SemaDecl.cpp revision 27a84d01614609c094029a49f7a86f0f7f8fe7f1
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <cstring>
36#include <functional>
37#include <queue>
38using namespace clang;
39
40/// getDeclName - Return a pretty name for the specified decl if possible, or
41/// an empty string if not.  This is used for pretty crash reporting.
42std::string Sema::getDeclName(DeclPtrTy d) {
43  Decl *D = d.getAs<Decl>();
44  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
45    return DN->getQualifiedNameAsString();
46  return "";
47}
48
49Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
50  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
51}
52
53/// \brief If the identifier refers to a type name within this scope,
54/// return the declaration of that type.
55///
56/// This routine performs ordinary name lookup of the identifier II
57/// within the given scope, with optional C++ scope specifier SS, to
58/// determine whether the name refers to a type. If so, returns an
59/// opaque pointer (actually a QualType) corresponding to that
60/// type. Otherwise, returns NULL.
61///
62/// If name lookup results in an ambiguity, this routine will complain
63/// and then return NULL.
64Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
65                                Scope *S, const CXXScopeSpec *SS,
66                                bool isClassName) {
67  // C++ [temp.res]p3:
68  //   A qualified-id that refers to a type and in which the
69  //   nested-name-specifier depends on a template-parameter (14.6.2)
70  //   shall be prefixed by the keyword typename to indicate that the
71  //   qualified-id denotes a type, forming an
72  //   elaborated-type-specifier (7.1.5.3).
73  //
74  // We therefore do not perform any name lookup if the result would
75  // refer to a member of an unknown specialization.
76  if (SS && isUnknownSpecialization(*SS)) {
77    if (!isClassName)
78      return 0;
79
80    // We know from the grammar that this name refers to a type, so build a
81    // TypenameType node to describe the type.
82    // FIXME: Record somewhere that this TypenameType node has no "typename"
83    // keyword associated with it.
84    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
85                             II, SS->getRange()).getAsOpaquePtr();
86  }
87
88  LookupResult Result
89    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
90
91  NamedDecl *IIDecl = 0;
92  switch (Result.getKind()) {
93  case LookupResult::NotFound:
94  case LookupResult::FoundOverloaded:
95    return 0;
96
97  case LookupResult::AmbiguousBaseSubobjectTypes:
98  case LookupResult::AmbiguousBaseSubobjects:
99  case LookupResult::AmbiguousReference: {
100    // Look to see if we have a type anywhere in the list of results.
101    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
102         Res != ResEnd; ++Res) {
103      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
104        if (!IIDecl ||
105            (*Res)->getLocation().getRawEncoding() <
106              IIDecl->getLocation().getRawEncoding())
107          IIDecl = *Res;
108      }
109    }
110
111    if (!IIDecl) {
112      // None of the entities we found is a type, so there is no way
113      // to even assume that the result is a type. In this case, don't
114      // complain about the ambiguity. The parser will either try to
115      // perform this lookup again (e.g., as an object name), which
116      // will produce the ambiguity, or will complain that it expected
117      // a type name.
118      Result.Destroy();
119      return 0;
120    }
121
122    // We found a type within the ambiguous lookup; diagnose the
123    // ambiguity and then return that type. This might be the right
124    // answer, or it might not be, but it suppresses any attempt to
125    // perform the name lookup again.
126    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
127    break;
128  }
129
130  case LookupResult::Found:
131    IIDecl = Result.getAsDecl();
132    break;
133  }
134
135  if (IIDecl) {
136    QualType T;
137
138    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
139      // Check whether we can use this type
140      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
141
142      if (getLangOptions().CPlusPlus) {
143        // C++ [temp.local]p2:
144        //   Within the scope of a class template specialization or
145        //   partial specialization, when the injected-class-name is
146        //   not followed by a <, it is equivalent to the
147        //   injected-class-name followed by the template-argument s
148        //   of the class template specialization or partial
149        //   specialization enclosed in <>.
150        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
151          if (RD->isInjectedClassName())
152            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
153              T = Template->getInjectedClassNameType(Context);
154      }
155
156      if (T.isNull())
157        T = Context.getTypeDeclType(TD);
158    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
159      // Check whether we can use this interface.
160      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
161
162      T = Context.getObjCInterfaceType(IDecl);
163    } else
164      return 0;
165
166    if (SS)
167      T = getQualifiedNameType(*SS, T);
168
169    return T.getAsOpaquePtr();
170  }
171
172  return 0;
173}
174
175/// isTagName() - This method is called *for error recovery purposes only*
176/// to determine if the specified name is a valid tag name ("struct foo").  If
177/// so, this returns the TST for the tag corresponding to it (TST_enum,
178/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
179/// where the user forgot to specify the tag.
180DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
181  // Do a tag name lookup in this scope.
182  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
183  if (R.getKind() == LookupResult::Found)
184    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
185      switch (TD->getTagKind()) {
186      case TagDecl::TK_struct: return DeclSpec::TST_struct;
187      case TagDecl::TK_union:  return DeclSpec::TST_union;
188      case TagDecl::TK_class:  return DeclSpec::TST_class;
189      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
190      }
191    }
192
193  return DeclSpec::TST_unspecified;
194}
195
196
197// Determines the context to return to after temporarily entering a
198// context.  This depends in an unnecessarily complicated way on the
199// exact ordering of callbacks from the parser.
200DeclContext *Sema::getContainingDC(DeclContext *DC) {
201
202  // Functions defined inline within classes aren't parsed until we've
203  // finished parsing the top-level class, so the top-level class is
204  // the context we'll need to return to.
205  if (isa<FunctionDecl>(DC)) {
206    DC = DC->getLexicalParent();
207
208    // A function not defined within a class will always return to its
209    // lexical context.
210    if (!isa<CXXRecordDecl>(DC))
211      return DC;
212
213    // A C++ inline method/friend is parsed *after* the topmost class
214    // it was declared in is fully parsed ("complete");  the topmost
215    // class is the context we need to return to.
216    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
217      DC = RD;
218
219    // Return the declaration context of the topmost class the inline method is
220    // declared in.
221    return DC;
222  }
223
224  if (isa<ObjCMethodDecl>(DC))
225    return Context.getTranslationUnitDecl();
226
227  return DC->getLexicalParent();
228}
229
230void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
231  assert(getContainingDC(DC) == CurContext &&
232      "The next DeclContext should be lexically contained in the current one.");
233  CurContext = DC;
234  S->setEntity(DC);
235}
236
237void Sema::PopDeclContext() {
238  assert(CurContext && "DeclContext imbalance!");
239
240  CurContext = getContainingDC(CurContext);
241}
242
243/// EnterDeclaratorContext - Used when we must lookup names in the context
244/// of a declarator's nested name specifier.
245void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
246  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
247  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
248  CurContext = DC;
249  assert(CurContext && "No context?");
250  S->setEntity(CurContext);
251}
252
253void Sema::ExitDeclaratorContext(Scope *S) {
254  S->setEntity(PreDeclaratorDC);
255  PreDeclaratorDC = 0;
256
257  // Reset CurContext to the nearest enclosing context.
258  while (!S->getEntity() && S->getParent())
259    S = S->getParent();
260  CurContext = static_cast<DeclContext*>(S->getEntity());
261  assert(CurContext && "No context?");
262}
263
264/// \brief Determine whether we allow overloading of the function
265/// PrevDecl with another declaration.
266///
267/// This routine determines whether overloading is possible, not
268/// whether some new function is actually an overload. It will return
269/// true in C++ (where we can always provide overloads) or, as an
270/// extension, in C when the previous function is already an
271/// overloaded function declaration or has the "overloadable"
272/// attribute.
273static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
274  if (Context.getLangOptions().CPlusPlus)
275    return true;
276
277  if (isa<OverloadedFunctionDecl>(PrevDecl))
278    return true;
279
280  return PrevDecl->getAttr<OverloadableAttr>() != 0;
281}
282
283/// Add this decl to the scope shadowed decl chains.
284void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
285  // Move up the scope chain until we find the nearest enclosing
286  // non-transparent context. The declaration will be introduced into this
287  // scope.
288  while (S->getEntity() &&
289         ((DeclContext *)S->getEntity())->isTransparentContext())
290    S = S->getParent();
291
292  // Add scoped declarations into their context, so that they can be
293  // found later. Declarations without a context won't be inserted
294  // into any context.
295  if (AddToContext)
296    CurContext->addDecl(D);
297
298  // Out-of-line function and variable definitions should not be pushed into
299  // scope.
300  if ((isa<FunctionTemplateDecl>(D) &&
301       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
302      (isa<FunctionDecl>(D) && cast<FunctionDecl>(D)->isOutOfLine()) ||
303      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
304    return;
305
306  S->AddDecl(DeclPtrTy::make(D));
307
308  // C++ [basic.scope]p4:
309  //   -- exactly one declaration shall declare a class name or
310  //   enumeration name that is not a typedef name and the other
311  //   declarations shall all refer to the same object or
312  //   enumerator, or all refer to functions and function templates;
313  //   in this case the class name or enumeration name is hidden.
314  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
315    // We are pushing the name of a tag (enum or class).
316    if (CurContext->getLookupContext()
317          == TD->getDeclContext()->getLookupContext()) {
318      // We're pushing the tag into the current context, which might
319      // require some reshuffling in the identifier resolver.
320      IdentifierResolver::iterator
321        I = IdResolver.begin(TD->getDeclName()),
322        IEnd = IdResolver.end();
323      NamedDecl *ID = *I;
324      if (I != IEnd && isDeclInScope(ID, CurContext, S)) {
325        NamedDecl *PrevDecl = *I;
326        for (; I != IEnd && isDeclInScope(ID, CurContext, S);
327             PrevDecl = *I, ++I) {
328          if (TD->declarationReplaces(*I)) {
329            // This is a redeclaration. Remove it from the chain and
330            // break out, so that we'll add in the shadowed
331            // declaration.
332            S->RemoveDecl(DeclPtrTy::make(*I));
333            if (PrevDecl == *I) {
334              IdResolver.RemoveDecl(*I);
335              IdResolver.AddDecl(TD);
336              return;
337            } else {
338              IdResolver.RemoveDecl(*I);
339              break;
340            }
341          }
342        }
343
344        // There is already a declaration with the same name in the same
345        // scope, which is not a tag declaration. It must be found
346        // before we find the new declaration, so insert the new
347        // declaration at the end of the chain.
348        IdResolver.AddShadowedDecl(TD, PrevDecl);
349
350        return;
351      }
352    }
353  } else if ((isa<FunctionDecl>(D) &&
354              AllowOverloadingOfFunction(D, Context)) ||
355             isa<FunctionTemplateDecl>(D)) {
356    // We are pushing the name of a function or function template,
357    // which might be an overloaded name.
358    IdentifierResolver::iterator Redecl
359      = std::find_if(IdResolver.begin(D->getDeclName()),
360                     IdResolver.end(),
361                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
362                                  D));
363    if (Redecl != IdResolver.end() &&
364        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
365      // There is already a declaration of a function on our
366      // IdResolver chain. Replace it with this declaration.
367      S->RemoveDecl(DeclPtrTy::make(*Redecl));
368      IdResolver.RemoveDecl(*Redecl);
369    }
370  } else if (isa<ObjCInterfaceDecl>(D)) {
371    // We're pushing an Objective-C interface into the current
372    // context. If there is already an alias declaration, remove it first.
373    for (IdentifierResolver::iterator
374           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
375         I != IEnd; ++I) {
376      if (isa<ObjCCompatibleAliasDecl>(*I)) {
377        S->RemoveDecl(DeclPtrTy::make(*I));
378        IdResolver.RemoveDecl(*I);
379        break;
380      }
381    }
382  }
383
384  IdResolver.AddDecl(D);
385}
386
387bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
388  if (OverloadedFunctionDecl *Ovl = dyn_cast<OverloadedFunctionDecl>(D)) {
389    // Look inside the overload set to determine if any of the declarations
390    // are in scope. (Possibly) build a new overload set containing only
391    // those declarations that are in scope.
392    OverloadedFunctionDecl *NewOvl = 0;
393    bool FoundInScope = false;
394    for (OverloadedFunctionDecl::function_iterator F = Ovl->function_begin(),
395         FEnd = Ovl->function_end();
396         F != FEnd; ++F) {
397      NamedDecl *FD = F->get();
398      if (!isDeclInScope(FD, Ctx, S)) {
399        if (!NewOvl && F != Ovl->function_begin()) {
400          NewOvl = OverloadedFunctionDecl::Create(Context,
401                                                  F->get()->getDeclContext(),
402                                                  F->get()->getDeclName());
403          D = NewOvl;
404          for (OverloadedFunctionDecl::function_iterator
405               First = Ovl->function_begin();
406               First != F; ++First)
407            NewOvl->addOverload(*First);
408        }
409      } else {
410        FoundInScope = true;
411        if (NewOvl)
412          NewOvl->addOverload(*F);
413      }
414    }
415
416    return FoundInScope;
417  }
418
419  return IdResolver.isDeclInScope(D, Ctx, Context, S);
420}
421
422void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
423  if (S->decl_empty()) return;
424  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
425         "Scope shouldn't contain decls!");
426
427  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
428       I != E; ++I) {
429    Decl *TmpD = (*I).getAs<Decl>();
430    assert(TmpD && "This decl didn't get pushed??");
431
432    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
433    NamedDecl *D = cast<NamedDecl>(TmpD);
434
435    if (!D->getDeclName()) continue;
436
437    // Remove this name from our lexical scope.
438    IdResolver.RemoveDecl(D);
439  }
440}
441
442/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
443/// return 0 if one not found.
444ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
445  // The third "scope" argument is 0 since we aren't enabling lazy built-in
446  // creation from this context.
447  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
448
449  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
450}
451
452/// getNonFieldDeclScope - Retrieves the innermost scope, starting
453/// from S, where a non-field would be declared. This routine copes
454/// with the difference between C and C++ scoping rules in structs and
455/// unions. For example, the following code is well-formed in C but
456/// ill-formed in C++:
457/// @code
458/// struct S6 {
459///   enum { BAR } e;
460/// };
461///
462/// void test_S6() {
463///   struct S6 a;
464///   a.e = BAR;
465/// }
466/// @endcode
467/// For the declaration of BAR, this routine will return a different
468/// scope. The scope S will be the scope of the unnamed enumeration
469/// within S6. In C++, this routine will return the scope associated
470/// with S6, because the enumeration's scope is a transparent
471/// context but structures can contain non-field names. In C, this
472/// routine will return the translation unit scope, since the
473/// enumeration's scope is a transparent context and structures cannot
474/// contain non-field names.
475Scope *Sema::getNonFieldDeclScope(Scope *S) {
476  while (((S->getFlags() & Scope::DeclScope) == 0) ||
477         (S->getEntity() &&
478          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
479         (S->isClassScope() && !getLangOptions().CPlusPlus))
480    S = S->getParent();
481  return S;
482}
483
484void Sema::InitBuiltinVaListType() {
485  if (!Context.getBuiltinVaListType().isNull())
486    return;
487
488  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
489  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
490  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
491  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
492}
493
494/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
495/// file scope.  lazily create a decl for it. ForRedeclaration is true
496/// if we're creating this built-in in anticipation of redeclaring the
497/// built-in.
498NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
499                                     Scope *S, bool ForRedeclaration,
500                                     SourceLocation Loc) {
501  Builtin::ID BID = (Builtin::ID)bid;
502
503  if (Context.BuiltinInfo.hasVAListUse(BID))
504    InitBuiltinVaListType();
505
506  ASTContext::GetBuiltinTypeError Error;
507  QualType R = Context.GetBuiltinType(BID, Error);
508  switch (Error) {
509  case ASTContext::GE_None:
510    // Okay
511    break;
512
513  case ASTContext::GE_Missing_stdio:
514    if (ForRedeclaration)
515      Diag(Loc, diag::err_implicit_decl_requires_stdio)
516        << Context.BuiltinInfo.GetName(BID);
517    return 0;
518
519  case ASTContext::GE_Missing_setjmp:
520    if (ForRedeclaration)
521      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
522        << Context.BuiltinInfo.GetName(BID);
523    return 0;
524  }
525
526  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
527    Diag(Loc, diag::ext_implicit_lib_function_decl)
528      << Context.BuiltinInfo.GetName(BID)
529      << R;
530    if (Context.BuiltinInfo.getHeaderName(BID) &&
531        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
532          != Diagnostic::Ignored)
533      Diag(Loc, diag::note_please_include_header)
534        << Context.BuiltinInfo.getHeaderName(BID)
535        << Context.BuiltinInfo.GetName(BID);
536  }
537
538  FunctionDecl *New = FunctionDecl::Create(Context,
539                                           Context.getTranslationUnitDecl(),
540                                           Loc, II, R, /*DInfo=*/0,
541                                           FunctionDecl::Extern, false,
542                                           /*hasPrototype=*/true);
543  New->setImplicit();
544
545  // Create Decl objects for each parameter, adding them to the
546  // FunctionDecl.
547  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
548    llvm::SmallVector<ParmVarDecl*, 16> Params;
549    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
550      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
551                                           FT->getArgType(i), /*DInfo=*/0,
552                                           VarDecl::None, 0));
553    New->setParams(Context, Params.data(), Params.size());
554  }
555
556  AddKnownFunctionAttributes(New);
557
558  // TUScope is the translation-unit scope to insert this function into.
559  // FIXME: This is hideous. We need to teach PushOnScopeChains to
560  // relate Scopes to DeclContexts, and probably eliminate CurContext
561  // entirely, but we're not there yet.
562  DeclContext *SavedContext = CurContext;
563  CurContext = Context.getTranslationUnitDecl();
564  PushOnScopeChains(New, TUScope);
565  CurContext = SavedContext;
566  return New;
567}
568
569/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
570/// same name and scope as a previous declaration 'Old'.  Figure out
571/// how to resolve this situation, merging decls or emitting
572/// diagnostics as appropriate. If there was an error, set New to be invalid.
573///
574void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
575  // If either decl is known invalid already, set the new one to be invalid and
576  // don't bother doing any merging checks.
577  if (New->isInvalidDecl() || OldD->isInvalidDecl())
578    return New->setInvalidDecl();
579
580  // Allow multiple definitions for ObjC built-in typedefs.
581  // FIXME: Verify the underlying types are equivalent!
582  if (getLangOptions().ObjC1) {
583    const IdentifierInfo *TypeID = New->getIdentifier();
584    switch (TypeID->getLength()) {
585    default: break;
586    case 2:
587      if (!TypeID->isStr("id"))
588        break;
589      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
590      // Install the built-in type for 'id', ignoring the current definition.
591      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
592      return;
593    case 5:
594      if (!TypeID->isStr("Class"))
595        break;
596      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
597      // Install the built-in type for 'Class', ignoring the current definition.
598      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
599      return;
600    case 3:
601      if (!TypeID->isStr("SEL"))
602        break;
603      Context.setObjCSelType(Context.getTypeDeclType(New));
604      return;
605    case 8:
606      if (!TypeID->isStr("Protocol"))
607        break;
608      Context.setObjCProtoType(New->getUnderlyingType());
609      return;
610    }
611    // Fall through - the typedef name was not a builtin type.
612  }
613  // Verify the old decl was also a type.
614  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
615  if (!Old) {
616    Diag(New->getLocation(), diag::err_redefinition_different_kind)
617      << New->getDeclName();
618    if (OldD->getLocation().isValid())
619      Diag(OldD->getLocation(), diag::note_previous_definition);
620    return New->setInvalidDecl();
621  }
622
623  // Determine the "old" type we'll use for checking and diagnostics.
624  QualType OldType;
625  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
626    OldType = OldTypedef->getUnderlyingType();
627  else
628    OldType = Context.getTypeDeclType(Old);
629
630  // If the typedef types are not identical, reject them in all languages and
631  // with any extensions enabled.
632
633  if (OldType != New->getUnderlyingType() &&
634      Context.getCanonicalType(OldType) !=
635      Context.getCanonicalType(New->getUnderlyingType())) {
636    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
637      << New->getUnderlyingType() << OldType;
638    if (Old->getLocation().isValid())
639      Diag(Old->getLocation(), diag::note_previous_definition);
640    return New->setInvalidDecl();
641  }
642
643  if (getLangOptions().Microsoft)
644    return;
645
646  // C++ [dcl.typedef]p2:
647  //   In a given non-class scope, a typedef specifier can be used to
648  //   redefine the name of any type declared in that scope to refer
649  //   to the type to which it already refers.
650  if (getLangOptions().CPlusPlus) {
651    if (!isa<CXXRecordDecl>(CurContext))
652      return;
653    Diag(New->getLocation(), diag::err_redefinition)
654      << New->getDeclName();
655    Diag(Old->getLocation(), diag::note_previous_definition);
656    return New->setInvalidDecl();
657  }
658
659  // If we have a redefinition of a typedef in C, emit a warning.  This warning
660  // is normally mapped to an error, but can be controlled with
661  // -Wtypedef-redefinition.  If either the original or the redefinition is
662  // in a system header, don't emit this for compatibility with GCC.
663  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
664      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
665       Context.getSourceManager().isInSystemHeader(New->getLocation())))
666    return;
667
668  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
669    << New->getDeclName();
670  Diag(Old->getLocation(), diag::note_previous_definition);
671  return;
672}
673
674/// DeclhasAttr - returns true if decl Declaration already has the target
675/// attribute.
676static bool
677DeclHasAttr(const Decl *decl, const Attr *target) {
678  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
679    if (attr->getKind() == target->getKind())
680      return true;
681
682  return false;
683}
684
685/// MergeAttributes - append attributes from the Old decl to the New one.
686static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
687  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
688    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
689      Attr *NewAttr = attr->clone(C);
690      NewAttr->setInherited(true);
691      New->addAttr(NewAttr);
692    }
693  }
694}
695
696/// Used in MergeFunctionDecl to keep track of function parameters in
697/// C.
698struct GNUCompatibleParamWarning {
699  ParmVarDecl *OldParm;
700  ParmVarDecl *NewParm;
701  QualType PromotedType;
702};
703
704/// MergeFunctionDecl - We just parsed a function 'New' from
705/// declarator D which has the same name and scope as a previous
706/// declaration 'Old'.  Figure out how to resolve this situation,
707/// merging decls or emitting diagnostics as appropriate.
708///
709/// In C++, New and Old must be declarations that are not
710/// overloaded. Use IsOverload to determine whether New and Old are
711/// overloaded, and to select the Old declaration that New should be
712/// merged with.
713///
714/// Returns true if there was an error, false otherwise.
715bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
716  assert(!isa<OverloadedFunctionDecl>(OldD) &&
717         "Cannot merge with an overloaded function declaration");
718
719  // Verify the old decl was also a function.
720  FunctionDecl *Old = 0;
721  if (FunctionTemplateDecl *OldFunctionTemplate
722        = dyn_cast<FunctionTemplateDecl>(OldD))
723    Old = OldFunctionTemplate->getTemplatedDecl();
724  else
725    Old = dyn_cast<FunctionDecl>(OldD);
726  if (!Old) {
727    Diag(New->getLocation(), diag::err_redefinition_different_kind)
728      << New->getDeclName();
729    Diag(OldD->getLocation(), diag::note_previous_definition);
730    return true;
731  }
732
733  // Determine whether the previous declaration was a definition,
734  // implicit declaration, or a declaration.
