SemaDecl.cpp revision 27766d2501259c7b12b1056e0c491a927b304e10
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517
518        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
519            FirstDecl && isa<TemplateDecl>(FirstDecl)) {
520          UnqualifiedDiag = diag::err_no_template_suggest;
521          QualifiedDiag = diag::err_no_member_template_suggest;
522        } else if (FirstDecl &&
523                   (isa<TypeDecl>(FirstDecl) ||
524                    isa<ObjCInterfaceDecl>(FirstDecl) ||
525                    isa<ObjCCompatibleAliasDecl>(FirstDecl))) {
526           UnqualifiedDiag = diag::err_unknown_typename_suggest;
527           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
528         }
529
530        if (SS.isEmpty())
531          Diag(NameLoc, UnqualifiedDiag)
532            << Name << Corrected
533            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
534        else
535          Diag(NameLoc, QualifiedDiag)
536            << Name << computeDeclContext(SS, false) << Corrected
537            << SS.getRange()
538            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
539
540        // Update the name, so that the caller has the new name.
541        Name = Corrected.getAsIdentifierInfo();
542
543        // Typo correction corrected to a keyword.
544        if (Result.empty())
545          return Corrected.getAsIdentifierInfo();
546
547        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
548          << FirstDecl->getDeclName();
549
550        // If we found an Objective-C instance variable, let
551        // LookupInObjCMethod build the appropriate expression to
552        // reference the ivar.
553        // FIXME: This is a gross hack.
554        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
555          Result.clear();
556          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
557          return move(E);
558        }
559
560        goto Corrected;
561      }
562    }
563
564    // We failed to correct; just fall through and let the parser deal with it.
565    Result.suppressDiagnostics();
566    return NameClassification::Unknown();
567
568  case LookupResult::NotFoundInCurrentInstantiation:
569    // We performed name lookup into the current instantiation, and there were
570    // dependent bases, so we treat this result the same way as any other
571    // dependent nested-name-specifier.
572
573    // C++ [temp.res]p2:
574    //   A name used in a template declaration or definition and that is
575    //   dependent on a template-parameter is assumed not to name a type
576    //   unless the applicable name lookup finds a type name or the name is
577    //   qualified by the keyword typename.
578    //
579    // FIXME: If the next token is '<', we might want to ask the parser to
580    // perform some heroics to see if we actually have a
581    // template-argument-list, which would indicate a missing 'template'
582    // keyword here.
583    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
584
585  case LookupResult::Found:
586  case LookupResult::FoundOverloaded:
587  case LookupResult::FoundUnresolvedValue:
588    break;
589
590  case LookupResult::Ambiguous:
591    if (getLangOptions().CPlusPlus && NextToken.is(tok::less)) {
592      // C++ [temp.local]p3:
593      //   A lookup that finds an injected-class-name (10.2) can result in an
594      //   ambiguity in certain cases (for example, if it is found in more than
595      //   one base class). If all of the injected-class-names that are found
596      //   refer to specializations of the same class template, and if the name
597      //   is followed by a template-argument-list, the reference refers to the
598      //   class template itself and not a specialization thereof, and is not
599      //   ambiguous.
600      //
601      // This filtering can make an ambiguous result into an unambiguous one,
602      // so try again after filtering out template names.
603      FilterAcceptableTemplateNames(Result);
604      if (!Result.isAmbiguous()) {
605        IsFilteredTemplateName = true;
606        break;
607      }
608    }
609
610    // Diagnose the ambiguity and return an error.
611    return NameClassification::Error();
612  }
613
614  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
615      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
616    // C++ [temp.names]p3:
617    //   After name lookup (3.4) finds that a name is a template-name or that
618    //   an operator-function-id or a literal- operator-id refers to a set of
619    //   overloaded functions any member of which is a function template if
620    //   this is followed by a <, the < is always taken as the delimiter of a
621    //   template-argument-list and never as the less-than operator.
622    if (!IsFilteredTemplateName)
623      FilterAcceptableTemplateNames(Result);
624
625    bool IsFunctionTemplate;
626    TemplateName Template;
627    if (Result.end() - Result.begin() > 1) {
628      IsFunctionTemplate = true;
629      Template = Context.getOverloadedTemplateName(Result.begin(),
630                                                   Result.end());
631    } else {
632      TemplateDecl *TD = cast<TemplateDecl>(Result.getFoundDecl());
633      IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
634
635      if (SS.isSet() && !SS.isInvalid())
636        Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
637                                                    /*TemplateKeyword=*/false,
638                                                    TD);
639      else
640        Template = TemplateName(TD);
641    }
642
643    if (IsFunctionTemplate) {
644      // Function templates always go through overload resolution, at which
645      // point we'll perform the various checks (e.g., accessibility) we need
646      // to based on which function we selected.
647      Result.suppressDiagnostics();
648
649      return NameClassification::FunctionTemplate(Template);
650    }
651
652    return NameClassification::TypeTemplate(Template);
653  }
654
655  NamedDecl *FirstDecl = *Result.begin();
656  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
657    DiagnoseUseOfDecl(Type, NameLoc);
658    QualType T = Context.getTypeDeclType(Type);
659    return ParsedType::make(T);
660  }
661
662  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
663  if (!Class) {
664    // FIXME: It's unfortunate that we don't have a Type node for handling this.
665    if (ObjCCompatibleAliasDecl *Alias
666                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
667      Class = Alias->getClassInterface();
668  }
669
670  if (Class) {
671    DiagnoseUseOfDecl(Class, NameLoc);
672
673    if (NextToken.is(tok::period)) {
674      // Interface. <something> is parsed as a property reference expression.
675      // Just return "unknown" as a fall-through for now.
676      Result.suppressDiagnostics();
677      return NameClassification::Unknown();
678    }
679
680    QualType T = Context.getObjCInterfaceType(Class);
681    return ParsedType::make(T);
682  }
683
684  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
685  return BuildDeclarationNameExpr(SS, Result, ADL);
686}
687
688// Determines the context to return to after temporarily entering a
689// context.  This depends in an unnecessarily complicated way on the
690// exact ordering of callbacks from the parser.
691DeclContext *Sema::getContainingDC(DeclContext *DC) {
692
693  // Functions defined inline within classes aren't parsed until we've
694  // finished parsing the top-level class, so the top-level class is
695  // the context we'll need to return to.
696  if (isa<FunctionDecl>(DC)) {
697    DC = DC->getLexicalParent();
698
699    // A function not defined within a class will always return to its
700    // lexical context.
701    if (!isa<CXXRecordDecl>(DC))
702      return DC;
703
704    // A C++ inline method/friend is parsed *after* the topmost class
705    // it was declared in is fully parsed ("complete");  the topmost
706    // class is the context we need to return to.
707    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
708      DC = RD;
709
710    // Return the declaration context of the topmost class the inline method is
711    // declared in.
712    return DC;
713  }
714
715  // ObjCMethodDecls are parsed (for some reason) outside the context
716  // of the class.
717  if (isa<ObjCMethodDecl>(DC))
718    return DC->getLexicalParent()->getLexicalParent();
719
720  return DC->getLexicalParent();
721}
722
723void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
724  assert(getContainingDC(DC) == CurContext &&
725      "The next DeclContext should be lexically contained in the current one.");
726  CurContext = DC;
727  S->setEntity(DC);
728}
729
730void Sema::PopDeclContext() {
731  assert(CurContext && "DeclContext imbalance!");
732
733  CurContext = getContainingDC(CurContext);
734  assert(CurContext && "Popped translation unit!");
735}
736
737/// EnterDeclaratorContext - Used when we must lookup names in the context
738/// of a declarator's nested name specifier.
739///
740void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
741  // C++0x [basic.lookup.unqual]p13:
742  //   A name used in the definition of a static data member of class
743  //   X (after the qualified-id of the static member) is looked up as
744  //   if the name was used in a member function of X.
745  // C++0x [basic.lookup.unqual]p14:
746  //   If a variable member of a namespace is defined outside of the
747  //   scope of its namespace then any name used in the definition of
748  //   the variable member (after the declarator-id) is looked up as
749  //   if the definition of the variable member occurred in its
750  //   namespace.
751  // Both of these imply that we should push a scope whose context
752  // is the semantic context of the declaration.  We can't use
753  // PushDeclContext here because that context is not necessarily
754  // lexically contained in the current context.  Fortunately,
755  // the containing scope should have the appropriate information.
756
757  assert(!S->getEntity() && "scope already has entity");
758
759#ifndef NDEBUG
760  Scope *Ancestor = S->getParent();
761  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
762  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
763#endif
764
765  CurContext = DC;
766  S->setEntity(DC);
767}
768
769void Sema::ExitDeclaratorContext(Scope *S) {
770  assert(S->getEntity() == CurContext && "Context imbalance!");
771
772  // Switch back to the lexical context.  The safety of this is
773  // enforced by an assert in EnterDeclaratorContext.
774  Scope *Ancestor = S->getParent();
775  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
776  CurContext = (DeclContext*) Ancestor->getEntity();
777
778  // We don't need to do anything with the scope, which is going to
779  // disappear.
780}
781
782/// \brief Determine whether we allow overloading of the function
783/// PrevDecl with another declaration.
784///
785/// This routine determines whether overloading is possible, not
786/// whether some new function is actually an overload. It will return
787/// true in C++ (where we can always provide overloads) or, as an
788/// extension, in C when the previous function is already an
789/// overloaded function declaration or has the "overloadable"
790/// attribute.
791static bool AllowOverloadingOfFunction(LookupResult &Previous,
792                                       ASTContext &Context) {
793  if (Context.getLangOptions().CPlusPlus)
794    return true;
795
796  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
797    return true;
798
799  return (Previous.getResultKind() == LookupResult::Found
800          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
801}
802
803/// Add this decl to the scope shadowed decl chains.
804void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
805  // Move up the scope chain until we find the nearest enclosing
806  // non-transparent context. The declaration will be introduced into this
807  // scope.
808  while (S->getEntity() &&
809         ((DeclContext *)S->getEntity())->isTransparentContext())
810    S = S->getParent();
811
812  // Add scoped declarations into their context, so that they can be
813  // found later. Declarations without a context won't be inserted
814  // into any context.
815  if (AddToContext)
816    CurContext->addDecl(D);
817
818  // Out-of-line definitions shouldn't be pushed into scope in C++.
819  // Out-of-line variable and function definitions shouldn't even in C.
820  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
821      D->isOutOfLine())
822    return;
823
824  // Template instantiations should also not be pushed into scope.
825  if (isa<FunctionDecl>(D) &&
826      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
827    return;
828
829  // If this replaces anything in the current scope,
830  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
831                               IEnd = IdResolver.end();
832  for (; I != IEnd; ++I) {
833    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
834      S->RemoveDecl(*I);
835      IdResolver.RemoveDecl(*I);
836
837      // Should only need to replace one decl.
838      break;
839    }
840  }
841
842  S->AddDecl(D);
843
844  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
845    // Implicitly-generated labels may end up getting generated in an order that
846    // isn't strictly lexical, which breaks name lookup. Be careful to insert
847    // the label at the appropriate place in the identifier chain.
848    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
849      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
850      if (IDC == CurContext) {
851        if (!S->isDeclScope(*I))
852          continue;
853      } else if (IDC->Encloses(CurContext))
854        break;
855    }
856
857    IdResolver.InsertDeclAfter(I, D);
858  } else {
859    IdResolver.AddDecl(D);
860  }
861}
862
863bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
864                         bool ExplicitInstantiationOrSpecialization) {
865  return IdResolver.isDeclInScope(D, Ctx, Context, S,
866                                  ExplicitInstantiationOrSpecialization);
867}
868
869Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
870  DeclContext *TargetDC = DC->getPrimaryContext();
871  do {
872    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
873      if (ScopeDC->getPrimaryContext() == TargetDC)
874        return S;
875  } while ((S = S->getParent()));
876
877  return 0;
878}
879
880static bool isOutOfScopePreviousDeclaration(NamedDecl *,
881                                            DeclContext*,
882                                            ASTContext&);
883
884/// Filters out lookup results that don't fall within the given scope
885/// as determined by isDeclInScope.
886static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
887                                 DeclContext *Ctx, Scope *S,
888                                 bool ConsiderLinkage,
889                                 bool ExplicitInstantiationOrSpecialization) {
890  LookupResult::Filter F = R.makeFilter();
891  while (F.hasNext()) {
892    NamedDecl *D = F.next();
893
894    if (SemaRef.isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
895      continue;
896
897    if (ConsiderLinkage &&
898        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
899      continue;
900
901    F.erase();
902  }
903
904  F.done();
905}
906
907static bool isUsingDecl(NamedDecl *D) {
908  return isa<UsingShadowDecl>(D) ||
909         isa<UnresolvedUsingTypenameDecl>(D) ||
910         isa<UnresolvedUsingValueDecl>(D);
911}
912
913/// Removes using shadow declarations from the lookup results.
914static void RemoveUsingDecls(LookupResult &R) {
915  LookupResult::Filter F = R.makeFilter();
916  while (F.hasNext())
917    if (isUsingDecl(F.next()))
918      F.erase();
919
920  F.done();
921}
922
923/// \brief Check for this common pattern:
924/// @code
925/// class S {
926///   S(const S&); // DO NOT IMPLEMENT
927///   void operator=(const S&); // DO NOT IMPLEMENT
928/// };
929/// @endcode
930static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
931  // FIXME: Should check for private access too but access is set after we get
932  // the decl here.
933  if (D->isThisDeclarationADefinition())
934    return false;
935
936  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
937    return CD->isCopyConstructor();
938  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
939    return Method->isCopyAssignmentOperator();
940  return false;
941}
942
943bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
944  assert(D);
945
946  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
947    return false;
948
949  // Ignore class templates.
950  if (D->getDeclContext()->isDependentContext() ||
951      D->getLexicalDeclContext()->isDependentContext())
952    return false;
953
954  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
955    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
956      return false;
957
958    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
959      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
960        return false;
961    } else {
962      // 'static inline' functions are used in headers; don't warn.
963      if (FD->getStorageClass() == SC_Static &&
964          FD->isInlineSpecified())
965        return false;
966    }
967
968    if (FD->isThisDeclarationADefinition() &&
969        Context.DeclMustBeEmitted(FD))
970      return false;
971
972  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
973    if (!VD->isFileVarDecl() ||
974        VD->getType().isConstant(Context) ||
975        Context.DeclMustBeEmitted(VD))
976      return false;
977
978    if (VD->isStaticDataMember() &&
979        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
980      return false;
981
982  } else {
983    return false;
984  }
985
986  // Only warn for unused decls internal to the translation unit.
987  if (D->getLinkage() == ExternalLinkage)
988    return false;
989
990  return true;
991}
992
993void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
994  if (!D)
995    return;
996
997  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
998    const FunctionDecl *First = FD->getFirstDeclaration();
999    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1000      return; // First should already be in the vector.
1001  }
1002
1003  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1004    const VarDecl *First = VD->getFirstDeclaration();
1005    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1006      return; // First should already be in the vector.
1007  }
1008
1009   if (ShouldWarnIfUnusedFileScopedDecl(D))
1010     UnusedFileScopedDecls.push_back(D);
1011 }
1012
1013static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1014  if (D->isInvalidDecl())
1015    return false;
1016
1017  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1018    return false;
1019
1020  if (isa<LabelDecl>(D))
1021    return true;
1022
1023  // White-list anything that isn't a local variable.
1024  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1025      !D->getDeclContext()->isFunctionOrMethod())
1026    return false;
1027
1028  // Types of valid local variables should be complete, so this should succeed.
1029  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1030
1031    // White-list anything with an __attribute__((unused)) type.
1032    QualType Ty = VD->getType();
1033
1034    // Only look at the outermost level of typedef.
1035    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1036      if (TT->getDecl()->hasAttr<UnusedAttr>())
1037        return false;
1038    }
1039
1040    // If we failed to complete the type for some reason, or if the type is
1041    // dependent, don't diagnose the variable.
1042    if (Ty->isIncompleteType() || Ty->isDependentType())
1043      return false;
1044
1045    if (const TagType *TT = Ty->getAs<TagType>()) {
1046      const TagDecl *Tag = TT->getDecl();
1047      if (Tag->hasAttr<UnusedAttr>())
1048        return false;
1049
1050      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1051        // FIXME: Checking for the presence of a user-declared constructor
1052        // isn't completely accurate; we'd prefer to check that the initializer
1053        // has no side effects.
1054        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1055          return false;
1056      }
1057    }
1058
1059    // TODO: __attribute__((unused)) templates?
1060  }
1061
1062  return true;
1063}
1064
1065/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1066/// unless they are marked attr(unused).
1067void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1068  if (!ShouldDiagnoseUnusedDecl(D))
1069    return;
1070
1071  unsigned DiagID;
1072  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1073    DiagID = diag::warn_unused_exception_param;
1074  else if (isa<LabelDecl>(D))
1075    DiagID = diag::warn_unused_label;
1076  else
1077    DiagID = diag::warn_unused_variable;
1078
1079  Diag(D->getLocation(), DiagID) << D->getDeclName();
1080}
1081
1082static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1083  // Verify that we have no forward references left.  If so, there was a goto
1084  // or address of a label taken, but no definition of it.  Label fwd
1085  // definitions are indicated with a null substmt.
1086  if (L->getStmt() == 0)
1087    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1088}
1089
1090void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1091  if (S->decl_empty()) return;
1092  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1093         "Scope shouldn't contain decls!");
1094
1095  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1096       I != E; ++I) {
1097    Decl *TmpD = (*I);
1098    assert(TmpD && "This decl didn't get pushed??");
1099
1100    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1101    NamedDecl *D = cast<NamedDecl>(TmpD);
1102
1103    if (!D->getDeclName()) continue;
1104
1105    // Diagnose unused variables in this scope.
1106    if (!S->hasErrorOccurred())
1107      DiagnoseUnusedDecl(D);
1108
1109    // If this was a forward reference to a label, verify it was defined.
1110    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1111      CheckPoppedLabel(LD, *this);
1112
1113    // Remove this name from our lexical scope.
1114    IdResolver.RemoveDecl(D);
1115  }
1116}
1117
1118/// \brief Look for an Objective-C class in the translation unit.
1119///
1120/// \param Id The name of the Objective-C class we're looking for. If
1121/// typo-correction fixes this name, the Id will be updated
1122/// to the fixed name.
1123///
1124/// \param IdLoc The location of the name in the translation unit.
1125///
1126/// \param TypoCorrection If true, this routine will attempt typo correction
1127/// if there is no class with the given name.
1128///
1129/// \returns The declaration of the named Objective-C class, or NULL if the
1130/// class could not be found.
1131ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1132                                              SourceLocation IdLoc,
1133                                              bool TypoCorrection) {
1134  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1135  // creation from this context.
1136  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1137
1138  if (!IDecl && TypoCorrection) {
1139    // Perform typo correction at the given location, but only if we
1140    // find an Objective-C class name.
1141    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1142    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1143        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1144      Diag(IdLoc, diag::err_undef_interface_suggest)
1145        << Id << IDecl->getDeclName()
1146        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1147      Diag(IDecl->getLocation(), diag::note_previous_decl)
1148        << IDecl->getDeclName();
1149
1150      Id = IDecl->getIdentifier();
1151    }
1152  }
1153
1154  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1155}
1156
1157/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1158/// from S, where a non-field would be declared. This routine copes
1159/// with the difference between C and C++ scoping rules in structs and
1160/// unions. For example, the following code is well-formed in C but
1161/// ill-formed in C++:
1162/// @code
1163/// struct S6 {
1164///   enum { BAR } e;
1165/// };
1166///
1167/// void test_S6() {
1168///   struct S6 a;
1169///   a.e = BAR;
1170/// }
1171/// @endcode
1172/// For the declaration of BAR, this routine will return a different
1173/// scope. The scope S will be the scope of the unnamed enumeration
1174/// within S6. In C++, this routine will return the scope associated
1175/// with S6, because the enumeration's scope is a transparent
1176/// context but structures can contain non-field names. In C, this
1177/// routine will return the translation unit scope, since the
1178/// enumeration's scope is a transparent context and structures cannot
1179/// contain non-field names.
1180Scope *Sema::getNonFieldDeclScope(Scope *S) {
1181  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1182         (S->getEntity() &&
1183          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1184         (S->isClassScope() && !getLangOptions().CPlusPlus))
1185    S = S->getParent();
1186  return S;
1187}
1188
1189/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1190/// file scope.  lazily create a decl for it. ForRedeclaration is true
1191/// if we're creating this built-in in anticipation of redeclaring the
1192/// built-in.
1193NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1194                                     Scope *S, bool ForRedeclaration,
1195                                     SourceLocation Loc) {
1196  Builtin::ID BID = (Builtin::ID)bid;
1197
1198  ASTContext::GetBuiltinTypeError Error;
1199  QualType R = Context.GetBuiltinType(BID, Error);
1200  switch (Error) {
1201  case ASTContext::GE_None:
1202    // Okay
1203    break;
1204
1205  case ASTContext::GE_Missing_stdio:
1206    if (ForRedeclaration)
1207      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1208        << Context.BuiltinInfo.GetName(BID);
1209    return 0;
1210
1211  case ASTContext::GE_Missing_setjmp:
1212    if (ForRedeclaration)
1213      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1214        << Context.BuiltinInfo.GetName(BID);
1215    return 0;
1216  }
1217
1218  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1219    Diag(Loc, diag::ext_implicit_lib_function_decl)
1220      << Context.BuiltinInfo.GetName(BID)
1221      << R;
1222    if (Context.BuiltinInfo.getHeaderName(BID) &&
1223        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1224          != Diagnostic::Ignored)
1225      Diag(Loc, diag::note_please_include_header)
1226        << Context.BuiltinInfo.getHeaderName(BID)
1227        << Context.BuiltinInfo.GetName(BID);
1228  }
1229
1230  FunctionDecl *New = FunctionDecl::Create(Context,
1231                                           Context.getTranslationUnitDecl(),
1232                                           Loc, Loc, II, R, /*TInfo=*/0,
1233                                           SC_Extern,
1234                                           SC_None, false,
1235                                           /*hasPrototype=*/true);
1236  New->setImplicit();
1237
1238  // Create Decl objects for each parameter, adding them to the
1239  // FunctionDecl.
1240  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1241    llvm::SmallVector<ParmVarDecl*, 16> Params;
1242    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
1243      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(),
1244                                           SourceLocation(), 0,
1245                                           FT->getArgType(i), /*TInfo=*/0,
1246                                           SC_None, SC_None, 0));
1247    New->setParams(Params.data(), Params.size());
1248  }
1249
1250  AddKnownFunctionAttributes(New);
1251
1252  // TUScope is the translation-unit scope to insert this function into.
1253  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1254  // relate Scopes to DeclContexts, and probably eliminate CurContext
1255  // entirely, but we're not there yet.
1256  DeclContext *SavedContext = CurContext;
1257  CurContext = Context.getTranslationUnitDecl();
1258  PushOnScopeChains(New, TUScope);
1259  CurContext = SavedContext;
1260  return New;
1261}
1262
1263/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1264/// same name and scope as a previous declaration 'Old'.  Figure out
1265/// how to resolve this situation, merging decls or emitting
1266/// diagnostics as appropriate. If there was an error, set New to be invalid.
1267///
1268void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1269  // If the new decl is known invalid already, don't bother doing any
1270  // merging checks.
1271  if (New->isInvalidDecl()) return;
1272
1273  // Allow multiple definitions for ObjC built-in typedefs.
1274  // FIXME: Verify the underlying types are equivalent!
1275  if (getLangOptions().ObjC1) {
1276    const IdentifierInfo *TypeID = New->getIdentifier();
1277    switch (TypeID->getLength()) {
1278    default: break;
1279    case 2:
1280      if (!TypeID->isStr("id"))
1281        break;
1282      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1283      // Install the built-in type for 'id', ignoring the current definition.
1284      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1285      return;
1286    case 5:
1287      if (!TypeID->isStr("Class"))
1288        break;
1289      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1290      // Install the built-in type for 'Class', ignoring the current definition.
1291      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1292      return;
1293    case 3:
1294      if (!TypeID->isStr("SEL"))
1295        break;
1296      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1297      // Install the built-in type for 'SEL', ignoring the current definition.
1298      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1299      return;
1300    case 8:
1301      if (!TypeID->isStr("Protocol"))
1302        break;
1303      Context.setObjCProtoType(New->getUnderlyingType());
1304      return;
1305    }
1306    // Fall through - the typedef name was not a builtin type.
1307  }
1308
1309  // Verify the old decl was also a type.
1310  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1311  if (!Old) {
1312    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1313      << New->getDeclName();
1314
1315    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1316    if (OldD->getLocation().isValid())
1317      Diag(OldD->getLocation(), diag::note_previous_definition);
1318
1319    return New->setInvalidDecl();
1320  }
1321
1322  // If the old declaration is invalid, just give up here.
1323  if (Old->isInvalidDecl())
1324    return New->setInvalidDecl();
1325
1326  // Determine the "old" type we'll use for checking and diagnostics.
1327  QualType OldType;
1328  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1329    OldType = OldTypedef->getUnderlyingType();
1330  else
1331    OldType = Context.getTypeDeclType(Old);
1332
1333  // If the typedef types are not identical, reject them in all languages and
1334  // with any extensions enabled.
1335
1336  if (OldType != New->getUnderlyingType() &&
1337      Context.getCanonicalType(OldType) !=
1338      Context.getCanonicalType(New->getUnderlyingType())) {
1339    int Kind = 0;
1340    if (isa<TypeAliasDecl>(Old))
1341      Kind = 1;
1342    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1343      << Kind << New->getUnderlyingType() << OldType;
1344    if (Old->getLocation().isValid())
1345      Diag(Old->getLocation(), diag::note_previous_definition);
1346    return New->setInvalidDecl();
1347  }
1348
1349  // The types match.  Link up the redeclaration chain if the old
1350  // declaration was a typedef.
1351  // FIXME: this is a potential source of wierdness if the type
1352  // spellings don't match exactly.
1353  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1354    New->setPreviousDeclaration(Typedef);
1355
1356  if (getLangOptions().Microsoft)
1357    return;
1358
1359  if (getLangOptions().CPlusPlus) {
1360    // C++ [dcl.typedef]p2:
1361    //   In a given non-class scope, a typedef specifier can be used to
1362    //   redefine the name of any type declared in that scope to refer
1363    //   to the type to which it already refers.
1364    if (!isa<CXXRecordDecl>(CurContext))
1365      return;
1366
1367    // C++0x [dcl.typedef]p4:
1368    //   In a given class scope, a typedef specifier can be used to redefine
1369    //   any class-name declared in that scope that is not also a typedef-name
1370    //   to refer to the type to which it already refers.
1371    //
1372    // This wording came in via DR424, which was a correction to the
1373    // wording in DR56, which accidentally banned code like:
1374    //
1375    //   struct S {
1376    //     typedef struct A { } A;
1377    //   };
1378    //
1379    // in the C++03 standard. We implement the C++0x semantics, which
1380    // allow the above but disallow
1381    //
1382    //   struct S {
1383    //     typedef int I;
1384    //     typedef int I;
1385    //   };
1386    //
1387    // since that was the intent of DR56.
1388    if (!isa<TypedefNameDecl>(Old))
1389      return;
1390
1391    Diag(New->getLocation(), diag::err_redefinition)
1392      << New->getDeclName();
1393    Diag(Old->getLocation(), diag::note_previous_definition);
1394    return New->setInvalidDecl();
1395  }
1396
1397  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1398  // is normally mapped to an error, but can be controlled with
1399  // -Wtypedef-redefinition.  If either the original or the redefinition is
1400  // in a system header, don't emit this for compatibility with GCC.
1401  if (getDiagnostics().getSuppressSystemWarnings() &&
1402      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1403       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1404    return;
1405
1406  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1407    << New->getDeclName();
1408  Diag(Old->getLocation(), diag::note_previous_definition);
1409  return;
1410}
1411
1412/// DeclhasAttr - returns true if decl Declaration already has the target
1413/// attribute.
1414static bool
1415DeclHasAttr(const Decl *D, const Attr *A) {
1416  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1417  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1418    if ((*i)->getKind() == A->getKind()) {
1419      // FIXME: Don't hardcode this check
1420      if (OA && isa<OwnershipAttr>(*i))
1421        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1422      return true;
1423    }
1424
1425  return false;
1426}
1427
1428/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1429static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1430                                ASTContext &C) {
1431  if (!oldDecl->hasAttrs())
1432    return;
1433
1434  bool foundAny = newDecl->hasAttrs();
1435
1436  // Ensure that any moving of objects within the allocated map is done before
1437  // we process them.
1438  if (!foundAny) newDecl->setAttrs(AttrVec());
1439
1440  for (specific_attr_iterator<InheritableAttr>
1441       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1442       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1443    if (!DeclHasAttr(newDecl, *i)) {
1444      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1445      newAttr->setInherited(true);
1446      newDecl->addAttr(newAttr);
1447      foundAny = true;
1448    }
1449  }
1450
1451  if (!foundAny) newDecl->dropAttrs();
1452}
1453
1454/// mergeParamDeclAttributes - Copy attributes from the old parameter
1455/// to the new one.
1456static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1457                                     const ParmVarDecl *oldDecl,
1458                                     ASTContext &C) {
1459  if (!oldDecl->hasAttrs())
1460    return;
1461
1462  bool foundAny = newDecl->hasAttrs();
1463
1464  // Ensure that any moving of objects within the allocated map is
1465  // done before we process them.
1466  if (!foundAny) newDecl->setAttrs(AttrVec());
1467
1468  for (specific_attr_iterator<InheritableParamAttr>
1469       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1470       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1471    if (!DeclHasAttr(newDecl, *i)) {
1472      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1473      newAttr->setInherited(true);
1474      newDecl->addAttr(newAttr);
1475      foundAny = true;
1476    }
1477  }
1478
1479  if (!foundAny) newDecl->dropAttrs();
1480}
1481
1482namespace {
1483
1484/// Used in MergeFunctionDecl to keep track of function parameters in
1485/// C.
1486struct GNUCompatibleParamWarning {
1487  ParmVarDecl *OldParm;
1488  ParmVarDecl *NewParm;
1489  QualType PromotedType;
1490};
1491
1492}
1493
1494/// getSpecialMember - get the special member enum for a method.
1495Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1496  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1497    if (Ctor->isCopyConstructor())
1498      return Sema::CXXCopyConstructor;
1499
1500    return Sema::CXXConstructor;
1501  }
1502
1503  if (isa<CXXDestructorDecl>(MD))
1504    return Sema::CXXDestructor;
1505
1506  assert(MD->isCopyAssignmentOperator() &&
1507         "Must have copy assignment operator");
1508  return Sema::CXXCopyAssignment;
1509}
1510
1511/// canRedefineFunction - checks if a function can be redefined. Currently,
1512/// only extern inline functions can be redefined, and even then only in
1513/// GNU89 mode.
1514static bool canRedefineFunction(const FunctionDecl *FD,
1515                                const LangOptions& LangOpts) {
1516  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1517          FD->isInlineSpecified() &&
1518          FD->getStorageClass() == SC_Extern);
1519}
1520
1521/// MergeFunctionDecl - We just parsed a function 'New' from
1522/// declarator D which has the same name and scope as a previous
1523/// declaration 'Old'.  Figure out how to resolve this situation,
1524/// merging decls or emitting diagnostics as appropriate.
1525///
1526/// In C++, New and Old must be declarations that are not
1527/// overloaded. Use IsOverload to determine whether New and Old are
1528/// overloaded, and to select the Old declaration that New should be
1529/// merged with.
1530///
1531/// Returns true if there was an error, false otherwise.
1532bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1533  // Verify the old decl was also a function.
1534  FunctionDecl *Old = 0;
1535  if (FunctionTemplateDecl *OldFunctionTemplate
1536        = dyn_cast<FunctionTemplateDecl>(OldD))
1537    Old = OldFunctionTemplate->getTemplatedDecl();
1538  else
1539    Old = dyn_cast<FunctionDecl>(OldD);
1540  if (!Old) {
1541    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1542      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1543      Diag(Shadow->getTargetDecl()->getLocation(),
1544           diag::note_using_decl_target);
1545      Diag(Shadow->getUsingDecl()->getLocation(),
1546           diag::note_using_decl) << 0;
1547      return true;
1548    }
1549
1550    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1551      << New->getDeclName();
1552    Diag(OldD->getLocation(), diag::note_previous_definition);
1553    return true;
1554  }
1555
1556  // Determine whether the previous declaration was a definition,
1557  // implicit declaration, or a declaration.
1558  diag::kind PrevDiag;
1559  if (Old->isThisDeclarationADefinition())
1560    PrevDiag = diag::note_previous_definition;
1561  else if (Old->isImplicit())
1562    PrevDiag = diag::note_previous_implicit_declaration;
1563  else
1564    PrevDiag = diag::note_previous_declaration;
1565
1566  QualType OldQType = Context.getCanonicalType(Old->getType());
1567  QualType NewQType = Context.getCanonicalType(New->getType());
1568
1569  // Don't complain about this if we're in GNU89 mode and the old function
1570  // is an extern inline function.
