SemaDecl.cpp revision 2b255c4dabe6a04314e3659a0f8b61e1382ec287
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "clang/AST/APValue.h"
16#include "clang/AST/ASTConsumer.h"
17#include "clang/AST/ASTContext.h"
18#include "clang/AST/DeclObjC.h"
19#include "clang/AST/ExprCXX.h"
20#include "clang/Parse/DeclSpec.h"
21#include "clang/Basic/Diagnostic.h"
22#include "clang/Basic/TargetInfo.h"
23#include "clang/Basic/SourceManager.h"
24// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
25#include "clang/Lex/Preprocessor.h"
26#include "clang/Lex/HeaderSearch.h"
27#include "llvm/ADT/SmallSet.h"
28using namespace clang;
29
30Sema::TypeTy *Sema::isTypeName(const IdentifierInfo &II, Scope *S) {
31  Decl *IIDecl = LookupDecl(&II, Decl::IDNS_Ordinary, S, false);
32
33  if (IIDecl && (isa<TypedefDecl>(IIDecl) ||
34                 isa<ObjCInterfaceDecl>(IIDecl) ||
35                 isa<TagDecl>(IIDecl)))
36    return IIDecl;
37  return 0;
38}
39
40DeclContext *Sema::getDCParent(DeclContext *DC) {
41  // If CurContext is a ObjC method, getParent() will return NULL.
42  if (isa<ObjCMethodDecl>(DC))
43    return Context.getTranslationUnitDecl();
44
45  // A C++ inline method is parsed *after* the topmost class it was declared in
46  // is fully parsed (it's "complete").
47  // The parsing of a C++ inline method happens at the declaration context of
48  // the topmost (non-nested) class it is declared in.
49  if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(DC)) {
50    assert(isa<CXXRecordDecl>(MD->getParent()) && "C++ method not in Record.");
51    DC = MD->getParent();
52    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getParent()))
53      DC = RD;
54
55    // Return the declaration context of the topmost class the inline method is
56    // declared in.
57    return DC;
58  }
59
60  return DC->getParent();
61}
62
63void Sema::PushDeclContext(DeclContext *DC) {
64  assert(getDCParent(DC) == CurContext &&
65       "The next DeclContext should be directly contained in the current one.");
66  CurContext = DC;
67}
68
69void Sema::PopDeclContext() {
70  assert(CurContext && "DeclContext imbalance!");
71  CurContext = getDCParent(CurContext);
72}
73
74/// Add this decl to the scope shadowed decl chains.
75void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
76  S->AddDecl(D);
77
78  // C++ [basic.scope]p4:
79  //   -- exactly one declaration shall declare a class name or
80  //   enumeration name that is not a typedef name and the other
81  //   declarations shall all refer to the same object or
82  //   enumerator, or all refer to functions and function templates;
83  //   in this case the class name or enumeration name is hidden.
84  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
85    // We are pushing the name of a tag (enum or class).
86    IdentifierResolver::iterator
87        I = IdResolver.begin(TD->getIdentifier(),
88                             TD->getDeclContext(), false/*LookInParentCtx*/);
89    if (I != IdResolver.end() &&
90        IdResolver.isDeclInScope(*I, TD->getDeclContext(), S)) {
91      // There is already a declaration with the same name in the same
92      // scope. It must be found before we find the new declaration,
93      // so swap the order on the shadowed declaration chain.
94
95      IdResolver.AddShadowedDecl(TD, *I);
96      return;
97    }
98  }
99  IdResolver.AddDecl(D);
100}
101
102void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
103  if (S->decl_empty()) return;
104  assert((S->getFlags() & Scope::DeclScope) &&"Scope shouldn't contain decls!");
105
106  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
107       I != E; ++I) {
108    Decl *TmpD = static_cast<Decl*>(*I);
109    assert(TmpD && "This decl didn't get pushed??");
110
111    if (isa<CXXFieldDecl>(TmpD)) continue;
112
113    assert(isa<ScopedDecl>(TmpD) && "Decl isn't ScopedDecl?");
114    ScopedDecl *D = cast<ScopedDecl>(TmpD);
115
116    IdentifierInfo *II = D->getIdentifier();
117    if (!II) continue;
118
119    // We only want to remove the decls from the identifier decl chains for
120    // local scopes, when inside a function/method.
121    if (S->getFnParent() != 0)
122      IdResolver.RemoveDecl(D);
123
124    // Chain this decl to the containing DeclContext.
125    D->setNext(CurContext->getDeclChain());
126    CurContext->setDeclChain(D);
127  }
128}
129
130/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
131/// return 0 if one not found.
132ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
133  // The third "scope" argument is 0 since we aren't enabling lazy built-in
134  // creation from this context.
135  Decl *IDecl = LookupDecl(Id, Decl::IDNS_Ordinary, 0, false);
136
137  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
138}
139
140/// LookupDecl - Look up the inner-most declaration in the specified
141/// namespace.
142Decl *Sema::LookupDecl(const IdentifierInfo *II, unsigned NSI,
143                       Scope *S, bool enableLazyBuiltinCreation) {
144  if (II == 0) return 0;
145  unsigned NS = NSI;
146  if (getLangOptions().CPlusPlus && (NS & Decl::IDNS_Ordinary))
147    NS |= Decl::IDNS_Tag;
148
149  // Scan up the scope chain looking for a decl that matches this identifier
150  // that is in the appropriate namespace.  This search should not take long, as
151  // shadowing of names is uncommon, and deep shadowing is extremely uncommon.
152  for (IdentifierResolver::iterator
153       I = IdResolver.begin(II, CurContext), E = IdResolver.end(); I != E; ++I)
154    if ((*I)->getIdentifierNamespace() & NS)
155      return *I;
156
157  // If we didn't find a use of this identifier, and if the identifier
158  // corresponds to a compiler builtin, create the decl object for the builtin
159  // now, injecting it into translation unit scope, and return it.
160  if (NS & Decl::IDNS_Ordinary) {
161    if (enableLazyBuiltinCreation) {
162      // If this is a builtin on this (or all) targets, create the decl.
163      if (unsigned BuiltinID = II->getBuiltinID())
164        return LazilyCreateBuiltin((IdentifierInfo *)II, BuiltinID, S);
165    }
166    if (getLangOptions().ObjC1) {
167      // @interface and @compatibility_alias introduce typedef-like names.
168      // Unlike typedef's, they can only be introduced at file-scope (and are
169      // therefore not scoped decls). They can, however, be shadowed by
170      // other names in IDNS_Ordinary.
171      ObjCInterfaceDeclsTy::iterator IDI = ObjCInterfaceDecls.find(II);
172      if (IDI != ObjCInterfaceDecls.end())
173        return IDI->second;
174      ObjCAliasTy::iterator I = ObjCAliasDecls.find(II);
175      if (I != ObjCAliasDecls.end())
176        return I->second->getClassInterface();
177    }
178  }
179  return 0;
180}
181
182void Sema::InitBuiltinVaListType() {
183  if (!Context.getBuiltinVaListType().isNull())
184    return;
185
186  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
187  Decl *VaDecl = LookupDecl(VaIdent, Decl::IDNS_Ordinary, TUScope);
188  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
189  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
190}
191
192/// LazilyCreateBuiltin - The specified Builtin-ID was first used at file scope.
193/// lazily create a decl for it.
194ScopedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
195                                      Scope *S) {
196  Builtin::ID BID = (Builtin::ID)bid;
197
198  if (BID == Builtin::BI__builtin_va_start ||
199      BID == Builtin::BI__builtin_va_copy ||
200      BID == Builtin::BI__builtin_va_end ||
201      BID == Builtin::BI__builtin_stdarg_start)
202    InitBuiltinVaListType();
203
204  QualType R = Context.BuiltinInfo.GetBuiltinType(BID, Context);
205  FunctionDecl *New = FunctionDecl::Create(Context,
206                                           Context.getTranslationUnitDecl(),
207                                           SourceLocation(), II, R,
208                                           FunctionDecl::Extern, false, 0);
209
210  // Create Decl objects for each parameter, adding them to the
211  // FunctionDecl.
212  if (FunctionTypeProto *FT = dyn_cast<FunctionTypeProto>(R)) {
213    llvm::SmallVector<ParmVarDecl*, 16> Params;
214    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
215      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
216                                           FT->getArgType(i), VarDecl::None, 0,
217                                           0));
218    New->setParams(&Params[0], Params.size());
219  }
220
221
222
223  // TUScope is the translation-unit scope to insert this function into.
224  PushOnScopeChains(New, TUScope);
225  return New;
226}
227
228/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the same name
229/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
230/// situation, merging decls or emitting diagnostics as appropriate.
231///
232TypedefDecl *Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
233  // Allow multiple definitions for ObjC built-in typedefs.
234  // FIXME: Verify the underlying types are equivalent!
235  if (getLangOptions().ObjC1) {
236    const IdentifierInfo *typeIdent = New->getIdentifier();
237    if (typeIdent == Ident_id) {
238      Context.setObjCIdType(New);
239      return New;
240    } else if (typeIdent == Ident_Class) {
241      Context.setObjCClassType(New);
242      return New;
243    } else if (typeIdent == Ident_SEL) {
244      Context.setObjCSelType(New);
245      return New;
246    } else if (typeIdent == Ident_Protocol) {
247      Context.setObjCProtoType(New->getUnderlyingType());
248      return New;
249    }
250    // Fall through - the typedef name was not a builtin type.
251  }
252  // Verify the old decl was also a typedef.
253  TypedefDecl *Old = dyn_cast<TypedefDecl>(OldD);
254  if (!Old) {
255    Diag(New->getLocation(), diag::err_redefinition_different_kind,
256         New->getName());
257    Diag(OldD->getLocation(), diag::err_previous_definition);
258    return New;
259  }
260
261  // If the typedef types are not identical, reject them in all languages and
262  // with any extensions enabled.
263  if (Old->getUnderlyingType() != New->getUnderlyingType() &&
264      Context.getCanonicalType(Old->getUnderlyingType()) !=
265      Context.getCanonicalType(New->getUnderlyingType())) {
266    Diag(New->getLocation(), diag::err_redefinition_different_typedef,
267         New->getUnderlyingType().getAsString(),
268         Old->getUnderlyingType().getAsString());
269    Diag(Old->getLocation(), diag::err_previous_definition);
270    return Old;
271  }
272
273  if (getLangOptions().Microsoft) return New;
274
275  // Redeclaration of a type is a constraint violation (6.7.2.3p1).
276  // Apparently GCC, Intel, and Sun all silently ignore the redeclaration if
277  // *either* declaration is in a system header. The code below implements
278  // this adhoc compatibility rule. FIXME: The following code will not
279  // work properly when compiling ".i" files (containing preprocessed output).
280  SourceManager &SrcMgr = Context.getSourceManager();
281  if (SrcMgr.isInSystemHeader(Old->getLocation()))
282    return New;
283  if (SrcMgr.isInSystemHeader(New->getLocation()))
284    return New;
285
286  Diag(New->getLocation(), diag::err_redefinition, New->getName());
287  Diag(Old->getLocation(), diag::err_previous_definition);
288  return New;
289}
290
291/// DeclhasAttr - returns true if decl Declaration already has the target
292/// attribute.
293static bool DeclHasAttr(const Decl *decl, const Attr *target) {
294  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
295    if (attr->getKind() == target->getKind())
296      return true;
297
298  return false;
299}
300
301/// MergeAttributes - append attributes from the Old decl to the New one.
302static void MergeAttributes(Decl *New, Decl *Old) {
303  Attr *attr = const_cast<Attr*>(Old->getAttrs()), *tmp;
304
305  while (attr) {
306     tmp = attr;
307     attr = attr->getNext();
308
309    if (!DeclHasAttr(New, tmp)) {
310       New->addAttr(tmp);
311    } else {
312       tmp->setNext(0);
313       delete(tmp);
314    }
315  }
316
317  Old->invalidateAttrs();
318}
319
320/// MergeFunctionDecl - We just parsed a function 'New' from
321/// declarator D which has the same name and scope as a previous
322/// declaration 'Old'.  Figure out how to resolve this situation,
323/// merging decls or emitting diagnostics as appropriate.
324/// Redeclaration will be set true if thisNew is a redeclaration OldD.
325FunctionDecl *
326Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD, bool &Redeclaration) {
327  Redeclaration = false;
328  // Verify the old decl was also a function.
329  FunctionDecl *Old = dyn_cast<FunctionDecl>(OldD);
330  if (!Old) {
331    Diag(New->getLocation(), diag::err_redefinition_different_kind,
332         New->getName());
333    Diag(OldD->getLocation(), diag::err_previous_definition);
334    return New;
335  }
336
337  QualType OldQType = Context.getCanonicalType(Old->getType());
338  QualType NewQType = Context.getCanonicalType(New->getType());
339
340  // C++ [dcl.fct]p3:
341  //   All declarations for a function shall agree exactly in both the
342  //   return type and the parameter-type-list.
