollector->Add(cast<FieldDecl>(Anon));
1019  } else {
1020    VarDecl::StorageClass SC;
1021    switch (DS.getStorageClassSpec()) {
1022    default: assert(0 && "Unknown storage class!");
1023    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1024    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1025    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1026    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1027    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1028    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1029    case DeclSpec::SCS_mutable:
1030      // mutable can only appear on non-static class members, so it's always
1031      // an error here
1032      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1033      Invalid = true;
1034      SC = VarDecl::None;
1035      break;
1036    }
1037
1038    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1039                           /*IdentifierInfo=*/0,
1040                           Context.getTypeDeclType(Record),
1041                           SC, DS.getSourceRange().getBegin());
1042  }
1043  Anon->setImplicit();
1044
1045  // Add the anonymous struct/union object to the current
1046  // context. We'll be referencing this object when we refer to one of
1047  // its members.
1048  Owner->addDecl(Anon);
1049
1050  // Inject the members of the anonymous struct/union into the owning
1051  // context and into the identifier resolver chain for name lookup
1052  // purposes.
1053  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1054    Invalid = true;
1055
1056  // Mark this as an anonymous struct/union type. Note that we do not
1057  // do this until after we have already checked and injected the
1058  // members of this anonymous struct/union type, because otherwise
1059  // the members could be injected twice: once by DeclContext when it
1060  // builds its lookup table, and once by
1061  // InjectAnonymousStructOrUnionMembers.
1062  Record->setAnonymousStructOrUnion(true);
1063
1064  if (Invalid)
1065    Anon->setInvalidDecl();
1066
1067  return Anon;
1068}
1069
1070bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType,
1071                                  bool DirectInit) {
1072  // Get the type before calling CheckSingleAssignmentConstraints(), since
1073  // it can promote the expression.
1074  QualType InitType = Init->getType();
1075
1076  if (getLangOptions().CPlusPlus) {
1077    // FIXME: I dislike this error message. A lot.
1078    if (PerformImplicitConversion(Init, DeclType, "initializing", DirectInit))
1079      return Diag(Init->getSourceRange().getBegin(),
1080                  diag::err_typecheck_convert_incompatible)
1081        << DeclType << Init->getType() << "initializing"
1082        << Init->getSourceRange();
1083
1084    return false;
1085  }
1086
1087  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
1088  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
1089                                  InitType, Init, "initializing");
1090}
1091
1092bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
1093  const ArrayType *AT = Context.getAsArrayType(DeclT);
1094
1095  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
1096    // C99 6.7.8p14. We have an array of character type with unknown size
1097    // being initialized to a string literal.
1098    llvm::APSInt ConstVal(32);
1099    ConstVal = strLiteral->getByteLength() + 1;
1100    // Return a new array type (C99 6.7.8p22).
1101    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
1102                                         ArrayType::Normal, 0);
1103  } else {
1104    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
1105    // C99 6.7.8p14. We have an array of character type with known size.
1106    // FIXME: Avoid truncation for 64-bit length strings.
1107    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
1108      Diag(strLiteral->getSourceRange().getBegin(),
1109           diag::warn_initializer_string_for_char_array_too_long)
1110        << strLiteral->getSourceRange();
1111  }
1112  // Set type from "char *" to "constant array of char".
1113  strLiteral->setType(DeclT);
1114  // For now, we always return false (meaning success).
1115  return false;
1116}
1117
1118StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
1119  const ArrayType *AT = Context.getAsArrayType(DeclType);
1120  if (AT && AT->getElementType()->isCharType()) {
1121    return dyn_cast<StringLiteral>(Init->IgnoreParens());
1122  }
1123  return 0;
1124}
1125
1126bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType,
1127                                 SourceLocation InitLoc,
1128                                 DeclarationName InitEntity,
1129                                 bool DirectInit) {
1130  if (DeclType->isDependentType() || Init->isTypeDependent())
1131    return false;
1132
1133  // C++ [dcl.init.ref]p1:
1134  //   A variable declared to be a T&, that is "reference to type T"
1135  //   (8.3.2), shall be initialized by an object, or function, of
1136  //   type T or by an object that can be converted into a T.
1137  if (DeclType->isReferenceType())
1138    return CheckReferenceInit(Init, DeclType, 0, false, DirectInit);
1139
1140  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
1141  // of unknown size ("[]") or an object type that is not a variable array type.
1142  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
1143    return Diag(InitLoc,  diag::err_variable_object_no_init)
1144      << VAT->getSizeExpr()->getSourceRange();
1145
1146  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
1147  if (!InitList) {
1148    // FIXME: Handle wide strings
1149    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
1150      return CheckStringLiteralInit(strLiteral, DeclType);
1151
1152    // C++ [dcl.init]p14:
1153    //   -- If the destination type is a (possibly cv-qualified) class
1154    //      type:
1155    if (getLangOptions().CPlusPlus && DeclType->isRecordType()) {
1156      QualType DeclTypeC = Context.getCanonicalType(DeclType);
1157      QualType InitTypeC = Context.getCanonicalType(Init->getType());
1158
1159      //   -- If the initialization is direct-initialization, or if it is
1160      //      copy-initialization where the cv-unqualified version of the
1161      //      source type is the same class as, or a derived class of, the
1162      //      class of the destination, constructors are considered.
1163      if ((DeclTypeC.getUnqualifiedType() == InitTypeC.getUnqualifiedType()) ||
1164          IsDerivedFrom(InitTypeC, DeclTypeC)) {
1165        CXXConstructorDecl *Constructor
1166          = PerformInitializationByConstructor(DeclType, &Init, 1,
1167                                               InitLoc, Init->getSourceRange(),
1168                                               InitEntity,
1169                                               DirectInit? IK_Direct : IK_Copy);
1170        return Constructor == 0;
1171      }
1172
1173      //   -- Otherwise (i.e., for the remaining copy-initialization
1174      //      cases), user-defined conversion sequences that can
1175      //      convert from the source type to the destination type or
1176      //      (when a conversion function is used) to a derived class
1177      //      thereof are enumerated as described in 13.3.1.4, and the
1178      //      best one is chosen through overload resolution
1179      //      (13.3). If the conversion cannot be done or is
1180      //      ambiguous, the initialization is ill-formed. The
1181      //      function selected is called with the initializer
1182      //      expression as its argument; if the function is a
1183      //      constructor, the call initializes a temporary of the
1184      //      destination type.
1185      // FIXME: We're pretending to do copy elision here; return to
1186      // this when we have ASTs for such things.
1187      if (!PerformImplicitConversion(Init, DeclType, "initializing"))
1188        return false;
1189
1190      if (InitEntity)
1191        return Diag(InitLoc, diag::err_cannot_initialize_decl)
1192          << InitEntity << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1193          << Init->getType() << Init->getSourceRange();
1194      else
1195        return Diag(InitLoc, diag::err_cannot_initialize_decl_noname)
1196          << DeclType << (int)(Init->isLvalue(Context) == Expr::LV_Valid)
1197          << Init->getType() << Init->getSourceRange();
1198    }
1199
1200    // C99 6.7.8p16.
1201    if (DeclType->isArrayType())
1202      return Diag(Init->getLocStart(), diag::err_array_init_list_required)
1203        << Init->getSourceRange();
1204
1205    return CheckSingleInitializer(Init, DeclType, DirectInit);
1206  }
1207
1208  bool hadError = CheckInitList(InitList, DeclType);
1209  Init = InitList;
1210  return hadError;
1211}
1212
1213/// GetNameForDeclarator - Determine the full declaration name for the
1214/// given Declarator.
1215DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1216  switch (D.getKind()) {
1217  case Declarator::DK_Abstract:
1218    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1219    return DeclarationName();
1220
1221  case Declarator::DK_Normal:
1222    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1223    return DeclarationName(D.getIdentifier());
1224
1225  case Declarator::DK_Constructor: {
1226    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1227    Ty = Context.getCanonicalType(Ty);
1228    return Context.DeclarationNames.getCXXConstructorName(Ty);
1229  }
1230
1231  case Declarator::DK_Destructor: {
1232    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1233    Ty = Context.getCanonicalType(Ty);
1234    return Context.DeclarationNames.getCXXDestructorName(Ty);
1235  }
1236
1237  case Declarator::DK_Conversion: {
1238    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1239    QualType Ty = QualType::getFromOpaquePtr(D.getDeclaratorIdType());
1240    Ty = Context.getCanonicalType(Ty);
1241    return Context.DeclarationNames.getCXXConversionFunctionName(Ty);
1242  }
1243
1244  case Declarator::DK_Operator:
1245    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1246    return Context.DeclarationNames.getCXXOperatorName(
1247                                                D.getOverloadedOperator());
1248  }
1249
1250  assert(false && "Unknown name kind");
1251  return DeclarationName();
1252}
1253
1254/// isNearlyMatchingFunction - Determine whether the C++ functions
1255/// Declaration and Definition are "nearly" matching. This heuristic
1256/// is used to improve diagnostics in the case where an out-of-line
1257/// function definition doesn't match any declaration within
1258/// the class or namespace.
1259static bool isNearlyMatchingFunction(ASTContext &Context,
1260                                     FunctionDecl *Declaration,
1261                                     FunctionDecl *Definition) {
1262  if (Declaration->param_size() != Definition->param_size())
1263    return false;
1264  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1265    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1266    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1267
1268    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1269    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1270    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1271      return false;
1272  }
1273
1274  return true;
1275}
1276
1277Sema::DeclTy *
1278Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl,
1279                      bool IsFunctionDefinition) {
1280  NamedDecl *LastDeclarator = dyn_cast_or_null<NamedDecl>((Decl *)lastDecl);
1281  DeclarationName Name = GetNameForDeclarator(D);
1282
1283  // All of these full declarators require an identifier.  If it doesn't have
1284  // one, the ParsedFreeStandingDeclSpec action should be used.
1285  if (!Name) {
1286    if (!D.getInvalidType())  // Reject this if we think it is valid.
1287      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1288           diag::err_declarator_need_ident)
1289        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1290    return 0;
1291  }
1292
1293  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1294  // we find one that is.
1295  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1296         (S->getFlags() & Scope::TemplateParamScope) != 0)
1297    S = S->getParent();
1298
1299  DeclContext *DC;
1300  NamedDecl *PrevDecl;
1301  NamedDecl *New;
1302  bool InvalidDecl = false;
1303
1304  // See if this is a redefinition of a variable in the same scope.
1305  if (!D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid()) {
1306    DC = CurContext;
1307    PrevDecl = LookupName(S, Name, LookupOrdinaryName, true, true,
1308                          D.getIdentifierLoc());
1309  } else { // Something like "int foo::x;"
1310    DC = static_cast<DeclContext*>(D.getCXXScopeSpec().getScopeRep());
1311    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1312
1313    // C++ 7.3.1.2p2:
1314    // Members (including explicit specializations of templates) of a named
1315    // namespace can also be defined outside that namespace by explicit
1316    // qualification of the name being defined, provided that the entity being
1317    // defined was already declared in the namespace and the definition appears
1318    // after the point of declaration in a namespace that encloses the
1319    // declarations namespace.
1320    //
1321    // Note that we only check the context at this point. We don't yet
1322    // have enough information to make sure that PrevDecl is actually
1323    // the declaration we want to match. For example, given:
1324    //
1325    //   class X {
1326    //     void f();
1327    //     void f(float);
1328    //   };
1329    //
1330    //   void X::f(int) { } // ill-formed
1331    //
1332    // In this case, PrevDecl will point to the overload set
1333    // containing the two f's declared in X, but neither of them
1334    // matches.
1335
1336    // First check whether we named the global scope.
1337    if (isa<TranslationUnitDecl>(DC)) {
1338      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1339        << Name << D.getCXXScopeSpec().getRange();
1340    } else if (!CurContext->Encloses(DC)) {
1341      // The qualifying scope doesn't enclose the original declaration.
1342      // Emit diagnostic based on current scope.
1343      SourceLocation L = D.getIdentifierLoc();
1344      SourceRange R = D.getCXXScopeSpec().getRange();
1345      if (isa<FunctionDecl>(CurContext))
1346        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1347      else
1348        Diag(L, diag::err_invalid_declarator_scope)
1349          << Name << cast<NamedDecl>(DC) << R;
1350      InvalidDecl = true;
1351    }
1352  }
1353
1354  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1355    // Maybe we will complain about the shadowed template parameter.
1356    InvalidDecl = InvalidDecl
1357      || DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
1358    // Just pretend that we didn't see the previous declaration.
1359    PrevDecl = 0;
1360  }
1361
1362  // In C++, the previous declaration we find might be a tag type
1363  // (class or enum). In this case, the new declaration will hide the
1364  // tag type. Note that this does does not apply if we're declaring a
1365  // typedef (C++ [dcl.typedef]p4).
1366  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1367      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1368    PrevDecl = 0;
1369
1370  QualType R = GetTypeForDeclarator(D, S);
1371  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
1372
1373  bool Redeclaration = false;
1374  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1375    New = ActOnTypedefDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1376                                 InvalidDecl, Redeclaration);
1377  } else if (R.getTypePtr()->isFunctionType()) {
1378    New = ActOnFunctionDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1379                                  IsFunctionDefinition, InvalidDecl,
1380                                  Redeclaration);
1381  } else {
1382    New = ActOnVariableDeclarator(S, D, DC, R, LastDeclarator, PrevDecl,
1383                                  InvalidDecl, Redeclaration);
1384  }
1385
1386  if (New == 0)
1387    return 0;
1388
1389  // Set the lexical context. If the declarator has a C++ scope specifier, the
1390  // lexical context will be different from the semantic context.
1391  New->setLexicalDeclContext(CurContext);
1392
1393  // If this has an identifier and is not an invalid redeclaration,
1394  // add it to the scope stack.
1395  if (Name && !(Redeclaration && InvalidDecl))
1396    PushOnScopeChains(New, S);
1397  // If any semantic error occurred, mark the decl as invalid.