1571  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1572      New->getStorageClass() == SC_Static &&
1573      Old->getStorageClass() != SC_Static &&
1574      !canRedefineFunction(Old, getLangOptions())) {
1575    if (getLangOptions().Microsoft) {
1576      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1577      Diag(Old->getLocation(), PrevDiag);
1578    } else {
1579      Diag(New->getLocation(), diag::err_static_non_static) << New;
1580      Diag(Old->getLocation(), PrevDiag);
1581      return true;
1582    }
1583  }
1584
1585  // If a function is first declared with a calling convention, but is
1586  // later declared or defined without one, the second decl assumes the
1587  // calling convention of the first.
1588  //
1589  // For the new decl, we have to look at the NON-canonical type to tell the
1590  // difference between a function that really doesn't have a calling
1591  // convention and one that is declared cdecl. That's because in
1592  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1593  // because it is the default calling convention.
1594  //
1595  // Note also that we DO NOT return at this point, because we still have
1596  // other tests to run.
1597  const FunctionType *OldType = cast<FunctionType>(OldQType);
1598  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1599  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1600  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1601  bool RequiresAdjustment = false;
1602  if (OldTypeInfo.getCC() != CC_Default &&
1603      NewTypeInfo.getCC() == CC_Default) {
1604    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1605    RequiresAdjustment = true;
1606  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1607                                     NewTypeInfo.getCC())) {
1608    // Calling conventions really aren't compatible, so complain.
1609    Diag(New->getLocation(), diag::err_cconv_change)
1610      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1611      << (OldTypeInfo.getCC() == CC_Default)
1612      << (OldTypeInfo.getCC() == CC_Default ? "" :
1613          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1614    Diag(Old->getLocation(), diag::note_previous_declaration);
1615    return true;
1616  }
1617
1618  // FIXME: diagnose the other way around?
1619  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1620    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1621    RequiresAdjustment = true;
1622  }
1623
1624  // Merge regparm attribute.
1625  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1626      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1627    if (NewTypeInfo.getHasRegParm()) {
1628      Diag(New->getLocation(), diag::err_regparm_mismatch)
1629        << NewType->getRegParmType()
1630        << OldType->getRegParmType();
1631      Diag(Old->getLocation(), diag::note_previous_declaration);
1632      return true;
1633    }
1634
1635    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1636    RequiresAdjustment = true;
1637  }
1638
1639  if (RequiresAdjustment) {
1640    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1641    New->setType(QualType(NewType, 0));
1642    NewQType = Context.getCanonicalType(New->getType());
1643  }
1644
1645  if (getLangOptions().CPlusPlus) {
1646    // (C++98 13.1p2):
1647    //   Certain function declarations cannot be overloaded:
1648    //     -- Function declarations that differ only in the return type
1649    //        cannot be overloaded.
1650    QualType OldReturnType = OldType->getResultType();
1651    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1652    QualType ResQT;
1653    if (OldReturnType != NewReturnType) {
1654      if (NewReturnType->isObjCObjectPointerType()
1655          && OldReturnType->isObjCObjectPointerType())
1656        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1657      if (ResQT.isNull()) {
1658        if (New->isCXXClassMember() && New->isOutOfLine())
1659          Diag(New->getLocation(),
1660               diag::err_member_def_does_not_match_ret_type) << New;
1661        else
1662          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1663        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1664        return true;
1665      }
1666      else
1667        NewQType = ResQT;
1668    }
1669
1670    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1671    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1672    if (OldMethod && NewMethod) {
1673      // Preserve triviality.
1674      NewMethod->setTrivial(OldMethod->isTrivial());
1675
1676      bool isFriend = NewMethod->getFriendObjectKind();
1677
1678      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1679        //    -- Member function declarations with the same name and the
1680        //       same parameter types cannot be overloaded if any of them
1681        //       is a static member function declaration.
1682        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1683          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1684          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1685          return true;
1686        }
1687
1688        // C++ [class.mem]p1:
1689        //   [...] A member shall not be declared twice in the
1690        //   member-specification, except that a nested class or member
1691        //   class template can be declared and then later defined.
1692        unsigned NewDiag;
1693        if (isa<CXXConstructorDecl>(OldMethod))
1694          NewDiag = diag::err_constructor_redeclared;
1695        else if (isa<CXXDestructorDecl>(NewMethod))
1696          NewDiag = diag::err_destructor_redeclared;
1697        else if (isa<CXXConversionDecl>(NewMethod))
1698          NewDiag = diag::err_conv_function_redeclared;
1699        else
1700          NewDiag = diag::err_member_redeclared;
1701
1702        Diag(New->getLocation(), NewDiag);
1703        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1704
1705      // Complain if this is an explicit declaration of a special
1706      // member that was initially declared implicitly.
1707      //
1708      // As an exception, it's okay to befriend such methods in order
1709      // to permit the implicit constructor/destructor/operator calls.
1710      } else if (OldMethod->isImplicit()) {
1711        if (isFriend) {
1712          NewMethod->setImplicit();
1713        } else {
1714          Diag(NewMethod->getLocation(),
1715               diag::err_definition_of_implicitly_declared_member)
1716            << New << getSpecialMember(OldMethod);
1717          return true;
1718        }
1719      }
1720    }
1721
1722    // (C++98 8.3.5p3):
1723    //   All declarations for a function shall agree exactly in both the
1724    //   return type and the parameter-type-list.
1725    // We also want to respect all the extended bits except noreturn.
1726
1727    // noreturn should now match unless the old type info didn't have it.
1728    QualType OldQTypeForComparison = OldQType;
1729    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1730      assert(OldQType == QualType(OldType, 0));
1731      const FunctionType *OldTypeForComparison
1732        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1733      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1734      assert(OldQTypeForComparison.isCanonical());
1735    }
1736
1737    if (OldQTypeForComparison == NewQType)
1738      return MergeCompatibleFunctionDecls(New, Old);
1739
1740    // Fall through for conflicting redeclarations and redefinitions.
1741  }
1742
1743  // C: Function types need to be compatible, not identical. This handles
1744  // duplicate function decls like "void f(int); void f(enum X);" properly.
1745  if (!getLangOptions().CPlusPlus &&
1746      Context.typesAreCompatible(OldQType, NewQType)) {
1747    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1748    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1749    const FunctionProtoType *OldProto = 0;
1750    if (isa<FunctionNoProtoType>(NewFuncType) &&
1751        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1752      // The old declaration provided a function prototype, but the
1753      // new declaration does not. Merge in the prototype.
1754      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1755      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1756                                                 OldProto->arg_type_end());
1757      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1758                                         ParamTypes.data(), ParamTypes.size(),
1759                                         OldProto->getExtProtoInfo());
1760      New->setType(NewQType);
1761      New->setHasInheritedPrototype();
1762
1763      // Synthesize a parameter for each argument type.
1764      llvm::SmallVector<ParmVarDecl*, 16> Params;
1765      for (FunctionProtoType::arg_type_iterator
1766             ParamType = OldProto->arg_type_begin(),
1767             ParamEnd = OldProto->arg_type_end();
1768           ParamType != ParamEnd; ++ParamType) {
1769        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1770                                                 SourceLocation(),
1771                                                 SourceLocation(), 0,
1772                                                 *ParamType, /*TInfo=*/0,
1773                                                 SC_None, SC_None,
1774                                                 0);
1775        Param->setImplicit();
1776        Params.push_back(Param);
1777      }
1778
1779      New->setParams(Params.data(), Params.size());
1780    }
1781
1782    return MergeCompatibleFunctionDecls(New, Old);
1783  }
1784
1785  // GNU C permits a K&R definition to follow a prototype declaration
1786  // if the declared types of the parameters in the K&R definition
1787  // match the types in the prototype declaration, even when the
1788  // promoted types of the parameters from the K&R definition differ
1789  // from the types in the prototype. GCC then keeps the types from
1790  // the prototype.
1791  //
1792  // If a variadic prototype is followed by a non-variadic K&R definition,
1793  // the K&R definition becomes variadic.  This is sort of an edge case, but
1794  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1795  // C99 6.9.1p8.
1796  if (!getLangOptions().CPlusPlus &&
1797      Old->hasPrototype() && !New->hasPrototype() &&
1798      New->getType()->getAs<FunctionProtoType>() &&
1799      Old->getNumParams() == New->getNumParams()) {
1800    llvm::SmallVector<QualType, 16> ArgTypes;
1801    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1802    const FunctionProtoType *OldProto
1803      = Old->getType()->getAs<FunctionProtoType>();
1804    const FunctionProtoType *NewProto
1805      = New->getType()->getAs<FunctionProtoType>();
1806
1807    // Determine whether this is the GNU C extension.
1808    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1809                                               NewProto->getResultType());
1810    bool LooseCompatible = !MergedReturn.isNull();
1811    for (unsigned Idx = 0, End = Old->getNumParams();
1812         LooseCompatible && Idx != End; ++Idx) {
1813      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1814      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1815      if (Context.typesAreCompatible(OldParm->getType(),
1816                                     NewProto->getArgType(Idx))) {
1817        ArgTypes.push_back(NewParm->getType());
1818      } else if (Context.typesAreCompatible(OldParm->getType(),
1819                                            NewParm->getType(),
1820                                            /*CompareUnqualified=*/true)) {
1821        GNUCompatibleParamWarning Warn
1822          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1823        Warnings.push_back(Warn);
1824        ArgTypes.push_back(NewParm->getType());
1825      } else
1826        LooseCompatible = false;
1827    }
1828
1829    if (LooseCompatible) {
1830      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1831        Diag(Warnings[Warn].NewParm->getLocation(),
1832             diag::ext_param_promoted_not_compatible_with_prototype)
1833          << Warnings[Warn].PromotedType
1834          << Warnings[Warn].OldParm->getType();
1835        if (Warnings[Warn].OldParm->getLocation().isValid())
1836          Diag(Warnings[Warn].OldParm->getLocation(),
1837               diag::note_previous_declaration);
1838      }
1839
1840      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1841                                           ArgTypes.size(),
1842                                           OldProto->getExtProtoInfo()));
1843      return MergeCompatibleFunctionDecls(New, Old);
1844    }
1845
1846    // Fall through to diagnose conflicting types.
1847  }
1848
1849  // A function that has already been declared has been redeclared or defined
1850  // with a different type- show appropriate diagnostic
1851  if (unsigned BuiltinID = Old->getBuiltinID()) {
1852    // The user has declared a builtin function with an incompatible
1853    // signature.
1854    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1855      // The function the user is redeclaring is a library-defined
1856      // function like 'malloc' or 'printf'. Warn about the
1857      // redeclaration, then pretend that we don't know about this
1858      // library built-in.
1859      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1860      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1861        << Old << Old->getType();
1862      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1863      Old->setInvalidDecl();
1864      return false;
1865    }
1866
1867    PrevDiag = diag::note_previous_builtin_declaration;
1868  }
1869
1870  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1871  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1872  return true;
1873}
1874
1875/// \brief Completes the merge of two function declarations that are
1876/// known to be compatible.
1877///
1878/// This routine handles the merging of attributes and other
1879/// properties of function declarations form the old declaration to
1880/// the new declaration, once we know that New is in fact a
1881/// redeclaration of Old.
1882///
1883/// \returns false
1884bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1885  // Merge the attributes
1886  mergeDeclAttributes(New, Old, Context);
1887
1888  // Merge the storage class.
1889  if (Old->getStorageClass() != SC_Extern &&
1890      Old->getStorageClass() != SC_None)
1891    New->setStorageClass(Old->getStorageClass());
1892
1893  // Merge "pure" flag.
1894  if (Old->isPure())
1895    New->setPure();
1896
1897  // Merge the "deleted" flag.
1898  if (Old->isDeleted())
1899    New->setDeleted();
1900
1901  // Merge attributes from the parameters.  These can mismatch with K&R
1902  // declarations.
1903  if (New->getNumParams() == Old->getNumParams())
1904    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1905      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1906                               Context);
1907
1908  if (getLangOptions().CPlusPlus)
1909    return MergeCXXFunctionDecl(New, Old);
1910
1911  return false;
1912}
1913
1914void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1915                                const ObjCMethodDecl *oldMethod) {
1916  // Merge the attributes.
1917  mergeDeclAttributes(newMethod, oldMethod, Context);
1918
1919  // Merge attributes from the parameters.
1920  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1921         ni = newMethod->param_begin(), ne = newMethod->param_end();
1922       ni != ne; ++ni, ++oi)
1923    mergeParamDeclAttributes(*ni, *oi, Context);
1924}
1925
1926/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1927/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1928/// emitting diagnostics as appropriate.
1929///
1930/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1931/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1932/// check them before the initializer is attached.
1933///
1934void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1935  if (New->isInvalidDecl() || Old->isInvalidDecl())
1936    return;
1937
1938  QualType MergedT;
1939  if (getLangOptions().CPlusPlus) {
1940    AutoType *AT = New->getType()->getContainedAutoType();
1941    if (AT && !AT->isDeduced()) {
1942      // We don't know what the new type is until the initializer is attached.
1943      return;
1944    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1945      // These could still be something that needs exception specs checked.
1946      return MergeVarDeclExceptionSpecs(New, Old);
1947    }
1948    // C++ [basic.link]p10:
1949    //   [...] the types specified by all declarations referring to a given
1950    //   object or function shall be identical, except that declarations for an
1951    //   array object can specify array types that differ by the presence or
1952    //   absence of a major array bound (8.3.4).
1953    else if (Old->getType()->isIncompleteArrayType() &&
1954             New->getType()->isArrayType()) {
1955      CanQual<ArrayType> OldArray
1956        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1957      CanQual<ArrayType> NewArray
1958        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1959      if (OldArray->getElementType() == NewArray->getElementType())
1960        MergedT = New->getType();
1961    } else if (Old->getType()->isArrayType() &&
1962             New->getType()->isIncompleteArrayType()) {
1963      CanQual<ArrayType> OldArray
1964        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1965      CanQual<ArrayType> NewArray
1966        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1967      if (OldArray->getElementType() == NewArray->getElementType())
1968        MergedT = Old->getType();
1969    } else if (New->getType()->isObjCObjectPointerType()
1970               && Old->getType()->isObjCObjectPointerType()) {
1971        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1972                                                        Old->getType());
1973    }
1974  } else {
1975    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1976  }
1977  if (MergedT.isNull()) {
1978    Diag(New->getLocation(), diag::err_redefinition_different_type)
1979      << New->getDeclName();
1980    Diag(Old->getLocation(), diag::note_previous_definition);
1981    return New->setInvalidDecl();
1982  }
1983  New->setType(MergedT);
1984}
1985
1986/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1987/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1988/// situation, merging decls or emitting diagnostics as appropriate.
1989///
1990/// Tentative definition rules (C99 6.9.2p2) are checked by
1991/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1992/// definitions here, since the initializer hasn't been attached.
1993///
1994void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1995  // If the new decl is already invalid, don't do any other checking.
1996  if (New->isInvalidDecl())
1997    return;
1998
1999  // Verify the old decl was also a variable.
2000  VarDecl *Old = 0;
2001  if (!Previous.isSingleResult() ||
2002      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2003    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2004      << New->getDeclName();
2005    Diag(Previous.getRepresentativeDecl()->getLocation(),
2006         diag::note_previous_definition);
2007    return New->setInvalidDecl();
2008  }
2009
2010  // C++ [class.mem]p1:
2011  //   A member shall not be declared twice in the member-specification [...]
2012  //
2013  // Here, we need only consider static data members.
2014  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2015    Diag(New->getLocation(), diag::err_duplicate_member)
2016      << New->getIdentifier();
2017    Diag(Old->getLocation(), diag::note_previous_declaration);
2018    New->setInvalidDecl();
2019  }
2020
2021  mergeDeclAttributes(New, Old, Context);
2022
2023  // Merge the types.
2024  MergeVarDeclTypes(New, Old);
2025  if (New->isInvalidDecl())
2026    return;
2027
2028  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2029  if (New->getStorageClass() == SC_Static &&
2030      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2031    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2032    Diag(Old->getLocation(), diag::note_previous_definition);
2033    return New->setInvalidDecl();
2034  }
2035  // C99 6.2.2p4:
2036  //   For an identifier declared with the storage-class specifier
2037  //   extern in a scope in which a prior declaration of that
2038  //   identifier is visible,23) if the prior declaration specifies
2039  //   internal or external linkage, the linkage of the identifier at
2040  //   the later declaration is the same as the linkage specified at
2041  //   the prior declaration. If no prior declaration is visible, or
2042  //   if the prior declaration specifies no linkage, then the
2043  //   identifier has external linkage.
2044  if (New->hasExternalStorage() && Old->hasLinkage())
2045    /* Okay */;
2046  else if (New->getStorageClass() != SC_Static &&
2047           Old->getStorageClass() == SC_Static) {
2048    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2049    Diag(Old->getLocation(), diag::note_previous_definition);
2050    return New->setInvalidDecl();
2051  }
2052
2053  // Check if extern is followed by non-extern and vice-versa.
2054  if (New->hasExternalStorage() &&
2055      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2056    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2057    Diag(Old->getLocation(), diag::note_previous_definition);
2058    return New->setInvalidDecl();
2059  }
2060  if (Old->hasExternalStorage() &&
2061      !New->hasLinkage() && New->isLocalVarDecl()) {
2062    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2063    Diag(Old->getLocation(), diag::note_previous_definition);
2064    return New->setInvalidDecl();
2065  }
2066
2067  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2068
2069  // FIXME: The test for external storage here seems wrong? We still
2070  // need to check for mismatches.
2071  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2072      // Don't complain about out-of-line definitions of static members.
2073      !(Old->getLexicalDeclContext()->isRecord() &&
2074        !New->getLexicalDeclContext()->isRecord())) {
2075    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2076    Diag(Old->getLocation(), diag::note_previous_definition);
2077    return New->setInvalidDecl();
2078  }
2079
2080  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2081    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2082    Diag(Old->getLocation(), diag::note_previous_definition);
2083  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2084    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2085    Diag(Old->getLocation(), diag::note_previous_definition);
2086  }
2087
2088  // C++ doesn't have tentative definitions, so go right ahead and check here.
2089  const VarDecl *Def;
2090  if (getLangOptions().CPlusPlus &&
2091      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2092      (Def = Old->getDefinition())) {
2093    Diag(New->getLocation(), diag::err_redefinition)
2094      << New->getDeclName();
2095    Diag(Def->getLocation(), diag::note_previous_definition);
2096    New->setInvalidDecl();
2097    return;
2098  }
2099  // c99 6.2.2 P4.
2100  // For an identifier declared with the storage-class specifier extern in a
2101  // scope in which a prior declaration of that identifier is visible, if
2102  // the prior declaration specifies internal or external linkage, the linkage
2103  // of the identifier at the later declaration is the same as the linkage
2104  // specified at the prior declaration.
2105  // FIXME. revisit this code.
2106  if (New->hasExternalStorage() &&
2107      Old->getLinkage() == InternalLinkage &&
2108      New->getDeclContext() == Old->getDeclContext())
2109    New->setStorageClass(Old->getStorageClass());
2110
2111  // Keep a chain of previous declarations.
2112  New->setPreviousDeclaration(Old);
2113
2114  // Inherit access appropriately.
2115  New->setAccess(Old->getAccess());
2116}
2117
2118/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2119/// no declarator (e.g. "struct foo;") is parsed.
2120Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2121                                       DeclSpec &DS) {
2122  Decl *TagD = 0;
2123  TagDecl *Tag = 0;
2124  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2125      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2126      DS.getTypeSpecType() == DeclSpec::TST_union ||
2127      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2128    TagD = DS.getRepAsDecl();
2129
2130    if (!TagD) // We probably had an error
2131      return 0;
2132
2133    // Note that the above type specs guarantee that the
2134    // type rep is a Decl, whereas in many of the others
2135    // it's a Type.
2136    Tag = dyn_cast<TagDecl>(TagD);
2137  }
2138
2139  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2140    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2141    // or incomplete types shall not be restrict-qualified."
2142    if (TypeQuals & DeclSpec::TQ_restrict)
2143      Diag(DS.getRestrictSpecLoc(),
2144           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2145           << DS.getSourceRange();
2146  }
2147
2148  if (DS.isFriendSpecified()) {
2149    // If we're dealing with a decl but not a TagDecl, assume that
2150    // whatever routines created it handled the friendship aspect.
2151    if (TagD && !Tag)
2152      return 0;
2153    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
2154  }
2155
2156  // Track whether we warned about the fact that there aren't any
2157  // declarators.
2158  bool emittedWarning = false;
2159
2160  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2161    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2162
2163    if (!Record->getDeclName() && Record->isDefinition() &&
2164        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2165      if (getLangOptions().CPlusPlus ||
2166          Record->getDeclContext()->isRecord())
2167        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2168
2169      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2170        << DS.getSourceRange();
2171      emittedWarning = true;
2172    }
2173  }
2174
2175  // Check for Microsoft C extension: anonymous struct.
2176  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2177      CurContext->isRecord() &&
2178      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2179    // Handle 2 kinds of anonymous struct:
2180    //   struct STRUCT;
2181    // and
2182    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2183    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2184    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2185        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2186         DS.getRepAsType().get()->isStructureType())) {
2187      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2188        << DS.getSourceRange();
2189      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2190    }
2191  }
2192
2193  if (getLangOptions().CPlusPlus &&
2194      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2195    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2196      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2197          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2198        Diag(Enum->getLocation(), diag::ext_no_declarators)
2199          << DS.getSourceRange();
2200        emittedWarning = true;
2201      }
2202
2203  // Skip all the checks below if we have a type error.
2204  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2205
2206  if (!DS.isMissingDeclaratorOk()) {
2207    // Warn about typedefs of enums without names, since this is an
2208    // extension in both Microsoft and GNU.
2209    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2210        Tag && isa<EnumDecl>(Tag)) {
2211      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2212        << DS.getSourceRange();
2213      return Tag;
2214    }
2215
2216    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2217      << DS.getSourceRange();
2218    emittedWarning = true;
2219  }
2220
2221  // We're going to complain about a bunch of spurious specifiers;
2222  // only do this if we're declaring a tag, because otherwise we
2223  // should be getting diag::ext_no_declarators.
2224  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2225    return TagD;
2226
2227  // Note that a linkage-specification sets a storage class, but
2228  // 'extern "C" struct foo;' is actually valid and not theoretically
2229  // useless.
2230  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2231    if (!DS.isExternInLinkageSpec())
2232      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2233        << DeclSpec::getSpecifierName(scs);
2234
2235  if (DS.isThreadSpecified())
2236    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2237  if (DS.getTypeQualifiers()) {
2238    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2239      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2240    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2241      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2242    // Restrict is covered above.
2243  }
2244  if (DS.isInlineSpecified())
2245    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2246  if (DS.isVirtualSpecified())
2247    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2248  if (DS.isExplicitSpecified())
2249    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2250
2251  // FIXME: Warn on useless attributes
2252
2253  return TagD;
2254}
2255
2256/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2257/// builds a statement for it and returns it so it is evaluated.
2258StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2259  StmtResult R;
2260  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2261    Expr *Exp = DS.getRepAsExpr();
2262    QualType Ty = Exp->getType();
2263    if (Ty->isPointerType()) {
2264      do
2265        Ty = Ty->getAs<PointerType>()->getPointeeType();
2266      while (Ty->isPointerType());
2267    }
2268    if (Ty->isVariableArrayType()) {
2269      R = ActOnExprStmt(MakeFullExpr(Exp));
2270    }
2271  }
2272  return R;
2273}
2274
2275/// We are trying to inject an anonymous member into the given scope;
2276/// check if there's an existing declaration that can't be overloaded.
2277///
2278/// \return true if this is a forbidden redeclaration
2279static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2280                                         Scope *S,
2281                                         DeclContext *Owner,
2282                                         DeclarationName Name,
2283                                         SourceLocation NameLoc,
2284                                         unsigned diagnostic) {
2285  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2286                 Sema::ForRedeclaration);
2287  if (!SemaRef.LookupName(R, S)) return false;
2288
2289  if (R.getAsSingle<TagDecl>())
2290    return false;
2291
2292  // Pick a representative declaration.
2293  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2294  assert(PrevDecl && "Expected a non-null Decl");
2295
2296  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2297    return false;
2298
2299  SemaRef.Diag(NameLoc, diagnostic) << Name;
2300  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2301
2302  return true;
2303}
2304
2305/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2306/// anonymous struct or union AnonRecord into the owning context Owner
2307/// and scope S. This routine will be invoked just after we realize
2308/// that an unnamed union or struct is actually an anonymous union or
2309/// struct, e.g.,
2310///
2311/// @code
2312/// union {
2313///   int i;
2314///   float f;
2315/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2316///    // f into the surrounding scope.x
2317/// @endcode
2318///
2319/// This routine is recursive, injecting the names of nested anonymous
2320/// structs/unions into the owning context and scope as well.
2321static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2322                                                DeclContext *Owner,
2323                                                RecordDecl *AnonRecord,
2324                                                AccessSpecifier AS,
2325                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2326                                                      bool MSAnonStruct) {
2327  unsigned diagKind
2328    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2329                            : diag::err_anonymous_struct_member_redecl;
2330
2331  bool Invalid = false;
2332
2333  // Look every FieldDecl and IndirectFieldDecl with a name.
2334  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2335                               DEnd = AnonRecord->decls_end();
2336       D != DEnd; ++D) {
2337    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2338        cast<NamedDecl>(*D)->getDeclName()) {
2339      ValueDecl *VD = cast<ValueDecl>(*D);
2340      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2341                                       VD->getLocation(), diagKind)) {
2342        // C++ [class.union]p2:
2343        //   The names of the members of an anonymous union shall be
2344        //   distinct from the names of any other entity in the
2345        //   scope in which the anonymous union is declared.
2346        Invalid = true;
2347      } else {
2348        // C++ [class.union]p2:
2349        //   For the purpose of name lookup, after the anonymous union
2350        //   definition, the members of the anonymous union are
2351        //   considered to have been defined in the scope in which the
2352        //   anonymous union is declared.
2353        unsigned OldChainingSize = Chaining.size();
2354        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2355          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2356               PE = IF->chain_end(); PI != PE; ++PI)
2357            Chaining.push_back(*PI);
2358        else
2359          Chaining.push_back(VD);
2360
2361        assert(Chaining.size() >= 2);
2362        NamedDecl **NamedChain =
2363          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2364        for (unsigned i = 0; i < Chaining.size(); i++)
2365          NamedChain[i] = Chaining[i];
2366
2367        IndirectFieldDecl* IndirectField =
2368          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2369                                    VD->getIdentifier(), VD->getType(),
2370                                    NamedChain, Chaining.size());
2371
2372        IndirectField->setAccess(AS);
2373        IndirectField->setImplicit();
2374        SemaRef.PushOnScopeChains(IndirectField, S);
2375
2376        // That includes picking up the appropriate access specifier.
2377        if (AS != AS_none) IndirectField->setAccess(AS);
2378
2379        Chaining.resize(OldChainingSize);
2380      }
2381    }
2382  }
2383
2384  return Invalid;
2385}
2386
2387/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2388/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2389/// illegal input values are mapped to SC_None.
2390static StorageClass
2391StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2392  switch (StorageClassSpec) {
2393  case DeclSpec::SCS_unspecified:    return SC_None;
2394  case DeclSpec::SCS_extern:         return SC_Extern;
2395  case DeclSpec::SCS_static:         return SC_Static;
2396  case DeclSpec::SCS_auto:           return SC_Auto;
2397  case DeclSpec::SCS_register:       return SC_Register;
2398  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2399    // Illegal SCSs map to None: error reporting is up to the caller.
2400  case DeclSpec::SCS_mutable:        // Fall through.
2401  case DeclSpec::SCS_typedef:        return SC_None;
2402  }
2403  llvm_unreachable("unknown storage class specifier");
2404}
2405
2406/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2407/// a StorageClass. Any error reporting is up to the caller:
2408/// illegal input values are mapped to SC_None.
2409static StorageClass
2410StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2411  switch (StorageClassSpec) {
2412  case DeclSpec::SCS_unspecified:    return SC_None;
2413  case DeclSpec::SCS_extern:         return SC_Extern;
2414  case DeclSpec::SCS_static:         return SC_Static;
2415  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2416    // Illegal SCSs map to None: error reporting is up to the caller.
2417  case DeclSpec::SCS_auto:           // Fall through.
2418  case DeclSpec::SCS_mutable:        // Fall through.
2419  case DeclSpec::SCS_register:       // Fall through.
2420  case DeclSpec::SCS_typedef:        return SC_None;
2421  }
2422  llvm_unreachable("unknown storage class specifier");
2423}
2424
2425/// BuildAnonymousStructOrUnion - Handle the declaration of an
2426/// anonymous structure or union. Anonymous unions are a C++ feature
2427/// (C++ [class.union]) and a GNU C extension; anonymous structures
2428/// are a GNU C and GNU C++ extension.
2429Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2430                                             AccessSpecifier AS,
2431                                             RecordDecl *Record) {
2432  DeclContext *Owner = Record->getDeclContext();
2433
2434  // Diagnose whether this anonymous struct/union is an extension.
2435  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2436    Diag(Record->getLocation(), diag::ext_anonymous_union);
2437  else if (!Record->isUnion())
2438    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2439
2440  // C and C++ require different kinds of checks for anonymous
2441  // structs/unions.
2442  bool Invalid = false;
2443  if (getLangOptions().CPlusPlus) {
2444    const char* PrevSpec = 0;
2445    unsigned DiagID;
2446    // C++ [class.union]p3:
2447    //   Anonymous unions declared in a named namespace or in the
2448    //   global namespace shall be declared static.
2449    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2450        (isa<TranslationUnitDecl>(Owner) ||
2451         (isa<NamespaceDecl>(Owner) &&
2452          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2453      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2454      Invalid = true;
2455
2456      // Recover by adding 'static'.
2457      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2458                             PrevSpec, DiagID, getLangOptions());
2459    }
2460    // C++ [class.union]p3:
2461    //   A storage class is not allowed in a declaration of an
2462    //   anonymous union in a class scope.
2463    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2464             isa<RecordDecl>(Owner)) {
2465      Diag(DS.getStorageClassSpecLoc(),
2466           diag::err_anonymous_union_with_storage_spec);
2467      Invalid = true;
2468
2469      // Recover by removing the storage specifier.
2470      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2471                             PrevSpec, DiagID, getLangOptions());
2472    }
2473
2474    // C++ [class.union]p2:
2475    //   The member-specification of an anonymous union shall only
2476    //   define non-static data members. [Note: nested types and
2477    //   functions cannot be declared within an anonymous union. ]
2478    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2479                                 MemEnd = Record->decls_end();
2480         Mem != MemEnd; ++Mem) {
2481      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2482        // C++ [class.union]p3:
2483        //   An anonymous union shall not have private or protected
2484        //   members (clause 11).
2485        assert(FD->getAccess() != AS_none);
2486        if (FD->getAccess() != AS_public) {
2487          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2488            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2489          Invalid = true;
2490        }
2491
2492        if (CheckNontrivialField(FD))
2493          Invalid = true;
2494      } else if ((*Mem)->isImplicit()) {
2495        // Any implicit members are fine.
2496      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2497        // This is a type that showed up in an
2498        // elaborated-type-specifier inside the anonymous struct or
2499        // union, but which actually declares a type outside of the
2500        // anonymous struct or union. It's okay.
2501      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2502        if (!MemRecord->isAnonymousStructOrUnion() &&
2503            MemRecord->getDeclName()) {
2504          // Visual C++ allows type definition in anonymous struct or union.
2505          if (getLangOptions().Microsoft)
2506            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2507              << (int)Record->isUnion();
2508          else {
2509            // This is a nested type declaration.
2510            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2511              << (int)Record->isUnion();
2512            Invalid = true;
2513          }
2514        }
2515      } else if (isa<AccessSpecDecl>(*Mem)) {
2516        // Any access specifier is fine.
2517      } else {
2518        // We have something that isn't a non-static data
2519        // member. Complain about it.
2520        unsigned DK = diag::err_anonymous_record_bad_member;
2521        if (isa<TypeDecl>(*Mem))
2522          DK = diag::err_anonymous_record_with_type;
2523        else if (isa<FunctionDecl>(*Mem))
2524          DK = diag::err_anonymous_record_with_function;
2525        else if (isa<VarDecl>(*Mem))
2526          DK = diag::err_anonymous_record_with_static;
2527
2528        // Visual C++ allows type definition in anonymous struct or union.
2529        if (getLangOptions().Microsoft &&
2530            DK == diag::err_anonymous_record_with_type)
2531          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2532            << (int)Record->isUnion();
2533        else {
2534          Diag((*Mem)->getLocation(), DK)
2535              << (int)Record->isUnion();
2536          Invalid = true;
2537        }
2538      }
2539    }
2540  }
2541
2542  if (!Record->isUnion() && !Owner->isRecord()) {
2543    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2544      << (int)getLangOptions().CPlusPlus;
2545    Invalid = true;
2546  }
2547
2548  // Mock up a declarator.
2549  Declarator Dc(DS, Declarator::TypeNameContext);
2550  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2551  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2552
2553  // Create a declaration for this anonymous struct/union.
