SemaDecl.cpp revision 250e7a74d5a23db5bd7202ecb0bb4a8fef6016b4
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/ExprCXX.h"
29#include "clang/AST/StmtCXX.h"
30#include "clang/AST/CharUnits.h"
31#include "clang/Sema/DeclSpec.h"
32#include "clang/Sema/ParsedTemplate.h"
33#include "clang/Parse/ParseDiagnostic.h"
34#include "clang/Basic/PartialDiagnostic.h"
35#include "clang/Basic/SourceManager.h"
36#include "clang/Basic/TargetInfo.h"
37// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
38#include "clang/Lex/Preprocessor.h"
39#include "clang/Lex/HeaderSearch.h"
40#include "llvm/ADT/Triple.h"
41#include <algorithm>
42#include <cstring>
43#include <functional>
44using namespace clang;
45using namespace sema;
46
47Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
48  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
49}
50
51/// \brief If the identifier refers to a type name within this scope,
52/// return the declaration of that type.
53///
54/// This routine performs ordinary name lookup of the identifier II
55/// within the given scope, with optional C++ scope specifier SS, to
56/// determine whether the name refers to a type. If so, returns an
57/// opaque pointer (actually a QualType) corresponding to that
58/// type. Otherwise, returns NULL.
59///
60/// If name lookup results in an ambiguity, this routine will complain
61/// and then return NULL.
62ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
63                             Scope *S, CXXScopeSpec *SS,
64                             bool isClassName, bool HasTrailingDot,
65                             ParsedType ObjectTypePtr,
66                             bool WantNontrivialTypeSourceInfo) {
67  // Determine where we will perform name lookup.
68  DeclContext *LookupCtx = 0;
69  if (ObjectTypePtr) {
70    QualType ObjectType = ObjectTypePtr.get();
71    if (ObjectType->isRecordType())
72      LookupCtx = computeDeclContext(ObjectType);
73  } else if (SS && SS->isNotEmpty()) {
74    LookupCtx = computeDeclContext(*SS, false);
75
76    if (!LookupCtx) {
77      if (isDependentScopeSpecifier(*SS)) {
78        // C++ [temp.res]p3:
79        //   A qualified-id that refers to a type and in which the
80        //   nested-name-specifier depends on a template-parameter (14.6.2)
81        //   shall be prefixed by the keyword typename to indicate that the
82        //   qualified-id denotes a type, forming an
83        //   elaborated-type-specifier (7.1.5.3).
84        //
85        // We therefore do not perform any name lookup if the result would
86        // refer to a member of an unknown specialization.
87        if (!isClassName)
88          return ParsedType();
89
90        // We know from the grammar that this name refers to a type,
91        // so build a dependent node to describe the type.
92        if (WantNontrivialTypeSourceInfo)
93          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
94
95        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
96        QualType T =
97          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
98                            II, NameLoc);
99
100          return ParsedType::make(T);
101      }
102
103      return ParsedType();
104    }
105
106    if (!LookupCtx->isDependentContext() &&
107        RequireCompleteDeclContext(*SS, LookupCtx))
108      return ParsedType();
109  }
110
111  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
112  // lookup for class-names.
113  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
114                                      LookupOrdinaryName;
115  LookupResult Result(*this, &II, NameLoc, Kind);
116  if (LookupCtx) {
117    // Perform "qualified" name lookup into the declaration context we
118    // computed, which is either the type of the base of a member access
119    // expression or the declaration context associated with a prior
120    // nested-name-specifier.
121    LookupQualifiedName(Result, LookupCtx);
122
123    if (ObjectTypePtr && Result.empty()) {
124      // C++ [basic.lookup.classref]p3:
125      //   If the unqualified-id is ~type-name, the type-name is looked up
126      //   in the context of the entire postfix-expression. If the type T of
127      //   the object expression is of a class type C, the type-name is also
128      //   looked up in the scope of class C. At least one of the lookups shall
129      //   find a name that refers to (possibly cv-qualified) T.
130      LookupName(Result, S);
131    }
132  } else {
133    // Perform unqualified name lookup.
134    LookupName(Result, S);
135  }
136
137  NamedDecl *IIDecl = 0;
138  switch (Result.getResultKind()) {
139  case LookupResult::NotFound:
140  case LookupResult::NotFoundInCurrentInstantiation:
141  case LookupResult::FoundOverloaded:
142  case LookupResult::FoundUnresolvedValue:
143    Result.suppressDiagnostics();
144    return ParsedType();
145
146  case LookupResult::Ambiguous:
147    // Recover from type-hiding ambiguities by hiding the type.  We'll
148    // do the lookup again when looking for an object, and we can
149    // diagnose the error then.  If we don't do this, then the error
150    // about hiding the type will be immediately followed by an error
151    // that only makes sense if the identifier was treated like a type.
152    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
153      Result.suppressDiagnostics();
154      return ParsedType();
155    }
156
157    // Look to see if we have a type anywhere in the list of results.
158    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
159         Res != ResEnd; ++Res) {
160      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
161        if (!IIDecl ||
162            (*Res)->getLocation().getRawEncoding() <
163              IIDecl->getLocation().getRawEncoding())
164          IIDecl = *Res;
165      }
166    }
167
168    if (!IIDecl) {
169      // None of the entities we found is a type, so there is no way
170      // to even assume that the result is a type. In this case, don't
171      // complain about the ambiguity. The parser will either try to
172      // perform this lookup again (e.g., as an object name), which
173      // will produce the ambiguity, or will complain that it expected
174      // a type name.
175      Result.suppressDiagnostics();
176      return ParsedType();
177    }
178
179    // We found a type within the ambiguous lookup; diagnose the
180    // ambiguity and then return that type. This might be the right
181    // answer, or it might not be, but it suppresses any attempt to
182    // perform the name lookup again.
183    break;
184
185  case LookupResult::Found:
186    IIDecl = Result.getFoundDecl();
187    break;
188  }
189
190  assert(IIDecl && "Didn't find decl");
191
192  QualType T;
193  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
194    DiagnoseUseOfDecl(IIDecl, NameLoc);
195
196    if (T.isNull())
197      T = Context.getTypeDeclType(TD);
198
199    if (SS && SS->isNotEmpty()) {
200      if (WantNontrivialTypeSourceInfo) {
201        // Construct a type with type-source information.
202        TypeLocBuilder Builder;
203        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
204
205        T = getElaboratedType(ETK_None, *SS, T);
206        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
207        ElabTL.setKeywordLoc(SourceLocation());
208        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
209        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
210      } else {
211        T = getElaboratedType(ETK_None, *SS, T);
212      }
213    }
214  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
215    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
216    if (!HasTrailingDot)
217      T = Context.getObjCInterfaceType(IDecl);
218  }
219
220  if (T.isNull()) {
221    // If it's not plausibly a type, suppress diagnostics.
222    Result.suppressDiagnostics();
223    return ParsedType();
224  }
225  return ParsedType::make(T);
226}
227
228/// isTagName() - This method is called *for error recovery purposes only*
229/// to determine if the specified name is a valid tag name ("struct foo").  If
230/// so, this returns the TST for the tag corresponding to it (TST_enum,
231/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
232/// where the user forgot to specify the tag.
233DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
234  // Do a tag name lookup in this scope.
235  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
236  LookupName(R, S, false);
237  R.suppressDiagnostics();
238  if (R.getResultKind() == LookupResult::Found)
239    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
240      switch (TD->getTagKind()) {
241      default:         return DeclSpec::TST_unspecified;
242      case TTK_Struct: return DeclSpec::TST_struct;
243      case TTK_Union:  return DeclSpec::TST_union;
244      case TTK_Class:  return DeclSpec::TST_class;
245      case TTK_Enum:   return DeclSpec::TST_enum;
246      }
247    }
248
249  return DeclSpec::TST_unspecified;
250}
251
252bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
253                                   SourceLocation IILoc,
254                                   Scope *S,
255                                   CXXScopeSpec *SS,
256                                   ParsedType &SuggestedType) {
257  // We don't have anything to suggest (yet).
258  SuggestedType = ParsedType();
259
260  // There may have been a typo in the name of the type. Look up typo
261  // results, in case we have something that we can suggest.
262  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
263                      NotForRedeclaration);
264
265  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
266    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
267      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
268          !Result->isInvalidDecl()) {
269        // We found a similarly-named type or interface; suggest that.
270        if (!SS || !SS->isSet())
271          Diag(IILoc, diag::err_unknown_typename_suggest)
272            << &II << Lookup.getLookupName()
273            << FixItHint::CreateReplacement(SourceRange(IILoc),
274                                            Result->getNameAsString());
275        else if (DeclContext *DC = computeDeclContext(*SS, false))
276          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
277            << &II << DC << Lookup.getLookupName() << SS->getRange()
278            << FixItHint::CreateReplacement(SourceRange(IILoc),
279                                            Result->getNameAsString());
280        else
281          llvm_unreachable("could not have corrected a typo here");
282
283        Diag(Result->getLocation(), diag::note_previous_decl)
284          << Result->getDeclName();
285
286        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
287                                    false, false, ParsedType(),
288                                    /*NonTrivialTypeSourceInfo=*/true);
289        return true;
290      }
291    } else if (Lookup.empty()) {
292      // We corrected to a keyword.
293      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
294      Diag(IILoc, diag::err_unknown_typename_suggest)
295        << &II << Corrected;
296      return true;
297    }
298  }
299
300  if (getLangOptions().CPlusPlus) {
301    // See if II is a class template that the user forgot to pass arguments to.
302    UnqualifiedId Name;
303    Name.setIdentifier(&II, IILoc);
304    CXXScopeSpec EmptySS;
305    TemplateTy TemplateResult;
306    bool MemberOfUnknownSpecialization;
307    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
308                       Name, ParsedType(), true, TemplateResult,
309                       MemberOfUnknownSpecialization) == TNK_Type_template) {
310      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
311      Diag(IILoc, diag::err_template_missing_args) << TplName;
312      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
313        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
314          << TplDecl->getTemplateParameters()->getSourceRange();
315      }
316      return true;
317    }
318  }
319
320  // FIXME: Should we move the logic that tries to recover from a missing tag
321  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
322
323  if (!SS || (!SS->isSet() && !SS->isInvalid()))
324    Diag(IILoc, diag::err_unknown_typename) << &II;
325  else if (DeclContext *DC = computeDeclContext(*SS, false))
326    Diag(IILoc, diag::err_typename_nested_not_found)
327      << &II << DC << SS->getRange();
328  else if (isDependentScopeSpecifier(*SS)) {
329    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
330      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
331      << SourceRange(SS->getRange().getBegin(), IILoc)
332      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
333    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
334  } else {
335    assert(SS && SS->isInvalid() &&
336           "Invalid scope specifier has already been diagnosed");
337  }
338
339  return true;
340}
341
342// Determines the context to return to after temporarily entering a
343// context.  This depends in an unnecessarily complicated way on the
344// exact ordering of callbacks from the parser.
345DeclContext *Sema::getContainingDC(DeclContext *DC) {
346
347  // Functions defined inline within classes aren't parsed until we've
348  // finished parsing the top-level class, so the top-level class is
349  // the context we'll need to return to.
350  if (isa<FunctionDecl>(DC)) {
351    DC = DC->getLexicalParent();
352
353    // A function not defined within a class will always return to its
354    // lexical context.
355    if (!isa<CXXRecordDecl>(DC))
356      return DC;
357
358    // A C++ inline method/friend is parsed *after* the topmost class
359    // it was declared in is fully parsed ("complete");  the topmost
360    // class is the context we need to return to.
361    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
362      DC = RD;
363
364    // Return the declaration context of the topmost class the inline method is
365    // declared in.
366    return DC;
367  }
368
369  // ObjCMethodDecls are parsed (for some reason) outside the context
370  // of the class.
371  if (isa<ObjCMethodDecl>(DC))
372    return DC->getLexicalParent()->getLexicalParent();
373
374  return DC->getLexicalParent();
375}
376
377void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
378  assert(getContainingDC(DC) == CurContext &&
379      "The next DeclContext should be lexically contained in the current one.");
380  CurContext = DC;
381  S->setEntity(DC);
382}
383
384void Sema::PopDeclContext() {
385  assert(CurContext && "DeclContext imbalance!");
386
387  CurContext = getContainingDC(CurContext);
388  assert(CurContext && "Popped translation unit!");
389}
390
391/// EnterDeclaratorContext - Used when we must lookup names in the context
392/// of a declarator's nested name specifier.
393///
394void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
395  // C++0x [basic.lookup.unqual]p13:
396  //   A name used in the definition of a static data member of class
397  //   X (after the qualified-id of the static member) is looked up as
398  //   if the name was used in a member function of X.
399  // C++0x [basic.lookup.unqual]p14:
400  //   If a variable member of a namespace is defined outside of the
401  //   scope of its namespace then any name used in the definition of
402  //   the variable member (after the declarator-id) is looked up as
403  //   if the definition of the variable member occurred in its
404  //   namespace.
405  // Both of these imply that we should push a scope whose context
406  // is the semantic context of the declaration.  We can't use
407  // PushDeclContext here because that context is not necessarily
408  // lexically contained in the current context.  Fortunately,
409  // the containing scope should have the appropriate information.
410
411  assert(!S->getEntity() && "scope already has entity");
412
413#ifndef NDEBUG
414  Scope *Ancestor = S->getParent();
415  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
416  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
417#endif
418
419  CurContext = DC;
420  S->setEntity(DC);
421}
422
423void Sema::ExitDeclaratorContext(Scope *S) {
424  assert(S->getEntity() == CurContext && "Context imbalance!");
425
426  // Switch back to the lexical context.  The safety of this is
427  // enforced by an assert in EnterDeclaratorContext.
428  Scope *Ancestor = S->getParent();
429  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
430  CurContext = (DeclContext*) Ancestor->getEntity();
431
432  // We don't need to do anything with the scope, which is going to
433  // disappear.
434}
435
436/// \brief Determine whether we allow overloading of the function
437/// PrevDecl with another declaration.
438///
439/// This routine determines whether overloading is possible, not
440/// whether some new function is actually an overload. It will return
441/// true in C++ (where we can always provide overloads) or, as an
442/// extension, in C when the previous function is already an
443/// overloaded function declaration or has the "overloadable"
444/// attribute.
445static bool AllowOverloadingOfFunction(LookupResult &Previous,
446                                       ASTContext &Context) {
447  if (Context.getLangOptions().CPlusPlus)
448    return true;
449
450  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
451    return true;
452
453  return (Previous.getResultKind() == LookupResult::Found
454          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
455}
456
457/// Add this decl to the scope shadowed decl chains.
458void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
459  // Move up the scope chain until we find the nearest enclosing
460  // non-transparent context. The declaration will be introduced into this
461  // scope.
462  while (S->getEntity() &&
463         ((DeclContext *)S->getEntity())->isTransparentContext())
464    S = S->getParent();
465
466  // Add scoped declarations into their context, so that they can be
467  // found later. Declarations without a context won't be inserted
468  // into any context.
469  if (AddToContext)
470    CurContext->addDecl(D);
471
472  // Out-of-line definitions shouldn't be pushed into scope in C++.
473  // Out-of-line variable and function definitions shouldn't even in C.
474  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
475      D->isOutOfLine())
476    return;
477
478  // Template instantiations should also not be pushed into scope.
479  if (isa<FunctionDecl>(D) &&
480      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
481    return;
482
483  // If this replaces anything in the current scope,
484  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
485                               IEnd = IdResolver.end();
486  for (; I != IEnd; ++I) {
487    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
488      S->RemoveDecl(*I);
489      IdResolver.RemoveDecl(*I);
490
491      // Should only need to replace one decl.
492      break;
493    }
494  }
495
496  S->AddDecl(D);
497
498  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
499    // Implicitly-generated labels may end up getting generated in an order that
500    // isn't strictly lexical, which breaks name lookup. Be careful to insert
501    // the label at the appropriate place in the identifier chain.
502    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
503      DeclContext *IDC = (*I)->getLexicalDeclContext();
504      if (IDC == CurContext) {
505        if (!S->isDeclScope(*I))
506          continue;
507      } else if (IDC->Encloses(CurContext))
508        break;
509    }
510
511    IdResolver.InsertDeclAfter(I, D);
512  } else {
513    IdResolver.AddDecl(D);
514  }
515}
516
517bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
518                         bool ExplicitInstantiationOrSpecialization) {
519  return IdResolver.isDeclInScope(D, Ctx, Context, S,
520                                  ExplicitInstantiationOrSpecialization);
521}
522
523Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
524  DeclContext *TargetDC = DC->getPrimaryContext();
525  do {
526    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
527      if (ScopeDC->getPrimaryContext() == TargetDC)
528        return S;
529  } while ((S = S->getParent()));
530
531  return 0;
532}
533
534static bool isOutOfScopePreviousDeclaration(NamedDecl *,
535                                            DeclContext*,
536                                            ASTContext&);
537
538/// Filters out lookup results that don't fall within the given scope
539/// as determined by isDeclInScope.
540static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
541                                 DeclContext *Ctx, Scope *S,
542                                 bool ConsiderLinkage,
543                                 bool ExplicitInstantiationOrSpecialization) {
544  LookupResult::Filter F = R.makeFilter();
545  while (F.hasNext()) {
546    NamedDecl *D = F.next();
547
548    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
549      continue;
550
551    if (ConsiderLinkage &&
552        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
553      continue;
554
555    F.erase();
556  }
557
558  F.done();
559}
560
561static bool isUsingDecl(NamedDecl *D) {
562  return isa<UsingShadowDecl>(D) ||
563         isa<UnresolvedUsingTypenameDecl>(D) ||
564         isa<UnresolvedUsingValueDecl>(D);
565}
566
567/// Removes using shadow declarations from the lookup results.
568static void RemoveUsingDecls(LookupResult &R) {
569  LookupResult::Filter F = R.makeFilter();
570  while (F.hasNext())
571    if (isUsingDecl(F.next()))
572      F.erase();
573
574  F.done();
575}
576
577/// \brief Check for this common pattern:
578/// @code
579/// class S {
580///   S(const S&); // DO NOT IMPLEMENT
581///   void operator=(const S&); // DO NOT IMPLEMENT
582/// };
583/// @endcode
584static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
585  // FIXME: Should check for private access too but access is set after we get
586  // the decl here.
587  if (D->isThisDeclarationADefinition())
588    return false;
589
590  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
591    return CD->isCopyConstructor();
592  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
593    return Method->isCopyAssignmentOperator();
594  return false;
595}
596
597bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
598  assert(D);
599
600  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
601    return false;
602
603  // Ignore class templates.
604  if (D->getDeclContext()->isDependentContext() ||
605      D->getLexicalDeclContext()->isDependentContext())
606    return false;
607
608  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
609    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
610      return false;
611
612    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
613      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
614        return false;
615    } else {
616      // 'static inline' functions are used in headers; don't warn.
617      if (FD->getStorageClass() == SC_Static &&
618          FD->isInlineSpecified())
619        return false;
620    }
621
622    if (FD->isThisDeclarationADefinition() &&
623        Context.DeclMustBeEmitted(FD))
624      return false;
625
626  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
627    if (!VD->isFileVarDecl() ||
628        VD->getType().isConstant(Context) ||
629        Context.DeclMustBeEmitted(VD))
630      return false;
631
632    if (VD->isStaticDataMember() &&
633        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
634      return false;
635
636  } else {
637    return false;
638  }
639
640  // Only warn for unused decls internal to the translation unit.
641  if (D->getLinkage() == ExternalLinkage)
642    return false;
643
644  return true;
645}
646
647void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
648  if (!D)
649    return;
650
651  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
652    const FunctionDecl *First = FD->getFirstDeclaration();
653    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
654      return; // First should already be in the vector.
655  }
656
657  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
658    const VarDecl *First = VD->getFirstDeclaration();
659    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
660      return; // First should already be in the vector.
661  }
662
663   if (ShouldWarnIfUnusedFileScopedDecl(D))
664     UnusedFileScopedDecls.push_back(D);
665 }
666
667static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
668  if (D->isInvalidDecl())
669    return false;
670
671  if (D->isUsed() || D->hasAttr<UnusedAttr>())
672    return false;
673
674  if (isa<LabelDecl>(D))
675    return true;
676
677  // White-list anything that isn't a local variable.
678  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
679      !D->getDeclContext()->isFunctionOrMethod())
680    return false;
681
682  // Types of valid local variables should be complete, so this should succeed.
683  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
684
685    // White-list anything with an __attribute__((unused)) type.
686    QualType Ty = VD->getType();
687
688    // Only look at the outermost level of typedef.
689    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
690      if (TT->getDecl()->hasAttr<UnusedAttr>())
691        return false;
692    }
693
694    // If we failed to complete the type for some reason, or if the type is
695    // dependent, don't diagnose the variable.
696    if (Ty->isIncompleteType() || Ty->isDependentType())
697      return false;
698
699    if (const TagType *TT = Ty->getAs<TagType>()) {
700      const TagDecl *Tag = TT->getDecl();
701      if (Tag->hasAttr<UnusedAttr>())
702        return false;
703
704      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
705        // FIXME: Checking for the presence of a user-declared constructor
706        // isn't completely accurate; we'd prefer to check that the initializer
707        // has no side effects.
708        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
709          return false;
710      }
711    }
712
713    // TODO: __attribute__((unused)) templates?
714  }
715
716  return true;
717}
718
719/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
720/// unless they are marked attr(unused).
721void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
722  if (!ShouldDiagnoseUnusedDecl(D))
723    return;
724
725  unsigned DiagID;
726  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
727    DiagID = diag::warn_unused_exception_param;
728  else if (isa<LabelDecl>(D))
729    DiagID = diag::warn_unused_label;
730  else
731    DiagID = diag::warn_unused_variable;
732
733  Diag(D->getLocation(), DiagID) << D->getDeclName();
734}
735
736static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
737  // Verify that we have no forward references left.  If so, there was a goto
738  // or address of a label taken, but no definition of it.  Label fwd
739  // definitions are indicated with a null substmt.
740  if (L->getStmt() == 0)
741    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
742}
743
744void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
745  if (S->decl_empty()) return;
746  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
747         "Scope shouldn't contain decls!");
748
749  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
750       I != E; ++I) {
751    Decl *TmpD = (*I);
752    assert(TmpD && "This decl didn't get pushed??");
753
754    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
755    NamedDecl *D = cast<NamedDecl>(TmpD);
756
757    if (!D->getDeclName()) continue;
758
759    // Diagnose unused variables in this scope.
760    if (!S->hasErrorOccurred())
761      DiagnoseUnusedDecl(D);
762
763    // If this was a forward reference to a label, verify it was defined.
764    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
765      CheckPoppedLabel(LD, *this);
766
767    // Remove this name from our lexical scope.
768    IdResolver.RemoveDecl(D);
769  }
770}
771
772/// \brief Look for an Objective-C class in the translation unit.
773///
774/// \param Id The name of the Objective-C class we're looking for. If
775/// typo-correction fixes this name, the Id will be updated
776/// to the fixed name.
777///
778/// \param IdLoc The location of the name in the translation unit.
779///
780/// \param TypoCorrection If true, this routine will attempt typo correction
781/// if there is no class with the given name.
782///
783/// \returns The declaration of the named Objective-C class, or NULL if the
784/// class could not be found.
785ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
786                                              SourceLocation IdLoc,
787                                              bool TypoCorrection) {
788  // The third "scope" argument is 0 since we aren't enabling lazy built-in
789  // creation from this context.
790  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
791
792  if (!IDecl && TypoCorrection) {
793    // Perform typo correction at the given location, but only if we
794    // find an Objective-C class name.
795    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
796    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
797        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
798      Diag(IdLoc, diag::err_undef_interface_suggest)
799        << Id << IDecl->getDeclName()
800        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
801      Diag(IDecl->getLocation(), diag::note_previous_decl)
802        << IDecl->getDeclName();
803
804      Id = IDecl->getIdentifier();
805    }
806  }
807
808  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
809}
810
811/// getNonFieldDeclScope - Retrieves the innermost scope, starting
812/// from S, where a non-field would be declared. This routine copes
813/// with the difference between C and C++ scoping rules in structs and
814/// unions. For example, the following code is well-formed in C but
815/// ill-formed in C++:
816/// @code
817/// struct S6 {
818///   enum { BAR } e;
819/// };
820///
821/// void test_S6() {
822///   struct S6 a;
823///   a.e = BAR;
824/// }
825/// @endcode
826/// For the declaration of BAR, this routine will return a different
827/// scope. The scope S will be the scope of the unnamed enumeration
828/// within S6. In C++, this routine will return the scope associated
829/// with S6, because the enumeration's scope is a transparent
830/// context but structures can contain non-field names. In C, this
831/// routine will return the translation unit scope, since the
832/// enumeration's scope is a transparent context and structures cannot
833/// contain non-field names.
834Scope *Sema::getNonFieldDeclScope(Scope *S) {
835  while (((S->getFlags() & Scope::DeclScope) == 0) ||
836         (S->getEntity() &&
837          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
838         (S->isClassScope() && !getLangOptions().CPlusPlus))
839    S = S->getParent();
840  return S;
841}
842
843/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
844/// file scope.  lazily create a decl for it. ForRedeclaration is true
845/// if we're creating this built-in in anticipation of redeclaring the
846/// built-in.
847NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
848                                     Scope *S, bool ForRedeclaration,
849                                     SourceLocation Loc) {
850  Builtin::ID BID = (Builtin::ID)bid;
851
852  ASTContext::GetBuiltinTypeError Error;
853  QualType R = Context.GetBuiltinType(BID, Error);
854  switch (Error) {
855  case ASTContext::GE_None:
856    // Okay
857    break;
858
859  case ASTContext::GE_Missing_stdio:
860    if (ForRedeclaration)
861      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
862        << Context.BuiltinInfo.GetName(BID);
863    return 0;
864
865  case ASTContext::GE_Missing_setjmp:
866    if (ForRedeclaration)
867      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
868        << Context.BuiltinInfo.GetName(BID);
869    return 0;
870  }
871
872  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
873    Diag(Loc, diag::ext_implicit_lib_function_decl)
874      << Context.BuiltinInfo.GetName(BID)
875      << R;
876    if (Context.BuiltinInfo.getHeaderName(BID) &&
877        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
878          != Diagnostic::Ignored)
879      Diag(Loc, diag::note_please_include_header)
880        << Context.BuiltinInfo.getHeaderName(BID)
881        << Context.BuiltinInfo.GetName(BID);
882  }
883
884  FunctionDecl *New = FunctionDecl::Create(Context,
885                                           Context.getTranslationUnitDecl(),
886                                           Loc, Loc, II, R, /*TInfo=*/0,
887                                           SC_Extern,
888                                           SC_None, false,
889                                           /*hasPrototype=*/true);
890  New->setImplicit();
891
892  // Create Decl objects for each parameter, adding them to the
893  // FunctionDecl.
894  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
895    llvm::SmallVector<ParmVarDecl*, 16> Params;
896    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
897      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
898                                           SourceLocation(), 0,
899                                           FT->getArgType(i), /*TInfo=*/0,
900                                           SC_None, SC_None, 0));
901    New->setParams(Params.data(), Params.size());
902  }
903
904  AddKnownFunctionAttributes(New);
905
906  // TUScope is the translation-unit scope to insert this function into.
907  // FIXME: This is hideous. We need to teach PushOnScopeChains to
908  // relate Scopes to DeclContexts, and probably eliminate CurContext
909  // entirely, but we're not there yet.
910  DeclContext *SavedContext = CurContext;
911  CurContext = Context.getTranslationUnitDecl();
912  PushOnScopeChains(New, TUScope);
913  CurContext = SavedContext;
914  return New;
915}
916
917/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
918/// same name and scope as a previous declaration 'Old'.  Figure out
919/// how to resolve this situation, merging decls or emitting
920/// diagnostics as appropriate. If there was an error, set New to be invalid.
921///
922void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
923  // If the new decl is known invalid already, don't bother doing any
924  // merging checks.
925  if (New->isInvalidDecl()) return;
926
927  // Allow multiple definitions for ObjC built-in typedefs.
928  // FIXME: Verify the underlying types are equivalent!
929  if (getLangOptions().ObjC1) {
930    const IdentifierInfo *TypeID = New->getIdentifier();
931    switch (TypeID->getLength()) {
932    default: break;
933    case 2:
934      if (!TypeID->isStr("id"))
935        break;
936      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
937      // Install the built-in type for 'id', ignoring the current definition.
938      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
939      return;
940    case 5:
941      if (!TypeID->isStr("Class"))
942        break;
943      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
944      // Install the built-in type for 'Class', ignoring the current definition.
945      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
946      return;
947    case 3:
948      if (!TypeID->isStr("SEL"))
949        break;
950      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
951      // Install the built-in type for 'SEL', ignoring the current definition.
952      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
953      return;
954    case 8:
955      if (!TypeID->isStr("Protocol"))
956        break;
957      Context.setObjCProtoType(New->getUnderlyingType());
958      return;
959    }
960    // Fall through - the typedef name was not a builtin type.
961  }
962
963  // Verify the old decl was also a type.
964  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
965  if (!Old) {
966    Diag(New->getLocation(), diag::err_redefinition_different_kind)
967      << New->getDeclName();
968
969    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
970    if (OldD->getLocation().isValid())
971      Diag(OldD->getLocation(), diag::note_previous_definition);
972
973    return New->setInvalidDecl();
974  }
975
976  // If the old declaration is invalid, just give up here.
977  if (Old->isInvalidDecl())
978    return New->setInvalidDecl();
979
980  // Determine the "old" type we'll use for checking and diagnostics.
981  QualType OldType;
982  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
983    OldType = OldTypedef->getUnderlyingType();
984  else
985    OldType = Context.getTypeDeclType(Old);
986
987  // If the typedef types are not identical, reject them in all languages and
988  // with any extensions enabled.
989
990  if (OldType != New->getUnderlyingType() &&
991      Context.getCanonicalType(OldType) !=
992      Context.getCanonicalType(New->getUnderlyingType())) {
993    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
994      << New->getUnderlyingType() << OldType;
995    if (Old->getLocation().isValid())
996      Diag(Old->getLocation(), diag::note_previous_definition);
997    return New->setInvalidDecl();
998  }
999
1000  // The types match.  Link up the redeclaration chain if the old
1001  // declaration was a typedef.
1002  // FIXME: this is a potential source of wierdness if the type
1003  // spellings don't match exactly.
1004  if (isa<TypedefDecl>(Old))
1005    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
1006
1007  if (getLangOptions().Microsoft)
1008    return;
1009
1010  if (getLangOptions().CPlusPlus) {
1011    // C++ [dcl.typedef]p2:
1012    //   In a given non-class scope, a typedef specifier can be used to
1013    //   redefine the name of any type declared in that scope to refer
1014    //   to the type to which it already refers.
1015    if (!isa<CXXRecordDecl>(CurContext))
1016      return;
1017
1018    // C++0x [dcl.typedef]p4:
1019    //   In a given class scope, a typedef specifier can be used to redefine
1020    //   any class-name declared in that scope that is not also a typedef-name
1021    //   to refer to the type to which it already refers.
1022    //
1023    // This wording came in via DR424, which was a correction to the
1024    // wording in DR56, which accidentally banned code like:
1025    //
1026    //   struct S {
1027    //     typedef struct A { } A;
1028    //   };
1029    //
1030    // in the C++03 standard. We implement the C++0x semantics, which
1031    // allow the above but disallow
1032    //
1033    //   struct S {
1034    //     typedef int I;
1035    //     typedef int I;
1036    //   };
1037    //
1038    // since that was the intent of DR56.
1039    if (!isa<TypedefDecl >(Old))
1040      return;
1041
1042    Diag(New->getLocation(), diag::err_redefinition)
1043      << New->getDeclName();
1044    Diag(Old->getLocation(), diag::note_previous_definition);
1045    return New->setInvalidDecl();
1046  }
1047
1048  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1049  // is normally mapped to an error, but can be controlled with
1050  // -Wtypedef-redefinition.  If either the original or the redefinition is
1051  // in a system header, don't emit this for compatibility with GCC.
1052  if (getDiagnostics().getSuppressSystemWarnings() &&
1053      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1054       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1055    return;
1056
1057  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1058    << New->getDeclName();
1059  Diag(Old->getLocation(), diag::note_previous_definition);
1060  return;
1061}
1062
1063/// DeclhasAttr - returns true if decl Declaration already has the target
1064/// attribute.
1065static bool
1066DeclHasAttr(const Decl *D, const Attr *A) {
1067  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1068  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1069    if ((*i)->getKind() == A->getKind()) {
1070      // FIXME: Don't hardcode this check
1071      if (OA && isa<OwnershipAttr>(*i))
1072        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1073      return true;
1074    }
1075
1076  return false;
1077}
1078
1079/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1080static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1081                                ASTContext &C) {
1082  if (!oldDecl->hasAttrs())
1083    return;
1084
1085  bool foundAny = newDecl->hasAttrs();
1086
1087  // Ensure that any moving of objects within the allocated map is done before
1088  // we process them.
1089  if (!foundAny) newDecl->setAttrs(AttrVec());
1090
1091  for (specific_attr_iterator<InheritableAttr>
1092       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1093       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1094    if (!DeclHasAttr(newDecl, *i)) {
1095      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1096      newAttr->setInherited(true);
1097      newDecl->addAttr(newAttr);
1098      foundAny = true;
1099    }
1100  }
1101
1102  if (!foundAny) newDecl->dropAttrs();
1103}
1104
1105/// mergeParamDeclAttributes - Copy attributes from the old parameter
1106/// to the new one.