1398  if (D.getInvalidType() || InvalidDecl)
1399    New->setInvalidDecl();
1400
1401  return New;
1402}
1403
1404NamedDecl*
1405Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1406                             QualType R, Decl* LastDeclarator,
1407                             Decl* PrevDecl, bool& InvalidDecl,
1408                             bool &Redeclaration) {
1409  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1410  if (D.getCXXScopeSpec().isSet()) {
1411    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1412      << D.getCXXScopeSpec().getRange();
1413    InvalidDecl = true;
1414    // Pretend we didn't see the scope specifier.
1415    DC = 0;
1416  }
1417
1418  // Check that there are no default arguments (C++ only).
1419  if (getLangOptions().CPlusPlus)
1420    CheckExtraCXXDefaultArguments(D);
1421
1422  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
1423  if (!NewTD) return 0;
1424
1425  // Handle attributes prior to checking for duplicates in MergeVarDecl
1426  ProcessDeclAttributes(NewTD, D);
1427  // Merge the decl with the existing one if appropriate. If the decl is
1428  // in an outer scope, it isn't the same thing.
1429  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1430    Redeclaration = true;
1431    if (MergeTypeDefDecl(NewTD, PrevDecl))
1432      InvalidDecl = true;
1433  }
1434
1435  if (S->getFnParent() == 0) {
1436    // C99 6.7.7p2: If a typedef name specifies a variably modified type
1437    // then it shall have block scope.
1438    if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
1439      if (NewTD->getUnderlyingType()->isVariableArrayType())
1440        Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1441      else
1442        Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1443
1444      InvalidDecl = true;
1445    }
1446  }
1447  return NewTD;
1448}
1449
1450NamedDecl*
1451Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1452                              QualType R, Decl* LastDeclarator,
1453                              Decl* PrevDecl, bool& InvalidDecl,
1454                              bool &Redeclaration) {
1455  DeclarationName Name = GetNameForDeclarator(D);
1456
1457  // Check that there are no default arguments (C++ only).
1458  if (getLangOptions().CPlusPlus)
1459    CheckExtraCXXDefaultArguments(D);
1460
1461  if (R.getTypePtr()->isObjCInterfaceType()) {
1462    Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object)
1463      << D.getIdentifier();
1464    InvalidDecl = true;
1465  }
1466
1467  VarDecl *NewVD;
1468  VarDecl::StorageClass SC;
1469  switch (D.getDeclSpec().getStorageClassSpec()) {
1470  default: assert(0 && "Unknown storage class!");
1471  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1472  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1473  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1474  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1475  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1476  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1477  case DeclSpec::SCS_mutable:
1478    // mutable can only appear on non-static class members, so it's always
1479    // an error here
1480    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
1481    InvalidDecl = true;
1482    SC = VarDecl::None;
1483    break;
1484  }
1485
1486  IdentifierInfo *II = Name.getAsIdentifierInfo();
1487  if (!II) {
1488    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
1489      << Name.getAsString();
1490    return 0;
1491  }
1492
1493  if (DC->isRecord()) {
1494    // This is a static data member for a C++ class.
1495    NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(DC),
1496                                    D.getIdentifierLoc(), II,
1497                                    R);
1498  } else {
1499    bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
1500    if (S->getFnParent() == 0) {
1501      // C99 6.9p2: The storage-class specifiers auto and register shall not
1502      // appear in the declaration specifiers in an external declaration.
1503      if (SC == VarDecl::Auto || SC == VarDecl::Register) {
1504        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
1505        InvalidDecl = true;
1506      }
1507    }
1508    NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
1509                            II, R, SC,
1510                            // FIXME: Move to DeclGroup...
1511                            D.getDeclSpec().getSourceRange().getBegin());
1512    NewVD->setThreadSpecified(ThreadSpecified);
1513  }
1514  NewVD->setNextDeclarator(LastDeclarator);
1515
1516  // Handle attributes prior to checking for duplicates in MergeVarDecl
1517  ProcessDeclAttributes(NewVD, D);
1518
1519  // Handle GNU asm-label extension (encoded as an attribute).
1520  if (Expr *E = (Expr*) D.getAsmLabel()) {
1521    // The parser guarantees this is a string.
1522    StringLiteral *SE = cast<StringLiteral>(E);
1523    NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1524                                                SE->getByteLength())));
1525  }
1526
1527  // Emit an error if an address space was applied to decl with local storage.
1528  // This includes arrays of objects with address space qualifiers, but not
1529  // automatic variables that point to other address spaces.
1530  // ISO/IEC TR 18037 S5.1.2
1531  if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
1532    Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
1533    InvalidDecl = true;
1534  }
1535  // Merge the decl with the existing one if appropriate. If the decl is
1536  // in an outer scope, it isn't the same thing.
1537  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1538    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
1539      // The user tried to define a non-static data member
1540      // out-of-line (C++ [dcl.meaning]p1).
1541      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
1542        << D.getCXXScopeSpec().getRange();
1543      NewVD->Destroy(Context);
1544      return 0;
1545    }
1546
1547    Redeclaration = true;
1548    if (MergeVarDecl(NewVD, PrevDecl))
1549      InvalidDecl = true;
1550
1551    if (D.getCXXScopeSpec().isSet()) {
1552      // No previous declaration in the qualifying scope.
1553      Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
1554        << Name << D.getCXXScopeSpec().getRange();
1555      InvalidDecl = true;
1556    }
1557  }
1558  return NewVD;
1559}
1560
1561NamedDecl*
1562Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1563                              QualType R, Decl *LastDeclarator,
1564                              Decl* PrevDecl, bool IsFunctionDefinition,
1565                              bool& InvalidDecl, bool &Redeclaration) {
1566  assert(R.getTypePtr()->isFunctionType());
1567
1568  DeclarationName Name = GetNameForDeclarator(D);
1569  FunctionDecl::StorageClass SC = FunctionDecl::None;
1570  switch (D.getDeclSpec().getStorageClassSpec()) {
1571  default: assert(0 && "Unknown storage class!");
1572  case DeclSpec::SCS_auto:
1573  case DeclSpec::SCS_register:
1574  case DeclSpec::SCS_mutable:
1575    Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func);
1576    InvalidDecl = true;
1577    break;
1578  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
1579  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
1580  case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
1581  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
1582  }
1583
1584  bool isInline = D.getDeclSpec().isInlineSpecified();
1585  // bool isVirtual = D.getDeclSpec().isVirtualSpecified();
1586  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
1587
1588  FunctionDecl *NewFD;
1589  if (D.getKind() == Declarator::DK_Constructor) {
1590    // This is a C++ constructor declaration.
1591    assert(DC->isRecord() &&
1592           "Constructors can only be declared in a member context");
1593
1594    InvalidDecl = InvalidDecl || CheckConstructorDeclarator(D, R, SC);
1595
1596    // Create the new declaration
1597    NewFD = CXXConstructorDecl::Create(Context,
1598                                       cast<CXXRecordDecl>(DC),
1599                                       D.getIdentifierLoc(), Name, R,
1600                                       isExplicit, isInline,
1601                                       /*isImplicitlyDeclared=*/false);
1602
1603    if (InvalidDecl)
1604      NewFD->setInvalidDecl();
1605  } else if (D.getKind() == Declarator::DK_Destructor) {
1606    // This is a C++ destructor declaration.
1607    if (DC->isRecord()) {
1608      InvalidDecl = InvalidDecl || CheckDestructorDeclarator(D, R, SC);
1609
1610      NewFD = CXXDestructorDecl::Create(Context,
1611                                        cast<CXXRecordDecl>(DC),
1612                                        D.getIdentifierLoc(), Name, R,
1613                                        isInline,
1614                                        /*isImplicitlyDeclared=*/false);
1615
1616      if (InvalidDecl)
1617        NewFD->setInvalidDecl();
1618    } else {
1619      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
1620
1621      // Create a FunctionDecl to satisfy the function definition parsing
1622      // code path.
1623      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
1624                                   Name, R, SC, isInline,
1625                                   // FIXME: Move to DeclGroup...
1626                                   D.getDeclSpec().getSourceRange().getBegin());
1627      InvalidDecl = true;
1628      NewFD->setInvalidDecl();
1629    }
1630  } else if (D.getKind() == Declarator::DK_Conversion) {
1631    if (!DC->isRecord()) {
1632      Diag(D.getIdentifierLoc(),
1633           diag::err_conv_function_not_member);
1634      return 0;
1635    } else {
1636      InvalidDecl = InvalidDecl || CheckConversionDeclarator(D, R, SC);
1637
1638      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
1639                                        D.getIdentifierLoc(), Name, R,
1640                                        isInline, isExplicit);
1641
1642      if (InvalidDecl)
1643        NewFD->setInvalidDecl();
1644    }
1645  } else if (DC->isRecord()) {
1646    // This is a C++ method declaration.
1647    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
1648                                  D.getIdentifierLoc(), Name, R,
1649                                  (SC == FunctionDecl::Static), isInline);
1650  } else {
1651    NewFD = FunctionDecl::Create(Context, DC,
1652                                 D.getIdentifierLoc(),
1653                                 Name, R, SC, isInline,
1654                                 // FIXME: Move to DeclGroup...
1655                                 D.getDeclSpec().getSourceRange().getBegin());
1656  }
1657  NewFD->setNextDeclarator(LastDeclarator);
1658
1659  // Set the lexical context. If the declarator has a C++
1660  // scope specifier, the lexical context will be different
1661  // from the semantic context.
1662  NewFD->setLexicalDeclContext(CurContext);
1663
1664  // Handle GNU asm-label extension (encoded as an attribute).
1665  if (Expr *E = (Expr*) D.getAsmLabel()) {
1666    // The parser guarantees this is a string.
1667    StringLiteral *SE = cast<StringLiteral>(E);
1668    NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
1669                                                SE->getByteLength())));
1670  }
1671
1672  // Copy the parameter declarations from the declarator D to
1673  // the function declaration NewFD, if they are available.
1674  if (D.getNumTypeObjects() > 0) {
1675    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1676
1677    // Create Decl objects for each parameter, adding them to the
1678    // FunctionDecl.
1679    llvm::SmallVector<ParmVarDecl*, 16> Params;
1680
1681    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
1682    // function that takes no arguments, not a function that takes a
1683    // single void argument.
1684    // We let through "const void" here because Sema::GetTypeForDeclarator
1685    // already checks for that case.
1686    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
1687        FTI.ArgInfo[0].Param &&
1688        ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
1689      // empty arg list, don't push any params.
1690      ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
1691
1692      // In C++, the empty parameter-type-list must be spelled "void"; a
1693      // typedef of void is not permitted.
1694      if (getLangOptions().CPlusPlus &&
1695          Param->getType().getUnqualifiedType() != Context.VoidTy) {
1696        Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
1697      }
1698    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
1699      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
1700        Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
1701    }
1702
1703    NewFD->setParams(Context, &Params[0], Params.size());
1704  } else if (R->getAsTypedefType()) {
1705    // When we're declaring a function with a typedef, as in the
1706    // following example, we'll need to synthesize (unnamed)
1707    // parameters for use in the declaration.
1708    //
1709    // @code
1710    // typedef void fn(int);
1711    // fn f;
1712    // @endcode
1713    const FunctionTypeProto *FT = R->getAsFunctionTypeProto();
1714    if (!FT) {
1715      // This is a typedef of a function with no prototype, so we
1716      // don't need to do anything.
1717    } else if ((FT->getNumArgs() == 0) ||
1718               (FT->getNumArgs() == 1 && !FT->isVariadic() &&
1719                FT->getArgType(0)->isVoidType())) {
1720      // This is a zero-argument function. We don't need to do anything.
1721    } else {
1722      // Synthesize a parameter for each argument type.
1723      llvm::SmallVector<ParmVarDecl*, 16> Params;
1724      for (FunctionTypeProto::arg_type_iterator ArgType = FT->arg_type_begin();
1725           ArgType != FT->arg_type_end(); ++ArgType) {
1726        ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
1727                                                 SourceLocation(), 0,
1728                                                 *ArgType, VarDecl::None,
1729                                                 0);
1730        Param->setImplicit();
1731        Params.push_back(Param);
1732      }
1733
1734      NewFD->setParams(Context, &Params[0], Params.size());
1735    }
1736  }
1737
1738  if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD))
1739    InvalidDecl = InvalidDecl || CheckConstructor(Constructor);
1740  else if (isa<CXXDestructorDecl>(NewFD)) {
1741    CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
1742    Record->setUserDeclaredDestructor(true);
1743    // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
1744    // user-defined destructor.
1745    Record->setPOD(false);
1746  } else if (CXXConversionDecl *Conversion =
1747             dyn_cast<CXXConversionDecl>(NewFD))
1748    ActOnConversionDeclarator(Conversion);
1749
1750  // Extra checking for C++ overloaded operators (C++ [over.oper]).
1751  if (NewFD->isOverloadedOperator() &&
1752      CheckOverloadedOperatorDeclaration(NewFD))
1753    NewFD->setInvalidDecl();
1754
1755  // Merge the decl with the existing one if appropriate. Since C functions
1756  // are in a flat namespace, make sure we consider decls in outer scopes.
1757  bool OverloadableAttrRequired = false;
1758  if (PrevDecl &&
1759      (!getLangOptions().CPlusPlus||isDeclInScope(PrevDecl, DC, S))) {
1760    // Determine whether NewFD is an overload of PrevDecl or
1761    // a declaration that requires merging. If it's an overload,
1762    // there's no more work to do here; we'll just add the new
1763    // function to the scope.
1764    OverloadedFunctionDecl::function_iterator MatchedDecl;
1765
1766    if (!getLangOptions().CPlusPlus &&
1767        AllowOverloadingOfFunction(PrevDecl, Context))
1768      OverloadableAttrRequired = true;
1769
1770    if (!AllowOverloadingOfFunction(PrevDecl, Context) ||
1771        !IsOverload(NewFD, PrevDecl, MatchedDecl)) {
1772      Redeclaration = true;
1773      Decl *OldDecl = PrevDecl;
1774
1775      // If PrevDecl was an overloaded function, extract the
1776      // FunctionDecl that matched.
