SemaDecl.cpp revision 2aaad63ec5d012e6de40f72e114c60df9c205a24
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInit.h"
16#include "Lookup.h"
17#include "clang/AST/APValue.h"
18#include "clang/AST/ASTConsumer.h"
19#include "clang/AST/ASTContext.h"
20#include "clang/Analysis/CFG.h"
21#include "clang/AST/CXXInheritance.h"
22#include "clang/AST/DeclObjC.h"
23#include "clang/AST/DeclTemplate.h"
24#include "clang/AST/ExprCXX.h"
25#include "clang/AST/StmtCXX.h"
26#include "clang/AST/StmtObjC.h"
27#include "clang/Parse/DeclSpec.h"
28#include "clang/Parse/ParseDiagnostic.h"
29#include "clang/Parse/Template.h"
30#include "clang/Basic/PartialDiagnostic.h"
31#include "clang/Basic/SourceManager.h"
32#include "clang/Basic/TargetInfo.h"
33// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
34#include "clang/Lex/Preprocessor.h"
35#include "clang/Lex/HeaderSearch.h"
36#include "llvm/ADT/BitVector.h"
37#include "llvm/ADT/STLExtras.h"
38#include <algorithm>
39#include <cstring>
40#include <functional>
41#include <queue>
42using namespace clang;
43
44/// getDeclName - Return a pretty name for the specified decl if possible, or
45/// an empty string if not.  This is used for pretty crash reporting.
46std::string Sema::getDeclName(DeclPtrTy d) {
47  Decl *D = d.getAs<Decl>();
48  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
49    return DN->getQualifiedNameAsString();
50  return "";
51}
52
53Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
54  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
55}
56
57/// \brief If the identifier refers to a type name within this scope,
58/// return the declaration of that type.
59///
60/// This routine performs ordinary name lookup of the identifier II
61/// within the given scope, with optional C++ scope specifier SS, to
62/// determine whether the name refers to a type. If so, returns an
63/// opaque pointer (actually a QualType) corresponding to that
64/// type. Otherwise, returns NULL.
65///
66/// If name lookup results in an ambiguity, this routine will complain
67/// and then return NULL.
68Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
69                                Scope *S, const CXXScopeSpec *SS,
70                                bool isClassName,
71                                TypeTy *ObjectTypePtr) {
72  // Determine where we will perform name lookup.
73  DeclContext *LookupCtx = 0;
74  if (ObjectTypePtr) {
75    QualType ObjectType = QualType::getFromOpaquePtr(ObjectTypePtr);
76    if (ObjectType->isRecordType())
77      LookupCtx = computeDeclContext(ObjectType);
78  } else if (SS && SS->isSet()) {
79    LookupCtx = computeDeclContext(*SS, false);
80
81    if (!LookupCtx) {
82      if (isDependentScopeSpecifier(*SS)) {
83        // C++ [temp.res]p3:
84        //   A qualified-id that refers to a type and in which the
85        //   nested-name-specifier depends on a template-parameter (14.6.2)
86        //   shall be prefixed by the keyword typename to indicate that the
87        //   qualified-id denotes a type, forming an
88        //   elaborated-type-specifier (7.1.5.3).
89        //
90        // We therefore do not perform any name lookup if the result would
91        // refer to a member of an unknown specialization.
92        if (!isClassName)
93          return 0;
94
95        // We know from the grammar that this name refers to a type, so build a
96        // TypenameType node to describe the type.
97        // FIXME: Record somewhere that this TypenameType node has no "typename"
98        // keyword associated with it.
99        return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
100                                 II, SS->getRange()).getAsOpaquePtr();
101      }
102
103      return 0;
104    }
105
106    if (!LookupCtx->isDependentContext() && RequireCompleteDeclContext(*SS))
107      return 0;
108  }
109
110  LookupResult Result(*this, &II, NameLoc, LookupOrdinaryName);
111  if (LookupCtx) {
112    // Perform "qualified" name lookup into the declaration context we
113    // computed, which is either the type of the base of a member access
114    // expression or the declaration context associated with a prior
115    // nested-name-specifier.
116    LookupQualifiedName(Result, LookupCtx);
117
118    if (ObjectTypePtr && Result.empty()) {
119      // C++ [basic.lookup.classref]p3:
120      //   If the unqualified-id is ~type-name, the type-name is looked up
121      //   in the context of the entire postfix-expression. If the type T of
122      //   the object expression is of a class type C, the type-name is also
123      //   looked up in the scope of class C. At least one of the lookups shall
124      //   find a name that refers to (possibly cv-qualified) T.
125      LookupName(Result, S);
126    }
127  } else {
128    // Perform unqualified name lookup.
129    LookupName(Result, S);
130  }
131
132  NamedDecl *IIDecl = 0;
133  switch (Result.getResultKind()) {
134  case LookupResult::NotFound:
135  case LookupResult::FoundOverloaded:
136  case LookupResult::FoundUnresolvedValue:
137    return 0;
138
139  case LookupResult::Ambiguous:
140    // Recover from type-hiding ambiguities by hiding the type.  We'll
141    // do the lookup again when looking for an object, and we can
142    // diagnose the error then.  If we don't do this, then the error
143    // about hiding the type will be immediately followed by an error
144    // that only makes sense if the identifier was treated like a type.
145    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
146      Result.suppressDiagnostics();
147      return 0;
148    }
149
150    // Look to see if we have a type anywhere in the list of results.
151    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
152         Res != ResEnd; ++Res) {
153      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
154        if (!IIDecl ||
155            (*Res)->getLocation().getRawEncoding() <
156              IIDecl->getLocation().getRawEncoding())
157          IIDecl = *Res;
158      }
159    }
160
161    if (!IIDecl) {
162      // None of the entities we found is a type, so there is no way
163      // to even assume that the result is a type. In this case, don't
164      // complain about the ambiguity. The parser will either try to
165      // perform this lookup again (e.g., as an object name), which
166      // will produce the ambiguity, or will complain that it expected
167      // a type name.
168      Result.suppressDiagnostics();
169      return 0;
170    }
171
172    // We found a type within the ambiguous lookup; diagnose the
173    // ambiguity and then return that type. This might be the right
174    // answer, or it might not be, but it suppresses any attempt to
175    // perform the name lookup again.
176    break;
177
178  case LookupResult::Found:
179    IIDecl = Result.getFoundDecl();
180    break;
181  }
182
183  assert(IIDecl && "Didn't find decl");
184
185  QualType T;
186  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
187    DiagnoseUseOfDecl(IIDecl, NameLoc);
188
189    // C++ [temp.local]p2:
190    //   Within the scope of a class template specialization or
191    //   partial specialization, when the injected-class-name is
192    //   not followed by a <, it is equivalent to the
193    //   injected-class-name followed by the template-argument s
194    //   of the class template specialization or partial
195    //   specialization enclosed in <>.
196    if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
197      if (RD->isInjectedClassName())
198        if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
199          T = Template->getInjectedClassNameType(Context);
200
201    if (T.isNull())
202      T = Context.getTypeDeclType(TD);
203
204    if (SS)
205      T = getQualifiedNameType(*SS, T);
206
207  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
208    T = Context.getObjCInterfaceType(IDecl);
209  } else if (UnresolvedUsingTypenameDecl *UUDecl =
210               dyn_cast<UnresolvedUsingTypenameDecl>(IIDecl)) {
211    // FIXME: preserve source structure information.
212    T = Context.getTypenameType(UUDecl->getTargetNestedNameSpecifier(), &II);
213  } else {
214    // If it's not plausibly a type, suppress diagnostics.
215    Result.suppressDiagnostics();
216    return 0;
217  }
218
219  return T.getAsOpaquePtr();
220}
221
222/// isTagName() - This method is called *for error recovery purposes only*
223/// to determine if the specified name is a valid tag name ("struct foo").  If
224/// so, this returns the TST for the tag corresponding to it (TST_enum,
225/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
226/// where the user forgot to specify the tag.
227DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
228  // Do a tag name lookup in this scope.
229  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
230  LookupName(R, S, false);
231  R.suppressDiagnostics();
232  if (R.getResultKind() == LookupResult::Found)
233    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
234      switch (TD->getTagKind()) {
235      case TagDecl::TK_struct: return DeclSpec::TST_struct;
236      case TagDecl::TK_union:  return DeclSpec::TST_union;
237      case TagDecl::TK_class:  return DeclSpec::TST_class;
238      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
239      }
240    }
241
242  return DeclSpec::TST_unspecified;
243}
244
245bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
246                                   SourceLocation IILoc,
247                                   Scope *S,
248                                   const CXXScopeSpec *SS,
249                                   TypeTy *&SuggestedType) {
250  // We don't have anything to suggest (yet).
251  SuggestedType = 0;
252
253  // FIXME: Should we move the logic that tries to recover from a missing tag
254  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
255
256  if (!SS)
257    Diag(IILoc, diag::err_unknown_typename) << &II;
258  else if (DeclContext *DC = computeDeclContext(*SS, false))
259    Diag(IILoc, diag::err_typename_nested_not_found)
260      << &II << DC << SS->getRange();
261  else if (isDependentScopeSpecifier(*SS)) {
262    Diag(SS->getRange().getBegin(), diag::err_typename_missing)
263      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
264      << SourceRange(SS->getRange().getBegin(), IILoc)
265      << CodeModificationHint::CreateInsertion(SS->getRange().getBegin(),
266                                               "typename ");
267    SuggestedType = ActOnTypenameType(SourceLocation(), *SS, II, IILoc).get();
268  } else {
269    assert(SS && SS->isInvalid() &&
270           "Invalid scope specifier has already been diagnosed");
271  }
272
273  return true;
274}
275
276// Determines the context to return to after temporarily entering a
277// context.  This depends in an unnecessarily complicated way on the
278// exact ordering of callbacks from the parser.
279DeclContext *Sema::getContainingDC(DeclContext *DC) {
280
281  // Functions defined inline within classes aren't parsed until we've
282  // finished parsing the top-level class, so the top-level class is
283  // the context we'll need to return to.
284  if (isa<FunctionDecl>(DC)) {
285    DC = DC->getLexicalParent();
286
287    // A function not defined within a class will always return to its
288    // lexical context.
289    if (!isa<CXXRecordDecl>(DC))
290      return DC;
291
292    // A C++ inline method/friend is parsed *after* the topmost class
293    // it was declared in is fully parsed ("complete");  the topmost
294    // class is the context we need to return to.
295    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
296      DC = RD;
297
298    // Return the declaration context of the topmost class the inline method is
299    // declared in.
300    return DC;
301  }
302
303  if (isa<ObjCMethodDecl>(DC))
304    return Context.getTranslationUnitDecl();
305
306  return DC->getLexicalParent();
307}
308
309void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
310  assert(getContainingDC(DC) == CurContext &&
311      "The next DeclContext should be lexically contained in the current one.");
312  CurContext = DC;
313  S->setEntity(DC);
314}
315
316void Sema::PopDeclContext() {
317  assert(CurContext && "DeclContext imbalance!");
318
319  CurContext = getContainingDC(CurContext);
320}
321
322/// EnterDeclaratorContext - Used when we must lookup names in the context
323/// of a declarator's nested name specifier.
324void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
325  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
326  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
327  CurContext = DC;
328  assert(CurContext && "No context?");
329  S->setEntity(CurContext);
330}
331
332void Sema::ExitDeclaratorContext(Scope *S) {
333  S->setEntity(PreDeclaratorDC);
334  PreDeclaratorDC = 0;
335
336  // Reset CurContext to the nearest enclosing context.
337  while (!S->getEntity() && S->getParent())
338    S = S->getParent();
339  CurContext = static_cast<DeclContext*>(S->getEntity());
340  assert(CurContext && "No context?");
341}
342
343/// \brief Determine whether we allow overloading of the function
344/// PrevDecl with another declaration.
345///
346/// This routine determines whether overloading is possible, not
347/// whether some new function is actually an overload. It will return
348/// true in C++ (where we can always provide overloads) or, as an
349/// extension, in C when the previous function is already an
350/// overloaded function declaration or has the "overloadable"
351/// attribute.
352static bool AllowOverloadingOfFunction(LookupResult &Previous,
353                                       ASTContext &Context) {
354  if (Context.getLangOptions().CPlusPlus)
355    return true;
356
357  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
358    return true;
359
360  return (Previous.getResultKind() == LookupResult::Found
361          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
362}
363
364/// Add this decl to the scope shadowed decl chains.
365void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
366  // Move up the scope chain until we find the nearest enclosing
367  // non-transparent context. The declaration will be introduced into this
368  // scope.
369  while (S->getEntity() &&
370         ((DeclContext *)S->getEntity())->isTransparentContext())
371    S = S->getParent();
372
373  // Add scoped declarations into their context, so that they can be
374  // found later. Declarations without a context won't be inserted
375  // into any context.
376  if (AddToContext)
377    CurContext->addDecl(D);
378
379  // Out-of-line function and variable definitions should not be pushed into
380  // scope.
381  if ((isa<FunctionTemplateDecl>(D) &&
382       cast<FunctionTemplateDecl>(D)->getTemplatedDecl()->isOutOfLine()) ||
383      (isa<FunctionDecl>(D) &&
384       (cast<FunctionDecl>(D)->isFunctionTemplateSpecialization() ||
385        cast<FunctionDecl>(D)->isOutOfLine())) ||
386      (isa<VarDecl>(D) && cast<VarDecl>(D)->isOutOfLine()))
387    return;
388
389  // If this replaces anything in the current scope,
390  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
391                               IEnd = IdResolver.end();
392  for (; I != IEnd; ++I) {
393    if (S->isDeclScope(DeclPtrTy::make(*I)) && D->declarationReplaces(*I)) {
394      S->RemoveDecl(DeclPtrTy::make(*I));
395      IdResolver.RemoveDecl(*I);
396
397      // Should only need to replace one decl.
398      break;
399    }
400  }
401
402  S->AddDecl(DeclPtrTy::make(D));
403  IdResolver.AddDecl(D);
404}
405
406bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S) {
407  return IdResolver.isDeclInScope(D, Ctx, Context, S);
408}
409
410static bool isOutOfScopePreviousDeclaration(NamedDecl *,
411                                            DeclContext*,
412                                            ASTContext&);
413
414/// Filters out lookup results that don't fall within the given scope
415/// as determined by isDeclInScope.
416static void FilterLookupForScope(Sema &SemaRef, LookupResult &R,
417                                 DeclContext *Ctx, Scope *S,
418                                 bool ConsiderLinkage) {
419  LookupResult::Filter F = R.makeFilter();
420  while (F.hasNext()) {
421    NamedDecl *D = F.next();
422
423    if (SemaRef.isDeclInScope(D, Ctx, S))
424      continue;
425
426    if (ConsiderLinkage &&
427        isOutOfScopePreviousDeclaration(D, Ctx, SemaRef.Context))
428      continue;
429
430    F.erase();
431  }
432
433  F.done();
434}
435
436static bool isUsingDecl(NamedDecl *D) {
437  return isa<UsingShadowDecl>(D) ||
438         isa<UnresolvedUsingTypenameDecl>(D) ||
439         isa<UnresolvedUsingValueDecl>(D);
440}
441
442/// Removes using shadow declarations from the lookup results.
443static void RemoveUsingDecls(LookupResult &R) {
444  LookupResult::Filter F = R.makeFilter();
445  while (F.hasNext())
446    if (isUsingDecl(F.next()))
447      F.erase();
448
449  F.done();
450}
451
452static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
453  if (D->isUsed() || D->hasAttr<UnusedAttr>())
454    return false;
455
456  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
457    if (const RecordType *RT = VD->getType()->getAs<RecordType>()) {
458      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
459        if (!RD->hasTrivialConstructor())
460          return false;
461        if (!RD->hasTrivialDestructor())
462          return false;
463      }
464    }
465  }
466
467  return (isa<VarDecl>(D) && !isa<ParmVarDecl>(D) &&
468          !isa<ImplicitParamDecl>(D) &&
469          D->getDeclContext()->isFunctionOrMethod());
470}
471
472void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
473  if (S->decl_empty()) return;
474  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
475         "Scope shouldn't contain decls!");
476
477  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
478       I != E; ++I) {
479    Decl *TmpD = (*I).getAs<Decl>();
480    assert(TmpD && "This decl didn't get pushed??");
481
482    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
483    NamedDecl *D = cast<NamedDecl>(TmpD);
484
485    if (!D->getDeclName()) continue;
486
487    // Diagnose unused variables in this scope.
488    if (ShouldDiagnoseUnusedDecl(D))
489      Diag(D->getLocation(), diag::warn_unused_variable) << D->getDeclName();
490
491    // Remove this name from our lexical scope.
492    IdResolver.RemoveDecl(D);
493  }
494}
495
496/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
497/// return 0 if one not found.
498ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
499  // The third "scope" argument is 0 since we aren't enabling lazy built-in
500  // creation from this context.
501  NamedDecl *IDecl = LookupSingleName(TUScope, Id, LookupOrdinaryName);
502
503  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
504}
505
506/// getNonFieldDeclScope - Retrieves the innermost scope, starting
507/// from S, where a non-field would be declared. This routine copes
508/// with the difference between C and C++ scoping rules in structs and
509/// unions. For example, the following code is well-formed in C but
510/// ill-formed in C++:
511/// @code
512/// struct S6 {
513///   enum { BAR } e;
514/// };
515///
516/// void test_S6() {
517///   struct S6 a;
518///   a.e = BAR;
519/// }
520/// @endcode
521/// For the declaration of BAR, this routine will return a different
522/// scope. The scope S will be the scope of the unnamed enumeration
523/// within S6. In C++, this routine will return the scope associated
524/// with S6, because the enumeration's scope is a transparent
525/// context but structures can contain non-field names. In C, this
526/// routine will return the translation unit scope, since the
527/// enumeration's scope is a transparent context and structures cannot
528/// contain non-field names.
529Scope *Sema::getNonFieldDeclScope(Scope *S) {
530  while (((S->getFlags() & Scope::DeclScope) == 0) ||
531         (S->getEntity() &&
532          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
533         (S->isClassScope() && !getLangOptions().CPlusPlus))
534    S = S->getParent();
535  return S;
536}
537
538void Sema::InitBuiltinVaListType() {
539  if (!Context.getBuiltinVaListType().isNull())
540    return;
541
542  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
543  NamedDecl *VaDecl = LookupSingleName(TUScope, VaIdent, LookupOrdinaryName);
544  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
545  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
546}
547
548/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
549/// file scope.  lazily create a decl for it. ForRedeclaration is true
550/// if we're creating this built-in in anticipation of redeclaring the
551/// built-in.
552NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
553                                     Scope *S, bool ForRedeclaration,
554                                     SourceLocation Loc) {
555  Builtin::ID BID = (Builtin::ID)bid;
556
557  if (Context.BuiltinInfo.hasVAListUse(BID))
558    InitBuiltinVaListType();
559
560  ASTContext::GetBuiltinTypeError Error;
561  QualType R = Context.GetBuiltinType(BID, Error);
562  switch (Error) {
563  case ASTContext::GE_None:
564    // Okay
565    break;
566
567  case ASTContext::GE_Missing_stdio:
568    if (ForRedeclaration)
569      Diag(Loc, diag::err_implicit_decl_requires_stdio)
570        << Context.BuiltinInfo.GetName(BID);
571    return 0;
572
573  case ASTContext::GE_Missing_setjmp:
574    if (ForRedeclaration)
575      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
576        << Context.BuiltinInfo.GetName(BID);
577    return 0;
578  }
579
580  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
581    Diag(Loc, diag::ext_implicit_lib_function_decl)
582      << Context.BuiltinInfo.GetName(BID)
583      << R;
584    if (Context.BuiltinInfo.getHeaderName(BID) &&
585        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
586          != Diagnostic::Ignored)
587      Diag(Loc, diag::note_please_include_header)
588        << Context.BuiltinInfo.getHeaderName(BID)
589        << Context.BuiltinInfo.GetName(BID);
590  }
591
592  FunctionDecl *New = FunctionDecl::Create(Context,
593                                           Context.getTranslationUnitDecl(),
594                                           Loc, II, R, /*TInfo=*/0,
595                                           FunctionDecl::Extern, false,
596                                           /*hasPrototype=*/true);
597  New->setImplicit();
598
599  // Create Decl objects for each parameter, adding them to the
600  // FunctionDecl.
601  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
602    llvm::SmallVector<ParmVarDecl*, 16> Params;
603    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
604      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
605                                           FT->getArgType(i), /*TInfo=*/0,
606                                           VarDecl::None, 0));
607    New->setParams(Context, Params.data(), Params.size());
608  }
609
610  AddKnownFunctionAttributes(New);
611
612  // TUScope is the translation-unit scope to insert this function into.
613  // FIXME: This is hideous. We need to teach PushOnScopeChains to
614  // relate Scopes to DeclContexts, and probably eliminate CurContext
615  // entirely, but we're not there yet.
616  DeclContext *SavedContext = CurContext;
617  CurContext = Context.getTranslationUnitDecl();
618  PushOnScopeChains(New, TUScope);
619  CurContext = SavedContext;
620  return New;
621}
622
623/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
624/// same name and scope as a previous declaration 'Old'.  Figure out
625/// how to resolve this situation, merging decls or emitting
626/// diagnostics as appropriate. If there was an error, set New to be invalid.
627///
628void Sema::MergeTypeDefDecl(TypedefDecl *New, LookupResult &OldDecls) {
629  // If the new decl is known invalid already, don't bother doing any
630  // merging checks.
631  if (New->isInvalidDecl()) return;
632
633  // Allow multiple definitions for ObjC built-in typedefs.
634  // FIXME: Verify the underlying types are equivalent!
635  if (getLangOptions().ObjC1) {
636    const IdentifierInfo *TypeID = New->getIdentifier();
637    switch (TypeID->getLength()) {
638    default: break;
639    case 2:
640      if (!TypeID->isStr("id"))
641        break;
642      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
643      // Install the built-in type for 'id', ignoring the current definition.
644      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
645      return;
646    case 5:
647      if (!TypeID->isStr("Class"))
648        break;
649      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
650      // Install the built-in type for 'Class', ignoring the current definition.
651      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
652      return;
653    case 3:
654      if (!TypeID->isStr("SEL"))
655        break;
656      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
657      // Install the built-in type for 'SEL', ignoring the current definition.
658      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
659      return;
660    case 8:
661      if (!TypeID->isStr("Protocol"))
662        break;
663      Context.setObjCProtoType(New->getUnderlyingType());
664      return;
665    }
666    // Fall through - the typedef name was not a builtin type.
667  }
668
669  // Verify the old decl was also a type.
670  TypeDecl *Old = 0;
671  if (!OldDecls.isSingleResult() ||
672      !(Old = dyn_cast<TypeDecl>(OldDecls.getFoundDecl()))) {
673    Diag(New->getLocation(), diag::err_redefinition_different_kind)
674      << New->getDeclName();
675
676    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
677    if (OldD->getLocation().isValid())
678      Diag(OldD->getLocation(), diag::note_previous_definition);
679
680    return New->setInvalidDecl();
681  }
682
683  // If the old declaration is invalid, just give up here.
684  if (Old->isInvalidDecl())
685    return New->setInvalidDecl();
686
687  // Determine the "old" type we'll use for checking and diagnostics.
688  QualType OldType;
689  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
690    OldType = OldTypedef->getUnderlyingType();
691  else
692    OldType = Context.getTypeDeclType(Old);
693
694  // If the typedef types are not identical, reject them in all languages and
695  // with any extensions enabled.
696
697  if (OldType != New->getUnderlyingType() &&
698      Context.getCanonicalType(OldType) !=
699      Context.getCanonicalType(New->getUnderlyingType())) {
700    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
701      << New->getUnderlyingType() << OldType;
702    if (Old->getLocation().isValid())
703      Diag(Old->getLocation(), diag::note_previous_definition);
704    return New->setInvalidDecl();
705  }
706
707  if (getLangOptions().Microsoft)
708    return;
709
710  // C++ [dcl.typedef]p2:
711  //   In a given non-class scope, a typedef specifier can be used to
712  //   redefine the name of any type declared in that scope to refer
713  //   to the type to which it already refers.
714  if (getLangOptions().CPlusPlus) {
715    if (!isa<CXXRecordDecl>(CurContext))
716      return;
717    Diag(New->getLocation(), diag::err_redefinition)
718      << New->getDeclName();
719    Diag(Old->getLocation(), diag::note_previous_definition);
720    return New->setInvalidDecl();
721  }
722
723  // If we have a redefinition of a typedef in C, emit a warning.  This warning
724  // is normally mapped to an error, but can be controlled with
725  // -Wtypedef-redefinition.  If either the original or the redefinition is
726  // in a system header, don't emit this for compatibility with GCC.
727  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
728      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
729       Context.getSourceManager().isInSystemHeader(New->getLocation())))
730    return;
731
732  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
733    << New->getDeclName();
734  Diag(Old->getLocation(), diag::note_previous_definition);
735  return;
736}
737
738/// DeclhasAttr - returns true if decl Declaration already has the target
739/// attribute.
740static bool
741DeclHasAttr(const Decl *decl, const Attr *target) {
742  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
743    if (attr->getKind() == target->getKind())
744      return true;
745
746  return false;
747}
748
749/// MergeAttributes - append attributes from the Old decl to the New one.
750static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
751  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
752    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
753      Attr *NewAttr = attr->clone(C);
754      NewAttr->setInherited(true);
755      New->addAttr(NewAttr);
756    }
757  }
758}
759
760/// Used in MergeFunctionDecl to keep track of function parameters in
761/// C.
762struct GNUCompatibleParamWarning {
763  ParmVarDecl *OldParm;
764  ParmVarDecl *NewParm;
765  QualType PromotedType;
766};
767
768
769/// getSpecialMember - get the special member enum for a method.
770static Sema::CXXSpecialMember getSpecialMember(ASTContext &Ctx,
771                                               const CXXMethodDecl *MD) {
772  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
773    if (Ctor->isDefaultConstructor())
774      return Sema::CXXDefaultConstructor;
775    if (Ctor->isCopyConstructor(Ctx))
776      return Sema::CXXCopyConstructor;
777  }
778
779  if (isa<CXXDestructorDecl>(MD))
780    return Sema::CXXDestructor;
781
782  assert(MD->isCopyAssignment() && "Must have copy assignment operator");
783  return Sema::CXXCopyAssignment;
784}
785
786/// MergeFunctionDecl - We just parsed a function 'New' from
787/// declarator D which has the same name and scope as a previous
788/// declaration 'Old'.  Figure out how to resolve this situation,
789/// merging decls or emitting diagnostics as appropriate.