1107static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1108                                     const ParmVarDecl *oldDecl,
1109                                     ASTContext &C) {
1110  if (!oldDecl->hasAttrs())
1111    return;
1112
1113  bool foundAny = newDecl->hasAttrs();
1114
1115  // Ensure that any moving of objects within the allocated map is
1116  // done before we process them.
1117  if (!foundAny) newDecl->setAttrs(AttrVec());
1118
1119  for (specific_attr_iterator<InheritableParamAttr>
1120       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1121       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1122    if (!DeclHasAttr(newDecl, *i)) {
1123      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1124      newAttr->setInherited(true);
1125      newDecl->addAttr(newAttr);
1126      foundAny = true;
1127    }
1128  }
1129
1130  if (!foundAny) newDecl->dropAttrs();
1131}
1132
1133namespace {
1134
1135/// Used in MergeFunctionDecl to keep track of function parameters in
1136/// C.
1137struct GNUCompatibleParamWarning {
1138  ParmVarDecl *OldParm;
1139  ParmVarDecl *NewParm;
1140  QualType PromotedType;
1141};
1142
1143}
1144
1145/// getSpecialMember - get the special member enum for a method.
1146Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1147  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1148    if (Ctor->isCopyConstructor())
1149      return Sema::CXXCopyConstructor;
1150
1151    return Sema::CXXConstructor;
1152  }
1153
1154  if (isa<CXXDestructorDecl>(MD))
1155    return Sema::CXXDestructor;
1156
1157  assert(MD->isCopyAssignmentOperator() &&
1158         "Must have copy assignment operator");
1159  return Sema::CXXCopyAssignment;
1160}
1161
1162/// canRedefineFunction - checks if a function can be redefined. Currently,
1163/// only extern inline functions can be redefined, and even then only in
1164/// GNU89 mode.
1165static bool canRedefineFunction(const FunctionDecl *FD,
1166                                const LangOptions& LangOpts) {
1167  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1168          FD->isInlineSpecified() &&
1169          FD->getStorageClass() == SC_Extern);
1170}
1171
1172/// MergeFunctionDecl - We just parsed a function 'New' from
1173/// declarator D which has the same name and scope as a previous
1174/// declaration 'Old'.  Figure out how to resolve this situation,
1175/// merging decls or emitting diagnostics as appropriate.
1176///
1177/// In C++, New and Old must be declarations that are not
1178/// overloaded. Use IsOverload to determine whether New and Old are
1179/// overloaded, and to select the Old declaration that New should be
1180/// merged with.
1181///
1182/// Returns true if there was an error, false otherwise.
1183bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1184  // Verify the old decl was also a function.
1185  FunctionDecl *Old = 0;
1186  if (FunctionTemplateDecl *OldFunctionTemplate
1187        = dyn_cast<FunctionTemplateDecl>(OldD))
1188    Old = OldFunctionTemplate->getTemplatedDecl();
1189  else
1190    Old = dyn_cast<FunctionDecl>(OldD);
1191  if (!Old) {
1192    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1193      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1194      Diag(Shadow->getTargetDecl()->getLocation(),
1195           diag::note_using_decl_target);
1196      Diag(Shadow->getUsingDecl()->getLocation(),
1197           diag::note_using_decl) << 0;
1198      return true;
1199    }
1200
1201    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1202      << New->getDeclName();
1203    Diag(OldD->getLocation(), diag::note_previous_definition);
1204    return true;
1205  }
1206
1207  // Determine whether the previous declaration was a definition,
1208  // implicit declaration, or a declaration.
1209  diag::kind PrevDiag;
1210  if (Old->isThisDeclarationADefinition())
1211    PrevDiag = diag::note_previous_definition;
1212  else if (Old->isImplicit())
1213    PrevDiag = diag::note_previous_implicit_declaration;
1214  else
1215    PrevDiag = diag::note_previous_declaration;
1216
1217  QualType OldQType = Context.getCanonicalType(Old->getType());
1218  QualType NewQType = Context.getCanonicalType(New->getType());
1219
1220  // Don't complain about this if we're in GNU89 mode and the old function
1221  // is an extern inline function.
1222  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1223      New->getStorageClass() == SC_Static &&
1224      Old->getStorageClass() != SC_Static &&
1225      !canRedefineFunction(Old, getLangOptions())) {
1226    Diag(New->getLocation(), diag::err_static_non_static)
1227      << New;
1228    Diag(Old->getLocation(), PrevDiag);
1229    return true;
1230  }
1231
1232  // If a function is first declared with a calling convention, but is
1233  // later declared or defined without one, the second decl assumes the
1234  // calling convention of the first.
1235  //
1236  // For the new decl, we have to look at the NON-canonical type to tell the
1237  // difference between a function that really doesn't have a calling
1238  // convention and one that is declared cdecl. That's because in
1239  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1240  // because it is the default calling convention.
1241  //
1242  // Note also that we DO NOT return at this point, because we still have
1243  // other tests to run.
1244  const FunctionType *OldType = cast<FunctionType>(OldQType);
1245  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1246  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1247  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1248  bool RequiresAdjustment = false;
1249  if (OldTypeInfo.getCC() != CC_Default &&
1250      NewTypeInfo.getCC() == CC_Default) {
1251    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1252    RequiresAdjustment = true;
1253  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1254                                     NewTypeInfo.getCC())) {
1255    // Calling conventions really aren't compatible, so complain.
1256    Diag(New->getLocation(), diag::err_cconv_change)
1257      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1258      << (OldTypeInfo.getCC() == CC_Default)
1259      << (OldTypeInfo.getCC() == CC_Default ? "" :
1260          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1261    Diag(Old->getLocation(), diag::note_previous_declaration);
1262    return true;
1263  }
1264
1265  // FIXME: diagnose the other way around?
1266  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1267    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1268    RequiresAdjustment = true;
1269  }
1270
1271  // Merge regparm attribute.
1272  if (OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1273    if (NewTypeInfo.getRegParm()) {
1274      Diag(New->getLocation(), diag::err_regparm_mismatch)
1275        << NewType->getRegParmType()
1276        << OldType->getRegParmType();
1277      Diag(Old->getLocation(), diag::note_previous_declaration);
1278      return true;
1279    }
1280
1281    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1282    RequiresAdjustment = true;
1283  }
1284
1285  if (RequiresAdjustment) {
1286    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1287    New->setType(QualType(NewType, 0));
1288    NewQType = Context.getCanonicalType(New->getType());
1289  }
1290
1291  if (getLangOptions().CPlusPlus) {
1292    // (C++98 13.1p2):
1293    //   Certain function declarations cannot be overloaded:
1294    //     -- Function declarations that differ only in the return type
1295    //        cannot be overloaded.
1296    QualType OldReturnType = OldType->getResultType();
1297    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1298    QualType ResQT;
1299    if (OldReturnType != NewReturnType) {
1300      if (NewReturnType->isObjCObjectPointerType()
1301          && OldReturnType->isObjCObjectPointerType())
1302        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1303      if (ResQT.isNull()) {
1304        if (New->isCXXClassMember() && New->isOutOfLine())
1305          Diag(New->getLocation(),
1306               diag::err_member_def_does_not_match_ret_type) << New;
1307        else
1308          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1309        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1310        return true;
1311      }
1312      else
1313        NewQType = ResQT;
1314    }
1315
1316    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1317    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1318    if (OldMethod && NewMethod) {
1319      // Preserve triviality.
1320      NewMethod->setTrivial(OldMethod->isTrivial());
1321
1322      bool isFriend = NewMethod->getFriendObjectKind();
1323
1324      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1325        //    -- Member function declarations with the same name and the
1326        //       same parameter types cannot be overloaded if any of them
1327        //       is a static member function declaration.
1328        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1329          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1330          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1331          return true;
1332        }
1333
1334        // C++ [class.mem]p1:
1335        //   [...] A member shall not be declared twice in the
1336        //   member-specification, except that a nested class or member
1337        //   class template can be declared and then later defined.
1338        unsigned NewDiag;
1339        if (isa<CXXConstructorDecl>(OldMethod))
1340          NewDiag = diag::err_constructor_redeclared;
1341        else if (isa<CXXDestructorDecl>(NewMethod))
1342          NewDiag = diag::err_destructor_redeclared;
1343        else if (isa<CXXConversionDecl>(NewMethod))
1344          NewDiag = diag::err_conv_function_redeclared;
1345        else
1346          NewDiag = diag::err_member_redeclared;
1347
1348        Diag(New->getLocation(), NewDiag);
1349        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1350
1351      // Complain if this is an explicit declaration of a special
1352      // member that was initially declared implicitly.
1353      //
1354      // As an exception, it's okay to befriend such methods in order
1355      // to permit the implicit constructor/destructor/operator calls.
1356      } else if (OldMethod->isImplicit()) {
1357        if (isFriend) {
1358          NewMethod->setImplicit();
1359        } else {
1360          Diag(NewMethod->getLocation(),
1361               diag::err_definition_of_implicitly_declared_member)
1362            << New << getSpecialMember(OldMethod);
1363          return true;
1364        }
1365      }
1366    }
1367
1368    // (C++98 8.3.5p3):
1369    //   All declarations for a function shall agree exactly in both the
1370    //   return type and the parameter-type-list.
1371    // We also want to respect all the extended bits except noreturn.
1372
1373    // noreturn should now match unless the old type info didn't have it.
1374    QualType OldQTypeForComparison = OldQType;
1375    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1376      assert(OldQType == QualType(OldType, 0));
1377      const FunctionType *OldTypeForComparison
1378        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1379      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1380      assert(OldQTypeForComparison.isCanonical());
1381    }
1382
1383    if (OldQTypeForComparison == NewQType)
1384      return MergeCompatibleFunctionDecls(New, Old);
1385
1386    // Fall through for conflicting redeclarations and redefinitions.
1387  }
1388
1389  // C: Function types need to be compatible, not identical. This handles
1390  // duplicate function decls like "void f(int); void f(enum X);" properly.
1391  if (!getLangOptions().CPlusPlus &&
1392      Context.typesAreCompatible(OldQType, NewQType)) {
1393    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1394    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1395    const FunctionProtoType *OldProto = 0;
1396    if (isa<FunctionNoProtoType>(NewFuncType) &&
1397        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1398      // The old declaration provided a function prototype, but the
1399      // new declaration does not. Merge in the prototype.
1400      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1401      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1402                                                 OldProto->arg_type_end());
1403      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1404                                         ParamTypes.data(), ParamTypes.size(),
1405                                         OldProto->getExtProtoInfo());
1406      New->setType(NewQType);
1407      New->setHasInheritedPrototype();
1408
1409      // Synthesize a parameter for each argument type.
1410      llvm::SmallVector<ParmVarDecl*, 16> Params;
1411      for (FunctionProtoType::arg_type_iterator
1412             ParamType = OldProto->arg_type_begin(),
1413             ParamEnd = OldProto->arg_type_end();
1414           ParamType != ParamEnd; ++ParamType) {
1415        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1416                                                 SourceLocation(),
1417                                                 SourceLocation(), 0,
1418                                                 *ParamType, /*TInfo=*/0,
1419                                                 SC_None, SC_None,
1420                                                 0);
1421        Param->setImplicit();
1422        Params.push_back(Param);
1423      }
1424
1425      New->setParams(Params.data(), Params.size());
1426    }
1427
1428    return MergeCompatibleFunctionDecls(New, Old);
1429  }
1430
1431  // GNU C permits a K&R definition to follow a prototype declaration
1432  // if the declared types of the parameters in the K&R definition
1433  // match the types in the prototype declaration, even when the
1434  // promoted types of the parameters from the K&R definition differ
1435  // from the types in the prototype. GCC then keeps the types from
1436  // the prototype.
1437  //
1438  // If a variadic prototype is followed by a non-variadic K&R definition,
1439  // the K&R definition becomes variadic.  This is sort of an edge case, but
1440  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1441  // C99 6.9.1p8.
1442  if (!getLangOptions().CPlusPlus &&
1443      Old->hasPrototype() && !New->hasPrototype() &&
1444      New->getType()->getAs<FunctionProtoType>() &&
1445      Old->getNumParams() == New->getNumParams()) {
1446    llvm::SmallVector<QualType, 16> ArgTypes;
1447    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1448    const FunctionProtoType *OldProto
1449      = Old->getType()->getAs<FunctionProtoType>();
1450    const FunctionProtoType *NewProto
1451      = New->getType()->getAs<FunctionProtoType>();
1452
1453    // Determine whether this is the GNU C extension.
1454    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1455                                               NewProto->getResultType());
1456    bool LooseCompatible = !MergedReturn.isNull();
1457    for (unsigned Idx = 0, End = Old->getNumParams();
1458         LooseCompatible && Idx != End; ++Idx) {
1459      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1460      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1461      if (Context.typesAreCompatible(OldParm->getType(),
1462                                     NewProto->getArgType(Idx))) {
1463        ArgTypes.push_back(NewParm->getType());
1464      } else if (Context.typesAreCompatible(OldParm->getType(),
1465                                            NewParm->getType(),
1466                                            /*CompareUnqualified=*/true)) {
1467        GNUCompatibleParamWarning Warn
1468          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1469        Warnings.push_back(Warn);
1470        ArgTypes.push_back(NewParm->getType());
1471      } else
1472        LooseCompatible = false;
1473    }
1474
1475    if (LooseCompatible) {
1476      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1477        Diag(Warnings[Warn].NewParm->getLocation(),
1478             diag::ext_param_promoted_not_compatible_with_prototype)
1479          << Warnings[Warn].PromotedType
1480          << Warnings[Warn].OldParm->getType();
1481        if (Warnings[Warn].OldParm->getLocation().isValid())
1482          Diag(Warnings[Warn].OldParm->getLocation(),
1483               diag::note_previous_declaration);
1484      }
1485
1486      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1487                                           ArgTypes.size(),
1488                                           OldProto->getExtProtoInfo()));
1489      return MergeCompatibleFunctionDecls(New, Old);
1490    }
1491
1492    // Fall through to diagnose conflicting types.
1493  }
1494
1495  // A function that has already been declared has been redeclared or defined
1496  // with a different type- show appropriate diagnostic
1497  if (unsigned BuiltinID = Old->getBuiltinID()) {
1498    // The user has declared a builtin function with an incompatible
1499    // signature.
1500    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1501      // The function the user is redeclaring is a library-defined
1502      // function like 'malloc' or 'printf'. Warn about the
1503      // redeclaration, then pretend that we don't know about this
1504      // library built-in.
1505      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1506      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1507        << Old << Old->getType();
1508      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1509      Old->setInvalidDecl();
1510      return false;
1511    }
1512
1513    PrevDiag = diag::note_previous_builtin_declaration;
1514  }
1515
1516  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1517  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1518  return true;
1519}
1520
1521/// \brief Completes the merge of two function declarations that are
1522/// known to be compatible.
1523///
1524/// This routine handles the merging of attributes and other
1525/// properties of function declarations form the old declaration to
1526/// the new declaration, once we know that New is in fact a
1527/// redeclaration of Old.
1528///
1529/// \returns false
1530bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1531  // Merge the attributes
1532  mergeDeclAttributes(New, Old, Context);
1533
1534  // Merge the storage class.
1535  if (Old->getStorageClass() != SC_Extern &&
1536      Old->getStorageClass() != SC_None)
1537    New->setStorageClass(Old->getStorageClass());
1538
1539  // Merge "pure" flag.
1540  if (Old->isPure())
1541    New->setPure();
1542
1543  // Merge the "deleted" flag.
1544  if (Old->isDeleted())
1545    New->setDeleted();
1546
1547  // Merge attributes from the parameters.  These can mismatch with K&R
1548  // declarations.
1549  if (New->getNumParams() == Old->getNumParams())
1550    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1551      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1552                               Context);
1553
1554  if (getLangOptions().CPlusPlus)
1555    return MergeCXXFunctionDecl(New, Old);
1556
1557  return false;
1558}
1559
1560void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1561                                const ObjCMethodDecl *oldMethod) {
1562  // Merge the attributes.
1563  mergeDeclAttributes(newMethod, oldMethod, Context);
1564
1565  // Merge attributes from the parameters.
1566  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1567         ni = newMethod->param_begin(), ne = newMethod->param_end();
1568       ni != ne; ++ni, ++oi)
1569    mergeParamDeclAttributes(*ni, *oi, Context);
1570}
1571
1572/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1573/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1574/// emitting diagnostics as appropriate.
1575///
1576/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1577/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1578/// check them before the initializer is attached.
1579///
1580void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1581  if (New->isInvalidDecl() || Old->isInvalidDecl())
1582    return;
1583
1584  QualType MergedT;
1585  if (getLangOptions().CPlusPlus) {
1586    AutoType *AT = New->getType()->getContainedAutoType();
1587    if (AT && !AT->isDeduced()) {
1588      // We don't know what the new type is until the initializer is attached.
1589      return;
1590    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1591      // These could still be something that needs exception specs checked.
1592      return MergeVarDeclExceptionSpecs(New, Old);
1593    }
1594    // C++ [basic.link]p10:
1595    //   [...] the types specified by all declarations referring to a given
1596    //   object or function shall be identical, except that declarations for an
1597    //   array object can specify array types that differ by the presence or
1598    //   absence of a major array bound (8.3.4).
1599    else if (Old->getType()->isIncompleteArrayType() &&
1600             New->getType()->isArrayType()) {
1601      CanQual<ArrayType> OldArray
1602        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1603      CanQual<ArrayType> NewArray
1604        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1605      if (OldArray->getElementType() == NewArray->getElementType())
1606        MergedT = New->getType();
1607    } else if (Old->getType()->isArrayType() &&
1608             New->getType()->isIncompleteArrayType()) {
1609      CanQual<ArrayType> OldArray
1610        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1611      CanQual<ArrayType> NewArray
1612        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1613      if (OldArray->getElementType() == NewArray->getElementType())
1614        MergedT = Old->getType();
1615    } else if (New->getType()->isObjCObjectPointerType()
1616               && Old->getType()->isObjCObjectPointerType()) {
1617        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1618                                                        Old->getType());
1619    }
1620  } else {
1621    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1622  }
1623  if (MergedT.isNull()) {
1624    Diag(New->getLocation(), diag::err_redefinition_different_type)
1625      << New->getDeclName();
1626    Diag(Old->getLocation(), diag::note_previous_definition);
1627    return New->setInvalidDecl();
1628  }
1629  New->setType(MergedT);
1630}
1631
1632/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1633/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1634/// situation, merging decls or emitting diagnostics as appropriate.
1635///
1636/// Tentative definition rules (C99 6.9.2p2) are checked by
1637/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1638/// definitions here, since the initializer hasn't been attached.
1639///
1640void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1641  // If the new decl is already invalid, don't do any other checking.
1642  if (New->isInvalidDecl())
1643    return;
1644
1645  // Verify the old decl was also a variable.
1646  VarDecl *Old = 0;
1647  if (!Previous.isSingleResult() ||
1648      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1649    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1650      << New->getDeclName();
1651    Diag(Previous.getRepresentativeDecl()->getLocation(),
1652         diag::note_previous_definition);
1653    return New->setInvalidDecl();
1654  }
1655
1656  // C++ [class.mem]p1:
1657  //   A member shall not be declared twice in the member-specification [...]
1658  //
1659  // Here, we need only consider static data members.
1660  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1661    Diag(New->getLocation(), diag::err_duplicate_member)
1662      << New->getIdentifier();
1663    Diag(Old->getLocation(), diag::note_previous_declaration);
1664    New->setInvalidDecl();
1665  }
1666
1667  mergeDeclAttributes(New, Old, Context);
1668
1669  // Merge the types.
1670  MergeVarDeclTypes(New, Old);
1671  if (New->isInvalidDecl())
1672    return;
1673
1674  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1675  if (New->getStorageClass() == SC_Static &&
1676      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1677    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1678    Diag(Old->getLocation(), diag::note_previous_definition);
1679    return New->setInvalidDecl();
1680  }
1681  // C99 6.2.2p4:
1682  //   For an identifier declared with the storage-class specifier
1683  //   extern in a scope in which a prior declaration of that
1684  //   identifier is visible,23) if the prior declaration specifies
1685  //   internal or external linkage, the linkage of the identifier at
1686  //   the later declaration is the same as the linkage specified at
1687  //   the prior declaration. If no prior declaration is visible, or
1688  //   if the prior declaration specifies no linkage, then the
1689  //   identifier has external linkage.
1690  if (New->hasExternalStorage() && Old->hasLinkage())
1691    /* Okay */;
1692  else if (New->getStorageClass() != SC_Static &&
1693           Old->getStorageClass() == SC_Static) {
1694    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1695    Diag(Old->getLocation(), diag::note_previous_definition);
1696    return New->setInvalidDecl();
1697  }
1698
1699  // Check if extern is followed by non-extern and vice-versa.
1700  if (New->hasExternalStorage() &&
1701      !Old->hasLinkage() && Old->isLocalVarDecl()) {
1702    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
1703    Diag(Old->getLocation(), diag::note_previous_definition);
1704    return New->setInvalidDecl();
1705  }
1706  if (Old->hasExternalStorage() &&
1707      !New->hasLinkage() && New->isLocalVarDecl()) {
1708    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
1709    Diag(Old->getLocation(), diag::note_previous_definition);
1710    return New->setInvalidDecl();
1711  }
1712
1713  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1714
1715  // FIXME: The test for external storage here seems wrong? We still
1716  // need to check for mismatches.
1717  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1718      // Don't complain about out-of-line definitions of static members.
1719      !(Old->getLexicalDeclContext()->isRecord() &&
1720        !New->getLexicalDeclContext()->isRecord())) {
1721    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1722    Diag(Old->getLocation(), diag::note_previous_definition);
1723    return New->setInvalidDecl();
1724  }
1725
1726  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1727    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1728    Diag(Old->getLocation(), diag::note_previous_definition);
1729  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1730    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1731    Diag(Old->getLocation(), diag::note_previous_definition);
1732  }
1733
1734  // C++ doesn't have tentative definitions, so go right ahead and check here.
1735  const VarDecl *Def;
1736  if (getLangOptions().CPlusPlus &&
1737      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1738      (Def = Old->getDefinition())) {
1739    Diag(New->getLocation(), diag::err_redefinition)
1740      << New->getDeclName();
1741    Diag(Def->getLocation(), diag::note_previous_definition);
1742    New->setInvalidDecl();
1743    return;
1744  }
1745  // c99 6.2.2 P4.
1746  // For an identifier declared with the storage-class specifier extern in a
1747  // scope in which a prior declaration of that identifier is visible, if
1748  // the prior declaration specifies internal or external linkage, the linkage
1749  // of the identifier at the later declaration is the same as the linkage
1750  // specified at the prior declaration.
1751  // FIXME. revisit this code.
1752  if (New->hasExternalStorage() &&
1753      Old->getLinkage() == InternalLinkage &&
1754      New->getDeclContext() == Old->getDeclContext())
1755    New->setStorageClass(Old->getStorageClass());
1756
1757  // Keep a chain of previous declarations.
1758  New->setPreviousDeclaration(Old);
1759
1760  // Inherit access appropriately.
1761  New->setAccess(Old->getAccess());
1762}
1763
1764/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1765/// no declarator (e.g. "struct foo;") is parsed.
1766Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1767                                            DeclSpec &DS) {
1768  // FIXME: Error on inline/virtual/explicit
1769  // FIXME: Warn on useless __thread
1770  // FIXME: Warn on useless const/volatile
1771  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1772  // FIXME: Warn on useless attributes
1773  Decl *TagD = 0;
1774  TagDecl *Tag = 0;
1775  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1776      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1777      DS.getTypeSpecType() == DeclSpec::TST_union ||
1778      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1779    TagD = DS.getRepAsDecl();
1780
1781    if (!TagD) // We probably had an error
1782      return 0;
1783
1784    // Note that the above type specs guarantee that the
1785    // type rep is a Decl, whereas in many of the others
1786    // it's a Type.
1787    Tag = dyn_cast<TagDecl>(TagD);
1788  }
1789
1790  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1791    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1792    // or incomplete types shall not be restrict-qualified."
1793    if (TypeQuals & DeclSpec::TQ_restrict)
1794      Diag(DS.getRestrictSpecLoc(),
1795           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1796           << DS.getSourceRange();
1797  }
1798
1799  if (DS.isFriendSpecified()) {
1800    // If we're dealing with a decl but not a TagDecl, assume that
1801    // whatever routines created it handled the friendship aspect.
1802    if (TagD && !Tag)
1803      return 0;
1804    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1805  }
1806
1807  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1808    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
1809
1810    if (!Record->getDeclName() && Record->isDefinition() &&
1811        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1812      if (getLangOptions().CPlusPlus ||
1813          Record->getDeclContext()->isRecord())
1814        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1815
1816      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1817        << DS.getSourceRange();
1818    }
1819  }
1820
1821  // Check for Microsoft C extension: anonymous struct.
1822  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
1823      CurContext->isRecord() &&
1824      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
1825    // Handle 2 kinds of anonymous struct:
1826    //   struct STRUCT;
1827    // and
1828    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
1829    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
1830    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
1831        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
1832         DS.getRepAsType().get()->isStructureType())) {
1833      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
1834        << DS.getSourceRange();
1835      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
1836    }
1837  }
1838
1839  if (getLangOptions().CPlusPlus &&
1840      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1841    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1842      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1843          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1844        Diag(Enum->getLocation(), diag::ext_no_declarators)
1845          << DS.getSourceRange();
1846
1847  if (!DS.isMissingDeclaratorOk() &&
1848      DS.getTypeSpecType() != DeclSpec::TST_error) {
1849    // Warn about typedefs of enums without names, since this is an
1850    // extension in both Microsoft and GNU.
1851    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1852        Tag && isa<EnumDecl>(Tag)) {
1853      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1854        << DS.getSourceRange();
1855      return Tag;
1856    }
1857
1858    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1859      << DS.getSourceRange();
1860  }
1861
1862  return TagD;
1863}
1864
1865/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
1866/// builds a statement for it and returns it so it is evaluated.
1867StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
1868  StmtResult R;
1869  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
1870    Expr *Exp = DS.getRepAsExpr();
1871    QualType Ty = Exp->getType();
1872    if (Ty->isPointerType()) {
1873      do
1874        Ty = Ty->getAs<PointerType>()->getPointeeType();
1875      while (Ty->isPointerType());
1876    }
1877    if (Ty->isVariableArrayType()) {
1878      R = ActOnExprStmt(MakeFullExpr(Exp));
1879    }
1880  }
1881  return R;
1882}
1883
1884/// We are trying to inject an anonymous member into the given scope;
1885/// check if there's an existing declaration that can't be overloaded.
1886///
1887/// \return true if this is a forbidden redeclaration
1888static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1889                                         Scope *S,
1890                                         DeclContext *Owner,
1891                                         DeclarationName Name,
1892                                         SourceLocation NameLoc,
1893                                         unsigned diagnostic) {
1894  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1895                 Sema::ForRedeclaration);
1896  if (!SemaRef.LookupName(R, S)) return false;
1897
1898  if (R.getAsSingle<TagDecl>())
1899    return false;
1900
1901  // Pick a representative declaration.
1902  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1903  assert(PrevDecl && "Expected a non-null Decl");
1904
1905  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1906    return false;
1907
1908  SemaRef.Diag(NameLoc, diagnostic) << Name;
1909  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1910
1911  return true;
1912}
1913
1914/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1915/// anonymous struct or union AnonRecord into the owning context Owner
1916/// and scope S. This routine will be invoked just after we realize
1917/// that an unnamed union or struct is actually an anonymous union or
1918/// struct, e.g.,
1919///
1920/// @code
1921/// union {
1922///   int i;
1923///   float f;
1924/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1925///    // f into the surrounding scope.x
1926/// @endcode
1927///
1928/// This routine is recursive, injecting the names of nested anonymous
1929/// structs/unions into the owning context and scope as well.
1930static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1931                                                DeclContext *Owner,
1932                                                RecordDecl *AnonRecord,
1933                                                AccessSpecifier AS,
1934                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
1935                                                      bool MSAnonStruct) {
1936  unsigned diagKind
1937    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1938                            : diag::err_anonymous_struct_member_redecl;
1939
1940  bool Invalid = false;
1941
1942  // Look every FieldDecl and IndirectFieldDecl with a name.
1943  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
1944                               DEnd = AnonRecord->decls_end();
1945       D != DEnd; ++D) {
1946    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
1947        cast<NamedDecl>(*D)->getDeclName()) {
1948      ValueDecl *VD = cast<ValueDecl>(*D);
1949      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
1950                                       VD->getLocation(), diagKind)) {
1951        // C++ [class.union]p2:
1952        //   The names of the members of an anonymous union shall be
1953        //   distinct from the names of any other entity in the
1954        //   scope in which the anonymous union is declared.
1955        Invalid = true;
1956      } else {
1957        // C++ [class.union]p2:
1958        //   For the purpose of name lookup, after the anonymous union
1959        //   definition, the members of the anonymous union are
1960        //   considered to have been defined in the scope in which the
1961        //   anonymous union is declared.
1962        unsigned OldChainingSize = Chaining.size();
1963        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
1964          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
1965               PE = IF->chain_end(); PI != PE; ++PI)
1966            Chaining.push_back(*PI);
1967        else
1968          Chaining.push_back(VD);
1969
1970        assert(Chaining.size() >= 2);
1971        NamedDecl **NamedChain =
1972          new (SemaRef.Context)NamedDecl*[Chaining.size()];
1973        for (unsigned i = 0; i < Chaining.size(); i++)
1974          NamedChain[i] = Chaining[i];
1975
1976        IndirectFieldDecl* IndirectField =
1977          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
1978                                    VD->getIdentifier(), VD->getType(),
1979                                    NamedChain, Chaining.size());
1980
1981        IndirectField->setAccess(AS);
1982        IndirectField->setImplicit();
1983        SemaRef.PushOnScopeChains(IndirectField, S);
1984
1985        // That includes picking up the appropriate access specifier.
1986        if (AS != AS_none) IndirectField->setAccess(AS);
1987
1988        Chaining.resize(OldChainingSize);
1989      }
1990    }
1991  }
1992
1993  return Invalid;
1994}
1995
1996/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1997/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1998/// illegal input values are mapped to SC_None.
1999static StorageClass
2000StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2001  switch (StorageClassSpec) {
2002  case DeclSpec::SCS_unspecified:    return SC_None;
2003  case DeclSpec::SCS_extern:         return SC_Extern;
2004  case DeclSpec::SCS_static:         return SC_Static;
2005  case DeclSpec::SCS_auto:           return SC_Auto;
2006  case DeclSpec::SCS_register:       return SC_Register;
2007  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2008    // Illegal SCSs map to None: error reporting is up to the caller.
2009  case DeclSpec::SCS_mutable:        // Fall through.
2010  case DeclSpec::SCS_typedef:        return SC_None;
2011  }
2012  llvm_unreachable("unknown storage class specifier");
2013}
2014
2015/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2016/// a StorageClass. Any error reporting is up to the caller:
2017/// illegal input values are mapped to SC_None.
2018static StorageClass
2019StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2020  switch (StorageClassSpec) {
2021  case DeclSpec::SCS_unspecified:    return SC_None;
2022  case DeclSpec::SCS_extern:         return SC_Extern;
2023  case DeclSpec::SCS_static:         return SC_Static;
2024  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2025    // Illegal SCSs map to None: error reporting is up to the caller.
2026  case DeclSpec::SCS_auto:           // Fall through.
2027  case DeclSpec::SCS_mutable:        // Fall through.
2028  case DeclSpec::SCS_register:       // Fall through.
2029  case DeclSpec::SCS_typedef:        return SC_None;
2030  }
2031  llvm_unreachable("unknown storage class specifier");
2032}
2033
2034/// BuildAnonymousStructOrUnion - Handle the declaration of an
2035/// anonymous structure or union. Anonymous unions are a C++ feature
2036/// (C++ [class.union]) and a GNU C extension; anonymous structures
2037/// are a GNU C and GNU C++ extension.
2038Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2039                                             AccessSpecifier AS,
2040                                             RecordDecl *Record) {
2041  DeclContext *Owner = Record->getDeclContext();
2042
2043  // Diagnose whether this anonymous struct/union is an extension.
2044  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2045    Diag(Record->getLocation(), diag::ext_anonymous_union);
2046  else if (!Record->isUnion())
2047    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2048
2049  // C and C++ require different kinds of checks for anonymous
2050  // structs/unions.
2051  bool Invalid = false;
2052  if (getLangOptions().CPlusPlus) {
2053    const char* PrevSpec = 0;
2054    unsigned DiagID;
2055    // C++ [class.union]p3:
2056    //   Anonymous unions declared in a named namespace or in the
2057    //   global namespace shall be declared static.
2058    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2059        (isa<TranslationUnitDecl>(Owner) ||
2060         (isa<NamespaceDecl>(Owner) &&
2061          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2062      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2063      Invalid = true;
2064
2065      // Recover by adding 'static'.
2066      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2067                             PrevSpec, DiagID, getLangOptions());
2068    }
2069    // C++ [class.union]p3:
2070    //   A storage class is not allowed in a declaration of an
2071    //   anonymous union in a class scope.
2072    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2073             isa<RecordDecl>(Owner)) {
2074      Diag(DS.getStorageClassSpecLoc(),
2075           diag::err_anonymous_union_with_storage_spec);
2076      Invalid = true;
2077
2078      // Recover by removing the storage specifier.
