SemaDecl.cpp revision 27c08ab4859d071efa158a256f7e47e13d924443
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "clang/AST/APValue.h"
21#include "clang/AST/ASTConsumer.h"
22#include "clang/AST/ASTContext.h"
23#include "clang/AST/CXXInheritance.h"
24#include "clang/AST/DeclCXX.h"
25#include "clang/AST/DeclObjC.h"
26#include "clang/AST/DeclTemplate.h"
27#include "clang/AST/ExprCXX.h"
28#include "clang/AST/StmtCXX.h"
29#include "clang/Sema/DeclSpec.h"
30#include "clang/Sema/ParsedTemplate.h"
31#include "clang/Parse/ParseDiagnostic.h"
32#include "clang/Basic/PartialDiagnostic.h"
33#include "clang/Basic/SourceManager.h"
34#include "clang/Basic/TargetInfo.h"
35// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
36#include "clang/Lex/Preprocessor.h"
37#include "clang/Lex/HeaderSearch.h"
38#include "llvm/ADT/Triple.h"
39#include <algorithm>
40#include <cstring>
41#include <functional>
42using namespace clang;
43using namespace sema;
44
45Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
46  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
47}
48
49/// \brief If the identifier refers to a type name within this scope,
50/// return the declaration of that type.
51///
52/// This routine performs ordinary name lookup of the identifier II
53/// within the given scope, with optional C++ scope specifier SS, to
54/// determine whether the name refers to a type. If so, returns an
55/// opaque pointer (actually a QualType) corresponding to that
56/// type. Otherwise, returns NULL.
57///
58/// If name lookup results in an ambiguity, this routine will complain
59/// and then return NULL.
60ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
61                             Scope *S, CXXScopeSpec *SS,
62                             bool isClassName,
63                             ParsedType ObjectTypePtr) {
64  // Determine where we will perform name lookup.
65  DeclContext *LookupCtx = 0;
66  if (ObjectTypePtr) {
67    QualType ObjectType = ObjectTypePtr.get();
68    if (ObjectType->isRecordType())
69      LookupCtx = computeDeclContext(ObjectType);
70  } else if (SS && SS->isNotEmpty()) {
71    LookupCtx = computeDeclContext(*SS, false);
72
73    if (!LookupCtx) {
74      if (isDependentScopeSpecifier(*SS)) {
75        // C++ [temp.res]p3:
76        //   A qualified-id that refers to a type and in which the
77        //   nested-name-specifier depends on a template-parameter (14.6.2)
78        //   shall be prefixed by the keyword typename to indicate that the
79        //   qualified-id denotes a type, forming an
80        //   elaborated-type-specifier (7.1.5.3).
81        //
82        // We therefore do not perform any name lookup if the result would
83        // refer to a member of an unknown specialization.
84        if (!isClassName)
85          return ParsedType();
86
87        // We know from the grammar that this name refers to a type,
88        // so build a dependent node to describe the type.
89        QualType T =
90          CheckTypenameType(ETK_None, SS->getScopeRep(), II,
91                            SourceLocation(), SS->getRange(), NameLoc);
92        return ParsedType::make(T);
93      }
94
95      return ParsedType();
96    }
97
98    if (!LookupCtx->isDependentContext() &&
99        RequireCompleteDeclContext(*SS, LookupCtx))
100      return ParsedType();
101  }
102
103  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
104  // lookup for class-names.
105  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
106                                      LookupOrdinaryName;
107  LookupResult Result(*this, &II, NameLoc, Kind);
108  if (LookupCtx) {
109    // Perform "qualified" name lookup into the declaration context we
110    // computed, which is either the type of the base of a member access
111    // expression or the declaration context associated with a prior
112    // nested-name-specifier.
113    LookupQualifiedName(Result, LookupCtx);
114
115    if (ObjectTypePtr && Result.empty()) {
116      // C++ [basic.lookup.classref]p3:
117      //   If the unqualified-id is ~type-name, the type-name is looked up
118      //   in the context of the entire postfix-expression. If the type T of
119      //   the object expression is of a class type C, the type-name is also
120      //   looked up in the scope of class C. At least one of the lookups shall
121      //   find a name that refers to (possibly cv-qualified) T.
122      LookupName(Result, S);
123    }
124  } else {
125    // Perform unqualified name lookup.
126    LookupName(Result, S);
127  }
128
129  NamedDecl *IIDecl = 0;
130  switch (Result.getResultKind()) {
131  case LookupResult::NotFound:
132  case LookupResult::NotFoundInCurrentInstantiation:
133  case LookupResult::FoundOverloaded:
134  case LookupResult::FoundUnresolvedValue:
135    Result.suppressDiagnostics();
136    return ParsedType();
137
138  case LookupResult::Ambiguous:
139    // Recover from type-hiding ambiguities by hiding the type.  We'll
140    // do the lookup again when looking for an object, and we can
141    // diagnose the error then.  If we don't do this, then the error
142    // about hiding the type will be immediately followed by an error
143    // that only makes sense if the identifier was treated like a type.
144    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
145      Result.suppressDiagnostics();
146      return ParsedType();
147    }
148
149    // Look to see if we have a type anywhere in the list of results.
150    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
151         Res != ResEnd; ++Res) {
152      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
153        if (!IIDecl ||
154            (*Res)->getLocation().getRawEncoding() <
155              IIDecl->getLocation().getRawEncoding())
156          IIDecl = *Res;
157      }
158    }
159
160    if (!IIDecl) {
161      // None of the entities we found is a type, so there is no way
162      // to even assume that the result is a type. In this case, don't
163      // complain about the ambiguity. The parser will either try to
164      // perform this lookup again (e.g., as an object name), which
165      // will produce the ambiguity, or will complain that it expected
166      // a type name.
167      Result.suppressDiagnostics();
168      return ParsedType();
169    }
170
171    // We found a type within the ambiguous lookup; diagnose the
172    // ambiguity and then return that type. This might be the right
173    // answer, or it might not be, but it suppresses any attempt to
174    // perform the name lookup again.
175    break;
176
177  case LookupResult::Found:
178    IIDecl = Result.getFoundDecl();
179    break;
180  }
181
182  assert(IIDecl && "Didn't find decl");
183
184  QualType T;
185  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
186    DiagnoseUseOfDecl(IIDecl, NameLoc);
187
188    if (T.isNull())
189      T = Context.getTypeDeclType(TD);
190
191    if (SS)
192      T = getElaboratedType(ETK_None, *SS, T);
193
194  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
195    T = Context.getObjCInterfaceType(IDecl);
196  } else {
197    // If it's not plausibly a type, suppress diagnostics.
198    Result.suppressDiagnostics();
199    return ParsedType();
200  }
201
202  return ParsedType::make(T);
203}
204
205/// isTagName() - This method is called *for error recovery purposes only*
206/// to determine if the specified name is a valid tag name ("struct foo").  If
207/// so, this returns the TST for the tag corresponding to it (TST_enum,
208/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
209/// where the user forgot to specify the tag.
210DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
211  // Do a tag name lookup in this scope.
212  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
213  LookupName(R, S, false);
214  R.suppressDiagnostics();
215  if (R.getResultKind() == LookupResult::Found)
216    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
217      switch (TD->getTagKind()) {
218      default:         return DeclSpec::TST_unspecified;
219      case TTK_Struct: return DeclSpec::TST_struct;
220      case TTK_Union:  return DeclSpec::TST_union;
221      case TTK_Class:  return DeclSpec::TST_class;
222      case TTK_Enum:   return DeclSpec::TST_enum;
223      }
224    }
225
226  return DeclSpec::TST_unspecified;
227}
228
229bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
230                                   SourceLocation IILoc,
231                                   Scope *S,
232                                   CXXScopeSpec *SS,
233                                   ParsedType &SuggestedType) {
234  // We don't have anything to suggest (yet).
235  SuggestedType = ParsedType();
236
237  // There may have been a typo in the name of the type. Look up typo
238  // results, in case we have something that we can suggest.
239  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
240                      NotForRedeclaration);
241
242  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
243    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
244      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
245          !Result->isInvalidDecl()) {
246        // We found a similarly-named type or interface; suggest that.
247        if (!SS || !SS->isSet())
248          Diag(IILoc, diag::err_unknown_typename_suggest)
249            << &II << Lookup.getLookupName()
250            << FixItHint::CreateReplacement(SourceRange(IILoc),
251                                            Result->getNameAsString());
252        else if (DeclContext *DC = computeDeclContext(*SS, false))
253          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
254            << &II << DC << Lookup.getLookupName() << SS->getRange()
255            << FixItHint::CreateReplacement(SourceRange(IILoc),
256                                            Result->getNameAsString());
257        else
258          llvm_unreachable("could not have corrected a typo here");
259
260        Diag(Result->getLocation(), diag::note_previous_decl)
261          << Result->getDeclName();
262
263        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS);
264        return true;
265      }
266    } else if (Lookup.empty()) {
267      // We corrected to a keyword.
268      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
269      Diag(IILoc, diag::err_unknown_typename_suggest)
270        << &II << Corrected;
271      return true;
272    }
273  }
274
275  if (getLangOptions().CPlusPlus) {
276    // See if II is a class template that the user forgot to pass arguments to.
277    UnqualifiedId Name;
278    Name.setIdentifier(&II, IILoc);
279    CXXScopeSpec EmptySS;
280    TemplateTy TemplateResult;
281    bool MemberOfUnknownSpecialization;
282    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
283                       Name, ParsedType(), true, TemplateResult,
284                       MemberOfUnknownSpecialization) == TNK_Type_template) {
285      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
286      Diag(IILoc, diag::err_template_missing_args) << TplName;
287      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
288        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
289          << TplDecl->getTemplateParameters()->getSourceRange();
290      }
291      return true;
292    }
293  }
294
295  // FIXME: Should we move the logic that tries to recover from a missing tag
296  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
297
298  if (!SS || (!SS->isSet() && !SS->isInvalid()))
299    Diag(IILoc, diag::err_unknown_typename) << &II;
300  else if (DeclContext *DC = computeDeclContext(*SS, false))
301    Diag(IILoc, diag::err_typename_nested_not_found)
302      << &II << DC << SS->getRange();
303  else if (isDependentScopeSpecifier(*SS)) {
304    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
305      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
306      << SourceRange(SS->getRange().getBegin(), IILoc)
307      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
308    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
309  } else {
310    assert(SS && SS->isInvalid() &&
311           "Invalid scope specifier has already been diagnosed");
312  }
313
314  return true;
315}
316
317// Determines the context to return to after temporarily entering a
318// context.  This depends in an unnecessarily complicated way on the
319// exact ordering of callbacks from the parser.
320DeclContext *Sema::getContainingDC(DeclContext *DC) {
321
322  // Functions defined inline within classes aren't parsed until we've
323  // finished parsing the top-level class, so the top-level class is
324  // the context we'll need to return to.
325  if (isa<FunctionDecl>(DC)) {
326    DC = DC->getLexicalParent();
327
328    // A function not defined within a class will always return to its
329    // lexical context.
330    if (!isa<CXXRecordDecl>(DC))
331      return DC;
332
333    // A C++ inline method/friend is parsed *after* the topmost class
334    // it was declared in is fully parsed ("complete");  the topmost
335    // class is the context we need to return to.
336    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
337      DC = RD;
338
339    // Return the declaration context of the topmost class the inline method is
340    // declared in.
341    return DC;
342  }
343
344  // ObjCMethodDecls are parsed (for some reason) outside the context
345  // of the class.
346  if (isa<ObjCMethodDecl>(DC))
347    return DC->getLexicalParent()->getLexicalParent();
348
349  return DC->getLexicalParent();
350}
351
352void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
353  assert(getContainingDC(DC) == CurContext &&
354      "The next DeclContext should be lexically contained in the current one.");
355  CurContext = DC;
356  S->setEntity(DC);
357}
358
359void Sema::PopDeclContext() {
360  assert(CurContext && "DeclContext imbalance!");
361
362  CurContext = getContainingDC(CurContext);
363  assert(CurContext && "Popped translation unit!");
364}
365
366/// EnterDeclaratorContext - Used when we must lookup names in the context
367/// of a declarator's nested name specifier.
368///
369void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
370  // C++0x [basic.lookup.unqual]p13:
371  //   A name used in the definition of a static data member of class
372  //   X (after the qualified-id of the static member) is looked up as
373  //   if the name was used in a member function of X.
374  // C++0x [basic.lookup.unqual]p14:
375  //   If a variable member of a namespace is defined outside of the
376  //   scope of its namespace then any name used in the definition of
377  //   the variable member (after the declarator-id) is looked up as
378  //   if the definition of the variable member occurred in its
379  //   namespace.
380  // Both of these imply that we should push a scope whose context
381  // is the semantic context of the declaration.  We can't use
382  // PushDeclContext here because that context is not necessarily
383  // lexically contained in the current context.  Fortunately,
384  // the containing scope should have the appropriate information.
385
386  assert(!S->getEntity() && "scope already has entity");
387
388#ifndef NDEBUG
389  Scope *Ancestor = S->getParent();
390  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
391  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
392#endif
393
394  CurContext = DC;
395  S->setEntity(DC);
396}
397
398void Sema::ExitDeclaratorContext(Scope *S) {
399  assert(S->getEntity() == CurContext && "Context imbalance!");
400
401  // Switch back to the lexical context.  The safety of this is
402  // enforced by an assert in EnterDeclaratorContext.
403  Scope *Ancestor = S->getParent();
404  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
405  CurContext = (DeclContext*) Ancestor->getEntity();
406
407  // We don't need to do anything with the scope, which is going to
408  // disappear.
409}
410
411/// \brief Determine whether we allow overloading of the function
412/// PrevDecl with another declaration.
413///
414/// This routine determines whether overloading is possible, not
415/// whether some new function is actually an overload. It will return
416/// true in C++ (where we can always provide overloads) or, as an
417/// extension, in C when the previous function is already an
418/// overloaded function declaration or has the "overloadable"
419/// attribute.
420static bool AllowOverloadingOfFunction(LookupResult &Previous,
421                                       ASTContext &Context) {
422  if (Context.getLangOptions().CPlusPlus)
423    return true;
424
425  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
426    return true;
427
428  return (Previous.getResultKind() == LookupResult::Found
429          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
430}
431
432/// Add this decl to the scope shadowed decl chains.
433void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
434  // Move up the scope chain until we find the nearest enclosing
435  // non-transparent context. The declaration will be introduced into this
436  // scope.
437  while (S->getEntity() &&
438         ((DeclContext *)S->getEntity())->isTransparentContext())
439    S = S->getParent();
440
441  // Add scoped declarations into their context, so that they can be
442  // found later. Declarations without a context won't be inserted
443  // into any context.
444  if (AddToContext)
445    CurContext->addDecl(D);
446
447  // Out-of-line definitions shouldn't be pushed into scope in C++.
448  // Out-of-line variable and function definitions shouldn't even in C.
449  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
450      D->isOutOfLine())
451    return;
452
453  // Template instantiations should also not be pushed into scope.
454  if (isa<FunctionDecl>(D) &&
455      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
456    return;
457
458  // If this replaces anything in the current scope,
459  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
460                               IEnd = IdResolver.end();
461  for (; I != IEnd; ++I) {
462    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
463      S->RemoveDecl(*I);
464      IdResolver.RemoveDecl(*I);
465
466      // Should only need to replace one decl.
467      break;
468    }
469  }
470
471  S->AddDecl(D);
472  IdResolver.AddDecl(D);
473}
474
475bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
476  return IdResolver.isDeclInScope(D, Ctx, Context, S);
477}
478
479Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
480  DeclContext *TargetDC = DC->getPrimaryContext();
481  do {
482    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
483      if (ScopeDC->getPrimaryContext() == TargetDC)
484        return S;
485  } while ((S = S->getParent()));
486
487  return 0;
488}
489
490static bool isOutOfScopePreviousDeclaration(NamedDecl *,
491                                            DeclContext*,
492                                            ASTContext&);
493
494/// Filters out lookup results that don't fall within the given scope
495/// as determined by isDeclInScope.
496static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
497                                 DeclContext *Ctx, Scope *S,
498                                 bool ConsiderLinkage) {
499  LookupResult::Filter F = R.makeFilter();
500  while (F.hasNext()) {
501    NamedDecl *D = F.next();
502
503    if (SemaRef.isDeclInScope(D, Ctx, S))
504      continue;
505
506    if (ConsiderLinkage &&
507        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
508      continue;
509
510    F.erase();
511  }
512
513  F.done();
514}
515
516static bool isUsingDecl(NamedDecl *D) {
517  return isa<UsingShadowDecl>(D) ||
518         isa<UnresolvedUsingTypenameDecl>(D) ||
519         isa<UnresolvedUsingValueDecl>(D);
520}
521
522/// Removes using shadow declarations from the lookup results.
523static void RemoveUsingDecls(LookupResult &R) {
524  LookupResult::Filter F = R.makeFilter();
525  while (F.hasNext())
526    if (isUsingDecl(F.next()))
527      F.erase();
528
529  F.done();
530}
531
532/// \brief Check for this common pattern:
533/// @code
534/// class S {
535///   S(const S&); // DO NOT IMPLEMENT
536///   void operator=(const S&); // DO NOT IMPLEMENT
537/// };
538/// @endcode
539static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
540  // FIXME: Should check for private access too but access is set after we get
541  // the decl here.
542  if (D->isThisDeclarationADefinition())
543    return false;
544
545  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
546    return CD->isCopyConstructor();
547  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
548    return Method->isCopyAssignmentOperator();
549  return false;
550}
551
552bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
553  assert(D);
554
555  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
556    return false;
557
558  // Ignore class templates.
559  if (D->getDeclContext()->isDependentContext())
560    return false;
561
562  // We warn for unused decls internal to the translation unit.
563  if (D->getLinkage() == ExternalLinkage)
564    return false;
565
566  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
567    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
568      return false;
569
570    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
571      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
572        return false;
573    } else {
574      // 'static inline' functions are used in headers; don't warn.
575      if (FD->getStorageClass() == SC_Static &&
576          FD->isInlineSpecified())
577        return false;
578    }
579
580    if (FD->isThisDeclarationADefinition())
581      return !Context.DeclMustBeEmitted(FD);
582    return true;
583  }
584
585  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
586    if (VD->isStaticDataMember() &&
587        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
588      return false;
589
590    if ( VD->isFileVarDecl() &&
591        !VD->getType().isConstant(Context))
592      return !Context.DeclMustBeEmitted(VD);
593  }
594
595   return false;
596 }
597
598 void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
599  if (!D)
600    return;
601
602  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
603    const FunctionDecl *First = FD->getFirstDeclaration();
604    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
605      return; // First should already be in the vector.
606  }
607
608  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
609    const VarDecl *First = VD->getFirstDeclaration();
610    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
611      return; // First should already be in the vector.
612  }
613
614   if (ShouldWarnIfUnusedFileScopedDecl(D))
615     UnusedFileScopedDecls.push_back(D);
616 }
617
618static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
619  if (D->isInvalidDecl())
620    return false;
621
622  if (D->isUsed() || D->hasAttr<UnusedAttr>())
623    return false;
624
625  // White-list anything that isn't a local variable.
626  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
627      !D->getDeclContext()->isFunctionOrMethod())
628    return false;
629
630  // Types of valid local variables should be complete, so this should succeed.
631  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
632
633    // White-list anything with an __attribute__((unused)) type.
634    QualType Ty = VD->getType();
635
636    // Only look at the outermost level of typedef.
637    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
638      if (TT->getDecl()->hasAttr<UnusedAttr>())
639        return false;
640    }
641
642    // If we failed to complete the type for some reason, or if the type is
643    // dependent, don't diagnose the variable.
644    if (Ty->isIncompleteType() || Ty->isDependentType())
645      return false;
646
647    if (const TagType *TT = Ty->getAs<TagType>()) {
648      const TagDecl *Tag = TT->getDecl();
649      if (Tag->hasAttr<UnusedAttr>())
650        return false;
651
652      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
653        // FIXME: Checking for the presence of a user-declared constructor
654        // isn't completely accurate; we'd prefer to check that the initializer
655        // has no side effects.
656        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
657          return false;
658      }
659    }
660
661    // TODO: __attribute__((unused)) templates?
662  }
663
664  return true;
665}
666
667void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
668  if (!ShouldDiagnoseUnusedDecl(D))
669    return;
670
671  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
672    Diag(D->getLocation(), diag::warn_unused_exception_param)
673    << D->getDeclName();
674  else
675    Diag(D->getLocation(), diag::warn_unused_variable)
676    << D->getDeclName();
677}
678
679void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
680  if (S->decl_empty()) return;
681  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
682         "Scope shouldn't contain decls!");
683
684  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
685       I != E; ++I) {
686    Decl *TmpD = (*I);
687    assert(TmpD && "This decl didn't get pushed??");
688
689    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
690    NamedDecl *D = cast<NamedDecl>(TmpD);
691
692    if (!D->getDeclName()) continue;
693
694    // Diagnose unused variables in this scope.
695    if (S->getNumErrorsAtStart() == getDiagnostics().getNumErrors())
696      DiagnoseUnusedDecl(D);
697
698    // Remove this name from our lexical scope.
699    IdResolver.RemoveDecl(D);
700  }
701}
702
703/// \brief Look for an Objective-C class in the translation unit.
704///
705/// \param Id The name of the Objective-C class we're looking for. If
706/// typo-correction fixes this name, the Id will be updated
707/// to the fixed name.
708///
709/// \param IdLoc The location of the name in the translation unit.
710///
711/// \param TypoCorrection If true, this routine will attempt typo correction
712/// if there is no class with the given name.
713///
714/// \returns The declaration of the named Objective-C class, or NULL if the
715/// class could not be found.
716ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
717                                              SourceLocation IdLoc,
718                                              bool TypoCorrection) {
719  // The third "scope" argument is 0 since we aren't enabling lazy built-in
720  // creation from this context.
721  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
722
723  if (!IDecl && TypoCorrection) {
724    // Perform typo correction at the given location, but only if we
725    // find an Objective-C class name.
726    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
727    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
728        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
729      Diag(IdLoc, diag::err_undef_interface_suggest)
730        << Id << IDecl->getDeclName()
731        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
732      Diag(IDecl->getLocation(), diag::note_previous_decl)
733        << IDecl->getDeclName();
734
735      Id = IDecl->getIdentifier();
736    }
737  }
738
739  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
740}
741
742/// getNonFieldDeclScope - Retrieves the innermost scope, starting
743/// from S, where a non-field would be declared. This routine copes
744/// with the difference between C and C++ scoping rules in structs and
745/// unions. For example, the following code is well-formed in C but
746/// ill-formed in C++:
747/// @code
748/// struct S6 {
749///   enum { BAR } e;
750/// };
751///
752/// void test_S6() {
753///   struct S6 a;
754///   a.e = BAR;
755/// }
756/// @endcode
757/// For the declaration of BAR, this routine will return a different
758/// scope. The scope S will be the scope of the unnamed enumeration
759/// within S6. In C++, this routine will return the scope associated
760/// with S6, because the enumeration's scope is a transparent
761/// context but structures can contain non-field names. In C, this
762/// routine will return the translation unit scope, since the
763/// enumeration's scope is a transparent context and structures cannot
764/// contain non-field names.
765Scope *Sema::getNonFieldDeclScope(Scope *S) {
766  while (((S->getFlags() & Scope::DeclScope) == 0) ||
767         (S->getEntity() &&
768          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
769         (S->isClassScope() && !getLangOptions().CPlusPlus))
770    S = S->getParent();
771  return S;
772}
773
774void Sema::InitBuiltinVaListType() {
775  if (!Context.getBuiltinVaListType().isNull())
776    return;
777
778  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
779  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, SourceLocation(),
780                                       LookupOrdinaryName, ForRedeclaration);
781  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
782  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
783}
784
785/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
786/// file scope.  lazily create a decl for it. ForRedeclaration is true
787/// if we're creating this built-in in anticipation of redeclaring the
788/// built-in.
789NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
790                                     Scope *S, bool ForRedeclaration,
791                                     SourceLocation Loc) {
792  Builtin::ID BID = (Builtin::ID)bid;
793
794  if (Context.BuiltinInfo.hasVAListUse(BID))
795    InitBuiltinVaListType();
796
797  ASTContext::GetBuiltinTypeError Error;
798  QualType R = Context.GetBuiltinType(BID, Error);
799  switch (Error) {
800  case ASTContext::GE_None:
801    // Okay
802    break;
803
804  case ASTContext::GE_Missing_stdio:
805    if (ForRedeclaration)
806      Diag(Loc, diag::err_implicit_decl_requires_stdio)
807        << Context.BuiltinInfo.GetName(BID);
808    return 0;
809
810  case ASTContext::GE_Missing_setjmp:
811    if (ForRedeclaration)
812      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
813        << Context.BuiltinInfo.GetName(BID);
814    return 0;
815  }
816
817  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
818    Diag(Loc, diag::ext_implicit_lib_function_decl)
819      << Context.BuiltinInfo.GetName(BID)
820      << R;
821    if (Context.BuiltinInfo.getHeaderName(BID) &&
822        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
823          != Diagnostic::Ignored)
824      Diag(Loc, diag::note_please_include_header)
825        << Context.BuiltinInfo.getHeaderName(BID)
826        << Context.BuiltinInfo.GetName(BID);
827  }
828
829  FunctionDecl *New = FunctionDecl::Create(Context,
830                                           Context.getTranslationUnitDecl(),
831                                           Loc, II, R, /*TInfo=*/0,
832                                           SC_Extern,
833                                           SC_None, false,
834                                           /*hasPrototype=*/true);
835  New->setImplicit();
836
837  // Create Decl objects for each parameter, adding them to the
838  // FunctionDecl.
839  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
840    llvm::SmallVector<ParmVarDecl*, 16> Params;
841    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
842      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
843                                           FT->getArgType(i), /*TInfo=*/0,
844                                           SC_None, SC_None, 0));
845    New->setParams(Params.data(), Params.size());
846  }
847
848  AddKnownFunctionAttributes(New);
849
850  // TUScope is the translation-unit scope to insert this function into.
851  // FIXME: This is hideous. We need to teach PushOnScopeChains to
852  // relate Scopes to DeclContexts, and probably eliminate CurContext
853  // entirely, but we're not there yet.
854  DeclContext *SavedContext = CurContext;
855  CurContext = Context.getTranslationUnitDecl();
856  PushOnScopeChains(New, TUScope);
857  CurContext = SavedContext;
858  return New;
859}
860
861/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
862/// same name and scope as a previous declaration 'Old'.  Figure out
863/// how to resolve this situation, merging decls or emitting
864/// diagnostics as appropriate. If there was an error, set New to be invalid.
865///
866void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
867  // If the new decl is known invalid already, don't bother doing any
868  // merging checks.
869  if (New->isInvalidDecl()) return;
870
871  // Allow multiple definitions for ObjC built-in typedefs.
872  // FIXME: Verify the underlying types are equivalent!
873  if (getLangOptions().ObjC1) {
874    const IdentifierInfo *TypeID = New->getIdentifier();
875    switch (TypeID->getLength()) {
876    default: break;
877    case 2:
878      if (!TypeID->isStr("id"))
879        break;
880      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
881      // Install the built-in type for 'id', ignoring the current definition.
882      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
883      return;
884    case 5:
885      if (!TypeID->isStr("Class"))
886        break;
887      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
888      // Install the built-in type for 'Class', ignoring the current definition.
889      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
890      return;
891    case 3:
892      if (!TypeID->isStr("SEL"))
893        break;
894      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
895      // Install the built-in type for 'SEL', ignoring the current definition.
896      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
897      return;
898    case 8:
899      if (!TypeID->isStr("Protocol"))
900        break;
901      Context.setObjCProtoType(New->getUnderlyingType());
902      return;
903    }
904    // Fall through - the typedef name was not a builtin type.
905  }
906
907  // Verify the old decl was also a type.
908  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
909  if (!Old) {
910    Diag(New->getLocation(), diag::err_redefinition_different_kind)
911      << New->getDeclName();
912
913    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
914    if (OldD->getLocation().isValid())
915      Diag(OldD->getLocation(), diag::note_previous_definition);
916
917    return New->setInvalidDecl();
918  }
919
920  // If the old declaration is invalid, just give up here.
921  if (Old->isInvalidDecl())
922    return New->setInvalidDecl();
923
924  // Determine the "old" type we'll use for checking and diagnostics.
925  QualType OldType;
926  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
927    OldType = OldTypedef->getUnderlyingType();
928  else
929    OldType = Context.getTypeDeclType(Old);
930
931  // If the typedef types are not identical, reject them in all languages and
932  // with any extensions enabled.
933
934  if (OldType != New->getUnderlyingType() &&
935      Context.getCanonicalType(OldType) !=
936      Context.getCanonicalType(New->getUnderlyingType())) {
937    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
938      << New->getUnderlyingType() << OldType;
939    if (Old->getLocation().isValid())
940      Diag(Old->getLocation(), diag::note_previous_definition);
941    return New->setInvalidDecl();
942  }
943
944  // The types match.  Link up the redeclaration chain if the old
945  // declaration was a typedef.
946  // FIXME: this is a potential source of wierdness if the type
947  // spellings don't match exactly.
948  if (isa<TypedefDecl>(Old))
949    New->setPreviousDeclaration(cast<TypedefDecl>(Old));
950
951  if (getLangOptions().Microsoft)
952    return;
953
954  if (getLangOptions().CPlusPlus) {
955    // C++ [dcl.typedef]p2:
956    //   In a given non-class scope, a typedef specifier can be used to
957    //   redefine the name of any type declared in that scope to refer
958    //   to the type to which it already refers.
959    if (!isa<CXXRecordDecl>(CurContext))
960      return;
961
962    // C++0x [dcl.typedef]p4:
963    //   In a given class scope, a typedef specifier can be used to redefine
964    //   any class-name declared in that scope that is not also a typedef-name
965    //   to refer to the type to which it already refers.
966    //
967    // This wording came in via DR424, which was a correction to the
968    // wording in DR56, which accidentally banned code like:
969    //
970    //   struct S {
971    //     typedef struct A { } A;
972    //   };
973    //
974    // in the C++03 standard. We implement the C++0x semantics, which
975    // allow the above but disallow
976    //
977    //   struct S {
978    //     typedef int I;
979    //     typedef int I;
980    //   };
981    //
982    // since that was the intent of DR56.
983    if (!isa<TypedefDecl >(Old))
984      return;
985
986    Diag(New->getLocation(), diag::err_redefinition)
987      << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991
992  // If we have a redefinition of a typedef in C, emit a warning.  This warning
993  // is normally mapped to an error, but can be controlled with
994  // -Wtypedef-redefinition.  If either the original or the redefinition is
995  // in a system header, don't emit this for compatibility with GCC.
