SemaDecl.cpp revision 2c712f50cd56eaf3662989b556e9c6b1e8fcd11a
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Sema/DelayedDiagnostic.h"
37#include "clang/Basic/SourceManager.h"
38#include "clang/Basic/TargetInfo.h"
39// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
40#include "clang/Lex/Preprocessor.h"
41#include "clang/Lex/HeaderSearch.h"
42#include "clang/Lex/ModuleLoader.h"
43#include "llvm/ADT/Triple.h"
44#include <algorithm>
45#include <cstring>
46#include <functional>
47using namespace clang;
48using namespace sema;
49
50Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr, Decl *OwnedType) {
51  if (OwnedType) {
52    Decl *Group[2] = { OwnedType, Ptr };
53    return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, 2));
54  }
55
56  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
57}
58
59/// \brief If the identifier refers to a type name within this scope,
60/// return the declaration of that type.
61///
62/// This routine performs ordinary name lookup of the identifier II
63/// within the given scope, with optional C++ scope specifier SS, to
64/// determine whether the name refers to a type. If so, returns an
65/// opaque pointer (actually a QualType) corresponding to that
66/// type. Otherwise, returns NULL.
67///
68/// If name lookup results in an ambiguity, this routine will complain
69/// and then return NULL.
70ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
71                             Scope *S, CXXScopeSpec *SS,
72                             bool isClassName, bool HasTrailingDot,
73                             ParsedType ObjectTypePtr,
74                             bool WantNontrivialTypeSourceInfo) {
75  // Determine where we will perform name lookup.
76  DeclContext *LookupCtx = 0;
77  if (ObjectTypePtr) {
78    QualType ObjectType = ObjectTypePtr.get();
79    if (ObjectType->isRecordType())
80      LookupCtx = computeDeclContext(ObjectType);
81  } else if (SS && SS->isNotEmpty()) {
82    LookupCtx = computeDeclContext(*SS, false);
83
84    if (!LookupCtx) {
85      if (isDependentScopeSpecifier(*SS)) {
86        // C++ [temp.res]p3:
87        //   A qualified-id that refers to a type and in which the
88        //   nested-name-specifier depends on a template-parameter (14.6.2)
89        //   shall be prefixed by the keyword typename to indicate that the
90        //   qualified-id denotes a type, forming an
91        //   elaborated-type-specifier (7.1.5.3).
92        //
93        // We therefore do not perform any name lookup if the result would
94        // refer to a member of an unknown specialization.
95        if (!isClassName)
96          return ParsedType();
97
98        // We know from the grammar that this name refers to a type,
99        // so build a dependent node to describe the type.
100        if (WantNontrivialTypeSourceInfo)
101          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
102
103        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
104        QualType T =
105          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
106                            II, NameLoc);
107
108          return ParsedType::make(T);
109      }
110
111      return ParsedType();
112    }
113
114    if (!LookupCtx->isDependentContext() &&
115        RequireCompleteDeclContext(*SS, LookupCtx))
116      return ParsedType();
117  }
118
119  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
120  // lookup for class-names.
121  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
122                                      LookupOrdinaryName;
123  LookupResult Result(*this, &II, NameLoc, Kind);
124  if (LookupCtx) {
125    // Perform "qualified" name lookup into the declaration context we
126    // computed, which is either the type of the base of a member access
127    // expression or the declaration context associated with a prior
128    // nested-name-specifier.
129    LookupQualifiedName(Result, LookupCtx);
130
131    if (ObjectTypePtr && Result.empty()) {
132      // C++ [basic.lookup.classref]p3:
133      //   If the unqualified-id is ~type-name, the type-name is looked up
134      //   in the context of the entire postfix-expression. If the type T of
135      //   the object expression is of a class type C, the type-name is also
136      //   looked up in the scope of class C. At least one of the lookups shall
137      //   find a name that refers to (possibly cv-qualified) T.
138      LookupName(Result, S);
139    }
140  } else {
141    // Perform unqualified name lookup.
142    LookupName(Result, S);
143  }
144
145  NamedDecl *IIDecl = 0;
146  switch (Result.getResultKind()) {
147  case LookupResult::NotFound:
148  case LookupResult::NotFoundInCurrentInstantiation:
149  case LookupResult::FoundOverloaded:
150  case LookupResult::FoundUnresolvedValue:
151    Result.suppressDiagnostics();
152    return ParsedType();
153
154  case LookupResult::Ambiguous:
155    // Recover from type-hiding ambiguities by hiding the type.  We'll
156    // do the lookup again when looking for an object, and we can
157    // diagnose the error then.  If we don't do this, then the error
158    // about hiding the type will be immediately followed by an error
159    // that only makes sense if the identifier was treated like a type.
160    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
161      Result.suppressDiagnostics();
162      return ParsedType();
163    }
164
165    // Look to see if we have a type anywhere in the list of results.
166    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
167         Res != ResEnd; ++Res) {
168      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
169        if (!IIDecl ||
170            (*Res)->getLocation().getRawEncoding() <
171              IIDecl->getLocation().getRawEncoding())
172          IIDecl = *Res;
173      }
174    }
175
176    if (!IIDecl) {
177      // None of the entities we found is a type, so there is no way
178      // to even assume that the result is a type. In this case, don't
179      // complain about the ambiguity. The parser will either try to
180      // perform this lookup again (e.g., as an object name), which
181      // will produce the ambiguity, or will complain that it expected
182      // a type name.
183      Result.suppressDiagnostics();
184      return ParsedType();
185    }
186
187    // We found a type within the ambiguous lookup; diagnose the
188    // ambiguity and then return that type. This might be the right
189    // answer, or it might not be, but it suppresses any attempt to
190    // perform the name lookup again.
191    break;
192
193  case LookupResult::Found:
194    IIDecl = Result.getFoundDecl();
195    break;
196  }
197
198  assert(IIDecl && "Didn't find decl");
199
200  QualType T;
201  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
202    DiagnoseUseOfDecl(IIDecl, NameLoc);
203
204    if (T.isNull())
205      T = Context.getTypeDeclType(TD);
206
207    if (SS && SS->isNotEmpty()) {
208      if (WantNontrivialTypeSourceInfo) {
209        // Construct a type with type-source information.
210        TypeLocBuilder Builder;
211        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
212
213        T = getElaboratedType(ETK_None, *SS, T);
214        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
215        ElabTL.setKeywordLoc(SourceLocation());
216        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
217        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
218      } else {
219        T = getElaboratedType(ETK_None, *SS, T);
220      }
221    }
222  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
223    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
224    if (!HasTrailingDot)
225      T = Context.getObjCInterfaceType(IDecl);
226  }
227
228  if (T.isNull()) {
229    // If it's not plausibly a type, suppress diagnostics.
230    Result.suppressDiagnostics();
231    return ParsedType();
232  }
233  return ParsedType::make(T);
234}
235
236/// isTagName() - This method is called *for error recovery purposes only*
237/// to determine if the specified name is a valid tag name ("struct foo").  If
238/// so, this returns the TST for the tag corresponding to it (TST_enum,
239/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
240/// where the user forgot to specify the tag.
241DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
242  // Do a tag name lookup in this scope.
243  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
244  LookupName(R, S, false);
245  R.suppressDiagnostics();
246  if (R.getResultKind() == LookupResult::Found)
247    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
248      switch (TD->getTagKind()) {
249      default:         return DeclSpec::TST_unspecified;
250      case TTK_Struct: return DeclSpec::TST_struct;
251      case TTK_Union:  return DeclSpec::TST_union;
252      case TTK_Class:  return DeclSpec::TST_class;
253      case TTK_Enum:   return DeclSpec::TST_enum;
254      }
255    }
256
257  return DeclSpec::TST_unspecified;
258}
259
260/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
261/// if a CXXScopeSpec's type is equal to the type of one of the base classes
262/// then downgrade the missing typename error to a warning.
263/// This is needed for MSVC compatibility; Example:
264/// @code
265/// template<class T> class A {
266/// public:
267///   typedef int TYPE;
268/// };
269/// template<class T> class B : public A<T> {
270/// public:
271///   A<T>::TYPE a; // no typename required because A<T> is a base class.
272/// };
273/// @endcode
274bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
275  if (CurContext->isRecord()) {
276    const Type *Ty = SS->getScopeRep()->getAsType();
277
278    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
279    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
280          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
281      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
282        return true;
283  }
284  return CurContext->isFunctionOrMethod();
285}
286
287bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
288                                   SourceLocation IILoc,
289                                   Scope *S,
290                                   CXXScopeSpec *SS,
291                                   ParsedType &SuggestedType) {
292  // We don't have anything to suggest (yet).
293  SuggestedType = ParsedType();
294
295  // There may have been a typo in the name of the type. Look up typo
296  // results, in case we have something that we can suggest.
297  if (TypoCorrection Corrected = CorrectTypo(DeclarationNameInfo(&II, IILoc),
298                                             LookupOrdinaryName, S, SS, NULL,
299                                             false, CTC_Type)) {
300    std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
301    std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
302
303    if (Corrected.isKeyword()) {
304      // We corrected to a keyword.
305      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
306      Diag(IILoc, diag::err_unknown_typename_suggest)
307        << &II << CorrectedQuotedStr;
308      return true;
309    } else {
310      NamedDecl *Result = Corrected.getCorrectionDecl();
311      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
312          !Result->isInvalidDecl()) {
313        // We found a similarly-named type or interface; suggest that.
314        if (!SS || !SS->isSet())
315          Diag(IILoc, diag::err_unknown_typename_suggest)
316            << &II << CorrectedQuotedStr
317            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
318        else if (DeclContext *DC = computeDeclContext(*SS, false))
319          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
320            << &II << DC << CorrectedQuotedStr << SS->getRange()
321            << FixItHint::CreateReplacement(SourceRange(IILoc), CorrectedStr);
322        else
323          llvm_unreachable("could not have corrected a typo here");
324
325        Diag(Result->getLocation(), diag::note_previous_decl)
326          << CorrectedQuotedStr;
327
328        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
329                                    false, false, ParsedType(),
330                                    /*NonTrivialTypeSourceInfo=*/true);
331        return true;
332      }
333    }
334  }
335
336  if (getLangOptions().CPlusPlus) {
337    // See if II is a class template that the user forgot to pass arguments to.
338    UnqualifiedId Name;
339    Name.setIdentifier(&II, IILoc);
340    CXXScopeSpec EmptySS;
341    TemplateTy TemplateResult;
342    bool MemberOfUnknownSpecialization;
343    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
344                       Name, ParsedType(), true, TemplateResult,
345                       MemberOfUnknownSpecialization) == TNK_Type_template) {
346      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
347      Diag(IILoc, diag::err_template_missing_args) << TplName;
348      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
349        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
350          << TplDecl->getTemplateParameters()->getSourceRange();
351      }
352      return true;
353    }
354  }
355
356  // FIXME: Should we move the logic that tries to recover from a missing tag
357  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
358
359  if (!SS || (!SS->isSet() && !SS->isInvalid()))
360    Diag(IILoc, diag::err_unknown_typename) << &II;
361  else if (DeclContext *DC = computeDeclContext(*SS, false))
362    Diag(IILoc, diag::err_typename_nested_not_found)
363      << &II << DC << SS->getRange();
364  else if (isDependentScopeSpecifier(*SS)) {
365    unsigned DiagID = diag::err_typename_missing;
366    if (getLangOptions().MicrosoftMode && isMicrosoftMissingTypename(SS))
367      DiagID = diag::warn_typename_missing;
368
369    Diag(SS->getRange().getBegin(), DiagID)
370      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
371      << SourceRange(SS->getRange().getBegin(), IILoc)
372      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
373    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
374  } else {
375    assert(SS && SS->isInvalid() &&
376           "Invalid scope specifier has already been diagnosed");
377  }
378
379  return true;
380}
381
382/// \brief Determine whether the given result set contains either a type name
383/// or
384static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
385  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
386                       NextToken.is(tok::less);
387
388  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
389    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
390      return true;
391
392    if (CheckTemplate && isa<TemplateDecl>(*I))
393      return true;
394  }
395
396  return false;
397}
398
399Sema::NameClassification Sema::ClassifyName(Scope *S,
400                                            CXXScopeSpec &SS,
401                                            IdentifierInfo *&Name,
402                                            SourceLocation NameLoc,
403                                            const Token &NextToken) {
404  DeclarationNameInfo NameInfo(Name, NameLoc);
405  ObjCMethodDecl *CurMethod = getCurMethodDecl();
406
407  if (NextToken.is(tok::coloncolon)) {
408    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
409                                QualType(), false, SS, 0, false);
410
411  }
412
413  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
414  LookupParsedName(Result, S, &SS, !CurMethod);
415
416  // Perform lookup for Objective-C instance variables (including automatically
417  // synthesized instance variables), if we're in an Objective-C method.
418  // FIXME: This lookup really, really needs to be folded in to the normal
419  // unqualified lookup mechanism.
420  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
421    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
422    if (E.get() || E.isInvalid())
423      return E;
424  }
425
426  bool SecondTry = false;
427  bool IsFilteredTemplateName = false;
428
429Corrected:
430  switch (Result.getResultKind()) {
431  case LookupResult::NotFound:
432    // If an unqualified-id is followed by a '(', then we have a function
433    // call.
434    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
435      // In C++, this is an ADL-only call.
436      // FIXME: Reference?
437      if (getLangOptions().CPlusPlus)
438        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
439
440      // C90 6.3.2.2:
441      //   If the expression that precedes the parenthesized argument list in a
442      //   function call consists solely of an identifier, and if no
443      //   declaration is visible for this identifier, the identifier is
444      //   implicitly declared exactly as if, in the innermost block containing
445      //   the function call, the declaration
446      //
447      //     extern int identifier ();
448      //
449      //   appeared.
450      //
451      // We also allow this in C99 as an extension.
452      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
453        Result.addDecl(D);
454        Result.resolveKind();
455        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
456      }
457    }
458
459    // In C, we first see whether there is a tag type by the same name, in
460    // which case it's likely that the user just forget to write "enum",
461    // "struct", or "union".
462    if (!getLangOptions().CPlusPlus && !SecondTry) {
463      Result.clear(LookupTagName);
464      LookupParsedName(Result, S, &SS);
465      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
466        const char *TagName = 0;
467        const char *FixItTagName = 0;
468        switch (Tag->getTagKind()) {
469          case TTK_Class:
470            TagName = "class";
471            FixItTagName = "class ";
472            break;
473
474          case TTK_Enum:
475            TagName = "enum";
476            FixItTagName = "enum ";
477            break;
478
479          case TTK_Struct:
480            TagName = "struct";
481            FixItTagName = "struct ";
482            break;
483
484          case TTK_Union:
485            TagName = "union";
486            FixItTagName = "union ";
487            break;
488        }
489
490        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
491          << Name << TagName << getLangOptions().CPlusPlus
492          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
493        break;
494      }
495
496      Result.clear(LookupOrdinaryName);
497    }
498
499    // Perform typo correction to determine if there is another name that is
500    // close to this name.
501    if (!SecondTry) {
502      SecondTry = true;
503      if (TypoCorrection Corrected = CorrectTypo(Result.getLookupNameInfo(),
504                                                 Result.getLookupKind(), S, &SS)) {
505        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
506        unsigned QualifiedDiag = diag::err_no_member_suggest;
507        std::string CorrectedStr(Corrected.getAsString(getLangOptions()));
508        std::string CorrectedQuotedStr(Corrected.getQuoted(getLangOptions()));
509
510        NamedDecl *FirstDecl = Corrected.getCorrectionDecl();
511        NamedDecl *UnderlyingFirstDecl
512          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
513        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
514            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
515          UnqualifiedDiag = diag::err_no_template_suggest;
516          QualifiedDiag = diag::err_no_member_template_suggest;
517        } else if (UnderlyingFirstDecl &&
518                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
519                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
520                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
521           UnqualifiedDiag = diag::err_unknown_typename_suggest;
522           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
523         }
524
525        if (SS.isEmpty())
526          Diag(NameLoc, UnqualifiedDiag)
527            << Name << CorrectedQuotedStr
528            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
529        else
530          Diag(NameLoc, QualifiedDiag)
531            << Name << computeDeclContext(SS, false) << CorrectedQuotedStr
532            << SS.getRange()
533            << FixItHint::CreateReplacement(NameLoc, CorrectedStr);
534
535        // Update the name, so that the caller has the new name.
536        Name = Corrected.getCorrectionAsIdentifierInfo();
537
538        // Also update the LookupResult...
539        // FIXME: This should probably go away at some point
540        Result.clear();
541        Result.setLookupName(Corrected.getCorrection());
542        if (FirstDecl) Result.addDecl(FirstDecl);
543
544        // Typo correction corrected to a keyword.
545        if (Corrected.isKeyword())
546          return Corrected.getCorrectionAsIdentifierInfo();
547
548        if (FirstDecl)
549          Diag(FirstDecl->getLocation(), diag::note_previous_decl)
550            << CorrectedQuotedStr;
551
552        // If we found an Objective-C instance variable, let
553        // LookupInObjCMethod build the appropriate expression to
554        // reference the ivar.
555        // FIXME: This is a gross hack.
556        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
557          Result.clear();
558          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
559          return move(E);
560        }
561
562        goto Corrected;
563      }
564    }
565
566    // We failed to correct; just fall through and let the parser deal with it.
567    Result.suppressDiagnostics();
568    return NameClassification::Unknown();
569
570  case LookupResult::NotFoundInCurrentInstantiation:
571    // We performed name lookup into the current instantiation, and there were
572    // dependent bases, so we treat this result the same way as any other
573    // dependent nested-name-specifier.
574
575    // C++ [temp.res]p2:
576    //   A name used in a template declaration or definition and that is
577    //   dependent on a template-parameter is assumed not to name a type
578    //   unless the applicable name lookup finds a type name or the name is
579    //   qualified by the keyword typename.
580    //
581    // FIXME: If the next token is '<', we might want to ask the parser to
582    // perform some heroics to see if we actually have a
583    // template-argument-list, which would indicate a missing 'template'
584    // keyword here.
585    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
586
587  case LookupResult::Found:
588  case LookupResult::FoundOverloaded:
589  case LookupResult::FoundUnresolvedValue:
590    break;
591
592  case LookupResult::Ambiguous:
593    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
594        hasAnyAcceptableTemplateNames(Result)) {
595      // C++ [temp.local]p3:
596      //   A lookup that finds an injected-class-name (10.2) can result in an
597      //   ambiguity in certain cases (for example, if it is found in more than
598      //   one base class). If all of the injected-class-names that are found
599      //   refer to specializations of the same class template, and if the name
600      //   is followed by a template-argument-list, the reference refers to the
601      //   class template itself and not a specialization thereof, and is not
602      //   ambiguous.
603      //
604      // This filtering can make an ambiguous result into an unambiguous one,
605      // so try again after filtering out template names.
606      FilterAcceptableTemplateNames(Result);
607      if (!Result.isAmbiguous()) {
608        IsFilteredTemplateName = true;
609        break;
610      }
611    }
612
613    // Diagnose the ambiguity and return an error.
614    return NameClassification::Error();
615  }
616
617  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
618      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
619    // C++ [temp.names]p3:
620    //   After name lookup (3.4) finds that a name is a template-name or that
621    //   an operator-function-id or a literal- operator-id refers to a set of
622    //   overloaded functions any member of which is a function template if
623    //   this is followed by a <, the < is always taken as the delimiter of a
624    //   template-argument-list and never as the less-than operator.
625    if (!IsFilteredTemplateName)
626      FilterAcceptableTemplateNames(Result);
627
628    if (!Result.empty()) {
629      bool IsFunctionTemplate;
630      TemplateName Template;
631      if (Result.end() - Result.begin() > 1) {
632        IsFunctionTemplate = true;
633        Template = Context.getOverloadedTemplateName(Result.begin(),
634                                                     Result.end());
635      } else {
636        TemplateDecl *TD
637          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
638        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
639
640        if (SS.isSet() && !SS.isInvalid())
641          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
642                                                    /*TemplateKeyword=*/false,
643                                                      TD);
644        else
645          Template = TemplateName(TD);
646      }
647
648      if (IsFunctionTemplate) {
649        // Function templates always go through overload resolution, at which
650        // point we'll perform the various checks (e.g., accessibility) we need
651        // to based on which function we selected.
652        Result.suppressDiagnostics();
653
654        return NameClassification::FunctionTemplate(Template);
655      }
656
657      return NameClassification::TypeTemplate(Template);
658    }
659  }
660
661  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
662  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
663    DiagnoseUseOfDecl(Type, NameLoc);
664    QualType T = Context.getTypeDeclType(Type);
665    return ParsedType::make(T);
666  }
667
668  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
669  if (!Class) {
670    // FIXME: It's unfortunate that we don't have a Type node for handling this.
671    if (ObjCCompatibleAliasDecl *Alias
672                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
673      Class = Alias->getClassInterface();
674  }
675
676  if (Class) {
677    DiagnoseUseOfDecl(Class, NameLoc);
678
679    if (NextToken.is(tok::period)) {
680      // Interface. <something> is parsed as a property reference expression.
681      // Just return "unknown" as a fall-through for now.
682      Result.suppressDiagnostics();
683      return NameClassification::Unknown();
684    }
685
686    QualType T = Context.getObjCInterfaceType(Class);
687    return ParsedType::make(T);
688  }
689
690  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
691    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
692
693  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
694  return BuildDeclarationNameExpr(SS, Result, ADL);
695}
696
697// Determines the context to return to after temporarily entering a
698// context.  This depends in an unnecessarily complicated way on the
699// exact ordering of callbacks from the parser.
700DeclContext *Sema::getContainingDC(DeclContext *DC) {
701
702  // Functions defined inline within classes aren't parsed until we've
703  // finished parsing the top-level class, so the top-level class is
704  // the context we'll need to return to.
705  if (isa<FunctionDecl>(DC)) {
706    DC = DC->getLexicalParent();
707
708    // A function not defined within a class will always return to its
709    // lexical context.
710    if (!isa<CXXRecordDecl>(DC))
711      return DC;
712
713    // A C++ inline method/friend is parsed *after* the topmost class
714    // it was declared in is fully parsed ("complete");  the topmost
715    // class is the context we need to return to.
716    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
717      DC = RD;
718
719    // Return the declaration context of the topmost class the inline method is
720    // declared in.
721    return DC;
722  }
723
724  return DC->getLexicalParent();
725}
726
727void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
728  assert(getContainingDC(DC) == CurContext &&
729      "The next DeclContext should be lexically contained in the current one.");
730  CurContext = DC;
731  S->setEntity(DC);
732}
733
734void Sema::PopDeclContext() {
735  assert(CurContext && "DeclContext imbalance!");
736
737  CurContext = getContainingDC(CurContext);
738  assert(CurContext && "Popped translation unit!");
739}
740
741/// EnterDeclaratorContext - Used when we must lookup names in the context
742/// of a declarator's nested name specifier.
743///
744void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
745  // C++0x [basic.lookup.unqual]p13:
746  //   A name used in the definition of a static data member of class
747  //   X (after the qualified-id of the static member) is looked up as
748  //   if the name was used in a member function of X.
749  // C++0x [basic.lookup.unqual]p14:
750  //   If a variable member of a namespace is defined outside of the
751  //   scope of its namespace then any name used in the definition of
752  //   the variable member (after the declarator-id) is looked up as
753  //   if the definition of the variable member occurred in its
754  //   namespace.
755  // Both of these imply that we should push a scope whose context
756  // is the semantic context of the declaration.  We can't use
757  // PushDeclContext here because that context is not necessarily
758  // lexically contained in the current context.  Fortunately,
759  // the containing scope should have the appropriate information.
760
761  assert(!S->getEntity() && "scope already has entity");
762
763#ifndef NDEBUG
764  Scope *Ancestor = S->getParent();
765  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
766  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
767#endif
768
769  CurContext = DC;
770  S->setEntity(DC);
771}
772
773void Sema::ExitDeclaratorContext(Scope *S) {
774  assert(S->getEntity() == CurContext && "Context imbalance!");
775
776  // Switch back to the lexical context.  The safety of this is
777  // enforced by an assert in EnterDeclaratorContext.