1777      if (isa<OverloadedFunctionDecl>(PrevDecl))
1778        OldDecl = *MatchedDecl;
1779
1780      // NewFD and PrevDecl represent declarations that need to be
1781      // merged.
1782      if (MergeFunctionDecl(NewFD, OldDecl))
1783        InvalidDecl = true;
1784
1785      if (!InvalidDecl) {
1786        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
1787
1788        // An out-of-line member function declaration must also be a
1789        // definition (C++ [dcl.meaning]p1).
1790        if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
1791            !InvalidDecl) {
1792          Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1793            << D.getCXXScopeSpec().getRange();
1794          NewFD->setInvalidDecl();
1795        }
1796      }
1797    }
1798  }
1799
1800  if (D.getCXXScopeSpec().isSet() &&
1801      (!PrevDecl || !Redeclaration)) {
1802    // The user tried to provide an out-of-line definition for a
1803    // function that is a member of a class or namespace, but there
1804    // was no such member function declared (C++ [class.mfct]p2,
1805    // C++ [namespace.memdef]p2). For example:
1806    //
1807    // class X {
1808    //   void f() const;
1809    // };
1810    //
1811    // void X::f() { } // ill-formed
1812    //
1813    // Complain about this problem, and attempt to suggest close
1814    // matches (e.g., those that differ only in cv-qualifiers and
1815    // whether the parameter types are references).
1816    Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
1817      << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
1818    InvalidDecl = true;
1819
1820    LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
1821                                            true);
1822    assert(!Prev.isAmbiguous() &&
1823           "Cannot have an ambiguity in previous-declaration lookup");
1824    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
1825         Func != FuncEnd; ++Func) {
1826      if (isa<FunctionDecl>(*Func) &&
1827          isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
1828        Diag((*Func)->getLocation(), diag::note_member_def_close_match);
1829    }
1830
1831    PrevDecl = 0;
1832  }
1833
1834  // Handle attributes. We need to have merged decls when handling attributes
1835  // (for example to check for conflicts, etc).
1836  ProcessDeclAttributes(NewFD, D);
1837  AddKnownFunctionAttributes(NewFD);
1838
1839  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
1840    // If a function name is overloadable in C, then every function
1841    // with that name must be marked "overloadable".
1842    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
1843      << Redeclaration << NewFD;
1844    if (PrevDecl)
1845      Diag(PrevDecl->getLocation(),
1846           diag::note_attribute_overloadable_prev_overload);
1847    NewFD->addAttr(new OverloadableAttr);
1848  }
1849
1850  if (getLangOptions().CPlusPlus) {
1851    // In C++, check default arguments now that we have merged decls. Unless
1852    // the lexical context is the class, because in this case this is done
1853    // during delayed parsing anyway.
1854    if (!CurContext->isRecord())
1855      CheckCXXDefaultArguments(NewFD);
1856
1857    // An out-of-line member function declaration must also be a
1858    // definition (C++ [dcl.meaning]p1).
1859    if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() && !InvalidDecl) {
1860      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
1861        << D.getCXXScopeSpec().getRange();
1862      InvalidDecl = true;
1863    }
1864  }
1865  return NewFD;
1866}
1867
1868void Sema::InitializerElementNotConstant(const Expr *Init) {
1869  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
1870    << Init->getSourceRange();
1871}
1872
1873bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
1874  switch (Init->getStmtClass()) {
1875  default:
1876    InitializerElementNotConstant(Init);
1877    return true;
1878  case Expr::ParenExprClass: {
1879    const ParenExpr* PE = cast<ParenExpr>(Init);
1880    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
1881  }
1882  case Expr::CompoundLiteralExprClass:
1883    return cast<CompoundLiteralExpr>(Init)->isFileScope();
1884  case Expr::DeclRefExprClass:
1885  case Expr::QualifiedDeclRefExprClass: {
1886    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1887    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1888      if (VD->hasGlobalStorage())
1889        return false;
1890      InitializerElementNotConstant(Init);
1891      return true;
1892    }
1893    if (isa<FunctionDecl>(D))
1894      return false;
1895    InitializerElementNotConstant(Init);
1896    return true;
1897  }
1898  case Expr::MemberExprClass: {
1899    const MemberExpr *M = cast<MemberExpr>(Init);
1900    if (M->isArrow())
1901      return CheckAddressConstantExpression(M->getBase());
1902    return CheckAddressConstantExpressionLValue(M->getBase());
1903  }
1904  case Expr::ArraySubscriptExprClass: {
1905    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
1906    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
1907    return CheckAddressConstantExpression(ASE->getBase()) ||
1908           CheckArithmeticConstantExpression(ASE->getIdx());
1909  }
1910  case Expr::StringLiteralClass:
1911  case Expr::PredefinedExprClass:
1912    return false;
1913  case Expr::UnaryOperatorClass: {
1914    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1915
1916    // C99 6.6p9
1917    if (Exp->getOpcode() == UnaryOperator::Deref)
1918      return CheckAddressConstantExpression(Exp->getSubExpr());
1919
1920    InitializerElementNotConstant(Init);
1921    return true;
1922  }
1923  }
1924}
1925
1926bool Sema::CheckAddressConstantExpression(const Expr* Init) {
1927  switch (Init->getStmtClass()) {
1928  default:
1929    InitializerElementNotConstant(Init);
1930    return true;
1931  case Expr::ParenExprClass:
1932    return CheckAddressConstantExpression(cast<ParenExpr>(Init)->getSubExpr());
1933  case Expr::StringLiteralClass:
1934  case Expr::ObjCStringLiteralClass:
1935    return false;
1936  case Expr::CallExprClass:
1937  case Expr::CXXOperatorCallExprClass:
1938    // __builtin___CFStringMakeConstantString is a valid constant l-value.
1939    if (cast<CallExpr>(Init)->isBuiltinCall(Context) ==
1940           Builtin::BI__builtin___CFStringMakeConstantString)
1941      return false;
1942
1943    InitializerElementNotConstant(Init);
1944    return true;
1945
1946  case Expr::UnaryOperatorClass: {
1947    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1948
1949    // C99 6.6p9
1950    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1951      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
1952
1953    if (Exp->getOpcode() == UnaryOperator::Extension)
1954      return CheckAddressConstantExpression(Exp->getSubExpr());
1955
1956    InitializerElementNotConstant(Init);
1957    return true;
1958  }
1959  case Expr::BinaryOperatorClass: {
1960    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
1961    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1962
1963    Expr *PExp = Exp->getLHS();
1964    Expr *IExp = Exp->getRHS();
1965    if (IExp->getType()->isPointerType())
1966      std::swap(PExp, IExp);
1967
1968    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
1969    return CheckAddressConstantExpression(PExp) ||
1970           CheckArithmeticConstantExpression(IExp);
1971  }
1972  case Expr::ImplicitCastExprClass:
1973  case Expr::CStyleCastExprClass: {
1974    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
1975    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
1976      // Check for implicit promotion
1977      if (SubExpr->getType()->isFunctionType() ||
1978          SubExpr->getType()->isArrayType())
1979        return CheckAddressConstantExpressionLValue(SubExpr);
1980    }
1981
1982    // Check for pointer->pointer cast
1983    if (SubExpr->getType()->isPointerType())
1984      return CheckAddressConstantExpression(SubExpr);
1985
1986    if (SubExpr->getType()->isIntegralType()) {
1987      // Check for the special-case of a pointer->int->pointer cast;
1988      // this isn't standard, but some code requires it. See
1989      // PR2720 for an example.
1990      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
1991        if (SubCast->getSubExpr()->getType()->isPointerType()) {
1992          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
1993          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1994          if (IntWidth >= PointerWidth) {
1995            return CheckAddressConstantExpression(SubCast->getSubExpr());
1996          }
1997        }
1998      }
1999    }
2000    if (SubExpr->getType()->isArithmeticType()) {
2001      return CheckArithmeticConstantExpression(SubExpr);
2002    }
2003
2004    InitializerElementNotConstant(Init);
2005    return true;
2006  }
2007  case Expr::ConditionalOperatorClass: {
2008    // FIXME: Should we pedwarn here?
2009    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2010    if (!Exp->getCond()->getType()->isArithmeticType()) {
2011      InitializerElementNotConstant(Init);
2012      return true;
2013    }
2014    if (CheckArithmeticConstantExpression(Exp->getCond()))
2015      return true;
2016    if (Exp->getLHS() &&
2017        CheckAddressConstantExpression(Exp->getLHS()))
2018      return true;
2019    return CheckAddressConstantExpression(Exp->getRHS());
2020  }
2021  case Expr::AddrLabelExprClass:
2022    return false;
2023  }
2024}
2025
2026static const Expr* FindExpressionBaseAddress(const Expr* E);
2027
2028static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
2029  switch (E->getStmtClass()) {
2030  default:
2031    return E;
2032  case Expr::ParenExprClass: {
2033    const ParenExpr* PE = cast<ParenExpr>(E);
2034    return FindExpressionBaseAddressLValue(PE->getSubExpr());
2035  }
2036  case Expr::MemberExprClass: {
2037    const MemberExpr *M = cast<MemberExpr>(E);
2038    if (M->isArrow())
2039      return FindExpressionBaseAddress(M->getBase());
2040    return FindExpressionBaseAddressLValue(M->getBase());
2041  }
2042  case Expr::ArraySubscriptExprClass: {
2043    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
2044    return FindExpressionBaseAddress(ASE->getBase());
2045  }
2046  case Expr::UnaryOperatorClass: {
2047    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2048
2049    if (Exp->getOpcode() == UnaryOperator::Deref)
2050      return FindExpressionBaseAddress(Exp->getSubExpr());
2051
2052    return E;
2053  }
2054  }
2055}
2056
2057static const Expr* FindExpressionBaseAddress(const Expr* E) {
2058  switch (E->getStmtClass()) {
2059  default:
2060    return E;
2061  case Expr::ParenExprClass: {
2062    const ParenExpr* PE = cast<ParenExpr>(E);
2063    return FindExpressionBaseAddress(PE->getSubExpr());
2064  }
2065  case Expr::UnaryOperatorClass: {
2066    const UnaryOperator *Exp = cast<UnaryOperator>(E);
2067
2068    // C99 6.6p9
2069    if (Exp->getOpcode() == UnaryOperator::AddrOf)
2070      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
2071
2072    if (Exp->getOpcode() == UnaryOperator::Extension)
2073      return FindExpressionBaseAddress(Exp->getSubExpr());
2074
2075    return E;
2076  }
2077  case Expr::BinaryOperatorClass: {
2078    const BinaryOperator *Exp = cast<BinaryOperator>(E);
2079
2080    Expr *PExp = Exp->getLHS();
2081    Expr *IExp = Exp->getRHS();
2082    if (IExp->getType()->isPointerType())
2083      std::swap(PExp, IExp);
2084
2085    return FindExpressionBaseAddress(PExp);
2086  }
2087  case Expr::ImplicitCastExprClass: {
2088    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
2089
2090    // Check for implicit promotion
2091    if (SubExpr->getType()->isFunctionType() ||
2092        SubExpr->getType()->isArrayType())
2093      return FindExpressionBaseAddressLValue(SubExpr);
2094
2095    // Check for pointer->pointer cast
2096    if (SubExpr->getType()->isPointerType())
2097      return FindExpressionBaseAddress(SubExpr);
2098
2099    // We assume that we have an arithmetic expression here;
2100    // if we don't, we'll figure it out later
2101    return 0;
2102  }
2103  case Expr::CStyleCastExprClass: {
2104    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
2105
2106    // Check for pointer->pointer cast
2107    if (SubExpr->getType()->isPointerType())
2108      return FindExpressionBaseAddress(SubExpr);
2109
2110    // We assume that we have an arithmetic expression here;
2111    // if we don't, we'll figure it out later
2112    return 0;
2113  }
2114  }
2115}
2116
2117bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
2118  switch (Init->getStmtClass()) {
2119  default:
2120    InitializerElementNotConstant(Init);
2121    return true;
2122  case Expr::ParenExprClass: {
2123    const ParenExpr* PE = cast<ParenExpr>(Init);
2124    return CheckArithmeticConstantExpression(PE->getSubExpr());
2125  }
2126  case Expr::FloatingLiteralClass:
2127  case Expr::IntegerLiteralClass:
2128  case Expr::CharacterLiteralClass:
2129  case Expr::ImaginaryLiteralClass:
2130  case Expr::TypesCompatibleExprClass:
2131  case Expr::CXXBoolLiteralExprClass:
2132    return false;
2133  case Expr::CallExprClass:
2134  case Expr::CXXOperatorCallExprClass: {
2135    const CallExpr *CE = cast<CallExpr>(Init);
2136
2137    // Allow any constant foldable calls to builtins.
2138    if (CE->isBuiltinCall(Context) && CE->isEvaluatable(Context))
2139      return false;
2140
2141    InitializerElementNotConstant(Init);
2142    return true;
2143  }
2144  case Expr::DeclRefExprClass:
2145  case Expr::QualifiedDeclRefExprClass: {
2146    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
2147    if (isa<EnumConstantDecl>(D))
2148      return false;
2149    InitializerElementNotConstant(Init);
2150    return true;
2151  }
2152  case Expr::CompoundLiteralExprClass:
2153    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
2154    // but vectors are allowed to be magic.
2155    if (Init->getType()->isVectorType())
2156      return false;
2157    InitializerElementNotConstant(Init);
2158    return true;
2159  case Expr::UnaryOperatorClass: {
2160    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
2161
2162    switch (Exp->getOpcode()) {
2163    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
2164    // See C99 6.6p3.