996  if (getDiagnostics().getSuppressSystemWarnings() &&
997      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
998       Context.getSourceManager().isInSystemHeader(New->getLocation())))
999    return;
1000
1001  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1002    << New->getDeclName();
1003  Diag(Old->getLocation(), diag::note_previous_definition);
1004  return;
1005}
1006
1007/// DeclhasAttr - returns true if decl Declaration already has the target
1008/// attribute.
1009static bool
1010DeclHasAttr(const Decl *D, const Attr *A) {
1011  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1012  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1013    if ((*i)->getKind() == A->getKind()) {
1014      // FIXME: Don't hardcode this check
1015      if (OA && isa<OwnershipAttr>(*i))
1016        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1017      return true;
1018    }
1019
1020  return false;
1021}
1022
1023/// MergeDeclAttributes - append attributes from the Old decl to the New one.
1024static void MergeDeclAttributes(Decl *New, Decl *Old, ASTContext &C) {
1025  if (!Old->hasAttrs())
1026    return;
1027  // Ensure that any moving of objects within the allocated map is done before
1028  // we process them.
1029  if (!New->hasAttrs())
1030    New->setAttrs(AttrVec());
1031  for (Decl::attr_iterator i = Old->attr_begin(), e = Old->attr_end(); i != e;
1032       ++i) {
1033    // FIXME: Make this more general than just checking for Overloadable.
1034    if (!DeclHasAttr(New, *i) && (*i)->getKind() != attr::Overloadable) {
1035      Attr *NewAttr = (*i)->clone(C);
1036      NewAttr->setInherited(true);
1037      New->addAttr(NewAttr);
1038    }
1039  }
1040}
1041
1042namespace {
1043
1044/// Used in MergeFunctionDecl to keep track of function parameters in
1045/// C.
1046struct GNUCompatibleParamWarning {
1047  ParmVarDecl *OldParm;
1048  ParmVarDecl *NewParm;
1049  QualType PromotedType;
1050};
1051
1052}
1053
1054/// getSpecialMember - get the special member enum for a method.
1055Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1056  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1057    if (Ctor->isCopyConstructor())
1058      return Sema::CXXCopyConstructor;
1059
1060    return Sema::CXXConstructor;
1061  }
1062
1063  if (isa<CXXDestructorDecl>(MD))
1064    return Sema::CXXDestructor;
1065
1066  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
1067  return Sema::CXXCopyAssignment;
1068}
1069
1070/// canRedefineFunction - checks if a function can be redefined. Currently,
1071/// only extern inline functions can be redefined, and even then only in
1072/// GNU89 mode.
1073static bool canRedefineFunction(const FunctionDecl *FD,
1074                                const LangOptions& LangOpts) {
1075  return (LangOpts.GNUMode && !LangOpts.C99 && !LangOpts.CPlusPlus &&
1076          FD->isInlineSpecified() &&
1077          FD->getStorageClass() == SC_Extern);
1078}
1079
1080/// MergeFunctionDecl - We just parsed a function 'New' from
1081/// declarator D which has the same name and scope as a previous
1082/// declaration 'Old'.  Figure out how to resolve this situation,
1083/// merging decls or emitting diagnostics as appropriate.
1084///
1085/// In C++, New and Old must be declarations that are not
1086/// overloaded. Use IsOverload to determine whether New and Old are
1087/// overloaded, and to select the Old declaration that New should be
1088/// merged with.
1089///
1090/// Returns true if there was an error, false otherwise.
1091bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1092  // Verify the old decl was also a function.
1093  FunctionDecl *Old = 0;
1094  if (FunctionTemplateDecl *OldFunctionTemplate
1095        = dyn_cast<FunctionTemplateDecl>(OldD))
1096    Old = OldFunctionTemplate->getTemplatedDecl();
1097  else
1098    Old = dyn_cast<FunctionDecl>(OldD);
1099  if (!Old) {
1100    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1101      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1102      Diag(Shadow->getTargetDecl()->getLocation(),
1103           diag::note_using_decl_target);
1104      Diag(Shadow->getUsingDecl()->getLocation(),
1105           diag::note_using_decl) << 0;
1106      return true;
1107    }
1108
1109    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1110      << New->getDeclName();
1111    Diag(OldD->getLocation(), diag::note_previous_definition);
1112    return true;
1113  }
1114
1115  // Determine whether the previous declaration was a definition,
1116  // implicit declaration, or a declaration.
1117  diag::kind PrevDiag;
1118  if (Old->isThisDeclarationADefinition())
1119    PrevDiag = diag::note_previous_definition;
1120  else if (Old->isImplicit())
1121    PrevDiag = diag::note_previous_implicit_declaration;
1122  else
1123    PrevDiag = diag::note_previous_declaration;
1124
1125  QualType OldQType = Context.getCanonicalType(Old->getType());
1126  QualType NewQType = Context.getCanonicalType(New->getType());
1127
1128  // Don't complain about this if we're in GNU89 mode and the old function
1129  // is an extern inline function.
1130  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1131      New->getStorageClass() == SC_Static &&
1132      Old->getStorageClass() != SC_Static &&
1133      !canRedefineFunction(Old, getLangOptions())) {
1134    Diag(New->getLocation(), diag::err_static_non_static)
1135      << New;
1136    Diag(Old->getLocation(), PrevDiag);
1137    return true;
1138  }
1139
1140  // If a function is first declared with a calling convention, but is
1141  // later declared or defined without one, the second decl assumes the
1142  // calling convention of the first.
1143  //
1144  // For the new decl, we have to look at the NON-canonical type to tell the
1145  // difference between a function that really doesn't have a calling
1146  // convention and one that is declared cdecl. That's because in
1147  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1148  // because it is the default calling convention.
1149  //
1150  // Note also that we DO NOT return at this point, because we still have
1151  // other tests to run.
1152  const FunctionType *OldType = OldQType->getAs<FunctionType>();
1153  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1154  const FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1155  const FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1156  if (OldTypeInfo.getCC() != CC_Default &&
1157      NewTypeInfo.getCC() == CC_Default) {
1158    NewQType = Context.getCallConvType(NewQType, OldTypeInfo.getCC());
1159    New->setType(NewQType);
1160    NewQType = Context.getCanonicalType(NewQType);
1161  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1162                                     NewTypeInfo.getCC())) {
1163    // Calling conventions really aren't compatible, so complain.
1164    Diag(New->getLocation(), diag::err_cconv_change)
1165      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1166      << (OldTypeInfo.getCC() == CC_Default)
1167      << (OldTypeInfo.getCC() == CC_Default ? "" :
1168          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1169    Diag(Old->getLocation(), diag::note_previous_declaration);
1170    return true;
1171  }
1172
1173  // FIXME: diagnose the other way around?
1174  if (OldType->getNoReturnAttr() && !NewType->getNoReturnAttr()) {
1175    NewQType = Context.getNoReturnType(NewQType);
1176    New->setType(NewQType);
1177    assert(NewQType.isCanonical());
1178  }
1179
1180  // Merge regparm attribute.
1181  if (OldType->getRegParmType() != NewType->getRegParmType()) {
1182    if (NewType->getRegParmType()) {
1183      Diag(New->getLocation(), diag::err_regparm_mismatch)
1184        << NewType->getRegParmType()
1185        << OldType->getRegParmType();
1186      Diag(Old->getLocation(), diag::note_previous_declaration);
1187      return true;
1188    }
1189
1190    NewQType = Context.getRegParmType(NewQType, OldType->getRegParmType());
1191    New->setType(NewQType);
1192    assert(NewQType.isCanonical());
1193  }
1194
1195  if (getLangOptions().CPlusPlus) {
1196    // (C++98 13.1p2):
1197    //   Certain function declarations cannot be overloaded:
1198    //     -- Function declarations that differ only in the return type
1199    //        cannot be overloaded.
1200    QualType OldReturnType
1201      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
1202    QualType NewReturnType
1203      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
1204    QualType ResQT;
1205    if (OldReturnType != NewReturnType) {
1206      if (NewReturnType->isObjCObjectPointerType()
1207          && OldReturnType->isObjCObjectPointerType())
1208        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1209      if (ResQT.isNull()) {
1210        Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1211        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1212        return true;
1213      }
1214      else
1215        NewQType = ResQT;
1216    }
1217
1218    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1219    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1220    if (OldMethod && NewMethod) {
1221      // Preserve triviality.
1222      NewMethod->setTrivial(OldMethod->isTrivial());
1223
1224      bool isFriend = NewMethod->getFriendObjectKind();
1225
1226      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1227        //    -- Member function declarations with the same name and the
1228        //       same parameter types cannot be overloaded if any of them
1229        //       is a static member function declaration.
1230        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1231          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1232          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1233          return true;
1234        }
1235
1236        // C++ [class.mem]p1:
1237        //   [...] A member shall not be declared twice in the
1238        //   member-specification, except that a nested class or member
1239        //   class template can be declared and then later defined.
1240        unsigned NewDiag;
1241        if (isa<CXXConstructorDecl>(OldMethod))
1242          NewDiag = diag::err_constructor_redeclared;
1243        else if (isa<CXXDestructorDecl>(NewMethod))
1244          NewDiag = diag::err_destructor_redeclared;
1245        else if (isa<CXXConversionDecl>(NewMethod))
1246          NewDiag = diag::err_conv_function_redeclared;
1247        else
1248          NewDiag = diag::err_member_redeclared;
1249
1250        Diag(New->getLocation(), NewDiag);
1251        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1252
1253      // Complain if this is an explicit declaration of a special
1254      // member that was initially declared implicitly.
1255      //
1256      // As an exception, it's okay to befriend such methods in order
1257      // to permit the implicit constructor/destructor/operator calls.
1258      } else if (OldMethod->isImplicit()) {
1259        if (isFriend) {
1260          NewMethod->setImplicit();
1261        } else {
1262          Diag(NewMethod->getLocation(),
1263               diag::err_definition_of_implicitly_declared_member)
1264            << New << getSpecialMember(OldMethod);
1265          return true;
1266        }
1267      }
1268    }
1269
1270    // (C++98 8.3.5p3):
1271    //   All declarations for a function shall agree exactly in both the
1272    //   return type and the parameter-type-list.
1273    // attributes should be ignored when comparing.
1274    if (Context.getNoReturnType(OldQType, false) ==
1275        Context.getNoReturnType(NewQType, false))
1276      return MergeCompatibleFunctionDecls(New, Old);
1277
1278    // Fall through for conflicting redeclarations and redefinitions.
1279  }
1280
1281  // C: Function types need to be compatible, not identical. This handles
1282  // duplicate function decls like "void f(int); void f(enum X);" properly.
1283  if (!getLangOptions().CPlusPlus &&
1284      Context.typesAreCompatible(OldQType, NewQType)) {
1285    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1286    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1287    const FunctionProtoType *OldProto = 0;
1288    if (isa<FunctionNoProtoType>(NewFuncType) &&
1289        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1290      // The old declaration provided a function prototype, but the
1291      // new declaration does not. Merge in the prototype.
1292      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1293      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1294                                                 OldProto->arg_type_end());
1295      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1296                                         ParamTypes.data(), ParamTypes.size(),
1297                                         OldProto->isVariadic(),
1298                                         OldProto->getTypeQuals(),
1299                                         false, false, 0, 0,
1300                                         OldProto->getExtInfo());
1301      New->setType(NewQType);
1302      New->setHasInheritedPrototype();
1303
1304      // Synthesize a parameter for each argument type.
1305      llvm::SmallVector<ParmVarDecl*, 16> Params;
1306      for (FunctionProtoType::arg_type_iterator
1307             ParamType = OldProto->arg_type_begin(),
1308             ParamEnd = OldProto->arg_type_end();
1309           ParamType != ParamEnd; ++ParamType) {
1310        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1311                                                 SourceLocation(), 0,
1312                                                 *ParamType, /*TInfo=*/0,
1313                                                 SC_None, SC_None,
1314                                                 0);
1315        Param->setImplicit();
1316        Params.push_back(Param);
1317      }
1318
1319      New->setParams(Params.data(), Params.size());
1320    }
1321
1322    return MergeCompatibleFunctionDecls(New, Old);
1323  }
1324
1325  // GNU C permits a K&R definition to follow a prototype declaration
1326  // if the declared types of the parameters in the K&R definition
1327  // match the types in the prototype declaration, even when the
1328  // promoted types of the parameters from the K&R definition differ
1329  // from the types in the prototype. GCC then keeps the types from
1330  // the prototype.
1331  //
1332  // If a variadic prototype is followed by a non-variadic K&R definition,
1333  // the K&R definition becomes variadic.  This is sort of an edge case, but
1334  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1335  // C99 6.9.1p8.
1336  if (!getLangOptions().CPlusPlus &&
1337      Old->hasPrototype() && !New->hasPrototype() &&
1338      New->getType()->getAs<FunctionProtoType>() &&
1339      Old->getNumParams() == New->getNumParams()) {
1340    llvm::SmallVector<QualType, 16> ArgTypes;
1341    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1342    const FunctionProtoType *OldProto
1343      = Old->getType()->getAs<FunctionProtoType>();
1344    const FunctionProtoType *NewProto
1345      = New->getType()->getAs<FunctionProtoType>();
1346
1347    // Determine whether this is the GNU C extension.
1348    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1349                                               NewProto->getResultType());
1350    bool LooseCompatible = !MergedReturn.isNull();
1351    for (unsigned Idx = 0, End = Old->getNumParams();
1352         LooseCompatible && Idx != End; ++Idx) {
1353      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1354      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1355      if (Context.typesAreCompatible(OldParm->getType(),
1356                                     NewProto->getArgType(Idx))) {
1357        ArgTypes.push_back(NewParm->getType());
1358      } else if (Context.typesAreCompatible(OldParm->getType(),
1359                                            NewParm->getType(),
1360                                            /*CompareUnqualified=*/true)) {
1361        GNUCompatibleParamWarning Warn
1362          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1363        Warnings.push_back(Warn);
1364        ArgTypes.push_back(NewParm->getType());
1365      } else
1366        LooseCompatible = false;
1367    }
1368
1369    if (LooseCompatible) {
1370      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1371        Diag(Warnings[Warn].NewParm->getLocation(),
1372             diag::ext_param_promoted_not_compatible_with_prototype)
1373          << Warnings[Warn].PromotedType
1374          << Warnings[Warn].OldParm->getType();
1375        if (Warnings[Warn].OldParm->getLocation().isValid())
1376          Diag(Warnings[Warn].OldParm->getLocation(),
1377               diag::note_previous_declaration);
1378      }
1379
1380      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1381                                           ArgTypes.size(),
1382                                           OldProto->isVariadic(), 0,
1383                                           false, false, 0, 0,
1384                                           OldProto->getExtInfo()));
1385      return MergeCompatibleFunctionDecls(New, Old);
1386    }
1387
1388    // Fall through to diagnose conflicting types.
1389  }
1390
1391  // A function that has already been declared has been redeclared or defined
1392  // with a different type- show appropriate diagnostic
1393  if (unsigned BuiltinID = Old->getBuiltinID()) {
1394    // The user has declared a builtin function with an incompatible
1395    // signature.
1396    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1397      // The function the user is redeclaring is a library-defined
1398      // function like 'malloc' or 'printf'. Warn about the
1399      // redeclaration, then pretend that we don't know about this
1400      // library built-in.
1401      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1402      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1403        << Old << Old->getType();
1404      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1405      Old->setInvalidDecl();
1406      return false;
1407    }
1408
1409    PrevDiag = diag::note_previous_builtin_declaration;
1410  }
1411
1412  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1413  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1414  return true;
1415}
1416
1417/// \brief Completes the merge of two function declarations that are
1418/// known to be compatible.
1419///
1420/// This routine handles the merging of attributes and other
1421/// properties of function declarations form the old declaration to
1422/// the new declaration, once we know that New is in fact a
1423/// redeclaration of Old.
1424///
1425/// \returns false
1426bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1427  // Merge the attributes
1428  MergeDeclAttributes(New, Old, Context);
1429
1430  // Merge the storage class.
1431  if (Old->getStorageClass() != SC_Extern &&
1432      Old->getStorageClass() != SC_None)
1433    New->setStorageClass(Old->getStorageClass());
1434
1435  // Merge "pure" flag.
1436  if (Old->isPure())
1437    New->setPure();
1438
1439  // Merge the "deleted" flag.
1440  if (Old->isDeleted())
1441    New->setDeleted();
1442
1443  if (getLangOptions().CPlusPlus)
1444    return MergeCXXFunctionDecl(New, Old);
1445
1446  return false;
1447}
1448
1449/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1450/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1451/// situation, merging decls or emitting diagnostics as appropriate.
1452///
1453/// Tentative definition rules (C99 6.9.2p2) are checked by
1454/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1455/// definitions here, since the initializer hasn't been attached.
1456///
1457void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1458  // If the new decl is already invalid, don't do any other checking.
1459  if (New->isInvalidDecl())
1460    return;
1461
1462  // Verify the old decl was also a variable.
1463  VarDecl *Old = 0;
1464  if (!Previous.isSingleResult() ||
1465      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1466    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1467      << New->getDeclName();
1468    Diag(Previous.getRepresentativeDecl()->getLocation(),
1469         diag::note_previous_definition);
1470    return New->setInvalidDecl();
1471  }
1472
1473  // C++ [class.mem]p1:
1474  //   A member shall not be declared twice in the member-specification [...]
1475  //
1476  // Here, we need only consider static data members.
1477  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
1478    Diag(New->getLocation(), diag::err_duplicate_member)
1479      << New->getIdentifier();
1480    Diag(Old->getLocation(), diag::note_previous_declaration);
1481    New->setInvalidDecl();
1482  }
1483
1484  MergeDeclAttributes(New, Old, Context);
1485
1486  // Merge the types
1487  QualType MergedT;
1488  if (getLangOptions().CPlusPlus) {
1489    if (Context.hasSameType(New->getType(), Old->getType()))
1490      MergedT = New->getType();
1491    // C++ [basic.link]p10:
1492    //   [...] the types specified by all declarations referring to a given
1493    //   object or function shall be identical, except that declarations for an
1494    //   array object can specify array types that differ by the presence or
1495    //   absence of a major array bound (8.3.4).
1496    else if (Old->getType()->isIncompleteArrayType() &&
1497             New->getType()->isArrayType()) {
1498      CanQual<ArrayType> OldArray
1499        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1500      CanQual<ArrayType> NewArray
1501        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1502      if (OldArray->getElementType() == NewArray->getElementType())
1503        MergedT = New->getType();
1504    } else if (Old->getType()->isArrayType() &&
1505             New->getType()->isIncompleteArrayType()) {
1506      CanQual<ArrayType> OldArray
1507        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1508      CanQual<ArrayType> NewArray
1509        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1510      if (OldArray->getElementType() == NewArray->getElementType())
1511        MergedT = Old->getType();
1512    } else if (New->getType()->isObjCObjectPointerType()
1513               && Old->getType()->isObjCObjectPointerType()) {
1514        MergedT = Context.mergeObjCGCQualifiers(New->getType(), Old->getType());
1515    }
1516  } else {
1517    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1518  }
1519  if (MergedT.isNull()) {
1520    Diag(New->getLocation(), diag::err_redefinition_different_type)
1521      << New->getDeclName();
1522    Diag(Old->getLocation(), diag::note_previous_definition);
1523    return New->setInvalidDecl();
1524  }
1525  New->setType(MergedT);
1526
1527  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1528  if (New->getStorageClass() == SC_Static &&
1529      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
1530    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1531    Diag(Old->getLocation(), diag::note_previous_definition);
1532    return New->setInvalidDecl();
1533  }
1534  // C99 6.2.2p4:
1535  //   For an identifier declared with the storage-class specifier
1536  //   extern in a scope in which a prior declaration of that
1537  //   identifier is visible,23) if the prior declaration specifies
1538  //   internal or external linkage, the linkage of the identifier at
1539  //   the later declaration is the same as the linkage specified at
1540  //   the prior declaration. If no prior declaration is visible, or
1541  //   if the prior declaration specifies no linkage, then the
1542  //   identifier has external linkage.
1543  if (New->hasExternalStorage() && Old->hasLinkage())
1544    /* Okay */;
1545  else if (New->getStorageClass() != SC_Static &&
1546           Old->getStorageClass() == SC_Static) {
1547    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1548    Diag(Old->getLocation(), diag::note_previous_definition);
1549    return New->setInvalidDecl();
1550  }
1551
1552  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1553
1554  // FIXME: The test for external storage here seems wrong? We still
1555  // need to check for mismatches.
1556  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1557      // Don't complain about out-of-line definitions of static members.
1558      !(Old->getLexicalDeclContext()->isRecord() &&
1559        !New->getLexicalDeclContext()->isRecord())) {
1560    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1561    Diag(Old->getLocation(), diag::note_previous_definition);
1562    return New->setInvalidDecl();
1563  }
1564
1565  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1566    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1567    Diag(Old->getLocation(), diag::note_previous_definition);
1568  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1569    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1570    Diag(Old->getLocation(), diag::note_previous_definition);
1571  }
1572
1573  // C++ doesn't have tentative definitions, so go right ahead and check here.
1574  const VarDecl *Def;
1575  if (getLangOptions().CPlusPlus &&
1576      New->isThisDeclarationADefinition() == VarDecl::Definition &&
1577      (Def = Old->getDefinition())) {
1578    Diag(New->getLocation(), diag::err_redefinition)
1579      << New->getDeclName();
1580    Diag(Def->getLocation(), diag::note_previous_definition);
1581    New->setInvalidDecl();
1582    return;
1583  }
1584  // c99 6.2.2 P4.
1585  // For an identifier declared with the storage-class specifier extern in a
1586  // scope in which a prior declaration of that identifier is visible, if
1587  // the prior declaration specifies internal or external linkage, the linkage
1588  // of the identifier at the later declaration is the same as the linkage
1589  // specified at the prior declaration.
1590  // FIXME. revisit this code.
1591  if (New->hasExternalStorage() &&
1592      Old->getLinkage() == InternalLinkage &&
1593      New->getDeclContext() == Old->getDeclContext())
1594    New->setStorageClass(Old->getStorageClass());
1595
1596  // Keep a chain of previous declarations.
1597  New->setPreviousDeclaration(Old);
1598
1599  // Inherit access appropriately.
1600  New->setAccess(Old->getAccess());
1601}
1602
1603/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1604/// no declarator (e.g. "struct foo;") is parsed.
1605Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
1606                                            DeclSpec &DS) {
1607  // FIXME: Error on auto/register at file scope
1608  // FIXME: Error on inline/virtual/explicit
1609  // FIXME: Warn on useless __thread
1610  // FIXME: Warn on useless const/volatile
1611  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1612  // FIXME: Warn on useless attributes
1613  Decl *TagD = 0;
1614  TagDecl *Tag = 0;
1615  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1616      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1617      DS.getTypeSpecType() == DeclSpec::TST_union ||
1618      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1619    TagD = DS.getRepAsDecl();
1620
1621    if (!TagD) // We probably had an error
1622      return 0;
1623
1624    // Note that the above type specs guarantee that the
1625    // type rep is a Decl, whereas in many of the others
1626    // it's a Type.
1627    Tag = dyn_cast<TagDecl>(TagD);
1628  }
1629
1630  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
1631    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
1632    // or incomplete types shall not be restrict-qualified."
1633    if (TypeQuals & DeclSpec::TQ_restrict)
1634      Diag(DS.getRestrictSpecLoc(),
1635           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
1636           << DS.getSourceRange();
1637  }
1638
1639  if (DS.isFriendSpecified()) {
1640    // If we're dealing with a class template decl, assume that the
1641    // template routines are handling it.
1642    if (TagD && isa<ClassTemplateDecl>(TagD))
1643      return 0;
1644    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1645  }
1646
1647  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1648    ProcessDeclAttributeList(S, Record, DS.getAttributes());
1649
1650    if (!Record->getDeclName() && Record->isDefinition() &&
1651        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1652      if (getLangOptions().CPlusPlus ||
1653          Record->getDeclContext()->isRecord())
1654        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
1655
1656      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1657        << DS.getSourceRange();
1658    }
1659
1660    // Microsoft allows unnamed struct/union fields. Don't complain
1661    // about them.
1662    // FIXME: Should we support Microsoft's extensions in this area?
1663    if (Record->getDeclName() && getLangOptions().Microsoft)
1664      return Tag;
1665  }
1666
1667  if (getLangOptions().CPlusPlus &&
1668      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
1669    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
1670      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
1671          !Enum->getIdentifier() && !Enum->isInvalidDecl())
1672        Diag(Enum->getLocation(), diag::ext_no_declarators)
1673          << DS.getSourceRange();
1674
1675  if (!DS.isMissingDeclaratorOk() &&
1676      DS.getTypeSpecType() != DeclSpec::TST_error) {
1677    // Warn about typedefs of enums without names, since this is an
1678    // extension in both Microsoft and GNU.
1679    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1680        Tag && isa<EnumDecl>(Tag)) {
1681      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1682        << DS.getSourceRange();
1683      return Tag;
1684    }
1685
1686    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
1687      << DS.getSourceRange();
1688  }
1689
1690  return TagD;
1691}
1692
1693/// We are trying to inject an anonymous member into the given scope;
1694/// check if there's an existing declaration that can't be overloaded.
1695///
1696/// \return true if this is a forbidden redeclaration
1697static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
1698                                         Scope *S,
1699                                         DeclContext *Owner,
1700                                         DeclarationName Name,
1701                                         SourceLocation NameLoc,
1702                                         unsigned diagnostic) {
1703  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
1704                 Sema::ForRedeclaration);
1705  if (!SemaRef.LookupName(R, S)) return false;
1706
1707  if (R.getAsSingle<TagDecl>())
1708    return false;
1709
1710  // Pick a representative declaration.
1711  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
1712  assert(PrevDecl && "Expected a non-null Decl");
1713
1714  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
1715    return false;
1716
1717  SemaRef.Diag(NameLoc, diagnostic) << Name;
1718  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1719
1720  return true;
1721}
1722
1723/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1724/// anonymous struct or union AnonRecord into the owning context Owner
1725/// and scope S. This routine will be invoked just after we realize
1726/// that an unnamed union or struct is actually an anonymous union or
1727/// struct, e.g.,
1728///
1729/// @code
1730/// union {
1731///   int i;
1732///   float f;
1733/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1734///    // f into the surrounding scope.x
1735/// @endcode
1736///
1737/// This routine is recursive, injecting the names of nested anonymous
1738/// structs/unions into the owning context and scope as well.
1739static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
1740                                                DeclContext *Owner,
1741                                                RecordDecl *AnonRecord,
1742                                                AccessSpecifier AS) {
1743  unsigned diagKind
1744    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1745                            : diag::err_anonymous_struct_member_redecl;
1746
1747  bool Invalid = false;
1748  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1749                               FEnd = AnonRecord->field_end();
1750       F != FEnd; ++F) {
1751    if ((*F)->getDeclName()) {
1752      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, (*F)->getDeclName(),
1753                                       (*F)->getLocation(), diagKind)) {
1754        // C++ [class.union]p2:
1755        //   The names of the members of an anonymous union shall be
1756        //   distinct from the names of any other entity in the
1757        //   scope in which the anonymous union is declared.
1758        Invalid = true;
1759      } else {
1760        // C++ [class.union]p2:
1761        //   For the purpose of name lookup, after the anonymous union
1762        //   definition, the members of the anonymous union are
1763        //   considered to have been defined in the scope in which the
1764        //   anonymous union is declared.
1765        Owner->makeDeclVisibleInContext(*F);
1766        S->AddDecl(*F);
1767        SemaRef.IdResolver.AddDecl(*F);
1768
1769        // That includes picking up the appropriate access specifier.
1770        if (AS != AS_none) (*F)->setAccess(AS);
1771      }
1772    } else if (const RecordType *InnerRecordType
1773                 = (*F)->getType()->getAs<RecordType>()) {
1774      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1775      if (InnerRecord->isAnonymousStructOrUnion())
1776        Invalid = Invalid ||
1777          InjectAnonymousStructOrUnionMembers(SemaRef, S, Owner,
1778                                              InnerRecord, AS);
1779    }
1780  }
1781
1782  return Invalid;
1783}
1784
1785/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
1786/// a VarDecl::StorageClass. Any error reporting is up to the caller:
1787/// illegal input values are mapped to SC_None.
1788static StorageClass
1789StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1790  switch (StorageClassSpec) {
1791  case DeclSpec::SCS_unspecified:    return SC_None;
1792  case DeclSpec::SCS_extern:         return SC_Extern;
1793  case DeclSpec::SCS_static:         return SC_Static;
1794  case DeclSpec::SCS_auto:           return SC_Auto;
1795  case DeclSpec::SCS_register:       return SC_Register;
1796  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1797    // Illegal SCSs map to None: error reporting is up to the caller.
1798  case DeclSpec::SCS_mutable:        // Fall through.
1799  case DeclSpec::SCS_typedef:        return SC_None;
1800  }
1801  llvm_unreachable("unknown storage class specifier");
1802}
1803
1804/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
1805/// a StorageClass. Any error reporting is up to the caller:
1806/// illegal input values are mapped to SC_None.
1807static StorageClass
1808StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
1809  switch (StorageClassSpec) {
1810  case DeclSpec::SCS_unspecified:    return SC_None;
1811  case DeclSpec::SCS_extern:         return SC_Extern;
1812  case DeclSpec::SCS_static:         return SC_Static;
1813  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
1814    // Illegal SCSs map to None: error reporting is up to the caller.
1815  case DeclSpec::SCS_auto:           // Fall through.
1816  case DeclSpec::SCS_mutable:        // Fall through.
1817  case DeclSpec::SCS_register:       // Fall through.
1818  case DeclSpec::SCS_typedef:        return SC_None;
1819  }
1820  llvm_unreachable("unknown storage class specifier");
1821}
1822
1823/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1824/// anonymous structure or union. Anonymous unions are a C++ feature
1825/// (C++ [class.union]) and a GNU C extension; anonymous structures
1826/// are a GNU C and GNU C++ extension.
1827Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1828                                             AccessSpecifier AS,
1829                                             RecordDecl *Record) {
1830  DeclContext *Owner = Record->getDeclContext();
1831
1832  // Diagnose whether this anonymous struct/union is an extension.
1833  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1834    Diag(Record->getLocation(), diag::ext_anonymous_union);
1835  else if (!Record->isUnion())
1836    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1837
1838  // C and C++ require different kinds of checks for anonymous
1839  // structs/unions.
1840  bool Invalid = false;
1841  if (getLangOptions().CPlusPlus) {
1842    const char* PrevSpec = 0;
1843    unsigned DiagID;
1844    // C++ [class.union]p3:
1845    //   Anonymous unions declared in a named namespace or in the
1846    //   global namespace shall be declared static.
1847    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1848        (isa<TranslationUnitDecl>(Owner) ||
1849         (isa<NamespaceDecl>(Owner) &&
1850          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1851      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1852      Invalid = true;
1853
1854      // Recover by adding 'static'.
1855      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1856                             PrevSpec, DiagID);
1857    }
1858    // C++ [class.union]p3:
1859    //   A storage class is not allowed in a declaration of an
1860    //   anonymous union in a class scope.