2079      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2080                             PrevSpec, DiagID, getLangOptions());
2081    }
2082
2083    // C++ [class.union]p2:
2084    //   The member-specification of an anonymous union shall only
2085    //   define non-static data members. [Note: nested types and
2086    //   functions cannot be declared within an anonymous union. ]
2087    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2088                                 MemEnd = Record->decls_end();
2089         Mem != MemEnd; ++Mem) {
2090      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2091        // C++ [class.union]p3:
2092        //   An anonymous union shall not have private or protected
2093        //   members (clause 11).
2094        assert(FD->getAccess() != AS_none);
2095        if (FD->getAccess() != AS_public) {
2096          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2097            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2098          Invalid = true;
2099        }
2100
2101        if (CheckNontrivialField(FD))
2102          Invalid = true;
2103      } else if ((*Mem)->isImplicit()) {
2104        // Any implicit members are fine.
2105      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2106        // This is a type that showed up in an
2107        // elaborated-type-specifier inside the anonymous struct or
2108        // union, but which actually declares a type outside of the
2109        // anonymous struct or union. It's okay.
2110      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2111        if (!MemRecord->isAnonymousStructOrUnion() &&
2112            MemRecord->getDeclName()) {
2113          // Visual C++ allows type definition in anonymous struct or union.
2114          if (getLangOptions().Microsoft)
2115            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2116              << (int)Record->isUnion();
2117          else {
2118            // This is a nested type declaration.
2119            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2120              << (int)Record->isUnion();
2121            Invalid = true;
2122          }
2123        }
2124      } else if (isa<AccessSpecDecl>(*Mem)) {
2125        // Any access specifier is fine.
2126      } else {
2127        // We have something that isn't a non-static data
2128        // member. Complain about it.
2129        unsigned DK = diag::err_anonymous_record_bad_member;
2130        if (isa<TypeDecl>(*Mem))
2131          DK = diag::err_anonymous_record_with_type;
2132        else if (isa<FunctionDecl>(*Mem))
2133          DK = diag::err_anonymous_record_with_function;
2134        else if (isa<VarDecl>(*Mem))
2135          DK = diag::err_anonymous_record_with_static;
2136
2137        // Visual C++ allows type definition in anonymous struct or union.
2138        if (getLangOptions().Microsoft &&
2139            DK == diag::err_anonymous_record_with_type)
2140          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2141            << (int)Record->isUnion();
2142        else {
2143          Diag((*Mem)->getLocation(), DK)
2144              << (int)Record->isUnion();
2145          Invalid = true;
2146        }
2147      }
2148    }
2149  }
2150
2151  if (!Record->isUnion() && !Owner->isRecord()) {
2152    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2153      << (int)getLangOptions().CPlusPlus;
2154    Invalid = true;
2155  }
2156
2157  // Mock up a declarator.
2158  Declarator Dc(DS, Declarator::TypeNameContext);
2159  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2160  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2161
2162  // Create a declaration for this anonymous struct/union.
2163  NamedDecl *Anon = 0;
2164  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2165    Anon = FieldDecl::Create(Context, OwningClass,
2166                             DS.getSourceRange().getBegin(),
2167                             Record->getLocation(),
2168                             /*IdentifierInfo=*/0,
2169                             Context.getTypeDeclType(Record),
2170                             TInfo,
2171                             /*BitWidth=*/0, /*Mutable=*/false);
2172    Anon->setAccess(AS);
2173    if (getLangOptions().CPlusPlus)
2174      FieldCollector->Add(cast<FieldDecl>(Anon));
2175  } else {
2176    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2177    assert(SCSpec != DeclSpec::SCS_typedef &&
2178           "Parser allowed 'typedef' as storage class VarDecl.");
2179    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2180    if (SCSpec == DeclSpec::SCS_mutable) {
2181      // mutable can only appear on non-static class members, so it's always
2182      // an error here
2183      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2184      Invalid = true;
2185      SC = SC_None;
2186    }
2187    SCSpec = DS.getStorageClassSpecAsWritten();
2188    VarDecl::StorageClass SCAsWritten
2189      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2190
2191    Anon = VarDecl::Create(Context, Owner,
2192                           DS.getSourceRange().getBegin(),
2193                           Record->getLocation(), /*IdentifierInfo=*/0,
2194                           Context.getTypeDeclType(Record),
2195                           TInfo, SC, SCAsWritten);
2196  }
2197  Anon->setImplicit();
2198
2199  // Add the anonymous struct/union object to the current
2200  // context. We'll be referencing this object when we refer to one of
2201  // its members.
2202  Owner->addDecl(Anon);
2203
2204  // Inject the members of the anonymous struct/union into the owning
2205  // context and into the identifier resolver chain for name lookup
2206  // purposes.
2207  llvm::SmallVector<NamedDecl*, 2> Chain;
2208  Chain.push_back(Anon);
2209
2210  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2211                                          Chain, false))
2212    Invalid = true;
2213
2214  // Mark this as an anonymous struct/union type. Note that we do not
2215  // do this until after we have already checked and injected the
2216  // members of this anonymous struct/union type, because otherwise
2217  // the members could be injected twice: once by DeclContext when it
2218  // builds its lookup table, and once by
2219  // InjectAnonymousStructOrUnionMembers.
2220  Record->setAnonymousStructOrUnion(true);
2221
2222  if (Invalid)
2223    Anon->setInvalidDecl();
2224
2225  return Anon;
2226}
2227
2228/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2229/// Microsoft C anonymous structure.
2230/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2231/// Example:
2232///
2233/// struct A { int a; };
2234/// struct B { struct A; int b; };
2235///
2236/// void foo() {
2237///   B var;
2238///   var.a = 3;
2239/// }
2240///
2241Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2242                                           RecordDecl *Record) {
2243
2244  // If there is no Record, get the record via the typedef.
2245  if (!Record)
2246    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2247
2248  // Mock up a declarator.
2249  Declarator Dc(DS, Declarator::TypeNameContext);
2250  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2251  assert(TInfo && "couldn't build declarator info for anonymous struct");
2252
2253  // Create a declaration for this anonymous struct.
2254  NamedDecl* Anon = FieldDecl::Create(Context,
2255                             cast<RecordDecl>(CurContext),
2256                             DS.getSourceRange().getBegin(),
2257                             DS.getSourceRange().getBegin(),
2258                             /*IdentifierInfo=*/0,
2259                             Context.getTypeDeclType(Record),
2260                             TInfo,
2261                             /*BitWidth=*/0, /*Mutable=*/false);
2262  Anon->setImplicit();
2263
2264  // Add the anonymous struct object to the current context.
2265  CurContext->addDecl(Anon);
2266
2267  // Inject the members of the anonymous struct into the current
2268  // context and into the identifier resolver chain for name lookup
2269  // purposes.
2270  llvm::SmallVector<NamedDecl*, 2> Chain;
2271  Chain.push_back(Anon);
2272
2273  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2274                                          Record->getDefinition(),
2275                                          AS_none, Chain, true))
2276    Anon->setInvalidDecl();
2277
2278  return Anon;
2279}
2280
2281/// GetNameForDeclarator - Determine the full declaration name for the
2282/// given Declarator.
2283DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2284  return GetNameFromUnqualifiedId(D.getName());
2285}
2286
2287/// \brief Retrieves the declaration name from a parsed unqualified-id.
2288DeclarationNameInfo
2289Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2290  DeclarationNameInfo NameInfo;
2291  NameInfo.setLoc(Name.StartLocation);
2292
2293  switch (Name.getKind()) {
2294
2295  case UnqualifiedId::IK_Identifier:
2296    NameInfo.setName(Name.Identifier);
2297    NameInfo.setLoc(Name.StartLocation);
2298    return NameInfo;
2299
2300  case UnqualifiedId::IK_OperatorFunctionId:
2301    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2302                                           Name.OperatorFunctionId.Operator));
2303    NameInfo.setLoc(Name.StartLocation);
2304    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2305      = Name.OperatorFunctionId.SymbolLocations[0];
2306    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2307      = Name.EndLocation.getRawEncoding();
2308    return NameInfo;
2309
2310  case UnqualifiedId::IK_LiteralOperatorId:
2311    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2312                                                           Name.Identifier));
2313    NameInfo.setLoc(Name.StartLocation);
2314    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2315    return NameInfo;
2316
2317  case UnqualifiedId::IK_ConversionFunctionId: {
2318    TypeSourceInfo *TInfo;
2319    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2320    if (Ty.isNull())
2321      return DeclarationNameInfo();
2322    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2323                                               Context.getCanonicalType(Ty)));
2324    NameInfo.setLoc(Name.StartLocation);
2325    NameInfo.setNamedTypeInfo(TInfo);
2326    return NameInfo;
2327  }
2328
2329  case UnqualifiedId::IK_ConstructorName: {
2330    TypeSourceInfo *TInfo;
2331    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2332    if (Ty.isNull())
2333      return DeclarationNameInfo();
2334    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2335                                              Context.getCanonicalType(Ty)));
2336    NameInfo.setLoc(Name.StartLocation);
2337    NameInfo.setNamedTypeInfo(TInfo);
2338    return NameInfo;
2339  }
2340
2341  case UnqualifiedId::IK_ConstructorTemplateId: {
2342    // In well-formed code, we can only have a constructor
2343    // template-id that refers to the current context, so go there
2344    // to find the actual type being constructed.
2345    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2346    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2347      return DeclarationNameInfo();
2348
2349    // Determine the type of the class being constructed.
2350    QualType CurClassType = Context.getTypeDeclType(CurClass);
2351
2352    // FIXME: Check two things: that the template-id names the same type as
2353    // CurClassType, and that the template-id does not occur when the name
2354    // was qualified.
2355
2356    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2357                                    Context.getCanonicalType(CurClassType)));
2358    NameInfo.setLoc(Name.StartLocation);
2359    // FIXME: should we retrieve TypeSourceInfo?
2360    NameInfo.setNamedTypeInfo(0);
2361    return NameInfo;
2362  }
2363
2364  case UnqualifiedId::IK_DestructorName: {
2365    TypeSourceInfo *TInfo;
2366    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2367    if (Ty.isNull())
2368      return DeclarationNameInfo();
2369    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2370                                              Context.getCanonicalType(Ty)));
2371    NameInfo.setLoc(Name.StartLocation);
2372    NameInfo.setNamedTypeInfo(TInfo);
2373    return NameInfo;
2374  }
2375
2376  case UnqualifiedId::IK_TemplateId: {
2377    TemplateName TName = Name.TemplateId->Template.get();
2378    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2379    return Context.getNameForTemplate(TName, TNameLoc);
2380  }
2381
2382  } // switch (Name.getKind())
2383
2384  assert(false && "Unknown name kind");
2385  return DeclarationNameInfo();
2386}
2387
2388/// isNearlyMatchingFunction - Determine whether the C++ functions
2389/// Declaration and Definition are "nearly" matching. This heuristic
2390/// is used to improve diagnostics in the case where an out-of-line
2391/// function definition doesn't match any declaration within
2392/// the class or namespace.
2393static bool isNearlyMatchingFunction(ASTContext &Context,
2394                                     FunctionDecl *Declaration,
2395                                     FunctionDecl *Definition) {
2396  if (Declaration->param_size() != Definition->param_size())
2397    return false;
2398  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2399    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2400    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2401
2402    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2403                                        DefParamTy.getNonReferenceType()))
2404      return false;
2405  }
2406
2407  return true;
2408}
2409
2410/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2411/// declarator needs to be rebuilt in the current instantiation.
2412/// Any bits of declarator which appear before the name are valid for
2413/// consideration here.  That's specifically the type in the decl spec
2414/// and the base type in any member-pointer chunks.
2415static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2416                                                    DeclarationName Name) {
2417  // The types we specifically need to rebuild are:
2418  //   - typenames, typeofs, and decltypes
2419  //   - types which will become injected class names
2420  // Of course, we also need to rebuild any type referencing such a
2421  // type.  It's safest to just say "dependent", but we call out a
2422  // few cases here.
2423
2424  DeclSpec &DS = D.getMutableDeclSpec();
2425  switch (DS.getTypeSpecType()) {
2426  case DeclSpec::TST_typename:
2427  case DeclSpec::TST_typeofType:
2428  case DeclSpec::TST_decltype: {
2429    // Grab the type from the parser.
2430    TypeSourceInfo *TSI = 0;
2431    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2432    if (T.isNull() || !T->isDependentType()) break;
2433
2434    // Make sure there's a type source info.  This isn't really much
2435    // of a waste; most dependent types should have type source info
2436    // attached already.
2437    if (!TSI)
2438      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2439
2440    // Rebuild the type in the current instantiation.
2441    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2442    if (!TSI) return true;
2443
2444    // Store the new type back in the decl spec.
2445    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2446    DS.UpdateTypeRep(LocType);
2447    break;
2448  }
2449
2450  case DeclSpec::TST_typeofExpr: {
2451    Expr *E = DS.getRepAsExpr();
2452    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2453    if (Result.isInvalid()) return true;
2454    DS.UpdateExprRep(Result.get());
2455    break;
2456  }
2457
2458  default:
2459    // Nothing to do for these decl specs.
2460    break;
2461  }
2462
2463  // It doesn't matter what order we do this in.
2464  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2465    DeclaratorChunk &Chunk = D.getTypeObject(I);
2466
2467    // The only type information in the declarator which can come
2468    // before the declaration name is the base type of a member
2469    // pointer.
2470    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2471      continue;
2472
2473    // Rebuild the scope specifier in-place.
2474    CXXScopeSpec &SS = Chunk.Mem.Scope();
2475    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2476      return true;
2477  }
2478
2479  return false;
2480}
2481
2482Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2483  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2484}
2485
2486Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2487                             MultiTemplateParamsArg TemplateParamLists,
2488                             bool IsFunctionDefinition) {
2489  // TODO: consider using NameInfo for diagnostic.
2490  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2491  DeclarationName Name = NameInfo.getName();
2492
2493  // All of these full declarators require an identifier.  If it doesn't have
2494  // one, the ParsedFreeStandingDeclSpec action should be used.
2495  if (!Name) {
2496    if (!D.isInvalidType())  // Reject this if we think it is valid.
2497      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2498           diag::err_declarator_need_ident)
2499        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2500    return 0;
2501  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2502    return 0;
2503
2504  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2505  // we find one that is.
2506  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2507         (S->getFlags() & Scope::TemplateParamScope) != 0)
2508    S = S->getParent();
2509
2510  DeclContext *DC = CurContext;
2511  if (D.getCXXScopeSpec().isInvalid())
2512    D.setInvalidType();
2513  else if (D.getCXXScopeSpec().isSet()) {
2514    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2515                                        UPPC_DeclarationQualifier))
2516      return 0;
2517
2518    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2519    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2520    if (!DC) {
2521      // If we could not compute the declaration context, it's because the
2522      // declaration context is dependent but does not refer to a class,
2523      // class template, or class template partial specialization. Complain
2524      // and return early, to avoid the coming semantic disaster.
2525      Diag(D.getIdentifierLoc(),
2526           diag::err_template_qualified_declarator_no_match)
2527        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2528        << D.getCXXScopeSpec().getRange();
2529      return 0;
2530    }
2531
2532    bool IsDependentContext = DC->isDependentContext();
2533
2534    if (!IsDependentContext &&
2535        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2536      return 0;
2537
2538    if (isa<CXXRecordDecl>(DC)) {
2539      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2540        Diag(D.getIdentifierLoc(),
2541             diag::err_member_def_undefined_record)
2542          << Name << DC << D.getCXXScopeSpec().getRange();
2543        D.setInvalidType();
2544      } else if (isa<CXXRecordDecl>(CurContext) &&
2545                 !D.getDeclSpec().isFriendSpecified()) {
2546        // The user provided a superfluous scope specifier inside a class
2547        // definition:
2548        //
2549        // class X {
2550        //   void X::f();
2551        // };
2552        if (CurContext->Equals(DC))
2553          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2554            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2555        else
2556          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2557            << Name << D.getCXXScopeSpec().getRange();
2558
2559        // Pretend that this qualifier was not here.
2560        D.getCXXScopeSpec().clear();
2561      }
2562    }
2563
2564    // Check whether we need to rebuild the type of the given
2565    // declaration in the current instantiation.
2566    if (EnteringContext && IsDependentContext &&
2567        TemplateParamLists.size() != 0) {
2568      ContextRAII SavedContext(*this, DC);
2569      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2570        D.setInvalidType();
2571    }
2572  }
2573
2574  // C++ [class.mem]p13:
2575  //   If T is the name of a class, then each of the following shall have a
2576  //   name different from T:
2577  //     - every static data member of class T;
2578  //     - every member function of class T
2579  //     - every member of class T that is itself a type;
2580  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2581    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2582      Diag(D.getIdentifierLoc(), diag::err_member_name_of_class)
2583        << Name;
2584
2585      // If this is a typedef, we'll end up spewing multiple diagnostics.
2586      // Just return early; it's safer.
2587      if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2588        return 0;
2589    }
2590
2591  NamedDecl *New;
2592
2593  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2594  QualType R = TInfo->getType();
2595
2596  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2597                                      UPPC_DeclarationType))
2598    D.setInvalidType();
2599
2600  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2601                        ForRedeclaration);
2602
2603  // See if this is a redefinition of a variable in the same scope.
2604  if (!D.getCXXScopeSpec().isSet()) {
2605    bool IsLinkageLookup = false;
2606
2607    // If the declaration we're planning to build will be a function
2608    // or object with linkage, then look for another declaration with
2609    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2610    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2611      /* Do nothing*/;
2612    else if (R->isFunctionType()) {
2613      if (CurContext->isFunctionOrMethod() ||
2614          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2615        IsLinkageLookup = true;
2616    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2617      IsLinkageLookup = true;
2618    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2619             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2620      IsLinkageLookup = true;
2621
2622    if (IsLinkageLookup)
2623      Previous.clear(LookupRedeclarationWithLinkage);
2624
2625    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2626  } else { // Something like "int foo::x;"
2627    LookupQualifiedName(Previous, DC);
2628
2629    // Don't consider using declarations as previous declarations for
2630    // out-of-line members.
2631    RemoveUsingDecls(Previous);
2632
2633    // C++ 7.3.1.2p2:
2634    // Members (including explicit specializations of templates) of a named
2635    // namespace can also be defined outside that namespace by explicit
2636    // qualification of the name being defined, provided that the entity being
2637    // defined was already declared in the namespace and the definition appears
2638    // after the point of declaration in a namespace that encloses the
2639    // declarations namespace.
2640    //
2641    // Note that we only check the context at this point. We don't yet
2642    // have enough information to make sure that PrevDecl is actually
2643    // the declaration we want to match. For example, given:
2644    //
2645    //   class X {
2646    //     void f();
2647    //     void f(float);
2648    //   };
2649    //
2650    //   void X::f(int) { } // ill-formed
2651    //
2652    // In this case, PrevDecl will point to the overload set
2653    // containing the two f's declared in X, but neither of them
2654    // matches.
2655
2656    // First check whether we named the global scope.
2657    if (isa<TranslationUnitDecl>(DC)) {
2658      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2659        << Name << D.getCXXScopeSpec().getRange();
2660    } else {
2661      DeclContext *Cur = CurContext;
2662      while (isa<LinkageSpecDecl>(Cur))
2663        Cur = Cur->getParent();
2664      if (!Cur->Encloses(DC)) {
2665        // The qualifying scope doesn't enclose the original declaration.
2666        // Emit diagnostic based on current scope.
2667        SourceLocation L = D.getIdentifierLoc();
2668        SourceRange R = D.getCXXScopeSpec().getRange();
2669        if (isa<FunctionDecl>(Cur))
2670          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2671        else
2672          Diag(L, diag::err_invalid_declarator_scope)
2673            << Name << cast<NamedDecl>(DC) << R;
2674        D.setInvalidType();
2675      }
2676    }
2677  }
2678
2679  if (Previous.isSingleResult() &&
2680      Previous.getFoundDecl()->isTemplateParameter()) {
2681    // Maybe we will complain about the shadowed template parameter.
2682    if (!D.isInvalidType())
2683      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2684                                          Previous.getFoundDecl()))
2685        D.setInvalidType();
2686
2687    // Just pretend that we didn't see the previous declaration.
2688    Previous.clear();
2689  }
2690
2691  // In C++, the previous declaration we find might be a tag type
2692  // (class or enum). In this case, the new declaration will hide the
2693  // tag type. Note that this does does not apply if we're declaring a
2694  // typedef (C++ [dcl.typedef]p4).
2695  if (Previous.isSingleTagDecl() &&
2696      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2697    Previous.clear();
2698
2699  bool Redeclaration = false;
2700  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2701    if (TemplateParamLists.size()) {
2702      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2703      return 0;
2704    }
2705
2706    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2707  } else if (R->isFunctionType()) {
2708    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2709                                  move(TemplateParamLists),
2710                                  IsFunctionDefinition, Redeclaration);
2711  } else {
2712    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2713                                  move(TemplateParamLists),
2714                                  Redeclaration);
2715  }
2716
2717  if (New == 0)
2718    return 0;
2719
2720  // If this has an identifier and is not an invalid redeclaration or
2721  // function template specialization, add it to the scope stack.
2722  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2723    PushOnScopeChains(New, S);
2724
2725  return New;
2726}
2727
2728/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2729/// types into constant array types in certain situations which would otherwise
2730/// be errors (for GCC compatibility).
2731static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2732                                                    ASTContext &Context,
2733                                                    bool &SizeIsNegative,
2734                                                    llvm::APSInt &Oversized) {
2735  // This method tries to turn a variable array into a constant
2736  // array even when the size isn't an ICE.  This is necessary
2737  // for compatibility with code that depends on gcc's buggy
2738  // constant expression folding, like struct {char x[(int)(char*)2];}
2739  SizeIsNegative = false;
2740  Oversized = 0;
2741
2742  if (T->isDependentType())
2743    return QualType();
2744
2745  QualifierCollector Qs;
2746  const Type *Ty = Qs.strip(T);
2747
2748  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2749    QualType Pointee = PTy->getPointeeType();
2750    QualType FixedType =
2751        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2752                                            Oversized);
2753    if (FixedType.isNull()) return FixedType;
2754    FixedType = Context.getPointerType(FixedType);
2755    return Qs.apply(Context, FixedType);
2756  }
2757  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
2758    QualType Inner = PTy->getInnerType();
2759    QualType FixedType =
2760        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
2761                                            Oversized);
2762    if (FixedType.isNull()) return FixedType;
2763    FixedType = Context.getParenType(FixedType);
2764    return Qs.apply(Context, FixedType);
2765  }
2766
2767  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2768  if (!VLATy)
2769    return QualType();
2770  // FIXME: We should probably handle this case
2771  if (VLATy->getElementType()->isVariablyModifiedType())
2772    return QualType();
2773
2774  Expr::EvalResult EvalResult;
2775  if (!VLATy->getSizeExpr() ||
2776      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2777      !EvalResult.Val.isInt())
2778    return QualType();
2779
2780  // Check whether the array size is negative.
2781  llvm::APSInt &Res = EvalResult.Val.getInt();
2782  if (Res.isSigned() && Res.isNegative()) {
2783    SizeIsNegative = true;
2784    return QualType();
2785  }
2786
2787  // Check whether the array is too large to be addressed.
2788  unsigned ActiveSizeBits
2789    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2790                                              Res);
2791  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2792    Oversized = Res;
2793    return QualType();
2794  }
2795
2796  return Context.getConstantArrayType(VLATy->getElementType(),
2797                                      Res, ArrayType::Normal, 0);
2798}
2799
2800/// \brief Register the given locally-scoped external C declaration so
2801/// that it can be found later for redeclarations
2802void
2803Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2804                                       const LookupResult &Previous,
2805                                       Scope *S) {
2806  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2807         "Decl is not a locally-scoped decl!");
2808  // Note that we have a locally-scoped external with this name.
2809  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2810
2811  if (!Previous.isSingleResult())
2812    return;
2813
2814  NamedDecl *PrevDecl = Previous.getFoundDecl();
2815
2816  // If there was a previous declaration of this variable, it may be
2817  // in our identifier chain. Update the identifier chain with the new
2818  // declaration.
2819  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2820    // The previous declaration was found on the identifer resolver
2821    // chain, so remove it from its scope.
2822    while (S && !S->isDeclScope(PrevDecl))
2823      S = S->getParent();
2824
2825    if (S)
2826      S->RemoveDecl(PrevDecl);
2827  }
2828}
2829
2830/// \brief Diagnose function specifiers on a declaration of an identifier that
2831/// does not identify a function.
2832void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2833  // FIXME: We should probably indicate the identifier in question to avoid
2834  // confusion for constructs like "inline int a(), b;"
2835  if (D.getDeclSpec().isInlineSpecified())
2836    Diag(D.getDeclSpec().getInlineSpecLoc(),
2837         diag::err_inline_non_function);
2838
2839  if (D.getDeclSpec().isVirtualSpecified())
2840    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2841         diag::err_virtual_non_function);
2842
2843  if (D.getDeclSpec().isExplicitSpecified())
2844    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2845         diag::err_explicit_non_function);
2846}
2847
2848NamedDecl*
2849Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2850                             QualType R,  TypeSourceInfo *TInfo,
2851                             LookupResult &Previous, bool &Redeclaration) {
2852  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2853  if (D.getCXXScopeSpec().isSet()) {
2854    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2855      << D.getCXXScopeSpec().getRange();
2856    D.setInvalidType();
2857    // Pretend we didn't see the scope specifier.
2858    DC = CurContext;
2859    Previous.clear();
2860  }
2861
2862  if (getLangOptions().CPlusPlus) {
2863    // Check that there are no default arguments (C++ only).
2864    CheckExtraCXXDefaultArguments(D);
2865  }
2866
2867  DiagnoseFunctionSpecifiers(D);
2868
2869  if (D.getDeclSpec().isThreadSpecified())
2870    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2871
2872  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2873    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2874      << D.getName().getSourceRange();
2875    return 0;
2876  }
2877
2878  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2879  if (!NewTD) return 0;
2880
2881  // Handle attributes prior to checking for duplicates in MergeVarDecl
2882  ProcessDeclAttributes(S, NewTD, D);
2883
2884  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2885  // then it shall have block scope.
2886  // Note that variably modified types must be fixed before merging the decl so
2887  // that redeclarations will match.
2888  QualType T = NewTD->getUnderlyingType();
2889  if (T->isVariablyModifiedType()) {
2890    getCurFunction()->setHasBranchProtectedScope();
2891
2892    if (S->getFnParent() == 0) {
2893      bool SizeIsNegative;
2894      llvm::APSInt Oversized;
2895      QualType FixedTy =
2896          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2897                                              Oversized);
2898      if (!FixedTy.isNull()) {
2899        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2900        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2901      } else {
2902        if (SizeIsNegative)
2903          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2904        else if (T->isVariableArrayType())
2905          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2906        else if (Oversized.getBoolValue())
2907          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2908            << Oversized.toString(10);
2909        else
2910          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2911        NewTD->setInvalidDecl();
2912      }
2913    }
2914  }
2915
2916  // Merge the decl with the existing one if appropriate. If the decl is
2917  // in an outer scope, it isn't the same thing.
2918  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
2919                       /*ExplicitInstantiationOrSpecialization=*/false);
2920  if (!Previous.empty()) {
2921    Redeclaration = true;
2922    MergeTypeDefDecl(NewTD, Previous);
2923  }
2924
2925  // If this is the C FILE type, notify the AST context.
2926  if (IdentifierInfo *II = NewTD->getIdentifier())
2927    if (!NewTD->isInvalidDecl() &&
2928        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2929      if (II->isStr("FILE"))
2930        Context.setFILEDecl(NewTD);
2931      else if (II->isStr("jmp_buf"))
2932        Context.setjmp_bufDecl(NewTD);
2933      else if (II->isStr("sigjmp_buf"))
2934        Context.setsigjmp_bufDecl(NewTD);
2935      else if (II->isStr("__builtin_va_list"))
2936        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
2937    }
2938
2939  return NewTD;
2940}
2941
2942/// \brief Determines whether the given declaration is an out-of-scope
2943/// previous declaration.
2944///
2945/// This routine should be invoked when name lookup has found a
2946/// previous declaration (PrevDecl) that is not in the scope where a
2947/// new declaration by the same name is being introduced. If the new
2948/// declaration occurs in a local scope, previous declarations with
2949/// linkage may still be considered previous declarations (C99
2950/// 6.2.2p4-5, C++ [basic.link]p6).
2951///
2952/// \param PrevDecl the previous declaration found by name
2953/// lookup
2954///
2955/// \param DC the context in which the new declaration is being
2956/// declared.
2957///
2958/// \returns true if PrevDecl is an out-of-scope previous declaration
2959/// for a new delcaration with the same name.
2960static bool
2961isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2962                                ASTContext &Context) {
2963  if (!PrevDecl)
2964    return false;
2965
2966  if (!PrevDecl->hasLinkage())
2967    return false;
2968
2969  if (Context.getLangOptions().CPlusPlus) {
2970    // C++ [basic.link]p6:
2971    //   If there is a visible declaration of an entity with linkage
2972    //   having the same name and type, ignoring entities declared
2973    //   outside the innermost enclosing namespace scope, the block
2974    //   scope declaration declares that same entity and receives the
2975    //   linkage of the previous declaration.
2976    DeclContext *OuterContext = DC->getRedeclContext();
2977    if (!OuterContext->isFunctionOrMethod())
2978      // This rule only applies to block-scope declarations.
2979      return false;
2980
2981    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2982    if (PrevOuterContext->isRecord())
2983      // We found a member function: ignore it.
2984      return false;
2985
2986    // Find the innermost enclosing namespace for the new and
2987    // previous declarations.
2988    OuterContext = OuterContext->getEnclosingNamespaceContext();
2989    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2990
2991    // The previous declaration is in a different namespace, so it
2992    // isn't the same function.
2993    if (!OuterContext->Equals(PrevOuterContext))
2994      return false;
2995  }
2996
2997  return true;
2998}
2999
3000static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3001  CXXScopeSpec &SS = D.getCXXScopeSpec();
3002  if (!SS.isSet()) return;
3003  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3004}
3005
3006NamedDecl*
3007Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3008                              QualType R, TypeSourceInfo *TInfo,
3009                              LookupResult &Previous,
3010                              MultiTemplateParamsArg TemplateParamLists,
3011                              bool &Redeclaration) {
3012  DeclarationName Name = GetNameForDeclarator(D).getName();
3013
3014  // Check that there are no default arguments (C++ only).
3015  if (getLangOptions().CPlusPlus)
3016    CheckExtraCXXDefaultArguments(D);
3017
3018  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3019  assert(SCSpec != DeclSpec::SCS_typedef &&
3020         "Parser allowed 'typedef' as storage class VarDecl.");
3021  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3022  if (SCSpec == DeclSpec::SCS_mutable) {
3023    // mutable can only appear on non-static class members, so it's always
3024    // an error here
3025    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3026    D.setInvalidType();
3027    SC = SC_None;
3028  }
3029  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3030  VarDecl::StorageClass SCAsWritten
3031    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3032
3033  IdentifierInfo *II = Name.getAsIdentifierInfo();
3034  if (!II) {
3035    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3036      << Name.getAsString();
3037    return 0;
3038  }
3039
3040  DiagnoseFunctionSpecifiers(D);
3041
3042  if (!DC->isRecord() && S->getFnParent() == 0) {
3043    // C99 6.9p2: The storage-class specifiers auto and register shall not
3044    // appear in the declaration specifiers in an external declaration.
3045    if (SC == SC_Auto || SC == SC_Register) {
3046
3047      // If this is a register variable with an asm label specified, then this
3048      // is a GNU extension.
3049      if (SC == SC_Register && D.getAsmLabel())
3050        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3051      else
3052        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3053      D.setInvalidType();
3054    }
3055  }
3056
3057  bool isExplicitSpecialization = false;
3058  VarDecl *NewVD;
3059  if (!getLangOptions().CPlusPlus) {
3060    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3061                            D.getIdentifierLoc(), II,
3062                            R, TInfo, SC, SCAsWritten);
3063
3064    if (D.isInvalidType())
3065      NewVD->setInvalidDecl();
3066  } else {
3067    if (DC->isRecord() && !CurContext->isRecord()) {
3068      // This is an out-of-line definition of a static data member.
3069      if (SC == SC_Static) {
3070        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3071             diag::err_static_out_of_line)
3072          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3073      } else if (SC == SC_None)
3074        SC = SC_Static;
3075    }
3076    if (SC == SC_Static) {
3077      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3078        if (RD->isLocalClass())
3079          Diag(D.getIdentifierLoc(),
3080               diag::err_static_data_member_not_allowed_in_local_class)
3081            << Name << RD->getDeclName();
3082
3083        // C++ [class.union]p1: If a union contains a static data member,
3084        // the program is ill-formed.
3085        //
3086        // We also disallow static data members in anonymous structs.
3087        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3088          Diag(D.getIdentifierLoc(),
3089               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3090            << Name << RD->isUnion();
3091      }
3092    }
3093
3094    // Match up the template parameter lists with the scope specifier, then
3095    // determine whether we have a template or a template specialization.
3096    isExplicitSpecialization = false;
3097    unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3098    bool Invalid = false;
3099    if (TemplateParameterList *TemplateParams
3100        = MatchTemplateParametersToScopeSpecifier(
3101                                                  D.getDeclSpec().getSourceRange().getBegin(),
3102                                                  D.getCXXScopeSpec(),
3103                                                  TemplateParamLists.get(),
3104                                                  TemplateParamLists.size(),
3105                                                  /*never a friend*/ false,
3106                                                  isExplicitSpecialization,
3107                                                  Invalid)) {
3108      // All but one template parameter lists have been matching.