2554  NamedDecl *Anon = 0;
2555  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2556    Anon = FieldDecl::Create(Context, OwningClass,
2557                             DS.getSourceRange().getBegin(),
2558                             Record->getLocation(),
2559                             /*IdentifierInfo=*/0,
2560                             Context.getTypeDeclType(Record),
2561                             TInfo,
2562                             /*BitWidth=*/0, /*Mutable=*/false);
2563    Anon->setAccess(AS);
2564    if (getLangOptions().CPlusPlus)
2565      FieldCollector->Add(cast<FieldDecl>(Anon));
2566  } else {
2567    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2568    assert(SCSpec != DeclSpec::SCS_typedef &&
2569           "Parser allowed 'typedef' as storage class VarDecl.");
2570    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2571    if (SCSpec == DeclSpec::SCS_mutable) {
2572      // mutable can only appear on non-static class members, so it's always
2573      // an error here
2574      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2575      Invalid = true;
2576      SC = SC_None;
2577    }
2578    SCSpec = DS.getStorageClassSpecAsWritten();
2579    VarDecl::StorageClass SCAsWritten
2580      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2581
2582    Anon = VarDecl::Create(Context, Owner,
2583                           DS.getSourceRange().getBegin(),
2584                           Record->getLocation(), /*IdentifierInfo=*/0,
2585                           Context.getTypeDeclType(Record),
2586                           TInfo, SC, SCAsWritten);
2587  }
2588  Anon->setImplicit();
2589
2590  // Add the anonymous struct/union object to the current
2591  // context. We'll be referencing this object when we refer to one of
2592  // its members.
2593  Owner->addDecl(Anon);
2594
2595  // Inject the members of the anonymous struct/union into the owning
2596  // context and into the identifier resolver chain for name lookup
2597  // purposes.
2598  llvm::SmallVector<NamedDecl*, 2> Chain;
2599  Chain.push_back(Anon);
2600
2601  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2602                                          Chain, false))
2603    Invalid = true;
2604
2605  // Mark this as an anonymous struct/union type. Note that we do not
2606  // do this until after we have already checked and injected the
2607  // members of this anonymous struct/union type, because otherwise
2608  // the members could be injected twice: once by DeclContext when it
2609  // builds its lookup table, and once by
2610  // InjectAnonymousStructOrUnionMembers.
2611  Record->setAnonymousStructOrUnion(true);
2612
2613  if (Invalid)
2614    Anon->setInvalidDecl();
2615
2616  return Anon;
2617}
2618
2619/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2620/// Microsoft C anonymous structure.
2621/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2622/// Example:
2623///
2624/// struct A { int a; };
2625/// struct B { struct A; int b; };
2626///
2627/// void foo() {
2628///   B var;
2629///   var.a = 3;
2630/// }
2631///
2632Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2633                                           RecordDecl *Record) {
2634
2635  // If there is no Record, get the record via the typedef.
2636  if (!Record)
2637    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2638
2639  // Mock up a declarator.
2640  Declarator Dc(DS, Declarator::TypeNameContext);
2641  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2642  assert(TInfo && "couldn't build declarator info for anonymous struct");
2643
2644  // Create a declaration for this anonymous struct.
2645  NamedDecl* Anon = FieldDecl::Create(Context,
2646                             cast<RecordDecl>(CurContext),
2647                             DS.getSourceRange().getBegin(),
2648                             DS.getSourceRange().getBegin(),
2649                             /*IdentifierInfo=*/0,
2650                             Context.getTypeDeclType(Record),
2651                             TInfo,
2652                             /*BitWidth=*/0, /*Mutable=*/false);
2653  Anon->setImplicit();
2654
2655  // Add the anonymous struct object to the current context.
2656  CurContext->addDecl(Anon);
2657
2658  // Inject the members of the anonymous struct into the current
2659  // context and into the identifier resolver chain for name lookup
2660  // purposes.
2661  llvm::SmallVector<NamedDecl*, 2> Chain;
2662  Chain.push_back(Anon);
2663
2664  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2665                                          Record->getDefinition(),
2666                                          AS_none, Chain, true))
2667    Anon->setInvalidDecl();
2668
2669  return Anon;
2670}
2671
2672/// GetNameForDeclarator - Determine the full declaration name for the
2673/// given Declarator.
2674DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2675  return GetNameFromUnqualifiedId(D.getName());
2676}
2677
2678/// \brief Retrieves the declaration name from a parsed unqualified-id.
2679DeclarationNameInfo
2680Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2681  DeclarationNameInfo NameInfo;
2682  NameInfo.setLoc(Name.StartLocation);
2683
2684  switch (Name.getKind()) {
2685
2686  case UnqualifiedId::IK_Identifier:
2687    NameInfo.setName(Name.Identifier);
2688    NameInfo.setLoc(Name.StartLocation);
2689    return NameInfo;
2690
2691  case UnqualifiedId::IK_OperatorFunctionId:
2692    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2693                                           Name.OperatorFunctionId.Operator));
2694    NameInfo.setLoc(Name.StartLocation);
2695    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2696      = Name.OperatorFunctionId.SymbolLocations[0];
2697    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2698      = Name.EndLocation.getRawEncoding();
2699    return NameInfo;
2700
2701  case UnqualifiedId::IK_LiteralOperatorId:
2702    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2703                                                           Name.Identifier));
2704    NameInfo.setLoc(Name.StartLocation);
2705    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2706    return NameInfo;
2707
2708  case UnqualifiedId::IK_ConversionFunctionId: {
2709    TypeSourceInfo *TInfo;
2710    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2711    if (Ty.isNull())
2712      return DeclarationNameInfo();
2713    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2714                                               Context.getCanonicalType(Ty)));
2715    NameInfo.setLoc(Name.StartLocation);
2716    NameInfo.setNamedTypeInfo(TInfo);
2717    return NameInfo;
2718  }
2719
2720  case UnqualifiedId::IK_ConstructorName: {
2721    TypeSourceInfo *TInfo;
2722    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2723    if (Ty.isNull())
2724      return DeclarationNameInfo();
2725    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2726                                              Context.getCanonicalType(Ty)));
2727    NameInfo.setLoc(Name.StartLocation);
2728    NameInfo.setNamedTypeInfo(TInfo);
2729    return NameInfo;
2730  }
2731
2732  case UnqualifiedId::IK_ConstructorTemplateId: {
2733    // In well-formed code, we can only have a constructor
2734    // template-id that refers to the current context, so go there
2735    // to find the actual type being constructed.
2736    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2737    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2738      return DeclarationNameInfo();
2739
2740    // Determine the type of the class being constructed.
2741    QualType CurClassType = Context.getTypeDeclType(CurClass);
2742
2743    // FIXME: Check two things: that the template-id names the same type as
2744    // CurClassType, and that the template-id does not occur when the name
2745    // was qualified.
2746
2747    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2748                                    Context.getCanonicalType(CurClassType)));
2749    NameInfo.setLoc(Name.StartLocation);
2750    // FIXME: should we retrieve TypeSourceInfo?
2751    NameInfo.setNamedTypeInfo(0);
2752    return NameInfo;
2753  }
2754
2755  case UnqualifiedId::IK_DestructorName: {
2756    TypeSourceInfo *TInfo;
2757    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2758    if (Ty.isNull())
2759      return DeclarationNameInfo();
2760    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2761                                              Context.getCanonicalType(Ty)));
2762    NameInfo.setLoc(Name.StartLocation);
2763    NameInfo.setNamedTypeInfo(TInfo);
2764    return NameInfo;
2765  }
2766
2767  case UnqualifiedId::IK_TemplateId: {
2768    TemplateName TName = Name.TemplateId->Template.get();
2769    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2770    return Context.getNameForTemplate(TName, TNameLoc);
2771  }
2772
2773  } // switch (Name.getKind())
2774
2775  assert(false && "Unknown name kind");
2776  return DeclarationNameInfo();
2777}
2778
2779/// isNearlyMatchingFunction - Determine whether the C++ functions
2780/// Declaration and Definition are "nearly" matching. This heuristic
2781/// is used to improve diagnostics in the case where an out-of-line
2782/// function definition doesn't match any declaration within
2783/// the class or namespace.
2784static bool isNearlyMatchingFunction(ASTContext &Context,
2785                                     FunctionDecl *Declaration,
2786                                     FunctionDecl *Definition) {
2787  if (Declaration->param_size() != Definition->param_size())
2788    return false;
2789  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2790    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2791    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2792
2793    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2794                                        DefParamTy.getNonReferenceType()))
2795      return false;
2796  }
2797
2798  return true;
2799}
2800
2801/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2802/// declarator needs to be rebuilt in the current instantiation.
2803/// Any bits of declarator which appear before the name are valid for
2804/// consideration here.  That's specifically the type in the decl spec
2805/// and the base type in any member-pointer chunks.
2806static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2807                                                    DeclarationName Name) {
2808  // The types we specifically need to rebuild are:
2809  //   - typenames, typeofs, and decltypes
2810  //   - types which will become injected class names
2811  // Of course, we also need to rebuild any type referencing such a
2812  // type.  It's safest to just say "dependent", but we call out a
2813  // few cases here.
2814
2815  DeclSpec &DS = D.getMutableDeclSpec();
2816  switch (DS.getTypeSpecType()) {
2817  case DeclSpec::TST_typename:
2818  case DeclSpec::TST_typeofType:
2819  case DeclSpec::TST_decltype: {
2820    // Grab the type from the parser.
2821    TypeSourceInfo *TSI = 0;
2822    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2823    if (T.isNull() || !T->isDependentType()) break;
2824
2825    // Make sure there's a type source info.  This isn't really much
2826    // of a waste; most dependent types should have type source info
2827    // attached already.
2828    if (!TSI)
2829      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2830
2831    // Rebuild the type in the current instantiation.
2832    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2833    if (!TSI) return true;
2834
2835    // Store the new type back in the decl spec.
2836    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2837    DS.UpdateTypeRep(LocType);
2838    break;
2839  }
2840
2841  case DeclSpec::TST_typeofExpr: {
2842    Expr *E = DS.getRepAsExpr();
2843    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2844    if (Result.isInvalid()) return true;
2845    DS.UpdateExprRep(Result.get());
2846    break;
2847  }
2848
2849  default:
2850    // Nothing to do for these decl specs.
2851    break;
2852  }
2853
2854  // It doesn't matter what order we do this in.
2855  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2856    DeclaratorChunk &Chunk = D.getTypeObject(I);
2857
2858    // The only type information in the declarator which can come
2859    // before the declaration name is the base type of a member
2860    // pointer.
2861    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2862      continue;
2863
2864    // Rebuild the scope specifier in-place.
2865    CXXScopeSpec &SS = Chunk.Mem.Scope();
2866    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2867      return true;
2868  }
2869
2870  return false;
2871}
2872
2873Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2874  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2875}
2876
2877/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2878///   If T is the name of a class, then each of the following shall have a
2879///   name different from T:
2880///     - every static data member of class T;
2881///     - every member function of class T
2882///     - every member of class T that is itself a type;
2883/// \returns true if the declaration name violates these rules.
2884bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2885                                   DeclarationNameInfo NameInfo) {
2886  DeclarationName Name = NameInfo.getName();
2887
2888  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2889    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2890      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2891      return true;
2892    }
2893
2894  return false;
2895}
2896
2897Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2898                             MultiTemplateParamsArg TemplateParamLists,
2899                             bool IsFunctionDefinition) {
2900  // TODO: consider using NameInfo for diagnostic.
2901  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2902  DeclarationName Name = NameInfo.getName();
2903
2904  // All of these full declarators require an identifier.  If it doesn't have
2905  // one, the ParsedFreeStandingDeclSpec action should be used.
2906  if (!Name) {
2907    if (!D.isInvalidType())  // Reject this if we think it is valid.
2908      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2909           diag::err_declarator_need_ident)
2910        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2911    return 0;
2912  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2913    return 0;
2914
2915  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2916  // we find one that is.
2917  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2918         (S->getFlags() & Scope::TemplateParamScope) != 0)
2919    S = S->getParent();
2920
2921  DeclContext *DC = CurContext;
2922  if (D.getCXXScopeSpec().isInvalid())
2923    D.setInvalidType();
2924  else if (D.getCXXScopeSpec().isSet()) {
2925    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2926                                        UPPC_DeclarationQualifier))
2927      return 0;
2928
2929    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2930    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2931    if (!DC) {
2932      // If we could not compute the declaration context, it's because the
2933      // declaration context is dependent but does not refer to a class,
2934      // class template, or class template partial specialization. Complain
2935      // and return early, to avoid the coming semantic disaster.
2936      Diag(D.getIdentifierLoc(),
2937           diag::err_template_qualified_declarator_no_match)
2938        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2939        << D.getCXXScopeSpec().getRange();
2940      return 0;
2941    }
2942
2943    bool IsDependentContext = DC->isDependentContext();
2944
2945    if (!IsDependentContext &&
2946        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2947      return 0;
2948
2949    if (isa<CXXRecordDecl>(DC)) {
2950      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
2951        Diag(D.getIdentifierLoc(),
2952             diag::err_member_def_undefined_record)
2953          << Name << DC << D.getCXXScopeSpec().getRange();
2954        D.setInvalidType();
2955      } else if (isa<CXXRecordDecl>(CurContext) &&
2956                 !D.getDeclSpec().isFriendSpecified()) {
2957        // The user provided a superfluous scope specifier inside a class
2958        // definition:
2959        //
2960        // class X {
2961        //   void X::f();
2962        // };
2963        if (CurContext->Equals(DC))
2964          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
2965            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
2966        else
2967          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
2968            << Name << D.getCXXScopeSpec().getRange();
2969
2970        // Pretend that this qualifier was not here.
2971        D.getCXXScopeSpec().clear();
2972      }
2973    }
2974
2975    // Check whether we need to rebuild the type of the given
2976    // declaration in the current instantiation.
2977    if (EnteringContext && IsDependentContext &&
2978        TemplateParamLists.size() != 0) {
2979      ContextRAII SavedContext(*this, DC);
2980      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2981        D.setInvalidType();
2982    }
2983  }
2984
2985  if (DiagnoseClassNameShadow(DC, NameInfo))
2986    // If this is a typedef, we'll end up spewing multiple diagnostics.
2987    // Just return early; it's safer.
2988    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2989      return 0;
2990
2991  NamedDecl *New;
2992
2993  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2994  QualType R = TInfo->getType();
2995
2996  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
2997                                      UPPC_DeclarationType))
2998    D.setInvalidType();
2999
3000  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3001                        ForRedeclaration);
3002
3003  // See if this is a redefinition of a variable in the same scope.
3004  if (!D.getCXXScopeSpec().isSet()) {
3005    bool IsLinkageLookup = false;
3006
3007    // If the declaration we're planning to build will be a function
3008    // or object with linkage, then look for another declaration with
3009    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3010    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3011      /* Do nothing*/;
3012    else if (R->isFunctionType()) {
3013      if (CurContext->isFunctionOrMethod() ||
3014          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3015        IsLinkageLookup = true;
3016    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3017      IsLinkageLookup = true;
3018    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3019             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3020      IsLinkageLookup = true;
3021
3022    if (IsLinkageLookup)
3023      Previous.clear(LookupRedeclarationWithLinkage);
3024
3025    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3026  } else { // Something like "int foo::x;"
3027    LookupQualifiedName(Previous, DC);
3028
3029    // Don't consider using declarations as previous declarations for
3030    // out-of-line members.
3031    RemoveUsingDecls(Previous);
3032
3033    // C++ 7.3.1.2p2:
3034    // Members (including explicit specializations of templates) of a named
3035    // namespace can also be defined outside that namespace by explicit
3036    // qualification of the name being defined, provided that the entity being
3037    // defined was already declared in the namespace and the definition appears
3038    // after the point of declaration in a namespace that encloses the
3039    // declarations namespace.
3040    //
3041    // Note that we only check the context at this point. We don't yet
3042    // have enough information to make sure that PrevDecl is actually
3043    // the declaration we want to match. For example, given:
3044    //
3045    //   class X {
3046    //     void f();
3047    //     void f(float);
3048    //   };
3049    //
3050    //   void X::f(int) { } // ill-formed
3051    //
3052    // In this case, PrevDecl will point to the overload set
3053    // containing the two f's declared in X, but neither of them
3054    // matches.
3055
3056    // First check whether we named the global scope.
3057    if (isa<TranslationUnitDecl>(DC)) {
3058      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3059        << Name << D.getCXXScopeSpec().getRange();
3060    } else {
3061      DeclContext *Cur = CurContext;
3062      while (isa<LinkageSpecDecl>(Cur))
3063        Cur = Cur->getParent();
3064      if (!Cur->Encloses(DC)) {
3065        // The qualifying scope doesn't enclose the original declaration.
3066        // Emit diagnostic based on current scope.
3067        SourceLocation L = D.getIdentifierLoc();
3068        SourceRange R = D.getCXXScopeSpec().getRange();
3069        if (isa<FunctionDecl>(Cur))
3070          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3071        else
3072          Diag(L, diag::err_invalid_declarator_scope)
3073            << Name << cast<NamedDecl>(DC) << R;
3074        D.setInvalidType();
3075      }
3076    }
3077  }
3078
3079  if (Previous.isSingleResult() &&
3080      Previous.getFoundDecl()->isTemplateParameter()) {
3081    // Maybe we will complain about the shadowed template parameter.
3082    if (!D.isInvalidType())
3083      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3084                                          Previous.getFoundDecl()))
3085        D.setInvalidType();
3086
3087    // Just pretend that we didn't see the previous declaration.
3088    Previous.clear();
3089  }
3090
3091  // In C++, the previous declaration we find might be a tag type
3092  // (class or enum). In this case, the new declaration will hide the
3093  // tag type. Note that this does does not apply if we're declaring a
3094  // typedef (C++ [dcl.typedef]p4).
3095  if (Previous.isSingleTagDecl() &&
3096      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3097    Previous.clear();
3098
3099  bool Redeclaration = false;
3100  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3101    if (TemplateParamLists.size()) {
3102      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3103      return 0;
3104    }
3105
3106    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3107  } else if (R->isFunctionType()) {
3108    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3109                                  move(TemplateParamLists),
3110                                  IsFunctionDefinition, Redeclaration);
3111  } else {
3112    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3113                                  move(TemplateParamLists),
3114                                  Redeclaration);
3115  }
3116
3117  if (New == 0)
3118    return 0;
3119
3120  // If this has an identifier and is not an invalid redeclaration or
3121  // function template specialization, add it to the scope stack.
3122  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3123    PushOnScopeChains(New, S);
3124
3125  return New;
3126}
3127
3128/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3129/// types into constant array types in certain situations which would otherwise
3130/// be errors (for GCC compatibility).
3131static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3132                                                    ASTContext &Context,
3133                                                    bool &SizeIsNegative,
3134                                                    llvm::APSInt &Oversized) {
3135  // This method tries to turn a variable array into a constant
3136  // array even when the size isn't an ICE.  This is necessary
3137  // for compatibility with code that depends on gcc's buggy
3138  // constant expression folding, like struct {char x[(int)(char*)2];}
3139  SizeIsNegative = false;
3140  Oversized = 0;
3141
3142  if (T->isDependentType())
3143    return QualType();
3144
3145  QualifierCollector Qs;
3146  const Type *Ty = Qs.strip(T);
3147
3148  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3149    QualType Pointee = PTy->getPointeeType();
3150    QualType FixedType =
3151        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3152                                            Oversized);
3153    if (FixedType.isNull()) return FixedType;
3154    FixedType = Context.getPointerType(FixedType);
3155    return Qs.apply(Context, FixedType);
3156  }
3157  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3158    QualType Inner = PTy->getInnerType();
3159    QualType FixedType =
3160        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3161                                            Oversized);
3162    if (FixedType.isNull()) return FixedType;
3163    FixedType = Context.getParenType(FixedType);
3164    return Qs.apply(Context, FixedType);
3165  }
3166
3167  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3168  if (!VLATy)
3169    return QualType();
3170  // FIXME: We should probably handle this case
3171  if (VLATy->getElementType()->isVariablyModifiedType())
3172    return QualType();
3173
3174  Expr::EvalResult EvalResult;
3175  if (!VLATy->getSizeExpr() ||
3176      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3177      !EvalResult.Val.isInt())
3178    return QualType();
3179
3180  // Check whether the array size is negative.
3181  llvm::APSInt &Res = EvalResult.Val.getInt();
3182  if (Res.isSigned() && Res.isNegative()) {
3183    SizeIsNegative = true;
3184    return QualType();
3185  }
3186
3187  // Check whether the array is too large to be addressed.
3188  unsigned ActiveSizeBits
3189    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3190                                              Res);
3191  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3192    Oversized = Res;
3193    return QualType();
3194  }
3195
3196  return Context.getConstantArrayType(VLATy->getElementType(),
3197                                      Res, ArrayType::Normal, 0);
3198}
3199
3200/// \brief Register the given locally-scoped external C declaration so
3201/// that it can be found later for redeclarations
3202void
3203Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3204                                       const LookupResult &Previous,
3205                                       Scope *S) {
3206  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3207         "Decl is not a locally-scoped decl!");
3208  // Note that we have a locally-scoped external with this name.
3209  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3210
3211  if (!Previous.isSingleResult())
3212    return;
3213
3214  NamedDecl *PrevDecl = Previous.getFoundDecl();
3215
3216  // If there was a previous declaration of this variable, it may be
3217  // in our identifier chain. Update the identifier chain with the new
3218  // declaration.
3219  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3220    // The previous declaration was found on the identifer resolver
3221    // chain, so remove it from its scope.
3222    while (S && !S->isDeclScope(PrevDecl))
3223      S = S->getParent();
3224
3225    if (S)
3226      S->RemoveDecl(PrevDecl);
3227  }
3228}
3229
3230/// \brief Diagnose function specifiers on a declaration of an identifier that
3231/// does not identify a function.
3232void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3233  // FIXME: We should probably indicate the identifier in question to avoid
3234  // confusion for constructs like "inline int a(), b;"
3235  if (D.getDeclSpec().isInlineSpecified())
3236    Diag(D.getDeclSpec().getInlineSpecLoc(),
3237         diag::err_inline_non_function);
3238
3239  if (D.getDeclSpec().isVirtualSpecified())
3240    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3241         diag::err_virtual_non_function);
3242
3243  if (D.getDeclSpec().isExplicitSpecified())
3244    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3245         diag::err_explicit_non_function);
3246}
3247
3248NamedDecl*
3249Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3250                             QualType R,  TypeSourceInfo *TInfo,
3251                             LookupResult &Previous, bool &Redeclaration) {
3252  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3253  if (D.getCXXScopeSpec().isSet()) {
3254    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3255      << D.getCXXScopeSpec().getRange();
3256    D.setInvalidType();
3257    // Pretend we didn't see the scope specifier.
3258    DC = CurContext;
3259    Previous.clear();
3260  }
3261
3262  if (getLangOptions().CPlusPlus) {
3263    // Check that there are no default arguments (C++ only).
3264    CheckExtraCXXDefaultArguments(D);
3265  }
3266
3267  DiagnoseFunctionSpecifiers(D);
3268
3269  if (D.getDeclSpec().isThreadSpecified())
3270    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3271
3272  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3273    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3274      << D.getName().getSourceRange();
3275    return 0;
3276  }
3277
3278  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3279  if (!NewTD) return 0;
3280
3281  // Handle attributes prior to checking for duplicates in MergeVarDecl
3282  ProcessDeclAttributes(S, NewTD, D);
3283
3284  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3285}
3286
3287/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3288/// declares a typedef-name, either using the 'typedef' type specifier or via
3289/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3290NamedDecl*
3291Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3292                           LookupResult &Previous, bool &Redeclaration) {
3293  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3294  // then it shall have block scope.
3295  // Note that variably modified types must be fixed before merging the decl so
3296  // that redeclarations will match.
3297  QualType T = NewTD->getUnderlyingType();
3298  if (T->isVariablyModifiedType()) {
3299    getCurFunction()->setHasBranchProtectedScope();
3300
3301    if (S->getFnParent() == 0) {
3302      bool SizeIsNegative;
3303      llvm::APSInt Oversized;
3304      QualType FixedTy =
3305          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3306                                              Oversized);
3307      if (!FixedTy.isNull()) {
3308        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3309        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3310      } else {
3311        if (SizeIsNegative)
3312          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3313        else if (T->isVariableArrayType())
3314          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3315        else if (Oversized.getBoolValue())
3316          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3317        else
3318          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3319        NewTD->setInvalidDecl();
3320      }
3321    }
3322  }
3323
3324  // Merge the decl with the existing one if appropriate. If the decl is
3325  // in an outer scope, it isn't the same thing.
3326  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false,
3327                       /*ExplicitInstantiationOrSpecialization=*/false);
3328  if (!Previous.empty()) {
3329    Redeclaration = true;
3330    MergeTypedefNameDecl(NewTD, Previous);
3331  }
3332
3333  // If this is the C FILE type, notify the AST context.
3334  if (IdentifierInfo *II = NewTD->getIdentifier())
3335    if (!NewTD->isInvalidDecl() &&
3336        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3337      if (II->isStr("FILE"))
3338        Context.setFILEDecl(NewTD);
3339      else if (II->isStr("jmp_buf"))
3340        Context.setjmp_bufDecl(NewTD);
3341      else if (II->isStr("sigjmp_buf"))
3342        Context.setsigjmp_bufDecl(NewTD);
3343      else if (II->isStr("__builtin_va_list"))
3344        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3345    }
3346
3347  return NewTD;
3348}
3349
3350/// \brief Determines whether the given declaration is an out-of-scope
3351/// previous declaration.
3352///
3353/// This routine should be invoked when name lookup has found a
3354/// previous declaration (PrevDecl) that is not in the scope where a
3355/// new declaration by the same name is being introduced. If the new
3356/// declaration occurs in a local scope, previous declarations with
3357/// linkage may still be considered previous declarations (C99
3358/// 6.2.2p4-5, C++ [basic.link]p6).
3359///
3360/// \param PrevDecl the previous declaration found by name
3361/// lookup
3362///
3363/// \param DC the context in which the new declaration is being
3364/// declared.
3365///
3366/// \returns true if PrevDecl is an out-of-scope previous declaration
3367/// for a new delcaration with the same name.
3368static bool
3369isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3370                                ASTContext &Context) {
3371  if (!PrevDecl)
3372    return false;
3373
3374  if (!PrevDecl->hasLinkage())
3375    return false;
3376
3377  if (Context.getLangOptions().CPlusPlus) {
3378    // C++ [basic.link]p6:
3379    //   If there is a visible declaration of an entity with linkage
3380    //   having the same name and type, ignoring entities declared
3381    //   outside the innermost enclosing namespace scope, the block
3382    //   scope declaration declares that same entity and receives the
3383    //   linkage of the previous declaration.
3384    DeclContext *OuterContext = DC->getRedeclContext();
3385    if (!OuterContext->isFunctionOrMethod())
3386      // This rule only applies to block-scope declarations.
3387      return false;
3388
3389    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3390    if (PrevOuterContext->isRecord())
3391      // We found a member function: ignore it.
3392      return false;
3393
3394    // Find the innermost enclosing namespace for the new and
3395    // previous declarations.
3396    OuterContext = OuterContext->getEnclosingNamespaceContext();
3397    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3398
3399    // The previous declaration is in a different namespace, so it
3400    // isn't the same function.
3401    if (!OuterContext->Equals(PrevOuterContext))
3402      return false;
3403  }
3404
3405  return true;
3406}
3407
3408static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3409  CXXScopeSpec &SS = D.getCXXScopeSpec();
3410  if (!SS.isSet()) return;
3411  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3412}
3413
3414NamedDecl*
3415Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3416                              QualType R, TypeSourceInfo *TInfo,
3417                              LookupResult &Previous,
3418                              MultiTemplateParamsArg TemplateParamLists,
3419                              bool &Redeclaration) {
3420  DeclarationName Name = GetNameForDeclarator(D).getName();
3421
3422  // Check that there are no default arguments (C++ only).
3423  if (getLangOptions().CPlusPlus)
3424    CheckExtraCXXDefaultArguments(D);
3425
3426  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3427  assert(SCSpec != DeclSpec::SCS_typedef &&
3428         "Parser allowed 'typedef' as storage class VarDecl.");
3429  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3430  if (SCSpec == DeclSpec::SCS_mutable) {
3431    // mutable can only appear on non-static class members, so it's always
3432    // an error here
3433    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3434    D.setInvalidType();
3435    SC = SC_None;
3436  }
3437  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3438  VarDecl::StorageClass SCAsWritten
3439    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3440
3441  IdentifierInfo *II = Name.getAsIdentifierInfo();
3442  if (!II) {
3443    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3444      << Name.getAsString();
3445    return 0;
3446  }
3447
3448  DiagnoseFunctionSpecifiers(D);
3449
3450  if (!DC->isRecord() && S->getFnParent() == 0) {
3451    // C99 6.9p2: The storage-class specifiers auto and register shall not
3452    // appear in the declaration specifiers in an external declaration.
3453    if (SC == SC_Auto || SC == SC_Register) {
3454
3455      // If this is a register variable with an asm label specified, then this
3456      // is a GNU extension.
3457      if (SC == SC_Register && D.getAsmLabel())
3458        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3459      else
3460        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3461      D.setInvalidType();
3462    }
3463  }
3464
3465  bool isExplicitSpecialization = false;
3466  VarDecl *NewVD;
3467  if (!getLangOptions().CPlusPlus) {
3468    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3469                            D.getIdentifierLoc(), II,
3470                            R, TInfo, SC, SCAsWritten);
3471
3472    if (D.isInvalidType())
3473      NewVD->setInvalidDecl();
3474  } else {
3475    if (DC->isRecord() && !CurContext->isRecord()) {
3476      // This is an out-of-line definition of a static data member.
3477      if (SC == SC_Static) {
3478        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3479             diag::err_static_out_of_line)
3480          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3481      } else if (SC == SC_None)
3482        SC = SC_Static;
3483    }
3484    if (SC == SC_Static) {
3485      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3486        if (RD->isLocalClass())
3487          Diag(D.getIdentifierLoc(),
3488               diag::err_static_data_member_not_allowed_in_local_class)
3489            << Name << RD->getDeclName();
3490
3491        // C++ [class.union]p1: If a union contains a static data member,
3492        // the program is ill-formed.
3493        //
3494        // We also disallow static data members in anonymous structs.
3495        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3496          Diag(D.getIdentifierLoc(),
3497               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3498            << Name << RD->isUnion();
3499      }
3500    }
3501
3502    // Match up the template parameter lists with the scope specifier, then
3503    // determine whether we have a template or a template specialization.
3504    isExplicitSpecialization = false;
3505    bool Invalid = false;
3506    if (TemplateParameterList *TemplateParams
3507        = MatchTemplateParametersToScopeSpecifier(
3508                                                  D.getDeclSpec().getSourceRange().getBegin(),
3509                                                  D.getCXXScopeSpec(),
3510                                                  TemplateParamLists.get(),
3511                                                  TemplateParamLists.size(),
3512                                                  /*never a friend*/ false,
3513                                                  isExplicitSpecialization,
3514                                                  Invalid)) {
3515      if (TemplateParams->size() > 0) {
3516        // There is no such thing as a variable template.
3517        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3518          << II
3519          << SourceRange(TemplateParams->getTemplateLoc(),
3520                         TemplateParams->getRAngleLoc());
3521        return 0;
3522      } else {
3523        // There is an extraneous 'template<>' for this variable. Complain
3524        // about it, but allow the declaration of the variable.
3525        Diag(TemplateParams->getTemplateLoc(),
3526             diag::err_template_variable_noparams)
3527          << II
3528          << SourceRange(TemplateParams->getTemplateLoc(),
3529                         TemplateParams->getRAngleLoc());
3530        isExplicitSpecialization = true;
3531      }
3532    }
3533
3534    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3535                            D.getIdentifierLoc(), II,
3536                            R, TInfo, SC, SCAsWritten);
3537
3538    // If this decl has an auto type in need of deduction, make a note of the
3539    // Decl so we can diagnose uses of it in its own initializer.
3540    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3541        R->getContainedAutoType())
3542      ParsingInitForAutoVars.insert(NewVD);
3543
3544    if (D.isInvalidType() || Invalid)
3545      NewVD->setInvalidDecl();
3546
3547    SetNestedNameSpecifier(NewVD, D);
3548
3549    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3550      NewVD->setTemplateParameterListsInfo(Context,
3551                                           TemplateParamLists.size(),
3552                                           TemplateParamLists.release());
3553    }
3554  }
3555
3556  if (D.getDeclSpec().isThreadSpecified()) {
3557    if (NewVD->hasLocalStorage())
3558      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3559    else if (!Context.Target.isTLSSupported())
3560      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3561    else
3562      NewVD->setThreadSpecified(true);
3563  }
3564
3565  // Set the lexical context. If the declarator has a C++ scope specifier, the
3566  // lexical context will be different from the semantic context.
3567  NewVD->setLexicalDeclContext(CurContext);
3568
3569  // Handle attributes prior to checking for duplicates in MergeVarDecl
3570  ProcessDeclAttributes(S, NewVD, D);
3571
3572  // Handle GNU asm-label extension (encoded as an attribute).
3573  if (Expr *E = (Expr*)D.getAsmLabel()) {
3574    // The parser guarantees this is a string.
3575    StringLiteral *SE = cast<StringLiteral>(E);
3576    llvm::StringRef Label = SE->getString();
3577    if (S->getFnParent() != 0) {
3578      switch (SC) {
3579      case SC_None:
3580      case SC_Auto:
3581        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3582        break;
3583      case SC_Register:
3584        if (!Context.Target.isValidGCCRegisterName(Label))
3585          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3586        break;
3587      case SC_Static:
3588      case SC_Extern:
3589      case SC_PrivateExtern:
3590        break;
3591      }
3592    }
3593
3594    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3595                                                Context, Label));
3596  }
3597
3598  // Diagnose shadowed variables before filtering for scope.