1861    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1862             isa<RecordDecl>(Owner)) {
1863      Diag(DS.getStorageClassSpecLoc(),
1864           diag::err_anonymous_union_with_storage_spec);
1865      Invalid = true;
1866
1867      // Recover by removing the storage specifier.
1868      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1869                             PrevSpec, DiagID);
1870    }
1871
1872    // C++ [class.union]p2:
1873    //   The member-specification of an anonymous union shall only
1874    //   define non-static data members. [Note: nested types and
1875    //   functions cannot be declared within an anonymous union. ]
1876    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1877                                 MemEnd = Record->decls_end();
1878         Mem != MemEnd; ++Mem) {
1879      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1880        // C++ [class.union]p3:
1881        //   An anonymous union shall not have private or protected
1882        //   members (clause 11).
1883        assert(FD->getAccess() != AS_none);
1884        if (FD->getAccess() != AS_public) {
1885          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1886            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1887          Invalid = true;
1888        }
1889
1890        if (CheckNontrivialField(FD))
1891          Invalid = true;
1892      } else if ((*Mem)->isImplicit()) {
1893        // Any implicit members are fine.
1894      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1895        // This is a type that showed up in an
1896        // elaborated-type-specifier inside the anonymous struct or
1897        // union, but which actually declares a type outside of the
1898        // anonymous struct or union. It's okay.
1899      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1900        if (!MemRecord->isAnonymousStructOrUnion() &&
1901            MemRecord->getDeclName()) {
1902          // Visual C++ allows type definition in anonymous struct or union.
1903          if (getLangOptions().Microsoft)
1904            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
1905              << (int)Record->isUnion();
1906          else {
1907            // This is a nested type declaration.
1908            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1909              << (int)Record->isUnion();
1910            Invalid = true;
1911          }
1912        }
1913      } else if (isa<AccessSpecDecl>(*Mem)) {
1914        // Any access specifier is fine.
1915      } else {
1916        // We have something that isn't a non-static data
1917        // member. Complain about it.
1918        unsigned DK = diag::err_anonymous_record_bad_member;
1919        if (isa<TypeDecl>(*Mem))
1920          DK = diag::err_anonymous_record_with_type;
1921        else if (isa<FunctionDecl>(*Mem))
1922          DK = diag::err_anonymous_record_with_function;
1923        else if (isa<VarDecl>(*Mem))
1924          DK = diag::err_anonymous_record_with_static;
1925
1926        // Visual C++ allows type definition in anonymous struct or union.
1927        if (getLangOptions().Microsoft &&
1928            DK == diag::err_anonymous_record_with_type)
1929          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
1930            << (int)Record->isUnion();
1931        else {
1932          Diag((*Mem)->getLocation(), DK)
1933              << (int)Record->isUnion();
1934          Invalid = true;
1935        }
1936      }
1937    }
1938  }
1939
1940  if (!Record->isUnion() && !Owner->isRecord()) {
1941    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1942      << (int)getLangOptions().CPlusPlus;
1943    Invalid = true;
1944  }
1945
1946  // Mock up a declarator.
1947  Declarator Dc(DS, Declarator::TypeNameContext);
1948  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
1949  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1950
1951  // Create a declaration for this anonymous struct/union.
1952  NamedDecl *Anon = 0;
1953  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1954    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1955                             /*IdentifierInfo=*/0,
1956                             Context.getTypeDeclType(Record),
1957                             TInfo,
1958                             /*BitWidth=*/0, /*Mutable=*/false);
1959    Anon->setAccess(AS);
1960    if (getLangOptions().CPlusPlus) {
1961      FieldCollector->Add(cast<FieldDecl>(Anon));
1962      if (!cast<CXXRecordDecl>(Record)->isEmpty())
1963        cast<CXXRecordDecl>(OwningClass)->setEmpty(false);
1964    }
1965  } else {
1966    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
1967    assert(SCSpec != DeclSpec::SCS_typedef &&
1968           "Parser allowed 'typedef' as storage class VarDecl.");
1969    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
1970    if (SCSpec == DeclSpec::SCS_mutable) {
1971      // mutable can only appear on non-static class members, so it's always
1972      // an error here
1973      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1974      Invalid = true;
1975      SC = SC_None;
1976    }
1977    SCSpec = DS.getStorageClassSpecAsWritten();
1978    VarDecl::StorageClass SCAsWritten
1979      = StorageClassSpecToVarDeclStorageClass(SCSpec);
1980
1981    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1982                           /*IdentifierInfo=*/0,
1983                           Context.getTypeDeclType(Record),
1984                           TInfo, SC, SCAsWritten);
1985  }
1986  Anon->setImplicit();
1987
1988  // Add the anonymous struct/union object to the current
1989  // context. We'll be referencing this object when we refer to one of
1990  // its members.
1991  Owner->addDecl(Anon);
1992
1993  // Inject the members of the anonymous struct/union into the owning
1994  // context and into the identifier resolver chain for name lookup
1995  // purposes.
1996  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS))
1997    Invalid = true;
1998
1999  // Mark this as an anonymous struct/union type. Note that we do not
2000  // do this until after we have already checked and injected the
2001  // members of this anonymous struct/union type, because otherwise
2002  // the members could be injected twice: once by DeclContext when it
2003  // builds its lookup table, and once by
2004  // InjectAnonymousStructOrUnionMembers.
2005  Record->setAnonymousStructOrUnion(true);
2006
2007  if (Invalid)
2008    Anon->setInvalidDecl();
2009
2010  return Anon;
2011}
2012
2013
2014/// GetNameForDeclarator - Determine the full declaration name for the
2015/// given Declarator.
2016DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2017  return GetNameFromUnqualifiedId(D.getName());
2018}
2019
2020/// \brief Retrieves the declaration name from a parsed unqualified-id.
2021DeclarationNameInfo
2022Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2023  DeclarationNameInfo NameInfo;
2024  NameInfo.setLoc(Name.StartLocation);
2025
2026  switch (Name.getKind()) {
2027
2028  case UnqualifiedId::IK_Identifier:
2029    NameInfo.setName(Name.Identifier);
2030    NameInfo.setLoc(Name.StartLocation);
2031    return NameInfo;
2032
2033  case UnqualifiedId::IK_OperatorFunctionId:
2034    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2035                                           Name.OperatorFunctionId.Operator));
2036    NameInfo.setLoc(Name.StartLocation);
2037    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2038      = Name.OperatorFunctionId.SymbolLocations[0];
2039    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2040      = Name.EndLocation.getRawEncoding();
2041    return NameInfo;
2042
2043  case UnqualifiedId::IK_LiteralOperatorId:
2044    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2045                                                           Name.Identifier));
2046    NameInfo.setLoc(Name.StartLocation);
2047    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2048    return NameInfo;
2049
2050  case UnqualifiedId::IK_ConversionFunctionId: {
2051    TypeSourceInfo *TInfo;
2052    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2053    if (Ty.isNull())
2054      return DeclarationNameInfo();
2055    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2056                                               Context.getCanonicalType(Ty)));
2057    NameInfo.setLoc(Name.StartLocation);
2058    NameInfo.setNamedTypeInfo(TInfo);
2059    return NameInfo;
2060  }
2061
2062  case UnqualifiedId::IK_ConstructorName: {
2063    TypeSourceInfo *TInfo;
2064    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2065    if (Ty.isNull())
2066      return DeclarationNameInfo();
2067    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2068                                              Context.getCanonicalType(Ty)));
2069    NameInfo.setLoc(Name.StartLocation);
2070    NameInfo.setNamedTypeInfo(TInfo);
2071    return NameInfo;
2072  }
2073
2074  case UnqualifiedId::IK_ConstructorTemplateId: {
2075    // In well-formed code, we can only have a constructor
2076    // template-id that refers to the current context, so go there
2077    // to find the actual type being constructed.
2078    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2079    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2080      return DeclarationNameInfo();
2081
2082    // Determine the type of the class being constructed.
2083    QualType CurClassType = Context.getTypeDeclType(CurClass);
2084
2085    // FIXME: Check two things: that the template-id names the same type as
2086    // CurClassType, and that the template-id does not occur when the name
2087    // was qualified.
2088
2089    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2090                                    Context.getCanonicalType(CurClassType)));
2091    NameInfo.setLoc(Name.StartLocation);
2092    // FIXME: should we retrieve TypeSourceInfo?
2093    NameInfo.setNamedTypeInfo(0);
2094    return NameInfo;
2095  }
2096
2097  case UnqualifiedId::IK_DestructorName: {
2098    TypeSourceInfo *TInfo;
2099    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2100    if (Ty.isNull())
2101      return DeclarationNameInfo();
2102    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2103                                              Context.getCanonicalType(Ty)));
2104    NameInfo.setLoc(Name.StartLocation);
2105    NameInfo.setNamedTypeInfo(TInfo);
2106    return NameInfo;
2107  }
2108
2109  case UnqualifiedId::IK_TemplateId: {
2110    TemplateName TName = Name.TemplateId->Template.get();
2111    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2112    return Context.getNameForTemplate(TName, TNameLoc);
2113  }
2114
2115  } // switch (Name.getKind())
2116
2117  assert(false && "Unknown name kind");
2118  return DeclarationNameInfo();
2119}
2120
2121/// isNearlyMatchingFunction - Determine whether the C++ functions
2122/// Declaration and Definition are "nearly" matching. This heuristic
2123/// is used to improve diagnostics in the case where an out-of-line
2124/// function definition doesn't match any declaration within
2125/// the class or namespace.
2126static bool isNearlyMatchingFunction(ASTContext &Context,
2127                                     FunctionDecl *Declaration,
2128                                     FunctionDecl *Definition) {
2129  if (Declaration->param_size() != Definition->param_size())
2130    return false;
2131  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2132    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2133    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2134
2135    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2136                                        DefParamTy.getNonReferenceType()))
2137      return false;
2138  }
2139
2140  return true;
2141}
2142
2143/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2144/// declarator needs to be rebuilt in the current instantiation.
2145/// Any bits of declarator which appear before the name are valid for
2146/// consideration here.  That's specifically the type in the decl spec
2147/// and the base type in any member-pointer chunks.
2148static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2149                                                    DeclarationName Name) {
2150  // The types we specifically need to rebuild are:
2151  //   - typenames, typeofs, and decltypes
2152  //   - types which will become injected class names
2153  // Of course, we also need to rebuild any type referencing such a
2154  // type.  It's safest to just say "dependent", but we call out a
2155  // few cases here.
2156
2157  DeclSpec &DS = D.getMutableDeclSpec();
2158  switch (DS.getTypeSpecType()) {
2159  case DeclSpec::TST_typename:
2160  case DeclSpec::TST_typeofType:
2161  case DeclSpec::TST_decltype: {
2162    // Grab the type from the parser.
2163    TypeSourceInfo *TSI = 0;
2164    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2165    if (T.isNull() || !T->isDependentType()) break;
2166
2167    // Make sure there's a type source info.  This isn't really much
2168    // of a waste; most dependent types should have type source info
2169    // attached already.
2170    if (!TSI)
2171      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2172
2173    // Rebuild the type in the current instantiation.
2174    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2175    if (!TSI) return true;
2176
2177    // Store the new type back in the decl spec.
2178    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2179    DS.UpdateTypeRep(LocType);
2180    break;
2181  }
2182
2183  case DeclSpec::TST_typeofExpr: {
2184    Expr *E = DS.getRepAsExpr();
2185    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2186    if (Result.isInvalid()) return true;
2187    DS.UpdateExprRep(Result.get());
2188    break;
2189  }
2190
2191  default:
2192    // Nothing to do for these decl specs.
2193    break;
2194  }
2195
2196  // It doesn't matter what order we do this in.
2197  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2198    DeclaratorChunk &Chunk = D.getTypeObject(I);
2199
2200    // The only type information in the declarator which can come
2201    // before the declaration name is the base type of a member
2202    // pointer.
2203    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2204      continue;
2205
2206    // Rebuild the scope specifier in-place.
2207    CXXScopeSpec &SS = Chunk.Mem.Scope();
2208    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2209      return true;
2210  }
2211
2212  return false;
2213}
2214
2215Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
2216  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this), false);
2217}
2218
2219Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2220                             MultiTemplateParamsArg TemplateParamLists,
2221                             bool IsFunctionDefinition) {
2222  // TODO: consider using NameInfo for diagnostic.
2223  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2224  DeclarationName Name = NameInfo.getName();
2225
2226  // All of these full declarators require an identifier.  If it doesn't have
2227  // one, the ParsedFreeStandingDeclSpec action should be used.
2228  if (!Name) {
2229    if (!D.isInvalidType())  // Reject this if we think it is valid.
2230      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2231           diag::err_declarator_need_ident)
2232        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2233    return 0;
2234  }
2235
2236  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2237  // we find one that is.
2238  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2239         (S->getFlags() & Scope::TemplateParamScope) != 0)
2240    S = S->getParent();
2241
2242  DeclContext *DC = CurContext;
2243  if (D.getCXXScopeSpec().isInvalid())
2244    D.setInvalidType();
2245  else if (D.getCXXScopeSpec().isSet()) {
2246    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2247    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2248    if (!DC) {
2249      // If we could not compute the declaration context, it's because the
2250      // declaration context is dependent but does not refer to a class,
2251      // class template, or class template partial specialization. Complain
2252      // and return early, to avoid the coming semantic disaster.
2253      Diag(D.getIdentifierLoc(),
2254           diag::err_template_qualified_declarator_no_match)
2255        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
2256        << D.getCXXScopeSpec().getRange();
2257      return 0;
2258    }
2259
2260    bool IsDependentContext = DC->isDependentContext();
2261
2262    if (!IsDependentContext &&
2263        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
2264      return 0;
2265
2266    if (isa<CXXRecordDecl>(DC) && !cast<CXXRecordDecl>(DC)->hasDefinition()) {
2267      Diag(D.getIdentifierLoc(),
2268           diag::err_member_def_undefined_record)
2269        << Name << DC << D.getCXXScopeSpec().getRange();
2270      D.setInvalidType();
2271    }
2272
2273    // Check whether we need to rebuild the type of the given
2274    // declaration in the current instantiation.
2275    if (EnteringContext && IsDependentContext &&
2276        TemplateParamLists.size() != 0) {
2277      ContextRAII SavedContext(*this, DC);
2278      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
2279        D.setInvalidType();
2280    }
2281  }
2282
2283  NamedDecl *New;
2284
2285  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
2286  QualType R = TInfo->getType();
2287
2288  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
2289                        ForRedeclaration);
2290
2291  // See if this is a redefinition of a variable in the same scope.
2292  if (!D.getCXXScopeSpec().isSet()) {
2293    bool IsLinkageLookup = false;
2294
2295    // If the declaration we're planning to build will be a function
2296    // or object with linkage, then look for another declaration with
2297    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
2298    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
2299      /* Do nothing*/;
2300    else if (R->isFunctionType()) {
2301      if (CurContext->isFunctionOrMethod() ||
2302          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2303        IsLinkageLookup = true;
2304    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
2305      IsLinkageLookup = true;
2306    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
2307             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
2308      IsLinkageLookup = true;
2309
2310    if (IsLinkageLookup)
2311      Previous.clear(LookupRedeclarationWithLinkage);
2312
2313    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
2314  } else { // Something like "int foo::x;"
2315    LookupQualifiedName(Previous, DC);
2316
2317    // Don't consider using declarations as previous declarations for
2318    // out-of-line members.
2319    RemoveUsingDecls(Previous);
2320
2321    // C++ 7.3.1.2p2:
2322    // Members (including explicit specializations of templates) of a named
2323    // namespace can also be defined outside that namespace by explicit
2324    // qualification of the name being defined, provided that the entity being
2325    // defined was already declared in the namespace and the definition appears
2326    // after the point of declaration in a namespace that encloses the
2327    // declarations namespace.
2328    //
2329    // Note that we only check the context at this point. We don't yet
2330    // have enough information to make sure that PrevDecl is actually
2331    // the declaration we want to match. For example, given:
2332    //
2333    //   class X {
2334    //     void f();
2335    //     void f(float);
2336    //   };
2337    //
2338    //   void X::f(int) { } // ill-formed
2339    //
2340    // In this case, PrevDecl will point to the overload set
2341    // containing the two f's declared in X, but neither of them
2342    // matches.
2343
2344    // First check whether we named the global scope.
2345    if (isa<TranslationUnitDecl>(DC)) {
2346      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
2347        << Name << D.getCXXScopeSpec().getRange();
2348    } else {
2349      DeclContext *Cur = CurContext;
2350      while (isa<LinkageSpecDecl>(Cur))
2351        Cur = Cur->getParent();
2352      if (!Cur->Encloses(DC)) {
2353        // The qualifying scope doesn't enclose the original declaration.
2354        // Emit diagnostic based on current scope.
2355        SourceLocation L = D.getIdentifierLoc();
2356        SourceRange R = D.getCXXScopeSpec().getRange();
2357        if (isa<FunctionDecl>(Cur))
2358          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2359        else
2360          Diag(L, diag::err_invalid_declarator_scope)
2361            << Name << cast<NamedDecl>(DC) << R;
2362        D.setInvalidType();
2363      }
2364    }
2365  }
2366
2367  if (Previous.isSingleResult() &&
2368      Previous.getFoundDecl()->isTemplateParameter()) {
2369    // Maybe we will complain about the shadowed template parameter.
2370    if (!D.isInvalidType())
2371      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2372                                          Previous.getFoundDecl()))
2373        D.setInvalidType();
2374
2375    // Just pretend that we didn't see the previous declaration.
2376    Previous.clear();
2377  }
2378
2379  // In C++, the previous declaration we find might be a tag type
2380  // (class or enum). In this case, the new declaration will hide the
2381  // tag type. Note that this does does not apply if we're declaring a
2382  // typedef (C++ [dcl.typedef]p4).
2383  if (Previous.isSingleTagDecl() &&
2384      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2385    Previous.clear();
2386
2387  bool Redeclaration = false;
2388  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2389    if (TemplateParamLists.size()) {
2390      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2391      return 0;
2392    }
2393
2394    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2395  } else if (R->isFunctionType()) {
2396    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2397                                  move(TemplateParamLists),
2398                                  IsFunctionDefinition, Redeclaration);
2399  } else {
2400    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2401                                  move(TemplateParamLists),
2402                                  Redeclaration);
2403  }
2404
2405  if (New == 0)
2406    return 0;
2407
2408  // If this has an identifier and is not an invalid redeclaration or
2409  // function template specialization, add it to the scope stack.
2410  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
2411    PushOnScopeChains(New, S);
2412
2413  return New;
2414}
2415
2416/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2417/// types into constant array types in certain situations which would otherwise
2418/// be errors (for GCC compatibility).
2419static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2420                                                    ASTContext &Context,
2421                                                    bool &SizeIsNegative,
2422                                                    llvm::APSInt &Oversized) {
2423  // This method tries to turn a variable array into a constant
2424  // array even when the size isn't an ICE.  This is necessary
2425  // for compatibility with code that depends on gcc's buggy
2426  // constant expression folding, like struct {char x[(int)(char*)2];}
2427  SizeIsNegative = false;
2428  Oversized = 0;
2429
2430  if (T->isDependentType())
2431    return QualType();
2432
2433  QualifierCollector Qs;
2434  const Type *Ty = Qs.strip(T);
2435
2436  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2437    QualType Pointee = PTy->getPointeeType();
2438    QualType FixedType =
2439        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
2440                                            Oversized);
2441    if (FixedType.isNull()) return FixedType;
2442    FixedType = Context.getPointerType(FixedType);
2443    return Qs.apply(FixedType);
2444  }
2445
2446  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2447  if (!VLATy)
2448    return QualType();
2449  // FIXME: We should probably handle this case
2450  if (VLATy->getElementType()->isVariablyModifiedType())
2451    return QualType();
2452
2453  Expr::EvalResult EvalResult;
2454  if (!VLATy->getSizeExpr() ||
2455      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2456      !EvalResult.Val.isInt())
2457    return QualType();
2458
2459  // Check whether the array size is negative.
2460  llvm::APSInt &Res = EvalResult.Val.getInt();
2461  if (Res.isSigned() && Res.isNegative()) {
2462    SizeIsNegative = true;
2463    return QualType();
2464  }
2465
2466  // Check whether the array is too large to be addressed.
2467  unsigned ActiveSizeBits
2468    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
2469                                              Res);
2470  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
2471    Oversized = Res;
2472    return QualType();
2473  }
2474
2475  return Context.getConstantArrayType(VLATy->getElementType(),
2476                                      Res, ArrayType::Normal, 0);
2477}
2478
2479/// \brief Register the given locally-scoped external C declaration so
2480/// that it can be found later for redeclarations
2481void
2482Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2483                                       const LookupResult &Previous,
2484                                       Scope *S) {
2485  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2486         "Decl is not a locally-scoped decl!");
2487  // Note that we have a locally-scoped external with this name.
2488  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2489
2490  if (!Previous.isSingleResult())
2491    return;
2492
2493  NamedDecl *PrevDecl = Previous.getFoundDecl();
2494
2495  // If there was a previous declaration of this variable, it may be
2496  // in our identifier chain. Update the identifier chain with the new
2497  // declaration.
2498  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2499    // The previous declaration was found on the identifer resolver
2500    // chain, so remove it from its scope.
2501    while (S && !S->isDeclScope(PrevDecl))
2502      S = S->getParent();
2503
2504    if (S)
2505      S->RemoveDecl(PrevDecl);
2506  }
2507}
2508
2509/// \brief Diagnose function specifiers on a declaration of an identifier that
2510/// does not identify a function.
2511void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2512  // FIXME: We should probably indicate the identifier in question to avoid
2513  // confusion for constructs like "inline int a(), b;"
2514  if (D.getDeclSpec().isInlineSpecified())
2515    Diag(D.getDeclSpec().getInlineSpecLoc(),
2516         diag::err_inline_non_function);
2517
2518  if (D.getDeclSpec().isVirtualSpecified())
2519    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2520         diag::err_virtual_non_function);
2521
2522  if (D.getDeclSpec().isExplicitSpecified())
2523    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2524         diag::err_explicit_non_function);
2525}
2526
2527NamedDecl*
2528Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2529                             QualType R,  TypeSourceInfo *TInfo,
2530                             LookupResult &Previous, bool &Redeclaration) {
2531  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2532  if (D.getCXXScopeSpec().isSet()) {
2533    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2534      << D.getCXXScopeSpec().getRange();
2535    D.setInvalidType();
2536    // Pretend we didn't see the scope specifier.
2537    DC = CurContext;
2538    Previous.clear();
2539  }
2540
2541  if (getLangOptions().CPlusPlus) {
2542    // Check that there are no default arguments (C++ only).
2543    CheckExtraCXXDefaultArguments(D);
2544  }
2545
2546  DiagnoseFunctionSpecifiers(D);
2547
2548  if (D.getDeclSpec().isThreadSpecified())
2549    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2550
2551  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
2552    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
2553      << D.getName().getSourceRange();
2554    return 0;
2555  }
2556
2557  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2558  if (!NewTD) return 0;
2559
2560  // Handle attributes prior to checking for duplicates in MergeVarDecl
2561  ProcessDeclAttributes(S, NewTD, D);
2562
2563  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2564  // then it shall have block scope.
2565  // Note that variably modified types must be fixed before merging the decl so
2566  // that redeclarations will match.
2567  QualType T = NewTD->getUnderlyingType();
2568  if (T->isVariablyModifiedType()) {
2569    getCurFunction()->setHasBranchProtectedScope();
2570
2571    if (S->getFnParent() == 0) {
2572      bool SizeIsNegative;
2573      llvm::APSInt Oversized;
2574      QualType FixedTy =
2575          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
2576                                              Oversized);
2577      if (!FixedTy.isNull()) {
2578        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2579        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2580      } else {
2581        if (SizeIsNegative)
2582          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2583        else if (T->isVariableArrayType())
2584          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2585        else if (Oversized.getBoolValue())
2586          Diag(D.getIdentifierLoc(), diag::err_array_too_large)
2587            << Oversized.toString(10);
2588        else
2589          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2590        NewTD->setInvalidDecl();
2591      }
2592    }
2593  }
2594
2595  // Merge the decl with the existing one if appropriate. If the decl is
2596  // in an outer scope, it isn't the same thing.
2597  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2598  if (!Previous.empty()) {
2599    Redeclaration = true;
2600    MergeTypeDefDecl(NewTD, Previous);
2601  }
2602
2603  // If this is the C FILE type, notify the AST context.
2604  if (IdentifierInfo *II = NewTD->getIdentifier())
2605    if (!NewTD->isInvalidDecl() &&
2606        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
2607      if (II->isStr("FILE"))
2608        Context.setFILEDecl(NewTD);
2609      else if (II->isStr("jmp_buf"))
2610        Context.setjmp_bufDecl(NewTD);
2611      else if (II->isStr("sigjmp_buf"))
2612        Context.setsigjmp_bufDecl(NewTD);
2613    }
2614
2615  return NewTD;
2616}
2617
2618/// \brief Determines whether the given declaration is an out-of-scope
2619/// previous declaration.
2620///
2621/// This routine should be invoked when name lookup has found a
2622/// previous declaration (PrevDecl) that is not in the scope where a
2623/// new declaration by the same name is being introduced. If the new
2624/// declaration occurs in a local scope, previous declarations with
2625/// linkage may still be considered previous declarations (C99
2626/// 6.2.2p4-5, C++ [basic.link]p6).
2627///
2628/// \param PrevDecl the previous declaration found by name
2629/// lookup
2630///
2631/// \param DC the context in which the new declaration is being
2632/// declared.
2633///
2634/// \returns true if PrevDecl is an out-of-scope previous declaration
2635/// for a new delcaration with the same name.
2636static bool
2637isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2638                                ASTContext &Context) {
2639  if (!PrevDecl)
2640    return false;
2641
2642  if (!PrevDecl->hasLinkage())
2643    return false;
2644
2645  if (Context.getLangOptions().CPlusPlus) {
2646    // C++ [basic.link]p6:
2647    //   If there is a visible declaration of an entity with linkage
2648    //   having the same name and type, ignoring entities declared
2649    //   outside the innermost enclosing namespace scope, the block
2650    //   scope declaration declares that same entity and receives the
2651    //   linkage of the previous declaration.
2652    DeclContext *OuterContext = DC->getRedeclContext();
2653    if (!OuterContext->isFunctionOrMethod())
2654      // This rule only applies to block-scope declarations.
2655      return false;
2656
2657    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2658    if (PrevOuterContext->isRecord())
2659      // We found a member function: ignore it.
2660      return false;
2661
2662    // Find the innermost enclosing namespace for the new and
2663    // previous declarations.
2664    OuterContext = OuterContext->getEnclosingNamespaceContext();
2665    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
2666
2667    // The previous declaration is in a different namespace, so it
2668    // isn't the same function.
2669    if (!OuterContext->Equals(PrevOuterContext))
2670      return false;
2671  }
2672
2673  return true;
2674}
2675
2676static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
2677  CXXScopeSpec &SS = D.getCXXScopeSpec();
2678  if (!SS.isSet()) return;
2679  DD->setQualifierInfo(static_cast<NestedNameSpecifier*>(SS.getScopeRep()),
2680                       SS.getRange());
2681}
2682
2683NamedDecl*
2684Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2685                              QualType R, TypeSourceInfo *TInfo,
2686                              LookupResult &Previous,
2687                              MultiTemplateParamsArg TemplateParamLists,
2688                              bool &Redeclaration) {
2689  DeclarationName Name = GetNameForDeclarator(D).getName();
2690
2691  // Check that there are no default arguments (C++ only).
2692  if (getLangOptions().CPlusPlus)
2693    CheckExtraCXXDefaultArguments(D);
2694
2695  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
2696  assert(SCSpec != DeclSpec::SCS_typedef &&
2697         "Parser allowed 'typedef' as storage class VarDecl.");
2698  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2699  if (SCSpec == DeclSpec::SCS_mutable) {
2700    // mutable can only appear on non-static class members, so it's always
2701    // an error here
2702    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2703    D.setInvalidType();
2704    SC = SC_None;
2705  }
2706  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
2707  VarDecl::StorageClass SCAsWritten
2708    = StorageClassSpecToVarDeclStorageClass(SCSpec);
2709
2710  IdentifierInfo *II = Name.getAsIdentifierInfo();
2711  if (!II) {
2712    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2713      << Name.getAsString();
2714    return 0;
2715  }
2716
2717  DiagnoseFunctionSpecifiers(D);
2718
2719  if (!DC->isRecord() && S->getFnParent() == 0) {
2720    // C99 6.9p2: The storage-class specifiers auto and register shall not
2721    // appear in the declaration specifiers in an external declaration.
2722    if (SC == SC_Auto || SC == SC_Register) {
2723
2724      // If this is a register variable with an asm label specified, then this
2725      // is a GNU extension.
2726      if (SC == SC_Register && D.getAsmLabel())
2727        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2728      else
2729        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2730      D.setInvalidType();
2731    }
2732  }
2733  if (DC->isRecord() && !CurContext->isRecord()) {
2734    // This is an out-of-line definition of a static data member.
2735    if (SC == SC_Static) {
2736      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2737           diag::err_static_out_of_line)
2738        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
2739    } else if (SC == SC_None)
2740      SC = SC_Static;
2741  }
2742  if (SC == SC_Static) {
2743    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2744      if (RD->isLocalClass())
2745        Diag(D.getIdentifierLoc(),
2746             diag::err_static_data_member_not_allowed_in_local_class)
2747          << Name << RD->getDeclName();
2748    }
2749  }
2750
2751  // Match up the template parameter lists with the scope specifier, then
2752  // determine whether we have a template or a template specialization.
2753  bool isExplicitSpecialization = false;
2754  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
2755  bool Invalid = false;
2756  if (TemplateParameterList *TemplateParams
2757        = MatchTemplateParametersToScopeSpecifier(
2758                                  D.getDeclSpec().getSourceRange().getBegin(),
2759                                                  D.getCXXScopeSpec(),
2760                        (TemplateParameterList**)TemplateParamLists.get(),
2761                                                   TemplateParamLists.size(),
2762                                                  /*never a friend*/ false,
2763                                                  isExplicitSpecialization,
2764                                                  Invalid)) {
2765    // All but one template parameter lists have been matching.
2766    --NumMatchedTemplateParamLists;
2767
2768    if (TemplateParams->size() > 0) {
2769      // There is no such thing as a variable template.
2770      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2771        << II
2772        << SourceRange(TemplateParams->getTemplateLoc(),
2773                       TemplateParams->getRAngleLoc());
2774      return 0;
2775    } else {
2776      // There is an extraneous 'template<>' for this variable. Complain
2777      // about it, but allow the declaration of the variable.