3109      --NumMatchedTemplateParamLists;
3110
3111      if (TemplateParams->size() > 0) {
3112        // There is no such thing as a variable template.
3113        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3114          << II
3115          << SourceRange(TemplateParams->getTemplateLoc(),
3116                         TemplateParams->getRAngleLoc());
3117        return 0;
3118      } else {
3119        // There is an extraneous 'template<>' for this variable. Complain
3120        // about it, but allow the declaration of the variable.
3121        Diag(TemplateParams->getTemplateLoc(),
3122             diag::err_template_variable_noparams)
3123          << II
3124          << SourceRange(TemplateParams->getTemplateLoc(),
3125                         TemplateParams->getRAngleLoc());
3126
3127        isExplicitSpecialization = true;
3128      }
3129    }
3130
3131    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3132                            D.getIdentifierLoc(), II,
3133                            R, TInfo, SC, SCAsWritten);
3134
3135    // If this decl has an auto type in need of deduction, make a note of the
3136    // Decl so we can diagnose uses of it in its own initializer.
3137    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3138        R->getContainedAutoType())
3139      ParsingInitForAutoVars.insert(NewVD);
3140
3141    if (D.isInvalidType() || Invalid)
3142      NewVD->setInvalidDecl();
3143
3144    SetNestedNameSpecifier(NewVD, D);
3145
3146    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3147      NewVD->setTemplateParameterListsInfo(Context,
3148                                           NumMatchedTemplateParamLists,
3149                                           TemplateParamLists.release());
3150    }
3151  }
3152
3153  if (D.getDeclSpec().isThreadSpecified()) {
3154    if (NewVD->hasLocalStorage())
3155      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3156    else if (!Context.Target.isTLSSupported())
3157      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3158    else
3159      NewVD->setThreadSpecified(true);
3160  }
3161
3162  // Set the lexical context. If the declarator has a C++ scope specifier, the
3163  // lexical context will be different from the semantic context.
3164  NewVD->setLexicalDeclContext(CurContext);
3165
3166  // Handle attributes prior to checking for duplicates in MergeVarDecl
3167  ProcessDeclAttributes(S, NewVD, D);
3168
3169  // Handle GNU asm-label extension (encoded as an attribute).
3170  if (Expr *E = (Expr*)D.getAsmLabel()) {
3171    // The parser guarantees this is a string.
3172    StringLiteral *SE = cast<StringLiteral>(E);
3173    llvm::StringRef Label = SE->getString();
3174    if (S->getFnParent() != 0) {
3175      switch (SC) {
3176      case SC_None:
3177      case SC_Auto:
3178        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3179        break;
3180      case SC_Register:
3181        if (!Context.Target.isValidGCCRegisterName(Label))
3182          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3183        break;
3184      case SC_Static:
3185      case SC_Extern:
3186      case SC_PrivateExtern:
3187        break;
3188      }
3189    }
3190
3191    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3192                                                Context, Label));
3193  }
3194
3195  // Diagnose shadowed variables before filtering for scope.
3196  if (!D.getCXXScopeSpec().isSet())
3197    CheckShadow(S, NewVD, Previous);
3198
3199  // Don't consider existing declarations that are in a different
3200  // scope and are out-of-semantic-context declarations (if the new
3201  // declaration has linkage).
3202  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3203                       isExplicitSpecialization);
3204
3205  if (!getLangOptions().CPlusPlus)
3206    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3207  else {
3208    // Merge the decl with the existing one if appropriate.
3209    if (!Previous.empty()) {
3210      if (Previous.isSingleResult() &&
3211          isa<FieldDecl>(Previous.getFoundDecl()) &&
3212          D.getCXXScopeSpec().isSet()) {
3213        // The user tried to define a non-static data member
3214        // out-of-line (C++ [dcl.meaning]p1).
3215        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3216          << D.getCXXScopeSpec().getRange();
3217        Previous.clear();
3218        NewVD->setInvalidDecl();
3219      }
3220    } else if (D.getCXXScopeSpec().isSet()) {
3221      // No previous declaration in the qualifying scope.
3222      Diag(D.getIdentifierLoc(), diag::err_no_member)
3223        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3224        << D.getCXXScopeSpec().getRange();
3225      NewVD->setInvalidDecl();
3226    }
3227
3228    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3229
3230    // This is an explicit specialization of a static data member. Check it.
3231    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3232        CheckMemberSpecialization(NewVD, Previous))
3233      NewVD->setInvalidDecl();
3234  }
3235
3236  // attributes declared post-definition are currently ignored
3237  // FIXME: This should be handled in attribute merging, not
3238  // here.
3239  if (Previous.isSingleResult()) {
3240    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3241    if (Def && (Def = Def->getDefinition()) &&
3242        Def != NewVD && D.hasAttributes()) {
3243      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3244      Diag(Def->getLocation(), diag::note_previous_definition);
3245    }
3246  }
3247
3248  // If this is a locally-scoped extern C variable, update the map of
3249  // such variables.
3250  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3251      !NewVD->isInvalidDecl())
3252    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3253
3254  // If there's a #pragma GCC visibility in scope, and this isn't a class
3255  // member, set the visibility of this variable.
3256  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3257    AddPushedVisibilityAttribute(NewVD);
3258
3259  MarkUnusedFileScopedDecl(NewVD);
3260
3261  return NewVD;
3262}
3263
3264/// \brief Diagnose variable or built-in function shadowing.  Implements
3265/// -Wshadow.
3266///
3267/// This method is called whenever a VarDecl is added to a "useful"
3268/// scope.
3269///
3270/// \param S the scope in which the shadowing name is being declared
3271/// \param R the lookup of the name
3272///
3273void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3274  // Return if warning is ignored.
3275  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3276        Diagnostic::Ignored)
3277    return;
3278
3279  // Don't diagnose declarations at file scope.
3280  DeclContext *NewDC = D->getDeclContext();
3281  if (NewDC->isFileContext())
3282    return;
3283
3284  // Only diagnose if we're shadowing an unambiguous field or variable.
3285  if (R.getResultKind() != LookupResult::Found)
3286    return;
3287
3288  NamedDecl* ShadowedDecl = R.getFoundDecl();
3289  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3290    return;
3291
3292  // Fields are not shadowed by variables in C++ static methods.
3293  if (isa<FieldDecl>(ShadowedDecl))
3294    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3295      if (MD->isStatic())
3296        return;
3297
3298  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3299    if (shadowedVar->isExternC()) {
3300      // Don't warn for this case:
3301      //
3302      // @code
3303      // extern int bob;
3304      // void f() {
3305      //   extern int bob;
3306      // }
3307      // @endcode
3308      if (D->isExternC())
3309        return;
3310
3311      // For shadowing external vars, make sure that we point to the global
3312      // declaration, not a locally scoped extern declaration.
3313      for (VarDecl::redecl_iterator
3314             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3315           I != E; ++I)
3316        if (I->isFileVarDecl()) {
3317          ShadowedDecl = *I;
3318          break;
3319        }
3320    }
3321
3322  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3323
3324  // Only warn about certain kinds of shadowing for class members.
3325  if (NewDC && NewDC->isRecord()) {
3326    // In particular, don't warn about shadowing non-class members.
3327    if (!OldDC->isRecord())
3328      return;
3329
3330    // TODO: should we warn about static data members shadowing
3331    // static data members from base classes?
3332
3333    // TODO: don't diagnose for inaccessible shadowed members.
3334    // This is hard to do perfectly because we might friend the
3335    // shadowing context, but that's just a false negative.
3336  }
3337
3338  // Determine what kind of declaration we're shadowing.
3339  unsigned Kind;
3340  if (isa<RecordDecl>(OldDC)) {
3341    if (isa<FieldDecl>(ShadowedDecl))
3342      Kind = 3; // field
3343    else
3344      Kind = 2; // static data member
3345  } else if (OldDC->isFileContext())
3346    Kind = 1; // global
3347  else
3348    Kind = 0; // local
3349
3350  DeclarationName Name = R.getLookupName();
3351
3352  // Emit warning and note.
3353  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3354  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3355}
3356
3357/// \brief Check -Wshadow without the advantage of a previous lookup.
3358void Sema::CheckShadow(Scope *S, VarDecl *D) {
3359  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3360        Diagnostic::Ignored)
3361    return;
3362
3363  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3364                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3365  LookupName(R, S);
3366  CheckShadow(S, D, R);
3367}
3368
3369/// \brief Perform semantic checking on a newly-created variable
3370/// declaration.
3371///
3372/// This routine performs all of the type-checking required for a
3373/// variable declaration once it has been built. It is used both to
3374/// check variables after they have been parsed and their declarators
3375/// have been translated into a declaration, and to check variables
3376/// that have been instantiated from a template.
3377///
3378/// Sets NewVD->isInvalidDecl() if an error was encountered.
3379void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3380                                    LookupResult &Previous,
3381                                    bool &Redeclaration) {
3382  // If the decl is already known invalid, don't check it.
3383  if (NewVD->isInvalidDecl())
3384    return;
3385
3386  QualType T = NewVD->getType();
3387
3388  if (T->isObjCObjectType()) {
3389    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3390    return NewVD->setInvalidDecl();
3391  }
3392
3393  // Emit an error if an address space was applied to decl with local storage.
3394  // This includes arrays of objects with address space qualifiers, but not
3395  // automatic variables that point to other address spaces.
3396  // ISO/IEC TR 18037 S5.1.2
3397  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3398    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3399    return NewVD->setInvalidDecl();
3400  }
3401
3402  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3403      && !NewVD->hasAttr<BlocksAttr>())
3404    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3405
3406  bool isVM = T->isVariablyModifiedType();
3407  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3408      NewVD->hasAttr<BlocksAttr>())
3409    getCurFunction()->setHasBranchProtectedScope();
3410
3411  if ((isVM && NewVD->hasLinkage()) ||
3412      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3413    bool SizeIsNegative;
3414    llvm::APSInt Oversized;
3415    QualType FixedTy =
3416        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3417                                            Oversized);
3418
3419    if (FixedTy.isNull() && T->isVariableArrayType()) {
3420      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3421      // FIXME: This won't give the correct result for
3422      // int a[10][n];
3423      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3424
3425      if (NewVD->isFileVarDecl())
3426        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3427        << SizeRange;
3428      else if (NewVD->getStorageClass() == SC_Static)
3429        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3430        << SizeRange;
3431      else
3432        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3433        << SizeRange;
3434      return NewVD->setInvalidDecl();
3435    }
3436
3437    if (FixedTy.isNull()) {
3438      if (NewVD->isFileVarDecl())
3439        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3440      else
3441        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3442      return NewVD->setInvalidDecl();
3443    }
3444
3445    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3446    NewVD->setType(FixedTy);
3447  }
3448
3449  if (Previous.empty() && NewVD->isExternC()) {
3450    // Since we did not find anything by this name and we're declaring
3451    // an extern "C" variable, look for a non-visible extern "C"
3452    // declaration with the same name.
3453    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3454      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3455    if (Pos != LocallyScopedExternalDecls.end())
3456      Previous.addDecl(Pos->second);
3457  }
3458
3459  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3460    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3461      << T;
3462    return NewVD->setInvalidDecl();
3463  }
3464
3465  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3466    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3467    return NewVD->setInvalidDecl();
3468  }
3469
3470  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3471    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3472    return NewVD->setInvalidDecl();
3473  }
3474
3475  // Function pointers and references cannot have qualified function type, only
3476  // function pointer-to-members can do that.
3477  QualType Pointee;
3478  unsigned PtrOrRef = 0;
3479  if (const PointerType *Ptr = T->getAs<PointerType>())
3480    Pointee = Ptr->getPointeeType();
3481  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3482    Pointee = Ref->getPointeeType();
3483    PtrOrRef = 1;
3484  }
3485  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3486      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3487    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3488        << PtrOrRef;
3489    return NewVD->setInvalidDecl();
3490  }
3491
3492  if (!Previous.empty()) {
3493    Redeclaration = true;
3494    MergeVarDecl(NewVD, Previous);
3495  }
3496}
3497
3498/// \brief Data used with FindOverriddenMethod
3499struct FindOverriddenMethodData {
3500  Sema *S;
3501  CXXMethodDecl *Method;
3502};
3503
3504/// \brief Member lookup function that determines whether a given C++
3505/// method overrides a method in a base class, to be used with
3506/// CXXRecordDecl::lookupInBases().
3507static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3508                                 CXXBasePath &Path,
3509                                 void *UserData) {
3510  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3511
3512  FindOverriddenMethodData *Data
3513    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3514
3515  DeclarationName Name = Data->Method->getDeclName();
3516
3517  // FIXME: Do we care about other names here too?
3518  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3519    // We really want to find the base class destructor here.
3520    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3521    CanQualType CT = Data->S->Context.getCanonicalType(T);
3522
3523    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3524  }
3525
3526  for (Path.Decls = BaseRecord->lookup(Name);
3527       Path.Decls.first != Path.Decls.second;
3528       ++Path.Decls.first) {
3529    NamedDecl *D = *Path.Decls.first;
3530    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3531      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3532        return true;
3533    }
3534  }
3535
3536  return false;
3537}
3538
3539/// AddOverriddenMethods - See if a method overrides any in the base classes,
3540/// and if so, check that it's a valid override and remember it.
3541bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3542  // Look for virtual methods in base classes that this method might override.
3543  CXXBasePaths Paths;
3544  FindOverriddenMethodData Data;
3545  Data.Method = MD;
3546  Data.S = this;
3547  bool AddedAny = false;
3548  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3549    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3550         E = Paths.found_decls_end(); I != E; ++I) {
3551      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3552        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3553            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3554            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3555          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3556          AddedAny = true;
3557        }
3558      }
3559    }
3560  }
3561
3562  return AddedAny;
3563}
3564
3565static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3566  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3567                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3568  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3569  assert(!Prev.isAmbiguous() &&
3570         "Cannot have an ambiguity in previous-declaration lookup");
3571  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3572       Func != FuncEnd; ++Func) {
3573    if (isa<FunctionDecl>(*Func) &&
3574        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3575      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3576  }
3577}
3578
3579NamedDecl*
3580Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3581                              QualType R, TypeSourceInfo *TInfo,
3582                              LookupResult &Previous,
3583                              MultiTemplateParamsArg TemplateParamLists,
3584                              bool IsFunctionDefinition, bool &Redeclaration) {
3585  assert(R.getTypePtr()->isFunctionType());
3586
3587  // TODO: consider using NameInfo for diagnostic.
3588  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3589  DeclarationName Name = NameInfo.getName();
3590  FunctionDecl::StorageClass SC = SC_None;
3591  switch (D.getDeclSpec().getStorageClassSpec()) {
3592  default: assert(0 && "Unknown storage class!");
3593  case DeclSpec::SCS_auto:
3594  case DeclSpec::SCS_register:
3595  case DeclSpec::SCS_mutable:
3596    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3597         diag::err_typecheck_sclass_func);
3598    D.setInvalidType();
3599    break;
3600  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3601  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3602  case DeclSpec::SCS_static: {
3603    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3604      // C99 6.7.1p5:
3605      //   The declaration of an identifier for a function that has
3606      //   block scope shall have no explicit storage-class specifier
3607      //   other than extern
3608      // See also (C++ [dcl.stc]p4).
3609      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3610           diag::err_static_block_func);
3611      SC = SC_None;
3612    } else
3613      SC = SC_Static;
3614    break;
3615  }
3616  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3617  }
3618
3619  if (D.getDeclSpec().isThreadSpecified())
3620    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3621
3622  // Do not allow returning a objc interface by-value.
3623  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3624    Diag(D.getIdentifierLoc(),
3625         diag::err_object_cannot_be_passed_returned_by_value) << 0
3626    << R->getAs<FunctionType>()->getResultType();
3627    D.setInvalidType();
3628  }
3629
3630  FunctionDecl *NewFD;
3631  bool isInline = D.getDeclSpec().isInlineSpecified();
3632  bool isFriend = false;
3633  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3634  FunctionDecl::StorageClass SCAsWritten
3635    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3636  FunctionTemplateDecl *FunctionTemplate = 0;
3637  bool isExplicitSpecialization = false;
3638  bool isFunctionTemplateSpecialization = false;
3639  unsigned NumMatchedTemplateParamLists = 0;
3640
3641  if (!getLangOptions().CPlusPlus) {
3642    // Determine whether the function was written with a
3643    // prototype. This true when:
3644    //   - there is a prototype in the declarator, or
3645    //   - the type R of the function is some kind of typedef or other reference
3646    //     to a type name (which eventually refers to a function type).
3647    bool HasPrototype =
3648    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
3649    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3650
3651    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3652                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3653                                 HasPrototype);
3654    if (D.isInvalidType())
3655      NewFD->setInvalidDecl();
3656
3657    // Set the lexical context.
3658    NewFD->setLexicalDeclContext(CurContext);
3659    // Filter out previous declarations that don't match the scope.
3660    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3661                         /*ExplicitInstantiationOrSpecialization=*/false);
3662  } else {
3663    isFriend = D.getDeclSpec().isFriendSpecified();
3664    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3665    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3666    bool isVirtualOkay = false;
3667
3668    // Check that the return type is not an abstract class type.
3669    // For record types, this is done by the AbstractClassUsageDiagnoser once
3670    // the class has been completely parsed.
3671    if (!DC->isRecord() &&
3672      RequireNonAbstractType(D.getIdentifierLoc(),
3673                             R->getAs<FunctionType>()->getResultType(),
3674                             diag::err_abstract_type_in_decl,
3675                             AbstractReturnType))
3676      D.setInvalidType();
3677
3678
3679    if (isFriend) {
3680      // C++ [class.friend]p5
3681      //   A function can be defined in a friend declaration of a
3682      //   class . . . . Such a function is implicitly inline.
3683      isInline |= IsFunctionDefinition;
3684    }
3685
3686    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3687      // This is a C++ constructor declaration.
3688      assert(DC->isRecord() &&
3689             "Constructors can only be declared in a member context");
3690
3691      R = CheckConstructorDeclarator(D, R, SC);
3692
3693      // Create the new declaration
3694      NewFD = CXXConstructorDecl::Create(Context,
3695                                         cast<CXXRecordDecl>(DC),
3696                                         D.getSourceRange().getBegin(),
3697                                         NameInfo, R, TInfo,
3698                                         isExplicit, isInline,
3699                                         /*isImplicitlyDeclared=*/false);
3700    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3701      // This is a C++ destructor declaration.
3702      if (DC->isRecord()) {
3703        R = CheckDestructorDeclarator(D, R, SC);
3704
3705        NewFD = CXXDestructorDecl::Create(Context,
3706                                          cast<CXXRecordDecl>(DC),
3707                                          D.getSourceRange().getBegin(),
3708                                          NameInfo, R, TInfo,
3709                                          isInline,
3710                                          /*isImplicitlyDeclared=*/false);
3711        isVirtualOkay = true;
3712      } else {
3713        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3714
3715        // Create a FunctionDecl to satisfy the function definition parsing
3716        // code path.
3717        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3718                                     D.getIdentifierLoc(), Name, R, TInfo,
3719                                     SC, SCAsWritten, isInline,
3720                                     /*hasPrototype=*/true);
3721        D.setInvalidType();
3722      }
3723    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3724      if (!DC->isRecord()) {
3725        Diag(D.getIdentifierLoc(),
3726             diag::err_conv_function_not_member);
3727        return 0;
3728      }
3729
3730      CheckConversionDeclarator(D, R, SC);
3731      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3732                                        D.getSourceRange().getBegin(),
3733                                        NameInfo, R, TInfo,
3734                                        isInline, isExplicit,
3735                                        SourceLocation());
3736
3737      isVirtualOkay = true;
3738    } else if (DC->isRecord()) {
3739      // If the of the function is the same as the name of the record, then this
3740      // must be an invalid constructor that has a return type.
3741      // (The parser checks for a return type and makes the declarator a
3742      // constructor if it has no return type).
3743      // must have an invalid constructor that has a return type
3744      if (Name.getAsIdentifierInfo() &&
3745          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3746        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3747          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3748          << SourceRange(D.getIdentifierLoc());
3749        return 0;
3750      }
3751
3752      bool isStatic = SC == SC_Static;
3753
3754      // [class.free]p1:
3755      // Any allocation function for a class T is a static member
3756      // (even if not explicitly declared static).
3757      if (Name.getCXXOverloadedOperator() == OO_New ||
3758          Name.getCXXOverloadedOperator() == OO_Array_New)
3759        isStatic = true;
3760
3761      // [class.free]p6 Any deallocation function for a class X is a static member
3762      // (even if not explicitly declared static).
3763      if (Name.getCXXOverloadedOperator() == OO_Delete ||
3764          Name.getCXXOverloadedOperator() == OO_Array_Delete)
3765        isStatic = true;
3766
3767      // This is a C++ method declaration.
3768      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3769                                    D.getSourceRange().getBegin(),
3770                                    NameInfo, R, TInfo,
3771                                    isStatic, SCAsWritten, isInline,
3772                                    SourceLocation());
3773
3774      isVirtualOkay = !isStatic;
3775    } else {
3776      // Determine whether the function was written with a
3777      // prototype. This true when:
3778      //   - we're in C++ (where every function has a prototype),
3779      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3780                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3781                                   true/*HasPrototype*/);
3782    }
3783    SetNestedNameSpecifier(NewFD, D);
3784    isExplicitSpecialization = false;
3785    isFunctionTemplateSpecialization = false;
3786    NumMatchedTemplateParamLists = TemplateParamLists.size();
3787    if (D.isInvalidType())
3788      NewFD->setInvalidDecl();
3789
3790    // Set the lexical context. If the declarator has a C++
3791    // scope specifier, or is the object of a friend declaration, the
3792    // lexical context will be different from the semantic context.
3793    NewFD->setLexicalDeclContext(CurContext);
3794
3795    // Match up the template parameter lists with the scope specifier, then
3796    // determine whether we have a template or a template specialization.
3797    bool Invalid = false;
3798    if (TemplateParameterList *TemplateParams
3799          = MatchTemplateParametersToScopeSpecifier(
3800                                  D.getDeclSpec().getSourceRange().getBegin(),
3801                                  D.getCXXScopeSpec(),
3802                                  TemplateParamLists.get(),
3803                                  TemplateParamLists.size(),
3804                                  isFriend,
3805                                  isExplicitSpecialization,
3806                                  Invalid)) {
3807          // All but one template parameter lists have been matching.
3808          --NumMatchedTemplateParamLists;
3809
3810          if (TemplateParams->size() > 0) {
3811            // This is a function template
3812
3813            // Check that we can declare a template here.
3814            if (CheckTemplateDeclScope(S, TemplateParams))
3815              return 0;
3816
3817            // A destructor cannot be a template.
3818            if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3819              Diag(NewFD->getLocation(), diag::err_destructor_template);
3820              return 0;
3821            }
3822
3823
3824            FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3825                                                      NewFD->getLocation(),
3826                                                      Name, TemplateParams,
3827                                                      NewFD);
3828            FunctionTemplate->setLexicalDeclContext(CurContext);
3829            NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3830          } else {
3831            // This is a function template specialization.
3832            isFunctionTemplateSpecialization = true;
3833
3834            // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3835            if (isFriend && isFunctionTemplateSpecialization) {
3836              // We want to remove the "template<>", found here.
3837              SourceRange RemoveRange = TemplateParams->getSourceRange();
3838
3839              // If we remove the template<> and the name is not a
3840              // template-id, we're actually silently creating a problem:
3841              // the friend declaration will refer to an untemplated decl,
3842              // and clearly the user wants a template specialization.  So
3843              // we need to insert '<>' after the name.
3844              SourceLocation InsertLoc;
3845              if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3846                InsertLoc = D.getName().getSourceRange().getEnd();
3847                InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3848              }
3849
3850              Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3851              << Name << RemoveRange
3852              << FixItHint::CreateRemoval(RemoveRange)
3853              << FixItHint::CreateInsertion(InsertLoc, "<>");
3854            }
3855          }
3856        }
3857
3858    if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3859      NewFD->setTemplateParameterListsInfo(Context,
3860                                           NumMatchedTemplateParamLists,
3861                                           TemplateParamLists.release());
3862    }
3863
3864    if (Invalid) {
3865      NewFD->setInvalidDecl();
3866      if (FunctionTemplate)
3867        FunctionTemplate->setInvalidDecl();
3868    }
3869
3870    // C++ [dcl.fct.spec]p5:
3871    //   The virtual specifier shall only be used in declarations of
3872    //   nonstatic class member functions that appear within a
3873    //   member-specification of a class declaration; see 10.3.
3874    //
3875    if (isVirtual && !NewFD->isInvalidDecl()) {
3876      if (!isVirtualOkay) {
3877        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3878             diag::err_virtual_non_function);
3879      } else if (!CurContext->isRecord()) {
3880        // 'virtual' was specified outside of the class.
3881        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3882             diag::err_virtual_out_of_class)
3883          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3884      } else if (NewFD->getDescribedFunctionTemplate()) {
3885        // C++ [temp.mem]p3:
3886        //  A member function template shall not be virtual.
3887        Diag(D.getDeclSpec().getVirtualSpecLoc(),
3888             diag::err_virtual_member_function_template)
3889          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3890      } else {
3891        // Okay: Add virtual to the method.
3892        NewFD->setVirtualAsWritten(true);
3893      }
3894    }
3895
3896    // C++ [dcl.fct.spec]p3:
3897    //  The inline specifier shall not appear on a block scope function declaration.
3898    if (isInline && !NewFD->isInvalidDecl()) {
3899      if (CurContext->isFunctionOrMethod()) {
3900        // 'inline' is not allowed on block scope function declaration.
3901        Diag(D.getDeclSpec().getInlineSpecLoc(),
3902             diag::err_inline_declaration_block_scope) << Name
3903          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3904      }
3905    }
3906
3907    // C++ [dcl.fct.spec]p6:
3908    //  The explicit specifier shall be used only in the declaration of a
3909    //  constructor or conversion function within its class definition; see 12.3.1
3910    //  and 12.3.2.
3911    if (isExplicit && !NewFD->isInvalidDecl()) {
3912      if (!CurContext->isRecord()) {
3913        // 'explicit' was specified outside of the class.
3914        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3915             diag::err_explicit_out_of_class)
3916          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3917      } else if (!isa<CXXConstructorDecl>(NewFD) &&
3918                 !isa<CXXConversionDecl>(NewFD)) {
3919        // 'explicit' was specified on a function that wasn't a constructor
3920        // or conversion function.
3921        Diag(D.getDeclSpec().getExplicitSpecLoc(),
3922             diag::err_explicit_non_ctor_or_conv_function)
3923          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3924      }
3925    }
3926
3927    // Filter out previous declarations that don't match the scope.
3928    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
3929                         isExplicitSpecialization ||
3930                         isFunctionTemplateSpecialization);
3931
3932    if (isFriend) {
3933      // For now, claim that the objects have no previous declaration.
3934      if (FunctionTemplate) {
3935        FunctionTemplate->setObjectOfFriendDecl(false);
3936        FunctionTemplate->setAccess(AS_public);
3937      }
3938      NewFD->setObjectOfFriendDecl(false);
3939      NewFD->setAccess(AS_public);
3940    }
3941
3942    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
3943      // A method is implicitly inline if it's defined in its class
3944      // definition.
3945      NewFD->setImplicitlyInline();
3946    }
3947
3948    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3949        !CurContext->isRecord()) {
3950      // C++ [class.static]p1:
3951      //   A data or function member of a class may be declared static
3952      //   in a class definition, in which case it is a static member of
3953      //   the class.
3954
3955      // Complain about the 'static' specifier if it's on an out-of-line
3956      // member function definition.
3957      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3958           diag::err_static_out_of_line)
3959        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3960    }
3961  }
3962
3963  // Handle GNU asm-label extension (encoded as an attribute).
3964  if (Expr *E = (Expr*) D.getAsmLabel()) {
3965    // The parser guarantees this is a string.
3966    StringLiteral *SE = cast<StringLiteral>(E);
3967    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3968                                                SE->getString()));
3969  }
3970
3971  // Copy the parameter declarations from the declarator D to the function
3972  // declaration NewFD, if they are available.  First scavenge them into Params.
3973  llvm::SmallVector<ParmVarDecl*, 16> Params;
3974  if (D.isFunctionDeclarator()) {
3975    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
3976
3977    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3978    // function that takes no arguments, not a function that takes a
3979    // single void argument.
3980    // We let through "const void" here because Sema::GetTypeForDeclarator
3981    // already checks for that case.
3982    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3983        FTI.ArgInfo[0].Param &&
3984        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3985      // Empty arg list, don't push any params.
3986      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3987
3988      // In C++, the empty parameter-type-list must be spelled "void"; a
3989      // typedef of void is not permitted.
3990      if (getLangOptions().CPlusPlus &&
3991          Param->getType().getUnqualifiedType() != Context.VoidTy)
3992        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3993    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3994      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3995        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3996        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3997        Param->setDeclContext(NewFD);
3998        Params.push_back(Param);
3999
4000        if (Param->isInvalidDecl())
4001          NewFD->setInvalidDecl();
4002      }
4003    }
4004
4005  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4006    // When we're declaring a function with a typedef, typeof, etc as in the
4007    // following example, we'll need to synthesize (unnamed)
4008    // parameters for use in the declaration.
4009    //
4010    // @code
4011    // typedef void fn(int);
4012    // fn f;
4013    // @endcode
4014
4015    // Synthesize a parameter for each argument type.
4016    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4017         AE = FT->arg_type_end(); AI != AE; ++AI) {
4018      ParmVarDecl *Param =
4019        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4020      Params.push_back(Param);
4021    }
4022  } else {
4023    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4024           "Should not need args for typedef of non-prototype fn");
4025  }
4026  // Finally, we know we have the right number of parameters, install them.
4027  NewFD->setParams(Params.data(), Params.size());
4028
4029  // Process the non-inheritable attributes on this declaration.
4030  ProcessDeclAttributes(S, NewFD, D,
4031                        /*NonInheritable=*/true, /*Inheritable=*/false);
4032
4033  if (!getLangOptions().CPlusPlus) {
4034    // Perform semantic checking on the function declaration.
4035    bool isExplctSpecialization=false;
4036    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4037                             Redeclaration);
4038    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4039            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4040           "previous declaration set still overloaded");
4041  } else {
4042    // If the declarator is a template-id, translate the parser's template
4043    // argument list into our AST format.
4044    bool HasExplicitTemplateArgs = false;
4045    TemplateArgumentListInfo TemplateArgs;
4046    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4047      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4048      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4049      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4050      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4051                                         TemplateId->getTemplateArgs(),
4052                                         TemplateId->NumArgs);
4053      translateTemplateArguments(TemplateArgsPtr,
4054                                 TemplateArgs);
4055      TemplateArgsPtr.release();
4056
4057      HasExplicitTemplateArgs = true;
4058
4059      if (FunctionTemplate) {
4060        // Function template with explicit template arguments.
4061        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4062          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4063
4064        HasExplicitTemplateArgs = false;
4065      } else if (!isFunctionTemplateSpecialization &&
4066                 !D.getDeclSpec().isFriendSpecified()) {
4067        // We have encountered something that the user meant to be a
4068        // specialization (because it has explicitly-specified template
4069        // arguments) but that was not introduced with a "template<>" (or had
4070        // too few of them).
4071        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4072          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4073          << FixItHint::CreateInsertion(
4074                                        D.getDeclSpec().getSourceRange().getBegin(),
4075                                                  "template<> ");
4076        isFunctionTemplateSpecialization = true;
4077      } else {
4078        // "friend void foo<>(int);" is an implicit specialization decl.
4079        isFunctionTemplateSpecialization = true;
4080      }
4081    } else if (isFriend && isFunctionTemplateSpecialization) {
4082      // This combination is only possible in a recovery case;  the user
4083      // wrote something like:
4084      //   template <> friend void foo(int);
4085      // which we're recovering from as if the user had written:
4086      //   friend void foo<>(int);
4087      // Go ahead and fake up a template id.
4088      HasExplicitTemplateArgs = true;
4089        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4090      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4091    }
4092
4093    // If it's a friend (and only if it's a friend), it's possible
4094    // that either the specialized function type or the specialized
4095    // template is dependent, and therefore matching will fail.  In
4096    // this case, don't check the specialization yet.
4097    if (isFunctionTemplateSpecialization && isFriend &&
4098        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4099      assert(HasExplicitTemplateArgs &&
4100             "friend function specialization without template args");
4101      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4102                                                       Previous))
4103        NewFD->setInvalidDecl();
4104    } else if (isFunctionTemplateSpecialization) {
4105      if (CheckFunctionTemplateSpecialization(NewFD,
4106                                              (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4107                                              Previous))
4108        NewFD->setInvalidDecl();
4109    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4110      if (CheckMemberSpecialization(NewFD, Previous))
4111          NewFD->setInvalidDecl();
4112    }
4113
4114    // Perform semantic checking on the function declaration.
4115    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4116                             Redeclaration);
4117
4118    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4119            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4120           "previous declaration set still overloaded");
4121
4122    NamedDecl *PrincipalDecl = (FunctionTemplate
4123                                ? cast<NamedDecl>(FunctionTemplate)
4124                                : NewFD);
4125
4126    if (isFriend && Redeclaration) {
4127      AccessSpecifier Access = AS_public;
4128      if (!NewFD->isInvalidDecl())
4129        Access = NewFD->getPreviousDeclaration()->getAccess();
4130
4131      NewFD->setAccess(Access);
4132      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4133
4134      PrincipalDecl->setObjectOfFriendDecl(true);
4135    }
4136
4137    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4138        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4139      PrincipalDecl->setNonMemberOperator();
4140
4141    // If we have a function template, check the template parameter
4142    // list. This will check and merge default template arguments.