3599  if (!D.getCXXScopeSpec().isSet())
3600    CheckShadow(S, NewVD, Previous);
3601
3602  // Don't consider existing declarations that are in a different
3603  // scope and are out-of-semantic-context declarations (if the new
3604  // declaration has linkage).
3605  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage(),
3606                       isExplicitSpecialization);
3607
3608  if (!getLangOptions().CPlusPlus)
3609    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3610  else {
3611    // Merge the decl with the existing one if appropriate.
3612    if (!Previous.empty()) {
3613      if (Previous.isSingleResult() &&
3614          isa<FieldDecl>(Previous.getFoundDecl()) &&
3615          D.getCXXScopeSpec().isSet()) {
3616        // The user tried to define a non-static data member
3617        // out-of-line (C++ [dcl.meaning]p1).
3618        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3619          << D.getCXXScopeSpec().getRange();
3620        Previous.clear();
3621        NewVD->setInvalidDecl();
3622      }
3623    } else if (D.getCXXScopeSpec().isSet()) {
3624      // No previous declaration in the qualifying scope.
3625      Diag(D.getIdentifierLoc(), diag::err_no_member)
3626        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3627        << D.getCXXScopeSpec().getRange();
3628      NewVD->setInvalidDecl();
3629    }
3630
3631    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3632
3633    // This is an explicit specialization of a static data member. Check it.
3634    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3635        CheckMemberSpecialization(NewVD, Previous))
3636      NewVD->setInvalidDecl();
3637  }
3638
3639  // attributes declared post-definition are currently ignored
3640  // FIXME: This should be handled in attribute merging, not
3641  // here.
3642  if (Previous.isSingleResult()) {
3643    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3644    if (Def && (Def = Def->getDefinition()) &&
3645        Def != NewVD && D.hasAttributes()) {
3646      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3647      Diag(Def->getLocation(), diag::note_previous_definition);
3648    }
3649  }
3650
3651  // If this is a locally-scoped extern C variable, update the map of
3652  // such variables.
3653  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3654      !NewVD->isInvalidDecl())
3655    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3656
3657  // If there's a #pragma GCC visibility in scope, and this isn't a class
3658  // member, set the visibility of this variable.
3659  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3660    AddPushedVisibilityAttribute(NewVD);
3661
3662  MarkUnusedFileScopedDecl(NewVD);
3663
3664  return NewVD;
3665}
3666
3667/// \brief Diagnose variable or built-in function shadowing.  Implements
3668/// -Wshadow.
3669///
3670/// This method is called whenever a VarDecl is added to a "useful"
3671/// scope.
3672///
3673/// \param S the scope in which the shadowing name is being declared
3674/// \param R the lookup of the name
3675///
3676void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3677  // Return if warning is ignored.
3678  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3679        Diagnostic::Ignored)
3680    return;
3681
3682  // Don't diagnose declarations at file scope.
3683  if (D->hasGlobalStorage())
3684    return;
3685
3686  DeclContext *NewDC = D->getDeclContext();
3687
3688  // Only diagnose if we're shadowing an unambiguous field or variable.
3689  if (R.getResultKind() != LookupResult::Found)
3690    return;
3691
3692  NamedDecl* ShadowedDecl = R.getFoundDecl();
3693  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3694    return;
3695
3696  // Fields are not shadowed by variables in C++ static methods.
3697  if (isa<FieldDecl>(ShadowedDecl))
3698    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3699      if (MD->isStatic())
3700        return;
3701
3702  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3703    if (shadowedVar->isExternC()) {
3704      // For shadowing external vars, make sure that we point to the global
3705      // declaration, not a locally scoped extern declaration.
3706      for (VarDecl::redecl_iterator
3707             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3708           I != E; ++I)
3709        if (I->isFileVarDecl()) {
3710          ShadowedDecl = *I;
3711          break;
3712        }
3713    }
3714
3715  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3716
3717  // Only warn about certain kinds of shadowing for class members.
3718  if (NewDC && NewDC->isRecord()) {
3719    // In particular, don't warn about shadowing non-class members.
3720    if (!OldDC->isRecord())
3721      return;
3722
3723    // TODO: should we warn about static data members shadowing
3724    // static data members from base classes?
3725
3726    // TODO: don't diagnose for inaccessible shadowed members.
3727    // This is hard to do perfectly because we might friend the
3728    // shadowing context, but that's just a false negative.
3729  }
3730
3731  // Determine what kind of declaration we're shadowing.
3732  unsigned Kind;
3733  if (isa<RecordDecl>(OldDC)) {
3734    if (isa<FieldDecl>(ShadowedDecl))
3735      Kind = 3; // field
3736    else
3737      Kind = 2; // static data member
3738  } else if (OldDC->isFileContext())
3739    Kind = 1; // global
3740  else
3741    Kind = 0; // local
3742
3743  DeclarationName Name = R.getLookupName();
3744
3745  // Emit warning and note.
3746  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3747  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3748}
3749
3750/// \brief Check -Wshadow without the advantage of a previous lookup.
3751void Sema::CheckShadow(Scope *S, VarDecl *D) {
3752  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3753        Diagnostic::Ignored)
3754    return;
3755
3756  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3757                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3758  LookupName(R, S);
3759  CheckShadow(S, D, R);
3760}
3761
3762/// \brief Perform semantic checking on a newly-created variable
3763/// declaration.
3764///
3765/// This routine performs all of the type-checking required for a
3766/// variable declaration once it has been built. It is used both to
3767/// check variables after they have been parsed and their declarators
3768/// have been translated into a declaration, and to check variables
3769/// that have been instantiated from a template.
3770///
3771/// Sets NewVD->isInvalidDecl() if an error was encountered.
3772void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3773                                    LookupResult &Previous,
3774                                    bool &Redeclaration) {
3775  // If the decl is already known invalid, don't check it.
3776  if (NewVD->isInvalidDecl())
3777    return;
3778
3779  QualType T = NewVD->getType();
3780
3781  if (T->isObjCObjectType()) {
3782    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3783    return NewVD->setInvalidDecl();
3784  }
3785
3786  // Emit an error if an address space was applied to decl with local storage.
3787  // This includes arrays of objects with address space qualifiers, but not
3788  // automatic variables that point to other address spaces.
3789  // ISO/IEC TR 18037 S5.1.2
3790  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3791    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3792    return NewVD->setInvalidDecl();
3793  }
3794
3795  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3796      && !NewVD->hasAttr<BlocksAttr>())
3797    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3798
3799  bool isVM = T->isVariablyModifiedType();
3800  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3801      NewVD->hasAttr<BlocksAttr>())
3802    getCurFunction()->setHasBranchProtectedScope();
3803
3804  if ((isVM && NewVD->hasLinkage()) ||
3805      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3806    bool SizeIsNegative;
3807    llvm::APSInt Oversized;
3808    QualType FixedTy =
3809        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3810                                            Oversized);
3811
3812    if (FixedTy.isNull() && T->isVariableArrayType()) {
3813      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3814      // FIXME: This won't give the correct result for
3815      // int a[10][n];
3816      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3817
3818      if (NewVD->isFileVarDecl())
3819        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3820        << SizeRange;
3821      else if (NewVD->getStorageClass() == SC_Static)
3822        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3823        << SizeRange;
3824      else
3825        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3826        << SizeRange;
3827      return NewVD->setInvalidDecl();
3828    }
3829
3830    if (FixedTy.isNull()) {
3831      if (NewVD->isFileVarDecl())
3832        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3833      else
3834        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3835      return NewVD->setInvalidDecl();
3836    }
3837
3838    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3839    NewVD->setType(FixedTy);
3840  }
3841
3842  if (Previous.empty() && NewVD->isExternC()) {
3843    // Since we did not find anything by this name and we're declaring
3844    // an extern "C" variable, look for a non-visible extern "C"
3845    // declaration with the same name.
3846    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3847      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3848    if (Pos != LocallyScopedExternalDecls.end())
3849      Previous.addDecl(Pos->second);
3850  }
3851
3852  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3853    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3854      << T;
3855    return NewVD->setInvalidDecl();
3856  }
3857
3858  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3859    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3860    return NewVD->setInvalidDecl();
3861  }
3862
3863  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3864    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3865    return NewVD->setInvalidDecl();
3866  }
3867
3868  // Function pointers and references cannot have qualified function type, only
3869  // function pointer-to-members can do that.
3870  QualType Pointee;
3871  unsigned PtrOrRef = 0;
3872  if (const PointerType *Ptr = T->getAs<PointerType>())
3873    Pointee = Ptr->getPointeeType();
3874  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3875    Pointee = Ref->getPointeeType();
3876    PtrOrRef = 1;
3877  }
3878  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3879      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3880    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3881        << PtrOrRef;
3882    return NewVD->setInvalidDecl();
3883  }
3884
3885  if (!Previous.empty()) {
3886    Redeclaration = true;
3887    MergeVarDecl(NewVD, Previous);
3888  }
3889}
3890
3891/// \brief Data used with FindOverriddenMethod
3892struct FindOverriddenMethodData {
3893  Sema *S;
3894  CXXMethodDecl *Method;
3895};
3896
3897/// \brief Member lookup function that determines whether a given C++
3898/// method overrides a method in a base class, to be used with
3899/// CXXRecordDecl::lookupInBases().
3900static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3901                                 CXXBasePath &Path,
3902                                 void *UserData) {
3903  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3904
3905  FindOverriddenMethodData *Data
3906    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3907
3908  DeclarationName Name = Data->Method->getDeclName();
3909
3910  // FIXME: Do we care about other names here too?
3911  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3912    // We really want to find the base class destructor here.
3913    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3914    CanQualType CT = Data->S->Context.getCanonicalType(T);
3915
3916    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3917  }
3918
3919  for (Path.Decls = BaseRecord->lookup(Name);
3920       Path.Decls.first != Path.Decls.second;
3921       ++Path.Decls.first) {
3922    NamedDecl *D = *Path.Decls.first;
3923    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3924      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3925        return true;
3926    }
3927  }
3928
3929  return false;
3930}
3931
3932/// AddOverriddenMethods - See if a method overrides any in the base classes,
3933/// and if so, check that it's a valid override and remember it.
3934bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3935  // Look for virtual methods in base classes that this method might override.
3936  CXXBasePaths Paths;
3937  FindOverriddenMethodData Data;
3938  Data.Method = MD;
3939  Data.S = this;
3940  bool AddedAny = false;
3941  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3942    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3943         E = Paths.found_decls_end(); I != E; ++I) {
3944      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3945        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3946            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3947            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
3948          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3949          AddedAny = true;
3950        }
3951      }
3952    }
3953  }
3954
3955  return AddedAny;
3956}
3957
3958static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
3959  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
3960                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3961  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
3962  assert(!Prev.isAmbiguous() &&
3963         "Cannot have an ambiguity in previous-declaration lookup");
3964  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3965       Func != FuncEnd; ++Func) {
3966    if (isa<FunctionDecl>(*Func) &&
3967        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
3968      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3969  }
3970}
3971
3972NamedDecl*
3973Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3974                              QualType R, TypeSourceInfo *TInfo,
3975                              LookupResult &Previous,
3976                              MultiTemplateParamsArg TemplateParamLists,
3977                              bool IsFunctionDefinition, bool &Redeclaration) {
3978  assert(R.getTypePtr()->isFunctionType());
3979
3980  // TODO: consider using NameInfo for diagnostic.
3981  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3982  DeclarationName Name = NameInfo.getName();
3983  FunctionDecl::StorageClass SC = SC_None;
3984  switch (D.getDeclSpec().getStorageClassSpec()) {
3985  default: assert(0 && "Unknown storage class!");
3986  case DeclSpec::SCS_auto:
3987  case DeclSpec::SCS_register:
3988  case DeclSpec::SCS_mutable:
3989    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3990         diag::err_typecheck_sclass_func);
3991    D.setInvalidType();
3992    break;
3993  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3994  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3995  case DeclSpec::SCS_static: {
3996    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3997      // C99 6.7.1p5:
3998      //   The declaration of an identifier for a function that has
3999      //   block scope shall have no explicit storage-class specifier
4000      //   other than extern
4001      // See also (C++ [dcl.stc]p4).
4002      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4003           diag::err_static_block_func);
4004      SC = SC_None;
4005    } else
4006      SC = SC_Static;
4007    break;
4008  }
4009  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4010  }
4011
4012  if (D.getDeclSpec().isThreadSpecified())
4013    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4014
4015  // Do not allow returning a objc interface by-value.
4016  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4017    Diag(D.getIdentifierLoc(),
4018         diag::err_object_cannot_be_passed_returned_by_value) << 0
4019    << R->getAs<FunctionType>()->getResultType();
4020    D.setInvalidType();
4021  }
4022
4023  FunctionDecl *NewFD;
4024  bool isInline = D.getDeclSpec().isInlineSpecified();
4025  bool isFriend = false;
4026  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4027  FunctionDecl::StorageClass SCAsWritten
4028    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4029  FunctionTemplateDecl *FunctionTemplate = 0;
4030  bool isExplicitSpecialization = false;
4031  bool isFunctionTemplateSpecialization = false;
4032
4033  if (!getLangOptions().CPlusPlus) {
4034    // Determine whether the function was written with a
4035    // prototype. This true when:
4036    //   - there is a prototype in the declarator, or
4037    //   - the type R of the function is some kind of typedef or other reference
4038    //     to a type name (which eventually refers to a function type).
4039    bool HasPrototype =
4040    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4041    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4042
4043    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4044                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4045                                 HasPrototype);
4046    if (D.isInvalidType())
4047      NewFD->setInvalidDecl();
4048
4049    // Set the lexical context.
4050    NewFD->setLexicalDeclContext(CurContext);
4051    // Filter out previous declarations that don't match the scope.
4052    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4053                         /*ExplicitInstantiationOrSpecialization=*/false);
4054  } else {
4055    isFriend = D.getDeclSpec().isFriendSpecified();
4056    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4057    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4058    bool isVirtualOkay = false;
4059
4060    // Check that the return type is not an abstract class type.
4061    // For record types, this is done by the AbstractClassUsageDiagnoser once
4062    // the class has been completely parsed.
4063    if (!DC->isRecord() &&
4064      RequireNonAbstractType(D.getIdentifierLoc(),
4065                             R->getAs<FunctionType>()->getResultType(),
4066                             diag::err_abstract_type_in_decl,
4067                             AbstractReturnType))
4068      D.setInvalidType();
4069
4070    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4071      // This is a C++ constructor declaration.
4072      assert(DC->isRecord() &&
4073             "Constructors can only be declared in a member context");
4074
4075      R = CheckConstructorDeclarator(D, R, SC);
4076
4077      // Create the new declaration
4078      NewFD = CXXConstructorDecl::Create(Context,
4079                                         cast<CXXRecordDecl>(DC),
4080                                         D.getSourceRange().getBegin(),
4081                                         NameInfo, R, TInfo,
4082                                         isExplicit, isInline,
4083                                         /*isImplicitlyDeclared=*/false);
4084    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4085      // This is a C++ destructor declaration.
4086      if (DC->isRecord()) {
4087        R = CheckDestructorDeclarator(D, R, SC);
4088
4089        NewFD = CXXDestructorDecl::Create(Context,
4090                                          cast<CXXRecordDecl>(DC),
4091                                          D.getSourceRange().getBegin(),
4092                                          NameInfo, R, TInfo,
4093                                          isInline,
4094                                          /*isImplicitlyDeclared=*/false);
4095        isVirtualOkay = true;
4096      } else {
4097        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4098
4099        // Create a FunctionDecl to satisfy the function definition parsing
4100        // code path.
4101        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4102                                     D.getIdentifierLoc(), Name, R, TInfo,
4103                                     SC, SCAsWritten, isInline,
4104                                     /*hasPrototype=*/true);
4105        D.setInvalidType();
4106      }
4107    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4108      if (!DC->isRecord()) {
4109        Diag(D.getIdentifierLoc(),
4110             diag::err_conv_function_not_member);
4111        return 0;
4112      }
4113
4114      CheckConversionDeclarator(D, R, SC);
4115      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4116                                        D.getSourceRange().getBegin(),
4117                                        NameInfo, R, TInfo,
4118                                        isInline, isExplicit,
4119                                        SourceLocation());
4120
4121      isVirtualOkay = true;
4122    } else if (DC->isRecord()) {
4123      // If the of the function is the same as the name of the record, then this
4124      // must be an invalid constructor that has a return type.
4125      // (The parser checks for a return type and makes the declarator a
4126      // constructor if it has no return type).
4127      // must have an invalid constructor that has a return type
4128      if (Name.getAsIdentifierInfo() &&
4129          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4130        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4131          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4132          << SourceRange(D.getIdentifierLoc());
4133        return 0;
4134      }
4135
4136      bool isStatic = SC == SC_Static;
4137
4138      // [class.free]p1:
4139      // Any allocation function for a class T is a static member
4140      // (even if not explicitly declared static).
4141      if (Name.getCXXOverloadedOperator() == OO_New ||
4142          Name.getCXXOverloadedOperator() == OO_Array_New)
4143        isStatic = true;
4144
4145      // [class.free]p6 Any deallocation function for a class X is a static member
4146      // (even if not explicitly declared static).
4147      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4148          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4149        isStatic = true;
4150
4151      // This is a C++ method declaration.
4152      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
4153                                    D.getSourceRange().getBegin(),
4154                                    NameInfo, R, TInfo,
4155                                    isStatic, SCAsWritten, isInline,
4156                                    SourceLocation());
4157
4158      isVirtualOkay = !isStatic;
4159    } else {
4160      // Determine whether the function was written with a
4161      // prototype. This true when:
4162      //   - we're in C++ (where every function has a prototype),
4163      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4164                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4165                                   true/*HasPrototype*/);
4166    }
4167
4168    if (isFriend && !isInline && IsFunctionDefinition) {
4169      // C++ [class.friend]p5
4170      //   A function can be defined in a friend declaration of a
4171      //   class . . . . Such a function is implicitly inline.
4172      NewFD->setImplicitlyInline();
4173    }
4174
4175    SetNestedNameSpecifier(NewFD, D);
4176    isExplicitSpecialization = false;
4177    isFunctionTemplateSpecialization = false;
4178    if (D.isInvalidType())
4179      NewFD->setInvalidDecl();
4180
4181    // Set the lexical context. If the declarator has a C++
4182    // scope specifier, or is the object of a friend declaration, the
4183    // lexical context will be different from the semantic context.
4184    NewFD->setLexicalDeclContext(CurContext);
4185
4186    // Match up the template parameter lists with the scope specifier, then
4187    // determine whether we have a template or a template specialization.
4188    bool Invalid = false;
4189    if (TemplateParameterList *TemplateParams
4190          = MatchTemplateParametersToScopeSpecifier(
4191                                  D.getDeclSpec().getSourceRange().getBegin(),
4192                                  D.getCXXScopeSpec(),
4193                                  TemplateParamLists.get(),
4194                                  TemplateParamLists.size(),
4195                                  isFriend,
4196                                  isExplicitSpecialization,
4197                                  Invalid)) {
4198      if (TemplateParams->size() > 0) {
4199        // This is a function template
4200
4201        // Check that we can declare a template here.
4202        if (CheckTemplateDeclScope(S, TemplateParams))
4203          return 0;
4204
4205        // A destructor cannot be a template.
4206        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4207          Diag(NewFD->getLocation(), diag::err_destructor_template);
4208          return 0;
4209        }
4210
4211        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4212                                                        NewFD->getLocation(),
4213                                                        Name, TemplateParams,
4214                                                        NewFD);
4215        FunctionTemplate->setLexicalDeclContext(CurContext);
4216        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4217
4218        // For source fidelity, store the other template param lists.
4219        if (TemplateParamLists.size() > 1) {
4220          NewFD->setTemplateParameterListsInfo(Context,
4221                                               TemplateParamLists.size() - 1,
4222                                               TemplateParamLists.release());
4223        }
4224      } else {
4225        // This is a function template specialization.
4226        isFunctionTemplateSpecialization = true;
4227        // For source fidelity, store all the template param lists.
4228        NewFD->setTemplateParameterListsInfo(Context,
4229                                             TemplateParamLists.size(),
4230                                             TemplateParamLists.release());
4231
4232        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4233        if (isFriend) {
4234          // We want to remove the "template<>", found here.
4235          SourceRange RemoveRange = TemplateParams->getSourceRange();
4236
4237          // If we remove the template<> and the name is not a
4238          // template-id, we're actually silently creating a problem:
4239          // the friend declaration will refer to an untemplated decl,
4240          // and clearly the user wants a template specialization.  So
4241          // we need to insert '<>' after the name.
4242          SourceLocation InsertLoc;
4243          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4244            InsertLoc = D.getName().getSourceRange().getEnd();
4245            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4246          }
4247
4248          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4249            << Name << RemoveRange
4250            << FixItHint::CreateRemoval(RemoveRange)
4251            << FixItHint::CreateInsertion(InsertLoc, "<>");
4252        }
4253      }
4254    }
4255    else {
4256      // All template param lists were matched against the scope specifier:
4257      // this is NOT (an explicit specialization of) a template.
4258      if (TemplateParamLists.size() > 0)
4259        // For source fidelity, store all the template param lists.
4260        NewFD->setTemplateParameterListsInfo(Context,
4261                                             TemplateParamLists.size(),
4262                                             TemplateParamLists.release());
4263    }
4264
4265    if (Invalid) {
4266      NewFD->setInvalidDecl();
4267      if (FunctionTemplate)
4268        FunctionTemplate->setInvalidDecl();
4269    }
4270
4271    // C++ [dcl.fct.spec]p5:
4272    //   The virtual specifier shall only be used in declarations of
4273    //   nonstatic class member functions that appear within a
4274    //   member-specification of a class declaration; see 10.3.
4275    //
4276    if (isVirtual && !NewFD->isInvalidDecl()) {
4277      if (!isVirtualOkay) {
4278        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4279             diag::err_virtual_non_function);
4280      } else if (!CurContext->isRecord()) {
4281        // 'virtual' was specified outside of the class.
4282        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4283             diag::err_virtual_out_of_class)
4284          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4285      } else if (NewFD->getDescribedFunctionTemplate()) {
4286        // C++ [temp.mem]p3:
4287        //  A member function template shall not be virtual.
4288        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4289             diag::err_virtual_member_function_template)
4290          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4291      } else {
4292        // Okay: Add virtual to the method.
4293        NewFD->setVirtualAsWritten(true);
4294      }
4295    }
4296
4297    // C++ [dcl.fct.spec]p3:
4298    //  The inline specifier shall not appear on a block scope function declaration.
4299    if (isInline && !NewFD->isInvalidDecl()) {
4300      if (CurContext->isFunctionOrMethod()) {
4301        // 'inline' is not allowed on block scope function declaration.
4302        Diag(D.getDeclSpec().getInlineSpecLoc(),
4303             diag::err_inline_declaration_block_scope) << Name
4304          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4305      }
4306    }
4307
4308    // C++ [dcl.fct.spec]p6:
4309    //  The explicit specifier shall be used only in the declaration of a
4310    //  constructor or conversion function within its class definition; see 12.3.1
4311    //  and 12.3.2.
4312    if (isExplicit && !NewFD->isInvalidDecl()) {
4313      if (!CurContext->isRecord()) {
4314        // 'explicit' was specified outside of the class.
4315        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4316             diag::err_explicit_out_of_class)
4317          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4318      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4319                 !isa<CXXConversionDecl>(NewFD)) {
4320        // 'explicit' was specified on a function that wasn't a constructor
4321        // or conversion function.
4322        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4323             diag::err_explicit_non_ctor_or_conv_function)
4324          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4325      }
4326    }
4327
4328    // Filter out previous declarations that don't match the scope.
4329    FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage(),
4330                         isExplicitSpecialization ||
4331                         isFunctionTemplateSpecialization);
4332
4333    if (isFriend) {
4334      // For now, claim that the objects have no previous declaration.
4335      if (FunctionTemplate) {
4336        FunctionTemplate->setObjectOfFriendDecl(false);
4337        FunctionTemplate->setAccess(AS_public);
4338      }
4339      NewFD->setObjectOfFriendDecl(false);
4340      NewFD->setAccess(AS_public);
4341    }
4342
4343    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4344      // A method is implicitly inline if it's defined in its class
4345      // definition.
4346      NewFD->setImplicitlyInline();
4347    }
4348
4349    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4350        !CurContext->isRecord()) {
4351      // C++ [class.static]p1:
4352      //   A data or function member of a class may be declared static
4353      //   in a class definition, in which case it is a static member of
4354      //   the class.
4355
4356      // Complain about the 'static' specifier if it's on an out-of-line
4357      // member function definition.
4358      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4359           diag::err_static_out_of_line)
4360        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4361    }
4362  }
4363
4364  // Handle GNU asm-label extension (encoded as an attribute).
4365  if (Expr *E = (Expr*) D.getAsmLabel()) {
4366    // The parser guarantees this is a string.
4367    StringLiteral *SE = cast<StringLiteral>(E);
4368    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4369                                                SE->getString()));
4370  }
4371
4372  // Copy the parameter declarations from the declarator D to the function
4373  // declaration NewFD, if they are available.  First scavenge them into Params.
4374  llvm::SmallVector<ParmVarDecl*, 16> Params;
4375  if (D.isFunctionDeclarator()) {
4376    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4377
4378    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4379    // function that takes no arguments, not a function that takes a
4380    // single void argument.
4381    // We let through "const void" here because Sema::GetTypeForDeclarator
4382    // already checks for that case.
4383    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4384        FTI.ArgInfo[0].Param &&
4385        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4386      // Empty arg list, don't push any params.
4387      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4388
4389      // In C++, the empty parameter-type-list must be spelled "void"; a
4390      // typedef of void is not permitted.
4391      if (getLangOptions().CPlusPlus &&
4392          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4393        bool IsTypeAlias = false;
4394        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4395          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4396        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4397          << IsTypeAlias;
4398      }
4399    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4400      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4401        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4402        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4403        Param->setDeclContext(NewFD);
4404        Params.push_back(Param);
4405
4406        if (Param->isInvalidDecl())
4407          NewFD->setInvalidDecl();
4408      }
4409    }
4410
4411  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4412    // When we're declaring a function with a typedef, typeof, etc as in the
4413    // following example, we'll need to synthesize (unnamed)
4414    // parameters for use in the declaration.
4415    //
4416    // @code
4417    // typedef void fn(int);
4418    // fn f;
4419    // @endcode
4420
4421    // Synthesize a parameter for each argument type.
4422    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4423         AE = FT->arg_type_end(); AI != AE; ++AI) {
4424      ParmVarDecl *Param =
4425        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4426      Params.push_back(Param);
4427    }
4428  } else {
4429    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4430           "Should not need args for typedef of non-prototype fn");
4431  }
4432  // Finally, we know we have the right number of parameters, install them.
4433  NewFD->setParams(Params.data(), Params.size());
4434
4435  // Process the non-inheritable attributes on this declaration.
4436  ProcessDeclAttributes(S, NewFD, D,
4437                        /*NonInheritable=*/true, /*Inheritable=*/false);
4438
4439  if (!getLangOptions().CPlusPlus) {
4440    // Perform semantic checking on the function declaration.
4441    bool isExplctSpecialization=false;
4442    CheckFunctionDeclaration(S, NewFD, Previous, isExplctSpecialization,
4443                             Redeclaration);
4444    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4445            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4446           "previous declaration set still overloaded");
4447  } else {
4448    // If the declarator is a template-id, translate the parser's template
4449    // argument list into our AST format.
4450    bool HasExplicitTemplateArgs = false;
4451    TemplateArgumentListInfo TemplateArgs;
4452    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4453      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4454      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4455      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4456      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4457                                         TemplateId->getTemplateArgs(),
4458                                         TemplateId->NumArgs);
4459      translateTemplateArguments(TemplateArgsPtr,
4460                                 TemplateArgs);
4461      TemplateArgsPtr.release();
4462
4463      HasExplicitTemplateArgs = true;
4464
4465      if (FunctionTemplate) {
4466        // Function template with explicit template arguments.
4467        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4468          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4469
4470        HasExplicitTemplateArgs = false;
4471      } else if (!isFunctionTemplateSpecialization &&
4472                 !D.getDeclSpec().isFriendSpecified()) {
4473        // We have encountered something that the user meant to be a
4474        // specialization (because it has explicitly-specified template
4475        // arguments) but that was not introduced with a "template<>" (or had
4476        // too few of them).
4477        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4478          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4479          << FixItHint::CreateInsertion(
4480                                        D.getDeclSpec().getSourceRange().getBegin(),
4481                                                  "template<> ");
4482        isFunctionTemplateSpecialization = true;
4483      } else {
4484        // "friend void foo<>(int);" is an implicit specialization decl.
4485        isFunctionTemplateSpecialization = true;
4486      }
4487    } else if (isFriend && isFunctionTemplateSpecialization) {
4488      // This combination is only possible in a recovery case;  the user
4489      // wrote something like:
4490      //   template <> friend void foo(int);
4491      // which we're recovering from as if the user had written:
4492      //   friend void foo<>(int);
4493      // Go ahead and fake up a template id.
4494      HasExplicitTemplateArgs = true;
4495        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4496      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4497    }
4498
4499    // If it's a friend (and only if it's a friend), it's possible
4500    // that either the specialized function type or the specialized
4501    // template is dependent, and therefore matching will fail.  In
4502    // this case, don't check the specialization yet.
4503    if (isFunctionTemplateSpecialization && isFriend &&
4504        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4505      assert(HasExplicitTemplateArgs &&
4506             "friend function specialization without template args");
4507      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4508                                                       Previous))
4509        NewFD->setInvalidDecl();
4510    } else if (isFunctionTemplateSpecialization) {
4511      if (CurContext->isDependentContext() && CurContext->isRecord()
4512          && !isFriend) {
4513        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4514          << NewFD->getDeclName();
4515        NewFD->setInvalidDecl();
4516        return 0;
4517      } else if (CheckFunctionTemplateSpecialization(NewFD,
4518                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4519                                                     Previous))
4520        NewFD->setInvalidDecl();
4521    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4522      if (CheckMemberSpecialization(NewFD, Previous))
4523          NewFD->setInvalidDecl();
4524    }
4525
4526    // Perform semantic checking on the function declaration.
4527    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4528                             Redeclaration);
4529
4530    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4531            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4532           "previous declaration set still overloaded");
4533
4534    NamedDecl *PrincipalDecl = (FunctionTemplate
4535                                ? cast<NamedDecl>(FunctionTemplate)
4536                                : NewFD);
4537
4538    if (isFriend && Redeclaration) {
4539      AccessSpecifier Access = AS_public;
4540      if (!NewFD->isInvalidDecl())
4541        Access = NewFD->getPreviousDeclaration()->getAccess();
4542
4543      NewFD->setAccess(Access);
4544      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4545
4546      PrincipalDecl->setObjectOfFriendDecl(true);
4547    }
4548
4549    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4550        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4551      PrincipalDecl->setNonMemberOperator();
4552
4553    // If we have a function template, check the template parameter
4554    // list. This will check and merge default template arguments.
4555    if (FunctionTemplate) {
4556      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4557      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4558                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4559                            D.getDeclSpec().isFriendSpecified()
4560                              ? (IsFunctionDefinition
4561                                   ? TPC_FriendFunctionTemplateDefinition
4562                                   : TPC_FriendFunctionTemplate)
4563                              : (D.getCXXScopeSpec().isSet() &&
4564                                 DC && DC->isRecord() &&
4565                                 DC->isDependentContext())
4566                                  ? TPC_ClassTemplateMember
4567                                  : TPC_FunctionTemplate);
4568    }
4569
4570    if (NewFD->isInvalidDecl()) {
4571      // Ignore all the rest of this.
4572    } else if (!Redeclaration) {
4573      // Fake up an access specifier if it's supposed to be a class member.
4574      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4575        NewFD->setAccess(AS_public);
4576
4577      // Qualified decls generally require a previous declaration.
4578      if (D.getCXXScopeSpec().isSet()) {
4579        // ...with the major exception of templated-scope or
4580        // dependent-scope friend declarations.
4581
4582        // TODO: we currently also suppress this check in dependent
4583        // contexts because (1) the parameter depth will be off when
4584        // matching friend templates and (2) we might actually be
4585        // selecting a friend based on a dependent factor.  But there
4586        // are situations where these conditions don't apply and we
4587        // can actually do this check immediately.
4588        if (isFriend &&
4589            (TemplateParamLists.size() ||
4590             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4591             CurContext->isDependentContext())) {
4592              // ignore these
4593            } else {
4594              // The user tried to provide an out-of-line definition for a
4595              // function that is a member of a class or namespace, but there
4596              // was no such member function declared (C++ [class.mfct]p2,
4597              // C++ [namespace.memdef]p2). For example:
4598              //
4599              // class X {
4600              //   void f() const;
4601              // };
4602              //
4603              // void X::f() { } // ill-formed
4604              //
4605              // Complain about this problem, and attempt to suggest close
4606              // matches (e.g., those that differ only in cv-qualifiers and
4607              // whether the parameter types are references).
4608              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4609              << Name << DC << D.getCXXScopeSpec().getRange();
4610              NewFD->setInvalidDecl();
4611
4612              DiagnoseInvalidRedeclaration(*this, NewFD);
4613            }
4614
4615        // Unqualified local friend declarations are required to resolve
4616        // to something.