778  Scope *Ancestor = S->getParent();
779  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
780  CurContext = (DeclContext*) Ancestor->getEntity();
781
782  // We don't need to do anything with the scope, which is going to
783  // disappear.
784}
785
786
787void Sema::ActOnReenterFunctionContext(Scope* S, Decl *D) {
788  FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
789  if (FunctionTemplateDecl *TFD = dyn_cast_or_null<FunctionTemplateDecl>(D)) {
790    // We assume that the caller has already called
791    // ActOnReenterTemplateScope
792    FD = TFD->getTemplatedDecl();
793  }
794  if (!FD)
795    return;
796
797  PushDeclContext(S, FD);
798  for (unsigned P = 0, NumParams = FD->getNumParams(); P < NumParams; ++P) {
799    ParmVarDecl *Param = FD->getParamDecl(P);
800    // If the parameter has an identifier, then add it to the scope
801    if (Param->getIdentifier()) {
802      S->AddDecl(Param);
803      IdResolver.AddDecl(Param);
804    }
805  }
806}
807
808
809/// \brief Determine whether we allow overloading of the function
810/// PrevDecl with another declaration.
811///
812/// This routine determines whether overloading is possible, not
813/// whether some new function is actually an overload. It will return
814/// true in C++ (where we can always provide overloads) or, as an
815/// extension, in C when the previous function is already an
816/// overloaded function declaration or has the "overloadable"
817/// attribute.
818static bool AllowOverloadingOfFunction(LookupResult &Previous,
819                                       ASTContext &Context) {
820  if (Context.getLangOptions().CPlusPlus)
821    return true;
822
823  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
824    return true;
825
826  return (Previous.getResultKind() == LookupResult::Found
827          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
828}
829
830/// Add this decl to the scope shadowed decl chains.
831void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
832  // Move up the scope chain until we find the nearest enclosing
833  // non-transparent context. The declaration will be introduced into this
834  // scope.
835  while (S->getEntity() &&
836         ((DeclContext *)S->getEntity())->isTransparentContext())
837    S = S->getParent();
838
839  // Add scoped declarations into their context, so that they can be
840  // found later. Declarations without a context won't be inserted
841  // into any context.
842  if (AddToContext)
843    CurContext->addDecl(D);
844
845  // Out-of-line definitions shouldn't be pushed into scope in C++.
846  // Out-of-line variable and function definitions shouldn't even in C.
847  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
848      D->isOutOfLine() &&
849      !D->getDeclContext()->getRedeclContext()->Equals(
850        D->getLexicalDeclContext()->getRedeclContext()))
851    return;
852
853  // Template instantiations should also not be pushed into scope.
854  if (isa<FunctionDecl>(D) &&
855      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
856    return;
857
858  // If this replaces anything in the current scope,
859  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
860                               IEnd = IdResolver.end();
861  for (; I != IEnd; ++I) {
862    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
863      S->RemoveDecl(*I);
864      IdResolver.RemoveDecl(*I);
865
866      // Should only need to replace one decl.
867      break;
868    }
869  }
870
871  S->AddDecl(D);
872
873  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
874    // Implicitly-generated labels may end up getting generated in an order that
875    // isn't strictly lexical, which breaks name lookup. Be careful to insert
876    // the label at the appropriate place in the identifier chain.
877    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
878      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
879      if (IDC == CurContext) {
880        if (!S->isDeclScope(*I))
881          continue;
882      } else if (IDC->Encloses(CurContext))
883        break;
884    }
885
886    IdResolver.InsertDeclAfter(I, D);
887  } else {
888    IdResolver.AddDecl(D);
889  }
890}
891
892bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
893                         bool ExplicitInstantiationOrSpecialization) {
894  return IdResolver.isDeclInScope(D, Ctx, Context, S,
895                                  ExplicitInstantiationOrSpecialization);
896}
897
898Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
899  DeclContext *TargetDC = DC->getPrimaryContext();
900  do {
901    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
902      if (ScopeDC->getPrimaryContext() == TargetDC)
903        return S;
904  } while ((S = S->getParent()));
905
906  return 0;
907}
908
909static bool isOutOfScopePreviousDeclaration(NamedDecl *,
910                                            DeclContext*,
911                                            ASTContext&);
912
913/// Filters out lookup results that don't fall within the given scope
914/// as determined by isDeclInScope.
915void Sema::FilterLookupForScope(LookupResult &R,
916                                DeclContext *Ctx, Scope *S,
917                                bool ConsiderLinkage,
918                                bool ExplicitInstantiationOrSpecialization) {
919  LookupResult::Filter F = R.makeFilter();
920  while (F.hasNext()) {
921    NamedDecl *D = F.next();
922
923    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
924      continue;
925
926    if (ConsiderLinkage &&
927        isOutOfScopePreviousDeclaration(D, Ctx, Context))
928      continue;
929
930    F.erase();
931  }
932
933  F.done();
934}
935
936static bool isUsingDecl(NamedDecl *D) {
937  return isa<UsingShadowDecl>(D) ||
938         isa<UnresolvedUsingTypenameDecl>(D) ||
939         isa<UnresolvedUsingValueDecl>(D);
940}
941
942/// Removes using shadow declarations from the lookup results.
943static void RemoveUsingDecls(LookupResult &R) {
944  LookupResult::Filter F = R.makeFilter();
945  while (F.hasNext())
946    if (isUsingDecl(F.next()))
947      F.erase();
948
949  F.done();
950}
951
952/// \brief Check for this common pattern:
953/// @code
954/// class S {
955///   S(const S&); // DO NOT IMPLEMENT
956///   void operator=(const S&); // DO NOT IMPLEMENT
957/// };
958/// @endcode
959static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
960  // FIXME: Should check for private access too but access is set after we get
961  // the decl here.
962  if (D->doesThisDeclarationHaveABody())
963    return false;
964
965  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
966    return CD->isCopyConstructor();
967  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
968    return Method->isCopyAssignmentOperator();
969  return false;
970}
971
972bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
973  assert(D);
974
975  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
976    return false;
977
978  // Ignore class templates.
979  if (D->getDeclContext()->isDependentContext() ||
980      D->getLexicalDeclContext()->isDependentContext())
981    return false;
982
983  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
984    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
985      return false;
986
987    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
988      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
989        return false;
990    } else {
991      // 'static inline' functions are used in headers; don't warn.
992      if (FD->getStorageClass() == SC_Static &&
993          FD->isInlineSpecified())
994        return false;
995    }
996
997    if (FD->doesThisDeclarationHaveABody() &&
998        Context.DeclMustBeEmitted(FD))
999      return false;
1000  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1001    if (!VD->isFileVarDecl() ||
1002        VD->getType().isConstant(Context) ||
1003        Context.DeclMustBeEmitted(VD))
1004      return false;
1005
1006    if (VD->isStaticDataMember() &&
1007        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
1008      return false;
1009
1010  } else {
1011    return false;
1012  }
1013
1014  // Only warn for unused decls internal to the translation unit.
1015  if (D->getLinkage() == ExternalLinkage)
1016    return false;
1017
1018  return true;
1019}
1020
1021void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1022  if (!D)
1023    return;
1024
1025  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1026    const FunctionDecl *First = FD->getFirstDeclaration();
1027    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1028      return; // First should already be in the vector.
1029  }
1030
1031  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1032    const VarDecl *First = VD->getFirstDeclaration();
1033    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1034      return; // First should already be in the vector.
1035  }
1036
1037   if (ShouldWarnIfUnusedFileScopedDecl(D))
1038     UnusedFileScopedDecls.push_back(D);
1039 }
1040
1041static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1042  if (D->isInvalidDecl())
1043    return false;
1044
1045  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1046    return false;
1047
1048  if (isa<LabelDecl>(D))
1049    return true;
1050
1051  // White-list anything that isn't a local variable.
1052  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1053      !D->getDeclContext()->isFunctionOrMethod())
1054    return false;
1055
1056  // Types of valid local variables should be complete, so this should succeed.
1057  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1058
1059    // White-list anything with an __attribute__((unused)) type.
1060    QualType Ty = VD->getType();
1061
1062    // Only look at the outermost level of typedef.
1063    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1064      if (TT->getDecl()->hasAttr<UnusedAttr>())
1065        return false;
1066    }
1067
1068    // If we failed to complete the type for some reason, or if the type is
1069    // dependent, don't diagnose the variable.
1070    if (Ty->isIncompleteType() || Ty->isDependentType())
1071      return false;
1072
1073    if (const TagType *TT = Ty->getAs<TagType>()) {
1074      const TagDecl *Tag = TT->getDecl();
1075      if (Tag->hasAttr<UnusedAttr>())
1076        return false;
1077
1078      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1079        // FIXME: Checking for the presence of a user-declared constructor
1080        // isn't completely accurate; we'd prefer to check that the initializer
1081        // has no side effects.
1082        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1083          return false;
1084      }
1085    }
1086
1087    // TODO: __attribute__((unused)) templates?
1088  }
1089
1090  return true;
1091}
1092
1093static void GenerateFixForUnusedDecl(const NamedDecl *D, ASTContext &Ctx,
1094                                     FixItHint &Hint) {
1095  if (isa<LabelDecl>(D)) {
1096    SourceLocation AfterColon = Lexer::findLocationAfterToken(D->getLocEnd(),
1097                tok::colon, Ctx.getSourceManager(), Ctx.getLangOptions(), true);
1098    if (AfterColon.isInvalid())
1099      return;
1100    Hint = FixItHint::CreateRemoval(CharSourceRange::
1101                                    getCharRange(D->getLocStart(), AfterColon));
1102  }
1103  return;
1104}
1105
1106/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1107/// unless they are marked attr(unused).
1108void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1109  FixItHint Hint;
1110  if (!ShouldDiagnoseUnusedDecl(D))
1111    return;
1112
1113  GenerateFixForUnusedDecl(D, Context, Hint);
1114
1115  unsigned DiagID;
1116  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1117    DiagID = diag::warn_unused_exception_param;
1118  else if (isa<LabelDecl>(D))
1119    DiagID = diag::warn_unused_label;
1120  else
1121    DiagID = diag::warn_unused_variable;
1122
1123  Diag(D->getLocation(), DiagID) << D->getDeclName() << Hint;
1124}
1125
1126static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1127  // Verify that we have no forward references left.  If so, there was a goto
1128  // or address of a label taken, but no definition of it.  Label fwd
1129  // definitions are indicated with a null substmt.
1130  if (L->getStmt() == 0)
1131    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1132}
1133
1134void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1135  if (S->decl_empty()) return;
1136  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1137         "Scope shouldn't contain decls!");
1138
1139  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1140       I != E; ++I) {
1141    Decl *TmpD = (*I);
1142    assert(TmpD && "This decl didn't get pushed??");
1143
1144    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1145    NamedDecl *D = cast<NamedDecl>(TmpD);
1146
1147    if (!D->getDeclName()) continue;
1148
1149    // Diagnose unused variables in this scope.
1150    if (!S->hasErrorOccurred())
1151      DiagnoseUnusedDecl(D);
1152
1153    // If this was a forward reference to a label, verify it was defined.
1154    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1155      CheckPoppedLabel(LD, *this);
1156
1157    // Remove this name from our lexical scope.
1158    IdResolver.RemoveDecl(D);
1159  }
1160}
1161
1162/// \brief Look for an Objective-C class in the translation unit.
1163///
1164/// \param Id The name of the Objective-C class we're looking for. If
1165/// typo-correction fixes this name, the Id will be updated
1166/// to the fixed name.
1167///
1168/// \param IdLoc The location of the name in the translation unit.
1169///
1170/// \param TypoCorrection If true, this routine will attempt typo correction
1171/// if there is no class with the given name.
1172///
1173/// \returns The declaration of the named Objective-C class, or NULL if the
1174/// class could not be found.
1175ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1176                                              SourceLocation IdLoc,
1177                                              bool DoTypoCorrection) {
1178  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1179  // creation from this context.
1180  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1181
1182  if (!IDecl && DoTypoCorrection) {
1183    // Perform typo correction at the given location, but only if we
1184    // find an Objective-C class name.
1185    TypoCorrection C;
1186    if ((C = CorrectTypo(DeclarationNameInfo(Id, IdLoc), LookupOrdinaryName,
1187                         TUScope, NULL, NULL, false, CTC_NoKeywords)) &&
1188        (IDecl = C.getCorrectionDeclAs<ObjCInterfaceDecl>())) {
1189      Diag(IdLoc, diag::err_undef_interface_suggest)
1190        << Id << IDecl->getDeclName()
1191        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1192      Diag(IDecl->getLocation(), diag::note_previous_decl)
1193        << IDecl->getDeclName();
1194
1195      Id = IDecl->getIdentifier();
1196    }
1197  }
1198
1199  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1200}
1201
1202/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1203/// from S, where a non-field would be declared. This routine copes
1204/// with the difference between C and C++ scoping rules in structs and
1205/// unions. For example, the following code is well-formed in C but
1206/// ill-formed in C++:
1207/// @code
1208/// struct S6 {
1209///   enum { BAR } e;
1210/// };
1211///
1212/// void test_S6() {
1213///   struct S6 a;
1214///   a.e = BAR;
1215/// }
1216/// @endcode
1217/// For the declaration of BAR, this routine will return a different
1218/// scope. The scope S will be the scope of the unnamed enumeration
1219/// within S6. In C++, this routine will return the scope associated
1220/// with S6, because the enumeration's scope is a transparent
1221/// context but structures can contain non-field names. In C, this
1222/// routine will return the translation unit scope, since the
1223/// enumeration's scope is a transparent context and structures cannot
1224/// contain non-field names.
1225Scope *Sema::getNonFieldDeclScope(Scope *S) {
1226  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1227         (S->getEntity() &&
1228          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1229         (S->isClassScope() && !getLangOptions().CPlusPlus))
1230    S = S->getParent();
1231  return S;
1232}
1233
1234/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1235/// file scope.  lazily create a decl for it. ForRedeclaration is true
1236/// if we're creating this built-in in anticipation of redeclaring the
1237/// built-in.
1238NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1239                                     Scope *S, bool ForRedeclaration,
1240                                     SourceLocation Loc) {
1241  Builtin::ID BID = (Builtin::ID)bid;
1242
1243  ASTContext::GetBuiltinTypeError Error;
1244  QualType R = Context.GetBuiltinType(BID, Error);
1245  switch (Error) {
1246  case ASTContext::GE_None:
1247    // Okay
1248    break;
1249
1250  case ASTContext::GE_Missing_stdio:
1251    if (ForRedeclaration)
1252      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1253        << Context.BuiltinInfo.GetName(BID);
1254    return 0;
1255
1256  case ASTContext::GE_Missing_setjmp:
1257    if (ForRedeclaration)
1258      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1259        << Context.BuiltinInfo.GetName(BID);
1260    return 0;
1261  }
1262
1263  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1264    Diag(Loc, diag::ext_implicit_lib_function_decl)
1265      << Context.BuiltinInfo.GetName(BID)
1266      << R;
1267    if (Context.BuiltinInfo.getHeaderName(BID) &&
1268        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1269          != DiagnosticsEngine::Ignored)
1270      Diag(Loc, diag::note_please_include_header)
1271        << Context.BuiltinInfo.getHeaderName(BID)
1272        << Context.BuiltinInfo.GetName(BID);
1273  }
1274
1275  FunctionDecl *New = FunctionDecl::Create(Context,
1276                                           Context.getTranslationUnitDecl(),
1277                                           Loc, Loc, II, R, /*TInfo=*/0,
1278                                           SC_Extern,
1279                                           SC_None, false,
1280                                           /*hasPrototype=*/true);
1281  New->setImplicit();
1282
1283  // Create Decl objects for each parameter, adding them to the
1284  // FunctionDecl.
1285  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1286    SmallVector<ParmVarDecl*, 16> Params;
1287    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1288      ParmVarDecl *parm =
1289        ParmVarDecl::Create(Context, New, SourceLocation(),
1290                            SourceLocation(), 0,
1291                            FT->getArgType(i), /*TInfo=*/0,
1292                            SC_None, SC_None, 0);
1293      parm->setScopeInfo(0, i);
1294      Params.push_back(parm);
1295    }
1296    New->setParams(Params);
1297  }
1298
1299  AddKnownFunctionAttributes(New);
1300
1301  // TUScope is the translation-unit scope to insert this function into.
1302  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1303  // relate Scopes to DeclContexts, and probably eliminate CurContext
1304  // entirely, but we're not there yet.
1305  DeclContext *SavedContext = CurContext;
1306  CurContext = Context.getTranslationUnitDecl();
1307  PushOnScopeChains(New, TUScope);
1308  CurContext = SavedContext;
1309  return New;
1310}
1311
1312/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1313/// same name and scope as a previous declaration 'Old'.  Figure out
1314/// how to resolve this situation, merging decls or emitting
1315/// diagnostics as appropriate. If there was an error, set New to be invalid.
1316///
1317void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1318  // If the new decl is known invalid already, don't bother doing any
1319  // merging checks.
1320  if (New->isInvalidDecl()) return;
1321
1322  // Allow multiple definitions for ObjC built-in typedefs.
1323  // FIXME: Verify the underlying types are equivalent!
1324  if (getLangOptions().ObjC1) {
1325    const IdentifierInfo *TypeID = New->getIdentifier();
1326    switch (TypeID->getLength()) {
1327    default: break;
1328    case 2:
1329      if (!TypeID->isStr("id"))
1330        break;
1331      Context.setObjCIdRedefinitionType(New->getUnderlyingType());
1332      // Install the built-in type for 'id', ignoring the current definition.
1333      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1334      return;
1335    case 5:
1336      if (!TypeID->isStr("Class"))
1337        break;
1338      Context.setObjCClassRedefinitionType(New->getUnderlyingType());
1339      // Install the built-in type for 'Class', ignoring the current definition.
1340      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1341      return;
1342    case 3:
1343      if (!TypeID->isStr("SEL"))
1344        break;
1345      Context.setObjCSelRedefinitionType(New->getUnderlyingType());
1346      // Install the built-in type for 'SEL', ignoring the current definition.
1347      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1348      return;
1349    }
1350    // Fall through - the typedef name was not a builtin type.
1351  }
1352
1353  // Verify the old decl was also a type.
1354  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1355  if (!Old) {
1356    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1357      << New->getDeclName();
1358
1359    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1360    if (OldD->getLocation().isValid())
1361      Diag(OldD->getLocation(), diag::note_previous_definition);
1362
1363    return New->setInvalidDecl();
1364  }
1365
1366  // If the old declaration is invalid, just give up here.
1367  if (Old->isInvalidDecl())
1368    return New->setInvalidDecl();
1369
1370  // Determine the "old" type we'll use for checking and diagnostics.
1371  QualType OldType;
1372  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1373    OldType = OldTypedef->getUnderlyingType();
1374  else
1375    OldType = Context.getTypeDeclType(Old);
1376
1377  // If the typedef types are not identical, reject them in all languages and
1378  // with any extensions enabled.
1379
1380  if (OldType != New->getUnderlyingType() &&
1381      Context.getCanonicalType(OldType) !=
1382      Context.getCanonicalType(New->getUnderlyingType())) {
1383    int Kind = 0;
1384    if (isa<TypeAliasDecl>(Old))
1385      Kind = 1;
1386    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1387      << Kind << New->getUnderlyingType() << OldType;
1388    if (Old->getLocation().isValid())
1389      Diag(Old->getLocation(), diag::note_previous_definition);
1390    return New->setInvalidDecl();
1391  }
1392
1393  // The types match.  Link up the redeclaration chain if the old
1394  // declaration was a typedef.
1395  // FIXME: this is a potential source of weirdness if the type
1396  // spellings don't match exactly.
1397  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1398    New->setPreviousDeclaration(Typedef);
1399
1400  // __module_private__ is propagated to later declarations.
1401  if (Old->isModulePrivate())
1402    New->setModulePrivate();
1403  else if (New->isModulePrivate())
1404    diagnoseModulePrivateRedeclaration(New, Old);
1405
1406  if (getLangOptions().MicrosoftExt)
1407    return;
1408
1409  if (getLangOptions().CPlusPlus) {
1410    // C++ [dcl.typedef]p2:
1411    //   In a given non-class scope, a typedef specifier can be used to
1412    //   redefine the name of any type declared in that scope to refer
1413    //   to the type to which it already refers.
1414    if (!isa<CXXRecordDecl>(CurContext))
1415      return;
1416
1417    // C++0x [dcl.typedef]p4:
1418    //   In a given class scope, a typedef specifier can be used to redefine
1419    //   any class-name declared in that scope that is not also a typedef-name
1420    //   to refer to the type to which it already refers.
1421    //
1422    // This wording came in via DR424, which was a correction to the
1423    // wording in DR56, which accidentally banned code like:
1424    //
1425    //   struct S {
1426    //     typedef struct A { } A;
1427    //   };
1428    //
1429    // in the C++03 standard. We implement the C++0x semantics, which
1430    // allow the above but disallow
1431    //
1432    //   struct S {
1433    //     typedef int I;
1434    //     typedef int I;
1435    //   };
1436    //
1437    // since that was the intent of DR56.
1438    if (!isa<TypedefNameDecl>(Old))
1439      return;
1440
1441    Diag(New->getLocation(), diag::err_redefinition)
1442      << New->getDeclName();
1443    Diag(Old->getLocation(), diag::note_previous_definition);
1444    return New->setInvalidDecl();
1445  }
1446
1447  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1448  // is normally mapped to an error, but can be controlled with
1449  // -Wtypedef-redefinition.  If either the original or the redefinition is
1450  // in a system header, don't emit this for compatibility with GCC.
1451  if (getDiagnostics().getSuppressSystemWarnings() &&
1452      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1453       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1454    return;
1455
1456  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1457    << New->getDeclName();
1458  Diag(Old->getLocation(), diag::note_previous_definition);
1459  return;
1460}
1461
1462/// DeclhasAttr - returns true if decl Declaration already has the target
1463/// attribute.
1464static bool
1465DeclHasAttr(const Decl *D, const Attr *A) {
1466  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1467  const AnnotateAttr *Ann = dyn_cast<AnnotateAttr>(A);
1468  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1469    if ((*i)->getKind() == A->getKind()) {
1470      if (Ann) {
1471        if (Ann->getAnnotation() == cast<AnnotateAttr>(*i)->getAnnotation())
1472          return true;
1473        continue;
1474      }
1475      // FIXME: Don't hardcode this check
1476      if (OA && isa<OwnershipAttr>(*i))
1477        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1478      return true;
1479    }
1480
1481  return false;
1482}
1483
1484/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1485static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1486                                ASTContext &C, bool mergeDeprecation = true) {
1487  if (!oldDecl->hasAttrs())
1488    return;
1489
1490  bool foundAny = newDecl->hasAttrs();
1491
1492  // Ensure that any moving of objects within the allocated map is done before
1493  // we process them.
1494  if (!foundAny) newDecl->setAttrs(AttrVec());
1495
1496  for (specific_attr_iterator<InheritableAttr>
1497       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1498       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1499    // Ignore deprecated/unavailable/availability attributes if requested.
1500    if (!mergeDeprecation &&
1501        (isa<DeprecatedAttr>(*i) ||
1502         isa<UnavailableAttr>(*i) ||
1503         isa<AvailabilityAttr>(*i)))
1504      continue;
1505
1506    if (!DeclHasAttr(newDecl, *i)) {
1507      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1508      newAttr->setInherited(true);
1509      newDecl->addAttr(newAttr);
1510      foundAny = true;
1511    }
1512  }
1513
1514  if (!foundAny) newDecl->dropAttrs();
1515}
1516
1517/// mergeParamDeclAttributes - Copy attributes from the old parameter
1518/// to the new one.
1519static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1520                                     const ParmVarDecl *oldDecl,
1521                                     ASTContext &C) {
1522  if (!oldDecl->hasAttrs())
1523    return;
1524
1525  bool foundAny = newDecl->hasAttrs();
1526
1527  // Ensure that any moving of objects within the allocated map is
1528  // done before we process them.