2165    default:
2166      InitializerElementNotConstant(Init);
2167      return true;
2168    case UnaryOperator::OffsetOf:
2169      if (Exp->getSubExpr()->getType()->isConstantSizeType())
2170        return false;
2171      InitializerElementNotConstant(Init);
2172      return true;
2173    case UnaryOperator::Extension:
2174    case UnaryOperator::LNot:
2175    case UnaryOperator::Plus:
2176    case UnaryOperator::Minus:
2177    case UnaryOperator::Not:
2178      return CheckArithmeticConstantExpression(Exp->getSubExpr());
2179    }
2180  }
2181  case Expr::SizeOfAlignOfExprClass: {
2182    const SizeOfAlignOfExpr *Exp = cast<SizeOfAlignOfExpr>(Init);
2183    // Special check for void types, which are allowed as an extension
2184    if (Exp->getTypeOfArgument()->isVoidType())
2185      return false;
2186    // alignof always evaluates to a constant.
2187    // FIXME: is sizeof(int[3.0]) a constant expression?
2188    if (Exp->isSizeOf() && !Exp->getTypeOfArgument()->isConstantSizeType()) {
2189      InitializerElementNotConstant(Init);
2190      return true;
2191    }
2192    return false;
2193  }
2194  case Expr::BinaryOperatorClass: {
2195    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
2196
2197    if (Exp->getLHS()->getType()->isArithmeticType() &&
2198        Exp->getRHS()->getType()->isArithmeticType()) {
2199      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
2200             CheckArithmeticConstantExpression(Exp->getRHS());
2201    }
2202
2203    if (Exp->getLHS()->getType()->isPointerType() &&
2204        Exp->getRHS()->getType()->isPointerType()) {
2205      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
2206      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
2207
2208      // Only allow a null (constant integer) base; we could
2209      // allow some additional cases if necessary, but this
2210      // is sufficient to cover offsetof-like constructs.
2211      if (!LHSBase && !RHSBase) {
2212        return CheckAddressConstantExpression(Exp->getLHS()) ||
2213               CheckAddressConstantExpression(Exp->getRHS());
2214      }
2215    }
2216
2217    InitializerElementNotConstant(Init);
2218    return true;
2219  }
2220  case Expr::ImplicitCastExprClass:
2221  case Expr::CStyleCastExprClass: {
2222    const CastExpr *CE = cast<CastExpr>(Init);
2223    const Expr *SubExpr = CE->getSubExpr();
2224
2225    if (SubExpr->getType()->isArithmeticType())
2226      return CheckArithmeticConstantExpression(SubExpr);
2227
2228    if (SubExpr->getType()->isPointerType()) {
2229      const Expr* Base = FindExpressionBaseAddress(SubExpr);
2230      if (Base) {
2231        // the cast is only valid if done to a wide enough type
2232        if (Context.getTypeSize(CE->getType()) >=
2233            Context.getTypeSize(SubExpr->getType()))
2234          return false;
2235      } else {
2236        // If the pointer has a null base, this is an offsetof-like construct
2237        return CheckAddressConstantExpression(SubExpr);
2238      }
2239    }
2240
2241    InitializerElementNotConstant(Init);
2242    return true;
2243  }
2244  case Expr::ConditionalOperatorClass: {
2245    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
2246
2247    // If GNU extensions are disabled, we require all operands to be arithmetic
2248    // constant expressions.
2249    if (getLangOptions().NoExtensions) {
2250      return CheckArithmeticConstantExpression(Exp->getCond()) ||
2251          (Exp->getLHS() && CheckArithmeticConstantExpression(Exp->getLHS())) ||
2252             CheckArithmeticConstantExpression(Exp->getRHS());
2253    }
2254
2255    // Otherwise, we have to emulate some of the behavior of fold here.
2256    // Basically GCC treats things like "4 ? 1 : somefunc()" as a constant
2257    // because it can constant fold things away.  To retain compatibility with
2258    // GCC code, we see if we can fold the condition to a constant (which we
2259    // should always be able to do in theory).  If so, we only require the
2260    // specified arm of the conditional to be a constant.  This is a horrible
2261    // hack, but is require by real world code that uses __builtin_constant_p.
2262    Expr::EvalResult EvalResult;
2263    if (!Exp->getCond()->Evaluate(EvalResult, Context) ||
2264        EvalResult.HasSideEffects) {
2265      // If Evaluate couldn't fold it, CheckArithmeticConstantExpression
2266      // won't be able to either.  Use it to emit the diagnostic though.
2267      bool Res = CheckArithmeticConstantExpression(Exp->getCond());
2268      assert(Res && "Evaluate couldn't evaluate this constant?");
2269      return Res;
2270    }
2271
2272    // Verify that the side following the condition is also a constant.
2273    const Expr *TrueSide = Exp->getLHS(), *FalseSide = Exp->getRHS();
2274    if (EvalResult.Val.getInt() == 0)
2275      std::swap(TrueSide, FalseSide);
2276
2277    if (TrueSide && CheckArithmeticConstantExpression(TrueSide))
2278      return true;
2279
2280    // Okay, the evaluated side evaluates to a constant, so we accept this.
2281    // Check to see if the other side is obviously not a constant.  If so,
2282    // emit a warning that this is a GNU extension.
2283    if (FalseSide && !FalseSide->isEvaluatable(Context))
2284      Diag(Init->getExprLoc(),
2285           diag::ext_typecheck_expression_not_constant_but_accepted)
2286        << FalseSide->getSourceRange();
2287    return false;
2288  }
2289  }
2290}
2291
2292bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
2293  if (DesignatedInitExpr *DIE = dyn_cast<DesignatedInitExpr>(Init))
2294    Init = DIE->getInit();
2295
2296  Init = Init->IgnoreParens();
2297
2298  if (Init->isEvaluatable(Context))
2299    return false;
2300
2301  // Look through CXXDefaultArgExprs; they have no meaning in this context.
2302  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
2303    return CheckForConstantInitializer(DAE->getExpr(), DclT);
2304
2305  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
2306    return CheckForConstantInitializer(e->getInitializer(), DclT);
2307
2308  if (isa<ImplicitValueInitExpr>(Init)) {
2309    // FIXME: In C++, check for non-POD types.
2310    return false;
2311  }
2312
2313  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
2314    unsigned numInits = Exp->getNumInits();
2315    for (unsigned i = 0; i < numInits; i++) {
2316      // FIXME: Need to get the type of the declaration for C++,
2317      // because it could be a reference?
2318
2319      if (CheckForConstantInitializer(Exp->getInit(i),
2320                                      Exp->getInit(i)->getType()))
2321        return true;
2322    }
2323    return false;
2324  }
2325
2326  // FIXME: We can probably remove some of this code below, now that
2327  // Expr::Evaluate is doing the heavy lifting for scalars.
2328
2329  if (Init->isNullPointerConstant(Context))
2330    return false;
2331  if (Init->getType()->isArithmeticType()) {
2332    QualType InitTy = Context.getCanonicalType(Init->getType())
2333                             .getUnqualifiedType();
2334    if (InitTy == Context.BoolTy) {
2335      // Special handling for pointers implicitly cast to bool;
2336      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
2337      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
2338        Expr* SubE = ICE->getSubExpr();
2339        if (SubE->getType()->isPointerType() ||
2340            SubE->getType()->isArrayType() ||
2341            SubE->getType()->isFunctionType()) {
2342          return CheckAddressConstantExpression(Init);
2343        }
2344      }
2345    } else if (InitTy->isIntegralType()) {
2346      Expr* SubE = 0;
2347      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
2348        SubE = CE->getSubExpr();
2349      // Special check for pointer cast to int; we allow as an extension
2350      // an address constant cast to an integer if the integer
2351      // is of an appropriate width (this sort of code is apparently used
2352      // in some places).
2353      // FIXME: Add pedwarn?
2354      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
2355      if (SubE && (SubE->getType()->isPointerType() ||
2356                   SubE->getType()->isArrayType() ||
2357                   SubE->getType()->isFunctionType())) {
2358        unsigned IntWidth = Context.getTypeSize(Init->getType());
2359        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
2360        if (IntWidth >= PointerWidth)
2361          return CheckAddressConstantExpression(Init);
2362      }
2363    }
2364
2365    return CheckArithmeticConstantExpression(Init);
2366  }
2367
2368  if (Init->getType()->isPointerType())
2369    return CheckAddressConstantExpression(Init);
2370
2371  // An array type at the top level that isn't an init-list must
2372  // be a string literal
2373  if (Init->getType()->isArrayType())
2374    return false;
2375
2376  if (Init->getType()->isFunctionType())
2377    return false;
2378
2379  // Allow block exprs at top level.
2380  if (Init->getType()->isBlockPointerType())
2381    return false;
2382
2383  // GCC cast to union extension
2384  // note: the validity of the cast expr is checked by CheckCastTypes()
2385  if (CastExpr *C = dyn_cast<CastExpr>(Init)) {
2386    QualType T = C->getType();
2387    return T->isUnionType() && CheckForConstantInitializer(C->getSubExpr(), T);
2388  }
2389
2390  InitializerElementNotConstant(Init);
2391  return true;
2392}
2393
2394void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init) {
2395  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
2396}
2397
2398/// AddInitializerToDecl - Adds the initializer Init to the
2399/// declaration dcl. If DirectInit is true, this is C++ direct
2400/// initialization rather than copy initialization.
2401void Sema::AddInitializerToDecl(DeclTy *dcl, ExprArg init, bool DirectInit) {
2402  Decl *RealDecl = static_cast<Decl *>(dcl);
2403  Expr *Init = static_cast<Expr *>(init.release());
2404  assert(Init && "missing initializer");
2405
2406  // If there is no declaration, there was an error parsing it.  Just ignore
2407  // the initializer.
2408  if (RealDecl == 0) {
2409    Init->Destroy(Context);
2410    return;
2411  }
2412
2413  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
2414  if (!VDecl) {
2415    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
2416    RealDecl->setInvalidDecl();
2417    return;
2418  }
2419  // Get the decls type and save a reference for later, since
2420  // CheckInitializerTypes may change it.
2421  QualType DclT = VDecl->getType(), SavT = DclT;
2422  if (VDecl->isBlockVarDecl()) {
2423    VarDecl::StorageClass SC = VDecl->getStorageClass();
2424    if (SC == VarDecl::Extern) { // C99 6.7.8p5
2425      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
2426      VDecl->setInvalidDecl();
2427    } else if (!VDecl->isInvalidDecl()) {
2428      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2429                                VDecl->getDeclName(), DirectInit))
2430        VDecl->setInvalidDecl();
2431
2432      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2433      if (!getLangOptions().CPlusPlus) {
2434        if (SC == VarDecl::Static) // C99 6.7.8p4.
2435          CheckForConstantInitializer(Init, DclT);
2436      }
2437    }
2438  } else if (VDecl->isFileVarDecl()) {
2439    if (VDecl->getStorageClass() == VarDecl::Extern)
2440      Diag(VDecl->getLocation(), diag::warn_extern_init);
2441    if (!VDecl->isInvalidDecl())
2442      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
2443                                VDecl->getDeclName(), DirectInit))
2444        VDecl->setInvalidDecl();
2445
2446    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
2447    if (!getLangOptions().CPlusPlus) {
2448      // C99 6.7.8p4. All file scoped initializers need to be constant.
2449      CheckForConstantInitializer(Init, DclT);
2450    }
2451  }
2452  // If the type changed, it means we had an incomplete type that was
2453  // completed by the initializer. For example:
2454  //   int ary[] = { 1, 3, 5 };
2455  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
2456  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
2457    VDecl->setType(DclT);
2458    Init->setType(DclT);
2459  }
2460
2461  // Attach the initializer to the decl.
2462  VDecl->setInit(Init);
2463  return;
2464}
2465
2466void Sema::ActOnUninitializedDecl(DeclTy *dcl) {
2467  Decl *RealDecl = static_cast<Decl *>(dcl);
2468
2469  // If there is no declaration, there was an error parsing it. Just ignore it.
2470  if (RealDecl == 0)
2471    return;
2472
2473  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
2474    QualType Type = Var->getType();
2475    // C++ [dcl.init.ref]p3:
2476    //   The initializer can be omitted for a reference only in a
2477    //   parameter declaration (8.3.5), in the declaration of a
2478    //   function return type, in the declaration of a class member
2479    //   within its class declaration (9.2), and where the extern
2480    //   specifier is explicitly used.
2481    if (Type->isReferenceType() &&
2482        Var->getStorageClass() != VarDecl::Extern &&
2483        Var->getStorageClass() != VarDecl::PrivateExtern) {
2484      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
2485        << Var->getDeclName()
2486        << SourceRange(Var->getLocation(), Var->getLocation());
2487      Var->setInvalidDecl();
2488      return;
2489    }
2490
2491    // C++ [dcl.init]p9:
2492    //
2493    //   If no initializer is specified for an object, and the object
2494    //   is of (possibly cv-qualified) non-POD class type (or array
2495    //   thereof), the object shall be default-initialized; if the
2496    //   object is of const-qualified type, the underlying class type
2497    //   shall have a user-declared default constructor.
2498    if (getLangOptions().CPlusPlus) {
2499      QualType InitType = Type;
2500      if (const ArrayType *Array = Context.getAsArrayType(Type))
2501        InitType = Array->getElementType();
2502      if (Var->getStorageClass() != VarDecl::Extern &&
2503          Var->getStorageClass() != VarDecl::PrivateExtern &&
2504          InitType->isRecordType()) {
2505        const CXXConstructorDecl *Constructor
2506          = PerformInitializationByConstructor(InitType, 0, 0,
2507                                               Var->getLocation(),
2508                                               SourceRange(Var->getLocation(),
2509                                                           Var->getLocation()),
2510                                               Var->getDeclName(),
2511                                               IK_Default);
2512        if (!Constructor)
2513          Var->setInvalidDecl();
2514      }
2515    }
2516
2517#if 0
2518    // FIXME: Temporarily disabled because we are not properly parsing
2519    // linkage specifications on declarations, e.g.,
2520    //
2521    //   extern "C" const CGPoint CGPointerZero;
2522    //
2523    // C++ [dcl.init]p9:
2524    //
2525    //     If no initializer is specified for an object, and the
2526    //     object is of (possibly cv-qualified) non-POD class type (or
2527    //     array thereof), the object shall be default-initialized; if
2528    //     the object is of const-qualified type, the underlying class
2529    //     type shall have a user-declared default
2530    //     constructor. Otherwise, if no initializer is specified for
2531    //     an object, the object and its subobjects, if any, have an
2532    //     indeterminate initial value; if the object or any of its
2533    //     subobjects are of const-qualified type, the program is
2534    //     ill-formed.