4617        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4618          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4619          NewFD->setInvalidDecl();
4620          DiagnoseInvalidRedeclaration(*this, NewFD);
4621        }
4622
4623    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4624               !isFriend && !isFunctionTemplateSpecialization &&
4625               !isExplicitSpecialization) {
4626      // An out-of-line member function declaration must also be a
4627      // definition (C++ [dcl.meaning]p1).
4628      // Note that this is not the case for explicit specializations of
4629      // function templates or member functions of class templates, per
4630      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4631      // for compatibility with old SWIG code which likes to generate them.
4632      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4633        << D.getCXXScopeSpec().getRange();
4634    }
4635  }
4636
4637
4638  // Handle attributes. We need to have merged decls when handling attributes
4639  // (for example to check for conflicts, etc).
4640  // FIXME: This needs to happen before we merge declarations. Then,
4641  // let attribute merging cope with attribute conflicts.
4642  ProcessDeclAttributes(S, NewFD, D,
4643                        /*NonInheritable=*/false, /*Inheritable=*/true);
4644
4645  // attributes declared post-definition are currently ignored
4646  // FIXME: This should happen during attribute merging
4647  if (Redeclaration && Previous.isSingleResult()) {
4648    const FunctionDecl *Def;
4649    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4650    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
4651      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4652      Diag(Def->getLocation(), diag::note_previous_definition);
4653    }
4654  }
4655
4656  AddKnownFunctionAttributes(NewFD);
4657
4658  if (NewFD->hasAttr<OverloadableAttr>() &&
4659      !NewFD->getType()->getAs<FunctionProtoType>()) {
4660    Diag(NewFD->getLocation(),
4661         diag::err_attribute_overloadable_no_prototype)
4662      << NewFD;
4663
4664    // Turn this into a variadic function with no parameters.
4665    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4666    FunctionProtoType::ExtProtoInfo EPI;
4667    EPI.Variadic = true;
4668    EPI.ExtInfo = FT->getExtInfo();
4669
4670    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4671    NewFD->setType(R);
4672  }
4673
4674  // If there's a #pragma GCC visibility in scope, and this isn't a class
4675  // member, set the visibility of this function.
4676  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4677    AddPushedVisibilityAttribute(NewFD);
4678
4679  // If this is a locally-scoped extern C function, update the
4680  // map of such names.
4681  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4682      && !NewFD->isInvalidDecl())
4683    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4684
4685  // Set this FunctionDecl's range up to the right paren.
4686  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4687
4688  if (getLangOptions().CPlusPlus) {
4689    if (FunctionTemplate) {
4690      if (NewFD->isInvalidDecl())
4691        FunctionTemplate->setInvalidDecl();
4692      return FunctionTemplate;
4693    }
4694  }
4695
4696  MarkUnusedFileScopedDecl(NewFD);
4697
4698  if (getLangOptions().CUDA)
4699    if (IdentifierInfo *II = NewFD->getIdentifier())
4700      if (!NewFD->isInvalidDecl() &&
4701          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4702        if (II->isStr("cudaConfigureCall")) {
4703          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4704            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4705
4706          Context.setcudaConfigureCallDecl(NewFD);
4707        }
4708      }
4709
4710  return NewFD;
4711}
4712
4713/// \brief Perform semantic checking of a new function declaration.
4714///
4715/// Performs semantic analysis of the new function declaration
4716/// NewFD. This routine performs all semantic checking that does not
4717/// require the actual declarator involved in the declaration, and is
4718/// used both for the declaration of functions as they are parsed
4719/// (called via ActOnDeclarator) and for the declaration of functions
4720/// that have been instantiated via C++ template instantiation (called
4721/// via InstantiateDecl).
4722///
4723/// \param IsExplicitSpecialiation whether this new function declaration is
4724/// an explicit specialization of the previous declaration.
4725///
4726/// This sets NewFD->isInvalidDecl() to true if there was an error.
4727void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4728                                    LookupResult &Previous,
4729                                    bool IsExplicitSpecialization,
4730                                    bool &Redeclaration) {
4731  // If NewFD is already known erroneous, don't do any of this checking.
4732  if (NewFD->isInvalidDecl()) {
4733    // If this is a class member, mark the class invalid immediately.
4734    // This avoids some consistency errors later.
4735    if (isa<CXXMethodDecl>(NewFD))
4736      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4737
4738    return;
4739  }
4740
4741  if (NewFD->getResultType()->isVariablyModifiedType()) {
4742    // Functions returning a variably modified type violate C99 6.7.5.2p2
4743    // because all functions have linkage.
4744    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4745    return NewFD->setInvalidDecl();
4746  }
4747
4748  if (NewFD->isMain())
4749    CheckMain(NewFD);
4750
4751  // Check for a previous declaration of this name.
4752  if (Previous.empty() && NewFD->isExternC()) {
4753    // Since we did not find anything by this name and we're declaring
4754    // an extern "C" function, look for a non-visible extern "C"
4755    // declaration with the same name.
4756    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4757      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4758    if (Pos != LocallyScopedExternalDecls.end())
4759      Previous.addDecl(Pos->second);
4760  }
4761
4762  // Merge or overload the declaration with an existing declaration of
4763  // the same name, if appropriate.
4764  if (!Previous.empty()) {
4765    // Determine whether NewFD is an overload of PrevDecl or
4766    // a declaration that requires merging. If it's an overload,
4767    // there's no more work to do here; we'll just add the new
4768    // function to the scope.
4769
4770    NamedDecl *OldDecl = 0;
4771    if (!AllowOverloadingOfFunction(Previous, Context)) {
4772      Redeclaration = true;
4773      OldDecl = Previous.getFoundDecl();
4774    } else {
4775      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4776                            /*NewIsUsingDecl*/ false)) {
4777      case Ovl_Match:
4778        Redeclaration = true;
4779        break;
4780
4781      case Ovl_NonFunction:
4782        Redeclaration = true;
4783        break;
4784
4785      case Ovl_Overload:
4786        Redeclaration = false;
4787        break;
4788      }
4789
4790      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4791        // If a function name is overloadable in C, then every function
4792        // with that name must be marked "overloadable".
4793        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4794          << Redeclaration << NewFD;
4795        NamedDecl *OverloadedDecl = 0;
4796        if (Redeclaration)
4797          OverloadedDecl = OldDecl;
4798        else if (!Previous.empty())
4799          OverloadedDecl = Previous.getRepresentativeDecl();
4800        if (OverloadedDecl)
4801          Diag(OverloadedDecl->getLocation(),
4802               diag::note_attribute_overloadable_prev_overload);
4803        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4804                                                        Context));
4805      }
4806    }
4807
4808    if (Redeclaration) {
4809      // NewFD and OldDecl represent declarations that need to be
4810      // merged.
4811      if (MergeFunctionDecl(NewFD, OldDecl))
4812        return NewFD->setInvalidDecl();
4813
4814      Previous.clear();
4815      Previous.addDecl(OldDecl);
4816
4817      if (FunctionTemplateDecl *OldTemplateDecl
4818                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4819        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4820        FunctionTemplateDecl *NewTemplateDecl
4821          = NewFD->getDescribedFunctionTemplate();
4822        assert(NewTemplateDecl && "Template/non-template mismatch");
4823        if (CXXMethodDecl *Method
4824              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4825          Method->setAccess(OldTemplateDecl->getAccess());
4826          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4827        }
4828
4829        // If this is an explicit specialization of a member that is a function
4830        // template, mark it as a member specialization.
4831        if (IsExplicitSpecialization &&
4832            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
4833          NewTemplateDecl->setMemberSpecialization();
4834          assert(OldTemplateDecl->isMemberSpecialization());
4835        }
4836      } else {
4837        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
4838          NewFD->setAccess(OldDecl->getAccess());
4839        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
4840      }
4841    }
4842  }
4843
4844  // Semantic checking for this function declaration (in isolation).
4845  if (getLangOptions().CPlusPlus) {
4846    // C++-specific checks.
4847    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
4848      CheckConstructor(Constructor);
4849    } else if (CXXDestructorDecl *Destructor =
4850                dyn_cast<CXXDestructorDecl>(NewFD)) {
4851      CXXRecordDecl *Record = Destructor->getParent();
4852      QualType ClassType = Context.getTypeDeclType(Record);
4853
4854      // FIXME: Shouldn't we be able to perform this check even when the class
4855      // type is dependent? Both gcc and edg can handle that.
4856      if (!ClassType->isDependentType()) {
4857        DeclarationName Name
4858          = Context.DeclarationNames.getCXXDestructorName(
4859                                        Context.getCanonicalType(ClassType));
4860        if (NewFD->getDeclName() != Name) {
4861          Diag(NewFD->getLocation(), diag::err_destructor_name);
4862          return NewFD->setInvalidDecl();
4863        }
4864      }
4865    } else if (CXXConversionDecl *Conversion
4866               = dyn_cast<CXXConversionDecl>(NewFD)) {
4867      ActOnConversionDeclarator(Conversion);
4868    }
4869
4870    // Find any virtual functions that this function overrides.
4871    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
4872      if (!Method->isFunctionTemplateSpecialization() &&
4873          !Method->getDescribedFunctionTemplate()) {
4874        if (AddOverriddenMethods(Method->getParent(), Method)) {
4875          // If the function was marked as "static", we have a problem.
4876          if (NewFD->getStorageClass() == SC_Static) {
4877            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
4878              << NewFD->getDeclName();
4879            for (CXXMethodDecl::method_iterator
4880                      Overridden = Method->begin_overridden_methods(),
4881                   OverriddenEnd = Method->end_overridden_methods();
4882                 Overridden != OverriddenEnd;
4883                 ++Overridden) {
4884              Diag((*Overridden)->getLocation(),
4885                   diag::note_overridden_virtual_function);
4886            }
4887          }
4888        }
4889      }
4890    }
4891
4892    // Extra checking for C++ overloaded operators (C++ [over.oper]).
4893    if (NewFD->isOverloadedOperator() &&
4894        CheckOverloadedOperatorDeclaration(NewFD))
4895      return NewFD->setInvalidDecl();
4896
4897    // Extra checking for C++0x literal operators (C++0x [over.literal]).
4898    if (NewFD->getLiteralIdentifier() &&
4899        CheckLiteralOperatorDeclaration(NewFD))
4900      return NewFD->setInvalidDecl();
4901
4902    // In C++, check default arguments now that we have merged decls. Unless
4903    // the lexical context is the class, because in this case this is done
4904    // during delayed parsing anyway.
4905    if (!CurContext->isRecord())
4906      CheckCXXDefaultArguments(NewFD);
4907
4908    // If this function declares a builtin function, check the type of this
4909    // declaration against the expected type for the builtin.
4910    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
4911      ASTContext::GetBuiltinTypeError Error;
4912      QualType T = Context.GetBuiltinType(BuiltinID, Error);
4913      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
4914        // The type of this function differs from the type of the builtin,
4915        // so forget about the builtin entirely.
4916        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
4917      }
4918    }
4919  }
4920}
4921
4922void Sema::CheckMain(FunctionDecl* FD) {
4923  // C++ [basic.start.main]p3:  A program that declares main to be inline
4924  //   or static is ill-formed.
4925  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
4926  //   shall not appear in a declaration of main.
4927  // static main is not an error under C99, but we should warn about it.
4928  bool isInline = FD->isInlineSpecified();
4929  bool isStatic = FD->getStorageClass() == SC_Static;
4930  if (isInline || isStatic) {
4931    unsigned diagID = diag::warn_unusual_main_decl;
4932    if (isInline || getLangOptions().CPlusPlus)
4933      diagID = diag::err_unusual_main_decl;
4934
4935    int which = isStatic + (isInline << 1) - 1;
4936    Diag(FD->getLocation(), diagID) << which;
4937  }
4938
4939  QualType T = FD->getType();
4940  assert(T->isFunctionType() && "function decl is not of function type");
4941  const FunctionType* FT = T->getAs<FunctionType>();
4942
4943  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
4944    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
4945    FD->setInvalidDecl(true);
4946  }
4947
4948  // Treat protoless main() as nullary.
4949  if (isa<FunctionNoProtoType>(FT)) return;
4950
4951  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4952  unsigned nparams = FTP->getNumArgs();
4953  assert(FD->getNumParams() == nparams);
4954
4955  bool HasExtraParameters = (nparams > 3);
4956
4957  // Darwin passes an undocumented fourth argument of type char**.  If
4958  // other platforms start sprouting these, the logic below will start
4959  // getting shifty.
4960  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
4961    HasExtraParameters = false;
4962
4963  if (HasExtraParameters) {
4964    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4965    FD->setInvalidDecl(true);
4966    nparams = 3;
4967  }
4968
4969  // FIXME: a lot of the following diagnostics would be improved
4970  // if we had some location information about types.
4971
4972  QualType CharPP =
4973    Context.getPointerType(Context.getPointerType(Context.CharTy));
4974  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4975
4976  for (unsigned i = 0; i < nparams; ++i) {
4977    QualType AT = FTP->getArgType(i);
4978
4979    bool mismatch = true;
4980
4981    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4982      mismatch = false;
4983    else if (Expected[i] == CharPP) {
4984      // As an extension, the following forms are okay:
4985      //   char const **
4986      //   char const * const *
4987      //   char * const *
4988
4989      QualifierCollector qs;
4990      const PointerType* PT;
4991      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4992          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4993          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4994        qs.removeConst();
4995        mismatch = !qs.empty();
4996      }
4997    }
4998
4999    if (mismatch) {
5000      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5001      // TODO: suggest replacing given type with expected type
5002      FD->setInvalidDecl(true);
5003    }
5004  }
5005
5006  if (nparams == 1 && !FD->isInvalidDecl()) {
5007    Diag(FD->getLocation(), diag::warn_main_one_arg);
5008  }
5009
5010  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5011    Diag(FD->getLocation(), diag::err_main_template_decl);
5012    FD->setInvalidDecl();
5013  }
5014}
5015
5016bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5017  // FIXME: Need strict checking.  In C89, we need to check for
5018  // any assignment, increment, decrement, function-calls, or
5019  // commas outside of a sizeof.  In C99, it's the same list,
5020  // except that the aforementioned are allowed in unevaluated
5021  // expressions.  Everything else falls under the
5022  // "may accept other forms of constant expressions" exception.
5023  // (We never end up here for C++, so the constant expression
5024  // rules there don't matter.)
5025  if (Init->isConstantInitializer(Context, false))
5026    return false;
5027  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5028    << Init->getSourceRange();
5029  return true;
5030}
5031
5032namespace {
5033  // Visits an initialization expression to see if OrigDecl is evaluated in
5034  // its own initialization and throws a warning if it does.
5035  class SelfReferenceChecker
5036      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5037    Sema &S;
5038    Decl *OrigDecl;
5039
5040  public:
5041    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5042
5043    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5044                                                    S(S), OrigDecl(OrigDecl) { }
5045
5046    void VisitExpr(Expr *E) {
5047      if (isa<ObjCMessageExpr>(*E)) return;
5048      Inherited::VisitExpr(E);
5049    }
5050
5051    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5052      CheckForSelfReference(E);
5053      Inherited::VisitImplicitCastExpr(E);
5054    }
5055
5056    void CheckForSelfReference(ImplicitCastExpr *E) {
5057      if (E->getCastKind() != CK_LValueToRValue) return;
5058      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5059      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5060      if (!DRE) return;
5061      Decl* ReferenceDecl = DRE->getDecl();
5062      if (OrigDecl != ReferenceDecl) return;
5063      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5064                          Sema::NotForRedeclaration);
5065      S.Diag(SubExpr->getLocStart(), diag::warn_uninit_self_reference_in_init)
5066        << Result.getLookupName() << OrigDecl->getLocation()
5067        << SubExpr->getSourceRange();
5068    }
5069  };
5070}
5071
5072/// AddInitializerToDecl - Adds the initializer Init to the
5073/// declaration dcl. If DirectInit is true, this is C++ direct
5074/// initialization rather than copy initialization.
5075void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5076                                bool DirectInit, bool TypeMayContainAuto) {
5077  // If there is no declaration, there was an error parsing it.  Just ignore
5078  // the initializer.
5079  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5080    return;
5081
5082  // Check for self-references within variable initializers.
5083  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5084    // Variables declared within a function/method body are handled
5085    // by a dataflow analysis.
5086    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5087      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5088  }
5089  else {
5090    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5091  }
5092
5093  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5094    // With declarators parsed the way they are, the parser cannot
5095    // distinguish between a normal initializer and a pure-specifier.
5096    // Thus this grotesque test.
5097    IntegerLiteral *IL;
5098    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5099        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5100      CheckPureMethod(Method, Init->getSourceRange());
5101    else {
5102      Diag(Method->getLocation(), diag::err_member_function_initialization)
5103        << Method->getDeclName() << Init->getSourceRange();
5104      Method->setInvalidDecl();
5105    }
5106    return;
5107  }
5108
5109  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5110  if (!VDecl) {
5111    if (getLangOptions().CPlusPlus &&
5112        RealDecl->getLexicalDeclContext()->isRecord() &&
5113        isa<NamedDecl>(RealDecl))
5114      Diag(RealDecl->getLocation(), diag::err_member_initialization);
5115    else
5116      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5117    RealDecl->setInvalidDecl();
5118    return;
5119  }
5120
5121  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5122  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5123    TypeSourceInfo *DeducedType = 0;
5124    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5125      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5126        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5127        << Init->getSourceRange();
5128    if (!DeducedType) {
5129      RealDecl->setInvalidDecl();
5130      return;
5131    }
5132    VDecl->setTypeSourceInfo(DeducedType);
5133    VDecl->setType(DeducedType->getType());
5134
5135    // If this is a redeclaration, check that the type we just deduced matches
5136    // the previously declared type.
5137    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5138      MergeVarDeclTypes(VDecl, Old);
5139  }
5140
5141
5142  // A definition must end up with a complete type, which means it must be
5143  // complete with the restriction that an array type might be completed by the
5144  // initializer; note that later code assumes this restriction.
5145  QualType BaseDeclType = VDecl->getType();
5146  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5147    BaseDeclType = Array->getElementType();
5148  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5149                          diag::err_typecheck_decl_incomplete_type)) {
5150    RealDecl->setInvalidDecl();
5151    return;
5152  }
5153
5154  // The variable can not have an abstract class type.
5155  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5156                             diag::err_abstract_type_in_decl,
5157                             AbstractVariableType))
5158    VDecl->setInvalidDecl();
5159
5160  const VarDecl *Def;
5161  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5162    Diag(VDecl->getLocation(), diag::err_redefinition)
5163      << VDecl->getDeclName();
5164    Diag(Def->getLocation(), diag::note_previous_definition);
5165    VDecl->setInvalidDecl();
5166    return;
5167  }
5168
5169  const VarDecl* PrevInit = 0;
5170  if (getLangOptions().CPlusPlus) {
5171    // C++ [class.static.data]p4
5172    //   If a static data member is of const integral or const
5173    //   enumeration type, its declaration in the class definition can
5174    //   specify a constant-initializer which shall be an integral
5175    //   constant expression (5.19). In that case, the member can appear
5176    //   in integral constant expressions. The member shall still be
5177    //   defined in a namespace scope if it is used in the program and the
5178    //   namespace scope definition shall not contain an initializer.
5179    //
5180    // We already performed a redefinition check above, but for static
5181    // data members we also need to check whether there was an in-class
5182    // declaration with an initializer.
5183    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5184      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5185      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5186      return;
5187    }
5188
5189    if (VDecl->hasLocalStorage())
5190      getCurFunction()->setHasBranchProtectedScope();
5191
5192    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5193      VDecl->setInvalidDecl();
5194      return;
5195    }
5196  }
5197
5198  // Capture the variable that is being initialized and the style of
5199  // initialization.
5200  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5201
5202  // FIXME: Poor source location information.
5203  InitializationKind Kind
5204    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5205                                                   Init->getLocStart(),
5206                                                   Init->getLocEnd())
5207                : InitializationKind::CreateCopy(VDecl->getLocation(),
5208                                                 Init->getLocStart());
5209
5210  // Get the decls type and save a reference for later, since
5211  // CheckInitializerTypes may change it.
5212  QualType DclT = VDecl->getType(), SavT = DclT;
5213  if (VDecl->isLocalVarDecl()) {
5214    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5215      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5216      VDecl->setInvalidDecl();
5217    } else if (!VDecl->isInvalidDecl()) {
5218      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5219      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5220                                                MultiExprArg(*this, &Init, 1),
5221                                                &DclT);
5222      if (Result.isInvalid()) {
5223        VDecl->setInvalidDecl();
5224        return;
5225      }
5226
5227      Init = Result.takeAs<Expr>();
5228
5229      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5230      // Don't check invalid declarations to avoid emitting useless diagnostics.
5231      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5232        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5233          CheckForConstantInitializer(Init, DclT);
5234      }
5235    }
5236  } else if (VDecl->isStaticDataMember() &&
5237             VDecl->getLexicalDeclContext()->isRecord()) {
5238    // This is an in-class initialization for a static data member, e.g.,
5239    //
5240    // struct S {
5241    //   static const int value = 17;
5242    // };
5243
5244    // Try to perform the initialization regardless.
5245    if (!VDecl->isInvalidDecl()) {
5246      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5247      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5248                                          MultiExprArg(*this, &Init, 1),
5249                                          &DclT);
5250      if (Result.isInvalid()) {
5251        VDecl->setInvalidDecl();
5252        return;
5253      }
5254
5255      Init = Result.takeAs<Expr>();
5256    }
5257
5258    // C++ [class.mem]p4:
5259    //   A member-declarator can contain a constant-initializer only
5260    //   if it declares a static member (9.4) of const integral or
5261    //   const enumeration type, see 9.4.2.
5262    QualType T = VDecl->getType();
5263
5264    // Do nothing on dependent types.
5265    if (T->isDependentType()) {
5266
5267    // Require constness.
5268    } else if (!T.isConstQualified()) {
5269      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5270        << Init->getSourceRange();
5271      VDecl->setInvalidDecl();
5272
5273    // We allow integer constant expressions in all cases.
5274    } else if (T->isIntegralOrEnumerationType()) {
5275      if (!Init->isValueDependent()) {
5276        // Check whether the expression is a constant expression.
5277        llvm::APSInt Value;
5278        SourceLocation Loc;
5279        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
5280          Diag(Loc, diag::err_in_class_initializer_non_constant)
5281            << Init->getSourceRange();
5282          VDecl->setInvalidDecl();
5283        }
5284      }
5285
5286    // We allow floating-point constants as an extension in C++03, and
5287    // C++0x has far more complicated rules that we don't really
5288    // implement fully.
5289    } else {
5290      bool Allowed = false;
5291      if (getLangOptions().CPlusPlus0x) {
5292        Allowed = T->isLiteralType();
5293      } else if (T->isFloatingType()) { // also permits complex, which is ok
5294        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5295          << T << Init->getSourceRange();
5296        Allowed = true;
5297      }
5298
5299      if (!Allowed) {
5300        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5301          << T << Init->getSourceRange();
5302        VDecl->setInvalidDecl();
5303
5304      // TODO: there are probably expressions that pass here that shouldn't.
5305      } else if (!Init->isValueDependent() &&
5306                 !Init->isConstantInitializer(Context, false)) {
5307        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5308          << Init->getSourceRange();
5309        VDecl->setInvalidDecl();
5310      }
5311    }
5312  } else if (VDecl->isFileVarDecl()) {
5313    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5314        (!getLangOptions().CPlusPlus ||
5315         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5316      Diag(VDecl->getLocation(), diag::warn_extern_init);
5317    if (!VDecl->isInvalidDecl()) {
5318      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5319      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5320                                                MultiExprArg(*this, &Init, 1),
5321                                                &DclT);
5322      if (Result.isInvalid()) {
5323        VDecl->setInvalidDecl();
5324        return;
5325      }
5326
5327      Init = Result.takeAs<Expr>();
5328    }
5329
5330    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5331    // Don't check invalid declarations to avoid emitting useless diagnostics.
5332    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5333      // C99 6.7.8p4. All file scoped initializers need to be constant.
5334      CheckForConstantInitializer(Init, DclT);
5335    }
5336  }
5337  // If the type changed, it means we had an incomplete type that was
5338  // completed by the initializer. For example:
5339  //   int ary[] = { 1, 3, 5 };
5340  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5341  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5342    VDecl->setType(DclT);
5343    Init->setType(DclT);
5344  }
5345
5346
5347  // If this variable is a local declaration with record type, make sure it
5348  // doesn't have a flexible member initialization.  We only support this as a
5349  // global/static definition.
5350  if (VDecl->hasLocalStorage())
5351    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5352      if (RT->getDecl()->hasFlexibleArrayMember()) {
5353        // Check whether the initializer tries to initialize the flexible
5354        // array member itself to anything other than an empty initializer list.
5355        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5356          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5357                                         RT->getDecl()->field_end()) - 1;
5358          if (Index < ILE->getNumInits() &&
5359              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5360                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5361            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5362            VDecl->setInvalidDecl();
5363          }
5364        }
5365      }
5366
5367  // Check any implicit conversions within the expression.
5368  CheckImplicitConversions(Init, VDecl->getLocation());
5369
5370  Init = MaybeCreateExprWithCleanups(Init);
5371  // Attach the initializer to the decl.
5372  VDecl->setInit(Init);
5373
5374  CheckCompleteVariableDeclaration(VDecl);
5375}
5376
5377/// ActOnInitializerError - Given that there was an error parsing an
5378/// initializer for the given declaration, try to return to some form
5379/// of sanity.
5380void Sema::ActOnInitializerError(Decl *D) {
5381  // Our main concern here is re-establishing invariants like "a
5382  // variable's type is either dependent or complete".
5383  if (!D || D->isInvalidDecl()) return;
5384
5385  VarDecl *VD = dyn_cast<VarDecl>(D);
5386  if (!VD) return;
5387
5388  // Auto types are meaningless if we can't make sense of the initializer.
5389  if (ParsingInitForAutoVars.count(D)) {
5390    D->setInvalidDecl();
5391    return;
5392  }
5393
5394  QualType Ty = VD->getType();
5395  if (Ty->isDependentType()) return;
5396
5397  // Require a complete type.
5398  if (RequireCompleteType(VD->getLocation(),
5399                          Context.getBaseElementType(Ty),
5400                          diag::err_typecheck_decl_incomplete_type)) {
5401    VD->setInvalidDecl();
5402    return;
5403  }
5404
5405  // Require an abstract type.
5406  if (RequireNonAbstractType(VD->getLocation(), Ty,
5407                             diag::err_abstract_type_in_decl,
5408                             AbstractVariableType)) {
5409    VD->setInvalidDecl();
5410    return;
5411  }
5412
5413  // Don't bother complaining about constructors or destructors,
5414  // though.
5415}
5416
5417void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5418                                  bool TypeMayContainAuto) {
5419  // If there is no declaration, there was an error parsing it. Just ignore it.
5420  if (RealDecl == 0)
5421    return;
5422
5423  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5424    QualType Type = Var->getType();
5425
5426    // C++0x [dcl.spec.auto]p3
5427    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5428      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5429        << Var->getDeclName() << Type;
5430      Var->setInvalidDecl();
5431      return;
5432    }
5433
5434    switch (Var->isThisDeclarationADefinition()) {
5435    case VarDecl::Definition:
5436      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5437        break;
5438
5439      // We have an out-of-line definition of a static data member
5440      // that has an in-class initializer, so we type-check this like
5441      // a declaration.
5442      //
5443      // Fall through
5444
5445    case VarDecl::DeclarationOnly:
5446      // It's only a declaration.
5447
5448      // Block scope. C99 6.7p7: If an identifier for an object is
5449      // declared with no linkage (C99 6.2.2p6), the type for the
5450      // object shall be complete.
5451      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5452          !Var->getLinkage() && !Var->isInvalidDecl() &&
5453          RequireCompleteType(Var->getLocation(), Type,
5454                              diag::err_typecheck_decl_incomplete_type))
5455        Var->setInvalidDecl();
5456
5457      // Make sure that the type is not abstract.
5458      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5459          RequireNonAbstractType(Var->getLocation(), Type,
5460                                 diag::err_abstract_type_in_decl,
5461                                 AbstractVariableType))
5462        Var->setInvalidDecl();
5463      return;
5464
5465    case VarDecl::TentativeDefinition:
5466      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5467      // object that has file scope without an initializer, and without a
5468      // storage-class specifier or with the storage-class specifier "static",
5469      // constitutes a tentative definition. Note: A tentative definition with
5470      // external linkage is valid (C99 6.2.2p5).
5471      if (!Var->isInvalidDecl()) {
5472        if (const IncompleteArrayType *ArrayT
5473                                    = Context.getAsIncompleteArrayType(Type)) {
5474          if (RequireCompleteType(Var->getLocation(),
5475                                  ArrayT->getElementType(),
5476                                  diag::err_illegal_decl_array_incomplete_type))
5477            Var->setInvalidDecl();
5478        } else if (Var->getStorageClass() == SC_Static) {
5479          // C99 6.9.2p3: If the declaration of an identifier for an object is
5480          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5481          // declared type shall not be an incomplete type.
5482          // NOTE: code such as the following
5483          //     static struct s;
5484          //     struct s { int a; };
5485          // is accepted by gcc. Hence here we issue a warning instead of
5486          // an error and we do not invalidate the static declaration.
5487          // NOTE: to avoid multiple warnings, only check the first declaration.
5488          if (Var->getPreviousDeclaration() == 0)
5489            RequireCompleteType(Var->getLocation(), Type,
5490                                diag::ext_typecheck_decl_incomplete_type);
5491        }
5492      }
5493
5494      // Record the tentative definition; we're done.
5495      if (!Var->isInvalidDecl())
5496        TentativeDefinitions.push_back(Var);
5497      return;
5498    }
5499
5500    // Provide a specific diagnostic for uninitialized variable
5501    // definitions with incomplete array type.
5502    if (Type->isIncompleteArrayType()) {
5503      Diag(Var->getLocation(),
5504           diag::err_typecheck_incomplete_array_needs_initializer);
5505      Var->setInvalidDecl();
5506      return;
5507    }
5508
5509    // Provide a specific diagnostic for uninitialized variable
5510    // definitions with reference type.
5511    if (Type->isReferenceType()) {
5512      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5513        << Var->getDeclName()
5514        << SourceRange(Var->getLocation(), Var->getLocation());
5515      Var->setInvalidDecl();
5516      return;
5517    }
5518
5519    // Do not attempt to type-check the default initializer for a
5520    // variable with dependent type.
5521    if (Type->isDependentType())
5522      return;
5523
5524    if (Var->isInvalidDecl())
5525      return;
5526
5527    if (RequireCompleteType(Var->getLocation(),
5528                            Context.getBaseElementType(Type),
5529                            diag::err_typecheck_decl_incomplete_type)) {
5530      Var->setInvalidDecl();
5531      return;
5532    }
5533
5534    // The variable can not have an abstract class type.
5535    if (RequireNonAbstractType(Var->getLocation(), Type,
5536                               diag::err_abstract_type_in_decl,
5537                               AbstractVariableType)) {
5538      Var->setInvalidDecl();
5539      return;
5540    }
5541
5542    const RecordType *Record
5543      = Context.getBaseElementType(Type)->getAs<RecordType>();
5544    if (Record && getLangOptions().CPlusPlus &&
5545        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
5546      // C++03 [dcl.init]p9:
5547      //   If no initializer is specified for an object, and the
5548      //   object is of (possibly cv-qualified) non-POD class type (or
5549      //   array thereof), the object shall be default-initialized; if
5550      //   the object is of const-qualified type, the underlying class
5551      //   type shall have a user-declared default
5552      //   constructor. Otherwise, if no initializer is specified for
5553      //   a non- static object, the object and its subobjects, if
5554      //   any, have an indeterminate initial value); if the object
5555      //   or any of its subobjects are of const-qualified type, the
5556      //   program is ill-formed.
5557    } else {
5558      // Check for jumps past the implicit initializer.  C++0x
5559      // clarifies that this applies to a "variable with automatic
5560      // storage duration", not a "local variable".
5561      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
5562        getCurFunction()->setHasBranchProtectedScope();
5563
5564      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5565      InitializationKind Kind
5566        = InitializationKind::CreateDefault(Var->getLocation());
5567
5568      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5569      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5570                                        MultiExprArg(*this, 0, 0));
5571      if (Init.isInvalid())
5572        Var->setInvalidDecl();
5573      else if (Init.get())
5574        Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5575    }
5576
5577    CheckCompleteVariableDeclaration(Var);
5578  }
5579}
5580
5581void Sema::ActOnCXXForRangeDecl(Decl *D) {
5582  VarDecl *VD = dyn_cast<VarDecl>(D);
5583  if (!VD) {
5584    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5585    D->setInvalidDecl();
5586    return;
5587  }
5588
5589  VD->setCXXForRangeDecl(true);
5590
5591  // for-range-declaration cannot be given a storage class specifier.
5592  int Error = -1;
5593  switch (VD->getStorageClassAsWritten()) {
5594  case SC_None:
5595    break;
5596  case SC_Extern:
5597    Error = 0;
5598    break;
5599  case SC_Static:
5600    Error = 1;
5601    break;
5602  case SC_PrivateExtern:
5603    Error = 2;
5604    break;
5605  case SC_Auto:
5606    Error = 3;
5607    break;
5608  case SC_Register:
5609    Error = 4;
5610    break;
5611  }
5612  // FIXME: constexpr isn't allowed here.