735  diag::kind PrevDiag;
736  if (Old->isThisDeclarationADefinition())
737    PrevDiag = diag::note_previous_definition;
738  else if (Old->isImplicit())
739    PrevDiag = diag::note_previous_implicit_declaration;
740  else
741    PrevDiag = diag::note_previous_declaration;
742
743  QualType OldQType = Context.getCanonicalType(Old->getType());
744  QualType NewQType = Context.getCanonicalType(New->getType());
745
746  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
747      New->getStorageClass() == FunctionDecl::Static &&
748      Old->getStorageClass() != FunctionDecl::Static) {
749    Diag(New->getLocation(), diag::err_static_non_static)
750      << New;
751    Diag(Old->getLocation(), PrevDiag);
752    return true;
753  }
754
755  if (getLangOptions().CPlusPlus) {
756    // (C++98 13.1p2):
757    //   Certain function declarations cannot be overloaded:
758    //     -- Function declarations that differ only in the return type
759    //        cannot be overloaded.
760    QualType OldReturnType
761      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
762    QualType NewReturnType
763      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
764    if (OldReturnType != NewReturnType) {
765      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
766      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
767      return true;
768    }
769
770    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
771    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
772    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
773        NewMethod->getLexicalDeclContext()->isRecord()) {
774      //    -- Member function declarations with the same name and the
775      //       same parameter types cannot be overloaded if any of them
776      //       is a static member function declaration.
777      if (OldMethod->isStatic() || NewMethod->isStatic()) {
778        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
779        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
780        return true;
781      }
782
783      // C++ [class.mem]p1:
784      //   [...] A member shall not be declared twice in the
785      //   member-specification, except that a nested class or member
786      //   class template can be declared and then later defined.
787      unsigned NewDiag;
788      if (isa<CXXConstructorDecl>(OldMethod))
789        NewDiag = diag::err_constructor_redeclared;
790      else if (isa<CXXDestructorDecl>(NewMethod))
791        NewDiag = diag::err_destructor_redeclared;
792      else if (isa<CXXConversionDecl>(NewMethod))
793        NewDiag = diag::err_conv_function_redeclared;
794      else
795        NewDiag = diag::err_member_redeclared;
796
797      Diag(New->getLocation(), NewDiag);
798      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
799    }
800
801    // (C++98 8.3.5p3):
802    //   All declarations for a function shall agree exactly in both the
803    //   return type and the parameter-type-list.
804    if (OldQType == NewQType)
805      return MergeCompatibleFunctionDecls(New, Old);
806
807    // Fall through for conflicting redeclarations and redefinitions.
808  }
809
810  // C: Function types need to be compatible, not identical. This handles
811  // duplicate function decls like "void f(int); void f(enum X);" properly.
812  if (!getLangOptions().CPlusPlus &&
813      Context.typesAreCompatible(OldQType, NewQType)) {
814    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
815    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
816    const FunctionProtoType *OldProto = 0;
817    if (isa<FunctionNoProtoType>(NewFuncType) &&
818        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
819      // The old declaration provided a function prototype, but the
820      // new declaration does not. Merge in the prototype.
821      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
822      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
823                                                 OldProto->arg_type_end());
824      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
825                                         ParamTypes.data(), ParamTypes.size(),
826                                         OldProto->isVariadic(),
827                                         OldProto->getTypeQuals());
828      New->setType(NewQType);
829      New->setHasInheritedPrototype();
830
831      // Synthesize a parameter for each argument type.
832      llvm::SmallVector<ParmVarDecl*, 16> Params;
833      for (FunctionProtoType::arg_type_iterator
834             ParamType = OldProto->arg_type_begin(),
835             ParamEnd = OldProto->arg_type_end();
836           ParamType != ParamEnd; ++ParamType) {
837        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
838                                                 SourceLocation(), 0,
839                                                 *ParamType, /*DInfo=*/0,
840                                                 VarDecl::None, 0);
841        Param->setImplicit();
842        Params.push_back(Param);
843      }
844
845      New->setParams(Context, Params.data(), Params.size());
846    }
847
848    return MergeCompatibleFunctionDecls(New, Old);
849  }
850
851  // GNU C permits a K&R definition to follow a prototype declaration
852  // if the declared types of the parameters in the K&R definition
853  // match the types in the prototype declaration, even when the
854  // promoted types of the parameters from the K&R definition differ
855  // from the types in the prototype. GCC then keeps the types from
856  // the prototype.
857  //
858  // If a variadic prototype is followed by a non-variadic K&R definition,
859  // the K&R definition becomes variadic.  This is sort of an edge case, but
860  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
861  // C99 6.9.1p8.
862  if (!getLangOptions().CPlusPlus &&
863      Old->hasPrototype() && !New->hasPrototype() &&
864      New->getType()->getAs<FunctionProtoType>() &&
865      Old->getNumParams() == New->getNumParams()) {
866    llvm::SmallVector<QualType, 16> ArgTypes;
867    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
868    const FunctionProtoType *OldProto
869      = Old->getType()->getAs<FunctionProtoType>();
870    const FunctionProtoType *NewProto
871      = New->getType()->getAs<FunctionProtoType>();
872
873    // Determine whether this is the GNU C extension.
874    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
875                                               NewProto->getResultType());
876    bool LooseCompatible = !MergedReturn.isNull();
877    for (unsigned Idx = 0, End = Old->getNumParams();
878         LooseCompatible && Idx != End; ++Idx) {
879      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
880      ParmVarDecl *NewParm = New->getParamDecl(Idx);
881      if (Context.typesAreCompatible(OldParm->getType(),
882                                     NewProto->getArgType(Idx))) {
883        ArgTypes.push_back(NewParm->getType());
884      } else if (Context.typesAreCompatible(OldParm->getType(),
885                                            NewParm->getType())) {
886        GNUCompatibleParamWarning Warn
887          = { OldParm, NewParm, NewProto->getArgType(Idx) };
888        Warnings.push_back(Warn);
889        ArgTypes.push_back(NewParm->getType());
890      } else
891        LooseCompatible = false;
892    }
893
894    if (LooseCompatible) {
895      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
896        Diag(Warnings[Warn].NewParm->getLocation(),
897             diag::ext_param_promoted_not_compatible_with_prototype)
898          << Warnings[Warn].PromotedType
899          << Warnings[Warn].OldParm->getType();
900        Diag(Warnings[Warn].OldParm->getLocation(),
901             diag::note_previous_declaration);
902      }
903
904      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
905                                           ArgTypes.size(),
906                                           OldProto->isVariadic(), 0));
907      return MergeCompatibleFunctionDecls(New, Old);
908    }
909
910    // Fall through to diagnose conflicting types.
911  }
912
913  // A function that has already been declared has been redeclared or defined
914  // with a different type- show appropriate diagnostic
915  if (unsigned BuiltinID = Old->getBuiltinID()) {
916    // The user has declared a builtin function with an incompatible
917    // signature.
918    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
919      // The function the user is redeclaring is a library-defined
920      // function like 'malloc' or 'printf'. Warn about the
921      // redeclaration, then pretend that we don't know about this
922      // library built-in.
923      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
924      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
925        << Old << Old->getType();
926      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
927      Old->setInvalidDecl();
928      return false;
929    }
930
931    PrevDiag = diag::note_previous_builtin_declaration;
932  }
933
934  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
935  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
936  return true;
937}
938
939/// \brief Completes the merge of two function declarations that are
940/// known to be compatible.
941///
942/// This routine handles the merging of attributes and other
943/// properties of function declarations form the old declaration to
944/// the new declaration, once we know that New is in fact a
945/// redeclaration of Old.
946///
947/// \returns false
948bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
949  // Merge the attributes
950  MergeAttributes(New, Old, Context);
951
952  // Merge the storage class.
953  if (Old->getStorageClass() != FunctionDecl::Extern &&
954      Old->getStorageClass() != FunctionDecl::None)
955    New->setStorageClass(Old->getStorageClass());
956
957  // Merge "pure" flag.
958  if (Old->isPure())
959    New->setPure();
960
961  // Merge the "deleted" flag.
962  if (Old->isDeleted())
963    New->setDeleted();
964
965  if (getLangOptions().CPlusPlus)
966    return MergeCXXFunctionDecl(New, Old);
967
968  return false;
969}
970
971/// MergeVarDecl - We just parsed a variable 'New' which has the same name
972/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
973/// situation, merging decls or emitting diagnostics as appropriate.
974///
975/// Tentative definition rules (C99 6.9.2p2) are checked by
976/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
977/// definitions here, since the initializer hasn't been attached.
978///
979void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
980  // If either decl is invalid, make sure the new one is marked invalid and
981  // don't do any other checking.
982  if (New->isInvalidDecl() || OldD->isInvalidDecl())
983    return New->setInvalidDecl();
984
985  // Verify the old decl was also a variable.
986  VarDecl *Old = dyn_cast<VarDecl>(OldD);
987  if (!Old) {
988    Diag(New->getLocation(), diag::err_redefinition_different_kind)
989      << New->getDeclName();
990    Diag(OldD->getLocation(), diag::note_previous_definition);
991    return New->setInvalidDecl();
992  }
993
994  MergeAttributes(New, Old, Context);
995
996  // Merge the types
997  QualType MergedT;
998  if (getLangOptions().CPlusPlus) {
999    if (Context.hasSameType(New->getType(), Old->getType()))
1000      MergedT = New->getType();
1001    // C++ [basic.types]p7:
1002    //   [...] The declared type of an array object might be an array of
1003    //   unknown size and therefore be incomplete at one point in a
1004    //   translation unit and complete later on; [...]
1005    else if (Old->getType()->isIncompleteArrayType() &&
1006             New->getType()->isArrayType()) {
1007      CanQual<ArrayType> OldArray
1008        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1009      CanQual<ArrayType> NewArray
1010        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1011      if (OldArray->getElementType() == NewArray->getElementType())
1012        MergedT = New->getType();
1013    }
1014  } else {
1015    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1016  }
1017  if (MergedT.isNull()) {
1018    Diag(New->getLocation(), diag::err_redefinition_different_type)
1019      << New->getDeclName();
1020    Diag(Old->getLocation(), diag::note_previous_definition);
1021    return New->setInvalidDecl();
1022  }
1023  New->setType(MergedT);
1024
1025  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1026  if (New->getStorageClass() == VarDecl::Static &&
1027      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1028    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1029    Diag(Old->getLocation(), diag::note_previous_definition);
1030    return New->setInvalidDecl();
1031  }
1032  // C99 6.2.2p4:
1033  //   For an identifier declared with the storage-class specifier
1034  //   extern in a scope in which a prior declaration of that
1035  //   identifier is visible,23) if the prior declaration specifies
1036  //   internal or external linkage, the linkage of the identifier at
1037  //   the later declaration is the same as the linkage specified at
1038  //   the prior declaration. If no prior declaration is visible, or
1039  //   if the prior declaration specifies no linkage, then the
1040  //   identifier has external linkage.
1041  if (New->hasExternalStorage() && Old->hasLinkage())
1042    /* Okay */;
1043  else if (New->getStorageClass() != VarDecl::Static &&
1044           Old->getStorageClass() == VarDecl::Static) {
1045    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1046    Diag(Old->getLocation(), diag::note_previous_definition);
1047    return New->setInvalidDecl();
1048  }
1049
1050  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1051
1052  // FIXME: The test for external storage here seems wrong? We still
1053  // need to check for mismatches.
1054  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1055      // Don't complain about out-of-line definitions of static members.
1056      !(Old->getLexicalDeclContext()->isRecord() &&
1057        !New->getLexicalDeclContext()->isRecord())) {
1058    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1059    Diag(Old->getLocation(), diag::note_previous_definition);
1060    return New->setInvalidDecl();
1061  }
1062
1063  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1064    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1065    Diag(Old->getLocation(), diag::note_previous_definition);
1066  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1067    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1068    Diag(Old->getLocation(), diag::note_previous_definition);
1069  }
1070
1071  // Keep a chain of previous declarations.
1072  New->setPreviousDeclaration(Old);
1073}
1074
1075/// CheckFallThrough - Check that we don't fall off the end of a
1076/// Statement that should return a value.
1077///
1078/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1079/// MaybeFallThrough iff we might or might not fall off the end and
1080/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1081/// that functions not marked noreturn will return.
1082Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1083  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1084
1085  // FIXME: They should never return 0, fix that, delete this code.
1086  if (cfg == 0)
1087    return NeverFallThrough;
1088  // The CFG leaves in dead things, and we don't want to dead code paths to
1089  // confuse us, so we mark all live things first.
1090  std::queue<CFGBlock*> workq;
1091  llvm::BitVector live(cfg->getNumBlockIDs());
1092  // Prep work queue
1093  workq.push(&cfg->getEntry());
1094  // Solve
1095  while (!workq.empty()) {
1096    CFGBlock *item = workq.front();
1097    workq.pop();
1098    live.set(item->getBlockID());
1099    for (CFGBlock::succ_iterator I=item->succ_begin(),
1100           E=item->succ_end();
1101         I != E;
1102         ++I) {
1103      if ((*I) && !live[(*I)->getBlockID()]) {
1104        live.set((*I)->getBlockID());
1105        workq.push(*I);
1106      }
1107    }
1108  }
1109
1110  // Now we know what is live, we check the live precessors of the exit block
1111  // and look for fall through paths, being careful to ignore normal returns,
1112  // and exceptional paths.
1113  bool HasLiveReturn = false;
1114  bool HasFakeEdge = false;
1115  bool HasPlainEdge = false;
1116  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1117         E = cfg->getExit().pred_end();
1118       I != E;
1119       ++I) {
1120    CFGBlock& B = **I;
1121    if (!live[B.getBlockID()])
1122      continue;
1123    if (B.size() == 0) {
1124      // A labeled empty statement, or the entry block...
1125      HasPlainEdge = true;
1126      continue;
1127    }
1128    Stmt *S = B[B.size()-1];
1129    if (isa<ReturnStmt>(S)) {
1130      HasLiveReturn = true;
1131      continue;
1132    }
1133    if (isa<ObjCAtThrowStmt>(S)) {
1134      HasFakeEdge = true;
1135      continue;
1136    }
1137    if (isa<CXXThrowExpr>(S)) {
1138      HasFakeEdge = true;
1139      continue;
1140    }
1141    bool NoReturnEdge = false;
1142    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1143      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1144      if (CEE->getType().getNoReturnAttr()) {
1145        NoReturnEdge = true;
1146        HasFakeEdge = true;
1147      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1148        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1149          if (FD->hasAttr<NoReturnAttr>()) {
1150            NoReturnEdge = true;
1151            HasFakeEdge = true;
1152          }
1153        }
1154      }
1155    }
1156    // FIXME: Add noreturn message sends.
1157    if (NoReturnEdge == false)
1158      HasPlainEdge = true;
1159  }
1160  if (!HasPlainEdge)
1161    return NeverFallThrough;
1162  if (HasFakeEdge || HasLiveReturn)
1163    return MaybeFallThrough;
1164  // This says AlwaysFallThrough for calls to functions that are not marked
1165  // noreturn, that don't return.  If people would like this warning to be more
1166  // accurate, such functions should be marked as noreturn.
1167  return AlwaysFallThrough;
1168}
1169
1170/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1171/// function that should return a value.  Check that we don't fall off the end
1172/// of a noreturn function.  We assume that functions and blocks not marked
1173/// noreturn will return.
1174void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1175  // FIXME: Would be nice if we had a better way to control cascading errors,
1176  // but for now, avoid them.  The problem is that when Parse sees:
1177  //   int foo() { return a; }
1178  // The return is eaten and the Sema code sees just:
1179  //   int foo() { }
1180  // which this code would then warn about.
1181  if (getDiagnostics().hasErrorOccurred())
1182    return;
1183  bool ReturnsVoid = false;
1184  bool HasNoReturn = false;
1185  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1186    if (FD->getResultType()->isVoidType())
1187      ReturnsVoid = true;
1188    if (FD->hasAttr<NoReturnAttr>())
1189      HasNoReturn = true;
1190  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1191    if (MD->getResultType()->isVoidType())
1192      ReturnsVoid = true;
1193    if (MD->hasAttr<NoReturnAttr>())
1194      HasNoReturn = true;
1195  }
1196
1197  // Short circuit for compilation speed.
1198  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1199       == Diagnostic::Ignored || ReturnsVoid)
1200      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1201          == Diagnostic::Ignored || !HasNoReturn)
1202      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1203          == Diagnostic::Ignored || !ReturnsVoid))
1204    return;
1205  // FIXME: Funtion try block
1206  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1207    switch (CheckFallThrough(Body)) {
1208    case MaybeFallThrough:
1209      if (HasNoReturn)
1210        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1211      else if (!ReturnsVoid)
1212        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1213      break;
1214    case AlwaysFallThrough:
1215      if (HasNoReturn)
1216        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1217      else if (!ReturnsVoid)
1218        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1219      break;
1220    case NeverFallThrough:
1221      if (ReturnsVoid)
1222        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1223      break;
1224    }
1225  }
1226}
1227
1228/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1229/// that should return a value.  Check that we don't fall off the end of a
1230/// noreturn block.  We assume that functions and blocks not marked noreturn
1231/// will return.
1232void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1233  // FIXME: Would be nice if we had a better way to control cascading errors,
1234  // but for now, avoid them.  The problem is that when Parse sees:
1235  //   int foo() { return a; }
1236  // The return is eaten and the Sema code sees just:
1237  //   int foo() { }
1238  // which this code would then warn about.
1239  if (getDiagnostics().hasErrorOccurred())
1240    return;
1241  bool ReturnsVoid = false;
1242  bool HasNoReturn = false;
1243  if (const FunctionType *FT = BlockTy->getPointeeType()->getAs<FunctionType>()) {
1244    if (FT->getResultType()->isVoidType())
1245      ReturnsVoid = true;
1246    if (FT->getNoReturnAttr())
1247      HasNoReturn = true;
1248  }
1249
1250  // Short circuit for compilation speed.
1251  if (ReturnsVoid
1252      && !HasNoReturn
1253      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1254          == Diagnostic::Ignored || !ReturnsVoid))
1255    return;
1256  // FIXME: Funtion try block
1257  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1258    switch (CheckFallThrough(Body)) {
1259    case MaybeFallThrough:
1260      if (HasNoReturn)
1261        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1262      else if (!ReturnsVoid)
1263        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1264      break;
1265    case AlwaysFallThrough:
1266      if (HasNoReturn)
1267        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1268      else if (!ReturnsVoid)
1269        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1270      break;
1271    case NeverFallThrough:
1272      if (ReturnsVoid)
1273        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1274      break;
1275    }
1276  }
1277}
1278
1279/// CheckParmsForFunctionDef - Check that the parameters of the given
1280/// function are appropriate for the definition of a function. This
1281/// takes care of any checks that cannot be performed on the
1282/// declaration itself, e.g., that the types of each of the function
1283/// parameters are complete.
1284bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1285  bool HasInvalidParm = false;
1286  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1287    ParmVarDecl *Param = FD->getParamDecl(p);
1288
1289    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1290    // function declarator that is part of a function definition of
1291    // that function shall not have incomplete type.
1292    //
1293    // This is also C++ [dcl.fct]p6.
1294    if (!Param->isInvalidDecl() &&
1295        RequireCompleteType(Param->getLocation(), Param->getType(),
1296                               diag::err_typecheck_decl_incomplete_type)) {
1297      Param->setInvalidDecl();
1298      HasInvalidParm = true;
1299    }
1300
1301    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1302    // declaration of each parameter shall include an identifier.
1303    if (Param->getIdentifier() == 0 &&
1304        !Param->isImplicit() &&
1305        !getLangOptions().CPlusPlus)
1306      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1307  }
1308
1309  return HasInvalidParm;
1310}
1311
1312/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1313/// no declarator (e.g. "struct foo;") is parsed.
1314Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1315  // FIXME: Error on auto/register at file scope
1316  // FIXME: Error on inline/virtual/explicit
1317  // FIXME: Error on invalid restrict
1318  // FIXME: Warn on useless __thread
1319  // FIXME: Warn on useless const/volatile
1320  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1321  // FIXME: Warn on useless attributes
1322  TagDecl *Tag = 0;
1323  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1324      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1325      DS.getTypeSpecType() == DeclSpec::TST_union ||
1326      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1327    if (!DS.getTypeRep()) // We probably had an error
1328      return DeclPtrTy();
1329
1330    // Note that the above type specs guarantee that the
1331    // type rep is a Decl, whereas in many of the others
1332    // it's a Type.
1333    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1334  }
1335
1336  if (DS.isFriendSpecified()) {
1337    // We have a "friend" declaration that does not have a declarator.
1338    // Look at the type to see if the friend declaration was handled
1339    // elsewhere (e.g., for friend classes and friend class templates).
1340    // If not, produce a suitable diagnostic or go try to befriend the
1341    // type itself.
1342    QualType T;
1343    if (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1344        DS.getTypeSpecType() == DeclSpec::TST_typeofType)
1345      T = QualType::getFromOpaquePtr(DS.getTypeRep());
1346    else if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1347             DS.getTypeSpecType() == DeclSpec::TST_decltype)
1348      T = ((Expr *)DS.getTypeRep())->getType();
1349    else if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1350             DS.getTypeSpecType() == DeclSpec::TST_struct ||
1351             DS.getTypeSpecType() == DeclSpec::TST_union)
1352      return DeclPtrTy::make(Tag);
1353
1354    if (T.isNull()) {
1355      // Fall through to diagnose this error, below.
1356    } else if (const RecordType *RecordT = T->getAs<RecordType>()) {
1357      // C++ [class.friend]p2:
1358      //   An elaborated-type-specifier shall be used in a friend declaration
1359      //   for a class.
1360
1361      // We have something like "friend C;", where C is the name of a
1362      // class type but is missing an elaborated type specifier. Complain,
1363      // but tell the user exactly how to fix the problem.
1364      RecordDecl *RecordD = RecordT->getDecl();
1365      Diag(DS.getTypeSpecTypeLoc(), diag::err_unelaborated_friend_type)
1366        << (unsigned)RecordD->getTagKind()
1367        << QualType(RecordT, 0)
1368        << SourceRange(DS.getFriendSpecLoc())
1369        << CodeModificationHint::CreateInsertion(DS.getTypeSpecTypeLoc(),
1370                                  RecordD->getKindName() + std::string(" "));
1371
1372      // FIXME: We could go into ActOnTag to actually make the friend
1373      // declaration happen at this point.
1374      return DeclPtrTy();
1375    }
1376
1377    if (!T.isNull() && T->isDependentType()) {
1378      // Since T is a dependent type, handle it as a friend type
1379      // declaration.
1380      return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1381    }
1382
1383    // Complain about any non-dependent friend type here.
1384    Diag(DS.getFriendSpecLoc(), diag::err_unexpected_friend)
1385      << DS.getSourceRange();
1386    return DeclPtrTy();
1387  }
1388
1389  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1390    if (!Record->getDeclName() && Record->isDefinition() &&
1391        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1392      if (getLangOptions().CPlusPlus ||
1393          Record->getDeclContext()->isRecord())
1394        return BuildAnonymousStructOrUnion(S, DS, Record);
1395
1396      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1397        << DS.getSourceRange();
1398    }
1399
1400    // Microsoft allows unnamed struct/union fields. Don't complain
1401    // about them.
1402    // FIXME: Should we support Microsoft's extensions in this area?