2535    //
2536    // This isn't technically an error in C, so we don't diagnose it.
2537    //
2538    // FIXME: Actually perform the POD/user-defined default
2539    // constructor check.
2540    if (getLangOptions().CPlusPlus &&
2541        Context.getCanonicalType(Type).isConstQualified() &&
2542        Var->getStorageClass() != VarDecl::Extern)
2543      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
2544        << Var->getName()
2545        << SourceRange(Var->getLocation(), Var->getLocation());
2546#endif
2547  }
2548}
2549
2550/// The declarators are chained together backwards, reverse the list.
2551Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
2552  // Often we have single declarators, handle them quickly.
2553  Decl *GroupDecl = static_cast<Decl*>(group);
2554  if (GroupDecl == 0)
2555    return 0;
2556
2557  Decl *Group = dyn_cast<Decl>(GroupDecl);
2558  Decl *NewGroup = 0;
2559  if (Group->getNextDeclarator() == 0)
2560    NewGroup = Group;
2561  else { // reverse the list.
2562    while (Group) {
2563      Decl *Next = Group->getNextDeclarator();
2564      Group->setNextDeclarator(NewGroup);
2565      NewGroup = Group;
2566      Group = Next;
2567    }
2568  }
2569  // Perform semantic analysis that depends on having fully processed both
2570  // the declarator and initializer.
2571  for (Decl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
2572    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
2573    if (!IDecl)
2574      continue;
2575    QualType T = IDecl->getType();
2576
2577    if (T->isVariableArrayType()) {
2578      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2579
2580      // FIXME: This won't give the correct result for
2581      // int a[10][n];
2582      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2583      if (IDecl->isFileVarDecl()) {
2584        Diag(IDecl->getLocation(), diag::err_vla_decl_in_file_scope) <<
2585          SizeRange;
2586
2587        IDecl->setInvalidDecl();
2588      } else {
2589        // C99 6.7.5.2p2: If an identifier is declared to be an object with
2590        // static storage duration, it shall not have a variable length array.
2591        if (IDecl->getStorageClass() == VarDecl::Static) {
2592          Diag(IDecl->getLocation(), diag::err_vla_decl_has_static_storage)
2593            << SizeRange;
2594          IDecl->setInvalidDecl();
2595        } else if (IDecl->getStorageClass() == VarDecl::Extern) {
2596          Diag(IDecl->getLocation(), diag::err_vla_decl_has_extern_linkage)
2597            << SizeRange;
2598          IDecl->setInvalidDecl();
2599        }
2600      }
2601    } else if (T->isVariablyModifiedType()) {
2602      if (IDecl->isFileVarDecl()) {
2603        Diag(IDecl->getLocation(), diag::err_vm_decl_in_file_scope);
2604        IDecl->setInvalidDecl();
2605      } else {
2606        if (IDecl->getStorageClass() == VarDecl::Extern) {
2607          Diag(IDecl->getLocation(), diag::err_vm_decl_has_extern_linkage);
2608          IDecl->setInvalidDecl();
2609        }
2610      }
2611    }
2612
2613    // Block scope. C99 6.7p7: If an identifier for an object is declared with
2614    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
2615    if (IDecl->isBlockVarDecl() &&
2616        IDecl->getStorageClass() != VarDecl::Extern) {
2617      if (!IDecl->isInvalidDecl() &&
2618          DiagnoseIncompleteType(IDecl->getLocation(), T,
2619                                 diag::err_typecheck_decl_incomplete_type))
2620        IDecl->setInvalidDecl();
2621    }
2622    // File scope. C99 6.9.2p2: A declaration of an identifier for and
2623    // object that has file scope without an initializer, and without a
2624    // storage-class specifier or with the storage-class specifier "static",
2625    // constitutes a tentative definition. Note: A tentative definition with
2626    // external linkage is valid (C99 6.2.2p5).
2627    if (isTentativeDefinition(IDecl)) {
2628      if (T->isIncompleteArrayType()) {
2629        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
2630        // array to be completed. Don't issue a diagnostic.
2631      } else if (!IDecl->isInvalidDecl() &&
2632                 DiagnoseIncompleteType(IDecl->getLocation(), T,
2633                                        diag::err_typecheck_decl_incomplete_type))
2634        // C99 6.9.2p3: If the declaration of an identifier for an object is
2635        // a tentative definition and has internal linkage (C99 6.2.2p3), the
2636        // declared type shall not be an incomplete type.
2637        IDecl->setInvalidDecl();
2638    }
2639    if (IDecl->isFileVarDecl())
2640      CheckForFileScopedRedefinitions(S, IDecl);
2641  }
2642  return NewGroup;
2643}
2644
2645/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
2646/// to introduce parameters into function prototype scope.
2647Sema::DeclTy *
2648Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
2649  const DeclSpec &DS = D.getDeclSpec();
2650
2651  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
2652  VarDecl::StorageClass StorageClass = VarDecl::None;
2653  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
2654    StorageClass = VarDecl::Register;
2655  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
2656    Diag(DS.getStorageClassSpecLoc(),
2657         diag::err_invalid_storage_class_in_func_decl);
2658    D.getMutableDeclSpec().ClearStorageClassSpecs();
2659  }
2660  if (DS.isThreadSpecified()) {
2661    Diag(DS.getThreadSpecLoc(),
2662         diag::err_invalid_storage_class_in_func_decl);
2663    D.getMutableDeclSpec().ClearStorageClassSpecs();
2664  }
2665
2666  // Check that there are no default arguments inside the type of this
2667  // parameter (C++ only).
2668  if (getLangOptions().CPlusPlus)
2669    CheckExtraCXXDefaultArguments(D);
2670
2671  // In this context, we *do not* check D.getInvalidType(). If the declarator
2672  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
2673  // though it will not reflect the user specified type.
2674  QualType parmDeclType = GetTypeForDeclarator(D, S);
2675
2676  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
2677
2678  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
2679  // Can this happen for params?  We already checked that they don't conflict
2680  // among each other.  Here they can only shadow globals, which is ok.
2681  IdentifierInfo *II = D.getIdentifier();
2682  if (II) {
2683    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
2684      if (PrevDecl->isTemplateParameter()) {
2685        // Maybe we will complain about the shadowed template parameter.
2686        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
2687        // Just pretend that we didn't see the previous declaration.
2688        PrevDecl = 0;
2689      } else if (S->isDeclScope(PrevDecl)) {
2690        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
2691
2692        // Recover by removing the name
2693        II = 0;
2694        D.SetIdentifier(0, D.getIdentifierLoc());
2695      }
2696    }
2697  }
2698
2699  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
2700  // Doing the promotion here has a win and a loss. The win is the type for
2701  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
2702  // code generator). The loss is the orginal type isn't preserved. For example:
2703  //
2704  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
2705  //    int blockvardecl[5];
2706  //    sizeof(parmvardecl);  // size == 4
2707  //    sizeof(blockvardecl); // size == 20
2708  // }
2709  //
2710  // For expressions, all implicit conversions are captured using the
2711  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
2712  //
2713  // FIXME: If a source translation tool needs to see the original type, then
2714  // we need to consider storing both types (in ParmVarDecl)...
2715  //
2716  if (parmDeclType->isArrayType()) {
2717    // int x[restrict 4] ->  int *restrict
2718    parmDeclType = Context.getArrayDecayedType(parmDeclType);
2719  } else if (parmDeclType->isFunctionType())
2720    parmDeclType = Context.getPointerType(parmDeclType);
2721
2722  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
2723                                         D.getIdentifierLoc(), II,
2724                                         parmDeclType, StorageClass,
2725                                         0);
2726
2727  if (D.getInvalidType())
2728    New->setInvalidDecl();
2729
2730  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
2731  if (D.getCXXScopeSpec().isSet()) {
2732    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
2733      << D.getCXXScopeSpec().getRange();
2734    New->setInvalidDecl();
2735  }
2736
2737  // Add the parameter declaration into this scope.
2738  S->AddDecl(New);
2739  if (II)
2740    IdResolver.AddDecl(New);
2741
2742  ProcessDeclAttributes(New, D);
2743  return New;
2744
2745}
2746
2747void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D) {
2748  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2749         "Not a function declarator!");
2750  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2751
2752  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
2753  // for a K&R function.
2754  if (!FTI.hasPrototype) {
2755    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2756      if (FTI.ArgInfo[i].Param == 0) {
2757        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
2758          << FTI.ArgInfo[i].Ident;
2759        // Implicitly declare the argument as type 'int' for lack of a better
2760        // type.
2761        DeclSpec DS;
2762        const char* PrevSpec; // unused
2763        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
2764                           PrevSpec);
2765        Declarator ParamD(DS, Declarator::KNRTypeListContext);
2766        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
2767        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
2768      }
2769    }
2770  }
2771}
2772
2773Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
2774  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
2775  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
2776         "Not a function declarator!");
2777  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2778
2779  if (FTI.hasPrototype) {
2780    // FIXME: Diagnose arguments without names in C.
2781  }
2782
2783  Scope *ParentScope = FnBodyScope->getParent();
2784
2785  return ActOnStartOfFunctionDef(FnBodyScope,
2786                                 ActOnDeclarator(ParentScope, D, 0,
2787                                                 /*IsFunctionDefinition=*/true));
2788}
2789
2790Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
2791  Decl *decl = static_cast<Decl*>(D);
2792  FunctionDecl *FD = cast<FunctionDecl>(decl);
2793
2794  // See if this is a redefinition.
2795  const FunctionDecl *Definition;
2796  if (FD->getBody(Definition)) {
2797    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
2798    Diag(Definition->getLocation(), diag::note_previous_definition);
2799  }
2800
2801  // Builtin functions cannot be defined.
2802  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2803    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
2804      Diag(FD->getLocation(), diag::err_builtin_lib_definition) << FD;
2805      Diag(FD->getLocation(), diag::note_builtin_lib_def_freestanding);
2806    } else
2807      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
2808    FD->setInvalidDecl();
2809  }
2810
2811  PushDeclContext(FnBodyScope, FD);
2812
2813  // Check the validity of our function parameters
2814  CheckParmsForFunctionDef(FD);
2815
2816  // Introduce our parameters into the function scope
2817  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
2818    ParmVarDecl *Param = FD->getParamDecl(p);
2819    Param->setOwningFunction(FD);
2820
2821    // If this has an identifier, add it to the scope stack.
2822    if (Param->getIdentifier())
2823      PushOnScopeChains(Param, FnBodyScope);
2824  }
2825
2826  // Checking attributes of current function definition
2827  // dllimport attribute.
2828  if (FD->getAttr<DLLImportAttr>() && (!FD->getAttr<DLLExportAttr>())) {
2829    // dllimport attribute cannot be applied to definition.
2830    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
2831      Diag(FD->getLocation(),
2832           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
2833        << "dllimport";
2834      FD->setInvalidDecl();
2835      return FD;
2836    } else {
2837      // If a symbol previously declared dllimport is later defined, the
2838      // attribute is ignored in subsequent references, and a warning is
2839      // emitted.
2840      Diag(FD->getLocation(),
2841           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
2842        << FD->getNameAsCString() << "dllimport";
2843    }
2844  }
2845  return FD;
2846}
2847
2848Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtArg BodyArg) {
2849  Decl *dcl = static_cast<Decl *>(D);
2850  Stmt *Body = static_cast<Stmt*>(BodyArg.release());
2851  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
2852    FD->setBody(Body);
2853    assert(FD == getCurFunctionDecl() && "Function parsing confused");
2854  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
2855    assert(MD == getCurMethodDecl() && "Method parsing confused");
2856    MD->setBody((Stmt*)Body);
2857  } else {
2858    Body->Destroy(Context);
2859    return 0;
2860  }
2861  PopDeclContext();
2862  // Verify and clean out per-function state.
2863
2864  // Check goto/label use.
2865  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
2866       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
2867    // Verify that we have no forward references left.  If so, there was a goto
2868    // or address of a label taken, but no definition of it.  Label fwd
2869    // definitions are indicated with a null substmt.
2870    if (I->second->getSubStmt() == 0) {
2871      LabelStmt *L = I->second;
2872      // Emit error.
2873      Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
2874
2875      // At this point, we have gotos that use the bogus label.  Stitch it into
2876      // the function body so that they aren't leaked and that the AST is well
2877      // formed.
2878      if (Body) {
2879#if 0
2880        // FIXME: Why do this?  Having a 'push_back' in CompoundStmt is ugly,
2881        // and the AST is malformed anyway.  We should just blow away 'L'.
2882        L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
2883        cast<CompoundStmt>(Body)->push_back(L);
2884#else
2885        L->Destroy(Context);
2886#endif
2887      } else {
2888        // The whole function wasn't parsed correctly, just delete this.
2889        L->Destroy(Context);
2890      }
2891    }
2892  }
2893  LabelMap.clear();
2894
2895  return D;
2896}
2897
2898/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
2899/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
2900NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
2901                                          IdentifierInfo &II, Scope *S) {
2902  // Extension in C99.  Legal in C90, but warn about it.
2903  if (getLangOptions().C99)
2904    Diag(Loc, diag::ext_implicit_function_decl) << &II;
2905  else
2906    Diag(Loc, diag::warn_implicit_function_decl) << &II;
2907
2908  // FIXME: handle stuff like:
2909  // void foo() { extern float X(); }
2910  // void bar() { X(); }  <-- implicit decl for X in another scope.