790///
791/// In C++, New and Old must be declarations that are not
792/// overloaded. Use IsOverload to determine whether New and Old are
793/// overloaded, and to select the Old declaration that New should be
794/// merged with.
795///
796/// Returns true if there was an error, false otherwise.
797bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
798  // Verify the old decl was also a function.
799  FunctionDecl *Old = 0;
800  if (FunctionTemplateDecl *OldFunctionTemplate
801        = dyn_cast<FunctionTemplateDecl>(OldD))
802    Old = OldFunctionTemplate->getTemplatedDecl();
803  else
804    Old = dyn_cast<FunctionDecl>(OldD);
805  if (!Old) {
806    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
807      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
808      Diag(Shadow->getTargetDecl()->getLocation(),
809           diag::note_using_decl_target);
810      Diag(Shadow->getUsingDecl()->getLocation(),
811           diag::note_using_decl) << 0;
812      return true;
813    }
814
815    Diag(New->getLocation(), diag::err_redefinition_different_kind)
816      << New->getDeclName();
817    Diag(OldD->getLocation(), diag::note_previous_definition);
818    return true;
819  }
820
821  // Determine whether the previous declaration was a definition,
822  // implicit declaration, or a declaration.
823  diag::kind PrevDiag;
824  if (Old->isThisDeclarationADefinition())
825    PrevDiag = diag::note_previous_definition;
826  else if (Old->isImplicit())
827    PrevDiag = diag::note_previous_implicit_declaration;
828  else
829    PrevDiag = diag::note_previous_declaration;
830
831  QualType OldQType = Context.getCanonicalType(Old->getType());
832  QualType NewQType = Context.getCanonicalType(New->getType());
833
834  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
835      New->getStorageClass() == FunctionDecl::Static &&
836      Old->getStorageClass() != FunctionDecl::Static) {
837    Diag(New->getLocation(), diag::err_static_non_static)
838      << New;
839    Diag(Old->getLocation(), PrevDiag);
840    return true;
841  }
842
843  if (getLangOptions().CPlusPlus) {
844    // (C++98 13.1p2):
845    //   Certain function declarations cannot be overloaded:
846    //     -- Function declarations that differ only in the return type
847    //        cannot be overloaded.
848    QualType OldReturnType
849      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
850    QualType NewReturnType
851      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
852    if (OldReturnType != NewReturnType) {
853      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
854      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
855      return true;
856    }
857
858    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
859    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
860    if (OldMethod && NewMethod) {
861      if (!NewMethod->getFriendObjectKind() &&
862          NewMethod->getLexicalDeclContext()->isRecord()) {
863        //    -- Member function declarations with the same name and the
864        //       same parameter types cannot be overloaded if any of them
865        //       is a static member function declaration.
866        if (OldMethod->isStatic() || NewMethod->isStatic()) {
867          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
868          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
869          return true;
870        }
871
872        // C++ [class.mem]p1:
873        //   [...] A member shall not be declared twice in the
874        //   member-specification, except that a nested class or member
875        //   class template can be declared and then later defined.
876        unsigned NewDiag;
877        if (isa<CXXConstructorDecl>(OldMethod))
878          NewDiag = diag::err_constructor_redeclared;
879        else if (isa<CXXDestructorDecl>(NewMethod))
880          NewDiag = diag::err_destructor_redeclared;
881        else if (isa<CXXConversionDecl>(NewMethod))
882          NewDiag = diag::err_conv_function_redeclared;
883        else
884          NewDiag = diag::err_member_redeclared;
885
886        Diag(New->getLocation(), NewDiag);
887        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
888      } else {
889        if (OldMethod->isImplicit()) {
890          Diag(NewMethod->getLocation(),
891               diag::err_definition_of_implicitly_declared_member)
892          << New << getSpecialMember(Context, OldMethod);
893
894          Diag(OldMethod->getLocation(),
895               diag::note_previous_implicit_declaration);
896          return true;
897        }
898      }
899    }
900
901    // (C++98 8.3.5p3):
902    //   All declarations for a function shall agree exactly in both the
903    //   return type and the parameter-type-list.
904    if (OldQType == NewQType)
905      return MergeCompatibleFunctionDecls(New, Old);
906
907    // Fall through for conflicting redeclarations and redefinitions.
908  }
909
910  // C: Function types need to be compatible, not identical. This handles
911  // duplicate function decls like "void f(int); void f(enum X);" properly.
912  if (!getLangOptions().CPlusPlus &&
913      Context.typesAreCompatible(OldQType, NewQType)) {
914    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
915    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
916    const FunctionProtoType *OldProto = 0;
917    if (isa<FunctionNoProtoType>(NewFuncType) &&
918        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
919      // The old declaration provided a function prototype, but the
920      // new declaration does not. Merge in the prototype.
921      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
922      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
923                                                 OldProto->arg_type_end());
924      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
925                                         ParamTypes.data(), ParamTypes.size(),
926                                         OldProto->isVariadic(),
927                                         OldProto->getTypeQuals());
928      New->setType(NewQType);
929      New->setHasInheritedPrototype();
930
931      // Synthesize a parameter for each argument type.
932      llvm::SmallVector<ParmVarDecl*, 16> Params;
933      for (FunctionProtoType::arg_type_iterator
934             ParamType = OldProto->arg_type_begin(),
935             ParamEnd = OldProto->arg_type_end();
936           ParamType != ParamEnd; ++ParamType) {
937        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
938                                                 SourceLocation(), 0,
939                                                 *ParamType, /*TInfo=*/0,
940                                                 VarDecl::None, 0);
941        Param->setImplicit();
942        Params.push_back(Param);
943      }
944
945      New->setParams(Context, Params.data(), Params.size());
946    }
947
948    return MergeCompatibleFunctionDecls(New, Old);
949  }
950
951  // GNU C permits a K&R definition to follow a prototype declaration
952  // if the declared types of the parameters in the K&R definition
953  // match the types in the prototype declaration, even when the
954  // promoted types of the parameters from the K&R definition differ
955  // from the types in the prototype. GCC then keeps the types from
956  // the prototype.
957  //
958  // If a variadic prototype is followed by a non-variadic K&R definition,
959  // the K&R definition becomes variadic.  This is sort of an edge case, but
960  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
961  // C99 6.9.1p8.
962  if (!getLangOptions().CPlusPlus &&
963      Old->hasPrototype() && !New->hasPrototype() &&
964      New->getType()->getAs<FunctionProtoType>() &&
965      Old->getNumParams() == New->getNumParams()) {
966    llvm::SmallVector<QualType, 16> ArgTypes;
967    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
968    const FunctionProtoType *OldProto
969      = Old->getType()->getAs<FunctionProtoType>();
970    const FunctionProtoType *NewProto
971      = New->getType()->getAs<FunctionProtoType>();
972
973    // Determine whether this is the GNU C extension.
974    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
975                                               NewProto->getResultType());
976    bool LooseCompatible = !MergedReturn.isNull();
977    for (unsigned Idx = 0, End = Old->getNumParams();
978         LooseCompatible && Idx != End; ++Idx) {
979      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
980      ParmVarDecl *NewParm = New->getParamDecl(Idx);
981      if (Context.typesAreCompatible(OldParm->getType(),
982                                     NewProto->getArgType(Idx))) {
983        ArgTypes.push_back(NewParm->getType());
984      } else if (Context.typesAreCompatible(OldParm->getType(),
985                                            NewParm->getType())) {
986        GNUCompatibleParamWarning Warn
987          = { OldParm, NewParm, NewProto->getArgType(Idx) };
988        Warnings.push_back(Warn);
989        ArgTypes.push_back(NewParm->getType());
990      } else
991        LooseCompatible = false;
992    }
993
994    if (LooseCompatible) {
995      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
996        Diag(Warnings[Warn].NewParm->getLocation(),
997             diag::ext_param_promoted_not_compatible_with_prototype)
998          << Warnings[Warn].PromotedType
999          << Warnings[Warn].OldParm->getType();
1000        Diag(Warnings[Warn].OldParm->getLocation(),
1001             diag::note_previous_declaration);
1002      }
1003
1004      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1005                                           ArgTypes.size(),
1006                                           OldProto->isVariadic(), 0));
1007      return MergeCompatibleFunctionDecls(New, Old);
1008    }
1009
1010    // Fall through to diagnose conflicting types.
1011  }
1012
1013  // A function that has already been declared has been redeclared or defined
1014  // with a different type- show appropriate diagnostic
1015  if (unsigned BuiltinID = Old->getBuiltinID()) {
1016    // The user has declared a builtin function with an incompatible
1017    // signature.
1018    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1019      // The function the user is redeclaring is a library-defined
1020      // function like 'malloc' or 'printf'. Warn about the
1021      // redeclaration, then pretend that we don't know about this
1022      // library built-in.
1023      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1024      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1025        << Old << Old->getType();
1026      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1027      Old->setInvalidDecl();
1028      return false;
1029    }
1030
1031    PrevDiag = diag::note_previous_builtin_declaration;
1032  }
1033
1034  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1035  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1036  return true;
1037}
1038
1039/// \brief Completes the merge of two function declarations that are
1040/// known to be compatible.
1041///
1042/// This routine handles the merging of attributes and other
1043/// properties of function declarations form the old declaration to
1044/// the new declaration, once we know that New is in fact a
1045/// redeclaration of Old.
1046///
1047/// \returns false
1048bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1049  // Merge the attributes
1050  MergeAttributes(New, Old, Context);
1051
1052  // Merge the storage class.
1053  if (Old->getStorageClass() != FunctionDecl::Extern &&
1054      Old->getStorageClass() != FunctionDecl::None)
1055    New->setStorageClass(Old->getStorageClass());
1056
1057  // Merge "pure" flag.
1058  if (Old->isPure())
1059    New->setPure();
1060
1061  // Merge the "deleted" flag.
1062  if (Old->isDeleted())
1063    New->setDeleted();
1064
1065  if (getLangOptions().CPlusPlus)
1066    return MergeCXXFunctionDecl(New, Old);
1067
1068  return false;
1069}
1070
1071/// MergeVarDecl - We just parsed a variable 'New' which has the same name
1072/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
1073/// situation, merging decls or emitting diagnostics as appropriate.
1074///
1075/// Tentative definition rules (C99 6.9.2p2) are checked by
1076/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
1077/// definitions here, since the initializer hasn't been attached.
1078///
1079void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
1080  // If the new decl is already invalid, don't do any other checking.
1081  if (New->isInvalidDecl())
1082    return;
1083
1084  // Verify the old decl was also a variable.
1085  VarDecl *Old = 0;
1086  if (!Previous.isSingleResult() ||
1087      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
1088    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1089      << New->getDeclName();
1090    Diag(Previous.getRepresentativeDecl()->getLocation(),
1091         diag::note_previous_definition);
1092    return New->setInvalidDecl();
1093  }
1094
1095  MergeAttributes(New, Old, Context);
1096
1097  // Merge the types
1098  QualType MergedT;
1099  if (getLangOptions().CPlusPlus) {
1100    if (Context.hasSameType(New->getType(), Old->getType()))
1101      MergedT = New->getType();
1102    // C++ [basic.link]p10:
1103    //   [...] the types specified by all declarations referring to a given
1104    //   object or function shall be identical, except that declarations for an
1105    //   array object can specify array types that differ by the presence or
1106    //   absence of a major array bound (8.3.4).
1107    else if (Old->getType()->isIncompleteArrayType() &&
1108             New->getType()->isArrayType()) {
1109      CanQual<ArrayType> OldArray
1110        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1111      CanQual<ArrayType> NewArray
1112        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1113      if (OldArray->getElementType() == NewArray->getElementType())
1114        MergedT = New->getType();
1115    } else if (Old->getType()->isArrayType() &&
1116             New->getType()->isIncompleteArrayType()) {
1117      CanQual<ArrayType> OldArray
1118        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1119      CanQual<ArrayType> NewArray
1120        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1121      if (OldArray->getElementType() == NewArray->getElementType())
1122        MergedT = Old->getType();
1123    }
1124  } else {
1125    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1126  }
1127  if (MergedT.isNull()) {
1128    Diag(New->getLocation(), diag::err_redefinition_different_type)
1129      << New->getDeclName();
1130    Diag(Old->getLocation(), diag::note_previous_definition);
1131    return New->setInvalidDecl();
1132  }
1133  New->setType(MergedT);
1134
1135  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
1136  if (New->getStorageClass() == VarDecl::Static &&
1137      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
1138    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
1139    Diag(Old->getLocation(), diag::note_previous_definition);
1140    return New->setInvalidDecl();
1141  }
1142  // C99 6.2.2p4:
1143  //   For an identifier declared with the storage-class specifier
1144  //   extern in a scope in which a prior declaration of that
1145  //   identifier is visible,23) if the prior declaration specifies
1146  //   internal or external linkage, the linkage of the identifier at
1147  //   the later declaration is the same as the linkage specified at
1148  //   the prior declaration. If no prior declaration is visible, or
1149  //   if the prior declaration specifies no linkage, then the
1150  //   identifier has external linkage.
1151  if (New->hasExternalStorage() && Old->hasLinkage())
1152    /* Okay */;
1153  else if (New->getStorageClass() != VarDecl::Static &&
1154           Old->getStorageClass() == VarDecl::Static) {
1155    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1156    Diag(Old->getLocation(), diag::note_previous_definition);
1157    return New->setInvalidDecl();
1158  }
1159
1160  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1161
1162  // FIXME: The test for external storage here seems wrong? We still
1163  // need to check for mismatches.
1164  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1165      // Don't complain about out-of-line definitions of static members.
1166      !(Old->getLexicalDeclContext()->isRecord() &&
1167        !New->getLexicalDeclContext()->isRecord())) {
1168    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1169    Diag(Old->getLocation(), diag::note_previous_definition);
1170    return New->setInvalidDecl();
1171  }
1172
1173  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1174    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1175    Diag(Old->getLocation(), diag::note_previous_definition);
1176  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1177    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1178    Diag(Old->getLocation(), diag::note_previous_definition);
1179  }
1180
1181  // Keep a chain of previous declarations.
1182  New->setPreviousDeclaration(Old);
1183}
1184
1185/// CheckFallThrough - Check that we don't fall off the end of a
1186/// Statement that should return a value.
1187///
1188/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1189/// MaybeFallThrough iff we might or might not fall off the end,
1190/// NeverFallThroughOrReturn iff we never fall off the end of the statement or
1191/// return.  We assume NeverFallThrough iff we never fall off the end of the
1192/// statement but we may return.  We assume that functions not marked noreturn
1193/// will return.
1194Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1195  // FIXME: Eventually share this CFG object when we have other warnings based
1196  // of the CFG.  This can be done using AnalysisContext.
1197  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1198
1199  // FIXME: They should never return 0, fix that, delete this code.
1200  if (cfg == 0)
1201    // FIXME: This should be NeverFallThrough
1202    return NeverFallThroughOrReturn;
1203  // The CFG leaves in dead things, and we don't want to dead code paths to
1204  // confuse us, so we mark all live things first.
1205  std::queue<CFGBlock*> workq;
1206  llvm::BitVector live(cfg->getNumBlockIDs());
1207  // Prep work queue
1208  workq.push(&cfg->getEntry());
1209  // Solve
1210  while (!workq.empty()) {
1211    CFGBlock *item = workq.front();
1212    workq.pop();
1213    live.set(item->getBlockID());
1214    for (CFGBlock::succ_iterator I=item->succ_begin(),
1215           E=item->succ_end();
1216         I != E;
1217         ++I) {
1218      if ((*I) && !live[(*I)->getBlockID()]) {
1219        live.set((*I)->getBlockID());
1220        workq.push(*I);
1221      }
1222    }
1223  }
1224
1225  // Now we know what is live, we check the live precessors of the exit block
1226  // and look for fall through paths, being careful to ignore normal returns,
1227  // and exceptional paths.
1228  bool HasLiveReturn = false;
1229  bool HasFakeEdge = false;
1230  bool HasPlainEdge = false;
1231  for (CFGBlock::pred_iterator I=cfg->getExit().pred_begin(),
1232         E = cfg->getExit().pred_end();
1233       I != E;
1234       ++I) {
1235    CFGBlock& B = **I;
1236    if (!live[B.getBlockID()])
1237      continue;
1238    if (B.size() == 0) {
1239      // A labeled empty statement, or the entry block...
1240      HasPlainEdge = true;
1241      continue;
1242    }
1243    Stmt *S = B[B.size()-1];
1244    if (isa<ReturnStmt>(S)) {
1245      HasLiveReturn = true;
1246      continue;
1247    }
1248    if (isa<ObjCAtThrowStmt>(S)) {
1249      HasFakeEdge = true;
1250      continue;
1251    }
1252    if (isa<CXXThrowExpr>(S)) {
1253      HasFakeEdge = true;
1254      continue;
1255    }
1256    if (isa<AsmStmt>(S)) {
1257      HasFakeEdge = true;
1258      HasLiveReturn = true;
1259      continue;
1260    }
1261    bool NoReturnEdge = false;
1262    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1263      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1264      if (CEE->getType().getNoReturnAttr()) {
1265        NoReturnEdge = true;
1266        HasFakeEdge = true;
1267      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1268        ValueDecl *VD = DRE->getDecl();
1269        if (VD->hasAttr<NoReturnAttr>()) {
1270          NoReturnEdge = true;
1271          HasFakeEdge = true;
1272        }
1273      }
1274    }
1275    // FIXME: Add noreturn message sends.
1276    if (NoReturnEdge == false)
1277      HasPlainEdge = true;
1278  }
1279  if (!HasPlainEdge) {
1280    if (HasLiveReturn)
1281      return NeverFallThrough;
1282    return NeverFallThroughOrReturn;
1283  }
1284  if (HasFakeEdge || HasLiveReturn)
1285    return MaybeFallThrough;
1286  // This says AlwaysFallThrough for calls to functions that are not marked
1287  // noreturn, that don't return.  If people would like this warning to be more
1288  // accurate, such functions should be marked as noreturn.
1289  return AlwaysFallThrough;
1290}
1291
1292/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1293/// function that should return a value.  Check that we don't fall off the end
1294/// of a noreturn function.  We assume that functions and blocks not marked
1295/// noreturn will return.
1296void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1297  // FIXME: Would be nice if we had a better way to control cascading errors,
1298  // but for now, avoid them.  The problem is that when Parse sees:
1299  //   int foo() { return a; }
1300  // The return is eaten and the Sema code sees just:
1301  //   int foo() { }
1302  // which this code would then warn about.
1303  if (getDiagnostics().hasErrorOccurred())
1304    return;
1305
1306  bool ReturnsVoid = false;
1307  bool HasNoReturn = false;
1308  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1309    // If the result type of the function is a dependent type, we don't know
1310    // whether it will be void or not, so don't
1311    if (FD->getResultType()->isDependentType())
1312      return;
1313    if (FD->getResultType()->isVoidType())
1314      ReturnsVoid = true;
1315    if (FD->hasAttr<NoReturnAttr>())
1316      HasNoReturn = true;
1317  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1318    if (MD->getResultType()->isVoidType())
1319      ReturnsVoid = true;
1320    if (MD->hasAttr<NoReturnAttr>())
1321      HasNoReturn = true;
1322  }
1323
1324  // Short circuit for compilation speed.
1325  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1326       == Diagnostic::Ignored || ReturnsVoid)
1327      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1328          == Diagnostic::Ignored || !HasNoReturn)
1329      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1330          == Diagnostic::Ignored || !ReturnsVoid))
1331    return;
1332  // FIXME: Function try block
1333  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1334    switch (CheckFallThrough(Body)) {
1335    case MaybeFallThrough:
1336      if (HasNoReturn)
1337        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1338      else if (!ReturnsVoid)
1339        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1340      break;
1341    case AlwaysFallThrough:
1342      if (HasNoReturn)
1343        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1344      else if (!ReturnsVoid)
1345        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1346      break;
1347    case NeverFallThroughOrReturn:
1348      if (ReturnsVoid && !HasNoReturn)
1349        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1350      break;
1351    case NeverFallThrough:
1352      break;
1353    }
1354  }
1355}
1356
1357/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1358/// that should return a value.  Check that we don't fall off the end of a
1359/// noreturn block.  We assume that functions and blocks not marked noreturn
1360/// will return.
1361void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1362  // FIXME: Would be nice if we had a better way to control cascading errors,
1363  // but for now, avoid them.  The problem is that when Parse sees:
1364  //   int foo() { return a; }
1365  // The return is eaten and the Sema code sees just:
1366  //   int foo() { }
1367  // which this code would then warn about.
1368  if (getDiagnostics().hasErrorOccurred())
1369    return;
1370  bool ReturnsVoid = false;
1371  bool HasNoReturn = false;
1372  if (const FunctionType *FT =BlockTy->getPointeeType()->getAs<FunctionType>()){
1373    if (FT->getResultType()->isVoidType())
1374      ReturnsVoid = true;
1375    if (FT->getNoReturnAttr())
1376      HasNoReturn = true;
1377  }
1378
1379  // Short circuit for compilation speed.
1380  if (ReturnsVoid
1381      && !HasNoReturn
1382      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1383          == Diagnostic::Ignored || !ReturnsVoid))
1384    return;
1385  // FIXME: Funtion try block
1386  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1387    switch (CheckFallThrough(Body)) {
1388    case MaybeFallThrough:
1389      if (HasNoReturn)
1390        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1391      else if (!ReturnsVoid)
1392        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1393      break;
1394    case AlwaysFallThrough:
1395      if (HasNoReturn)
1396        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1397      else if (!ReturnsVoid)
1398        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1399      break;
1400    case NeverFallThroughOrReturn:
1401      if (ReturnsVoid)
1402        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1403      break;
1404    case NeverFallThrough:
1405      break;
1406    }
1407  }
1408}
1409
1410/// CheckParmsForFunctionDef - Check that the parameters of the given
1411/// function are appropriate for the definition of a function. This
1412/// takes care of any checks that cannot be performed on the
1413/// declaration itself, e.g., that the types of each of the function
1414/// parameters are complete.
1415bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1416  bool HasInvalidParm = false;
1417  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1418    ParmVarDecl *Param = FD->getParamDecl(p);
1419
1420    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1421    // function declarator that is part of a function definition of
1422    // that function shall not have incomplete type.
1423    //
1424    // This is also C++ [dcl.fct]p6.
1425    if (!Param->isInvalidDecl() &&
1426        RequireCompleteType(Param->getLocation(), Param->getType(),
1427                               diag::err_typecheck_decl_incomplete_type)) {
1428      Param->setInvalidDecl();
1429      HasInvalidParm = true;
1430    }
1431
1432    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1433    // declaration of each parameter shall include an identifier.
1434    if (Param->getIdentifier() == 0 &&
1435        !Param->isImplicit() &&
1436        !getLangOptions().CPlusPlus)
1437      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1438  }
1439
1440  return HasInvalidParm;
1441}
1442
1443/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1444/// no declarator (e.g. "struct foo;") is parsed.
1445Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1446  // FIXME: Error on auto/register at file scope
1447  // FIXME: Error on inline/virtual/explicit
1448  // FIXME: Error on invalid restrict
1449  // FIXME: Warn on useless __thread
1450  // FIXME: Warn on useless const/volatile
1451  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1452  // FIXME: Warn on useless attributes
1453  Decl *TagD = 0;
1454  TagDecl *Tag = 0;
1455  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1456      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1457      DS.getTypeSpecType() == DeclSpec::TST_union ||
1458      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1459    TagD = static_cast<Decl *>(DS.getTypeRep());
1460
1461    if (!TagD) // We probably had an error
1462      return DeclPtrTy();
1463
1464    // Note that the above type specs guarantee that the
1465    // type rep is a Decl, whereas in many of the others
1466    // it's a Type.
1467    Tag = dyn_cast<TagDecl>(TagD);
1468  }
1469
1470  if (DS.isFriendSpecified()) {
1471    // If we're dealing with a class template decl, assume that the
1472    // template routines are handling it.
1473    if (TagD && isa<ClassTemplateDecl>(TagD))
1474      return DeclPtrTy();
1475    return ActOnFriendTypeDecl(S, DS, MultiTemplateParamsArg(*this, 0, 0));
1476  }
1477
1478  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1479    // If there are attributes in the DeclSpec, apply them to the record.
1480    if (const AttributeList *AL = DS.getAttributes())
1481      ProcessDeclAttributeList(S, Record, AL);
1482
1483    if (!Record->getDeclName() && Record->isDefinition() &&
1484        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1485      if (getLangOptions().CPlusPlus ||
1486          Record->getDeclContext()->isRecord())
1487        return BuildAnonymousStructOrUnion(S, DS, Record);
1488
1489      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1490        << DS.getSourceRange();
1491    }
1492
1493    // Microsoft allows unnamed struct/union fields. Don't complain
1494    // about them.
1495    // FIXME: Should we support Microsoft's extensions in this area?
1496    if (Record->getDeclName() && getLangOptions().Microsoft)
1497      return DeclPtrTy::make(Tag);
1498  }
1499
1500  if (!DS.isMissingDeclaratorOk() &&
1501      DS.getTypeSpecType() != DeclSpec::TST_error) {
1502    // Warn about typedefs of enums without names, since this is an
1503    // extension in both Microsoft an GNU.
1504    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1505        Tag && isa<EnumDecl>(Tag)) {
1506      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1507        << DS.getSourceRange();
1508      return DeclPtrTy::make(Tag);
1509    }
1510
1511    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1512      << DS.getSourceRange();
1513    return DeclPtrTy();
1514  }
1515
1516  return DeclPtrTy::make(Tag);
1517}
1518
1519/// We are trying to introduce the given name into the given context;
1520/// check if there's an existing declaration that can't be overloaded.
1521///
1522/// \return true if this is a forbidden redeclaration
1523bool Sema::CheckRedeclaration(DeclContext *DC,
1524                              DeclarationName Name,
1525                              SourceLocation NameLoc,
1526                              unsigned diagnostic) {
1527  LookupResult R(*this, Name, NameLoc, LookupOrdinaryName,
1528                 ForRedeclaration);
1529  LookupQualifiedName(R, DC);
1530
1531  if (R.empty()) return false;
1532
1533  if (R.getResultKind() == LookupResult::Found &&
1534      isa<TagDecl>(R.getFoundDecl()))
1535    return false;
1536
1537  // Pick a representative declaration.