5613  //if (DS.isConstexprSpecified())
5614  //  Error = 5;
5615  if (Error != -1) {
5616    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5617      << VD->getDeclName() << Error;
5618    D->setInvalidDecl();
5619  }
5620}
5621
5622void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5623  if (var->isInvalidDecl()) return;
5624
5625  // All the following checks are C++ only.
5626  if (!getLangOptions().CPlusPlus) return;
5627
5628  QualType baseType = Context.getBaseElementType(var->getType());
5629  if (baseType->isDependentType()) return;
5630
5631  // __block variables might require us to capture a copy-initializer.
5632  if (var->hasAttr<BlocksAttr>()) {
5633    // It's currently invalid to ever have a __block variable with an
5634    // array type; should we diagnose that here?
5635
5636    // Regardless, we don't want to ignore array nesting when
5637    // constructing this copy.
5638    QualType type = var->getType();
5639
5640    if (type->isStructureOrClassType()) {
5641      SourceLocation poi = var->getLocation();
5642      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5643      ExprResult result =
5644        PerformCopyInitialization(
5645                        InitializedEntity::InitializeBlock(poi, type, false),
5646                                  poi, Owned(varRef));
5647      if (!result.isInvalid()) {
5648        result = MaybeCreateExprWithCleanups(result);
5649        Expr *init = result.takeAs<Expr>();
5650        Context.setBlockVarCopyInits(var, init);
5651      }
5652    }
5653  }
5654
5655  // Check for global constructors.
5656  if (!var->getDeclContext()->isDependentContext() &&
5657      var->hasGlobalStorage() &&
5658      !var->isStaticLocal() &&
5659      var->getInit() &&
5660      !var->getInit()->isConstantInitializer(Context,
5661                                             baseType->isReferenceType()))
5662    Diag(var->getLocation(), diag::warn_global_constructor)
5663      << var->getInit()->getSourceRange();
5664
5665  // Require the destructor.
5666  if (const RecordType *recordType = baseType->getAs<RecordType>())
5667    FinalizeVarWithDestructor(var, recordType);
5668}
5669
5670/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5671/// any semantic actions necessary after any initializer has been attached.
5672void
5673Sema::FinalizeDeclaration(Decl *ThisDecl) {
5674  // Note that we are no longer parsing the initializer for this declaration.
5675  ParsingInitForAutoVars.erase(ThisDecl);
5676}
5677
5678Sema::DeclGroupPtrTy
5679Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5680                              Decl **Group, unsigned NumDecls) {
5681  llvm::SmallVector<Decl*, 8> Decls;
5682
5683  if (DS.isTypeSpecOwned())
5684    Decls.push_back(DS.getRepAsDecl());
5685
5686  for (unsigned i = 0; i != NumDecls; ++i)
5687    if (Decl *D = Group[i])
5688      Decls.push_back(D);
5689
5690  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5691                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5692}
5693
5694/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5695/// group, performing any necessary semantic checking.
5696Sema::DeclGroupPtrTy
5697Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5698                           bool TypeMayContainAuto) {
5699  // C++0x [dcl.spec.auto]p7:
5700  //   If the type deduced for the template parameter U is not the same in each
5701  //   deduction, the program is ill-formed.
5702  // FIXME: When initializer-list support is added, a distinction is needed
5703  // between the deduced type U and the deduced type which 'auto' stands for.
5704  //   auto a = 0, b = { 1, 2, 3 };
5705  // is legal because the deduced type U is 'int' in both cases.
5706  if (TypeMayContainAuto && NumDecls > 1) {
5707    QualType Deduced;
5708    CanQualType DeducedCanon;
5709    VarDecl *DeducedDecl = 0;
5710    for (unsigned i = 0; i != NumDecls; ++i) {
5711      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5712        AutoType *AT = D->getType()->getContainedAutoType();
5713        // Don't reissue diagnostics when instantiating a template.
5714        if (AT && D->isInvalidDecl())
5715          break;
5716        if (AT && AT->isDeduced()) {
5717          QualType U = AT->getDeducedType();
5718          CanQualType UCanon = Context.getCanonicalType(U);
5719          if (Deduced.isNull()) {
5720            Deduced = U;
5721            DeducedCanon = UCanon;
5722            DeducedDecl = D;
5723          } else if (DeducedCanon != UCanon) {
5724            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5725                 diag::err_auto_different_deductions)
5726              << Deduced << DeducedDecl->getDeclName()
5727              << U << D->getDeclName()
5728              << DeducedDecl->getInit()->getSourceRange()
5729              << D->getInit()->getSourceRange();
5730            D->setInvalidDecl();
5731            break;
5732          }
5733        }
5734      }
5735    }
5736  }
5737
5738  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5739}
5740
5741
5742/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5743/// to introduce parameters into function prototype scope.
5744Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5745  const DeclSpec &DS = D.getDeclSpec();
5746
5747  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5748  VarDecl::StorageClass StorageClass = SC_None;
5749  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5750  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5751    StorageClass = SC_Register;
5752    StorageClassAsWritten = SC_Register;
5753  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5754    Diag(DS.getStorageClassSpecLoc(),
5755         diag::err_invalid_storage_class_in_func_decl);
5756    D.getMutableDeclSpec().ClearStorageClassSpecs();
5757  }
5758
5759  if (D.getDeclSpec().isThreadSpecified())
5760    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5761
5762  DiagnoseFunctionSpecifiers(D);
5763
5764  TagDecl *OwnedDecl = 0;
5765  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
5766  QualType parmDeclType = TInfo->getType();
5767
5768  if (getLangOptions().CPlusPlus) {
5769    // Check that there are no default arguments inside the type of this
5770    // parameter.
5771    CheckExtraCXXDefaultArguments(D);
5772
5773    if (OwnedDecl && OwnedDecl->isDefinition()) {
5774      // C++ [dcl.fct]p6:
5775      //   Types shall not be defined in return or parameter types.
5776      Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
5777        << Context.getTypeDeclType(OwnedDecl);
5778    }
5779
5780    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5781    if (D.getCXXScopeSpec().isSet()) {
5782      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5783        << D.getCXXScopeSpec().getRange();
5784      D.getCXXScopeSpec().clear();
5785    }
5786  }
5787
5788  // Ensure we have a valid name
5789  IdentifierInfo *II = 0;
5790  if (D.hasName()) {
5791    II = D.getIdentifier();
5792    if (!II) {
5793      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5794        << GetNameForDeclarator(D).getName().getAsString();
5795      D.setInvalidType(true);
5796    }
5797  }
5798
5799  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
5800  if (II) {
5801    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
5802                   ForRedeclaration);
5803    LookupName(R, S);
5804    if (R.isSingleResult()) {
5805      NamedDecl *PrevDecl = R.getFoundDecl();
5806      if (PrevDecl->isTemplateParameter()) {
5807        // Maybe we will complain about the shadowed template parameter.
5808        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5809        // Just pretend that we didn't see the previous declaration.
5810        PrevDecl = 0;
5811      } else if (S->isDeclScope(PrevDecl)) {
5812        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
5813        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5814
5815        // Recover by removing the name
5816        II = 0;
5817        D.SetIdentifier(0, D.getIdentifierLoc());
5818        D.setInvalidType(true);
5819      }
5820    }
5821  }
5822
5823  // Temporarily put parameter variables in the translation unit, not
5824  // the enclosing context.  This prevents them from accidentally
5825  // looking like class members in C++.
5826  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
5827                                    D.getSourceRange().getBegin(),
5828                                    D.getIdentifierLoc(), II,
5829                                    parmDeclType, TInfo,
5830                                    StorageClass, StorageClassAsWritten);
5831
5832  if (D.isInvalidType())
5833    New->setInvalidDecl();
5834
5835  // Add the parameter declaration into this scope.
5836  S->AddDecl(New);
5837  if (II)
5838    IdResolver.AddDecl(New);
5839
5840  ProcessDeclAttributes(S, New, D);
5841
5842  if (New->hasAttr<BlocksAttr>()) {
5843    Diag(New->getLocation(), diag::err_block_on_nonlocal);
5844  }
5845  return New;
5846}
5847
5848/// \brief Synthesizes a variable for a parameter arising from a
5849/// typedef.
5850ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
5851                                              SourceLocation Loc,
5852                                              QualType T) {
5853  /* FIXME: setting StartLoc == Loc.
5854     Would it be worth to modify callers so as to provide proper source
5855     location for the unnamed parameters, embedding the parameter's type? */
5856  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
5857                                T, Context.getTrivialTypeSourceInfo(T, Loc),
5858                                           SC_None, SC_None, 0);
5859  Param->setImplicit();
5860  return Param;
5861}
5862
5863void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
5864                                    ParmVarDecl * const *ParamEnd) {
5865  // Don't diagnose unused-parameter errors in template instantiations; we
5866  // will already have done so in the template itself.
5867  if (!ActiveTemplateInstantiations.empty())
5868    return;
5869
5870  for (; Param != ParamEnd; ++Param) {
5871    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
5872        !(*Param)->hasAttr<UnusedAttr>()) {
5873      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
5874        << (*Param)->getDeclName();
5875    }
5876  }
5877}
5878
5879void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
5880                                                  ParmVarDecl * const *ParamEnd,
5881                                                  QualType ReturnTy,
5882                                                  NamedDecl *D) {
5883  if (LangOpts.NumLargeByValueCopy == 0) // No check.
5884    return;
5885
5886  // Warn if the return value is pass-by-value and larger than the specified
5887  // threshold.
5888  if (ReturnTy->isPODType()) {
5889    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
5890    if (Size > LangOpts.NumLargeByValueCopy)
5891      Diag(D->getLocation(), diag::warn_return_value_size)
5892          << D->getDeclName() << Size;
5893  }
5894
5895  // Warn if any parameter is pass-by-value and larger than the specified
5896  // threshold.
5897  for (; Param != ParamEnd; ++Param) {
5898    QualType T = (*Param)->getType();
5899    if (!T->isPODType())
5900      continue;
5901    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
5902    if (Size > LangOpts.NumLargeByValueCopy)
5903      Diag((*Param)->getLocation(), diag::warn_parameter_size)
5904          << (*Param)->getDeclName() << Size;
5905  }
5906}
5907
5908ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
5909                                  SourceLocation NameLoc, IdentifierInfo *Name,
5910                                  QualType T, TypeSourceInfo *TSInfo,
5911                                  VarDecl::StorageClass StorageClass,
5912                                  VarDecl::StorageClass StorageClassAsWritten) {
5913  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
5914                                         adjustParameterType(T), TSInfo,
5915                                         StorageClass, StorageClassAsWritten,
5916                                         0);
5917
5918  // Parameters can not be abstract class types.
5919  // For record types, this is done by the AbstractClassUsageDiagnoser once
5920  // the class has been completely parsed.
5921  if (!CurContext->isRecord() &&
5922      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
5923                             AbstractParamType))
5924    New->setInvalidDecl();
5925
5926  // Parameter declarators cannot be interface types. All ObjC objects are
5927  // passed by reference.
5928  if (T->isObjCObjectType()) {
5929    Diag(NameLoc,
5930         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
5931    New->setInvalidDecl();
5932  }
5933
5934  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
5935  // duration shall not be qualified by an address-space qualifier."
5936  // Since all parameters have automatic store duration, they can not have
5937  // an address space.
5938  if (T.getAddressSpace() != 0) {
5939    Diag(NameLoc, diag::err_arg_with_address_space);
5940    New->setInvalidDecl();
5941  }
5942
5943  return New;
5944}
5945
5946void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
5947                                           SourceLocation LocAfterDecls) {
5948  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
5949
5950  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
5951  // for a K&R function.
5952  if (!FTI.hasPrototype) {
5953    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
5954      --i;
5955      if (FTI.ArgInfo[i].Param == 0) {
5956        llvm::SmallString<256> Code;
5957        llvm::raw_svector_ostream(Code) << "  int "
5958                                        << FTI.ArgInfo[i].Ident->getName()
5959                                        << ";\n";
5960        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
5961          << FTI.ArgInfo[i].Ident
5962          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
5963
5964        // Implicitly declare the argument as type 'int' for lack of a better
5965        // type.
5966        AttributeFactory attrs;
5967        DeclSpec DS(attrs);
5968        const char* PrevSpec; // unused
5969        unsigned DiagID; // unused
5970        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
5971                           PrevSpec, DiagID);
5972        Declarator ParamD(DS, Declarator::KNRTypeListContext);
5973        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
5974        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
5975      }
5976    }
5977  }
5978}
5979
5980Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
5981                                         Declarator &D) {
5982  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
5983  assert(D.isFunctionDeclarator() && "Not a function declarator!");
5984  Scope *ParentScope = FnBodyScope->getParent();
5985
5986  Decl *DP = HandleDeclarator(ParentScope, D,
5987                              MultiTemplateParamsArg(*this),
5988                              /*IsFunctionDefinition=*/true);
5989  return ActOnStartOfFunctionDef(FnBodyScope, DP);
5990}
5991
5992static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
5993  // Don't warn about invalid declarations.
5994  if (FD->isInvalidDecl())
5995    return false;
5996
5997  // Or declarations that aren't global.
5998  if (!FD->isGlobal())
5999    return false;
6000
6001  // Don't warn about C++ member functions.
6002  if (isa<CXXMethodDecl>(FD))
6003    return false;
6004
6005  // Don't warn about 'main'.
6006  if (FD->isMain())
6007    return false;
6008
6009  // Don't warn about inline functions.
6010  if (FD->isInlined())
6011    return false;
6012
6013  // Don't warn about function templates.
6014  if (FD->getDescribedFunctionTemplate())
6015    return false;
6016
6017  // Don't warn about function template specializations.
6018  if (FD->isFunctionTemplateSpecialization())
6019    return false;
6020
6021  bool MissingPrototype = true;
6022  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6023       Prev; Prev = Prev->getPreviousDeclaration()) {
6024    // Ignore any declarations that occur in function or method
6025    // scope, because they aren't visible from the header.
6026    if (Prev->getDeclContext()->isFunctionOrMethod())
6027      continue;
6028
6029    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6030    break;
6031  }
6032
6033  return MissingPrototype;
6034}
6035
6036void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6037  // Don't complain if we're in GNU89 mode and the previous definition
6038  // was an extern inline function.
6039  const FunctionDecl *Definition;
6040  if (FD->hasBody(Definition) &&
6041      !canRedefineFunction(Definition, getLangOptions())) {
6042    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6043        Definition->getStorageClass() == SC_Extern)
6044      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6045        << FD->getDeclName() << getLangOptions().CPlusPlus;
6046    else
6047      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6048    Diag(Definition->getLocation(), diag::note_previous_definition);
6049  }
6050}
6051
6052Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6053  // Clear the last template instantiation error context.
6054  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6055
6056  if (!D)
6057    return D;
6058  FunctionDecl *FD = 0;
6059
6060  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6061    FD = FunTmpl->getTemplatedDecl();
6062  else
6063    FD = cast<FunctionDecl>(D);
6064
6065  // Enter a new function scope
6066  PushFunctionScope();
6067
6068  // See if this is a redefinition.
6069  if (!FD->isLateTemplateParsed())
6070    CheckForFunctionRedefinition(FD);
6071
6072  // Builtin functions cannot be defined.
6073  if (unsigned BuiltinID = FD->getBuiltinID()) {
6074    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6075      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6076      FD->setInvalidDecl();
6077    }
6078  }
6079
6080  // The return type of a function definition must be complete
6081  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6082  QualType ResultType = FD->getResultType();
6083  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6084      !FD->isInvalidDecl() &&
6085      RequireCompleteType(FD->getLocation(), ResultType,
6086                          diag::err_func_def_incomplete_result))
6087    FD->setInvalidDecl();
6088
6089  // GNU warning -Wmissing-prototypes:
6090  //   Warn if a global function is defined without a previous
6091  //   prototype declaration. This warning is issued even if the
6092  //   definition itself provides a prototype. The aim is to detect
6093  //   global functions that fail to be declared in header files.
6094  if (ShouldWarnAboutMissingPrototype(FD))
6095    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6096
6097  if (FnBodyScope)
6098    PushDeclContext(FnBodyScope, FD);
6099
6100  // Check the validity of our function parameters
6101  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6102                           /*CheckParameterNames=*/true);
6103
6104  // Introduce our parameters into the function scope
6105  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6106    ParmVarDecl *Param = FD->getParamDecl(p);
6107    Param->setOwningFunction(FD);
6108
6109    // If this has an identifier, add it to the scope stack.
6110    if (Param->getIdentifier() && FnBodyScope) {
6111      CheckShadow(FnBodyScope, Param);
6112
6113      PushOnScopeChains(Param, FnBodyScope);
6114    }
6115  }
6116
6117  // Checking attributes of current function definition
6118  // dllimport attribute.
6119  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6120  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6121    // dllimport attribute cannot be directly applied to definition.
6122    // Microsoft accepts dllimport for functions defined within class scope.
6123    if (!DA->isInherited() &&
6124        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6125      Diag(FD->getLocation(),
6126           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6127        << "dllimport";
6128      FD->setInvalidDecl();
6129      return FD;
6130    }
6131
6132    // Visual C++ appears to not think this is an issue, so only issue
6133    // a warning when Microsoft extensions are disabled.
6134    if (!LangOpts.Microsoft) {
6135      // If a symbol previously declared dllimport is later defined, the
6136      // attribute is ignored in subsequent references, and a warning is
6137      // emitted.
6138      Diag(FD->getLocation(),
6139           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6140        << FD->getName() << "dllimport";
6141    }
6142  }
6143  return FD;
6144}
6145
6146/// \brief Given the set of return statements within a function body,
6147/// compute the variables that are subject to the named return value
6148/// optimization.
6149///
6150/// Each of the variables that is subject to the named return value
6151/// optimization will be marked as NRVO variables in the AST, and any
6152/// return statement that has a marked NRVO variable as its NRVO candidate can
6153/// use the named return value optimization.
6154///
6155/// This function applies a very simplistic algorithm for NRVO: if every return
6156/// statement in the function has the same NRVO candidate, that candidate is
6157/// the NRVO variable.
6158///
6159/// FIXME: Employ a smarter algorithm that accounts for multiple return
6160/// statements and the lifetimes of the NRVO candidates. We should be able to
6161/// find a maximal set of NRVO variables.
6162static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6163  ReturnStmt **Returns = Scope->Returns.data();
6164
6165  const VarDecl *NRVOCandidate = 0;
6166  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6167    if (!Returns[I]->getNRVOCandidate())
6168      return;
6169
6170    if (!NRVOCandidate)
6171      NRVOCandidate = Returns[I]->getNRVOCandidate();
6172    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6173      return;
6174  }
6175
6176  if (NRVOCandidate)
6177    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6178}
6179
6180Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6181  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6182}
6183
6184Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6185                                    bool IsInstantiation) {
6186  FunctionDecl *FD = 0;
6187  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6188  if (FunTmpl)
6189    FD = FunTmpl->getTemplatedDecl();
6190  else
6191    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6192
6193  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6194  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6195
6196  if (FD) {
6197    FD->setBody(Body);
6198    if (FD->isMain()) {
6199      // C and C++ allow for main to automagically return 0.
6200      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6201      FD->setHasImplicitReturnZero(true);
6202      WP.disableCheckFallThrough();
6203    }
6204
6205    if (!FD->isInvalidDecl()) {
6206      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6207      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6208                                             FD->getResultType(), FD);
6209
6210      // If this is a constructor, we need a vtable.
6211      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6212        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6213
6214      ComputeNRVO(Body, getCurFunction());
6215    }
6216
6217    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6218  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6219    assert(MD == getCurMethodDecl() && "Method parsing confused");
6220    MD->setBody(Body);
6221    if (Body)
6222      MD->setEndLoc(Body->getLocEnd());
6223    if (!MD->isInvalidDecl()) {
6224      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6225      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6226                                             MD->getResultType(), MD);
6227    }
6228  } else {
6229    return 0;
6230  }
6231
6232  // Verify and clean out per-function state.
6233  if (Body) {
6234    // C++ constructors that have function-try-blocks can't have return
6235    // statements in the handlers of that block. (C++ [except.handle]p14)
6236    // Verify this.
6237    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6238      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6239
6240    // Verify that that gotos and switch cases don't jump into scopes illegally.
6241    // Verify that that gotos and switch cases don't jump into scopes illegally.
6242    if (getCurFunction()->NeedsScopeChecking() &&
6243        !dcl->isInvalidDecl() &&
6244        !hasAnyErrorsInThisFunction())
6245      DiagnoseInvalidJumps(Body);
6246
6247    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6248      if (!Destructor->getParent()->isDependentType())
6249        CheckDestructor(Destructor);
6250
6251      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6252                                             Destructor->getParent());
6253    }
6254
6255    // If any errors have occurred, clear out any temporaries that may have
6256    // been leftover. This ensures that these temporaries won't be picked up for
6257    // deletion in some later function.
6258    if (PP.getDiagnostics().hasErrorOccurred() ||
6259        PP.getDiagnostics().getSuppressAllDiagnostics())
6260      ExprTemporaries.clear();
6261    else if (!isa<FunctionTemplateDecl>(dcl)) {
6262      // Since the body is valid, issue any analysis-based warnings that are
6263      // enabled.
6264      ActivePolicy = &WP;
6265    }
6266
6267    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6268  }
6269
6270  if (!IsInstantiation)
6271    PopDeclContext();
6272
6273  PopFunctionOrBlockScope(ActivePolicy, dcl);
6274
6275  // If any errors have occurred, clear out any temporaries that may have
6276  // been leftover. This ensures that these temporaries won't be picked up for
6277  // deletion in some later function.
6278  if (getDiagnostics().hasErrorOccurred())
6279    ExprTemporaries.clear();
6280
6281  return dcl;
6282}
6283
6284/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6285/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6286NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6287                                          IdentifierInfo &II, Scope *S) {
6288  // Before we produce a declaration for an implicitly defined
6289  // function, see whether there was a locally-scoped declaration of
6290  // this name as a function or variable. If so, use that
6291  // (non-visible) declaration, and complain about it.
6292  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6293    = LocallyScopedExternalDecls.find(&II);
6294  if (Pos != LocallyScopedExternalDecls.end()) {
6295    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6296    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6297    return Pos->second;
6298  }
6299
6300  // Extension in C99.  Legal in C90, but warn about it.
6301  if (II.getName().startswith("__builtin_"))
6302    Diag(Loc, diag::warn_builtin_unknown) << &II;
6303  else if (getLangOptions().C99)
6304    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6305  else
6306    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6307
6308  // Set a Declarator for the implicit definition: int foo();
6309  const char *Dummy;
6310  AttributeFactory attrFactory;
6311  DeclSpec DS(attrFactory);
6312  unsigned DiagID;
6313  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6314  (void)Error; // Silence warning.
6315  assert(!Error && "Error setting up implicit decl!");
6316  Declarator D(DS, Declarator::BlockContext);
6317  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6318                                             0, 0, true, SourceLocation(),
6319                                             EST_None, SourceLocation(),
6320                                             0, 0, 0, 0, Loc, Loc, D),
6321                DS.getAttributes(),
6322                SourceLocation());
6323  D.SetIdentifier(&II, Loc);
6324
6325  // Insert this function into translation-unit scope.
6326
6327  DeclContext *PrevDC = CurContext;
6328  CurContext = Context.getTranslationUnitDecl();
6329
6330  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6331  FD->setImplicit();
6332
6333  CurContext = PrevDC;
6334
6335  AddKnownFunctionAttributes(FD);
6336
6337  return FD;
6338}
6339
6340/// \brief Adds any function attributes that we know a priori based on
6341/// the declaration of this function.
6342///
6343/// These attributes can apply both to implicitly-declared builtins
6344/// (like __builtin___printf_chk) or to library-declared functions
6345/// like NSLog or printf.
6346void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6347  if (FD->isInvalidDecl())
6348    return;
6349
6350  // If this is a built-in function, map its builtin attributes to
6351  // actual attributes.
6352  if (unsigned BuiltinID = FD->getBuiltinID()) {
6353    // Handle printf-formatting attributes.
6354    unsigned FormatIdx;
6355    bool HasVAListArg;
6356    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6357      if (!FD->getAttr<FormatAttr>())
6358        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6359                                                "printf", FormatIdx+1,
6360                                               HasVAListArg ? 0 : FormatIdx+2));
6361    }
6362    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6363                                             HasVAListArg)) {
6364     if (!FD->getAttr<FormatAttr>())
6365       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6366                                              "scanf", FormatIdx+1,
6367                                              HasVAListArg ? 0 : FormatIdx+2));
6368    }
6369
6370    // Mark const if we don't care about errno and that is the only
6371    // thing preventing the function from being const. This allows
6372    // IRgen to use LLVM intrinsics for such functions.
6373    if (!getLangOptions().MathErrno &&
6374        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6375      if (!FD->getAttr<ConstAttr>())
6376        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6377    }
6378
6379    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
6380      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6381    if (Context.BuiltinInfo.isConst(BuiltinID))
6382      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6383  }
6384
6385  IdentifierInfo *Name = FD->getIdentifier();
6386  if (!Name)
6387    return;
6388  if ((!getLangOptions().CPlusPlus &&
6389       FD->getDeclContext()->isTranslationUnit()) ||
6390      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6391       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6392       LinkageSpecDecl::lang_c)) {
6393    // Okay: this could be a libc/libm/Objective-C function we know
6394    // about.
6395  } else
6396    return;
6397
6398  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6399    // FIXME: NSLog and NSLogv should be target specific
6400    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6401      // FIXME: We known better than our headers.
6402      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6403    } else
6404      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6405                                             "printf", 1,
6406                                             Name->isStr("NSLogv") ? 0 : 2));
6407  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6408    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6409    // target-specific builtins, perhaps?
6410    if (!FD->getAttr<FormatAttr>())
6411      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6412                                             "printf", 2,
6413                                             Name->isStr("vasprintf") ? 0 : 3));
6414  }
6415}
6416
6417TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6418                                    TypeSourceInfo *TInfo) {
6419  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6420  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6421
6422  if (!TInfo) {
6423    assert(D.isInvalidType() && "no declarator info for valid type");
6424    TInfo = Context.getTrivialTypeSourceInfo(T);
6425  }
6426
6427  // Scope manipulation handled by caller.
6428  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6429                                           D.getSourceRange().getBegin(),
6430                                           D.getIdentifierLoc(),
6431                                           D.getIdentifier(),
6432                                           TInfo);
6433
6434  // Bail out immediately if we have an invalid declaration.
6435  if (D.isInvalidType()) {
6436    NewTD->setInvalidDecl();
6437    return NewTD;
6438  }
6439
6440  // C++ [dcl.typedef]p8:
6441  //   If the typedef declaration defines an unnamed class (or
6442  //   enum), the first typedef-name declared by the declaration
6443  //   to be that class type (or enum type) is used to denote the
6444  //   class type (or enum type) for linkage purposes only.
6445  // We need to check whether the type was declared in the declaration.
6446  switch (D.getDeclSpec().getTypeSpecType()) {
6447  case TST_enum:
6448  case TST_struct:
6449  case TST_union:
6450  case TST_class: {
6451    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6452
6453    // Do nothing if the tag is not anonymous or already has an
6454    // associated typedef (from an earlier typedef in this decl group).
6455    if (tagFromDeclSpec->getIdentifier()) break;
6456    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6457
6458    // A well-formed anonymous tag must always be a TUK_Definition.
6459    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6460
6461    // The type must match the tag exactly;  no qualifiers allowed.
6462    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6463      break;
6464
6465    // Otherwise, set this is the anon-decl typedef for the tag.
6466    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6467    break;
6468  }
6469
6470  default:
6471    break;
6472  }
6473
6474  return NewTD;
6475}
6476
6477
6478/// \brief Determine whether a tag with a given kind is acceptable
6479/// as a redeclaration of the given tag declaration.
6480///
6481/// \returns true if the new tag kind is acceptable, false otherwise.
6482bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6483                                        TagTypeKind NewTag,
6484                                        SourceLocation NewTagLoc,
6485                                        const IdentifierInfo &Name) {
6486  // C++ [dcl.type.elab]p3:
6487  //   The class-key or enum keyword present in the
6488  //   elaborated-type-specifier shall agree in kind with the
6489  //   declaration to which the name in the elaborated-type-specifier
6490  //   refers. This rule also applies to the form of
6491  //   elaborated-type-specifier that declares a class-name or
6492  //   friend class since it can be construed as referring to the
6493  //   definition of the class. Thus, in any
6494  //   elaborated-type-specifier, the enum keyword shall be used to
6495  //   refer to an enumeration (7.2), the union class-key shall be
6496  //   used to refer to a union (clause 9), and either the class or
6497  //   struct class-key shall be used to refer to a class (clause 9)
6498  //   declared using the class or struct class-key.
6499  TagTypeKind OldTag = Previous->getTagKind();
6500  if (OldTag == NewTag)
6501    return true;
6502
6503  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6504      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6505    // Warn about the struct/class tag mismatch.
6506    bool isTemplate = false;
6507    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6508      isTemplate = Record->getDescribedClassTemplate();
6509
6510    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6511      << (NewTag == TTK_Class)
6512      << isTemplate << &Name
6513      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6514                              OldTag == TTK_Class? "class" : "struct");
6515    Diag(Previous->getLocation(), diag::note_previous_use);
6516    return true;
6517  }
6518  return false;
6519}
6520
6521/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6522/// former case, Name will be non-null.  In the later case, Name will be null.
6523/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6524/// reference/declaration/definition of a tag.
6525Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6526                     SourceLocation KWLoc, CXXScopeSpec &SS,
6527                     IdentifierInfo *Name, SourceLocation NameLoc,
6528                     AttributeList *Attr, AccessSpecifier AS,
6529                     MultiTemplateParamsArg TemplateParameterLists,
6530                     bool &OwnedDecl, bool &IsDependent,
6531                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6532                     TypeResult UnderlyingType) {
6533  // If this is not a definition, it must have a name.
6534  assert((Name != 0 || TUK == TUK_Definition) &&
6535         "Nameless record must be a definition!");
6536  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6537
6538  OwnedDecl = false;
6539  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6540
6541  // FIXME: Check explicit specializations more carefully.
6542  bool isExplicitSpecialization = false;
6543  bool Invalid = false;
6544
6545  // We only need to do this matching if we have template parameters
6546  // or a scope specifier, which also conveniently avoids this work
6547  // for non-C++ cases.
6548  if (TemplateParameterLists.size() > 0 ||
6549      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6550    if (TemplateParameterList *TemplateParams
6551          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
6552                                                TemplateParameterLists.get(),
6553                                                TemplateParameterLists.size(),
6554                                                    TUK == TUK_Friend,
6555                                                    isExplicitSpecialization,
6556                                                    Invalid)) {
6557      if (TemplateParams->size() > 0) {
6558        // This is a declaration or definition of a class template (which may
6559        // be a member of another template).
6560
6561        if (Invalid)
6562          return 0;
6563
6564        OwnedDecl = false;
6565        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6566                                               SS, Name, NameLoc, Attr,
6567                                               TemplateParams, AS,
6568                                           TemplateParameterLists.size() - 1,
6569                 (TemplateParameterList**) TemplateParameterLists.release());
6570        return Result.get();
6571      } else {
6572        // The "template<>" header is extraneous.
6573        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6574          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6575        isExplicitSpecialization = true;
6576      }
6577    }
6578  }
6579
6580  // Figure out the underlying type if this a enum declaration. We need to do
6581  // this early, because it's needed to detect if this is an incompatible
6582  // redeclaration.
6583  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6584
6585  if (Kind == TTK_Enum) {
6586    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6587      // No underlying type explicitly specified, or we failed to parse the
6588      // type, default to int.
6589      EnumUnderlying = Context.IntTy.getTypePtr();
6590    else if (UnderlyingType.get()) {
6591      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6592      // integral type; any cv-qualification is ignored.
6593      TypeSourceInfo *TI = 0;
6594      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6595      EnumUnderlying = TI;
6596
6597      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6598
6599      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6600        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6601          << T;
6602        // Recover by falling back to int.
6603        EnumUnderlying = Context.IntTy.getTypePtr();
6604      }
6605
6606      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6607                                          UPPC_FixedUnderlyingType))
6608        EnumUnderlying = Context.IntTy.getTypePtr();
6609
6610    } else if (getLangOptions().Microsoft)
6611      // Microsoft enums are always of int type.
6612      EnumUnderlying = Context.IntTy.getTypePtr();
6613  }
6614
6615  DeclContext *SearchDC = CurContext;
6616  DeclContext *DC = CurContext;
6617  bool isStdBadAlloc = false;
6618
6619  RedeclarationKind Redecl = ForRedeclaration;
6620  if (TUK == TUK_Friend || TUK == TUK_Reference)
6621    Redecl = NotForRedeclaration;
6622
6623  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6624
6625  if (Name && SS.isNotEmpty()) {
6626    // We have a nested-name tag ('struct foo::bar').
6627
6628    // Check for invalid 'foo::'.
6629    if (SS.isInvalid()) {
6630      Name = 0;
6631      goto CreateNewDecl;
6632    }
6633
6634    // If this is a friend or a reference to a class in a dependent
6635    // context, don't try to make a decl for it.