2778      Diag(TemplateParams->getTemplateLoc(),
2779           diag::err_template_variable_noparams)
2780        << II
2781        << SourceRange(TemplateParams->getTemplateLoc(),
2782                       TemplateParams->getRAngleLoc());
2783
2784      isExplicitSpecialization = true;
2785    }
2786  }
2787
2788  VarDecl *NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2789                                   II, R, TInfo, SC, SCAsWritten);
2790
2791  if (D.isInvalidType() || Invalid)
2792    NewVD->setInvalidDecl();
2793
2794  SetNestedNameSpecifier(NewVD, D);
2795
2796  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
2797    NewVD->setTemplateParameterListsInfo(Context,
2798                                         NumMatchedTemplateParamLists,
2799                        (TemplateParameterList**)TemplateParamLists.release());
2800  }
2801
2802  if (D.getDeclSpec().isThreadSpecified()) {
2803    if (NewVD->hasLocalStorage())
2804      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2805    else if (!Context.Target.isTLSSupported())
2806      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2807    else
2808      NewVD->setThreadSpecified(true);
2809  }
2810
2811  // Set the lexical context. If the declarator has a C++ scope specifier, the
2812  // lexical context will be different from the semantic context.
2813  NewVD->setLexicalDeclContext(CurContext);
2814
2815  // Handle attributes prior to checking for duplicates in MergeVarDecl
2816  ProcessDeclAttributes(S, NewVD, D);
2817
2818  // Handle GNU asm-label extension (encoded as an attribute).
2819  if (Expr *E = (Expr*) D.getAsmLabel()) {
2820    // The parser guarantees this is a string.
2821    StringLiteral *SE = cast<StringLiteral>(E);
2822    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
2823                                                Context, SE->getString()));
2824  }
2825
2826  // Diagnose shadowed variables before filtering for scope.
2827  if (!D.getCXXScopeSpec().isSet())
2828    CheckShadow(S, NewVD, Previous);
2829
2830  // Don't consider existing declarations that are in a different
2831  // scope and are out-of-semantic-context declarations (if the new
2832  // declaration has linkage).
2833  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2834
2835  // Merge the decl with the existing one if appropriate.
2836  if (!Previous.empty()) {
2837    if (Previous.isSingleResult() &&
2838        isa<FieldDecl>(Previous.getFoundDecl()) &&
2839        D.getCXXScopeSpec().isSet()) {
2840      // The user tried to define a non-static data member
2841      // out-of-line (C++ [dcl.meaning]p1).
2842      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2843        << D.getCXXScopeSpec().getRange();
2844      Previous.clear();
2845      NewVD->setInvalidDecl();
2846    }
2847  } else if (D.getCXXScopeSpec().isSet()) {
2848    // No previous declaration in the qualifying scope.
2849    Diag(D.getIdentifierLoc(), diag::err_no_member)
2850      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2851      << D.getCXXScopeSpec().getRange();
2852    NewVD->setInvalidDecl();
2853  }
2854
2855  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2856
2857  // This is an explicit specialization of a static data member. Check it.
2858  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2859      CheckMemberSpecialization(NewVD, Previous))
2860    NewVD->setInvalidDecl();
2861
2862  // attributes declared post-definition are currently ignored
2863  // FIXME: This should be handled in attribute merging, not
2864  // here.
2865  if (Previous.isSingleResult()) {
2866    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
2867    if (Def && (Def = Def->getDefinition()) &&
2868        Def != NewVD && D.hasAttributes()) {
2869      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2870      Diag(Def->getLocation(), diag::note_previous_definition);
2871    }
2872  }
2873
2874  // If this is a locally-scoped extern C variable, update the map of
2875  // such variables.
2876  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2877      !NewVD->isInvalidDecl())
2878    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2879
2880  // If there's a #pragma GCC visibility in scope, and this isn't a class
2881  // member, set the visibility of this variable.
2882  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
2883    AddPushedVisibilityAttribute(NewVD);
2884
2885  MarkUnusedFileScopedDecl(NewVD);
2886
2887  return NewVD;
2888}
2889
2890/// \brief Diagnose variable or built-in function shadowing.  Implements
2891/// -Wshadow.
2892///
2893/// This method is called whenever a VarDecl is added to a "useful"
2894/// scope.
2895///
2896/// \param S the scope in which the shadowing name is being declared
2897/// \param R the lookup of the name
2898///
2899void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
2900  // Return if warning is ignored.
2901  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow) == Diagnostic::Ignored)
2902    return;
2903
2904  // Don't diagnose declarations at file scope.  The scope might not
2905  // have a DeclContext if (e.g.) we're parsing a function prototype.
2906  DeclContext *NewDC = static_cast<DeclContext*>(S->getEntity());
2907  if (NewDC && NewDC->isFileContext())
2908    return;
2909
2910  // Only diagnose if we're shadowing an unambiguous field or variable.
2911  if (R.getResultKind() != LookupResult::Found)
2912    return;
2913
2914  NamedDecl* ShadowedDecl = R.getFoundDecl();
2915  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
2916    return;
2917
2918  DeclContext *OldDC = ShadowedDecl->getDeclContext();
2919
2920  // Only warn about certain kinds of shadowing for class members.
2921  if (NewDC && NewDC->isRecord()) {
2922    // In particular, don't warn about shadowing non-class members.
2923    if (!OldDC->isRecord())
2924      return;
2925
2926    // TODO: should we warn about static data members shadowing
2927    // static data members from base classes?
2928
2929    // TODO: don't diagnose for inaccessible shadowed members.
2930    // This is hard to do perfectly because we might friend the
2931    // shadowing context, but that's just a false negative.
2932  }
2933
2934  // Determine what kind of declaration we're shadowing.
2935  unsigned Kind;
2936  if (isa<RecordDecl>(OldDC)) {
2937    if (isa<FieldDecl>(ShadowedDecl))
2938      Kind = 3; // field
2939    else
2940      Kind = 2; // static data member
2941  } else if (OldDC->isFileContext())
2942    Kind = 1; // global
2943  else
2944    Kind = 0; // local
2945
2946  DeclarationName Name = R.getLookupName();
2947
2948  // Emit warning and note.
2949  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
2950  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
2951}
2952
2953/// \brief Check -Wshadow without the advantage of a previous lookup.
2954void Sema::CheckShadow(Scope *S, VarDecl *D) {
2955  LookupResult R(*this, D->getDeclName(), D->getLocation(),
2956                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
2957  LookupName(R, S);
2958  CheckShadow(S, D, R);
2959}
2960
2961/// \brief Perform semantic checking on a newly-created variable
2962/// declaration.
2963///
2964/// This routine performs all of the type-checking required for a
2965/// variable declaration once it has been built. It is used both to
2966/// check variables after they have been parsed and their declarators
2967/// have been translated into a declaration, and to check variables
2968/// that have been instantiated from a template.
2969///
2970/// Sets NewVD->isInvalidDecl() if an error was encountered.
2971void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2972                                    LookupResult &Previous,
2973                                    bool &Redeclaration) {
2974  // If the decl is already known invalid, don't check it.
2975  if (NewVD->isInvalidDecl())
2976    return;
2977
2978  QualType T = NewVD->getType();
2979
2980  if (T->isObjCObjectType()) {
2981    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2982    return NewVD->setInvalidDecl();
2983  }
2984
2985  // Emit an error if an address space was applied to decl with local storage.
2986  // This includes arrays of objects with address space qualifiers, but not
2987  // automatic variables that point to other address spaces.
2988  // ISO/IEC TR 18037 S5.1.2
2989  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2990    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2991    return NewVD->setInvalidDecl();
2992  }
2993
2994  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2995      && !NewVD->hasAttr<BlocksAttr>())
2996    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2997
2998  bool isVM = T->isVariablyModifiedType();
2999  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3000      NewVD->hasAttr<BlocksAttr>())
3001    getCurFunction()->setHasBranchProtectedScope();
3002
3003  if ((isVM && NewVD->hasLinkage()) ||
3004      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3005    bool SizeIsNegative;
3006    llvm::APSInt Oversized;
3007    QualType FixedTy =
3008        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3009                                            Oversized);
3010
3011    if (FixedTy.isNull() && T->isVariableArrayType()) {
3012      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3013      // FIXME: This won't give the correct result for
3014      // int a[10][n];
3015      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3016
3017      if (NewVD->isFileVarDecl())
3018        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3019        << SizeRange;
3020      else if (NewVD->getStorageClass() == SC_Static)
3021        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3022        << SizeRange;
3023      else
3024        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3025        << SizeRange;
3026      return NewVD->setInvalidDecl();
3027    }
3028
3029    if (FixedTy.isNull()) {
3030      if (NewVD->isFileVarDecl())
3031        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3032      else
3033        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3034      return NewVD->setInvalidDecl();
3035    }
3036
3037    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3038    NewVD->setType(FixedTy);
3039  }
3040
3041  if (Previous.empty() && NewVD->isExternC()) {
3042    // Since we did not find anything by this name and we're declaring
3043    // an extern "C" variable, look for a non-visible extern "C"
3044    // declaration with the same name.
3045    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3046      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3047    if (Pos != LocallyScopedExternalDecls.end())
3048      Previous.addDecl(Pos->second);
3049  }
3050
3051  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3052    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3053      << T;
3054    return NewVD->setInvalidDecl();
3055  }
3056
3057  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3058    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3059    return NewVD->setInvalidDecl();
3060  }
3061
3062  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3063    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3064    return NewVD->setInvalidDecl();
3065  }
3066
3067  // Function pointers and references cannot have qualified function type, only
3068  // function pointer-to-members can do that.
3069  QualType Pointee;
3070  unsigned PtrOrRef = 0;
3071  if (const PointerType *Ptr = T->getAs<PointerType>())
3072    Pointee = Ptr->getPointeeType();
3073  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
3074    Pointee = Ref->getPointeeType();
3075    PtrOrRef = 1;
3076  }
3077  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
3078      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
3079    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
3080        << PtrOrRef;
3081    return NewVD->setInvalidDecl();
3082  }
3083
3084  if (!Previous.empty()) {
3085    Redeclaration = true;
3086    MergeVarDecl(NewVD, Previous);
3087  }
3088}
3089
3090/// \brief Data used with FindOverriddenMethod
3091struct FindOverriddenMethodData {
3092  Sema *S;
3093  CXXMethodDecl *Method;
3094};
3095
3096/// \brief Member lookup function that determines whether a given C++
3097/// method overrides a method in a base class, to be used with
3098/// CXXRecordDecl::lookupInBases().
3099static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
3100                                 CXXBasePath &Path,
3101                                 void *UserData) {
3102  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
3103
3104  FindOverriddenMethodData *Data
3105    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
3106
3107  DeclarationName Name = Data->Method->getDeclName();
3108
3109  // FIXME: Do we care about other names here too?
3110  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3111    // We really want to find the base class destructor here.
3112    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
3113    CanQualType CT = Data->S->Context.getCanonicalType(T);
3114
3115    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
3116  }
3117
3118  for (Path.Decls = BaseRecord->lookup(Name);
3119       Path.Decls.first != Path.Decls.second;
3120       ++Path.Decls.first) {
3121    NamedDecl *D = *Path.Decls.first;
3122    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
3123      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
3124        return true;
3125    }
3126  }
3127
3128  return false;
3129}
3130
3131/// AddOverriddenMethods - See if a method overrides any in the base classes,
3132/// and if so, check that it's a valid override and remember it.
3133void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
3134  // Look for virtual methods in base classes that this method might override.
3135  CXXBasePaths Paths;
3136  FindOverriddenMethodData Data;
3137  Data.Method = MD;
3138  Data.S = this;
3139  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
3140    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
3141         E = Paths.found_decls_end(); I != E; ++I) {
3142      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
3143        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
3144            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
3145            !CheckOverridingFunctionAttributes(MD, OldMD))
3146          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
3147      }
3148    }
3149  }
3150}
3151
3152NamedDecl*
3153Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3154                              QualType R, TypeSourceInfo *TInfo,
3155                              LookupResult &Previous,
3156                              MultiTemplateParamsArg TemplateParamLists,
3157                              bool IsFunctionDefinition, bool &Redeclaration) {
3158  assert(R.getTypePtr()->isFunctionType());
3159
3160  // TODO: consider using NameInfo for diagnostic.
3161  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3162  DeclarationName Name = NameInfo.getName();
3163  FunctionDecl::StorageClass SC = SC_None;
3164  switch (D.getDeclSpec().getStorageClassSpec()) {
3165  default: assert(0 && "Unknown storage class!");
3166  case DeclSpec::SCS_auto:
3167  case DeclSpec::SCS_register:
3168  case DeclSpec::SCS_mutable:
3169    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3170         diag::err_typecheck_sclass_func);
3171    D.setInvalidType();
3172    break;
3173  case DeclSpec::SCS_unspecified: SC = SC_None; break;
3174  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
3175  case DeclSpec::SCS_static: {
3176    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
3177      // C99 6.7.1p5:
3178      //   The declaration of an identifier for a function that has
3179      //   block scope shall have no explicit storage-class specifier
3180      //   other than extern
3181      // See also (C++ [dcl.stc]p4).
3182      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3183           diag::err_static_block_func);
3184      SC = SC_None;
3185    } else
3186      SC = SC_Static;
3187    break;
3188  }
3189  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
3190  }
3191
3192  if (D.getDeclSpec().isThreadSpecified())
3193    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3194
3195  bool isFriend = D.getDeclSpec().isFriendSpecified();
3196  bool isInline = D.getDeclSpec().isInlineSpecified();
3197  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
3198  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
3199
3200  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3201  FunctionDecl::StorageClass SCAsWritten
3202    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
3203
3204  // Check that the return type is not an abstract class type.
3205  // For record types, this is done by the AbstractClassUsageDiagnoser once
3206  // the class has been completely parsed.
3207  if (!DC->isRecord() &&
3208      RequireNonAbstractType(D.getIdentifierLoc(),
3209                             R->getAs<FunctionType>()->getResultType(),
3210                             diag::err_abstract_type_in_decl,
3211                             AbstractReturnType))
3212    D.setInvalidType();
3213
3214  // Do not allow returning a objc interface by-value.
3215  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
3216    Diag(D.getIdentifierLoc(),
3217         diag::err_object_cannot_be_passed_returned_by_value) << 0
3218      << R->getAs<FunctionType>()->getResultType();
3219    D.setInvalidType();
3220  }
3221
3222  bool isVirtualOkay = false;
3223  FunctionDecl *NewFD;
3224
3225  if (isFriend) {
3226    // C++ [class.friend]p5
3227    //   A function can be defined in a friend declaration of a
3228    //   class . . . . Such a function is implicitly inline.
3229    isInline |= IsFunctionDefinition;
3230  }
3231
3232  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
3233    // This is a C++ constructor declaration.
3234    assert(DC->isRecord() &&
3235           "Constructors can only be declared in a member context");
3236
3237    R = CheckConstructorDeclarator(D, R, SC);
3238
3239    // Create the new declaration
3240    NewFD = CXXConstructorDecl::Create(Context,
3241                                       cast<CXXRecordDecl>(DC),
3242                                       NameInfo, R, TInfo,
3243                                       isExplicit, isInline,
3244                                       /*isImplicitlyDeclared=*/false);
3245  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
3246    // This is a C++ destructor declaration.
3247    if (DC->isRecord()) {
3248      R = CheckDestructorDeclarator(D, R, SC);
3249
3250      NewFD = CXXDestructorDecl::Create(Context,
3251                                        cast<CXXRecordDecl>(DC),
3252                                        NameInfo, R,
3253                                        isInline,
3254                                        /*isImplicitlyDeclared=*/false);
3255      NewFD->setTypeSourceInfo(TInfo);
3256
3257      isVirtualOkay = true;
3258    } else {
3259      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
3260
3261      // Create a FunctionDecl to satisfy the function definition parsing
3262      // code path.
3263      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
3264                                   Name, R, TInfo, SC, SCAsWritten, isInline,
3265                                   /*hasPrototype=*/true);
3266      D.setInvalidType();
3267    }
3268  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
3269    if (!DC->isRecord()) {
3270      Diag(D.getIdentifierLoc(),
3271           diag::err_conv_function_not_member);
3272      return 0;
3273    }
3274
3275    CheckConversionDeclarator(D, R, SC);
3276    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
3277                                      NameInfo, R, TInfo,
3278                                      isInline, isExplicit);
3279
3280    isVirtualOkay = true;
3281  } else if (DC->isRecord()) {
3282    // If the of the function is the same as the name of the record, then this
3283    // must be an invalid constructor that has a return type.
3284    // (The parser checks for a return type and makes the declarator a
3285    // constructor if it has no return type).
3286    // must have an invalid constructor that has a return type
3287    if (Name.getAsIdentifierInfo() &&
3288        Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
3289      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
3290        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
3291        << SourceRange(D.getIdentifierLoc());
3292      return 0;
3293    }
3294
3295    bool isStatic = SC == SC_Static;
3296
3297    // [class.free]p1:
3298    // Any allocation function for a class T is a static member
3299    // (even if not explicitly declared static).
3300    if (Name.getCXXOverloadedOperator() == OO_New ||
3301        Name.getCXXOverloadedOperator() == OO_Array_New)
3302      isStatic = true;
3303
3304    // [class.free]p6 Any deallocation function for a class X is a static member
3305    // (even if not explicitly declared static).
3306    if (Name.getCXXOverloadedOperator() == OO_Delete ||
3307        Name.getCXXOverloadedOperator() == OO_Array_Delete)
3308      isStatic = true;
3309
3310    // This is a C++ method declaration.
3311    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
3312                                  NameInfo, R, TInfo,
3313                                  isStatic, SCAsWritten, isInline);
3314
3315    isVirtualOkay = !isStatic;
3316  } else {
3317    // Determine whether the function was written with a
3318    // prototype. This true when:
3319    //   - we're in C++ (where every function has a prototype),
3320    //   - there is a prototype in the declarator, or
3321    //   - the type R of the function is some kind of typedef or other reference
3322    //     to a type name (which eventually refers to a function type).
3323    bool HasPrototype =
3324       getLangOptions().CPlusPlus ||
3325       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
3326       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
3327
3328    NewFD = FunctionDecl::Create(Context, DC,
3329                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
3330                                 HasPrototype);
3331  }
3332
3333  if (D.isInvalidType())
3334    NewFD->setInvalidDecl();
3335
3336  SetNestedNameSpecifier(NewFD, D);
3337
3338  // Set the lexical context. If the declarator has a C++
3339  // scope specifier, or is the object of a friend declaration, the
3340  // lexical context will be different from the semantic context.
3341  NewFD->setLexicalDeclContext(CurContext);
3342
3343  // Match up the template parameter lists with the scope specifier, then
3344  // determine whether we have a template or a template specialization.
3345  FunctionTemplateDecl *FunctionTemplate = 0;
3346  bool isExplicitSpecialization = false;
3347  bool isFunctionTemplateSpecialization = false;
3348  unsigned NumMatchedTemplateParamLists = TemplateParamLists.size();
3349  bool Invalid = false;
3350  if (TemplateParameterList *TemplateParams
3351        = MatchTemplateParametersToScopeSpecifier(
3352                                  D.getDeclSpec().getSourceRange().getBegin(),
3353                                  D.getCXXScopeSpec(),
3354                           (TemplateParameterList**)TemplateParamLists.get(),
3355                                                  TemplateParamLists.size(),
3356                                                  isFriend,
3357                                                  isExplicitSpecialization,
3358                                                  Invalid)) {
3359    // All but one template parameter lists have been matching.
3360    --NumMatchedTemplateParamLists;
3361
3362    if (TemplateParams->size() > 0) {
3363      // This is a function template
3364
3365      // Check that we can declare a template here.
3366      if (CheckTemplateDeclScope(S, TemplateParams))
3367        return 0;
3368
3369      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
3370                                                      NewFD->getLocation(),
3371                                                      Name, TemplateParams,
3372                                                      NewFD);
3373      FunctionTemplate->setLexicalDeclContext(CurContext);
3374      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
3375    } else {
3376      // This is a function template specialization.
3377      isFunctionTemplateSpecialization = true;
3378
3379      // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
3380      if (isFriend && isFunctionTemplateSpecialization) {
3381        // We want to remove the "template<>", found here.
3382        SourceRange RemoveRange = TemplateParams->getSourceRange();
3383
3384        // If we remove the template<> and the name is not a
3385        // template-id, we're actually silently creating a problem:
3386        // the friend declaration will refer to an untemplated decl,
3387        // and clearly the user wants a template specialization.  So
3388        // we need to insert '<>' after the name.
3389        SourceLocation InsertLoc;
3390        if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
3391          InsertLoc = D.getName().getSourceRange().getEnd();
3392          InsertLoc = PP.getLocForEndOfToken(InsertLoc);
3393        }
3394
3395        Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
3396          << Name << RemoveRange
3397          << FixItHint::CreateRemoval(RemoveRange)
3398          << FixItHint::CreateInsertion(InsertLoc, "<>");
3399      }
3400    }
3401  }
3402
3403  if (NumMatchedTemplateParamLists > 0 && D.getCXXScopeSpec().isSet()) {
3404    NewFD->setTemplateParameterListsInfo(Context,
3405                                         NumMatchedTemplateParamLists,
3406                        (TemplateParameterList**)TemplateParamLists.release());
3407  }
3408
3409  if (Invalid) {
3410    NewFD->setInvalidDecl();
3411    if (FunctionTemplate)
3412      FunctionTemplate->setInvalidDecl();
3413  }
3414
3415  // C++ [dcl.fct.spec]p5:
3416  //   The virtual specifier shall only be used in declarations of
3417  //   nonstatic class member functions that appear within a
3418  //   member-specification of a class declaration; see 10.3.
3419  //
3420  if (isVirtual && !NewFD->isInvalidDecl()) {
3421    if (!isVirtualOkay) {
3422       Diag(D.getDeclSpec().getVirtualSpecLoc(),
3423           diag::err_virtual_non_function);
3424    } else if (!CurContext->isRecord()) {
3425      // 'virtual' was specified outside of the class.
3426      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
3427        << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
3428    } else {
3429      // Okay: Add virtual to the method.
3430      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
3431      CurClass->setMethodAsVirtual(NewFD);
3432    }
3433  }
3434
3435  // C++ [dcl.fct.spec]p3:
3436  //  The inline specifier shall not appear on a block scope function declaration.
3437  if (isInline && !NewFD->isInvalidDecl() && getLangOptions().CPlusPlus) {
3438    if (CurContext->isFunctionOrMethod()) {
3439      // 'inline' is not allowed on block scope function declaration.
3440      Diag(D.getDeclSpec().getInlineSpecLoc(),
3441           diag::err_inline_declaration_block_scope) << Name
3442        << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
3443    }
3444  }
3445
3446  // C++ [dcl.fct.spec]p6:
3447  //  The explicit specifier shall be used only in the declaration of a
3448  //  constructor or conversion function within its class definition; see 12.3.1
3449  //  and 12.3.2.
3450  if (isExplicit && !NewFD->isInvalidDecl()) {
3451    if (!CurContext->isRecord()) {
3452      // 'explicit' was specified outside of the class.
3453      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3454           diag::err_explicit_out_of_class)
3455        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3456    } else if (!isa<CXXConstructorDecl>(NewFD) &&
3457               !isa<CXXConversionDecl>(NewFD)) {
3458      // 'explicit' was specified on a function that wasn't a constructor
3459      // or conversion function.
3460      Diag(D.getDeclSpec().getExplicitSpecLoc(),
3461           diag::err_explicit_non_ctor_or_conv_function)
3462        << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
3463    }
3464  }
3465
3466  // Filter out previous declarations that don't match the scope.
3467  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
3468
3469  if (isFriend) {
3470    // DC is the namespace in which the function is being declared.
3471    assert((DC->isFileContext() || !Previous.empty()) &&
3472           "previously-undeclared friend function being created "
3473           "in a non-namespace context");
3474
3475    // For now, claim that the objects have no previous declaration.
3476    if (FunctionTemplate) {
3477      FunctionTemplate->setObjectOfFriendDecl(false);
3478      FunctionTemplate->setAccess(AS_public);
3479    }
3480    NewFD->setObjectOfFriendDecl(false);
3481    NewFD->setAccess(AS_public);
3482  }
3483
3484  if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
3485      !CurContext->isRecord()) {
3486    // C++ [class.static]p1:
3487    //   A data or function member of a class may be declared static
3488    //   in a class definition, in which case it is a static member of
3489    //   the class.
3490
3491    // Complain about the 'static' specifier if it's on an out-of-line
3492    // member function definition.
3493    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3494         diag::err_static_out_of_line)
3495      << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3496  }
3497
3498  // Handle GNU asm-label extension (encoded as an attribute).
3499  if (Expr *E = (Expr*) D.getAsmLabel()) {
3500    // The parser guarantees this is a string.
3501    StringLiteral *SE = cast<StringLiteral>(E);
3502    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
3503                                                SE->getString()));
3504  }
3505
3506  // Copy the parameter declarations from the declarator D to the function
3507  // declaration NewFD, if they are available.  First scavenge them into Params.
3508  llvm::SmallVector<ParmVarDecl*, 16> Params;
3509  if (D.getNumTypeObjects() > 0) {
3510    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3511
3512    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
3513    // function that takes no arguments, not a function that takes a
3514    // single void argument.
3515    // We let through "const void" here because Sema::GetTypeForDeclarator
3516    // already checks for that case.
3517    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
3518        FTI.ArgInfo[0].Param &&
3519        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
3520      // Empty arg list, don't push any params.
3521      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
3522
3523      // In C++, the empty parameter-type-list must be spelled "void"; a
3524      // typedef of void is not permitted.
3525      if (getLangOptions().CPlusPlus &&
3526          Param->getType().getUnqualifiedType() != Context.VoidTy)
3527        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
3528      // FIXME: Leaks decl?
3529    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
3530      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
3531        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
3532        assert(Param->getDeclContext() != NewFD && "Was set before ?");
3533        Param->setDeclContext(NewFD);
3534        Params.push_back(Param);
3535
3536        if (Param->isInvalidDecl())
3537          NewFD->setInvalidDecl();
3538      }
3539    }
3540
3541  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
3542    // When we're declaring a function with a typedef, typeof, etc as in the
3543    // following example, we'll need to synthesize (unnamed)
3544    // parameters for use in the declaration.
3545    //
3546    // @code
3547    // typedef void fn(int);
3548    // fn f;
3549    // @endcode
3550
3551    // Synthesize a parameter for each argument type.
3552    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
3553         AE = FT->arg_type_end(); AI != AE; ++AI) {
3554      ParmVarDecl *Param =
3555        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
3556      Params.push_back(Param);
3557    }
3558  } else {
3559    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
3560           "Should not need args for typedef of non-prototype fn");
3561  }
3562  // Finally, we know we have the right number of parameters, install them.
3563  NewFD->setParams(Params.data(), Params.size());
3564
3565  // If the declarator is a template-id, translate the parser's template
3566  // argument list into our AST format.
3567  bool HasExplicitTemplateArgs = false;
3568  TemplateArgumentListInfo TemplateArgs;
3569  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
3570    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
3571    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
3572    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
3573    ASTTemplateArgsPtr TemplateArgsPtr(*this,
3574                                       TemplateId->getTemplateArgs(),
3575                                       TemplateId->NumArgs);
3576    translateTemplateArguments(TemplateArgsPtr,
3577                               TemplateArgs);
3578    TemplateArgsPtr.release();
3579
3580    HasExplicitTemplateArgs = true;
3581
3582    if (FunctionTemplate) {
3583      // FIXME: Diagnose function template with explicit template
3584      // arguments.
3585      HasExplicitTemplateArgs = false;
3586    } else if (!isFunctionTemplateSpecialization &&
3587               !D.getDeclSpec().isFriendSpecified()) {
3588      // We have encountered something that the user meant to be a
3589      // specialization (because it has explicitly-specified template
3590      // arguments) but that was not introduced with a "template<>" (or had
3591      // too few of them).
3592      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3593        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3594        << FixItHint::CreateInsertion(
3595                                   D.getDeclSpec().getSourceRange().getBegin(),
3596                                                 "template<> ");
3597      isFunctionTemplateSpecialization = true;
3598    } else {
3599      // "friend void foo<>(int);" is an implicit specialization decl.
3600      isFunctionTemplateSpecialization = true;
3601    }
3602  } else if (isFriend && isFunctionTemplateSpecialization) {
3603    // This combination is only possible in a recovery case;  the user
3604    // wrote something like:
3605    //   template <> friend void foo(int);
3606    // which we're recovering from as if the user had written:
3607    //   friend void foo<>(int);
3608    // Go ahead and fake up a template id.
3609    HasExplicitTemplateArgs = true;
3610    TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
3611    TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
3612  }
3613
3614  // If it's a friend (and only if it's a friend), it's possible
3615  // that either the specialized function type or the specialized
3616  // template is dependent, and therefore matching will fail.  In
3617  // this case, don't check the specialization yet.
3618  if (isFunctionTemplateSpecialization && isFriend &&
3619      (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
3620    assert(HasExplicitTemplateArgs &&
3621           "friend function specialization without template args");
3622    if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
3623                                                     Previous))
3624      NewFD->setInvalidDecl();
3625  } else if (isFunctionTemplateSpecialization) {
3626    if (CheckFunctionTemplateSpecialization(NewFD,
3627                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3628                                            Previous))
3629      NewFD->setInvalidDecl();
3630  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
3631    if (CheckMemberSpecialization(NewFD, Previous))
3632      NewFD->setInvalidDecl();
3633  }
3634
3635  // Perform semantic checking on the function declaration.
3636  bool OverloadableAttrRequired = false; // FIXME: HACK!
3637  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3638                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3639
3640  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3641          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3642         "previous declaration set still overloaded");
3643
3644  NamedDecl *PrincipalDecl = (FunctionTemplate
3645                              ? cast<NamedDecl>(FunctionTemplate)
3646                              : NewFD);
3647
3648  if (isFriend && Redeclaration) {
3649    AccessSpecifier Access = AS_public;
3650    if (!NewFD->isInvalidDecl())
3651      Access = NewFD->getPreviousDeclaration()->getAccess();
3652
3653    NewFD->setAccess(Access);
3654    if (FunctionTemplate) FunctionTemplate->setAccess(Access);
3655
3656    PrincipalDecl->setObjectOfFriendDecl(true);
3657  }
3658
3659  if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
3660      PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
3661    PrincipalDecl->setNonMemberOperator();
3662
3663  // If we have a function template, check the template parameter
3664  // list. This will check and merge default template arguments.
3665  if (FunctionTemplate) {
3666    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3667    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3668                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3669             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3670                                                : TPC_FunctionTemplate);
3671  }
3672
3673  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3674    // Fake up an access specifier if it's supposed to be a class member.
3675    if (!Redeclaration && isa<CXXRecordDecl>(NewFD->getDeclContext()))
3676      NewFD->setAccess(AS_public);
3677
3678    // An out-of-line member function declaration must also be a
3679    // definition (C++ [dcl.meaning]p1).