1403    if (Record->getDeclName() && getLangOptions().Microsoft)
1404      return DeclPtrTy::make(Tag);
1405  }
1406
1407  if (!DS.isMissingDeclaratorOk() &&
1408      DS.getTypeSpecType() != DeclSpec::TST_error) {
1409    // Warn about typedefs of enums without names, since this is an
1410    // extension in both Microsoft an GNU.
1411    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1412        Tag && isa<EnumDecl>(Tag)) {
1413      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1414        << DS.getSourceRange();
1415      return DeclPtrTy::make(Tag);
1416    }
1417
1418    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1419      << DS.getSourceRange();
1420    return DeclPtrTy();
1421  }
1422
1423  return DeclPtrTy::make(Tag);
1424}
1425
1426/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1427/// anonymous struct or union AnonRecord into the owning context Owner
1428/// and scope S. This routine will be invoked just after we realize
1429/// that an unnamed union or struct is actually an anonymous union or
1430/// struct, e.g.,
1431///
1432/// @code
1433/// union {
1434///   int i;
1435///   float f;
1436/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1437///    // f into the surrounding scope.x
1438/// @endcode
1439///
1440/// This routine is recursive, injecting the names of nested anonymous
1441/// structs/unions into the owning context and scope as well.
1442bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1443                                               RecordDecl *AnonRecord) {
1444  bool Invalid = false;
1445  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1446                               FEnd = AnonRecord->field_end();
1447       F != FEnd; ++F) {
1448    if ((*F)->getDeclName()) {
1449      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1450                                                LookupOrdinaryName, true);
1451      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1452        // C++ [class.union]p2:
1453        //   The names of the members of an anonymous union shall be
1454        //   distinct from the names of any other entity in the
1455        //   scope in which the anonymous union is declared.
1456        unsigned diagKind
1457          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1458                                 : diag::err_anonymous_struct_member_redecl;
1459        Diag((*F)->getLocation(), diagKind)
1460          << (*F)->getDeclName();
1461        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1462        Invalid = true;
1463      } else {
1464        // C++ [class.union]p2:
1465        //   For the purpose of name lookup, after the anonymous union
1466        //   definition, the members of the anonymous union are
1467        //   considered to have been defined in the scope in which the
1468        //   anonymous union is declared.
1469        Owner->makeDeclVisibleInContext(*F);
1470        S->AddDecl(DeclPtrTy::make(*F));
1471        IdResolver.AddDecl(*F);
1472      }
1473    } else if (const RecordType *InnerRecordType
1474                 = (*F)->getType()->getAs<RecordType>()) {
1475      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1476      if (InnerRecord->isAnonymousStructOrUnion())
1477        Invalid = Invalid ||
1478          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1479    }
1480  }
1481
1482  return Invalid;
1483}
1484
1485/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1486/// anonymous structure or union. Anonymous unions are a C++ feature
1487/// (C++ [class.union]) and a GNU C extension; anonymous structures
1488/// are a GNU C and GNU C++ extension.
1489Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1490                                                  RecordDecl *Record) {
1491  DeclContext *Owner = Record->getDeclContext();
1492
1493  // Diagnose whether this anonymous struct/union is an extension.
1494  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1495    Diag(Record->getLocation(), diag::ext_anonymous_union);
1496  else if (!Record->isUnion())
1497    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1498
1499  // C and C++ require different kinds of checks for anonymous
1500  // structs/unions.
1501  bool Invalid = false;
1502  if (getLangOptions().CPlusPlus) {
1503    const char* PrevSpec = 0;
1504    unsigned DiagID;
1505    // C++ [class.union]p3:
1506    //   Anonymous unions declared in a named namespace or in the
1507    //   global namespace shall be declared static.
1508    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1509        (isa<TranslationUnitDecl>(Owner) ||
1510         (isa<NamespaceDecl>(Owner) &&
1511          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1512      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1513      Invalid = true;
1514
1515      // Recover by adding 'static'.
1516      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1517                             PrevSpec, DiagID);
1518    }
1519    // C++ [class.union]p3:
1520    //   A storage class is not allowed in a declaration of an
1521    //   anonymous union in a class scope.
1522    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1523             isa<RecordDecl>(Owner)) {
1524      Diag(DS.getStorageClassSpecLoc(),
1525           diag::err_anonymous_union_with_storage_spec);
1526      Invalid = true;
1527
1528      // Recover by removing the storage specifier.
1529      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1530                             PrevSpec, DiagID);
1531    }
1532
1533    // C++ [class.union]p2:
1534    //   The member-specification of an anonymous union shall only
1535    //   define non-static data members. [Note: nested types and
1536    //   functions cannot be declared within an anonymous union. ]
1537    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1538                                 MemEnd = Record->decls_end();
1539         Mem != MemEnd; ++Mem) {
1540      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1541        // C++ [class.union]p3:
1542        //   An anonymous union shall not have private or protected
1543        //   members (clause 11).
1544        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1545          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1546            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1547          Invalid = true;
1548        }
1549      } else if ((*Mem)->isImplicit()) {
1550        // Any implicit members are fine.
1551      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1552        // This is a type that showed up in an
1553        // elaborated-type-specifier inside the anonymous struct or
1554        // union, but which actually declares a type outside of the
1555        // anonymous struct or union. It's okay.
1556      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1557        if (!MemRecord->isAnonymousStructOrUnion() &&
1558            MemRecord->getDeclName()) {
1559          // This is a nested type declaration.
1560          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1561            << (int)Record->isUnion();
1562          Invalid = true;
1563        }
1564      } else {
1565        // We have something that isn't a non-static data
1566        // member. Complain about it.
1567        unsigned DK = diag::err_anonymous_record_bad_member;
1568        if (isa<TypeDecl>(*Mem))
1569          DK = diag::err_anonymous_record_with_type;
1570        else if (isa<FunctionDecl>(*Mem))
1571          DK = diag::err_anonymous_record_with_function;
1572        else if (isa<VarDecl>(*Mem))
1573          DK = diag::err_anonymous_record_with_static;
1574        Diag((*Mem)->getLocation(), DK)
1575            << (int)Record->isUnion();
1576          Invalid = true;
1577      }
1578    }
1579  }
1580
1581  if (!Record->isUnion() && !Owner->isRecord()) {
1582    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1583      << (int)getLangOptions().CPlusPlus;
1584    Invalid = true;
1585  }
1586
1587  // Create a declaration for this anonymous struct/union.
1588  NamedDecl *Anon = 0;
1589  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1590    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1591                             /*IdentifierInfo=*/0,
1592                             Context.getTypeDeclType(Record),
1593                             // FIXME: Type source info.
1594                             /*DInfo=*/0,
1595                             /*BitWidth=*/0, /*Mutable=*/false);
1596    Anon->setAccess(AS_public);
1597    if (getLangOptions().CPlusPlus)
1598      FieldCollector->Add(cast<FieldDecl>(Anon));
1599  } else {
1600    VarDecl::StorageClass SC;
1601    switch (DS.getStorageClassSpec()) {
1602    default: assert(0 && "Unknown storage class!");
1603    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1604    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1605    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1606    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1607    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1608    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1609    case DeclSpec::SCS_mutable:
1610      // mutable can only appear on non-static class members, so it's always
1611      // an error here
1612      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1613      Invalid = true;
1614      SC = VarDecl::None;
1615      break;
1616    }
1617
1618    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1619                           /*IdentifierInfo=*/0,
1620                           Context.getTypeDeclType(Record),
1621                           // FIXME: Type source info.
1622                           /*DInfo=*/0,
1623                           SC);
1624  }
1625  Anon->setImplicit();
1626
1627  // Add the anonymous struct/union object to the current
1628  // context. We'll be referencing this object when we refer to one of
1629  // its members.
1630  Owner->addDecl(Anon);
1631
1632  // Inject the members of the anonymous struct/union into the owning
1633  // context and into the identifier resolver chain for name lookup
1634  // purposes.
1635  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1636    Invalid = true;
1637
1638  // Mark this as an anonymous struct/union type. Note that we do not
1639  // do this until after we have already checked and injected the
1640  // members of this anonymous struct/union type, because otherwise
1641  // the members could be injected twice: once by DeclContext when it
1642  // builds its lookup table, and once by
1643  // InjectAnonymousStructOrUnionMembers.
1644  Record->setAnonymousStructOrUnion(true);
1645
1646  if (Invalid)
1647    Anon->setInvalidDecl();
1648
1649  return DeclPtrTy::make(Anon);
1650}
1651
1652
1653/// GetNameForDeclarator - Determine the full declaration name for the
1654/// given Declarator.
1655DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1656  switch (D.getKind()) {
1657  case Declarator::DK_Abstract:
1658    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1659    return DeclarationName();
1660
1661  case Declarator::DK_Normal:
1662    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1663    return DeclarationName(D.getIdentifier());
1664
1665  case Declarator::DK_Constructor: {
1666    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1667    return Context.DeclarationNames.getCXXConstructorName(
1668                                                Context.getCanonicalType(Ty));
1669  }
1670
1671  case Declarator::DK_Destructor: {
1672    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1673    return Context.DeclarationNames.getCXXDestructorName(
1674                                                Context.getCanonicalType(Ty));
1675  }
1676
1677  case Declarator::DK_Conversion: {
1678    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1679    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1680    return Context.DeclarationNames.getCXXConversionFunctionName(
1681                                                Context.getCanonicalType(Ty));
1682  }
1683
1684  case Declarator::DK_Operator:
1685    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1686    return Context.DeclarationNames.getCXXOperatorName(
1687                                                D.getOverloadedOperator());
1688
1689  case Declarator::DK_TemplateId: {
1690    TemplateName Name
1691      = TemplateName::getFromVoidPointer(D.getTemplateId()->Template);
1692    if (TemplateDecl *Template = Name.getAsTemplateDecl())
1693      return Template->getDeclName();
1694    if (OverloadedFunctionDecl *Ovl = Name.getAsOverloadedFunctionDecl())
1695      return Ovl->getDeclName();
1696
1697    return DeclarationName();
1698  }
1699  }
1700
1701  assert(false && "Unknown name kind");
1702  return DeclarationName();
1703}
1704
1705/// isNearlyMatchingFunction - Determine whether the C++ functions
1706/// Declaration and Definition are "nearly" matching. This heuristic
1707/// is used to improve diagnostics in the case where an out-of-line
1708/// function definition doesn't match any declaration within
1709/// the class or namespace.
1710static bool isNearlyMatchingFunction(ASTContext &Context,
1711                                     FunctionDecl *Declaration,
1712                                     FunctionDecl *Definition) {
1713  if (Declaration->param_size() != Definition->param_size())
1714    return false;
1715  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1716    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1717    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1718
1719    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1720    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1721    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1722      return false;
1723  }
1724
1725  return true;
1726}
1727
1728Sema::DeclPtrTy
1729Sema::HandleDeclarator(Scope *S, Declarator &D,
1730                       MultiTemplateParamsArg TemplateParamLists,
1731                       bool IsFunctionDefinition) {
1732  DeclarationName Name = GetNameForDeclarator(D);
1733
1734  // All of these full declarators require an identifier.  If it doesn't have
1735  // one, the ParsedFreeStandingDeclSpec action should be used.
1736  if (!Name) {
1737    if (!D.isInvalidType())  // Reject this if we think it is valid.
1738      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1739           diag::err_declarator_need_ident)
1740        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1741    return DeclPtrTy();
1742  }
1743
1744  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1745  // we find one that is.
1746  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1747         (S->getFlags() & Scope::TemplateParamScope) != 0)
1748    S = S->getParent();
1749
1750  // If this is an out-of-line definition of a member of a class template
1751  // or class template partial specialization, we may need to rebuild the
1752  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1753  // for more information.
1754  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1755  // handle expressions properly.
1756  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1757  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1758      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1759      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1760       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1761       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1762       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1763    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1764      // FIXME: Preserve type source info.
1765      QualType T = GetTypeFromParser(DS.getTypeRep());
1766      EnterDeclaratorContext(S, DC);
1767      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1768      ExitDeclaratorContext(S);
1769      if (T.isNull())
1770        return DeclPtrTy();
1771      DS.UpdateTypeRep(T.getAsOpaquePtr());
1772    }
1773  }
1774
1775  DeclContext *DC;
1776  NamedDecl *PrevDecl;
1777  NamedDecl *New;
1778
1779  DeclaratorInfo *DInfo = 0;
1780  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1781
1782  // See if this is a redefinition of a variable in the same scope.
1783  if (D.getCXXScopeSpec().isInvalid()) {
1784    DC = CurContext;
1785    PrevDecl = 0;
1786    D.setInvalidType();
1787  } else if (!D.getCXXScopeSpec().isSet()) {
1788    LookupNameKind NameKind = LookupOrdinaryName;
1789
1790    // If the declaration we're planning to build will be a function
1791    // or object with linkage, then look for another declaration with
1792    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1793    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1794      /* Do nothing*/;
1795    else if (R->isFunctionType()) {
1796      if (CurContext->isFunctionOrMethod() ||
1797          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1798        NameKind = LookupRedeclarationWithLinkage;
1799    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1800      NameKind = LookupRedeclarationWithLinkage;
1801    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1802             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1803      NameKind = LookupRedeclarationWithLinkage;
1804
1805    DC = CurContext;
1806    PrevDecl = LookupName(S, Name, NameKind, true,
1807                          NameKind == LookupRedeclarationWithLinkage,
1808                          D.getIdentifierLoc());
1809  } else { // Something like "int foo::x;"
1810    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1811
1812    if (!DC) {
1813      // If we could not compute the declaration context, it's because the
1814      // declaration context is dependent but does not refer to a class,
1815      // class template, or class template partial specialization. Complain
1816      // and return early, to avoid the coming semantic disaster.
1817      Diag(D.getIdentifierLoc(),
1818           diag::err_template_qualified_declarator_no_match)
1819        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1820        << D.getCXXScopeSpec().getRange();
1821      return DeclPtrTy();
1822    }
1823
1824    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1825
1826    // C++ 7.3.1.2p2:
1827    // Members (including explicit specializations of templates) of a named
1828    // namespace can also be defined outside that namespace by explicit
1829    // qualification of the name being defined, provided that the entity being
1830    // defined was already declared in the namespace and the definition appears
1831    // after the point of declaration in a namespace that encloses the
1832    // declarations namespace.
1833    //
1834    // Note that we only check the context at this point. We don't yet
1835    // have enough information to make sure that PrevDecl is actually
1836    // the declaration we want to match. For example, given:
1837    //
1838    //   class X {
1839    //     void f();
1840    //     void f(float);
1841    //   };
1842    //
1843    //   void X::f(int) { } // ill-formed
1844    //
1845    // In this case, PrevDecl will point to the overload set
1846    // containing the two f's declared in X, but neither of them
1847    // matches.
1848
1849    // First check whether we named the global scope.
1850    if (isa<TranslationUnitDecl>(DC)) {
1851      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1852        << Name << D.getCXXScopeSpec().getRange();
1853    } else if (!CurContext->Encloses(DC)) {
1854      // The qualifying scope doesn't enclose the original declaration.
1855      // Emit diagnostic based on current scope.
1856      SourceLocation L = D.getIdentifierLoc();
1857      SourceRange R = D.getCXXScopeSpec().getRange();
1858      if (isa<FunctionDecl>(CurContext))
1859        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1860      else
1861        Diag(L, diag::err_invalid_declarator_scope)
1862          << Name << cast<NamedDecl>(DC) << R;
1863      D.setInvalidType();
1864    }
1865  }
1866
1867  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1868    // Maybe we will complain about the shadowed template parameter.
1869    if (!D.isInvalidType())
1870      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1871        D.setInvalidType();
1872
1873    // Just pretend that we didn't see the previous declaration.
1874    PrevDecl = 0;
1875  }
1876
1877  // In C++, the previous declaration we find might be a tag type
1878  // (class or enum). In this case, the new declaration will hide the
1879  // tag type. Note that this does does not apply if we're declaring a
1880  // typedef (C++ [dcl.typedef]p4).
1881  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1882      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1883    PrevDecl = 0;
1884
1885  bool Redeclaration = false;
1886  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1887    if (TemplateParamLists.size()) {
1888      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1889      return DeclPtrTy();
1890    }
1891
1892    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1893  } else if (R->isFunctionType()) {
1894    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1895                                  move(TemplateParamLists),
1896                                  IsFunctionDefinition, Redeclaration);
1897  } else {
1898    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1899                                  move(TemplateParamLists),
1900                                  Redeclaration);
1901  }
1902
1903  if (New == 0)
1904    return DeclPtrTy();
1905
1906  // If this has an identifier and is not an invalid redeclaration or
1907  // function template specialization, add it to the scope stack.
1908  if (Name && !(Redeclaration && New->isInvalidDecl()) &&
1909      !(isa<FunctionDecl>(New) &&
1910        cast<FunctionDecl>(New)->isFunctionTemplateSpecialization()))
1911    PushOnScopeChains(New, S);
1912
1913  return DeclPtrTy::make(New);
1914}
1915
1916/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1917/// types into constant array types in certain situations which would otherwise
1918/// be errors (for GCC compatibility).
1919static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1920                                                    ASTContext &Context,
1921                                                    bool &SizeIsNegative) {
1922  // This method tries to turn a variable array into a constant
1923  // array even when the size isn't an ICE.  This is necessary
1924  // for compatibility with code that depends on gcc's buggy
1925  // constant expression folding, like struct {char x[(int)(char*)2];}
1926  SizeIsNegative = false;
1927
1928  QualifierCollector Qs;
1929  const Type *Ty = Qs.strip(T);
1930
1931  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
1932    QualType Pointee = PTy->getPointeeType();
1933    QualType FixedType =
1934        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1935    if (FixedType.isNull()) return FixedType;
1936    FixedType = Context.getPointerType(FixedType);
1937    return Qs.apply(FixedType);
1938  }
1939
1940  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1941  if (!VLATy)
1942    return QualType();
1943  // FIXME: We should probably handle this case
1944  if (VLATy->getElementType()->isVariablyModifiedType())
1945    return QualType();
1946
1947  Expr::EvalResult EvalResult;
1948  if (!VLATy->getSizeExpr() ||
1949      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1950      !EvalResult.Val.isInt())
1951    return QualType();
1952
1953  llvm::APSInt &Res = EvalResult.Val.getInt();
1954  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1955    Expr* ArySizeExpr = VLATy->getSizeExpr();
1956    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1957    // so as to transfer ownership to the ConstantArrayWithExpr.
1958    // Alternatively, we could "clone" it (how?).
1959    // Since we don't know how to do things above, we just use the
1960    // very same Expr*.
1961    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1962                                                Res, ArySizeExpr,
1963                                                ArrayType::Normal, 0,
1964                                                VLATy->getBracketsRange());
1965  }
1966
1967  SizeIsNegative = true;
1968  return QualType();
1969}
1970
1971/// \brief Register the given locally-scoped external C declaration so
1972/// that it can be found later for redeclarations
1973void
1974Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1975                                       Scope *S) {
1976  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1977         "Decl is not a locally-scoped decl!");
1978  // Note that we have a locally-scoped external with this name.
1979  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1980
1981  if (!PrevDecl)
1982    return;
1983
1984  // If there was a previous declaration of this variable, it may be
1985  // in our identifier chain. Update the identifier chain with the new
1986  // declaration.
1987  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1988    // The previous declaration was found on the identifer resolver
1989    // chain, so remove it from its scope.
1990    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1991      S = S->getParent();
1992
1993    if (S)
1994      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1995  }
1996}
1997
1998/// \brief Diagnose function specifiers on a declaration of an identifier that
1999/// does not identify a function.
2000void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2001  // FIXME: We should probably indicate the identifier in question to avoid
2002  // confusion for constructs like "inline int a(), b;"
2003  if (D.getDeclSpec().isInlineSpecified())
2004    Diag(D.getDeclSpec().getInlineSpecLoc(),
2005         diag::err_inline_non_function);
2006
2007  if (D.getDeclSpec().isVirtualSpecified())
2008    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2009         diag::err_virtual_non_function);
2010
2011  if (D.getDeclSpec().isExplicitSpecified())
2012    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2013         diag::err_explicit_non_function);
2014}
2015
2016NamedDecl*
2017Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2018                             QualType R,  DeclaratorInfo *DInfo,
2019                             NamedDecl* PrevDecl, bool &Redeclaration) {
2020  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2021  if (D.getCXXScopeSpec().isSet()) {
2022    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2023      << D.getCXXScopeSpec().getRange();
2024    D.setInvalidType();
2025    // Pretend we didn't see the scope specifier.
2026    DC = 0;
2027  }
2028
2029  if (getLangOptions().CPlusPlus) {
2030    // Check that there are no default arguments (C++ only).
2031    CheckExtraCXXDefaultArguments(D);
2032  }
2033
2034  DiagnoseFunctionSpecifiers(D);
2035
2036  if (D.getDeclSpec().isThreadSpecified())
2037    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2038
2039  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
2040  if (!NewTD) return 0;
2041
2042  if (D.isInvalidType())
2043    NewTD->setInvalidDecl();
2044
2045  // Handle attributes prior to checking for duplicates in MergeVarDecl
2046  ProcessDeclAttributes(S, NewTD, D);
2047  // Merge the decl with the existing one if appropriate. If the decl is
2048  // in an outer scope, it isn't the same thing.
2049  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
2050    Redeclaration = true;
2051    MergeTypeDefDecl(NewTD, PrevDecl);
2052  }
2053
2054  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2055  // then it shall have block scope.
2056  QualType T = NewTD->getUnderlyingType();
2057  if (T->isVariablyModifiedType()) {
2058    CurFunctionNeedsScopeChecking = true;
2059
2060    if (S->getFnParent() == 0) {
2061      bool SizeIsNegative;
2062      QualType FixedTy =
2063          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2064      if (!FixedTy.isNull()) {
2065        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2066        NewTD->setUnderlyingType(FixedTy);
2067      } else {
2068        if (SizeIsNegative)
2069          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2070        else if (T->isVariableArrayType())
2071          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2072        else
2073          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2074        NewTD->setInvalidDecl();
2075      }
2076    }
2077  }
2078
2079  // If this is the C FILE type, notify the AST context.
2080  if (IdentifierInfo *II = NewTD->getIdentifier())
2081    if (!NewTD->isInvalidDecl() &&
2082        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2083      if (II->isStr("FILE"))
2084        Context.setFILEDecl(NewTD);
2085      else if (II->isStr("jmp_buf"))
2086        Context.setjmp_bufDecl(NewTD);
2087      else if (II->isStr("sigjmp_buf"))
2088        Context.setsigjmp_bufDecl(NewTD);
2089    }
2090
2091  return NewTD;
2092}
2093
2094/// \brief Determines whether the given declaration is an out-of-scope
2095/// previous declaration.
2096///
2097/// This routine should be invoked when name lookup has found a
2098/// previous declaration (PrevDecl) that is not in the scope where a
2099/// new declaration by the same name is being introduced. If the new
2100/// declaration occurs in a local scope, previous declarations with
2101/// linkage may still be considered previous declarations (C99
2102/// 6.2.2p4-5, C++ [basic.link]p6).
2103///
2104/// \param PrevDecl the previous declaration found by name
2105/// lookup
2106///
2107/// \param DC the context in which the new declaration is being
2108/// declared.