343  if (getLangOptions().CPlusPlus && OldQType == NewQType) {
344    MergeAttributes(New, Old);
345    Redeclaration = true;
346    return MergeCXXFunctionDecl(New, Old);
347  }
348
349  // C: Function types need to be compatible, not identical. This handles
350  // duplicate function decls like "void f(int); void f(enum X);" properly.
351  if (!getLangOptions().CPlusPlus &&
352      Context.typesAreCompatible(OldQType, NewQType)) {
353    MergeAttributes(New, Old);
354    Redeclaration = true;
355    return New;
356  }
357
358  // A function that has already been declared has been redeclared or defined
359  // with a different type- show appropriate diagnostic
360  diag::kind PrevDiag;
361  if (Old->isThisDeclarationADefinition())
362    PrevDiag = diag::err_previous_definition;
363  else if (Old->isImplicit())
364    PrevDiag = diag::err_previous_implicit_declaration;
365  else
366    PrevDiag = diag::err_previous_declaration;
367
368  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
369  // TODO: This is totally simplistic.  It should handle merging functions
370  // together etc, merging extern int X; int X; ...
371  Diag(New->getLocation(), diag::err_conflicting_types, New->getName());
372  Diag(Old->getLocation(), PrevDiag);
373  return New;
374}
375
376/// Predicate for C "tentative" external object definitions (C99 6.9.2).
377static bool isTentativeDefinition(VarDecl *VD) {
378  if (VD->isFileVarDecl())
379    return (!VD->getInit() &&
380            (VD->getStorageClass() == VarDecl::None ||
381             VD->getStorageClass() == VarDecl::Static));
382  return false;
383}
384
385/// CheckForFileScopedRedefinitions - Make sure we forgo redefinition errors
386/// when dealing with C "tentative" external object definitions (C99 6.9.2).
387void Sema::CheckForFileScopedRedefinitions(Scope *S, VarDecl *VD) {
388  bool VDIsTentative = isTentativeDefinition(VD);
389  bool VDIsIncompleteArray = VD->getType()->isIncompleteArrayType();
390
391  for (IdentifierResolver::iterator
392       I = IdResolver.begin(VD->getIdentifier(),
393                            VD->getDeclContext(), false/*LookInParentCtx*/),
394       E = IdResolver.end(); I != E; ++I) {
395    if (*I != VD && IdResolver.isDeclInScope(*I, VD->getDeclContext(), S)) {
396      VarDecl *OldDecl = dyn_cast<VarDecl>(*I);
397
398      // Handle the following case:
399      //   int a[10];
400      //   int a[];   - the code below makes sure we set the correct type.
401      //   int a[11]; - this is an error, size isn't 10.
402      if (OldDecl && VDIsTentative && VDIsIncompleteArray &&
403          OldDecl->getType()->isConstantArrayType())
404        VD->setType(OldDecl->getType());
405
406      // Check for "tentative" definitions. We can't accomplish this in
407      // MergeVarDecl since the initializer hasn't been attached.
408      if (!OldDecl || isTentativeDefinition(OldDecl) || VDIsTentative)
409        continue;
410
411      // Handle __private_extern__ just like extern.
412      if (OldDecl->getStorageClass() != VarDecl::Extern &&
413          OldDecl->getStorageClass() != VarDecl::PrivateExtern &&
414          VD->getStorageClass() != VarDecl::Extern &&
415          VD->getStorageClass() != VarDecl::PrivateExtern) {
416        Diag(VD->getLocation(), diag::err_redefinition, VD->getName());
417        Diag(OldDecl->getLocation(), diag::err_previous_definition);
418      }
419    }
420  }
421}
422
423/// MergeVarDecl - We just parsed a variable 'New' which has the same name
424/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
425/// situation, merging decls or emitting diagnostics as appropriate.
426///
427/// Tentative definition rules (C99 6.9.2p2) are checked by
428/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
429/// definitions here, since the initializer hasn't been attached.
430///
431VarDecl *Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
432  // Verify the old decl was also a variable.
433  VarDecl *Old = dyn_cast<VarDecl>(OldD);
434  if (!Old) {
435    Diag(New->getLocation(), diag::err_redefinition_different_kind,
436         New->getName());
437    Diag(OldD->getLocation(), diag::err_previous_definition);
438    return New;
439  }
440
441  MergeAttributes(New, Old);
442
443  // Verify the types match.
444  QualType OldCType = Context.getCanonicalType(Old->getType());
445  QualType NewCType = Context.getCanonicalType(New->getType());
446  if (OldCType != NewCType && !Context.typesAreCompatible(OldCType, NewCType)) {
447    Diag(New->getLocation(), diag::err_redefinition, New->getName());
448    Diag(Old->getLocation(), diag::err_previous_definition);
449    return New;
450  }
451  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
452  if (New->getStorageClass() == VarDecl::Static &&
453      (Old->getStorageClass() == VarDecl::None ||
454       Old->getStorageClass() == VarDecl::Extern)) {
455    Diag(New->getLocation(), diag::err_static_non_static, New->getName());
456    Diag(Old->getLocation(), diag::err_previous_definition);
457    return New;
458  }
459  // C99 6.2.2p4: Check if we have a non-static decl followed by a static.
460  if (New->getStorageClass() != VarDecl::Static &&
461      Old->getStorageClass() == VarDecl::Static) {
462    Diag(New->getLocation(), diag::err_non_static_static, New->getName());
463    Diag(Old->getLocation(), diag::err_previous_definition);
464    return New;
465  }
466  // File scoped variables are analyzed in FinalizeDeclaratorGroup.
467  if (!New->isFileVarDecl()) {
468    Diag(New->getLocation(), diag::err_redefinition, New->getName());
469    Diag(Old->getLocation(), diag::err_previous_definition);
470  }
471  return New;
472}
473
474/// CheckParmsForFunctionDef - Check that the parameters of the given
475/// function are appropriate for the definition of a function. This
476/// takes care of any checks that cannot be performed on the
477/// declaration itself, e.g., that the types of each of the function
478/// parameters are complete.
479bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
480  bool HasInvalidParm = false;
481  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
482    ParmVarDecl *Param = FD->getParamDecl(p);
483
484    // C99 6.7.5.3p4: the parameters in a parameter type list in a
485    // function declarator that is part of a function definition of
486    // that function shall not have incomplete type.
487    if (Param->getType()->isIncompleteType() &&
488        !Param->isInvalidDecl()) {
489      Diag(Param->getLocation(), diag::err_typecheck_decl_incomplete_type,
490           Param->getType().getAsString());
491      Param->setInvalidDecl();
492      HasInvalidParm = true;
493    }
494  }
495
496  return HasInvalidParm;
497}
498
499/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
500/// no declarator (e.g. "struct foo;") is parsed.
501Sema::DeclTy *Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
502  // TODO: emit error on 'int;' or 'const enum foo;'.
503  // TODO: emit error on 'typedef int;'
504  // if (!DS.isMissingDeclaratorOk()) Diag(...);
505
506  return dyn_cast_or_null<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
507}
508
509bool Sema::CheckSingleInitializer(Expr *&Init, QualType DeclType) {
510  // Get the type before calling CheckSingleAssignmentConstraints(), since
511  // it can promote the expression.
512  QualType InitType = Init->getType();
513
514  AssignConvertType ConvTy = CheckSingleAssignmentConstraints(DeclType, Init);
515  return DiagnoseAssignmentResult(ConvTy, Init->getLocStart(), DeclType,
516                                  InitType, Init, "initializing");
517}
518
519bool Sema::CheckStringLiteralInit(StringLiteral *strLiteral, QualType &DeclT) {
520  const ArrayType *AT = Context.getAsArrayType(DeclT);
521
522  if (const IncompleteArrayType *IAT = dyn_cast<IncompleteArrayType>(AT)) {
523    // C99 6.7.8p14. We have an array of character type with unknown size
524    // being initialized to a string literal.
525    llvm::APSInt ConstVal(32);
526    ConstVal = strLiteral->getByteLength() + 1;
527    // Return a new array type (C99 6.7.8p22).
528    DeclT = Context.getConstantArrayType(IAT->getElementType(), ConstVal,
529                                         ArrayType::Normal, 0);
530  } else {
531    const ConstantArrayType *CAT = cast<ConstantArrayType>(AT);
532    // C99 6.7.8p14. We have an array of character type with known size.
533    // FIXME: Avoid truncation for 64-bit length strings.
534    if (strLiteral->getByteLength() > (unsigned)CAT->getSize().getZExtValue())
535      Diag(strLiteral->getSourceRange().getBegin(),
536           diag::warn_initializer_string_for_char_array_too_long,
537           strLiteral->getSourceRange());
538  }
539  // Set type from "char *" to "constant array of char".
540  strLiteral->setType(DeclT);
541  // For now, we always return false (meaning success).
542  return false;
543}
544
545StringLiteral *Sema::IsStringLiteralInit(Expr *Init, QualType DeclType) {
546  const ArrayType *AT = Context.getAsArrayType(DeclType);
547  if (AT && AT->getElementType()->isCharType()) {
548    return dyn_cast<StringLiteral>(Init);
549  }
550  return 0;
551}
552
553bool Sema::CheckInitializerTypes(Expr *&Init, QualType &DeclType) {
554  // C99 6.7.8p3: The type of the entity to be initialized shall be an array
555  // of unknown size ("[]") or an object type that is not a variable array type.
556  if (const VariableArrayType *VAT = Context.getAsVariableArrayType(DeclType))
557    return Diag(VAT->getSizeExpr()->getLocStart(),
558                diag::err_variable_object_no_init,
559                VAT->getSizeExpr()->getSourceRange());
560
561  InitListExpr *InitList = dyn_cast<InitListExpr>(Init);
562  if (!InitList) {
563    // FIXME: Handle wide strings
564    if (StringLiteral *strLiteral = IsStringLiteralInit(Init, DeclType))
565      return CheckStringLiteralInit(strLiteral, DeclType);
566
567    if (DeclType->isArrayType())
568      return Diag(Init->getLocStart(),
569                  diag::err_array_init_list_required,
570                  Init->getSourceRange());
571
572    return CheckSingleInitializer(Init, DeclType);
573  }
574
575  InitListChecker CheckInitList(this, InitList, DeclType);
576  return CheckInitList.HadError();
577}
578
579Sema::DeclTy *
580Sema::ActOnDeclarator(Scope *S, Declarator &D, DeclTy *lastDecl) {
581  ScopedDecl *LastDeclarator = dyn_cast_or_null<ScopedDecl>((Decl *)lastDecl);
582  IdentifierInfo *II = D.getIdentifier();
583
584  // All of these full declarators require an identifier.  If it doesn't have
585  // one, the ParsedFreeStandingDeclSpec action should be used.
586  if (II == 0) {
587    Diag(D.getDeclSpec().getSourceRange().getBegin(),
588         diag::err_declarator_need_ident,
589         D.getDeclSpec().getSourceRange(), D.getSourceRange());
590    return 0;
591  }
592
593  // The scope passed in may not be a decl scope.  Zip up the scope tree until
594  // we find one that is.
595  while ((S->getFlags() & Scope::DeclScope) == 0)
596    S = S->getParent();
597
598  // See if this is a redefinition of a variable in the same scope.
599  Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S);
600  ScopedDecl *New;
601  bool InvalidDecl = false;
602
603  // In C++, the previous declaration we find might be a tag type
604  // (class or enum). In this case, the new declaration will hide the
605  // tag type.
606  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag)
607    PrevDecl = 0;
608
609  QualType R = GetTypeForDeclarator(D, S);
610  assert(!R.isNull() && "GetTypeForDeclarator() returned null type");
611
612  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
613    // Check that there are no default arguments (C++ only).
614    if (getLangOptions().CPlusPlus)
615      CheckExtraCXXDefaultArguments(D);
616
617    TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, LastDeclarator);
618    if (!NewTD) return 0;
619
620    // Handle attributes prior to checking for duplicates in MergeVarDecl
621    ProcessDeclAttributes(NewTD, D);
622    // Merge the decl with the existing one if appropriate. If the decl is
623    // in an outer scope, it isn't the same thing.
624    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
625      NewTD = MergeTypeDefDecl(NewTD, PrevDecl);
626      if (NewTD == 0) return 0;
627    }
628    New = NewTD;
629    if (S->getFnParent() == 0) {
630      // C99 6.7.7p2: If a typedef name specifies a variably modified type
631      // then it shall have block scope.
632      if (NewTD->getUnderlyingType()->isVariablyModifiedType()) {
633        // FIXME: Diagnostic needs to be fixed.