1538  NamedDecl *PrevDecl = (*R.begin())->getUnderlyingDecl();
1539
1540  Diag(NameLoc, diagnostic) << Name;
1541  Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1542
1543  return true;
1544}
1545
1546/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1547/// anonymous struct or union AnonRecord into the owning context Owner
1548/// and scope S. This routine will be invoked just after we realize
1549/// that an unnamed union or struct is actually an anonymous union or
1550/// struct, e.g.,
1551///
1552/// @code
1553/// union {
1554///   int i;
1555///   float f;
1556/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1557///    // f into the surrounding scope.x
1558/// @endcode
1559///
1560/// This routine is recursive, injecting the names of nested anonymous
1561/// structs/unions into the owning context and scope as well.
1562bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1563                                               RecordDecl *AnonRecord) {
1564  unsigned diagKind
1565    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
1566                            : diag::err_anonymous_struct_member_redecl;
1567
1568  bool Invalid = false;
1569  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1570                               FEnd = AnonRecord->field_end();
1571       F != FEnd; ++F) {
1572    if ((*F)->getDeclName()) {
1573      if (CheckRedeclaration(Owner, (*F)->getDeclName(),
1574                             (*F)->getLocation(), diagKind)) {
1575        // C++ [class.union]p2:
1576        //   The names of the members of an anonymous union shall be
1577        //   distinct from the names of any other entity in the
1578        //   scope in which the anonymous union is declared.
1579        Invalid = true;
1580      } else {
1581        // C++ [class.union]p2:
1582        //   For the purpose of name lookup, after the anonymous union
1583        //   definition, the members of the anonymous union are
1584        //   considered to have been defined in the scope in which the
1585        //   anonymous union is declared.
1586        Owner->makeDeclVisibleInContext(*F);
1587        S->AddDecl(DeclPtrTy::make(*F));
1588        IdResolver.AddDecl(*F);
1589      }
1590    } else if (const RecordType *InnerRecordType
1591                 = (*F)->getType()->getAs<RecordType>()) {
1592      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1593      if (InnerRecord->isAnonymousStructOrUnion())
1594        Invalid = Invalid ||
1595          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1596    }
1597  }
1598
1599  return Invalid;
1600}
1601
1602/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1603/// anonymous structure or union. Anonymous unions are a C++ feature
1604/// (C++ [class.union]) and a GNU C extension; anonymous structures
1605/// are a GNU C and GNU C++ extension.
1606Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1607                                                  RecordDecl *Record) {
1608  DeclContext *Owner = Record->getDeclContext();
1609
1610  // Diagnose whether this anonymous struct/union is an extension.
1611  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1612    Diag(Record->getLocation(), diag::ext_anonymous_union);
1613  else if (!Record->isUnion())
1614    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1615
1616  // C and C++ require different kinds of checks for anonymous
1617  // structs/unions.
1618  bool Invalid = false;
1619  if (getLangOptions().CPlusPlus) {
1620    const char* PrevSpec = 0;
1621    unsigned DiagID;
1622    // C++ [class.union]p3:
1623    //   Anonymous unions declared in a named namespace or in the
1624    //   global namespace shall be declared static.
1625    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1626        (isa<TranslationUnitDecl>(Owner) ||
1627         (isa<NamespaceDecl>(Owner) &&
1628          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1629      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1630      Invalid = true;
1631
1632      // Recover by adding 'static'.
1633      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1634                             PrevSpec, DiagID);
1635    }
1636    // C++ [class.union]p3:
1637    //   A storage class is not allowed in a declaration of an
1638    //   anonymous union in a class scope.
1639    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1640             isa<RecordDecl>(Owner)) {
1641      Diag(DS.getStorageClassSpecLoc(),
1642           diag::err_anonymous_union_with_storage_spec);
1643      Invalid = true;
1644
1645      // Recover by removing the storage specifier.
1646      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1647                             PrevSpec, DiagID);
1648    }
1649
1650    // C++ [class.union]p2:
1651    //   The member-specification of an anonymous union shall only
1652    //   define non-static data members. [Note: nested types and
1653    //   functions cannot be declared within an anonymous union. ]
1654    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1655                                 MemEnd = Record->decls_end();
1656         Mem != MemEnd; ++Mem) {
1657      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1658        // C++ [class.union]p3:
1659        //   An anonymous union shall not have private or protected
1660        //   members (clause 11).
1661        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1662          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1663            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1664          Invalid = true;
1665        }
1666      } else if ((*Mem)->isImplicit()) {
1667        // Any implicit members are fine.
1668      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1669        // This is a type that showed up in an
1670        // elaborated-type-specifier inside the anonymous struct or
1671        // union, but which actually declares a type outside of the
1672        // anonymous struct or union. It's okay.
1673      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1674        if (!MemRecord->isAnonymousStructOrUnion() &&
1675            MemRecord->getDeclName()) {
1676          // This is a nested type declaration.
1677          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1678            << (int)Record->isUnion();
1679          Invalid = true;
1680        }
1681      } else {
1682        // We have something that isn't a non-static data
1683        // member. Complain about it.
1684        unsigned DK = diag::err_anonymous_record_bad_member;
1685        if (isa<TypeDecl>(*Mem))
1686          DK = diag::err_anonymous_record_with_type;
1687        else if (isa<FunctionDecl>(*Mem))
1688          DK = diag::err_anonymous_record_with_function;
1689        else if (isa<VarDecl>(*Mem))
1690          DK = diag::err_anonymous_record_with_static;
1691        Diag((*Mem)->getLocation(), DK)
1692            << (int)Record->isUnion();
1693          Invalid = true;
1694      }
1695    }
1696  }
1697
1698  if (!Record->isUnion() && !Owner->isRecord()) {
1699    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1700      << (int)getLangOptions().CPlusPlus;
1701    Invalid = true;
1702  }
1703
1704  // Mock up a declarator.
1705  Declarator Dc(DS, Declarator::TypeNameContext);
1706  TypeSourceInfo *TInfo = 0;
1707  GetTypeForDeclarator(Dc, S, &TInfo);
1708  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
1709
1710  // Create a declaration for this anonymous struct/union.
1711  NamedDecl *Anon = 0;
1712  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1713    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1714                             /*IdentifierInfo=*/0,
1715                             Context.getTypeDeclType(Record),
1716                             TInfo,
1717                             /*BitWidth=*/0, /*Mutable=*/false);
1718    Anon->setAccess(AS_public);
1719    if (getLangOptions().CPlusPlus)
1720      FieldCollector->Add(cast<FieldDecl>(Anon));
1721  } else {
1722    VarDecl::StorageClass SC;
1723    switch (DS.getStorageClassSpec()) {
1724    default: assert(0 && "Unknown storage class!");
1725    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1726    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1727    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1728    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1729    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1730    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1731    case DeclSpec::SCS_mutable:
1732      // mutable can only appear on non-static class members, so it's always
1733      // an error here
1734      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1735      Invalid = true;
1736      SC = VarDecl::None;
1737      break;
1738    }
1739
1740    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1741                           /*IdentifierInfo=*/0,
1742                           Context.getTypeDeclType(Record),
1743                           TInfo,
1744                           SC);
1745  }
1746  Anon->setImplicit();
1747
1748  // Add the anonymous struct/union object to the current
1749  // context. We'll be referencing this object when we refer to one of
1750  // its members.
1751  Owner->addDecl(Anon);
1752
1753  // Inject the members of the anonymous struct/union into the owning
1754  // context and into the identifier resolver chain for name lookup
1755  // purposes.
1756  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1757    Invalid = true;
1758
1759  // Mark this as an anonymous struct/union type. Note that we do not
1760  // do this until after we have already checked and injected the
1761  // members of this anonymous struct/union type, because otherwise
1762  // the members could be injected twice: once by DeclContext when it
1763  // builds its lookup table, and once by
1764  // InjectAnonymousStructOrUnionMembers.
1765  Record->setAnonymousStructOrUnion(true);
1766
1767  if (Invalid)
1768    Anon->setInvalidDecl();
1769
1770  return DeclPtrTy::make(Anon);
1771}
1772
1773
1774/// GetNameForDeclarator - Determine the full declaration name for the
1775/// given Declarator.
1776DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1777  return GetNameFromUnqualifiedId(D.getName());
1778}
1779
1780/// \brief Retrieves the canonicalized name from a parsed unqualified-id.
1781DeclarationName Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
1782  switch (Name.getKind()) {
1783    case UnqualifiedId::IK_Identifier:
1784      return DeclarationName(Name.Identifier);
1785
1786    case UnqualifiedId::IK_OperatorFunctionId:
1787      return Context.DeclarationNames.getCXXOperatorName(
1788                                              Name.OperatorFunctionId.Operator);
1789
1790    case UnqualifiedId::IK_LiteralOperatorId:
1791      return Context.DeclarationNames.getCXXLiteralOperatorName(
1792                                                               Name.Identifier);
1793
1794    case UnqualifiedId::IK_ConversionFunctionId: {
1795      QualType Ty = GetTypeFromParser(Name.ConversionFunctionId);
1796      if (Ty.isNull())
1797        return DeclarationName();
1798
1799      return Context.DeclarationNames.getCXXConversionFunctionName(
1800                                                  Context.getCanonicalType(Ty));
1801    }
1802
1803    case UnqualifiedId::IK_ConstructorName: {
1804      QualType Ty = GetTypeFromParser(Name.ConstructorName);
1805      if (Ty.isNull())
1806        return DeclarationName();
1807
1808      return Context.DeclarationNames.getCXXConstructorName(
1809                                                  Context.getCanonicalType(Ty));
1810    }
1811
1812    case UnqualifiedId::IK_DestructorName: {
1813      QualType Ty = GetTypeFromParser(Name.DestructorName);
1814      if (Ty.isNull())
1815        return DeclarationName();
1816
1817      return Context.DeclarationNames.getCXXDestructorName(
1818                                                           Context.getCanonicalType(Ty));
1819    }
1820
1821    case UnqualifiedId::IK_TemplateId: {
1822      TemplateName TName
1823        = TemplateName::getFromVoidPointer(Name.TemplateId->Template);
1824      return Context.getNameForTemplate(TName);
1825    }
1826  }
1827
1828  assert(false && "Unknown name kind");
1829  return DeclarationName();
1830}
1831
1832/// isNearlyMatchingFunction - Determine whether the C++ functions
1833/// Declaration and Definition are "nearly" matching. This heuristic
1834/// is used to improve diagnostics in the case where an out-of-line
1835/// function definition doesn't match any declaration within
1836/// the class or namespace.
1837static bool isNearlyMatchingFunction(ASTContext &Context,
1838                                     FunctionDecl *Declaration,
1839                                     FunctionDecl *Definition) {
1840  if (Declaration->param_size() != Definition->param_size())
1841    return false;
1842  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1843    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1844    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1845
1846    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
1847                                        DefParamTy.getNonReferenceType()))
1848      return false;
1849  }
1850
1851  return true;
1852}
1853
1854Sema::DeclPtrTy
1855Sema::HandleDeclarator(Scope *S, Declarator &D,
1856                       MultiTemplateParamsArg TemplateParamLists,
1857                       bool IsFunctionDefinition) {
1858  DeclarationName Name = GetNameForDeclarator(D);
1859
1860  // All of these full declarators require an identifier.  If it doesn't have
1861  // one, the ParsedFreeStandingDeclSpec action should be used.
1862  if (!Name) {
1863    if (!D.isInvalidType())  // Reject this if we think it is valid.
1864      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1865           diag::err_declarator_need_ident)
1866        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1867    return DeclPtrTy();
1868  }
1869
1870  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1871  // we find one that is.
1872  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1873         (S->getFlags() & Scope::TemplateParamScope) != 0)
1874    S = S->getParent();
1875
1876  // If this is an out-of-line definition of a member of a class template
1877  // or class template partial specialization, we may need to rebuild the
1878  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1879  // for more information.
1880  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1881  // handle expressions properly.
1882  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1883  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1884      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1885      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1886       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1887       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1888       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1889    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1890      // FIXME: Preserve type source info.
1891      QualType T = GetTypeFromParser(DS.getTypeRep());
1892      EnterDeclaratorContext(S, DC);
1893      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1894      ExitDeclaratorContext(S);
1895      if (T.isNull())
1896        return DeclPtrTy();
1897      DS.UpdateTypeRep(T.getAsOpaquePtr());
1898    }
1899  }
1900
1901  DeclContext *DC;
1902  NamedDecl *New;
1903
1904  TypeSourceInfo *TInfo = 0;
1905  QualType R = GetTypeForDeclarator(D, S, &TInfo);
1906
1907  LookupResult Previous(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
1908                        ForRedeclaration);
1909
1910  // See if this is a redefinition of a variable in the same scope.
1911  if (D.getCXXScopeSpec().isInvalid()) {
1912    DC = CurContext;
1913    D.setInvalidType();
1914  } else if (!D.getCXXScopeSpec().isSet()) {
1915    bool IsLinkageLookup = false;
1916
1917    // If the declaration we're planning to build will be a function
1918    // or object with linkage, then look for another declaration with
1919    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1920    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1921      /* Do nothing*/;
1922    else if (R->isFunctionType()) {
1923      if (CurContext->isFunctionOrMethod() ||
1924          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1925        IsLinkageLookup = true;
1926    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1927      IsLinkageLookup = true;
1928    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1929             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1930      IsLinkageLookup = true;
1931
1932    if (IsLinkageLookup)
1933      Previous.clear(LookupRedeclarationWithLinkage);
1934
1935    DC = CurContext;
1936    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
1937  } else { // Something like "int foo::x;"
1938    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1939
1940    if (!DC) {
1941      // If we could not compute the declaration context, it's because the
1942      // declaration context is dependent but does not refer to a class,
1943      // class template, or class template partial specialization. Complain
1944      // and return early, to avoid the coming semantic disaster.
1945      Diag(D.getIdentifierLoc(),
1946           diag::err_template_qualified_declarator_no_match)
1947        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1948        << D.getCXXScopeSpec().getRange();
1949      return DeclPtrTy();
1950    }
1951
1952    if (!DC->isDependentContext() &&
1953        RequireCompleteDeclContext(D.getCXXScopeSpec()))
1954      return DeclPtrTy();
1955
1956    LookupQualifiedName(Previous, DC);
1957
1958    // Don't consider using declarations as previous declarations for
1959    // out-of-line members.
1960    RemoveUsingDecls(Previous);
1961
1962    // C++ 7.3.1.2p2:
1963    // Members (including explicit specializations of templates) of a named
1964    // namespace can also be defined outside that namespace by explicit
1965    // qualification of the name being defined, provided that the entity being
1966    // defined was already declared in the namespace and the definition appears
1967    // after the point of declaration in a namespace that encloses the
1968    // declarations namespace.
1969    //
1970    // Note that we only check the context at this point. We don't yet
1971    // have enough information to make sure that PrevDecl is actually
1972    // the declaration we want to match. For example, given:
1973    //
1974    //   class X {
1975    //     void f();
1976    //     void f(float);
1977    //   };
1978    //
1979    //   void X::f(int) { } // ill-formed
1980    //
1981    // In this case, PrevDecl will point to the overload set
1982    // containing the two f's declared in X, but neither of them
1983    // matches.
1984
1985    // First check whether we named the global scope.
1986    if (isa<TranslationUnitDecl>(DC)) {
1987      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1988        << Name << D.getCXXScopeSpec().getRange();
1989    } else {
1990      DeclContext *Cur = CurContext;
1991      while (isa<LinkageSpecDecl>(Cur))
1992        Cur = Cur->getParent();
1993      if (!Cur->Encloses(DC)) {
1994        // The qualifying scope doesn't enclose the original declaration.
1995        // Emit diagnostic based on current scope.
1996        SourceLocation L = D.getIdentifierLoc();
1997        SourceRange R = D.getCXXScopeSpec().getRange();
1998        if (isa<FunctionDecl>(Cur))
1999          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
2000        else
2001          Diag(L, diag::err_invalid_declarator_scope)
2002            << Name << cast<NamedDecl>(DC) << R;
2003        D.setInvalidType();
2004      }
2005    }
2006  }
2007
2008  if (Previous.isSingleResult() &&
2009      Previous.getFoundDecl()->isTemplateParameter()) {
2010    // Maybe we will complain about the shadowed template parameter.
2011    if (!D.isInvalidType())
2012      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
2013                                          Previous.getFoundDecl()))
2014        D.setInvalidType();
2015
2016    // Just pretend that we didn't see the previous declaration.
2017    Previous.clear();
2018  }
2019
2020  // In C++, the previous declaration we find might be a tag type
2021  // (class or enum). In this case, the new declaration will hide the
2022  // tag type. Note that this does does not apply if we're declaring a
2023  // typedef (C++ [dcl.typedef]p4).
2024  if (Previous.isSingleTagDecl() &&
2025      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
2026    Previous.clear();
2027
2028  bool Redeclaration = false;
2029  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
2030    if (TemplateParamLists.size()) {
2031      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
2032      return DeclPtrTy();
2033    }
2034
2035    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
2036  } else if (R->isFunctionType()) {
2037    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
2038                                  move(TemplateParamLists),
2039                                  IsFunctionDefinition, Redeclaration);
2040  } else {
2041    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
2042                                  move(TemplateParamLists),
2043                                  Redeclaration);
2044  }
2045
2046  if (New == 0)
2047    return DeclPtrTy();
2048
2049  // If this has an identifier and is not an invalid redeclaration or
2050  // function template specialization, add it to the scope stack.
2051  if (Name && !(Redeclaration && New->isInvalidDecl()))
2052    PushOnScopeChains(New, S);
2053
2054  return DeclPtrTy::make(New);
2055}
2056
2057/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
2058/// types into constant array types in certain situations which would otherwise
2059/// be errors (for GCC compatibility).
2060static QualType TryToFixInvalidVariablyModifiedType(QualType T,
2061                                                    ASTContext &Context,
2062                                                    bool &SizeIsNegative) {
2063  // This method tries to turn a variable array into a constant
2064  // array even when the size isn't an ICE.  This is necessary
2065  // for compatibility with code that depends on gcc's buggy
2066  // constant expression folding, like struct {char x[(int)(char*)2];}
2067  SizeIsNegative = false;
2068
2069  QualifierCollector Qs;
2070  const Type *Ty = Qs.strip(T);
2071
2072  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
2073    QualType Pointee = PTy->getPointeeType();
2074    QualType FixedType =
2075        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
2076    if (FixedType.isNull()) return FixedType;
2077    FixedType = Context.getPointerType(FixedType);
2078    return Qs.apply(FixedType);
2079  }
2080
2081  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
2082  if (!VLATy)
2083    return QualType();
2084  // FIXME: We should probably handle this case
2085  if (VLATy->getElementType()->isVariablyModifiedType())
2086    return QualType();
2087
2088  Expr::EvalResult EvalResult;
2089  if (!VLATy->getSizeExpr() ||
2090      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
2091      !EvalResult.Val.isInt())
2092    return QualType();
2093
2094  llvm::APSInt &Res = EvalResult.Val.getInt();
2095  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
2096    // TODO: preserve the size expression in declarator info
2097    return Context.getConstantArrayType(VLATy->getElementType(),
2098                                        Res, ArrayType::Normal, 0);
2099  }
2100
2101  SizeIsNegative = true;
2102  return QualType();
2103}
2104
2105/// \brief Register the given locally-scoped external C declaration so
2106/// that it can be found later for redeclarations
2107void
2108Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
2109                                       const LookupResult &Previous,
2110                                       Scope *S) {
2111  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
2112         "Decl is not a locally-scoped decl!");
2113  // Note that we have a locally-scoped external with this name.
2114  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
2115
2116  if (!Previous.isSingleResult())
2117    return;
2118
2119  NamedDecl *PrevDecl = Previous.getFoundDecl();
2120
2121  // If there was a previous declaration of this variable, it may be
2122  // in our identifier chain. Update the identifier chain with the new
2123  // declaration.
2124  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
2125    // The previous declaration was found on the identifer resolver
2126    // chain, so remove it from its scope.
2127    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
2128      S = S->getParent();
2129
2130    if (S)
2131      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
2132  }
2133}
2134
2135/// \brief Diagnose function specifiers on a declaration of an identifier that
2136/// does not identify a function.
2137void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
2138  // FIXME: We should probably indicate the identifier in question to avoid
2139  // confusion for constructs like "inline int a(), b;"
2140  if (D.getDeclSpec().isInlineSpecified())
2141    Diag(D.getDeclSpec().getInlineSpecLoc(),
2142         diag::err_inline_non_function);
2143
2144  if (D.getDeclSpec().isVirtualSpecified())
2145    Diag(D.getDeclSpec().getVirtualSpecLoc(),
2146         diag::err_virtual_non_function);
2147
2148  if (D.getDeclSpec().isExplicitSpecified())
2149    Diag(D.getDeclSpec().getExplicitSpecLoc(),
2150         diag::err_explicit_non_function);
2151}
2152
2153NamedDecl*
2154Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2155                             QualType R,  TypeSourceInfo *TInfo,
2156                             LookupResult &Previous, bool &Redeclaration) {
2157  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
2158  if (D.getCXXScopeSpec().isSet()) {
2159    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
2160      << D.getCXXScopeSpec().getRange();
2161    D.setInvalidType();
2162    // Pretend we didn't see the scope specifier.
2163    DC = 0;
2164  }
2165
2166  if (getLangOptions().CPlusPlus) {
2167    // Check that there are no default arguments (C++ only).
2168    CheckExtraCXXDefaultArguments(D);
2169  }
2170
2171  DiagnoseFunctionSpecifiers(D);
2172
2173  if (D.getDeclSpec().isThreadSpecified())
2174    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2175
2176  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
2177  if (!NewTD) return 0;
2178
2179  // Handle attributes prior to checking for duplicates in MergeVarDecl
2180  ProcessDeclAttributes(S, NewTD, D);
2181
2182  // Merge the decl with the existing one if appropriate. If the decl is
2183  // in an outer scope, it isn't the same thing.
2184  FilterLookupForScope(*this, Previous, DC, S, /*ConsiderLinkage*/ false);
2185  if (!Previous.empty()) {
2186    Redeclaration = true;
2187    MergeTypeDefDecl(NewTD, Previous);
2188  }
2189
2190  // C99 6.7.7p2: If a typedef name specifies a variably modified type
2191  // then it shall have block scope.
2192  QualType T = NewTD->getUnderlyingType();
2193  if (T->isVariablyModifiedType()) {
2194    CurFunctionNeedsScopeChecking = true;
2195
2196    if (S->getFnParent() == 0) {
2197      bool SizeIsNegative;
2198      QualType FixedTy =
2199          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2200      if (!FixedTy.isNull()) {
2201        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
2202        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
2203      } else {
2204        if (SizeIsNegative)
2205          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
2206        else if (T->isVariableArrayType())
2207          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
2208        else
2209          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
2210        NewTD->setInvalidDecl();
2211      }
2212    }
2213  }
2214
2215  // If this is the C FILE type, notify the AST context.
2216  if (IdentifierInfo *II = NewTD->getIdentifier())
2217    if (!NewTD->isInvalidDecl() &&
2218        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
2219      if (II->isStr("FILE"))
2220        Context.setFILEDecl(NewTD);
2221      else if (II->isStr("jmp_buf"))
2222        Context.setjmp_bufDecl(NewTD);
2223      else if (II->isStr("sigjmp_buf"))
2224        Context.setsigjmp_bufDecl(NewTD);
2225    }
2226
2227  return NewTD;
2228}
2229
2230/// \brief Determines whether the given declaration is an out-of-scope
2231/// previous declaration.
2232///
2233/// This routine should be invoked when name lookup has found a
2234/// previous declaration (PrevDecl) that is not in the scope where a
2235/// new declaration by the same name is being introduced. If the new
2236/// declaration occurs in a local scope, previous declarations with
2237/// linkage may still be considered previous declarations (C99
2238/// 6.2.2p4-5, C++ [basic.link]p6).
2239///
2240/// \param PrevDecl the previous declaration found by name
2241/// lookup
2242///
2243/// \param DC the context in which the new declaration is being
2244/// declared.
2245///
2246/// \returns true if PrevDecl is an out-of-scope previous declaration
2247/// for a new delcaration with the same name.
2248static bool
2249isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2250                                ASTContext &Context) {
2251  if (!PrevDecl)
2252    return 0;
2253
2254  if (!PrevDecl->hasLinkage())
2255    return false;
2256
2257  if (Context.getLangOptions().CPlusPlus) {
2258    // C++ [basic.link]p6:
2259    //   If there is a visible declaration of an entity with linkage
2260    //   having the same name and type, ignoring entities declared
2261    //   outside the innermost enclosing namespace scope, the block
2262    //   scope declaration declares that same entity and receives the
2263    //   linkage of the previous declaration.
2264    DeclContext *OuterContext = DC->getLookupContext();
2265    if (!OuterContext->isFunctionOrMethod())
2266      // This rule only applies to block-scope declarations.
2267      return false;
2268    else {
2269      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2270      if (PrevOuterContext->isRecord())
2271        // We found a member function: ignore it.
2272        return false;
2273      else {
2274        // Find the innermost enclosing namespace for the new and
2275        // previous declarations.
2276        while (!OuterContext->isFileContext())
2277          OuterContext = OuterContext->getParent();
2278        while (!PrevOuterContext->isFileContext())
2279          PrevOuterContext = PrevOuterContext->getParent();
2280
2281        // The previous declaration is in a different namespace, so it
2282        // isn't the same function.
2283        if (OuterContext->getPrimaryContext() !=
2284            PrevOuterContext->getPrimaryContext())
2285          return false;
2286      }
2287    }
2288  }
2289
2290  return true;
2291}
2292
2293NamedDecl*
2294Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2295                              QualType R, TypeSourceInfo *TInfo,
2296                              LookupResult &Previous,
2297                              MultiTemplateParamsArg TemplateParamLists,
2298                              bool &Redeclaration) {
2299  DeclarationName Name = GetNameForDeclarator(D);
2300
2301  // Check that there are no default arguments (C++ only).