2109///
2110/// \returns true if PrevDecl is an out-of-scope previous declaration
2111/// for a new delcaration with the same name.
2112static bool
2113isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2114                                ASTContext &Context) {
2115  if (!PrevDecl)
2116    return 0;
2117
2118  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2119  // case we need to check each of the overloaded functions.
2120  if (!PrevDecl->hasLinkage())
2121    return false;
2122
2123  if (Context.getLangOptions().CPlusPlus) {
2124    // C++ [basic.link]p6:
2125    //   If there is a visible declaration of an entity with linkage
2126    //   having the same name and type, ignoring entities declared
2127    //   outside the innermost enclosing namespace scope, the block
2128    //   scope declaration declares that same entity and receives the
2129    //   linkage of the previous declaration.
2130    DeclContext *OuterContext = DC->getLookupContext();
2131    if (!OuterContext->isFunctionOrMethod())
2132      // This rule only applies to block-scope declarations.
2133      return false;
2134    else {
2135      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2136      if (PrevOuterContext->isRecord())
2137        // We found a member function: ignore it.
2138        return false;
2139      else {
2140        // Find the innermost enclosing namespace for the new and
2141        // previous declarations.
2142        while (!OuterContext->isFileContext())
2143          OuterContext = OuterContext->getParent();
2144        while (!PrevOuterContext->isFileContext())
2145          PrevOuterContext = PrevOuterContext->getParent();
2146
2147        // The previous declaration is in a different namespace, so it
2148        // isn't the same function.
2149        if (OuterContext->getPrimaryContext() !=
2150            PrevOuterContext->getPrimaryContext())
2151          return false;
2152      }
2153    }
2154  }
2155
2156  return true;
2157}
2158
2159NamedDecl*
2160Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2161                              QualType R, DeclaratorInfo *DInfo,
2162                              NamedDecl* PrevDecl,
2163                              MultiTemplateParamsArg TemplateParamLists,
2164                              bool &Redeclaration) {
2165  DeclarationName Name = GetNameForDeclarator(D);
2166
2167  // Check that there are no default arguments (C++ only).
2168  if (getLangOptions().CPlusPlus)
2169    CheckExtraCXXDefaultArguments(D);
2170
2171  VarDecl *NewVD;
2172  VarDecl::StorageClass SC;
2173  switch (D.getDeclSpec().getStorageClassSpec()) {
2174  default: assert(0 && "Unknown storage class!");
2175  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2176  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2177  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2178  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2179  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2180  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2181  case DeclSpec::SCS_mutable:
2182    // mutable can only appear on non-static class members, so it's always
2183    // an error here
2184    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2185    D.setInvalidType();
2186    SC = VarDecl::None;
2187    break;
2188  }
2189
2190  IdentifierInfo *II = Name.getAsIdentifierInfo();
2191  if (!II) {
2192    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2193      << Name.getAsString();
2194    return 0;
2195  }
2196
2197  DiagnoseFunctionSpecifiers(D);
2198
2199  if (!DC->isRecord() && S->getFnParent() == 0) {
2200    // C99 6.9p2: The storage-class specifiers auto and register shall not
2201    // appear in the declaration specifiers in an external declaration.
2202    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2203
2204      // If this is a register variable with an asm label specified, then this
2205      // is a GNU extension.
2206      if (SC == VarDecl::Register && D.getAsmLabel())
2207        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2208      else
2209        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2210      D.setInvalidType();
2211    }
2212  }
2213  if (DC->isRecord() && !CurContext->isRecord()) {
2214    // This is an out-of-line definition of a static data member.
2215    if (SC == VarDecl::Static) {
2216      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2217           diag::err_static_out_of_line)
2218        << CodeModificationHint::CreateRemoval(
2219                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2220    } else if (SC == VarDecl::None)
2221      SC = VarDecl::Static;
2222  }
2223  if (SC == VarDecl::Static) {
2224    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2225      if (RD->isLocalClass())
2226        Diag(D.getIdentifierLoc(),
2227             diag::err_static_data_member_not_allowed_in_local_class)
2228          << Name << RD->getDeclName();
2229    }
2230  }
2231
2232  // Match up the template parameter lists with the scope specifier, then
2233  // determine whether we have a template or a template specialization.
2234  if (TemplateParameterList *TemplateParams
2235      = MatchTemplateParametersToScopeSpecifier(
2236                                  D.getDeclSpec().getSourceRange().getBegin(),
2237                                                D.getCXXScopeSpec(),
2238                        (TemplateParameterList**)TemplateParamLists.get(),
2239                                                 TemplateParamLists.size())) {
2240    if (TemplateParams->size() > 0) {
2241      // There is no such thing as a variable template.
2242      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2243        << II
2244        << SourceRange(TemplateParams->getTemplateLoc(),
2245                       TemplateParams->getRAngleLoc());
2246      return 0;
2247    } else {
2248      // There is an extraneous 'template<>' for this variable. Complain
2249      // about it, but allow the declaration of the variable.
2250      Diag(TemplateParams->getTemplateLoc(),
2251           diag::err_template_variable_noparams)
2252        << II
2253        << SourceRange(TemplateParams->getTemplateLoc(),
2254                       TemplateParams->getRAngleLoc());
2255    }
2256  }
2257
2258  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2259                          II, R, DInfo, SC);
2260
2261  if (D.isInvalidType())
2262    NewVD->setInvalidDecl();
2263
2264  if (D.getDeclSpec().isThreadSpecified()) {
2265    if (NewVD->hasLocalStorage())
2266      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2267    else if (!Context.Target.isTLSSupported())
2268      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2269    else
2270      NewVD->setThreadSpecified(true);
2271  }
2272
2273  // Set the lexical context. If the declarator has a C++ scope specifier, the
2274  // lexical context will be different from the semantic context.
2275  NewVD->setLexicalDeclContext(CurContext);
2276
2277  // Handle attributes prior to checking for duplicates in MergeVarDecl
2278  ProcessDeclAttributes(S, NewVD, D);
2279
2280  // Handle GNU asm-label extension (encoded as an attribute).
2281  if (Expr *E = (Expr*) D.getAsmLabel()) {
2282    // The parser guarantees this is a string.
2283    StringLiteral *SE = cast<StringLiteral>(E);
2284    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2285                                                        SE->getByteLength())));
2286  }
2287
2288  // If name lookup finds a previous declaration that is not in the
2289  // same scope as the new declaration, this may still be an
2290  // acceptable redeclaration.
2291  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2292      !(NewVD->hasLinkage() &&
2293        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2294    PrevDecl = 0;
2295
2296  // Merge the decl with the existing one if appropriate.
2297  if (PrevDecl) {
2298    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2299      // The user tried to define a non-static data member
2300      // out-of-line (C++ [dcl.meaning]p1).
2301      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2302        << D.getCXXScopeSpec().getRange();
2303      PrevDecl = 0;
2304      NewVD->setInvalidDecl();
2305    }
2306  } else if (D.getCXXScopeSpec().isSet()) {
2307    // No previous declaration in the qualifying scope.
2308    NestedNameSpecifier *NNS =
2309      (NestedNameSpecifier *)D.getCXXScopeSpec().getScopeRep();
2310    DiagnoseMissingMember(D.getIdentifierLoc(), Name, NNS,
2311                          D.getCXXScopeSpec().getRange());
2312    NewVD->setInvalidDecl();
2313  }
2314
2315  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2316
2317  // attributes declared post-definition are currently ignored
2318  if (PrevDecl) {
2319    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2320    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2321      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2322      Diag(Def->getLocation(), diag::note_previous_definition);
2323    }
2324  }
2325
2326  // If this is a locally-scoped extern C variable, update the map of
2327  // such variables.
2328  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2329      !NewVD->isInvalidDecl())
2330    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2331
2332  return NewVD;
2333}
2334
2335/// \brief Perform semantic checking on a newly-created variable
2336/// declaration.
2337///
2338/// This routine performs all of the type-checking required for a
2339/// variable declaration once it has been built. It is used both to
2340/// check variables after they have been parsed and their declarators
2341/// have been translated into a declaration, and to check variables
2342/// that have been instantiated from a template.
2343///
2344/// Sets NewVD->isInvalidDecl() if an error was encountered.
2345void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2346                                    bool &Redeclaration) {
2347  // If the decl is already known invalid, don't check it.
2348  if (NewVD->isInvalidDecl())
2349    return;
2350
2351  QualType T = NewVD->getType();
2352
2353  if (T->isObjCInterfaceType()) {
2354    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2355    return NewVD->setInvalidDecl();
2356  }
2357
2358  // The variable can not have an abstract class type.
2359  if (RequireNonAbstractType(NewVD->getLocation(), T,
2360                             diag::err_abstract_type_in_decl,
2361                             AbstractVariableType))
2362    return NewVD->setInvalidDecl();
2363
2364  // Emit an error if an address space was applied to decl with local storage.
2365  // This includes arrays of objects with address space qualifiers, but not
2366  // automatic variables that point to other address spaces.
2367  // ISO/IEC TR 18037 S5.1.2
2368  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2369    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2370    return NewVD->setInvalidDecl();
2371  }
2372
2373  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2374      && !NewVD->hasAttr<BlocksAttr>())
2375    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2376
2377  bool isVM = T->isVariablyModifiedType();
2378  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2379      NewVD->hasAttr<BlocksAttr>())
2380    CurFunctionNeedsScopeChecking = true;
2381
2382  if ((isVM && NewVD->hasLinkage()) ||
2383      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2384    bool SizeIsNegative;
2385    QualType FixedTy =
2386        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2387
2388    if (FixedTy.isNull() && T->isVariableArrayType()) {
2389      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2390      // FIXME: This won't give the correct result for
2391      // int a[10][n];
2392      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2393
2394      if (NewVD->isFileVarDecl())
2395        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2396        << SizeRange;
2397      else if (NewVD->getStorageClass() == VarDecl::Static)
2398        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2399        << SizeRange;
2400      else
2401        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2402        << SizeRange;
2403      return NewVD->setInvalidDecl();
2404    }
2405
2406    if (FixedTy.isNull()) {
2407      if (NewVD->isFileVarDecl())
2408        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2409      else
2410        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2411      return NewVD->setInvalidDecl();
2412    }
2413
2414    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2415    NewVD->setType(FixedTy);
2416  }
2417
2418  if (!PrevDecl && NewVD->isExternC()) {
2419    // Since we did not find anything by this name and we're declaring
2420    // an extern "C" variable, look for a non-visible extern "C"
2421    // declaration with the same name.
2422    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2423      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2424    if (Pos != LocallyScopedExternalDecls.end())
2425      PrevDecl = Pos->second;
2426  }
2427
2428  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2429    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2430      << T;
2431    return NewVD->setInvalidDecl();
2432  }
2433
2434  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2435    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2436    return NewVD->setInvalidDecl();
2437  }
2438
2439  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2440    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2441    return NewVD->setInvalidDecl();
2442  }
2443
2444  if (PrevDecl) {
2445    Redeclaration = true;
2446    MergeVarDecl(NewVD, PrevDecl);
2447  }
2448}
2449
2450static bool isUsingDecl(Decl *D) {
2451  return isa<UsingDecl>(D) || isa<UnresolvedUsingDecl>(D);
2452}
2453
2454NamedDecl*
2455Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2456                              QualType R, DeclaratorInfo *DInfo,
2457                              NamedDecl* PrevDecl,
2458                              MultiTemplateParamsArg TemplateParamLists,
2459                              bool IsFunctionDefinition, bool &Redeclaration) {
2460  assert(R.getTypePtr()->isFunctionType());
2461
2462  DeclarationName Name = GetNameForDeclarator(D);
2463  FunctionDecl::StorageClass SC = FunctionDecl::None;
2464  switch (D.getDeclSpec().getStorageClassSpec()) {
2465  default: assert(0 && "Unknown storage class!");
2466  case DeclSpec::SCS_auto:
2467  case DeclSpec::SCS_register:
2468  case DeclSpec::SCS_mutable:
2469    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2470         diag::err_typecheck_sclass_func);
2471    D.setInvalidType();
2472    break;
2473  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2474  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2475  case DeclSpec::SCS_static: {
2476    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2477      // C99 6.7.1p5:
2478      //   The declaration of an identifier for a function that has
2479      //   block scope shall have no explicit storage-class specifier
2480      //   other than extern
2481      // See also (C++ [dcl.stc]p4).
2482      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2483           diag::err_static_block_func);
2484      SC = FunctionDecl::None;
2485    } else
2486      SC = FunctionDecl::Static;
2487    break;
2488  }
2489  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2490  }
2491
2492  if (D.getDeclSpec().isThreadSpecified())
2493    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2494
2495  bool isFriend = D.getDeclSpec().isFriendSpecified();
2496  bool isInline = D.getDeclSpec().isInlineSpecified();
2497  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2498  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2499
2500  // Check that the return type is not an abstract class type.
2501  // For record types, this is done by the AbstractClassUsageDiagnoser once
2502  // the class has been completely parsed.
2503  if (!DC->isRecord() &&
2504      RequireNonAbstractType(D.getIdentifierLoc(),
2505                             R->getAs<FunctionType>()->getResultType(),
2506                             diag::err_abstract_type_in_decl,
2507                             AbstractReturnType))
2508    D.setInvalidType();
2509
2510  // Do not allow returning a objc interface by-value.
2511  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2512    Diag(D.getIdentifierLoc(),
2513         diag::err_object_cannot_be_passed_returned_by_value) << 0
2514      << R->getAs<FunctionType>()->getResultType();
2515    D.setInvalidType();
2516  }
2517
2518  bool isVirtualOkay = false;
2519  FunctionDecl *NewFD;
2520
2521  if (isFriend) {
2522    // DC is the namespace in which the function is being declared.
2523    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2524           "friend function being created in a non-namespace context");
2525
2526    // C++ [class.friend]p5
2527    //   A function can be defined in a friend declaration of a
2528    //   class . . . . Such a function is implicitly inline.
2529    isInline |= IsFunctionDefinition;
2530  }
2531
2532  if (D.getKind() == Declarator::DK_Constructor) {
2533    // This is a C++ constructor declaration.
2534    assert(DC->isRecord() &&
2535           "Constructors can only be declared in a member context");
2536
2537    R = CheckConstructorDeclarator(D, R, SC);
2538
2539    // Create the new declaration
2540    NewFD = CXXConstructorDecl::Create(Context,
2541                                       cast<CXXRecordDecl>(DC),
2542                                       D.getIdentifierLoc(), Name, R, DInfo,
2543                                       isExplicit, isInline,
2544                                       /*isImplicitlyDeclared=*/false);
2545  } else if (D.getKind() == Declarator::DK_Destructor) {
2546    // This is a C++ destructor declaration.
2547    if (DC->isRecord()) {
2548      R = CheckDestructorDeclarator(D, SC);
2549
2550      NewFD = CXXDestructorDecl::Create(Context,
2551                                        cast<CXXRecordDecl>(DC),
2552                                        D.getIdentifierLoc(), Name, R,
2553                                        isInline,
2554                                        /*isImplicitlyDeclared=*/false);
2555
2556      isVirtualOkay = true;
2557    } else {
2558      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2559
2560      // Create a FunctionDecl to satisfy the function definition parsing
2561      // code path.
2562      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2563                                   Name, R, DInfo, SC, isInline,
2564                                   /*hasPrototype=*/true);
2565      D.setInvalidType();
2566    }
2567  } else if (D.getKind() == Declarator::DK_Conversion) {
2568    if (!DC->isRecord()) {
2569      Diag(D.getIdentifierLoc(),
2570           diag::err_conv_function_not_member);
2571      return 0;
2572    }
2573
2574    CheckConversionDeclarator(D, R, SC);
2575    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2576                                      D.getIdentifierLoc(), Name, R, DInfo,
2577                                      isInline, isExplicit);
2578
2579    isVirtualOkay = true;
2580  } else if (DC->isRecord()) {
2581    // If the of the function is the same as the name of the record, then this
2582    // must be an invalid constructor that has a return type.
2583    // (The parser checks for a return type and makes the declarator a
2584    // constructor if it has no return type).
2585    // must have an invalid constructor that has a return type
2586    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2587      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2588        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2589        << SourceRange(D.getIdentifierLoc());
2590      return 0;
2591    }
2592
2593    // This is a C++ method declaration.
2594    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2595                                  D.getIdentifierLoc(), Name, R, DInfo,
2596                                  (SC == FunctionDecl::Static), isInline);
2597
2598    isVirtualOkay = (SC != FunctionDecl::Static);
2599  } else {
2600    // Determine whether the function was written with a
2601    // prototype. This true when:
2602    //   - we're in C++ (where every function has a prototype),
2603    //   - there is a prototype in the declarator, or
2604    //   - the type R of the function is some kind of typedef or other reference
2605    //     to a type name (which eventually refers to a function type).
2606    bool HasPrototype =
2607       getLangOptions().CPlusPlus ||
2608       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2609       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2610
2611    NewFD = FunctionDecl::Create(Context, DC,
2612                                 D.getIdentifierLoc(),
2613                                 Name, R, DInfo, SC, isInline, HasPrototype);
2614  }
2615
2616  if (D.isInvalidType())
2617    NewFD->setInvalidDecl();
2618
2619  // Set the lexical context. If the declarator has a C++
2620  // scope specifier, or is the object of a friend declaration, the
2621  // lexical context will be different from the semantic context.
2622  NewFD->setLexicalDeclContext(CurContext);
2623
2624  if (isFriend)
2625    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2626
2627  // Match up the template parameter lists with the scope specifier, then
2628  // determine whether we have a template or a template specialization.
2629  FunctionTemplateDecl *FunctionTemplate = 0;
2630  bool isFunctionTemplateSpecialization = false;
2631  if (TemplateParameterList *TemplateParams
2632        = MatchTemplateParametersToScopeSpecifier(
2633                                  D.getDeclSpec().getSourceRange().getBegin(),
2634                                  D.getCXXScopeSpec(),
2635                           (TemplateParameterList**)TemplateParamLists.get(),
2636                                                  TemplateParamLists.size())) {
2637    if (TemplateParams->size() > 0) {
2638      // This is a function template
2639
2640      // Check that we can declare a template here.
2641      if (CheckTemplateDeclScope(S, TemplateParams))
2642        return 0;
2643
2644      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2645                                                      NewFD->getLocation(),
2646                                                      Name, TemplateParams,
2647                                                      NewFD);
2648      FunctionTemplate->setLexicalDeclContext(CurContext);
2649      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2650    } else {
2651      // This is a function template specialization.
2652      isFunctionTemplateSpecialization = true;
2653    }
2654
2655    // FIXME: Free this memory properly.
2656    TemplateParamLists.release();
2657  }
2658
2659  // C++ [dcl.fct.spec]p5:
2660  //   The virtual specifier shall only be used in declarations of
2661  //   nonstatic class member functions that appear within a
2662  //   member-specification of a class declaration; see 10.3.
2663  //
2664  if (isVirtual && !NewFD->isInvalidDecl()) {
2665    if (!isVirtualOkay) {
2666       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2667           diag::err_virtual_non_function);
2668    } else if (!CurContext->isRecord()) {
2669      // 'virtual' was specified outside of the class.
2670      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2671        << CodeModificationHint::CreateRemoval(
2672                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2673    } else {
2674      // Okay: Add virtual to the method.
2675      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2676      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2677      CurClass->setAggregate(false);
2678      CurClass->setPOD(false);
2679      CurClass->setEmpty(false);
2680      CurClass->setPolymorphic(true);
2681      CurClass->setHasTrivialConstructor(false);
2682      CurClass->setHasTrivialCopyConstructor(false);
2683      CurClass->setHasTrivialCopyAssignment(false);
2684    }
2685  }
2686
2687  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2688    // Look for virtual methods in base classes that this method might override.
2689
2690    BasePaths Paths;
2691    if (LookupInBases(cast<CXXRecordDecl>(DC),
2692                      MemberLookupCriteria(NewMD), Paths)) {
2693      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2694           E = Paths.found_decls_end(); I != E; ++I) {
2695        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2696          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2697              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2698            NewMD->addOverriddenMethod(OldMD);
2699        }
2700      }
2701    }
2702  }
2703
2704  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2705      !CurContext->isRecord()) {
2706    // C++ [class.static]p1:
2707    //   A data or function member of a class may be declared static
2708    //   in a class definition, in which case it is a static member of
2709    //   the class.
2710
2711    // Complain about the 'static' specifier if it's on an out-of-line
2712    // member function definition.
2713    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2714         diag::err_static_out_of_line)
2715      << CodeModificationHint::CreateRemoval(
2716                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2717  }
2718
2719  // Handle GNU asm-label extension (encoded as an attribute).
2720  if (Expr *E = (Expr*) D.getAsmLabel()) {
2721    // The parser guarantees this is a string.
2722    StringLiteral *SE = cast<StringLiteral>(E);
2723    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2724                                                        SE->getByteLength())));
2725  }
2726
2727  // Copy the parameter declarations from the declarator D to the function
2728  // declaration NewFD, if they are available.  First scavenge them into Params.
2729  llvm::SmallVector<ParmVarDecl*, 16> Params;
2730  if (D.getNumTypeObjects() > 0) {
2731    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2732
2733    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2734    // function that takes no arguments, not a function that takes a
2735    // single void argument.
2736    // We let through "const void" here because Sema::GetTypeForDeclarator
2737    // already checks for that case.
2738    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2739        FTI.ArgInfo[0].Param &&
2740        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2741      // Empty arg list, don't push any params.
2742      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2743
2744      // In C++, the empty parameter-type-list must be spelled "void"; a
2745      // typedef of void is not permitted.
2746      if (getLangOptions().CPlusPlus &&
2747          Param->getType().getUnqualifiedType() != Context.VoidTy)
2748        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2749      // FIXME: Leaks decl?
2750    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2751      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2752        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2753        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2754        Param->setDeclContext(NewFD);
2755        Params.push_back(Param);
2756      }
2757    }
2758
2759  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2760    // When we're declaring a function with a typedef, typeof, etc as in the
2761    // following example, we'll need to synthesize (unnamed)
2762    // parameters for use in the declaration.
2763    //
2764    // @code
2765    // typedef void fn(int);
2766    // fn f;
2767    // @endcode
2768
2769    // Synthesize a parameter for each argument type.
2770    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2771         AE = FT->arg_type_end(); AI != AE; ++AI) {
2772      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2773                                               SourceLocation(), 0,
2774                                               *AI, /*DInfo=*/0,
2775                                               VarDecl::None, 0);
2776      Param->setImplicit();
2777      Params.push_back(Param);
2778    }
2779  } else {
2780    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2781           "Should not need args for typedef of non-prototype fn");
2782  }
2783  // Finally, we know we have the right number of parameters, install them.
2784  NewFD->setParams(Context, Params.data(), Params.size());
2785
2786  // If name lookup finds a previous declaration that is not in the
2787  // same scope as the new declaration, this may still be an
2788  // acceptable redeclaration.
2789  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2790      !(NewFD->hasLinkage() &&
2791        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2792    PrevDecl = 0;
2793
2794  // If the declarator is a template-id, translate the parser's template
2795  // argument list into our AST format.