6636    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6637      DC = computeDeclContext(SS, false);
6638      if (!DC) {
6639        IsDependent = true;
6640        return 0;
6641      }
6642    } else {
6643      DC = computeDeclContext(SS, true);
6644      if (!DC) {
6645        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6646          << SS.getRange();
6647        return 0;
6648      }
6649    }
6650
6651    if (RequireCompleteDeclContext(SS, DC))
6652      return 0;
6653
6654    SearchDC = DC;
6655    // Look-up name inside 'foo::'.
6656    LookupQualifiedName(Previous, DC);
6657
6658    if (Previous.isAmbiguous())
6659      return 0;
6660
6661    if (Previous.empty()) {
6662      // Name lookup did not find anything. However, if the
6663      // nested-name-specifier refers to the current instantiation,
6664      // and that current instantiation has any dependent base
6665      // classes, we might find something at instantiation time: treat
6666      // this as a dependent elaborated-type-specifier.
6667      // But this only makes any sense for reference-like lookups.
6668      if (Previous.wasNotFoundInCurrentInstantiation() &&
6669          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6670        IsDependent = true;
6671        return 0;
6672      }
6673
6674      // A tag 'foo::bar' must already exist.
6675      Diag(NameLoc, diag::err_not_tag_in_scope)
6676        << Kind << Name << DC << SS.getRange();
6677      Name = 0;
6678      Invalid = true;
6679      goto CreateNewDecl;
6680    }
6681  } else if (Name) {
6682    // If this is a named struct, check to see if there was a previous forward
6683    // declaration or definition.
6684    // FIXME: We're looking into outer scopes here, even when we
6685    // shouldn't be. Doing so can result in ambiguities that we
6686    // shouldn't be diagnosing.
6687    LookupName(Previous, S);
6688
6689    // Note:  there used to be some attempt at recovery here.
6690    if (Previous.isAmbiguous())
6691      return 0;
6692
6693    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6694      // FIXME: This makes sure that we ignore the contexts associated
6695      // with C structs, unions, and enums when looking for a matching
6696      // tag declaration or definition. See the similar lookup tweak
6697      // in Sema::LookupName; is there a better way to deal with this?
6698      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
6699        SearchDC = SearchDC->getParent();
6700    }
6701  } else if (S->isFunctionPrototypeScope()) {
6702    // If this is an enum declaration in function prototype scope, set its
6703    // initial context to the translation unit.
6704    SearchDC = Context.getTranslationUnitDecl();
6705  }
6706
6707  if (Previous.isSingleResult() &&
6708      Previous.getFoundDecl()->isTemplateParameter()) {
6709    // Maybe we will complain about the shadowed template parameter.
6710    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
6711    // Just pretend that we didn't see the previous declaration.
6712    Previous.clear();
6713  }
6714
6715  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
6716      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
6717    // This is a declaration of or a reference to "std::bad_alloc".
6718    isStdBadAlloc = true;
6719
6720    if (Previous.empty() && StdBadAlloc) {
6721      // std::bad_alloc has been implicitly declared (but made invisible to
6722      // name lookup). Fill in this implicit declaration as the previous
6723      // declaration, so that the declarations get chained appropriately.
6724      Previous.addDecl(getStdBadAlloc());
6725    }
6726  }
6727
6728  // If we didn't find a previous declaration, and this is a reference
6729  // (or friend reference), move to the correct scope.  In C++, we
6730  // also need to do a redeclaration lookup there, just in case
6731  // there's a shadow friend decl.
6732  if (Name && Previous.empty() &&
6733      (TUK == TUK_Reference || TUK == TUK_Friend)) {
6734    if (Invalid) goto CreateNewDecl;
6735    assert(SS.isEmpty());
6736
6737    if (TUK == TUK_Reference) {
6738      // C++ [basic.scope.pdecl]p5:
6739      //   -- for an elaborated-type-specifier of the form
6740      //
6741      //          class-key identifier
6742      //
6743      //      if the elaborated-type-specifier is used in the
6744      //      decl-specifier-seq or parameter-declaration-clause of a
6745      //      function defined in namespace scope, the identifier is
6746      //      declared as a class-name in the namespace that contains
6747      //      the declaration; otherwise, except as a friend
6748      //      declaration, the identifier is declared in the smallest
6749      //      non-class, non-function-prototype scope that contains the
6750      //      declaration.
6751      //
6752      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
6753      // C structs and unions.
6754      //
6755      // It is an error in C++ to declare (rather than define) an enum
6756      // type, including via an elaborated type specifier.  We'll
6757      // diagnose that later; for now, declare the enum in the same
6758      // scope as we would have picked for any other tag type.
6759      //
6760      // GNU C also supports this behavior as part of its incomplete
6761      // enum types extension, while GNU C++ does not.
6762      //
6763      // Find the context where we'll be declaring the tag.
6764      // FIXME: We would like to maintain the current DeclContext as the
6765      // lexical context,
6766      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
6767        SearchDC = SearchDC->getParent();
6768
6769      // Find the scope where we'll be declaring the tag.
6770      while (S->isClassScope() ||
6771             (getLangOptions().CPlusPlus &&
6772              S->isFunctionPrototypeScope()) ||
6773             ((S->getFlags() & Scope::DeclScope) == 0) ||
6774             (S->getEntity() &&
6775              ((DeclContext *)S->getEntity())->isTransparentContext()))
6776        S = S->getParent();
6777    } else {
6778      assert(TUK == TUK_Friend);
6779      // C++ [namespace.memdef]p3:
6780      //   If a friend declaration in a non-local class first declares a
6781      //   class or function, the friend class or function is a member of
6782      //   the innermost enclosing namespace.
6783      SearchDC = SearchDC->getEnclosingNamespaceContext();
6784    }
6785
6786    // In C++, we need to do a redeclaration lookup to properly
6787    // diagnose some problems.
6788    if (getLangOptions().CPlusPlus) {
6789      Previous.setRedeclarationKind(ForRedeclaration);
6790      LookupQualifiedName(Previous, SearchDC);
6791    }
6792  }
6793
6794  if (!Previous.empty()) {
6795    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
6796
6797    // It's okay to have a tag decl in the same scope as a typedef
6798    // which hides a tag decl in the same scope.  Finding this
6799    // insanity with a redeclaration lookup can only actually happen
6800    // in C++.
6801    //
6802    // This is also okay for elaborated-type-specifiers, which is
6803    // technically forbidden by the current standard but which is
6804    // okay according to the likely resolution of an open issue;
6805    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
6806    if (getLangOptions().CPlusPlus) {
6807      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6808        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
6809          TagDecl *Tag = TT->getDecl();
6810          if (Tag->getDeclName() == Name &&
6811              Tag->getDeclContext()->getRedeclContext()
6812                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
6813            PrevDecl = Tag;
6814            Previous.clear();
6815            Previous.addDecl(Tag);
6816            Previous.resolveKind();
6817          }
6818        }
6819      }
6820    }
6821
6822    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
6823      // If this is a use of a previous tag, or if the tag is already declared
6824      // in the same scope (so that the definition/declaration completes or
6825      // rementions the tag), reuse the decl.
6826      if (TUK == TUK_Reference || TUK == TUK_Friend ||
6827          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
6828        // Make sure that this wasn't declared as an enum and now used as a
6829        // struct or something similar.
6830        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
6831          bool SafeToContinue
6832            = (PrevTagDecl->getTagKind() != TTK_Enum &&
6833               Kind != TTK_Enum);
6834          if (SafeToContinue)
6835            Diag(KWLoc, diag::err_use_with_wrong_tag)
6836              << Name
6837              << FixItHint::CreateReplacement(SourceRange(KWLoc),
6838                                              PrevTagDecl->getKindName());
6839          else
6840            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
6841          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6842
6843          if (SafeToContinue)
6844            Kind = PrevTagDecl->getTagKind();
6845          else {
6846            // Recover by making this an anonymous redefinition.
6847            Name = 0;
6848            Previous.clear();
6849            Invalid = true;
6850          }
6851        }
6852
6853        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
6854          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
6855
6856          // All conflicts with previous declarations are recovered by
6857          // returning the previous declaration.
6858          if (ScopedEnum != PrevEnum->isScoped()) {
6859            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
6860              << PrevEnum->isScoped();
6861            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6862            return PrevTagDecl;
6863          }
6864          else if (EnumUnderlying && PrevEnum->isFixed()) {
6865            QualType T;
6866            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
6867                T = TI->getType();
6868            else
6869                T = QualType(EnumUnderlying.get<const Type*>(), 0);
6870
6871            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
6872              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
6873                   diag::err_enum_redeclare_type_mismatch)
6874                << T
6875                << PrevEnum->getIntegerType();
6876              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6877              return PrevTagDecl;
6878            }
6879          }
6880          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
6881            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
6882              << PrevEnum->isFixed();
6883            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
6884            return PrevTagDecl;
6885          }
6886        }
6887
6888        if (!Invalid) {
6889          // If this is a use, just return the declaration we found.
6890
6891          // FIXME: In the future, return a variant or some other clue
6892          // for the consumer of this Decl to know it doesn't own it.
6893          // For our current ASTs this shouldn't be a problem, but will
6894          // need to be changed with DeclGroups.
6895          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
6896              TUK == TUK_Friend)
6897            return PrevTagDecl;
6898
6899          // Diagnose attempts to redefine a tag.
6900          if (TUK == TUK_Definition) {
6901            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
6902              // If we're defining a specialization and the previous definition
6903              // is from an implicit instantiation, don't emit an error
6904              // here; we'll catch this in the general case below.
6905              if (!isExplicitSpecialization ||
6906                  !isa<CXXRecordDecl>(Def) ||
6907                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
6908                                               == TSK_ExplicitSpecialization) {
6909                Diag(NameLoc, diag::err_redefinition) << Name;
6910                Diag(Def->getLocation(), diag::note_previous_definition);
6911                // If this is a redefinition, recover by making this
6912                // struct be anonymous, which will make any later
6913                // references get the previous definition.
6914                Name = 0;
6915                Previous.clear();
6916                Invalid = true;
6917              }
6918            } else {
6919              // If the type is currently being defined, complain
6920              // about a nested redefinition.
6921              const TagType *Tag
6922                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
6923              if (Tag->isBeingDefined()) {
6924                Diag(NameLoc, diag::err_nested_redefinition) << Name;
6925                Diag(PrevTagDecl->getLocation(),
6926                     diag::note_previous_definition);
6927                Name = 0;
6928                Previous.clear();
6929                Invalid = true;
6930              }
6931            }
6932
6933            // Okay, this is definition of a previously declared or referenced
6934            // tag PrevDecl. We're going to create a new Decl for it.
6935          }
6936        }
6937        // If we get here we have (another) forward declaration or we
6938        // have a definition.  Just create a new decl.
6939
6940      } else {
6941        // If we get here, this is a definition of a new tag type in a nested
6942        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
6943        // new decl/type.  We set PrevDecl to NULL so that the entities
6944        // have distinct types.
6945        Previous.clear();
6946      }
6947      // If we get here, we're going to create a new Decl. If PrevDecl
6948      // is non-NULL, it's a definition of the tag declared by
6949      // PrevDecl. If it's NULL, we have a new definition.
6950
6951
6952    // Otherwise, PrevDecl is not a tag, but was found with tag
6953    // lookup.  This is only actually possible in C++, where a few
6954    // things like templates still live in the tag namespace.
6955    } else {
6956      assert(getLangOptions().CPlusPlus);
6957
6958      // Use a better diagnostic if an elaborated-type-specifier
6959      // found the wrong kind of type on the first
6960      // (non-redeclaration) lookup.
6961      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
6962          !Previous.isForRedeclaration()) {
6963        unsigned Kind = 0;
6964        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6965        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6966        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6967        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
6968        Diag(PrevDecl->getLocation(), diag::note_declared_at);
6969        Invalid = true;
6970
6971      // Otherwise, only diagnose if the declaration is in scope.
6972      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
6973                                isExplicitSpecialization)) {
6974        // do nothing
6975
6976      // Diagnose implicit declarations introduced by elaborated types.
6977      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
6978        unsigned Kind = 0;
6979        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
6980        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
6981        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
6982        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
6983        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6984        Invalid = true;
6985
6986      // Otherwise it's a declaration.  Call out a particularly common
6987      // case here.
6988      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
6989        unsigned Kind = 0;
6990        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
6991        Diag(NameLoc, diag::err_tag_definition_of_typedef)
6992          << Name << Kind << TND->getUnderlyingType();
6993        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
6994        Invalid = true;
6995
6996      // Otherwise, diagnose.
6997      } else {
6998        // The tag name clashes with something else in the target scope,
6999        // issue an error and recover by making this tag be anonymous.
7000        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7001        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7002        Name = 0;
7003        Invalid = true;
7004      }
7005
7006      // The existing declaration isn't relevant to us; we're in a
7007      // new scope, so clear out the previous declaration.
7008      Previous.clear();
7009    }
7010  }
7011
7012CreateNewDecl:
7013
7014  TagDecl *PrevDecl = 0;
7015  if (Previous.isSingleResult())
7016    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7017
7018  // If there is an identifier, use the location of the identifier as the
7019  // location of the decl, otherwise use the location of the struct/union
7020  // keyword.
7021  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7022
7023  // Otherwise, create a new declaration. If there is a previous
7024  // declaration of the same entity, the two will be linked via
7025  // PrevDecl.
7026  TagDecl *New;
7027
7028  bool IsForwardReference = false;
7029  if (Kind == TTK_Enum) {
7030    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7031    // enum X { A, B, C } D;    D should chain to X.
7032    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7033                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7034                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7035    // If this is an undefined enum, warn.
7036    if (TUK != TUK_Definition && !Invalid) {
7037      TagDecl *Def;
7038      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7039        // C++0x: 7.2p2: opaque-enum-declaration.
7040        // Conflicts are diagnosed above. Do nothing.
7041      }
7042      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7043        Diag(Loc, diag::ext_forward_ref_enum_def)
7044          << New;
7045        Diag(Def->getLocation(), diag::note_previous_definition);
7046      } else {
7047        unsigned DiagID = diag::ext_forward_ref_enum;
7048        if (getLangOptions().Microsoft)
7049          DiagID = diag::ext_ms_forward_ref_enum;
7050        else if (getLangOptions().CPlusPlus)
7051          DiagID = diag::err_forward_ref_enum;
7052        Diag(Loc, DiagID);
7053
7054        // If this is a forward-declared reference to an enumeration, make a
7055        // note of it; we won't actually be introducing the declaration into
7056        // the declaration context.
7057        if (TUK == TUK_Reference)
7058          IsForwardReference = true;
7059      }
7060    }
7061
7062    if (EnumUnderlying) {
7063      EnumDecl *ED = cast<EnumDecl>(New);
7064      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7065        ED->setIntegerTypeSourceInfo(TI);
7066      else
7067        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7068      ED->setPromotionType(ED->getIntegerType());
7069    }
7070
7071  } else {
7072    // struct/union/class
7073
7074    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7075    // struct X { int A; } D;    D should chain to X.
7076    if (getLangOptions().CPlusPlus) {
7077      // FIXME: Look for a way to use RecordDecl for simple structs.
7078      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7079                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7080
7081      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7082        StdBadAlloc = cast<CXXRecordDecl>(New);
7083    } else
7084      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7085                               cast_or_null<RecordDecl>(PrevDecl));
7086  }
7087
7088  // Maybe add qualifier info.
7089  if (SS.isNotEmpty()) {
7090    if (SS.isSet()) {
7091      New->setQualifierInfo(SS.getWithLocInContext(Context));
7092      if (TemplateParameterLists.size() > 0) {
7093        New->setTemplateParameterListsInfo(Context,
7094                                           TemplateParameterLists.size(),
7095                    (TemplateParameterList**) TemplateParameterLists.release());
7096      }
7097    }
7098    else
7099      Invalid = true;
7100  }
7101
7102  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7103    // Add alignment attributes if necessary; these attributes are checked when
7104    // the ASTContext lays out the structure.
7105    //
7106    // It is important for implementing the correct semantics that this
7107    // happen here (in act on tag decl). The #pragma pack stack is
7108    // maintained as a result of parser callbacks which can occur at
7109    // many points during the parsing of a struct declaration (because
7110    // the #pragma tokens are effectively skipped over during the
7111    // parsing of the struct).
7112    AddAlignmentAttributesForRecord(RD);
7113
7114    AddMsStructLayoutForRecord(RD);
7115  }
7116
7117  // If this is a specialization of a member class (of a class template),
7118  // check the specialization.
7119  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7120    Invalid = true;
7121
7122  if (Invalid)
7123    New->setInvalidDecl();
7124
7125  if (Attr)
7126    ProcessDeclAttributeList(S, New, Attr);
7127
7128  // If we're declaring or defining a tag in function prototype scope
7129  // in C, note that this type can only be used within the function.
7130  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7131    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7132
7133  // Set the lexical context. If the tag has a C++ scope specifier, the
7134  // lexical context will be different from the semantic context.
7135  New->setLexicalDeclContext(CurContext);
7136
7137  // Mark this as a friend decl if applicable.
7138  if (TUK == TUK_Friend)
7139    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
7140
7141  // Set the access specifier.
7142  if (!Invalid && SearchDC->isRecord())
7143    SetMemberAccessSpecifier(New, PrevDecl, AS);
7144
7145  if (TUK == TUK_Definition)
7146    New->startDefinition();
7147
7148  // If this has an identifier, add it to the scope stack.
7149  if (TUK == TUK_Friend) {
7150    // We might be replacing an existing declaration in the lookup tables;
7151    // if so, borrow its access specifier.
7152    if (PrevDecl)
7153      New->setAccess(PrevDecl->getAccess());
7154
7155    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7156    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7157    if (Name) // can be null along some error paths
7158      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7159        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7160  } else if (Name) {
7161    S = getNonFieldDeclScope(S);
7162    PushOnScopeChains(New, S, !IsForwardReference);
7163    if (IsForwardReference)
7164      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7165
7166  } else {
7167    CurContext->addDecl(New);
7168  }
7169
7170  // If this is the C FILE type, notify the AST context.
7171  if (IdentifierInfo *II = New->getIdentifier())
7172    if (!New->isInvalidDecl() &&
7173        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7174        II->isStr("FILE"))
7175      Context.setFILEDecl(New);
7176
7177  OwnedDecl = true;
7178  return New;
7179}
7180
7181void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7182  AdjustDeclIfTemplate(TagD);
7183  TagDecl *Tag = cast<TagDecl>(TagD);
7184
7185  // Enter the tag context.
7186  PushDeclContext(S, Tag);
7187}
7188
7189void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7190                                           SourceLocation FinalLoc,
7191                                           SourceLocation LBraceLoc) {
7192  AdjustDeclIfTemplate(TagD);
7193  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7194
7195  FieldCollector->StartClass();
7196
7197  if (!Record->getIdentifier())
7198    return;
7199
7200  if (FinalLoc.isValid())
7201    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7202
7203  // C++ [class]p2:
7204  //   [...] The class-name is also inserted into the scope of the
7205  //   class itself; this is known as the injected-class-name. For
7206  //   purposes of access checking, the injected-class-name is treated
7207  //   as if it were a public member name.
7208  CXXRecordDecl *InjectedClassName
7209    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7210                            Record->getLocStart(), Record->getLocation(),
7211                            Record->getIdentifier(),
7212                            /*PrevDecl=*/0,
7213                            /*DelayTypeCreation=*/true);
7214  Context.getTypeDeclType(InjectedClassName, Record);
7215  InjectedClassName->setImplicit();
7216  InjectedClassName->setAccess(AS_public);
7217  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7218      InjectedClassName->setDescribedClassTemplate(Template);
7219  PushOnScopeChains(InjectedClassName, S);
7220  assert(InjectedClassName->isInjectedClassName() &&
7221         "Broken injected-class-name");
7222}
7223
7224void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7225                                    SourceLocation RBraceLoc) {
7226  AdjustDeclIfTemplate(TagD);
7227  TagDecl *Tag = cast<TagDecl>(TagD);
7228  Tag->setRBraceLoc(RBraceLoc);
7229
7230  if (isa<CXXRecordDecl>(Tag))
7231    FieldCollector->FinishClass();
7232
7233  // Exit this scope of this tag's definition.
7234  PopDeclContext();
7235
7236  // Notify the consumer that we've defined a tag.
7237  Consumer.HandleTagDeclDefinition(Tag);
7238}
7239
7240void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7241  AdjustDeclIfTemplate(TagD);
7242  TagDecl *Tag = cast<TagDecl>(TagD);
7243  Tag->setInvalidDecl();
7244
7245  // We're undoing ActOnTagStartDefinition here, not
7246  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7247  // the FieldCollector.
7248
7249  PopDeclContext();
7250}
7251
7252// Note that FieldName may be null for anonymous bitfields.
7253bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7254                          QualType FieldTy, const Expr *BitWidth,
7255                          bool *ZeroWidth) {
7256  // Default to true; that shouldn't confuse checks for emptiness
7257  if (ZeroWidth)
7258    *ZeroWidth = true;
7259
7260  // C99 6.7.2.1p4 - verify the field type.
7261  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7262  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7263    // Handle incomplete types with specific error.
7264    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7265      return true;
7266    if (FieldName)
7267      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7268        << FieldName << FieldTy << BitWidth->getSourceRange();
7269    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7270      << FieldTy << BitWidth->getSourceRange();
7271  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7272                                             UPPC_BitFieldWidth))
7273    return true;
7274
7275  // If the bit-width is type- or value-dependent, don't try to check
7276  // it now.
7277  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7278    return false;
7279
7280  llvm::APSInt Value;
7281  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7282    return true;
7283
7284  if (Value != 0 && ZeroWidth)
7285    *ZeroWidth = false;
7286
7287  // Zero-width bitfield is ok for anonymous field.
7288  if (Value == 0 && FieldName)
7289    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7290
7291  if (Value.isSigned() && Value.isNegative()) {
7292    if (FieldName)
7293      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7294               << FieldName << Value.toString(10);
7295    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7296      << Value.toString(10);
7297  }
7298
7299  if (!FieldTy->isDependentType()) {
7300    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7301    if (Value.getZExtValue() > TypeSize) {
7302      if (!getLangOptions().CPlusPlus) {
7303        if (FieldName)
7304          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7305            << FieldName << (unsigned)Value.getZExtValue()
7306            << (unsigned)TypeSize;
7307
7308        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7309          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7310      }
7311
7312      if (FieldName)
7313        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7314          << FieldName << (unsigned)Value.getZExtValue()
7315          << (unsigned)TypeSize;
7316      else
7317        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7318          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7319    }
7320  }
7321
7322  return false;
7323}
7324
7325/// ActOnField - Each field of a struct/union/class is passed into this in order
7326/// to create a FieldDecl object for it.
7327Decl *Sema::ActOnField(Scope *S, Decl *TagD,
7328                                 SourceLocation DeclStart,
7329                                 Declarator &D, ExprTy *BitfieldWidth) {
7330  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7331                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7332                               AS_public);
7333  return Res;
7334}
7335
7336/// HandleField - Analyze a field of a C struct or a C++ data member.
7337///
7338FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7339                             SourceLocation DeclStart,
7340                             Declarator &D, Expr *BitWidth,
7341                             AccessSpecifier AS) {
7342  IdentifierInfo *II = D.getIdentifier();
7343  SourceLocation Loc = DeclStart;
7344  if (II) Loc = D.getIdentifierLoc();
7345
7346  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7347  QualType T = TInfo->getType();
7348  if (getLangOptions().CPlusPlus) {
7349    CheckExtraCXXDefaultArguments(D);
7350
7351    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7352                                        UPPC_DataMemberType)) {
7353      D.setInvalidType();
7354      T = Context.IntTy;
7355      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7356    }
7357  }
7358
7359  DiagnoseFunctionSpecifiers(D);
7360
7361  if (D.getDeclSpec().isThreadSpecified())
7362    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7363
7364  // Check to see if this name was declared as a member previously
7365  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7366  LookupName(Previous, S);
7367  assert((Previous.empty() || Previous.isOverloadedResult() ||
7368          Previous.isSingleResult())
7369    && "Lookup of member name should be either overloaded, single or null");
7370
7371  // If the name is overloaded then get any declaration else get the single result
7372  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7373    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7374
7375  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7376    // Maybe we will complain about the shadowed template parameter.
7377    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7378    // Just pretend that we didn't see the previous declaration.
7379    PrevDecl = 0;
7380  }
7381
7382  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7383    PrevDecl = 0;
7384
7385  bool Mutable
7386    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7387  SourceLocation TSSL = D.getSourceRange().getBegin();
7388  FieldDecl *NewFD
7389    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
7390                     AS, PrevDecl, &D);
7391
7392  if (NewFD->isInvalidDecl())
7393    Record->setInvalidDecl();
7394
7395  if (NewFD->isInvalidDecl() && PrevDecl) {
7396    // Don't introduce NewFD into scope; there's already something
7397    // with the same name in the same scope.
7398  } else if (II) {
7399    PushOnScopeChains(NewFD, S);
7400  } else
7401    Record->addDecl(NewFD);
7402
7403  return NewFD;
7404}
7405
7406/// \brief Build a new FieldDecl and check its well-formedness.
7407///
7408/// This routine builds a new FieldDecl given the fields name, type,
7409/// record, etc. \p PrevDecl should refer to any previous declaration
7410/// with the same name and in the same scope as the field to be
7411/// created.
7412///
7413/// \returns a new FieldDecl.
7414///
7415/// \todo The Declarator argument is a hack. It will be removed once
7416FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7417                                TypeSourceInfo *TInfo,
7418                                RecordDecl *Record, SourceLocation Loc,
7419                                bool Mutable, Expr *BitWidth,
7420                                SourceLocation TSSL,
7421                                AccessSpecifier AS, NamedDecl *PrevDecl,
7422                                Declarator *D) {
7423  IdentifierInfo *II = Name.getAsIdentifierInfo();
7424  bool InvalidDecl = false;
7425  if (D) InvalidDecl = D->isInvalidType();
7426
7427  // If we receive a broken type, recover by assuming 'int' and
7428  // marking this declaration as invalid.
7429  if (T.isNull()) {
7430    InvalidDecl = true;
7431    T = Context.IntTy;
7432  }
7433
7434  QualType EltTy = Context.getBaseElementType(T);
7435  if (!EltTy->isDependentType() &&
7436      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7437    // Fields of incomplete type force their record to be invalid.
7438    Record->setInvalidDecl();
7439    InvalidDecl = true;
7440  }
7441
7442  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7443  // than a variably modified type.
7444  if (!InvalidDecl && T->isVariablyModifiedType()) {
7445    bool SizeIsNegative;
7446    llvm::APSInt Oversized;
7447    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7448                                                           SizeIsNegative,
7449                                                           Oversized);
7450    if (!FixedTy.isNull()) {
7451      Diag(Loc, diag::warn_illegal_constant_array_size);
7452      T = FixedTy;
7453    } else {
7454      if (SizeIsNegative)
7455        Diag(Loc, diag::err_typecheck_negative_array_size);
7456      else if (Oversized.getBoolValue())
7457        Diag(Loc, diag::err_array_too_large)
7458          << Oversized.toString(10);
7459      else
7460        Diag(Loc, diag::err_typecheck_field_variable_size);
7461      InvalidDecl = true;
7462    }
7463  }
7464
7465  // Fields can not have abstract class types
7466  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7467                                             diag::err_abstract_type_in_decl,
7468                                             AbstractFieldType))
7469    InvalidDecl = true;
7470
7471  bool ZeroWidth = false;
7472  // If this is declared as a bit-field, check the bit-field.
7473  if (!InvalidDecl && BitWidth &&
7474      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7475    InvalidDecl = true;
7476    BitWidth = 0;
7477    ZeroWidth = false;
7478  }
7479
7480  // Check that 'mutable' is consistent with the type of the declaration.
7481  if (!InvalidDecl && Mutable) {
7482    unsigned DiagID = 0;
7483    if (T->isReferenceType())
7484      DiagID = diag::err_mutable_reference;
7485    else if (T.isConstQualified())
7486      DiagID = diag::err_mutable_const;
7487
7488    if (DiagID) {
7489      SourceLocation ErrLoc = Loc;
7490      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7491        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7492      Diag(ErrLoc, DiagID);
7493      Mutable = false;
7494      InvalidDecl = true;
7495    }
7496  }
7497
7498  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7499                                       BitWidth, Mutable);
7500  if (InvalidDecl)
7501    NewFD->setInvalidDecl();
7502
7503  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7504    Diag(Loc, diag::err_duplicate_member) << II;
7505    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7506    NewFD->setInvalidDecl();
7507  }
7508
7509  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7510    if (Record->isUnion()) {
7511      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7512        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7513        if (RDecl->getDefinition()) {
7514          // C++ [class.union]p1: An object of a class with a non-trivial
7515          // constructor, a non-trivial copy constructor, a non-trivial
7516          // destructor, or a non-trivial copy assignment operator
7517          // cannot be a member of a union, nor can an array of such
7518          // objects.
7519          // TODO: C++0x alters this restriction significantly.
7520          if (CheckNontrivialField(NewFD))
7521            NewFD->setInvalidDecl();
7522        }
7523      }
7524
7525      // C++ [class.union]p1: If a union contains a member of reference type,
7526      // the program is ill-formed.
7527      if (EltTy->isReferenceType()) {
7528        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7529          << NewFD->getDeclName() << EltTy;
7530        NewFD->setInvalidDecl();
7531      }
7532    }
7533  }
7534
7535  // FIXME: We need to pass in the attributes given an AST
7536  // representation, not a parser representation.
7537  if (D)
7538    // FIXME: What to pass instead of TUScope?
7539    ProcessDeclAttributes(TUScope, NewFD, *D);
7540
7541  if (T.isObjCGCWeak())
7542    Diag(Loc, diag::warn_attribute_weak_on_field);
7543
7544  NewFD->setAccess(AS);
7545  return NewFD;
7546}
7547
7548bool Sema::CheckNontrivialField(FieldDecl *FD) {
7549  assert(FD);
7550  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7551
7552  if (FD->isInvalidDecl())
7553    return true;
7554
7555  QualType EltTy = Context.getBaseElementType(FD->getType());
7556  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7557    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7558    if (RDecl->getDefinition()) {
7559      // We check for copy constructors before constructors
7560      // because otherwise we'll never get complaints about
7561      // copy constructors.
7562
7563      CXXSpecialMember member = CXXInvalid;
7564      if (!RDecl->hasTrivialCopyConstructor())
7565        member = CXXCopyConstructor;
7566      else if (!RDecl->hasTrivialConstructor())
7567        member = CXXConstructor;
7568      else if (!RDecl->hasTrivialCopyAssignment())
7569        member = CXXCopyAssignment;
7570      else if (!RDecl->hasTrivialDestructor())
7571        member = CXXDestructor;
7572
7573      if (member != CXXInvalid) {
7574        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7575              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7576        DiagnoseNontrivial(RT, member);
7577        return true;
7578      }
7579    }
7580  }
7581
7582  return false;
7583}
7584
7585/// DiagnoseNontrivial - Given that a class has a non-trivial
7586/// special member, figure out why.
7587void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7588  QualType QT(T, 0U);
7589  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7590
7591  // Check whether the member was user-declared.
7592  switch (member) {
7593  case CXXInvalid:
7594    break;
7595
7596  case CXXConstructor:
7597    if (RD->hasUserDeclaredConstructor()) {
7598      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7599      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7600        const FunctionDecl *body = 0;
7601        ci->hasBody(body);
7602        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7603          SourceLocation CtorLoc = ci->getLocation();
7604          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7605          return;
7606        }
7607      }
7608
7609      assert(0 && "found no user-declared constructors");
7610      return;
7611    }
7612    break;
7613
7614  case CXXCopyConstructor:
7615    if (RD->hasUserDeclaredCopyConstructor()) {
7616      SourceLocation CtorLoc =
7617        RD->getCopyConstructor(Context, 0)->getLocation();
7618      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7619      return;
7620    }
7621    break;
7622
7623  case CXXCopyAssignment:
7624    if (RD->hasUserDeclaredCopyAssignment()) {
7625      // FIXME: this should use the location of the copy
7626      // assignment, not the type.
7627      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7628      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7629      return;
7630    }
7631    break;
7632
7633  case CXXDestructor:
7634    if (RD->hasUserDeclaredDestructor()) {
7635      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7636      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7637      return;
7638    }
7639    break;
7640  }
7641
7642  typedef CXXRecordDecl::base_class_iterator base_iter;
7643
7644  // Virtual bases and members inhibit trivial copying/construction,
7645  // but not trivial destruction.
7646  if (member != CXXDestructor) {
7647    // Check for virtual bases.  vbases includes indirect virtual bases,
7648    // so we just iterate through the direct bases.
7649    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7650      if (bi->isVirtual()) {
7651        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7652        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7653        return;
7654      }
7655
7656    // Check for virtual methods.
7657    typedef CXXRecordDecl::method_iterator meth_iter;
7658    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
7659         ++mi) {
7660      if (mi->isVirtual()) {
7661        SourceLocation MLoc = mi->getSourceRange().getBegin();
7662        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
7663        return;
7664      }
7665    }
7666  }
7667
7668  bool (CXXRecordDecl::*hasTrivial)() const;
7669  switch (member) {
7670  case CXXConstructor:
7671    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
7672  case CXXCopyConstructor:
7673    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
7674  case CXXCopyAssignment:
7675    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
7676  case CXXDestructor:
7677    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
7678  default:
7679    assert(0 && "unexpected special member"); return;
7680  }
7681
7682  // Check for nontrivial bases (and recurse).