634        Diag(D.getIdentifierLoc(), diag::err_typecheck_illegal_vla);
635        InvalidDecl = true;
636      }
637    }
638  } else if (R.getTypePtr()->isFunctionType()) {
639    FunctionDecl::StorageClass SC = FunctionDecl::None;
640    switch (D.getDeclSpec().getStorageClassSpec()) {
641      default: assert(0 && "Unknown storage class!");
642      case DeclSpec::SCS_auto:
643      case DeclSpec::SCS_register:
644        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_func,
645             R.getAsString());
646        InvalidDecl = true;
647        break;
648      case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
649      case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
650      case DeclSpec::SCS_static:      SC = FunctionDecl::Static; break;
651      case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
652    }
653
654    bool isInline = D.getDeclSpec().isInlineSpecified();
655    FunctionDecl *NewFD;
656    if (D.getContext() == Declarator::MemberContext) {
657      // This is a C++ method declaration.
658      NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
659                                    D.getIdentifierLoc(), II, R,
660                                    (SC == FunctionDecl::Static), isInline,
661                                    LastDeclarator);
662    } else {
663      NewFD = FunctionDecl::Create(Context, CurContext,
664                                   D.getIdentifierLoc(),
665                                   II, R, SC, isInline,
666                                   LastDeclarator);
667    }
668    // Handle attributes.
669    ProcessDeclAttributes(NewFD, D);
670
671    // Handle GNU asm-label extension (encoded as an attribute).
672    if (Expr *E = (Expr*) D.getAsmLabel()) {
673      // The parser guarantees this is a string.
674      StringLiteral *SE = cast<StringLiteral>(E);
675      NewFD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
676                                                  SE->getByteLength())));
677    }
678
679    // Copy the parameter declarations from the declarator D to
680    // the function declaration NewFD, if they are available.
681    if (D.getNumTypeObjects() > 0) {
682      DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
683
684      // Create Decl objects for each parameter, adding them to the
685      // FunctionDecl.
686      llvm::SmallVector<ParmVarDecl*, 16> Params;
687
688      // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
689      // function that takes no arguments, not a function that takes a
690      // single void argument.
691      // We let through "const void" here because Sema::GetTypeForDeclarator
692      // already checks for that case.
693      if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
694          FTI.ArgInfo[0].Param &&
695          ((ParmVarDecl*)FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
696        // empty arg list, don't push any params.
697        ParmVarDecl *Param = (ParmVarDecl*)FTI.ArgInfo[0].Param;
698
699        // In C++, the empty parameter-type-list must be spelled "void"; a
700        // typedef of void is not permitted.
701        if (getLangOptions().CPlusPlus &&
702            Param->getType().getUnqualifiedType() != Context.VoidTy) {
703          Diag(Param->getLocation(), diag::ext_param_typedef_of_void);
704        }
705
706      } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
707        for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i)
708          Params.push_back((ParmVarDecl *)FTI.ArgInfo[i].Param);
709      }
710
711      NewFD->setParams(&Params[0], Params.size());
712    }
713
714    // Merge the decl with the existing one if appropriate. Since C functions
715    // are in a flat namespace, make sure we consider decls in outer scopes.
716    if (PrevDecl &&
717        (!getLangOptions().CPlusPlus ||
718         IdResolver.isDeclInScope(PrevDecl, CurContext, S)) ) {
719      bool Redeclaration = false;
720      NewFD = MergeFunctionDecl(NewFD, PrevDecl, Redeclaration);
721      if (NewFD == 0) return 0;
722      if (Redeclaration) {
723        NewFD->setPreviousDeclaration(cast<FunctionDecl>(PrevDecl));
724      }
725    }
726    New = NewFD;
727
728    // In C++, check default arguments now that we have merged decls.
729    if (getLangOptions().CPlusPlus)
730      CheckCXXDefaultArguments(NewFD);
731  } else {
732    // Check that there are no default arguments (C++ only).
733    if (getLangOptions().CPlusPlus)
734      CheckExtraCXXDefaultArguments(D);
735
736    if (R.getTypePtr()->isObjCInterfaceType()) {
737      Diag(D.getIdentifierLoc(), diag::err_statically_allocated_object,
738           D.getIdentifier()->getName());
739      InvalidDecl = true;
740    }
741
742    VarDecl *NewVD;
743    VarDecl::StorageClass SC;
744    switch (D.getDeclSpec().getStorageClassSpec()) {
745    default: assert(0 && "Unknown storage class!");
746    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
747    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
748    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
749    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
750    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
751    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
752    }
753    if (D.getContext() == Declarator::MemberContext) {
754      assert(SC == VarDecl::Static && "Invalid storage class for member!");
755      // This is a static data member for a C++ class.
756      NewVD = CXXClassVarDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
757                                      D.getIdentifierLoc(), II,
758                                      R, LastDeclarator);
759    } else {
760      bool ThreadSpecified = D.getDeclSpec().isThreadSpecified();
761      if (S->getFnParent() == 0) {
762        // C99 6.9p2: The storage-class specifiers auto and register shall not
763        // appear in the declaration specifiers in an external declaration.
764        if (SC == VarDecl::Auto || SC == VarDecl::Register) {
765          Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope,
766               R.getAsString());
767          InvalidDecl = true;
768        }
769      }
770        NewVD = VarDecl::Create(Context, CurContext, D.getIdentifierLoc(),
771                                II, R, SC, LastDeclarator);
772        NewVD->setThreadSpecified(ThreadSpecified);
773    }
774    // Handle attributes prior to checking for duplicates in MergeVarDecl
775    ProcessDeclAttributes(NewVD, D);
776
777    // Handle GNU asm-label extension (encoded as an attribute).
778    if (Expr *E = (Expr*) D.getAsmLabel()) {
779      // The parser guarantees this is a string.
780      StringLiteral *SE = cast<StringLiteral>(E);
781      NewVD->addAttr(new AsmLabelAttr(std::string(SE->getStrData(),
782                                                  SE->getByteLength())));
783    }
784
785    // Emit an error if an address space was applied to decl with local storage.
786    // This includes arrays of objects with address space qualifiers, but not
787    // automatic variables that point to other address spaces.
788    // ISO/IEC TR 18037 S5.1.2
789    if (NewVD->hasLocalStorage() && (NewVD->getType().getAddressSpace() != 0)) {
790      Diag(D.getIdentifierLoc(), diag::err_as_qualified_auto_decl);
791      InvalidDecl = true;
792    }
793    // Merge the decl with the existing one if appropriate. If the decl is
794    // in an outer scope, it isn't the same thing.
795    if (PrevDecl && IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
796      NewVD = MergeVarDecl(NewVD, PrevDecl);
797      if (NewVD == 0) return 0;
798    }
799    New = NewVD;
800  }
801
802  // If this has an identifier, add it to the scope stack.
803  if (II)
804    PushOnScopeChains(New, S);
805  // If any semantic error occurred, mark the decl as invalid.
806  if (D.getInvalidType() || InvalidDecl)
807    New->setInvalidDecl();
808
809  return New;
810}
811
812bool Sema::CheckAddressConstantExpressionLValue(const Expr* Init) {
813  switch (Init->getStmtClass()) {
814  default:
815    Diag(Init->getExprLoc(),
816         diag::err_init_element_not_constant, Init->getSourceRange());
817    return true;
818  case Expr::ParenExprClass: {
819    const ParenExpr* PE = cast<ParenExpr>(Init);
820    return CheckAddressConstantExpressionLValue(PE->getSubExpr());
821  }
822  case Expr::CompoundLiteralExprClass:
823    return cast<CompoundLiteralExpr>(Init)->isFileScope();
824  case Expr::DeclRefExprClass: {
825    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
826    if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
827      if (VD->hasGlobalStorage())
828        return false;
829      Diag(Init->getExprLoc(),
830           diag::err_init_element_not_constant, Init->getSourceRange());
831      return true;
832    }
833    if (isa<FunctionDecl>(D))
834      return false;
835    Diag(Init->getExprLoc(),
836         diag::err_init_element_not_constant, Init->getSourceRange());
837    return true;
838  }
839  case Expr::MemberExprClass: {
840    const MemberExpr *M = cast<MemberExpr>(Init);
841    if (M->isArrow())
842      return CheckAddressConstantExpression(M->getBase());
843    return CheckAddressConstantExpressionLValue(M->getBase());
844  }
845  case Expr::ArraySubscriptExprClass: {
846    // FIXME: Should we pedwarn for "x[0+0]" (where x is a pointer)?
847    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(Init);
848    return CheckAddressConstantExpression(ASE->getBase()) ||
849           CheckArithmeticConstantExpression(ASE->getIdx());
850  }
851  case Expr::StringLiteralClass:
852  case Expr::PredefinedExprClass:
853    return false;
854  case Expr::UnaryOperatorClass: {
855    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
856
857    // C99 6.6p9
858    if (Exp->getOpcode() == UnaryOperator::Deref)
859      return CheckAddressConstantExpression(Exp->getSubExpr());
860
861    Diag(Init->getExprLoc(),
862         diag::err_init_element_not_constant, Init->getSourceRange());
863    return true;
864  }
865  }
866}
867
868bool Sema::CheckAddressConstantExpression(const Expr* Init) {
869  switch (Init->getStmtClass()) {
870  default:
871    Diag(Init->getExprLoc(),
872         diag::err_init_element_not_constant, Init->getSourceRange());
873    return true;
874  case Expr::ParenExprClass: {
875    const ParenExpr* PE = cast<ParenExpr>(Init);
876    return CheckAddressConstantExpression(PE->getSubExpr());
877  }
878  case Expr::StringLiteralClass:
879  case Expr::ObjCStringLiteralClass:
880    return false;
881  case Expr::CallExprClass: {
882    const CallExpr *CE = cast<CallExpr>(Init);
883    if (CE->isBuiltinConstantExpr())
884      return false;
885    Diag(Init->getExprLoc(),
886         diag::err_init_element_not_constant, Init->getSourceRange());
887    return true;
888  }
889  case Expr::UnaryOperatorClass: {
890    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
891
892    // C99 6.6p9
893    if (Exp->getOpcode() == UnaryOperator::AddrOf)
894      return CheckAddressConstantExpressionLValue(Exp->getSubExpr());
895
896    if (Exp->getOpcode() == UnaryOperator::Extension)
897      return CheckAddressConstantExpression(Exp->getSubExpr());
898
899    Diag(Init->getExprLoc(),
900         diag::err_init_element_not_constant, Init->getSourceRange());
901    return true;
902  }
903  case Expr::BinaryOperatorClass: {
904    // FIXME: Should we pedwarn for expressions like "a + 1 + 2"?
905    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
906
907    Expr *PExp = Exp->getLHS();
908    Expr *IExp = Exp->getRHS();
909    if (IExp->getType()->isPointerType())
910      std::swap(PExp, IExp);
911
912    // FIXME: Should we pedwarn if IExp isn't an integer constant expression?
913    return CheckAddressConstantExpression(PExp) ||
914           CheckArithmeticConstantExpression(IExp);
915  }
916  case Expr::ImplicitCastExprClass:
917  case Expr::ExplicitCastExprClass: {
918    const Expr* SubExpr = cast<CastExpr>(Init)->getSubExpr();
919    if (Init->getStmtClass() == Expr::ImplicitCastExprClass) {
920      // Check for implicit promotion
921      if (SubExpr->getType()->isFunctionType() ||
922          SubExpr->getType()->isArrayType())
923        return CheckAddressConstantExpressionLValue(SubExpr);
924    }
925
926    // Check for pointer->pointer cast
927    if (SubExpr->getType()->isPointerType())
928      return CheckAddressConstantExpression(SubExpr);
929
930    if (SubExpr->getType()->isIntegralType()) {
931      // Check for the special-case of a pointer->int->pointer cast;
932      // this isn't standard, but some code requires it. See
933      // PR2720 for an example.
934      if (const CastExpr* SubCast = dyn_cast<CastExpr>(SubExpr)) {
935        if (SubCast->getSubExpr()->getType()->isPointerType()) {
936          unsigned IntWidth = Context.getIntWidth(SubCast->getType());
937          unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
938          if (IntWidth >= PointerWidth) {
939            return CheckAddressConstantExpression(SubCast->getSubExpr());
940          }
941        }
942      }
943    }
944    if (SubExpr->getType()->isArithmeticType()) {
945      return CheckArithmeticConstantExpression(SubExpr);
946    }
947
948    Diag(Init->getExprLoc(),
949         diag::err_init_element_not_constant, Init->getSourceRange());
950    return true;
951  }
952  case Expr::ConditionalOperatorClass: {
953    // FIXME: Should we pedwarn here?