2796  bool HasExplicitTemplateArgs = false;
2797  llvm::SmallVector<TemplateArgument, 16> TemplateArgs;
2798  SourceLocation LAngleLoc, RAngleLoc;
2799  if (D.getKind() == Declarator::DK_TemplateId) {
2800    TemplateIdAnnotation *TemplateId = D.getTemplateId();
2801    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2802                                       TemplateId->getTemplateArgs(),
2803                                       TemplateId->getTemplateArgIsType(),
2804                                       TemplateId->NumArgs);
2805    translateTemplateArguments(TemplateArgsPtr,
2806                               TemplateId->getTemplateArgLocations(),
2807                               TemplateArgs);
2808    TemplateArgsPtr.release();
2809
2810    HasExplicitTemplateArgs = true;
2811    LAngleLoc = TemplateId->LAngleLoc;
2812    RAngleLoc = TemplateId->RAngleLoc;
2813
2814    if (FunctionTemplate) {
2815      // FIXME: Diagnostic function template with explicit template
2816      // arguments.
2817      HasExplicitTemplateArgs = false;
2818    } else if (!isFunctionTemplateSpecialization &&
2819               !D.getDeclSpec().isFriendSpecified()) {
2820      // We have encountered something that the user meant to be a
2821      // specialization (because it has explicitly-specified template
2822      // arguments) but that was not introduced with a "template<>" (or had
2823      // too few of them).
2824      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
2825        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
2826        << CodeModificationHint::CreateInsertion(
2827                                   D.getDeclSpec().getSourceRange().getBegin(),
2828                                                 "template<> ");
2829      isFunctionTemplateSpecialization = true;
2830    }
2831  }
2832
2833  if (isFunctionTemplateSpecialization &&
2834      CheckFunctionTemplateSpecialization(NewFD, HasExplicitTemplateArgs,
2835                                          LAngleLoc, TemplateArgs.data(),
2836                                          TemplateArgs.size(), RAngleLoc,
2837                                          PrevDecl))
2838    NewFD->setInvalidDecl();
2839
2840  // Perform semantic checking on the function declaration.
2841  bool OverloadableAttrRequired = false; // FIXME: HACK!
2842  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2843                           /*FIXME:*/OverloadableAttrRequired);
2844
2845  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2846    // An out-of-line member function declaration must also be a
2847    // definition (C++ [dcl.meaning]p1).
2848    // FIXME: Find a better way to recognize out-of-line specializations!
2849    if (!IsFunctionDefinition && !isFriend &&
2850        !(TemplateParamLists.size() && !FunctionTemplate)) {
2851      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2852        << D.getCXXScopeSpec().getRange();
2853      NewFD->setInvalidDecl();
2854    } else if (!Redeclaration && (!PrevDecl || !isUsingDecl(PrevDecl))) {
2855      // The user tried to provide an out-of-line definition for a
2856      // function that is a member of a class or namespace, but there
2857      // was no such member function declared (C++ [class.mfct]p2,
2858      // C++ [namespace.memdef]p2). For example:
2859      //
2860      // class X {
2861      //   void f() const;
2862      // };
2863      //
2864      // void X::f() { } // ill-formed
2865      //
2866      // Complain about this problem, and attempt to suggest close
2867      // matches (e.g., those that differ only in cv-qualifiers and
2868      // whether the parameter types are references).
2869      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2870        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2871      NewFD->setInvalidDecl();
2872
2873      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2874                                              true);
2875      assert(!Prev.isAmbiguous() &&
2876             "Cannot have an ambiguity in previous-declaration lookup");
2877      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2878           Func != FuncEnd; ++Func) {
2879        if (isa<FunctionDecl>(*Func) &&
2880            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2881          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2882      }
2883
2884      PrevDecl = 0;
2885    }
2886  }
2887
2888  // Handle attributes. We need to have merged decls when handling attributes
2889  // (for example to check for conflicts, etc).
2890  // FIXME: This needs to happen before we merge declarations. Then,
2891  // let attribute merging cope with attribute conflicts.
2892  ProcessDeclAttributes(S, NewFD, D);
2893
2894  // attributes declared post-definition are currently ignored
2895  if (Redeclaration && PrevDecl) {
2896    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2897    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2898      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2899      Diag(Def->getLocation(), diag::note_previous_definition);
2900    }
2901  }
2902
2903  AddKnownFunctionAttributes(NewFD);
2904
2905  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2906    // If a function name is overloadable in C, then every function
2907    // with that name must be marked "overloadable".
2908    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2909      << Redeclaration << NewFD;
2910    if (PrevDecl)
2911      Diag(PrevDecl->getLocation(),
2912           diag::note_attribute_overloadable_prev_overload);
2913    NewFD->addAttr(::new (Context) OverloadableAttr());
2914  }
2915
2916  // If this is a locally-scoped extern C function, update the
2917  // map of such names.
2918  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
2919      && !NewFD->isInvalidDecl())
2920    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2921
2922  // Set this FunctionDecl's range up to the right paren.
2923  NewFD->setLocEnd(D.getSourceRange().getEnd());
2924
2925  if (FunctionTemplate && NewFD->isInvalidDecl())
2926    FunctionTemplate->setInvalidDecl();
2927
2928  if (FunctionTemplate)
2929    return FunctionTemplate;
2930
2931  return NewFD;
2932}
2933
2934/// \brief Perform semantic checking of a new function declaration.
2935///
2936/// Performs semantic analysis of the new function declaration
2937/// NewFD. This routine performs all semantic checking that does not
2938/// require the actual declarator involved in the declaration, and is
2939/// used both for the declaration of functions as they are parsed
2940/// (called via ActOnDeclarator) and for the declaration of functions
2941/// that have been instantiated via C++ template instantiation (called
2942/// via InstantiateDecl).
2943///
2944/// This sets NewFD->isInvalidDecl() to true if there was an error.
2945void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2946                                    bool &Redeclaration,
2947                                    bool &OverloadableAttrRequired) {
2948  // If NewFD is already known erroneous, don't do any of this checking.
2949  if (NewFD->isInvalidDecl())
2950    return;
2951
2952  if (NewFD->getResultType()->isVariablyModifiedType()) {
2953    // Functions returning a variably modified type violate C99 6.7.5.2p2
2954    // because all functions have linkage.
2955    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2956    return NewFD->setInvalidDecl();
2957  }
2958
2959  if (NewFD->isMain())
2960    CheckMain(NewFD);
2961
2962  // Check for a previous declaration of this name.
2963  if (!PrevDecl && NewFD->isExternC()) {
2964    // Since we did not find anything by this name and we're declaring
2965    // an extern "C" function, look for a non-visible extern "C"
2966    // declaration with the same name.
2967    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2968      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2969    if (Pos != LocallyScopedExternalDecls.end())
2970      PrevDecl = Pos->second;
2971  }
2972
2973  // Merge or overload the declaration with an existing declaration of
2974  // the same name, if appropriate.
2975  if (PrevDecl) {
2976    // Determine whether NewFD is an overload of PrevDecl or
2977    // a declaration that requires merging. If it's an overload,
2978    // there's no more work to do here; we'll just add the new
2979    // function to the scope.
2980    OverloadedFunctionDecl::function_iterator MatchedDecl;
2981
2982    if (!getLangOptions().CPlusPlus &&
2983        AllowOverloadingOfFunction(PrevDecl, Context)) {
2984      OverloadableAttrRequired = true;
2985
2986      // Functions marked "overloadable" must have a prototype (that
2987      // we can't get through declaration merging).
2988      if (!NewFD->getType()->getAs<FunctionProtoType>()) {
2989        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2990          << NewFD;
2991        Redeclaration = true;
2992
2993        // Turn this into a variadic function with no parameters.
2994        QualType R = Context.getFunctionType(
2995                       NewFD->getType()->getAs<FunctionType>()->getResultType(),
2996                       0, 0, true, 0);
2997        NewFD->setType(R);
2998        return NewFD->setInvalidDecl();
2999      }
3000    }
3001
3002    if (PrevDecl &&
3003        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
3004         !IsOverload(NewFD, PrevDecl, MatchedDecl)) && !isUsingDecl(PrevDecl)) {
3005      Redeclaration = true;
3006      Decl *OldDecl = PrevDecl;
3007
3008      // If PrevDecl was an overloaded function, extract the
3009      // FunctionDecl that matched.
3010      if (isa<OverloadedFunctionDecl>(PrevDecl))
3011        OldDecl = *MatchedDecl;
3012
3013      // NewFD and OldDecl represent declarations that need to be
3014      // merged.
3015      if (MergeFunctionDecl(NewFD, OldDecl))
3016        return NewFD->setInvalidDecl();
3017
3018      if (FunctionTemplateDecl *OldTemplateDecl
3019            = dyn_cast<FunctionTemplateDecl>(OldDecl))
3020        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3021      else {
3022        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3023          NewFD->setAccess(OldDecl->getAccess());
3024        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3025      }
3026    }
3027  }
3028
3029  // Semantic checking for this function declaration (in isolation).
3030  if (getLangOptions().CPlusPlus) {
3031    // C++-specific checks.
3032    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3033      CheckConstructor(Constructor);
3034    } else if (isa<CXXDestructorDecl>(NewFD)) {
3035      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
3036      QualType ClassType = Context.getTypeDeclType(Record);
3037      if (!ClassType->isDependentType()) {
3038        DeclarationName Name
3039          = Context.DeclarationNames.getCXXDestructorName(
3040                                        Context.getCanonicalType(ClassType));
3041        if (NewFD->getDeclName() != Name) {
3042          Diag(NewFD->getLocation(), diag::err_destructor_name);
3043          return NewFD->setInvalidDecl();
3044        }
3045      }
3046      Record->setUserDeclaredDestructor(true);
3047      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3048      // user-defined destructor.
3049      Record->setPOD(false);
3050
3051      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3052      // declared destructor.
3053      // FIXME: C++0x: don't do this for "= default" destructors
3054      Record->setHasTrivialDestructor(false);
3055    } else if (CXXConversionDecl *Conversion
3056               = dyn_cast<CXXConversionDecl>(NewFD))
3057      ActOnConversionDeclarator(Conversion);
3058
3059    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3060    if (NewFD->isOverloadedOperator() &&
3061        CheckOverloadedOperatorDeclaration(NewFD))
3062      return NewFD->setInvalidDecl();
3063
3064    // In C++, check default arguments now that we have merged decls. Unless
3065    // the lexical context is the class, because in this case this is done
3066    // during delayed parsing anyway.
3067    if (!CurContext->isRecord())
3068      CheckCXXDefaultArguments(NewFD);
3069  }
3070}
3071
3072void Sema::CheckMain(FunctionDecl* FD) {
3073  // C++ [basic.start.main]p3:  A program that declares main to be inline
3074  //   or static is ill-formed.
3075  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3076  //   shall not appear in a declaration of main.
3077  // static main is not an error under C99, but we should warn about it.
3078  bool isInline = FD->isInline();
3079  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3080  if (isInline || isStatic) {
3081    unsigned diagID = diag::warn_unusual_main_decl;
3082    if (isInline || getLangOptions().CPlusPlus)
3083      diagID = diag::err_unusual_main_decl;
3084
3085    int which = isStatic + (isInline << 1) - 1;
3086    Diag(FD->getLocation(), diagID) << which;
3087  }
3088
3089  QualType T = FD->getType();
3090  assert(T->isFunctionType() && "function decl is not of function type");
3091  const FunctionType* FT = T->getAs<FunctionType>();
3092
3093  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3094    // TODO: add a replacement fixit to turn the return type into 'int'.
3095    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3096    FD->setInvalidDecl(true);
3097  }
3098
3099  // Treat protoless main() as nullary.
3100  if (isa<FunctionNoProtoType>(FT)) return;
3101
3102  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3103  unsigned nparams = FTP->getNumArgs();
3104  assert(FD->getNumParams() == nparams);
3105
3106  if (nparams > 3) {
3107    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3108    FD->setInvalidDecl(true);
3109    nparams = 3;
3110  }
3111
3112  // FIXME: a lot of the following diagnostics would be improved
3113  // if we had some location information about types.
3114
3115  QualType CharPP =
3116    Context.getPointerType(Context.getPointerType(Context.CharTy));
3117  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3118
3119  for (unsigned i = 0; i < nparams; ++i) {
3120    QualType AT = FTP->getArgType(i);
3121
3122    bool mismatch = true;
3123
3124    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3125      mismatch = false;
3126    else if (Expected[i] == CharPP) {
3127      // As an extension, the following forms are okay:
3128      //   char const **
3129      //   char const * const *
3130      //   char * const *
3131
3132      QualifierCollector qs;
3133      const PointerType* PT;
3134      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3135          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3136          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3137        qs.removeConst();
3138        mismatch = !qs.empty();
3139      }
3140    }
3141
3142    if (mismatch) {
3143      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3144      // TODO: suggest replacing given type with expected type
3145      FD->setInvalidDecl(true);
3146    }
3147  }
3148
3149  if (nparams == 1 && !FD->isInvalidDecl()) {
3150    Diag(FD->getLocation(), diag::warn_main_one_arg);
3151  }
3152}
3153
3154bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3155  // FIXME: Need strict checking.  In C89, we need to check for
3156  // any assignment, increment, decrement, function-calls, or
3157  // commas outside of a sizeof.  In C99, it's the same list,
3158  // except that the aforementioned are allowed in unevaluated
3159  // expressions.  Everything else falls under the
3160  // "may accept other forms of constant expressions" exception.
3161  // (We never end up here for C++, so the constant expression
3162  // rules there don't matter.)
3163  if (Init->isConstantInitializer(Context))
3164    return false;
3165  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3166    << Init->getSourceRange();
3167  return true;
3168}
3169
3170void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3171  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3172}
3173
3174/// AddInitializerToDecl - Adds the initializer Init to the
3175/// declaration dcl. If DirectInit is true, this is C++ direct
3176/// initialization rather than copy initialization.
3177void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3178  Decl *RealDecl = dcl.getAs<Decl>();
3179  // If there is no declaration, there was an error parsing it.  Just ignore
3180  // the initializer.
3181  if (RealDecl == 0)
3182    return;
3183
3184  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3185    // With declarators parsed the way they are, the parser cannot
3186    // distinguish between a normal initializer and a pure-specifier.
3187    // Thus this grotesque test.
3188    IntegerLiteral *IL;
3189    Expr *Init = static_cast<Expr *>(init.get());
3190    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3191        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3192      if (Method->isVirtualAsWritten()) {
3193        Method->setPure();
3194
3195        // A class is abstract if at least one function is pure virtual.
3196        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3197      } else if (!Method->isInvalidDecl()) {
3198        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3199          << Method->getDeclName() << Init->getSourceRange();
3200        Method->setInvalidDecl();
3201      }
3202    } else {
3203      Diag(Method->getLocation(), diag::err_member_function_initialization)
3204        << Method->getDeclName() << Init->getSourceRange();
3205      Method->setInvalidDecl();
3206    }
3207    return;
3208  }
3209
3210  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3211  if (!VDecl) {
3212    if (getLangOptions().CPlusPlus &&
3213        RealDecl->getLexicalDeclContext()->isRecord() &&
3214        isa<NamedDecl>(RealDecl))
3215      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3216        << cast<NamedDecl>(RealDecl)->getDeclName();
3217    else
3218      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3219    RealDecl->setInvalidDecl();
3220    return;
3221  }
3222
3223  if (!VDecl->getType()->isArrayType() &&
3224      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3225                          diag::err_typecheck_decl_incomplete_type)) {
3226    RealDecl->setInvalidDecl();
3227    return;
3228  }
3229
3230  const VarDecl *Def = 0;
3231  if (VDecl->getDefinition(Def)) {
3232    Diag(VDecl->getLocation(), diag::err_redefinition)
3233      << VDecl->getDeclName();
3234    Diag(Def->getLocation(), diag::note_previous_definition);
3235    VDecl->setInvalidDecl();
3236    return;
3237  }
3238
3239  // Take ownership of the expression, now that we're sure we have somewhere
3240  // to put it.
3241  Expr *Init = init.takeAs<Expr>();
3242  assert(Init && "missing initializer");
3243
3244  // Get the decls type and save a reference for later, since
3245  // CheckInitializerTypes may change it.
3246  QualType DclT = VDecl->getType(), SavT = DclT;
3247  if (VDecl->isBlockVarDecl()) {
3248    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3249      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3250      VDecl->setInvalidDecl();
3251    } else if (!VDecl->isInvalidDecl()) {
3252      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3253                                VDecl->getDeclName(), DirectInit))
3254        VDecl->setInvalidDecl();
3255
3256      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3257      // Don't check invalid declarations to avoid emitting useless diagnostics.
3258      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3259        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3260          CheckForConstantInitializer(Init, DclT);
3261      }
3262    }
3263  } else if (VDecl->isStaticDataMember() &&
3264             VDecl->getLexicalDeclContext()->isRecord()) {
3265    // This is an in-class initialization for a static data member, e.g.,
3266    //
3267    // struct S {
3268    //   static const int value = 17;
3269    // };
3270
3271    // Attach the initializer
3272    VDecl->setInit(Context, Init);
3273
3274    // C++ [class.mem]p4:
3275    //   A member-declarator can contain a constant-initializer only
3276    //   if it declares a static member (9.4) of const integral or
3277    //   const enumeration type, see 9.4.2.
3278    QualType T = VDecl->getType();
3279    if (!T->isDependentType() &&
3280        (!Context.getCanonicalType(T).isConstQualified() ||
3281         !T->isIntegralType())) {
3282      Diag(VDecl->getLocation(), diag::err_member_initialization)
3283        << VDecl->getDeclName() << Init->getSourceRange();
3284      VDecl->setInvalidDecl();
3285    } else {
3286      // C++ [class.static.data]p4:
3287      //   If a static data member is of const integral or const
3288      //   enumeration type, its declaration in the class definition
3289      //   can specify a constant-initializer which shall be an
3290      //   integral constant expression (5.19).
3291      if (!Init->isTypeDependent() &&
3292          !Init->getType()->isIntegralType()) {
3293        // We have a non-dependent, non-integral or enumeration type.
3294        Diag(Init->getSourceRange().getBegin(),
3295             diag::err_in_class_initializer_non_integral_type)
3296          << Init->getType() << Init->getSourceRange();
3297        VDecl->setInvalidDecl();
3298      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3299        // Check whether the expression is a constant expression.
3300        llvm::APSInt Value;
3301        SourceLocation Loc;
3302        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3303          Diag(Loc, diag::err_in_class_initializer_non_constant)
3304            << Init->getSourceRange();
3305          VDecl->setInvalidDecl();
3306        } else if (!VDecl->getType()->isDependentType())
3307          ImpCastExprToType(Init, VDecl->getType());
3308      }
3309    }
3310  } else if (VDecl->isFileVarDecl()) {
3311    if (VDecl->getStorageClass() == VarDecl::Extern)
3312      Diag(VDecl->getLocation(), diag::warn_extern_init);
3313    if (!VDecl->isInvalidDecl())
3314      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3315                                VDecl->getDeclName(), DirectInit))
3316        VDecl->setInvalidDecl();
3317
3318    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3319    // Don't check invalid declarations to avoid emitting useless diagnostics.
3320    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3321      // C99 6.7.8p4. All file scoped initializers need to be constant.
3322      CheckForConstantInitializer(Init, DclT);
3323    }
3324  }
3325  // If the type changed, it means we had an incomplete type that was
3326  // completed by the initializer. For example:
3327  //   int ary[] = { 1, 3, 5 };
3328  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3329  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3330    VDecl->setType(DclT);
3331    Init->setType(DclT);
3332  }
3333
3334  Init = MaybeCreateCXXExprWithTemporaries(Init,
3335                                           /*ShouldDestroyTemporaries=*/true);
3336  // Attach the initializer to the decl.
3337  VDecl->setInit(Context, Init);
3338
3339  // If the previous declaration of VDecl was a tentative definition,
3340  // remove it from the set of tentative definitions.
3341  if (VDecl->getPreviousDeclaration() &&
3342      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3343    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3344    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3345  }
3346
3347  return;
3348}
3349
3350void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3351                                  bool TypeContainsUndeducedAuto) {
3352  Decl *RealDecl = dcl.getAs<Decl>();
3353
3354  // If there is no declaration, there was an error parsing it. Just ignore it.
3355  if (RealDecl == 0)
3356    return;
3357
3358  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3359    QualType Type = Var->getType();
3360
3361    // Record tentative definitions.
3362    if (Var->isTentativeDefinition(Context)) {
3363      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3364        InsertPair =
3365           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3366
3367      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3368      // want the second one in the map.
3369      InsertPair.first->second = Var;
3370
3371      // However, for the list, we don't care about the order, just make sure
3372      // that there are no dupes for a given declaration name.
3373      if (InsertPair.second)
3374        TentativeDefinitionList.push_back(Var->getDeclName());
3375    }
3376
3377    // C++ [dcl.init.ref]p3:
3378    //   The initializer can be omitted for a reference only in a
3379    //   parameter declaration (8.3.5), in the declaration of a
3380    //   function return type, in the declaration of a class member
3381    //   within its class declaration (9.2), and where the extern
3382    //   specifier is explicitly used.
3383    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3384      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3385        << Var->getDeclName()
3386        << SourceRange(Var->getLocation(), Var->getLocation());
3387      Var->setInvalidDecl();
3388      return;
3389    }
3390
3391    // C++0x [dcl.spec.auto]p3
3392    if (TypeContainsUndeducedAuto) {
3393      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3394        << Var->getDeclName() << Type;
3395      Var->setInvalidDecl();
3396      return;
3397    }
3398
3399    // C++ [dcl.init]p9:
3400    //   If no initializer is specified for an object, and the object
3401    //   is of (possibly cv-qualified) non-POD class type (or array
3402    //   thereof), the object shall be default-initialized; if the
3403    //   object is of const-qualified type, the underlying class type
3404    //   shall have a user-declared default constructor.
3405    //
3406    // FIXME: Diagnose the "user-declared default constructor" bit.
3407    if (getLangOptions().CPlusPlus) {
3408      QualType InitType = Type;
3409      if (const ArrayType *Array = Context.getAsArrayType(Type))
3410        InitType = Array->getElementType();
3411      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3412          InitType->isRecordType() && !InitType->isDependentType()) {
3413        if (!RequireCompleteType(Var->getLocation(), InitType,
3414                                 diag::err_invalid_incomplete_type_use)) {
3415          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3416
3417          CXXConstructorDecl *Constructor
3418            = PerformInitializationByConstructor(InitType,
3419                                                 MultiExprArg(*this, 0, 0),
3420                                                 Var->getLocation(),
3421                                               SourceRange(Var->getLocation(),
3422                                                           Var->getLocation()),
3423                                                 Var->getDeclName(),
3424                                                 IK_Default,
3425                                                 ConstructorArgs);
3426
3427          // FIXME: Location info for the variable initialization?
3428          if (!Constructor)
3429            Var->setInvalidDecl();
3430          else {
3431            // FIXME: Cope with initialization of arrays
3432            if (!Constructor->isTrivial() &&
3433                InitializeVarWithConstructor(Var, Constructor, InitType,
3434                                             move_arg(ConstructorArgs)))
3435              Var->setInvalidDecl();
3436
3437            FinalizeVarWithDestructor(Var, InitType);
3438          }
3439        }
3440      }
3441    }
3442
3443#if 0
3444    // FIXME: Temporarily disabled because we are not properly parsing
3445    // linkage specifications on declarations, e.g.,
3446    //
3447    //   extern "C" const CGPoint CGPointerZero;
3448    //
3449    // C++ [dcl.init]p9:
3450    //
3451    //     If no initializer is specified for an object, and the
3452    //     object is of (possibly cv-qualified) non-POD class type (or
3453    //     array thereof), the object shall be default-initialized; if
3454    //     the object is of const-qualified type, the underlying class
3455    //     type shall have a user-declared default
3456    //     constructor. Otherwise, if no initializer is specified for
3457    //     an object, the object and its subobjects, if any, have an
3458    //     indeterminate initial value; if the object or any of its
3459    //     subobjects are of const-qualified type, the program is
3460    //     ill-formed.