1529  if (!foundAny) newDecl->setAttrs(AttrVec());
1530
1531  for (specific_attr_iterator<InheritableParamAttr>
1532       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1533       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1534    if (!DeclHasAttr(newDecl, *i)) {
1535      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1536      newAttr->setInherited(true);
1537      newDecl->addAttr(newAttr);
1538      foundAny = true;
1539    }
1540  }
1541
1542  if (!foundAny) newDecl->dropAttrs();
1543}
1544
1545namespace {
1546
1547/// Used in MergeFunctionDecl to keep track of function parameters in
1548/// C.
1549struct GNUCompatibleParamWarning {
1550  ParmVarDecl *OldParm;
1551  ParmVarDecl *NewParm;
1552  QualType PromotedType;
1553};
1554
1555}
1556
1557/// getSpecialMember - get the special member enum for a method.
1558Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1559  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1560    if (Ctor->isDefaultConstructor())
1561      return Sema::CXXDefaultConstructor;
1562
1563    if (Ctor->isCopyConstructor())
1564      return Sema::CXXCopyConstructor;
1565
1566    if (Ctor->isMoveConstructor())
1567      return Sema::CXXMoveConstructor;
1568  } else if (isa<CXXDestructorDecl>(MD)) {
1569    return Sema::CXXDestructor;
1570  } else if (MD->isCopyAssignmentOperator()) {
1571    return Sema::CXXCopyAssignment;
1572  } else if (MD->isMoveAssignmentOperator()) {
1573    return Sema::CXXMoveAssignment;
1574  }
1575
1576  return Sema::CXXInvalid;
1577}
1578
1579/// canRedefineFunction - checks if a function can be redefined. Currently,
1580/// only extern inline functions can be redefined, and even then only in
1581/// GNU89 mode.
1582static bool canRedefineFunction(const FunctionDecl *FD,
1583                                const LangOptions& LangOpts) {
1584  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1585          !LangOpts.CPlusPlus &&
1586          FD->isInlineSpecified() &&
1587          FD->getStorageClass() == SC_Extern);
1588}
1589
1590/// MergeFunctionDecl - We just parsed a function 'New' from
1591/// declarator D which has the same name and scope as a previous
1592/// declaration 'Old'.  Figure out how to resolve this situation,
1593/// merging decls or emitting diagnostics as appropriate.
1594///
1595/// In C++, New and Old must be declarations that are not
1596/// overloaded. Use IsOverload to determine whether New and Old are
1597/// overloaded, and to select the Old declaration that New should be
1598/// merged with.
1599///
1600/// Returns true if there was an error, false otherwise.
1601bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1602  // Verify the old decl was also a function.
1603  FunctionDecl *Old = 0;
1604  if (FunctionTemplateDecl *OldFunctionTemplate
1605        = dyn_cast<FunctionTemplateDecl>(OldD))
1606    Old = OldFunctionTemplate->getTemplatedDecl();
1607  else
1608    Old = dyn_cast<FunctionDecl>(OldD);
1609  if (!Old) {
1610    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1611      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1612      Diag(Shadow->getTargetDecl()->getLocation(),
1613           diag::note_using_decl_target);
1614      Diag(Shadow->getUsingDecl()->getLocation(),
1615           diag::note_using_decl) << 0;
1616      return true;
1617    }
1618
1619    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1620      << New->getDeclName();
1621    Diag(OldD->getLocation(), diag::note_previous_definition);
1622    return true;
1623  }
1624
1625  // Determine whether the previous declaration was a definition,
1626  // implicit declaration, or a declaration.
1627  diag::kind PrevDiag;
1628  if (Old->isThisDeclarationADefinition())
1629    PrevDiag = diag::note_previous_definition;
1630  else if (Old->isImplicit())
1631    PrevDiag = diag::note_previous_implicit_declaration;
1632  else
1633    PrevDiag = diag::note_previous_declaration;
1634
1635  QualType OldQType = Context.getCanonicalType(Old->getType());
1636  QualType NewQType = Context.getCanonicalType(New->getType());
1637
1638  // Don't complain about this if we're in GNU89 mode and the old function
1639  // is an extern inline function.
1640  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1641      New->getStorageClass() == SC_Static &&
1642      Old->getStorageClass() != SC_Static &&
1643      !canRedefineFunction(Old, getLangOptions())) {
1644    if (getLangOptions().MicrosoftExt) {
1645      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1646      Diag(Old->getLocation(), PrevDiag);
1647    } else {
1648      Diag(New->getLocation(), diag::err_static_non_static) << New;
1649      Diag(Old->getLocation(), PrevDiag);
1650      return true;
1651    }
1652  }
1653
1654  // If a function is first declared with a calling convention, but is
1655  // later declared or defined without one, the second decl assumes the
1656  // calling convention of the first.
1657  //
1658  // For the new decl, we have to look at the NON-canonical type to tell the
1659  // difference between a function that really doesn't have a calling
1660  // convention and one that is declared cdecl. That's because in
1661  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1662  // because it is the default calling convention.
1663  //
1664  // Note also that we DO NOT return at this point, because we still have
1665  // other tests to run.
1666  const FunctionType *OldType = cast<FunctionType>(OldQType);
1667  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1668  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1669  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1670  bool RequiresAdjustment = false;
1671  if (OldTypeInfo.getCC() != CC_Default &&
1672      NewTypeInfo.getCC() == CC_Default) {
1673    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1674    RequiresAdjustment = true;
1675  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1676                                     NewTypeInfo.getCC())) {
1677    // Calling conventions really aren't compatible, so complain.
1678    Diag(New->getLocation(), diag::err_cconv_change)
1679      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1680      << (OldTypeInfo.getCC() == CC_Default)
1681      << (OldTypeInfo.getCC() == CC_Default ? "" :
1682          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1683    Diag(Old->getLocation(), diag::note_previous_declaration);
1684    return true;
1685  }
1686
1687  // FIXME: diagnose the other way around?
1688  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1689    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1690    RequiresAdjustment = true;
1691  }
1692
1693  // Merge regparm attribute.
1694  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1695      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1696    if (NewTypeInfo.getHasRegParm()) {
1697      Diag(New->getLocation(), diag::err_regparm_mismatch)
1698        << NewType->getRegParmType()
1699        << OldType->getRegParmType();
1700      Diag(Old->getLocation(), diag::note_previous_declaration);
1701      return true;
1702    }
1703
1704    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1705    RequiresAdjustment = true;
1706  }
1707
1708  if (RequiresAdjustment) {
1709    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1710    New->setType(QualType(NewType, 0));
1711    NewQType = Context.getCanonicalType(New->getType());
1712  }
1713
1714  if (getLangOptions().CPlusPlus) {
1715    // (C++98 13.1p2):
1716    //   Certain function declarations cannot be overloaded:
1717    //     -- Function declarations that differ only in the return type
1718    //        cannot be overloaded.
1719    QualType OldReturnType = OldType->getResultType();
1720    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1721    QualType ResQT;
1722    if (OldReturnType != NewReturnType) {
1723      if (NewReturnType->isObjCObjectPointerType()
1724          && OldReturnType->isObjCObjectPointerType())
1725        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1726      if (ResQT.isNull()) {
1727        if (New->isCXXClassMember() && New->isOutOfLine())
1728          Diag(New->getLocation(),
1729               diag::err_member_def_does_not_match_ret_type) << New;
1730        else
1731          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1732        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1733        return true;
1734      }
1735      else
1736        NewQType = ResQT;
1737    }
1738
1739    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1740    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1741    if (OldMethod && NewMethod) {
1742      // Preserve triviality.
1743      NewMethod->setTrivial(OldMethod->isTrivial());
1744
1745      // MSVC allows explicit template specialization at class scope:
1746      // 2 CXMethodDecls referring to the same function will be injected.
1747      // We don't want a redeclartion error.
1748      bool IsClassScopeExplicitSpecialization =
1749                              OldMethod->isFunctionTemplateSpecialization() &&
1750                              NewMethod->isFunctionTemplateSpecialization();
1751      bool isFriend = NewMethod->getFriendObjectKind();
1752
1753      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord() &&
1754          !IsClassScopeExplicitSpecialization) {
1755        //    -- Member function declarations with the same name and the
1756        //       same parameter types cannot be overloaded if any of them
1757        //       is a static member function declaration.
1758        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1759          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1760          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1761          return true;
1762        }
1763
1764        // C++ [class.mem]p1:
1765        //   [...] A member shall not be declared twice in the
1766        //   member-specification, except that a nested class or member
1767        //   class template can be declared and then later defined.
1768        unsigned NewDiag;
1769        if (isa<CXXConstructorDecl>(OldMethod))
1770          NewDiag = diag::err_constructor_redeclared;
1771        else if (isa<CXXDestructorDecl>(NewMethod))
1772          NewDiag = diag::err_destructor_redeclared;
1773        else if (isa<CXXConversionDecl>(NewMethod))
1774          NewDiag = diag::err_conv_function_redeclared;
1775        else
1776          NewDiag = diag::err_member_redeclared;
1777
1778        Diag(New->getLocation(), NewDiag);
1779        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1780
1781      // Complain if this is an explicit declaration of a special
1782      // member that was initially declared implicitly.
1783      //
1784      // As an exception, it's okay to befriend such methods in order
1785      // to permit the implicit constructor/destructor/operator calls.
1786      } else if (OldMethod->isImplicit()) {
1787        if (isFriend) {
1788          NewMethod->setImplicit();
1789        } else {
1790          Diag(NewMethod->getLocation(),
1791               diag::err_definition_of_implicitly_declared_member)
1792            << New << getSpecialMember(OldMethod);
1793          return true;
1794        }
1795      } else if (OldMethod->isExplicitlyDefaulted()) {
1796        Diag(NewMethod->getLocation(),
1797             diag::err_definition_of_explicitly_defaulted_member)
1798          << getSpecialMember(OldMethod);
1799        return true;
1800      }
1801    }
1802
1803    // (C++98 8.3.5p3):
1804    //   All declarations for a function shall agree exactly in both the
1805    //   return type and the parameter-type-list.
1806    // We also want to respect all the extended bits except noreturn.
1807
1808    // noreturn should now match unless the old type info didn't have it.
1809    QualType OldQTypeForComparison = OldQType;
1810    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1811      assert(OldQType == QualType(OldType, 0));
1812      const FunctionType *OldTypeForComparison
1813        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1814      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1815      assert(OldQTypeForComparison.isCanonical());
1816    }
1817
1818    if (OldQTypeForComparison == NewQType)
1819      return MergeCompatibleFunctionDecls(New, Old);
1820
1821    // Fall through for conflicting redeclarations and redefinitions.
1822  }
1823
1824  // C: Function types need to be compatible, not identical. This handles
1825  // duplicate function decls like "void f(int); void f(enum X);" properly.
1826  if (!getLangOptions().CPlusPlus &&
1827      Context.typesAreCompatible(OldQType, NewQType)) {
1828    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1829    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1830    const FunctionProtoType *OldProto = 0;
1831    if (isa<FunctionNoProtoType>(NewFuncType) &&
1832        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1833      // The old declaration provided a function prototype, but the
1834      // new declaration does not. Merge in the prototype.
1835      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1836      SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1837                                                 OldProto->arg_type_end());
1838      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1839                                         ParamTypes.data(), ParamTypes.size(),
1840                                         OldProto->getExtProtoInfo());
1841      New->setType(NewQType);
1842      New->setHasInheritedPrototype();
1843
1844      // Synthesize a parameter for each argument type.
1845      SmallVector<ParmVarDecl*, 16> Params;
1846      for (FunctionProtoType::arg_type_iterator
1847             ParamType = OldProto->arg_type_begin(),
1848             ParamEnd = OldProto->arg_type_end();
1849           ParamType != ParamEnd; ++ParamType) {
1850        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1851                                                 SourceLocation(),
1852                                                 SourceLocation(), 0,
1853                                                 *ParamType, /*TInfo=*/0,
1854                                                 SC_None, SC_None,
1855                                                 0);
1856        Param->setScopeInfo(0, Params.size());
1857        Param->setImplicit();
1858        Params.push_back(Param);
1859      }
1860
1861      New->setParams(Params);
1862    }
1863
1864    return MergeCompatibleFunctionDecls(New, Old);
1865  }
1866
1867  // GNU C permits a K&R definition to follow a prototype declaration
1868  // if the declared types of the parameters in the K&R definition
1869  // match the types in the prototype declaration, even when the
1870  // promoted types of the parameters from the K&R definition differ
1871  // from the types in the prototype. GCC then keeps the types from
1872  // the prototype.
1873  //
1874  // If a variadic prototype is followed by a non-variadic K&R definition,
1875  // the K&R definition becomes variadic.  This is sort of an edge case, but
1876  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1877  // C99 6.9.1p8.
1878  if (!getLangOptions().CPlusPlus &&
1879      Old->hasPrototype() && !New->hasPrototype() &&
1880      New->getType()->getAs<FunctionProtoType>() &&
1881      Old->getNumParams() == New->getNumParams()) {
1882    SmallVector<QualType, 16> ArgTypes;
1883    SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1884    const FunctionProtoType *OldProto
1885      = Old->getType()->getAs<FunctionProtoType>();
1886    const FunctionProtoType *NewProto
1887      = New->getType()->getAs<FunctionProtoType>();
1888
1889    // Determine whether this is the GNU C extension.
1890    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1891                                               NewProto->getResultType());
1892    bool LooseCompatible = !MergedReturn.isNull();
1893    for (unsigned Idx = 0, End = Old->getNumParams();
1894         LooseCompatible && Idx != End; ++Idx) {
1895      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1896      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1897      if (Context.typesAreCompatible(OldParm->getType(),
1898                                     NewProto->getArgType(Idx))) {
1899        ArgTypes.push_back(NewParm->getType());
1900      } else if (Context.typesAreCompatible(OldParm->getType(),
1901                                            NewParm->getType(),
1902                                            /*CompareUnqualified=*/true)) {
1903        GNUCompatibleParamWarning Warn
1904          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1905        Warnings.push_back(Warn);
1906        ArgTypes.push_back(NewParm->getType());
1907      } else
1908        LooseCompatible = false;
1909    }
1910
1911    if (LooseCompatible) {
1912      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1913        Diag(Warnings[Warn].NewParm->getLocation(),
1914             diag::ext_param_promoted_not_compatible_with_prototype)
1915          << Warnings[Warn].PromotedType
1916          << Warnings[Warn].OldParm->getType();
1917        if (Warnings[Warn].OldParm->getLocation().isValid())
1918          Diag(Warnings[Warn].OldParm->getLocation(),
1919               diag::note_previous_declaration);
1920      }
1921
1922      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1923                                           ArgTypes.size(),
1924                                           OldProto->getExtProtoInfo()));
1925      return MergeCompatibleFunctionDecls(New, Old);
1926    }
1927
1928    // Fall through to diagnose conflicting types.
1929  }
1930
1931  // A function that has already been declared has been redeclared or defined
1932  // with a different type- show appropriate diagnostic
1933  if (unsigned BuiltinID = Old->getBuiltinID()) {
1934    // The user has declared a builtin function with an incompatible
1935    // signature.
1936    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1937      // The function the user is redeclaring is a library-defined
1938      // function like 'malloc' or 'printf'. Warn about the
1939      // redeclaration, then pretend that we don't know about this
1940      // library built-in.
1941      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1942      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1943        << Old << Old->getType();
1944      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1945      Old->setInvalidDecl();
1946      return false;
1947    }
1948
1949    PrevDiag = diag::note_previous_builtin_declaration;
1950  }
1951
1952  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1953  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1954  return true;
1955}
1956
1957/// \brief Completes the merge of two function declarations that are
1958/// known to be compatible.
1959///
1960/// This routine handles the merging of attributes and other
1961/// properties of function declarations form the old declaration to
1962/// the new declaration, once we know that New is in fact a
1963/// redeclaration of Old.
1964///
1965/// \returns false
1966bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1967  // Merge the attributes
1968  mergeDeclAttributes(New, Old, Context);
1969
1970  // Merge the storage class.
1971  if (Old->getStorageClass() != SC_Extern &&
1972      Old->getStorageClass() != SC_None)
1973    New->setStorageClass(Old->getStorageClass());
1974
1975  // Merge "pure" flag.
1976  if (Old->isPure())
1977    New->setPure();
1978
1979  // __module_private__ is propagated to later declarations.
1980  if (Old->isModulePrivate())
1981    New->setModulePrivate();
1982  else if (New->isModulePrivate())
1983    diagnoseModulePrivateRedeclaration(New, Old);
1984
1985  // Merge attributes from the parameters.  These can mismatch with K&R
1986  // declarations.
1987  if (New->getNumParams() == Old->getNumParams())
1988    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1989      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1990                               Context);
1991
1992  if (getLangOptions().CPlusPlus)
1993    return MergeCXXFunctionDecl(New, Old);
1994
1995  return false;
1996}
1997
1998
1999void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
2000                                const ObjCMethodDecl *oldMethod) {
2001  // We don't want to merge unavailable and deprecated attributes
2002  // except from interface to implementation.
2003  bool mergeDeprecation = isa<ObjCImplDecl>(newMethod->getDeclContext());
2004
2005  // Merge the attributes.
2006  mergeDeclAttributes(newMethod, oldMethod, Context, mergeDeprecation);
2007
2008  // Merge attributes from the parameters.
2009  ObjCMethodDecl::param_const_iterator oi = oldMethod->param_begin();
2010  for (ObjCMethodDecl::param_iterator
2011         ni = newMethod->param_begin(), ne = newMethod->param_end();
2012       ni != ne; ++ni, ++oi)
2013    mergeParamDeclAttributes(*ni, *oi, Context);
2014
2015  CheckObjCMethodOverride(newMethod, oldMethod, true);
2016}
2017
2018/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
2019/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
2020/// emitting diagnostics as appropriate.
2021///
2022/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
2023/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
2024/// check them before the initializer is attached.
2025///
2026void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
2027  if (New->isInvalidDecl() || Old->isInvalidDecl())
2028    return;
2029
2030  QualType MergedT;
2031  if (getLangOptions().CPlusPlus) {
2032    AutoType *AT = New->getType()->getContainedAutoType();
2033    if (AT && !AT->isDeduced()) {
2034      // We don't know what the new type is until the initializer is attached.
2035      return;
2036    } else if (Context.hasSameType(New->getType(), Old->getType())) {
2037      // These could still be something that needs exception specs checked.
2038      return MergeVarDeclExceptionSpecs(New, Old);
2039    }
2040    // C++ [basic.link]p10:
2041    //   [...] the types specified by all declarations referring to a given
2042    //   object or function shall be identical, except that declarations for an
2043    //   array object can specify array types that differ by the presence or
2044    //   absence of a major array bound (8.3.4).
2045    else if (Old->getType()->isIncompleteArrayType() &&
2046             New->getType()->isArrayType()) {
2047      CanQual<ArrayType> OldArray
2048        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2049      CanQual<ArrayType> NewArray
2050        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2051      if (OldArray->getElementType() == NewArray->getElementType())
2052        MergedT = New->getType();
2053    } else if (Old->getType()->isArrayType() &&
2054             New->getType()->isIncompleteArrayType()) {
2055      CanQual<ArrayType> OldArray
2056        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
2057      CanQual<ArrayType> NewArray
2058        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
2059      if (OldArray->getElementType() == NewArray->getElementType())
2060        MergedT = Old->getType();
2061    } else if (New->getType()->isObjCObjectPointerType()
2062               && Old->getType()->isObjCObjectPointerType()) {
2063        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
2064                                                        Old->getType());
2065    }
2066  } else {
2067    MergedT = Context.mergeTypes(New->getType(), Old->getType());
2068  }
2069  if (MergedT.isNull()) {
2070    Diag(New->getLocation(), diag::err_redefinition_different_type)
2071      << New->getDeclName();
2072    Diag(Old->getLocation(), diag::note_previous_definition);
2073    return New->setInvalidDecl();
2074  }
2075  New->setType(MergedT);
2076}
2077
2078/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2079/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2080/// situation, merging decls or emitting diagnostics as appropriate.
2081///
2082/// Tentative definition rules (C99 6.9.2p2) are checked by
2083/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2084/// definitions here, since the initializer hasn't been attached.
2085///
2086void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2087  // If the new decl is already invalid, don't do any other checking.
2088  if (New->isInvalidDecl())
2089    return;
2090
2091  // Verify the old decl was also a variable.
2092  VarDecl *Old = 0;
2093  if (!Previous.isSingleResult() ||
2094      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2095    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2096      << New->getDeclName();
2097    Diag(Previous.getRepresentativeDecl()->getLocation(),
2098         diag::note_previous_definition);
2099    return New->setInvalidDecl();
2100  }
2101
2102  // C++ [class.mem]p1:
2103  //   A member shall not be declared twice in the member-specification [...]
2104  //
2105  // Here, we need only consider static data members.
2106  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2107    Diag(New->getLocation(), diag::err_duplicate_member)
2108      << New->getIdentifier();
2109    Diag(Old->getLocation(), diag::note_previous_declaration);
2110    New->setInvalidDecl();
2111  }
2112
2113  mergeDeclAttributes(New, Old, Context);
2114  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2115  if (New->getAttr<WeakImportAttr>() &&
2116      Old->getStorageClass() == SC_None &&
2117      !Old->getAttr<WeakImportAttr>()) {
2118    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2119    Diag(Old->getLocation(), diag::note_previous_definition);
2120    // Remove weak_import attribute on new declaration.
2121    New->dropAttr<WeakImportAttr>();
2122  }
2123
2124  // Merge the types.
2125  MergeVarDeclTypes(New, Old);
2126  if (New->isInvalidDecl())
2127    return;
2128
2129  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2130  if (New->getStorageClass() == SC_Static &&
2131      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2132    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2133    Diag(Old->getLocation(), diag::note_previous_definition);
2134    return New->setInvalidDecl();
2135  }
2136  // C99 6.2.2p4:
2137  //   For an identifier declared with the storage-class specifier
2138  //   extern in a scope in which a prior declaration of that
2139  //   identifier is visible,23) if the prior declaration specifies
2140  //   internal or external linkage, the linkage of the identifier at
2141  //   the later declaration is the same as the linkage specified at
2142  //   the prior declaration. If no prior declaration is visible, or
2143  //   if the prior declaration specifies no linkage, then the
2144  //   identifier has external linkage.
2145  if (New->hasExternalStorage() && Old->hasLinkage())
2146    /* Okay */;
2147  else if (New->getStorageClass() != SC_Static &&
2148           Old->getStorageClass() == SC_Static) {
2149    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2150    Diag(Old->getLocation(), diag::note_previous_definition);
2151    return New->setInvalidDecl();
2152  }
2153
2154  // Check if extern is followed by non-extern and vice-versa.
2155  if (New->hasExternalStorage() &&
2156      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2157    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2158    Diag(Old->getLocation(), diag::note_previous_definition);
2159    return New->setInvalidDecl();
2160  }
2161  if (Old->hasExternalStorage() &&
2162      !New->hasLinkage() && New->isLocalVarDecl()) {
2163    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2164    Diag(Old->getLocation(), diag::note_previous_definition);
2165    return New->setInvalidDecl();
2166  }
2167
2168  // __module_private__ is propagated to later declarations.
2169  if (Old->isModulePrivate())
2170    New->setModulePrivate();
2171  else if (New->isModulePrivate())
2172    diagnoseModulePrivateRedeclaration(New, Old);
2173
2174  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2175
2176  // FIXME: The test for external storage here seems wrong? We still
2177  // need to check for mismatches.
2178  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2179      // Don't complain about out-of-line definitions of static members.
2180      !(Old->getLexicalDeclContext()->isRecord() &&
2181        !New->getLexicalDeclContext()->isRecord())) {
2182    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2183    Diag(Old->getLocation(), diag::note_previous_definition);
2184    return New->setInvalidDecl();
2185  }
2186
2187  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2188    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2189    Diag(Old->getLocation(), diag::note_previous_definition);
2190  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2191    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2192    Diag(Old->getLocation(), diag::note_previous_definition);
2193  }
2194
2195  // C++ doesn't have tentative definitions, so go right ahead and check here.
2196  const VarDecl *Def;
2197  if (getLangOptions().CPlusPlus &&
2198      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2199      (Def = Old->getDefinition())) {
2200    Diag(New->getLocation(), diag::err_redefinition)
2201      << New->getDeclName();
2202    Diag(Def->getLocation(), diag::note_previous_definition);
2203    New->setInvalidDecl();
2204    return;
2205  }
2206  // c99 6.2.2 P4.