954    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
955    if (!Exp->getCond()->getType()->isArithmeticType()) {
956      Diag(Init->getExprLoc(),
957           diag::err_init_element_not_constant, Init->getSourceRange());
958      return true;
959    }
960    if (CheckArithmeticConstantExpression(Exp->getCond()))
961      return true;
962    if (Exp->getLHS() &&
963        CheckAddressConstantExpression(Exp->getLHS()))
964      return true;
965    return CheckAddressConstantExpression(Exp->getRHS());
966  }
967  case Expr::AddrLabelExprClass:
968    return false;
969  }
970}
971
972static const Expr* FindExpressionBaseAddress(const Expr* E);
973
974static const Expr* FindExpressionBaseAddressLValue(const Expr* E) {
975  switch (E->getStmtClass()) {
976  default:
977    return E;
978  case Expr::ParenExprClass: {
979    const ParenExpr* PE = cast<ParenExpr>(E);
980    return FindExpressionBaseAddressLValue(PE->getSubExpr());
981  }
982  case Expr::MemberExprClass: {
983    const MemberExpr *M = cast<MemberExpr>(E);
984    if (M->isArrow())
985      return FindExpressionBaseAddress(M->getBase());
986    return FindExpressionBaseAddressLValue(M->getBase());
987  }
988  case Expr::ArraySubscriptExprClass: {
989    const ArraySubscriptExpr *ASE = cast<ArraySubscriptExpr>(E);
990    return FindExpressionBaseAddress(ASE->getBase());
991  }
992  case Expr::UnaryOperatorClass: {
993    const UnaryOperator *Exp = cast<UnaryOperator>(E);
994
995    if (Exp->getOpcode() == UnaryOperator::Deref)
996      return FindExpressionBaseAddress(Exp->getSubExpr());
997
998    return E;
999  }
1000  }
1001}
1002
1003static const Expr* FindExpressionBaseAddress(const Expr* E) {
1004  switch (E->getStmtClass()) {
1005  default:
1006    return E;
1007  case Expr::ParenExprClass: {
1008    const ParenExpr* PE = cast<ParenExpr>(E);
1009    return FindExpressionBaseAddress(PE->getSubExpr());
1010  }
1011  case Expr::UnaryOperatorClass: {
1012    const UnaryOperator *Exp = cast<UnaryOperator>(E);
1013
1014    // C99 6.6p9
1015    if (Exp->getOpcode() == UnaryOperator::AddrOf)
1016      return FindExpressionBaseAddressLValue(Exp->getSubExpr());
1017
1018    if (Exp->getOpcode() == UnaryOperator::Extension)
1019      return FindExpressionBaseAddress(Exp->getSubExpr());
1020
1021    return E;
1022  }
1023  case Expr::BinaryOperatorClass: {
1024    const BinaryOperator *Exp = cast<BinaryOperator>(E);
1025
1026    Expr *PExp = Exp->getLHS();
1027    Expr *IExp = Exp->getRHS();
1028    if (IExp->getType()->isPointerType())
1029      std::swap(PExp, IExp);
1030
1031    return FindExpressionBaseAddress(PExp);
1032  }
1033  case Expr::ImplicitCastExprClass: {
1034    const Expr* SubExpr = cast<ImplicitCastExpr>(E)->getSubExpr();
1035
1036    // Check for implicit promotion
1037    if (SubExpr->getType()->isFunctionType() ||
1038        SubExpr->getType()->isArrayType())
1039      return FindExpressionBaseAddressLValue(SubExpr);
1040
1041    // Check for pointer->pointer cast
1042    if (SubExpr->getType()->isPointerType())
1043      return FindExpressionBaseAddress(SubExpr);
1044
1045    // We assume that we have an arithmetic expression here;
1046    // if we don't, we'll figure it out later
1047    return 0;
1048  }
1049  case Expr::ExplicitCastExprClass: {
1050    const Expr* SubExpr = cast<CastExpr>(E)->getSubExpr();
1051
1052    // Check for pointer->pointer cast
1053    if (SubExpr->getType()->isPointerType())
1054      return FindExpressionBaseAddress(SubExpr);
1055
1056    // We assume that we have an arithmetic expression here;
1057    // if we don't, we'll figure it out later
1058    return 0;
1059  }
1060  }
1061}
1062
1063bool Sema::CheckArithmeticConstantExpression(const Expr* Init) {
1064  switch (Init->getStmtClass()) {
1065  default:
1066    Diag(Init->getExprLoc(),
1067         diag::err_init_element_not_constant, Init->getSourceRange());
1068    return true;
1069  case Expr::ParenExprClass: {
1070    const ParenExpr* PE = cast<ParenExpr>(Init);
1071    return CheckArithmeticConstantExpression(PE->getSubExpr());
1072  }
1073  case Expr::FloatingLiteralClass:
1074  case Expr::IntegerLiteralClass:
1075  case Expr::CharacterLiteralClass:
1076  case Expr::ImaginaryLiteralClass:
1077  case Expr::TypesCompatibleExprClass:
1078  case Expr::CXXBoolLiteralExprClass:
1079    return false;
1080  case Expr::CallExprClass: {
1081    const CallExpr *CE = cast<CallExpr>(Init);
1082    if (CE->isBuiltinConstantExpr())
1083      return false;
1084    Diag(Init->getExprLoc(),
1085         diag::err_init_element_not_constant, Init->getSourceRange());
1086    return true;
1087  }
1088  case Expr::DeclRefExprClass: {
1089    const Decl *D = cast<DeclRefExpr>(Init)->getDecl();
1090    if (isa<EnumConstantDecl>(D))
1091      return false;
1092    Diag(Init->getExprLoc(),
1093         diag::err_init_element_not_constant, Init->getSourceRange());
1094    return true;
1095  }
1096  case Expr::CompoundLiteralExprClass:
1097    // Allow "(vector type){2,4}"; normal C constraints don't allow this,
1098    // but vectors are allowed to be magic.
1099    if (Init->getType()->isVectorType())
1100      return false;
1101    Diag(Init->getExprLoc(),
1102         diag::err_init_element_not_constant, Init->getSourceRange());
1103    return true;
1104  case Expr::UnaryOperatorClass: {
1105    const UnaryOperator *Exp = cast<UnaryOperator>(Init);
1106
1107    switch (Exp->getOpcode()) {
1108    // Address, indirect, pre/post inc/dec, etc are not valid constant exprs.
1109    // See C99 6.6p3.
1110    default:
1111      Diag(Init->getExprLoc(),
1112           diag::err_init_element_not_constant, Init->getSourceRange());
1113      return true;
1114    case UnaryOperator::SizeOf:
1115    case UnaryOperator::AlignOf:
1116    case UnaryOperator::OffsetOf:
1117      // sizeof(E) is a constantexpr if and only if E is not evaluted.
1118      // See C99 6.5.3.4p2 and 6.6p3.
1119      if (Exp->getSubExpr()->getType()->isConstantSizeType())
1120        return false;
1121      Diag(Init->getExprLoc(),
1122           diag::err_init_element_not_constant, Init->getSourceRange());
1123      return true;
1124    case UnaryOperator::Extension:
1125    case UnaryOperator::LNot:
1126    case UnaryOperator::Plus:
1127    case UnaryOperator::Minus:
1128    case UnaryOperator::Not:
1129      return CheckArithmeticConstantExpression(Exp->getSubExpr());
1130    }
1131  }
1132  case Expr::SizeOfAlignOfTypeExprClass: {
1133    const SizeOfAlignOfTypeExpr *Exp = cast<SizeOfAlignOfTypeExpr>(Init);
1134    // Special check for void types, which are allowed as an extension
1135    if (Exp->getArgumentType()->isVoidType())
1136      return false;
1137    // alignof always evaluates to a constant.
1138    // FIXME: is sizeof(int[3.0]) a constant expression?
1139    if (Exp->isSizeOf() && !Exp->getArgumentType()->isConstantSizeType()) {
1140      Diag(Init->getExprLoc(),
1141           diag::err_init_element_not_constant, Init->getSourceRange());
1142      return true;
1143    }
1144    return false;
1145  }
1146  case Expr::BinaryOperatorClass: {
1147    const BinaryOperator *Exp = cast<BinaryOperator>(Init);
1148
1149    if (Exp->getLHS()->getType()->isArithmeticType() &&
1150        Exp->getRHS()->getType()->isArithmeticType()) {
1151      return CheckArithmeticConstantExpression(Exp->getLHS()) ||
1152             CheckArithmeticConstantExpression(Exp->getRHS());
1153    }
1154
1155    if (Exp->getLHS()->getType()->isPointerType() &&
1156        Exp->getRHS()->getType()->isPointerType()) {
1157      const Expr* LHSBase = FindExpressionBaseAddress(Exp->getLHS());
1158      const Expr* RHSBase = FindExpressionBaseAddress(Exp->getRHS());
1159
1160      // Only allow a null (constant integer) base; we could
1161      // allow some additional cases if necessary, but this
1162      // is sufficient to cover offsetof-like constructs.
1163      if (!LHSBase && !RHSBase) {
1164        return CheckAddressConstantExpression(Exp->getLHS()) ||
1165               CheckAddressConstantExpression(Exp->getRHS());
1166      }
1167    }
1168
1169    Diag(Init->getExprLoc(),
1170         diag::err_init_element_not_constant, Init->getSourceRange());
1171    return true;
1172  }
1173  case Expr::ImplicitCastExprClass:
1174  case Expr::ExplicitCastExprClass: {
1175    const Expr *SubExpr = cast<CastExpr>(Init)->getSubExpr();
1176    if (SubExpr->getType()->isArithmeticType())
1177      return CheckArithmeticConstantExpression(SubExpr);
1178
1179    if (SubExpr->getType()->isPointerType()) {
1180      const Expr* Base = FindExpressionBaseAddress(SubExpr);
1181      // If the pointer has a null base, this is an offsetof-like construct
1182      if (!Base)
1183        return CheckAddressConstantExpression(SubExpr);
1184    }
1185
1186    Diag(Init->getExprLoc(),
1187         diag::err_init_element_not_constant, Init->getSourceRange());
1188    return true;
1189  }
1190  case Expr::ConditionalOperatorClass: {
1191    const ConditionalOperator *Exp = cast<ConditionalOperator>(Init);
1192    if (CheckArithmeticConstantExpression(Exp->getCond()))
1193      return true;
1194    if (Exp->getLHS() &&
1195        CheckArithmeticConstantExpression(Exp->getLHS()))
1196      return true;
1197    return CheckArithmeticConstantExpression(Exp->getRHS());
1198  }
1199  }
1200}
1201
1202bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
1203  Init = Init->IgnoreParens();
1204
1205  // Look through CXXDefaultArgExprs; they have no meaning in this context.
1206  if (CXXDefaultArgExpr* DAE = dyn_cast<CXXDefaultArgExpr>(Init))
1207    return CheckForConstantInitializer(DAE->getExpr(), DclT);
1208
1209  if (CompoundLiteralExpr *e = dyn_cast<CompoundLiteralExpr>(Init))
1210    return CheckForConstantInitializer(e->getInitializer(), DclT);
1211
1212  if (Init->getType()->isReferenceType()) {
1213    // FIXME: Work out how the heck reference types work
1214    return false;
1215#if 0
1216    // A reference is constant if the address of the expression
1217    // is constant
1218    // We look through initlists here to simplify
1219    // CheckAddressConstantExpressionLValue.
1220    if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1221      assert(Exp->getNumInits() > 0 &&
1222             "Refernce initializer cannot be empty");
1223      Init = Exp->getInit(0);
1224    }
1225    return CheckAddressConstantExpressionLValue(Init);
1226#endif
1227  }
1228
1229  if (InitListExpr *Exp = dyn_cast<InitListExpr>(Init)) {
1230    unsigned numInits = Exp->getNumInits();
1231    for (unsigned i = 0; i < numInits; i++) {
1232      // FIXME: Need to get the type of the declaration for C++,
1233      // because it could be a reference?
1234      if (CheckForConstantInitializer(Exp->getInit(i),
1235                                      Exp->getInit(i)->getType()))
1236        return true;
1237    }
1238    return false;
1239  }
1240
1241  if (Init->isNullPointerConstant(Context))
1242    return false;
1243  if (Init->getType()->isArithmeticType()) {
1244    QualType InitTy = Context.getCanonicalType(Init->getType())
1245                             .getUnqualifiedType();
1246    if (InitTy == Context.BoolTy) {
1247      // Special handling for pointers implicitly cast to bool;
1248      // (e.g. "_Bool rr = &rr;"). This is only legal at the top level.
1249      if (ImplicitCastExpr* ICE = dyn_cast<ImplicitCastExpr>(Init)) {
1250        Expr* SubE = ICE->getSubExpr();
1251        if (SubE->getType()->isPointerType() ||
1252            SubE->getType()->isArrayType() ||
1253            SubE->getType()->isFunctionType()) {
1254          return CheckAddressConstantExpression(Init);
1255        }
1256      }
1257    } else if (InitTy->isIntegralType()) {
1258      Expr* SubE = 0;
1259      if (CastExpr* CE = dyn_cast<CastExpr>(Init))
1260        SubE = CE->getSubExpr();
1261      // Special check for pointer cast to int; we allow as an extension
1262      // an address constant cast to an integer if the integer
1263      // is of an appropriate width (this sort of code is apparently used
1264      // in some places).