3461    //
3462    // This isn't technically an error in C, so we don't diagnose it.
3463    //
3464    // FIXME: Actually perform the POD/user-defined default
3465    // constructor check.
3466    if (getLangOptions().CPlusPlus &&
3467        Context.getCanonicalType(Type).isConstQualified() &&
3468        !Var->hasExternalStorage())
3469      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3470        << Var->getName()
3471        << SourceRange(Var->getLocation(), Var->getLocation());
3472#endif
3473  }
3474}
3475
3476Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3477                                                   DeclPtrTy *Group,
3478                                                   unsigned NumDecls) {
3479  llvm::SmallVector<Decl*, 8> Decls;
3480
3481  if (DS.isTypeSpecOwned())
3482    Decls.push_back((Decl*)DS.getTypeRep());
3483
3484  for (unsigned i = 0; i != NumDecls; ++i)
3485    if (Decl *D = Group[i].getAs<Decl>())
3486      Decls.push_back(D);
3487
3488  // Perform semantic analysis that depends on having fully processed both
3489  // the declarator and initializer.
3490  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3491    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3492    if (!IDecl)
3493      continue;
3494    QualType T = IDecl->getType();
3495
3496    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3497    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3498    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3499      if (!IDecl->isInvalidDecl() &&
3500          RequireCompleteType(IDecl->getLocation(), T,
3501                              diag::err_typecheck_decl_incomplete_type))
3502        IDecl->setInvalidDecl();
3503    }
3504    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3505    // object that has file scope without an initializer, and without a
3506    // storage-class specifier or with the storage-class specifier "static",
3507    // constitutes a tentative definition. Note: A tentative definition with
3508    // external linkage is valid (C99 6.2.2p5).
3509    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3510      if (const IncompleteArrayType *ArrayT
3511          = Context.getAsIncompleteArrayType(T)) {
3512        if (RequireCompleteType(IDecl->getLocation(),
3513                                ArrayT->getElementType(),
3514                                diag::err_illegal_decl_array_incomplete_type))
3515          IDecl->setInvalidDecl();
3516      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3517        // C99 6.9.2p3: If the declaration of an identifier for an object is
3518        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3519        // declared type shall not be an incomplete type.
3520        // NOTE: code such as the following
3521        //     static struct s;
3522        //     struct s { int a; };
3523        // is accepted by gcc. Hence here we issue a warning instead of
3524        // an error and we do not invalidate the static declaration.
3525        // NOTE: to avoid multiple warnings, only check the first declaration.
3526        if (IDecl->getPreviousDeclaration() == 0)
3527          RequireCompleteType(IDecl->getLocation(), T,
3528                              diag::ext_typecheck_decl_incomplete_type);
3529      }
3530    }
3531  }
3532  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3533                                                   Decls.data(), Decls.size()));
3534}
3535
3536
3537/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3538/// to introduce parameters into function prototype scope.
3539Sema::DeclPtrTy
3540Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3541  const DeclSpec &DS = D.getDeclSpec();
3542
3543  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3544  VarDecl::StorageClass StorageClass = VarDecl::None;
3545  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3546    StorageClass = VarDecl::Register;
3547  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3548    Diag(DS.getStorageClassSpecLoc(),
3549         diag::err_invalid_storage_class_in_func_decl);
3550    D.getMutableDeclSpec().ClearStorageClassSpecs();
3551  }
3552
3553  if (D.getDeclSpec().isThreadSpecified())
3554    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3555
3556  DiagnoseFunctionSpecifiers(D);
3557
3558  // Check that there are no default arguments inside the type of this
3559  // parameter (C++ only).
3560  if (getLangOptions().CPlusPlus)
3561    CheckExtraCXXDefaultArguments(D);
3562
3563  DeclaratorInfo *DInfo = 0;
3564  TagDecl *OwnedDecl = 0;
3565  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3566                                               &OwnedDecl);
3567
3568  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3569    // C++ [dcl.fct]p6:
3570    //   Types shall not be defined in return or parameter types.
3571    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3572      << Context.getTypeDeclType(OwnedDecl);
3573  }
3574
3575  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3576  // Can this happen for params?  We already checked that they don't conflict
3577  // among each other.  Here they can only shadow globals, which is ok.
3578  IdentifierInfo *II = D.getIdentifier();
3579  if (II) {
3580    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3581      if (PrevDecl->isTemplateParameter()) {
3582        // Maybe we will complain about the shadowed template parameter.
3583        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3584        // Just pretend that we didn't see the previous declaration.
3585        PrevDecl = 0;
3586      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3587        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3588
3589        // Recover by removing the name
3590        II = 0;
3591        D.SetIdentifier(0, D.getIdentifierLoc());
3592      }
3593    }
3594  }
3595
3596  // Parameters can not be abstract class types.
3597  // For record types, this is done by the AbstractClassUsageDiagnoser once
3598  // the class has been completely parsed.
3599  if (!CurContext->isRecord() &&
3600      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3601                             diag::err_abstract_type_in_decl,
3602                             AbstractParamType))
3603    D.setInvalidType(true);
3604
3605  QualType T = adjustParameterType(parmDeclType);
3606
3607  ParmVarDecl *New;
3608  if (T == parmDeclType) // parameter type did not need adjustment
3609    New = ParmVarDecl::Create(Context, CurContext,
3610                              D.getIdentifierLoc(), II,
3611                              parmDeclType, DInfo, StorageClass,
3612                              0);
3613  else // keep track of both the adjusted and unadjusted types
3614    New = OriginalParmVarDecl::Create(Context, CurContext,
3615                                      D.getIdentifierLoc(), II, T, DInfo,
3616                                      parmDeclType, StorageClass, 0);
3617
3618  if (D.isInvalidType())
3619    New->setInvalidDecl();
3620
3621  // Parameter declarators cannot be interface types. All ObjC objects are
3622  // passed by reference.
3623  if (T->isObjCInterfaceType()) {
3624    Diag(D.getIdentifierLoc(),
3625         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3626    New->setInvalidDecl();
3627  }
3628
3629  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3630  if (D.getCXXScopeSpec().isSet()) {
3631    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3632      << D.getCXXScopeSpec().getRange();
3633    New->setInvalidDecl();
3634  }
3635
3636  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3637  // duration shall not be qualified by an address-space qualifier."
3638  // Since all parameters have automatic store duration, they can not have
3639  // an address space.
3640  if (T.getAddressSpace() != 0) {
3641    Diag(D.getIdentifierLoc(),
3642         diag::err_arg_with_address_space);
3643    New->setInvalidDecl();
3644  }
3645
3646
3647  // Add the parameter declaration into this scope.
3648  S->AddDecl(DeclPtrTy::make(New));
3649  if (II)
3650    IdResolver.AddDecl(New);
3651
3652  ProcessDeclAttributes(S, New, D);
3653
3654  if (New->hasAttr<BlocksAttr>()) {
3655    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3656  }
3657  return DeclPtrTy::make(New);
3658}
3659
3660void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3661                                           SourceLocation LocAfterDecls) {
3662  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3663         "Not a function declarator!");
3664  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3665
3666  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3667  // for a K&R function.
3668  if (!FTI.hasPrototype) {
3669    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3670      --i;
3671      if (FTI.ArgInfo[i].Param == 0) {
3672        std::string Code = "  int ";
3673        Code += FTI.ArgInfo[i].Ident->getName();
3674        Code += ";\n";
3675        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3676          << FTI.ArgInfo[i].Ident
3677          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3678
3679        // Implicitly declare the argument as type 'int' for lack of a better
3680        // type.
3681        DeclSpec DS;
3682        const char* PrevSpec; // unused
3683        unsigned DiagID; // unused
3684        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3685                           PrevSpec, DiagID);
3686        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3687        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3688        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3689      }
3690    }
3691  }
3692}
3693
3694Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3695                                              Declarator &D) {
3696  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3697  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3698         "Not a function declarator!");
3699  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3700
3701  if (FTI.hasPrototype) {
3702    // FIXME: Diagnose arguments without names in C.
3703  }
3704
3705  Scope *ParentScope = FnBodyScope->getParent();
3706
3707  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3708                                  MultiTemplateParamsArg(*this),
3709                                  /*IsFunctionDefinition=*/true);
3710  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3711}
3712
3713Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3714  if (!D)
3715    return D;
3716  FunctionDecl *FD = 0;
3717
3718  if (FunctionTemplateDecl *FunTmpl
3719        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3720    FD = FunTmpl->getTemplatedDecl();
3721  else
3722    FD = cast<FunctionDecl>(D.getAs<Decl>());
3723
3724  CurFunctionNeedsScopeChecking = false;
3725
3726  // See if this is a redefinition.
3727  const FunctionDecl *Definition;
3728  if (FD->getBody(Definition)) {
3729    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3730    Diag(Definition->getLocation(), diag::note_previous_definition);
3731  }
3732
3733  // Builtin functions cannot be defined.
3734  if (unsigned BuiltinID = FD->getBuiltinID()) {
3735    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3736      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3737      FD->setInvalidDecl();
3738    }
3739  }
3740
3741  // The return type of a function definition must be complete
3742  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3743  QualType ResultType = FD->getResultType();
3744  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3745      !FD->isInvalidDecl() &&
3746      RequireCompleteType(FD->getLocation(), ResultType,
3747                          diag::err_func_def_incomplete_result))
3748    FD->setInvalidDecl();
3749
3750  // GNU warning -Wmissing-prototypes:
3751  //   Warn if a global function is defined without a previous
3752  //   prototype declaration. This warning is issued even if the
3753  //   definition itself provides a prototype. The aim is to detect
3754  //   global functions that fail to be declared in header files.
3755  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3756      !FD->isMain()) {
3757    bool MissingPrototype = true;
3758    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3759         Prev; Prev = Prev->getPreviousDeclaration()) {
3760      // Ignore any declarations that occur in function or method
3761      // scope, because they aren't visible from the header.
3762      if (Prev->getDeclContext()->isFunctionOrMethod())
3763        continue;
3764
3765      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3766      break;
3767    }
3768
3769    if (MissingPrototype)
3770      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3771  }
3772
3773  if (FnBodyScope)
3774    PushDeclContext(FnBodyScope, FD);
3775
3776  // Check the validity of our function parameters
3777  CheckParmsForFunctionDef(FD);
3778
3779  // Introduce our parameters into the function scope
3780  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3781    ParmVarDecl *Param = FD->getParamDecl(p);
3782    Param->setOwningFunction(FD);
3783
3784    // If this has an identifier, add it to the scope stack.
3785    if (Param->getIdentifier() && FnBodyScope)
3786      PushOnScopeChains(Param, FnBodyScope);
3787  }
3788
3789  // Checking attributes of current function definition
3790  // dllimport attribute.
3791  if (FD->getAttr<DLLImportAttr>() &&
3792      (!FD->getAttr<DLLExportAttr>())) {
3793    // dllimport attribute cannot be applied to definition.
3794    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3795      Diag(FD->getLocation(),
3796           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3797        << "dllimport";
3798      FD->setInvalidDecl();
3799      return DeclPtrTy::make(FD);
3800    } else {
3801      // If a symbol previously declared dllimport is later defined, the
3802      // attribute is ignored in subsequent references, and a warning is
3803      // emitted.
3804      Diag(FD->getLocation(),
3805           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3806        << FD->getNameAsCString() << "dllimport";
3807    }
3808  }
3809  return DeclPtrTy::make(FD);
3810}
3811
3812Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3813  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3814}
3815
3816Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3817                                              bool IsInstantiation) {
3818  Decl *dcl = D.getAs<Decl>();
3819  Stmt *Body = BodyArg.takeAs<Stmt>();
3820
3821  FunctionDecl *FD = 0;
3822  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3823  if (FunTmpl)
3824    FD = FunTmpl->getTemplatedDecl();
3825  else
3826    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3827
3828  if (FD) {
3829    FD->setBody(Body);
3830    if (FD->isMain())
3831      // C and C++ allow for main to automagically return 0.
3832      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3833      FD->setHasImplicitReturnZero(true);
3834    else
3835      CheckFallThroughForFunctionDef(FD, Body);
3836
3837    if (!FD->isInvalidDecl())
3838      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3839
3840    // C++ [basic.def.odr]p2:
3841    //   [...] A virtual member function is used if it is not pure. [...]
3842    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3843      if (Method->isVirtual() && !Method->isPure())
3844        MarkDeclarationReferenced(Method->getLocation(), Method);
3845
3846    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3847  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3848    assert(MD == getCurMethodDecl() && "Method parsing confused");
3849    MD->setBody(Body);
3850    CheckFallThroughForFunctionDef(MD, Body);
3851    MD->setEndLoc(Body->getLocEnd());
3852
3853    if (!MD->isInvalidDecl())
3854      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3855  } else {
3856    Body->Destroy(Context);
3857    return DeclPtrTy();
3858  }
3859  if (!IsInstantiation)
3860    PopDeclContext();
3861
3862  // Verify and clean out per-function state.
3863
3864  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3865
3866  // Check goto/label use.
3867  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3868       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3869    LabelStmt *L = I->second;
3870
3871    // Verify that we have no forward references left.  If so, there was a goto
3872    // or address of a label taken, but no definition of it.  Label fwd
3873    // definitions are indicated with a null substmt.
3874    if (L->getSubStmt() != 0)
3875      continue;
3876
3877    // Emit error.
3878    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3879
3880    // At this point, we have gotos that use the bogus label.  Stitch it into
3881    // the function body so that they aren't leaked and that the AST is well
3882    // formed.
3883    if (Body == 0) {
3884      // The whole function wasn't parsed correctly, just delete this.
3885      L->Destroy(Context);
3886      continue;
3887    }
3888
3889    // Otherwise, the body is valid: we want to stitch the label decl into the
3890    // function somewhere so that it is properly owned and so that the goto
3891    // has a valid target.  Do this by creating a new compound stmt with the
3892    // label in it.
3893
3894    // Give the label a sub-statement.
3895    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3896
3897    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3898                               cast<CXXTryStmt>(Body)->getTryBlock() :
3899                               cast<CompoundStmt>(Body);
3900    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3901    Elements.push_back(L);
3902    Compound->setStmts(Context, &Elements[0], Elements.size());
3903  }
3904  FunctionLabelMap.clear();
3905
3906  if (!Body) return D;
3907
3908  // Verify that that gotos and switch cases don't jump into scopes illegally.
3909  if (CurFunctionNeedsScopeChecking)
3910    DiagnoseInvalidJumps(Body);
3911
3912  // C++ constructors that have function-try-blocks can't have return
3913  // statements in the handlers of that block. (C++ [except.handle]p14)
3914  // Verify this.
3915  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3916    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3917
3918  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3919    computeBaseOrMembersToDestroy(Destructor);
3920  return D;
3921}
3922
3923/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3924/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3925NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3926                                          IdentifierInfo &II, Scope *S) {
3927  // Before we produce a declaration for an implicitly defined
3928  // function, see whether there was a locally-scoped declaration of
3929  // this name as a function or variable. If so, use that
3930  // (non-visible) declaration, and complain about it.
3931  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3932    = LocallyScopedExternalDecls.find(&II);
3933  if (Pos != LocallyScopedExternalDecls.end()) {
3934    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3935    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3936    return Pos->second;
3937  }
3938
3939  // Extension in C99.  Legal in C90, but warn about it.
3940  static const unsigned int BuiltinLen = strlen("__builtin_");
3941  if (II.getLength() > BuiltinLen &&
3942      std::equal(II.getName(), II.getName() + BuiltinLen, "__builtin_"))
3943    Diag(Loc, diag::warn_builtin_unknown) << &II;
3944  else if (getLangOptions().C99)
3945    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3946  else
3947    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3948
3949  // Set a Declarator for the implicit definition: int foo();
3950  const char *Dummy;
3951  DeclSpec DS;
3952  unsigned DiagID;
3953  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3954  Error = Error; // Silence warning.
3955  assert(!Error && "Error setting up implicit decl!");
3956  Declarator D(DS, Declarator::BlockContext);
3957  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3958                                             0, 0, false, SourceLocation(),
3959                                             false, 0,0,0, Loc, Loc, D),
3960                SourceLocation());
3961  D.SetIdentifier(&II, Loc);
3962
3963  // Insert this function into translation-unit scope.
3964
3965  DeclContext *PrevDC = CurContext;
3966  CurContext = Context.getTranslationUnitDecl();
3967
3968  FunctionDecl *FD =
3969 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3970  FD->setImplicit();
3971
3972  CurContext = PrevDC;
3973
3974  AddKnownFunctionAttributes(FD);
3975
3976  return FD;
3977}
3978
3979/// \brief Adds any function attributes that we know a priori based on
3980/// the declaration of this function.
3981///
3982/// These attributes can apply both to implicitly-declared builtins
3983/// (like __builtin___printf_chk) or to library-declared functions
3984/// like NSLog or printf.
3985void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3986  if (FD->isInvalidDecl())
3987    return;
3988
3989  // If this is a built-in function, map its builtin attributes to
3990  // actual attributes.
3991  if (unsigned BuiltinID = FD->getBuiltinID()) {
3992    // Handle printf-formatting attributes.
3993    unsigned FormatIdx;
3994    bool HasVAListArg;
3995    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3996      if (!FD->getAttr<FormatAttr>())
3997        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3998                                             HasVAListArg ? 0 : FormatIdx + 2));
3999    }
4000
4001    // Mark const if we don't care about errno and that is the only
4002    // thing preventing the function from being const. This allows
4003    // IRgen to use LLVM intrinsics for such functions.
4004    if (!getLangOptions().MathErrno &&
4005        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4006      if (!FD->getAttr<ConstAttr>())
4007        FD->addAttr(::new (Context) ConstAttr());
4008    }
4009
4010    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4011      FD->addAttr(::new (Context) NoReturnAttr());
4012  }
4013
4014  IdentifierInfo *Name = FD->getIdentifier();
4015  if (!Name)
4016    return;
4017  if ((!getLangOptions().CPlusPlus &&
4018       FD->getDeclContext()->isTranslationUnit()) ||
4019      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4020       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4021       LinkageSpecDecl::lang_c)) {
4022    // Okay: this could be a libc/libm/Objective-C function we know
4023    // about.
4024  } else
4025    return;
4026
4027  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4028    // FIXME: NSLog and NSLogv should be target specific
4029    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4030      // FIXME: We known better than our headers.
4031      const_cast<FormatAttr *>(Format)->setType("printf");
4032    } else
4033      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4034                                             Name->isStr("NSLogv") ? 0 : 2));
4035  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4036    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4037    // target-specific builtins, perhaps?
4038    if (!FD->getAttr<FormatAttr>())
4039      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4040                                             Name->isStr("vasprintf") ? 0 : 3));
4041  }
4042}
4043
4044TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
4045  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4046  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4047
4048  // Scope manipulation handled by caller.
4049  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4050                                           D.getIdentifierLoc(),
4051                                           D.getIdentifier(),
4052                                           T);
4053
4054  if (const TagType *TT = T->getAs<TagType>()) {
4055    TagDecl *TD = TT->getDecl();
4056
4057    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4058    // keep track of the TypedefDecl.
4059    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4060      TD->setTypedefForAnonDecl(NewTD);
4061  }
4062
4063  if (D.isInvalidType())
4064    NewTD->setInvalidDecl();
4065  return NewTD;
4066}
4067
4068
4069/// \brief Determine whether a tag with a given kind is acceptable
4070/// as a redeclaration of the given tag declaration.
4071///
4072/// \returns true if the new tag kind is acceptable, false otherwise.
4073bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4074                                        TagDecl::TagKind NewTag,
4075                                        SourceLocation NewTagLoc,
4076                                        const IdentifierInfo &Name) {
4077  // C++ [dcl.type.elab]p3:
4078  //   The class-key or enum keyword present in the
4079  //   elaborated-type-specifier shall agree in kind with the
4080  //   declaration to which the name in theelaborated-type-specifier
4081  //   refers. This rule also applies to the form of
4082  //   elaborated-type-specifier that declares a class-name or
4083  //   friend class since it can be construed as referring to the
4084  //   definition of the class. Thus, in any
4085  //   elaborated-type-specifier, the enum keyword shall be used to
4086  //   refer to an enumeration (7.2), the union class-keyshall be
4087  //   used to refer to a union (clause 9), and either the class or
4088  //   struct class-key shall be used to refer to a class (clause 9)
4089  //   declared using the class or struct class-key.
4090  TagDecl::TagKind OldTag = Previous->getTagKind();
4091  if (OldTag == NewTag)
4092    return true;
4093
4094  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4095      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4096    // Warn about the struct/class tag mismatch.
4097    bool isTemplate = false;
4098    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4099      isTemplate = Record->getDescribedClassTemplate();
4100
4101    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4102      << (NewTag == TagDecl::TK_class)
4103      << isTemplate << &Name
4104      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4105                              OldTag == TagDecl::TK_class? "class" : "struct");
4106    Diag(Previous->getLocation(), diag::note_previous_use);
4107    return true;
4108  }
4109  return false;
4110}
4111
4112/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4113/// former case, Name will be non-null.  In the later case, Name will be null.
4114/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4115/// reference/declaration/definition of a tag.
4116Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4117                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4118                               IdentifierInfo *Name, SourceLocation NameLoc,
4119                               AttributeList *Attr, AccessSpecifier AS,
4120                               MultiTemplateParamsArg TemplateParameterLists,
4121                               bool &OwnedDecl, bool &IsDependent) {
4122  // If this is not a definition, it must have a name.
4123  assert((Name != 0 || TUK == TUK_Definition) &&
4124         "Nameless record must be a definition!");
4125
4126  OwnedDecl = false;
4127  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4128
4129  if (TUK != TUK_Reference) {
4130    if (TemplateParameterList *TemplateParams
4131          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4132                        (TemplateParameterList**)TemplateParameterLists.get(),
4133                                              TemplateParameterLists.size())) {
4134      if (TemplateParams->size() > 0) {
4135        // This is a declaration or definition of a class template (which may
4136        // be a member of another template).
4137        OwnedDecl = false;
4138        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4139                                               SS, Name, NameLoc, Attr,
4140                                               TemplateParams,
4141                                               AS);
4142        TemplateParameterLists.release();
4143        return Result.get();
4144      } else {
4145        // FIXME: diagnose the extraneous 'template<>', once we recover
4146        // slightly better in ParseTemplate.cpp from bogus template
4147        // parameters.
4148      }
4149    }
4150  }
4151
4152  DeclContext *SearchDC = CurContext;
4153  DeclContext *DC = CurContext;
4154  NamedDecl *PrevDecl = 0;
4155  bool isStdBadAlloc = false;
4156  bool Invalid = false;
4157
4158  if (Name && SS.isNotEmpty()) {
4159    // We have a nested-name tag ('struct foo::bar').
4160
4161    // Check for invalid 'foo::'.