2302  if (getLangOptions().CPlusPlus)
2303    CheckExtraCXXDefaultArguments(D);
2304
2305  VarDecl *NewVD;
2306  VarDecl::StorageClass SC;
2307  switch (D.getDeclSpec().getStorageClassSpec()) {
2308  default: assert(0 && "Unknown storage class!");
2309  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2310  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2311  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2312  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2313  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2314  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2315  case DeclSpec::SCS_mutable:
2316    // mutable can only appear on non-static class members, so it's always
2317    // an error here
2318    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2319    D.setInvalidType();
2320    SC = VarDecl::None;
2321    break;
2322  }
2323
2324  IdentifierInfo *II = Name.getAsIdentifierInfo();
2325  if (!II) {
2326    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2327      << Name.getAsString();
2328    return 0;
2329  }
2330
2331  DiagnoseFunctionSpecifiers(D);
2332
2333  if (!DC->isRecord() && S->getFnParent() == 0) {
2334    // C99 6.9p2: The storage-class specifiers auto and register shall not
2335    // appear in the declaration specifiers in an external declaration.
2336    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2337
2338      // If this is a register variable with an asm label specified, then this
2339      // is a GNU extension.
2340      if (SC == VarDecl::Register && D.getAsmLabel())
2341        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2342      else
2343        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2344      D.setInvalidType();
2345    }
2346  }
2347  if (DC->isRecord() && !CurContext->isRecord()) {
2348    // This is an out-of-line definition of a static data member.
2349    if (SC == VarDecl::Static) {
2350      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2351           diag::err_static_out_of_line)
2352        << CodeModificationHint::CreateRemoval(
2353                                      D.getDeclSpec().getStorageClassSpecLoc());
2354    } else if (SC == VarDecl::None)
2355      SC = VarDecl::Static;
2356  }
2357  if (SC == VarDecl::Static) {
2358    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2359      if (RD->isLocalClass())
2360        Diag(D.getIdentifierLoc(),
2361             diag::err_static_data_member_not_allowed_in_local_class)
2362          << Name << RD->getDeclName();
2363    }
2364  }
2365
2366  // Match up the template parameter lists with the scope specifier, then
2367  // determine whether we have a template or a template specialization.
2368  bool isExplicitSpecialization = false;
2369  if (TemplateParameterList *TemplateParams
2370        = MatchTemplateParametersToScopeSpecifier(
2371                                  D.getDeclSpec().getSourceRange().getBegin(),
2372                                                  D.getCXXScopeSpec(),
2373                        (TemplateParameterList**)TemplateParamLists.get(),
2374                                                   TemplateParamLists.size(),
2375                                                  isExplicitSpecialization)) {
2376    if (TemplateParams->size() > 0) {
2377      // There is no such thing as a variable template.
2378      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2379        << II
2380        << SourceRange(TemplateParams->getTemplateLoc(),
2381                       TemplateParams->getRAngleLoc());
2382      return 0;
2383    } else {
2384      // There is an extraneous 'template<>' for this variable. Complain
2385      // about it, but allow the declaration of the variable.
2386      Diag(TemplateParams->getTemplateLoc(),
2387           diag::err_template_variable_noparams)
2388        << II
2389        << SourceRange(TemplateParams->getTemplateLoc(),
2390                       TemplateParams->getRAngleLoc());
2391
2392      isExplicitSpecialization = true;
2393    }
2394  }
2395
2396  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2397                          II, R, TInfo, SC);
2398
2399  if (D.isInvalidType())
2400    NewVD->setInvalidDecl();
2401
2402  if (D.getDeclSpec().isThreadSpecified()) {
2403    if (NewVD->hasLocalStorage())
2404      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2405    else if (!Context.Target.isTLSSupported())
2406      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2407    else
2408      NewVD->setThreadSpecified(true);
2409  }
2410
2411  // Set the lexical context. If the declarator has a C++ scope specifier, the
2412  // lexical context will be different from the semantic context.
2413  NewVD->setLexicalDeclContext(CurContext);
2414
2415  // Handle attributes prior to checking for duplicates in MergeVarDecl
2416  ProcessDeclAttributes(S, NewVD, D);
2417
2418  // Handle GNU asm-label extension (encoded as an attribute).
2419  if (Expr *E = (Expr*) D.getAsmLabel()) {
2420    // The parser guarantees this is a string.
2421    StringLiteral *SE = cast<StringLiteral>(E);
2422    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2423  }
2424
2425  // Don't consider existing declarations that are in a different
2426  // scope and are out-of-semantic-context declarations (if the new
2427  // declaration has linkage).
2428  FilterLookupForScope(*this, Previous, DC, S, NewVD->hasLinkage());
2429
2430  // Merge the decl with the existing one if appropriate.
2431  if (!Previous.empty()) {
2432    if (Previous.isSingleResult() &&
2433        isa<FieldDecl>(Previous.getFoundDecl()) &&
2434        D.getCXXScopeSpec().isSet()) {
2435      // The user tried to define a non-static data member
2436      // out-of-line (C++ [dcl.meaning]p1).
2437      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2438        << D.getCXXScopeSpec().getRange();
2439      Previous.clear();
2440      NewVD->setInvalidDecl();
2441    }
2442  } else if (D.getCXXScopeSpec().isSet()) {
2443    // No previous declaration in the qualifying scope.
2444    Diag(D.getIdentifierLoc(), diag::err_no_member)
2445      << Name << computeDeclContext(D.getCXXScopeSpec(), true)
2446      << D.getCXXScopeSpec().getRange();
2447    NewVD->setInvalidDecl();
2448  }
2449
2450  CheckVariableDeclaration(NewVD, Previous, Redeclaration);
2451
2452  // This is an explicit specialization of a static data member. Check it.
2453  if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
2454      CheckMemberSpecialization(NewVD, Previous))
2455    NewVD->setInvalidDecl();
2456
2457  // attributes declared post-definition are currently ignored
2458  if (Previous.isSingleResult()) {
2459    const VarDecl *Def = 0;
2460    VarDecl *PrevDecl = dyn_cast<VarDecl>(Previous.getFoundDecl());
2461    if (PrevDecl && PrevDecl->getDefinition(Def) && D.hasAttributes()) {
2462      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2463      Diag(Def->getLocation(), diag::note_previous_definition);
2464    }
2465  }
2466
2467  // If this is a locally-scoped extern C variable, update the map of
2468  // such variables.
2469  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
2470      !NewVD->isInvalidDecl())
2471    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
2472
2473  return NewVD;
2474}
2475
2476/// \brief Perform semantic checking on a newly-created variable
2477/// declaration.
2478///
2479/// This routine performs all of the type-checking required for a
2480/// variable declaration once it has been built. It is used both to
2481/// check variables after they have been parsed and their declarators
2482/// have been translated into a declaration, and to check variables
2483/// that have been instantiated from a template.
2484///
2485/// Sets NewVD->isInvalidDecl() if an error was encountered.
2486void Sema::CheckVariableDeclaration(VarDecl *NewVD,
2487                                    LookupResult &Previous,
2488                                    bool &Redeclaration) {
2489  // If the decl is already known invalid, don't check it.
2490  if (NewVD->isInvalidDecl())
2491    return;
2492
2493  QualType T = NewVD->getType();
2494
2495  if (T->isObjCInterfaceType()) {
2496    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2497    return NewVD->setInvalidDecl();
2498  }
2499
2500  // Emit an error if an address space was applied to decl with local storage.
2501  // This includes arrays of objects with address space qualifiers, but not
2502  // automatic variables that point to other address spaces.
2503  // ISO/IEC TR 18037 S5.1.2
2504  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2505    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2506    return NewVD->setInvalidDecl();
2507  }
2508
2509  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2510      && !NewVD->hasAttr<BlocksAttr>())
2511    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2512
2513  bool isVM = T->isVariablyModifiedType();
2514  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2515      NewVD->hasAttr<BlocksAttr>())
2516    CurFunctionNeedsScopeChecking = true;
2517
2518  if ((isVM && NewVD->hasLinkage()) ||
2519      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2520    bool SizeIsNegative;
2521    QualType FixedTy =
2522        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2523
2524    if (FixedTy.isNull() && T->isVariableArrayType()) {
2525      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2526      // FIXME: This won't give the correct result for
2527      // int a[10][n];
2528      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2529
2530      if (NewVD->isFileVarDecl())
2531        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2532        << SizeRange;
2533      else if (NewVD->getStorageClass() == VarDecl::Static)
2534        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2535        << SizeRange;
2536      else
2537        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2538        << SizeRange;
2539      return NewVD->setInvalidDecl();
2540    }
2541
2542    if (FixedTy.isNull()) {
2543      if (NewVD->isFileVarDecl())
2544        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2545      else
2546        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2547      return NewVD->setInvalidDecl();
2548    }
2549
2550    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2551    NewVD->setType(FixedTy);
2552  }
2553
2554  if (Previous.empty() && NewVD->isExternC()) {
2555    // Since we did not find anything by this name and we're declaring
2556    // an extern "C" variable, look for a non-visible extern "C"
2557    // declaration with the same name.
2558    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2559      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2560    if (Pos != LocallyScopedExternalDecls.end())
2561      Previous.addDecl(Pos->second);
2562  }
2563
2564  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2565    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2566      << T;
2567    return NewVD->setInvalidDecl();
2568  }
2569
2570  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2571    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2572    return NewVD->setInvalidDecl();
2573  }
2574
2575  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2576    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2577    return NewVD->setInvalidDecl();
2578  }
2579
2580  if (!Previous.empty()) {
2581    Redeclaration = true;
2582    MergeVarDecl(NewVD, Previous);
2583  }
2584}
2585
2586/// \brief Data used with FindOverriddenMethod
2587struct FindOverriddenMethodData {
2588  Sema *S;
2589  CXXMethodDecl *Method;
2590};
2591
2592/// \brief Member lookup function that determines whether a given C++
2593/// method overrides a method in a base class, to be used with
2594/// CXXRecordDecl::lookupInBases().
2595static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
2596                                 CXXBasePath &Path,
2597                                 void *UserData) {
2598  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
2599
2600  FindOverriddenMethodData *Data
2601    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
2602
2603  DeclarationName Name = Data->Method->getDeclName();
2604
2605  // FIXME: Do we care about other names here too?
2606  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2607    // We really want to find the base class constructor here.
2608    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
2609    CanQualType CT = Data->S->Context.getCanonicalType(T);
2610
2611    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
2612  }
2613
2614  for (Path.Decls = BaseRecord->lookup(Name);
2615       Path.Decls.first != Path.Decls.second;
2616       ++Path.Decls.first) {
2617    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(*Path.Decls.first)) {
2618      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD))
2619        return true;
2620    }
2621  }
2622
2623  return false;
2624}
2625
2626/// AddOverriddenMethods - See if a method overrides any in the base classes,
2627/// and if so, check that it's a valid override and remember it.
2628void Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
2629  // Look for virtual methods in base classes that this method might override.
2630  CXXBasePaths Paths;
2631  FindOverriddenMethodData Data;
2632  Data.Method = MD;
2633  Data.S = this;
2634  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
2635    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
2636         E = Paths.found_decls_end(); I != E; ++I) {
2637      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2638        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
2639            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
2640            !CheckOverridingFunctionAttributes(MD, OldMD))
2641          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
2642      }
2643    }
2644  }
2645}
2646
2647NamedDecl*
2648Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2649                              QualType R, TypeSourceInfo *TInfo,
2650                              LookupResult &Previous,
2651                              MultiTemplateParamsArg TemplateParamLists,
2652                              bool IsFunctionDefinition, bool &Redeclaration) {
2653  assert(R.getTypePtr()->isFunctionType());
2654
2655  DeclarationName Name = GetNameForDeclarator(D);
2656  FunctionDecl::StorageClass SC = FunctionDecl::None;
2657  switch (D.getDeclSpec().getStorageClassSpec()) {
2658  default: assert(0 && "Unknown storage class!");
2659  case DeclSpec::SCS_auto:
2660  case DeclSpec::SCS_register:
2661  case DeclSpec::SCS_mutable:
2662    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2663         diag::err_typecheck_sclass_func);
2664    D.setInvalidType();
2665    break;
2666  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2667  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2668  case DeclSpec::SCS_static: {
2669    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2670      // C99 6.7.1p5:
2671      //   The declaration of an identifier for a function that has
2672      //   block scope shall have no explicit storage-class specifier
2673      //   other than extern
2674      // See also (C++ [dcl.stc]p4).
2675      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2676           diag::err_static_block_func);
2677      SC = FunctionDecl::None;
2678    } else
2679      SC = FunctionDecl::Static;
2680    break;
2681  }
2682  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2683  }
2684
2685  if (D.getDeclSpec().isThreadSpecified())
2686    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2687
2688  bool isFriend = D.getDeclSpec().isFriendSpecified();
2689  bool isInline = D.getDeclSpec().isInlineSpecified();
2690  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2691  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2692
2693  // Check that the return type is not an abstract class type.
2694  // For record types, this is done by the AbstractClassUsageDiagnoser once
2695  // the class has been completely parsed.
2696  if (!DC->isRecord() &&
2697      RequireNonAbstractType(D.getIdentifierLoc(),
2698                             R->getAs<FunctionType>()->getResultType(),
2699                             diag::err_abstract_type_in_decl,
2700                             AbstractReturnType))
2701    D.setInvalidType();
2702
2703  // Do not allow returning a objc interface by-value.
2704  if (R->getAs<FunctionType>()->getResultType()->isObjCInterfaceType()) {
2705    Diag(D.getIdentifierLoc(),
2706         diag::err_object_cannot_be_passed_returned_by_value) << 0
2707      << R->getAs<FunctionType>()->getResultType();
2708    D.setInvalidType();
2709  }
2710
2711  bool isVirtualOkay = false;
2712  FunctionDecl *NewFD;
2713
2714  if (isFriend) {
2715    // C++ [class.friend]p5
2716    //   A function can be defined in a friend declaration of a
2717    //   class . . . . Such a function is implicitly inline.
2718    isInline |= IsFunctionDefinition;
2719  }
2720
2721  if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
2722    // This is a C++ constructor declaration.
2723    assert(DC->isRecord() &&
2724           "Constructors can only be declared in a member context");
2725
2726    R = CheckConstructorDeclarator(D, R, SC);
2727
2728    // Create the new declaration
2729    NewFD = CXXConstructorDecl::Create(Context,
2730                                       cast<CXXRecordDecl>(DC),
2731                                       D.getIdentifierLoc(), Name, R, TInfo,
2732                                       isExplicit, isInline,
2733                                       /*isImplicitlyDeclared=*/false);
2734  } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
2735    // This is a C++ destructor declaration.
2736    if (DC->isRecord()) {
2737      R = CheckDestructorDeclarator(D, SC);
2738
2739      NewFD = CXXDestructorDecl::Create(Context,
2740                                        cast<CXXRecordDecl>(DC),
2741                                        D.getIdentifierLoc(), Name, R,
2742                                        isInline,
2743                                        /*isImplicitlyDeclared=*/false);
2744
2745      isVirtualOkay = true;
2746    } else {
2747      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2748
2749      // Create a FunctionDecl to satisfy the function definition parsing
2750      // code path.
2751      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2752                                   Name, R, TInfo, SC, isInline,
2753                                   /*hasPrototype=*/true);
2754      D.setInvalidType();
2755    }
2756  } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
2757    if (!DC->isRecord()) {
2758      Diag(D.getIdentifierLoc(),
2759           diag::err_conv_function_not_member);
2760      return 0;
2761    }
2762
2763    CheckConversionDeclarator(D, R, SC);
2764    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2765                                      D.getIdentifierLoc(), Name, R, TInfo,
2766                                      isInline, isExplicit);
2767
2768    isVirtualOkay = true;
2769  } else if (DC->isRecord()) {
2770    // If the of the function is the same as the name of the record, then this
2771    // must be an invalid constructor that has a return type.
2772    // (The parser checks for a return type and makes the declarator a
2773    // constructor if it has no return type).
2774    // must have an invalid constructor that has a return type
2775    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2776      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2777        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2778        << SourceRange(D.getIdentifierLoc());
2779      return 0;
2780    }
2781
2782    bool isStatic = SC == FunctionDecl::Static;
2783
2784    // [class.free]p1:
2785    // Any allocation function for a class T is a static member
2786    // (even if not explicitly declared static).
2787    if (Name.getCXXOverloadedOperator() == OO_New ||
2788        Name.getCXXOverloadedOperator() == OO_Array_New)
2789      isStatic = true;
2790
2791    // [class.free]p6 Any deallocation function for a class X is a static member
2792    // (even if not explicitly declared static).
2793    if (Name.getCXXOverloadedOperator() == OO_Delete ||
2794        Name.getCXXOverloadedOperator() == OO_Array_Delete)
2795      isStatic = true;
2796
2797    // This is a C++ method declaration.
2798    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2799                                  D.getIdentifierLoc(), Name, R, TInfo,
2800                                  isStatic, isInline);
2801
2802    if ((Name.getCXXOverloadedOperator() == OO_New ||
2803	 Name.getCXXOverloadedOperator() == OO_Array_New) &&
2804	getLangOptions().AssumeSaneOperatorNew)
2805      NewFD->addAttr(::new (Context) MallocAttr());
2806
2807    isVirtualOkay = !isStatic;
2808  } else {
2809    // Determine whether the function was written with a
2810    // prototype. This true when:
2811    //   - we're in C++ (where every function has a prototype),
2812    //   - there is a prototype in the declarator, or
2813    //   - the type R of the function is some kind of typedef or other reference
2814    //     to a type name (which eventually refers to a function type).
2815    bool HasPrototype =
2816       getLangOptions().CPlusPlus ||
2817       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2818       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2819
2820    NewFD = FunctionDecl::Create(Context, DC,
2821                                 D.getIdentifierLoc(),
2822                                 Name, R, TInfo, SC, isInline, HasPrototype);
2823  }
2824
2825  if (D.isInvalidType())
2826    NewFD->setInvalidDecl();
2827
2828  // Set the lexical context. If the declarator has a C++
2829  // scope specifier, or is the object of a friend declaration, the
2830  // lexical context will be different from the semantic context.
2831  NewFD->setLexicalDeclContext(CurContext);
2832
2833  // Match up the template parameter lists with the scope specifier, then
2834  // determine whether we have a template or a template specialization.
2835  FunctionTemplateDecl *FunctionTemplate = 0;
2836  bool isExplicitSpecialization = false;
2837  bool isFunctionTemplateSpecialization = false;
2838  if (TemplateParameterList *TemplateParams
2839        = MatchTemplateParametersToScopeSpecifier(
2840                                  D.getDeclSpec().getSourceRange().getBegin(),
2841                                  D.getCXXScopeSpec(),
2842                           (TemplateParameterList**)TemplateParamLists.get(),
2843                                                  TemplateParamLists.size(),
2844                                                  isExplicitSpecialization)) {
2845    if (TemplateParams->size() > 0) {
2846      // This is a function template
2847
2848      // Check that we can declare a template here.
2849      if (CheckTemplateDeclScope(S, TemplateParams))
2850        return 0;
2851
2852      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2853                                                      NewFD->getLocation(),
2854                                                      Name, TemplateParams,
2855                                                      NewFD);
2856      FunctionTemplate->setLexicalDeclContext(CurContext);
2857      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2858    } else {
2859      // This is a function template specialization.
2860      isFunctionTemplateSpecialization = true;
2861    }
2862
2863    // FIXME: Free this memory properly.
2864    TemplateParamLists.release();
2865  }
2866
2867  // C++ [dcl.fct.spec]p5:
2868  //   The virtual specifier shall only be used in declarations of
2869  //   nonstatic class member functions that appear within a
2870  //   member-specification of a class declaration; see 10.3.
2871  //
2872  if (isVirtual && !NewFD->isInvalidDecl()) {
2873    if (!isVirtualOkay) {
2874       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2875           diag::err_virtual_non_function);
2876    } else if (!CurContext->isRecord()) {
2877      // 'virtual' was specified outside of the class.
2878      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2879        << CodeModificationHint::CreateRemoval(
2880                                           D.getDeclSpec().getVirtualSpecLoc());
2881    } else {
2882      // Okay: Add virtual to the method.
2883      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2884      CurClass->setMethodAsVirtual(NewFD);
2885    }
2886  }
2887
2888  // Filter out previous declarations that don't match the scope.
2889  FilterLookupForScope(*this, Previous, DC, S, NewFD->hasLinkage());
2890
2891  if (isFriend) {
2892    // DC is the namespace in which the function is being declared.
2893    assert((DC->isFileContext() || !Previous.empty()) &&
2894           "previously-undeclared friend function being created "
2895           "in a non-namespace context");
2896
2897    if (FunctionTemplate) {
2898      FunctionTemplate->setObjectOfFriendDecl(
2899                                   /* PreviouslyDeclared= */ !Previous.empty());
2900      FunctionTemplate->setAccess(AS_public);
2901    }
2902    else
2903      NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ !Previous.empty());
2904
2905    NewFD->setAccess(AS_public);
2906  }
2907
2908  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2909      !CurContext->isRecord()) {
2910    // C++ [class.static]p1:
2911    //   A data or function member of a class may be declared static
2912    //   in a class definition, in which case it is a static member of
2913    //   the class.
2914
2915    // Complain about the 'static' specifier if it's on an out-of-line
2916    // member function definition.
2917    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2918         diag::err_static_out_of_line)
2919      << CodeModificationHint::CreateRemoval(
2920                                      D.getDeclSpec().getStorageClassSpecLoc());
2921  }
2922
2923  // Handle GNU asm-label extension (encoded as an attribute).
2924  if (Expr *E = (Expr*) D.getAsmLabel()) {
2925    // The parser guarantees this is a string.
2926    StringLiteral *SE = cast<StringLiteral>(E);
2927    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getString()));
2928  }
2929
2930  // Copy the parameter declarations from the declarator D to the function
2931  // declaration NewFD, if they are available.  First scavenge them into Params.
2932  llvm::SmallVector<ParmVarDecl*, 16> Params;
2933  if (D.getNumTypeObjects() > 0) {
2934    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2935
2936    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2937    // function that takes no arguments, not a function that takes a
2938    // single void argument.
2939    // We let through "const void" here because Sema::GetTypeForDeclarator
2940    // already checks for that case.
2941    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2942        FTI.ArgInfo[0].Param &&
2943        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2944      // Empty arg list, don't push any params.
2945      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2946
2947      // In C++, the empty parameter-type-list must be spelled "void"; a
2948      // typedef of void is not permitted.
2949      if (getLangOptions().CPlusPlus &&
2950          Param->getType().getUnqualifiedType() != Context.VoidTy)
2951        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2952      // FIXME: Leaks decl?
2953    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2954      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2955        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2956        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2957        Param->setDeclContext(NewFD);
2958        Params.push_back(Param);
2959      }
2960    }
2961
2962  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
2963    // When we're declaring a function with a typedef, typeof, etc as in the
2964    // following example, we'll need to synthesize (unnamed)
2965    // parameters for use in the declaration.
2966    //
2967    // @code
2968    // typedef void fn(int);
2969    // fn f;
2970    // @endcode
2971
2972    // Synthesize a parameter for each argument type.
2973    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2974         AE = FT->arg_type_end(); AI != AE; ++AI) {
2975      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2976                                               SourceLocation(), 0,
2977                                               *AI, /*TInfo=*/0,
2978                                               VarDecl::None, 0);
2979      Param->setImplicit();
2980      Params.push_back(Param);
2981    }
2982  } else {
2983    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2984           "Should not need args for typedef of non-prototype fn");
2985  }
2986  // Finally, we know we have the right number of parameters, install them.
2987  NewFD->setParams(Context, Params.data(), Params.size());
2988
2989  // If the declarator is a template-id, translate the parser's template
2990  // argument list into our AST format.
2991  bool HasExplicitTemplateArgs = false;
2992  TemplateArgumentListInfo TemplateArgs;
2993  if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
2994    TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
2995    TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
2996    TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
2997    ASTTemplateArgsPtr TemplateArgsPtr(*this,
2998                                       TemplateId->getTemplateArgs(),
2999                                       TemplateId->NumArgs);
3000    translateTemplateArguments(TemplateArgsPtr,
3001                               TemplateArgs);
3002    TemplateArgsPtr.release();
3003
3004    HasExplicitTemplateArgs = true;
3005
3006    if (FunctionTemplate) {
3007      // FIXME: Diagnose function template with explicit template
3008      // arguments.
3009      HasExplicitTemplateArgs = false;
3010    } else if (!isFunctionTemplateSpecialization &&
3011               !D.getDeclSpec().isFriendSpecified()) {
3012      // We have encountered something that the user meant to be a
3013      // specialization (because it has explicitly-specified template
3014      // arguments) but that was not introduced with a "template<>" (or had
3015      // too few of them).
3016      Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
3017        << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
3018        << CodeModificationHint::CreateInsertion(
3019                                   D.getDeclSpec().getSourceRange().getBegin(),
3020                                                 "template<> ");
3021      isFunctionTemplateSpecialization = true;
3022    }
3023  }
3024
3025  if (isFunctionTemplateSpecialization) {
3026      if (CheckFunctionTemplateSpecialization(NewFD,
3027                               (HasExplicitTemplateArgs ? &TemplateArgs : 0),
3028                                              Previous))
3029        NewFD->setInvalidDecl();
3030  } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD) &&
3031             CheckMemberSpecialization(NewFD, Previous))
3032    NewFD->setInvalidDecl();
3033
3034  // Perform semantic checking on the function declaration.
3035  bool OverloadableAttrRequired = false; // FIXME: HACK!
3036  CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
3037                           Redeclaration, /*FIXME:*/OverloadableAttrRequired);
3038
3039  assert((NewFD->isInvalidDecl() || !Redeclaration ||
3040          Previous.getResultKind() != LookupResult::FoundOverloaded) &&
3041         "previous declaration set still overloaded");
3042
3043  // If we have a function template, check the template parameter
3044  // list. This will check and merge default template arguments.
3045  if (FunctionTemplate) {
3046    FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
3047    CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
3048                      PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
3049             D.getDeclSpec().isFriendSpecified()? TPC_FriendFunctionTemplate
3050                                                : TPC_FunctionTemplate);
3051  }
3052
3053  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
3054    // An out-of-line member function declaration must also be a
3055    // definition (C++ [dcl.meaning]p1).