1265      // FIXME: Add pedwarn?
1266      // FIXME: Don't allow bitfields here!  Need the FieldDecl for that.
1267      if (SubE && (SubE->getType()->isPointerType() ||
1268                   SubE->getType()->isArrayType() ||
1269                   SubE->getType()->isFunctionType())) {
1270        unsigned IntWidth = Context.getTypeSize(Init->getType());
1271        unsigned PointerWidth = Context.getTypeSize(Context.VoidPtrTy);
1272        if (IntWidth >= PointerWidth)
1273          return CheckAddressConstantExpression(Init);
1274      }
1275    }
1276
1277    return CheckArithmeticConstantExpression(Init);
1278  }
1279
1280  if (Init->getType()->isPointerType())
1281    return CheckAddressConstantExpression(Init);
1282
1283  // An array type at the top level that isn't an init-list must
1284  // be a string literal
1285  if (Init->getType()->isArrayType())
1286    return false;
1287
1288  if (Init->getType()->isFunctionType())
1289    return false;
1290
1291  Diag(Init->getExprLoc(), diag::err_init_element_not_constant,
1292       Init->getSourceRange());
1293  return true;
1294}
1295
1296void Sema::AddInitializerToDecl(DeclTy *dcl, ExprTy *init) {
1297  Decl *RealDecl = static_cast<Decl *>(dcl);
1298  Expr *Init = static_cast<Expr *>(init);
1299  assert(Init && "missing initializer");
1300
1301  // If there is no declaration, there was an error parsing it.  Just ignore
1302  // the initializer.
1303  if (RealDecl == 0) {
1304    delete Init;
1305    return;
1306  }
1307
1308  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
1309  if (!VDecl) {
1310    Diag(dyn_cast<ScopedDecl>(RealDecl)->getLocation(),
1311         diag::err_illegal_initializer);
1312    RealDecl->setInvalidDecl();
1313    return;
1314  }
1315  // Get the decls type and save a reference for later, since
1316  // CheckInitializerTypes may change it.
1317  QualType DclT = VDecl->getType(), SavT = DclT;
1318  if (VDecl->isBlockVarDecl()) {
1319    VarDecl::StorageClass SC = VDecl->getStorageClass();
1320    if (SC == VarDecl::Extern) { // C99 6.7.8p5
1321      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
1322      VDecl->setInvalidDecl();
1323    } else if (!VDecl->isInvalidDecl()) {
1324      if (CheckInitializerTypes(Init, DclT))
1325        VDecl->setInvalidDecl();
1326
1327      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1328      if (!getLangOptions().CPlusPlus) {
1329        if (SC == VarDecl::Static) // C99 6.7.8p4.
1330          CheckForConstantInitializer(Init, DclT);
1331      }
1332    }
1333  } else if (VDecl->isFileVarDecl()) {
1334    if (VDecl->getStorageClass() == VarDecl::Extern)
1335      Diag(VDecl->getLocation(), diag::warn_extern_init);
1336    if (!VDecl->isInvalidDecl())
1337      if (CheckInitializerTypes(Init, DclT))
1338        VDecl->setInvalidDecl();
1339
1340    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
1341    if (!getLangOptions().CPlusPlus) {
1342      // C99 6.7.8p4. All file scoped initializers need to be constant.
1343      CheckForConstantInitializer(Init, DclT);
1344    }
1345  }
1346  // If the type changed, it means we had an incomplete type that was
1347  // completed by the initializer. For example:
1348  //   int ary[] = { 1, 3, 5 };
1349  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
1350  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
1351    VDecl->setType(DclT);
1352    Init->setType(DclT);
1353  }
1354
1355  // Attach the initializer to the decl.
1356  VDecl->setInit(Init);
1357  return;
1358}
1359
1360/// The declarators are chained together backwards, reverse the list.
1361Sema::DeclTy *Sema::FinalizeDeclaratorGroup(Scope *S, DeclTy *group) {
1362  // Often we have single declarators, handle them quickly.
1363  Decl *GroupDecl = static_cast<Decl*>(group);
1364  if (GroupDecl == 0)
1365    return 0;
1366
1367  ScopedDecl *Group = dyn_cast<ScopedDecl>(GroupDecl);
1368  ScopedDecl *NewGroup = 0;
1369  if (Group->getNextDeclarator() == 0)
1370    NewGroup = Group;
1371  else { // reverse the list.
1372    while (Group) {
1373      ScopedDecl *Next = Group->getNextDeclarator();
1374      Group->setNextDeclarator(NewGroup);
1375      NewGroup = Group;
1376      Group = Next;
1377    }
1378  }
1379  // Perform semantic analysis that depends on having fully processed both
1380  // the declarator and initializer.
1381  for (ScopedDecl *ID = NewGroup; ID; ID = ID->getNextDeclarator()) {
1382    VarDecl *IDecl = dyn_cast<VarDecl>(ID);
1383    if (!IDecl)
1384      continue;
1385    QualType T = IDecl->getType();
1386
1387    // C99 6.7.5.2p2: If an identifier is declared to be an object with
1388    // static storage duration, it shall not have a variable length array.
1389    if ((IDecl->isFileVarDecl() || IDecl->isBlockVarDecl()) &&
1390        IDecl->getStorageClass() == VarDecl::Static) {
1391      if (T->isVariableArrayType()) {
1392        Diag(IDecl->getLocation(), diag::err_typecheck_illegal_vla);
1393        IDecl->setInvalidDecl();
1394      }
1395    }
1396    // Block scope. C99 6.7p7: If an identifier for an object is declared with
1397    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
1398    if (IDecl->isBlockVarDecl() &&
1399        IDecl->getStorageClass() != VarDecl::Extern) {
1400      if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1401        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1402             T.getAsString());
1403        IDecl->setInvalidDecl();
1404      }
1405    }
1406    // File scope. C99 6.9.2p2: A declaration of an identifier for and
1407    // object that has file scope without an initializer, and without a
1408    // storage-class specifier or with the storage-class specifier "static",
1409    // constitutes a tentative definition. Note: A tentative definition with
1410    // external linkage is valid (C99 6.2.2p5).
1411    if (isTentativeDefinition(IDecl)) {
1412      if (T->isIncompleteArrayType()) {
1413        // C99 6.9.2 (p2, p5): Implicit initialization causes an incomplete
1414        // array to be completed. Don't issue a diagnostic.
1415      } else if (T->isIncompleteType() && !IDecl->isInvalidDecl()) {
1416        // C99 6.9.2p3: If the declaration of an identifier for an object is
1417        // a tentative definition and has internal linkage (C99 6.2.2p3), the
1418        // declared type shall not be an incomplete type.
1419        Diag(IDecl->getLocation(), diag::err_typecheck_decl_incomplete_type,
1420             T.getAsString());
1421        IDecl->setInvalidDecl();
1422      }
1423    }
1424    if (IDecl->isFileVarDecl())
1425      CheckForFileScopedRedefinitions(S, IDecl);
1426  }
1427  return NewGroup;
1428}
1429
1430/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
1431/// to introduce parameters into function prototype scope.
1432Sema::DeclTy *
1433Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
1434  const DeclSpec &DS = D.getDeclSpec();
1435
1436  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
1437  VarDecl::StorageClass StorageClass = VarDecl::None;
1438  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
1439    StorageClass = VarDecl::Register;
1440  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
1441    Diag(DS.getStorageClassSpecLoc(),
1442         diag::err_invalid_storage_class_in_func_decl);
1443    D.getMutableDeclSpec().ClearStorageClassSpecs();
1444  }
1445  if (DS.isThreadSpecified()) {
1446    Diag(DS.getThreadSpecLoc(),
1447         diag::err_invalid_storage_class_in_func_decl);
1448    D.getMutableDeclSpec().ClearStorageClassSpecs();
1449  }
1450
1451  // Check that there are no default arguments inside the type of this
1452  // parameter (C++ only).
1453  if (getLangOptions().CPlusPlus)
1454    CheckExtraCXXDefaultArguments(D);
1455
1456  // In this context, we *do not* check D.getInvalidType(). If the declarator
1457  // type was invalid, GetTypeForDeclarator() still returns a "valid" type,
1458  // though it will not reflect the user specified type.
1459  QualType parmDeclType = GetTypeForDeclarator(D, S);
1460
1461  assert(!parmDeclType.isNull() && "GetTypeForDeclarator() returned null type");
1462
1463  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
1464  // Can this happen for params?  We already checked that they don't conflict
1465  // among each other.  Here they can only shadow globals, which is ok.
1466  IdentifierInfo *II = D.getIdentifier();
1467  if (Decl *PrevDecl = LookupDecl(II, Decl::IDNS_Ordinary, S)) {
1468    if (S->isDeclScope(PrevDecl)) {
1469      Diag(D.getIdentifierLoc(), diag::err_param_redefinition,
1470           dyn_cast<NamedDecl>(PrevDecl)->getName());
1471
1472      // Recover by removing the name
1473      II = 0;
1474      D.SetIdentifier(0, D.getIdentifierLoc());
1475    }
1476  }
1477
1478  // Perform the default function/array conversion (C99 6.7.5.3p[7,8]).
1479  // Doing the promotion here has a win and a loss. The win is the type for
1480  // both Decl's and DeclRefExpr's will match (a convenient invariant for the
1481  // code generator). The loss is the orginal type isn't preserved. For example:
1482  //
1483  // void func(int parmvardecl[5]) { // convert "int [5]" to "int *"
1484  //    int blockvardecl[5];
1485  //    sizeof(parmvardecl);  // size == 4
1486  //    sizeof(blockvardecl); // size == 20
1487  // }
1488  //
1489  // For expressions, all implicit conversions are captured using the
1490  // ImplicitCastExpr AST node (we have no such mechanism for Decl's).
1491  //
1492  // FIXME: If a source translation tool needs to see the original type, then
1493  // we need to consider storing both types (in ParmVarDecl)...
1494  //
1495  if (parmDeclType->isArrayType()) {
1496    // int x[restrict 4] ->  int *restrict
1497    parmDeclType = Context.getArrayDecayedType(parmDeclType);
1498  } else if (parmDeclType->isFunctionType())
1499    parmDeclType = Context.getPointerType(parmDeclType);
1500
1501  ParmVarDecl *New = ParmVarDecl::Create(Context, CurContext,
1502                                         D.getIdentifierLoc(), II,
1503                                         parmDeclType, StorageClass,
1504                                         0, 0);
1505
1506  if (D.getInvalidType())
1507    New->setInvalidDecl();
1508
1509  if (II)
1510    PushOnScopeChains(New, S);
1511
1512  ProcessDeclAttributes(New, D);
1513  return New;
1514
1515}
1516
1517Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Declarator &D) {
1518  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
1519  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
1520         "Not a function declarator!");
1521  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
1522
1523  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
1524  // for a K&R function.
1525  if (!FTI.hasPrototype) {
1526    for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
1527      if (FTI.ArgInfo[i].Param == 0) {
1528        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared,
1529             FTI.ArgInfo[i].Ident->getName());
1530        // Implicitly declare the argument as type 'int' for lack of a better
1531        // type.
1532        DeclSpec DS;
1533        const char* PrevSpec; // unused
1534        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
1535                           PrevSpec);
1536        Declarator ParamD(DS, Declarator::KNRTypeListContext);
1537        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
1538        FTI.ArgInfo[i].Param = ActOnParamDeclarator(FnBodyScope, ParamD);
1539      }
1540    }
1541  } else {
1542    // FIXME: Diagnose arguments without names in C.
1543  }
1544
1545  Scope *GlobalScope = FnBodyScope->getParent();
1546
1547  // See if this is a redefinition.
1548  Decl *PrevDcl = LookupDecl(D.getIdentifier(), Decl::IDNS_Ordinary,
1549                             GlobalScope);
1550  if (PrevDcl && IdResolver.isDeclInScope(PrevDcl, CurContext)) {
1551    if (FunctionDecl *FD = dyn_cast<FunctionDecl>(PrevDcl)) {
1552      const FunctionDecl *Definition;
1553      if (FD->getBody(Definition)) {
1554        Diag(D.getIdentifierLoc(), diag::err_redefinition,
1555             D.getIdentifier()->getName());
1556        Diag(Definition->getLocation(), diag::err_previous_definition);
1557      }
1558    }
1559  }
1560
1561  return ActOnStartOfFunctionDef(FnBodyScope,
1562                                 ActOnDeclarator(GlobalScope, D, 0));
1563}
1564
1565Sema::DeclTy *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclTy *D) {
1566  Decl *decl = static_cast<Decl*>(D);
1567  FunctionDecl *FD = cast<FunctionDecl>(decl);
1568  PushDeclContext(FD);
1569
1570  // Check the validity of our function parameters
1571  CheckParmsForFunctionDef(FD);
1572
1573  // Introduce our parameters into the function scope
1574  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1575    ParmVarDecl *Param = FD->getParamDecl(p);
1576    // If this has an identifier, add it to the scope stack.