3680    // Note that this is not the case for explicit specializations of
3681    // function templates or member functions of class templates, per
3682    // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
3683    // for compatibility with old SWIG code which likes to generate them.
3684    if (!IsFunctionDefinition && !isFriend &&
3685        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3686      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
3687        << D.getCXXScopeSpec().getRange();
3688    }
3689    if (!Redeclaration && !(isFriend && CurContext->isDependentContext())) {
3690      // The user tried to provide an out-of-line definition for a
3691      // function that is a member of a class or namespace, but there
3692      // was no such member function declared (C++ [class.mfct]p2,
3693      // C++ [namespace.memdef]p2). For example:
3694      //
3695      // class X {
3696      //   void f() const;
3697      // };
3698      //
3699      // void X::f() { } // ill-formed
3700      //
3701      // Complain about this problem, and attempt to suggest close
3702      // matches (e.g., those that differ only in cv-qualifiers and
3703      // whether the parameter types are references).
3704      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3705        << Name << DC << D.getCXXScopeSpec().getRange();
3706      NewFD->setInvalidDecl();
3707
3708      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3709                        ForRedeclaration);
3710      LookupQualifiedName(Prev, DC);
3711      assert(!Prev.isAmbiguous() &&
3712             "Cannot have an ambiguity in previous-declaration lookup");
3713      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3714           Func != FuncEnd; ++Func) {
3715        if (isa<FunctionDecl>(*Func) &&
3716            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3717          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3718      }
3719    }
3720  }
3721
3722  // Handle attributes. We need to have merged decls when handling attributes
3723  // (for example to check for conflicts, etc).
3724  // FIXME: This needs to happen before we merge declarations. Then,
3725  // let attribute merging cope with attribute conflicts.
3726  ProcessDeclAttributes(S, NewFD, D);
3727
3728  // attributes declared post-definition are currently ignored
3729  // FIXME: This should happen during attribute merging
3730  if (Redeclaration && Previous.isSingleResult()) {
3731    const FunctionDecl *Def;
3732    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3733    if (PrevFD && PrevFD->hasBody(Def) && D.hasAttributes()) {
3734      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3735      Diag(Def->getLocation(), diag::note_previous_definition);
3736    }
3737  }
3738
3739  AddKnownFunctionAttributes(NewFD);
3740
3741  if (OverloadableAttrRequired && !NewFD->hasAttr<OverloadableAttr>()) {
3742    // If a function name is overloadable in C, then every function
3743    // with that name must be marked "overloadable".
3744    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3745      << Redeclaration << NewFD;
3746    if (!Previous.empty())
3747      Diag(Previous.getRepresentativeDecl()->getLocation(),
3748           diag::note_attribute_overloadable_prev_overload);
3749    NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(), Context));
3750  }
3751
3752  if (NewFD->hasAttr<OverloadableAttr>() &&
3753      !NewFD->getType()->getAs<FunctionProtoType>()) {
3754    Diag(NewFD->getLocation(),
3755         diag::err_attribute_overloadable_no_prototype)
3756      << NewFD;
3757
3758    // Turn this into a variadic function with no parameters.
3759    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
3760    QualType R = Context.getFunctionType(FT->getResultType(),
3761                                         0, 0, true, 0, false, false, 0, 0,
3762                                         FT->getExtInfo());
3763    NewFD->setType(R);
3764  }
3765
3766  // If there's a #pragma GCC visibility in scope, and this isn't a class
3767  // member, set the visibility of this function.
3768  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
3769    AddPushedVisibilityAttribute(NewFD);
3770
3771  // If this is a locally-scoped extern C function, update the
3772  // map of such names.
3773  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3774      && !NewFD->isInvalidDecl())
3775    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3776
3777  // Set this FunctionDecl's range up to the right paren.
3778  NewFD->setLocEnd(D.getSourceRange().getEnd());
3779
3780  if (FunctionTemplate && NewFD->isInvalidDecl())
3781    FunctionTemplate->setInvalidDecl();
3782
3783  if (FunctionTemplate)
3784    return FunctionTemplate;
3785
3786  MarkUnusedFileScopedDecl(NewFD);
3787
3788  return NewFD;
3789}
3790
3791/// \brief Perform semantic checking of a new function declaration.
3792///
3793/// Performs semantic analysis of the new function declaration
3794/// NewFD. This routine performs all semantic checking that does not
3795/// require the actual declarator involved in the declaration, and is
3796/// used both for the declaration of functions as they are parsed
3797/// (called via ActOnDeclarator) and for the declaration of functions
3798/// that have been instantiated via C++ template instantiation (called
3799/// via InstantiateDecl).
3800///
3801/// \param IsExplicitSpecialiation whether this new function declaration is
3802/// an explicit specialization of the previous declaration.
3803///
3804/// This sets NewFD->isInvalidDecl() to true if there was an error.
3805void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3806                                    LookupResult &Previous,
3807                                    bool IsExplicitSpecialization,
3808                                    bool &Redeclaration,
3809                                    bool &OverloadableAttrRequired) {
3810  // If NewFD is already known erroneous, don't do any of this checking.
3811  if (NewFD->isInvalidDecl()) {
3812    // If this is a class member, mark the class invalid immediately.
3813    // This avoids some consistency errors later.
3814    if (isa<CXXMethodDecl>(NewFD))
3815      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
3816
3817    return;
3818  }
3819
3820  if (NewFD->getResultType()->isVariablyModifiedType()) {
3821    // Functions returning a variably modified type violate C99 6.7.5.2p2
3822    // because all functions have linkage.
3823    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3824    return NewFD->setInvalidDecl();
3825  }
3826
3827  if (NewFD->isMain())
3828    CheckMain(NewFD);
3829
3830  // Check for a previous declaration of this name.
3831  if (Previous.empty() && NewFD->isExternC()) {
3832    // Since we did not find anything by this name and we're declaring
3833    // an extern "C" function, look for a non-visible extern "C"
3834    // declaration with the same name.
3835    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3836      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3837    if (Pos != LocallyScopedExternalDecls.end())
3838      Previous.addDecl(Pos->second);
3839  }
3840
3841  // Merge or overload the declaration with an existing declaration of
3842  // the same name, if appropriate.
3843  if (!Previous.empty()) {
3844    // Determine whether NewFD is an overload of PrevDecl or
3845    // a declaration that requires merging. If it's an overload,
3846    // there's no more work to do here; we'll just add the new
3847    // function to the scope.
3848
3849    NamedDecl *OldDecl = 0;
3850    if (!AllowOverloadingOfFunction(Previous, Context)) {
3851      Redeclaration = true;
3852      OldDecl = Previous.getFoundDecl();
3853    } else {
3854      if (!getLangOptions().CPlusPlus)
3855        OverloadableAttrRequired = true;
3856
3857      switch (CheckOverload(S, NewFD, Previous, OldDecl,
3858                            /*NewIsUsingDecl*/ false)) {
3859      case Ovl_Match:
3860        Redeclaration = true;
3861        break;
3862
3863      case Ovl_NonFunction:
3864        Redeclaration = true;
3865        break;
3866
3867      case Ovl_Overload:
3868        Redeclaration = false;
3869        break;
3870      }
3871    }
3872
3873    if (Redeclaration) {
3874      // NewFD and OldDecl represent declarations that need to be
3875      // merged.
3876      if (MergeFunctionDecl(NewFD, OldDecl))
3877        return NewFD->setInvalidDecl();
3878
3879      Previous.clear();
3880      Previous.addDecl(OldDecl);
3881
3882      if (FunctionTemplateDecl *OldTemplateDecl
3883                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3884        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3885        FunctionTemplateDecl *NewTemplateDecl
3886          = NewFD->getDescribedFunctionTemplate();
3887        assert(NewTemplateDecl && "Template/non-template mismatch");
3888        if (CXXMethodDecl *Method
3889              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3890          Method->setAccess(OldTemplateDecl->getAccess());
3891          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3892        }
3893
3894        // If this is an explicit specialization of a member that is a function
3895        // template, mark it as a member specialization.
3896        if (IsExplicitSpecialization &&
3897            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3898          NewTemplateDecl->setMemberSpecialization();
3899          assert(OldTemplateDecl->isMemberSpecialization());
3900        }
3901      } else {
3902        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3903          NewFD->setAccess(OldDecl->getAccess());
3904        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3905      }
3906    }
3907  }
3908
3909  // Semantic checking for this function declaration (in isolation).
3910  if (getLangOptions().CPlusPlus) {
3911    // C++-specific checks.
3912    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3913      CheckConstructor(Constructor);
3914    } else if (CXXDestructorDecl *Destructor =
3915                dyn_cast<CXXDestructorDecl>(NewFD)) {
3916      CXXRecordDecl *Record = Destructor->getParent();
3917      QualType ClassType = Context.getTypeDeclType(Record);
3918
3919      // FIXME: Shouldn't we be able to perform this check even when the class
3920      // type is dependent? Both gcc and edg can handle that.
3921      if (!ClassType->isDependentType()) {
3922        DeclarationName Name
3923          = Context.DeclarationNames.getCXXDestructorName(
3924                                        Context.getCanonicalType(ClassType));
3925//         NewFD->getDeclName().dump();
3926//         Name.dump();
3927        if (NewFD->getDeclName() != Name) {
3928          Diag(NewFD->getLocation(), diag::err_destructor_name);
3929          return NewFD->setInvalidDecl();
3930        }
3931      }
3932
3933      Record->setUserDeclaredDestructor(true);
3934      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3935      // user-defined destructor.
3936      Record->setPOD(false);
3937
3938      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3939      // declared destructor.
3940      // FIXME: C++0x: don't do this for "= default" destructors
3941      Record->setHasTrivialDestructor(false);
3942    } else if (CXXConversionDecl *Conversion
3943               = dyn_cast<CXXConversionDecl>(NewFD)) {
3944      ActOnConversionDeclarator(Conversion);
3945    }
3946
3947    // Find any virtual functions that this function overrides.
3948    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3949      if (!Method->isFunctionTemplateSpecialization() &&
3950          !Method->getDescribedFunctionTemplate())
3951        AddOverriddenMethods(Method->getParent(), Method);
3952    }
3953
3954    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3955    if (NewFD->isOverloadedOperator() &&
3956        CheckOverloadedOperatorDeclaration(NewFD))
3957      return NewFD->setInvalidDecl();
3958
3959    // Extra checking for C++0x literal operators (C++0x [over.literal]).
3960    if (NewFD->getLiteralIdentifier() &&
3961        CheckLiteralOperatorDeclaration(NewFD))
3962      return NewFD->setInvalidDecl();
3963
3964    // In C++, check default arguments now that we have merged decls. Unless
3965    // the lexical context is the class, because in this case this is done
3966    // during delayed parsing anyway.
3967    if (!CurContext->isRecord())
3968      CheckCXXDefaultArguments(NewFD);
3969  }
3970}
3971
3972void Sema::CheckMain(FunctionDecl* FD) {
3973  // C++ [basic.start.main]p3:  A program that declares main to be inline
3974  //   or static is ill-formed.
3975  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3976  //   shall not appear in a declaration of main.
3977  // static main is not an error under C99, but we should warn about it.
3978  bool isInline = FD->isInlineSpecified();
3979  bool isStatic = FD->getStorageClass() == SC_Static;
3980  if (isInline || isStatic) {
3981    unsigned diagID = diag::warn_unusual_main_decl;
3982    if (isInline || getLangOptions().CPlusPlus)
3983      diagID = diag::err_unusual_main_decl;
3984
3985    int which = isStatic + (isInline << 1) - 1;
3986    Diag(FD->getLocation(), diagID) << which;
3987  }
3988
3989  QualType T = FD->getType();
3990  assert(T->isFunctionType() && "function decl is not of function type");
3991  const FunctionType* FT = T->getAs<FunctionType>();
3992
3993  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3994    TypeSourceInfo *TSI = FD->getTypeSourceInfo();
3995    TypeLoc TL = TSI->getTypeLoc();
3996    const SemaDiagnosticBuilder& D = Diag(FD->getTypeSpecStartLoc(),
3997                                          diag::err_main_returns_nonint);
3998    if (FunctionTypeLoc* PTL = dyn_cast<FunctionTypeLoc>(&TL)) {
3999      D << FixItHint::CreateReplacement(PTL->getResultLoc().getSourceRange(),
4000                                        "int");
4001    }
4002    FD->setInvalidDecl(true);
4003  }
4004
4005  // Treat protoless main() as nullary.
4006  if (isa<FunctionNoProtoType>(FT)) return;
4007
4008  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
4009  unsigned nparams = FTP->getNumArgs();
4010  assert(FD->getNumParams() == nparams);
4011
4012  bool HasExtraParameters = (nparams > 3);
4013
4014  // Darwin passes an undocumented fourth argument of type char**.  If
4015  // other platforms start sprouting these, the logic below will start
4016  // getting shifty.
4017  if (nparams == 4 &&
4018      Context.Target.getTriple().getOS() == llvm::Triple::Darwin)
4019    HasExtraParameters = false;
4020
4021  if (HasExtraParameters) {
4022    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
4023    FD->setInvalidDecl(true);
4024    nparams = 3;
4025  }
4026
4027  // FIXME: a lot of the following diagnostics would be improved
4028  // if we had some location information about types.
4029
4030  QualType CharPP =
4031    Context.getPointerType(Context.getPointerType(Context.CharTy));
4032  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
4033
4034  for (unsigned i = 0; i < nparams; ++i) {
4035    QualType AT = FTP->getArgType(i);
4036
4037    bool mismatch = true;
4038
4039    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
4040      mismatch = false;
4041    else if (Expected[i] == CharPP) {
4042      // As an extension, the following forms are okay:
4043      //   char const **
4044      //   char const * const *
4045      //   char * const *
4046
4047      QualifierCollector qs;
4048      const PointerType* PT;
4049      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
4050          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
4051          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
4052        qs.removeConst();
4053        mismatch = !qs.empty();
4054      }
4055    }
4056
4057    if (mismatch) {
4058      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
4059      // TODO: suggest replacing given type with expected type
4060      FD->setInvalidDecl(true);
4061    }
4062  }
4063
4064  if (nparams == 1 && !FD->isInvalidDecl()) {
4065    Diag(FD->getLocation(), diag::warn_main_one_arg);
4066  }
4067}
4068
4069bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
4070  // FIXME: Need strict checking.  In C89, we need to check for
4071  // any assignment, increment, decrement, function-calls, or
4072  // commas outside of a sizeof.  In C99, it's the same list,
4073  // except that the aforementioned are allowed in unevaluated
4074  // expressions.  Everything else falls under the
4075  // "may accept other forms of constant expressions" exception.
4076  // (We never end up here for C++, so the constant expression
4077  // rules there don't matter.)
4078  if (Init->isConstantInitializer(Context, false))
4079    return false;
4080  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
4081    << Init->getSourceRange();
4082  return true;
4083}
4084
4085void Sema::AddInitializerToDecl(Decl *dcl, Expr *init) {
4086  AddInitializerToDecl(dcl, init, /*DirectInit=*/false);
4087}
4088
4089/// AddInitializerToDecl - Adds the initializer Init to the
4090/// declaration dcl. If DirectInit is true, this is C++ direct
4091/// initialization rather than copy initialization.
4092void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init, bool DirectInit) {
4093  // If there is no declaration, there was an error parsing it.  Just ignore
4094  // the initializer.
4095  if (RealDecl == 0)
4096    return;
4097
4098  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
4099    // With declarators parsed the way they are, the parser cannot
4100    // distinguish between a normal initializer and a pure-specifier.
4101    // Thus this grotesque test.
4102    IntegerLiteral *IL;
4103    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
4104        Context.getCanonicalType(IL->getType()) == Context.IntTy)
4105      CheckPureMethod(Method, Init->getSourceRange());
4106    else {
4107      Diag(Method->getLocation(), diag::err_member_function_initialization)
4108        << Method->getDeclName() << Init->getSourceRange();
4109      Method->setInvalidDecl();
4110    }
4111    return;
4112  }
4113
4114  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
4115  if (!VDecl) {
4116    if (getLangOptions().CPlusPlus &&
4117        RealDecl->getLexicalDeclContext()->isRecord() &&
4118        isa<NamedDecl>(RealDecl))
4119      Diag(RealDecl->getLocation(), diag::err_member_initialization);
4120    else
4121      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
4122    RealDecl->setInvalidDecl();
4123    return;
4124  }
4125
4126
4127
4128  // A definition must end up with a complete type, which means it must be
4129  // complete with the restriction that an array type might be completed by the
4130  // initializer; note that later code assumes this restriction.
4131  QualType BaseDeclType = VDecl->getType();
4132  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
4133    BaseDeclType = Array->getElementType();
4134  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
4135                          diag::err_typecheck_decl_incomplete_type)) {
4136    RealDecl->setInvalidDecl();
4137    return;
4138  }
4139
4140  // The variable can not have an abstract class type.
4141  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
4142                             diag::err_abstract_type_in_decl,
4143                             AbstractVariableType))
4144    VDecl->setInvalidDecl();
4145
4146  const VarDecl *Def;
4147  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
4148    Diag(VDecl->getLocation(), diag::err_redefinition)
4149      << VDecl->getDeclName();
4150    Diag(Def->getLocation(), diag::note_previous_definition);
4151    VDecl->setInvalidDecl();
4152    return;
4153  }
4154
4155  // C++ [class.static.data]p4
4156  //   If a static data member is of const integral or const
4157  //   enumeration type, its declaration in the class definition can
4158  //   specify a constant-initializer which shall be an integral
4159  //   constant expression (5.19). In that case, the member can appear
4160  //   in integral constant expressions. The member shall still be
4161  //   defined in a namespace scope if it is used in the program and the
4162  //   namespace scope definition shall not contain an initializer.
4163  //
4164  // We already performed a redefinition check above, but for static
4165  // data members we also need to check whether there was an in-class
4166  // declaration with an initializer.
4167  const VarDecl* PrevInit = 0;
4168  if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
4169    Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
4170    Diag(PrevInit->getLocation(), diag::note_previous_definition);
4171    return;
4172  }
4173
4174  if (getLangOptions().CPlusPlus && VDecl->hasLocalStorage())
4175    getCurFunction()->setHasBranchProtectedScope();
4176
4177  // Capture the variable that is being initialized and the style of
4178  // initialization.
4179  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
4180
4181  // FIXME: Poor source location information.
4182  InitializationKind Kind
4183    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
4184                                                   Init->getLocStart(),
4185                                                   Init->getLocEnd())
4186                : InitializationKind::CreateCopy(VDecl->getLocation(),
4187                                                 Init->getLocStart());
4188
4189  // Get the decls type and save a reference for later, since
4190  // CheckInitializerTypes may change it.
4191  QualType DclT = VDecl->getType(), SavT = DclT;
4192  if (VDecl->isBlockVarDecl()) {
4193    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
4194      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
4195      VDecl->setInvalidDecl();
4196    } else if (!VDecl->isInvalidDecl()) {
4197      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4198      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4199                                                MultiExprArg(*this, &Init, 1),
4200                                                &DclT);
4201      if (Result.isInvalid()) {
4202        VDecl->setInvalidDecl();
4203        return;
4204      }
4205
4206      Init = Result.takeAs<Expr>();
4207
4208      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4209      // Don't check invalid declarations to avoid emitting useless diagnostics.
4210      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4211        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
4212          CheckForConstantInitializer(Init, DclT);
4213      }
4214    }
4215  } else if (VDecl->isStaticDataMember() &&
4216             VDecl->getLexicalDeclContext()->isRecord()) {
4217    // This is an in-class initialization for a static data member, e.g.,
4218    //
4219    // struct S {
4220    //   static const int value = 17;
4221    // };
4222
4223    // Try to perform the initialization regardless.
4224    if (!VDecl->isInvalidDecl()) {
4225      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4226      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4227                                          MultiExprArg(*this, &Init, 1),
4228                                          &DclT);
4229      if (Result.isInvalid()) {
4230        VDecl->setInvalidDecl();
4231        return;
4232      }
4233
4234      Init = Result.takeAs<Expr>();
4235    }
4236
4237    // C++ [class.mem]p4:
4238    //   A member-declarator can contain a constant-initializer only
4239    //   if it declares a static member (9.4) of const integral or
4240    //   const enumeration type, see 9.4.2.
4241    QualType T = VDecl->getType();
4242
4243    // Do nothing on dependent types.
4244    if (T->isDependentType()) {
4245
4246    // Require constness.
4247    } else if (!T.isConstQualified()) {
4248      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
4249        << Init->getSourceRange();
4250      VDecl->setInvalidDecl();
4251
4252    // We allow integer constant expressions in all cases.
4253    } else if (T->isIntegralOrEnumerationType()) {
4254      if (!Init->isValueDependent()) {
4255        // Check whether the expression is a constant expression.
4256        llvm::APSInt Value;
4257        SourceLocation Loc;
4258        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
4259          Diag(Loc, diag::err_in_class_initializer_non_constant)
4260            << Init->getSourceRange();
4261          VDecl->setInvalidDecl();
4262        }
4263      }
4264
4265    // We allow floating-point constants as an extension in C++03, and
4266    // C++0x has far more complicated rules that we don't really
4267    // implement fully.
4268    } else {
4269      bool Allowed = false;
4270      if (getLangOptions().CPlusPlus0x) {
4271        Allowed = T->isLiteralType();
4272      } else if (T->isFloatingType()) { // also permits complex, which is ok
4273        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
4274          << T << Init->getSourceRange();
4275        Allowed = true;
4276      }
4277
4278      if (!Allowed) {
4279        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
4280          << T << Init->getSourceRange();
4281        VDecl->setInvalidDecl();
4282
4283      // TODO: there are probably expressions that pass here that shouldn't.
4284      } else if (!Init->isValueDependent() &&
4285                 !Init->isConstantInitializer(Context, false)) {
4286        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
4287          << Init->getSourceRange();
4288        VDecl->setInvalidDecl();
4289      }
4290    }
4291  } else if (VDecl->isFileVarDecl()) {
4292    if (VDecl->getStorageClass() == SC_Extern &&
4293        (!getLangOptions().CPlusPlus ||
4294         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
4295      Diag(VDecl->getLocation(), diag::warn_extern_init);
4296    if (!VDecl->isInvalidDecl()) {
4297      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
4298      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
4299                                                MultiExprArg(*this, &Init, 1),
4300                                                &DclT);
4301      if (Result.isInvalid()) {
4302        VDecl->setInvalidDecl();
4303        return;
4304      }
4305
4306      Init = Result.takeAs<Expr>();
4307    }
4308
4309    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
4310    // Don't check invalid declarations to avoid emitting useless diagnostics.
4311    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
4312      // C99 6.7.8p4. All file scoped initializers need to be constant.
4313      CheckForConstantInitializer(Init, DclT);
4314    }
4315  }
4316  // If the type changed, it means we had an incomplete type that was
4317  // completed by the initializer. For example:
4318  //   int ary[] = { 1, 3, 5 };
4319  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
4320  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
4321    VDecl->setType(DclT);
4322    Init->setType(DclT);
4323  }
4324
4325  Init = MaybeCreateCXXExprWithTemporaries(Init);
4326  // Attach the initializer to the decl.
4327  VDecl->setInit(Init);
4328
4329  if (getLangOptions().CPlusPlus) {
4330    if (!VDecl->isInvalidDecl() &&
4331        !VDecl->getDeclContext()->isDependentContext() &&
4332        VDecl->hasGlobalStorage() && !VDecl->isStaticLocal() &&
4333        !Init->isConstantInitializer(Context,
4334                                     VDecl->getType()->isReferenceType()))
4335      Diag(VDecl->getLocation(), diag::warn_global_constructor)
4336        << Init->getSourceRange();
4337
4338    // Make sure we mark the destructor as used if necessary.
4339    QualType InitType = VDecl->getType();
4340    while (const ArrayType *Array = Context.getAsArrayType(InitType))
4341      InitType = Context.getBaseElementType(Array);
4342    if (const RecordType *Record = InitType->getAs<RecordType>())
4343      FinalizeVarWithDestructor(VDecl, Record);
4344  }
4345
4346  return;
4347}
4348
4349/// ActOnInitializerError - Given that there was an error parsing an
4350/// initializer for the given declaration, try to return to some form
4351/// of sanity.
4352void Sema::ActOnInitializerError(Decl *D) {
4353  // Our main concern here is re-establishing invariants like "a
4354  // variable's type is either dependent or complete".
4355  if (!D || D->isInvalidDecl()) return;
4356
4357  VarDecl *VD = dyn_cast<VarDecl>(D);
4358  if (!VD) return;
4359
4360  QualType Ty = VD->getType();
4361  if (Ty->isDependentType()) return;
4362
4363  // Require a complete type.
4364  if (RequireCompleteType(VD->getLocation(),
4365                          Context.getBaseElementType(Ty),
4366                          diag::err_typecheck_decl_incomplete_type)) {
4367    VD->setInvalidDecl();
4368    return;
4369  }
4370
4371  // Require an abstract type.
4372  if (RequireNonAbstractType(VD->getLocation(), Ty,
4373                             diag::err_abstract_type_in_decl,
4374                             AbstractVariableType)) {
4375    VD->setInvalidDecl();
4376    return;
4377  }
4378
4379  // Don't bother complaining about constructors or destructors,
4380  // though.
4381}
4382
4383void Sema::ActOnUninitializedDecl(Decl *RealDecl,
4384                                  bool TypeContainsUndeducedAuto) {
4385  // If there is no declaration, there was an error parsing it. Just ignore it.
4386  if (RealDecl == 0)
4387    return;
4388
4389  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
4390    QualType Type = Var->getType();
4391
4392    // C++0x [dcl.spec.auto]p3
4393    if (TypeContainsUndeducedAuto) {
4394      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
4395        << Var->getDeclName() << Type;
4396      Var->setInvalidDecl();
4397      return;
4398    }
4399
4400    switch (Var->isThisDeclarationADefinition()) {
4401    case VarDecl::Definition:
4402      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
4403        break;
4404
4405      // We have an out-of-line definition of a static data member
4406      // that has an in-class initializer, so we type-check this like
4407      // a declaration.
4408      //
4409      // Fall through
4410
4411    case VarDecl::DeclarationOnly:
4412      // It's only a declaration.
4413
4414      // Block scope. C99 6.7p7: If an identifier for an object is
4415      // declared with no linkage (C99 6.2.2p6), the type for the
4416      // object shall be complete.
4417      if (!Type->isDependentType() && Var->isBlockVarDecl() &&
4418          !Var->getLinkage() && !Var->isInvalidDecl() &&
4419          RequireCompleteType(Var->getLocation(), Type,
4420                              diag::err_typecheck_decl_incomplete_type))
4421        Var->setInvalidDecl();
4422
4423      // Make sure that the type is not abstract.
4424      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
4425          RequireNonAbstractType(Var->getLocation(), Type,
4426                                 diag::err_abstract_type_in_decl,
4427                                 AbstractVariableType))
4428        Var->setInvalidDecl();
4429      return;
4430
4431    case VarDecl::TentativeDefinition:
4432      // File scope. C99 6.9.2p2: A declaration of an identifier for an
4433      // object that has file scope without an initializer, and without a
4434      // storage-class specifier or with the storage-class specifier "static",
4435      // constitutes a tentative definition. Note: A tentative definition with
4436      // external linkage is valid (C99 6.2.2p5).
4437      if (!Var->isInvalidDecl()) {
4438        if (const IncompleteArrayType *ArrayT
4439                                    = Context.getAsIncompleteArrayType(Type)) {
4440          if (RequireCompleteType(Var->getLocation(),
4441                                  ArrayT->getElementType(),
4442                                  diag::err_illegal_decl_array_incomplete_type))
4443            Var->setInvalidDecl();
4444        } else if (Var->getStorageClass() == SC_Static) {
4445          // C99 6.9.2p3: If the declaration of an identifier for an object is
4446          // a tentative definition and has internal linkage (C99 6.2.2p3), the
4447          // declared type shall not be an incomplete type.
4448          // NOTE: code such as the following
4449          //     static struct s;
4450          //     struct s { int a; };
4451          // is accepted by gcc. Hence here we issue a warning instead of
4452          // an error and we do not invalidate the static declaration.
4453          // NOTE: to avoid multiple warnings, only check the first declaration.
4454          if (Var->getPreviousDeclaration() == 0)
4455            RequireCompleteType(Var->getLocation(), Type,
4456                                diag::ext_typecheck_decl_incomplete_type);
4457        }
4458      }
4459
4460      // Record the tentative definition; we're done.
4461      if (!Var->isInvalidDecl())
4462        TentativeDefinitions.push_back(Var);
4463      return;
4464    }
4465
4466    // Provide a specific diagnostic for uninitialized variable
4467    // definitions with incomplete array type.
4468    if (Type->isIncompleteArrayType()) {
4469      Diag(Var->getLocation(),
4470           diag::err_typecheck_incomplete_array_needs_initializer);
4471      Var->setInvalidDecl();
4472      return;
4473    }
4474
4475    // Provide a specific diagnostic for uninitialized variable
4476    // definitions with reference type.
4477    if (Type->isReferenceType()) {
4478      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
4479        << Var->getDeclName()
4480        << SourceRange(Var->getLocation(), Var->getLocation());
4481      Var->setInvalidDecl();
4482      return;
4483    }
4484
4485    // Do not attempt to type-check the default initializer for a
4486    // variable with dependent type.
4487    if (Type->isDependentType())
4488      return;
4489
4490    if (Var->isInvalidDecl())
4491      return;
4492
4493    if (RequireCompleteType(Var->getLocation(),
4494                            Context.getBaseElementType(Type),
4495                            diag::err_typecheck_decl_incomplete_type)) {
4496      Var->setInvalidDecl();
4497      return;
4498    }
4499
4500    // The variable can not have an abstract class type.
4501    if (RequireNonAbstractType(Var->getLocation(), Type,
4502                               diag::err_abstract_type_in_decl,
4503                               AbstractVariableType)) {
4504      Var->setInvalidDecl();
4505      return;
4506    }
4507
4508    const RecordType *Record
4509      = Context.getBaseElementType(Type)->getAs<RecordType>();
4510    if (Record && getLangOptions().CPlusPlus && !getLangOptions().CPlusPlus0x &&
4511        cast<CXXRecordDecl>(Record->getDecl())->isPOD()) {
4512      // C++03 [dcl.init]p9:
4513      //   If no initializer is specified for an object, and the
4514      //   object is of (possibly cv-qualified) non-POD class type (or
4515      //   array thereof), the object shall be default-initialized; if
4516      //   the object is of const-qualified type, the underlying class
4517      //   type shall have a user-declared default
4518      //   constructor. Otherwise, if no initializer is specified for
4519      //   a non- static object, the object and its subobjects, if
4520      //   any, have an indeterminate initial value); if the object
4521      //   or any of its subobjects are of const-qualified type, the
4522      //   program is ill-formed.
4523      // FIXME: DPG thinks it is very fishy that C++0x disables this.