3056    // Note that this is not the case for explicit specializations of
3057    // function templates or member functions of class templates, per
3058    // C++ [temp.expl.spec]p2.
3059    if (!IsFunctionDefinition && !isFriend &&
3060        !isFunctionTemplateSpecialization && !isExplicitSpecialization) {
3061      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
3062        << D.getCXXScopeSpec().getRange();
3063      NewFD->setInvalidDecl();
3064    } else if (!Redeclaration) {
3065      // The user tried to provide an out-of-line definition for a
3066      // function that is a member of a class or namespace, but there
3067      // was no such member function declared (C++ [class.mfct]p2,
3068      // C++ [namespace.memdef]p2). For example:
3069      //
3070      // class X {
3071      //   void f() const;
3072      // };
3073      //
3074      // void X::f() { } // ill-formed
3075      //
3076      // Complain about this problem, and attempt to suggest close
3077      // matches (e.g., those that differ only in cv-qualifiers and
3078      // whether the parameter types are references).
3079      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
3080        << Name << DC << D.getCXXScopeSpec().getRange();
3081      NewFD->setInvalidDecl();
3082
3083      LookupResult Prev(*this, Name, D.getIdentifierLoc(), LookupOrdinaryName,
3084                        ForRedeclaration);
3085      LookupQualifiedName(Prev, DC);
3086      assert(!Prev.isAmbiguous() &&
3087             "Cannot have an ambiguity in previous-declaration lookup");
3088      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
3089           Func != FuncEnd; ++Func) {
3090        if (isa<FunctionDecl>(*Func) &&
3091            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
3092          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
3093      }
3094    }
3095  }
3096
3097  // Handle attributes. We need to have merged decls when handling attributes
3098  // (for example to check for conflicts, etc).
3099  // FIXME: This needs to happen before we merge declarations. Then,
3100  // let attribute merging cope with attribute conflicts.
3101  ProcessDeclAttributes(S, NewFD, D);
3102
3103  // attributes declared post-definition are currently ignored
3104  if (Redeclaration && Previous.isSingleResult()) {
3105    const FunctionDecl *Def;
3106    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
3107    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
3108      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
3109      Diag(Def->getLocation(), diag::note_previous_definition);
3110    }
3111  }
3112
3113  AddKnownFunctionAttributes(NewFD);
3114
3115  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
3116    // If a function name is overloadable in C, then every function
3117    // with that name must be marked "overloadable".
3118    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
3119      << Redeclaration << NewFD;
3120    if (!Previous.empty())
3121      Diag(Previous.getRepresentativeDecl()->getLocation(),
3122           diag::note_attribute_overloadable_prev_overload);
3123    NewFD->addAttr(::new (Context) OverloadableAttr());
3124  }
3125
3126  // If this is a locally-scoped extern C function, update the
3127  // map of such names.
3128  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
3129      && !NewFD->isInvalidDecl())
3130    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
3131
3132  // Set this FunctionDecl's range up to the right paren.
3133  NewFD->setLocEnd(D.getSourceRange().getEnd());
3134
3135  if (FunctionTemplate && NewFD->isInvalidDecl())
3136    FunctionTemplate->setInvalidDecl();
3137
3138  if (FunctionTemplate)
3139    return FunctionTemplate;
3140
3141  return NewFD;
3142}
3143
3144/// \brief Perform semantic checking of a new function declaration.
3145///
3146/// Performs semantic analysis of the new function declaration
3147/// NewFD. This routine performs all semantic checking that does not
3148/// require the actual declarator involved in the declaration, and is
3149/// used both for the declaration of functions as they are parsed
3150/// (called via ActOnDeclarator) and for the declaration of functions
3151/// that have been instantiated via C++ template instantiation (called
3152/// via InstantiateDecl).
3153///
3154/// \param IsExplicitSpecialiation whether this new function declaration is
3155/// an explicit specialization of the previous declaration.
3156///
3157/// This sets NewFD->isInvalidDecl() to true if there was an error.
3158void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
3159                                    LookupResult &Previous,
3160                                    bool IsExplicitSpecialization,
3161                                    bool &Redeclaration,
3162                                    bool &OverloadableAttrRequired) {
3163  // If NewFD is already known erroneous, don't do any of this checking.
3164  if (NewFD->isInvalidDecl())
3165    return;
3166
3167  if (NewFD->getResultType()->isVariablyModifiedType()) {
3168    // Functions returning a variably modified type violate C99 6.7.5.2p2
3169    // because all functions have linkage.
3170    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
3171    return NewFD->setInvalidDecl();
3172  }
3173
3174  if (NewFD->isMain())
3175    CheckMain(NewFD);
3176
3177  // Check for a previous declaration of this name.
3178  if (Previous.empty() && NewFD->isExternC()) {
3179    // Since we did not find anything by this name and we're declaring
3180    // an extern "C" function, look for a non-visible extern "C"
3181    // declaration with the same name.
3182    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3183      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
3184    if (Pos != LocallyScopedExternalDecls.end())
3185      Previous.addDecl(Pos->second);
3186  }
3187
3188  // Merge or overload the declaration with an existing declaration of
3189  // the same name, if appropriate.
3190  if (!Previous.empty()) {
3191    // Determine whether NewFD is an overload of PrevDecl or
3192    // a declaration that requires merging. If it's an overload,
3193    // there's no more work to do here; we'll just add the new
3194    // function to the scope.
3195
3196    NamedDecl *OldDecl = 0;
3197    if (!AllowOverloadingOfFunction(Previous, Context)) {
3198      Redeclaration = true;
3199      OldDecl = Previous.getFoundDecl();
3200    } else {
3201      if (!getLangOptions().CPlusPlus) {
3202        OverloadableAttrRequired = true;
3203
3204        // Functions marked "overloadable" must have a prototype (that
3205        // we can't get through declaration merging).
3206        if (!NewFD->getType()->getAs<FunctionProtoType>()) {
3207          Diag(NewFD->getLocation(),
3208               diag::err_attribute_overloadable_no_prototype)
3209            << NewFD;
3210          Redeclaration = true;
3211
3212          // Turn this into a variadic function with no parameters.
3213          QualType R = Context.getFunctionType(
3214                     NewFD->getType()->getAs<FunctionType>()->getResultType(),
3215                     0, 0, true, 0);
3216          NewFD->setType(R);
3217          return NewFD->setInvalidDecl();
3218        }
3219      }
3220
3221      switch (CheckOverload(NewFD, Previous, OldDecl)) {
3222      case Ovl_Match:
3223        Redeclaration = true;
3224        if (isa<UsingShadowDecl>(OldDecl) && CurContext->isRecord()) {
3225          HideUsingShadowDecl(S, cast<UsingShadowDecl>(OldDecl));
3226          Redeclaration = false;
3227        }
3228        break;
3229
3230      case Ovl_NonFunction:
3231        Redeclaration = true;
3232        break;
3233
3234      case Ovl_Overload:
3235        Redeclaration = false;
3236        break;
3237      }
3238    }
3239
3240    if (Redeclaration) {
3241      // NewFD and OldDecl represent declarations that need to be
3242      // merged.
3243      if (MergeFunctionDecl(NewFD, OldDecl))
3244        return NewFD->setInvalidDecl();
3245
3246      Previous.clear();
3247      Previous.addDecl(OldDecl);
3248
3249      if (FunctionTemplateDecl *OldTemplateDecl
3250                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
3251        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
3252        FunctionTemplateDecl *NewTemplateDecl
3253          = NewFD->getDescribedFunctionTemplate();
3254        assert(NewTemplateDecl && "Template/non-template mismatch");
3255        if (CXXMethodDecl *Method
3256              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
3257          Method->setAccess(OldTemplateDecl->getAccess());
3258          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
3259        }
3260
3261        // If this is an explicit specialization of a member that is a function
3262        // template, mark it as a member specialization.
3263        if (IsExplicitSpecialization &&
3264            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
3265          NewTemplateDecl->setMemberSpecialization();
3266          assert(OldTemplateDecl->isMemberSpecialization());
3267        }
3268      } else {
3269        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
3270          NewFD->setAccess(OldDecl->getAccess());
3271        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
3272      }
3273    }
3274  }
3275
3276  // Semantic checking for this function declaration (in isolation).
3277  if (getLangOptions().CPlusPlus) {
3278    // C++-specific checks.
3279    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
3280      CheckConstructor(Constructor);
3281    } else if (CXXDestructorDecl *Destructor =
3282                dyn_cast<CXXDestructorDecl>(NewFD)) {
3283      CXXRecordDecl *Record = Destructor->getParent();
3284      QualType ClassType = Context.getTypeDeclType(Record);
3285
3286      // FIXME: Shouldn't we be able to perform thisc heck even when the class
3287      // type is dependent? Both gcc and edg can handle that.
3288      if (!ClassType->isDependentType()) {
3289        DeclarationName Name
3290          = Context.DeclarationNames.getCXXDestructorName(
3291                                        Context.getCanonicalType(ClassType));
3292        if (NewFD->getDeclName() != Name) {
3293          Diag(NewFD->getLocation(), diag::err_destructor_name);
3294          return NewFD->setInvalidDecl();
3295        }
3296      }
3297
3298      Record->setUserDeclaredDestructor(true);
3299      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
3300      // user-defined destructor.
3301      Record->setPOD(false);
3302
3303      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
3304      // declared destructor.
3305      // FIXME: C++0x: don't do this for "= default" destructors
3306      Record->setHasTrivialDestructor(false);
3307    } else if (CXXConversionDecl *Conversion
3308               = dyn_cast<CXXConversionDecl>(NewFD)) {
3309      ActOnConversionDeclarator(Conversion);
3310    }
3311
3312    // Find any virtual functions that this function overrides.
3313    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
3314      if (!Method->isFunctionTemplateSpecialization() &&
3315          !Method->getDescribedFunctionTemplate())
3316        AddOverriddenMethods(Method->getParent(), Method);
3317    }
3318
3319    // Additional checks for the destructor; make sure we do this after we
3320    // figure out whether the destructor is virtual.
3321    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(NewFD))
3322      if (!Destructor->getParent()->isDependentType())
3323        CheckDestructor(Destructor);
3324
3325    // Extra checking for C++ overloaded operators (C++ [over.oper]).
3326    if (NewFD->isOverloadedOperator() &&
3327        CheckOverloadedOperatorDeclaration(NewFD))
3328      return NewFD->setInvalidDecl();
3329
3330    // In C++, check default arguments now that we have merged decls. Unless
3331    // the lexical context is the class, because in this case this is done
3332    // during delayed parsing anyway.
3333    if (!CurContext->isRecord())
3334      CheckCXXDefaultArguments(NewFD);
3335  }
3336}
3337
3338void Sema::CheckMain(FunctionDecl* FD) {
3339  // C++ [basic.start.main]p3:  A program that declares main to be inline
3340  //   or static is ill-formed.
3341  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
3342  //   shall not appear in a declaration of main.
3343  // static main is not an error under C99, but we should warn about it.
3344  bool isInline = FD->isInlineSpecified();
3345  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
3346  if (isInline || isStatic) {
3347    unsigned diagID = diag::warn_unusual_main_decl;
3348    if (isInline || getLangOptions().CPlusPlus)
3349      diagID = diag::err_unusual_main_decl;
3350
3351    int which = isStatic + (isInline << 1) - 1;
3352    Diag(FD->getLocation(), diagID) << which;
3353  }
3354
3355  QualType T = FD->getType();
3356  assert(T->isFunctionType() && "function decl is not of function type");
3357  const FunctionType* FT = T->getAs<FunctionType>();
3358
3359  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
3360    // TODO: add a replacement fixit to turn the return type into 'int'.
3361    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
3362    FD->setInvalidDecl(true);
3363  }
3364
3365  // Treat protoless main() as nullary.
3366  if (isa<FunctionNoProtoType>(FT)) return;
3367
3368  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
3369  unsigned nparams = FTP->getNumArgs();
3370  assert(FD->getNumParams() == nparams);
3371
3372  if (nparams > 3) {
3373    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
3374    FD->setInvalidDecl(true);
3375    nparams = 3;
3376  }
3377
3378  // FIXME: a lot of the following diagnostics would be improved
3379  // if we had some location information about types.
3380
3381  QualType CharPP =
3382    Context.getPointerType(Context.getPointerType(Context.CharTy));
3383  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
3384
3385  for (unsigned i = 0; i < nparams; ++i) {
3386    QualType AT = FTP->getArgType(i);
3387
3388    bool mismatch = true;
3389
3390    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
3391      mismatch = false;
3392    else if (Expected[i] == CharPP) {
3393      // As an extension, the following forms are okay:
3394      //   char const **
3395      //   char const * const *
3396      //   char * const *
3397
3398      QualifierCollector qs;
3399      const PointerType* PT;
3400      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
3401          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
3402          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
3403        qs.removeConst();
3404        mismatch = !qs.empty();
3405      }
3406    }
3407
3408    if (mismatch) {
3409      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3410      // TODO: suggest replacing given type with expected type
3411      FD->setInvalidDecl(true);
3412    }
3413  }
3414
3415  if (nparams == 1 && !FD->isInvalidDecl()) {
3416    Diag(FD->getLocation(), diag::warn_main_one_arg);
3417  }
3418}
3419
3420bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3421  // FIXME: Need strict checking.  In C89, we need to check for
3422  // any assignment, increment, decrement, function-calls, or
3423  // commas outside of a sizeof.  In C99, it's the same list,
3424  // except that the aforementioned are allowed in unevaluated
3425  // expressions.  Everything else falls under the
3426  // "may accept other forms of constant expressions" exception.
3427  // (We never end up here for C++, so the constant expression
3428  // rules there don't matter.)
3429  if (Init->isConstantInitializer(Context))
3430    return false;
3431  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3432    << Init->getSourceRange();
3433  return true;
3434}
3435
3436void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3437  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3438}
3439
3440/// AddInitializerToDecl - Adds the initializer Init to the
3441/// declaration dcl. If DirectInit is true, this is C++ direct
3442/// initialization rather than copy initialization.
3443void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3444  Decl *RealDecl = dcl.getAs<Decl>();
3445  // If there is no declaration, there was an error parsing it.  Just ignore
3446  // the initializer.
3447  if (RealDecl == 0)
3448    return;
3449
3450  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3451    // With declarators parsed the way they are, the parser cannot
3452    // distinguish between a normal initializer and a pure-specifier.
3453    // Thus this grotesque test.
3454    IntegerLiteral *IL;
3455    Expr *Init = static_cast<Expr *>(init.get());
3456    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3457        Context.getCanonicalType(IL->getType()) == Context.IntTy)
3458      CheckPureMethod(Method, Init->getSourceRange());
3459    else {
3460      Diag(Method->getLocation(), diag::err_member_function_initialization)
3461        << Method->getDeclName() << Init->getSourceRange();
3462      Method->setInvalidDecl();
3463    }
3464    return;
3465  }
3466
3467  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3468  if (!VDecl) {
3469    if (getLangOptions().CPlusPlus &&
3470        RealDecl->getLexicalDeclContext()->isRecord() &&
3471        isa<NamedDecl>(RealDecl))
3472      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3473        << cast<NamedDecl>(RealDecl)->getDeclName();
3474    else
3475      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3476    RealDecl->setInvalidDecl();
3477    return;
3478  }
3479
3480  // A definition must end up with a complete type, which means it must be
3481  // complete with the restriction that an array type might be completed by the
3482  // initializer; note that later code assumes this restriction.
3483  QualType BaseDeclType = VDecl->getType();
3484  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
3485    BaseDeclType = Array->getElementType();
3486  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
3487                          diag::err_typecheck_decl_incomplete_type)) {
3488    RealDecl->setInvalidDecl();
3489    return;
3490  }
3491
3492  // The variable can not have an abstract class type.
3493  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
3494                             diag::err_abstract_type_in_decl,
3495                             AbstractVariableType))
3496    VDecl->setInvalidDecl();
3497
3498  const VarDecl *Def = 0;
3499  if (VDecl->getDefinition(Def)) {
3500    Diag(VDecl->getLocation(), diag::err_redefinition)
3501      << VDecl->getDeclName();
3502    Diag(Def->getLocation(), diag::note_previous_definition);
3503    VDecl->setInvalidDecl();
3504    return;
3505  }
3506
3507  // Take ownership of the expression, now that we're sure we have somewhere
3508  // to put it.
3509  Expr *Init = init.takeAs<Expr>();
3510  assert(Init && "missing initializer");
3511
3512  // Capture the variable that is being initialized and the style of
3513  // initialization.
3514  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
3515
3516  // FIXME: Poor source location information.
3517  InitializationKind Kind
3518    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
3519                                                   Init->getLocStart(),
3520                                                   Init->getLocEnd())
3521                : InitializationKind::CreateCopy(VDecl->getLocation(),
3522                                                 Init->getLocStart());
3523
3524  // Get the decls type and save a reference for later, since
3525  // CheckInitializerTypes may change it.
3526  QualType DclT = VDecl->getType(), SavT = DclT;
3527  if (VDecl->isBlockVarDecl()) {
3528    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3529      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3530      VDecl->setInvalidDecl();
3531    } else if (!VDecl->isInvalidDecl()) {
3532      if (VDecl->getType()->isReferenceType()
3533          || isa<InitListExpr>(Init)) {
3534        InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
3535        if (InitSeq) {
3536          OwningExprResult Result = InitSeq.Perform(*this, Entity, Kind,
3537                                           MultiExprArg(*this, (void**)&Init, 1),
3538                                                    &DclT);
3539          if (Result.isInvalid()) {
3540            VDecl->setInvalidDecl();
3541            return;
3542          }
3543
3544          Init = Result.takeAs<Expr>();
3545        } else {
3546          InitSeq.Diagnose(*this, Entity, Kind, &Init, 1);
3547          VDecl->setInvalidDecl();
3548          return;
3549        }
3550      } else if (CheckInitializerTypes(Init, DclT, Entity, Kind))
3551        VDecl->setInvalidDecl();
3552
3553      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3554      // Don't check invalid declarations to avoid emitting useless diagnostics.
3555      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3556        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3557          CheckForConstantInitializer(Init, DclT);
3558      }
3559    }
3560  } else if (VDecl->isStaticDataMember() &&
3561             VDecl->getLexicalDeclContext()->isRecord()) {
3562    // This is an in-class initialization for a static data member, e.g.,
3563    //
3564    // struct S {
3565    //   static const int value = 17;
3566    // };
3567
3568    // Attach the initializer
3569    VDecl->setInit(Context, Init);
3570
3571    // C++ [class.mem]p4:
3572    //   A member-declarator can contain a constant-initializer only
3573    //   if it declares a static member (9.4) of const integral or
3574    //   const enumeration type, see 9.4.2.
3575    QualType T = VDecl->getType();
3576    if (!T->isDependentType() &&
3577        (!Context.getCanonicalType(T).isConstQualified() ||
3578         !T->isIntegralType())) {
3579      Diag(VDecl->getLocation(), diag::err_member_initialization)
3580        << VDecl->getDeclName() << Init->getSourceRange();
3581      VDecl->setInvalidDecl();
3582    } else {
3583      // C++ [class.static.data]p4:
3584      //   If a static data member is of const integral or const
3585      //   enumeration type, its declaration in the class definition
3586      //   can specify a constant-initializer which shall be an
3587      //   integral constant expression (5.19).
3588      if (!Init->isTypeDependent() &&
3589          !Init->getType()->isIntegralType()) {
3590        // We have a non-dependent, non-integral or enumeration type.
3591        Diag(Init->getSourceRange().getBegin(),
3592             diag::err_in_class_initializer_non_integral_type)
3593          << Init->getType() << Init->getSourceRange();
3594        VDecl->setInvalidDecl();
3595      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3596        // Check whether the expression is a constant expression.
3597        llvm::APSInt Value;
3598        SourceLocation Loc;
3599        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3600          Diag(Loc, diag::err_in_class_initializer_non_constant)
3601            << Init->getSourceRange();
3602          VDecl->setInvalidDecl();
3603        } else if (!VDecl->getType()->isDependentType())
3604          ImpCastExprToType(Init, VDecl->getType(), CastExpr::CK_IntegralCast);
3605      }
3606    }
3607  } else if (VDecl->isFileVarDecl()) {
3608    if (VDecl->getStorageClass() == VarDecl::Extern)
3609      Diag(VDecl->getLocation(), diag::warn_extern_init);
3610    if (!VDecl->isInvalidDecl())
3611      if (CheckInitializerTypes(Init, DclT, Entity, Kind))
3612        VDecl->setInvalidDecl();
3613
3614    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3615    // Don't check invalid declarations to avoid emitting useless diagnostics.
3616    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3617      // C99 6.7.8p4. All file scoped initializers need to be constant.
3618      CheckForConstantInitializer(Init, DclT);
3619    }
3620  }
3621  // If the type changed, it means we had an incomplete type that was
3622  // completed by the initializer. For example:
3623  //   int ary[] = { 1, 3, 5 };
3624  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3625  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3626    VDecl->setType(DclT);
3627    Init->setType(DclT);
3628  }
3629
3630  Init = MaybeCreateCXXExprWithTemporaries(Init);
3631  // Attach the initializer to the decl.
3632  VDecl->setInit(Context, Init);
3633
3634  // If the previous declaration of VDecl was a tentative definition,
3635  // remove it from the set of tentative definitions.
3636  if (VDecl->getPreviousDeclaration() &&
3637      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3638    bool Deleted = TentativeDefinitions.erase(VDecl->getDeclName());
3639    assert(Deleted && "Unrecorded tentative definition?"); Deleted=Deleted;
3640  }
3641
3642  return;
3643}
3644
3645void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3646                                  bool TypeContainsUndeducedAuto) {
3647  Decl *RealDecl = dcl.getAs<Decl>();
3648
3649  // If there is no declaration, there was an error parsing it. Just ignore it.
3650  if (RealDecl == 0)
3651    return;
3652
3653  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3654    QualType Type = Var->getType();
3655
3656    // Record tentative definitions.
3657    if (Var->isTentativeDefinition(Context)) {
3658      std::pair<llvm::DenseMap<DeclarationName, VarDecl *>::iterator, bool>
3659        InsertPair =
3660           TentativeDefinitions.insert(std::make_pair(Var->getDeclName(), Var));
3661
3662      // Keep the latest definition in the map.  If we see 'int i; int i;' we
3663      // want the second one in the map.
3664      InsertPair.first->second = Var;
3665
3666      // However, for the list, we don't care about the order, just make sure
3667      // that there are no dupes for a given declaration name.
3668      if (InsertPair.second)
3669        TentativeDefinitionList.push_back(Var->getDeclName());
3670    }
3671
3672    // C++ [dcl.init.ref]p3:
3673    //   The initializer can be omitted for a reference only in a
3674    //   parameter declaration (8.3.5), in the declaration of a
3675    //   function return type, in the declaration of a class member
3676    //   within its class declaration (9.2), and where the extern
3677    //   specifier is explicitly used.
3678    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3679      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3680        << Var->getDeclName()
3681        << SourceRange(Var->getLocation(), Var->getLocation());
3682      Var->setInvalidDecl();
3683      return;
3684    }
3685
3686    // C++0x [dcl.spec.auto]p3
3687    if (TypeContainsUndeducedAuto) {
3688      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3689        << Var->getDeclName() << Type;
3690      Var->setInvalidDecl();
3691      return;
3692    }
3693
3694    // An array without size is an incomplete type, and there are no special
3695    // rules in C++ to make such a definition acceptable.
3696    if (getLangOptions().CPlusPlus && Type->isIncompleteArrayType() &&
3697        !Var->hasExternalStorage()) {
3698      Diag(Var->getLocation(),
3699           diag::err_typecheck_incomplete_array_needs_initializer);
3700      Var->setInvalidDecl();
3701      return;
3702    }
3703
3704    // C++ [temp.expl.spec]p15:
3705    //   An explicit specialization of a static data member of a template is a
3706    //   definition if the declaration includes an initializer; otherwise, it
3707    //   is a declaration.
3708    if (Var->isStaticDataMember() &&
3709        Var->getInstantiatedFromStaticDataMember() &&
3710        Var->getTemplateSpecializationKind() == TSK_ExplicitSpecialization)
3711      return;
3712
3713    // C++ [dcl.init]p9:
3714    //   If no initializer is specified for an object, and the object
3715    //   is of (possibly cv-qualified) non-POD class type (or array
3716    //   thereof), the object shall be default-initialized; if the
3717    //   object is of const-qualified type, the underlying class type
3718    //   shall have a user-declared default constructor.
3719    //
3720    // FIXME: Diagnose the "user-declared default constructor" bit.
3721    if (getLangOptions().CPlusPlus) {
3722      QualType InitType = Type;
3723      if (const ArrayType *Array = Context.getAsArrayType(Type))
3724        InitType = Context.getBaseElementType(Array);
3725      if ((!Var->hasExternalStorage() && !Var->isExternC()) &&
3726          InitType->isRecordType() && !InitType->isDependentType()) {
3727        if (!RequireCompleteType(Var->getLocation(), InitType,
3728                                 diag::err_invalid_incomplete_type_use)) {
3729          ASTOwningVector<&ActionBase::DeleteExpr> ConstructorArgs(*this);
3730
3731          CXXConstructorDecl *Constructor
3732            = PerformInitializationByConstructor(InitType,
3733                                                 MultiExprArg(*this, 0, 0),
3734                                                 Var->getLocation(),
3735                                               SourceRange(Var->getLocation(),
3736                                                           Var->getLocation()),
3737                                                 Var->getDeclName(),
3738                         InitializationKind::CreateDefault(Var->getLocation()),
3739                                                 ConstructorArgs);
3740
3741          // FIXME: Location info for the variable initialization?
3742          if (!Constructor)
3743            Var->setInvalidDecl();
3744          else {
3745            // FIXME: Cope with initialization of arrays
3746            if (!Constructor->isTrivial() &&
3747                InitializeVarWithConstructor(Var, Constructor,
3748                                             move_arg(ConstructorArgs)))
3749              Var->setInvalidDecl();
3750
3751            FinalizeVarWithDestructor(Var, InitType);
3752          }
3753        } else {
3754          Var->setInvalidDecl();
3755        }
3756      }
3757
3758      // The variable can not have an abstract class type.