2207  // For an identifier declared with the storage-class specifier extern in a
2208  // scope in which a prior declaration of that identifier is visible, if
2209  // the prior declaration specifies internal or external linkage, the linkage
2210  // of the identifier at the later declaration is the same as the linkage
2211  // specified at the prior declaration.
2212  // FIXME. revisit this code.
2213  if (New->hasExternalStorage() &&
2214      Old->getLinkage() == InternalLinkage &&
2215      New->getDeclContext() == Old->getDeclContext())
2216    New->setStorageClass(Old->getStorageClass());
2217
2218  // Keep a chain of previous declarations.
2219  New->setPreviousDeclaration(Old);
2220
2221  // Inherit access appropriately.
2222  New->setAccess(Old->getAccess());
2223}
2224
2225/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2226/// no declarator (e.g. "struct foo;") is parsed.
2227Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2228                                       DeclSpec &DS) {
2229  return ParsedFreeStandingDeclSpec(S, AS, DS,
2230                                    MultiTemplateParamsArg(*this, 0, 0));
2231}
2232
2233/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2234/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2235/// parameters to cope with template friend declarations.
2236Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2237                                       DeclSpec &DS,
2238                                       MultiTemplateParamsArg TemplateParams) {
2239  Decl *TagD = 0;
2240  TagDecl *Tag = 0;
2241  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2242      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2243      DS.getTypeSpecType() == DeclSpec::TST_union ||
2244      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2245    TagD = DS.getRepAsDecl();
2246
2247    if (!TagD) // We probably had an error
2248      return 0;
2249
2250    // Note that the above type specs guarantee that the
2251    // type rep is a Decl, whereas in many of the others
2252    // it's a Type.
2253    Tag = dyn_cast<TagDecl>(TagD);
2254  }
2255
2256  if (Tag)
2257    Tag->setFreeStanding();
2258
2259  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2260    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2261    // or incomplete types shall not be restrict-qualified."
2262    if (TypeQuals & DeclSpec::TQ_restrict)
2263      Diag(DS.getRestrictSpecLoc(),
2264           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2265           << DS.getSourceRange();
2266  }
2267
2268  if (DS.isConstexprSpecified()) {
2269    // C++0x [dcl.constexpr]p1: constexpr can only be applied to declarations
2270    // and definitions of functions and variables.
2271    if (Tag)
2272      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_tag)
2273        << (DS.getTypeSpecType() == DeclSpec::TST_class ? 0 :
2274            DS.getTypeSpecType() == DeclSpec::TST_struct ? 1 :
2275            DS.getTypeSpecType() == DeclSpec::TST_union ? 2 : 3);
2276    else
2277      Diag(DS.getConstexprSpecLoc(), diag::err_constexpr_no_declarators);
2278    // Don't emit warnings after this error.
2279    return TagD;
2280  }
2281
2282  if (DS.isFriendSpecified()) {
2283    // If we're dealing with a decl but not a TagDecl, assume that
2284    // whatever routines created it handled the friendship aspect.
2285    if (TagD && !Tag)
2286      return 0;
2287    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2288  }
2289
2290  // Track whether we warned about the fact that there aren't any
2291  // declarators.
2292  bool emittedWarning = false;
2293
2294  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2295    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2296
2297    if (!Record->getDeclName() && Record->isCompleteDefinition() &&
2298        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2299      if (getLangOptions().CPlusPlus ||
2300          Record->getDeclContext()->isRecord())
2301        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2302
2303      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2304        << DS.getSourceRange();
2305      emittedWarning = true;
2306    }
2307  }
2308
2309  // Check for Microsoft C extension: anonymous struct.
2310  if (getLangOptions().MicrosoftExt && !getLangOptions().CPlusPlus &&
2311      CurContext->isRecord() &&
2312      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2313    // Handle 2 kinds of anonymous struct:
2314    //   struct STRUCT;
2315    // and
2316    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2317    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2318    if ((Record && Record->getDeclName() && !Record->isCompleteDefinition()) ||
2319        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2320         DS.getRepAsType().get()->isStructureType())) {
2321      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2322        << DS.getSourceRange();
2323      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2324    }
2325  }
2326
2327  if (getLangOptions().CPlusPlus &&
2328      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2329    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2330      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2331          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2332        Diag(Enum->getLocation(), diag::ext_no_declarators)
2333          << DS.getSourceRange();
2334        emittedWarning = true;
2335      }
2336
2337  // Skip all the checks below if we have a type error.
2338  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2339
2340  if (!DS.isMissingDeclaratorOk()) {
2341    // Warn about typedefs of enums without names, since this is an
2342    // extension in both Microsoft and GNU.
2343    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2344        Tag && isa<EnumDecl>(Tag)) {
2345      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2346        << DS.getSourceRange();
2347      return Tag;
2348    }
2349
2350    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2351      << DS.getSourceRange();
2352    emittedWarning = true;
2353  }
2354
2355  // We're going to complain about a bunch of spurious specifiers;
2356  // only do this if we're declaring a tag, because otherwise we
2357  // should be getting diag::ext_no_declarators.
2358  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2359    return TagD;
2360
2361  // Note that a linkage-specification sets a storage class, but
2362  // 'extern "C" struct foo;' is actually valid and not theoretically
2363  // useless.
2364  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2365    if (!DS.isExternInLinkageSpec())
2366      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2367        << DeclSpec::getSpecifierName(scs);
2368
2369  if (DS.isThreadSpecified())
2370    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2371  if (DS.getTypeQualifiers()) {
2372    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2373      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2374    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2375      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2376    // Restrict is covered above.
2377  }
2378  if (DS.isInlineSpecified())
2379    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2380  if (DS.isVirtualSpecified())
2381    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2382  if (DS.isExplicitSpecified())
2383    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2384
2385  if (DS.isModulePrivateSpecified() &&
2386      Tag && Tag->getDeclContext()->isFunctionOrMethod())
2387    Diag(DS.getModulePrivateSpecLoc(), diag::err_module_private_local_class)
2388      << Tag->getTagKind()
2389      << FixItHint::CreateRemoval(DS.getModulePrivateSpecLoc());
2390
2391  // FIXME: Warn on useless attributes
2392
2393  return TagD;
2394}
2395
2396/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2397/// builds a statement for it and returns it so it is evaluated.
2398StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2399  StmtResult R;
2400  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2401    Expr *Exp = DS.getRepAsExpr();
2402    QualType Ty = Exp->getType();
2403    if (Ty->isPointerType()) {
2404      do
2405        Ty = Ty->getAs<PointerType>()->getPointeeType();
2406      while (Ty->isPointerType());
2407    }
2408    if (Ty->isVariableArrayType()) {
2409      R = ActOnExprStmt(MakeFullExpr(Exp));
2410    }
2411  }
2412  return R;
2413}
2414
2415/// We are trying to inject an anonymous member into the given scope;
2416/// check if there's an existing declaration that can't be overloaded.
2417///
2418/// \return true if this is a forbidden redeclaration
2419static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2420                                         Scope *S,
2421                                         DeclContext *Owner,
2422                                         DeclarationName Name,
2423                                         SourceLocation NameLoc,
2424                                         unsigned diagnostic) {
2425  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2426                 Sema::ForRedeclaration);
2427  if (!SemaRef.LookupName(R, S)) return false;
2428
2429  if (R.getAsSingle<TagDecl>())
2430    return false;
2431
2432  // Pick a representative declaration.
2433  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2434  assert(PrevDecl && "Expected a non-null Decl");
2435
2436  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2437    return false;
2438
2439  SemaRef.Diag(NameLoc, diagnostic) << Name;
2440  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2441
2442  return true;
2443}
2444
2445/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2446/// anonymous struct or union AnonRecord into the owning context Owner
2447/// and scope S. This routine will be invoked just after we realize
2448/// that an unnamed union or struct is actually an anonymous union or
2449/// struct, e.g.,
2450///
2451/// @code
2452/// union {
2453///   int i;
2454///   float f;
2455/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2456///    // f into the surrounding scope.x
2457/// @endcode
2458///
2459/// This routine is recursive, injecting the names of nested anonymous
2460/// structs/unions into the owning context and scope as well.
2461static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2462                                                DeclContext *Owner,
2463                                                RecordDecl *AnonRecord,
2464                                                AccessSpecifier AS,
2465                              SmallVector<NamedDecl*, 2> &Chaining,
2466                                                      bool MSAnonStruct) {
2467  unsigned diagKind
2468    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2469                            : diag::err_anonymous_struct_member_redecl;
2470
2471  bool Invalid = false;
2472
2473  // Look every FieldDecl and IndirectFieldDecl with a name.
2474  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2475                               DEnd = AnonRecord->decls_end();
2476       D != DEnd; ++D) {
2477    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2478        cast<NamedDecl>(*D)->getDeclName()) {
2479      ValueDecl *VD = cast<ValueDecl>(*D);
2480      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2481                                       VD->getLocation(), diagKind)) {
2482        // C++ [class.union]p2:
2483        //   The names of the members of an anonymous union shall be
2484        //   distinct from the names of any other entity in the
2485        //   scope in which the anonymous union is declared.
2486        Invalid = true;
2487      } else {
2488        // C++ [class.union]p2:
2489        //   For the purpose of name lookup, after the anonymous union
2490        //   definition, the members of the anonymous union are
2491        //   considered to have been defined in the scope in which the
2492        //   anonymous union is declared.
2493        unsigned OldChainingSize = Chaining.size();
2494        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2495          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2496               PE = IF->chain_end(); PI != PE; ++PI)
2497            Chaining.push_back(*PI);
2498        else
2499          Chaining.push_back(VD);
2500
2501        assert(Chaining.size() >= 2);
2502        NamedDecl **NamedChain =
2503          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2504        for (unsigned i = 0; i < Chaining.size(); i++)
2505          NamedChain[i] = Chaining[i];
2506
2507        IndirectFieldDecl* IndirectField =
2508          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2509                                    VD->getIdentifier(), VD->getType(),
2510                                    NamedChain, Chaining.size());
2511
2512        IndirectField->setAccess(AS);
2513        IndirectField->setImplicit();
2514        SemaRef.PushOnScopeChains(IndirectField, S);
2515
2516        // That includes picking up the appropriate access specifier.
2517        if (AS != AS_none) IndirectField->setAccess(AS);
2518
2519        Chaining.resize(OldChainingSize);
2520      }
2521    }
2522  }
2523
2524  return Invalid;
2525}
2526
2527/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2528/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2529/// illegal input values are mapped to SC_None.
2530static StorageClass
2531StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2532  switch (StorageClassSpec) {
2533  case DeclSpec::SCS_unspecified:    return SC_None;
2534  case DeclSpec::SCS_extern:         return SC_Extern;
2535  case DeclSpec::SCS_static:         return SC_Static;
2536  case DeclSpec::SCS_auto:           return SC_Auto;
2537  case DeclSpec::SCS_register:       return SC_Register;
2538  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2539    // Illegal SCSs map to None: error reporting is up to the caller.
2540  case DeclSpec::SCS_mutable:        // Fall through.
2541  case DeclSpec::SCS_typedef:        return SC_None;
2542  }
2543  llvm_unreachable("unknown storage class specifier");
2544}
2545
2546/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2547/// a StorageClass. Any error reporting is up to the caller:
2548/// illegal input values are mapped to SC_None.
2549static StorageClass
2550StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2551  switch (StorageClassSpec) {
2552  case DeclSpec::SCS_unspecified:    return SC_None;
2553  case DeclSpec::SCS_extern:         return SC_Extern;
2554  case DeclSpec::SCS_static:         return SC_Static;
2555  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2556    // Illegal SCSs map to None: error reporting is up to the caller.
2557  case DeclSpec::SCS_auto:           // Fall through.
2558  case DeclSpec::SCS_mutable:        // Fall through.
2559  case DeclSpec::SCS_register:       // Fall through.
2560  case DeclSpec::SCS_typedef:        return SC_None;
2561  }
2562  llvm_unreachable("unknown storage class specifier");
2563}
2564
2565/// BuildAnonymousStructOrUnion - Handle the declaration of an
2566/// anonymous structure or union. Anonymous unions are a C++ feature
2567/// (C++ [class.union]) and a GNU C extension; anonymous structures
2568/// are a GNU C and GNU C++ extension.
2569Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2570                                             AccessSpecifier AS,
2571                                             RecordDecl *Record) {
2572  DeclContext *Owner = Record->getDeclContext();
2573
2574  // Diagnose whether this anonymous struct/union is an extension.
2575  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2576    Diag(Record->getLocation(), diag::ext_anonymous_union);
2577  else if (!Record->isUnion())
2578    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2579
2580  // C and C++ require different kinds of checks for anonymous
2581  // structs/unions.
2582  bool Invalid = false;
2583  if (getLangOptions().CPlusPlus) {
2584    const char* PrevSpec = 0;
2585    unsigned DiagID;
2586    // C++ [class.union]p3:
2587    //   Anonymous unions declared in a named namespace or in the
2588    //   global namespace shall be declared static.
2589    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2590        (isa<TranslationUnitDecl>(Owner) ||
2591         (isa<NamespaceDecl>(Owner) &&
2592          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2593      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2594      Invalid = true;
2595
2596      // Recover by adding 'static'.
2597      DS.SetStorageClassSpec(*this, DeclSpec::SCS_static, SourceLocation(),
2598                             PrevSpec, DiagID);
2599    }
2600    // C++ [class.union]p3:
2601    //   A storage class is not allowed in a declaration of an
2602    //   anonymous union in a class scope.
2603    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2604             isa<RecordDecl>(Owner)) {
2605      Diag(DS.getStorageClassSpecLoc(),
2606           diag::err_anonymous_union_with_storage_spec);
2607      Invalid = true;
2608
2609      // Recover by removing the storage specifier.
2610      DS.SetStorageClassSpec(*this, DeclSpec::SCS_unspecified, SourceLocation(),
2611                             PrevSpec, DiagID);
2612    }
2613
2614    // Ignore const/volatile/restrict qualifiers.
2615    if (DS.getTypeQualifiers()) {
2616      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2617        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2618          << Record->isUnion() << 0
2619          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2620      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2621        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2622          << Record->isUnion() << 1
2623          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2624      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2625        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2626          << Record->isUnion() << 2
2627          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2628
2629      DS.ClearTypeQualifiers();
2630    }
2631
2632    // C++ [class.union]p2:
2633    //   The member-specification of an anonymous union shall only
2634    //   define non-static data members. [Note: nested types and
2635    //   functions cannot be declared within an anonymous union. ]
2636    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2637                                 MemEnd = Record->decls_end();
2638         Mem != MemEnd; ++Mem) {
2639      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2640        // C++ [class.union]p3:
2641        //   An anonymous union shall not have private or protected
2642        //   members (clause 11).
2643        assert(FD->getAccess() != AS_none);
2644        if (FD->getAccess() != AS_public) {
2645          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2646            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2647          Invalid = true;
2648        }
2649
2650        // C++ [class.union]p1
2651        //   An object of a class with a non-trivial constructor, a non-trivial
2652        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2653        //   assignment operator cannot be a member of a union, nor can an
2654        //   array of such objects.
2655        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2656          Invalid = true;
2657      } else if ((*Mem)->isImplicit()) {
2658        // Any implicit members are fine.
2659      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2660        // This is a type that showed up in an
2661        // elaborated-type-specifier inside the anonymous struct or
2662        // union, but which actually declares a type outside of the
2663        // anonymous struct or union. It's okay.
2664      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2665        if (!MemRecord->isAnonymousStructOrUnion() &&
2666            MemRecord->getDeclName()) {
2667          // Visual C++ allows type definition in anonymous struct or union.
2668          if (getLangOptions().MicrosoftExt)
2669            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2670              << (int)Record->isUnion();
2671          else {
2672            // This is a nested type declaration.
2673            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2674              << (int)Record->isUnion();
2675            Invalid = true;
2676          }
2677        }
2678      } else if (isa<AccessSpecDecl>(*Mem)) {
2679        // Any access specifier is fine.
2680      } else {
2681        // We have something that isn't a non-static data
2682        // member. Complain about it.
2683        unsigned DK = diag::err_anonymous_record_bad_member;
2684        if (isa<TypeDecl>(*Mem))
2685          DK = diag::err_anonymous_record_with_type;
2686        else if (isa<FunctionDecl>(*Mem))
2687          DK = diag::err_anonymous_record_with_function;
2688        else if (isa<VarDecl>(*Mem))
2689          DK = diag::err_anonymous_record_with_static;
2690
2691        // Visual C++ allows type definition in anonymous struct or union.
2692        if (getLangOptions().MicrosoftExt &&
2693            DK == diag::err_anonymous_record_with_type)
2694          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2695            << (int)Record->isUnion();
2696        else {
2697          Diag((*Mem)->getLocation(), DK)
2698              << (int)Record->isUnion();
2699          Invalid = true;
2700        }
2701      }
2702    }
2703  }
2704
2705  if (!Record->isUnion() && !Owner->isRecord()) {
2706    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2707      << (int)getLangOptions().CPlusPlus;
2708    Invalid = true;
2709  }
2710
2711  // Mock up a declarator.
2712  Declarator Dc(DS, Declarator::MemberContext);
2713  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2714  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2715
2716  // Create a declaration for this anonymous struct/union.
2717  NamedDecl *Anon = 0;
2718  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2719    Anon = FieldDecl::Create(Context, OwningClass,
2720                             DS.getSourceRange().getBegin(),
2721                             Record->getLocation(),
2722                             /*IdentifierInfo=*/0,
2723                             Context.getTypeDeclType(Record),
2724                             TInfo,
2725                             /*BitWidth=*/0, /*Mutable=*/false,
2726                             /*HasInit=*/false);
2727    Anon->setAccess(AS);
2728    if (getLangOptions().CPlusPlus)
2729      FieldCollector->Add(cast<FieldDecl>(Anon));
2730  } else {
2731    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2732    assert(SCSpec != DeclSpec::SCS_typedef &&
2733           "Parser allowed 'typedef' as storage class VarDecl.");
2734    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2735    if (SCSpec == DeclSpec::SCS_mutable) {
2736      // mutable can only appear on non-static class members, so it's always
2737      // an error here
2738      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2739      Invalid = true;
2740      SC = SC_None;
2741    }
2742    SCSpec = DS.getStorageClassSpecAsWritten();
2743    VarDecl::StorageClass SCAsWritten
2744      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2745
2746    Anon = VarDecl::Create(Context, Owner,
2747                           DS.getSourceRange().getBegin(),
2748                           Record->getLocation(), /*IdentifierInfo=*/0,
2749                           Context.getTypeDeclType(Record),
2750                           TInfo, SC, SCAsWritten);
2751
2752    // Default-initialize the implicit variable. This initialization will be
2753    // trivial in almost all cases, except if a union member has an in-class
2754    // initializer:
2755    //   union { int n = 0; };
2756    ActOnUninitializedDecl(Anon, /*TypeMayContainAuto=*/false);
2757  }
2758  Anon->setImplicit();
2759
2760  // Add the anonymous struct/union object to the current
2761  // context. We'll be referencing this object when we refer to one of
2762  // its members.
2763  Owner->addDecl(Anon);
2764
2765  // Inject the members of the anonymous struct/union into the owning
2766  // context and into the identifier resolver chain for name lookup
2767  // purposes.
2768  SmallVector<NamedDecl*, 2> Chain;
2769  Chain.push_back(Anon);
2770
2771  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2772                                          Chain, false))
2773    Invalid = true;
2774
2775  // Mark this as an anonymous struct/union type. Note that we do not
2776  // do this until after we have already checked and injected the
2777  // members of this anonymous struct/union type, because otherwise
2778  // the members could be injected twice: once by DeclContext when it
2779  // builds its lookup table, and once by
2780  // InjectAnonymousStructOrUnionMembers.
2781  Record->setAnonymousStructOrUnion(true);
2782
2783  if (Invalid)
2784    Anon->setInvalidDecl();
2785
2786  return Anon;
2787}
2788
2789/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2790/// Microsoft C anonymous structure.
2791/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2792/// Example:
2793///
2794/// struct A { int a; };
2795/// struct B { struct A; int b; };
2796///
2797/// void foo() {
2798///   B var;
2799///   var.a = 3;
2800/// }
2801///
2802Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2803                                           RecordDecl *Record) {
2804
2805  // If there is no Record, get the record via the typedef.
2806  if (!Record)
2807    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2808
2809  // Mock up a declarator.
2810  Declarator Dc(DS, Declarator::TypeNameContext);
2811  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2812  assert(TInfo && "couldn't build declarator info for anonymous struct");
2813
2814  // Create a declaration for this anonymous struct.
2815  NamedDecl* Anon = FieldDecl::Create(Context,
2816                             cast<RecordDecl>(CurContext),
2817                             DS.getSourceRange().getBegin(),
2818                             DS.getSourceRange().getBegin(),
2819                             /*IdentifierInfo=*/0,
2820                             Context.getTypeDeclType(Record),
2821                             TInfo,
2822                             /*BitWidth=*/0, /*Mutable=*/false,
2823                             /*HasInit=*/false);
2824  Anon->setImplicit();
2825
2826  // Add the anonymous struct object to the current context.
2827  CurContext->addDecl(Anon);
2828
2829  // Inject the members of the anonymous struct into the current
2830  // context and into the identifier resolver chain for name lookup
2831  // purposes.
2832  SmallVector<NamedDecl*, 2> Chain;
2833  Chain.push_back(Anon);
2834
2835  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2836                                          Record->getDefinition(),
2837                                          AS_none, Chain, true))
2838    Anon->setInvalidDecl();
2839
2840  return Anon;
2841}
2842
2843/// GetNameForDeclarator - Determine the full declaration name for the
2844/// given Declarator.
2845DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2846  return GetNameFromUnqualifiedId(D.getName());
2847}
2848
2849/// \brief Retrieves the declaration name from a parsed unqualified-id.
2850DeclarationNameInfo
2851Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2852  DeclarationNameInfo NameInfo;
2853  NameInfo.setLoc(Name.StartLocation);
2854
2855  switch (Name.getKind()) {
2856
2857  case UnqualifiedId::IK_ImplicitSelfParam:
2858  case UnqualifiedId::IK_Identifier:
2859    NameInfo.setName(Name.Identifier);
2860    NameInfo.setLoc(Name.StartLocation);
2861    return NameInfo;
2862
2863  case UnqualifiedId::IK_OperatorFunctionId:
2864    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2865                                           Name.OperatorFunctionId.Operator));
2866    NameInfo.setLoc(Name.StartLocation);
2867    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2868      = Name.OperatorFunctionId.SymbolLocations[0];
2869    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2870      = Name.EndLocation.getRawEncoding();
2871    return NameInfo;
2872
2873  case UnqualifiedId::IK_LiteralOperatorId:
2874    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2875                                                           Name.Identifier));
2876    NameInfo.setLoc(Name.StartLocation);
2877    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2878    return NameInfo;
2879
2880  case UnqualifiedId::IK_ConversionFunctionId: {
2881    TypeSourceInfo *TInfo;
2882    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2883    if (Ty.isNull())
2884      return DeclarationNameInfo();
2885    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2886                                               Context.getCanonicalType(Ty)));
2887    NameInfo.setLoc(Name.StartLocation);
2888    NameInfo.setNamedTypeInfo(TInfo);
2889    return NameInfo;
2890  }
2891
2892  case UnqualifiedId::IK_ConstructorName: {
2893    TypeSourceInfo *TInfo;
2894    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2895    if (Ty.isNull())
2896      return DeclarationNameInfo();
2897    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2898                                              Context.getCanonicalType(Ty)));
2899    NameInfo.setLoc(Name.StartLocation);
2900    NameInfo.setNamedTypeInfo(TInfo);
2901    return NameInfo;
2902  }
2903
2904  case UnqualifiedId::IK_ConstructorTemplateId: {
2905    // In well-formed code, we can only have a constructor
2906    // template-id that refers to the current context, so go there
2907    // to find the actual type being constructed.
2908    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2909    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2910      return DeclarationNameInfo();
2911
2912    // Determine the type of the class being constructed.