4143    if (FunctionTemplate) {
4144      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4145      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4146                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4147                            D.getDeclSpec().isFriendSpecified()
4148                              ? (IsFunctionDefinition
4149                                   ? TPC_FriendFunctionTemplateDefinition
4150                                   : TPC_FriendFunctionTemplate)
4151                              : (D.getCXXScopeSpec().isSet() &&
4152                                 DC && DC->isRecord() &&
4153                                 DC->isDependentContext())
4154                                  ? TPC_ClassTemplateMember
4155                                  : TPC_FunctionTemplate);
4156    }
4157
4158    if (NewFD->isInvalidDecl()) {
4159      // Ignore all the rest of this.
4160    } else if (!Redeclaration) {
4161      // Fake up an access specifier if it's supposed to be a class member.
4162      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4163        NewFD->setAccess(AS_public);
4164
4165      // Qualified decls generally require a previous declaration.
4166      if (D.getCXXScopeSpec().isSet()) {
4167        // ...with the major exception of templated-scope or
4168        // dependent-scope friend declarations.
4169
4170        // TODO: we currently also suppress this check in dependent
4171        // contexts because (1) the parameter depth will be off when
4172        // matching friend templates and (2) we might actually be
4173        // selecting a friend based on a dependent factor.  But there
4174        // are situations where these conditions don't apply and we
4175        // can actually do this check immediately.
4176        if (isFriend &&
4177            (NumMatchedTemplateParamLists ||
4178             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4179             CurContext->isDependentContext())) {
4180              // ignore these
4181            } else {
4182              // The user tried to provide an out-of-line definition for a
4183              // function that is a member of a class or namespace, but there
4184              // was no such member function declared (C++ [class.mfct]p2,
4185              // C++ [namespace.memdef]p2). For example:
4186              //
4187              // class X {
4188              //   void f() const;
4189              // };
4190              //
4191              // void X::f() { } // ill-formed
4192              //
4193              // Complain about this problem, and attempt to suggest close
4194              // matches (e.g., those that differ only in cv-qualifiers and
4195              // whether the parameter types are references).
4196              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4197              << Name << DC << D.getCXXScopeSpec().getRange();
4198              NewFD->setInvalidDecl();
4199
4200              DiagnoseInvalidRedeclaration(*this, NewFD);
4201            }
4202
4203        // Unqualified local friend declarations are required to resolve
4204        // to something.
4205        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4206          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4207          NewFD->setInvalidDecl();
4208          DiagnoseInvalidRedeclaration(*this, NewFD);
4209        }
4210
4211    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4212               !isFriend && !isFunctionTemplateSpecialization &&
4213               !isExplicitSpecialization) {
4214      // An out-of-line member function declaration must also be a
4215      // definition (C++ [dcl.meaning]p1).
4216      // Note that this is not the case for explicit specializations of
4217      // function templates or member functions of class templates, per
4218      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4219      // for compatibility with old SWIG code which likes to generate them.
4220      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4221        << D.getCXXScopeSpec().getRange();
4222    }
4223  }
4224
4225
4226  // Handle attributes. We need to have merged decls when handling attributes
4227  // (for example to check for conflicts, etc).
4228  // FIXME: This needs to happen before we merge declarations. Then,
4229  // let attribute merging cope with attribute conflicts.
4230  ProcessDeclAttributes(S, NewFD, D,
4231                        /*NonInheritable=*/false, /*Inheritable=*/true);
4232
4233  // attributes declared post-definition are currently ignored
4234  // FIXME: This should happen during attribute merging
4235  if (Redeclaration && Previous.isSingleResult()) {
4236    const FunctionDecl *Def;
4237    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4238    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4239      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4240      Diag(Def->getLocation(), diag::note_previous_definition);
4241    }
4242  }
4243
4244  AddKnownFunctionAttributes(NewFD);
4245
4246  if (NewFD->hasAttr<OverloadableAttr>() &&
4247      !NewFD->getType()->getAs<FunctionProtoType>()) {
4248    Diag(NewFD->getLocation(),
4249         diag::err_attribute_overloadable_no_prototype)
4250      << NewFD;
4251
4252    // Turn this into a variadic function with no parameters.
4253    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4254    FunctionProtoType::ExtProtoInfo EPI;
4255    EPI.Variadic = true;
4256    EPI.ExtInfo = FT->getExtInfo();
4257
4258    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4259    NewFD->setType(R);
4260  }
4261
4262  // If there's a #pragma GCC visibility in scope, and this isn't a class
4263  // member, set the visibility of this function.
4264  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4265    AddPushedVisibilityAttribute(NewFD);
4266
4267  // If this is a locally-scoped extern C function, update the
4268  // map of such names.
4269  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4270      && !NewFD->isInvalidDecl())
4271    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4272
4273  // Set this FunctionDecl's range up to the right paren.
4274  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4275
4276  if (getLangOptions().CPlusPlus) {
4277    if (FunctionTemplate) {
4278      if (NewFD->isInvalidDecl())
4279        FunctionTemplate->setInvalidDecl();
4280      return FunctionTemplate;
4281    }
4282  }
4283
4284  MarkUnusedFileScopedDecl(NewFD);
4285
4286  if (getLangOptions().CUDA)
4287    if (IdentifierInfo *II = NewFD->getIdentifier())
4288      if (!NewFD->isInvalidDecl() &&
4289          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4290        if (II->isStr("cudaConfigureCall")) {
4291          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4292            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4293
4294          Context.setcudaConfigureCallDecl(NewFD);
4295        }
4296      }
4297
4298  return NewFD;
4299}
4300
4301/// \brief Perform semantic checking of a new function declaration.
4302///
4303/// Performs semantic analysis of the new function declaration
4304/// NewFD. This routine performs all semantic checking that does not
4305/// require the actual declarator involved in the declaration, and is
4306/// used both for the declaration of functions as they are parsed
4307/// (called via ActOnDeclarator) and for the declaration of functions
4308/// that have been instantiated via C++ template instantiation (called
4309/// via InstantiateDecl).
4310///
4311/// \param IsExplicitSpecialiation whether this new function declaration is
4312/// an explicit specialization of the previous declaration.
4313///
4314/// This sets NewFD->isInvalidDecl() to true if there was an error.
4315void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4316                                    LookupResult &Previous,
4317                                    bool IsExplicitSpecialization,
4318                                    bool &Redeclaration) {
4319  // If NewFD is already known erroneous, don't do any of this checking.
4320  if (NewFD->isInvalidDecl()) {
4321    // If this is a class member, mark the class invalid immediately.
4322    // This avoids some consistency errors later.
4323    if (isa<CXXMethodDecl>(NewFD))
4324      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4325
4326    return;
4327  }
4328
4329  if (NewFD->getResultType()->isVariablyModifiedType()) {
4330    // Functions returning a variably modified type violate C99 6.7.5.2p2
4331    // because all functions have linkage.
4332    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4333    return NewFD->setInvalidDecl();
4334  }
4335
4336  if (NewFD->isMain())
4337    CheckMain(NewFD);
4338
4339  // Check for a previous declaration of this name.
4340  if (Previous.empty() && NewFD->isExternC()) {
4341    // Since we did not find anything by this name and we're declaring
4342    // an extern "C" function, look for a non-visible extern "C"
4343    // declaration with the same name.
4344    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4345      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4346    if (Pos != LocallyScopedExternalDecls.end())
4347      Previous.addDecl(Pos->second);
4348  }
4349
4350  // Merge or overload the declaration with an existing declaration of
4351  // the same name, if appropriate.
4352  if (!Previous.empty()) {
4353    // Determine whether NewFD is an overload of PrevDecl or
4354    // a declaration that requires merging. If it's an overload,
4355    // there's no more work to do here; we'll just add the new
4356    // function to the scope.
4357
4358    NamedDecl *OldDecl = 0;
4359    if (!AllowOverloadingOfFunction(Previous, Context)) {
4360      Redeclaration = true;
4361      OldDecl = Previous.getFoundDecl();
4362    } else {
4363      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4364                            /*NewIsUsingDecl*/ false)) {
4365      case Ovl_Match:
4366        Redeclaration = true;
4367        break;
4368
4369      case Ovl_NonFunction:
4370        Redeclaration = true;
4371        break;
4372
4373      case Ovl_Overload:
4374        Redeclaration = false;
4375        break;
4376      }
4377
4378      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4379        // If a function name is overloadable in C, then every function
4380        // with that name must be marked "overloadable".
4381        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4382          << Redeclaration << NewFD;
4383        NamedDecl *OverloadedDecl = 0;
4384        if (Redeclaration)
4385          OverloadedDecl = OldDecl;
4386        else if (!Previous.empty())
4387          OverloadedDecl = Previous.getRepresentativeDecl();
4388        if (OverloadedDecl)
4389          Diag(OverloadedDecl->getLocation(),
4390               diag::note_attribute_overloadable_prev_overload);
4391        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4392                                                        Context));
4393      }
4394    }
4395
4396    if (Redeclaration) {
4397      // NewFD and OldDecl represent declarations that need to be
4398      // merged.
4399      if (MergeFunctionDecl(NewFD, OldDecl))
4400        return NewFD->setInvalidDecl();
4401
4402      Previous.clear();
4403      Previous.addDecl(OldDecl);
4404
4405      if (FunctionTemplateDecl *OldTemplateDecl
4406                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4407        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4408        FunctionTemplateDecl *NewTemplateDecl
4409          = NewFD->getDescribedFunctionTemplate();
4410        assert(NewTemplateDecl && "Template/non-template mismatch");
4411        if (CXXMethodDecl *Method
4412              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4413          Method->setAccess(OldTemplateDecl->getAccess());
4414          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4415        }
4416
4417        // If this is an explicit specialization of a member that is a function
4418        // template, mark it as a member specialization.
4419        if (IsExplicitSpecialization &&
4420            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4421          NewTemplateDecl->setMemberSpecialization();
4422          assert(OldTemplateDecl->isMemberSpecialization());
4423        }
4424      } else {
4425        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4426          NewFD->setAccess(OldDecl->getAccess());
4427        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4428      }
4429    }
4430  }
4431
4432  // Semantic checking for this function declaration (in isolation).
4433  if (getLangOptions().CPlusPlus) {
4434    // C++-specific checks.
4435    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4436      CheckConstructor(Constructor);
4437    } else if (CXXDestructorDecl *Destructor =
4438                dyn_cast<CXXDestructorDecl>(NewFD)) {
4439      CXXRecordDecl *Record = Destructor->getParent();
4440      QualType ClassType = Context.getTypeDeclType(Record);
4441
4442      // FIXME: Shouldn't we be able to perform this check even when the class
4443      // type is dependent? Both gcc and edg can handle that.
4444      if (!ClassType->isDependentType()) {
4445        DeclarationName Name
4446          = Context.DeclarationNames.getCXXDestructorName(
4447                                        Context.getCanonicalType(ClassType));
4448        if (NewFD->getDeclName() != Name) {
4449          Diag(NewFD->getLocation(), diag::err_destructor_name);
4450          return NewFD->setInvalidDecl();
4451        }
4452      }
4453    } else if (CXXConversionDecl *Conversion
4454               = dyn_cast<CXXConversionDecl>(NewFD)) {
4455      ActOnConversionDeclarator(Conversion);
4456    }
4457
4458    // Find any virtual functions that this function overrides.
4459    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4460      if (!Method->isFunctionTemplateSpecialization() &&
4461          !Method->getDescribedFunctionTemplate()) {
4462        if (AddOverriddenMethods(Method->getParent(), Method)) {
4463          // If the function was marked as "static", we have a problem.
4464          if (NewFD->getStorageClass() == SC_Static) {
4465            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4466              << NewFD->getDeclName();
4467            for (CXXMethodDecl::method_iterator
4468                      Overridden = Method->begin_overridden_methods(),
4469                   OverriddenEnd = Method->end_overridden_methods();
4470                 Overridden != OverriddenEnd;
4471                 ++Overridden) {
4472              Diag((*Overridden)->getLocation(),
4473                   diag::note_overridden_virtual_function);
4474            }
4475          }
4476        }
4477      }
4478    }
4479
4480    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4481    if (NewFD->isOverloadedOperator() &&
4482        CheckOverloadedOperatorDeclaration(NewFD))
4483      return NewFD->setInvalidDecl();
4484
4485    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4486    if (NewFD->getLiteralIdentifier() &&
4487        CheckLiteralOperatorDeclaration(NewFD))
4488      return NewFD->setInvalidDecl();
4489
4490    // In C++, check default arguments now that we have merged decls. Unless
4491    // the lexical context is the class, because in this case this is done
4492    // during delayed parsing anyway.
4493    if (!CurContext->isRecord())
4494      CheckCXXDefaultArguments(NewFD);
4495
4496    // If this function declares a builtin function, check the type of this
4497    // declaration against the expected type for the builtin.
4498    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4499      ASTContext::GetBuiltinTypeError Error;
4500      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4501      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4502        // The type of this function differs from the type of the builtin,
4503        // so forget about the builtin entirely.
4504        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4505      }
4506    }
4507  }
4508}
4509
4510void Sema::CheckMain(FunctionDecl* FD) {
4511  // C++ [basic.start.main]p3:  A program that declares main to be inline
4512  //   or static is ill-formed.
4513  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4514  //   shall not appear in a declaration of main.
4515  // static main is not an error under C99, but we should warn about it.
4516  bool isInline = FD->isInlineSpecified();
4517  bool isStatic = FD->getStorageClass() == SC_Static;
4518  if (isInline || isStatic) {
4519    unsigned diagID = diag::warn_unusual_main_decl;
4520    if (isInline || getLangOptions().CPlusPlus)
4521      diagID = diag::err_unusual_main_decl;
4522
4523    int which = isStatic + (isInline << 1) - 1;
4524    Diag(FD->getLocation(), diagID) << which;
4525  }
4526
4527  QualType T = FD->getType();
4528  assert(T->isFunctionType() && "function decl is not of function type");
4529  const FunctionType* FT = T->getAs<FunctionType>();
4530
4531  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4532    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4533    FD->setInvalidDecl(true);
4534  }
4535
4536  // Treat protoless main() as nullary.
4537  if (isa<FunctionNoProtoType>(FT)) return;
4538
4539  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4540  unsigned nparams = FTP->getNumArgs();
4541  assert(FD->getNumParams() == nparams);
4542
4543  bool HasExtraParameters = (nparams > 3);
4544
4545  // Darwin passes an undocumented fourth argument of type char**.  If
4546  // other platforms start sprouting these, the logic below will start
4547  // getting shifty.
4548  if (nparams == 4 &&
4549      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4550    HasExtraParameters = false;
4551
4552  if (HasExtraParameters) {
4553    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4554    FD->setInvalidDecl(true);
4555    nparams = 3;
4556  }
4557
4558  // FIXME: a lot of the following diagnostics would be improved
4559  // if we had some location information about types.
4560
4561  QualType CharPP =
4562    Context.getPointerType(Context.getPointerType(Context.CharTy));
4563  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4564
4565  for (unsigned i = 0; i < nparams; ++i) {
4566    QualType AT = FTP->getArgType(i);
4567
4568    bool mismatch = true;
4569
4570    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4571      mismatch = false;
4572    else if (Expected[i] == CharPP) {
4573      // As an extension, the following forms are okay:
4574      //   char const **
4575      //   char const * const *
4576      //   char * const *
4577
4578      QualifierCollector qs;
4579      const PointerType* PT;
4580      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4581          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4582          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4583        qs.removeConst();
4584        mismatch = !qs.empty();
4585      }
4586    }
4587
4588    if (mismatch) {
4589      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4590      // TODO: suggest replacing given type with expected type
4591      FD->setInvalidDecl(true);
4592    }
4593  }
4594
4595  if (nparams == 1 && !FD->isInvalidDecl()) {
4596    Diag(FD->getLocation(), diag::warn_main_one_arg);
4597  }
4598
4599  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
4600    Diag(FD->getLocation(), diag::err_main_template_decl);
4601    FD->setInvalidDecl();
4602  }
4603}
4604
4605bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4606  // FIXME: Need strict checking.  In C89, we need to check for
4607  // any assignment, increment, decrement, function-calls, or
4608  // commas outside of a sizeof.  In C99, it's the same list,
4609  // except that the aforementioned are allowed in unevaluated
4610  // expressions.  Everything else falls under the
4611  // "may accept other forms of constant expressions" exception.
4612  // (We never end up here for C++, so the constant expression
4613  // rules there don't matter.)
4614  if (Init->isConstantInitializer(Context, false))
4615    return false;
4616  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4617    << Init->getSourceRange();
4618  return true;
4619}
4620
4621/// AddInitializerToDecl - Adds the initializer Init to the
4622/// declaration dcl. If DirectInit is true, this is C++ direct
4623/// initialization rather than copy initialization.
4624void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
4625                                bool DirectInit, bool TypeMayContainAuto) {
4626  // If there is no declaration, there was an error parsing it.  Just ignore
4627  // the initializer.
4628  if (RealDecl == 0 || RealDecl->isInvalidDecl())
4629    return;
4630
4631  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4632    // With declarators parsed the way they are, the parser cannot
4633    // distinguish between a normal initializer and a pure-specifier.
4634    // Thus this grotesque test.
4635    IntegerLiteral *IL;
4636    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4637        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4638      CheckPureMethod(Method, Init->getSourceRange());
4639    else {
4640      Diag(Method->getLocation(), diag::err_member_function_initialization)
4641        << Method->getDeclName() << Init->getSourceRange();
4642      Method->setInvalidDecl();
4643    }
4644    return;
4645  }
4646
4647  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4648  if (!VDecl) {
4649    if (getLangOptions().CPlusPlus &&
4650        RealDecl->getLexicalDeclContext()->isRecord() &&
4651        isa<NamedDecl>(RealDecl))
4652      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4653    else
4654      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4655    RealDecl->setInvalidDecl();
4656    return;
4657  }
4658
4659  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
4660  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
4661    QualType DeducedType;
4662    if (!DeduceAutoType(VDecl->getType(), Init, DeducedType)) {
4663      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
4664        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
4665        << Init->getSourceRange();
4666      RealDecl->setInvalidDecl();
4667      return;
4668    }
4669    VDecl->setType(DeducedType);
4670
4671    // If this is a redeclaration, check that the type we just deduced matches
4672    // the previously declared type.
4673    if (VarDecl *Old = VDecl->getPreviousDeclaration())
4674      MergeVarDeclTypes(VDecl, Old);
4675  }
4676
4677
4678  // A definition must end up with a complete type, which means it must be
4679  // complete with the restriction that an array type might be completed by the
4680  // initializer; note that later code assumes this restriction.
4681  QualType BaseDeclType = VDecl->getType();
4682  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4683    BaseDeclType = Array->getElementType();
4684  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4685                          diag::err_typecheck_decl_incomplete_type)) {
4686    RealDecl->setInvalidDecl();
4687    return;
4688  }
4689
4690  // The variable can not have an abstract class type.
4691  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4692                             diag::err_abstract_type_in_decl,
4693                             AbstractVariableType))
4694    VDecl->setInvalidDecl();
4695
4696  const VarDecl *Def;
4697  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4698    Diag(VDecl->getLocation(), diag::err_redefinition)
4699      << VDecl->getDeclName();
4700    Diag(Def->getLocation(), diag::note_previous_definition);
4701    VDecl->setInvalidDecl();
4702    return;
4703  }
4704
4705  const VarDecl* PrevInit = 0;
4706  if (getLangOptions().CPlusPlus) {
4707    // C++ [class.static.data]p4
4708    //   If a static data member is of const integral or const
4709    //   enumeration type, its declaration in the class definition can
4710    //   specify a constant-initializer which shall be an integral
4711    //   constant expression (5.19). In that case, the member can appear
4712    //   in integral constant expressions. The member shall still be
4713    //   defined in a namespace scope if it is used in the program and the
4714    //   namespace scope definition shall not contain an initializer.
4715    //
4716    // We already performed a redefinition check above, but for static
4717    // data members we also need to check whether there was an in-class
4718    // declaration with an initializer.
4719    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4720      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4721      Diag(PrevInit->getLocation(), diag::note_previous_definition);
4722      return;
4723    }
4724
4725    if (VDecl->hasLocalStorage())
4726      getCurFunction()->setHasBranchProtectedScope();
4727
4728    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
4729      VDecl->setInvalidDecl();
4730      return;
4731    }
4732  }
4733
4734  // Capture the variable that is being initialized and the style of
4735  // initialization.
4736  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4737
4738  // FIXME: Poor source location information.
4739  InitializationKind Kind
4740    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4741                                                   Init->getLocStart(),
4742                                                   Init->getLocEnd())
4743                : InitializationKind::CreateCopy(VDecl->getLocation(),
4744                                                 Init->getLocStart());
4745
4746  // Get the decls type and save a reference for later, since
4747  // CheckInitializerTypes may change it.
4748  QualType DclT = VDecl->getType(), SavT = DclT;
4749  if (VDecl->isLocalVarDecl()) {
4750    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4751      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4752      VDecl->setInvalidDecl();
4753    } else if (!VDecl->isInvalidDecl()) {
4754      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4755      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4756                                                MultiExprArg(*this, &Init, 1),
4757                                                &DclT);
4758      if (Result.isInvalid()) {
4759        VDecl->setInvalidDecl();
4760        return;
4761      }
4762
4763      Init = Result.takeAs<Expr>();
4764
4765      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4766      // Don't check invalid declarations to avoid emitting useless diagnostics.
4767      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4768        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4769          CheckForConstantInitializer(Init, DclT);
4770      }
4771    }
4772  } else if (VDecl->isStaticDataMember() &&
4773             VDecl->getLexicalDeclContext()->isRecord()) {
4774    // This is an in-class initialization for a static data member, e.g.,
4775    //
4776    // struct S {
4777    //   static const int value = 17;
4778    // };
4779
4780    // Try to perform the initialization regardless.
4781    if (!VDecl->isInvalidDecl()) {
4782      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4783      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4784                                          MultiExprArg(*this, &Init, 1),
4785                                          &DclT);
4786      if (Result.isInvalid()) {
4787        VDecl->setInvalidDecl();
4788        return;
4789      }
4790
4791      Init = Result.takeAs<Expr>();
4792    }
4793
4794    // C++ [class.mem]p4:
4795    //   A member-declarator can contain a constant-initializer only
4796    //   if it declares a static member (9.4) of const integral or
4797    //   const enumeration type, see 9.4.2.
4798    QualType T = VDecl->getType();
4799
4800    // Do nothing on dependent types.
4801    if (T->isDependentType()) {
4802
4803    // Require constness.
4804    } else if (!T.isConstQualified()) {
4805      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4806        << Init->getSourceRange();
4807      VDecl->setInvalidDecl();
4808
4809    // We allow integer constant expressions in all cases.
4810    } else if (T->isIntegralOrEnumerationType()) {
4811      if (!Init->isValueDependent()) {
4812        // Check whether the expression is a constant expression.
4813        llvm::APSInt Value;
4814        SourceLocation Loc;
4815        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4816          Diag(Loc, diag::err_in_class_initializer_non_constant)
4817            << Init->getSourceRange();
4818          VDecl->setInvalidDecl();
4819        }
4820      }
4821
4822    // We allow floating-point constants as an extension in C++03, and
4823    // C++0x has far more complicated rules that we don't really
4824    // implement fully.
4825    } else {
4826      bool Allowed = false;
4827      if (getLangOptions().CPlusPlus0x) {
4828        Allowed = T->isLiteralType();
4829      } else if (T->isFloatingType()) { // also permits complex, which is ok
4830        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4831          << T << Init->getSourceRange();
4832        Allowed = true;
4833      }
4834
4835      if (!Allowed) {
4836        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4837          << T << Init->getSourceRange();
4838        VDecl->setInvalidDecl();
4839
4840      // TODO: there are probably expressions that pass here that shouldn't.
4841      } else if (!Init->isValueDependent() &&
4842                 !Init->isConstantInitializer(Context, false)) {
4843        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4844          << Init->getSourceRange();
4845        VDecl->setInvalidDecl();
4846      }
4847    }
4848  } else if (VDecl->isFileVarDecl()) {
4849    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
4850        (!getLangOptions().CPlusPlus ||
4851         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4852      Diag(VDecl->getLocation(), diag::warn_extern_init);
4853    if (!VDecl->isInvalidDecl()) {
4854      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4855      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4856                                                MultiExprArg(*this, &Init, 1),
4857                                                &DclT);
4858      if (Result.isInvalid()) {
4859        VDecl->setInvalidDecl();
4860        return;
4861      }
4862
4863      Init = Result.takeAs<Expr>();
4864    }
4865
4866    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4867    // Don't check invalid declarations to avoid emitting useless diagnostics.
4868    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4869      // C99 6.7.8p4. All file scoped initializers need to be constant.
4870      CheckForConstantInitializer(Init, DclT);
4871    }
4872  }
4873  // If the type changed, it means we had an incomplete type that was
4874  // completed by the initializer. For example:
4875  //   int ary[] = { 1, 3, 5 };
4876  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4877  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4878    VDecl->setType(DclT);
4879    Init->setType(DclT);
4880  }
4881
4882
4883  // If this variable is a local declaration with record type, make sure it
4884  // doesn't have a flexible member initialization.  We only support this as a
4885  // global/static definition.
4886  if (VDecl->hasLocalStorage())
4887    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
4888      if (RT->getDecl()->hasFlexibleArrayMember()) {
4889        // Check whether the initializer tries to initialize the flexible
4890        // array member itself to anything other than an empty initializer list.
4891        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
4892          unsigned Index = std::distance(RT->getDecl()->field_begin(),
4893                                         RT->getDecl()->field_end()) - 1;
4894          if (Index < ILE->getNumInits() &&
4895              !(isa<InitListExpr>(ILE->getInit(Index)) &&
4896                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
4897            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
4898            VDecl->setInvalidDecl();
4899          }
4900        }
4901      }
4902
4903  // Check any implicit conversions within the expression.
4904  CheckImplicitConversions(Init, VDecl->getLocation());
4905
4906  Init = MaybeCreateExprWithCleanups(Init);
4907  // Attach the initializer to the decl.
4908  VDecl->setInit(Init);
4909
4910  CheckCompleteVariableDeclaration(VDecl);
4911}
4912
4913/// ActOnInitializerError - Given that there was an error parsing an
4914/// initializer for the given declaration, try to return to some form
4915/// of sanity.
4916void Sema::ActOnInitializerError(Decl *D) {
4917  // Our main concern here is re-establishing invariants like "a
4918  // variable's type is either dependent or complete".
4919  if (!D || D->isInvalidDecl()) return;
4920
4921  VarDecl *VD = dyn_cast<VarDecl>(D);
4922  if (!VD) return;
4923
4924  // Auto types are meaningless if we can't make sense of the initializer.
4925  if (ParsingInitForAutoVars.count(D)) {
4926    D->setInvalidDecl();
4927    return;
4928  }
4929
4930  QualType Ty = VD->getType();
4931  if (Ty->isDependentType()) return;
4932
4933  // Require a complete type.
4934  if (RequireCompleteType(VD->getLocation(),
4935                          Context.getBaseElementType(Ty),
4936                          diag::err_typecheck_decl_incomplete_type)) {
4937    VD->setInvalidDecl();
4938    return;
4939  }
4940
4941  // Require an abstract type.
4942  if (RequireNonAbstractType(VD->getLocation(), Ty,
4943                             diag::err_abstract_type_in_decl,
4944                             AbstractVariableType)) {
4945    VD->setInvalidDecl();
4946    return;
4947  }
4948
4949  // Don't bother complaining about constructors or destructors,
4950  // though.
4951}
4952
4953void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4954                                  bool TypeMayContainAuto) {
4955  // If there is no declaration, there was an error parsing it. Just ignore it.
4956  if (RealDecl == 0)
4957    return;
4958
4959  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4960    QualType Type = Var->getType();
4961
4962    // C++0x [dcl.spec.auto]p3
4963    if (TypeMayContainAuto && Type->getContainedAutoType()) {
4964      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4965        << Var->getDeclName() << Type;
4966      Var->setInvalidDecl();
4967      return;
4968    }
4969
4970    switch (Var->isThisDeclarationADefinition()) {
4971    case VarDecl::Definition:
4972      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4973        break;
4974
4975      // We have an out-of-line definition of a static data member
4976      // that has an in-class initializer, so we type-check this like
4977      // a declaration.
4978      //
4979      // Fall through
4980
4981    case VarDecl::DeclarationOnly:
4982      // It's only a declaration.
4983
4984      // Block scope. C99 6.7p7: If an identifier for an object is
4985      // declared with no linkage (C99 6.2.2p6), the type for the
4986      // object shall be complete.
4987      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
4988          !Var->getLinkage() && !Var->isInvalidDecl() &&
4989          RequireCompleteType(Var->getLocation(), Type,
4990                              diag::err_typecheck_decl_incomplete_type))
4991        Var->setInvalidDecl();
4992
4993      // Make sure that the type is not abstract.
4994      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4995          RequireNonAbstractType(Var->getLocation(), Type,
4996                                 diag::err_abstract_type_in_decl,
4997                                 AbstractVariableType))
4998        Var->setInvalidDecl();
4999      return;
5000
5001    case VarDecl::TentativeDefinition:
5002      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5003      // object that has file scope without an initializer, and without a
5004      // storage-class specifier or with the storage-class specifier "static",
5005      // constitutes a tentative definition. Note: A tentative definition with
5006      // external linkage is valid (C99 6.2.2p5).
5007      if (!Var->isInvalidDecl()) {
5008        if (const IncompleteArrayType *ArrayT
5009                                    = Context.getAsIncompleteArrayType(Type)) {
5010          if (RequireCompleteType(Var->getLocation(),
5011                                  ArrayT->getElementType(),
5012                                  diag::err_illegal_decl_array_incomplete_type))
5013            Var->setInvalidDecl();
5014        } else if (Var->getStorageClass() == SC_Static) {
5015          // C99 6.9.2p3: If the declaration of an identifier for an object is
5016          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5017          // declared type shall not be an incomplete type.
5018          // NOTE: code such as the following
5019          //     static struct s;
5020          //     struct s { int a; };
5021          // is accepted by gcc. Hence here we issue a warning instead of
5022          // an error and we do not invalidate the static declaration.
5023          // NOTE: to avoid multiple warnings, only check the first declaration.
5024          if (Var->getPreviousDeclaration() == 0)
5025            RequireCompleteType(Var->getLocation(), Type,
5026                                diag::ext_typecheck_decl_incomplete_type);
5027        }
5028      }
5029
5030      // Record the tentative definition; we're done.
5031      if (!Var->isInvalidDecl())
5032        TentativeDefinitions.push_back(Var);
5033      return;
5034    }
5035
5036    // Provide a specific diagnostic for uninitialized variable
5037    // definitions with incomplete array type.
5038    if (Type->isIncompleteArrayType()) {
5039      Diag(Var->getLocation(),
5040           diag::err_typecheck_incomplete_array_needs_initializer);
5041      Var->setInvalidDecl();
5042      return;
5043    }
5044
5045    // Provide a specific diagnostic for uninitialized variable
5046    // definitions with reference type.
5047    if (Type->isReferenceType()) {
5048      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5049        << Var->getDeclName()
5050        << SourceRange(Var->getLocation(), Var->getLocation());
5051      Var->setInvalidDecl();
5052      return;
5053    }
5054
5055    // Do not attempt to type-check the default initializer for a
5056    // variable with dependent type.
5057    if (Type->isDependentType())
5058      return;
5059
5060    if (Var->isInvalidDecl())
5061      return;
5062
5063    if (RequireCompleteType(Var->getLocation(),
5064                            Context.getBaseElementType(Type),
5065                            diag::err_typecheck_decl_incomplete_type)) {
5066      Var->setInvalidDecl();
5067      return;
5068    }
5069
5070    // The variable can not have an abstract class type.
5071    if (RequireNonAbstractType(Var->getLocation(), Type,
5072                               diag::err_abstract_type_in_decl,
5073                               AbstractVariableType)) {
5074      Var->setInvalidDecl();
5075      return;
5076    }
5077
5078    const RecordType *Record
5079      = Context.getBaseElementType(Type)->getAs<RecordType>();
5080    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
5081        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5082      // C++03 [dcl.init]p9:
5083      //   If no initializer is specified for an object, and the
5084      //   object is of (possibly cv-qualified) non-POD class type (or
5085      //   array thereof), the object shall be default-initialized; if
5086      //   the object is of const-qualified type, the underlying class
5087      //   type shall have a user-declared default
5088      //   constructor. Otherwise, if no initializer is specified for
5089      //   a non- static object, the object and its subobjects, if
5090      //   any, have an indeterminate initial value); if the object
5091      //   or any of its subobjects are of const-qualified type, the
5092      //   program is ill-formed.
5093      // FIXME: DPG thinks it is very fishy that C++0x disables this.
5094    } else {
5095      // Check for jumps past the implicit initializer.  C++0x
5096      // clarifies that this applies to a "variable with automatic
5097      // storage duration", not a "local variable".