2911
2912  // Set a Declarator for the implicit definition: int foo();
2913  const char *Dummy;
2914  DeclSpec DS;
2915  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
2916  Error = Error; // Silence warning.
2917  assert(!Error && "Error setting up implicit decl!");
2918  Declarator D(DS, Declarator::BlockContext);
2919  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, 0, Loc, D),
2920                SourceLocation());
2921  D.SetIdentifier(&II, Loc);
2922
2923  // Insert this function into translation-unit scope.
2924
2925  DeclContext *PrevDC = CurContext;
2926  CurContext = Context.getTranslationUnitDecl();
2927
2928  FunctionDecl *FD =
2929    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
2930  FD->setImplicit();
2931
2932  CurContext = PrevDC;
2933
2934  AddKnownFunctionAttributes(FD);
2935
2936  return FD;
2937}
2938
2939/// \brief Adds any function attributes that we know a priori based on
2940/// the declaration of this function.
2941///
2942/// These attributes can apply both to implicitly-declared builtins
2943/// (like __builtin___printf_chk) or to library-declared functions
2944/// like NSLog or printf.
2945void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
2946  if (FD->isInvalidDecl())
2947    return;
2948
2949  // If this is a built-in function, map its builtin attributes to
2950  // actual attributes.
2951  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
2952    // Handle printf-formatting attributes.
2953    unsigned FormatIdx;
2954    bool HasVAListArg;
2955    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
2956      if (!FD->getAttr<FormatAttr>())
2957        FD->addAttr(new FormatAttr("printf", FormatIdx + 1, FormatIdx + 2));
2958    }
2959  }
2960
2961  IdentifierInfo *Name = FD->getIdentifier();
2962  if (!Name)
2963    return;
2964  if ((!getLangOptions().CPlusPlus &&
2965       FD->getDeclContext()->isTranslationUnit()) ||
2966      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
2967       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
2968       LinkageSpecDecl::lang_c)) {
2969    // Okay: this could be a libc/libm/Objective-C function we know
2970    // about.
2971  } else
2972    return;
2973
2974  unsigned KnownID;
2975  for (KnownID = 0; KnownID != id_num_known_functions; ++KnownID)
2976    if (KnownFunctionIDs[KnownID] == Name)
2977      break;
2978
2979  switch (KnownID) {
2980  case id_NSLog:
2981  case id_NSLogv:
2982    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
2983      // FIXME: We known better than our headers.
2984      const_cast<FormatAttr *>(Format)->setType("printf");
2985    } else
2986      FD->addAttr(new FormatAttr("printf", 1, 2));
2987    break;
2988
2989  case id_asprintf:
2990  case id_vasprintf:
2991    if (!FD->getAttr<FormatAttr>())
2992      FD->addAttr(new FormatAttr("printf", 2, 3));
2993    break;
2994
2995  default:
2996    // Unknown function or known function without any attributes to
2997    // add. Do nothing.
2998    break;
2999  }
3000}
3001
3002TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
3003                                    Decl *LastDeclarator) {
3004  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3005  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3006
3007  // Scope manipulation handled by caller.
3008  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3009                                           D.getIdentifierLoc(),
3010                                           D.getIdentifier(),
3011                                           T);
3012  NewTD->setNextDeclarator(LastDeclarator);
3013  if (D.getInvalidType())
3014    NewTD->setInvalidDecl();
3015  return NewTD;
3016}
3017
3018/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3019/// former case, Name will be non-null.  In the later case, Name will be null.
3020/// TagSpec indicates what kind of tag this is. TK indicates whether this is a
3021/// reference/declaration/definition of a tag.
3022Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagKind TK,
3023                             SourceLocation KWLoc, const CXXScopeSpec &SS,
3024                             IdentifierInfo *Name, SourceLocation NameLoc,
3025                             AttributeList *Attr) {
3026  // If this is not a definition, it must have a name.
3027  assert((Name != 0 || TK == TK_Definition) &&
3028         "Nameless record must be a definition!");
3029
3030  TagDecl::TagKind Kind;
3031  switch (TagSpec) {
3032  default: assert(0 && "Unknown tag type!");
3033  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3034  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3035  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3036  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3037  }
3038
3039  DeclContext *SearchDC = CurContext;
3040  DeclContext *DC = CurContext;
3041  NamedDecl *PrevDecl = 0;
3042
3043  bool Invalid = false;
3044
3045  if (Name && SS.isNotEmpty()) {
3046    // We have a nested-name tag ('struct foo::bar').
3047
3048    // Check for invalid 'foo::'.
3049    if (SS.isInvalid()) {
3050      Name = 0;
3051      goto CreateNewDecl;
3052    }
3053
3054    DC = static_cast<DeclContext*>(SS.getScopeRep());
3055    SearchDC = DC;
3056    // Look-up name inside 'foo::'.
3057    PrevDecl = dyn_cast_or_null<TagDecl>(
3058                 LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
3059
3060    // A tag 'foo::bar' must already exist.
3061    if (PrevDecl == 0) {
3062      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
3063      Name = 0;
3064      goto CreateNewDecl;
3065    }
3066  } else if (Name) {
3067    // If this is a named struct, check to see if there was a previous forward
3068    // declaration or definition.
3069    // FIXME: We're looking into outer scopes here, even when we
3070    // shouldn't be. Doing so can result in ambiguities that we
3071    // shouldn't be diagnosing.
3072    LookupResult R = LookupName(S, Name, LookupTagName,
3073                                /*RedeclarationOnly=*/(TK != TK_Reference));
3074    if (R.isAmbiguous()) {
3075      DiagnoseAmbiguousLookup(R, Name, NameLoc);
3076      // FIXME: This is not best way to recover from case like:
3077      //
3078      // struct S s;
3079      //
3080      // causes needless err_ovl_no_viable_function_in_init latter.
3081      Name = 0;
3082      PrevDecl = 0;
3083      Invalid = true;
3084    }
3085    else
3086      PrevDecl = R;
3087
3088    if (!getLangOptions().CPlusPlus && TK != TK_Reference) {
3089      // FIXME: This makes sure that we ignore the contexts associated
3090      // with C structs, unions, and enums when looking for a matching
3091      // tag declaration or definition. See the similar lookup tweak
3092      // in Sema::LookupName; is there a better way to deal with this?
3093      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
3094        SearchDC = SearchDC->getParent();
3095    }
3096  }
3097
3098  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3099    // Maybe we will complain about the shadowed template parameter.
3100    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
3101    // Just pretend that we didn't see the previous declaration.
3102    PrevDecl = 0;
3103  }
3104
3105  if (PrevDecl) {
3106    // If the previous declaration was deprecated, emit a warning.
3107    DiagnoseUseOfDeprecatedDecl(PrevDecl, NameLoc);
3108
3109    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
3110      // If this is a use of a previous tag, or if the tag is already declared
3111      // in the same scope (so that the definition/declaration completes or
3112      // rementions the tag), reuse the decl.
3113      if (TK == TK_Reference || isDeclInScope(PrevDecl, SearchDC, S)) {
3114        // Make sure that this wasn't declared as an enum and now used as a
3115        // struct or something similar.
3116        if (PrevTagDecl->getTagKind() != Kind) {
3117          Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
3118          Diag(PrevDecl->getLocation(), diag::note_previous_use);
3119          // Recover by making this an anonymous redefinition.
3120          Name = 0;
3121          PrevDecl = 0;
3122          Invalid = true;
3123        } else {
3124          // If this is a use, just return the declaration we found.
3125
3126          // FIXME: In the future, return a variant or some other clue
3127          // for the consumer of this Decl to know it doesn't own it.
3128          // For our current ASTs this shouldn't be a problem, but will
3129          // need to be changed with DeclGroups.
3130          if (TK == TK_Reference)
3131            return PrevDecl;
3132
3133          // Diagnose attempts to redefine a tag.
3134          if (TK == TK_Definition) {
3135            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
3136              Diag(NameLoc, diag::err_redefinition) << Name;
3137              Diag(Def->getLocation(), diag::note_previous_definition);
3138              // If this is a redefinition, recover by making this
3139              // struct be anonymous, which will make any later
3140              // references get the previous definition.
3141              Name = 0;
3142              PrevDecl = 0;
3143              Invalid = true;
3144            } else {
3145              // If the type is currently being defined, complain
3146              // about a nested redefinition.
3147              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
3148              if (Tag->isBeingDefined()) {
3149                Diag(NameLoc, diag::err_nested_redefinition) << Name;
3150                Diag(PrevTagDecl->getLocation(),
3151                     diag::note_previous_definition);
3152                Name = 0;
3153                PrevDecl = 0;
3154                Invalid = true;
3155              }
3156            }
3157
3158            // Okay, this is definition of a previously declared or referenced
3159            // tag PrevDecl. We're going to create a new Decl for it.
3160          }
3161        }
3162        // If we get here we have (another) forward declaration or we
3163        // have a definition.  Just create a new decl.
3164      } else {
3165        // If we get here, this is a definition of a new tag type in a nested
3166        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
3167        // new decl/type.  We set PrevDecl to NULL so that the entities
3168        // have distinct types.
3169        PrevDecl = 0;
3170      }
3171      // If we get here, we're going to create a new Decl. If PrevDecl
3172      // is non-NULL, it's a definition of the tag declared by
3173      // PrevDecl. If it's NULL, we have a new definition.
3174    } else {
3175      // PrevDecl is a namespace, template, or anything else
3176      // that lives in the IDNS_Tag identifier namespace.
3177      if (isDeclInScope(PrevDecl, SearchDC, S)) {
3178        // The tag name clashes with a namespace name, issue an error and
3179        // recover by making this tag be anonymous.
3180        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
3181        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3182        Name = 0;
3183        PrevDecl = 0;
3184        Invalid = true;
3185      } else {
3186        // The existing declaration isn't relevant to us; we're in a
3187        // new scope, so clear out the previous declaration.
3188        PrevDecl = 0;
3189      }
3190    }
3191  } else if (TK == TK_Reference && SS.isEmpty() && Name &&
3192             (Kind != TagDecl::TK_enum))  {
3193    // C++ [basic.scope.pdecl]p5:
3194    //   -- for an elaborated-type-specifier of the form
3195    //
3196    //          class-key identifier
3197    //
3198    //      if the elaborated-type-specifier is used in the
3199    //      decl-specifier-seq or parameter-declaration-clause of a
3200    //      function defined in namespace scope, the identifier is
3201    //      declared as a class-name in the namespace that contains
3202    //      the declaration; otherwise, except as a friend
3203    //      declaration, the identifier is declared in the smallest
3204    //      non-class, non-function-prototype scope that contains the
3205    //      declaration.
3206    //
3207    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
3208    // C structs and unions.
3209
3210    // Find the context where we'll be declaring the tag.
3211    // FIXME: We would like to maintain the current DeclContext as the
3212    // lexical context,
3213    while (SearchDC->isRecord())
3214      SearchDC = SearchDC->getParent();
3215
3216    // Find the scope where we'll be declaring the tag.
3217    while (S->isClassScope() ||
3218           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
3219           ((S->getFlags() & Scope::DeclScope) == 0) ||
3220           (S->getEntity() &&
3221            ((DeclContext *)S->getEntity())->isTransparentContext()))
3222      S = S->getParent();
3223  }
3224
3225CreateNewDecl:
3226
3227  // If there is an identifier, use the location of the identifier as the
3228  // location of the decl, otherwise use the location of the struct/union
3229  // keyword.
3230  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
3231
3232  // Otherwise, create a new declaration. If there is a previous
3233  // declaration of the same entity, the two will be linked via
3234  // PrevDecl.
3235  TagDecl *New;
3236
3237  if (Kind == TagDecl::TK_enum) {
3238    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3239    // enum X { A, B, C } D;    D should chain to X.
3240    New = EnumDecl::Create(Context, SearchDC, Loc, Name,
3241                           cast_or_null<EnumDecl>(PrevDecl));
3242    // If this is an undefined enum, warn.
3243    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
3244  } else {
3245    // struct/union/class
3246
3247    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
3248    // struct X { int A; } D;    D should chain to X.
3249    if (getLangOptions().CPlusPlus)
3250      // FIXME: Look for a way to use RecordDecl for simple structs.
3251      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3252                                  cast_or_null<CXXRecordDecl>(PrevDecl));
3253    else
3254      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name,
3255                               cast_or_null<RecordDecl>(PrevDecl));
3256  }
3257
3258  if (Kind != TagDecl::TK_enum) {
3259    // Handle #pragma pack: if the #pragma pack stack has non-default
3260    // alignment, make up a packed attribute for this decl. These
3261    // attributes are checked when the ASTContext lays out the
3262    // structure.
3263    //
3264    // It is important for implementing the correct semantics that this
3265    // happen here (in act on tag decl). The #pragma pack stack is
3266    // maintained as a result of parser callbacks which can occur at
3267    // many points during the parsing of a struct declaration (because
3268    // the #pragma tokens are effectively skipped over during the
3269    // parsing of the struct).
3270    if (unsigned Alignment = PackContext.getAlignment())
3271      New->addAttr(new PackedAttr(Alignment * 8));
3272  }
3273
3274  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
3275    // C++ [dcl.typedef]p3:
3276    //   [...] Similarly, in a given scope, a class or enumeration
3277    //   shall not be declared with the same name as a typedef-name
3278    //   that is declared in that scope and refers to a type other
3279    //   than the class or enumeration itself.
3280    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
3281    TypedefDecl *PrevTypedef = 0;
3282    if (Lookup.getKind() == LookupResult::Found)
3283      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
3284
3285    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
3286        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
3287          Context.getCanonicalType(Context.getTypeDeclType(New))) {
3288      Diag(Loc, diag::err_tag_definition_of_typedef)
3289        << Context.getTypeDeclType(New)
3290        << PrevTypedef->getUnderlyingType();
3291      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
3292      Invalid = true;
3293    }
3294  }
3295
3296  if (Invalid)
3297    New->setInvalidDecl();
3298
3299  if (Attr)
3300    ProcessDeclAttributeList(New, Attr);
3301
3302  // If we're declaring or defining a tag in function prototype scope
3303  // in C, note that this type can only be used within the function.