2913    QualType CurClassType = Context.getTypeDeclType(CurClass);
2914
2915    // FIXME: Check two things: that the template-id names the same type as
2916    // CurClassType, and that the template-id does not occur when the name
2917    // was qualified.
2918
2919    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2920                                    Context.getCanonicalType(CurClassType)));
2921    NameInfo.setLoc(Name.StartLocation);
2922    // FIXME: should we retrieve TypeSourceInfo?
2923    NameInfo.setNamedTypeInfo(0);
2924    return NameInfo;
2925  }
2926
2927  case UnqualifiedId::IK_DestructorName: {
2928    TypeSourceInfo *TInfo;
2929    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2930    if (Ty.isNull())
2931      return DeclarationNameInfo();
2932    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2933                                              Context.getCanonicalType(Ty)));
2934    NameInfo.setLoc(Name.StartLocation);
2935    NameInfo.setNamedTypeInfo(TInfo);
2936    return NameInfo;
2937  }
2938
2939  case UnqualifiedId::IK_TemplateId: {
2940    TemplateName TName = Name.TemplateId->Template.get();
2941    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2942    return Context.getNameForTemplate(TName, TNameLoc);
2943  }
2944
2945  } // switch (Name.getKind())
2946
2947  llvm_unreachable("Unknown name kind");
2948}
2949
2950static QualType getCoreType(QualType Ty) {
2951  do {
2952    if (Ty->isPointerType() || Ty->isReferenceType())
2953      Ty = Ty->getPointeeType();
2954    else if (Ty->isArrayType())
2955      Ty = Ty->castAsArrayTypeUnsafe()->getElementType();
2956    else
2957      return Ty.withoutLocalFastQualifiers();
2958  } while (true);
2959}
2960
2961/// hasSimilarParameters - Determine whether the C++ functions Declaration
2962/// and Definition have "nearly" matching parameters. This heuristic is
2963/// used to improve diagnostics in the case where an out-of-line function
2964/// definition doesn't match any declaration within the class or namespace.
2965/// Also sets Params to the list of indices to the parameters that differ
2966/// between the declaration and the definition. If hasSimilarParameters
2967/// returns true and Params is empty, then all of the parameters match.
2968static bool hasSimilarParameters(ASTContext &Context,
2969                                     FunctionDecl *Declaration,
2970                                     FunctionDecl *Definition,
2971                                     llvm::SmallVectorImpl<unsigned> &Params) {
2972  Params.clear();
2973  if (Declaration->param_size() != Definition->param_size())
2974    return false;
2975  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2976    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2977    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2978
2979    // The parameter types are identical
2980    if (Context.hasSameType(DefParamTy, DeclParamTy))
2981      continue;
2982
2983    QualType DeclParamBaseTy = getCoreType(DeclParamTy);
2984    QualType DefParamBaseTy = getCoreType(DefParamTy);
2985    const IdentifierInfo *DeclTyName = DeclParamBaseTy.getBaseTypeIdentifier();
2986    const IdentifierInfo *DefTyName = DefParamBaseTy.getBaseTypeIdentifier();
2987
2988    if (Context.hasSameUnqualifiedType(DeclParamBaseTy, DefParamBaseTy) ||
2989        (DeclTyName && DeclTyName == DefTyName))
2990      Params.push_back(Idx);
2991    else  // The two parameters aren't even close
2992      return false;
2993  }
2994
2995  return true;
2996}
2997
2998/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2999/// declarator needs to be rebuilt in the current instantiation.
3000/// Any bits of declarator which appear before the name are valid for
3001/// consideration here.  That's specifically the type in the decl spec
3002/// and the base type in any member-pointer chunks.
3003static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
3004                                                    DeclarationName Name) {
3005  // The types we specifically need to rebuild are:
3006  //   - typenames, typeofs, and decltypes
3007  //   - types which will become injected class names
3008  // Of course, we also need to rebuild any type referencing such a
3009  // type.  It's safest to just say "dependent", but we call out a
3010  // few cases here.
3011
3012  DeclSpec &DS = D.getMutableDeclSpec();
3013  switch (DS.getTypeSpecType()) {
3014  case DeclSpec::TST_typename:
3015  case DeclSpec::TST_typeofType:
3016  case DeclSpec::TST_decltype:
3017  case DeclSpec::TST_underlyingType:
3018  case DeclSpec::TST_atomic: {
3019    // Grab the type from the parser.
3020    TypeSourceInfo *TSI = 0;
3021    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
3022    if (T.isNull() || !T->isDependentType()) break;
3023
3024    // Make sure there's a type source info.  This isn't really much
3025    // of a waste; most dependent types should have type source info
3026    // attached already.
3027    if (!TSI)
3028      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
3029
3030    // Rebuild the type in the current instantiation.
3031    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
3032    if (!TSI) return true;
3033
3034    // Store the new type back in the decl spec.
3035    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
3036    DS.UpdateTypeRep(LocType);
3037    break;
3038  }
3039
3040  case DeclSpec::TST_typeofExpr: {
3041    Expr *E = DS.getRepAsExpr();
3042    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
3043    if (Result.isInvalid()) return true;
3044    DS.UpdateExprRep(Result.get());
3045    break;
3046  }
3047
3048  default:
3049    // Nothing to do for these decl specs.
3050    break;
3051  }
3052
3053  // It doesn't matter what order we do this in.
3054  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3055    DeclaratorChunk &Chunk = D.getTypeObject(I);
3056
3057    // The only type information in the declarator which can come
3058    // before the declaration name is the base type of a member
3059    // pointer.
3060    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
3061      continue;
3062
3063    // Rebuild the scope specifier in-place.
3064    CXXScopeSpec &SS = Chunk.Mem.Scope();
3065    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
3066      return true;
3067  }
3068
3069  return false;
3070}
3071
3072Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D) {
3073  D.setFunctionDefinition(false);
3074  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this));
3075}
3076
3077/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
3078///   If T is the name of a class, then each of the following shall have a
3079///   name different from T:
3080///     - every static data member of class T;
3081///     - every member function of class T
3082///     - every member of class T that is itself a type;
3083/// \returns true if the declaration name violates these rules.
3084bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
3085                                   DeclarationNameInfo NameInfo) {
3086  DeclarationName Name = NameInfo.getName();
3087
3088  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
3089    if (Record->getIdentifier() && Record->getDeclName() == Name) {
3090      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
3091      return true;
3092    }
3093
3094  return false;
3095}
3096
3097Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
3098                             MultiTemplateParamsArg TemplateParamLists) {
3099  // TODO: consider using NameInfo for diagnostic.
3100  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
3101  DeclarationName Name = NameInfo.getName();
3102
3103  // All of these full declarators require an identifier.  If it doesn't have
3104  // one, the ParsedFreeStandingDeclSpec action should be used.
3105  if (!Name) {
3106    if (!D.isInvalidType())  // Reject this if we think it is valid.
3107      Diag(D.getDeclSpec().getSourceRange().getBegin(),
3108           diag::err_declarator_need_ident)
3109        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
3110    return 0;
3111  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
3112    return 0;
3113
3114  // The scope passed in may not be a decl scope.  Zip up the scope tree until
3115  // we find one that is.
3116  while ((S->getFlags() & Scope::DeclScope) == 0 ||
3117         (S->getFlags() & Scope::TemplateParamScope) != 0)
3118    S = S->getParent();
3119
3120  DeclContext *DC = CurContext;
3121  if (D.getCXXScopeSpec().isInvalid())
3122    D.setInvalidType();
3123  else if (D.getCXXScopeSpec().isSet()) {
3124    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
3125                                        UPPC_DeclarationQualifier))
3126      return 0;
3127
3128    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
3129    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
3130    if (!DC) {
3131      // If we could not compute the declaration context, it's because the
3132      // declaration context is dependent but does not refer to a class,
3133      // class template, or class template partial specialization. Complain
3134      // and return early, to avoid the coming semantic disaster.
3135      Diag(D.getIdentifierLoc(),
3136           diag::err_template_qualified_declarator_no_match)
3137        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3138        << D.getCXXScopeSpec().getRange();
3139      return 0;
3140    }
3141    bool IsDependentContext = DC->isDependentContext();
3142
3143    if (!IsDependentContext &&
3144        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3145      return 0;
3146
3147    if (isa<CXXRecordDecl>(DC)) {
3148      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3149        Diag(D.getIdentifierLoc(),
3150             diag::err_member_def_undefined_record)
3151          << Name << DC << D.getCXXScopeSpec().getRange();
3152        D.setInvalidType();
3153      } else if (isa<CXXRecordDecl>(CurContext) &&
3154                 !D.getDeclSpec().isFriendSpecified()) {
3155        // The user provided a superfluous scope specifier inside a class
3156        // definition:
3157        //
3158        // class X {
3159        //   void X::f();
3160        // };
3161        if (CurContext->Equals(DC))
3162          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3163            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3164        else
3165          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3166            << Name << D.getCXXScopeSpec().getRange();
3167
3168        // Pretend that this qualifier was not here.
3169        D.getCXXScopeSpec().clear();
3170      }
3171    }
3172
3173    // Check whether we need to rebuild the type of the given
3174    // declaration in the current instantiation.
3175    if (EnteringContext && IsDependentContext &&
3176        TemplateParamLists.size() != 0) {
3177      ContextRAII SavedContext(*this, DC);
3178      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3179        D.setInvalidType();
3180    }
3181  }
3182
3183  if (DiagnoseClassNameShadow(DC, NameInfo))
3184    // If this is a typedef, we'll end up spewing multiple diagnostics.
3185    // Just return early; it's safer.
3186    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3187      return 0;
3188
3189  NamedDecl *New;
3190
3191  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3192  QualType R = TInfo->getType();
3193
3194  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3195                                      UPPC_DeclarationType))
3196    D.setInvalidType();
3197
3198  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3199                        ForRedeclaration);
3200
3201  // See if this is a redefinition of a variable in the same scope.
3202  if (!D.getCXXScopeSpec().isSet()) {
3203    bool IsLinkageLookup = false;
3204
3205    // If the declaration we're planning to build will be a function
3206    // or object with linkage, then look for another declaration with
3207    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3208    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3209      /* Do nothing*/;
3210    else if (R->isFunctionType()) {
3211      if (CurContext->isFunctionOrMethod() ||
3212          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3213        IsLinkageLookup = true;
3214    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3215      IsLinkageLookup = true;
3216    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3217             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3218      IsLinkageLookup = true;
3219
3220    if (IsLinkageLookup)
3221      Previous.clear(LookupRedeclarationWithLinkage);
3222
3223    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3224  } else { // Something like "int foo::x;"
3225    LookupQualifiedName(Previous, DC);
3226
3227    // Don't consider using declarations as previous declarations for
3228    // out-of-line members.
3229    RemoveUsingDecls(Previous);
3230
3231    // C++ 7.3.1.2p2:
3232    // Members (including explicit specializations of templates) of a named
3233    // namespace can also be defined outside that namespace by explicit
3234    // qualification of the name being defined, provided that the entity being
3235    // defined was already declared in the namespace and the definition appears
3236    // after the point of declaration in a namespace that encloses the
3237    // declarations namespace.
3238    //
3239    // Note that we only check the context at this point. We don't yet
3240    // have enough information to make sure that PrevDecl is actually
3241    // the declaration we want to match. For example, given:
3242    //
3243    //   class X {
3244    //     void f();
3245    //     void f(float);
3246    //   };
3247    //
3248    //   void X::f(int) { } // ill-formed
3249    //
3250    // In this case, PrevDecl will point to the overload set
3251    // containing the two f's declared in X, but neither of them
3252    // matches.
3253
3254    // First check whether we named the global scope.
3255    if (isa<TranslationUnitDecl>(DC)) {
3256      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3257        << Name << D.getCXXScopeSpec().getRange();
3258    } else {
3259      DeclContext *Cur = CurContext;
3260      while (isa<LinkageSpecDecl>(Cur))
3261        Cur = Cur->getParent();
3262      if (!Cur->Encloses(DC)) {
3263        // The qualifying scope doesn't enclose the original declaration.
3264        // Emit diagnostic based on current scope.
3265        SourceLocation L = D.getIdentifierLoc();
3266        SourceRange R = D.getCXXScopeSpec().getRange();
3267        if (isa<FunctionDecl>(Cur))
3268          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3269        else
3270          Diag(L, diag::err_invalid_declarator_scope)
3271            << Name << cast<NamedDecl>(DC) << R;
3272        D.setInvalidType();
3273      }
3274    }
3275  }
3276
3277  if (Previous.isSingleResult() &&
3278      Previous.getFoundDecl()->isTemplateParameter()) {
3279    // Maybe we will complain about the shadowed template parameter.
3280    if (!D.isInvalidType())
3281      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3282                                          Previous.getFoundDecl()))
3283        D.setInvalidType();
3284
3285    // Just pretend that we didn't see the previous declaration.
3286    Previous.clear();
3287  }
3288
3289  // In C++, the previous declaration we find might be a tag type
3290  // (class or enum). In this case, the new declaration will hide the
3291  // tag type. Note that this does does not apply if we're declaring a
3292  // typedef (C++ [dcl.typedef]p4).
3293  if (Previous.isSingleTagDecl() &&
3294      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3295    Previous.clear();
3296
3297  bool AddToScope = true;
3298  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3299    if (TemplateParamLists.size()) {
3300      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3301      return 0;
3302    }
3303
3304    New = ActOnTypedefDeclarator(S, D, DC, TInfo, Previous);
3305  } else if (R->isFunctionType()) {
3306    New = ActOnFunctionDeclarator(S, D, DC, TInfo, Previous,
3307                                  move(TemplateParamLists),
3308                                  AddToScope);
3309  } else {
3310    New = ActOnVariableDeclarator(S, D, DC, TInfo, Previous,
3311                                  move(TemplateParamLists));
3312  }
3313
3314  if (New == 0)
3315    return 0;
3316
3317  // If this has an identifier and is not an invalid redeclaration or
3318  // function template specialization, add it to the scope stack.
3319  if (New->getDeclName() && AddToScope &&
3320       !(D.isRedeclaration() && New->isInvalidDecl()))
3321    PushOnScopeChains(New, S);
3322
3323  return New;
3324}
3325
3326/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3327/// types into constant array types in certain situations which would otherwise
3328/// be errors (for GCC compatibility).
3329static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3330                                                    ASTContext &Context,
3331                                                    bool &SizeIsNegative,
3332                                                    llvm::APSInt &Oversized) {
3333  // This method tries to turn a variable array into a constant
3334  // array even when the size isn't an ICE.  This is necessary
3335  // for compatibility with code that depends on gcc's buggy
3336  // constant expression folding, like struct {char x[(int)(char*)2];}
3337  SizeIsNegative = false;
3338  Oversized = 0;
3339
3340  if (T->isDependentType())
3341    return QualType();
3342
3343  QualifierCollector Qs;
3344  const Type *Ty = Qs.strip(T);
3345
3346  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3347    QualType Pointee = PTy->getPointeeType();
3348    QualType FixedType =
3349        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3350                                            Oversized);
3351    if (FixedType.isNull()) return FixedType;
3352    FixedType = Context.getPointerType(FixedType);
3353    return Qs.apply(Context, FixedType);
3354  }
3355  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3356    QualType Inner = PTy->getInnerType();
3357    QualType FixedType =
3358        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3359                                            Oversized);
3360    if (FixedType.isNull()) return FixedType;
3361    FixedType = Context.getParenType(FixedType);
3362    return Qs.apply(Context, FixedType);
3363  }
3364
3365  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3366  if (!VLATy)
3367    return QualType();
3368  // FIXME: We should probably handle this case
3369  if (VLATy->getElementType()->isVariablyModifiedType())
3370    return QualType();
3371
3372  Expr::EvalResult EvalResult;
3373  if (!VLATy->getSizeExpr() ||
3374      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3375      !EvalResult.Val.isInt())
3376    return QualType();
3377
3378  // Check whether the array size is negative.
3379  llvm::APSInt &Res = EvalResult.Val.getInt();
3380  if (Res.isSigned() && Res.isNegative()) {
3381    SizeIsNegative = true;
3382    return QualType();
3383  }
3384
3385  // Check whether the array is too large to be addressed.
3386  unsigned ActiveSizeBits
3387    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3388                                              Res);
3389  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3390    Oversized = Res;
3391    return QualType();
3392  }
3393
3394  return Context.getConstantArrayType(VLATy->getElementType(),
3395                                      Res, ArrayType::Normal, 0);
3396}
3397
3398/// \brief Register the given locally-scoped external C declaration so
3399/// that it can be found later for redeclarations
3400void
3401Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3402                                       const LookupResult &Previous,
3403                                       Scope *S) {
3404  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3405         "Decl is not a locally-scoped decl!");
3406  // Note that we have a locally-scoped external with this name.
3407  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3408
3409  if (!Previous.isSingleResult())
3410    return;
3411
3412  NamedDecl *PrevDecl = Previous.getFoundDecl();
3413
3414  // If there was a previous declaration of this variable, it may be
3415  // in our identifier chain. Update the identifier chain with the new
3416  // declaration.
3417  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3418    // The previous declaration was found on the identifer resolver
3419    // chain, so remove it from its scope.
3420
3421    if (S->isDeclScope(PrevDecl)) {
3422      // Special case for redeclarations in the SAME scope.
3423      // Because this declaration is going to be added to the identifier chain
3424      // later, we should temporarily take it OFF the chain.
3425      IdResolver.RemoveDecl(ND);
3426
3427    } else {
3428      // Find the scope for the original declaration.
3429      while (S && !S->isDeclScope(PrevDecl))
3430        S = S->getParent();
3431    }
3432
3433    if (S)
3434      S->RemoveDecl(PrevDecl);
3435  }
3436}
3437
3438llvm::DenseMap<DeclarationName, NamedDecl *>::iterator
3439Sema::findLocallyScopedExternalDecl(DeclarationName Name) {
3440  if (ExternalSource) {
3441    // Load locally-scoped external decls from the external source.
3442    SmallVector<NamedDecl *, 4> Decls;
3443    ExternalSource->ReadLocallyScopedExternalDecls(Decls);
3444    for (unsigned I = 0, N = Decls.size(); I != N; ++I) {
3445      llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3446        = LocallyScopedExternalDecls.find(Decls[I]->getDeclName());
3447      if (Pos == LocallyScopedExternalDecls.end())
3448        LocallyScopedExternalDecls[Decls[I]->getDeclName()] = Decls[I];
3449    }
3450  }
3451
3452  return LocallyScopedExternalDecls.find(Name);
3453}
3454
3455/// \brief Diagnose function specifiers on a declaration of an identifier that
3456/// does not identify a function.
3457void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3458  // FIXME: We should probably indicate the identifier in question to avoid
3459  // confusion for constructs like "inline int a(), b;"
3460  if (D.getDeclSpec().isInlineSpecified())
3461    Diag(D.getDeclSpec().getInlineSpecLoc(),
3462         diag::err_inline_non_function);
3463
3464  if (D.getDeclSpec().isVirtualSpecified())
3465    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3466         diag::err_virtual_non_function);
3467
3468  if (D.getDeclSpec().isExplicitSpecified())
3469    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3470         diag::err_explicit_non_function);
3471}
3472
3473NamedDecl*
3474Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3475                             TypeSourceInfo *TInfo, LookupResult &Previous) {
3476  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3477  if (D.getCXXScopeSpec().isSet()) {
3478    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3479      << D.getCXXScopeSpec().getRange();
3480    D.setInvalidType();
3481    // Pretend we didn't see the scope specifier.
3482    DC = CurContext;
3483    Previous.clear();
3484  }
3485
3486  if (getLangOptions().CPlusPlus) {
3487    // Check that there are no default arguments (C++ only).
3488    CheckExtraCXXDefaultArguments(D);
3489  }
3490
3491  DiagnoseFunctionSpecifiers(D);
3492
3493  if (D.getDeclSpec().isThreadSpecified())
3494    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3495  if (D.getDeclSpec().isConstexprSpecified())
3496    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
3497      << 1;
3498
3499  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3500    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3501      << D.getName().getSourceRange();
3502    return 0;
3503  }
3504
3505  TypedefDecl *NewTD = ParseTypedefDecl(S, D, TInfo->getType(), TInfo);
3506  if (!NewTD) return 0;
3507
3508  // Handle attributes prior to checking for duplicates in MergeVarDecl
3509  ProcessDeclAttributes(S, NewTD, D);
3510
3511  CheckTypedefForVariablyModifiedType(S, NewTD);
3512
3513  bool Redeclaration = D.isRedeclaration();
3514  NamedDecl *ND = ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3515  D.setRedeclaration(Redeclaration);
3516  return ND;
3517}
3518
3519void
3520Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3521  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3522  // then it shall have block scope.
3523  // Note that variably modified types must be fixed before merging the decl so
3524  // that redeclarations will match.
3525  QualType T = NewTD->getUnderlyingType();
3526  if (T->isVariablyModifiedType()) {
3527    getCurFunction()->setHasBranchProtectedScope();
3528
3529    if (S->getFnParent() == 0) {
3530      bool SizeIsNegative;
3531      llvm::APSInt Oversized;
3532      QualType FixedTy =
3533          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3534                                              Oversized);
3535      if (!FixedTy.isNull()) {
3536        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3537        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3538      } else {
3539        if (SizeIsNegative)
3540          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3541        else if (T->isVariableArrayType())
3542          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3543        else if (Oversized.getBoolValue())
3544          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3545        else
3546          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3547        NewTD->setInvalidDecl();
3548      }
3549    }
3550  }
3551}
3552
3553
3554/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3555/// declares a typedef-name, either using the 'typedef' type specifier or via
3556/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3557NamedDecl*
3558Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3559                           LookupResult &Previous, bool &Redeclaration) {
3560  // Merge the decl with the existing one if appropriate. If the decl is
3561  // in an outer scope, it isn't the same thing.
3562  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3563                       /*ExplicitInstantiationOrSpecialization=*/false);
3564  if (!Previous.empty()) {
3565    Redeclaration = true;
3566    MergeTypedefNameDecl(NewTD, Previous);
3567  }
3568
3569  // If this is the C FILE type, notify the AST context.
3570  if (IdentifierInfo *II = NewTD->getIdentifier())
3571    if (!NewTD->isInvalidDecl() &&
3572        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3573      if (II->isStr("FILE"))
3574        Context.setFILEDecl(NewTD);
3575      else if (II->isStr("jmp_buf"))
3576        Context.setjmp_bufDecl(NewTD);
3577      else if (II->isStr("sigjmp_buf"))
3578        Context.setsigjmp_bufDecl(NewTD);
3579      else if (II->isStr("__builtin_va_list"))
3580        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3581    }
3582
3583  return NewTD;
3584}
3585
3586/// \brief Determines whether the given declaration is an out-of-scope
3587/// previous declaration.
3588///
3589/// This routine should be invoked when name lookup has found a
3590/// previous declaration (PrevDecl) that is not in the scope where a
3591/// new declaration by the same name is being introduced. If the new
3592/// declaration occurs in a local scope, previous declarations with
3593/// linkage may still be considered previous declarations (C99
3594/// 6.2.2p4-5, C++ [basic.link]p6).
3595///
3596/// \param PrevDecl the previous declaration found by name
3597/// lookup
3598///
3599/// \param DC the context in which the new declaration is being
3600/// declared.
3601///
3602/// \returns true if PrevDecl is an out-of-scope previous declaration
3603/// for a new delcaration with the same name.
3604static bool
3605isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3606                                ASTContext &Context) {
3607  if (!PrevDecl)
3608    return false;
3609
3610  if (!PrevDecl->hasLinkage())
3611    return false;
3612
3613  if (Context.getLangOptions().CPlusPlus) {
3614    // C++ [basic.link]p6:
3615    //   If there is a visible declaration of an entity with linkage
3616    //   having the same name and type, ignoring entities declared
3617    //   outside the innermost enclosing namespace scope, the block
3618    //   scope declaration declares that same entity and receives the
3619    //   linkage of the previous declaration.
3620    DeclContext *OuterContext = DC->getRedeclContext();
3621    if (!OuterContext->isFunctionOrMethod())
3622      // This rule only applies to block-scope declarations.