5098      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5099        getCurFunction()->setHasBranchProtectedScope();
5100
5101      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5102      InitializationKind Kind
5103        = InitializationKind::CreateDefault(Var->getLocation());
5104
5105      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5106      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5107                                        MultiExprArg(*this, 0, 0));
5108      if (Init.isInvalid())
5109        Var->setInvalidDecl();
5110      else if (Init.get())
5111        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5112    }
5113
5114    CheckCompleteVariableDeclaration(Var);
5115  }
5116}
5117
5118void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5119  if (var->isInvalidDecl()) return;
5120
5121  // All the following checks are C++ only.
5122  if (!getLangOptions().CPlusPlus) return;
5123
5124  QualType baseType = Context.getBaseElementType(var->getType());
5125  if (baseType->isDependentType()) return;
5126
5127  // __block variables might require us to capture a copy-initializer.
5128  if (var->hasAttr<BlocksAttr>()) {
5129    // It's currently invalid to ever have a __block variable with an
5130    // array type; should we diagnose that here?
5131
5132    // Regardless, we don't want to ignore array nesting when
5133    // constructing this copy.
5134    QualType type = var->getType();
5135
5136    if (type->isStructureOrClassType()) {
5137      SourceLocation poi = var->getLocation();
5138      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5139      ExprResult result =
5140        PerformCopyInitialization(
5141                        InitializedEntity::InitializeBlock(poi, type, false),
5142                                  poi, Owned(varRef));
5143      if (!result.isInvalid()) {
5144        result = MaybeCreateExprWithCleanups(result);
5145        Expr *init = result.takeAs<Expr>();
5146        Context.setBlockVarCopyInits(var, init);
5147      }
5148    }
5149  }
5150
5151  // Check for global constructors.
5152  if (!var->getDeclContext()->isDependentContext() &&
5153      var->hasGlobalStorage() &&
5154      !var->isStaticLocal() &&
5155      var->getInit() &&
5156      !var->getInit()->isConstantInitializer(Context,
5157                                             baseType->isReferenceType()))
5158    Diag(var->getLocation(), diag::warn_global_constructor)
5159      << var->getInit()->getSourceRange();
5160
5161  // Require the destructor.
5162  if (const RecordType *recordType = baseType->getAs<RecordType>())
5163    FinalizeVarWithDestructor(var, recordType);
5164}
5165
5166/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5167/// any semantic actions necessary after any initializer has been attached.
5168void
5169Sema::FinalizeDeclaration(Decl *ThisDecl) {
5170  // Note that we are no longer parsing the initializer for this declaration.
5171  ParsingInitForAutoVars.erase(ThisDecl);
5172}
5173
5174Sema::DeclGroupPtrTy
5175Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5176                              Decl **Group, unsigned NumDecls) {
5177  llvm::SmallVector<Decl*, 8> Decls;
5178
5179  if (DS.isTypeSpecOwned())
5180    Decls.push_back(DS.getRepAsDecl());
5181
5182  for (unsigned i = 0; i != NumDecls; ++i)
5183    if (Decl *D = Group[i])
5184      Decls.push_back(D);
5185
5186  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5187                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5188}
5189
5190/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5191/// group, performing any necessary semantic checking.
5192Sema::DeclGroupPtrTy
5193Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5194                           bool TypeMayContainAuto) {
5195  // C++0x [dcl.spec.auto]p7:
5196  //   If the type deduced for the template parameter U is not the same in each
5197  //   deduction, the program is ill-formed.
5198  // FIXME: When initializer-list support is added, a distinction is needed
5199  // between the deduced type U and the deduced type which 'auto' stands for.
5200  //   auto a = 0, b = { 1, 2, 3 };
5201  // is legal because the deduced type U is 'int' in both cases.
5202  if (TypeMayContainAuto && NumDecls > 1) {
5203    QualType Deduced;
5204    CanQualType DeducedCanon;
5205    VarDecl *DeducedDecl = 0;
5206    for (unsigned i = 0; i != NumDecls; ++i) {
5207      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5208        AutoType *AT = D->getType()->getContainedAutoType();
5209        // Don't reissue diagnostics when instantiating a template.
5210        if (AT && D->isInvalidDecl())
5211          break;
5212        if (AT && AT->isDeduced()) {
5213          QualType U = AT->getDeducedType();
5214          CanQualType UCanon = Context.getCanonicalType(U);
5215          if (Deduced.isNull()) {
5216            Deduced = U;
5217            DeducedCanon = UCanon;
5218            DeducedDecl = D;
5219          } else if (DeducedCanon != UCanon) {
5220            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5221                 diag::err_auto_different_deductions)
5222              << Deduced << DeducedDecl->getDeclName()
5223              << U << D->getDeclName()
5224              << DeducedDecl->getInit()->getSourceRange()
5225              << D->getInit()->getSourceRange();
5226            D->setInvalidDecl();
5227            break;
5228          }
5229        }
5230      }
5231    }
5232  }
5233
5234  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5235}
5236
5237
5238/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5239/// to introduce parameters into function prototype scope.
5240Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5241  const DeclSpec &DS = D.getDeclSpec();
5242
5243  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5244  VarDecl::StorageClass StorageClass = SC_None;
5245  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5246  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5247    StorageClass = SC_Register;
5248    StorageClassAsWritten = SC_Register;
5249  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5250    Diag(DS.getStorageClassSpecLoc(),
5251         diag::err_invalid_storage_class_in_func_decl);
5252    D.getMutableDeclSpec().ClearStorageClassSpecs();
5253  }
5254
5255  if (D.getDeclSpec().isThreadSpecified())
5256    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5257
5258  DiagnoseFunctionSpecifiers(D);
5259
5260  TagDecl *OwnedDecl = 0;
5261  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5262  QualType parmDeclType = TInfo->getType();
5263
5264  if (getLangOptions().CPlusPlus) {
5265    // Check that there are no default arguments inside the type of this
5266    // parameter.
5267    CheckExtraCXXDefaultArguments(D);
5268
5269    if (OwnedDecl && OwnedDecl->isDefinition()) {
5270      // C++ [dcl.fct]p6:
5271      //   Types shall not be defined in return or parameter types.
5272      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5273        << Context.getTypeDeclType(OwnedDecl);
5274    }
5275
5276    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5277    if (D.getCXXScopeSpec().isSet()) {
5278      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5279        << D.getCXXScopeSpec().getRange();
5280      D.getCXXScopeSpec().clear();
5281    }
5282  }
5283
5284  // Ensure we have a valid name
5285  IdentifierInfo *II = 0;
5286  if (D.hasName()) {
5287    II = D.getIdentifier();
5288    if (!II) {
5289      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5290        << GetNameForDeclarator(D).getName().getAsString();
5291      D.setInvalidType(true);
5292    }
5293  }
5294
5295  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5296  if (II) {
5297    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5298                   ForRedeclaration);
5299    LookupName(R, S);
5300    if (R.isSingleResult()) {
5301      NamedDecl *PrevDecl = R.getFoundDecl();
5302      if (PrevDecl->isTemplateParameter()) {
5303        // Maybe we will complain about the shadowed template parameter.
5304        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5305        // Just pretend that we didn't see the previous declaration.
5306        PrevDecl = 0;
5307      } else if (S->isDeclScope(PrevDecl)) {
5308        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5309        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5310
5311        // Recover by removing the name
5312        II = 0;
5313        D.SetIdentifier(0, D.getIdentifierLoc());
5314        D.setInvalidType(true);
5315      }
5316    }
5317  }
5318
5319  // Temporarily put parameter variables in the translation unit, not
5320  // the enclosing context.  This prevents them from accidentally
5321  // looking like class members in C++.
5322  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5323                                    D.getSourceRange().getBegin(),
5324                                    D.getIdentifierLoc(), II,
5325                                    parmDeclType, TInfo,
5326                                    StorageClass, StorageClassAsWritten);
5327
5328  if (D.isInvalidType())
5329    New->setInvalidDecl();
5330
5331  // Add the parameter declaration into this scope.
5332  S->AddDecl(New);
5333  if (II)
5334    IdResolver.AddDecl(New);
5335
5336  ProcessDeclAttributes(S, New, D);
5337
5338  if (New->hasAttr<BlocksAttr>()) {
5339    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5340  }
5341  return New;
5342}
5343
5344/// \brief Synthesizes a variable for a parameter arising from a
5345/// typedef.
5346ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5347                                              SourceLocation Loc,
5348                                              QualType T) {
5349  /* FIXME: setting StartLoc == Loc.
5350     Would it be worth to modify callers so as to provide proper source
5351     location for the unnamed parameters, embedding the parameter's type? */
5352  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5353                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5354                                           SC_None, SC_None, 0);
5355  Param->setImplicit();
5356  return Param;
5357}
5358
5359void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5360                                    ParmVarDecl * const *ParamEnd) {
5361  // Don't diagnose unused-parameter errors in template instantiations; we
5362  // will already have done so in the template itself.
5363  if (!ActiveTemplateInstantiations.empty())
5364    return;
5365
5366  for (; Param != ParamEnd; ++Param) {
5367    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5368        !(*Param)->hasAttr<UnusedAttr>()) {
5369      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5370        << (*Param)->getDeclName();
5371    }
5372  }
5373}
5374
5375void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5376                                                  ParmVarDecl * const *ParamEnd,
5377                                                  QualType ReturnTy,
5378                                                  NamedDecl *D) {
5379  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5380    return;
5381
5382  // Warn if the return value is pass-by-value and larger than the specified
5383  // threshold.
5384  if (ReturnTy->isPODType()) {
5385    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5386    if (Size > LangOpts.NumLargeByValueCopy)
5387      Diag(D->getLocation(), diag::warn_return_value_size)
5388          << D->getDeclName() << Size;
5389  }
5390
5391  // Warn if any parameter is pass-by-value and larger than the specified
5392  // threshold.
5393  for (; Param != ParamEnd; ++Param) {
5394    QualType T = (*Param)->getType();
5395    if (!T->isPODType())
5396      continue;
5397    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5398    if (Size > LangOpts.NumLargeByValueCopy)
5399      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5400          << (*Param)->getDeclName() << Size;
5401  }
5402}
5403
5404ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5405                                  SourceLocation NameLoc, IdentifierInfo *Name,
5406                                  QualType T, TypeSourceInfo *TSInfo,
5407                                  VarDecl::StorageClass StorageClass,
5408                                  VarDecl::StorageClass StorageClassAsWritten) {
5409  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5410                                         adjustParameterType(T), TSInfo,
5411                                         StorageClass, StorageClassAsWritten,
5412                                         0);
5413
5414  // Parameters can not be abstract class types.
5415  // For record types, this is done by the AbstractClassUsageDiagnoser once
5416  // the class has been completely parsed.
5417  if (!CurContext->isRecord() &&
5418      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5419                             AbstractParamType))
5420    New->setInvalidDecl();
5421
5422  // Parameter declarators cannot be interface types. All ObjC objects are
5423  // passed by reference.
5424  if (T->isObjCObjectType()) {
5425    Diag(NameLoc,
5426         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5427    New->setInvalidDecl();
5428  }
5429
5430  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5431  // duration shall not be qualified by an address-space qualifier."
5432  // Since all parameters have automatic store duration, they can not have
5433  // an address space.
5434  if (T.getAddressSpace() != 0) {
5435    Diag(NameLoc, diag::err_arg_with_address_space);
5436    New->setInvalidDecl();
5437  }
5438
5439  return New;
5440}
5441
5442void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5443                                           SourceLocation LocAfterDecls) {
5444  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5445
5446  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5447  // for a K&R function.
5448  if (!FTI.hasPrototype) {
5449    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5450      --i;
5451      if (FTI.ArgInfo[i].Param == 0) {
5452        llvm::SmallString<256> Code;
5453        llvm::raw_svector_ostream(Code) << "  int "
5454                                        << FTI.ArgInfo[i].Ident->getName()
5455                                        << ";\n";
5456        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5457          << FTI.ArgInfo[i].Ident
5458          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5459
5460        // Implicitly declare the argument as type 'int' for lack of a better
5461        // type.
5462        DeclSpec DS;
5463        const char* PrevSpec; // unused
5464        unsigned DiagID; // unused
5465        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5466                           PrevSpec, DiagID);
5467        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5468        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5469        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5470      }
5471    }
5472  }
5473}
5474
5475Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5476                                         Declarator &D) {
5477  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5478  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5479  Scope *ParentScope = FnBodyScope->getParent();
5480
5481  Decl *DP = HandleDeclarator(ParentScope, D,
5482                              MultiTemplateParamsArg(*this),
5483                              /*IsFunctionDefinition=*/true);
5484  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5485}
5486
5487static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5488  // Don't warn about invalid declarations.
5489  if (FD->isInvalidDecl())
5490    return false;
5491
5492  // Or declarations that aren't global.
5493  if (!FD->isGlobal())
5494    return false;
5495
5496  // Don't warn about C++ member functions.
5497  if (isa<CXXMethodDecl>(FD))
5498    return false;
5499
5500  // Don't warn about 'main'.
5501  if (FD->isMain())
5502    return false;
5503
5504  // Don't warn about inline functions.
5505  if (FD->isInlineSpecified())
5506    return false;
5507
5508  // Don't warn about function templates.
5509  if (FD->getDescribedFunctionTemplate())
5510    return false;
5511
5512  // Don't warn about function template specializations.
5513  if (FD->isFunctionTemplateSpecialization())
5514    return false;
5515
5516  bool MissingPrototype = true;
5517  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
5518       Prev; Prev = Prev->getPreviousDeclaration()) {
5519    // Ignore any declarations that occur in function or method
5520    // scope, because they aren't visible from the header.
5521    if (Prev->getDeclContext()->isFunctionOrMethod())
5522      continue;
5523
5524    MissingPrototype = !Prev->getType()->isFunctionProtoType();
5525    break;
5526  }
5527
5528  return MissingPrototype;
5529}
5530
5531Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
5532  // Clear the last template instantiation error context.
5533  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
5534
5535  if (!D)
5536    return D;
5537  FunctionDecl *FD = 0;
5538
5539  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
5540    FD = FunTmpl->getTemplatedDecl();
5541  else
5542    FD = cast<FunctionDecl>(D);
5543
5544  // Enter a new function scope
5545  PushFunctionScope();
5546
5547  // See if this is a redefinition.
5548  // But don't complain if we're in GNU89 mode and the previous definition
5549  // was an extern inline function.
5550  const FunctionDecl *Definition;
5551  if (FD->hasBody(Definition) &&
5552      !canRedefineFunction(Definition, getLangOptions())) {
5553    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
5554        Definition->getStorageClass() == SC_Extern)
5555      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
5556        << FD->getDeclName() << getLangOptions().CPlusPlus;
5557    else
5558      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
5559    Diag(Definition->getLocation(), diag::note_previous_definition);
5560  }
5561
5562  // Builtin functions cannot be defined.
5563  if (unsigned BuiltinID = FD->getBuiltinID()) {
5564    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
5565      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
5566      FD->setInvalidDecl();
5567    }
5568  }
5569
5570  // The return type of a function definition must be complete
5571  // (C99 6.9.1p3, C++ [dcl.fct]p6).
5572  QualType ResultType = FD->getResultType();
5573  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
5574      !FD->isInvalidDecl() &&
5575      RequireCompleteType(FD->getLocation(), ResultType,
5576                          diag::err_func_def_incomplete_result))
5577    FD->setInvalidDecl();
5578
5579  // GNU warning -Wmissing-prototypes:
5580  //   Warn if a global function is defined without a previous
5581  //   prototype declaration. This warning is issued even if the
5582  //   definition itself provides a prototype. The aim is to detect
5583  //   global functions that fail to be declared in header files.
5584  if (ShouldWarnAboutMissingPrototype(FD))
5585    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
5586
5587  if (FnBodyScope)
5588    PushDeclContext(FnBodyScope, FD);
5589
5590  // Check the validity of our function parameters
5591  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
5592                           /*CheckParameterNames=*/true);
5593
5594  // Introduce our parameters into the function scope
5595  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
5596    ParmVarDecl *Param = FD->getParamDecl(p);
5597    Param->setOwningFunction(FD);
5598
5599    // If this has an identifier, add it to the scope stack.
5600    if (Param->getIdentifier() && FnBodyScope) {
5601      CheckShadow(FnBodyScope, Param);
5602
5603      PushOnScopeChains(Param, FnBodyScope);
5604    }
5605  }
5606
5607  // Checking attributes of current function definition
5608  // dllimport attribute.
5609  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
5610  if (DA && (!FD->getAttr<DLLExportAttr>())) {
5611    // dllimport attribute cannot be directly applied to definition.
5612    if (!DA->isInherited()) {
5613      Diag(FD->getLocation(),
5614           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
5615        << "dllimport";
5616      FD->setInvalidDecl();
5617      return FD;
5618    }
5619
5620    // Visual C++ appears to not think this is an issue, so only issue
5621    // a warning when Microsoft extensions are disabled.
5622    if (!LangOpts.Microsoft) {
5623      // If a symbol previously declared dllimport is later defined, the
5624      // attribute is ignored in subsequent references, and a warning is
5625      // emitted.
5626      Diag(FD->getLocation(),
5627           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
5628        << FD->getName() << "dllimport";
5629    }
5630  }
5631  return FD;
5632}
5633
5634/// \brief Given the set of return statements within a function body,
5635/// compute the variables that are subject to the named return value
5636/// optimization.
5637///
5638/// Each of the variables that is subject to the named return value
5639/// optimization will be marked as NRVO variables in the AST, and any
5640/// return statement that has a marked NRVO variable as its NRVO candidate can
5641/// use the named return value optimization.
5642///
5643/// This function applies a very simplistic algorithm for NRVO: if every return
5644/// statement in the function has the same NRVO candidate, that candidate is
5645/// the NRVO variable.
5646///
5647/// FIXME: Employ a smarter algorithm that accounts for multiple return
5648/// statements and the lifetimes of the NRVO candidates. We should be able to
5649/// find a maximal set of NRVO variables.
5650static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
5651  ReturnStmt **Returns = Scope->Returns.data();
5652
5653  const VarDecl *NRVOCandidate = 0;
5654  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
5655    if (!Returns[I]->getNRVOCandidate())
5656      return;
5657
5658    if (!NRVOCandidate)
5659      NRVOCandidate = Returns[I]->getNRVOCandidate();
5660    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
5661      return;
5662  }
5663
5664  if (NRVOCandidate)
5665    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
5666}
5667
5668Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
5669  return ActOnFinishFunctionBody(D, move(BodyArg), false);
5670}
5671
5672Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
5673                                    bool IsInstantiation) {
5674  FunctionDecl *FD = 0;
5675  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
5676  if (FunTmpl)
5677    FD = FunTmpl->getTemplatedDecl();
5678  else
5679    FD = dyn_cast_or_null<FunctionDecl>(dcl);
5680
5681  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
5682  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
5683
5684  if (FD) {
5685    FD->setBody(Body);
5686    if (FD->isMain()) {
5687      // C and C++ allow for main to automagically return 0.
5688      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
5689      FD->setHasImplicitReturnZero(true);
5690      WP.disableCheckFallThrough();
5691    }
5692
5693    if (!FD->isInvalidDecl()) {
5694      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5695      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
5696                                             FD->getResultType(), FD);
5697
5698      // If this is a constructor, we need a vtable.
5699      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5700        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5701
5702      ComputeNRVO(Body, getCurFunction());
5703    }
5704
5705    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5706  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5707    assert(MD == getCurMethodDecl() && "Method parsing confused");
5708    MD->setBody(Body);
5709    if (Body)
5710      MD->setEndLoc(Body->getLocEnd());
5711    if (!MD->isInvalidDecl()) {
5712      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5713      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
5714                                             MD->getResultType(), MD);
5715    }
5716  } else {
5717    return 0;
5718  }
5719
5720  // Verify and clean out per-function state.
5721  if (Body) {
5722    // C++ constructors that have function-try-blocks can't have return
5723    // statements in the handlers of that block. (C++ [except.handle]p14)
5724    // Verify this.
5725    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5726      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5727
5728    // Verify that that gotos and switch cases don't jump into scopes illegally.
5729    // Verify that that gotos and switch cases don't jump into scopes illegally.
5730    if (getCurFunction()->NeedsScopeChecking() &&
5731        !dcl->isInvalidDecl() &&
5732        !hasAnyErrorsInThisFunction())
5733      DiagnoseInvalidJumps(Body);
5734
5735    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5736      if (!Destructor->getParent()->isDependentType())
5737        CheckDestructor(Destructor);
5738
5739      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5740                                             Destructor->getParent());
5741    }
5742
5743    // If any errors have occurred, clear out any temporaries that may have
5744    // been leftover. This ensures that these temporaries won't be picked up for
5745    // deletion in some later function.
5746    if (PP.getDiagnostics().hasErrorOccurred() ||
5747        PP.getDiagnostics().getSuppressAllDiagnostics())
5748      ExprTemporaries.clear();
5749    else if (!isa<FunctionTemplateDecl>(dcl)) {
5750      // Since the body is valid, issue any analysis-based warnings that are
5751      // enabled.
5752      ActivePolicy = &WP;
5753    }
5754
5755    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5756  }
5757
5758  if (!IsInstantiation)
5759    PopDeclContext();
5760
5761  PopFunctionOrBlockScope(ActivePolicy, dcl);
5762
5763  // If any errors have occurred, clear out any temporaries that may have
5764  // been leftover. This ensures that these temporaries won't be picked up for
5765  // deletion in some later function.
5766  if (getDiagnostics().hasErrorOccurred())
5767    ExprTemporaries.clear();
5768
5769  return dcl;
5770}
5771
5772/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5773/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5774NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5775                                          IdentifierInfo &II, Scope *S) {
5776  // Before we produce a declaration for an implicitly defined
5777  // function, see whether there was a locally-scoped declaration of
5778  // this name as a function or variable. If so, use that
5779  // (non-visible) declaration, and complain about it.
5780  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5781    = LocallyScopedExternalDecls.find(&II);
5782  if (Pos != LocallyScopedExternalDecls.end()) {
5783    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5784    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5785    return Pos->second;
5786  }
5787
5788  // Extension in C99.  Legal in C90, but warn about it.
5789  if (II.getName().startswith("__builtin_"))
5790    Diag(Loc, diag::warn_builtin_unknown) << &II;
5791  else if (getLangOptions().C99)
5792    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5793  else
5794    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5795
5796  // Set a Declarator for the implicit definition: int foo();
5797  const char *Dummy;
5798  DeclSpec DS;
5799  unsigned DiagID;
5800  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5801  (void)Error; // Silence warning.
5802  assert(!Error && "Error setting up implicit decl!");
5803  Declarator D(DS, Declarator::BlockContext);
5804  D.AddTypeInfo(DeclaratorChunk::getFunction(ParsedAttributes(),
5805                                             false, false, SourceLocation(), 0,
5806                                             0, 0, true, SourceLocation(),
5807                                             EST_None, SourceLocation(),
5808                                             0, 0, 0, 0, Loc, Loc, D),
5809                SourceLocation());
5810  D.SetIdentifier(&II, Loc);
5811
5812  // Insert this function into translation-unit scope.
5813
5814  DeclContext *PrevDC = CurContext;
5815  CurContext = Context.getTranslationUnitDecl();
5816
5817  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5818  FD->setImplicit();
5819
5820  CurContext = PrevDC;
5821
5822  AddKnownFunctionAttributes(FD);
5823
5824  return FD;
5825}
5826
5827/// \brief Adds any function attributes that we know a priori based on
5828/// the declaration of this function.
5829///
5830/// These attributes can apply both to implicitly-declared builtins
5831/// (like __builtin___printf_chk) or to library-declared functions
5832/// like NSLog or printf.
5833void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5834  if (FD->isInvalidDecl())
5835    return;
5836
5837  // If this is a built-in function, map its builtin attributes to
5838  // actual attributes.
5839  if (unsigned BuiltinID = FD->getBuiltinID()) {
5840    // Handle printf-formatting attributes.
5841    unsigned FormatIdx;
5842    bool HasVAListArg;
5843    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5844      if (!FD->getAttr<FormatAttr>())
5845        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5846                                                "printf", FormatIdx+1,
5847                                               HasVAListArg ? 0 : FormatIdx+2));
5848    }
5849    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5850                                             HasVAListArg)) {
5851     if (!FD->getAttr<FormatAttr>())
5852       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5853                                              "scanf", FormatIdx+1,
5854                                              HasVAListArg ? 0 : FormatIdx+2));
5855    }
5856
5857    // Mark const if we don't care about errno and that is the only
5858    // thing preventing the function from being const. This allows
5859    // IRgen to use LLVM intrinsics for such functions.
5860    if (!getLangOptions().MathErrno &&
5861        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5862      if (!FD->getAttr<ConstAttr>())
5863        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5864    }
5865
5866    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5867      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5868    if (Context.BuiltinInfo.isConst(BuiltinID))
5869      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5870  }
5871
5872  IdentifierInfo *Name = FD->getIdentifier();
5873  if (!Name)
5874    return;
5875  if ((!getLangOptions().CPlusPlus &&
5876       FD->getDeclContext()->isTranslationUnit()) ||
5877      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5878       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5879       LinkageSpecDecl::lang_c)) {
5880    // Okay: this could be a libc/libm/Objective-C function we know
5881    // about.
5882  } else
5883    return;
5884
5885  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5886    // FIXME: NSLog and NSLogv should be target specific
5887    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5888      // FIXME: We known better than our headers.
5889      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5890    } else
5891      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5892                                             "printf", 1,
5893                                             Name->isStr("NSLogv") ? 0 : 2));
5894  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5895    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5896    // target-specific builtins, perhaps?
5897    if (!FD->getAttr<FormatAttr>())
5898      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5899                                             "printf", 2,
5900                                             Name->isStr("vasprintf") ? 0 : 3));
5901  }
5902}
5903
5904TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5905                                    TypeSourceInfo *TInfo) {
5906  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5907  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5908
5909  if (!TInfo) {
5910    assert(D.isInvalidType() && "no declarator info for valid type");
5911    TInfo = Context.getTrivialTypeSourceInfo(T);
5912  }
5913
5914  // Scope manipulation handled by caller.
5915  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5916                                           D.getSourceRange().getBegin(),
5917                                           D.getIdentifierLoc(),
5918                                           D.getIdentifier(),
5919                                           TInfo);
5920
5921  // Bail out immediately if we have an invalid declaration.
5922  if (D.isInvalidType()) {
5923    NewTD->setInvalidDecl();
5924    return NewTD;
5925  }
5926
5927  // C++ [dcl.typedef]p8:
5928  //   If the typedef declaration defines an unnamed class (or
5929  //   enum), the first typedef-name declared by the declaration
5930  //   to be that class type (or enum type) is used to denote the
5931  //   class type (or enum type) for linkage purposes only.
5932  // We need to check whether the type was declared in the declaration.
5933  switch (D.getDeclSpec().getTypeSpecType()) {
5934  case TST_enum:
5935  case TST_struct:
5936  case TST_union:
5937  case TST_class: {
5938    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
5939
5940    // Do nothing if the tag is not anonymous or already has an
5941    // associated typedef (from an earlier typedef in this decl group).
5942    if (tagFromDeclSpec->getIdentifier()) break;
5943    if (tagFromDeclSpec->getTypedefForAnonDecl()) break;
5944
5945    // A well-formed anonymous tag must always be a TUK_Definition.
5946    assert(tagFromDeclSpec->isThisDeclarationADefinition());
5947
5948    // The type must match the tag exactly;  no qualifiers allowed.
5949    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
5950      break;
5951
5952    // Otherwise, set this is the anon-decl typedef for the tag.
5953    tagFromDeclSpec->setTypedefForAnonDecl(NewTD);
5954    break;
5955  }
5956
5957  default:
5958    break;
5959  }
5960
5961  return NewTD;
5962}
5963
5964
5965/// \brief Determine whether a tag with a given kind is acceptable
5966/// as a redeclaration of the given tag declaration.
5967///
5968/// \returns true if the new tag kind is acceptable, false otherwise.
5969bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5970                                        TagTypeKind NewTag,
5971                                        SourceLocation NewTagLoc,
5972                                        const IdentifierInfo &Name) {
5973  // C++ [dcl.type.elab]p3:
5974  //   The class-key or enum keyword present in the
5975  //   elaborated-type-specifier shall agree in kind with the
5976  //   declaration to which the name in the elaborated-type-specifier
5977  //   refers. This rule also applies to the form of
5978  //   elaborated-type-specifier that declares a class-name or
5979  //   friend class since it can be construed as referring to the
5980  //   definition of the class. Thus, in any
5981  //   elaborated-type-specifier, the enum keyword shall be used to
5982  //   refer to an enumeration (7.2), the union class-key shall be
5983  //   used to refer to a union (clause 9), and either the class or
5984  //   struct class-key shall be used to refer to a class (clause 9)
5985  //   declared using the class or struct class-key.
5986  TagTypeKind OldTag = Previous->getTagKind();
5987  if (OldTag == NewTag)
5988    return true;
5989
5990  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5991      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5992    // Warn about the struct/class tag mismatch.
5993    bool isTemplate = false;
5994    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5995      isTemplate = Record->getDescribedClassTemplate();
5996
5997    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5998      << (NewTag == TTK_Class)
5999      << isTemplate << &Name
6000      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6001                              OldTag == TTK_Class? "class" : "struct");
6002    Diag(Previous->getLocation(), diag::note_previous_use);
6003    return true;
6004  }
6005  return false;
6006}
6007
6008/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6009/// former case, Name will be non-null.  In the later case, Name will be null.
6010/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6011/// reference/declaration/definition of a tag.
6012Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6013                     SourceLocation KWLoc, CXXScopeSpec &SS,
6014                     IdentifierInfo *Name, SourceLocation NameLoc,
6015                     AttributeList *Attr, AccessSpecifier AS,
6016                     MultiTemplateParamsArg TemplateParameterLists,
6017                     bool &OwnedDecl, bool &IsDependent,
6018                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6019                     TypeResult UnderlyingType) {
6020  // If this is not a definition, it must have a name.
6021  assert((Name != 0 || TUK == TUK_Definition) &&
6022         "Nameless record must be a definition!");
6023  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6024
6025  OwnedDecl = false;
6026  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6027
6028  // FIXME: Check explicit specializations more carefully.
6029  bool isExplicitSpecialization = false;
6030  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
6031  bool Invalid = false;
6032
6033  // We only need to do this matching if we have template parameters
6034  // or a scope specifier, which also conveniently avoids this work
6035  // for non-C++ cases.
6036  if (NumMatchedTemplateParamLists ||
6037      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6038    if (TemplateParameterList *TemplateParams
6039          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6040                                                TemplateParameterLists.get(),
6041                                               TemplateParameterLists.size(),
6042                                                    TUK == TUK_Friend,
6043                                                    isExplicitSpecialization,
6044                                                    Invalid)) {
6045      // All but one template parameter lists have been matching.
6046      --NumMatchedTemplateParamLists;
6047
6048      if (TemplateParams->size() > 0) {
6049        // This is a declaration or definition of a class template (which may
6050        // be a member of another template).
6051        if (Invalid)
6052          return 0;
6053
6054        OwnedDecl = false;
6055        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6056                                               SS, Name, NameLoc, Attr,
6057                                               TemplateParams, AS,
6058                                               NumMatchedTemplateParamLists,
6059                 (TemplateParameterList**) TemplateParameterLists.release());
6060        return Result.get();
6061      } else {
6062        // The "template<>" header is extraneous.
6063        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6064          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6065        isExplicitSpecialization = true;
6066      }
6067    }
6068  }
6069
6070  // Figure out the underlying type if this a enum declaration. We need to do
6071  // this early, because it's needed to detect if this is an incompatible
6072  // redeclaration.
6073  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6074
6075  if (Kind == TTK_Enum) {
6076    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6077      // No underlying type explicitly specified, or we failed to parse the
6078      // type, default to int.
6079      EnumUnderlying = Context.IntTy.getTypePtr();
6080    else if (UnderlyingType.get()) {
6081      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6082      // integral type; any cv-qualification is ignored.
6083      TypeSourceInfo *TI = 0;
6084      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6085      EnumUnderlying = TI;
6086
6087      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6088
6089      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6090        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6091          << T;
6092        // Recover by falling back to int.
6093        EnumUnderlying = Context.IntTy.getTypePtr();
6094      }
6095
6096      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6097                                          UPPC_FixedUnderlyingType))
6098        EnumUnderlying = Context.IntTy.getTypePtr();
6099
6100    } else if (getLangOptions().Microsoft)
6101      // Microsoft enums are always of int type.
6102      EnumUnderlying = Context.IntTy.getTypePtr();
6103  }
6104
6105  DeclContext *SearchDC = CurContext;
6106  DeclContext *DC = CurContext;
6107  bool isStdBadAlloc = false;
6108
6109  RedeclarationKind Redecl = ForRedeclaration;
6110  if (TUK == TUK_Friend || TUK == TUK_Reference)
6111    Redecl = NotForRedeclaration;
6112
6113  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6114
6115  if (Name && SS.isNotEmpty()) {
6116    // We have a nested-name tag ('struct foo::bar').
6117
6118    // Check for invalid 'foo::'.
6119    if (SS.isInvalid()) {
6120      Name = 0;
6121      goto CreateNewDecl;
6122    }
6123
6124    // If this is a friend or a reference to a class in a dependent
6125    // context, don't try to make a decl for it.