4524    } else {
4525      // Check for jumps past the implicit initializer.  C++0x
4526      // clarifies that this applies to a "variable with automatic
4527      // storage duration", not a "local variable".
4528      if (getLangOptions().CPlusPlus && Var->hasLocalStorage())
4529        getCurFunction()->setHasBranchProtectedScope();
4530
4531      InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
4532      InitializationKind Kind
4533        = InitializationKind::CreateDefault(Var->getLocation());
4534
4535      InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
4536      ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
4537                                        MultiExprArg(*this, 0, 0));
4538      if (Init.isInvalid())
4539        Var->setInvalidDecl();
4540      else if (Init.get()) {
4541        Var->setInit(MaybeCreateCXXExprWithTemporaries(Init.takeAs<Expr>()));
4542
4543        if (getLangOptions().CPlusPlus && !Var->isInvalidDecl() &&
4544            Var->hasGlobalStorage() && !Var->isStaticLocal() &&
4545            !Var->getDeclContext()->isDependentContext() &&
4546            !Var->getInit()->isConstantInitializer(Context, false))
4547          Diag(Var->getLocation(), diag::warn_global_constructor);
4548      }
4549    }
4550
4551    if (!Var->isInvalidDecl() && getLangOptions().CPlusPlus && Record)
4552      FinalizeVarWithDestructor(Var, Record);
4553  }
4554}
4555
4556Sema::DeclGroupPtrTy
4557Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
4558                              Decl **Group, unsigned NumDecls) {
4559  llvm::SmallVector<Decl*, 8> Decls;
4560
4561  if (DS.isTypeSpecOwned())
4562    Decls.push_back(DS.getRepAsDecl());
4563
4564  for (unsigned i = 0; i != NumDecls; ++i)
4565    if (Decl *D = Group[i])
4566      Decls.push_back(D);
4567
4568  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
4569                                                   Decls.data(), Decls.size()));
4570}
4571
4572
4573/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
4574/// to introduce parameters into function prototype scope.
4575Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
4576  const DeclSpec &DS = D.getDeclSpec();
4577
4578  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
4579  VarDecl::StorageClass StorageClass = SC_None;
4580  VarDecl::StorageClass StorageClassAsWritten = SC_None;
4581  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
4582    StorageClass = SC_Register;
4583    StorageClassAsWritten = SC_Register;
4584  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
4585    Diag(DS.getStorageClassSpecLoc(),
4586         diag::err_invalid_storage_class_in_func_decl);
4587    D.getMutableDeclSpec().ClearStorageClassSpecs();
4588  }
4589
4590  if (D.getDeclSpec().isThreadSpecified())
4591    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4592
4593  DiagnoseFunctionSpecifiers(D);
4594
4595  // Check that there are no default arguments inside the type of this
4596  // parameter (C++ only).
4597  if (getLangOptions().CPlusPlus)
4598    CheckExtraCXXDefaultArguments(D);
4599
4600  TagDecl *OwnedDecl = 0;
4601  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S, &OwnedDecl);
4602  QualType parmDeclType = TInfo->getType();
4603
4604  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
4605    // C++ [dcl.fct]p6:
4606    //   Types shall not be defined in return or parameter types.
4607    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
4608      << Context.getTypeDeclType(OwnedDecl);
4609  }
4610
4611  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
4612  IdentifierInfo *II = D.getIdentifier();
4613  if (II) {
4614    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
4615                   ForRedeclaration);
4616    LookupName(R, S);
4617    if (R.isSingleResult()) {
4618      NamedDecl *PrevDecl = R.getFoundDecl();
4619      if (PrevDecl->isTemplateParameter()) {
4620        // Maybe we will complain about the shadowed template parameter.
4621        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4622        // Just pretend that we didn't see the previous declaration.
4623        PrevDecl = 0;
4624      } else if (S->isDeclScope(PrevDecl)) {
4625        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
4626        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4627
4628        // Recover by removing the name
4629        II = 0;
4630        D.SetIdentifier(0, D.getIdentifierLoc());
4631        D.setInvalidType(true);
4632      }
4633    }
4634  }
4635
4636  // Temporarily put parameter variables in the translation unit, not
4637  // the enclosing context.  This prevents them from accidentally
4638  // looking like class members in C++.
4639  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
4640                                    TInfo, parmDeclType, II,
4641                                    D.getIdentifierLoc(),
4642                                    StorageClass, StorageClassAsWritten);
4643
4644  if (D.isInvalidType())
4645    New->setInvalidDecl();
4646
4647  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
4648  if (D.getCXXScopeSpec().isSet()) {
4649    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
4650      << D.getCXXScopeSpec().getRange();
4651    New->setInvalidDecl();
4652  }
4653
4654  // Add the parameter declaration into this scope.
4655  S->AddDecl(New);
4656  if (II)
4657    IdResolver.AddDecl(New);
4658
4659  ProcessDeclAttributes(S, New, D);
4660
4661  if (New->hasAttr<BlocksAttr>()) {
4662    Diag(New->getLocation(), diag::err_block_on_nonlocal);
4663  }
4664  return New;
4665}
4666
4667/// \brief Synthesizes a variable for a parameter arising from a
4668/// typedef.
4669ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
4670                                              SourceLocation Loc,
4671                                              QualType T) {
4672  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, 0,
4673                                T, Context.getTrivialTypeSourceInfo(T, Loc),
4674                                           SC_None, SC_None, 0);
4675  Param->setImplicit();
4676  return Param;
4677}
4678
4679void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
4680                                    ParmVarDecl * const *ParamEnd) {
4681  if (Diags.getDiagnosticLevel(diag::warn_unused_parameter) ==
4682        Diagnostic::Ignored)
4683    return;
4684
4685  // Don't diagnose unused-parameter errors in template instantiations; we
4686  // will already have done so in the template itself.
4687  if (!ActiveTemplateInstantiations.empty())
4688    return;
4689
4690  for (; Param != ParamEnd; ++Param) {
4691    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
4692        !(*Param)->hasAttr<UnusedAttr>()) {
4693      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
4694        << (*Param)->getDeclName();
4695    }
4696  }
4697}
4698
4699ParmVarDecl *Sema::CheckParameter(DeclContext *DC,
4700                                  TypeSourceInfo *TSInfo, QualType T,
4701                                  IdentifierInfo *Name,
4702                                  SourceLocation NameLoc,
4703                                  VarDecl::StorageClass StorageClass,
4704                                  VarDecl::StorageClass StorageClassAsWritten) {
4705  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, NameLoc, Name,
4706                                         adjustParameterType(T), TSInfo,
4707                                         StorageClass, StorageClassAsWritten,
4708                                         0);
4709
4710  // Parameters can not be abstract class types.
4711  // For record types, this is done by the AbstractClassUsageDiagnoser once
4712  // the class has been completely parsed.
4713  if (!CurContext->isRecord() &&
4714      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
4715                             AbstractParamType))
4716    New->setInvalidDecl();
4717
4718  // Parameter declarators cannot be interface types. All ObjC objects are
4719  // passed by reference.
4720  if (T->isObjCObjectType()) {
4721    Diag(NameLoc,
4722         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
4723    New->setInvalidDecl();
4724  }
4725
4726  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
4727  // duration shall not be qualified by an address-space qualifier."
4728  // Since all parameters have automatic store duration, they can not have
4729  // an address space.
4730  if (T.getAddressSpace() != 0) {
4731    Diag(NameLoc, diag::err_arg_with_address_space);
4732    New->setInvalidDecl();
4733  }
4734
4735  return New;
4736}
4737
4738void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4739                                           SourceLocation LocAfterDecls) {
4740  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4741         "Not a function declarator!");
4742  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4743
4744  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4745  // for a K&R function.
4746  if (!FTI.hasPrototype) {
4747    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4748      --i;
4749      if (FTI.ArgInfo[i].Param == 0) {
4750        llvm::SmallString<256> Code;
4751        llvm::raw_svector_ostream(Code) << "  int "
4752                                        << FTI.ArgInfo[i].Ident->getName()
4753                                        << ";\n";
4754        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4755          << FTI.ArgInfo[i].Ident
4756          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
4757
4758        // Implicitly declare the argument as type 'int' for lack of a better
4759        // type.
4760        DeclSpec DS;
4761        const char* PrevSpec; // unused
4762        unsigned DiagID; // unused
4763        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4764                           PrevSpec, DiagID);
4765        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4766        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4767        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4768      }
4769    }
4770  }
4771}
4772
4773Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4774                                         Declarator &D) {
4775  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4776  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4777         "Not a function declarator!");
4778  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4779
4780  if (FTI.hasPrototype) {
4781    // FIXME: Diagnose arguments without names in C.
4782  }
4783
4784  Scope *ParentScope = FnBodyScope->getParent();
4785
4786  Decl *DP = HandleDeclarator(ParentScope, D,
4787                              MultiTemplateParamsArg(*this),
4788                              /*IsFunctionDefinition=*/true);
4789  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4790}
4791
4792static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4793  // Don't warn about invalid declarations.
4794  if (FD->isInvalidDecl())
4795    return false;
4796
4797  // Or declarations that aren't global.
4798  if (!FD->isGlobal())
4799    return false;
4800
4801  // Don't warn about C++ member functions.
4802  if (isa<CXXMethodDecl>(FD))
4803    return false;
4804
4805  // Don't warn about 'main'.
4806  if (FD->isMain())
4807    return false;
4808
4809  // Don't warn about inline functions.
4810  if (FD->isInlineSpecified())
4811    return false;
4812
4813  // Don't warn about function templates.
4814  if (FD->getDescribedFunctionTemplate())
4815    return false;
4816
4817  // Don't warn about function template specializations.
4818  if (FD->isFunctionTemplateSpecialization())
4819    return false;
4820
4821  bool MissingPrototype = true;
4822  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4823       Prev; Prev = Prev->getPreviousDeclaration()) {
4824    // Ignore any declarations that occur in function or method
4825    // scope, because they aren't visible from the header.
4826    if (Prev->getDeclContext()->isFunctionOrMethod())
4827      continue;
4828
4829    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4830    break;
4831  }
4832
4833  return MissingPrototype;
4834}
4835
4836Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
4837  // Clear the last template instantiation error context.
4838  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4839
4840  if (!D)
4841    return D;
4842  FunctionDecl *FD = 0;
4843
4844  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
4845    FD = FunTmpl->getTemplatedDecl();
4846  else
4847    FD = cast<FunctionDecl>(D);
4848
4849  // Enter a new function scope
4850  PushFunctionScope();
4851
4852  // See if this is a redefinition.
4853  // But don't complain if we're in GNU89 mode and the previous definition
4854  // was an extern inline function.
4855  const FunctionDecl *Definition;
4856  if (FD->hasBody(Definition) &&
4857      !canRedefineFunction(Definition, getLangOptions())) {
4858    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
4859        Definition->getStorageClass() == SC_Extern)
4860      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
4861        << FD->getDeclName() << getLangOptions().CPlusPlus;
4862    else
4863      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4864    Diag(Definition->getLocation(), diag::note_previous_definition);
4865  }
4866
4867  // Builtin functions cannot be defined.
4868  if (unsigned BuiltinID = FD->getBuiltinID()) {
4869    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4870      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4871      FD->setInvalidDecl();
4872    }
4873  }
4874
4875  // The return type of a function definition must be complete
4876  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4877  QualType ResultType = FD->getResultType();
4878  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4879      !FD->isInvalidDecl() &&
4880      RequireCompleteType(FD->getLocation(), ResultType,
4881                          diag::err_func_def_incomplete_result))
4882    FD->setInvalidDecl();
4883
4884  // GNU warning -Wmissing-prototypes:
4885  //   Warn if a global function is defined without a previous
4886  //   prototype declaration. This warning is issued even if the
4887  //   definition itself provides a prototype. The aim is to detect
4888  //   global functions that fail to be declared in header files.
4889  if (ShouldWarnAboutMissingPrototype(FD))
4890    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4891
4892  if (FnBodyScope)
4893    PushDeclContext(FnBodyScope, FD);
4894
4895  // Check the validity of our function parameters
4896  CheckParmsForFunctionDef(FD);
4897
4898  bool ShouldCheckShadow =
4899    Diags.getDiagnosticLevel(diag::warn_decl_shadow) != Diagnostic::Ignored;
4900
4901  // Introduce our parameters into the function scope
4902  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4903    ParmVarDecl *Param = FD->getParamDecl(p);
4904    Param->setOwningFunction(FD);
4905
4906    // If this has an identifier, add it to the scope stack.
4907    if (Param->getIdentifier() && FnBodyScope) {
4908      if (ShouldCheckShadow)
4909        CheckShadow(FnBodyScope, Param);
4910
4911      PushOnScopeChains(Param, FnBodyScope);
4912    }
4913  }
4914
4915  // Checking attributes of current function definition
4916  // dllimport attribute.
4917  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
4918  if (DA && (!FD->getAttr<DLLExportAttr>())) {
4919    // dllimport attribute cannot be directly applied to definition.
4920    if (!DA->isInherited()) {
4921      Diag(FD->getLocation(),
4922           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4923        << "dllimport";
4924      FD->setInvalidDecl();
4925      return FD;
4926    }
4927
4928    // Visual C++ appears to not think this is an issue, so only issue
4929    // a warning when Microsoft extensions are disabled.
4930    if (!LangOpts.Microsoft) {
4931      // If a symbol previously declared dllimport is later defined, the
4932      // attribute is ignored in subsequent references, and a warning is
4933      // emitted.
4934      Diag(FD->getLocation(),
4935           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4936        << FD->getName() << "dllimport";
4937    }
4938  }
4939  return FD;
4940}
4941
4942/// \brief Given the set of return statements within a function body,
4943/// compute the variables that are subject to the named return value
4944/// optimization.
4945///
4946/// Each of the variables that is subject to the named return value
4947/// optimization will be marked as NRVO variables in the AST, and any
4948/// return statement that has a marked NRVO variable as its NRVO candidate can
4949/// use the named return value optimization.
4950///
4951/// This function applies a very simplistic algorithm for NRVO: if every return
4952/// statement in the function has the same NRVO candidate, that candidate is
4953/// the NRVO variable.
4954///
4955/// FIXME: Employ a smarter algorithm that accounts for multiple return
4956/// statements and the lifetimes of the NRVO candidates. We should be able to
4957/// find a maximal set of NRVO variables.
4958static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
4959  ReturnStmt **Returns = Scope->Returns.data();
4960
4961  const VarDecl *NRVOCandidate = 0;
4962  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
4963    if (!Returns[I]->getNRVOCandidate())
4964      return;
4965
4966    if (!NRVOCandidate)
4967      NRVOCandidate = Returns[I]->getNRVOCandidate();
4968    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
4969      return;
4970  }
4971
4972  if (NRVOCandidate)
4973    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
4974}
4975
4976Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
4977  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4978}
4979
4980Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
4981                                    bool IsInstantiation) {
4982  FunctionDecl *FD = 0;
4983  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4984  if (FunTmpl)
4985    FD = FunTmpl->getTemplatedDecl();
4986  else
4987    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4988
4989  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
4990
4991  if (FD) {
4992    FD->setBody(Body);
4993    if (FD->isMain()) {
4994      // C and C++ allow for main to automagically return 0.
4995      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4996      FD->setHasImplicitReturnZero(true);
4997      WP.disableCheckFallThrough();
4998    }
4999
5000    if (!FD->isInvalidDecl()) {
5001      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
5002
5003      // If this is a constructor, we need a vtable.
5004      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
5005        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
5006
5007      ComputeNRVO(Body, getCurFunction());
5008    }
5009
5010    assert(FD == getCurFunctionDecl() && "Function parsing confused");
5011  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
5012    assert(MD == getCurMethodDecl() && "Method parsing confused");
5013    MD->setBody(Body);
5014    MD->setEndLoc(Body->getLocEnd());
5015    if (!MD->isInvalidDecl())
5016      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
5017  } else {
5018    return 0;
5019  }
5020
5021  // Verify and clean out per-function state.
5022
5023  // Check goto/label use.
5024  FunctionScopeInfo *CurFn = getCurFunction();
5025  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
5026         I = CurFn->LabelMap.begin(), E = CurFn->LabelMap.end(); I != E; ++I) {
5027    LabelStmt *L = I->second;
5028
5029    // Verify that we have no forward references left.  If so, there was a goto
5030    // or address of a label taken, but no definition of it.  Label fwd
5031    // definitions are indicated with a null substmt.
5032    if (L->getSubStmt() != 0) {
5033      if (!L->isUsed())
5034        Diag(L->getIdentLoc(), diag::warn_unused_label) << L->getName();
5035      continue;
5036    }
5037
5038    // Emit error.
5039    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
5040
5041    // At this point, we have gotos that use the bogus label.  Stitch it into
5042    // the function body so that they aren't leaked and that the AST is well
5043    // formed.
5044    if (Body == 0) {
5045      // The whole function wasn't parsed correctly.
5046      continue;
5047    }
5048
5049    // Otherwise, the body is valid: we want to stitch the label decl into the
5050    // function somewhere so that it is properly owned and so that the goto
5051    // has a valid target.  Do this by creating a new compound stmt with the
5052    // label in it.
5053
5054    // Give the label a sub-statement.
5055    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
5056
5057    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
5058                               cast<CXXTryStmt>(Body)->getTryBlock() :
5059                               cast<CompoundStmt>(Body);
5060    llvm::SmallVector<Stmt*, 64> Elements(Compound->body_begin(),
5061                                          Compound->body_end());
5062    Elements.push_back(L);
5063    Compound->setStmts(Context, Elements.data(), Elements.size());
5064  }
5065
5066  if (Body) {
5067    // C++ constructors that have function-try-blocks can't have return
5068    // statements in the handlers of that block. (C++ [except.handle]p14)
5069    // Verify this.
5070    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
5071      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
5072
5073    // Verify that that gotos and switch cases don't jump into scopes illegally.
5074    // Verify that that gotos and switch cases don't jump into scopes illegally.
5075    if (getCurFunction()->NeedsScopeChecking() &&
5076        !dcl->isInvalidDecl() &&
5077        !hasAnyErrorsInThisFunction())
5078      DiagnoseInvalidJumps(Body);
5079
5080    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
5081      if (!Destructor->getParent()->isDependentType())
5082        CheckDestructor(Destructor);
5083
5084      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
5085                                             Destructor->getParent());
5086    }
5087
5088    // If any errors have occurred, clear out any temporaries that may have
5089    // been leftover. This ensures that these temporaries won't be picked up for
5090    // deletion in some later function.
5091    if (PP.getDiagnostics().hasErrorOccurred())
5092      ExprTemporaries.clear();
5093    else if (!isa<FunctionTemplateDecl>(dcl)) {
5094      // Since the body is valid, issue any analysis-based warnings that are
5095      // enabled.
5096      QualType ResultType;
5097      if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(dcl)) {
5098        AnalysisWarnings.IssueWarnings(WP, FD);
5099      } else {
5100        ObjCMethodDecl *MD = cast<ObjCMethodDecl>(dcl);
5101        AnalysisWarnings.IssueWarnings(WP, MD);
5102      }
5103    }
5104
5105    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
5106  }
5107
5108  if (!IsInstantiation)
5109    PopDeclContext();
5110
5111  PopFunctionOrBlockScope();
5112
5113  // If any errors have occurred, clear out any temporaries that may have
5114  // been leftover. This ensures that these temporaries won't be picked up for
5115  // deletion in some later function.
5116  if (getDiagnostics().hasErrorOccurred())
5117    ExprTemporaries.clear();
5118
5119  return dcl;
5120}
5121
5122/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
5123/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
5124NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
5125                                          IdentifierInfo &II, Scope *S) {
5126  // Before we produce a declaration for an implicitly defined
5127  // function, see whether there was a locally-scoped declaration of
5128  // this name as a function or variable. If so, use that
5129  // (non-visible) declaration, and complain about it.
5130  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5131    = LocallyScopedExternalDecls.find(&II);
5132  if (Pos != LocallyScopedExternalDecls.end()) {
5133    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
5134    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
5135    return Pos->second;
5136  }
5137
5138  // Extension in C99.  Legal in C90, but warn about it.
5139  if (II.getName().startswith("__builtin_"))
5140    Diag(Loc, diag::warn_builtin_unknown) << &II;
5141  else if (getLangOptions().C99)
5142    Diag(Loc, diag::ext_implicit_function_decl) << &II;
5143  else
5144    Diag(Loc, diag::warn_implicit_function_decl) << &II;
5145
5146  // Set a Declarator for the implicit definition: int foo();
5147  const char *Dummy;
5148  DeclSpec DS;
5149  unsigned DiagID;
5150  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
5151  Error = Error; // Silence warning.
5152  assert(!Error && "Error setting up implicit decl!");
5153  Declarator D(DS, Declarator::BlockContext);
5154  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
5155                                             0, 0, false, SourceLocation(),
5156                                             false, 0,0,0, Loc, Loc, D),
5157                SourceLocation());
5158  D.SetIdentifier(&II, Loc);
5159
5160  // Insert this function into translation-unit scope.
5161
5162  DeclContext *PrevDC = CurContext;
5163  CurContext = Context.getTranslationUnitDecl();
5164
5165  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
5166  FD->setImplicit();
5167
5168  CurContext = PrevDC;
5169
5170  AddKnownFunctionAttributes(FD);
5171
5172  return FD;
5173}
5174
5175/// \brief Adds any function attributes that we know a priori based on
5176/// the declaration of this function.
5177///
5178/// These attributes can apply both to implicitly-declared builtins
5179/// (like __builtin___printf_chk) or to library-declared functions
5180/// like NSLog or printf.
5181void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
5182  if (FD->isInvalidDecl())
5183    return;
5184
5185  // If this is a built-in function, map its builtin attributes to
5186  // actual attributes.
5187  if (unsigned BuiltinID = FD->getBuiltinID()) {
5188    // Handle printf-formatting attributes.
5189    unsigned FormatIdx;
5190    bool HasVAListArg;
5191    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
5192      if (!FD->getAttr<FormatAttr>())
5193        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5194                                                "printf", FormatIdx+1,
5195                                               HasVAListArg ? 0 : FormatIdx+2));
5196    }
5197    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
5198                                             HasVAListArg)) {
5199     if (!FD->getAttr<FormatAttr>())
5200       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5201                                              "scanf", FormatIdx+1,
5202                                              HasVAListArg ? 0 : FormatIdx+2));
5203    }
5204
5205    // Mark const if we don't care about errno and that is the only
5206    // thing preventing the function from being const. This allows
5207    // IRgen to use LLVM intrinsics for such functions.
5208    if (!getLangOptions().MathErrno &&
5209        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
5210      if (!FD->getAttr<ConstAttr>())
5211        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5212    }
5213
5214    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
5215      FD->setType(Context.getNoReturnType(FD->getType()));
5216    if (Context.BuiltinInfo.isNoThrow(BuiltinID))
5217      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
5218    if (Context.BuiltinInfo.isConst(BuiltinID))
5219      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
5220  }
5221
5222  IdentifierInfo *Name = FD->getIdentifier();
5223  if (!Name)
5224    return;
5225  if ((!getLangOptions().CPlusPlus &&
5226       FD->getDeclContext()->isTranslationUnit()) ||
5227      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
5228       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
5229       LinkageSpecDecl::lang_c)) {
5230    // Okay: this could be a libc/libm/Objective-C function we know
5231    // about.
5232  } else
5233    return;
5234
5235  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
5236    // FIXME: NSLog and NSLogv should be target specific
5237    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
5238      // FIXME: We known better than our headers.
5239      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
5240    } else
5241      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5242                                             "printf", 1,
5243                                             Name->isStr("NSLogv") ? 0 : 2));
5244  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
5245    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
5246    // target-specific builtins, perhaps?
5247    if (!FD->getAttr<FormatAttr>())
5248      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
5249                                             "printf", 2,
5250                                             Name->isStr("vasprintf") ? 0 : 3));
5251  }
5252}
5253
5254TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
5255                                    TypeSourceInfo *TInfo) {
5256  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
5257  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
5258
5259  if (!TInfo) {
5260    assert(D.isInvalidType() && "no declarator info for valid type");
5261    TInfo = Context.getTrivialTypeSourceInfo(T);
5262  }
5263
5264  // Scope manipulation handled by caller.
5265  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
5266                                           D.getIdentifierLoc(),
5267                                           D.getIdentifier(),
5268                                           TInfo);
5269
5270  if (const TagType *TT = T->getAs<TagType>()) {
5271    TagDecl *TD = TT->getDecl();
5272
5273    // If the TagDecl that the TypedefDecl points to is an anonymous decl
5274    // keep track of the TypedefDecl.
5275    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
5276      TD->setTypedefForAnonDecl(NewTD);
5277  }
5278
5279  if (D.isInvalidType())
5280    NewTD->setInvalidDecl();
5281  return NewTD;
5282}
5283
5284
5285/// \brief Determine whether a tag with a given kind is acceptable
5286/// as a redeclaration of the given tag declaration.
5287///
5288/// \returns true if the new tag kind is acceptable, false otherwise.
5289bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
5290                                        TagTypeKind NewTag,
5291                                        SourceLocation NewTagLoc,
5292                                        const IdentifierInfo &Name) {
5293  // C++ [dcl.type.elab]p3:
5294  //   The class-key or enum keyword present in the
5295  //   elaborated-type-specifier shall agree in kind with the
5296  //   declaration to which the name in the elaborated-type-specifier
5297  //   refers. This rule also applies to the form of
5298  //   elaborated-type-specifier that declares a class-name or
5299  //   friend class since it can be construed as referring to the
5300  //   definition of the class. Thus, in any
5301  //   elaborated-type-specifier, the enum keyword shall be used to
5302  //   refer to an enumeration (7.2), the union class-key shall be
5303  //   used to refer to a union (clause 9), and either the class or
5304  //   struct class-key shall be used to refer to a class (clause 9)
5305  //   declared using the class or struct class-key.
5306  TagTypeKind OldTag = Previous->getTagKind();
5307  if (OldTag == NewTag)
5308    return true;
5309
5310  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
5311      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
5312    // Warn about the struct/class tag mismatch.
5313    bool isTemplate = false;
5314    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
5315      isTemplate = Record->getDescribedClassTemplate();
5316
5317    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
5318      << (NewTag == TTK_Class)
5319      << isTemplate << &Name
5320      << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
5321                              OldTag == TTK_Class? "class" : "struct");
5322    Diag(Previous->getLocation(), diag::note_previous_use);
5323    return true;
5324  }
5325  return false;
5326}
5327
5328/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
5329/// former case, Name will be non-null.  In the later case, Name will be null.
5330/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
5331/// reference/declaration/definition of a tag.
5332Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
5333                     SourceLocation KWLoc, CXXScopeSpec &SS,
5334                     IdentifierInfo *Name, SourceLocation NameLoc,
5335                     AttributeList *Attr, AccessSpecifier AS,
5336                     MultiTemplateParamsArg TemplateParameterLists,
5337                     bool &OwnedDecl, bool &IsDependent) {
5338  // If this is not a definition, it must have a name.
5339  assert((Name != 0 || TUK == TUK_Definition) &&
5340         "Nameless record must be a definition!");
5341
5342  OwnedDecl = false;
5343  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
5344
5345  // FIXME: Check explicit specializations more carefully.
5346  bool isExplicitSpecialization = false;
5347  unsigned NumMatchedTemplateParamLists = TemplateParameterLists.size();
5348  bool Invalid = false;
5349  if (TUK != TUK_Reference) {
5350    if (TemplateParameterList *TemplateParams
5351          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
5352                        (TemplateParameterList**)TemplateParameterLists.get(),
5353                                              TemplateParameterLists.size(),
5354                                                    TUK == TUK_Friend,
5355                                                    isExplicitSpecialization,
5356                                                    Invalid)) {
5357      // All but one template parameter lists have been matching.
5358      --NumMatchedTemplateParamLists;
5359
5360      if (TemplateParams->size() > 0) {
5361        // This is a declaration or definition of a class template (which may
5362        // be a member of another template).
5363        if (Invalid)
5364          return 0;
5365
5366        OwnedDecl = false;
5367        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
5368                                               SS, Name, NameLoc, Attr,
5369                                               TemplateParams,
5370                                               AS);
5371        TemplateParameterLists.release();
5372        return Result.get();
5373      } else {
5374        // The "template<>" header is extraneous.
5375        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
5376          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
5377        isExplicitSpecialization = true;
5378      }
5379    }
5380  }
5381
5382  DeclContext *SearchDC = CurContext;
5383  DeclContext *DC = CurContext;
5384  bool isStdBadAlloc = false;
5385
5386  RedeclarationKind Redecl = ForRedeclaration;
5387  if (TUK == TUK_Friend || TUK == TUK_Reference)
5388    Redecl = NotForRedeclaration;
5389
5390  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
5391
5392  if (Name && SS.isNotEmpty()) {
5393    // We have a nested-name tag ('struct foo::bar').
5394
5395    // Check for invalid 'foo::'.
5396    if (SS.isInvalid()) {
5397      Name = 0;
5398      goto CreateNewDecl;
5399    }
5400
5401    // If this is a friend or a reference to a class in a dependent
5402    // context, don't try to make a decl for it.
5403    if (TUK == TUK_Friend || TUK == TUK_Reference) {
5404      DC = computeDeclContext(SS, false);
5405      if (!DC) {
5406        IsDependent = true;
5407        return 0;
5408      }
5409    } else {
5410      DC = computeDeclContext(SS, true);
5411      if (!DC) {
5412        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
5413          << SS.getRange();
5414        return 0;
5415      }
5416    }
5417
5418    if (RequireCompleteDeclContext(SS, DC))
5419      return 0;
5420
5421    SearchDC = DC;
5422    // Look-up name inside 'foo::'.
5423    LookupQualifiedName(Previous, DC);
5424
5425    if (Previous.isAmbiguous())
5426      return 0;
5427
5428    if (Previous.empty()) {
5429      // Name lookup did not find anything. However, if the
5430      // nested-name-specifier refers to the current instantiation,
5431      // and that current instantiation has any dependent base
5432      // classes, we might find something at instantiation time: treat
5433      // this as a dependent elaborated-type-specifier.
5434      if (Previous.wasNotFoundInCurrentInstantiation()) {
5435        IsDependent = true;
5436        return 0;
5437      }
5438
5439      // A tag 'foo::bar' must already exist.
5440      Diag(NameLoc, diag::err_not_tag_in_scope)
5441        << Kind << Name << DC << SS.getRange();
5442      Name = 0;
5443      Invalid = true;
5444      goto CreateNewDecl;
5445    }
5446  } else if (Name) {
5447    // If this is a named struct, check to see if there was a previous forward
5448    // declaration or definition.
5449    // FIXME: We're looking into outer scopes here, even when we
5450    // shouldn't be. Doing so can result in ambiguities that we
5451    // shouldn't be diagnosing.
5452    LookupName(Previous, S);
5453
5454    // Note:  there used to be some attempt at recovery here.