3304  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
3305    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
3306
3307  // Set the lexical context. If the tag has a C++ scope specifier, the
3308  // lexical context will be different from the semantic context.
3309  New->setLexicalDeclContext(CurContext);
3310
3311  if (TK == TK_Definition)
3312    New->startDefinition();
3313
3314  // If this has an identifier, add it to the scope stack.
3315  if (Name) {
3316    S = getNonFieldDeclScope(S);
3317    PushOnScopeChains(New, S);
3318  } else {
3319    CurContext->addDecl(New);
3320  }
3321
3322  return New;
3323}
3324
3325void Sema::ActOnTagStartDefinition(Scope *S, DeclTy *TagD) {
3326  AdjustDeclIfTemplate(TagD);
3327  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3328
3329  // Enter the tag context.
3330  PushDeclContext(S, Tag);
3331
3332  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
3333    FieldCollector->StartClass();
3334
3335    if (Record->getIdentifier()) {
3336      // C++ [class]p2:
3337      //   [...] The class-name is also inserted into the scope of the
3338      //   class itself; this is known as the injected-class-name. For
3339      //   purposes of access checking, the injected-class-name is treated
3340      //   as if it were a public member name.
3341      RecordDecl *InjectedClassName
3342        = CXXRecordDecl::Create(Context, Record->getTagKind(),
3343                                CurContext, Record->getLocation(),
3344                                Record->getIdentifier(), Record);
3345      InjectedClassName->setImplicit();
3346      PushOnScopeChains(InjectedClassName, S);
3347    }
3348  }
3349}
3350
3351void Sema::ActOnTagFinishDefinition(Scope *S, DeclTy *TagD) {
3352  AdjustDeclIfTemplate(TagD);
3353  TagDecl *Tag = cast<TagDecl>((Decl *)TagD);
3354
3355  if (isa<CXXRecordDecl>(Tag))
3356    FieldCollector->FinishClass();
3357
3358  // Exit this scope of this tag's definition.
3359  PopDeclContext();
3360
3361  // Notify the consumer that we've defined a tag.
3362  Consumer.HandleTagDeclDefinition(Tag);
3363}
3364
3365/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3366/// types into constant array types in certain situations which would otherwise
3367/// be errors (for GCC compatibility).
3368static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3369                                                    ASTContext &Context) {
3370  // This method tries to turn a variable array into a constant
3371  // array even when the size isn't an ICE.  This is necessary
3372  // for compatibility with code that depends on gcc's buggy
3373  // constant expression folding, like struct {char x[(int)(char*)2];}
3374  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3375  if (!VLATy) return QualType();
3376
3377  Expr::EvalResult EvalResult;
3378  if (!VLATy->getSizeExpr() ||
3379      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context))
3380    return QualType();
3381
3382  assert(EvalResult.Val.isInt() && "Size expressions must be integers!");
3383  llvm::APSInt &Res = EvalResult.Val.getInt();
3384  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
3385    return Context.getConstantArrayType(VLATy->getElementType(),
3386                                        Res, ArrayType::Normal, 0);
3387  return QualType();
3388}
3389
3390bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
3391                          QualType FieldTy, const Expr *BitWidth) {
3392  // FIXME: 6.7.2.1p4 - verify the field type.
3393
3394  llvm::APSInt Value;
3395  if (VerifyIntegerConstantExpression(BitWidth, &Value))
3396    return true;
3397
3398  // Zero-width bitfield is ok for anonymous field.
3399  if (Value == 0 && FieldName)
3400    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
3401
3402  if (Value.isNegative())
3403    return Diag(FieldLoc, diag::err_bitfield_has_negative_width) << FieldName;
3404
3405  uint64_t TypeSize = Context.getTypeSize(FieldTy);
3406  // FIXME: We won't need the 0 size once we check that the field type is valid.
3407  if (TypeSize && Value.getZExtValue() > TypeSize)
3408    return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
3409       << FieldName << (unsigned)TypeSize;
3410
3411  return false;
3412}
3413
3414/// ActOnField - Each field of a struct/union/class is passed into this in order
3415/// to create a FieldDecl object for it.
3416Sema::DeclTy *Sema::ActOnField(Scope *S, DeclTy *TagD,
3417                               SourceLocation DeclStart,
3418                               Declarator &D, ExprTy *BitfieldWidth) {
3419  IdentifierInfo *II = D.getIdentifier();
3420  Expr *BitWidth = (Expr*)BitfieldWidth;
3421  SourceLocation Loc = DeclStart;
3422  RecordDecl *Record = (RecordDecl *)TagD;
3423  if (II) Loc = D.getIdentifierLoc();
3424
3425  // FIXME: Unnamed fields can be handled in various different ways, for
3426  // example, unnamed unions inject all members into the struct namespace!
3427
3428  QualType T = GetTypeForDeclarator(D, S);
3429  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3430  bool InvalidDecl = false;
3431
3432  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3433  // than a variably modified type.
3434  if (T->isVariablyModifiedType()) {
3435    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context);
3436    if (!FixedTy.isNull()) {
3437      Diag(Loc, diag::warn_illegal_constant_array_size);
3438      T = FixedTy;
3439    } else {
3440      Diag(Loc, diag::err_typecheck_field_variable_size);
3441      T = Context.IntTy;
3442      InvalidDecl = true;
3443    }
3444  }
3445
3446  if (BitWidth) {
3447    if (VerifyBitField(Loc, II, T, BitWidth))
3448      InvalidDecl = true;
3449  } else {
3450    // Not a bitfield.
3451
3452    // validate II.
3453
3454  }
3455
3456  // FIXME: Chain fielddecls together.
3457  FieldDecl *NewFD;
3458
3459  NewFD = FieldDecl::Create(Context, Record,
3460                            Loc, II, T, BitWidth,
3461                            D.getDeclSpec().getStorageClassSpec() ==
3462                              DeclSpec::SCS_mutable);
3463
3464  if (II) {
3465    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3466    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3467        && !isa<TagDecl>(PrevDecl)) {
3468      Diag(Loc, diag::err_duplicate_member) << II;
3469      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3470      NewFD->setInvalidDecl();
3471      Record->setInvalidDecl();
3472    }
3473  }
3474
3475  if (getLangOptions().CPlusPlus) {
3476    CheckExtraCXXDefaultArguments(D);
3477    if (!T->isPODType())
3478      cast<CXXRecordDecl>(Record)->setPOD(false);
3479  }
3480
3481  ProcessDeclAttributes(NewFD, D);
3482
3483  if (D.getInvalidType() || InvalidDecl)
3484    NewFD->setInvalidDecl();
3485
3486  if (II) {
3487    PushOnScopeChains(NewFD, S);
3488  } else
3489    Record->addDecl(NewFD);
3490
3491  return NewFD;
3492}
3493
3494/// TranslateIvarVisibility - Translate visibility from a token ID to an
3495///  AST enum value.
3496static ObjCIvarDecl::AccessControl
3497TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
3498  switch (ivarVisibility) {
3499  default: assert(0 && "Unknown visitibility kind");
3500  case tok::objc_private: return ObjCIvarDecl::Private;
3501  case tok::objc_public: return ObjCIvarDecl::Public;
3502  case tok::objc_protected: return ObjCIvarDecl::Protected;
3503  case tok::objc_package: return ObjCIvarDecl::Package;
3504  }
3505}
3506
3507/// ActOnIvar - Each ivar field of an objective-c class is passed into this
3508/// in order to create an IvarDecl object for it.
3509Sema::DeclTy *Sema::ActOnIvar(Scope *S,
3510                              SourceLocation DeclStart,
3511                              Declarator &D, ExprTy *BitfieldWidth,
3512                              tok::ObjCKeywordKind Visibility) {
3513
3514  IdentifierInfo *II = D.getIdentifier();
3515  Expr *BitWidth = (Expr*)BitfieldWidth;
3516  SourceLocation Loc = DeclStart;
3517  if (II) Loc = D.getIdentifierLoc();
3518
3519  // FIXME: Unnamed fields can be handled in various different ways, for
3520  // example, unnamed unions inject all members into the struct namespace!
3521
3522  QualType T = GetTypeForDeclarator(D, S);
3523  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3524  bool InvalidDecl = false;
3525
3526  if (BitWidth) {
3527    // TODO: Validate.
3528    //printf("WARNING: BITFIELDS IGNORED!\n");
3529
3530    // 6.7.2.1p3
3531    // 6.7.2.1p4
3532
3533  } else {
3534    // Not a bitfield.
3535
3536    // validate II.
3537
3538  }
3539
3540  // C99 6.7.2.1p8: A member of a structure or union may have any type other
3541  // than a variably modified type.
3542  if (T->isVariablyModifiedType()) {
3543    Diag(Loc, diag::err_typecheck_ivar_variable_size);
3544    InvalidDecl = true;
3545  }
3546
3547  // Get the visibility (access control) for this ivar.
3548  ObjCIvarDecl::AccessControl ac =
3549    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
3550                                        : ObjCIvarDecl::None;
3551
3552  // Construct the decl.
3553  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
3554                                             (Expr *)BitfieldWidth);
3555
3556  if (II) {
3557    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
3558    if (PrevDecl && isDeclInScope(PrevDecl, CurContext, S)
3559        && !isa<TagDecl>(PrevDecl)) {
3560      Diag(Loc, diag::err_duplicate_member) << II;
3561      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
3562      NewID->setInvalidDecl();
3563    }
3564  }
3565
3566  // Process attributes attached to the ivar.
3567  ProcessDeclAttributes(NewID, D);
3568
3569  if (D.getInvalidType() || InvalidDecl)
3570    NewID->setInvalidDecl();
3571
3572  if (II) {
3573    // FIXME: When interfaces are DeclContexts, we'll need to add
3574    // these to the interface.
3575    S->AddDecl(NewID);
3576    IdResolver.AddDecl(NewID);
3577  }
3578
3579  return NewID;
3580}
3581
3582void Sema::ActOnFields(Scope* S,
3583                       SourceLocation RecLoc, DeclTy *RecDecl,
3584                       DeclTy **Fields, unsigned NumFields,
3585                       SourceLocation LBrac, SourceLocation RBrac,
3586                       AttributeList *Attr) {
3587  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
3588  assert(EnclosingDecl && "missing record or interface decl");
3589  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
3590
3591  // Verify that all the fields are okay.
3592  unsigned NumNamedMembers = 0;
3593  llvm::SmallVector<FieldDecl*, 32> RecFields;
3594
3595  for (unsigned i = 0; i != NumFields; ++i) {
3596    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
3597    assert(FD && "missing field decl");
3598
3599    // Get the type for the field.
3600    Type *FDTy = FD->getType().getTypePtr();
3601
3602    if (!FD->isAnonymousStructOrUnion()) {
3603      // Remember all fields written by the user.
3604      RecFields.push_back(FD);
3605    }
3606
3607    // C99 6.7.2.1p2 - A field may not be a function type.
3608    if (FDTy->isFunctionType()) {
3609      Diag(FD->getLocation(), diag::err_field_declared_as_function)
3610        << FD->getDeclName();
3611      FD->setInvalidDecl();
3612      EnclosingDecl->setInvalidDecl();
3613      continue;
3614    }
3615    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
3616    if (FDTy->isIncompleteType()) {
3617      if (!Record) {  // Incomplete ivar type is always an error.
3618        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3619                               diag::err_field_incomplete);
3620        FD->setInvalidDecl();
3621        EnclosingDecl->setInvalidDecl();
3622        continue;
3623      }
3624      if (i != NumFields-1 ||                   // ... that the last member ...
3625          !Record->isStruct() ||  // ... of a structure ...
3626          !FDTy->isArrayType()) {         //... may have incomplete array type.
3627        DiagnoseIncompleteType(FD->getLocation(), FD->getType(),
3628                               diag::err_field_incomplete);
3629        FD->setInvalidDecl();
3630        EnclosingDecl->setInvalidDecl();
3631        continue;
3632      }
3633      if (NumNamedMembers < 1) {  //... must have more than named member ...
3634        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
3635          << FD->getDeclName();
3636        FD->setInvalidDecl();
3637        EnclosingDecl->setInvalidDecl();
3638        continue;
3639      }
3640      // Okay, we have a legal flexible array member at the end of the struct.
3641      if (Record)
3642        Record->setHasFlexibleArrayMember(true);
3643    }
3644    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
3645    /// field of another structure or the element of an array.
3646    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
3647      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
3648        // If this is a member of a union, then entire union becomes "flexible".
3649        if (Record && Record->isUnion()) {
3650          Record->setHasFlexibleArrayMember(true);
3651        } else {
3652          // If this is a struct/class and this is not the last element, reject
3653          // it.  Note that GCC supports variable sized arrays in the middle of
3654          // structures.
3655          if (i != NumFields-1) {
3656            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct)
3657              << FD->getDeclName();
3658            FD->setInvalidDecl();
3659            EnclosingDecl->setInvalidDecl();
3660            continue;
3661          }
3662          // We support flexible arrays at the end of structs in other structs
3663          // as an extension.
3664          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
3665            << FD->getDeclName();
3666          if (Record)
3667            Record->setHasFlexibleArrayMember(true);
3668        }
3669      }
3670    }
3671    /// A field cannot be an Objective-c object
3672    if (FDTy->isObjCInterfaceType()) {
3673      Diag(FD->getLocation(), diag::err_statically_allocated_object)
3674        << FD->getDeclName();
3675      FD->setInvalidDecl();
3676      EnclosingDecl->setInvalidDecl();
3677      continue;
3678    }
3679    // Keep track of the number of named members.