4162    if (SS.isInvalid()) {
4163      Name = 0;
4164      goto CreateNewDecl;
4165    }
4166
4167    // If this is a friend or a reference to a class in a dependent
4168    // context, don't try to make a decl for it.
4169    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4170      DC = computeDeclContext(SS, false);
4171      if (!DC) {
4172        IsDependent = true;
4173        return DeclPtrTy();
4174      }
4175    }
4176
4177    if (RequireCompleteDeclContext(SS))
4178      return DeclPtrTy::make((Decl *)0);
4179
4180    DC = computeDeclContext(SS, true);
4181    SearchDC = DC;
4182    // Look-up name inside 'foo::'.
4183    PrevDecl
4184      = dyn_cast_or_null<TagDecl>(
4185               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4186
4187    // A tag 'foo::bar' must already exist.
4188    if (PrevDecl == 0) {
4189      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4190      Name = 0;
4191      Invalid = true;
4192      goto CreateNewDecl;
4193    }
4194  } else if (Name) {
4195    // If this is a named struct, check to see if there was a previous forward
4196    // declaration or definition.
4197    // FIXME: We're looking into outer scopes here, even when we
4198    // shouldn't be. Doing so can result in ambiguities that we
4199    // shouldn't be diagnosing.
4200    LookupResult R = LookupName(S, Name, LookupTagName,
4201                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4202    if (R.isAmbiguous()) {
4203      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4204      // FIXME: This is not best way to recover from case like:
4205      //
4206      // struct S s;
4207      //
4208      // causes needless "incomplete type" error later.
4209      Name = 0;
4210      PrevDecl = 0;
4211      Invalid = true;
4212    } else
4213      PrevDecl = R;
4214
4215    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4216      // FIXME: This makes sure that we ignore the contexts associated
4217      // with C structs, unions, and enums when looking for a matching
4218      // tag declaration or definition. See the similar lookup tweak
4219      // in Sema::LookupName; is there a better way to deal with this?
4220      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4221        SearchDC = SearchDC->getParent();
4222    }
4223  }
4224
4225  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4226    // Maybe we will complain about the shadowed template parameter.
4227    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4228    // Just pretend that we didn't see the previous declaration.
4229    PrevDecl = 0;
4230  }
4231
4232  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4233      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4234    // This is a declaration of or a reference to "std::bad_alloc".
4235    isStdBadAlloc = true;
4236
4237    if (!PrevDecl && StdBadAlloc) {
4238      // std::bad_alloc has been implicitly declared (but made invisible to
4239      // name lookup). Fill in this implicit declaration as the previous
4240      // declaration, so that the declarations get chained appropriately.
4241      PrevDecl = StdBadAlloc;
4242    }
4243  }
4244
4245  if (PrevDecl) {
4246    // Check whether the previous declaration is usable.
4247    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4248
4249    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4250      // If this is a use of a previous tag, or if the tag is already declared
4251      // in the same scope (so that the definition/declaration completes or
4252      // rementions the tag), reuse the decl.
4253      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4254          isDeclInScope(PrevDecl, SearchDC, S)) {
4255        // Make sure that this wasn't declared as an enum and now used as a
4256        // struct or something similar.
4257        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4258          bool SafeToContinue
4259            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4260               Kind != TagDecl::TK_enum);
4261          if (SafeToContinue)
4262            Diag(KWLoc, diag::err_use_with_wrong_tag)
4263              << Name
4264              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4265                                                  PrevTagDecl->getKindName());
4266          else
4267            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4268          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4269
4270          if (SafeToContinue)
4271            Kind = PrevTagDecl->getTagKind();
4272          else {
4273            // Recover by making this an anonymous redefinition.
4274            Name = 0;
4275            PrevDecl = 0;
4276            Invalid = true;
4277          }
4278        }
4279
4280        if (!Invalid) {
4281          // If this is a use, just return the declaration we found.
4282
4283          // FIXME: In the future, return a variant or some other clue
4284          // for the consumer of this Decl to know it doesn't own it.
4285          // For our current ASTs this shouldn't be a problem, but will
4286          // need to be changed with DeclGroups.
4287          if (TUK == TUK_Reference)
4288            return DeclPtrTy::make(PrevDecl);
4289
4290          // If this is a friend, make sure we create the new
4291          // declaration in the appropriate semantic context.
4292          if (TUK == TUK_Friend)
4293            SearchDC = PrevDecl->getDeclContext();
4294
4295          // Diagnose attempts to redefine a tag.
4296          if (TUK == TUK_Definition) {
4297            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4298              Diag(NameLoc, diag::err_redefinition) << Name;
4299              Diag(Def->getLocation(), diag::note_previous_definition);
4300              // If this is a redefinition, recover by making this
4301              // struct be anonymous, which will make any later
4302              // references get the previous definition.
4303              Name = 0;
4304              PrevDecl = 0;
4305              Invalid = true;
4306            } else {
4307              // If the type is currently being defined, complain
4308              // about a nested redefinition.
4309              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4310              if (Tag->isBeingDefined()) {
4311                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4312                Diag(PrevTagDecl->getLocation(),
4313                     diag::note_previous_definition);
4314                Name = 0;
4315                PrevDecl = 0;
4316                Invalid = true;
4317              }
4318            }
4319
4320            // Okay, this is definition of a previously declared or referenced
4321            // tag PrevDecl. We're going to create a new Decl for it.
4322          }
4323        }
4324        // If we get here we have (another) forward declaration or we
4325        // have a definition.  Just create a new decl.
4326
4327      } else {
4328        // If we get here, this is a definition of a new tag type in a nested
4329        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4330        // new decl/type.  We set PrevDecl to NULL so that the entities
4331        // have distinct types.
4332        PrevDecl = 0;
4333      }
4334      // If we get here, we're going to create a new Decl. If PrevDecl
4335      // is non-NULL, it's a definition of the tag declared by
4336      // PrevDecl. If it's NULL, we have a new definition.
4337    } else {
4338      // PrevDecl is a namespace, template, or anything else
4339      // that lives in the IDNS_Tag identifier namespace.
4340      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4341        // The tag name clashes with a namespace name, issue an error and
4342        // recover by making this tag be anonymous.
4343        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4344        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4345        Name = 0;
4346        PrevDecl = 0;
4347        Invalid = true;
4348      } else {
4349        // The existing declaration isn't relevant to us; we're in a
4350        // new scope, so clear out the previous declaration.
4351        PrevDecl = 0;
4352      }
4353    }
4354  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4355             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4356    // C++ [basic.scope.pdecl]p5:
4357    //   -- for an elaborated-type-specifier of the form
4358    //
4359    //          class-key identifier
4360    //
4361    //      if the elaborated-type-specifier is used in the
4362    //      decl-specifier-seq or parameter-declaration-clause of a
4363    //      function defined in namespace scope, the identifier is
4364    //      declared as a class-name in the namespace that contains
4365    //      the declaration; otherwise, except as a friend
4366    //      declaration, the identifier is declared in the smallest
4367    //      non-class, non-function-prototype scope that contains the
4368    //      declaration.
4369    //
4370    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4371    // C structs and unions.
4372    //
4373    // GNU C also supports this behavior as part of its incomplete
4374    // enum types extension, while GNU C++ does not.
4375    //
4376    // Find the context where we'll be declaring the tag.
4377    // FIXME: We would like to maintain the current DeclContext as the
4378    // lexical context,
4379    while (SearchDC->isRecord())
4380      SearchDC = SearchDC->getParent();
4381
4382    // Find the scope where we'll be declaring the tag.
4383    while (S->isClassScope() ||
4384           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4385           ((S->getFlags() & Scope::DeclScope) == 0) ||
4386           (S->getEntity() &&
4387            ((DeclContext *)S->getEntity())->isTransparentContext()))
4388      S = S->getParent();
4389
4390  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4391    // C++ [namespace.memdef]p3:
4392    //   If a friend declaration in a non-local class first declares a
4393    //   class or function, the friend class or function is a member of
4394    //   the innermost enclosing namespace.
4395    while (!SearchDC->isFileContext())
4396      SearchDC = SearchDC->getParent();
4397
4398    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4399    while (S->getEntity() != SearchDC)
4400      S = S->getParent();
4401  }
4402
4403CreateNewDecl:
4404
4405  // If there is an identifier, use the location of the identifier as the
4406  // location of the decl, otherwise use the location of the struct/union
4407  // keyword.
4408  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4409
4410  // Otherwise, create a new declaration. If there is a previous
4411  // declaration of the same entity, the two will be linked via
4412  // PrevDecl.
4413  TagDecl *New;
4414
4415  if (Kind == TagDecl::TK_enum) {
4416    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4417    // enum X { A, B, C } D;    D should chain to X.
4418    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4419                           cast_or_null<EnumDecl>(PrevDecl));
4420    // If this is an undefined enum, warn.
4421    if (TUK != TUK_Definition && !Invalid)  {
4422      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4423                                              : diag::ext_forward_ref_enum;
4424      Diag(Loc, DK);
4425    }
4426  } else {
4427    // struct/union/class
4428
4429    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4430    // struct X { int A; } D;    D should chain to X.
4431    if (getLangOptions().CPlusPlus) {
4432      // FIXME: Look for a way to use RecordDecl for simple structs.
4433      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4434                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4435
4436      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4437        StdBadAlloc = cast<CXXRecordDecl>(New);
4438    } else
4439      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4440                               cast_or_null<RecordDecl>(PrevDecl));
4441  }
4442
4443  if (Kind != TagDecl::TK_enum) {
4444    // Handle #pragma pack: if the #pragma pack stack has non-default
4445    // alignment, make up a packed attribute for this decl. These
4446    // attributes are checked when the ASTContext lays out the
4447    // structure.
4448    //
4449    // It is important for implementing the correct semantics that this
4450    // happen here (in act on tag decl). The #pragma pack stack is
4451    // maintained as a result of parser callbacks which can occur at
4452    // many points during the parsing of a struct declaration (because
4453    // the #pragma tokens are effectively skipped over during the
4454    // parsing of the struct).
4455    if (unsigned Alignment = getPragmaPackAlignment())
4456      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4457  }
4458
4459  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4460    // C++ [dcl.typedef]p3:
4461    //   [...] Similarly, in a given scope, a class or enumeration
4462    //   shall not be declared with the same name as a typedef-name
4463    //   that is declared in that scope and refers to a type other
4464    //   than the class or enumeration itself.
4465    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4466    TypedefDecl *PrevTypedef = 0;
4467    if (Lookup.getKind() == LookupResult::Found)
4468      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4469
4470    NamedDecl *PrevTypedefNamed = PrevTypedef;
4471    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4472        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4473          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4474      Diag(Loc, diag::err_tag_definition_of_typedef)
4475        << Context.getTypeDeclType(New)
4476        << PrevTypedef->getUnderlyingType();
4477      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4478      Invalid = true;
4479    }
4480  }
4481
4482  if (Invalid)
4483    New->setInvalidDecl();
4484
4485  if (Attr)
4486    ProcessDeclAttributeList(S, New, Attr);
4487
4488  // If we're declaring or defining a tag in function prototype scope
4489  // in C, note that this type can only be used within the function.
4490  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4491    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4492
4493  // Set the lexical context. If the tag has a C++ scope specifier, the
4494  // lexical context will be different from the semantic context.
4495  New->setLexicalDeclContext(CurContext);
4496
4497  // Mark this as a friend decl if applicable.
4498  if (TUK == TUK_Friend)
4499    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4500
4501  // Set the access specifier.
4502  if (!Invalid && TUK != TUK_Friend)
4503    SetMemberAccessSpecifier(New, PrevDecl, AS);
4504
4505  if (TUK == TUK_Definition)
4506    New->startDefinition();
4507
4508  // If this has an identifier, add it to the scope stack.
4509  if (TUK == TUK_Friend) {
4510    // We might be replacing an existing declaration in the lookup tables;
4511    // if so, borrow its access specifier.
4512    if (PrevDecl)
4513      New->setAccess(PrevDecl->getAccess());
4514
4515    // Friend tag decls are visible in fairly strange ways.
4516    if (!CurContext->isDependentContext()) {
4517      DeclContext *DC = New->getDeclContext()->getLookupContext();
4518      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4519      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4520        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4521    }
4522  } else if (Name) {
4523    S = getNonFieldDeclScope(S);
4524    PushOnScopeChains(New, S);
4525  } else {
4526    CurContext->addDecl(New);
4527  }
4528
4529  // If this is the C FILE type, notify the AST context.
4530  if (IdentifierInfo *II = New->getIdentifier())
4531    if (!New->isInvalidDecl() &&
4532        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4533        II->isStr("FILE"))
4534      Context.setFILEDecl(New);
4535
4536  OwnedDecl = true;
4537  return DeclPtrTy::make(New);
4538}
4539
4540void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4541  AdjustDeclIfTemplate(TagD);
4542  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4543
4544  // Enter the tag context.
4545  PushDeclContext(S, Tag);
4546
4547  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4548    FieldCollector->StartClass();
4549
4550    if (Record->getIdentifier()) {
4551      // C++ [class]p2:
4552      //   [...] The class-name is also inserted into the scope of the
4553      //   class itself; this is known as the injected-class-name. For
4554      //   purposes of access checking, the injected-class-name is treated
4555      //   as if it were a public member name.
4556      CXXRecordDecl *InjectedClassName
4557        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4558                                CurContext, Record->getLocation(),
4559                                Record->getIdentifier(),
4560                                Record->getTagKeywordLoc(),
4561                                Record);
4562      InjectedClassName->setImplicit();
4563      InjectedClassName->setAccess(AS_public);
4564      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4565        InjectedClassName->setDescribedClassTemplate(Template);
4566      PushOnScopeChains(InjectedClassName, S);
4567      assert(InjectedClassName->isInjectedClassName() &&
4568             "Broken injected-class-name");
4569    }
4570  }
4571}
4572
4573void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4574                                    SourceLocation RBraceLoc) {
4575  AdjustDeclIfTemplate(TagD);
4576  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4577  Tag->setRBraceLoc(RBraceLoc);
4578
4579  if (isa<CXXRecordDecl>(Tag))
4580    FieldCollector->FinishClass();
4581
4582  // Exit this scope of this tag's definition.
4583  PopDeclContext();
4584
4585  // Notify the consumer that we've defined a tag.
4586  Consumer.HandleTagDeclDefinition(Tag);
4587}
4588
4589// Note that FieldName may be null for anonymous bitfields.
4590bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4591                          QualType FieldTy, const Expr *BitWidth,
4592                          bool *ZeroWidth) {
4593  // Default to true; that shouldn't confuse checks for emptiness
4594  if (ZeroWidth)
4595    *ZeroWidth = true;
4596
4597  // C99 6.7.2.1p4 - verify the field type.
4598  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4599  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4600    // Handle incomplete types with specific error.
4601    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4602      return true;
4603    if (FieldName)
4604      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4605        << FieldName << FieldTy << BitWidth->getSourceRange();
4606    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4607      << FieldTy << BitWidth->getSourceRange();
4608  }
4609
4610  // If the bit-width is type- or value-dependent, don't try to check
4611  // it now.
4612  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4613    return false;
4614
4615  llvm::APSInt Value;
4616  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4617    return true;
4618
4619  if (Value != 0 && ZeroWidth)
4620    *ZeroWidth = false;
4621
4622  // Zero-width bitfield is ok for anonymous field.
4623  if (Value == 0 && FieldName)
4624    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4625
4626  if (Value.isSigned() && Value.isNegative()) {
4627    if (FieldName)
4628      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4629               << FieldName << Value.toString(10);
4630    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4631      << Value.toString(10);
4632  }
4633
4634  if (!FieldTy->isDependentType()) {
4635    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4636    if (Value.getZExtValue() > TypeSize) {
4637      if (FieldName)
4638        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4639          << FieldName << (unsigned)TypeSize;
4640      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4641        << (unsigned)TypeSize;
4642    }
4643  }
4644
4645  return false;
4646}
4647
4648/// ActOnField - Each field of a struct/union/class is passed into this in order
4649/// to create a FieldDecl object for it.
4650Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4651                                 SourceLocation DeclStart,
4652                                 Declarator &D, ExprTy *BitfieldWidth) {
4653  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4654                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4655                               AS_public);
4656  return DeclPtrTy::make(Res);
4657}
4658
4659/// HandleField - Analyze a field of a C struct or a C++ data member.
4660///
4661FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4662                             SourceLocation DeclStart,
4663                             Declarator &D, Expr *BitWidth,
4664                             AccessSpecifier AS) {
4665  IdentifierInfo *II = D.getIdentifier();
4666  SourceLocation Loc = DeclStart;
4667  if (II) Loc = D.getIdentifierLoc();
4668
4669  DeclaratorInfo *DInfo = 0;
4670  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4671  if (getLangOptions().CPlusPlus)
4672    CheckExtraCXXDefaultArguments(D);
4673
4674  DiagnoseFunctionSpecifiers(D);
4675
4676  if (D.getDeclSpec().isThreadSpecified())
4677    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4678
4679  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4680
4681  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4682    // Maybe we will complain about the shadowed template parameter.
4683    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4684    // Just pretend that we didn't see the previous declaration.
4685    PrevDecl = 0;
4686  }
4687
4688  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4689    PrevDecl = 0;
4690
4691  bool Mutable
4692    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4693  SourceLocation TSSL = D.getSourceRange().getBegin();
4694  FieldDecl *NewFD
4695    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4696                     AS, PrevDecl, &D);
4697  if (NewFD->isInvalidDecl() && PrevDecl) {
4698    // Don't introduce NewFD into scope; there's already something
4699    // with the same name in the same scope.
4700  } else if (II) {
4701    PushOnScopeChains(NewFD, S);
4702  } else
4703    Record->addDecl(NewFD);
4704
4705  return NewFD;
4706}
4707
4708/// \brief Build a new FieldDecl and check its well-formedness.
4709///
4710/// This routine builds a new FieldDecl given the fields name, type,
4711/// record, etc. \p PrevDecl should refer to any previous declaration
4712/// with the same name and in the same scope as the field to be
4713/// created.
4714///
4715/// \returns a new FieldDecl.
4716///
4717/// \todo The Declarator argument is a hack. It will be removed once
4718FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4719                                DeclaratorInfo *DInfo,
4720                                RecordDecl *Record, SourceLocation Loc,
4721                                bool Mutable, Expr *BitWidth,
4722                                SourceLocation TSSL,
4723                                AccessSpecifier AS, NamedDecl *PrevDecl,
4724                                Declarator *D) {
4725  IdentifierInfo *II = Name.getAsIdentifierInfo();
4726  bool InvalidDecl = false;
4727  if (D) InvalidDecl = D->isInvalidType();
4728
4729  // If we receive a broken type, recover by assuming 'int' and
4730  // marking this declaration as invalid.
4731  if (T.isNull()) {
4732    InvalidDecl = true;
4733    T = Context.IntTy;
4734  }
4735
4736  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4737  // than a variably modified type.
4738  if (T->isVariablyModifiedType()) {
4739    bool SizeIsNegative;
4740    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4741                                                           SizeIsNegative);
4742    if (!FixedTy.isNull()) {
4743      Diag(Loc, diag::warn_illegal_constant_array_size);
4744      T = FixedTy;
4745    } else {
4746      if (SizeIsNegative)
4747        Diag(Loc, diag::err_typecheck_negative_array_size);
4748      else
4749        Diag(Loc, diag::err_typecheck_field_variable_size);
4750      InvalidDecl = true;
4751    }
4752  }
4753
4754  // Fields can not have abstract class types
4755  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4756                             AbstractFieldType))
4757    InvalidDecl = true;
4758
4759  bool ZeroWidth = false;
4760  // If this is declared as a bit-field, check the bit-field.
4761  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4762    InvalidDecl = true;
4763    DeleteExpr(BitWidth);
4764    BitWidth = 0;
4765    ZeroWidth = false;
4766  }
4767
4768  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4769                                       BitWidth, Mutable);
4770  if (InvalidDecl)
4771    NewFD->setInvalidDecl();
4772
4773  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4774    Diag(Loc, diag::err_duplicate_member) << II;
4775    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4776    NewFD->setInvalidDecl();
4777  }
4778
4779  if (getLangOptions().CPlusPlus) {
4780    QualType EltTy = Context.getBaseElementType(T);
4781
4782    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4783
4784    if (!T->isPODType())
4785      CXXRecord->setPOD(false);
4786    if (!ZeroWidth)
4787      CXXRecord->setEmpty(false);
4788
4789    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4790      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4791
4792      if (!RDecl->hasTrivialConstructor())
4793        CXXRecord->setHasTrivialConstructor(false);
4794      if (!RDecl->hasTrivialCopyConstructor())
4795        CXXRecord->setHasTrivialCopyConstructor(false);
4796      if (!RDecl->hasTrivialCopyAssignment())
4797        CXXRecord->setHasTrivialCopyAssignment(false);
4798      if (!RDecl->hasTrivialDestructor())
4799        CXXRecord->setHasTrivialDestructor(false);
4800
4801      // C++ 9.5p1: An object of a class with a non-trivial
4802      // constructor, a non-trivial copy constructor, a non-trivial
4803      // destructor, or a non-trivial copy assignment operator
4804      // cannot be a member of a union, nor can an array of such
4805      // objects.
4806      // TODO: C++0x alters this restriction significantly.
4807      if (Record->isUnion()) {
4808        // We check for copy constructors before constructors
4809        // because otherwise we'll never get complaints about
4810        // copy constructors.
4811
4812        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4813
4814        CXXSpecialMember member;
4815        if (!RDecl->hasTrivialCopyConstructor())
4816          member = CXXCopyConstructor;
4817        else if (!RDecl->hasTrivialConstructor())
4818          member = CXXDefaultConstructor;
4819        else if (!RDecl->hasTrivialCopyAssignment())
4820          member = CXXCopyAssignment;
4821        else if (!RDecl->hasTrivialDestructor())
4822          member = CXXDestructor;
4823        else
4824          member = invalid;
4825
4826        if (member != invalid) {
4827          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4828          DiagnoseNontrivial(RT, member);
4829          NewFD->setInvalidDecl();
4830        }
4831      }
4832    }
4833  }
4834
4835  // FIXME: We need to pass in the attributes given an AST
4836  // representation, not a parser representation.
4837  if (D)
4838    // FIXME: What to pass instead of TUScope?
4839    ProcessDeclAttributes(TUScope, NewFD, *D);
4840
4841  if (T.isObjCGCWeak())
4842    Diag(Loc, diag::warn_attribute_weak_on_field);
4843
4844  NewFD->setAccess(AS);
4845
4846  // C++ [dcl.init.aggr]p1:
4847  //   An aggregate is an array or a class (clause 9) with [...] no
4848  //   private or protected non-static data members (clause 11).
4849  // A POD must be an aggregate.
4850  if (getLangOptions().CPlusPlus &&
4851      (AS == AS_private || AS == AS_protected)) {
4852    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4853    CXXRecord->setAggregate(false);
4854    CXXRecord->setPOD(false);
4855  }
4856
4857  return NewFD;
4858}
4859
4860/// DiagnoseNontrivial - Given that a class has a non-trivial
4861/// special member, figure out why.
4862void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4863  QualType QT(T, 0U);
4864  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4865
4866  // Check whether the member was user-declared.