1577    if (Param->getIdentifier())
1578      PushOnScopeChains(Param, FnBodyScope);
1579  }
1580
1581  return FD;
1582}
1583
1584Sema::DeclTy *Sema::ActOnFinishFunctionBody(DeclTy *D, StmtTy *Body) {
1585  Decl *dcl = static_cast<Decl *>(D);
1586  if (FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(dcl)) {
1587    FD->setBody((Stmt*)Body);
1588    assert(FD == getCurFunctionDecl() && "Function parsing confused");
1589  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
1590    MD->setBody((Stmt*)Body);
1591  } else
1592    return 0;
1593  PopDeclContext();
1594  // Verify and clean out per-function state.
1595
1596  // Check goto/label use.
1597  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
1598       I = LabelMap.begin(), E = LabelMap.end(); I != E; ++I) {
1599    // Verify that we have no forward references left.  If so, there was a goto
1600    // or address of a label taken, but no definition of it.  Label fwd
1601    // definitions are indicated with a null substmt.
1602    if (I->second->getSubStmt() == 0) {
1603      LabelStmt *L = I->second;
1604      // Emit error.
1605      Diag(L->getIdentLoc(), diag::err_undeclared_label_use, L->getName());
1606
1607      // At this point, we have gotos that use the bogus label.  Stitch it into
1608      // the function body so that they aren't leaked and that the AST is well
1609      // formed.
1610      if (Body) {
1611        L->setSubStmt(new NullStmt(L->getIdentLoc()));
1612        cast<CompoundStmt>((Stmt*)Body)->push_back(L);
1613      } else {
1614        // The whole function wasn't parsed correctly, just delete this.
1615        delete L;
1616      }
1617    }
1618  }
1619  LabelMap.clear();
1620
1621  return D;
1622}
1623
1624/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
1625/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
1626ScopedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
1627                                           IdentifierInfo &II, Scope *S) {
1628  // Extension in C99.  Legal in C90, but warn about it.
1629  if (getLangOptions().C99)
1630    Diag(Loc, diag::ext_implicit_function_decl, II.getName());
1631  else
1632    Diag(Loc, diag::warn_implicit_function_decl, II.getName());
1633
1634  // FIXME: handle stuff like:
1635  // void foo() { extern float X(); }
1636  // void bar() { X(); }  <-- implicit decl for X in another scope.
1637
1638  // Set a Declarator for the implicit definition: int foo();
1639  const char *Dummy;
1640  DeclSpec DS;
1641  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy);
1642  Error = Error; // Silence warning.
1643  assert(!Error && "Error setting up implicit decl!");
1644  Declarator D(DS, Declarator::BlockContext);
1645  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, 0, 0, Loc));
1646  D.SetIdentifier(&II, Loc);
1647
1648  // Insert this function into translation-unit scope.
1649
1650  DeclContext *PrevDC = CurContext;
1651  CurContext = Context.getTranslationUnitDecl();
1652
1653  FunctionDecl *FD =
1654    dyn_cast<FunctionDecl>(static_cast<Decl*>(ActOnDeclarator(TUScope, D, 0)));
1655  FD->setImplicit();
1656
1657  CurContext = PrevDC;
1658
1659  return FD;
1660}
1661
1662
1663TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
1664                                    ScopedDecl *LastDeclarator) {
1665  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
1666  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
1667
1668  // Scope manipulation handled by caller.
1669  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
1670                                           D.getIdentifierLoc(),
1671                                           D.getIdentifier(),
1672                                           T, LastDeclarator);
1673  if (D.getInvalidType())
1674    NewTD->setInvalidDecl();
1675  return NewTD;
1676}
1677
1678/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
1679/// former case, Name will be non-null.  In the later case, Name will be null.
1680/// TagType indicates what kind of tag this is. TK indicates whether this is a
1681/// reference/declaration/definition of a tag.
1682Sema::DeclTy *Sema::ActOnTag(Scope *S, unsigned TagType, TagKind TK,
1683                             SourceLocation KWLoc, IdentifierInfo *Name,
1684                             SourceLocation NameLoc, AttributeList *Attr) {
1685  // If this is a use of an existing tag, it must have a name.
1686  assert((Name != 0 || TK == TK_Definition) &&
1687         "Nameless record must be a definition!");
1688
1689  TagDecl::TagKind Kind;
1690  switch (TagType) {
1691  default: assert(0 && "Unknown tag type!");
1692  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
1693  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
1694  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
1695  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
1696  }
1697
1698  // Two code paths: a new one for structs/unions/classes where we create
1699  //   separate decls for forward declarations, and an old (eventually to
1700  //   be removed) code path for enums.
1701  if (Kind != TagDecl::TK_enum)
1702    return ActOnTagStruct(S, Kind, TK, KWLoc, Name, NameLoc, Attr);
1703
1704  // If this is a named struct, check to see if there was a previous forward
1705  // declaration or definition.
1706  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1707  ScopedDecl *PrevDecl =
1708    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1709
1710  if (PrevDecl) {
1711    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1712            "unexpected Decl type");
1713    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1714      // If this is a use of a previous tag, or if the tag is already declared
1715      // in the same scope (so that the definition/declaration completes or
1716      // rementions the tag), reuse the decl.
1717      if (TK == TK_Reference ||
1718          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1719        // Make sure that this wasn't declared as an enum and now used as a
1720        // struct or something similar.
1721        if (PrevTagDecl->getTagKind() != Kind) {
1722          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1723          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1724          // Recover by making this an anonymous redefinition.
1725          Name = 0;
1726          PrevDecl = 0;
1727        } else {
1728          // If this is a use or a forward declaration, we're good.
1729          if (TK != TK_Definition)
1730            return PrevDecl;
1731
1732          // Diagnose attempts to redefine a tag.
1733          if (PrevTagDecl->isDefinition()) {
1734            Diag(NameLoc, diag::err_redefinition, Name->getName());
1735            Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1736            // If this is a redefinition, recover by making this struct be
1737            // anonymous, which will make any later references get the previous
1738            // definition.
1739            Name = 0;
1740          } else {
1741            // Okay, this is definition of a previously declared or referenced
1742            // tag. Move the location of the decl to be the definition site.
1743            PrevDecl->setLocation(NameLoc);
1744            return PrevDecl;
1745          }
1746        }
1747      }
1748      // If we get here, this is a definition of a new struct type in a nested
1749      // scope, e.g. "struct foo; void bar() { struct foo; }", just create a new
1750      // type.
1751    } else {
1752      // PrevDecl is a namespace.
1753      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1754        // The tag name clashes with a namespace name, issue an error and
1755        // recover by making this tag be anonymous.
1756        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1757        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1758        Name = 0;
1759      }
1760    }
1761  }
1762
1763  // If there is an identifier, use the location of the identifier as the
1764  // location of the decl, otherwise use the location of the struct/union
1765  // keyword.
1766  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1767
1768  // Otherwise, if this is the first time we've seen this tag, create the decl.
1769  TagDecl *New;
1770  if (Kind == TagDecl::TK_enum) {
1771    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1772    // enum X { A, B, C } D;    D should chain to X.
1773    New = EnumDecl::Create(Context, CurContext, Loc, Name, 0);
1774    // If this is an undefined enum, warn.
1775    if (TK != TK_Definition) Diag(Loc, diag::ext_forward_ref_enum);
1776  } else {
1777    // struct/union/class
1778
1779    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1780    // struct X { int A; } D;    D should chain to X.
1781    if (getLangOptions().CPlusPlus)
1782      // FIXME: Look for a way to use RecordDecl for simple structs.
1783      New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1784    else
1785      New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name);
1786  }
1787
1788  // If this has an identifier, add it to the scope stack.
1789  if (Name) {
1790    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1791    // we find one that is.
1792    while ((S->getFlags() & Scope::DeclScope) == 0)
1793      S = S->getParent();
1794
1795    // Add it to the decl chain.
1796    PushOnScopeChains(New, S);
1797  }
1798
1799  if (Attr)
1800    ProcessDeclAttributeList(New, Attr);
1801  return New;
1802}
1803
1804/// ActOnTagStruct - New "ActOnTag" logic for structs/unions/classes.  Unlike
1805///  the logic for enums, we create separate decls for forward declarations.
1806///  This is called by ActOnTag, but eventually will replace its logic.
1807Sema::DeclTy *Sema::ActOnTagStruct(Scope *S, TagDecl::TagKind Kind, TagKind TK,
1808                             SourceLocation KWLoc, IdentifierInfo *Name,
1809                             SourceLocation NameLoc, AttributeList *Attr) {
1810
1811  // If this is a named struct, check to see if there was a previous forward
1812  // declaration or definition.
1813  // Use ScopedDecl instead of TagDecl, because a NamespaceDecl may come up.
1814  ScopedDecl *PrevDecl =
1815    dyn_cast_or_null<ScopedDecl>(LookupDecl(Name, Decl::IDNS_Tag, S));
1816
1817  if (PrevDecl) {
1818    assert((isa<TagDecl>(PrevDecl) || isa<NamespaceDecl>(PrevDecl)) &&
1819           "unexpected Decl type");
1820
1821    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
1822      // If this is a use of a previous tag, or if the tag is already declared
1823      // in the same scope (so that the definition/declaration completes or
1824      // rementions the tag), reuse the decl.
1825      if (TK == TK_Reference ||
1826          IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1827        // Make sure that this wasn't declared as an enum and now used as a
1828        // struct or something similar.
1829        if (PrevTagDecl->getTagKind() != Kind) {
1830          Diag(KWLoc, diag::err_use_with_wrong_tag, Name->getName());
1831          Diag(PrevDecl->getLocation(), diag::err_previous_use);
1832          // Recover by making this an anonymous redefinition.
1833          Name = 0;
1834          PrevDecl = 0;
1835        } else {
1836          // If this is a use, return the original decl.
1837
1838          // FIXME: In the future, return a variant or some other clue
1839          //  for the consumer of this Decl to know it doesn't own it.
1840          //  For our current ASTs this shouldn't be a problem, but will
1841          //  need to be changed with DeclGroups.
1842          if (TK == TK_Reference)
1843            return PrevDecl;
1844
1845          // The new decl is a definition?
1846          if (TK == TK_Definition) {
1847            // Diagnose attempts to redefine a tag.
1848            if (RecordDecl* DefRecord =
1849                cast<RecordDecl>(PrevTagDecl)->getDefinition(Context)) {
1850              Diag(NameLoc, diag::err_redefinition, Name->getName());
1851              Diag(DefRecord->getLocation(), diag::err_previous_definition);
1852              // If this is a redefinition, recover by making this struct be
1853              // anonymous, which will make any later references get the previous
1854              // definition.
1855              Name = 0;
1856              PrevDecl = 0;
1857            }
1858            // Okay, this is definition of a previously declared or referenced
1859            // tag.  We're going to create a new Decl.
1860          }
1861        }
1862        // If we get here we have (another) forward declaration.  Just create
1863        // a new decl.
1864      }
1865      else {
1866        // If we get here, this is a definition of a new struct type in a nested
1867        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
1868        // new decl/type.  We set PrevDecl to NULL so that the Records
1869        // have distinct types.
1870        PrevDecl = 0;
1871      }
1872    } else {
1873      // PrevDecl is a namespace.
1874      if (IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
1875        // The tag name clashes with a namespace name, issue an error and
1876        // recover by making this tag be anonymous.
1877        Diag(NameLoc, diag::err_redefinition_different_kind, Name->getName());
1878        Diag(PrevDecl->getLocation(), diag::err_previous_definition);
1879        Name = 0;
1880      }
1881    }
1882  }
1883
1884  // If there is an identifier, use the location of the identifier as the
1885  // location of the decl, otherwise use the location of the struct/union
1886  // keyword.
1887  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
1888
1889  // Otherwise, if this is the first time we've seen this tag, create the decl.
1890  TagDecl *New;
1891
1892  // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
1893  // struct X { int A; } D;    D should chain to X.
1894  if (getLangOptions().CPlusPlus)
1895    // FIXME: Look for a way to use RecordDecl for simple structs.
1896    New = CXXRecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1897                                dyn_cast_or_null<CXXRecordDecl>(PrevDecl));
1898  else
1899    New = RecordDecl::Create(Context, Kind, CurContext, Loc, Name,
1900                             dyn_cast_or_null<RecordDecl>(PrevDecl));
1901
1902  // If this has an identifier, add it to the scope stack.
1903  if ((TK == TK_Definition || !PrevDecl) && Name) {
1904    // The scope passed in may not be a decl scope.  Zip up the scope tree until
1905    // we find one that is.