3623      return false;
3624
3625    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3626    if (PrevOuterContext->isRecord())
3627      // We found a member function: ignore it.
3628      return false;
3629
3630    // Find the innermost enclosing namespace for the new and
3631    // previous declarations.
3632    OuterContext = OuterContext->getEnclosingNamespaceContext();
3633    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3634
3635    // The previous declaration is in a different namespace, so it
3636    // isn't the same function.
3637    if (!OuterContext->Equals(PrevOuterContext))
3638      return false;
3639  }
3640
3641  return true;
3642}
3643
3644static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3645  CXXScopeSpec &SS = D.getCXXScopeSpec();
3646  if (!SS.isSet()) return;
3647  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3648}
3649
3650bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3651  QualType type = decl->getType();
3652  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3653  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3654    // Various kinds of declaration aren't allowed to be __autoreleasing.
3655    unsigned kind = -1U;
3656    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3657      if (var->hasAttr<BlocksAttr>())
3658        kind = 0; // __block
3659      else if (!var->hasLocalStorage())
3660        kind = 1; // global
3661    } else if (isa<ObjCIvarDecl>(decl)) {
3662      kind = 3; // ivar
3663    } else if (isa<FieldDecl>(decl)) {
3664      kind = 2; // field
3665    }
3666
3667    if (kind != -1U) {
3668      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3669        << kind;
3670    }
3671  } else if (lifetime == Qualifiers::OCL_None) {
3672    // Try to infer lifetime.
3673    if (!type->isObjCLifetimeType())
3674      return false;
3675
3676    lifetime = type->getObjCARCImplicitLifetime();
3677    type = Context.getLifetimeQualifiedType(type, lifetime);
3678    decl->setType(type);
3679  }
3680
3681  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3682    // Thread-local variables cannot have lifetime.
3683    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3684        var->isThreadSpecified()) {
3685      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3686        << var->getType();
3687      return true;
3688    }
3689  }
3690
3691  return false;
3692}
3693
3694NamedDecl*
3695Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3696                              TypeSourceInfo *TInfo, LookupResult &Previous,
3697                              MultiTemplateParamsArg TemplateParamLists) {
3698  QualType R = TInfo->getType();
3699  DeclarationName Name = GetNameForDeclarator(D).getName();
3700
3701  // Check that there are no default arguments (C++ only).
3702  if (getLangOptions().CPlusPlus)
3703    CheckExtraCXXDefaultArguments(D);
3704
3705  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3706  assert(SCSpec != DeclSpec::SCS_typedef &&
3707         "Parser allowed 'typedef' as storage class VarDecl.");
3708  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3709  if (SCSpec == DeclSpec::SCS_mutable) {
3710    // mutable can only appear on non-static class members, so it's always
3711    // an error here
3712    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3713    D.setInvalidType();
3714    SC = SC_None;
3715  }
3716  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3717  VarDecl::StorageClass SCAsWritten
3718    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3719
3720  IdentifierInfo *II = Name.getAsIdentifierInfo();
3721  if (!II) {
3722    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3723      << Name;
3724    return 0;
3725  }
3726
3727  DiagnoseFunctionSpecifiers(D);
3728
3729  if (!DC->isRecord() && S->getFnParent() == 0) {
3730    // C99 6.9p2: The storage-class specifiers auto and register shall not
3731    // appear in the declaration specifiers in an external declaration.
3732    if (SC == SC_Auto || SC == SC_Register) {
3733
3734      // If this is a register variable with an asm label specified, then this
3735      // is a GNU extension.
3736      if (SC == SC_Register && D.getAsmLabel())
3737        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3738      else
3739        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3740      D.setInvalidType();
3741    }
3742  }
3743
3744  if (getLangOptions().OpenCL) {
3745    // Set up the special work-group-local storage class for variables in the
3746    // OpenCL __local address space.
3747    if (R.getAddressSpace() == LangAS::opencl_local)
3748      SC = SC_OpenCLWorkGroupLocal;
3749  }
3750
3751  bool isExplicitSpecialization = false;
3752  VarDecl *NewVD;
3753  if (!getLangOptions().CPlusPlus) {
3754    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3755                            D.getIdentifierLoc(), II,
3756                            R, TInfo, SC, SCAsWritten);
3757
3758    if (D.isInvalidType())
3759      NewVD->setInvalidDecl();
3760  } else {
3761    if (DC->isRecord() && !CurContext->isRecord()) {
3762      // This is an out-of-line definition of a static data member.
3763      if (SC == SC_Static) {
3764        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3765             diag::err_static_out_of_line)
3766          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3767      } else if (SC == SC_None)
3768        SC = SC_Static;
3769    }
3770    if (SC == SC_Static) {
3771      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3772        if (RD->isLocalClass())
3773          Diag(D.getIdentifierLoc(),
3774               diag::err_static_data_member_not_allowed_in_local_class)
3775            << Name << RD->getDeclName();
3776
3777        // C++ [class.union]p1: If a union contains a static data member,
3778        // the program is ill-formed.
3779        //
3780        // We also disallow static data members in anonymous structs.
3781        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3782          Diag(D.getIdentifierLoc(),
3783               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3784            << Name << RD->isUnion();
3785      }
3786    }
3787
3788    // Match up the template parameter lists with the scope specifier, then
3789    // determine whether we have a template or a template specialization.
3790    isExplicitSpecialization = false;
3791    bool Invalid = false;
3792    if (TemplateParameterList *TemplateParams
3793        = MatchTemplateParametersToScopeSpecifier(
3794                                  D.getDeclSpec().getSourceRange().getBegin(),
3795                                                  D.getIdentifierLoc(),
3796                                                  D.getCXXScopeSpec(),
3797                                                  TemplateParamLists.get(),
3798                                                  TemplateParamLists.size(),
3799                                                  /*never a friend*/ false,
3800                                                  isExplicitSpecialization,
3801                                                  Invalid)) {
3802      if (TemplateParams->size() > 0) {
3803        // There is no such thing as a variable template.
3804        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3805          << II
3806          << SourceRange(TemplateParams->getTemplateLoc(),
3807                         TemplateParams->getRAngleLoc());
3808        return 0;
3809      } else {
3810        // There is an extraneous 'template<>' for this variable. Complain
3811        // about it, but allow the declaration of the variable.
3812        Diag(TemplateParams->getTemplateLoc(),
3813             diag::err_template_variable_noparams)
3814          << II
3815          << SourceRange(TemplateParams->getTemplateLoc(),
3816                         TemplateParams->getRAngleLoc());
3817      }
3818    }
3819
3820    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3821                            D.getIdentifierLoc(), II,
3822                            R, TInfo, SC, SCAsWritten);
3823
3824    // If this decl has an auto type in need of deduction, make a note of the
3825    // Decl so we can diagnose uses of it in its own initializer.
3826    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3827        R->getContainedAutoType())
3828      ParsingInitForAutoVars.insert(NewVD);
3829
3830    if (D.isInvalidType() || Invalid)
3831      NewVD->setInvalidDecl();
3832
3833    SetNestedNameSpecifier(NewVD, D);
3834
3835    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3836      NewVD->setTemplateParameterListsInfo(Context,
3837                                           TemplateParamLists.size(),
3838                                           TemplateParamLists.release());
3839    }
3840
3841    if (D.getDeclSpec().isConstexprSpecified()) {
3842      // FIXME: once we know whether there's an initializer, apply this to
3843      // static data members too.
3844      if (!NewVD->isStaticDataMember() &&
3845          !NewVD->isThisDeclarationADefinition()) {
3846        // 'constexpr' is redundant and ill-formed on a non-defining declaration
3847        // of a variable. Suggest replacing it with 'const' if appropriate.
3848        SourceLocation ConstexprLoc = D.getDeclSpec().getConstexprSpecLoc();
3849        SourceRange ConstexprRange(ConstexprLoc, ConstexprLoc);
3850        // If the declarator is complex, we need to move the keyword to the
3851        // innermost chunk as we switch it from 'constexpr' to 'const'.
3852        int Kind = DeclaratorChunk::Paren;
3853        for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
3854          Kind = D.getTypeObject(I).Kind;
3855          if (Kind != DeclaratorChunk::Paren)
3856            break;
3857        }
3858        if ((D.getDeclSpec().getTypeQualifiers() & DeclSpec::TQ_const) ||
3859            Kind == DeclaratorChunk::Reference)
3860          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3861            << FixItHint::CreateRemoval(ConstexprRange);
3862        else if (Kind == DeclaratorChunk::Paren)
3863          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3864            << FixItHint::CreateReplacement(ConstexprRange, "const");
3865        else
3866          Diag(ConstexprLoc, diag::err_invalid_constexpr_var_decl)
3867            << FixItHint::CreateRemoval(ConstexprRange)
3868            << FixItHint::CreateInsertion(D.getIdentifierLoc(), "const ");
3869      } else {
3870        NewVD->setConstexpr(true);
3871      }
3872    }
3873  }
3874
3875  // Set the lexical context. If the declarator has a C++ scope specifier, the
3876  // lexical context will be different from the semantic context.
3877  NewVD->setLexicalDeclContext(CurContext);
3878
3879  if (D.getDeclSpec().isThreadSpecified()) {
3880    if (NewVD->hasLocalStorage())
3881      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3882    else if (!Context.getTargetInfo().isTLSSupported())
3883      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3884    else
3885      NewVD->setThreadSpecified(true);
3886  }
3887
3888  if (D.getDeclSpec().isModulePrivateSpecified()) {
3889    if (isExplicitSpecialization)
3890      Diag(NewVD->getLocation(), diag::err_module_private_specialization)
3891        << 2
3892        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3893    else if (NewVD->hasLocalStorage())
3894      Diag(NewVD->getLocation(), diag::err_module_private_local)
3895        << 0 << NewVD->getDeclName()
3896        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
3897        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
3898    else
3899      NewVD->setModulePrivate();
3900  }
3901
3902  // Handle attributes prior to checking for duplicates in MergeVarDecl
3903  ProcessDeclAttributes(S, NewVD, D);
3904
3905  // In auto-retain/release, infer strong retension for variables of
3906  // retainable type.
3907  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3908    NewVD->setInvalidDecl();
3909
3910  // Handle GNU asm-label extension (encoded as an attribute).
3911  if (Expr *E = (Expr*)D.getAsmLabel()) {
3912    // The parser guarantees this is a string.
3913    StringLiteral *SE = cast<StringLiteral>(E);
3914    StringRef Label = SE->getString();
3915    if (S->getFnParent() != 0) {
3916      switch (SC) {
3917      case SC_None:
3918      case SC_Auto:
3919        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3920        break;
3921      case SC_Register:
3922        if (!Context.getTargetInfo().isValidGCCRegisterName(Label))
3923          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3924        break;
3925      case SC_Static:
3926      case SC_Extern:
3927      case SC_PrivateExtern:
3928      case SC_OpenCLWorkGroupLocal:
3929        break;
3930      }
3931    }
3932
3933    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3934                                                Context, Label));
3935  }
3936
3937  // Diagnose shadowed variables before filtering for scope.
3938  if (!D.getCXXScopeSpec().isSet())
3939    CheckShadow(S, NewVD, Previous);
3940
3941  // Don't consider existing declarations that are in a different
3942  // scope and are out-of-semantic-context declarations (if the new
3943  // declaration has linkage).
3944  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3945                       isExplicitSpecialization);
3946
3947  if (!getLangOptions().CPlusPlus) {
3948    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
3949  } else {
3950    // Merge the decl with the existing one if appropriate.
3951    if (!Previous.empty()) {
3952      if (Previous.isSingleResult() &&
3953          isa<FieldDecl>(Previous.getFoundDecl()) &&
3954          D.getCXXScopeSpec().isSet()) {
3955        // The user tried to define a non-static data member
3956        // out-of-line (C++ [dcl.meaning]p1).
3957        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3958          << D.getCXXScopeSpec().getRange();
3959        Previous.clear();
3960        NewVD->setInvalidDecl();
3961      }
3962    } else if (D.getCXXScopeSpec().isSet()) {
3963      // No previous declaration in the qualifying scope.
3964      Diag(D.getIdentifierLoc(), diag::err_no_member)
3965        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3966        << D.getCXXScopeSpec().getRange();
3967      NewVD->setInvalidDecl();
3968    }
3969
3970    D.setRedeclaration(CheckVariableDeclaration(NewVD, Previous));
3971
3972    // This is an explicit specialization of a static data member. Check it.
3973    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3974        CheckMemberSpecialization(NewVD, Previous))
3975      NewVD->setInvalidDecl();
3976  }
3977
3978  // attributes declared post-definition are currently ignored
3979  // FIXME: This should be handled in attribute merging, not
3980  // here.
3981  if (Previous.isSingleResult()) {
3982    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3983    if (Def && (Def = Def->getDefinition()) &&
3984        Def != NewVD && D.hasAttributes()) {
3985      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3986      Diag(Def->getLocation(), diag::note_previous_definition);
3987    }
3988  }
3989
3990  // If this is a locally-scoped extern C variable, update the map of
3991  // such variables.
3992  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3993      !NewVD->isInvalidDecl())
3994    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3995
3996  // If there's a #pragma GCC visibility in scope, and this isn't a class
3997  // member, set the visibility of this variable.
3998  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3999    AddPushedVisibilityAttribute(NewVD);
4000
4001  MarkUnusedFileScopedDecl(NewVD);
4002
4003  return NewVD;
4004}
4005
4006/// \brief Diagnose variable or built-in function shadowing.  Implements
4007/// -Wshadow.
4008///
4009/// This method is called whenever a VarDecl is added to a "useful"
4010/// scope.
4011///
4012/// \param S the scope in which the shadowing name is being declared
4013/// \param R the lookup of the name
4014///
4015void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
4016  // Return if warning is ignored.
4017  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
4018        DiagnosticsEngine::Ignored)
4019    return;
4020
4021  // Don't diagnose declarations at file scope.
4022  if (D->hasGlobalStorage())
4023    return;
4024
4025  DeclContext *NewDC = D->getDeclContext();
4026
4027  // Only diagnose if we're shadowing an unambiguous field or variable.
4028  if (R.getResultKind() != LookupResult::Found)
4029    return;
4030
4031  NamedDecl* ShadowedDecl = R.getFoundDecl();
4032  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
4033    return;
4034
4035  // Fields are not shadowed by variables in C++ static methods.
4036  if (isa<FieldDecl>(ShadowedDecl))
4037    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
4038      if (MD->isStatic())
4039        return;
4040
4041  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
4042    if (shadowedVar->isExternC()) {
4043      // For shadowing external vars, make sure that we point to the global
4044      // declaration, not a locally scoped extern declaration.
4045      for (VarDecl::redecl_iterator
4046             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
4047           I != E; ++I)
4048        if (I->isFileVarDecl()) {
4049          ShadowedDecl = *I;
4050          break;
4051        }
4052    }
4053
4054  DeclContext *OldDC = ShadowedDecl->getDeclContext();
4055
4056  // Only warn about certain kinds of shadowing for class members.
4057  if (NewDC && NewDC->isRecord()) {
4058    // In particular, don't warn about shadowing non-class members.
4059    if (!OldDC->isRecord())
4060      return;
4061
4062    // TODO: should we warn about static data members shadowing
4063    // static data members from base classes?
4064
4065    // TODO: don't diagnose for inaccessible shadowed members.
4066    // This is hard to do perfectly because we might friend the
4067    // shadowing context, but that's just a false negative.
4068  }
4069
4070  // Determine what kind of declaration we're shadowing.
4071  unsigned Kind;
4072  if (isa<RecordDecl>(OldDC)) {
4073    if (isa<FieldDecl>(ShadowedDecl))
4074      Kind = 3; // field
4075    else
4076      Kind = 2; // static data member
4077  } else if (OldDC->isFileContext())
4078    Kind = 1; // global
4079  else
4080    Kind = 0; // local
4081
4082  DeclarationName Name = R.getLookupName();
4083
4084  // Emit warning and note.
4085  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
4086  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
4087}
4088
4089/// \brief Check -Wshadow without the advantage of a previous lookup.
4090void Sema::CheckShadow(Scope *S, VarDecl *D) {
4091  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
4092        DiagnosticsEngine::Ignored)
4093    return;
4094
4095  LookupResult R(*this, D->getDeclName(), D->getLocation(),
4096                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4097  LookupName(R, S);
4098  CheckShadow(S, D, R);
4099}
4100
4101/// \brief Perform semantic checking on a newly-created variable
4102/// declaration.
4103///
4104/// This routine performs all of the type-checking required for a
4105/// variable declaration once it has been built. It is used both to
4106/// check variables after they have been parsed and their declarators
4107/// have been translated into a declaration, and to check variables
4108/// that have been instantiated from a template.
4109///
4110/// Sets NewVD->isInvalidDecl() if an error was encountered.
4111///
4112/// Returns true if the variable declaration is a redeclaration.
4113bool Sema::CheckVariableDeclaration(VarDecl *NewVD,
4114                                    LookupResult &Previous) {
4115  // If the decl is already known invalid, don't check it.
4116  if (NewVD->isInvalidDecl())
4117    return false;
4118
4119  QualType T = NewVD->getType();
4120
4121  if (T->isObjCObjectType()) {
4122    Diag(NewVD->getLocation(), diag::err_statically_allocated_object)
4123      << FixItHint::CreateInsertion(NewVD->getLocation(), "*");
4124    T = Context.getObjCObjectPointerType(T);
4125    NewVD->setType(T);
4126  }
4127
4128  // Emit an error if an address space was applied to decl with local storage.
4129  // This includes arrays of objects with address space qualifiers, but not
4130  // automatic variables that point to other address spaces.
4131  // ISO/IEC TR 18037 S5.1.2
4132  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
4133    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
4134    NewVD->setInvalidDecl();
4135    return false;
4136  }
4137
4138  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
4139      && !NewVD->hasAttr<BlocksAttr>()) {
4140    if (getLangOptions().getGC() != LangOptions::NonGC)
4141      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
4142    else
4143      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
4144  }
4145
4146  bool isVM = T->isVariablyModifiedType();
4147  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
4148      NewVD->hasAttr<BlocksAttr>())
4149    getCurFunction()->setHasBranchProtectedScope();
4150
4151  if ((isVM && NewVD->hasLinkage()) ||
4152      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
4153    bool SizeIsNegative;
4154    llvm::APSInt Oversized;
4155    QualType FixedTy =
4156        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
4157                                            Oversized);
4158
4159    if (FixedTy.isNull() && T->isVariableArrayType()) {
4160      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
4161      // FIXME: This won't give the correct result for
4162      // int a[10][n];
4163      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
4164
4165      if (NewVD->isFileVarDecl())
4166        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
4167        << SizeRange;
4168      else if (NewVD->getStorageClass() == SC_Static)
4169        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
4170        << SizeRange;
4171      else
4172        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
4173        << SizeRange;
4174      NewVD->setInvalidDecl();
4175      return false;
4176    }
4177
4178    if (FixedTy.isNull()) {
4179      if (NewVD->isFileVarDecl())
4180        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
4181      else
4182        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
4183      NewVD->setInvalidDecl();
4184      return false;
4185    }
4186
4187    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
4188    NewVD->setType(FixedTy);
4189  }
4190
4191  if (Previous.empty() && NewVD->isExternC()) {
4192    // Since we did not find anything by this name and we're declaring
4193    // an extern "C" variable, look for a non-visible extern "C"
4194    // declaration with the same name.
4195    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4196      = findLocallyScopedExternalDecl(NewVD->getDeclName());
4197    if (Pos != LocallyScopedExternalDecls.end())
4198      Previous.addDecl(Pos->second);
4199  }
4200
4201  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
4202    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
4203      << T;
4204    NewVD->setInvalidDecl();
4205    return false;
4206  }
4207
4208  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
4209    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
4210    NewVD->setInvalidDecl();
4211    return false;
4212  }
4213
4214  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
4215    Diag(NewVD->getLocation(), diag::err_block_on_vm);
4216    NewVD->setInvalidDecl();
4217    return false;
4218  }
4219
4220  // Function pointers and references cannot have qualified function type, only
4221  // function pointer-to-members can do that.
4222  QualType Pointee;
4223  unsigned PtrOrRef = 0;
4224  if (const PointerType *Ptr = T->getAs<PointerType>())
4225    Pointee = Ptr->getPointeeType();
4226  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4227    Pointee = Ref->getPointeeType();
4228    PtrOrRef = 1;
4229  }
4230  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4231      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4232    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4233        << PtrOrRef;
4234    NewVD->setInvalidDecl();
4235    return false;
4236  }
4237
4238  if (!Previous.empty()) {
4239    MergeVarDecl(NewVD, Previous);
4240    return true;
4241  }
4242  return false;
4243}
4244
4245/// \brief Data used with FindOverriddenMethod
4246struct FindOverriddenMethodData {
4247  Sema *S;
4248  CXXMethodDecl *Method;
4249};
4250
4251/// \brief Member lookup function that determines whether a given C++
4252/// method overrides a method in a base class, to be used with
4253/// CXXRecordDecl::lookupInBases().
4254static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4255                                 CXXBasePath &Path,
4256                                 void *UserData) {
4257  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4258
4259  FindOverriddenMethodData *Data
4260    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4261
4262  DeclarationName Name = Data->Method->getDeclName();
4263
4264  // FIXME: Do we care about other names here too?
4265  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4266    // We really want to find the base class destructor here.
4267    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4268    CanQualType CT = Data->S->Context.getCanonicalType(T);
4269
4270    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4271  }
4272
4273  for (Path.Decls = BaseRecord->lookup(Name);
4274       Path.Decls.first != Path.Decls.second;
4275       ++Path.Decls.first) {
4276    NamedDecl *D = *Path.Decls.first;
4277    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4278      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4279        return true;
4280    }
4281  }
4282
4283  return false;
4284}
4285
4286/// AddOverriddenMethods - See if a method overrides any in the base classes,
4287/// and if so, check that it's a valid override and remember it.
4288bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4289  // Look for virtual methods in base classes that this method might override.
4290  CXXBasePaths Paths;
4291  FindOverriddenMethodData Data;
4292  Data.Method = MD;
4293  Data.S = this;
4294  bool AddedAny = false;
4295  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4296    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4297         E = Paths.found_decls_end(); I != E; ++I) {
4298      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4299        MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4300        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4301            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4302            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4303          AddedAny = true;
4304        }
4305      }
4306    }
4307  }
4308
4309  return AddedAny;
4310}
4311
4312namespace {
4313  // Struct for holding all of the extra arguments needed by
4314  // DiagnoseInvalidRedeclaration to call Sema::ActOnFunctionDeclarator.
4315  struct ActOnFDArgs {
4316    Scope *S;
4317    Declarator &D;
4318    DeclContext *DC;
4319    TypeSourceInfo *TInfo;
4320    MultiTemplateParamsArg TemplateParamLists;
4321    bool AddToScope;
4322  };
4323}
4324
4325/// \brief Generate diagnostics for an invalid function redeclaration.
4326///
4327/// This routine handles generating the diagnostic messages for an invalid
4328/// function redeclaration, including finding possible similar declarations
4329/// or performing typo correction if there are no previous declarations with
4330/// the same name.
4331///
4332/// Returns a NamedDecl iff typo correction was performed and substituting in
4333/// the new declaration name does not cause new errors.
4334static NamedDecl* DiagnoseInvalidRedeclaration(
4335    Sema &S, LookupResult &Previous, FunctionDecl *NewFD, bool isFriendDecl,
4336    ActOnFDArgs &ExtraArgs) {
4337  assert(NewFD->getDeclContext() == ExtraArgs.DC && "NewFD has different DeclContext!");
4338  NamedDecl *Result = NULL;
4339  DeclarationName Name = NewFD->getDeclName();
4340  DeclContext *NewDC = NewFD->getDeclContext();
4341  LookupResult Prev(S, Name, NewFD->getLocation(),
4342                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4343  llvm::SmallVector<unsigned, 1> MismatchedParams;
4344  llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1> NearMatches;
4345  TypoCorrection Correction;
4346  unsigned DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend
4347                                  : diag::err_member_def_does_not_match;
4348
4349  NewFD->setInvalidDecl();
4350  S.LookupQualifiedName(Prev, NewDC);
4351  assert(!Prev.isAmbiguous() &&
4352         "Cannot have an ambiguity in previous-declaration lookup");
4353  if (!Prev.empty()) {
4354    for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4355         Func != FuncEnd; ++Func) {
4356      FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func);
4357      if (FD && hasSimilarParameters(S.Context, FD, NewFD, MismatchedParams)) {
4358        // Add 1 to the index so that 0 can mean the mismatch didn't
4359        // involve a parameter
4360        unsigned ParamNum =
4361            MismatchedParams.empty() ? 0 : MismatchedParams.front() + 1;
4362        NearMatches.push_back(std::make_pair(FD, ParamNum));
4363      }
4364    }
4365  // If the qualified name lookup yielded nothing, try typo correction
4366  } else if ((Correction = S.CorrectTypo(Prev.getLookupNameInfo(),
4367                                         Prev.getLookupKind(), 0, 0, NewDC)) &&
4368             Correction.getCorrection() != Name) {
4369    // Trap errors.