3759      if (RequireNonAbstractType(Var->getLocation(), Type,
3760                                 diag::err_abstract_type_in_decl,
3761                                 AbstractVariableType))
3762        Var->setInvalidDecl();
3763    }
3764
3765#if 0
3766    // FIXME: Temporarily disabled because we are not properly parsing
3767    // linkage specifications on declarations, e.g.,
3768    //
3769    //   extern "C" const CGPoint CGPointerZero;
3770    //
3771    // C++ [dcl.init]p9:
3772    //
3773    //     If no initializer is specified for an object, and the
3774    //     object is of (possibly cv-qualified) non-POD class type (or
3775    //     array thereof), the object shall be default-initialized; if
3776    //     the object is of const-qualified type, the underlying class
3777    //     type shall have a user-declared default
3778    //     constructor. Otherwise, if no initializer is specified for
3779    //     an object, the object and its subobjects, if any, have an
3780    //     indeterminate initial value; if the object or any of its
3781    //     subobjects are of const-qualified type, the program is
3782    //     ill-formed.
3783    //
3784    // This isn't technically an error in C, so we don't diagnose it.
3785    //
3786    // FIXME: Actually perform the POD/user-defined default
3787    // constructor check.
3788    if (getLangOptions().CPlusPlus &&
3789        Context.getCanonicalType(Type).isConstQualified() &&
3790        !Var->hasExternalStorage())
3791      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3792        << Var->getName()
3793        << SourceRange(Var->getLocation(), Var->getLocation());
3794#endif
3795  }
3796}
3797
3798Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3799                                                   DeclPtrTy *Group,
3800                                                   unsigned NumDecls) {
3801  llvm::SmallVector<Decl*, 8> Decls;
3802
3803  if (DS.isTypeSpecOwned())
3804    Decls.push_back((Decl*)DS.getTypeRep());
3805
3806  for (unsigned i = 0; i != NumDecls; ++i)
3807    if (Decl *D = Group[i].getAs<Decl>())
3808      Decls.push_back(D);
3809
3810  // Perform semantic analysis that depends on having fully processed both
3811  // the declarator and initializer.
3812  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3813    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3814    if (!IDecl)
3815      continue;
3816    QualType T = IDecl->getType();
3817
3818    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3819    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3820    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3821      if (T->isDependentType()) {
3822        // If T is dependent, we should not require a complete type.
3823        // (RequireCompleteType shouldn't be called with dependent types.)
3824        // But we still can at least check if we've got an array of unspecified
3825        // size without an initializer.
3826        if (!IDecl->isInvalidDecl() && T->isIncompleteArrayType() &&
3827            !IDecl->getInit()) {
3828          Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type)
3829            << T;
3830          IDecl->setInvalidDecl();
3831        }
3832      } else if (!IDecl->isInvalidDecl()) {
3833        // If T is an incomplete array type with an initializer list that is
3834        // dependent on something, its size has not been fixed. We could attempt
3835        // to fix the size for such arrays, but we would still have to check
3836        // here for initializers containing a C++0x vararg expansion, e.g.
3837        // template <typename... Args> void f(Args... args) {
3838        //   int vals[] = { args };
3839        // }
3840        const IncompleteArrayType *IAT = Context.getAsIncompleteArrayType(T);
3841        Expr *Init = IDecl->getInit();
3842        if (IAT && Init &&
3843            (Init->isTypeDependent() || Init->isValueDependent())) {
3844          // Check that the member type of the array is complete, at least.
3845          if (RequireCompleteType(IDecl->getLocation(), IAT->getElementType(),
3846                                  diag::err_typecheck_decl_incomplete_type))
3847            IDecl->setInvalidDecl();
3848        } else if (RequireCompleteType(IDecl->getLocation(), T,
3849                                      diag::err_typecheck_decl_incomplete_type))
3850          IDecl->setInvalidDecl();
3851      }
3852    }
3853    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3854    // object that has file scope without an initializer, and without a
3855    // storage-class specifier or with the storage-class specifier "static",
3856    // constitutes a tentative definition. Note: A tentative definition with
3857    // external linkage is valid (C99 6.2.2p5).
3858    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3859      if (const IncompleteArrayType *ArrayT
3860          = Context.getAsIncompleteArrayType(T)) {
3861        if (RequireCompleteType(IDecl->getLocation(),
3862                                ArrayT->getElementType(),
3863                                diag::err_illegal_decl_array_incomplete_type))
3864          IDecl->setInvalidDecl();
3865      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3866        // C99 6.9.2p3: If the declaration of an identifier for an object is
3867        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3868        // declared type shall not be an incomplete type.
3869        // NOTE: code such as the following
3870        //     static struct s;
3871        //     struct s { int a; };
3872        // is accepted by gcc. Hence here we issue a warning instead of
3873        // an error and we do not invalidate the static declaration.
3874        // NOTE: to avoid multiple warnings, only check the first declaration.
3875        if (IDecl->getPreviousDeclaration() == 0)
3876          RequireCompleteType(IDecl->getLocation(), T,
3877                              diag::ext_typecheck_decl_incomplete_type);
3878      }
3879    }
3880  }
3881  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3882                                                   Decls.data(), Decls.size()));
3883}
3884
3885
3886/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3887/// to introduce parameters into function prototype scope.
3888Sema::DeclPtrTy
3889Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3890  const DeclSpec &DS = D.getDeclSpec();
3891
3892  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3893  VarDecl::StorageClass StorageClass = VarDecl::None;
3894  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3895    StorageClass = VarDecl::Register;
3896  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3897    Diag(DS.getStorageClassSpecLoc(),
3898         diag::err_invalid_storage_class_in_func_decl);
3899    D.getMutableDeclSpec().ClearStorageClassSpecs();
3900  }
3901
3902  if (D.getDeclSpec().isThreadSpecified())
3903    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3904
3905  DiagnoseFunctionSpecifiers(D);
3906
3907  // Check that there are no default arguments inside the type of this
3908  // parameter (C++ only).
3909  if (getLangOptions().CPlusPlus)
3910    CheckExtraCXXDefaultArguments(D);
3911
3912  TypeSourceInfo *TInfo = 0;
3913  TagDecl *OwnedDecl = 0;
3914  QualType parmDeclType = GetTypeForDeclarator(D, S, &TInfo, &OwnedDecl);
3915
3916  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3917    // C++ [dcl.fct]p6:
3918    //   Types shall not be defined in return or parameter types.
3919    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3920      << Context.getTypeDeclType(OwnedDecl);
3921  }
3922
3923  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3924  // Can this happen for params?  We already checked that they don't conflict
3925  // among each other.  Here they can only shadow globals, which is ok.
3926  IdentifierInfo *II = D.getIdentifier();
3927  if (II) {
3928    if (NamedDecl *PrevDecl = LookupSingleName(S, II, LookupOrdinaryName)) {
3929      if (PrevDecl->isTemplateParameter()) {
3930        // Maybe we will complain about the shadowed template parameter.
3931        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3932        // Just pretend that we didn't see the previous declaration.
3933        PrevDecl = 0;
3934      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3935        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3936
3937        // Recover by removing the name
3938        II = 0;
3939        D.SetIdentifier(0, D.getIdentifierLoc());
3940      }
3941    }
3942  }
3943
3944  // Parameters can not be abstract class types.
3945  // For record types, this is done by the AbstractClassUsageDiagnoser once
3946  // the class has been completely parsed.
3947  if (!CurContext->isRecord() &&
3948      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3949                             diag::err_abstract_type_in_decl,
3950                             AbstractParamType))
3951    D.setInvalidType(true);
3952
3953  QualType T = adjustParameterType(parmDeclType);
3954
3955  ParmVarDecl *New
3956    = ParmVarDecl::Create(Context, CurContext, D.getIdentifierLoc(), II,
3957                          T, TInfo, StorageClass, 0);
3958
3959  if (D.isInvalidType())
3960    New->setInvalidDecl();
3961
3962  // Parameter declarators cannot be interface types. All ObjC objects are
3963  // passed by reference.
3964  if (T->isObjCInterfaceType()) {
3965    Diag(D.getIdentifierLoc(),
3966         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3967    New->setInvalidDecl();
3968  }
3969
3970  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3971  if (D.getCXXScopeSpec().isSet()) {
3972    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3973      << D.getCXXScopeSpec().getRange();
3974    New->setInvalidDecl();
3975  }
3976
3977  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
3978  // duration shall not be qualified by an address-space qualifier."
3979  // Since all parameters have automatic store duration, they can not have
3980  // an address space.
3981  if (T.getAddressSpace() != 0) {
3982    Diag(D.getIdentifierLoc(),
3983         diag::err_arg_with_address_space);
3984    New->setInvalidDecl();
3985  }
3986
3987
3988  // Add the parameter declaration into this scope.
3989  S->AddDecl(DeclPtrTy::make(New));
3990  if (II)
3991    IdResolver.AddDecl(New);
3992
3993  ProcessDeclAttributes(S, New, D);
3994
3995  if (New->hasAttr<BlocksAttr>()) {
3996    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3997  }
3998  return DeclPtrTy::make(New);
3999}
4000
4001void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
4002                                           SourceLocation LocAfterDecls) {
4003  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4004         "Not a function declarator!");
4005  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4006
4007  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
4008  // for a K&R function.
4009  if (!FTI.hasPrototype) {
4010    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
4011      --i;
4012      if (FTI.ArgInfo[i].Param == 0) {
4013        llvm::SmallString<256> Code;
4014        llvm::raw_svector_ostream(Code) << "  int "
4015                                        << FTI.ArgInfo[i].Ident->getName()
4016                                        << ";\n";
4017        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
4018          << FTI.ArgInfo[i].Ident
4019          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code.str());
4020
4021        // Implicitly declare the argument as type 'int' for lack of a better
4022        // type.
4023        DeclSpec DS;
4024        const char* PrevSpec; // unused
4025        unsigned DiagID; // unused
4026        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
4027                           PrevSpec, DiagID);
4028        Declarator ParamD(DS, Declarator::KNRTypeListContext);
4029        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
4030        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
4031      }
4032    }
4033  }
4034}
4035
4036Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
4037                                              Declarator &D) {
4038  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
4039  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
4040         "Not a function declarator!");
4041  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
4042
4043  if (FTI.hasPrototype) {
4044    // FIXME: Diagnose arguments without names in C.
4045  }
4046
4047  Scope *ParentScope = FnBodyScope->getParent();
4048
4049  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
4050                                  MultiTemplateParamsArg(*this),
4051                                  /*IsFunctionDefinition=*/true);
4052  return ActOnStartOfFunctionDef(FnBodyScope, DP);
4053}
4054
4055static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
4056  // Don't warn about invalid declarations.
4057  if (FD->isInvalidDecl())
4058    return false;
4059
4060  // Or declarations that aren't global.
4061  if (!FD->isGlobal())
4062    return false;
4063
4064  // Don't warn about C++ member functions.
4065  if (isa<CXXMethodDecl>(FD))
4066    return false;
4067
4068  // Don't warn about 'main'.
4069  if (FD->isMain())
4070    return false;
4071
4072  // Don't warn about inline functions.
4073  if (FD->isInlineSpecified())
4074    return false;
4075
4076  // Don't warn about function templates.
4077  if (FD->getDescribedFunctionTemplate())
4078    return false;
4079
4080  // Don't warn about function template specializations.
4081  if (FD->isFunctionTemplateSpecialization())
4082    return false;
4083
4084  bool MissingPrototype = true;
4085  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
4086       Prev; Prev = Prev->getPreviousDeclaration()) {
4087    // Ignore any declarations that occur in function or method
4088    // scope, because they aren't visible from the header.
4089    if (Prev->getDeclContext()->isFunctionOrMethod())
4090      continue;
4091
4092    MissingPrototype = !Prev->getType()->isFunctionProtoType();
4093    break;
4094  }
4095
4096  return MissingPrototype;
4097}
4098
4099Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
4100  // Clear the last template instantiation error context.
4101  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
4102
4103  if (!D)
4104    return D;
4105  FunctionDecl *FD = 0;
4106
4107  if (FunctionTemplateDecl *FunTmpl
4108        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
4109    FD = FunTmpl->getTemplatedDecl();
4110  else
4111    FD = cast<FunctionDecl>(D.getAs<Decl>());
4112
4113  CurFunctionNeedsScopeChecking = false;
4114
4115  // See if this is a redefinition.
4116  const FunctionDecl *Definition;
4117  if (FD->getBody(Definition)) {
4118    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
4119    Diag(Definition->getLocation(), diag::note_previous_definition);
4120  }
4121
4122  // Builtin functions cannot be defined.
4123  if (unsigned BuiltinID = FD->getBuiltinID()) {
4124    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
4125      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
4126      FD->setInvalidDecl();
4127    }
4128  }
4129
4130  // The return type of a function definition must be complete
4131  // (C99 6.9.1p3, C++ [dcl.fct]p6).
4132  QualType ResultType = FD->getResultType();
4133  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
4134      !FD->isInvalidDecl() &&
4135      RequireCompleteType(FD->getLocation(), ResultType,
4136                          diag::err_func_def_incomplete_result))
4137    FD->setInvalidDecl();
4138
4139  // GNU warning -Wmissing-prototypes:
4140  //   Warn if a global function is defined without a previous
4141  //   prototype declaration. This warning is issued even if the
4142  //   definition itself provides a prototype. The aim is to detect
4143  //   global functions that fail to be declared in header files.
4144  if (ShouldWarnAboutMissingPrototype(FD))
4145    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
4146
4147  if (FnBodyScope)
4148    PushDeclContext(FnBodyScope, FD);
4149
4150  // Check the validity of our function parameters
4151  CheckParmsForFunctionDef(FD);
4152
4153  // Introduce our parameters into the function scope
4154  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
4155    ParmVarDecl *Param = FD->getParamDecl(p);
4156    Param->setOwningFunction(FD);
4157
4158    // If this has an identifier, add it to the scope stack.
4159    if (Param->getIdentifier() && FnBodyScope)
4160      PushOnScopeChains(Param, FnBodyScope);
4161  }
4162
4163  // Checking attributes of current function definition
4164  // dllimport attribute.
4165  if (FD->getAttr<DLLImportAttr>() &&
4166      (!FD->getAttr<DLLExportAttr>())) {
4167    // dllimport attribute cannot be applied to definition.
4168    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
4169      Diag(FD->getLocation(),
4170           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
4171        << "dllimport";
4172      FD->setInvalidDecl();
4173      return DeclPtrTy::make(FD);
4174    } else {
4175      // If a symbol previously declared dllimport is later defined, the
4176      // attribute is ignored in subsequent references, and a warning is
4177      // emitted.
4178      Diag(FD->getLocation(),
4179           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
4180        << FD->getNameAsCString() << "dllimport";
4181    }
4182  }
4183  return DeclPtrTy::make(FD);
4184}
4185
4186Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
4187  return ActOnFinishFunctionBody(D, move(BodyArg), false);
4188}
4189
4190Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
4191                                              bool IsInstantiation) {
4192  Decl *dcl = D.getAs<Decl>();
4193  Stmt *Body = BodyArg.takeAs<Stmt>();
4194
4195  FunctionDecl *FD = 0;
4196  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
4197  if (FunTmpl)
4198    FD = FunTmpl->getTemplatedDecl();
4199  else
4200    FD = dyn_cast_or_null<FunctionDecl>(dcl);
4201
4202  if (FD) {
4203    FD->setBody(Body);
4204    if (FD->isMain())
4205      // C and C++ allow for main to automagically return 0.
4206      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
4207      FD->setHasImplicitReturnZero(true);
4208    else
4209      CheckFallThroughForFunctionDef(FD, Body);
4210
4211    if (!FD->isInvalidDecl())
4212      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
4213
4214    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
4215      MaybeMarkVirtualMembersReferenced(Method->getLocation(), Method);
4216
4217    assert(FD == getCurFunctionDecl() && "Function parsing confused");
4218  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
4219    assert(MD == getCurMethodDecl() && "Method parsing confused");
4220    MD->setBody(Body);
4221    CheckFallThroughForFunctionDef(MD, Body);
4222    MD->setEndLoc(Body->getLocEnd());
4223
4224    if (!MD->isInvalidDecl())
4225      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
4226  } else {
4227    Body->Destroy(Context);
4228    return DeclPtrTy();
4229  }
4230  if (!IsInstantiation)
4231    PopDeclContext();
4232
4233  // Verify and clean out per-function state.
4234
4235  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
4236
4237  // Check goto/label use.
4238  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
4239       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
4240    LabelStmt *L = I->second;
4241
4242    // Verify that we have no forward references left.  If so, there was a goto
4243    // or address of a label taken, but no definition of it.  Label fwd
4244    // definitions are indicated with a null substmt.
4245    if (L->getSubStmt() != 0)
4246      continue;
4247
4248    // Emit error.
4249    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
4250
4251    // At this point, we have gotos that use the bogus label.  Stitch it into
4252    // the function body so that they aren't leaked and that the AST is well
4253    // formed.
4254    if (Body == 0) {
4255      // The whole function wasn't parsed correctly, just delete this.
4256      L->Destroy(Context);
4257      continue;
4258    }
4259
4260    // Otherwise, the body is valid: we want to stitch the label decl into the
4261    // function somewhere so that it is properly owned and so that the goto
4262    // has a valid target.  Do this by creating a new compound stmt with the
4263    // label in it.
4264
4265    // Give the label a sub-statement.
4266    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
4267
4268    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
4269                               cast<CXXTryStmt>(Body)->getTryBlock() :
4270                               cast<CompoundStmt>(Body);
4271    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
4272    Elements.push_back(L);
4273    Compound->setStmts(Context, &Elements[0], Elements.size());
4274  }
4275  FunctionLabelMap.clear();
4276
4277  if (!Body) return D;
4278
4279  // Verify that that gotos and switch cases don't jump into scopes illegally.
4280  if (CurFunctionNeedsScopeChecking)
4281    DiagnoseInvalidJumps(Body);
4282
4283  // C++ constructors that have function-try-blocks can't have return
4284  // statements in the handlers of that block. (C++ [except.handle]p14)
4285  // Verify this.
4286  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
4287    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
4288
4289  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
4290    MarkBaseAndMemberDestructorsReferenced(Destructor);
4291
4292  // If any errors have occurred, clear out any temporaries that may have
4293  // been leftover. This ensures that these temporaries won't be picked up for
4294  // deletion in some later function.
4295  if (PP.getDiagnostics().hasErrorOccurred())
4296    ExprTemporaries.clear();
4297
4298  assert(ExprTemporaries.empty() && "Leftover temporaries in function");
4299  return D;
4300}
4301
4302/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
4303/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
4304NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
4305                                          IdentifierInfo &II, Scope *S) {
4306  // Before we produce a declaration for an implicitly defined
4307  // function, see whether there was a locally-scoped declaration of
4308  // this name as a function or variable. If so, use that
4309  // (non-visible) declaration, and complain about it.
4310  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4311    = LocallyScopedExternalDecls.find(&II);
4312  if (Pos != LocallyScopedExternalDecls.end()) {
4313    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
4314    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
4315    return Pos->second;
4316  }
4317
4318  // Extension in C99.  Legal in C90, but warn about it.
4319  if (II.getName().startswith("__builtin_"))
4320    Diag(Loc, diag::warn_builtin_unknown) << &II;
4321  else if (getLangOptions().C99)
4322    Diag(Loc, diag::ext_implicit_function_decl) << &II;
4323  else
4324    Diag(Loc, diag::warn_implicit_function_decl) << &II;
4325
4326  // Set a Declarator for the implicit definition: int foo();
4327  const char *Dummy;
4328  DeclSpec DS;
4329  unsigned DiagID;
4330  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
4331  Error = Error; // Silence warning.
4332  assert(!Error && "Error setting up implicit decl!");
4333  Declarator D(DS, Declarator::BlockContext);
4334  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
4335                                             0, 0, false, SourceLocation(),
4336                                             false, 0,0,0, Loc, Loc, D),
4337                SourceLocation());
4338  D.SetIdentifier(&II, Loc);
4339
4340  // Insert this function into translation-unit scope.
4341
4342  DeclContext *PrevDC = CurContext;
4343  CurContext = Context.getTranslationUnitDecl();
4344
4345  FunctionDecl *FD =
4346 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
4347  FD->setImplicit();
4348
4349  CurContext = PrevDC;
4350
4351  AddKnownFunctionAttributes(FD);
4352
4353  return FD;
4354}
4355
4356/// \brief Adds any function attributes that we know a priori based on
4357/// the declaration of this function.
4358///
4359/// These attributes can apply both to implicitly-declared builtins
4360/// (like __builtin___printf_chk) or to library-declared functions
4361/// like NSLog or printf.
4362void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
4363  if (FD->isInvalidDecl())
4364    return;
4365
4366  // If this is a built-in function, map its builtin attributes to
4367  // actual attributes.
4368  if (unsigned BuiltinID = FD->getBuiltinID()) {
4369    // Handle printf-formatting attributes.
4370    unsigned FormatIdx;
4371    bool HasVAListArg;
4372    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
4373      if (!FD->getAttr<FormatAttr>())
4374        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
4375                                             HasVAListArg ? 0 : FormatIdx + 2));
4376    }
4377
4378    // Mark const if we don't care about errno and that is the only
4379    // thing preventing the function from being const. This allows
4380    // IRgen to use LLVM intrinsics for such functions.
4381    if (!getLangOptions().MathErrno &&
4382        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
4383      if (!FD->getAttr<ConstAttr>())
4384        FD->addAttr(::new (Context) ConstAttr());
4385    }
4386
4387    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
4388      FD->addAttr(::new (Context) NoReturnAttr());
4389  }
4390
4391  IdentifierInfo *Name = FD->getIdentifier();
4392  if (!Name)
4393    return;
4394  if ((!getLangOptions().CPlusPlus &&
4395       FD->getDeclContext()->isTranslationUnit()) ||
4396      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
4397       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
4398       LinkageSpecDecl::lang_c)) {
4399    // Okay: this could be a libc/libm/Objective-C function we know
4400    // about.
4401  } else
4402    return;
4403
4404  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
4405    // FIXME: NSLog and NSLogv should be target specific
4406    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
4407      // FIXME: We known better than our headers.
4408      const_cast<FormatAttr *>(Format)->setType("printf");
4409    } else
4410      FD->addAttr(::new (Context) FormatAttr("printf", 1,
4411                                             Name->isStr("NSLogv") ? 0 : 2));
4412  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
4413    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
4414    // target-specific builtins, perhaps?
4415    if (!FD->getAttr<FormatAttr>())
4416      FD->addAttr(::new (Context) FormatAttr("printf", 2,
4417                                             Name->isStr("vasprintf") ? 0 : 3));
4418  }
4419}
4420
4421TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
4422                                    TypeSourceInfo *TInfo) {
4423  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
4424  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
4425
4426  if (!TInfo) {
4427    assert(D.isInvalidType() && "no declarator info for valid type");
4428    TInfo = Context.getTrivialTypeSourceInfo(T);
4429  }
4430
4431  // Scope manipulation handled by caller.
4432  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
4433                                           D.getIdentifierLoc(),
4434                                           D.getIdentifier(),
4435                                           TInfo);
4436
4437  if (const TagType *TT = T->getAs<TagType>()) {
4438    TagDecl *TD = TT->getDecl();
4439
4440    // If the TagDecl that the TypedefDecl points to is an anonymous decl
4441    // keep track of the TypedefDecl.
4442    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
4443      TD->setTypedefForAnonDecl(NewTD);
4444  }
4445
4446  if (D.isInvalidType())
4447    NewTD->setInvalidDecl();
4448  return NewTD;
4449}
4450
4451
4452/// \brief Determine whether a tag with a given kind is acceptable
4453/// as a redeclaration of the given tag declaration.
4454///
4455/// \returns true if the new tag kind is acceptable, false otherwise.
4456bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
4457                                        TagDecl::TagKind NewTag,
4458                                        SourceLocation NewTagLoc,
4459                                        const IdentifierInfo &Name) {
4460  // C++ [dcl.type.elab]p3:
4461  //   The class-key or enum keyword present in the
4462  //   elaborated-type-specifier shall agree in kind with the
4463  //   declaration to which the name in theelaborated-type-specifier
4464  //   refers. This rule also applies to the form of
4465  //   elaborated-type-specifier that declares a class-name or
4466  //   friend class since it can be construed as referring to the
4467  //   definition of the class. Thus, in any
4468  //   elaborated-type-specifier, the enum keyword shall be used to
4469  //   refer to an enumeration (7.2), the union class-keyshall be
4470  //   used to refer to a union (clause 9), and either the class or
4471  //   struct class-key shall be used to refer to a class (clause 9)
4472  //   declared using the class or struct class-key.
4473  TagDecl::TagKind OldTag = Previous->getTagKind();
4474  if (OldTag == NewTag)
4475    return true;
4476
4477  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
4478      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
4479    // Warn about the struct/class tag mismatch.
4480    bool isTemplate = false;
4481    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
4482      isTemplate = Record->getDescribedClassTemplate();
4483
4484    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
4485      << (NewTag == TagDecl::TK_class)
4486      << isTemplate << &Name
4487      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
4488                              OldTag == TagDecl::TK_class? "class" : "struct");
4489    Diag(Previous->getLocation(), diag::note_previous_use);
4490    return true;
4491  }
4492  return false;
4493}
4494
4495/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
4496/// former case, Name will be non-null.  In the later case, Name will be null.
4497/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
4498/// reference/declaration/definition of a tag.
4499Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
4500                               SourceLocation KWLoc, const CXXScopeSpec &SS,
4501                               IdentifierInfo *Name, SourceLocation NameLoc,
4502                               AttributeList *Attr, AccessSpecifier AS,
4503                               MultiTemplateParamsArg TemplateParameterLists,
4504                               bool &OwnedDecl, bool &IsDependent) {
4505  // If this is not a definition, it must have a name.
4506  assert((Name != 0 || TUK == TUK_Definition) &&
4507         "Nameless record must be a definition!");
4508
4509  OwnedDecl = false;
4510  TagDecl::TagKind Kind = TagDecl::getTagKindForTypeSpec(TagSpec);
4511
4512  // FIXME: Check explicit specializations more carefully.
4513  bool isExplicitSpecialization = false;
4514  if (TUK != TUK_Reference) {
4515    if (TemplateParameterList *TemplateParams
4516          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
4517                        (TemplateParameterList**)TemplateParameterLists.get(),
4518                                              TemplateParameterLists.size(),
4519                                                    isExplicitSpecialization)) {
4520      if (TemplateParams->size() > 0) {
4521        // This is a declaration or definition of a class template (which may
4522        // be a member of another template).