5455    if (Previous.isAmbiguous())
5456      return 0;
5457
5458    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
5459      // FIXME: This makes sure that we ignore the contexts associated
5460      // with C structs, unions, and enums when looking for a matching
5461      // tag declaration or definition. See the similar lookup tweak
5462      // in Sema::LookupName; is there a better way to deal with this?
5463      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
5464        SearchDC = SearchDC->getParent();
5465    }
5466  } else if (S->isFunctionPrototypeScope()) {
5467    // If this is an enum declaration in function prototype scope, set its
5468    // initial context to the translation unit.
5469    SearchDC = Context.getTranslationUnitDecl();
5470  }
5471
5472  if (Previous.isSingleResult() &&
5473      Previous.getFoundDecl()->isTemplateParameter()) {
5474    // Maybe we will complain about the shadowed template parameter.
5475    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
5476    // Just pretend that we didn't see the previous declaration.
5477    Previous.clear();
5478  }
5479
5480  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
5481      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
5482    // This is a declaration of or a reference to "std::bad_alloc".
5483    isStdBadAlloc = true;
5484
5485    if (Previous.empty() && StdBadAlloc) {
5486      // std::bad_alloc has been implicitly declared (but made invisible to
5487      // name lookup). Fill in this implicit declaration as the previous
5488      // declaration, so that the declarations get chained appropriately.
5489      Previous.addDecl(getStdBadAlloc());
5490    }
5491  }
5492
5493  // If we didn't find a previous declaration, and this is a reference
5494  // (or friend reference), move to the correct scope.  In C++, we
5495  // also need to do a redeclaration lookup there, just in case
5496  // there's a shadow friend decl.
5497  if (Name && Previous.empty() &&
5498      (TUK == TUK_Reference || TUK == TUK_Friend)) {
5499    if (Invalid) goto CreateNewDecl;
5500    assert(SS.isEmpty());
5501
5502    if (TUK == TUK_Reference) {
5503      // C++ [basic.scope.pdecl]p5:
5504      //   -- for an elaborated-type-specifier of the form
5505      //
5506      //          class-key identifier
5507      //
5508      //      if the elaborated-type-specifier is used in the
5509      //      decl-specifier-seq or parameter-declaration-clause of a
5510      //      function defined in namespace scope, the identifier is
5511      //      declared as a class-name in the namespace that contains
5512      //      the declaration; otherwise, except as a friend
5513      //      declaration, the identifier is declared in the smallest
5514      //      non-class, non-function-prototype scope that contains the
5515      //      declaration.
5516      //
5517      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
5518      // C structs and unions.
5519      //
5520      // It is an error in C++ to declare (rather than define) an enum
5521      // type, including via an elaborated type specifier.  We'll
5522      // diagnose that later; for now, declare the enum in the same
5523      // scope as we would have picked for any other tag type.
5524      //
5525      // GNU C also supports this behavior as part of its incomplete
5526      // enum types extension, while GNU C++ does not.
5527      //
5528      // Find the context where we'll be declaring the tag.
5529      // FIXME: We would like to maintain the current DeclContext as the
5530      // lexical context,
5531      while (SearchDC->isRecord())
5532        SearchDC = SearchDC->getParent();
5533
5534      // Find the scope where we'll be declaring the tag.
5535      while (S->isClassScope() ||
5536             (getLangOptions().CPlusPlus &&
5537              S->isFunctionPrototypeScope()) ||
5538             ((S->getFlags() & Scope::DeclScope) == 0) ||
5539             (S->getEntity() &&
5540              ((DeclContext *)S->getEntity())->isTransparentContext()))
5541        S = S->getParent();
5542    } else {
5543      assert(TUK == TUK_Friend);
5544      // C++ [namespace.memdef]p3:
5545      //   If a friend declaration in a non-local class first declares a
5546      //   class or function, the friend class or function is a member of
5547      //   the innermost enclosing namespace.
5548      SearchDC = SearchDC->getEnclosingNamespaceContext();
5549    }
5550
5551    // In C++, we need to do a redeclaration lookup to properly
5552    // diagnose some problems.
5553    if (getLangOptions().CPlusPlus) {
5554      Previous.setRedeclarationKind(ForRedeclaration);
5555      LookupQualifiedName(Previous, SearchDC);
5556    }
5557  }
5558
5559  if (!Previous.empty()) {
5560    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
5561
5562    // It's okay to have a tag decl in the same scope as a typedef
5563    // which hides a tag decl in the same scope.  Finding this
5564    // insanity with a redeclaration lookup can only actually happen
5565    // in C++.
5566    //
5567    // This is also okay for elaborated-type-specifiers, which is
5568    // technically forbidden by the current standard but which is
5569    // okay according to the likely resolution of an open issue;
5570    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
5571    if (getLangOptions().CPlusPlus) {
5572      if (TypedefDecl *TD = dyn_cast<TypedefDecl>(PrevDecl)) {
5573        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
5574          TagDecl *Tag = TT->getDecl();
5575          if (Tag->getDeclName() == Name &&
5576              Tag->getDeclContext()->getRedeclContext()
5577                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
5578            PrevDecl = Tag;
5579            Previous.clear();
5580            Previous.addDecl(Tag);
5581            Previous.resolveKind();
5582          }
5583        }
5584      }
5585    }
5586
5587    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
5588      // If this is a use of a previous tag, or if the tag is already declared
5589      // in the same scope (so that the definition/declaration completes or
5590      // rementions the tag), reuse the decl.
5591      if (TUK == TUK_Reference || TUK == TUK_Friend ||
5592          isDeclInScope(PrevDecl, SearchDC, S)) {
5593        // Make sure that this wasn't declared as an enum and now used as a
5594        // struct or something similar.
5595        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
5596          bool SafeToContinue
5597            = (PrevTagDecl->getTagKind() != TTK_Enum &&
5598               Kind != TTK_Enum);
5599          if (SafeToContinue)
5600            Diag(KWLoc, diag::err_use_with_wrong_tag)
5601              << Name
5602              << FixItHint::CreateReplacement(SourceRange(KWLoc),
5603                                              PrevTagDecl->getKindName());
5604          else
5605            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
5606          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
5607
5608          if (SafeToContinue)
5609            Kind = PrevTagDecl->getTagKind();
5610          else {
5611            // Recover by making this an anonymous redefinition.
5612            Name = 0;
5613            Previous.clear();
5614            Invalid = true;
5615          }
5616        }
5617
5618        if (!Invalid) {
5619          // If this is a use, just return the declaration we found.
5620
5621          // FIXME: In the future, return a variant or some other clue
5622          // for the consumer of this Decl to know it doesn't own it.
5623          // For our current ASTs this shouldn't be a problem, but will
5624          // need to be changed with DeclGroups.
5625          if ((TUK == TUK_Reference && !PrevTagDecl->getFriendObjectKind()) ||
5626              TUK == TUK_Friend)
5627            return PrevTagDecl;
5628
5629          // Diagnose attempts to redefine a tag.
5630          if (TUK == TUK_Definition) {
5631            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
5632              // If we're defining a specialization and the previous definition
5633              // is from an implicit instantiation, don't emit an error
5634              // here; we'll catch this in the general case below.
5635              if (!isExplicitSpecialization ||
5636                  !isa<CXXRecordDecl>(Def) ||
5637                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
5638                                               == TSK_ExplicitSpecialization) {
5639                Diag(NameLoc, diag::err_redefinition) << Name;
5640                Diag(Def->getLocation(), diag::note_previous_definition);
5641                // If this is a redefinition, recover by making this
5642                // struct be anonymous, which will make any later
5643                // references get the previous definition.
5644                Name = 0;
5645                Previous.clear();
5646                Invalid = true;
5647              }
5648            } else {
5649              // If the type is currently being defined, complain
5650              // about a nested redefinition.
5651              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
5652              if (Tag->isBeingDefined()) {
5653                Diag(NameLoc, diag::err_nested_redefinition) << Name;
5654                Diag(PrevTagDecl->getLocation(),
5655                     diag::note_previous_definition);
5656                Name = 0;
5657                Previous.clear();
5658                Invalid = true;
5659              }
5660            }
5661
5662            // Okay, this is definition of a previously declared or referenced
5663            // tag PrevDecl. We're going to create a new Decl for it.
5664          }
5665        }
5666        // If we get here we have (another) forward declaration or we
5667        // have a definition.  Just create a new decl.
5668
5669      } else {
5670        // If we get here, this is a definition of a new tag type in a nested
5671        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
5672        // new decl/type.  We set PrevDecl to NULL so that the entities
5673        // have distinct types.
5674        Previous.clear();
5675      }
5676      // If we get here, we're going to create a new Decl. If PrevDecl
5677      // is non-NULL, it's a definition of the tag declared by
5678      // PrevDecl. If it's NULL, we have a new definition.
5679
5680
5681    // Otherwise, PrevDecl is not a tag, but was found with tag
5682    // lookup.  This is only actually possible in C++, where a few
5683    // things like templates still live in the tag namespace.
5684    } else {
5685      assert(getLangOptions().CPlusPlus);
5686
5687      // Use a better diagnostic if an elaborated-type-specifier
5688      // found the wrong kind of type on the first
5689      // (non-redeclaration) lookup.
5690      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
5691          !Previous.isForRedeclaration()) {
5692        unsigned Kind = 0;
5693        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5694        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5695        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
5696        Diag(PrevDecl->getLocation(), diag::note_declared_at);
5697        Invalid = true;
5698
5699      // Otherwise, only diagnose if the declaration is in scope.
5700      } else if (!isDeclInScope(PrevDecl, SearchDC, S)) {
5701        // do nothing
5702
5703      // Diagnose implicit declarations introduced by elaborated types.
5704      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
5705        unsigned Kind = 0;
5706        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
5707        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 2;
5708        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
5709        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5710        Invalid = true;
5711
5712      // Otherwise it's a declaration.  Call out a particularly common
5713      // case here.
5714      } else if (isa<TypedefDecl>(PrevDecl)) {
5715        Diag(NameLoc, diag::err_tag_definition_of_typedef)
5716          << Name
5717          << cast<TypedefDecl>(PrevDecl)->getUnderlyingType();
5718        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
5719        Invalid = true;
5720
5721      // Otherwise, diagnose.
5722      } else {
5723        // The tag name clashes with something else in the target scope,
5724        // issue an error and recover by making this tag be anonymous.
5725        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
5726        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5727        Name = 0;
5728        Invalid = true;
5729      }
5730
5731      // The existing declaration isn't relevant to us; we're in a
5732      // new scope, so clear out the previous declaration.
5733      Previous.clear();
5734    }
5735  }
5736
5737CreateNewDecl:
5738
5739  TagDecl *PrevDecl = 0;
5740  if (Previous.isSingleResult())
5741    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
5742
5743  // If there is an identifier, use the location of the identifier as the
5744  // location of the decl, otherwise use the location of the struct/union
5745  // keyword.
5746  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
5747
5748  // Otherwise, create a new declaration. If there is a previous
5749  // declaration of the same entity, the two will be linked via
5750  // PrevDecl.
5751  TagDecl *New;
5752
5753  if (Kind == TTK_Enum) {
5754    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5755    // enum X { A, B, C } D;    D should chain to X.
5756    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
5757                           cast_or_null<EnumDecl>(PrevDecl));
5758    // If this is an undefined enum, warn.
5759    if (TUK != TUK_Definition && !Invalid) {
5760      TagDecl *Def;
5761      if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
5762        Diag(Loc, diag::ext_forward_ref_enum_def)
5763          << New;
5764        Diag(Def->getLocation(), diag::note_previous_definition);
5765      } else {
5766        unsigned DiagID = diag::ext_forward_ref_enum;
5767        if (getLangOptions().Microsoft)
5768          DiagID = diag::ext_ms_forward_ref_enum;
5769        else if (getLangOptions().CPlusPlus)
5770          DiagID = diag::err_forward_ref_enum;
5771        Diag(Loc, DiagID);
5772      }
5773    }
5774  } else {
5775    // struct/union/class
5776
5777    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
5778    // struct X { int A; } D;    D should chain to X.
5779    if (getLangOptions().CPlusPlus) {
5780      // FIXME: Look for a way to use RecordDecl for simple structs.
5781      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5782                                  cast_or_null<CXXRecordDecl>(PrevDecl));
5783
5784      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
5785        StdBadAlloc = cast<CXXRecordDecl>(New);
5786    } else
5787      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
5788                               cast_or_null<RecordDecl>(PrevDecl));
5789  }
5790
5791  // Maybe add qualifier info.
5792  if (SS.isNotEmpty()) {
5793    if (SS.isSet()) {
5794      NestedNameSpecifier *NNS
5795        = static_cast<NestedNameSpecifier*>(SS.getScopeRep());
5796      New->setQualifierInfo(NNS, SS.getRange());
5797      if (NumMatchedTemplateParamLists > 0) {
5798        New->setTemplateParameterListsInfo(Context,
5799                                           NumMatchedTemplateParamLists,
5800                    (TemplateParameterList**) TemplateParameterLists.release());
5801      }
5802    }
5803    else
5804      Invalid = true;
5805  }
5806
5807  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
5808    // Add alignment attributes if necessary; these attributes are checked when
5809    // the ASTContext lays out the structure.
5810    //
5811    // It is important for implementing the correct semantics that this
5812    // happen here (in act on tag decl). The #pragma pack stack is
5813    // maintained as a result of parser callbacks which can occur at
5814    // many points during the parsing of a struct declaration (because
5815    // the #pragma tokens are effectively skipped over during the
5816    // parsing of the struct).
5817    AddAlignmentAttributesForRecord(RD);
5818  }
5819
5820  // If this is a specialization of a member class (of a class template),
5821  // check the specialization.
5822  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
5823    Invalid = true;
5824
5825  if (Invalid)
5826    New->setInvalidDecl();
5827
5828  if (Attr)
5829    ProcessDeclAttributeList(S, New, Attr);
5830
5831  // If we're declaring or defining a tag in function prototype scope
5832  // in C, note that this type can only be used within the function.
5833  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
5834    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
5835
5836  // Set the lexical context. If the tag has a C++ scope specifier, the
5837  // lexical context will be different from the semantic context.
5838  New->setLexicalDeclContext(CurContext);
5839
5840  // Mark this as a friend decl if applicable.
5841  if (TUK == TUK_Friend)
5842    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
5843
5844  // Set the access specifier.
5845  if (!Invalid && SearchDC->isRecord())
5846    SetMemberAccessSpecifier(New, PrevDecl, AS);
5847
5848  if (TUK == TUK_Definition)
5849    New->startDefinition();
5850
5851  // If this has an identifier, add it to the scope stack.
5852  if (TUK == TUK_Friend) {
5853    // We might be replacing an existing declaration in the lookup tables;
5854    // if so, borrow its access specifier.
5855    if (PrevDecl)
5856      New->setAccess(PrevDecl->getAccess());
5857
5858    DeclContext *DC = New->getDeclContext()->getRedeclContext();
5859    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
5860    if (Name) // can be null along some error paths
5861      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
5862        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
5863  } else if (Name) {
5864    S = getNonFieldDeclScope(S);
5865    PushOnScopeChains(New, S);
5866  } else {
5867    CurContext->addDecl(New);
5868  }
5869
5870  // If this is the C FILE type, notify the AST context.
5871  if (IdentifierInfo *II = New->getIdentifier())
5872    if (!New->isInvalidDecl() &&
5873        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
5874        II->isStr("FILE"))
5875      Context.setFILEDecl(New);
5876
5877  OwnedDecl = true;
5878  return New;
5879}
5880
5881void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
5882  AdjustDeclIfTemplate(TagD);
5883  TagDecl *Tag = cast<TagDecl>(TagD);
5884
5885  // Enter the tag context.
5886  PushDeclContext(S, Tag);
5887}
5888
5889void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
5890                                           SourceLocation LBraceLoc) {
5891  AdjustDeclIfTemplate(TagD);
5892  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
5893
5894  FieldCollector->StartClass();
5895
5896  if (!Record->getIdentifier())
5897    return;
5898
5899  // C++ [class]p2:
5900  //   [...] The class-name is also inserted into the scope of the
5901  //   class itself; this is known as the injected-class-name. For
5902  //   purposes of access checking, the injected-class-name is treated
5903  //   as if it were a public member name.
5904  CXXRecordDecl *InjectedClassName
5905    = CXXRecordDecl::Create(Context, Record->getTagKind(),
5906                            CurContext, Record->getLocation(),
5907                            Record->getIdentifier(),
5908                            Record->getTagKeywordLoc(),
5909                            Record);
5910  InjectedClassName->setImplicit();
5911  InjectedClassName->setAccess(AS_public);
5912  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
5913      InjectedClassName->setDescribedClassTemplate(Template);
5914  PushOnScopeChains(InjectedClassName, S);
5915  assert(InjectedClassName->isInjectedClassName() &&
5916         "Broken injected-class-name");
5917}
5918
5919void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
5920                                    SourceLocation RBraceLoc) {
5921  AdjustDeclIfTemplate(TagD);
5922  TagDecl *Tag = cast<TagDecl>(TagD);
5923  Tag->setRBraceLoc(RBraceLoc);
5924
5925  if (isa<CXXRecordDecl>(Tag))
5926    FieldCollector->FinishClass();
5927
5928  // Exit this scope of this tag's definition.
5929  PopDeclContext();
5930
5931  // Notify the consumer that we've defined a tag.
5932  Consumer.HandleTagDeclDefinition(Tag);
5933}
5934
5935void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
5936  AdjustDeclIfTemplate(TagD);
5937  TagDecl *Tag = cast<TagDecl>(TagD);
5938  Tag->setInvalidDecl();
5939
5940  // We're undoing ActOnTagStartDefinition here, not
5941  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
5942  // the FieldCollector.
5943
5944  PopDeclContext();
5945}
5946
5947// Note that FieldName may be null for anonymous bitfields.
5948bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
5949                          QualType FieldTy, const Expr *BitWidth,
5950                          bool *ZeroWidth) {
5951  // Default to true; that shouldn't confuse checks for emptiness
5952  if (ZeroWidth)
5953    *ZeroWidth = true;
5954
5955  // C99 6.7.2.1p4 - verify the field type.
5956  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
5957  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
5958    // Handle incomplete types with specific error.
5959    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5960      return true;
5961    if (FieldName)
5962      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5963        << FieldName << FieldTy << BitWidth->getSourceRange();
5964    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5965      << FieldTy << BitWidth->getSourceRange();
5966  }
5967
5968  // If the bit-width is type- or value-dependent, don't try to check
5969  // it now.
5970  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5971    return false;
5972
5973  llvm::APSInt Value;
5974  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5975    return true;
5976
5977  if (Value != 0 && ZeroWidth)
5978    *ZeroWidth = false;
5979
5980  // Zero-width bitfield is ok for anonymous field.
5981  if (Value == 0 && FieldName)
5982    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5983
5984  if (Value.isSigned() && Value.isNegative()) {
5985    if (FieldName)
5986      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5987               << FieldName << Value.toString(10);
5988    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5989      << Value.toString(10);
5990  }
5991
5992  if (!FieldTy->isDependentType()) {
5993    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5994    if (Value.getZExtValue() > TypeSize) {
5995      if (!getLangOptions().CPlusPlus) {
5996        if (FieldName)
5997          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5998            << FieldName << (unsigned)Value.getZExtValue()
5999            << (unsigned)TypeSize;
6000
6001        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
6002          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6003      }
6004
6005      if (FieldName)
6006        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
6007          << FieldName << (unsigned)Value.getZExtValue()
6008          << (unsigned)TypeSize;
6009      else
6010        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
6011          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
6012    }
6013  }
6014
6015  return false;
6016}
6017
6018/// ActOnField - Each field of a struct/union/class is passed into this in order
6019/// to create a FieldDecl object for it.
6020Decl *Sema::ActOnField(Scope *S, Decl *TagD,
6021                                 SourceLocation DeclStart,
6022                                 Declarator &D, ExprTy *BitfieldWidth) {
6023  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
6024                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
6025                               AS_public);
6026  return Res;
6027}
6028
6029/// HandleField - Analyze a field of a C struct or a C++ data member.
6030///
6031FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
6032                             SourceLocation DeclStart,
6033                             Declarator &D, Expr *BitWidth,
6034                             AccessSpecifier AS) {
6035  IdentifierInfo *II = D.getIdentifier();
6036  SourceLocation Loc = DeclStart;
6037  if (II) Loc = D.getIdentifierLoc();
6038
6039  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6040  QualType T = TInfo->getType();
6041  if (getLangOptions().CPlusPlus)
6042    CheckExtraCXXDefaultArguments(D);
6043
6044  DiagnoseFunctionSpecifiers(D);
6045
6046  if (D.getDeclSpec().isThreadSpecified())
6047    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6048
6049  // Check to see if this name was declared as a member previously
6050  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
6051  LookupName(Previous, S);
6052  assert((Previous.empty() || Previous.isOverloadedResult() ||
6053          Previous.isSingleResult())
6054    && "Lookup of member name should be either overloaded, single or null");
6055
6056  // If the name is overloaded then get any declaration else get the single result
6057  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
6058    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
6059
6060  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6061    // Maybe we will complain about the shadowed template parameter.
6062    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6063    // Just pretend that we didn't see the previous declaration.
6064    PrevDecl = 0;
6065  }
6066
6067  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
6068    PrevDecl = 0;
6069
6070  bool Mutable
6071    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
6072  SourceLocation TSSL = D.getSourceRange().getBegin();
6073  FieldDecl *NewFD
6074    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
6075                     AS, PrevDecl, &D);
6076
6077  if (NewFD->isInvalidDecl())
6078    Record->setInvalidDecl();
6079
6080  if (NewFD->isInvalidDecl() && PrevDecl) {
6081    // Don't introduce NewFD into scope; there's already something
6082    // with the same name in the same scope.
6083  } else if (II) {
6084    PushOnScopeChains(NewFD, S);
6085  } else
6086    Record->addDecl(NewFD);
6087
6088  return NewFD;
6089}
6090
6091/// \brief Build a new FieldDecl and check its well-formedness.
6092///
6093/// This routine builds a new FieldDecl given the fields name, type,
6094/// record, etc. \p PrevDecl should refer to any previous declaration
6095/// with the same name and in the same scope as the field to be
6096/// created.
6097///
6098/// \returns a new FieldDecl.
6099///
6100/// \todo The Declarator argument is a hack. It will be removed once
6101FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
6102                                TypeSourceInfo *TInfo,
6103                                RecordDecl *Record, SourceLocation Loc,
6104                                bool Mutable, Expr *BitWidth,
6105                                SourceLocation TSSL,
6106                                AccessSpecifier AS, NamedDecl *PrevDecl,
6107                                Declarator *D) {
6108  IdentifierInfo *II = Name.getAsIdentifierInfo();
6109  bool InvalidDecl = false;
6110  if (D) InvalidDecl = D->isInvalidType();
6111
6112  // If we receive a broken type, recover by assuming 'int' and
6113  // marking this declaration as invalid.
6114  if (T.isNull()) {
6115    InvalidDecl = true;
6116    T = Context.IntTy;
6117  }
6118
6119  QualType EltTy = Context.getBaseElementType(T);
6120  if (!EltTy->isDependentType() &&
6121      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
6122    // Fields of incomplete type force their record to be invalid.
6123    Record->setInvalidDecl();
6124    InvalidDecl = true;
6125  }
6126
6127  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6128  // than a variably modified type.
6129  if (!InvalidDecl && T->isVariablyModifiedType()) {
6130    bool SizeIsNegative;
6131    llvm::APSInt Oversized;
6132    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
6133                                                           SizeIsNegative,
6134                                                           Oversized);
6135    if (!FixedTy.isNull()) {
6136      Diag(Loc, diag::warn_illegal_constant_array_size);
6137      T = FixedTy;
6138    } else {
6139      if (SizeIsNegative)
6140        Diag(Loc, diag::err_typecheck_negative_array_size);
6141      else if (Oversized.getBoolValue())
6142        Diag(Loc, diag::err_array_too_large)
6143          << Oversized.toString(10);
6144      else
6145        Diag(Loc, diag::err_typecheck_field_variable_size);
6146      InvalidDecl = true;
6147    }
6148  }
6149
6150  // Fields can not have abstract class types
6151  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
6152                                             diag::err_abstract_type_in_decl,
6153                                             AbstractFieldType))
6154    InvalidDecl = true;
6155
6156  bool ZeroWidth = false;
6157  // If this is declared as a bit-field, check the bit-field.
6158  if (!InvalidDecl && BitWidth &&
6159      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
6160    InvalidDecl = true;
6161    BitWidth = 0;
6162    ZeroWidth = false;
6163  }
6164
6165  // Check that 'mutable' is consistent with the type of the declaration.
6166  if (!InvalidDecl && Mutable) {
6167    unsigned DiagID = 0;
6168    if (T->isReferenceType())
6169      DiagID = diag::err_mutable_reference;
6170    else if (T.isConstQualified())
6171      DiagID = diag::err_mutable_const;
6172
6173    if (DiagID) {
6174      SourceLocation ErrLoc = Loc;
6175      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
6176        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
6177      Diag(ErrLoc, DiagID);
6178      Mutable = false;
6179      InvalidDecl = true;
6180    }
6181  }
6182
6183  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
6184                                       BitWidth, Mutable);
6185  if (InvalidDecl)
6186    NewFD->setInvalidDecl();
6187
6188  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
6189    Diag(Loc, diag::err_duplicate_member) << II;
6190    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6191    NewFD->setInvalidDecl();
6192  }
6193
6194  if (!InvalidDecl && getLangOptions().CPlusPlus) {
6195    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
6196
6197    if (!T->isPODType())
6198      CXXRecord->setPOD(false);
6199    if (!ZeroWidth)
6200      CXXRecord->setEmpty(false);
6201    if (T->isReferenceType())
6202      CXXRecord->setHasTrivialConstructor(false);
6203
6204    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6205      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6206      if (RDecl->getDefinition()) {
6207        if (!RDecl->hasTrivialConstructor())
6208          CXXRecord->setHasTrivialConstructor(false);
6209        if (!RDecl->hasTrivialCopyConstructor())
6210          CXXRecord->setHasTrivialCopyConstructor(false);
6211        if (!RDecl->hasTrivialCopyAssignment())
6212          CXXRecord->setHasTrivialCopyAssignment(false);
6213        if (!RDecl->hasTrivialDestructor())
6214          CXXRecord->setHasTrivialDestructor(false);
6215
6216        // C++ 9.5p1: An object of a class with a non-trivial
6217        // constructor, a non-trivial copy constructor, a non-trivial
6218        // destructor, or a non-trivial copy assignment operator
6219        // cannot be a member of a union, nor can an array of such
6220        // objects.
6221        // TODO: C++0x alters this restriction significantly.
6222        if (Record->isUnion() && CheckNontrivialField(NewFD))
6223          NewFD->setInvalidDecl();
6224      }
6225    }
6226  }
6227
6228  // FIXME: We need to pass in the attributes given an AST
6229  // representation, not a parser representation.
6230  if (D)
6231    // FIXME: What to pass instead of TUScope?
6232    ProcessDeclAttributes(TUScope, NewFD, *D);
6233
6234  if (T.isObjCGCWeak())
6235    Diag(Loc, diag::warn_attribute_weak_on_field);
6236
6237  NewFD->setAccess(AS);
6238
6239  // C++ [dcl.init.aggr]p1:
6240  //   An aggregate is an array or a class (clause 9) with [...] no
6241  //   private or protected non-static data members (clause 11).
6242  // A POD must be an aggregate.
6243  if (getLangOptions().CPlusPlus &&
6244      (AS == AS_private || AS == AS_protected)) {
6245    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
6246    CXXRecord->setAggregate(false);
6247    CXXRecord->setPOD(false);
6248  }
6249
6250  return NewFD;
6251}
6252
6253bool Sema::CheckNontrivialField(FieldDecl *FD) {
6254  assert(FD);
6255  assert(getLangOptions().CPlusPlus && "valid check only for C++");
6256
6257  if (FD->isInvalidDecl())
6258    return true;
6259
6260  QualType EltTy = Context.getBaseElementType(FD->getType());
6261  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
6262    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
6263    if (RDecl->getDefinition()) {
6264      // We check for copy constructors before constructors
6265      // because otherwise we'll never get complaints about
6266      // copy constructors.
6267
6268      CXXSpecialMember member = CXXInvalid;
6269      if (!RDecl->hasTrivialCopyConstructor())
6270        member = CXXCopyConstructor;
6271      else if (!RDecl->hasTrivialConstructor())
6272        member = CXXConstructor;
6273      else if (!RDecl->hasTrivialCopyAssignment())
6274        member = CXXCopyAssignment;
6275      else if (!RDecl->hasTrivialDestructor())
6276        member = CXXDestructor;
6277
6278      if (member != CXXInvalid) {
6279        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
6280              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
6281        DiagnoseNontrivial(RT, member);
6282        return true;
6283      }
6284    }
6285  }
6286
6287  return false;
6288}
6289
6290/// DiagnoseNontrivial - Given that a class has a non-trivial
6291/// special member, figure out why.
6292void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
6293  QualType QT(T, 0U);
6294  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
6295
6296  // Check whether the member was user-declared.
6297  switch (member) {
6298  case CXXInvalid:
6299    break;
6300
6301  case CXXConstructor:
6302    if (RD->hasUserDeclaredConstructor()) {
6303      typedef CXXRecordDecl::ctor_iterator ctor_iter;
6304      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
6305        const FunctionDecl *body = 0;
6306        ci->hasBody(body);
6307        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
6308          SourceLocation CtorLoc = ci->getLocation();
6309          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6310          return;
6311        }
6312      }
6313
6314      assert(0 && "found no user-declared constructors");
6315      return;
6316    }
6317    break;
6318
6319  case CXXCopyConstructor:
6320    if (RD->hasUserDeclaredCopyConstructor()) {
6321      SourceLocation CtorLoc =
6322        RD->getCopyConstructor(Context, 0)->getLocation();
6323      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6324      return;
6325    }
6326    break;
6327
6328  case CXXCopyAssignment:
6329    if (RD->hasUserDeclaredCopyAssignment()) {
6330      // FIXME: this should use the location of the copy
6331      // assignment, not the type.
6332      SourceLocation TyLoc = RD->getSourceRange().getBegin();
6333      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
6334      return;
6335    }
6336    break;
6337
6338  case CXXDestructor:
6339    if (RD->hasUserDeclaredDestructor()) {
6340      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
6341      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
6342      return;
6343    }
6344    break;
6345  }
6346
6347  typedef CXXRecordDecl::base_class_iterator base_iter;
6348
6349  // Virtual bases and members inhibit trivial copying/construction,
6350  // but not trivial destruction.
6351  if (member != CXXDestructor) {
6352    // Check for virtual bases.  vbases includes indirect virtual bases,
6353    // so we just iterate through the direct bases.
6354    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
6355      if (bi->isVirtual()) {
6356        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6357        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
6358        return;
6359      }
6360
6361    // Check for virtual methods.