4370    Sema::SFINAETrap Trap(S);
4371
4372    // Set up everything for the call to ActOnFunctionDeclarator
4373    ExtraArgs.D.SetIdentifier(Correction.getCorrectionAsIdentifierInfo(),
4374                              ExtraArgs.D.getIdentifierLoc());
4375    Previous.clear();
4376    Previous.setLookupName(Correction.getCorrection());
4377    for (TypoCorrection::decl_iterator CDecl = Correction.begin(),
4378                                    CDeclEnd = Correction.end();
4379         CDecl != CDeclEnd; ++CDecl) {
4380      FunctionDecl *FD = dyn_cast<FunctionDecl>(*CDecl);
4381      if (FD && hasSimilarParameters(S.Context, FD, NewFD, MismatchedParams)) {
4382        Previous.addDecl(FD);
4383      }
4384    }
4385    bool wasRedeclaration = ExtraArgs.D.isRedeclaration();
4386    // TODO: Refactor ActOnFunctionDeclarator so that we can call only the
4387    // pieces need to verify the typo-corrected C++ declaraction and hopefully
4388    // eliminate the need for the parameter pack ExtraArgs.
4389    Result = S.ActOnFunctionDeclarator(ExtraArgs.S, ExtraArgs.D, ExtraArgs.DC,
4390                                       ExtraArgs.TInfo, Previous,
4391                                       ExtraArgs.TemplateParamLists,
4392                                       ExtraArgs.AddToScope);
4393    if (Trap.hasErrorOccurred()) {
4394      // Pretend the typo correction never occurred
4395      ExtraArgs.D.SetIdentifier(Name.getAsIdentifierInfo(),
4396                                ExtraArgs.D.getIdentifierLoc());
4397      ExtraArgs.D.setRedeclaration(wasRedeclaration);
4398      Previous.clear();
4399      Previous.setLookupName(Name);
4400      Result = NULL;
4401    } else {
4402      for (LookupResult::iterator Func = Previous.begin(),
4403                               FuncEnd = Previous.end();
4404           Func != FuncEnd; ++Func) {
4405        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(*Func))
4406          NearMatches.push_back(std::make_pair(FD, 0));
4407      }
4408    }
4409    if (NearMatches.empty()) {
4410      // Ignore the correction if it didn't yield any close FunctionDecl matches
4411      Correction = TypoCorrection();
4412    } else {
4413      DiagMsg = isFriendDecl ? diag::err_no_matching_local_friend_suggest
4414                             : diag::err_member_def_does_not_match_suggest;
4415    }
4416  }
4417
4418  if (Correction)
4419    S.Diag(NewFD->getLocation(), DiagMsg)
4420        << Name << NewDC << Correction.getQuoted(S.getLangOptions())
4421        << FixItHint::CreateReplacement(
4422            NewFD->getLocation(), Correction.getAsString(S.getLangOptions()));
4423  else
4424    S.Diag(NewFD->getLocation(), DiagMsg) << Name << NewDC << NewFD->getLocation();
4425
4426  bool NewFDisConst = false;
4427  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD))
4428    NewFDisConst = NewMD->getTypeQualifiers() & Qualifiers::Const;
4429
4430  for (llvm::SmallVector<std::pair<FunctionDecl*, unsigned>, 1>::iterator
4431       NearMatch = NearMatches.begin(), NearMatchEnd = NearMatches.end();
4432       NearMatch != NearMatchEnd; ++NearMatch) {
4433    FunctionDecl *FD = NearMatch->first;
4434    bool FDisConst = false;
4435    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD))
4436      FDisConst = MD->getTypeQualifiers() & Qualifiers::Const;
4437
4438    if (unsigned Idx = NearMatch->second) {
4439      ParmVarDecl *FDParam = FD->getParamDecl(Idx-1);
4440      S.Diag(FDParam->getTypeSpecStartLoc(),
4441             diag::note_member_def_close_param_match)
4442          << Idx << FDParam->getType() << NewFD->getParamDecl(Idx-1)->getType();
4443    } else if (Correction) {
4444      S.Diag(FD->getLocation(), diag::note_previous_decl)
4445          << Correction.getQuoted(S.getLangOptions());
4446    } else if (FDisConst != NewFDisConst) {
4447      S.Diag(FD->getLocation(), diag::note_member_def_close_const_match)
4448          << NewFDisConst << FD->getSourceRange().getEnd();
4449    } else
4450      S.Diag(FD->getLocation(), diag::note_member_def_close_match);
4451  }
4452  return Result;
4453}
4454
4455NamedDecl*
4456Sema::ActOnFunctionDeclarator(Scope *S, Declarator &D, DeclContext *DC,
4457                              TypeSourceInfo *TInfo, LookupResult &Previous,
4458                              MultiTemplateParamsArg TemplateParamLists,
4459                              bool &AddToScope) {
4460  QualType R = TInfo->getType();
4461
4462  assert(R.getTypePtr()->isFunctionType());
4463
4464  // TODO: consider using NameInfo for diagnostic.
4465  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4466  DeclarationName Name = NameInfo.getName();
4467  FunctionDecl::StorageClass SC = SC_None;
4468  switch (D.getDeclSpec().getStorageClassSpec()) {
4469  default: llvm_unreachable("Unknown storage class!");
4470  case DeclSpec::SCS_auto:
4471  case DeclSpec::SCS_register:
4472  case DeclSpec::SCS_mutable:
4473    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4474         diag::err_typecheck_sclass_func);
4475    D.setInvalidType();
4476    break;
4477  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4478  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4479  case DeclSpec::SCS_static: {
4480    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4481      // C99 6.7.1p5:
4482      //   The declaration of an identifier for a function that has
4483      //   block scope shall have no explicit storage-class specifier
4484      //   other than extern
4485      // See also (C++ [dcl.stc]p4).
4486      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4487           diag::err_static_block_func);
4488      SC = SC_None;
4489    } else
4490      SC = SC_Static;
4491    break;
4492  }
4493  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4494  }
4495
4496  if (D.getDeclSpec().isThreadSpecified())
4497    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4498
4499  // Do not allow returning a objc interface by-value.
4500  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4501    Diag(D.getIdentifierLoc(),
4502         diag::err_object_cannot_be_passed_returned_by_value) << 0
4503    << R->getAs<FunctionType>()->getResultType()
4504    << FixItHint::CreateInsertion(D.getIdentifierLoc(), "*");
4505
4506    QualType T = R->getAs<FunctionType>()->getResultType();
4507    T = Context.getObjCObjectPointerType(T);
4508    if (const FunctionProtoType *FPT = dyn_cast<FunctionProtoType>(R)) {
4509      FunctionProtoType::ExtProtoInfo EPI = FPT->getExtProtoInfo();
4510      R = Context.getFunctionType(T, FPT->arg_type_begin(),
4511                                  FPT->getNumArgs(), EPI);
4512    }
4513    else if (isa<FunctionNoProtoType>(R))
4514      R = Context.getFunctionNoProtoType(T);
4515  }
4516
4517  FunctionDecl *NewFD;
4518  bool isInline = D.getDeclSpec().isInlineSpecified();
4519  bool isFriend = false;
4520  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4521  FunctionDecl::StorageClass SCAsWritten
4522    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4523  FunctionTemplateDecl *FunctionTemplate = 0;
4524  bool isExplicitSpecialization = false;
4525  bool isFunctionTemplateSpecialization = false;
4526  bool isDependentClassScopeExplicitSpecialization = false;
4527
4528  if (!getLangOptions().CPlusPlus) {
4529    // Determine whether the function was written with a
4530    // prototype. This true when:
4531    //   - there is a prototype in the declarator, or
4532    //   - the type R of the function is some kind of typedef or other reference
4533    //     to a type name (which eventually refers to a function type).
4534    bool HasPrototype =
4535    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4536    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4537
4538    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4539                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4540                                 HasPrototype);
4541    if (D.isInvalidType())
4542      NewFD->setInvalidDecl();
4543
4544    // Set the lexical context.
4545    NewFD->setLexicalDeclContext(CurContext);
4546    // Filter out previous declarations that don't match the scope.
4547    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4548                         /*ExplicitInstantiationOrSpecialization=*/false);
4549  } else {
4550    isFriend = D.getDeclSpec().isFriendSpecified();
4551    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4552    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4553    bool isConstexpr = D.getDeclSpec().isConstexprSpecified();
4554    bool isVirtualOkay = false;
4555
4556    // Check that the return type is not an abstract class type.
4557    // For record types, this is done by the AbstractClassUsageDiagnoser once
4558    // the class has been completely parsed.
4559    if (!DC->isRecord() &&
4560      RequireNonAbstractType(D.getIdentifierLoc(),
4561                             R->getAs<FunctionType>()->getResultType(),
4562                             diag::err_abstract_type_in_decl,
4563                             AbstractReturnType))
4564      D.setInvalidType();
4565
4566    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4567      // This is a C++ constructor declaration.
4568      assert(DC->isRecord() &&
4569             "Constructors can only be declared in a member context");
4570
4571      R = CheckConstructorDeclarator(D, R, SC);
4572
4573      // Create the new declaration
4574      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4575                                         Context,
4576                                         cast<CXXRecordDecl>(DC),
4577                                         D.getSourceRange().getBegin(),
4578                                         NameInfo, R, TInfo,
4579                                         isExplicit, isInline,
4580                                         /*isImplicitlyDeclared=*/false,
4581                                         isConstexpr);
4582
4583      NewFD = NewCD;
4584    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4585      // This is a C++ destructor declaration.
4586      if (DC->isRecord()) {
4587        R = CheckDestructorDeclarator(D, R, SC);
4588        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4589
4590        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4591                                          D.getSourceRange().getBegin(),
4592                                          NameInfo, R, TInfo,
4593                                          isInline,
4594                                          /*isImplicitlyDeclared=*/false);
4595        NewFD = NewDD;
4596        isVirtualOkay = true;
4597
4598        // If the class is complete, then we now create the implicit exception
4599        // specification. If the class is incomplete or dependent, we can't do
4600        // it yet.
4601        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4602            Record->getDefinition() && !Record->isBeingDefined() &&
4603            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4604          AdjustDestructorExceptionSpec(Record, NewDD);
4605        }
4606
4607      } else {
4608        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4609
4610        // Create a FunctionDecl to satisfy the function definition parsing
4611        // code path.
4612        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4613                                     D.getIdentifierLoc(), Name, R, TInfo,
4614                                     SC, SCAsWritten, isInline,
4615                                     /*hasPrototype=*/true, isConstexpr);
4616        D.setInvalidType();
4617      }
4618    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4619      if (!DC->isRecord()) {
4620        Diag(D.getIdentifierLoc(),
4621             diag::err_conv_function_not_member);
4622        return 0;
4623      }
4624
4625      CheckConversionDeclarator(D, R, SC);
4626      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4627                                        D.getSourceRange().getBegin(),
4628                                        NameInfo, R, TInfo,
4629                                        isInline, isExplicit, isConstexpr,
4630                                        SourceLocation());
4631
4632      isVirtualOkay = true;
4633    } else if (DC->isRecord()) {
4634      // If the name of the function is the same as the name of the record,
4635      // then this must be an invalid constructor that has a return type.
4636      // (The parser checks for a return type and makes the declarator a
4637      // constructor if it has no return type).
4638      if (Name.getAsIdentifierInfo() &&
4639          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4640        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4641          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4642          << SourceRange(D.getIdentifierLoc());
4643        return 0;
4644      }
4645
4646      bool isStatic = SC == SC_Static;
4647
4648      // [class.free]p1:
4649      // Any allocation function for a class T is a static member
4650      // (even if not explicitly declared static).
4651      if (Name.getCXXOverloadedOperator() == OO_New ||
4652          Name.getCXXOverloadedOperator() == OO_Array_New)
4653        isStatic = true;
4654
4655      // [class.free]p6 Any deallocation function for a class X is a static member
4656      // (even if not explicitly declared static).
4657      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4658          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4659        isStatic = true;
4660
4661      // This is a C++ method declaration.
4662      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4663                                               Context, cast<CXXRecordDecl>(DC),
4664                                               D.getSourceRange().getBegin(),
4665                                               NameInfo, R, TInfo,
4666                                               isStatic, SCAsWritten, isInline,
4667                                               isConstexpr,
4668                                               SourceLocation());
4669      NewFD = NewMD;
4670
4671      isVirtualOkay = !isStatic;
4672    } else {
4673      // Determine whether the function was written with a
4674      // prototype. This true when:
4675      //   - we're in C++ (where every function has a prototype),
4676      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4677                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4678                                   true/*HasPrototype*/, isConstexpr);
4679    }
4680
4681    if (isFriend && !isInline && D.isFunctionDefinition()) {
4682      // C++ [class.friend]p5
4683      //   A function can be defined in a friend declaration of a
4684      //   class . . . . Such a function is implicitly inline.
4685      NewFD->setImplicitlyInline();
4686    }
4687
4688    SetNestedNameSpecifier(NewFD, D);
4689    isExplicitSpecialization = false;
4690    isFunctionTemplateSpecialization = false;
4691    if (D.isInvalidType())
4692      NewFD->setInvalidDecl();
4693
4694    // Set the lexical context. If the declarator has a C++
4695    // scope specifier, or is the object of a friend declaration, the
4696    // lexical context will be different from the semantic context.
4697    NewFD->setLexicalDeclContext(CurContext);
4698
4699    // Match up the template parameter lists with the scope specifier, then
4700    // determine whether we have a template or a template specialization.
4701    bool Invalid = false;
4702    if (TemplateParameterList *TemplateParams
4703          = MatchTemplateParametersToScopeSpecifier(
4704                                  D.getDeclSpec().getSourceRange().getBegin(),
4705                                  D.getIdentifierLoc(),
4706                                  D.getCXXScopeSpec(),
4707                                  TemplateParamLists.get(),
4708                                  TemplateParamLists.size(),
4709                                  isFriend,
4710                                  isExplicitSpecialization,
4711                                  Invalid)) {
4712      if (TemplateParams->size() > 0) {
4713        // This is a function template
4714
4715        // Check that we can declare a template here.
4716        if (CheckTemplateDeclScope(S, TemplateParams))
4717          return 0;
4718
4719        // A destructor cannot be a template.
4720        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4721          Diag(NewFD->getLocation(), diag::err_destructor_template);
4722          return 0;
4723        }
4724
4725        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4726                                                        NewFD->getLocation(),
4727                                                        Name, TemplateParams,
4728                                                        NewFD);
4729        FunctionTemplate->setLexicalDeclContext(CurContext);
4730        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4731
4732        // For source fidelity, store the other template param lists.
4733        if (TemplateParamLists.size() > 1) {
4734          NewFD->setTemplateParameterListsInfo(Context,
4735                                               TemplateParamLists.size() - 1,
4736                                               TemplateParamLists.release());
4737        }
4738      } else {
4739        // This is a function template specialization.
4740        isFunctionTemplateSpecialization = true;
4741        // For source fidelity, store all the template param lists.
4742        NewFD->setTemplateParameterListsInfo(Context,
4743                                             TemplateParamLists.size(),
4744                                             TemplateParamLists.release());
4745
4746        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4747        if (isFriend) {
4748          // We want to remove the "template<>", found here.
4749          SourceRange RemoveRange = TemplateParams->getSourceRange();
4750
4751          // If we remove the template<> and the name is not a
4752          // template-id, we're actually silently creating a problem:
4753          // the friend declaration will refer to an untemplated decl,
4754          // and clearly the user wants a template specialization.  So
4755          // we need to insert '<>' after the name.
4756          SourceLocation InsertLoc;
4757          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4758            InsertLoc = D.getName().getSourceRange().getEnd();
4759            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4760          }
4761
4762          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4763            << Name << RemoveRange
4764            << FixItHint::CreateRemoval(RemoveRange)
4765            << FixItHint::CreateInsertion(InsertLoc, "<>");
4766        }
4767      }
4768    }
4769    else {
4770      // All template param lists were matched against the scope specifier:
4771      // this is NOT (an explicit specialization of) a template.
4772      if (TemplateParamLists.size() > 0)
4773        // For source fidelity, store all the template param lists.
4774        NewFD->setTemplateParameterListsInfo(Context,
4775                                             TemplateParamLists.size(),
4776                                             TemplateParamLists.release());
4777    }
4778
4779    if (Invalid) {
4780      NewFD->setInvalidDecl();
4781      if (FunctionTemplate)
4782        FunctionTemplate->setInvalidDecl();
4783    }
4784
4785    // C++ [dcl.fct.spec]p5:
4786    //   The virtual specifier shall only be used in declarations of
4787    //   nonstatic class member functions that appear within a
4788    //   member-specification of a class declaration; see 10.3.
4789    //
4790    if (isVirtual && !NewFD->isInvalidDecl()) {
4791      if (!isVirtualOkay) {
4792        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4793             diag::err_virtual_non_function);
4794      } else if (!CurContext->isRecord()) {
4795        // 'virtual' was specified outside of the class.
4796        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4797             diag::err_virtual_out_of_class)
4798          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4799      } else if (NewFD->getDescribedFunctionTemplate()) {
4800        // C++ [temp.mem]p3:
4801        //  A member function template shall not be virtual.
4802        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4803             diag::err_virtual_member_function_template)
4804          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4805      } else {
4806        // Okay: Add virtual to the method.
4807        NewFD->setVirtualAsWritten(true);
4808      }
4809    }
4810
4811    // C++ [dcl.fct.spec]p3:
4812    //  The inline specifier shall not appear on a block scope function declaration.
4813    if (isInline && !NewFD->isInvalidDecl()) {
4814      if (CurContext->isFunctionOrMethod()) {
4815        // 'inline' is not allowed on block scope function declaration.
4816        Diag(D.getDeclSpec().getInlineSpecLoc(),
4817             diag::err_inline_declaration_block_scope) << Name
4818          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4819      }
4820    }
4821
4822    // C++ [dcl.fct.spec]p6:
4823    //  The explicit specifier shall be used only in the declaration of a
4824    //  constructor or conversion function within its class definition; see 12.3.1
4825    //  and 12.3.2.
4826    if (isExplicit && !NewFD->isInvalidDecl()) {
4827      if (!CurContext->isRecord()) {
4828        // 'explicit' was specified outside of the class.
4829        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4830             diag::err_explicit_out_of_class)
4831          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4832      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4833                 !isa<CXXConversionDecl>(NewFD)) {
4834        // 'explicit' was specified on a function that wasn't a constructor
4835        // or conversion function.
4836        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4837             diag::err_explicit_non_ctor_or_conv_function)
4838          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4839      }
4840    }
4841
4842    if (isConstexpr) {
4843      // C++0x [dcl.constexpr]p2: constexpr functions and constexpr constructors
4844      // are implicitly inline.
4845      NewFD->setImplicitlyInline();
4846
4847      // C++0x [dcl.constexpr]p3: functions declared constexpr are required to
4848      // be either constructors or to return a literal type. Therefore,
4849      // destructors cannot be declared constexpr.
4850      if (isa<CXXDestructorDecl>(NewFD))
4851        Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_constexpr_dtor);
4852    }
4853
4854    // If __module_private__ was specified, mark the function accordingly.
4855    if (D.getDeclSpec().isModulePrivateSpecified()) {
4856      if (isFunctionTemplateSpecialization) {
4857        SourceLocation ModulePrivateLoc
4858          = D.getDeclSpec().getModulePrivateSpecLoc();
4859        Diag(ModulePrivateLoc, diag::err_module_private_specialization)
4860          << 0
4861          << FixItHint::CreateRemoval(ModulePrivateLoc);
4862      } else {
4863        NewFD->setModulePrivate();
4864        if (FunctionTemplate)
4865          FunctionTemplate->setModulePrivate();
4866      }
4867    }
4868
4869    // Filter out previous declarations that don't match the scope.
4870    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4871                         isExplicitSpecialization ||
4872                         isFunctionTemplateSpecialization);
4873
4874    if (isFriend) {
4875      // For now, claim that the objects have no previous declaration.
4876      if (FunctionTemplate) {
4877        FunctionTemplate->setObjectOfFriendDecl(false);
4878        FunctionTemplate->setAccess(AS_public);
4879      }
4880      NewFD->setObjectOfFriendDecl(false);
4881      NewFD->setAccess(AS_public);
4882    }
4883
4884    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext &&
4885        D.isFunctionDefinition()) {
4886      // A method is implicitly inline if it's defined in its class
4887      // definition.
4888      NewFD->setImplicitlyInline();
4889    }
4890
4891    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4892        !CurContext->isRecord()) {
4893      // C++ [class.static]p1:
4894      //   A data or function member of a class may be declared static
4895      //   in a class definition, in which case it is a static member of
4896      //   the class.
4897
4898      // Complain about the 'static' specifier if it's on an out-of-line
4899      // member function definition.
4900      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4901           diag::err_static_out_of_line)
4902        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4903    }
4904  }
4905
4906  // Handle GNU asm-label extension (encoded as an attribute).
4907  if (Expr *E = (Expr*) D.getAsmLabel()) {
4908    // The parser guarantees this is a string.
4909    StringLiteral *SE = cast<StringLiteral>(E);
4910    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4911                                                SE->getString()));
4912  }
4913
4914  // Copy the parameter declarations from the declarator D to the function
4915  // declaration NewFD, if they are available.  First scavenge them into Params.
4916  SmallVector<ParmVarDecl*, 16> Params;
4917  if (D.isFunctionDeclarator()) {
4918    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4919
4920    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4921    // function that takes no arguments, not a function that takes a
4922    // single void argument.
4923    // We let through "const void" here because Sema::GetTypeForDeclarator
4924    // already checks for that case.
4925    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4926        FTI.ArgInfo[0].Param &&
4927        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4928      // Empty arg list, don't push any params.
4929      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4930
4931      // In C++, the empty parameter-type-list must be spelled "void"; a
4932      // typedef of void is not permitted.
4933      if (getLangOptions().CPlusPlus &&
4934          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4935        bool IsTypeAlias = false;
4936        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4937          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4938        else if (const TemplateSpecializationType *TST =
4939                   Param->getType()->getAs<TemplateSpecializationType>())
4940          IsTypeAlias = TST->isTypeAlias();
4941        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4942          << IsTypeAlias;
4943      }
4944    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4945      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4946        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4947        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4948        Param->setDeclContext(NewFD);
4949        Params.push_back(Param);
4950
4951        if (Param->isInvalidDecl())
4952          NewFD->setInvalidDecl();
4953      }
4954    }
4955
4956  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4957    // When we're declaring a function with a typedef, typeof, etc as in the
4958    // following example, we'll need to synthesize (unnamed)
4959    // parameters for use in the declaration.
4960    //
4961    // @code
4962    // typedef void fn(int);
4963    // fn f;
4964    // @endcode
4965
4966    // Synthesize a parameter for each argument type.
4967    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4968         AE = FT->arg_type_end(); AI != AE; ++AI) {
4969      ParmVarDecl *Param =
4970        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4971      Param->setScopeInfo(0, Params.size());
4972      Params.push_back(Param);
4973    }
4974  } else {
4975    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4976           "Should not need args for typedef of non-prototype fn");
4977  }
4978  // Finally, we know we have the right number of parameters, install them.
4979  NewFD->setParams(Params);
4980
4981  // Process the non-inheritable attributes on this declaration.