4523        OwnedDecl = false;
4524        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
4525                                               SS, Name, NameLoc, Attr,
4526                                               TemplateParams,
4527                                               AS);
4528        TemplateParameterLists.release();
4529        return Result.get();
4530      } else {
4531        // The "template<>" header is extraneous.
4532        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
4533          << ElaboratedType::getNameForTagKind(Kind) << Name;
4534        isExplicitSpecialization = true;
4535      }
4536    }
4537
4538    TemplateParameterLists.release();
4539  }
4540
4541  DeclContext *SearchDC = CurContext;
4542  DeclContext *DC = CurContext;
4543  bool isStdBadAlloc = false;
4544  bool Invalid = false;
4545
4546  RedeclarationKind Redecl = (TUK != TUK_Reference ? ForRedeclaration
4547                                                   : NotForRedeclaration);
4548
4549  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
4550
4551  if (Name && SS.isNotEmpty()) {
4552    // We have a nested-name tag ('struct foo::bar').
4553
4554    // Check for invalid 'foo::'.
4555    if (SS.isInvalid()) {
4556      Name = 0;
4557      goto CreateNewDecl;
4558    }
4559
4560    // If this is a friend or a reference to a class in a dependent
4561    // context, don't try to make a decl for it.
4562    if (TUK == TUK_Friend || TUK == TUK_Reference) {
4563      DC = computeDeclContext(SS, false);
4564      if (!DC) {
4565        IsDependent = true;
4566        return DeclPtrTy();
4567      }
4568    }
4569
4570    if (RequireCompleteDeclContext(SS))
4571      return DeclPtrTy::make((Decl *)0);
4572
4573    DC = computeDeclContext(SS, true);
4574    SearchDC = DC;
4575    // Look-up name inside 'foo::'.
4576    LookupQualifiedName(Previous, DC);
4577
4578    if (Previous.isAmbiguous())
4579      return DeclPtrTy();
4580
4581    // A tag 'foo::bar' must already exist.
4582    if (Previous.empty()) {
4583      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4584      Name = 0;
4585      Invalid = true;
4586      goto CreateNewDecl;
4587    }
4588  } else if (Name) {
4589    // If this is a named struct, check to see if there was a previous forward
4590    // declaration or definition.
4591    // FIXME: We're looking into outer scopes here, even when we
4592    // shouldn't be. Doing so can result in ambiguities that we
4593    // shouldn't be diagnosing.
4594    LookupName(Previous, S);
4595
4596    // Note:  there used to be some attempt at recovery here.
4597    if (Previous.isAmbiguous())
4598      return DeclPtrTy();
4599
4600    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4601      // FIXME: This makes sure that we ignore the contexts associated
4602      // with C structs, unions, and enums when looking for a matching
4603      // tag declaration or definition. See the similar lookup tweak
4604      // in Sema::LookupName; is there a better way to deal with this?
4605      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4606        SearchDC = SearchDC->getParent();
4607    }
4608  }
4609
4610  if (Previous.isSingleResult() &&
4611      Previous.getFoundDecl()->isTemplateParameter()) {
4612    // Maybe we will complain about the shadowed template parameter.
4613    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
4614    // Just pretend that we didn't see the previous declaration.
4615    Previous.clear();
4616  }
4617
4618  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
4619      DC->Equals(StdNamespace) && Name->isStr("bad_alloc")) {
4620    // This is a declaration of or a reference to "std::bad_alloc".
4621    isStdBadAlloc = true;
4622
4623    if (Previous.empty() && StdBadAlloc) {
4624      // std::bad_alloc has been implicitly declared (but made invisible to
4625      // name lookup). Fill in this implicit declaration as the previous
4626      // declaration, so that the declarations get chained appropriately.
4627      Previous.addDecl(StdBadAlloc);
4628    }
4629  }
4630
4631  if (!Previous.empty()) {
4632    assert(Previous.isSingleResult());
4633    NamedDecl *PrevDecl = Previous.getFoundDecl();
4634    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4635      // If this is a use of a previous tag, or if the tag is already declared
4636      // in the same scope (so that the definition/declaration completes or
4637      // rementions the tag), reuse the decl.
4638      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4639          isDeclInScope(PrevDecl, SearchDC, S)) {
4640        // Make sure that this wasn't declared as an enum and now used as a
4641        // struct or something similar.
4642        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4643          bool SafeToContinue
4644            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4645               Kind != TagDecl::TK_enum);
4646          if (SafeToContinue)
4647            Diag(KWLoc, diag::err_use_with_wrong_tag)
4648              << Name
4649              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4650                                                  PrevTagDecl->getKindName());
4651          else
4652            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4653          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
4654
4655          if (SafeToContinue)
4656            Kind = PrevTagDecl->getTagKind();
4657          else {
4658            // Recover by making this an anonymous redefinition.
4659            Name = 0;
4660            Previous.clear();
4661            Invalid = true;
4662          }
4663        }
4664
4665        if (!Invalid) {
4666          // If this is a use, just return the declaration we found.
4667
4668          // FIXME: In the future, return a variant or some other clue
4669          // for the consumer of this Decl to know it doesn't own it.
4670          // For our current ASTs this shouldn't be a problem, but will
4671          // need to be changed with DeclGroups.
4672          if (TUK == TUK_Reference || TUK == TUK_Friend)
4673            return DeclPtrTy::make(PrevTagDecl);
4674
4675          // Diagnose attempts to redefine a tag.
4676          if (TUK == TUK_Definition) {
4677            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4678              // If we're defining a specialization and the previous definition
4679              // is from an implicit instantiation, don't emit an error
4680              // here; we'll catch this in the general case below.
4681              if (!isExplicitSpecialization ||
4682                  !isa<CXXRecordDecl>(Def) ||
4683                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
4684                                               == TSK_ExplicitSpecialization) {
4685                Diag(NameLoc, diag::err_redefinition) << Name;
4686                Diag(Def->getLocation(), diag::note_previous_definition);
4687                // If this is a redefinition, recover by making this
4688                // struct be anonymous, which will make any later
4689                // references get the previous definition.
4690                Name = 0;
4691                Previous.clear();
4692                Invalid = true;
4693              }
4694            } else {
4695              // If the type is currently being defined, complain
4696              // about a nested redefinition.
4697              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4698              if (Tag->isBeingDefined()) {
4699                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4700                Diag(PrevTagDecl->getLocation(),
4701                     diag::note_previous_definition);
4702                Name = 0;
4703                Previous.clear();
4704                Invalid = true;
4705              }
4706            }
4707
4708            // Okay, this is definition of a previously declared or referenced
4709            // tag PrevDecl. We're going to create a new Decl for it.
4710          }
4711        }
4712        // If we get here we have (another) forward declaration or we
4713        // have a definition.  Just create a new decl.
4714
4715      } else {
4716        // If we get here, this is a definition of a new tag type in a nested
4717        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4718        // new decl/type.  We set PrevDecl to NULL so that the entities
4719        // have distinct types.
4720        Previous.clear();
4721      }
4722      // If we get here, we're going to create a new Decl. If PrevDecl
4723      // is non-NULL, it's a definition of the tag declared by
4724      // PrevDecl. If it's NULL, we have a new definition.
4725    } else {
4726      // PrevDecl is a namespace, template, or anything else
4727      // that lives in the IDNS_Tag identifier namespace.
4728      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4729        // The tag name clashes with a namespace name, issue an error and
4730        // recover by making this tag be anonymous.
4731        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4732        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4733        Name = 0;
4734        Previous.clear();
4735        Invalid = true;
4736      } else {
4737        // The existing declaration isn't relevant to us; we're in a
4738        // new scope, so clear out the previous declaration.
4739        Previous.clear();
4740      }
4741    }
4742  } else if (TUK == TUK_Reference && SS.isEmpty() && Name) {
4743    // C++ [basic.scope.pdecl]p5:
4744    //   -- for an elaborated-type-specifier of the form
4745    //
4746    //          class-key identifier
4747    //
4748    //      if the elaborated-type-specifier is used in the
4749    //      decl-specifier-seq or parameter-declaration-clause of a
4750    //      function defined in namespace scope, the identifier is
4751    //      declared as a class-name in the namespace that contains
4752    //      the declaration; otherwise, except as a friend
4753    //      declaration, the identifier is declared in the smallest
4754    //      non-class, non-function-prototype scope that contains the
4755    //      declaration.
4756    //
4757    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4758    // C structs and unions.
4759    //
4760    // It is an error in C++ to declare (rather than define) an enum
4761    // type, including via an elaborated type specifier.  We'll
4762    // diagnose that later; for now, declare the enum in the same
4763    // scope as we would have picked for any other tag type.
4764    //
4765    // GNU C also supports this behavior as part of its incomplete
4766    // enum types extension, while GNU C++ does not.
4767    //
4768    // Find the context where we'll be declaring the tag.
4769    // FIXME: We would like to maintain the current DeclContext as the
4770    // lexical context,
4771    while (SearchDC->isRecord())
4772      SearchDC = SearchDC->getParent();
4773
4774    // Find the scope where we'll be declaring the tag.
4775    while (S->isClassScope() ||
4776           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4777           ((S->getFlags() & Scope::DeclScope) == 0) ||
4778           (S->getEntity() &&
4779            ((DeclContext *)S->getEntity())->isTransparentContext()))
4780      S = S->getParent();
4781
4782  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4783    // C++ [namespace.memdef]p3:
4784    //   If a friend declaration in a non-local class first declares a
4785    //   class or function, the friend class or function is a member of
4786    //   the innermost enclosing namespace.
4787    while (!SearchDC->isFileContext())
4788      SearchDC = SearchDC->getParent();
4789
4790    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4791    while (S->getEntity() != SearchDC)
4792      S = S->getParent();
4793  }
4794
4795CreateNewDecl:
4796
4797  TagDecl *PrevDecl = 0;
4798  if (Previous.isSingleResult())
4799    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
4800
4801  // If there is an identifier, use the location of the identifier as the
4802  // location of the decl, otherwise use the location of the struct/union
4803  // keyword.
4804  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4805
4806  // Otherwise, create a new declaration. If there is a previous
4807  // declaration of the same entity, the two will be linked via
4808  // PrevDecl.
4809  TagDecl *New;
4810
4811  if (Kind == TagDecl::TK_enum) {
4812    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4813    // enum X { A, B, C } D;    D should chain to X.
4814    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4815                           cast_or_null<EnumDecl>(PrevDecl));
4816    // If this is an undefined enum, warn.
4817    if (TUK != TUK_Definition && !Invalid)  {
4818      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4819                                              : diag::ext_forward_ref_enum;
4820      Diag(Loc, DK);
4821    }
4822  } else {
4823    // struct/union/class
4824
4825    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4826    // struct X { int A; } D;    D should chain to X.
4827    if (getLangOptions().CPlusPlus) {
4828      // FIXME: Look for a way to use RecordDecl for simple structs.
4829      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4830                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4831
4832      if (isStdBadAlloc && (!StdBadAlloc || StdBadAlloc->isImplicit()))
4833        StdBadAlloc = cast<CXXRecordDecl>(New);
4834    } else
4835      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4836                               cast_or_null<RecordDecl>(PrevDecl));
4837  }
4838
4839  if (Kind != TagDecl::TK_enum) {
4840    // Handle #pragma pack: if the #pragma pack stack has non-default
4841    // alignment, make up a packed attribute for this decl. These
4842    // attributes are checked when the ASTContext lays out the
4843    // structure.
4844    //
4845    // It is important for implementing the correct semantics that this
4846    // happen here (in act on tag decl). The #pragma pack stack is
4847    // maintained as a result of parser callbacks which can occur at
4848    // many points during the parsing of a struct declaration (because
4849    // the #pragma tokens are effectively skipped over during the
4850    // parsing of the struct).
4851    if (unsigned Alignment = getPragmaPackAlignment())
4852      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4853  }
4854
4855  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4856    // C++ [dcl.typedef]p3:
4857    //   [...] Similarly, in a given scope, a class or enumeration
4858    //   shall not be declared with the same name as a typedef-name
4859    //   that is declared in that scope and refers to a type other
4860    //   than the class or enumeration itself.
4861    LookupResult Lookup(*this, Name, NameLoc, LookupOrdinaryName,
4862                        ForRedeclaration);
4863    LookupName(Lookup, S);
4864    TypedefDecl *PrevTypedef = Lookup.getAsSingle<TypedefDecl>();
4865    NamedDecl *PrevTypedefNamed = PrevTypedef;
4866    if (PrevTypedef && isDeclInScope(PrevTypedefNamed, SearchDC, S) &&
4867        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4868          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4869      Diag(Loc, diag::err_tag_definition_of_typedef)
4870        << Context.getTypeDeclType(New)
4871        << PrevTypedef->getUnderlyingType();
4872      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4873      Invalid = true;
4874    }
4875  }
4876
4877  // If this is a specialization of a member class (of a class template),
4878  // check the specialization.
4879  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
4880    Invalid = true;
4881
4882  if (Invalid)
4883    New->setInvalidDecl();
4884
4885  if (Attr)
4886    ProcessDeclAttributeList(S, New, Attr);
4887
4888  // If we're declaring or defining a tag in function prototype scope
4889  // in C, note that this type can only be used within the function.
4890  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4891    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4892
4893  // Set the lexical context. If the tag has a C++ scope specifier, the
4894  // lexical context will be different from the semantic context.
4895  New->setLexicalDeclContext(CurContext);
4896
4897  // Mark this as a friend decl if applicable.
4898  if (TUK == TUK_Friend)
4899    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty());
4900
4901  // Set the access specifier.
4902  if (!Invalid && TUK != TUK_Friend)
4903    SetMemberAccessSpecifier(New, PrevDecl, AS);
4904
4905  if (TUK == TUK_Definition)
4906    New->startDefinition();
4907
4908  // If this has an identifier, add it to the scope stack.
4909  if (TUK == TUK_Friend) {
4910    // We might be replacing an existing declaration in the lookup tables;
4911    // if so, borrow its access specifier.
4912    if (PrevDecl)
4913      New->setAccess(PrevDecl->getAccess());
4914
4915    // Friend tag decls are visible in fairly strange ways.
4916    if (!CurContext->isDependentContext()) {
4917      DeclContext *DC = New->getDeclContext()->getLookupContext();
4918      DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
4919      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
4920        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
4921    }
4922  } else if (Name) {
4923    S = getNonFieldDeclScope(S);
4924    PushOnScopeChains(New, S);
4925  } else {
4926    CurContext->addDecl(New);
4927  }
4928
4929  // If this is the C FILE type, notify the AST context.
4930  if (IdentifierInfo *II = New->getIdentifier())
4931    if (!New->isInvalidDecl() &&
4932        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4933        II->isStr("FILE"))
4934      Context.setFILEDecl(New);
4935
4936  OwnedDecl = true;
4937  return DeclPtrTy::make(New);
4938}
4939
4940void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4941  AdjustDeclIfTemplate(TagD);
4942  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4943
4944  // Enter the tag context.
4945  PushDeclContext(S, Tag);
4946
4947  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4948    FieldCollector->StartClass();
4949
4950    if (Record->getIdentifier()) {
4951      // C++ [class]p2:
4952      //   [...] The class-name is also inserted into the scope of the
4953      //   class itself; this is known as the injected-class-name. For
4954      //   purposes of access checking, the injected-class-name is treated
4955      //   as if it were a public member name.
4956      CXXRecordDecl *InjectedClassName
4957        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4958                                CurContext, Record->getLocation(),
4959                                Record->getIdentifier(),
4960                                Record->getTagKeywordLoc(),
4961                                Record);
4962      InjectedClassName->setImplicit();
4963      InjectedClassName->setAccess(AS_public);
4964      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4965        InjectedClassName->setDescribedClassTemplate(Template);
4966      PushOnScopeChains(InjectedClassName, S);
4967      assert(InjectedClassName->isInjectedClassName() &&
4968             "Broken injected-class-name");
4969    }
4970  }
4971}
4972
4973void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4974                                    SourceLocation RBraceLoc) {
4975  AdjustDeclIfTemplate(TagD);
4976  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4977  Tag->setRBraceLoc(RBraceLoc);
4978
4979  if (isa<CXXRecordDecl>(Tag))
4980    FieldCollector->FinishClass();
4981
4982  // Exit this scope of this tag's definition.
4983  PopDeclContext();
4984
4985  // Notify the consumer that we've defined a tag.
4986  Consumer.HandleTagDeclDefinition(Tag);
4987}
4988
4989// Note that FieldName may be null for anonymous bitfields.
4990bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4991                          QualType FieldTy, const Expr *BitWidth,
4992                          bool *ZeroWidth) {
4993  // Default to true; that shouldn't confuse checks for emptiness
4994  if (ZeroWidth)
4995    *ZeroWidth = true;
4996
4997  // C99 6.7.2.1p4 - verify the field type.
4998  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4999  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
5000    // Handle incomplete types with specific error.
5001    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
5002      return true;
5003    if (FieldName)
5004      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
5005        << FieldName << FieldTy << BitWidth->getSourceRange();
5006    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
5007      << FieldTy << BitWidth->getSourceRange();
5008  }
5009
5010  // If the bit-width is type- or value-dependent, don't try to check
5011  // it now.
5012  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
5013    return false;
5014
5015  llvm::APSInt Value;
5016  if (VerifyIntegerConstantExpression(BitWidth, &Value))
5017    return true;
5018
5019  if (Value != 0 && ZeroWidth)
5020    *ZeroWidth = false;
5021
5022  // Zero-width bitfield is ok for anonymous field.
5023  if (Value == 0 && FieldName)
5024    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
5025
5026  if (Value.isSigned() && Value.isNegative()) {
5027    if (FieldName)
5028      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
5029               << FieldName << Value.toString(10);
5030    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
5031      << Value.toString(10);
5032  }
5033
5034  if (!FieldTy->isDependentType()) {
5035    uint64_t TypeSize = Context.getTypeSize(FieldTy);
5036    if (Value.getZExtValue() > TypeSize) {
5037      if (FieldName)
5038        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
5039          << FieldName << (unsigned)TypeSize;
5040      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
5041        << (unsigned)TypeSize;
5042    }
5043  }
5044
5045  return false;
5046}
5047
5048/// ActOnField - Each field of a struct/union/class is passed into this in order
5049/// to create a FieldDecl object for it.
5050Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
5051                                 SourceLocation DeclStart,
5052                                 Declarator &D, ExprTy *BitfieldWidth) {
5053  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
5054                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
5055                               AS_public);
5056  return DeclPtrTy::make(Res);
5057}
5058
5059/// HandleField - Analyze a field of a C struct or a C++ data member.
5060///
5061FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
5062                             SourceLocation DeclStart,
5063                             Declarator &D, Expr *BitWidth,
5064                             AccessSpecifier AS) {
5065  IdentifierInfo *II = D.getIdentifier();
5066  SourceLocation Loc = DeclStart;
5067  if (II) Loc = D.getIdentifierLoc();
5068
5069  TypeSourceInfo *TInfo = 0;
5070  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5071  if (getLangOptions().CPlusPlus)
5072    CheckExtraCXXDefaultArguments(D);
5073
5074  DiagnoseFunctionSpecifiers(D);
5075
5076  if (D.getDeclSpec().isThreadSpecified())
5077    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5078
5079  NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5080                                         ForRedeclaration);
5081
5082  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5083    // Maybe we will complain about the shadowed template parameter.
5084    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
5085    // Just pretend that we didn't see the previous declaration.
5086    PrevDecl = 0;
5087  }
5088
5089  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
5090    PrevDecl = 0;
5091
5092  bool Mutable
5093    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
5094  SourceLocation TSSL = D.getSourceRange().getBegin();
5095  FieldDecl *NewFD
5096    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, TSSL,
5097                     AS, PrevDecl, &D);
5098  if (NewFD->isInvalidDecl() && PrevDecl) {
5099    // Don't introduce NewFD into scope; there's already something
5100    // with the same name in the same scope.
5101  } else if (II) {
5102    PushOnScopeChains(NewFD, S);
5103  } else
5104    Record->addDecl(NewFD);
5105
5106  return NewFD;
5107}
5108
5109/// \brief Build a new FieldDecl and check its well-formedness.
5110///
5111/// This routine builds a new FieldDecl given the fields name, type,
5112/// record, etc. \p PrevDecl should refer to any previous declaration
5113/// with the same name and in the same scope as the field to be
5114/// created.
5115///
5116/// \returns a new FieldDecl.
5117///
5118/// \todo The Declarator argument is a hack. It will be removed once
5119FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
5120                                TypeSourceInfo *TInfo,
5121                                RecordDecl *Record, SourceLocation Loc,
5122                                bool Mutable, Expr *BitWidth,
5123                                SourceLocation TSSL,
5124                                AccessSpecifier AS, NamedDecl *PrevDecl,
5125                                Declarator *D) {
5126  IdentifierInfo *II = Name.getAsIdentifierInfo();
5127  bool InvalidDecl = false;
5128  if (D) InvalidDecl = D->isInvalidType();
5129
5130  // If we receive a broken type, recover by assuming 'int' and
5131  // marking this declaration as invalid.
5132  if (T.isNull()) {
5133    InvalidDecl = true;
5134    T = Context.IntTy;
5135  }
5136
5137  QualType EltTy = Context.getBaseElementType(T);
5138  if (!EltTy->isDependentType() &&
5139      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete))
5140    InvalidDecl = true;
5141
5142  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5143  // than a variably modified type.
5144  if (!InvalidDecl && T->isVariablyModifiedType()) {
5145    bool SizeIsNegative;
5146    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
5147                                                           SizeIsNegative);
5148    if (!FixedTy.isNull()) {
5149      Diag(Loc, diag::warn_illegal_constant_array_size);
5150      T = FixedTy;
5151    } else {
5152      if (SizeIsNegative)
5153        Diag(Loc, diag::err_typecheck_negative_array_size);
5154      else
5155        Diag(Loc, diag::err_typecheck_field_variable_size);
5156      InvalidDecl = true;
5157    }
5158  }
5159
5160  // Fields can not have abstract class types
5161  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
5162                                             diag::err_abstract_type_in_decl,
5163                                             AbstractFieldType))
5164    InvalidDecl = true;
5165
5166  bool ZeroWidth = false;
5167  // If this is declared as a bit-field, check the bit-field.
5168  if (!InvalidDecl && BitWidth &&
5169      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
5170    InvalidDecl = true;
5171    DeleteExpr(BitWidth);
5172    BitWidth = 0;
5173    ZeroWidth = false;
5174  }
5175
5176  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, TInfo,
5177                                       BitWidth, Mutable);
5178  if (InvalidDecl)
5179    NewFD->setInvalidDecl();
5180
5181  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
5182    Diag(Loc, diag::err_duplicate_member) << II;
5183    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5184    NewFD->setInvalidDecl();
5185  }
5186
5187  if (getLangOptions().CPlusPlus) {
5188    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
5189
5190    if (!T->isPODType())
5191      CXXRecord->setPOD(false);
5192    if (!ZeroWidth)
5193      CXXRecord->setEmpty(false);
5194
5195    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
5196      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
5197
5198      if (!RDecl->hasTrivialConstructor())
5199        CXXRecord->setHasTrivialConstructor(false);
5200      if (!RDecl->hasTrivialCopyConstructor())
5201        CXXRecord->setHasTrivialCopyConstructor(false);
5202      if (!RDecl->hasTrivialCopyAssignment())
5203        CXXRecord->setHasTrivialCopyAssignment(false);
5204      if (!RDecl->hasTrivialDestructor())
5205        CXXRecord->setHasTrivialDestructor(false);
5206
5207      // C++ 9.5p1: An object of a class with a non-trivial
5208      // constructor, a non-trivial copy constructor, a non-trivial
5209      // destructor, or a non-trivial copy assignment operator
5210      // cannot be a member of a union, nor can an array of such
5211      // objects.
5212      // TODO: C++0x alters this restriction significantly.
5213      if (Record->isUnion()) {
5214        // We check for copy constructors before constructors
5215        // because otherwise we'll never get complaints about
5216        // copy constructors.
5217
5218        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
5219
5220        CXXSpecialMember member;
5221        if (!RDecl->hasTrivialCopyConstructor())
5222          member = CXXCopyConstructor;
5223        else if (!RDecl->hasTrivialConstructor())
5224          member = CXXDefaultConstructor;
5225        else if (!RDecl->hasTrivialCopyAssignment())
5226          member = CXXCopyAssignment;
5227        else if (!RDecl->hasTrivialDestructor())
5228          member = CXXDestructor;
5229        else
5230          member = invalid;
5231
5232        if (member != invalid) {
5233          Diag(Loc, diag::err_illegal_union_member) << Name << member;
5234          DiagnoseNontrivial(RT, member);
5235          NewFD->setInvalidDecl();
5236        }
5237      }
5238    }
5239  }
5240
5241  // FIXME: We need to pass in the attributes given an AST
5242  // representation, not a parser representation.
5243  if (D)
5244    // FIXME: What to pass instead of TUScope?
5245    ProcessDeclAttributes(TUScope, NewFD, *D);
5246
5247  if (T.isObjCGCWeak())
5248    Diag(Loc, diag::warn_attribute_weak_on_field);
5249
5250  NewFD->setAccess(AS);
5251
5252  // C++ [dcl.init.aggr]p1:
5253  //   An aggregate is an array or a class (clause 9) with [...] no
5254  //   private or protected non-static data members (clause 11).
5255  // A POD must be an aggregate.
5256  if (getLangOptions().CPlusPlus &&
5257      (AS == AS_private || AS == AS_protected)) {
5258    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
5259    CXXRecord->setAggregate(false);
5260    CXXRecord->setPOD(false);
5261  }
5262
5263  return NewFD;
5264}
5265
5266/// DiagnoseNontrivial - Given that a class has a non-trivial
5267/// special member, figure out why.
5268void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
5269  QualType QT(T, 0U);
5270  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
5271
5272  // Check whether the member was user-declared.