6362    typedef CXXRecordDecl::method_iterator meth_iter;
6363    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
6364         ++mi) {
6365      if (mi->isVirtual()) {
6366        SourceLocation MLoc = mi->getSourceRange().getBegin();
6367        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
6368        return;
6369      }
6370    }
6371  }
6372
6373  bool (CXXRecordDecl::*hasTrivial)() const;
6374  switch (member) {
6375  case CXXConstructor:
6376    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
6377  case CXXCopyConstructor:
6378    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
6379  case CXXCopyAssignment:
6380    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
6381  case CXXDestructor:
6382    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
6383  default:
6384    assert(0 && "unexpected special member"); return;
6385  }
6386
6387  // Check for nontrivial bases (and recurse).
6388  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
6389    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
6390    assert(BaseRT && "Don't know how to handle dependent bases");
6391    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
6392    if (!(BaseRecTy->*hasTrivial)()) {
6393      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
6394      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
6395      DiagnoseNontrivial(BaseRT, member);
6396      return;
6397    }
6398  }
6399
6400  // Check for nontrivial members (and recurse).
6401  typedef RecordDecl::field_iterator field_iter;
6402  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
6403       ++fi) {
6404    QualType EltTy = Context.getBaseElementType((*fi)->getType());
6405    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
6406      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
6407
6408      if (!(EltRD->*hasTrivial)()) {
6409        SourceLocation FLoc = (*fi)->getLocation();
6410        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
6411        DiagnoseNontrivial(EltRT, member);
6412        return;
6413      }
6414    }
6415  }
6416
6417  assert(0 && "found no explanation for non-trivial member");
6418}
6419
6420/// TranslateIvarVisibility - Translate visibility from a token ID to an
6421///  AST enum value.
6422static ObjCIvarDecl::AccessControl
6423TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
6424  switch (ivarVisibility) {
6425  default: assert(0 && "Unknown visitibility kind");
6426  case tok::objc_private: return ObjCIvarDecl::Private;
6427  case tok::objc_public: return ObjCIvarDecl::Public;
6428  case tok::objc_protected: return ObjCIvarDecl::Protected;
6429  case tok::objc_package: return ObjCIvarDecl::Package;
6430  }
6431}
6432
6433/// ActOnIvar - Each ivar field of an objective-c class is passed into this
6434/// in order to create an IvarDecl object for it.
6435Decl *Sema::ActOnIvar(Scope *S,
6436                                SourceLocation DeclStart,
6437                                Decl *IntfDecl,
6438                                Declarator &D, ExprTy *BitfieldWidth,
6439                                tok::ObjCKeywordKind Visibility) {
6440
6441  IdentifierInfo *II = D.getIdentifier();
6442  Expr *BitWidth = (Expr*)BitfieldWidth;
6443  SourceLocation Loc = DeclStart;
6444  if (II) Loc = D.getIdentifierLoc();
6445
6446  // FIXME: Unnamed fields can be handled in various different ways, for
6447  // example, unnamed unions inject all members into the struct namespace!
6448
6449  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6450  QualType T = TInfo->getType();
6451
6452  if (BitWidth) {
6453    // 6.7.2.1p3, 6.7.2.1p4
6454    if (VerifyBitField(Loc, II, T, BitWidth)) {
6455      D.setInvalidType();
6456      BitWidth = 0;
6457    }
6458  } else {
6459    // Not a bitfield.
6460
6461    // validate II.
6462
6463  }
6464  if (T->isReferenceType()) {
6465    Diag(Loc, diag::err_ivar_reference_type);
6466    D.setInvalidType();
6467  }
6468  // C99 6.7.2.1p8: A member of a structure or union may have any type other
6469  // than a variably modified type.
6470  else if (T->isVariablyModifiedType()) {
6471    Diag(Loc, diag::err_typecheck_ivar_variable_size);
6472    D.setInvalidType();
6473  }
6474
6475  // Get the visibility (access control) for this ivar.
6476  ObjCIvarDecl::AccessControl ac =
6477    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
6478                                        : ObjCIvarDecl::None;
6479  // Must set ivar's DeclContext to its enclosing interface.
6480  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
6481  ObjCContainerDecl *EnclosingContext;
6482  if (ObjCImplementationDecl *IMPDecl =
6483      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6484    if (!LangOpts.ObjCNonFragileABI2) {
6485    // Case of ivar declared in an implementation. Context is that of its class.
6486      EnclosingContext = IMPDecl->getClassInterface();
6487      assert(EnclosingContext && "Implementation has no class interface!");
6488    }
6489    else
6490      EnclosingContext = EnclosingDecl;
6491  } else {
6492    if (ObjCCategoryDecl *CDecl =
6493        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6494      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
6495        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
6496        return 0;
6497      }
6498    }
6499    EnclosingContext = EnclosingDecl;
6500  }
6501
6502  // Construct the decl.
6503  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
6504                                             EnclosingContext, Loc, II, T,
6505                                             TInfo, ac, (Expr *)BitfieldWidth);
6506
6507  if (II) {
6508    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
6509                                           ForRedeclaration);
6510    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
6511        && !isa<TagDecl>(PrevDecl)) {
6512      Diag(Loc, diag::err_duplicate_member) << II;
6513      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6514      NewID->setInvalidDecl();
6515    }
6516  }
6517
6518  // Process attributes attached to the ivar.
6519  ProcessDeclAttributes(S, NewID, D);
6520
6521  if (D.isInvalidType())
6522    NewID->setInvalidDecl();
6523
6524  if (II) {
6525    // FIXME: When interfaces are DeclContexts, we'll need to add
6526    // these to the interface.
6527    S->AddDecl(NewID);
6528    IdResolver.AddDecl(NewID);
6529  }
6530
6531  return NewID;
6532}
6533
6534/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
6535/// class and class extensions. For every class @interface and class
6536/// extension @interface, if the last ivar is a bitfield of any type,
6537/// then add an implicit `char :0` ivar to the end of that interface.
6538void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
6539                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
6540  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
6541    return;
6542
6543  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
6544  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
6545
6546  if (!Ivar->isBitField())
6547    return;
6548  uint64_t BitFieldSize =
6549    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
6550  if (BitFieldSize == 0)
6551    return;
6552  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
6553  if (!ID) {
6554    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6555      if (!CD->IsClassExtension())
6556        return;
6557    }
6558    // No need to add this to end of @implementation.
6559    else
6560      return;
6561  }
6562  // All conditions are met. Add a new bitfield to the tail end of ivars.
6563  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
6564  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
6565
6566  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
6567                              DeclLoc, 0,
6568                              Context.CharTy,
6569                              Context.CreateTypeSourceInfo(Context.CharTy),
6570                              ObjCIvarDecl::Private, BW,
6571                              true);
6572  AllIvarDecls.push_back(Ivar);
6573}
6574
6575void Sema::ActOnFields(Scope* S,
6576                       SourceLocation RecLoc, Decl *EnclosingDecl,
6577                       Decl **Fields, unsigned NumFields,
6578                       SourceLocation LBrac, SourceLocation RBrac,
6579                       AttributeList *Attr) {
6580  assert(EnclosingDecl && "missing record or interface decl");
6581
6582  // If the decl this is being inserted into is invalid, then it may be a
6583  // redeclaration or some other bogus case.  Don't try to add fields to it.
6584  if (EnclosingDecl->isInvalidDecl()) {
6585    // FIXME: Deallocate fields?
6586    return;
6587  }
6588
6589
6590  // Verify that all the fields are okay.
6591  unsigned NumNamedMembers = 0;
6592  llvm::SmallVector<FieldDecl*, 32> RecFields;
6593
6594  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
6595  for (unsigned i = 0; i != NumFields; ++i) {
6596    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
6597
6598    // Get the type for the field.
6599    Type *FDTy = FD->getType().getTypePtr();
6600
6601    if (!FD->isAnonymousStructOrUnion()) {
6602      // Remember all fields written by the user.
6603      RecFields.push_back(FD);
6604    }
6605
6606    // If the field is already invalid for some reason, don't emit more
6607    // diagnostics about it.
6608    if (FD->isInvalidDecl()) {
6609      EnclosingDecl->setInvalidDecl();
6610      continue;
6611    }
6612
6613    // C99 6.7.2.1p2:
6614    //   A structure or union shall not contain a member with
6615    //   incomplete or function type (hence, a structure shall not
6616    //   contain an instance of itself, but may contain a pointer to
6617    //   an instance of itself), except that the last member of a
6618    //   structure with more than one named member may have incomplete
6619    //   array type; such a structure (and any union containing,
6620    //   possibly recursively, a member that is such a structure)
6621    //   shall not be a member of a structure or an element of an
6622    //   array.
6623    if (FDTy->isFunctionType()) {
6624      // Field declared as a function.
6625      Diag(FD->getLocation(), diag::err_field_declared_as_function)
6626        << FD->getDeclName();
6627      FD->setInvalidDecl();
6628      EnclosingDecl->setInvalidDecl();
6629      continue;
6630    } else if (FDTy->isIncompleteArrayType() && Record &&
6631               ((i == NumFields - 1 && !Record->isUnion()) ||
6632                (getLangOptions().Microsoft &&
6633                 (i == NumFields - 1 || Record->isUnion())))) {
6634      // Flexible array member.
6635      // Microsoft is more permissive regarding flexible array.
6636      // It will accept flexible array in union and also
6637	    // as the sole element of a struct/class.
6638      if (getLangOptions().Microsoft) {
6639        if (Record->isUnion())
6640          Diag(FD->getLocation(), diag::ext_flexible_array_union)
6641            << FD->getDeclName();
6642        else if (NumFields == 1)
6643          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate)
6644            << FD->getDeclName() << Record->getTagKind();
6645      } else  if (NumNamedMembers < 1) {
6646        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
6647          << FD->getDeclName();
6648        FD->setInvalidDecl();
6649        EnclosingDecl->setInvalidDecl();
6650        continue;
6651      }
6652      if (!FD->getType()->isDependentType() &&
6653          !Context.getBaseElementType(FD->getType())->isPODType()) {
6654        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
6655          << FD->getDeclName() << FD->getType();
6656        FD->setInvalidDecl();
6657        EnclosingDecl->setInvalidDecl();
6658        continue;
6659      }
6660      // Okay, we have a legal flexible array member at the end of the struct.
6661      if (Record)
6662        Record->setHasFlexibleArrayMember(true);
6663    } else if (!FDTy->isDependentType() &&
6664               RequireCompleteType(FD->getLocation(), FD->getType(),
6665                                   diag::err_field_incomplete)) {
6666      // Incomplete type
6667      FD->setInvalidDecl();
6668      EnclosingDecl->setInvalidDecl();
6669      continue;
6670    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
6671      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
6672        // If this is a member of a union, then entire union becomes "flexible".
6673        if (Record && Record->isUnion()) {
6674          Record->setHasFlexibleArrayMember(true);
6675        } else {
6676          // If this is a struct/class and this is not the last element, reject
6677          // it.  Note that GCC supports variable sized arrays in the middle of
6678          // structures.
6679          if (i != NumFields-1)
6680            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
6681              << FD->getDeclName() << FD->getType();
6682          else {
6683            // We support flexible arrays at the end of structs in
6684            // other structs as an extension.
6685            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
6686              << FD->getDeclName();
6687            if (Record)
6688              Record->setHasFlexibleArrayMember(true);
6689          }
6690        }
6691      }
6692      if (Record && FDTTy->getDecl()->hasObjectMember())
6693        Record->setHasObjectMember(true);
6694    } else if (FDTy->isObjCObjectType()) {
6695      /// A field cannot be an Objective-c object
6696      Diag(FD->getLocation(), diag::err_statically_allocated_object);
6697      FD->setInvalidDecl();
6698      EnclosingDecl->setInvalidDecl();
6699      continue;
6700    } else if (getLangOptions().ObjC1 &&
6701               getLangOptions().getGCMode() != LangOptions::NonGC &&
6702               Record &&
6703               (FD->getType()->isObjCObjectPointerType() ||
6704                FD->getType().isObjCGCStrong()))
6705      Record->setHasObjectMember(true);
6706    else if (Context.getAsArrayType(FD->getType())) {
6707      QualType BaseType = Context.getBaseElementType(FD->getType());
6708      if (Record && BaseType->isRecordType() &&
6709          BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
6710        Record->setHasObjectMember(true);
6711    }
6712    // Keep track of the number of named members.
6713    if (FD->getIdentifier())
6714      ++NumNamedMembers;
6715  }
6716
6717  // Okay, we successfully defined 'Record'.
6718  if (Record) {
6719    Record->completeDefinition();
6720  } else {
6721    ObjCIvarDecl **ClsFields =
6722      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
6723    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
6724      ID->setLocEnd(RBrac);
6725      // Add ivar's to class's DeclContext.
6726      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6727        ClsFields[i]->setLexicalDeclContext(ID);
6728        ID->addDecl(ClsFields[i]);
6729      }
6730      // Must enforce the rule that ivars in the base classes may not be
6731      // duplicates.
6732      if (ID->getSuperClass())
6733        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
6734    } else if (ObjCImplementationDecl *IMPDecl =
6735                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
6736      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
6737      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
6738        // Ivar declared in @implementation never belongs to the implementation.
6739        // Only it is in implementation's lexical context.
6740        ClsFields[I]->setLexicalDeclContext(IMPDecl);
6741      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
6742    } else if (ObjCCategoryDecl *CDecl =
6743                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
6744      // case of ivars in class extension; all other cases have been
6745      // reported as errors elsewhere.
6746      // FIXME. Class extension does not have a LocEnd field.
6747      // CDecl->setLocEnd(RBrac);
6748      // Add ivar's to class extension's DeclContext.
6749      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
6750        ClsFields[i]->setLexicalDeclContext(CDecl);
6751        CDecl->addDecl(ClsFields[i]);
6752      }
6753    }
6754  }
6755
6756  if (Attr)
6757    ProcessDeclAttributeList(S, Record, Attr);
6758
6759  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
6760  // set the visibility of this record.
6761  if (Record && !Record->getDeclContext()->isRecord())
6762    AddPushedVisibilityAttribute(Record);
6763}
6764
6765/// \brief Determine whether the given integral value is representable within
6766/// the given type T.
6767static bool isRepresentableIntegerValue(ASTContext &Context,
6768                                        llvm::APSInt &Value,
6769                                        QualType T) {
6770  assert(T->isIntegralType(Context) && "Integral type required!");
6771  unsigned BitWidth = Context.getIntWidth(T);
6772
6773  if (Value.isUnsigned() || Value.isNonNegative())
6774    return Value.getActiveBits() < BitWidth;
6775
6776  return Value.getMinSignedBits() <= BitWidth;
6777}
6778
6779// \brief Given an integral type, return the next larger integral type
6780// (or a NULL type of no such type exists).
6781static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
6782  // FIXME: Int128/UInt128 support, which also needs to be introduced into
6783  // enum checking below.
6784  assert(T->isIntegralType(Context) && "Integral type required!");
6785  const unsigned NumTypes = 4;
6786  QualType SignedIntegralTypes[NumTypes] = {
6787    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
6788  };
6789  QualType UnsignedIntegralTypes[NumTypes] = {
6790    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
6791    Context.UnsignedLongLongTy
6792  };
6793
6794  unsigned BitWidth = Context.getTypeSize(T);
6795  QualType *Types = T->isSignedIntegerType()? SignedIntegralTypes
6796                                            : UnsignedIntegralTypes;
6797  for (unsigned I = 0; I != NumTypes; ++I)
6798    if (Context.getTypeSize(Types[I]) > BitWidth)
6799      return Types[I];
6800
6801  return QualType();
6802}
6803
6804EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
6805                                          EnumConstantDecl *LastEnumConst,
6806                                          SourceLocation IdLoc,
6807                                          IdentifierInfo *Id,
6808                                          Expr *Val) {
6809  unsigned IntWidth = Context.Target.getIntWidth();
6810  llvm::APSInt EnumVal(IntWidth);
6811  QualType EltTy;
6812  if (Val) {
6813    if (Enum->isDependentType() || Val->isTypeDependent())
6814      EltTy = Context.DependentTy;
6815    else {
6816      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
6817      SourceLocation ExpLoc;
6818      if (!Val->isValueDependent() &&
6819          VerifyIntegerConstantExpression(Val, &EnumVal)) {
6820        Val = 0;
6821      } else {
6822        if (!getLangOptions().CPlusPlus) {
6823          // C99 6.7.2.2p2:
6824          //   The expression that defines the value of an enumeration constant
6825          //   shall be an integer constant expression that has a value
6826          //   representable as an int.
6827
6828          // Complain if the value is not representable in an int.
6829          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
6830            Diag(IdLoc, diag::ext_enum_value_not_int)
6831              << EnumVal.toString(10) << Val->getSourceRange()
6832              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
6833          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
6834            // Force the type of the expression to 'int'.
6835            ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast);
6836          }
6837        }
6838
6839        // C++0x [dcl.enum]p5:
6840        //   If the underlying type is not fixed, the type of each enumerator
6841        //   is the type of its initializing value:
6842        //     - If an initializer is specified for an enumerator, the
6843        //       initializing value has the same type as the expression.
6844        EltTy = Val->getType();
6845      }
6846    }
6847  }
6848
6849  if (!Val) {
6850    if (Enum->isDependentType())
6851      EltTy = Context.DependentTy;
6852    else if (!LastEnumConst) {
6853      // C++0x [dcl.enum]p5:
6854      //   If the underlying type is not fixed, the type of each enumerator
6855      //   is the type of its initializing value:
6856      //     - If no initializer is specified for the first enumerator, the
6857      //       initializing value has an unspecified integral type.
6858      //
6859      // GCC uses 'int' for its unspecified integral type, as does
6860      // C99 6.7.2.2p3.
6861      EltTy = Context.IntTy;
6862    } else {
6863      // Assign the last value + 1.
6864      EnumVal = LastEnumConst->getInitVal();
6865      ++EnumVal;
6866      EltTy = LastEnumConst->getType();
6867
6868      // Check for overflow on increment.
6869      if (EnumVal < LastEnumConst->getInitVal()) {
6870        // C++0x [dcl.enum]p5:
6871        //   If the underlying type is not fixed, the type of each enumerator
6872        //   is the type of its initializing value:
6873        //
6874        //     - Otherwise the type of the initializing value is the same as
6875        //       the type of the initializing value of the preceding enumerator
6876        //       unless the incremented value is not representable in that type,
6877        //       in which case the type is an unspecified integral type
6878        //       sufficient to contain the incremented value. If no such type
6879        //       exists, the program is ill-formed.
6880        QualType T = getNextLargerIntegralType(Context, EltTy);
6881        if (T.isNull()) {
6882          // There is no integral type larger enough to represent this
6883          // value. Complain, then allow the value to wrap around.
6884          EnumVal = LastEnumConst->getInitVal();
6885          EnumVal.zext(EnumVal.getBitWidth() * 2);
6886          Diag(IdLoc, diag::warn_enumerator_too_large)
6887            << EnumVal.toString(10);
6888        } else {
6889          EltTy = T;
6890        }
6891
6892        // Retrieve the last enumerator's value, extent that type to the
6893        // type that is supposed to be large enough to represent the incremented
6894        // value, then increment.
6895        EnumVal = LastEnumConst->getInitVal();
6896        EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6897        EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6898        ++EnumVal;
6899
6900        // If we're not in C++, diagnose the overflow of enumerator values,
6901        // which in C99 means that the enumerator value is not representable in
6902        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
6903        // permits enumerator values that are representable in some larger
6904        // integral type.
6905        if (!getLangOptions().CPlusPlus && !T.isNull())
6906          Diag(IdLoc, diag::warn_enum_value_overflow);
6907      } else if (!getLangOptions().CPlusPlus &&
6908                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
6909        // Enforce C99 6.7.2.2p2 even when we compute the next value.
6910        Diag(IdLoc, diag::ext_enum_value_not_int)
6911          << EnumVal.toString(10) << 1;
6912      }
6913    }
6914  }
6915
6916  if (!EltTy->isDependentType()) {
6917    // Make the enumerator value match the signedness and size of the
6918    // enumerator's type.
6919    EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
6920    EnumVal.setIsSigned(EltTy->isSignedIntegerType());
6921  }
6922
6923  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
6924                                  Val, EnumVal);
6925}
6926
6927
6928Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl,
6929                                        Decl *lastEnumConst,
6930                                        SourceLocation IdLoc,
6931                                        IdentifierInfo *Id,
6932                                        SourceLocation EqualLoc, ExprTy *val) {
6933  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
6934  EnumConstantDecl *LastEnumConst =
6935    cast_or_null<EnumConstantDecl>(lastEnumConst);
6936  Expr *Val = static_cast<Expr*>(val);
6937
6938  // The scope passed in may not be a decl scope.  Zip up the scope tree until
6939  // we find one that is.
6940  S = getNonFieldDeclScope(S);
6941
6942  // Verify that there isn't already something declared with this name in this
6943  // scope.
6944  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
6945                                         ForRedeclaration);
6946  if (PrevDecl && PrevDecl->isTemplateParameter()) {
6947    // Maybe we will complain about the shadowed template parameter.
6948    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
6949    // Just pretend that we didn't see the previous declaration.
6950    PrevDecl = 0;
6951  }
6952
6953  if (PrevDecl) {
6954    // When in C++, we may get a TagDecl with the same name; in this case the
6955    // enum constant will 'hide' the tag.
6956    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
6957           "Received TagDecl when not in C++!");
6958    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
6959      if (isa<EnumConstantDecl>(PrevDecl))
6960        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
6961      else
6962        Diag(IdLoc, diag::err_redefinition) << Id;
6963      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
6964      return 0;
6965    }
6966  }
6967
6968  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
6969                                            IdLoc, Id, Val);
6970
6971  // Register this decl in the current scope stack.
6972  if (New) {
6973    New->setAccess(TheEnumDecl->getAccess());
6974    PushOnScopeChains(New, S);
6975  }
6976
6977  return New;
6978}
6979
6980void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
6981                         SourceLocation RBraceLoc, Decl *EnumDeclX,
6982                         Decl **Elements, unsigned NumElements,
6983                         Scope *S, AttributeList *Attr) {
6984  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
6985  QualType EnumType = Context.getTypeDeclType(Enum);
6986
6987  if (Attr)
6988    ProcessDeclAttributeList(S, Enum, Attr);
6989
6990  if (Enum->isDependentType()) {
6991    for (unsigned i = 0; i != NumElements; ++i) {
6992      EnumConstantDecl *ECD =
6993        cast_or_null<EnumConstantDecl>(Elements[i]);
6994      if (!ECD) continue;
6995
6996      ECD->setType(EnumType);
6997    }
6998
6999    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
7000    return;
7001  }
7002
7003  // TODO: If the result value doesn't fit in an int, it must be a long or long
7004  // long value.  ISO C does not support this, but GCC does as an extension,
7005  // emit a warning.
7006  unsigned IntWidth = Context.Target.getIntWidth();
7007  unsigned CharWidth = Context.Target.getCharWidth();
7008  unsigned ShortWidth = Context.Target.getShortWidth();
7009
7010  // Verify that all the values are okay, compute the size of the values, and
7011  // reverse the list.
7012  unsigned NumNegativeBits = 0;
7013  unsigned NumPositiveBits = 0;
7014
7015  // Keep track of whether all elements have type int.
7016  bool AllElementsInt = true;
7017
7018  for (unsigned i = 0; i != NumElements; ++i) {
7019    EnumConstantDecl *ECD =
7020      cast_or_null<EnumConstantDecl>(Elements[i]);
7021    if (!ECD) continue;  // Already issued a diagnostic.
7022
7023    const llvm::APSInt &InitVal = ECD->getInitVal();
7024
7025    // Keep track of the size of positive and negative values.
7026    if (InitVal.isUnsigned() || InitVal.isNonNegative())
7027      NumPositiveBits = std::max(NumPositiveBits,
7028                                 (unsigned)InitVal.getActiveBits());
7029    else
7030      NumNegativeBits = std::max(NumNegativeBits,
7031                                 (unsigned)InitVal.getMinSignedBits());
7032
7033    // Keep track of whether every enum element has type int (very commmon).
7034    if (AllElementsInt)
7035      AllElementsInt = ECD->getType() == Context.IntTy;
7036  }
7037
7038  // Figure out the type that should be used for this enum.
7039  // FIXME: Support -fshort-enums.
7040  QualType BestType;
7041  unsigned BestWidth;
7042
7043  // C++0x N3000 [conv.prom]p3:
7044  //   An rvalue of an unscoped enumeration type whose underlying
7045  //   type is not fixed can be converted to an rvalue of the first
7046  //   of the following types that can represent all the values of
7047  //   the enumeration: int, unsigned int, long int, unsigned long
7048  //   int, long long int, or unsigned long long int.
7049  // C99 6.4.4.3p2:
7050  //   An identifier declared as an enumeration constant has type int.
7051  // The C99 rule is modified by a gcc extension
7052  QualType BestPromotionType;
7053
7054  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
7055
7056  if (NumNegativeBits) {
7057    // If there is a negative value, figure out the smallest integer type (of
7058    // int/long/longlong) that fits.
7059    // If it's packed, check also if it fits a char or a short.
7060    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
7061      BestType = Context.SignedCharTy;
7062      BestWidth = CharWidth;
7063    } else if (Packed && NumNegativeBits <= ShortWidth &&
7064               NumPositiveBits < ShortWidth) {
7065      BestType = Context.ShortTy;
7066      BestWidth = ShortWidth;
7067    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
7068      BestType = Context.IntTy;
7069      BestWidth = IntWidth;
7070    } else {
7071      BestWidth = Context.Target.getLongWidth();
7072
7073      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
7074        BestType = Context.LongTy;
7075      } else {
7076        BestWidth = Context.Target.getLongLongWidth();
7077
7078        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
7079          Diag(Enum->getLocation(), diag::warn_enum_too_large);
7080        BestType = Context.LongLongTy;
7081      }
7082    }
7083    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
7084  } else {
7085    // If there is no negative value, figure out the smallest type that fits
7086    // all of the enumerator values.
7087    // If it's packed, check also if it fits a char or a short.
7088    if (Packed && NumPositiveBits <= CharWidth) {
7089      BestType = Context.UnsignedCharTy;
7090      BestPromotionType = Context.IntTy;
7091      BestWidth = CharWidth;
7092    } else if (Packed && NumPositiveBits <= ShortWidth) {
7093      BestType = Context.UnsignedShortTy;
7094      BestPromotionType = Context.IntTy;
7095      BestWidth = ShortWidth;
7096    } else if (NumPositiveBits <= IntWidth) {
7097      BestType = Context.UnsignedIntTy;
7098      BestWidth = IntWidth;
7099      BestPromotionType
7100        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7101                           ? Context.UnsignedIntTy : Context.IntTy;
7102    } else if (NumPositiveBits <=
7103               (BestWidth = Context.Target.getLongWidth())) {
7104      BestType = Context.UnsignedLongTy;
7105      BestPromotionType
7106        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7107                           ? Context.UnsignedLongTy : Context.LongTy;
7108    } else {
7109      BestWidth = Context.Target.getLongLongWidth();
7110      assert(NumPositiveBits <= BestWidth &&
7111             "How could an initializer get larger than ULL?");
7112      BestType = Context.UnsignedLongLongTy;
7113      BestPromotionType
7114        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
7115                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
7116    }
7117  }
7118
7119  // Loop over all of the enumerator constants, changing their types to match
7120  // the type of the enum if needed.
7121  for (unsigned i = 0; i != NumElements; ++i) {
7122    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
7123    if (!ECD) continue;  // Already issued a diagnostic.
7124
7125    // Standard C says the enumerators have int type, but we allow, as an
7126    // extension, the enumerators to be larger than int size.  If each
7127    // enumerator value fits in an int, type it as an int, otherwise type it the
7128    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
7129    // that X has type 'int', not 'unsigned'.
7130
7131    // Determine whether the value fits into an int.
7132    llvm::APSInt InitVal = ECD->getInitVal();
7133
7134    // If it fits into an integer type, force it.  Otherwise force it to match
7135    // the enum decl type.
7136    QualType NewTy;
7137    unsigned NewWidth;
7138    bool NewSign;
7139    if (!getLangOptions().CPlusPlus &&
7140        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
7141      NewTy = Context.IntTy;
7142      NewWidth = IntWidth;
7143      NewSign = true;
7144    } else if (ECD->getType() == BestType) {
7145      // Already the right type!
7146      if (getLangOptions().CPlusPlus)
7147        // C++ [dcl.enum]p4: Following the closing brace of an
7148        // enum-specifier, each enumerator has the type of its
7149        // enumeration.
7150        ECD->setType(EnumType);
7151      continue;
7152    } else {
7153      NewTy = BestType;
7154      NewWidth = BestWidth;
7155      NewSign = BestType->isSignedIntegerType();
7156    }
7157
7158    // Adjust the APSInt value.
7159    InitVal.extOrTrunc(NewWidth);
7160    InitVal.setIsSigned(NewSign);
7161    ECD->setInitVal(InitVal);
7162
7163    // Adjust the Expr initializer and type.
7164    if (ECD->getInitExpr())
7165      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
7166                                                CK_IntegralCast,
7167                                                ECD->getInitExpr(),
7168                                                /*base paths*/ 0,
7169                                                VK_RValue));
7170    if (getLangOptions().CPlusPlus)
7171      // C++ [dcl.enum]p4: Following the closing brace of an
7172      // enum-specifier, each enumerator has the type of its
7173      // enumeration.
7174      ECD->setType(EnumType);
7175    else
7176      ECD->setType(NewTy);
7177  }
7178
7179  Enum->completeDefinition(BestType, BestPromotionType,
7180                           NumPositiveBits, NumNegativeBits);
7181}
7182
7183Decl *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc, Expr *expr) {
7184  StringLiteral *AsmString = cast<StringLiteral>(expr);
7185
7186  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
7187                                                   Loc, AsmString);
7188  CurContext->addDecl(New);
7189  return New;
7190}
7191
7192void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
7193                             SourceLocation PragmaLoc,
7194                             SourceLocation NameLoc) {
7195  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
7196
7197  if (PrevDecl) {
7198    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
7199  } else {
7200    (void)WeakUndeclaredIdentifiers.insert(
7201      std::pair<IdentifierInfo*,WeakInfo>
7202        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
7203  }
7204}
7205
7206void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
7207                                IdentifierInfo* AliasName,
7208                                SourceLocation PragmaLoc,
7209                                SourceLocation NameLoc,
7210                                SourceLocation AliasNameLoc) {
7211  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
7212                                    LookupOrdinaryName);
7213  WeakInfo W = WeakInfo(Name, NameLoc);
7214
7215  if (PrevDecl) {
7216    if (!PrevDecl->hasAttr<AliasAttr>())
7217      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
7218        DeclApplyPragmaWeak(TUScope, ND, W);
7219  } else {
7220    (void)WeakUndeclaredIdentifiers.insert(
7221      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
7222  }
7223}
7224