6126    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6127      DC = computeDeclContext(SS, false);
6128      if (!DC) {
6129        IsDependent = true;
6130        return 0;
6131      }
6132    } else {
6133      DC = computeDeclContext(SS, true);
6134      if (!DC) {
6135        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6136          << SS.getRange();
6137        return 0;
6138      }
6139    }
6140
6141    if (RequireCompleteDeclContext(SS, DC))
6142      return 0;
6143
6144    SearchDC = DC;
6145    // Look-up name inside 'foo::'.
6146    LookupQualifiedName(Previous, DC);
6147
6148    if (Previous.isAmbiguous())
6149      return 0;
6150
6151    if (Previous.empty()) {
6152      // Name lookup did not find anything. However, if the
6153      // nested-name-specifier refers to the current instantiation,
6154      // and that current instantiation has any dependent base
6155      // classes, we might find something at instantiation time: treat
6156      // this as a dependent elaborated-type-specifier.
6157      // But this only makes any sense for reference-like lookups.
6158      if (Previous.wasNotFoundInCurrentInstantiation() &&
6159          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6160        IsDependent = true;
6161        return 0;
6162      }
6163
6164      // A tag 'foo::bar' must already exist.
6165      Diag(NameLoc, diag::err_not_tag_in_scope)
6166        << Kind << Name << DC << SS.getRange();
6167      Name = 0;
6168      Invalid = true;
6169      goto CreateNewDecl;
6170    }
6171  } else if (Name) {
6172    // If this is a named struct, check to see if there was a previous forward
6173    // declaration or definition.
6174    // FIXME: We're looking into outer scopes here, even when we
6175    // shouldn't be. Doing so can result in ambiguities that we
6176    // shouldn't be diagnosing.
6177    LookupName(Previous, S);
6178
6179    // Note:  there used to be some attempt at recovery here.
6180    if (Previous.isAmbiguous())
6181      return 0;
6182
6183    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6184      // FIXME: This makes sure that we ignore the contexts associated
6185      // with C structs, unions, and enums when looking for a matching
6186      // tag declaration or definition. See the similar lookup tweak
6187      // in Sema::LookupName; is there a better way to deal with this?
6188      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6189        SearchDC = SearchDC->getParent();
6190    }
6191  } else if (S->isFunctionPrototypeScope()) {
6192    // If this is an enum declaration in function prototype scope, set its
6193    // initial context to the translation unit.
6194    SearchDC = Context.getTranslationUnitDecl();
6195  }
6196
6197  if (Previous.isSingleResult() &&
6198      Previous.getFoundDecl()->isTemplateParameter()) {
6199    // Maybe we will complain about the shadowed template parameter.
6200    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6201    // Just pretend that we didn't see the previous declaration.
6202    Previous.clear();
6203  }
6204
6205  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6206      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6207    // This is a declaration of or a reference to "std::bad_alloc".
6208    isStdBadAlloc = true;
6209
6210    if (Previous.empty() && StdBadAlloc) {
6211      // std::bad_alloc has been implicitly declared (but made invisible to
6212      // name lookup). Fill in this implicit declaration as the previous
6213      // declaration, so that the declarations get chained appropriately.
6214      Previous.addDecl(getStdBadAlloc());
6215    }
6216  }
6217
6218  // If we didn't find a previous declaration, and this is a reference
6219  // (or friend reference), move to the correct scope.  In C++, we
6220  // also need to do a redeclaration lookup there, just in case
6221  // there's a shadow friend decl.
6222  if (Name && Previous.empty() &&
6223      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6224    if (Invalid) goto CreateNewDecl;
6225    assert(SS.isEmpty());
6226
6227    if (TUK == TUK_Reference) {
6228      // C++ [basic.scope.pdecl]p5:
6229      //   -- for an elaborated-type-specifier of the form
6230      //
6231      //          class-key identifier
6232      //
6233      //      if the elaborated-type-specifier is used in the
6234      //      decl-specifier-seq or parameter-declaration-clause of a
6235      //      function defined in namespace scope, the identifier is
6236      //      declared as a class-name in the namespace that contains
6237      //      the declaration; otherwise, except as a friend
6238      //      declaration, the identifier is declared in the smallest
6239      //      non-class, non-function-prototype scope that contains the
6240      //      declaration.
6241      //
6242      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6243      // C structs and unions.
6244      //
6245      // It is an error in C++ to declare (rather than define) an enum
6246      // type, including via an elaborated type specifier.  We'll
6247      // diagnose that later; for now, declare the enum in the same
6248      // scope as we would have picked for any other tag type.
6249      //
6250      // GNU C also supports this behavior as part of its incomplete
6251      // enum types extension, while GNU C++ does not.
6252      //
6253      // Find the context where we'll be declaring the tag.
6254      // FIXME: We would like to maintain the current DeclContext as the
6255      // lexical context,
6256      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6257        SearchDC = SearchDC->getParent();
6258
6259      // Find the scope where we'll be declaring the tag.
6260      while (S->isClassScope() ||
6261             (getLangOptions().CPlusPlus &&
6262              S->isFunctionPrototypeScope()) ||
6263             ((S->getFlags() & Scope::DeclScope) == 0) ||
6264             (S->getEntity() &&
6265              ((DeclContext *)S->getEntity())->isTransparentContext()))
6266        S = S->getParent();
6267    } else {
6268      assert(TUK == TUK_Friend);
6269      // C++ [namespace.memdef]p3:
6270      //   If a friend declaration in a non-local class first declares a
6271      //   class or function, the friend class or function is a member of
6272      //   the innermost enclosing namespace.
6273      SearchDC = SearchDC->getEnclosingNamespaceContext();
6274    }
6275
6276    // In C++, we need to do a redeclaration lookup to properly
6277    // diagnose some problems.
6278    if (getLangOptions().CPlusPlus) {
6279      Previous.setRedeclarationKind(ForRedeclaration);
6280      LookupQualifiedName(Previous, SearchDC);
6281    }
6282  }
6283
6284  if (!Previous.empty()) {
6285    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6286
6287    // It's okay to have a tag decl in the same scope as a typedef
6288    // which hides a tag decl in the same scope.  Finding this
6289    // insanity with a redeclaration lookup can only actually happen
6290    // in C++.
6291    //
6292    // This is also okay for elaborated-type-specifiers, which is
6293    // technically forbidden by the current standard but which is
6294    // okay according to the likely resolution of an open issue;
6295    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6296    if (getLangOptions().CPlusPlus) {
6297      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
6298        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6299          TagDecl *Tag = TT->getDecl();
6300          if (Tag->getDeclName() == Name &&
6301              Tag->getDeclContext()->getRedeclContext()
6302                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6303            PrevDecl = Tag;
6304            Previous.clear();
6305            Previous.addDecl(Tag);
6306            Previous.resolveKind();
6307          }
6308        }
6309      }
6310    }
6311
6312    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6313      // If this is a use of a previous tag, or if the tag is already declared
6314      // in the same scope (so that the definition/declaration completes or
6315      // rementions the tag), reuse the decl.
6316      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6317          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6318        // Make sure that this wasn't declared as an enum and now used as a
6319        // struct or something similar.
6320        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6321          bool SafeToContinue
6322            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6323               Kind != TTK_Enum);
6324          if (SafeToContinue)
6325            Diag(KWLoc, diag::err_use_with_wrong_tag)
6326              << Name
6327              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6328                                              PrevTagDecl->getKindName());
6329          else
6330            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6331          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6332
6333          if (SafeToContinue)
6334            Kind = PrevTagDecl->getTagKind();
6335          else {
6336            // Recover by making this an anonymous redefinition.
6337            Name = 0;
6338            Previous.clear();
6339            Invalid = true;
6340          }
6341        }
6342
6343        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6344          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6345
6346          // All conflicts with previous declarations are recovered by
6347          // returning the previous declaration.
6348          if (ScopedEnum != PrevEnum->isScoped()) {
6349            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6350              << PrevEnum->isScoped();
6351            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6352            return PrevTagDecl;
6353          }
6354          else if (EnumUnderlying && PrevEnum->isFixed()) {
6355            QualType T;
6356            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6357                T = TI->getType();
6358            else
6359                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6360
6361            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6362              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6363                   diag::err_enum_redeclare_type_mismatch)
6364                << T
6365                << PrevEnum->getIntegerType();
6366              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6367              return PrevTagDecl;
6368            }
6369          }
6370          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6371            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6372              << PrevEnum->isFixed();
6373            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6374            return PrevTagDecl;
6375          }
6376        }
6377
6378        if (!Invalid) {
6379          // If this is a use, just return the declaration we found.
6380
6381          // FIXME: In the future, return a variant or some other clue
6382          // for the consumer of this Decl to know it doesn't own it.
6383          // For our current ASTs this shouldn't be a problem, but will
6384          // need to be changed with DeclGroups.
6385          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6386              TUK == TUK_Friend)
6387            return PrevTagDecl;
6388
6389          // Diagnose attempts to redefine a tag.
6390          if (TUK == TUK_Definition) {
6391            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6392              // If we're defining a specialization and the previous definition
6393              // is from an implicit instantiation, don't emit an error
6394              // here; we'll catch this in the general case below.
6395              if (!isExplicitSpecialization ||
6396                  !isa<CXXRecordDecl>(Def) ||
6397                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6398                                               == TSK_ExplicitSpecialization) {
6399                Diag(NameLoc, diag::err_redefinition) << Name;
6400                Diag(Def->getLocation(), diag::note_previous_definition);
6401                // If this is a redefinition, recover by making this
6402                // struct be anonymous, which will make any later
6403                // references get the previous definition.
6404                Name = 0;
6405                Previous.clear();
6406                Invalid = true;
6407              }
6408            } else {
6409              // If the type is currently being defined, complain
6410              // about a nested redefinition.
6411              const TagType *Tag
6412                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6413              if (Tag->isBeingDefined()) {
6414                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6415                Diag(PrevTagDecl->getLocation(),
6416                     diag::note_previous_definition);
6417                Name = 0;
6418                Previous.clear();
6419                Invalid = true;
6420              }
6421            }
6422
6423            // Okay, this is definition of a previously declared or referenced
6424            // tag PrevDecl. We're going to create a new Decl for it.
6425          }
6426        }
6427        // If we get here we have (another) forward declaration or we
6428        // have a definition.  Just create a new decl.
6429
6430      } else {
6431        // If we get here, this is a definition of a new tag type in a nested
6432        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6433        // new decl/type.  We set PrevDecl to NULL so that the entities
6434        // have distinct types.
6435        Previous.clear();
6436      }
6437      // If we get here, we're going to create a new Decl. If PrevDecl
6438      // is non-NULL, it's a definition of the tag declared by
6439      // PrevDecl. If it's NULL, we have a new definition.
6440
6441
6442    // Otherwise, PrevDecl is not a tag, but was found with tag
6443    // lookup.  This is only actually possible in C++, where a few
6444    // things like templates still live in the tag namespace.
6445    } else {
6446      assert(getLangOptions().CPlusPlus);
6447
6448      // Use a better diagnostic if an elaborated-type-specifier
6449      // found the wrong kind of type on the first
6450      // (non-redeclaration) lookup.
6451      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6452          !Previous.isForRedeclaration()) {
6453        unsigned Kind = 0;
6454        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6455        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6456        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6457        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6458        Invalid = true;
6459
6460      // Otherwise, only diagnose if the declaration is in scope.
6461      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6462                                isExplicitSpecialization)) {
6463        // do nothing
6464
6465      // Diagnose implicit declarations introduced by elaborated types.
6466      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6467        unsigned Kind = 0;
6468        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6469        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
6470        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6471        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6472        Invalid = true;
6473
6474      // Otherwise it's a declaration.  Call out a particularly common
6475      // case here.
6476      } else if (isa<TypedefDecl>(PrevDecl)) {
6477        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6478          << Name
6479          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
6480        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6481        Invalid = true;
6482
6483      // Otherwise, diagnose.
6484      } else {
6485        // The tag name clashes with something else in the target scope,
6486        // issue an error and recover by making this tag be anonymous.
6487        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
6488        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6489        Name = 0;
6490        Invalid = true;
6491      }
6492
6493      // The existing declaration isn't relevant to us; we're in a
6494      // new scope, so clear out the previous declaration.
6495      Previous.clear();
6496    }
6497  }
6498
6499CreateNewDecl:
6500
6501  TagDecl *PrevDecl = 0;
6502  if (Previous.isSingleResult())
6503    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
6504
6505  // If there is an identifier, use the location of the identifier as the
6506  // location of the decl, otherwise use the location of the struct/union
6507  // keyword.
6508  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
6509
6510  // Otherwise, create a new declaration. If there is a previous
6511  // declaration of the same entity, the two will be linked via
6512  // PrevDecl.
6513  TagDecl *New;
6514
6515  bool IsForwardReference = false;
6516  if (Kind == TTK_Enum) {
6517    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6518    // enum X { A, B, C } D;    D should chain to X.
6519    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
6520                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
6521                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
6522    // If this is an undefined enum, warn.
6523    if (TUK != TUK_Definition && !Invalid) {
6524      TagDecl *Def;
6525      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
6526        // C++0x: 7.2p2: opaque-enum-declaration.
6527        // Conflicts are diagnosed above. Do nothing.
6528      }
6529      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
6530        Diag(Loc, diag::ext_forward_ref_enum_def)
6531          << New;
6532        Diag(Def->getLocation(), diag::note_previous_definition);
6533      } else {
6534        unsigned DiagID = diag::ext_forward_ref_enum;
6535        if (getLangOptions().Microsoft)
6536          DiagID = diag::ext_ms_forward_ref_enum;
6537        else if (getLangOptions().CPlusPlus)
6538          DiagID = diag::err_forward_ref_enum;
6539        Diag(Loc, DiagID);
6540
6541        // If this is a forward-declared reference to an enumeration, make a
6542        // note of it; we won't actually be introducing the declaration into
6543        // the declaration context.
6544        if (TUK == TUK_Reference)
6545          IsForwardReference = true;
6546      }
6547    }
6548
6549    if (EnumUnderlying) {
6550      EnumDecl *ED = cast<EnumDecl>(New);
6551      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6552        ED->setIntegerTypeSourceInfo(TI);
6553      else
6554        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
6555      ED->setPromotionType(ED->getIntegerType());
6556    }
6557
6558  } else {
6559    // struct/union/class
6560
6561    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
6562    // struct X { int A; } D;    D should chain to X.
6563    if (getLangOptions().CPlusPlus) {
6564      // FIXME: Look for a way to use RecordDecl for simple structs.
6565      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6566                                  cast_or_null<CXXRecordDecl>(PrevDecl));
6567
6568      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
6569        StdBadAlloc = cast<CXXRecordDecl>(New);
6570    } else
6571      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
6572                               cast_or_null<RecordDecl>(PrevDecl));
6573  }
6574
6575  // Maybe add qualifier info.
6576  if (SS.isNotEmpty()) {
6577    if (SS.isSet()) {
6578      New->setQualifierInfo(SS.getWithLocInContext(Context));
6579      if (NumMatchedTemplateParamLists > 0) {
6580        New->setTemplateParameterListsInfo(Context,
6581                                           NumMatchedTemplateParamLists,
6582                    (TemplateParameterList**) TemplateParameterLists.release());
6583      }
6584    }
6585    else
6586      Invalid = true;
6587  }
6588
6589  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
6590    // Add alignment attributes if necessary; these attributes are checked when
6591    // the ASTContext lays out the structure.
6592    //
6593    // It is important for implementing the correct semantics that this
6594    // happen here (in act on tag decl). The #pragma pack stack is
6595    // maintained as a result of parser callbacks which can occur at
6596    // many points during the parsing of a struct declaration (because
6597    // the #pragma tokens are effectively skipped over during the
6598    // parsing of the struct).
6599    AddAlignmentAttributesForRecord(RD);
6600  }
6601
6602  // If this is a specialization of a member class (of a class template),
6603  // check the specialization.
6604  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
6605    Invalid = true;
6606
6607  if (Invalid)
6608    New->setInvalidDecl();
6609
6610  if (Attr)
6611    ProcessDeclAttributeList(S, New, Attr);
6612
6613  // If we're declaring or defining a tag in function prototype scope
6614  // in C, note that this type can only be used within the function.
6615  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
6616    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
6617
6618  // Set the lexical context. If the tag has a C++ scope specifier, the
6619  // lexical context will be different from the semantic context.
6620  New->setLexicalDeclContext(CurContext);
6621
6622  // Mark this as a friend decl if applicable.
6623  if (TUK == TUK_Friend)
6624    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
6625
6626  // Set the access specifier.
6627  if (!Invalid && SearchDC->isRecord())
6628    SetMemberAccessSpecifier(New, PrevDecl, AS);
6629
6630  if (TUK == TUK_Definition)
6631    New->startDefinition();
6632
6633  // If this has an identifier, add it to the scope stack.
6634  if (TUK == TUK_Friend) {
6635    // We might be replacing an existing declaration in the lookup tables;
6636    // if so, borrow its access specifier.
6637    if (PrevDecl)
6638      New->setAccess(PrevDecl->getAccess());
6639
6640    DeclContext *DC = New->getDeclContext()->getRedeclContext();
6641    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6642    if (Name) // can be null along some error paths
6643      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
6644        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
6645  } else if (Name) {
6646    S = getNonFieldDeclScope(S);
6647    PushOnScopeChains(New, S, !IsForwardReference);
6648    if (IsForwardReference)
6649      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
6650
6651  } else {
6652    CurContext->addDecl(New);
6653  }
6654
6655  // If this is the C FILE type, notify the AST context.
6656  if (IdentifierInfo *II = New->getIdentifier())
6657    if (!New->isInvalidDecl() &&
6658        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
6659        II->isStr("FILE"))
6660      Context.setFILEDecl(New);
6661
6662  OwnedDecl = true;
6663  return New;
6664}
6665
6666void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
6667  AdjustDeclIfTemplate(TagD);
6668  TagDecl *Tag = cast<TagDecl>(TagD);
6669
6670  // Enter the tag context.
6671  PushDeclContext(S, Tag);
6672}
6673
6674void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
6675                                           ClassVirtSpecifiers &CVS,
6676                                           SourceLocation LBraceLoc) {
6677  AdjustDeclIfTemplate(TagD);
6678  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
6679
6680  FieldCollector->StartClass();
6681
6682  if (!Record->getIdentifier())
6683    return;
6684
6685  if (CVS.isFinalSpecified())
6686    Record->addAttr(new (Context) FinalAttr(CVS.getFinalLoc(), Context));
6687  if (CVS.isExplicitSpecified())
6688    Record->addAttr(new (Context) ExplicitAttr(CVS.getExplicitLoc(), Context));
6689
6690  // C++ [class]p2:
6691  //   [...] The class-name is also inserted into the scope of the
6692  //   class itself; this is known as the injected-class-name. For
6693  //   purposes of access checking, the injected-class-name is treated
6694  //   as if it were a public member name.
6695  CXXRecordDecl *InjectedClassName
6696    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
6697                            Record->getLocStart(), Record->getLocation(),
6698                            Record->getIdentifier(),
6699                            /*PrevDecl=*/0,
6700                            /*DelayTypeCreation=*/true);
6701  Context.getTypeDeclType(InjectedClassName, Record);
6702  InjectedClassName->setImplicit();
6703  InjectedClassName->setAccess(AS_public);
6704  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
6705      InjectedClassName->setDescribedClassTemplate(Template);
6706  PushOnScopeChains(InjectedClassName, S);
6707  assert(InjectedClassName->isInjectedClassName() &&
6708         "Broken injected-class-name");
6709}
6710
6711void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
6712                                    SourceLocation RBraceLoc) {
6713  AdjustDeclIfTemplate(TagD);
6714  TagDecl *Tag = cast<TagDecl>(TagD);
6715  Tag->setRBraceLoc(RBraceLoc);
6716
6717  if (isa<CXXRecordDecl>(Tag))
6718    FieldCollector->FinishClass();
6719
6720  // Exit this scope of this tag's definition.
6721  PopDeclContext();
6722
6723  // Notify the consumer that we've defined a tag.
6724  Consumer.HandleTagDeclDefinition(Tag);
6725}
6726
6727void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
6728  AdjustDeclIfTemplate(TagD);
6729  TagDecl *Tag = cast<TagDecl>(TagD);
6730  Tag->setInvalidDecl();
6731
6732  // We're undoing ActOnTagStartDefinition here, not
6733  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
6734  // the FieldCollector.
6735
6736  PopDeclContext();
6737}
6738
6739// Note that FieldName may be null for anonymous bitfields.
6740bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
6741                          QualType FieldTy, const Expr *BitWidth,
6742                          bool *ZeroWidth) {
6743  // Default to true; that shouldn't confuse checks for emptiness
6744  if (ZeroWidth)
6745    *ZeroWidth = true;
6746
6747  // C99 6.7.2.1p4 - verify the field type.
6748  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
6749  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
6750    // Handle incomplete types with specific error.
6751    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
6752      return true;
6753    if (FieldName)
6754      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
6755        << FieldName << FieldTy << BitWidth->getSourceRange();
6756    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
6757      << FieldTy << BitWidth->getSourceRange();
6758  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
6759                                             UPPC_BitFieldWidth))
6760    return true;
6761
6762  // If the bit-width is type- or value-dependent, don't try to check
6763  // it now.
6764  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
6765    return false;
6766
6767  llvm::APSInt Value;
6768  if (VerifyIntegerConstantExpression(BitWidth, &Value))
6769    return true;
6770
6771  if (Value != 0 && ZeroWidth)
6772    *ZeroWidth = false;
6773
6774  // Zero-width bitfield is ok for anonymous field.
6775  if (Value == 0 && FieldName)
6776    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
6777
6778  if (Value.isSigned() && Value.isNegative()) {
6779    if (FieldName)
6780      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
6781               << FieldName << Value.toString(10);
6782    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
6783      << Value.toString(10);
6784  }
6785
6786  if (!FieldTy->isDependentType()) {
6787    uint64_t TypeSize = Context.getTypeSize(FieldTy);
6788    if (Value.getZExtValue() > TypeSize) {
6789      if (!getLangOptions().CPlusPlus) {
6790        if (FieldName)
6791          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
6792            << FieldName << (unsigned)Value.getZExtValue()
6793            << (unsigned)TypeSize;
6794
6795        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6796          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6797      }
6798
6799      if (FieldName)
6800        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6801          << FieldName << (unsigned)Value.getZExtValue()
6802          << (unsigned)TypeSize;
6803      else
6804        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6805          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6806    }
6807  }
6808
6809  return false;
6810}
6811
6812/// ActOnField - Each field of a struct/union/class is passed into this in order
6813/// to create a FieldDecl object for it.
6814Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6815                                 SourceLocation DeclStart,
6816                                 Declarator &D, ExprTy *BitfieldWidth) {
6817  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6818                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6819                               AS_public);
6820  return Res;
6821}
6822
6823/// HandleField - Analyze a field of a C struct or a C++ data member.
6824///
6825FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6826                             SourceLocation DeclStart,
6827                             Declarator &D, Expr *BitWidth,
6828                             AccessSpecifier AS) {
6829  IdentifierInfo *II = D.getIdentifier();
6830  SourceLocation Loc = DeclStart;
6831  if (II) Loc = D.getIdentifierLoc();
6832
6833  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6834  QualType T = TInfo->getType();
6835  if (getLangOptions().CPlusPlus) {
6836    CheckExtraCXXDefaultArguments(D);
6837
6838    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
6839                                        UPPC_DataMemberType)) {
6840      D.setInvalidType();
6841      T = Context.IntTy;
6842      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
6843    }
6844  }
6845
6846  DiagnoseFunctionSpecifiers(D);
6847
6848  if (D.getDeclSpec().isThreadSpecified())
6849    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6850
6851  // Check to see if this name was declared as a member previously
6852  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6853  LookupName(Previous, S);
6854  assert((Previous.empty() || Previous.isOverloadedResult() ||
6855          Previous.isSingleResult())
6856    && "Lookup of member name should be either overloaded, single or null");
6857
6858  // If the name is overloaded then get any declaration else get the single result
6859  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6860    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6861
6862  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6863    // Maybe we will complain about the shadowed template parameter.
6864    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6865    // Just pretend that we didn't see the previous declaration.
6866    PrevDecl = 0;
6867  }
6868
6869  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6870    PrevDecl = 0;
6871
6872  bool Mutable
6873    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6874  SourceLocation TSSL = D.getSourceRange().getBegin();
6875  FieldDecl *NewFD
6876    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6877                     AS, PrevDecl, &D);
6878
6879  if (NewFD->isInvalidDecl())
6880    Record->setInvalidDecl();
6881
6882  if (NewFD->isInvalidDecl() && PrevDecl) {
6883    // Don't introduce NewFD into scope; there's already something
6884    // with the same name in the same scope.
6885  } else if (II) {
6886    PushOnScopeChains(NewFD, S);
6887  } else
6888    Record->addDecl(NewFD);
6889
6890  return NewFD;
6891}
6892
6893/// \brief Build a new FieldDecl and check its well-formedness.
6894///
6895/// This routine builds a new FieldDecl given the fields name, type,
6896/// record, etc. \p PrevDecl should refer to any previous declaration
6897/// with the same name and in the same scope as the field to be
6898/// created.
6899///
6900/// \returns a new FieldDecl.
6901///
6902/// \todo The Declarator argument is a hack. It will be removed once
6903FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6904                                TypeSourceInfo *TInfo,
6905                                RecordDecl *Record, SourceLocation Loc,
6906                                bool Mutable, Expr *BitWidth,
6907                                SourceLocation TSSL,
6908                                AccessSpecifier AS, NamedDecl *PrevDecl,
6909                                Declarator *D) {
6910  IdentifierInfo *II = Name.getAsIdentifierInfo();
6911  bool InvalidDecl = false;
6912  if (D) InvalidDecl = D->isInvalidType();
6913
6914  // If we receive a broken type, recover by assuming 'int' and
6915  // marking this declaration as invalid.
6916  if (T.isNull()) {
6917    InvalidDecl = true;
6918    T = Context.IntTy;
6919  }
6920
6921  QualType EltTy = Context.getBaseElementType(T);
6922  if (!EltTy->isDependentType() &&
6923      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6924    // Fields of incomplete type force their record to be invalid.
6925    Record->setInvalidDecl();
6926    InvalidDecl = true;
6927  }
6928
6929  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6930  // than a variably modified type.
6931  if (!InvalidDecl && T->isVariablyModifiedType()) {
6932    bool SizeIsNegative;
6933    llvm::APSInt Oversized;
6934    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6935                                                           SizeIsNegative,
6936                                                           Oversized);
6937    if (!FixedTy.isNull()) {
6938      Diag(Loc, diag::warn_illegal_constant_array_size);
6939      T = FixedTy;
6940    } else {
6941      if (SizeIsNegative)
6942        Diag(Loc, diag::err_typecheck_negative_array_size);
6943      else if (Oversized.getBoolValue())
6944        Diag(Loc, diag::err_array_too_large)
6945          << Oversized.toString(10);
6946      else
6947        Diag(Loc, diag::err_typecheck_field_variable_size);
6948      InvalidDecl = true;
6949    }
6950  }
6951
6952  // Fields can not have abstract class types
6953  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6954                                             diag::err_abstract_type_in_decl,
6955                                             AbstractFieldType))
6956    InvalidDecl = true;
6957
6958  bool ZeroWidth = false;
6959  // If this is declared as a bit-field, check the bit-field.
6960  if (!InvalidDecl && BitWidth &&
6961      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6962    InvalidDecl = true;
6963    BitWidth = 0;
6964    ZeroWidth = false;
6965  }
6966
6967  // Check that 'mutable' is consistent with the type of the declaration.
6968  if (!InvalidDecl && Mutable) {
6969    unsigned DiagID = 0;
6970    if (T->isReferenceType())
6971      DiagID = diag::err_mutable_reference;
6972    else if (T.isConstQualified())
6973      DiagID = diag::err_mutable_const;
6974
6975    if (DiagID) {
6976      SourceLocation ErrLoc = Loc;
6977      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6978        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6979      Diag(ErrLoc, DiagID);
6980      Mutable = false;
6981      InvalidDecl = true;
6982    }
6983  }
6984
6985  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
6986                                       BitWidth, Mutable);
6987  if (InvalidDecl)
6988    NewFD->setInvalidDecl();
6989
6990  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6991    Diag(Loc, diag::err_duplicate_member) << II;
6992    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6993    NewFD->setInvalidDecl();
6994  }
6995
6996  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6997    if (Record->isUnion()) {
6998      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6999        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7000        if (RDecl->getDefinition()) {
7001          // C++ [class.union]p1: An object of a class with a non-trivial
7002          // constructor, a non-trivial copy constructor, a non-trivial
7003          // destructor, or a non-trivial copy assignment operator
7004          // cannot be a member of a union, nor can an array of such
7005          // objects.
7006          // TODO: C++0x alters this restriction significantly.
7007          if (CheckNontrivialField(NewFD))
7008            NewFD->setInvalidDecl();
7009        }
7010      }
7011
7012      // C++ [class.union]p1: If a union contains a member of reference type,
7013      // the program is ill-formed.
7014      if (EltTy->isReferenceType()) {
7015        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7016          << NewFD->getDeclName() << EltTy;
7017        NewFD->setInvalidDecl();
7018      }
7019    }
7020  }
7021
7022  // FIXME: We need to pass in the attributes given an AST
7023  // representation, not a parser representation.
7024  if (D)
7025    // FIXME: What to pass instead of TUScope?
7026    ProcessDeclAttributes(TUScope, NewFD, *D);
7027
7028  if (T.isObjCGCWeak())
7029    Diag(Loc, diag::warn_attribute_weak_on_field);
7030
7031  NewFD->setAccess(AS);
7032  return NewFD;
7033}
7034
7035bool Sema::CheckNontrivialField(FieldDecl *FD) {
7036  assert(FD);
7037  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7038
7039  if (FD->isInvalidDecl())
7040    return true;
7041
7042  QualType EltTy = Context.getBaseElementType(FD->getType());
7043  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7044    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7045    if (RDecl->getDefinition()) {
7046      // We check for copy constructors before constructors
7047      // because otherwise we'll never get complaints about
7048      // copy constructors.
7049
7050      CXXSpecialMember member = CXXInvalid;
7051      if (!RDecl->hasTrivialCopyConstructor())
7052        member = CXXCopyConstructor;
7053      else if (!RDecl->hasTrivialConstructor())
7054        member = CXXConstructor;
7055      else if (!RDecl->hasTrivialCopyAssignment())
7056        member = CXXCopyAssignment;
7057      else if (!RDecl->hasTrivialDestructor())
7058        member = CXXDestructor;
7059
7060      if (member != CXXInvalid) {
7061        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7062              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7063        DiagnoseNontrivial(RT, member);
7064        return true;
7065      }
7066    }
7067  }
7068
7069  return false;
7070}
7071
7072/// DiagnoseNontrivial - Given that a class has a non-trivial
7073/// special member, figure out why.
7074void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7075  QualType QT(T, 0U);
7076  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7077
7078  // Check whether the member was user-declared.
7079  switch (member) {
7080  case CXXInvalid:
7081    break;
7082
7083  case CXXConstructor:
7084    if (RD->hasUserDeclaredConstructor()) {
7085      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7086      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7087        const FunctionDecl *body = 0;
7088        ci->hasBody(body);
7089        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7090          SourceLocation CtorLoc = ci->getLocation();
7091          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7092          return;
7093        }
7094      }
7095
7096      assert(0 && "found no user-declared constructors");
7097      return;
7098    }
7099    break;
7100
7101  case CXXCopyConstructor:
7102    if (RD->hasUserDeclaredCopyConstructor()) {
7103      SourceLocation CtorLoc =
7104        RD->getCopyConstructor(Context, 0)->getLocation();
7105      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7106      return;
7107    }
7108    break;
7109
7110  case CXXCopyAssignment:
7111    if (RD->hasUserDeclaredCopyAssignment()) {
7112      // FIXME: this should use the location of the copy
7113      // assignment, not the type.
7114      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7115      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7116      return;
7117    }
7118    break;
7119
7120  case CXXDestructor:
7121    if (RD->hasUserDeclaredDestructor()) {
7122      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7123      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7124      return;
7125    }
7126    break;
7127  }
7128
7129  typedef CXXRecordDecl::base_class_iterator base_iter;
7130
7131  // Virtual bases and members inhibit trivial copying/construction,
7132  // but not trivial destruction.
7133  if (member != CXXDestructor) {
7134    // Check for virtual bases.  vbases includes indirect virtual bases,
7135    // so we just iterate through the direct bases.
7136    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7137      if (bi->isVirtual()) {
7138        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7139        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7140        return;
7141      }
7142
7143    // Check for virtual methods.
7144    typedef CXXRecordDecl::method_iterator meth_iter;
7145    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7146         ++mi) {
7147      if (mi->isVirtual()) {
7148        SourceLocation MLoc = mi->getSourceRange().getBegin();
7149        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7150        return;
7151      }
7152    }
7153  }
7154
7155  bool (CXXRecordDecl::*hasTrivial)() const;
7156  switch (member) {
7157  case CXXConstructor:
7158    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7159  case CXXCopyConstructor:
7160    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7161  case CXXCopyAssignment:
7162    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7163  case CXXDestructor:
7164    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7165  default:
7166    assert(0 && "unexpected special member"); return;
7167  }
7168
7169  // Check for nontrivial bases (and recurse).
7170  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7171    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7172    assert(BaseRT && "Don't know how to handle dependent bases");
7173    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7174    if (!(BaseRecTy->*hasTrivial)()) {
7175      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7176      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7177      DiagnoseNontrivial(BaseRT, member);
7178      return;
7179    }
7180  }
7181
7182  // Check for nontrivial members (and recurse).