5273  switch (member) {
5274  case CXXDefaultConstructor:
5275    if (RD->hasUserDeclaredConstructor()) {
5276      typedef CXXRecordDecl::ctor_iterator ctor_iter;
5277      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
5278        const FunctionDecl *body = 0;
5279        ci->getBody(body);
5280        if (!body ||
5281            !cast<CXXConstructorDecl>(body)->isImplicitlyDefined(Context)) {
5282          SourceLocation CtorLoc = ci->getLocation();
5283          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5284          return;
5285        }
5286      }
5287
5288      assert(0 && "found no user-declared constructors");
5289      return;
5290    }
5291    break;
5292
5293  case CXXCopyConstructor:
5294    if (RD->hasUserDeclaredCopyConstructor()) {
5295      SourceLocation CtorLoc =
5296        RD->getCopyConstructor(Context, 0)->getLocation();
5297      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5298      return;
5299    }
5300    break;
5301
5302  case CXXCopyAssignment:
5303    if (RD->hasUserDeclaredCopyAssignment()) {
5304      // FIXME: this should use the location of the copy
5305      // assignment, not the type.
5306      SourceLocation TyLoc = RD->getSourceRange().getBegin();
5307      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
5308      return;
5309    }
5310    break;
5311
5312  case CXXDestructor:
5313    if (RD->hasUserDeclaredDestructor()) {
5314      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
5315      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
5316      return;
5317    }
5318    break;
5319  }
5320
5321  typedef CXXRecordDecl::base_class_iterator base_iter;
5322
5323  // Virtual bases and members inhibit trivial copying/construction,
5324  // but not trivial destruction.
5325  if (member != CXXDestructor) {
5326    // Check for virtual bases.  vbases includes indirect virtual bases,
5327    // so we just iterate through the direct bases.
5328    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
5329      if (bi->isVirtual()) {
5330        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5331        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
5332        return;
5333      }
5334
5335    // Check for virtual methods.
5336    typedef CXXRecordDecl::method_iterator meth_iter;
5337    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
5338         ++mi) {
5339      if (mi->isVirtual()) {
5340        SourceLocation MLoc = mi->getSourceRange().getBegin();
5341        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
5342        return;
5343      }
5344    }
5345  }
5346
5347  bool (CXXRecordDecl::*hasTrivial)() const;
5348  switch (member) {
5349  case CXXDefaultConstructor:
5350    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
5351  case CXXCopyConstructor:
5352    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
5353  case CXXCopyAssignment:
5354    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
5355  case CXXDestructor:
5356    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
5357  default:
5358    assert(0 && "unexpected special member"); return;
5359  }
5360
5361  // Check for nontrivial bases (and recurse).
5362  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
5363    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
5364    assert(BaseRT && "Don't know how to handle dependent bases");
5365    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
5366    if (!(BaseRecTy->*hasTrivial)()) {
5367      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
5368      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
5369      DiagnoseNontrivial(BaseRT, member);
5370      return;
5371    }
5372  }
5373
5374  // Check for nontrivial members (and recurse).
5375  typedef RecordDecl::field_iterator field_iter;
5376  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
5377       ++fi) {
5378    QualType EltTy = Context.getBaseElementType((*fi)->getType());
5379    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
5380      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
5381
5382      if (!(EltRD->*hasTrivial)()) {
5383        SourceLocation FLoc = (*fi)->getLocation();
5384        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
5385        DiagnoseNontrivial(EltRT, member);
5386        return;
5387      }
5388    }
5389  }
5390
5391  assert(0 && "found no explanation for non-trivial member");
5392}
5393
5394/// TranslateIvarVisibility - Translate visibility from a token ID to an
5395///  AST enum value.
5396static ObjCIvarDecl::AccessControl
5397TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
5398  switch (ivarVisibility) {
5399  default: assert(0 && "Unknown visitibility kind");
5400  case tok::objc_private: return ObjCIvarDecl::Private;
5401  case tok::objc_public: return ObjCIvarDecl::Public;
5402  case tok::objc_protected: return ObjCIvarDecl::Protected;
5403  case tok::objc_package: return ObjCIvarDecl::Package;
5404  }
5405}
5406
5407/// ActOnIvar - Each ivar field of an objective-c class is passed into this
5408/// in order to create an IvarDecl object for it.
5409Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
5410                                SourceLocation DeclStart,
5411                                DeclPtrTy IntfDecl,
5412                                Declarator &D, ExprTy *BitfieldWidth,
5413                                tok::ObjCKeywordKind Visibility) {
5414
5415  IdentifierInfo *II = D.getIdentifier();
5416  Expr *BitWidth = (Expr*)BitfieldWidth;
5417  SourceLocation Loc = DeclStart;
5418  if (II) Loc = D.getIdentifierLoc();
5419
5420  // FIXME: Unnamed fields can be handled in various different ways, for
5421  // example, unnamed unions inject all members into the struct namespace!
5422
5423  TypeSourceInfo *TInfo = 0;
5424  QualType T = GetTypeForDeclarator(D, S, &TInfo);
5425
5426  if (BitWidth) {
5427    // 6.7.2.1p3, 6.7.2.1p4
5428    if (VerifyBitField(Loc, II, T, BitWidth)) {
5429      D.setInvalidType();
5430      DeleteExpr(BitWidth);
5431      BitWidth = 0;
5432    }
5433  } else {
5434    // Not a bitfield.
5435
5436    // validate II.
5437
5438  }
5439
5440  // C99 6.7.2.1p8: A member of a structure or union may have any type other
5441  // than a variably modified type.
5442  if (T->isVariablyModifiedType()) {
5443    Diag(Loc, diag::err_typecheck_ivar_variable_size);
5444    D.setInvalidType();
5445  }
5446
5447  // Get the visibility (access control) for this ivar.
5448  ObjCIvarDecl::AccessControl ac =
5449    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
5450                                        : ObjCIvarDecl::None;
5451  // Must set ivar's DeclContext to its enclosing interface.
5452  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
5453  DeclContext *EnclosingContext;
5454  if (ObjCImplementationDecl *IMPDecl =
5455      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5456    // Case of ivar declared in an implementation. Context is that of its class.
5457    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
5458    assert(IDecl && "No class- ActOnIvar");
5459    EnclosingContext = cast_or_null<DeclContext>(IDecl);
5460  } else
5461    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
5462  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
5463
5464  // Construct the decl.
5465  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
5466                                             EnclosingContext, Loc, II, T,
5467                                             TInfo, ac, (Expr *)BitfieldWidth);
5468
5469  if (II) {
5470    NamedDecl *PrevDecl = LookupSingleName(S, II, LookupMemberName,
5471                                           ForRedeclaration);
5472    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
5473        && !isa<TagDecl>(PrevDecl)) {
5474      Diag(Loc, diag::err_duplicate_member) << II;
5475      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
5476      NewID->setInvalidDecl();
5477    }
5478  }
5479
5480  // Process attributes attached to the ivar.
5481  ProcessDeclAttributes(S, NewID, D);
5482
5483  if (D.isInvalidType())
5484    NewID->setInvalidDecl();
5485
5486  if (II) {
5487    // FIXME: When interfaces are DeclContexts, we'll need to add
5488    // these to the interface.
5489    S->AddDecl(DeclPtrTy::make(NewID));
5490    IdResolver.AddDecl(NewID);
5491  }
5492
5493  return DeclPtrTy::make(NewID);
5494}
5495
5496void Sema::ActOnFields(Scope* S,
5497                       SourceLocation RecLoc, DeclPtrTy RecDecl,
5498                       DeclPtrTy *Fields, unsigned NumFields,
5499                       SourceLocation LBrac, SourceLocation RBrac,
5500                       AttributeList *Attr) {
5501  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
5502  assert(EnclosingDecl && "missing record or interface decl");
5503
5504  // If the decl this is being inserted into is invalid, then it may be a
5505  // redeclaration or some other bogus case.  Don't try to add fields to it.
5506  if (EnclosingDecl->isInvalidDecl()) {
5507    // FIXME: Deallocate fields?
5508    return;
5509  }
5510
5511
5512  // Verify that all the fields are okay.
5513  unsigned NumNamedMembers = 0;
5514  llvm::SmallVector<FieldDecl*, 32> RecFields;
5515
5516  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
5517  for (unsigned i = 0; i != NumFields; ++i) {
5518    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
5519
5520    // Get the type for the field.
5521    Type *FDTy = FD->getType().getTypePtr();
5522
5523    if (!FD->isAnonymousStructOrUnion()) {
5524      // Remember all fields written by the user.
5525      RecFields.push_back(FD);
5526    }
5527
5528    // If the field is already invalid for some reason, don't emit more
5529    // diagnostics about it.
5530    if (FD->isInvalidDecl()) {
5531      EnclosingDecl->setInvalidDecl();
5532      continue;
5533    }
5534
5535    // C99 6.7.2.1p2:
5536    //   A structure or union shall not contain a member with
5537    //   incomplete or function type (hence, a structure shall not
5538    //   contain an instance of itself, but may contain a pointer to
5539    //   an instance of itself), except that the last member of a
5540    //   structure with more than one named member may have incomplete
5541    //   array type; such a structure (and any union containing,
5542    //   possibly recursively, a member that is such a structure)
5543    //   shall not be a member of a structure or an element of an
5544    //   array.
5545    if (FDTy->isFunctionType()) {
5546      // Field declared as a function.
5547      Diag(FD->getLocation(), diag::err_field_declared_as_function)
5548        << FD->getDeclName();
5549      FD->setInvalidDecl();
5550      EnclosingDecl->setInvalidDecl();
5551      continue;
5552    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
5553               Record && Record->isStruct()) {
5554      // Flexible array member.
5555      if (NumNamedMembers < 1) {
5556        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
5557          << FD->getDeclName();
5558        FD->setInvalidDecl();
5559        EnclosingDecl->setInvalidDecl();
5560        continue;
5561      }
5562      // Okay, we have a legal flexible array member at the end of the struct.
5563      if (Record)
5564        Record->setHasFlexibleArrayMember(true);
5565    } else if (!FDTy->isDependentType() &&
5566               RequireCompleteType(FD->getLocation(), FD->getType(),
5567                                   diag::err_field_incomplete)) {
5568      // Incomplete type
5569      FD->setInvalidDecl();
5570      EnclosingDecl->setInvalidDecl();
5571      continue;
5572    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
5573      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
5574        // If this is a member of a union, then entire union becomes "flexible".
5575        if (Record && Record->isUnion()) {
5576          Record->setHasFlexibleArrayMember(true);
5577        } else {
5578          // If this is a struct/class and this is not the last element, reject
5579          // it.  Note that GCC supports variable sized arrays in the middle of
5580          // structures.
5581          if (i != NumFields-1)
5582            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
5583              << FD->getDeclName() << FD->getType();
5584          else {
5585            // We support flexible arrays at the end of structs in
5586            // other structs as an extension.
5587            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
5588              << FD->getDeclName();
5589            if (Record)
5590              Record->setHasFlexibleArrayMember(true);
5591          }
5592        }
5593      }
5594      if (Record && FDTTy->getDecl()->hasObjectMember())
5595        Record->setHasObjectMember(true);
5596    } else if (FDTy->isObjCInterfaceType()) {
5597      /// A field cannot be an Objective-c object
5598      Diag(FD->getLocation(), diag::err_statically_allocated_object);
5599      FD->setInvalidDecl();
5600      EnclosingDecl->setInvalidDecl();
5601      continue;
5602    } else if (getLangOptions().ObjC1 &&
5603               getLangOptions().getGCMode() != LangOptions::NonGC &&
5604               Record &&
5605               (FD->getType()->isObjCObjectPointerType() ||
5606                FD->getType().isObjCGCStrong()))
5607      Record->setHasObjectMember(true);
5608    // Keep track of the number of named members.
5609    if (FD->getIdentifier())
5610      ++NumNamedMembers;
5611  }
5612
5613  // Okay, we successfully defined 'Record'.
5614  if (Record) {
5615    Record->completeDefinition(Context);
5616  } else {
5617    ObjCIvarDecl **ClsFields =
5618      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5619    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5620      ID->setIVarList(ClsFields, RecFields.size(), Context);
5621      ID->setLocEnd(RBrac);
5622      // Add ivar's to class's DeclContext.
5623      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5624        ClsFields[i]->setLexicalDeclContext(ID);
5625        ID->addDecl(ClsFields[i]);
5626      }
5627      // Must enforce the rule that ivars in the base classes may not be
5628      // duplicates.
5629      if (ID->getSuperClass()) {
5630        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5631             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5632          ObjCIvarDecl* Ivar = (*IVI);
5633
5634          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5635            ObjCIvarDecl* prevIvar =
5636              ID->getSuperClass()->lookupInstanceVariable(II);
5637            if (prevIvar) {
5638              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5639              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5640            }
5641          }
5642        }
5643      }
5644    } else if (ObjCImplementationDecl *IMPDecl =
5645                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5646      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5647      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5648        // Ivar declared in @implementation never belongs to the implementation.
5649        // Only it is in implementation's lexical context.
5650        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5651      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5652    }
5653  }
5654
5655  if (Attr)
5656    ProcessDeclAttributeList(S, Record, Attr);
5657}
5658
5659EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5660                                          EnumConstantDecl *LastEnumConst,
5661                                          SourceLocation IdLoc,
5662                                          IdentifierInfo *Id,
5663                                          ExprArg val) {
5664  Expr *Val = (Expr *)val.get();
5665
5666  llvm::APSInt EnumVal(32);
5667  QualType EltTy;
5668  if (Val) {
5669    if (Enum->isDependentType())
5670      EltTy = Context.DependentTy;
5671    else {
5672      // Make sure to promote the operand type to int.
5673      UsualUnaryConversions(Val);
5674      if (Val != val.get()) {
5675        val.release();
5676        val = Val;
5677      }
5678
5679      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5680      SourceLocation ExpLoc;
5681      if (VerifyIntegerConstantExpression(Val, &EnumVal)) {
5682        Val = 0;
5683      } else {
5684        EltTy = Val->getType();
5685      }
5686    }
5687  }
5688
5689  if (!Val) {
5690    if (Enum->isDependentType())
5691      EltTy = Context.DependentTy;
5692    else if (LastEnumConst) {
5693      // Assign the last value + 1.
5694      EnumVal = LastEnumConst->getInitVal();
5695      ++EnumVal;
5696
5697      // Check for overflow on increment.
5698      if (EnumVal < LastEnumConst->getInitVal())
5699        Diag(IdLoc, diag::warn_enum_value_overflow);
5700
5701      EltTy = LastEnumConst->getType();
5702    } else {
5703      // First value, set to zero.
5704      EltTy = Context.IntTy;
5705      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5706      EnumVal.setIsSigned(true);
5707    }
5708  }
5709
5710  assert(!EltTy.isNull() && "Enum constant with NULL type");
5711
5712  val.release();
5713  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5714                                  Val, EnumVal);
5715}
5716
5717
5718Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5719                                        DeclPtrTy lastEnumConst,
5720                                        SourceLocation IdLoc,
5721                                        IdentifierInfo *Id,
5722                                        SourceLocation EqualLoc, ExprTy *val) {
5723  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5724  EnumConstantDecl *LastEnumConst =
5725    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5726  Expr *Val = static_cast<Expr*>(val);
5727
5728  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5729  // we find one that is.
5730  S = getNonFieldDeclScope(S);
5731
5732  // Verify that there isn't already something declared with this name in this
5733  // scope.
5734  NamedDecl *PrevDecl = LookupSingleName(S, Id, LookupOrdinaryName);
5735  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5736    // Maybe we will complain about the shadowed template parameter.
5737    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5738    // Just pretend that we didn't see the previous declaration.
5739    PrevDecl = 0;
5740  }
5741
5742  if (PrevDecl) {
5743    // When in C++, we may get a TagDecl with the same name; in this case the
5744    // enum constant will 'hide' the tag.
5745    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5746           "Received TagDecl when not in C++!");
5747    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5748      if (isa<EnumConstantDecl>(PrevDecl))
5749        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5750      else
5751        Diag(IdLoc, diag::err_redefinition) << Id;
5752      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5753      if (Val) Val->Destroy(Context);
5754      return DeclPtrTy();
5755    }
5756  }
5757
5758  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5759                                            IdLoc, Id, Owned(Val));
5760
5761  // Register this decl in the current scope stack.
5762  if (New)
5763    PushOnScopeChains(New, S);
5764
5765  return DeclPtrTy::make(New);
5766}
5767
5768void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5769                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5770                         DeclPtrTy *Elements, unsigned NumElements,
5771                         Scope *S, AttributeList *Attr) {
5772  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5773  QualType EnumType = Context.getTypeDeclType(Enum);
5774
5775  if (Attr)
5776    ProcessDeclAttributeList(S, Enum, Attr);
5777
5778  if (Enum->isDependentType()) {
5779    for (unsigned i = 0; i != NumElements; ++i) {
5780      EnumConstantDecl *ECD =
5781        cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5782      if (!ECD) continue;
5783
5784      ECD->setType(EnumType);
5785    }
5786
5787    Enum->completeDefinition(Context, Context.DependentTy, Context.DependentTy);
5788    return;
5789  }
5790
5791  // TODO: If the result value doesn't fit in an int, it must be a long or long
5792  // long value.  ISO C does not support this, but GCC does as an extension,
5793  // emit a warning.
5794  unsigned IntWidth = Context.Target.getIntWidth();
5795  unsigned CharWidth = Context.Target.getCharWidth();
5796  unsigned ShortWidth = Context.Target.getShortWidth();
5797
5798  // Verify that all the values are okay, compute the size of the values, and
5799  // reverse the list.
5800  unsigned NumNegativeBits = 0;
5801  unsigned NumPositiveBits = 0;
5802
5803  // Keep track of whether all elements have type int.
5804  bool AllElementsInt = true;
5805
5806  for (unsigned i = 0; i != NumElements; ++i) {
5807    EnumConstantDecl *ECD =
5808      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5809    if (!ECD) continue;  // Already issued a diagnostic.
5810
5811    // If the enum value doesn't fit in an int, emit an extension warning.
5812    const llvm::APSInt &InitVal = ECD->getInitVal();
5813    assert(InitVal.getBitWidth() >= IntWidth &&
5814           "Should have promoted value to int");
5815    if (!getLangOptions().CPlusPlus && InitVal.getBitWidth() > IntWidth) {
5816      llvm::APSInt V(InitVal);
5817      V.trunc(IntWidth);
5818      V.extend(InitVal.getBitWidth());
5819      if (V != InitVal)
5820        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5821          << InitVal.toString(10);
5822    }
5823
5824    // Keep track of the size of positive and negative values.
5825    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5826      NumPositiveBits = std::max(NumPositiveBits,
5827                                 (unsigned)InitVal.getActiveBits());
5828    else
5829      NumNegativeBits = std::max(NumNegativeBits,
5830                                 (unsigned)InitVal.getMinSignedBits());
5831
5832    // Keep track of whether every enum element has type int (very commmon).
5833    if (AllElementsInt)
5834      AllElementsInt = ECD->getType() == Context.IntTy;
5835  }
5836
5837  // Figure out the type that should be used for this enum.
5838  // FIXME: Support -fshort-enums.
5839  QualType BestType;
5840  unsigned BestWidth;
5841
5842  // C++0x N3000 [conv.prom]p3:
5843  //   An rvalue of an unscoped enumeration type whose underlying
5844  //   type is not fixed can be converted to an rvalue of the first
5845  //   of the following types that can represent all the values of
5846  //   the enumeration: int, unsigned int, long int, unsigned long
5847  //   int, long long int, or unsigned long long int.
5848  // C99 6.4.4.3p2:
5849  //   An identifier declared as an enumeration constant has type int.
5850  // The C99 rule is modified by a gcc extension
5851  QualType BestPromotionType;
5852
5853  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5854
5855  if (NumNegativeBits) {
5856    // If there is a negative value, figure out the smallest integer type (of
5857    // int/long/longlong) that fits.
5858    // If it's packed, check also if it fits a char or a short.
5859    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5860      BestType = Context.SignedCharTy;
5861      BestWidth = CharWidth;
5862    } else if (Packed && NumNegativeBits <= ShortWidth &&
5863               NumPositiveBits < ShortWidth) {
5864      BestType = Context.ShortTy;
5865      BestWidth = ShortWidth;
5866    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5867      BestType = Context.IntTy;
5868      BestWidth = IntWidth;
5869    } else {
5870      BestWidth = Context.Target.getLongWidth();
5871
5872      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
5873        BestType = Context.LongTy;
5874      } else {
5875        BestWidth = Context.Target.getLongLongWidth();
5876
5877        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5878          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5879        BestType = Context.LongLongTy;
5880      }
5881    }
5882    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
5883  } else {
5884    // If there is no negative value, figure out which of uint, ulong, ulonglong
5885    // fits.
5886    // If it's packed, check also if it fits a char or a short.
5887    if (Packed && NumPositiveBits <= CharWidth) {
5888      BestType = Context.UnsignedCharTy;
5889      BestPromotionType = Context.IntTy;
5890      BestWidth = CharWidth;
5891    } else if (Packed && NumPositiveBits <= ShortWidth) {
5892      BestType = Context.UnsignedShortTy;
5893      BestPromotionType = Context.IntTy;
5894      BestWidth = ShortWidth;
5895    } else if (NumPositiveBits <= IntWidth) {
5896      BestType = Context.UnsignedIntTy;
5897      BestWidth = IntWidth;
5898      BestPromotionType = (NumPositiveBits == BestWidth
5899                           ? Context.UnsignedIntTy : Context.IntTy);
5900    } else if (NumPositiveBits <=
5901               (BestWidth = Context.Target.getLongWidth())) {
5902      BestType = Context.UnsignedLongTy;
5903      BestPromotionType = (NumPositiveBits == BestWidth
5904                           ? Context.UnsignedLongTy : Context.LongTy);
5905    } else {
5906      BestWidth = Context.Target.getLongLongWidth();
5907      assert(NumPositiveBits <= BestWidth &&
5908             "How could an initializer get larger than ULL?");
5909      BestType = Context.UnsignedLongLongTy;
5910      BestPromotionType = (NumPositiveBits == BestWidth
5911                           ? Context.UnsignedLongLongTy : Context.LongLongTy);
5912    }
5913  }
5914
5915  // If we're in C and the promotion type is larger than an int, just
5916  // use the underlying type, which is generally the unsigned integer
5917  // type of the same rank as the promotion type.  This is how the gcc
5918  // extension works.
5919  if (!getLangOptions().CPlusPlus && BestPromotionType != Context.IntTy)
5920    BestPromotionType = BestType;
5921
5922  // Loop over all of the enumerator constants, changing their types to match
5923  // the type of the enum if needed.
5924  for (unsigned i = 0; i != NumElements; ++i) {
5925    EnumConstantDecl *ECD =
5926      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5927    if (!ECD) continue;  // Already issued a diagnostic.
5928
5929    // Standard C says the enumerators have int type, but we allow, as an
5930    // extension, the enumerators to be larger than int size.  If each
5931    // enumerator value fits in an int, type it as an int, otherwise type it the
5932    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5933    // that X has type 'int', not 'unsigned'.
5934    if (!getLangOptions().CPlusPlus && ECD->getType() == Context.IntTy)
5935      continue;
5936
5937    // Determine whether the value fits into an int.
5938    llvm::APSInt InitVal = ECD->getInitVal();
5939    bool FitsInInt;
5940    if (InitVal.isUnsigned() || !InitVal.isNegative())
5941      FitsInInt = InitVal.getActiveBits() < IntWidth;
5942    else
5943      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5944
5945    // If it fits into an integer type, force it.  Otherwise force it to match
5946    // the enum decl type.
5947    QualType NewTy;
5948    unsigned NewWidth;
5949    bool NewSign;
5950    if (FitsInInt && !getLangOptions().CPlusPlus) {
5951      NewTy = Context.IntTy;
5952      NewWidth = IntWidth;
5953      NewSign = true;
5954    } else if (ECD->getType() == BestType) {
5955      // Already the right type!
5956      if (getLangOptions().CPlusPlus)
5957        // C++ [dcl.enum]p4: Following the closing brace of an
5958        // enum-specifier, each enumerator has the type of its
5959        // enumeration.
5960        ECD->setType(EnumType);
5961      continue;
5962    } else {
5963      NewTy = BestType;
5964      NewWidth = BestWidth;
5965      NewSign = BestType->isSignedIntegerType();
5966    }
5967
5968    // Adjust the APSInt value.
5969    InitVal.extOrTrunc(NewWidth);
5970    InitVal.setIsSigned(NewSign);
5971    ECD->setInitVal(InitVal);
5972
5973    // Adjust the Expr initializer and type.
5974    if (ECD->getInitExpr())
5975      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5976                                                      CastExpr::CK_IntegralCast,
5977                                                      ECD->getInitExpr(),
5978                                                      /*isLvalue=*/false));
5979    if (getLangOptions().CPlusPlus)
5980      // C++ [dcl.enum]p4: Following the closing brace of an
5981      // enum-specifier, each enumerator has the type of its
5982      // enumeration.
5983      ECD->setType(EnumType);
5984    else
5985      ECD->setType(NewTy);
5986  }
5987
5988  Enum->completeDefinition(Context, BestType, BestPromotionType);
5989}
5990
5991Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5992                                            ExprArg expr) {
5993  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5994
5995  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5996                                                   Loc, AsmString);
5997  CurContext->addDecl(New);
5998  return DeclPtrTy::make(New);
5999}
6000
6001void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
6002                             SourceLocation PragmaLoc,
6003                             SourceLocation NameLoc) {
6004  Decl *PrevDecl = LookupSingleName(TUScope, Name, LookupOrdinaryName);
6005
6006  if (PrevDecl) {
6007    PrevDecl->addAttr(::new (Context) WeakAttr());
6008  } else {
6009    (void)WeakUndeclaredIdentifiers.insert(
6010      std::pair<IdentifierInfo*,WeakInfo>
6011        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
6012  }
6013}
6014
6015void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
6016                                IdentifierInfo* AliasName,
6017                                SourceLocation PragmaLoc,
6018                                SourceLocation NameLoc,
6019                                SourceLocation AliasNameLoc) {
6020  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, LookupOrdinaryName);
6021  WeakInfo W = WeakInfo(Name, NameLoc);
6022
6023  if (PrevDecl) {
6024    if (!PrevDecl->hasAttr<AliasAttr>())
6025      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
6026        DeclApplyPragmaWeak(TUScope, ND, W);
6027  } else {
6028    (void)WeakUndeclaredIdentifiers.insert(
6029      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
6030  }
6031}
6032