3680    if (FD->getIdentifier())
3681      ++NumNamedMembers;
3682  }
3683
3684  // Okay, we successfully defined 'Record'.
3685  if (Record) {
3686    Record->completeDefinition(Context);
3687  } else {
3688    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
3689    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
3690      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
3691      // Must enforce the rule that ivars in the base classes may not be
3692      // duplicates.
3693      if (ID->getSuperClass()) {
3694        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
3695             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
3696          ObjCIvarDecl* Ivar = (*IVI);
3697          IdentifierInfo *II = Ivar->getIdentifier();
3698          ObjCIvarDecl* prevIvar = ID->getSuperClass()->lookupInstanceVariable(II);
3699          if (prevIvar) {
3700            Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
3701            Diag(prevIvar->getLocation(), diag::note_previous_declaration);
3702          }
3703        }
3704      }
3705    }
3706    else if (ObjCImplementationDecl *IMPDecl =
3707               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
3708      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
3709      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
3710      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
3711    }
3712  }
3713
3714  if (Attr)
3715    ProcessDeclAttributeList(Record, Attr);
3716}
3717
3718Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
3719                                      DeclTy *lastEnumConst,
3720                                      SourceLocation IdLoc, IdentifierInfo *Id,
3721                                      SourceLocation EqualLoc, ExprTy *val) {
3722  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
3723  EnumConstantDecl *LastEnumConst =
3724    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
3725  Expr *Val = static_cast<Expr*>(val);
3726
3727  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3728  // we find one that is.
3729  S = getNonFieldDeclScope(S);
3730
3731  // Verify that there isn't already something declared with this name in this
3732  // scope.
3733  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
3734  if (PrevDecl && PrevDecl->isTemplateParameter()) {
3735    // Maybe we will complain about the shadowed template parameter.
3736    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
3737    // Just pretend that we didn't see the previous declaration.
3738    PrevDecl = 0;
3739  }
3740
3741  if (PrevDecl) {
3742    // When in C++, we may get a TagDecl with the same name; in this case the
3743    // enum constant will 'hide' the tag.
3744    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
3745           "Received TagDecl when not in C++!");
3746    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
3747      if (isa<EnumConstantDecl>(PrevDecl))
3748        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
3749      else
3750        Diag(IdLoc, diag::err_redefinition) << Id;
3751      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
3752      Val->Destroy(Context);
3753      return 0;
3754    }
3755  }
3756
3757  llvm::APSInt EnumVal(32);
3758  QualType EltTy;
3759  if (Val) {
3760    // Make sure to promote the operand type to int.
3761    UsualUnaryConversions(Val);
3762
3763    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
3764    SourceLocation ExpLoc;
3765    if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
3766      Val->Destroy(Context);
3767      Val = 0;  // Just forget about it.
3768    } else {
3769      EltTy = Val->getType();
3770    }
3771  }
3772
3773  if (!Val) {
3774    if (LastEnumConst) {
3775      // Assign the last value + 1.
3776      EnumVal = LastEnumConst->getInitVal();
3777      ++EnumVal;
3778
3779      // Check for overflow on increment.
3780      if (EnumVal < LastEnumConst->getInitVal())
3781        Diag(IdLoc, diag::warn_enum_value_overflow);
3782
3783      EltTy = LastEnumConst->getType();
3784    } else {
3785      // First value, set to zero.
3786      EltTy = Context.IntTy;
3787      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
3788    }
3789  }
3790
3791  EnumConstantDecl *New =
3792    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
3793                             Val, EnumVal);
3794
3795  // Register this decl in the current scope stack.
3796  PushOnScopeChains(New, S);
3797
3798  return New;
3799}
3800
3801// FIXME: For consistency with ActOnFields(), we should have the parser
3802// pass in the source location for the left/right braces.
3803void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
3804                         DeclTy **Elements, unsigned NumElements) {
3805  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
3806  QualType EnumType = Context.getTypeDeclType(Enum);
3807
3808  // TODO: If the result value doesn't fit in an int, it must be a long or long
3809  // long value.  ISO C does not support this, but GCC does as an extension,
3810  // emit a warning.
3811  unsigned IntWidth = Context.Target.getIntWidth();
3812
3813  // Verify that all the values are okay, compute the size of the values, and
3814  // reverse the list.
3815  unsigned NumNegativeBits = 0;
3816  unsigned NumPositiveBits = 0;
3817
3818  // Keep track of whether all elements have type int.
3819  bool AllElementsInt = true;
3820
3821  for (unsigned i = 0; i != NumElements; ++i) {
3822    EnumConstantDecl *ECD =
3823      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3824    if (!ECD) continue;  // Already issued a diagnostic.
3825
3826    // If the enum value doesn't fit in an int, emit an extension warning.
3827    const llvm::APSInt &InitVal = ECD->getInitVal();
3828    assert(InitVal.getBitWidth() >= IntWidth &&
3829           "Should have promoted value to int");
3830    if (InitVal.getBitWidth() > IntWidth) {
3831      llvm::APSInt V(InitVal);
3832      V.trunc(IntWidth);
3833      V.extend(InitVal.getBitWidth());
3834      if (V != InitVal)
3835        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
3836          << InitVal.toString(10);
3837    }
3838
3839    // Keep track of the size of positive and negative values.
3840    if (InitVal.isUnsigned() || InitVal.isNonNegative())
3841      NumPositiveBits = std::max(NumPositiveBits,
3842                                 (unsigned)InitVal.getActiveBits());
3843    else
3844      NumNegativeBits = std::max(NumNegativeBits,
3845                                 (unsigned)InitVal.getMinSignedBits());
3846
3847    // Keep track of whether every enum element has type int (very commmon).
3848    if (AllElementsInt)
3849      AllElementsInt = ECD->getType() == Context.IntTy;
3850  }
3851
3852  // Figure out the type that should be used for this enum.
3853  // FIXME: Support attribute(packed) on enums and -fshort-enums.
3854  QualType BestType;
3855  unsigned BestWidth;
3856
3857  if (NumNegativeBits) {
3858    // If there is a negative value, figure out the smallest integer type (of
3859    // int/long/longlong) that fits.
3860    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
3861      BestType = Context.IntTy;
3862      BestWidth = IntWidth;
3863    } else {
3864      BestWidth = Context.Target.getLongWidth();
3865
3866      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
3867        BestType = Context.LongTy;
3868      else {
3869        BestWidth = Context.Target.getLongLongWidth();
3870
3871        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
3872          Diag(Enum->getLocation(), diag::warn_enum_too_large);
3873        BestType = Context.LongLongTy;
3874      }
3875    }
3876  } else {
3877    // If there is no negative value, figure out which of uint, ulong, ulonglong
3878    // fits.
3879    if (NumPositiveBits <= IntWidth) {
3880      BestType = Context.UnsignedIntTy;
3881      BestWidth = IntWidth;
3882    } else if (NumPositiveBits <=
3883               (BestWidth = Context.Target.getLongWidth())) {
3884      BestType = Context.UnsignedLongTy;
3885    } else {
3886      BestWidth = Context.Target.getLongLongWidth();
3887      assert(NumPositiveBits <= BestWidth &&
3888             "How could an initializer get larger than ULL?");
3889      BestType = Context.UnsignedLongLongTy;
3890    }
3891  }
3892
3893  // Loop over all of the enumerator constants, changing their types to match
3894  // the type of the enum if needed.
3895  for (unsigned i = 0; i != NumElements; ++i) {
3896    EnumConstantDecl *ECD =
3897      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
3898    if (!ECD) continue;  // Already issued a diagnostic.
3899
3900    // Standard C says the enumerators have int type, but we allow, as an
3901    // extension, the enumerators to be larger than int size.  If each
3902    // enumerator value fits in an int, type it as an int, otherwise type it the
3903    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
3904    // that X has type 'int', not 'unsigned'.
3905    if (ECD->getType() == Context.IntTy) {
3906      // Make sure the init value is signed.
3907      llvm::APSInt IV = ECD->getInitVal();
3908      IV.setIsSigned(true);
3909      ECD->setInitVal(IV);
3910
3911      if (getLangOptions().CPlusPlus)
3912        // C++ [dcl.enum]p4: Following the closing brace of an
3913        // enum-specifier, each enumerator has the type of its
3914        // enumeration.
3915        ECD->setType(EnumType);
3916      continue;  // Already int type.
3917    }
3918
3919    // Determine whether the value fits into an int.
3920    llvm::APSInt InitVal = ECD->getInitVal();
3921    bool FitsInInt;
3922    if (InitVal.isUnsigned() || !InitVal.isNegative())
3923      FitsInInt = InitVal.getActiveBits() < IntWidth;
3924    else
3925      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
3926
3927    // If it fits into an integer type, force it.  Otherwise force it to match
3928    // the enum decl type.
3929    QualType NewTy;
3930    unsigned NewWidth;
3931    bool NewSign;
3932    if (FitsInInt) {
3933      NewTy = Context.IntTy;
3934      NewWidth = IntWidth;
3935      NewSign = true;
3936    } else if (ECD->getType() == BestType) {
3937      // Already the right type!
3938      if (getLangOptions().CPlusPlus)
3939        // C++ [dcl.enum]p4: Following the closing brace of an
3940        // enum-specifier, each enumerator has the type of its
3941        // enumeration.
3942        ECD->setType(EnumType);
3943      continue;
3944    } else {
3945      NewTy = BestType;
3946      NewWidth = BestWidth;
3947      NewSign = BestType->isSignedIntegerType();
3948    }
3949
3950    // Adjust the APSInt value.
3951    InitVal.extOrTrunc(NewWidth);
3952    InitVal.setIsSigned(NewSign);
3953    ECD->setInitVal(InitVal);
3954
3955    // Adjust the Expr initializer and type.
3956    if (ECD->getInitExpr())
3957      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy, ECD->getInitExpr(),
3958                                                      /*isLvalue=*/false));
3959    if (getLangOptions().CPlusPlus)
3960      // C++ [dcl.enum]p4: Following the closing brace of an
3961      // enum-specifier, each enumerator has the type of its
3962      // enumeration.
3963      ECD->setType(EnumType);
3964    else
3965      ECD->setType(NewTy);
3966  }
3967
3968  Enum->completeDefinition(Context, BestType);
3969}
3970
3971Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
3972                                          ExprArg expr) {
3973  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr.release());
3974
3975  return FileScopeAsmDecl::Create(Context, CurContext, Loc, AsmString);
3976}
3977
3978
3979void Sema::ActOnPragmaPack(PragmaPackKind Kind, IdentifierInfo *Name,
3980                           ExprTy *alignment, SourceLocation PragmaLoc,
3981                           SourceLocation LParenLoc, SourceLocation RParenLoc) {
3982  Expr *Alignment = static_cast<Expr *>(alignment);
3983
3984  // If specified then alignment must be a "small" power of two.
3985  unsigned AlignmentVal = 0;
3986  if (Alignment) {
3987    llvm::APSInt Val;
3988    if (!Alignment->isIntegerConstantExpr(Val, Context) ||
3989        !Val.isPowerOf2() ||
3990        Val.getZExtValue() > 16) {
3991      Diag(PragmaLoc, diag::warn_pragma_pack_invalid_alignment);
3992      Alignment->Destroy(Context);
3993      return; // Ignore
3994    }
3995
3996    AlignmentVal = (unsigned) Val.getZExtValue();
3997  }
3998
3999  switch (Kind) {
4000  case Action::PPK_Default: // pack([n])
4001    PackContext.setAlignment(AlignmentVal);
4002    break;
4003
4004  case Action::PPK_Show: // pack(show)
4005    // Show the current alignment, making sure to show the right value
4006    // for the default.
4007    AlignmentVal = PackContext.getAlignment();
4008    // FIXME: This should come from the target.
4009    if (AlignmentVal == 0)
4010      AlignmentVal = 8;
4011    Diag(PragmaLoc, diag::warn_pragma_pack_show) << AlignmentVal;
4012    break;
4013
4014  case Action::PPK_Push: // pack(push [, id] [, [n])
4015    PackContext.push(Name);
4016    // Set the new alignment if specified.
4017    if (Alignment)
4018      PackContext.setAlignment(AlignmentVal);
4019    break;
4020
4021  case Action::PPK_Pop: // pack(pop [, id] [,  n])
4022    // MSDN, C/C++ Preprocessor Reference > Pragma Directives > pack:
4023    // "#pragma pack(pop, identifier, n) is undefined"
4024    if (Alignment && Name)
4025      Diag(PragmaLoc, diag::warn_pragma_pack_pop_identifer_and_alignment);
4026
4027    // Do the pop.
4028    if (!PackContext.pop(Name)) {
4029      // If a name was specified then failure indicates the name
4030      // wasn't found. Otherwise failure indicates the stack was
4031      // empty.
4032      Diag(PragmaLoc, diag::warn_pragma_pack_pop_failed)
4033        << (Name ? "no record matching name" : "stack empty");
4034
4035      // FIXME: Warn about popping named records as MSVC does.
4036    } else {
4037      // Pop succeeded, set the new alignment if specified.
4038      if (Alignment)
4039        PackContext.setAlignment(AlignmentVal);
4040    }
4041    break;
4042
4043  default:
4044    assert(0 && "Invalid #pragma pack kind.");
4045  }
4046}
4047
4048bool PragmaPackStack::pop(IdentifierInfo *Name) {
4049  if (Stack.empty())
4050    return false;
4051
4052  // If name is empty just pop top.
4053  if (!Name) {
4054    Alignment = Stack.back().first;
4055    Stack.pop_back();
4056    return true;
4057  }
4058
4059  // Otherwise, find the named record.
4060  for (unsigned i = Stack.size(); i != 0; ) {
4061    --i;
4062    if (Stack[i].second == Name) {
4063      // Found it, pop up to and including this record.
4064      Alignment = Stack[i].first;
4065      Stack.erase(Stack.begin() + i, Stack.end());
4066      return true;
4067    }
4068  }
4069
4070  return false;
4071}
4072