7183  typedef RecordDecl::field_iterator field_iter;
7184  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7185       ++fi) {
7186    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7187    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7188      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7189
7190      if (!(EltRD->*hasTrivial)()) {
7191        SourceLocation FLoc = (*fi)->getLocation();
7192        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7193        DiagnoseNontrivial(EltRT, member);
7194        return;
7195      }
7196    }
7197  }
7198
7199  assert(0 && "found no explanation for non-trivial member");
7200}
7201
7202/// TranslateIvarVisibility - Translate visibility from a token ID to an
7203///  AST enum value.
7204static ObjCIvarDecl::AccessControl
7205TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7206  switch (ivarVisibility) {
7207  default: assert(0 && "Unknown visitibility kind");
7208  case tok::objc_private: return ObjCIvarDecl::Private;
7209  case tok::objc_public: return ObjCIvarDecl::Public;
7210  case tok::objc_protected: return ObjCIvarDecl::Protected;
7211  case tok::objc_package: return ObjCIvarDecl::Package;
7212  }
7213}
7214
7215/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7216/// in order to create an IvarDecl object for it.
7217Decl *Sema::ActOnIvar(Scope *S,
7218                                SourceLocation DeclStart,
7219                                Decl *IntfDecl,
7220                                Declarator &D, ExprTy *BitfieldWidth,
7221                                tok::ObjCKeywordKind Visibility) {
7222
7223  IdentifierInfo *II = D.getIdentifier();
7224  Expr *BitWidth = (Expr*)BitfieldWidth;
7225  SourceLocation Loc = DeclStart;
7226  if (II) Loc = D.getIdentifierLoc();
7227
7228  // FIXME: Unnamed fields can be handled in various different ways, for
7229  // example, unnamed unions inject all members into the struct namespace!
7230
7231  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7232  QualType T = TInfo->getType();
7233
7234  if (BitWidth) {
7235    // 6.7.2.1p3, 6.7.2.1p4
7236    if (VerifyBitField(Loc, II, T, BitWidth)) {
7237      D.setInvalidType();
7238      BitWidth = 0;
7239    }
7240  } else {
7241    // Not a bitfield.
7242
7243    // validate II.
7244
7245  }
7246  if (T->isReferenceType()) {
7247    Diag(Loc, diag::err_ivar_reference_type);
7248    D.setInvalidType();
7249  }
7250  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7251  // than a variably modified type.
7252  else if (T->isVariablyModifiedType()) {
7253    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7254    D.setInvalidType();
7255  }
7256
7257  // Get the visibility (access control) for this ivar.
7258  ObjCIvarDecl::AccessControl ac =
7259    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7260                                        : ObjCIvarDecl::None;
7261  // Must set ivar's DeclContext to its enclosing interface.
7262  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7263  ObjCContainerDecl *EnclosingContext;
7264  if (ObjCImplementationDecl *IMPDecl =
7265      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7266    if (!LangOpts.ObjCNonFragileABI2) {
7267    // Case of ivar declared in an implementation. Context is that of its class.
7268      EnclosingContext = IMPDecl->getClassInterface();
7269      assert(EnclosingContext && "Implementation has no class interface!");
7270    }
7271    else
7272      EnclosingContext = EnclosingDecl;
7273  } else {
7274    if (ObjCCategoryDecl *CDecl =
7275        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7276      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7277        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7278        return 0;
7279      }
7280    }
7281    EnclosingContext = EnclosingDecl;
7282  }
7283
7284  // Construct the decl.
7285  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7286                                             DeclStart, Loc, II, T,
7287                                             TInfo, ac, (Expr *)BitfieldWidth);
7288
7289  if (II) {
7290    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7291                                           ForRedeclaration);
7292    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7293        && !isa<TagDecl>(PrevDecl)) {
7294      Diag(Loc, diag::err_duplicate_member) << II;
7295      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7296      NewID->setInvalidDecl();
7297    }
7298  }
7299
7300  // Process attributes attached to the ivar.
7301  ProcessDeclAttributes(S, NewID, D);
7302
7303  if (D.isInvalidType())
7304    NewID->setInvalidDecl();
7305
7306  if (II) {
7307    // FIXME: When interfaces are DeclContexts, we'll need to add
7308    // these to the interface.
7309    S->AddDecl(NewID);
7310    IdResolver.AddDecl(NewID);
7311  }
7312
7313  return NewID;
7314}
7315
7316/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7317/// class and class extensions. For every class @interface and class
7318/// extension @interface, if the last ivar is a bitfield of any type,
7319/// then add an implicit `char :0` ivar to the end of that interface.
7320void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7321                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7322  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7323    return;
7324
7325  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7326  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7327
7328  if (!Ivar->isBitField())
7329    return;
7330  uint64_t BitFieldSize =
7331    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7332  if (BitFieldSize == 0)
7333    return;
7334  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7335  if (!ID) {
7336    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7337      if (!CD->IsClassExtension())
7338        return;
7339    }
7340    // No need to add this to end of @implementation.
7341    else
7342      return;
7343  }
7344  // All conditions are met. Add a new bitfield to the tail end of ivars.
7345  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7346  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7347
7348  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7349                              DeclLoc, DeclLoc, 0,
7350                              Context.CharTy,
7351                              Context.CreateTypeSourceInfo(Context.CharTy),
7352                              ObjCIvarDecl::Private, BW,
7353                              true);
7354  AllIvarDecls.push_back(Ivar);
7355}
7356
7357void Sema::ActOnFields(Scope* S,
7358                       SourceLocation RecLoc, Decl *EnclosingDecl,
7359                       Decl **Fields, unsigned NumFields,
7360                       SourceLocation LBrac, SourceLocation RBrac,
7361                       AttributeList *Attr) {
7362  assert(EnclosingDecl && "missing record or interface decl");
7363
7364  // If the decl this is being inserted into is invalid, then it may be a
7365  // redeclaration or some other bogus case.  Don't try to add fields to it.
7366  if (EnclosingDecl->isInvalidDecl()) {
7367    // FIXME: Deallocate fields?
7368    return;
7369  }
7370
7371
7372  // Verify that all the fields are okay.
7373  unsigned NumNamedMembers = 0;
7374  llvm::SmallVector<FieldDecl*, 32> RecFields;
7375
7376  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7377  for (unsigned i = 0; i != NumFields; ++i) {
7378    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7379
7380    // Get the type for the field.
7381    const Type *FDTy = FD->getType().getTypePtr();
7382
7383    if (!FD->isAnonymousStructOrUnion()) {
7384      // Remember all fields written by the user.
7385      RecFields.push_back(FD);
7386    }
7387
7388    // If the field is already invalid for some reason, don't emit more
7389    // diagnostics about it.
7390    if (FD->isInvalidDecl()) {
7391      EnclosingDecl->setInvalidDecl();
7392      continue;
7393    }
7394
7395    // C99 6.7.2.1p2:
7396    //   A structure or union shall not contain a member with
7397    //   incomplete or function type (hence, a structure shall not
7398    //   contain an instance of itself, but may contain a pointer to
7399    //   an instance of itself), except that the last member of a
7400    //   structure with more than one named member may have incomplete
7401    //   array type; such a structure (and any union containing,
7402    //   possibly recursively, a member that is such a structure)
7403    //   shall not be a member of a structure or an element of an
7404    //   array.
7405    if (FDTy->isFunctionType()) {
7406      // Field declared as a function.
7407      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7408        << FD->getDeclName();
7409      FD->setInvalidDecl();
7410      EnclosingDecl->setInvalidDecl();
7411      continue;
7412    } else if (FDTy->isIncompleteArrayType() && Record &&
7413               ((i == NumFields - 1 && !Record->isUnion()) ||
7414                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7415                 (i == NumFields - 1 || Record->isUnion())))) {
7416      // Flexible array member.
7417      // Microsoft and g++ is more permissive regarding flexible array.
7418      // It will accept flexible array in union and also
7419      // as the sole element of a struct/class.
7420      if (getLangOptions().Microsoft) {
7421        if (Record->isUnion())
7422          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7423            << FD->getDeclName();
7424        else if (NumFields == 1)
7425          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7426            << FD->getDeclName() << Record->getTagKind();
7427      } else if (getLangOptions().CPlusPlus) {
7428        if (Record->isUnion())
7429          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7430            << FD->getDeclName();
7431        else if (NumFields == 1)
7432          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7433            << FD->getDeclName() << Record->getTagKind();
7434      } else if (NumNamedMembers < 1) {
7435        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7436          << FD->getDeclName();
7437        FD->setInvalidDecl();
7438        EnclosingDecl->setInvalidDecl();
7439        continue;
7440      }
7441      if (!FD->getType()->isDependentType() &&
7442          !Context.getBaseElementType(FD->getType())->isPODType()) {
7443        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7444          << FD->getDeclName() << FD->getType();
7445        FD->setInvalidDecl();
7446        EnclosingDecl->setInvalidDecl();
7447        continue;
7448      }
7449      // Okay, we have a legal flexible array member at the end of the struct.
7450      if (Record)
7451        Record->setHasFlexibleArrayMember(true);
7452    } else if (!FDTy->isDependentType() &&
7453               RequireCompleteType(FD->getLocation(), FD->getType(),
7454                                   diag::err_field_incomplete)) {
7455      // Incomplete type
7456      FD->setInvalidDecl();
7457      EnclosingDecl->setInvalidDecl();
7458      continue;
7459    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7460      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7461        // If this is a member of a union, then entire union becomes "flexible".
7462        if (Record && Record->isUnion()) {
7463          Record->setHasFlexibleArrayMember(true);
7464        } else {
7465          // If this is a struct/class and this is not the last element, reject
7466          // it.  Note that GCC supports variable sized arrays in the middle of
7467          // structures.
7468          if (i != NumFields-1)
7469            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7470              << FD->getDeclName() << FD->getType();
7471          else {
7472            // We support flexible arrays at the end of structs in
7473            // other structs as an extension.
7474            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7475              << FD->getDeclName();
7476            if (Record)
7477              Record->setHasFlexibleArrayMember(true);
7478          }
7479        }
7480      }
7481      if (Record && FDTTy->getDecl()->hasObjectMember())
7482        Record->setHasObjectMember(true);
7483    } else if (FDTy->isObjCObjectType()) {
7484      /// A field cannot be an Objective-c object
7485      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7486      FD->setInvalidDecl();
7487      EnclosingDecl->setInvalidDecl();
7488      continue;
7489    } else if (getLangOptions().ObjC1 &&
7490               getLangOptions().getGCMode() != LangOptions::NonGC &&
7491               Record &&
7492               (FD->getType()->isObjCObjectPointerType() ||
7493                FD->getType().isObjCGCStrong()))
7494      Record->setHasObjectMember(true);
7495    else if (Context.getAsArrayType(FD->getType())) {
7496      QualType BaseType = Context.getBaseElementType(FD->getType());
7497      if (Record && BaseType->isRecordType() &&
7498          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
7499        Record->setHasObjectMember(true);
7500    }
7501    // Keep track of the number of named members.
7502    if (FD->getIdentifier())
7503      ++NumNamedMembers;
7504  }
7505
7506  // Okay, we successfully defined 'Record'.
7507  if (Record) {
7508    bool Completed = false;
7509    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
7510      if (!CXXRecord->isInvalidDecl()) {
7511        // Set access bits correctly on the directly-declared conversions.
7512        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
7513        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
7514             I != E; ++I)
7515          Convs->setAccess(I, (*I)->getAccess());
7516
7517        if (!CXXRecord->isDependentType()) {
7518          // Add any implicitly-declared members to this class.
7519          AddImplicitlyDeclaredMembersToClass(CXXRecord);
7520
7521          // If we have virtual base classes, we may end up finding multiple
7522          // final overriders for a given virtual function. Check for this
7523          // problem now.
7524          if (CXXRecord->getNumVBases()) {
7525            CXXFinalOverriderMap FinalOverriders;
7526            CXXRecord->getFinalOverriders(FinalOverriders);
7527
7528            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
7529                                             MEnd = FinalOverriders.end();
7530                 M != MEnd; ++M) {
7531              for (OverridingMethods::iterator SO = M->second.begin(),
7532                                            SOEnd = M->second.end();
7533                   SO != SOEnd; ++SO) {
7534                assert(SO->second.size() > 0 &&
7535                       "Virtual function without overridding functions?");
7536                if (SO->second.size() == 1)
7537                  continue;
7538
7539                // C++ [class.virtual]p2:
7540                //   In a derived class, if a virtual member function of a base
7541                //   class subobject has more than one final overrider the
7542                //   program is ill-formed.
7543                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
7544                  << (NamedDecl *)M->first << Record;
7545                Diag(M->first->getLocation(),
7546                     diag::note_overridden_virtual_function);
7547                for (OverridingMethods::overriding_iterator
7548                          OM = SO->second.begin(),
7549                       OMEnd = SO->second.end();
7550                     OM != OMEnd; ++OM)
7551                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
7552                    << (NamedDecl *)M->first << OM->Method->getParent();
7553
7554                Record->setInvalidDecl();
7555              }
7556            }
7557            CXXRecord->completeDefinition(&FinalOverriders);
7558            Completed = true;
7559          }
7560        }
7561      }
7562    }
7563
7564    if (!Completed)
7565      Record->completeDefinition();
7566  } else {
7567    ObjCIvarDecl **ClsFields =
7568      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
7569    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
7570      ID->setLocEnd(RBrac);
7571      // Add ivar's to class's DeclContext.
7572      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7573        ClsFields[i]->setLexicalDeclContext(ID);
7574        ID->addDecl(ClsFields[i]);
7575      }
7576      // Must enforce the rule that ivars in the base classes may not be
7577      // duplicates.
7578      if (ID->getSuperClass())
7579        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
7580    } else if (ObjCImplementationDecl *IMPDecl =
7581                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7582      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
7583      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
7584        // Ivar declared in @implementation never belongs to the implementation.
7585        // Only it is in implementation's lexical context.
7586        ClsFields[I]->setLexicalDeclContext(IMPDecl);
7587      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
7588    } else if (ObjCCategoryDecl *CDecl =
7589                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7590      // case of ivars in class extension; all other cases have been
7591      // reported as errors elsewhere.
7592      // FIXME. Class extension does not have a LocEnd field.
7593      // CDecl->setLocEnd(RBrac);
7594      // Add ivar's to class extension's DeclContext.
7595      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
7596        ClsFields[i]->setLexicalDeclContext(CDecl);
7597        CDecl->addDecl(ClsFields[i]);
7598      }
7599    }
7600  }
7601
7602  if (Attr)
7603    ProcessDeclAttributeList(S, Record, Attr);
7604
7605  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
7606  // set the visibility of this record.
7607  if (Record && !Record->getDeclContext()->isRecord())
7608    AddPushedVisibilityAttribute(Record);
7609}
7610
7611/// \brief Determine whether the given integral value is representable within
7612/// the given type T.
7613static bool isRepresentableIntegerValue(ASTContext &Context,
7614                                        llvm::APSInt &Value,
7615                                        QualType T) {
7616  assert(T->isIntegralType(Context) && "Integral type required!");
7617  unsigned BitWidth = Context.getIntWidth(T);
7618
7619  if (Value.isUnsigned() || Value.isNonNegative()) {
7620    if (T->isSignedIntegerType())
7621      --BitWidth;
7622    return Value.getActiveBits() <= BitWidth;
7623  }
7624  return Value.getMinSignedBits() <= BitWidth;
7625}
7626
7627// \brief Given an integral type, return the next larger integral type
7628// (or a NULL type of no such type exists).
7629static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
7630  // FIXME: Int128/UInt128 support, which also needs to be introduced into
7631  // enum checking below.
7632  assert(T->isIntegralType(Context) && "Integral type required!");
7633  const unsigned NumTypes = 4;
7634  QualType SignedIntegralTypes[NumTypes] = {
7635    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
7636  };
7637  QualType UnsignedIntegralTypes[NumTypes] = {
7638    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
7639    Context.UnsignedLongLongTy
7640  };
7641
7642  unsigned BitWidth = Context.getTypeSize(T);
7643  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
7644                                            : UnsignedIntegralTypes;
7645  for (unsigned I = 0; I != NumTypes; ++I)
7646    if (Context.getTypeSize(Types[I]) > BitWidth)
7647      return Types[I];
7648
7649  return QualType();
7650}
7651
7652EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
7653                                          EnumConstantDecl *LastEnumConst,
7654                                          SourceLocation IdLoc,
7655                                          IdentifierInfo *Id,
7656                                          Expr *Val) {
7657  unsigned IntWidth = Context.Target.getIntWidth();
7658  llvm::APSInt EnumVal(IntWidth);
7659  QualType EltTy;
7660
7661  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
7662    Val = 0;
7663
7664  if (Val) {
7665    if (Enum->isDependentType() || Val->isTypeDependent())
7666      EltTy = Context.DependentTy;
7667    else {
7668      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
7669      SourceLocation ExpLoc;
7670      if (!Val->isValueDependent() &&
7671          VerifyIntegerConstantExpression(Val, &EnumVal)) {
7672        Val = 0;
7673      } else {
7674        if (!getLangOptions().CPlusPlus) {
7675          // C99 6.7.2.2p2:
7676          //   The expression that defines the value of an enumeration constant
7677          //   shall be an integer constant expression that has a value
7678          //   representable as an int.
7679
7680          // Complain if the value is not representable in an int.
7681          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
7682            Diag(IdLoc, diag::ext_enum_value_not_int)
7683              << EnumVal.toString(10) << Val->getSourceRange()
7684              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
7685          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
7686            // Force the type of the expression to 'int'.
7687            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
7688          }
7689        }
7690
7691        if (Enum->isFixed()) {
7692          EltTy = Enum->getIntegerType();
7693
7694          // C++0x [dcl.enum]p5:
7695          //   ... if the initializing value of an enumerator cannot be
7696          //   represented by the underlying type, the program is ill-formed.
7697          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7698            if (getLangOptions().Microsoft) {
7699              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
7700              ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7701            } else
7702              Diag(IdLoc, diag::err_enumerator_too_large)
7703                << EltTy;
7704          } else
7705            ImpCastExprToType(Val, EltTy, CK_IntegralCast);
7706        }
7707        else {
7708          // C++0x [dcl.enum]p5:
7709          //   If the underlying type is not fixed, the type of each enumerator
7710          //   is the type of its initializing value:
7711          //     - If an initializer is specified for an enumerator, the
7712          //       initializing value has the same type as the expression.
7713          EltTy = Val->getType();
7714        }
7715      }
7716    }
7717  }
7718
7719  if (!Val) {
7720    if (Enum->isDependentType())
7721      EltTy = Context.DependentTy;
7722    else if (!LastEnumConst) {
7723      // C++0x [dcl.enum]p5:
7724      //   If the underlying type is not fixed, the type of each enumerator
7725      //   is the type of its initializing value:
7726      //     - If no initializer is specified for the first enumerator, the
7727      //       initializing value has an unspecified integral type.
7728      //
7729      // GCC uses 'int' for its unspecified integral type, as does
7730      // C99 6.7.2.2p3.
7731      if (Enum->isFixed()) {
7732        EltTy = Enum->getIntegerType();
7733      }
7734      else {
7735        EltTy = Context.IntTy;
7736      }
7737    } else {
7738      // Assign the last value + 1.
7739      EnumVal = LastEnumConst->getInitVal();
7740      ++EnumVal;
7741      EltTy = LastEnumConst->getType();
7742
7743      // Check for overflow on increment.
7744      if (EnumVal < LastEnumConst->getInitVal()) {
7745        // C++0x [dcl.enum]p5:
7746        //   If the underlying type is not fixed, the type of each enumerator
7747        //   is the type of its initializing value:
7748        //
7749        //     - Otherwise the type of the initializing value is the same as
7750        //       the type of the initializing value of the preceding enumerator
7751        //       unless the incremented value is not representable in that type,
7752        //       in which case the type is an unspecified integral type
7753        //       sufficient to contain the incremented value. If no such type
7754        //       exists, the program is ill-formed.
7755        QualType T = getNextLargerIntegralType(Context, EltTy);
7756        if (T.isNull() || Enum->isFixed()) {
7757          // There is no integral type larger enough to represent this
7758          // value. Complain, then allow the value to wrap around.
7759          EnumVal = LastEnumConst->getInitVal();
7760          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
7761          ++EnumVal;
7762          if (Enum->isFixed())
7763            // When the underlying type is fixed, this is ill-formed.
7764            Diag(IdLoc, diag::err_enumerator_wrapped)
7765              << EnumVal.toString(10)
7766              << EltTy;
7767          else
7768            Diag(IdLoc, diag::warn_enumerator_too_large)
7769              << EnumVal.toString(10);
7770        } else {
7771          EltTy = T;
7772        }
7773
7774        // Retrieve the last enumerator's value, extent that type to the
7775        // type that is supposed to be large enough to represent the incremented
7776        // value, then increment.
7777        EnumVal = LastEnumConst->getInitVal();
7778        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7779        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7780        ++EnumVal;
7781
7782        // If we're not in C++, diagnose the overflow of enumerator values,
7783        // which in C99 means that the enumerator value is not representable in
7784        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
7785        // permits enumerator values that are representable in some larger
7786        // integral type.
7787        if (!getLangOptions().CPlusPlus && !T.isNull())
7788          Diag(IdLoc, diag::warn_enum_value_overflow);
7789      } else if (!getLangOptions().CPlusPlus &&
7790                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
7791        // Enforce C99 6.7.2.2p2 even when we compute the next value.
7792        Diag(IdLoc, diag::ext_enum_value_not_int)
7793          << EnumVal.toString(10) << 1;
7794      }
7795    }
7796  }
7797
7798  if (!EltTy->isDependentType()) {
7799    // Make the enumerator value match the signedness and size of the
7800    // enumerator's type.
7801    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
7802    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
7803  }
7804
7805  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
7806                                  Val, EnumVal);
7807}
7808
7809
7810Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
7811                              SourceLocation IdLoc, IdentifierInfo *Id,
7812                              AttributeList *Attr,
7813                              SourceLocation EqualLoc, ExprTy *val) {
7814  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
7815  EnumConstantDecl *LastEnumConst =
7816    cast_or_null<EnumConstantDecl>(lastEnumConst);
7817  Expr *Val = static_cast<Expr*>(val);
7818
7819  // The scope passed in may not be a decl scope.  Zip up the scope tree until
7820  // we find one that is.
7821  S = getNonFieldDeclScope(S);
7822
7823  // Verify that there isn't already something declared with this name in this
7824  // scope.
7825  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
7826                                         ForRedeclaration);
7827  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7828    // Maybe we will complain about the shadowed template parameter.
7829    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
7830    // Just pretend that we didn't see the previous declaration.
7831    PrevDecl = 0;
7832  }
7833
7834  if (PrevDecl) {
7835    // When in C++, we may get a TagDecl with the same name; in this case the
7836    // enum constant will 'hide' the tag.
7837    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
7838           "Received TagDecl when not in C++!");
7839    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
7840      if (isa<EnumConstantDecl>(PrevDecl))
7841        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
7842      else
7843        Diag(IdLoc, diag::err_redefinition) << Id;
7844      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7845      return 0;
7846    }
7847  }
7848
7849  // C++ [class.mem]p13:
7850  //   If T is the name of a class, then each of the following shall have a
7851  //   name different from T:
7852  //     - every enumerator of every member of class T that is an enumerated
7853  //       type
7854  if (CXXRecordDecl *Record
7855                      = dyn_cast<CXXRecordDecl>(
7856                             TheEnumDecl->getDeclContext()->getRedeclContext()))
7857    if (Record->getIdentifier() && Record->getIdentifier() == Id)
7858      Diag(IdLoc, diag::err_member_name_of_class) << Id;
7859
7860  EnumConstantDecl *New =
7861    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
7862
7863  if (New) {
7864    // Process attributes.
7865    if (Attr) ProcessDeclAttributeList(S, New, Attr);
7866
7867    // Register this decl in the current scope stack.
7868    New->setAccess(TheEnumDecl->getAccess());
7869    PushOnScopeChains(New, S);
7870  }
7871
7872  return New;
7873}
7874
7875void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
7876                         SourceLocation RBraceLoc, Decl *EnumDeclX,
7877                         Decl **Elements, unsigned NumElements,
7878                         Scope *S, AttributeList *Attr) {
7879  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
7880  QualType EnumType = Context.getTypeDeclType(Enum);
7881
7882  if (Attr)
7883    ProcessDeclAttributeList(S, Enum, Attr);
7884
7885  if (Enum->isDependentType()) {
7886    for (unsigned i = 0; i != NumElements; ++i) {
7887      EnumConstantDecl *ECD =
7888        cast_or_null<EnumConstantDecl>(Elements[i]);
7889      if (!ECD) continue;
7890
7891      ECD->setType(EnumType);
7892    }
7893
7894    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7895    return;
7896  }
7897
7898  // TODO: If the result value doesn't fit in an int, it must be a long or long
7899  // long value.  ISO C does not support this, but GCC does as an extension,
7900  // emit a warning.
7901  unsigned IntWidth = Context.Target.getIntWidth();
7902  unsigned CharWidth = Context.Target.getCharWidth();
7903  unsigned ShortWidth = Context.Target.getShortWidth();
7904
7905  // Verify that all the values are okay, compute the size of the values, and
7906  // reverse the list.
7907  unsigned NumNegativeBits = 0;
7908  unsigned NumPositiveBits = 0;
7909
7910  // Keep track of whether all elements have type int.
7911  bool AllElementsInt = true;
7912
7913  for (unsigned i = 0; i != NumElements; ++i) {
7914    EnumConstantDecl *ECD =
7915      cast_or_null<EnumConstantDecl>(Elements[i]);
7916    if (!ECD) continue;  // Already issued a diagnostic.
7917
7918    const llvm::APSInt &InitVal = ECD->getInitVal();
7919
7920    // Keep track of the size of positive and negative values.
7921    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7922      NumPositiveBits = std::max(NumPositiveBits,
7923                                 (unsigned)InitVal.getActiveBits());
7924    else
7925      NumNegativeBits = std::max(NumNegativeBits,
7926                                 (unsigned)InitVal.getMinSignedBits());
7927
7928    // Keep track of whether every enum element has type int (very commmon).
7929    if (AllElementsInt)
7930      AllElementsInt = ECD->getType() == Context.IntTy;
7931  }
7932
7933  // Figure out the type that should be used for this enum.
7934  QualType BestType;
7935  unsigned BestWidth;
7936
7937  // C++0x N3000 [conv.prom]p3:
7938  //   An rvalue of an unscoped enumeration type whose underlying
7939  //   type is not fixed can be converted to an rvalue of the first
7940  //   of the following types that can represent all the values of
7941  //   the enumeration: int, unsigned int, long int, unsigned long
7942  //   int, long long int, or unsigned long long int.
7943  // C99 6.4.4.3p2:
7944  //   An identifier declared as an enumeration constant has type int.
7945  // The C99 rule is modified by a gcc extension
7946  QualType BestPromotionType;
7947
7948  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7949  // -fshort-enums is the equivalent to specifying the packed attribute on all
7950  // enum definitions.
7951  if (LangOpts.ShortEnums)
7952    Packed = true;
7953
7954  if (Enum->isFixed()) {
7955    BestType = BestPromotionType = Enum->getIntegerType();
7956    // We don't need to set BestWidth, because BestType is going to be the type
7957    // of the enumerators, but we do anyway because otherwise some compilers
7958    // warn that it might be used uninitialized.
7959    BestWidth = CharWidth;
7960  }
7961  else if (NumNegativeBits) {
7962    // If there is a negative value, figure out the smallest integer type (of
7963    // int/long/longlong) that fits.
7964    // If it's packed, check also if it fits a char or a short.
7965    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7966      BestType = Context.SignedCharTy;
7967      BestWidth = CharWidth;
7968    } else if (Packed && NumNegativeBits <= ShortWidth &&
7969               NumPositiveBits < ShortWidth) {
7970      BestType = Context.ShortTy;
7971      BestWidth = ShortWidth;
7972    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7973      BestType = Context.IntTy;
7974      BestWidth = IntWidth;
7975    } else {
7976      BestWidth = Context.Target.getLongWidth();
7977
7978      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7979        BestType = Context.LongTy;
7980      } else {
7981        BestWidth = Context.Target.getLongLongWidth();
7982
7983        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7984          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7985        BestType = Context.LongLongTy;
7986      }
7987    }
7988    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7989  } else {
7990    // If there is no negative value, figure out the smallest type that fits
7991    // all of the enumerator values.
7992    // If it's packed, check also if it fits a char or a short.
7993    if (Packed && NumPositiveBits <= CharWidth) {
7994      BestType = Context.UnsignedCharTy;
7995      BestPromotionType = Context.IntTy;
7996      BestWidth = CharWidth;
7997    } else if (Packed && NumPositiveBits <= ShortWidth) {
7998      BestType = Context.UnsignedShortTy;
7999      BestPromotionType = Context.IntTy;
8000      BestWidth = ShortWidth;
8001    } else if (NumPositiveBits <= IntWidth) {
8002      BestType = Context.UnsignedIntTy;
8003      BestWidth = IntWidth;
8004      BestPromotionType
8005        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8006                           ? Context.UnsignedIntTy : Context.IntTy;
8007    } else if (NumPositiveBits <=
8008               (BestWidth = Context.Target.getLongWidth())) {
8009      BestType = Context.UnsignedLongTy;
8010      BestPromotionType
8011        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8012                           ? Context.UnsignedLongTy : Context.LongTy;
8013    } else {
8014      BestWidth = Context.Target.getLongLongWidth();
8015      assert(NumPositiveBits <= BestWidth &&
8016             "How could an initializer get larger than ULL?");
8017      BestType = Context.UnsignedLongLongTy;
8018      BestPromotionType
8019        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8020                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8021    }
8022  }
8023
8024  // Loop over all of the enumerator constants, changing their types to match
8025  // the type of the enum if needed.
8026  for (unsigned i = 0; i != NumElements; ++i) {
8027    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8028    if (!ECD) continue;  // Already issued a diagnostic.
8029
8030    // Standard C says the enumerators have int type, but we allow, as an
8031    // extension, the enumerators to be larger than int size.  If each
8032    // enumerator value fits in an int, type it as an int, otherwise type it the
8033    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8034    // that X has type 'int', not 'unsigned'.
8035
8036    // Determine whether the value fits into an int.
8037    llvm::APSInt InitVal = ECD->getInitVal();
8038
8039    // If it fits into an integer type, force it.  Otherwise force it to match
8040    // the enum decl type.
8041    QualType NewTy;
8042    unsigned NewWidth;
8043    bool NewSign;
8044    if (!getLangOptions().CPlusPlus &&
8045        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8046      NewTy = Context.IntTy;
8047      NewWidth = IntWidth;
8048      NewSign = true;
8049    } else if (ECD->getType() == BestType) {
8050      // Already the right type!
8051      if (getLangOptions().CPlusPlus)
8052        // C++ [dcl.enum]p4: Following the closing brace of an
8053        // enum-specifier, each enumerator has the type of its
8054        // enumeration.
8055        ECD->setType(EnumType);
8056      continue;
8057    } else {
8058      NewTy = BestType;
8059      NewWidth = BestWidth;
8060      NewSign = BestType->isSignedIntegerType();
8061    }
8062
8063    // Adjust the APSInt value.
8064    InitVal = InitVal.extOrTrunc(NewWidth);
8065    InitVal.setIsSigned(NewSign);
8066    ECD->setInitVal(InitVal);
8067
8068    // Adjust the Expr initializer and type.
8069    if (ECD->getInitExpr() &&
8070	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8071      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8072                                                CK_IntegralCast,
8073                                                ECD->getInitExpr(),
8074                                                /*base paths*/ 0,
8075                                                VK_RValue));
8076    if (getLangOptions().CPlusPlus)
8077      // C++ [dcl.enum]p4: Following the closing brace of an
8078      // enum-specifier, each enumerator has the type of its
8079      // enumeration.
8080      ECD->setType(EnumType);
8081    else
8082      ECD->setType(NewTy);
8083  }
8084
8085  Enum->completeDefinition(BestType, BestPromotionType,
8086                           NumPositiveBits, NumNegativeBits);
8087}
8088
8089Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8090                                  SourceLocation StartLoc,
8091                                  SourceLocation EndLoc) {
8092  StringLiteral *AsmString = cast<StringLiteral>(expr);
8093
8094  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8095                                                   AsmString, StartLoc,
8096                                                   EndLoc);
8097  CurContext->addDecl(New);
8098  return New;
8099}
8100
8101void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8102                             SourceLocation PragmaLoc,
8103                             SourceLocation NameLoc) {
8104  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8105
8106  if (PrevDecl) {
8107    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8108  } else {
8109    (void)WeakUndeclaredIdentifiers.insert(
8110      std::pair<IdentifierInfo*,WeakInfo>
8111        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8112  }
8113}
8114
8115void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8116                                IdentifierInfo* AliasName,
8117                                SourceLocation PragmaLoc,
8118                                SourceLocation NameLoc,
8119                                SourceLocation AliasNameLoc) {
8120  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8121                                    LookupOrdinaryName);
8122  WeakInfo W = WeakInfo(Name, NameLoc);
8123
8124  if (PrevDecl) {
8125    if (!PrevDecl->hasAttr<AliasAttr>())
8126      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8127        DeclApplyPragmaWeak(TUScope, ND, W);
8128  } else {
8129    (void)WeakUndeclaredIdentifiers.insert(
8130      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8131  }
8132}
8133