1906    while ((S->getFlags() & Scope::DeclScope) == 0)
1907      S = S->getParent();
1908
1909    // Add it to the decl chain.
1910    PushOnScopeChains(New, S);
1911  }
1912
1913  if (Attr)
1914    ProcessDeclAttributeList(New, Attr);
1915
1916  return New;
1917}
1918
1919
1920/// Collect the instance variables declared in an Objective-C object.  Used in
1921/// the creation of structures from objects using the @defs directive.
1922static void CollectIvars(ObjCInterfaceDecl *Class, ASTContext& Ctx,
1923                         llvm::SmallVectorImpl<Sema::DeclTy*> &ivars) {
1924  if (Class->getSuperClass())
1925    CollectIvars(Class->getSuperClass(), Ctx, ivars);
1926
1927  // For each ivar, create a fresh ObjCAtDefsFieldDecl.
1928  for (ObjCInterfaceDecl::ivar_iterator
1929        I=Class->ivar_begin(), E=Class->ivar_end(); I!=E; ++I) {
1930
1931    ObjCIvarDecl* ID = *I;
1932    ivars.push_back(ObjCAtDefsFieldDecl::Create(Ctx, ID->getLocation(),
1933                                                ID->getIdentifier(),
1934                                                ID->getType(),
1935                                                ID->getBitWidth()));
1936  }
1937}
1938
1939/// Called whenever @defs(ClassName) is encountered in the source.  Inserts the
1940/// instance variables of ClassName into Decls.
1941void Sema::ActOnDefs(Scope *S, SourceLocation DeclStart,
1942                     IdentifierInfo *ClassName,
1943                     llvm::SmallVectorImpl<DeclTy*> &Decls) {
1944  // Check that ClassName is a valid class
1945  ObjCInterfaceDecl *Class = getObjCInterfaceDecl(ClassName);
1946  if (!Class) {
1947    Diag(DeclStart, diag::err_undef_interface, ClassName->getName());
1948    return;
1949  }
1950  // Collect the instance variables
1951  CollectIvars(Class, Context, Decls);
1952}
1953
1954QualType Sema::TryFixInvalidVariablyModifiedType(QualType T) {
1955  // This method tries to turn a variable array into a constant
1956  // array even when the size isn't an ICE.  This is necessary
1957  // for compatibility with code that depends on gcc's buggy
1958  // constant expression folding, like struct {char x[(int)(char*)2];}
1959  if (const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T)) {
1960    APValue Result;
1961    if (VLATy->getSizeExpr() &&
1962        VLATy->getSizeExpr()->tryEvaluate(Result, Context) && Result.isInt()) {
1963      llvm::APSInt &Res = Result.getInt();
1964      if (Res > llvm::APSInt(Res.getBitWidth(), Res.isUnsigned()))
1965        return Context.getConstantArrayType(VLATy->getElementType(),
1966                                            Res, ArrayType::Normal, 0);
1967    }
1968  }
1969  return QualType();
1970}
1971
1972/// ActOnField - Each field of a struct/union/class is passed into this in order
1973/// to create a FieldDecl object for it.
1974Sema::DeclTy *Sema::ActOnField(Scope *S,
1975                               SourceLocation DeclStart,
1976                               Declarator &D, ExprTy *BitfieldWidth) {
1977  IdentifierInfo *II = D.getIdentifier();
1978  Expr *BitWidth = (Expr*)BitfieldWidth;
1979  SourceLocation Loc = DeclStart;
1980  if (II) Loc = D.getIdentifierLoc();
1981
1982  // FIXME: Unnamed fields can be handled in various different ways, for
1983  // example, unnamed unions inject all members into the struct namespace!
1984
1985  if (BitWidth) {
1986    // TODO: Validate.
1987    //printf("WARNING: BITFIELDS IGNORED!\n");
1988
1989    // 6.7.2.1p3
1990    // 6.7.2.1p4
1991
1992  } else {
1993    // Not a bitfield.
1994
1995    // validate II.
1996
1997  }
1998
1999  QualType T = GetTypeForDeclarator(D, S);
2000  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2001  bool InvalidDecl = false;
2002
2003  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2004  // than a variably modified type.
2005  if (T->isVariablyModifiedType()) {
2006    QualType FixedTy = TryFixInvalidVariablyModifiedType(T);
2007    if (!FixedTy.isNull()) {
2008      Diag(Loc, diag::warn_illegal_constant_array_size, Loc);
2009      T = FixedTy;
2010    } else {
2011      // FIXME: This diagnostic needs work
2012      Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2013      InvalidDecl = true;
2014    }
2015  }
2016  // FIXME: Chain fielddecls together.
2017  FieldDecl *NewFD;
2018
2019  if (getLangOptions().CPlusPlus) {
2020    // FIXME: Replace CXXFieldDecls with FieldDecls for simple structs.
2021    NewFD = CXXFieldDecl::Create(Context, cast<CXXRecordDecl>(CurContext),
2022                                 Loc, II, T, BitWidth);
2023    if (II)
2024      PushOnScopeChains(NewFD, S);
2025  }
2026  else
2027    NewFD = FieldDecl::Create(Context, Loc, II, T, BitWidth);
2028
2029  ProcessDeclAttributes(NewFD, D);
2030
2031  if (D.getInvalidType() || InvalidDecl)
2032    NewFD->setInvalidDecl();
2033  return NewFD;
2034}
2035
2036/// TranslateIvarVisibility - Translate visibility from a token ID to an
2037///  AST enum value.
2038static ObjCIvarDecl::AccessControl
2039TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
2040  switch (ivarVisibility) {
2041    case tok::objc_private: return ObjCIvarDecl::Private;
2042    case tok::objc_public: return ObjCIvarDecl::Public;
2043    case tok::objc_protected: return ObjCIvarDecl::Protected;
2044    case tok::objc_package: return ObjCIvarDecl::Package;
2045    default: assert(false && "Unknown visitibility kind");
2046  }
2047}
2048
2049/// ActOnIvar - Each ivar field of an objective-c class is passed into this
2050/// in order to create an IvarDecl object for it.
2051Sema::DeclTy *Sema::ActOnIvar(Scope *S,
2052                              SourceLocation DeclStart,
2053                              Declarator &D, ExprTy *BitfieldWidth,
2054                              tok::ObjCKeywordKind Visibility) {
2055  IdentifierInfo *II = D.getIdentifier();
2056  Expr *BitWidth = (Expr*)BitfieldWidth;
2057  SourceLocation Loc = DeclStart;
2058  if (II) Loc = D.getIdentifierLoc();
2059
2060  // FIXME: Unnamed fields can be handled in various different ways, for
2061  // example, unnamed unions inject all members into the struct namespace!
2062
2063
2064  if (BitWidth) {
2065    // TODO: Validate.
2066    //printf("WARNING: BITFIELDS IGNORED!\n");
2067
2068    // 6.7.2.1p3
2069    // 6.7.2.1p4
2070
2071  } else {
2072    // Not a bitfield.
2073
2074    // validate II.
2075
2076  }
2077
2078  QualType T = GetTypeForDeclarator(D, S);
2079  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
2080  bool InvalidDecl = false;
2081
2082  // C99 6.7.2.1p8: A member of a structure or union may have any type other
2083  // than a variably modified type.
2084  if (T->isVariablyModifiedType()) {
2085    // FIXME: This diagnostic needs work
2086    Diag(Loc, diag::err_typecheck_illegal_vla, Loc);
2087    InvalidDecl = true;
2088  }
2089
2090  // Get the visibility (access control) for this ivar.
2091  ObjCIvarDecl::AccessControl ac =
2092    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
2093                                        : ObjCIvarDecl::None;
2094
2095  // Construct the decl.
2096  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, Loc, II, T, ac,
2097                                             (Expr *)BitfieldWidth);
2098
2099  // Process attributes attached to the ivar.
2100  ProcessDeclAttributes(NewID, D);
2101
2102  if (D.getInvalidType() || InvalidDecl)
2103    NewID->setInvalidDecl();
2104
2105  return NewID;
2106}
2107
2108void Sema::ActOnFields(Scope* S,
2109                       SourceLocation RecLoc, DeclTy *RecDecl,
2110                       DeclTy **Fields, unsigned NumFields,
2111                       SourceLocation LBrac, SourceLocation RBrac) {
2112  Decl *EnclosingDecl = static_cast<Decl*>(RecDecl);
2113  assert(EnclosingDecl && "missing record or interface decl");
2114  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
2115
2116  if (Record)
2117    if (RecordDecl* DefRecord = Record->getDefinition(Context)) {
2118      // Diagnose code like:
2119      //     struct S { struct S {} X; };
2120      // We discover this when we complete the outer S.  Reject and ignore the
2121      // outer S.
2122      Diag(DefRecord->getLocation(), diag::err_nested_redefinition,
2123           DefRecord->getKindName());
2124      Diag(RecLoc, diag::err_previous_definition);
2125      Record->setInvalidDecl();
2126      return;
2127    }
2128
2129  // Verify that all the fields are okay.
2130  unsigned NumNamedMembers = 0;
2131  llvm::SmallVector<FieldDecl*, 32> RecFields;
2132  llvm::SmallSet<const IdentifierInfo*, 32> FieldIDs;
2133
2134  for (unsigned i = 0; i != NumFields; ++i) {
2135
2136    FieldDecl *FD = cast_or_null<FieldDecl>(static_cast<Decl*>(Fields[i]));
2137    assert(FD && "missing field decl");
2138
2139    // Remember all fields.
2140    RecFields.push_back(FD);
2141
2142    // Get the type for the field.
2143    Type *FDTy = FD->getType().getTypePtr();
2144
2145    // C99 6.7.2.1p2 - A field may not be a function type.
2146    if (FDTy->isFunctionType()) {
2147      Diag(FD->getLocation(), diag::err_field_declared_as_function,
2148           FD->getName());
2149      FD->setInvalidDecl();
2150      EnclosingDecl->setInvalidDecl();
2151      continue;
2152    }
2153    // C99 6.7.2.1p2 - A field may not be an incomplete type except...
2154    if (FDTy->isIncompleteType()) {
2155      if (!Record) {  // Incomplete ivar type is always an error.
2156        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2157        FD->setInvalidDecl();
2158        EnclosingDecl->setInvalidDecl();
2159        continue;
2160      }
2161      if (i != NumFields-1 ||                   // ... that the last member ...
2162          !Record->isStruct() ||  // ... of a structure ...
2163          !FDTy->isArrayType()) {         //... may have incomplete array type.
2164        Diag(FD->getLocation(), diag::err_field_incomplete, FD->getName());
2165        FD->setInvalidDecl();
2166        EnclosingDecl->setInvalidDecl();
2167        continue;
2168      }
2169      if (NumNamedMembers < 1) {  //... must have more than named member ...
2170        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct,
2171             FD->getName());
2172        FD->setInvalidDecl();
2173        EnclosingDecl->setInvalidDecl();
2174        continue;
2175      }
2176      // Okay, we have a legal flexible array member at the end of the struct.
2177      if (Record)
2178        Record->setHasFlexibleArrayMember(true);
2179    }
2180    /// C99 6.7.2.1p2 - a struct ending in a flexible array member cannot be the
2181    /// field of another structure or the element of an array.
2182    if (const RecordType *FDTTy = FDTy->getAsRecordType()) {
2183      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
2184        // If this is a member of a union, then entire union becomes "flexible".
2185        if (Record && Record->isUnion()) {
2186          Record->setHasFlexibleArrayMember(true);
2187        } else {
2188          // If this is a struct/class and this is not the last element, reject
2189          // it.  Note that GCC supports variable sized arrays in the middle of
2190          // structures.
2191          if (i != NumFields-1) {
2192            Diag(FD->getLocation(), diag::err_variable_sized_type_in_struct,
2193                 FD->getName());
2194            FD->setInvalidDecl();
2195            EnclosingDecl->setInvalidDecl();
2196            continue;
2197          }
2198          // We support flexible arrays at the end of structs in other structs
2199          // as an extension.
2200          Diag(FD->getLocation(), diag::ext_flexible_array_in_struct,
2201               FD->getName());
2202          if (Record)
2203            Record->setHasFlexibleArrayMember(true);
2204        }
2205      }
2206    }
2207    /// A field cannot be an Objective-c object
2208    if (FDTy->isObjCInterfaceType()) {
2209      Diag(FD->getLocation(), diag::err_statically_allocated_object,
2210           FD->getName());
2211      FD->setInvalidDecl();
2212      EnclosingDecl->setInvalidDecl();
2213      continue;
2214    }
2215    // Keep track of the number of named members.
2216    if (IdentifierInfo *II = FD->getIdentifier()) {
2217      // Detect duplicate member names.
2218      if (!FieldIDs.insert(II)) {
2219        Diag(FD->getLocation(), diag::err_duplicate_member, II->getName());
2220        // Find the previous decl.