7683  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
7684    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
7685    assert(BaseRT && "Don't know how to handle dependent bases");
7686    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
7687    if (!(BaseRecTy->*hasTrivial)()) {
7688      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7689      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
7690      DiagnoseNontrivial(BaseRT, member);
7691      return;
7692    }
7693  }
7694
7695  // Check for nontrivial members (and recurse).
7696  typedef RecordDecl::field_iterator field_iter;
7697  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
7698       ++fi) {
7699    QualType EltTy = Context.getBaseElementType((*fi)->getType());
7700    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
7701      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
7702
7703      if (!(EltRD->*hasTrivial)()) {
7704        SourceLocation FLoc = (*fi)->getLocation();
7705        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
7706        DiagnoseNontrivial(EltRT, member);
7707        return;
7708      }
7709    }
7710  }
7711
7712  assert(0 && "found no explanation for non-trivial member");
7713}
7714
7715/// TranslateIvarVisibility - Translate visibility from a token ID to an
7716///  AST enum value.
7717static ObjCIvarDecl::AccessControl
7718TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
7719  switch (ivarVisibility) {
7720  default: assert(0 && "Unknown visitibility kind");
7721  case tok::objc_private: return ObjCIvarDecl::Private;
7722  case tok::objc_public: return ObjCIvarDecl::Public;
7723  case tok::objc_protected: return ObjCIvarDecl::Protected;
7724  case tok::objc_package: return ObjCIvarDecl::Package;
7725  }
7726}
7727
7728/// ActOnIvar - Each ivar field of an objective-c class is passed into this
7729/// in order to create an IvarDecl object for it.
7730Decl *Sema::ActOnIvar(Scope *S,
7731                                SourceLocation DeclStart,
7732                                Decl *IntfDecl,
7733                                Declarator &D, ExprTy *BitfieldWidth,
7734                                tok::ObjCKeywordKind Visibility) {
7735
7736  IdentifierInfo *II = D.getIdentifier();
7737  Expr *BitWidth = (Expr*)BitfieldWidth;
7738  SourceLocation Loc = DeclStart;
7739  if (II) Loc = D.getIdentifierLoc();
7740
7741  // FIXME: Unnamed fields can be handled in various different ways, for
7742  // example, unnamed unions inject all members into the struct namespace!
7743
7744  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7745  QualType T = TInfo->getType();
7746
7747  if (BitWidth) {
7748    // 6.7.2.1p3, 6.7.2.1p4
7749    if (VerifyBitField(Loc, II, T, BitWidth)) {
7750      D.setInvalidType();
7751      BitWidth = 0;
7752    }
7753  } else {
7754    // Not a bitfield.
7755
7756    // validate II.
7757
7758  }
7759  if (T->isReferenceType()) {
7760    Diag(Loc, diag::err_ivar_reference_type);
7761    D.setInvalidType();
7762  }
7763  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7764  // than a variably modified type.
7765  else if (T->isVariablyModifiedType()) {
7766    Diag(Loc, diag::err_typecheck_ivar_variable_size);
7767    D.setInvalidType();
7768  }
7769
7770  // Get the visibility (access control) for this ivar.
7771  ObjCIvarDecl::AccessControl ac =
7772    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
7773                                        : ObjCIvarDecl::None;
7774  // Must set ivar's DeclContext to its enclosing interface.
7775  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
7776  ObjCContainerDecl *EnclosingContext;
7777  if (ObjCImplementationDecl *IMPDecl =
7778      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
7779    if (!LangOpts.ObjCNonFragileABI2) {
7780    // Case of ivar declared in an implementation. Context is that of its class.
7781      EnclosingContext = IMPDecl->getClassInterface();
7782      assert(EnclosingContext && "Implementation has no class interface!");
7783    }
7784    else
7785      EnclosingContext = EnclosingDecl;
7786  } else {
7787    if (ObjCCategoryDecl *CDecl =
7788        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7789      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
7790        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
7791        return 0;
7792      }
7793    }
7794    EnclosingContext = EnclosingDecl;
7795  }
7796
7797  // Construct the decl.
7798  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
7799                                             DeclStart, Loc, II, T,
7800                                             TInfo, ac, (Expr *)BitfieldWidth);
7801
7802  if (II) {
7803    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
7804                                           ForRedeclaration);
7805    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
7806        && !isa<TagDecl>(PrevDecl)) {
7807      Diag(Loc, diag::err_duplicate_member) << II;
7808      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7809      NewID->setInvalidDecl();
7810    }
7811  }
7812
7813  // Process attributes attached to the ivar.
7814  ProcessDeclAttributes(S, NewID, D);
7815
7816  if (D.isInvalidType())
7817    NewID->setInvalidDecl();
7818
7819  if (II) {
7820    // FIXME: When interfaces are DeclContexts, we'll need to add
7821    // these to the interface.
7822    S->AddDecl(NewID);
7823    IdResolver.AddDecl(NewID);
7824  }
7825
7826  return NewID;
7827}
7828
7829/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
7830/// class and class extensions. For every class @interface and class
7831/// extension @interface, if the last ivar is a bitfield of any type,
7832/// then add an implicit `char :0` ivar to the end of that interface.
7833void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
7834                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
7835  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
7836    return;
7837
7838  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
7839  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
7840
7841  if (!Ivar->isBitField())
7842    return;
7843  uint64_t BitFieldSize =
7844    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
7845  if (BitFieldSize == 0)
7846    return;
7847  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
7848  if (!ID) {
7849    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
7850      if (!CD->IsClassExtension())
7851        return;
7852    }
7853    // No need to add this to end of @implementation.
7854    else
7855      return;
7856  }
7857  // All conditions are met. Add a new bitfield to the tail end of ivars.
7858  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
7859  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
7860
7861  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
7862                              DeclLoc, DeclLoc, 0,
7863                              Context.CharTy,
7864                              Context.CreateTypeSourceInfo(Context.CharTy),
7865                              ObjCIvarDecl::Private, BW,
7866                              true);
7867  AllIvarDecls.push_back(Ivar);
7868}
7869
7870void Sema::ActOnFields(Scope* S,
7871                       SourceLocation RecLoc, Decl *EnclosingDecl,
7872                       Decl **Fields, unsigned NumFields,
7873                       SourceLocation LBrac, SourceLocation RBrac,
7874                       AttributeList *Attr) {
7875  assert(EnclosingDecl && "missing record or interface decl");
7876
7877  // If the decl this is being inserted into is invalid, then it may be a
7878  // redeclaration or some other bogus case.  Don't try to add fields to it.
7879  if (EnclosingDecl->isInvalidDecl()) {
7880    // FIXME: Deallocate fields?
7881    return;
7882  }
7883
7884
7885  // Verify that all the fields are okay.
7886  unsigned NumNamedMembers = 0;
7887  llvm::SmallVector<FieldDecl*, 32> RecFields;
7888
7889  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
7890  for (unsigned i = 0; i != NumFields; ++i) {
7891    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
7892
7893    // Get the type for the field.
7894    const Type *FDTy = FD->getType().getTypePtr();
7895
7896    if (!FD->isAnonymousStructOrUnion()) {
7897      // Remember all fields written by the user.
7898      RecFields.push_back(FD);
7899    }
7900
7901    // If the field is already invalid for some reason, don't emit more
7902    // diagnostics about it.
7903    if (FD->isInvalidDecl()) {
7904      EnclosingDecl->setInvalidDecl();
7905      continue;
7906    }
7907
7908    // C99 6.7.2.1p2:
7909    //   A structure or union shall not contain a member with
7910    //   incomplete or function type (hence, a structure shall not
7911    //   contain an instance of itself, but may contain a pointer to
7912    //   an instance of itself), except that the last member of a
7913    //   structure with more than one named member may have incomplete
7914    //   array type; such a structure (and any union containing,
7915    //   possibly recursively, a member that is such a structure)
7916    //   shall not be a member of a structure or an element of an
7917    //   array.
7918    if (FDTy->isFunctionType()) {
7919      // Field declared as a function.
7920      Diag(FD->getLocation(), diag::err_field_declared_as_function)
7921        << FD->getDeclName();
7922      FD->setInvalidDecl();
7923      EnclosingDecl->setInvalidDecl();
7924      continue;
7925    } else if (FDTy->isIncompleteArrayType() && Record &&
7926               ((i == NumFields - 1 && !Record->isUnion()) ||
7927                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
7928                 (i == NumFields - 1 || Record->isUnion())))) {
7929      // Flexible array member.
7930      // Microsoft and g++ is more permissive regarding flexible array.
7931      // It will accept flexible array in union and also
7932      // as the sole element of a struct/class.
7933      if (getLangOptions().Microsoft) {
7934        if (Record->isUnion())
7935          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
7936            << FD->getDeclName();
7937        else if (NumFields == 1)
7938          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
7939            << FD->getDeclName() << Record->getTagKind();
7940      } else if (getLangOptions().CPlusPlus) {
7941        if (Record->isUnion())
7942          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
7943            << FD->getDeclName();
7944        else if (NumFields == 1)
7945          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
7946            << FD->getDeclName() << Record->getTagKind();
7947      } else if (NumNamedMembers < 1) {
7948        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
7949          << FD->getDeclName();
7950        FD->setInvalidDecl();
7951        EnclosingDecl->setInvalidDecl();
7952        continue;
7953      }
7954      if (!FD->getType()->isDependentType() &&
7955          !Context.getBaseElementType(FD->getType())->isPODType()) {
7956        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
7957          << FD->getDeclName() << FD->getType();
7958        FD->setInvalidDecl();
7959        EnclosingDecl->setInvalidDecl();
7960        continue;
7961      }
7962      // Okay, we have a legal flexible array member at the end of the struct.
7963      if (Record)
7964        Record->setHasFlexibleArrayMember(true);
7965    } else if (!FDTy->isDependentType() &&
7966               RequireCompleteType(FD->getLocation(), FD->getType(),
7967                                   diag::err_field_incomplete)) {
7968      // Incomplete type
7969      FD->setInvalidDecl();
7970      EnclosingDecl->setInvalidDecl();
7971      continue;
7972    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
7973      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
7974        // If this is a member of a union, then entire union becomes "flexible".
7975        if (Record && Record->isUnion()) {
7976          Record->setHasFlexibleArrayMember(true);
7977        } else {
7978          // If this is a struct/class and this is not the last element, reject
7979          // it.  Note that GCC supports variable sized arrays in the middle of
7980          // structures.
7981          if (i != NumFields-1)
7982            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
7983              << FD->getDeclName() << FD->getType();
7984          else {
7985            // We support flexible arrays at the end of structs in
7986            // other structs as an extension.
7987            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
7988              << FD->getDeclName();
7989            if (Record)
7990              Record->setHasFlexibleArrayMember(true);
7991          }
7992        }
7993      }
7994      if (Record && FDTTy->getDecl()->hasObjectMember())
7995        Record->setHasObjectMember(true);
7996    } else if (FDTy->isObjCObjectType()) {
7997      /// A field cannot be an Objective-c object
7998      Diag(FD->getLocation(), diag::err_statically_allocated_object);
7999      FD->setInvalidDecl();
8000      EnclosingDecl->setInvalidDecl();
8001      continue;
8002    } else if (getLangOptions().ObjC1 &&
8003               getLangOptions().getGCMode() != LangOptions::NonGC &&
8004               Record &&
8005               (FD->getType()->isObjCObjectPointerType() ||
8006                FD->getType().isObjCGCStrong()))
8007      Record->setHasObjectMember(true);
8008    else if (Context.getAsArrayType(FD->getType())) {
8009      QualType BaseType = Context.getBaseElementType(FD->getType());
8010      if (Record && BaseType->isRecordType() &&
8011          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8012        Record->setHasObjectMember(true);
8013    }
8014    // Keep track of the number of named members.
8015    if (FD->getIdentifier())
8016      ++NumNamedMembers;
8017  }
8018
8019  // Okay, we successfully defined 'Record'.
8020  if (Record) {
8021    bool Completed = false;
8022    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8023      if (!CXXRecord->isInvalidDecl()) {
8024        // Set access bits correctly on the directly-declared conversions.
8025        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8026        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8027             I != E; ++I)
8028          Convs->setAccess(I, (*I)->getAccess());
8029
8030        if (!CXXRecord->isDependentType()) {
8031          // Add any implicitly-declared members to this class.
8032          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8033
8034          // If we have virtual base classes, we may end up finding multiple
8035          // final overriders for a given virtual function. Check for this
8036          // problem now.
8037          if (CXXRecord->getNumVBases()) {
8038            CXXFinalOverriderMap FinalOverriders;
8039            CXXRecord->getFinalOverriders(FinalOverriders);
8040
8041            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8042                                             MEnd = FinalOverriders.end();
8043                 M != MEnd; ++M) {
8044              for (OverridingMethods::iterator SO = M->second.begin(),
8045                                            SOEnd = M->second.end();
8046                   SO != SOEnd; ++SO) {
8047                assert(SO->second.size() > 0 &&
8048                       "Virtual function without overridding functions?");
8049                if (SO->second.size() == 1)
8050                  continue;
8051
8052                // C++ [class.virtual]p2:
8053                //   In a derived class, if a virtual member function of a base
8054                //   class subobject has more than one final overrider the
8055                //   program is ill-formed.
8056                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8057                  << (NamedDecl *)M->first << Record;
8058                Diag(M->first->getLocation(),
8059                     diag::note_overridden_virtual_function);
8060                for (OverridingMethods::overriding_iterator
8061                          OM = SO->second.begin(),
8062                       OMEnd = SO->second.end();
8063                     OM != OMEnd; ++OM)
8064                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8065                    << (NamedDecl *)M->first << OM->Method->getParent();
8066
8067                Record->setInvalidDecl();
8068              }
8069            }
8070            CXXRecord->completeDefinition(&FinalOverriders);
8071            Completed = true;
8072          }
8073        }
8074      }
8075    }
8076
8077    if (!Completed)
8078      Record->completeDefinition();
8079  } else {
8080    ObjCIvarDecl **ClsFields =
8081      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8082    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8083      ID->setLocEnd(RBrac);
8084      // Add ivar's to class's DeclContext.
8085      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8086        ClsFields[i]->setLexicalDeclContext(ID);
8087        ID->addDecl(ClsFields[i]);
8088      }
8089      // Must enforce the rule that ivars in the base classes may not be
8090      // duplicates.
8091      if (ID->getSuperClass())
8092        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8093    } else if (ObjCImplementationDecl *IMPDecl =
8094                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8095      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8096      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8097        // Ivar declared in @implementation never belongs to the implementation.
8098        // Only it is in implementation's lexical context.
8099        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8100      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8101    } else if (ObjCCategoryDecl *CDecl =
8102                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8103      // case of ivars in class extension; all other cases have been
8104      // reported as errors elsewhere.
8105      // FIXME. Class extension does not have a LocEnd field.
8106      // CDecl->setLocEnd(RBrac);
8107      // Add ivar's to class extension's DeclContext.
8108      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8109        ClsFields[i]->setLexicalDeclContext(CDecl);
8110        CDecl->addDecl(ClsFields[i]);
8111      }
8112    }
8113  }
8114
8115  if (Attr)
8116    ProcessDeclAttributeList(S, Record, Attr);
8117
8118  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8119  // set the visibility of this record.
8120  if (Record && !Record->getDeclContext()->isRecord())
8121    AddPushedVisibilityAttribute(Record);
8122}
8123
8124/// \brief Determine whether the given integral value is representable within
8125/// the given type T.
8126static bool isRepresentableIntegerValue(ASTContext &Context,
8127                                        llvm::APSInt &Value,
8128                                        QualType T) {
8129  assert(T->isIntegralType(Context) && "Integral type required!");
8130  unsigned BitWidth = Context.getIntWidth(T);
8131
8132  if (Value.isUnsigned() || Value.isNonNegative()) {
8133    if (T->isSignedIntegerType())
8134      --BitWidth;
8135    return Value.getActiveBits() <= BitWidth;
8136  }
8137  return Value.getMinSignedBits() <= BitWidth;
8138}
8139
8140// \brief Given an integral type, return the next larger integral type
8141// (or a NULL type of no such type exists).
8142static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8143  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8144  // enum checking below.
8145  assert(T->isIntegralType(Context) && "Integral type required!");
8146  const unsigned NumTypes = 4;
8147  QualType SignedIntegralTypes[NumTypes] = {
8148    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8149  };
8150  QualType UnsignedIntegralTypes[NumTypes] = {
8151    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8152    Context.UnsignedLongLongTy
8153  };
8154
8155  unsigned BitWidth = Context.getTypeSize(T);
8156  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
8157                                            : UnsignedIntegralTypes;
8158  for (unsigned I = 0; I != NumTypes; ++I)
8159    if (Context.getTypeSize(Types[I]) > BitWidth)
8160      return Types[I];
8161
8162  return QualType();
8163}
8164
8165EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8166                                          EnumConstantDecl *LastEnumConst,
8167                                          SourceLocation IdLoc,
8168                                          IdentifierInfo *Id,
8169                                          Expr *Val) {
8170  unsigned IntWidth = Context.Target.getIntWidth();
8171  llvm::APSInt EnumVal(IntWidth);
8172  QualType EltTy;
8173
8174  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8175    Val = 0;
8176
8177  if (Val) {
8178    if (Enum->isDependentType() || Val->isTypeDependent())
8179      EltTy = Context.DependentTy;
8180    else {
8181      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8182      SourceLocation ExpLoc;
8183      if (!Val->isValueDependent() &&
8184          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8185        Val = 0;
8186      } else {
8187        if (!getLangOptions().CPlusPlus) {
8188          // C99 6.7.2.2p2:
8189          //   The expression that defines the value of an enumeration constant
8190          //   shall be an integer constant expression that has a value
8191          //   representable as an int.
8192
8193          // Complain if the value is not representable in an int.
8194          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8195            Diag(IdLoc, diag::ext_enum_value_not_int)
8196              << EnumVal.toString(10) << Val->getSourceRange()
8197              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8198          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8199            // Force the type of the expression to 'int'.
8200            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8201          }
8202        }
8203
8204        if (Enum->isFixed()) {
8205          EltTy = Enum->getIntegerType();
8206
8207          // C++0x [dcl.enum]p5:
8208          //   ... if the initializing value of an enumerator cannot be
8209          //   represented by the underlying type, the program is ill-formed.
8210          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8211            if (getLangOptions().Microsoft) {
8212              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8213              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8214            } else
8215              Diag(IdLoc, diag::err_enumerator_too_large)
8216                << EltTy;
8217          } else
8218            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8219        }
8220        else {
8221          // C++0x [dcl.enum]p5:
8222          //   If the underlying type is not fixed, the type of each enumerator
8223          //   is the type of its initializing value:
8224          //     - If an initializer is specified for an enumerator, the
8225          //       initializing value has the same type as the expression.
8226          EltTy = Val->getType();
8227        }
8228      }
8229    }
8230  }
8231
8232  if (!Val) {
8233    if (Enum->isDependentType())
8234      EltTy = Context.DependentTy;
8235    else if (!LastEnumConst) {
8236      // C++0x [dcl.enum]p5:
8237      //   If the underlying type is not fixed, the type of each enumerator
8238      //   is the type of its initializing value:
8239      //     - If no initializer is specified for the first enumerator, the
8240      //       initializing value has an unspecified integral type.
8241      //
8242      // GCC uses 'int' for its unspecified integral type, as does
8243      // C99 6.7.2.2p3.
8244      if (Enum->isFixed()) {
8245        EltTy = Enum->getIntegerType();
8246      }
8247      else {
8248        EltTy = Context.IntTy;
8249      }
8250    } else {
8251      // Assign the last value + 1.
8252      EnumVal = LastEnumConst->getInitVal();
8253      ++EnumVal;
8254      EltTy = LastEnumConst->getType();
8255
8256      // Check for overflow on increment.
8257      if (EnumVal < LastEnumConst->getInitVal()) {
8258        // C++0x [dcl.enum]p5:
8259        //   If the underlying type is not fixed, the type of each enumerator
8260        //   is the type of its initializing value:
8261        //
8262        //     - Otherwise the type of the initializing value is the same as
8263        //       the type of the initializing value of the preceding enumerator
8264        //       unless the incremented value is not representable in that type,
8265        //       in which case the type is an unspecified integral type
8266        //       sufficient to contain the incremented value. If no such type
8267        //       exists, the program is ill-formed.
8268        QualType T = getNextLargerIntegralType(Context, EltTy);
8269        if (T.isNull() || Enum->isFixed()) {
8270          // There is no integral type larger enough to represent this
8271          // value. Complain, then allow the value to wrap around.
8272          EnumVal = LastEnumConst->getInitVal();
8273          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8274          ++EnumVal;
8275          if (Enum->isFixed())
8276            // When the underlying type is fixed, this is ill-formed.
8277            Diag(IdLoc, diag::err_enumerator_wrapped)
8278              << EnumVal.toString(10)
8279              << EltTy;
8280          else
8281            Diag(IdLoc, diag::warn_enumerator_too_large)
8282              << EnumVal.toString(10);
8283        } else {
8284          EltTy = T;
8285        }
8286
8287        // Retrieve the last enumerator's value, extent that type to the
8288        // type that is supposed to be large enough to represent the incremented
8289        // value, then increment.
8290        EnumVal = LastEnumConst->getInitVal();
8291        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8292        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8293        ++EnumVal;
8294
8295        // If we're not in C++, diagnose the overflow of enumerator values,
8296        // which in C99 means that the enumerator value is not representable in
8297        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8298        // permits enumerator values that are representable in some larger
8299        // integral type.
8300        if (!getLangOptions().CPlusPlus && !T.isNull())
8301          Diag(IdLoc, diag::warn_enum_value_overflow);
8302      } else if (!getLangOptions().CPlusPlus &&
8303                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8304        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8305        Diag(IdLoc, diag::ext_enum_value_not_int)
8306          << EnumVal.toString(10) << 1;
8307      }
8308    }
8309  }
8310
8311  if (!EltTy->isDependentType()) {
8312    // Make the enumerator value match the signedness and size of the
8313    // enumerator's type.
8314    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8315    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
8316  }
8317
8318  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8319                                  Val, EnumVal);
8320}
8321
8322
8323Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8324                              SourceLocation IdLoc, IdentifierInfo *Id,
8325                              AttributeList *Attr,
8326                              SourceLocation EqualLoc, ExprTy *val) {
8327  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8328  EnumConstantDecl *LastEnumConst =
8329    cast_or_null<EnumConstantDecl>(lastEnumConst);
8330  Expr *Val = static_cast<Expr*>(val);
8331
8332  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8333  // we find one that is.
8334  S = getNonFieldDeclScope(S);
8335
8336  // Verify that there isn't already something declared with this name in this
8337  // scope.
8338  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8339                                         ForRedeclaration);
8340  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8341    // Maybe we will complain about the shadowed template parameter.
8342    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8343    // Just pretend that we didn't see the previous declaration.
8344    PrevDecl = 0;
8345  }
8346
8347  if (PrevDecl) {
8348    // When in C++, we may get a TagDecl with the same name; in this case the
8349    // enum constant will 'hide' the tag.
8350    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8351           "Received TagDecl when not in C++!");
8352    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8353      if (isa<EnumConstantDecl>(PrevDecl))
8354        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8355      else
8356        Diag(IdLoc, diag::err_redefinition) << Id;
8357      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8358      return 0;
8359    }
8360  }
8361
8362  // C++ [class.mem]p13:
8363  //   If T is the name of a class, then each of the following shall have a
8364  //   name different from T:
8365  //     - every enumerator of every member of class T that is an enumerated
8366  //       type
8367  if (CXXRecordDecl *Record
8368                      = dyn_cast<CXXRecordDecl>(
8369                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8370    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8371      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8372
8373  EnumConstantDecl *New =
8374    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8375
8376  if (New) {
8377    // Process attributes.
8378    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8379
8380    // Register this decl in the current scope stack.
8381    New->setAccess(TheEnumDecl->getAccess());
8382    PushOnScopeChains(New, S);
8383  }
8384
8385  return New;
8386}
8387
8388void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8389                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8390                         Decl **Elements, unsigned NumElements,
8391                         Scope *S, AttributeList *Attr) {
8392  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8393  QualType EnumType = Context.getTypeDeclType(Enum);
8394
8395  if (Attr)
8396    ProcessDeclAttributeList(S, Enum, Attr);
8397
8398  if (Enum->isDependentType()) {
8399    for (unsigned i = 0; i != NumElements; ++i) {
8400      EnumConstantDecl *ECD =
8401        cast_or_null<EnumConstantDecl>(Elements[i]);
8402      if (!ECD) continue;
8403
8404      ECD->setType(EnumType);
8405    }
8406
8407    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8408    return;
8409  }
8410
8411  // TODO: If the result value doesn't fit in an int, it must be a long or long
8412  // long value.  ISO C does not support this, but GCC does as an extension,
8413  // emit a warning.
8414  unsigned IntWidth = Context.Target.getIntWidth();
8415  unsigned CharWidth = Context.Target.getCharWidth();
8416  unsigned ShortWidth = Context.Target.getShortWidth();
8417
8418  // Verify that all the values are okay, compute the size of the values, and
8419  // reverse the list.
8420  unsigned NumNegativeBits = 0;
8421  unsigned NumPositiveBits = 0;
8422
8423  // Keep track of whether all elements have type int.
8424  bool AllElementsInt = true;
8425
8426  for (unsigned i = 0; i != NumElements; ++i) {
8427    EnumConstantDecl *ECD =
8428      cast_or_null<EnumConstantDecl>(Elements[i]);
8429    if (!ECD) continue;  // Already issued a diagnostic.
8430
8431    const llvm::APSInt &InitVal = ECD->getInitVal();
8432
8433    // Keep track of the size of positive and negative values.
8434    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8435      NumPositiveBits = std::max(NumPositiveBits,
8436                                 (unsigned)InitVal.getActiveBits());
8437    else
8438      NumNegativeBits = std::max(NumNegativeBits,
8439                                 (unsigned)InitVal.getMinSignedBits());
8440
8441    // Keep track of whether every enum element has type int (very commmon).
8442    if (AllElementsInt)
8443      AllElementsInt = ECD->getType() == Context.IntTy;
8444  }
8445
8446  // Figure out the type that should be used for this enum.
8447  QualType BestType;
8448  unsigned BestWidth;
8449
8450  // C++0x N3000 [conv.prom]p3:
8451  //   An rvalue of an unscoped enumeration type whose underlying
8452  //   type is not fixed can be converted to an rvalue of the first
8453  //   of the following types that can represent all the values of
8454  //   the enumeration: int, unsigned int, long int, unsigned long
8455  //   int, long long int, or unsigned long long int.
8456  // C99 6.4.4.3p2:
8457  //   An identifier declared as an enumeration constant has type int.
8458  // The C99 rule is modified by a gcc extension
8459  QualType BestPromotionType;
8460
8461  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8462  // -fshort-enums is the equivalent to specifying the packed attribute on all
8463  // enum definitions.
8464  if (LangOpts.ShortEnums)
8465    Packed = true;
8466
8467  if (Enum->isFixed()) {
8468    BestType = BestPromotionType = Enum->getIntegerType();
8469    // We don't need to set BestWidth, because BestType is going to be the type
8470    // of the enumerators, but we do anyway because otherwise some compilers
8471    // warn that it might be used uninitialized.
8472    BestWidth = CharWidth;
8473  }
8474  else if (NumNegativeBits) {
8475    // If there is a negative value, figure out the smallest integer type (of
8476    // int/long/longlong) that fits.
8477    // If it's packed, check also if it fits a char or a short.
8478    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8479      BestType = Context.SignedCharTy;
8480      BestWidth = CharWidth;
8481    } else if (Packed && NumNegativeBits <= ShortWidth &&
8482               NumPositiveBits < ShortWidth) {
8483      BestType = Context.ShortTy;
8484      BestWidth = ShortWidth;
8485    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8486      BestType = Context.IntTy;
8487      BestWidth = IntWidth;
8488    } else {
8489      BestWidth = Context.Target.getLongWidth();
8490
8491      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8492        BestType = Context.LongTy;
8493      } else {
8494        BestWidth = Context.Target.getLongLongWidth();
8495
8496        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8497          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8498        BestType = Context.LongLongTy;
8499      }
8500    }
8501    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8502  } else {
8503    // If there is no negative value, figure out the smallest type that fits
8504    // all of the enumerator values.
8505    // If it's packed, check also if it fits a char or a short.
8506    if (Packed && NumPositiveBits <= CharWidth) {
8507      BestType = Context.UnsignedCharTy;
8508      BestPromotionType = Context.IntTy;
8509      BestWidth = CharWidth;
8510    } else if (Packed && NumPositiveBits <= ShortWidth) {
8511      BestType = Context.UnsignedShortTy;
8512      BestPromotionType = Context.IntTy;
8513      BestWidth = ShortWidth;
8514    } else if (NumPositiveBits <= IntWidth) {
8515      BestType = Context.UnsignedIntTy;
8516      BestWidth = IntWidth;
8517      BestPromotionType
8518        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8519                           ? Context.UnsignedIntTy : Context.IntTy;
8520    } else if (NumPositiveBits <=
8521               (BestWidth = Context.Target.getLongWidth())) {
8522      BestType = Context.UnsignedLongTy;
8523      BestPromotionType
8524        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8525                           ? Context.UnsignedLongTy : Context.LongTy;
8526    } else {
8527      BestWidth = Context.Target.getLongLongWidth();
8528      assert(NumPositiveBits <= BestWidth &&
8529             "How could an initializer get larger than ULL?");
8530      BestType = Context.UnsignedLongLongTy;
8531      BestPromotionType
8532        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8533                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8534    }
8535  }
8536
8537  // Loop over all of the enumerator constants, changing their types to match
8538  // the type of the enum if needed.
8539  for (unsigned i = 0; i != NumElements; ++i) {
8540    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8541    if (!ECD) continue;  // Already issued a diagnostic.
8542
8543    // Standard C says the enumerators have int type, but we allow, as an
8544    // extension, the enumerators to be larger than int size.  If each
8545    // enumerator value fits in an int, type it as an int, otherwise type it the
8546    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8547    // that X has type 'int', not 'unsigned'.
8548
8549    // Determine whether the value fits into an int.
8550    llvm::APSInt InitVal = ECD->getInitVal();
8551
8552    // If it fits into an integer type, force it.  Otherwise force it to match
8553    // the enum decl type.
8554    QualType NewTy;
8555    unsigned NewWidth;
8556    bool NewSign;
8557    if (!getLangOptions().CPlusPlus &&
8558        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
8559      NewTy = Context.IntTy;
8560      NewWidth = IntWidth;
8561      NewSign = true;
8562    } else if (ECD->getType() == BestType) {
8563      // Already the right type!
8564      if (getLangOptions().CPlusPlus)
8565        // C++ [dcl.enum]p4: Following the closing brace of an
8566        // enum-specifier, each enumerator has the type of its
8567        // enumeration.
8568        ECD->setType(EnumType);
8569      continue;
8570    } else {
8571      NewTy = BestType;
8572      NewWidth = BestWidth;
8573      NewSign = BestType->isSignedIntegerType();
8574    }
8575
8576    // Adjust the APSInt value.
8577    InitVal = InitVal.extOrTrunc(NewWidth);
8578    InitVal.setIsSigned(NewSign);
8579    ECD->setInitVal(InitVal);
8580
8581    // Adjust the Expr initializer and type.
8582    if (ECD->getInitExpr() &&
8583	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
8584      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
8585                                                CK_IntegralCast,
8586                                                ECD->getInitExpr(),
8587                                                /*base paths*/ 0,
8588                                                VK_RValue));
8589    if (getLangOptions().CPlusPlus)
8590      // C++ [dcl.enum]p4: Following the closing brace of an
8591      // enum-specifier, each enumerator has the type of its
8592      // enumeration.
8593      ECD->setType(EnumType);
8594    else
8595      ECD->setType(NewTy);
8596  }
8597
8598  Enum->completeDefinition(BestType, BestPromotionType,
8599                           NumPositiveBits, NumNegativeBits);
8600}
8601
8602Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
8603                                  SourceLocation StartLoc,
8604                                  SourceLocation EndLoc) {
8605  StringLiteral *AsmString = cast<StringLiteral>(expr);
8606
8607  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
8608                                                   AsmString, StartLoc,
8609                                                   EndLoc);
8610  CurContext->addDecl(New);
8611  return New;
8612}
8613
8614void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
8615                             SourceLocation PragmaLoc,
8616                             SourceLocation NameLoc) {
8617  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
8618
8619  if (PrevDecl) {
8620    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
8621  } else {
8622    (void)WeakUndeclaredIdentifiers.insert(
8623      std::pair<IdentifierInfo*,WeakInfo>
8624        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
8625  }
8626}
8627
8628void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
8629                                IdentifierInfo* AliasName,
8630                                SourceLocation PragmaLoc,
8631                                SourceLocation NameLoc,
8632                                SourceLocation AliasNameLoc) {
8633  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
8634                                    LookupOrdinaryName);
8635  WeakInfo W = WeakInfo(Name, NameLoc);
8636
8637  if (PrevDecl) {
8638    if (!PrevDecl->hasAttr<AliasAttr>())
8639      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
8640        DeclApplyPragmaWeak(TUScope, ND, W);
8641  } else {
8642    (void)WeakUndeclaredIdentifiers.insert(
8643      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
8644  }
8645}
8646