4867  switch (member) {
4868  case CXXDefaultConstructor:
4869    if (RD->hasUserDeclaredConstructor()) {
4870      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4871      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4872        if (!ci->isImplicitlyDefined(Context)) {
4873          SourceLocation CtorLoc = ci->getLocation();
4874          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4875          return;
4876        }
4877
4878      assert(0 && "found no user-declared constructors");
4879      return;
4880    }
4881    break;
4882
4883  case CXXCopyConstructor:
4884    if (RD->hasUserDeclaredCopyConstructor()) {
4885      SourceLocation CtorLoc =
4886        RD->getCopyConstructor(Context, 0)->getLocation();
4887      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4888      return;
4889    }
4890    break;
4891
4892  case CXXCopyAssignment:
4893    if (RD->hasUserDeclaredCopyAssignment()) {
4894      // FIXME: this should use the location of the copy
4895      // assignment, not the type.
4896      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4897      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4898      return;
4899    }
4900    break;
4901
4902  case CXXDestructor:
4903    if (RD->hasUserDeclaredDestructor()) {
4904      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4905      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4906      return;
4907    }
4908    break;
4909  }
4910
4911  typedef CXXRecordDecl::base_class_iterator base_iter;
4912
4913  // Virtual bases and members inhibit trivial copying/construction,
4914  // but not trivial destruction.
4915  if (member != CXXDestructor) {
4916    // Check for virtual bases.  vbases includes indirect virtual bases,
4917    // so we just iterate through the direct bases.
4918    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4919      if (bi->isVirtual()) {
4920        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4921        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4922        return;
4923      }
4924
4925    // Check for virtual methods.
4926    typedef CXXRecordDecl::method_iterator meth_iter;
4927    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4928         ++mi) {
4929      if (mi->isVirtual()) {
4930        SourceLocation MLoc = mi->getSourceRange().getBegin();
4931        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4932        return;
4933      }
4934    }
4935  }
4936
4937  bool (CXXRecordDecl::*hasTrivial)() const;
4938  switch (member) {
4939  case CXXDefaultConstructor:
4940    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4941  case CXXCopyConstructor:
4942    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4943  case CXXCopyAssignment:
4944    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4945  case CXXDestructor:
4946    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4947  default:
4948    assert(0 && "unexpected special member"); return;
4949  }
4950
4951  // Check for nontrivial bases (and recurse).
4952  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4953    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4954    assert(BaseRT);
4955    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4956    if (!(BaseRecTy->*hasTrivial)()) {
4957      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4958      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4959      DiagnoseNontrivial(BaseRT, member);
4960      return;
4961    }
4962  }
4963
4964  // Check for nontrivial members (and recurse).
4965  typedef RecordDecl::field_iterator field_iter;
4966  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4967       ++fi) {
4968    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4969    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4970      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4971
4972      if (!(EltRD->*hasTrivial)()) {
4973        SourceLocation FLoc = (*fi)->getLocation();
4974        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4975        DiagnoseNontrivial(EltRT, member);
4976        return;
4977      }
4978    }
4979  }
4980
4981  assert(0 && "found no explanation for non-trivial member");
4982}
4983
4984/// TranslateIvarVisibility - Translate visibility from a token ID to an
4985///  AST enum value.
4986static ObjCIvarDecl::AccessControl
4987TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4988  switch (ivarVisibility) {
4989  default: assert(0 && "Unknown visitibility kind");
4990  case tok::objc_private: return ObjCIvarDecl::Private;
4991  case tok::objc_public: return ObjCIvarDecl::Public;
4992  case tok::objc_protected: return ObjCIvarDecl::Protected;
4993  case tok::objc_package: return ObjCIvarDecl::Package;
4994  }
4995}
4996
4997/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4998/// in order to create an IvarDecl object for it.
4999Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5000                                SourceLocation DeclStart,
5001                                DeclPtrTy IntfDecl,
5002                                Declarator &D, ExprTy *BitfieldWidth,
5003                                tok::ObjCKeywordKind Visibility) {
5004
5005  IdentifierInfo *II = D.getIdentifier();
5006  Expr *BitWidth = (Expr*)BitfieldWidth;
5007  SourceLocation Loc = DeclStart;
5008  if (II) Loc = D.getIdentifierLoc();
5009
5010  // FIXME: Unnamed fields can be handled in various different ways, for
5011  // example, unnamed unions inject all members into the struct namespace!
5012
5013  DeclaratorInfo *DInfo = 0;
5014  QualType T = GetTypeForDeclarator(D, S, &DInfo);
5015
5016  if (BitWidth) {
5017    // 6.7.2.1p3, 6.7.2.1p4
5018    if (VerifyBitField(Loc, II, T, BitWidth)) {
5019      D.setInvalidType();
5020      DeleteExpr(BitWidth);
5021      BitWidth = 0;
5022    }
5023  } else {
5024    // Not a bitfield.
5025
5026    // validate II.
5027
5028  }
5029
5030  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5031  // than a variably modified type.
5032  if (T->isVariablyModifiedType()) {
5033    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5034    D.setInvalidType();
5035  }
5036
5037  // Get the visibility (access control) for this ivar.
5038  ObjCIvarDecl::AccessControl ac =
5039    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5040                                        : ObjCIvarDecl::None;
5041  // Must set ivar's DeclContext to its enclosing interface.
5042  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5043  DeclContext *EnclosingContext;
5044  if (ObjCImplementationDecl *IMPDecl =
5045      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5046    // Case of ivar declared in an implementation. Context is that of its class.
5047    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5048    assert(IDecl && "No class- ActOnIvar");
5049    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5050  } else
5051    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5052  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5053
5054  // Construct the decl.
5055  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5056                                             EnclosingContext, Loc, II, T,
5057                                             DInfo, ac, (Expr *)BitfieldWidth);
5058
5059  if (II) {
5060    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
5061    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5062        && !isa<TagDecl>(PrevDecl)) {
5063      Diag(Loc, diag::err_duplicate_member) << II;
5064      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5065      NewID->setInvalidDecl();
5066    }
5067  }
5068
5069  // Process attributes attached to the ivar.
5070  ProcessDeclAttributes(S, NewID, D);
5071
5072  if (D.isInvalidType())
5073    NewID->setInvalidDecl();
5074
5075  if (II) {
5076    // FIXME: When interfaces are DeclContexts, we'll need to add
5077    // these to the interface.
5078    S->AddDecl(DeclPtrTy::make(NewID));
5079    IdResolver.AddDecl(NewID);
5080  }
5081
5082  return DeclPtrTy::make(NewID);
5083}
5084
5085void Sema::ActOnFields(Scope* S,
5086                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5087                       DeclPtrTy *Fields, unsigned NumFields,
5088                       SourceLocation LBrac, SourceLocation RBrac,
5089                       AttributeList *Attr) {
5090  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5091  assert(EnclosingDecl && "missing record or interface decl");
5092
5093  // If the decl this is being inserted into is invalid, then it may be a
5094  // redeclaration or some other bogus case.  Don't try to add fields to it.
5095  if (EnclosingDecl->isInvalidDecl()) {
5096    // FIXME: Deallocate fields?
5097    return;
5098  }
5099
5100
5101  // Verify that all the fields are okay.
5102  unsigned NumNamedMembers = 0;
5103  llvm::SmallVector<FieldDecl*, 32> RecFields;
5104
5105  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5106  for (unsigned i = 0; i != NumFields; ++i) {
5107    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5108
5109    // Get the type for the field.
5110    Type *FDTy = FD->getType().getTypePtr();
5111
5112    if (!FD->isAnonymousStructOrUnion()) {
5113      // Remember all fields written by the user.
5114      RecFields.push_back(FD);
5115    }
5116
5117    // If the field is already invalid for some reason, don't emit more
5118    // diagnostics about it.
5119    if (FD->isInvalidDecl())
5120      continue;
5121
5122    // C99 6.7.2.1p2:
5123    //   A structure or union shall not contain a member with
5124    //   incomplete or function type (hence, a structure shall not
5125    //   contain an instance of itself, but may contain a pointer to
5126    //   an instance of itself), except that the last member of a
5127    //   structure with more than one named member may have incomplete
5128    //   array type; such a structure (and any union containing,
5129    //   possibly recursively, a member that is such a structure)
5130    //   shall not be a member of a structure or an element of an
5131    //   array.
5132    if (FDTy->isFunctionType()) {
5133      // Field declared as a function.
5134      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5135        << FD->getDeclName();
5136      FD->setInvalidDecl();
5137      EnclosingDecl->setInvalidDecl();
5138      continue;
5139    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5140               Record && Record->isStruct()) {
5141      // Flexible array member.
5142      if (NumNamedMembers < 1) {
5143        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5144          << FD->getDeclName();
5145        FD->setInvalidDecl();
5146        EnclosingDecl->setInvalidDecl();
5147        continue;
5148      }
5149      // Okay, we have a legal flexible array member at the end of the struct.
5150      if (Record)
5151        Record->setHasFlexibleArrayMember(true);
5152    } else if (!FDTy->isDependentType() &&
5153               RequireCompleteType(FD->getLocation(), FD->getType(),
5154                                   diag::err_field_incomplete)) {
5155      // Incomplete type
5156      FD->setInvalidDecl();
5157      EnclosingDecl->setInvalidDecl();
5158      continue;
5159    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5160      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5161        // If this is a member of a union, then entire union becomes "flexible".
5162        if (Record && Record->isUnion()) {
5163          Record->setHasFlexibleArrayMember(true);
5164        } else {
5165          // If this is a struct/class and this is not the last element, reject
5166          // it.  Note that GCC supports variable sized arrays in the middle of
5167          // structures.
5168          if (i != NumFields-1)
5169            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5170              << FD->getDeclName() << FD->getType();
5171          else {
5172            // We support flexible arrays at the end of structs in
5173            // other structs as an extension.
5174            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5175              << FD->getDeclName();
5176            if (Record)
5177              Record->setHasFlexibleArrayMember(true);
5178          }
5179        }
5180      }
5181      if (Record && FDTTy->getDecl()->hasObjectMember())
5182        Record->setHasObjectMember(true);
5183    } else if (FDTy->isObjCInterfaceType()) {
5184      /// A field cannot be an Objective-c object
5185      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5186      FD->setInvalidDecl();
5187      EnclosingDecl->setInvalidDecl();
5188      continue;
5189    } else if (getLangOptions().ObjC1 &&
5190               getLangOptions().getGCMode() != LangOptions::NonGC &&
5191               Record &&
5192               (FD->getType()->isObjCObjectPointerType() ||
5193                FD->getType().isObjCGCStrong()))
5194      Record->setHasObjectMember(true);
5195    // Keep track of the number of named members.
5196    if (FD->getIdentifier())
5197      ++NumNamedMembers;
5198  }
5199
5200  // Okay, we successfully defined 'Record'.
5201  if (Record) {
5202    Record->completeDefinition(Context);
5203  } else {
5204    ObjCIvarDecl **ClsFields =
5205      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5206    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5207      ID->setIVarList(ClsFields, RecFields.size(), Context);
5208      ID->setLocEnd(RBrac);
5209      // Add ivar's to class's DeclContext.
5210      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5211        ClsFields[i]->setLexicalDeclContext(ID);
5212        ID->addDecl(ClsFields[i]);
5213      }
5214      // Must enforce the rule that ivars in the base classes may not be
5215      // duplicates.
5216      if (ID->getSuperClass()) {
5217        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5218             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5219          ObjCIvarDecl* Ivar = (*IVI);
5220
5221          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5222            ObjCIvarDecl* prevIvar =
5223              ID->getSuperClass()->lookupInstanceVariable(II);
5224            if (prevIvar) {
5225              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5226              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5227            }
5228          }
5229        }
5230      }
5231    } else if (ObjCImplementationDecl *IMPDecl =
5232                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5233      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5234      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5235        // Ivar declared in @implementation never belongs to the implementation.
5236        // Only it is in implementation's lexical context.
5237        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5238      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5239    }
5240  }
5241
5242  if (Attr)
5243    ProcessDeclAttributeList(S, Record, Attr);
5244}
5245
5246EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5247                                          EnumConstantDecl *LastEnumConst,
5248                                          SourceLocation IdLoc,
5249                                          IdentifierInfo *Id,
5250                                          ExprArg val) {
5251  Expr *Val = (Expr *)val.get();
5252
5253  llvm::APSInt EnumVal(32);
5254  QualType EltTy;
5255  if (Val && !Val->isTypeDependent()) {
5256    // Make sure to promote the operand type to int.
5257    UsualUnaryConversions(Val);
5258    if (Val != val.get()) {
5259      val.release();
5260      val = Val;
5261    }
5262
5263    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5264    SourceLocation ExpLoc;
5265    if (!Val->isValueDependent() &&
5266        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5267      Val = 0;
5268    } else {
5269      EltTy = Val->getType();
5270    }
5271  }
5272
5273  if (!Val) {
5274    if (LastEnumConst) {
5275      // Assign the last value + 1.
5276      EnumVal = LastEnumConst->getInitVal();
5277      ++EnumVal;
5278
5279      // Check for overflow on increment.
5280      if (EnumVal < LastEnumConst->getInitVal())
5281        Diag(IdLoc, diag::warn_enum_value_overflow);
5282
5283      EltTy = LastEnumConst->getType();
5284    } else {
5285      // First value, set to zero.
5286      EltTy = Context.IntTy;
5287      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5288    }
5289  }
5290
5291  val.release();
5292  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5293                                  Val, EnumVal);
5294}
5295
5296
5297Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5298                                        DeclPtrTy lastEnumConst,
5299                                        SourceLocation IdLoc,
5300                                        IdentifierInfo *Id,
5301                                        SourceLocation EqualLoc, ExprTy *val) {
5302  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5303  EnumConstantDecl *LastEnumConst =
5304    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5305  Expr *Val = static_cast<Expr*>(val);
5306
5307  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5308  // we find one that is.
5309  S = getNonFieldDeclScope(S);
5310
5311  // Verify that there isn't already something declared with this name in this
5312  // scope.
5313  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5314  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5315    // Maybe we will complain about the shadowed template parameter.
5316    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5317    // Just pretend that we didn't see the previous declaration.
5318    PrevDecl = 0;
5319  }
5320
5321  if (PrevDecl) {
5322    // When in C++, we may get a TagDecl with the same name; in this case the
5323    // enum constant will 'hide' the tag.
5324    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5325           "Received TagDecl when not in C++!");
5326    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5327      if (isa<EnumConstantDecl>(PrevDecl))
5328        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5329      else
5330        Diag(IdLoc, diag::err_redefinition) << Id;
5331      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5332      if (Val) Val->Destroy(Context);
5333      return DeclPtrTy();
5334    }
5335  }
5336
5337  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5338                                            IdLoc, Id, Owned(Val));
5339
5340  // Register this decl in the current scope stack.
5341  if (New)
5342    PushOnScopeChains(New, S);
5343
5344  return DeclPtrTy::make(New);
5345}
5346
5347void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5348                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5349                         DeclPtrTy *Elements, unsigned NumElements,
5350                         Scope *S, AttributeList *Attr) {
5351  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5352  QualType EnumType = Context.getTypeDeclType(Enum);
5353
5354  if (Attr)
5355    ProcessDeclAttributeList(S, Enum, Attr);
5356
5357  // TODO: If the result value doesn't fit in an int, it must be a long or long
5358  // long value.  ISO C does not support this, but GCC does as an extension,
5359  // emit a warning.
5360  unsigned IntWidth = Context.Target.getIntWidth();
5361  unsigned CharWidth = Context.Target.getCharWidth();
5362  unsigned ShortWidth = Context.Target.getShortWidth();
5363
5364  // Verify that all the values are okay, compute the size of the values, and
5365  // reverse the list.
5366  unsigned NumNegativeBits = 0;
5367  unsigned NumPositiveBits = 0;
5368
5369  // Keep track of whether all elements have type int.
5370  bool AllElementsInt = true;
5371
5372  for (unsigned i = 0; i != NumElements; ++i) {
5373    EnumConstantDecl *ECD =
5374      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5375    if (!ECD) continue;  // Already issued a diagnostic.
5376
5377    // If the enum value doesn't fit in an int, emit an extension warning.
5378    const llvm::APSInt &InitVal = ECD->getInitVal();
5379    assert(InitVal.getBitWidth() >= IntWidth &&
5380           "Should have promoted value to int");
5381    if (InitVal.getBitWidth() > IntWidth) {
5382      llvm::APSInt V(InitVal);
5383      V.trunc(IntWidth);
5384      V.extend(InitVal.getBitWidth());
5385      if (V != InitVal)
5386        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5387          << InitVal.toString(10);
5388    }
5389
5390    // Keep track of the size of positive and negative values.
5391    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5392      NumPositiveBits = std::max(NumPositiveBits,
5393                                 (unsigned)InitVal.getActiveBits());
5394    else
5395      NumNegativeBits = std::max(NumNegativeBits,
5396                                 (unsigned)InitVal.getMinSignedBits());
5397
5398    // Keep track of whether every enum element has type int (very commmon).
5399    if (AllElementsInt)
5400      AllElementsInt = ECD->getType() == Context.IntTy;
5401  }
5402
5403  // Figure out the type that should be used for this enum.
5404  // FIXME: Support -fshort-enums.
5405  QualType BestType;
5406  unsigned BestWidth;
5407
5408  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5409
5410  if (NumNegativeBits) {
5411    // If there is a negative value, figure out the smallest integer type (of
5412    // int/long/longlong) that fits.
5413    // If it's packed, check also if it fits a char or a short.
5414    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5415        BestType = Context.SignedCharTy;
5416        BestWidth = CharWidth;
5417    } else if (Packed && NumNegativeBits <= ShortWidth &&
5418               NumPositiveBits < ShortWidth) {
5419        BestType = Context.ShortTy;
5420        BestWidth = ShortWidth;
5421    }
5422    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5423      BestType = Context.IntTy;
5424      BestWidth = IntWidth;
5425    } else {
5426      BestWidth = Context.Target.getLongWidth();
5427
5428      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5429        BestType = Context.LongTy;
5430      else {
5431        BestWidth = Context.Target.getLongLongWidth();
5432
5433        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5434          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5435        BestType = Context.LongLongTy;
5436      }
5437    }
5438  } else {
5439    // If there is no negative value, figure out which of uint, ulong, ulonglong
5440    // fits.
5441    // If it's packed, check also if it fits a char or a short.
5442    if (Packed && NumPositiveBits <= CharWidth) {
5443        BestType = Context.UnsignedCharTy;
5444        BestWidth = CharWidth;
5445    } else if (Packed && NumPositiveBits <= ShortWidth) {
5446        BestType = Context.UnsignedShortTy;
5447        BestWidth = ShortWidth;
5448    }
5449    else if (NumPositiveBits <= IntWidth) {
5450      BestType = Context.UnsignedIntTy;
5451      BestWidth = IntWidth;
5452    } else if (NumPositiveBits <=
5453               (BestWidth = Context.Target.getLongWidth())) {
5454      BestType = Context.UnsignedLongTy;
5455    } else {
5456      BestWidth = Context.Target.getLongLongWidth();
5457      assert(NumPositiveBits <= BestWidth &&
5458             "How could an initializer get larger than ULL?");
5459      BestType = Context.UnsignedLongLongTy;
5460    }
5461  }
5462
5463  // Loop over all of the enumerator constants, changing their types to match
5464  // the type of the enum if needed.
5465  for (unsigned i = 0; i != NumElements; ++i) {
5466    EnumConstantDecl *ECD =
5467      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5468    if (!ECD) continue;  // Already issued a diagnostic.
5469
5470    // Standard C says the enumerators have int type, but we allow, as an
5471    // extension, the enumerators to be larger than int size.  If each
5472    // enumerator value fits in an int, type it as an int, otherwise type it the
5473    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5474    // that X has type 'int', not 'unsigned'.
5475    if (ECD->getType() == Context.IntTy) {
5476      // Make sure the init value is signed.
5477      llvm::APSInt IV = ECD->getInitVal();
5478      IV.setIsSigned(true);
5479      ECD->setInitVal(IV);
5480
5481      if (getLangOptions().CPlusPlus)
5482        // C++ [dcl.enum]p4: Following the closing brace of an
5483        // enum-specifier, each enumerator has the type of its
5484        // enumeration.
5485        ECD->setType(EnumType);
5486      continue;  // Already int type.
5487    }
5488
5489    // Determine whether the value fits into an int.
5490    llvm::APSInt InitVal = ECD->getInitVal();
5491    bool FitsInInt;
5492    if (InitVal.isUnsigned() || !InitVal.isNegative())
5493      FitsInInt = InitVal.getActiveBits() < IntWidth;
5494    else
5495      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5496
5497    // If it fits into an integer type, force it.  Otherwise force it to match
5498    // the enum decl type.
5499    QualType NewTy;
5500    unsigned NewWidth;
5501    bool NewSign;
5502    if (FitsInInt) {
5503      NewTy = Context.IntTy;
5504      NewWidth = IntWidth;
5505      NewSign = true;
5506    } else if (ECD->getType() == BestType) {
5507      // Already the right type!
5508      if (getLangOptions().CPlusPlus)
5509        // C++ [dcl.enum]p4: Following the closing brace of an
5510        // enum-specifier, each enumerator has the type of its
5511        // enumeration.
5512        ECD->setType(EnumType);
5513      continue;
5514    } else {
5515      NewTy = BestType;
5516      NewWidth = BestWidth;
5517      NewSign = BestType->isSignedIntegerType();
5518    }
5519
5520    // Adjust the APSInt value.
5521    InitVal.extOrTrunc(NewWidth);
5522    InitVal.setIsSigned(NewSign);
5523    ECD->setInitVal(InitVal);
5524
5525    // Adjust the Expr initializer and type.
5526    if (ECD->getInitExpr())
5527      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5528                                                      CastExpr::CK_Unknown,
5529                                                      ECD->getInitExpr(),
5530                                                      /*isLvalue=*/false));
5531    if (getLangOptions().CPlusPlus)
5532      // C++ [dcl.enum]p4: Following the closing brace of an
5533      // enum-specifier, each enumerator has the type of its
5534      // enumeration.
5535      ECD->setType(EnumType);
5536    else
5537      ECD->setType(NewTy);
5538  }
5539
5540  Enum->completeDefinition(Context, BestType);
5541}
5542
5543Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5544                                            ExprArg expr) {
5545  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5546
5547  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5548                                                   Loc, AsmString);
5549  CurContext->addDecl(New);
5550  return DeclPtrTy::make(New);
5551}
5552
5553void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5554                             SourceLocation PragmaLoc,
5555                             SourceLocation NameLoc) {
5556  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5557
5558  if (PrevDecl) {
5559    PrevDecl->addAttr(::new (Context) WeakAttr());
5560  } else {
5561    (void)WeakUndeclaredIdentifiers.insert(
5562      std::pair<IdentifierInfo*,WeakInfo>
5563        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5564  }
5565}
5566
5567void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5568                                IdentifierInfo* AliasName,
5569                                SourceLocation PragmaLoc,
5570                                SourceLocation NameLoc,
5571                                SourceLocation AliasNameLoc) {
5572  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5573  WeakInfo W = WeakInfo(Name, NameLoc);
5574
5575  if (PrevDecl) {
5576    if (!PrevDecl->hasAttr<AliasAttr>())
5577      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5578        DeclApplyPragmaWeak(TUScope, ND, W);
5579  } else {
5580    (void)WeakUndeclaredIdentifiers.insert(
5581      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5582  }
5583}
5584