2221        SourceLocation PrevLoc;
2222        for (unsigned i = 0, e = RecFields.size(); ; ++i) {
2223          assert(i != e && "Didn't find previous def!");
2224          if (RecFields[i]->getIdentifier() == II) {
2225            PrevLoc = RecFields[i]->getLocation();
2226            break;
2227          }
2228        }
2229        Diag(PrevLoc, diag::err_previous_definition);
2230        FD->setInvalidDecl();
2231        EnclosingDecl->setInvalidDecl();
2232        continue;
2233      }
2234      ++NumNamedMembers;
2235    }
2236  }
2237
2238  // Okay, we successfully defined 'Record'.
2239  if (Record) {
2240    Record->defineBody(Context, &RecFields[0], RecFields.size());
2241    // If this is a C++ record, HandleTagDeclDefinition will be invoked in
2242    // Sema::ActOnFinishCXXClassDef.
2243    if (!isa<CXXRecordDecl>(Record))
2244      Consumer.HandleTagDeclDefinition(Record);
2245  } else {
2246    ObjCIvarDecl **ClsFields = reinterpret_cast<ObjCIvarDecl**>(&RecFields[0]);
2247    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl))
2248      ID->addInstanceVariablesToClass(ClsFields, RecFields.size(), RBrac);
2249    else if (ObjCImplementationDecl *IMPDecl =
2250               dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
2251      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
2252      IMPDecl->ObjCAddInstanceVariablesToClassImpl(ClsFields, RecFields.size());
2253      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
2254    }
2255  }
2256}
2257
2258Sema::DeclTy *Sema::ActOnEnumConstant(Scope *S, DeclTy *theEnumDecl,
2259                                      DeclTy *lastEnumConst,
2260                                      SourceLocation IdLoc, IdentifierInfo *Id,
2261                                      SourceLocation EqualLoc, ExprTy *val) {
2262  EnumDecl *TheEnumDecl = cast<EnumDecl>(static_cast<Decl*>(theEnumDecl));
2263  EnumConstantDecl *LastEnumConst =
2264    cast_or_null<EnumConstantDecl>(static_cast<Decl*>(lastEnumConst));
2265  Expr *Val = static_cast<Expr*>(val);
2266
2267  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2268  // we find one that is.
2269  while ((S->getFlags() & Scope::DeclScope) == 0)
2270    S = S->getParent();
2271
2272  // Verify that there isn't already something declared with this name in this
2273  // scope.
2274  if (Decl *PrevDecl = LookupDecl(Id, Decl::IDNS_Ordinary, S)) {
2275    // When in C++, we may get a TagDecl with the same name; in this case the
2276    // enum constant will 'hide' the tag.
2277    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
2278           "Received TagDecl when not in C++!");
2279    if (!isa<TagDecl>(PrevDecl) &&
2280        IdResolver.isDeclInScope(PrevDecl, CurContext, S)) {
2281      if (isa<EnumConstantDecl>(PrevDecl))
2282        Diag(IdLoc, diag::err_redefinition_of_enumerator, Id->getName());
2283      else
2284        Diag(IdLoc, diag::err_redefinition, Id->getName());
2285      Diag(PrevDecl->getLocation(), diag::err_previous_definition);
2286      delete Val;
2287      return 0;
2288    }
2289  }
2290
2291  llvm::APSInt EnumVal(32);
2292  QualType EltTy;
2293  if (Val) {
2294    // Make sure to promote the operand type to int.
2295    UsualUnaryConversions(Val);
2296
2297    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
2298    SourceLocation ExpLoc;
2299    if (!Val->isIntegerConstantExpr(EnumVal, Context, &ExpLoc)) {
2300      Diag(ExpLoc, diag::err_enum_value_not_integer_constant_expr,
2301           Id->getName());
2302      delete Val;
2303      Val = 0;  // Just forget about it.
2304    } else {
2305      EltTy = Val->getType();
2306    }
2307  }
2308
2309  if (!Val) {
2310    if (LastEnumConst) {
2311      // Assign the last value + 1.
2312      EnumVal = LastEnumConst->getInitVal();
2313      ++EnumVal;
2314
2315      // Check for overflow on increment.
2316      if (EnumVal < LastEnumConst->getInitVal())
2317        Diag(IdLoc, diag::warn_enum_value_overflow);
2318
2319      EltTy = LastEnumConst->getType();
2320    } else {
2321      // First value, set to zero.
2322      EltTy = Context.IntTy;
2323      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
2324    }
2325  }
2326
2327  EnumConstantDecl *New =
2328    EnumConstantDecl::Create(Context, TheEnumDecl, IdLoc, Id, EltTy,
2329                             Val, EnumVal,
2330                             LastEnumConst);
2331
2332  // Register this decl in the current scope stack.
2333  PushOnScopeChains(New, S);
2334  return New;
2335}
2336
2337// FIXME: For consistency with ActOnFields(), we should have the parser
2338// pass in the source location for the left/right braces.
2339void Sema::ActOnEnumBody(SourceLocation EnumLoc, DeclTy *EnumDeclX,
2340                         DeclTy **Elements, unsigned NumElements) {
2341  EnumDecl *Enum = cast<EnumDecl>(static_cast<Decl*>(EnumDeclX));
2342
2343  if (Enum && Enum->isDefinition()) {
2344    // Diagnose code like:
2345    //   enum e0 {
2346    //     E0 = sizeof(enum e0 { E1 })
2347    //   };
2348    Diag(Enum->getLocation(), diag::err_nested_redefinition,
2349         Enum->getName());
2350    Diag(EnumLoc, diag::err_previous_definition);
2351    Enum->setInvalidDecl();
2352    return;
2353  }
2354  // TODO: If the result value doesn't fit in an int, it must be a long or long
2355  // long value.  ISO C does not support this, but GCC does as an extension,
2356  // emit a warning.
2357  unsigned IntWidth = Context.Target.getIntWidth();
2358
2359  // Verify that all the values are okay, compute the size of the values, and
2360  // reverse the list.
2361  unsigned NumNegativeBits = 0;
2362  unsigned NumPositiveBits = 0;
2363
2364  // Keep track of whether all elements have type int.
2365  bool AllElementsInt = true;
2366
2367  EnumConstantDecl *EltList = 0;
2368  for (unsigned i = 0; i != NumElements; ++i) {
2369    EnumConstantDecl *ECD =
2370      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2371    if (!ECD) continue;  // Already issued a diagnostic.
2372
2373    // If the enum value doesn't fit in an int, emit an extension warning.
2374    const llvm::APSInt &InitVal = ECD->getInitVal();
2375    assert(InitVal.getBitWidth() >= IntWidth &&
2376           "Should have promoted value to int");
2377    if (InitVal.getBitWidth() > IntWidth) {
2378      llvm::APSInt V(InitVal);
2379      V.trunc(IntWidth);
2380      V.extend(InitVal.getBitWidth());
2381      if (V != InitVal)
2382        Diag(ECD->getLocation(), diag::ext_enum_value_not_int,
2383             InitVal.toString(10));
2384    }
2385
2386    // Keep track of the size of positive and negative values.
2387    if (InitVal.isUnsigned() || InitVal.isNonNegative())
2388      NumPositiveBits = std::max(NumPositiveBits,
2389                                 (unsigned)InitVal.getActiveBits());
2390    else
2391      NumNegativeBits = std::max(NumNegativeBits,
2392                                 (unsigned)InitVal.getMinSignedBits());
2393
2394    // Keep track of whether every enum element has type int (very commmon).
2395    if (AllElementsInt)
2396      AllElementsInt = ECD->getType() == Context.IntTy;
2397
2398    ECD->setNextDeclarator(EltList);
2399    EltList = ECD;
2400  }
2401
2402  // Figure out the type that should be used for this enum.
2403  // FIXME: Support attribute(packed) on enums and -fshort-enums.
2404  QualType BestType;
2405  unsigned BestWidth;
2406
2407  if (NumNegativeBits) {
2408    // If there is a negative value, figure out the smallest integer type (of
2409    // int/long/longlong) that fits.
2410    if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
2411      BestType = Context.IntTy;
2412      BestWidth = IntWidth;
2413    } else {
2414      BestWidth = Context.Target.getLongWidth();
2415
2416      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
2417        BestType = Context.LongTy;
2418      else {
2419        BestWidth = Context.Target.getLongLongWidth();
2420
2421        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
2422          Diag(Enum->getLocation(), diag::warn_enum_too_large);
2423        BestType = Context.LongLongTy;
2424      }
2425    }
2426  } else {
2427    // If there is no negative value, figure out which of uint, ulong, ulonglong
2428    // fits.
2429    if (NumPositiveBits <= IntWidth) {
2430      BestType = Context.UnsignedIntTy;
2431      BestWidth = IntWidth;
2432    } else if (NumPositiveBits <=
2433               (BestWidth = Context.Target.getLongWidth())) {
2434      BestType = Context.UnsignedLongTy;
2435    } else {
2436      BestWidth = Context.Target.getLongLongWidth();
2437      assert(NumPositiveBits <= BestWidth &&
2438             "How could an initializer get larger than ULL?");
2439      BestType = Context.UnsignedLongLongTy;
2440    }
2441  }
2442
2443  // Loop over all of the enumerator constants, changing their types to match
2444  // the type of the enum if needed.
2445  for (unsigned i = 0; i != NumElements; ++i) {
2446    EnumConstantDecl *ECD =
2447      cast_or_null<EnumConstantDecl>(static_cast<Decl*>(Elements[i]));
2448    if (!ECD) continue;  // Already issued a diagnostic.
2449
2450    // Standard C says the enumerators have int type, but we allow, as an
2451    // extension, the enumerators to be larger than int size.  If each
2452    // enumerator value fits in an int, type it as an int, otherwise type it the
2453    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
2454    // that X has type 'int', not 'unsigned'.
2455    if (ECD->getType() == Context.IntTy) {
2456      // Make sure the init value is signed.
2457      llvm::APSInt IV = ECD->getInitVal();
2458      IV.setIsSigned(true);
2459      ECD->setInitVal(IV);
2460      continue;  // Already int type.
2461    }
2462
2463    // Determine whether the value fits into an int.
2464    llvm::APSInt InitVal = ECD->getInitVal();
2465    bool FitsInInt;
2466    if (InitVal.isUnsigned() || !InitVal.isNegative())
2467      FitsInInt = InitVal.getActiveBits() < IntWidth;
2468    else
2469      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
2470
2471    // If it fits into an integer type, force it.  Otherwise force it to match
2472    // the enum decl type.
2473    QualType NewTy;
2474    unsigned NewWidth;
2475    bool NewSign;
2476    if (FitsInInt) {
2477      NewTy = Context.IntTy;
2478      NewWidth = IntWidth;
2479      NewSign = true;
2480    } else if (ECD->getType() == BestType) {
2481      // Already the right type!
2482      continue;
2483    } else {
2484      NewTy = BestType;
2485      NewWidth = BestWidth;
2486      NewSign = BestType->isSignedIntegerType();
2487    }
2488
2489    // Adjust the APSInt value.
2490    InitVal.extOrTrunc(NewWidth);
2491    InitVal.setIsSigned(NewSign);
2492    ECD->setInitVal(InitVal);
2493
2494    // Adjust the Expr initializer and type.
2495    ECD->setInitExpr(new ImplicitCastExpr(NewTy, ECD->getInitExpr()));
2496    ECD->setType(NewTy);
2497  }
2498
2499  Enum->defineElements(EltList, BestType);
2500  Consumer.HandleTagDeclDefinition(Enum);
2501}
2502
2503Sema::DeclTy *Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
2504                                          ExprTy *expr) {
2505  StringLiteral *AsmString = cast<StringLiteral>((Expr*)expr);
2506
2507  return FileScopeAsmDecl::Create(Context, Loc, AsmString);
2508}
2509
2510Sema::DeclTy* Sema::ActOnLinkageSpec(SourceLocation Loc,
2511                                     SourceLocation LBrace,
2512                                     SourceLocation RBrace,
2513                                     const char *Lang,
2514                                     unsigned StrSize,
2515                                     DeclTy *D) {
2516  LinkageSpecDecl::LanguageIDs Language;
2517  Decl *dcl = static_cast<Decl *>(D);
2518  if (strncmp(Lang, "\"C\"", StrSize) == 0)
2519    Language = LinkageSpecDecl::lang_c;
2520  else if (strncmp(Lang, "\"C++\"", StrSize) == 0)
2521    Language = LinkageSpecDecl::lang_cxx;
2522  else {
2523    Diag(Loc, diag::err_bad_language);
2524    return 0;
2525  }
2526
2527  // FIXME: Add all the various semantics of linkage specifications
2528  return LinkageSpecDecl::Create(Context, Loc, Language, dcl);
2529}
2530