4982  ProcessDeclAttributes(S, NewFD, D,
4983                        /*NonInheritable=*/true, /*Inheritable=*/false);
4984
4985  if (!getLangOptions().CPlusPlus) {
4986    // Perform semantic checking on the function declaration.
4987    bool isExplicitSpecialization=false;
4988    if (!NewFD->isInvalidDecl()) {
4989      if (NewFD->getResultType()->isVariablyModifiedType()) {
4990        // Functions returning a variably modified type violate C99 6.7.5.2p2
4991        // because all functions have linkage.
4992        Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4993        NewFD->setInvalidDecl();
4994      } else {
4995        if (NewFD->isMain())
4996          CheckMain(NewFD, D.getDeclSpec());
4997        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
4998                                                    isExplicitSpecialization));
4999      }
5000    }
5001    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5002            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5003           "previous declaration set still overloaded");
5004  } else {
5005    // If the declarator is a template-id, translate the parser's template
5006    // argument list into our AST format.
5007    bool HasExplicitTemplateArgs = false;
5008    TemplateArgumentListInfo TemplateArgs;
5009    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
5010      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
5011      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
5012      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
5013      ASTTemplateArgsPtr TemplateArgsPtr(*this,
5014                                         TemplateId->getTemplateArgs(),
5015                                         TemplateId->NumArgs);
5016      translateTemplateArguments(TemplateArgsPtr,
5017                                 TemplateArgs);
5018      TemplateArgsPtr.release();
5019
5020      HasExplicitTemplateArgs = true;
5021
5022      if (NewFD->isInvalidDecl()) {
5023        HasExplicitTemplateArgs = false;
5024      } else if (FunctionTemplate) {
5025        // Function template with explicit template arguments.
5026        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
5027          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
5028
5029        HasExplicitTemplateArgs = false;
5030      } else if (!isFunctionTemplateSpecialization &&
5031                 !D.getDeclSpec().isFriendSpecified()) {
5032        // We have encountered something that the user meant to be a
5033        // specialization (because it has explicitly-specified template
5034        // arguments) but that was not introduced with a "template<>" (or had
5035        // too few of them).
5036        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
5037          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
5038          << FixItHint::CreateInsertion(
5039                                        D.getDeclSpec().getSourceRange().getBegin(),
5040                                                  "template<> ");
5041        isFunctionTemplateSpecialization = true;
5042      } else {
5043        // "friend void foo<>(int);" is an implicit specialization decl.
5044        isFunctionTemplateSpecialization = true;
5045      }
5046    } else if (isFriend && isFunctionTemplateSpecialization) {
5047      // This combination is only possible in a recovery case;  the user
5048      // wrote something like:
5049      //   template <> friend void foo(int);
5050      // which we're recovering from as if the user had written:
5051      //   friend void foo<>(int);
5052      // Go ahead and fake up a template id.
5053      HasExplicitTemplateArgs = true;
5054        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
5055      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
5056    }
5057
5058    // If it's a friend (and only if it's a friend), it's possible
5059    // that either the specialized function type or the specialized
5060    // template is dependent, and therefore matching will fail.  In
5061    // this case, don't check the specialization yet.
5062    bool InstantiationDependent = false;
5063    if (isFunctionTemplateSpecialization && isFriend &&
5064        (NewFD->getType()->isDependentType() || DC->isDependentContext() ||
5065         TemplateSpecializationType::anyDependentTemplateArguments(
5066            TemplateArgs.getArgumentArray(), TemplateArgs.size(),
5067            InstantiationDependent))) {
5068      assert(HasExplicitTemplateArgs &&
5069             "friend function specialization without template args");
5070      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
5071                                                       Previous))
5072        NewFD->setInvalidDecl();
5073    } else if (isFunctionTemplateSpecialization) {
5074      if (CurContext->isDependentContext() && CurContext->isRecord()
5075          && !isFriend) {
5076        isDependentClassScopeExplicitSpecialization = true;
5077        Diag(NewFD->getLocation(), getLangOptions().MicrosoftExt ?
5078          diag::ext_function_specialization_in_class :
5079          diag::err_function_specialization_in_class)
5080          << NewFD->getDeclName();
5081      } else if (CheckFunctionTemplateSpecialization(NewFD,
5082                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
5083                                                     Previous))
5084        NewFD->setInvalidDecl();
5085
5086      // C++ [dcl.stc]p1:
5087      //   A storage-class-specifier shall not be specified in an explicit
5088      //   specialization (14.7.3)
5089      if (SC != SC_None) {
5090        if (SC != NewFD->getStorageClass())
5091          Diag(NewFD->getLocation(),
5092               diag::err_explicit_specialization_inconsistent_storage_class)
5093            << SC
5094            << FixItHint::CreateRemoval(
5095                                      D.getDeclSpec().getStorageClassSpecLoc());
5096
5097        else
5098          Diag(NewFD->getLocation(),
5099               diag::ext_explicit_specialization_storage_class)
5100            << FixItHint::CreateRemoval(
5101                                      D.getDeclSpec().getStorageClassSpecLoc());
5102      }
5103
5104    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
5105      if (CheckMemberSpecialization(NewFD, Previous))
5106          NewFD->setInvalidDecl();
5107    }
5108
5109    // Perform semantic checking on the function declaration.
5110    if (!isDependentClassScopeExplicitSpecialization) {
5111      if (NewFD->isInvalidDecl()) {
5112        // If this is a class member, mark the class invalid immediately.
5113        // This avoids some consistency errors later.
5114        if (CXXMethodDecl* methodDecl = dyn_cast<CXXMethodDecl>(NewFD))
5115          methodDecl->getParent()->setInvalidDecl();
5116      } else {
5117        if (NewFD->isMain())
5118          CheckMain(NewFD, D.getDeclSpec());
5119        D.setRedeclaration(CheckFunctionDeclaration(S, NewFD, Previous,
5120                                                    isExplicitSpecialization));
5121      }
5122    }
5123
5124    assert((NewFD->isInvalidDecl() || !D.isRedeclaration() ||
5125            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
5126           "previous declaration set still overloaded");
5127
5128    if (NewFD->isConstexpr() && !NewFD->isInvalidDecl() &&
5129        !CheckConstexprFunctionDecl(NewFD, CCK_Declaration))
5130      NewFD->setInvalidDecl();
5131
5132    NamedDecl *PrincipalDecl = (FunctionTemplate
5133                                ? cast<NamedDecl>(FunctionTemplate)
5134                                : NewFD);
5135
5136    if (isFriend && D.isRedeclaration()) {
5137      AccessSpecifier Access = AS_public;
5138      if (!NewFD->isInvalidDecl())
5139        Access = NewFD->getPreviousDeclaration()->getAccess();
5140
5141      NewFD->setAccess(Access);
5142      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
5143
5144      PrincipalDecl->setObjectOfFriendDecl(true);
5145    }
5146
5147    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
5148        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
5149      PrincipalDecl->setNonMemberOperator();
5150
5151    // If we have a function template, check the template parameter
5152    // list. This will check and merge default template arguments.
5153    if (FunctionTemplate) {
5154      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
5155      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
5156                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
5157                            D.getDeclSpec().isFriendSpecified()
5158                              ? (D.isFunctionDefinition()
5159                                   ? TPC_FriendFunctionTemplateDefinition
5160                                   : TPC_FriendFunctionTemplate)
5161                              : (D.getCXXScopeSpec().isSet() &&
5162                                 DC && DC->isRecord() &&
5163                                 DC->isDependentContext())
5164                                  ? TPC_ClassTemplateMember
5165                                  : TPC_FunctionTemplate);
5166    }
5167
5168    if (NewFD->isInvalidDecl()) {
5169      // Ignore all the rest of this.
5170    } else if (!D.isRedeclaration()) {
5171      struct ActOnFDArgs ExtraArgs = { S, D, DC, TInfo, TemplateParamLists,
5172                                       AddToScope };
5173      // Fake up an access specifier if it's supposed to be a class member.
5174      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
5175        NewFD->setAccess(AS_public);
5176
5177      // Qualified decls generally require a previous declaration.
5178      if (D.getCXXScopeSpec().isSet()) {
5179        // ...with the major exception of templated-scope or
5180        // dependent-scope friend declarations.
5181
5182        // TODO: we currently also suppress this check in dependent
5183        // contexts because (1) the parameter depth will be off when
5184        // matching friend templates and (2) we might actually be
5185        // selecting a friend based on a dependent factor.  But there
5186        // are situations where these conditions don't apply and we
5187        // can actually do this check immediately.
5188        if (isFriend &&
5189            (TemplateParamLists.size() ||
5190             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
5191             CurContext->isDependentContext())) {
5192          // ignore these
5193        } else {
5194          // The user tried to provide an out-of-line definition for a
5195          // function that is a member of a class or namespace, but there
5196          // was no such member function declared (C++ [class.mfct]p2,
5197          // C++ [namespace.memdef]p2). For example:
5198          //
5199          // class X {
5200          //   void f() const;
5201          // };
5202          //
5203          // void X::f() { } // ill-formed
5204          //
5205          // Complain about this problem, and attempt to suggest close
5206          // matches (e.g., those that differ only in cv-qualifiers and
5207          // whether the parameter types are references).
5208
5209          if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5210                                                               NewFD, false,
5211                                                               ExtraArgs)) {
5212            AddToScope = ExtraArgs.AddToScope;
5213            return Result;
5214          }
5215        }
5216
5217        // Unqualified local friend declarations are required to resolve
5218        // to something.
5219      } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
5220        if (NamedDecl *Result = DiagnoseInvalidRedeclaration(*this, Previous,
5221                                                             NewFD, true,
5222                                                             ExtraArgs)) {
5223          AddToScope = ExtraArgs.AddToScope;
5224          return Result;
5225        }
5226      }
5227
5228    } else if (!D.isFunctionDefinition() && D.getCXXScopeSpec().isSet() &&
5229               !isFriend && !isFunctionTemplateSpecialization &&
5230               !isExplicitSpecialization) {
5231      // An out-of-line member function declaration must also be a
5232      // definition (C++ [dcl.meaning]p1).
5233      // Note that this is not the case for explicit specializations of
5234      // function templates or member functions of class templates, per
5235      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
5236      // for compatibility with old SWIG code which likes to generate them.
5237      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
5238        << D.getCXXScopeSpec().getRange();
5239    }
5240  }
5241
5242
5243  // Handle attributes. We need to have merged decls when handling attributes
5244  // (for example to check for conflicts, etc).
5245  // FIXME: This needs to happen before we merge declarations. Then,
5246  // let attribute merging cope with attribute conflicts.
5247  ProcessDeclAttributes(S, NewFD, D,
5248                        /*NonInheritable=*/false, /*Inheritable=*/true);
5249
5250  // attributes declared post-definition are currently ignored
5251  // FIXME: This should happen during attribute merging
5252  if (D.isRedeclaration() && Previous.isSingleResult()) {
5253    const FunctionDecl *Def;
5254    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
5255    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
5256      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
5257      Diag(Def->getLocation(), diag::note_previous_definition);
5258    }
5259  }
5260
5261  AddKnownFunctionAttributes(NewFD);
5262
5263  if (NewFD->hasAttr<OverloadableAttr>() &&
5264      !NewFD->getType()->getAs<FunctionProtoType>()) {
5265    Diag(NewFD->getLocation(),
5266         diag::err_attribute_overloadable_no_prototype)
5267      << NewFD;
5268
5269    // Turn this into a variadic function with no parameters.
5270    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
5271    FunctionProtoType::ExtProtoInfo EPI;
5272    EPI.Variadic = true;
5273    EPI.ExtInfo = FT->getExtInfo();
5274
5275    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
5276    NewFD->setType(R);
5277  }
5278
5279  // If there's a #pragma GCC visibility in scope, and this isn't a class
5280  // member, set the visibility of this function.
5281  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
5282    AddPushedVisibilityAttribute(NewFD);
5283
5284  // If there's a #pragma clang arc_cf_code_audited in scope, consider
5285  // marking the function.
5286  AddCFAuditedAttribute(NewFD);
5287
5288  // If this is a locally-scoped extern C function, update the
5289  // map of such names.
5290  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
5291      && !NewFD->isInvalidDecl())
5292    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
5293
5294  // Set this FunctionDecl's range up to the right paren.
5295  NewFD->setRangeEnd(D.getSourceRange().getEnd());
5296
5297  if (getLangOptions().CPlusPlus) {
5298    if (FunctionTemplate) {
5299      if (NewFD->isInvalidDecl())
5300        FunctionTemplate->setInvalidDecl();
5301      return FunctionTemplate;
5302    }
5303  }
5304
5305  MarkUnusedFileScopedDecl(NewFD);
5306
5307  if (getLangOptions().CUDA)
5308    if (IdentifierInfo *II = NewFD->getIdentifier())
5309      if (!NewFD->isInvalidDecl() &&
5310          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
5311        if (II->isStr("cudaConfigureCall")) {
5312          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
5313            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
5314
5315          Context.setcudaConfigureCallDecl(NewFD);
5316        }
5317      }
5318
5319  // Here we have an function template explicit specialization at class scope.
5320  // The actually specialization will be postponed to template instatiation
5321  // time via the ClassScopeFunctionSpecializationDecl node.
5322  if (isDependentClassScopeExplicitSpecialization) {
5323    ClassScopeFunctionSpecializationDecl *NewSpec =
5324                         ClassScopeFunctionSpecializationDecl::Create(
5325                                Context, CurContext,  SourceLocation(),
5326                                cast<CXXMethodDecl>(NewFD));
5327    CurContext->addDecl(NewSpec);
5328    AddToScope = false;
5329  }
5330
5331  return NewFD;
5332}
5333
5334/// \brief Perform semantic checking of a new function declaration.
5335///
5336/// Performs semantic analysis of the new function declaration
5337/// NewFD. This routine performs all semantic checking that does not
5338/// require the actual declarator involved in the declaration, and is
5339/// used both for the declaration of functions as they are parsed
5340/// (called via ActOnDeclarator) and for the declaration of functions
5341/// that have been instantiated via C++ template instantiation (called
5342/// via InstantiateDecl).
5343///
5344/// \param IsExplicitSpecialiation whether this new function declaration is
5345/// an explicit specialization of the previous declaration.
5346///
5347/// This sets NewFD->isInvalidDecl() to true if there was an error.
5348///
5349/// Returns true if the function declaration is a redeclaration.
5350bool Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
5351                                    LookupResult &Previous,
5352                                    bool IsExplicitSpecialization) {
5353  assert(!NewFD->getResultType()->isVariablyModifiedType()
5354         && "Variably modified return types are not handled here");
5355
5356  // Check for a previous declaration of this name.
5357  if (Previous.empty() && NewFD->isExternC()) {
5358    // Since we did not find anything by this name and we're declaring
5359    // an extern "C" function, look for a non-visible extern "C"
5360    // declaration with the same name.
5361    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
5362      = findLocallyScopedExternalDecl(NewFD->getDeclName());
5363    if (Pos != LocallyScopedExternalDecls.end())
5364      Previous.addDecl(Pos->second);
5365  }
5366
5367  bool Redeclaration = false;
5368
5369  // Merge or overload the declaration with an existing declaration of
5370  // the same name, if appropriate.
5371  if (!Previous.empty()) {
5372    // Determine whether NewFD is an overload of PrevDecl or
5373    // a declaration that requires merging. If it's an overload,
5374    // there's no more work to do here; we'll just add the new
5375    // function to the scope.
5376
5377    NamedDecl *OldDecl = 0;
5378    if (!AllowOverloadingOfFunction(Previous, Context)) {
5379      Redeclaration = true;
5380      OldDecl = Previous.getFoundDecl();
5381    } else {
5382      switch (CheckOverload(S, NewFD, Previous, OldDecl,
5383                            /*NewIsUsingDecl*/ false)) {
5384      case Ovl_Match:
5385        Redeclaration = true;
5386        break;
5387
5388      case Ovl_NonFunction:
5389        Redeclaration = true;
5390        break;
5391
5392      case Ovl_Overload:
5393        Redeclaration = false;
5394        break;
5395      }
5396
5397      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
5398        // If a function name is overloadable in C, then every function
5399        // with that name must be marked "overloadable".
5400        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
5401          << Redeclaration << NewFD;
5402        NamedDecl *OverloadedDecl = 0;
5403        if (Redeclaration)
5404          OverloadedDecl = OldDecl;
5405        else if (!Previous.empty())
5406          OverloadedDecl = Previous.getRepresentativeDecl();
5407        if (OverloadedDecl)
5408          Diag(OverloadedDecl->getLocation(),
5409               diag::note_attribute_overloadable_prev_overload);
5410        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
5411                                                        Context));
5412      }
5413    }
5414
5415    if (Redeclaration) {
5416      // NewFD and OldDecl represent declarations that need to be
5417      // merged.
5418      if (MergeFunctionDecl(NewFD, OldDecl)) {
5419        NewFD->setInvalidDecl();
5420        return Redeclaration;
5421      }
5422
5423      Previous.clear();
5424      Previous.addDecl(OldDecl);
5425
5426      if (FunctionTemplateDecl *OldTemplateDecl
5427                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
5428        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
5429        FunctionTemplateDecl *NewTemplateDecl
5430          = NewFD->getDescribedFunctionTemplate();
5431        assert(NewTemplateDecl && "Template/non-template mismatch");
5432        if (CXXMethodDecl *Method
5433              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
5434          Method->setAccess(OldTemplateDecl->getAccess());
5435          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
5436        }
5437
5438        // If this is an explicit specialization of a member that is a function
5439        // template, mark it as a member specialization.
5440        if (IsExplicitSpecialization &&
5441            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5442          NewTemplateDecl->setMemberSpecialization();
5443          assert(OldTemplateDecl->isMemberSpecialization());
5444        }
5445
5446        if (OldTemplateDecl->isModulePrivate())
5447          NewTemplateDecl->setModulePrivate();
5448
5449      } else {
5450        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5451          NewFD->setAccess(OldDecl->getAccess());
5452        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5453      }
5454    }
5455  }
5456
5457  // Semantic checking for this function declaration (in isolation).
5458  if (getLangOptions().CPlusPlus) {
5459    // C++-specific checks.
5460    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5461      CheckConstructor(Constructor);
5462    } else if (CXXDestructorDecl *Destructor =
5463                dyn_cast<CXXDestructorDecl>(NewFD)) {
5464      CXXRecordDecl *Record = Destructor->getParent();
5465      QualType ClassType = Context.getTypeDeclType(Record);
5466
5467      // FIXME: Shouldn't we be able to perform this check even when the class
5468      // type is dependent? Both gcc and edg can handle that.
5469      if (!ClassType->isDependentType()) {
5470        DeclarationName Name
5471          = Context.DeclarationNames.getCXXDestructorName(
5472                                        Context.getCanonicalType(ClassType));
5473        if (NewFD->getDeclName() != Name) {
5474          Diag(NewFD->getLocation(), diag::err_destructor_name);
5475          NewFD->setInvalidDecl();
5476          return Redeclaration;
5477        }
5478      }
5479    } else if (CXXConversionDecl *Conversion
5480               = dyn_cast<CXXConversionDecl>(NewFD)) {
5481      ActOnConversionDeclarator(Conversion);
5482    }
5483
5484    // Find any virtual functions that this function overrides.
5485    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5486      if (!Method->isFunctionTemplateSpecialization() &&
5487          !Method->getDescribedFunctionTemplate()) {
5488        if (AddOverriddenMethods(Method->getParent(), Method)) {
5489          // If the function was marked as "static", we have a problem.
5490          if (NewFD->getStorageClass() == SC_Static) {
5491            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5492              << NewFD->getDeclName();
5493            for (CXXMethodDecl::method_iterator
5494                      Overridden = Method->begin_overridden_methods(),
5495                   OverriddenEnd = Method->end_overridden_methods();
5496                 Overridden != OverriddenEnd;
5497                 ++Overridden) {
5498              Diag((*Overridden)->getLocation(),
5499                   diag::note_overridden_virtual_function);
5500            }
5501          }
5502        }
5503      }
5504    }
5505
5506    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5507    if (NewFD->isOverloadedOperator() &&
5508        CheckOverloadedOperatorDeclaration(NewFD)) {
5509      NewFD->setInvalidDecl();
5510      return Redeclaration;
5511    }
5512
5513    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5514    if (NewFD->getLiteralIdentifier() &&
5515        CheckLiteralOperatorDeclaration(NewFD)) {
5516      NewFD->setInvalidDecl();
5517      return Redeclaration;
5518    }
5519
5520    // In C++, check default arguments now that we have merged decls. Unless
5521    // the lexical context is the class, because in this case this is done
5522    // during delayed parsing anyway.
5523    if (!CurContext->isRecord())
5524      CheckCXXDefaultArguments(NewFD);
5525
5526    // If this function declares a builtin function, check the type of this
5527    // declaration against the expected type for the builtin.
5528    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5529      ASTContext::GetBuiltinTypeError Error;
5530      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5531      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5532        // The type of this function differs from the type of the builtin,
5533        // so forget about the builtin entirely.
5534        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5535      }
5536    }
5537  }
5538  return Redeclaration;
5539}
5540
5541void Sema::CheckMain(FunctionDecl* FD, const DeclSpec& DS) {
5542  // C++ [basic.start.main]p3:  A program that declares main to be inline
5543  //   or static is ill-formed.
5544  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5545  //   shall not appear in a declaration of main.
5546  // static main is not an error under C99, but we should warn about it.
5547  if (FD->getStorageClass() == SC_Static)
5548    Diag(DS.getStorageClassSpecLoc(), getLangOptions().CPlusPlus
5549         ? diag::err_static_main : diag::warn_static_main)
5550      << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
5551  if (FD->isInlineSpecified())
5552    Diag(DS.getInlineSpecLoc(), diag::err_inline_main)
5553      << FixItHint::CreateRemoval(DS.getInlineSpecLoc());
5554
5555  QualType T = FD->getType();
5556  assert(T->isFunctionType() && "function decl is not of function type");
5557  const FunctionType* FT = T->getAs<FunctionType>();
5558
5559  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5560    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5561    FD->setInvalidDecl(true);
5562  }
5563
5564  // Treat protoless main() as nullary.
5565  if (isa<FunctionNoProtoType>(FT)) return;
5566
5567  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5568  unsigned nparams = FTP->getNumArgs();
5569  assert(FD->getNumParams() == nparams);
5570
5571  bool HasExtraParameters = (nparams > 3);
5572
5573  // Darwin passes an undocumented fourth argument of type char**.  If
5574  // other platforms start sprouting these, the logic below will start
5575  // getting shifty.
5576  if (nparams == 4 && Context.getTargetInfo().getTriple().isOSDarwin())
5577    HasExtraParameters = false;
5578
5579  if (HasExtraParameters) {
5580    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5581    FD->setInvalidDecl(true);
5582    nparams = 3;
5583  }
5584
5585  // FIXME: a lot of the following diagnostics would be improved
5586  // if we had some location information about types.
5587
5588  QualType CharPP =
5589    Context.getPointerType(Context.getPointerType(Context.CharTy));
5590  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5591
5592  for (unsigned i = 0; i < nparams; ++i) {
5593    QualType AT = FTP->getArgType(i);
5594
5595    bool mismatch = true;
5596
5597    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5598      mismatch = false;
5599    else if (Expected[i] == CharPP) {
5600      // As an extension, the following forms are okay:
5601      //   char const **
5602      //   char const * const *
5603      //   char * const *
5604
5605      QualifierCollector qs;
5606      const PointerType* PT;
5607      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5608          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5609          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5610        qs.removeConst();
5611        mismatch = !qs.empty();
5612      }
5613    }
5614
5615    if (mismatch) {
5616      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5617      // TODO: suggest replacing given type with expected type
5618      FD->setInvalidDecl(true);
5619    }
5620  }
5621
5622  if (nparams == 1 && !FD->isInvalidDecl()) {
5623    Diag(FD->getLocation(), diag::warn_main_one_arg);
5624  }
5625
5626  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5627    Diag(FD->getLocation(), diag::err_main_template_decl);
5628    FD->setInvalidDecl();
5629  }
5630}
5631
5632bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5633  // FIXME: Need strict checking.  In C89, we need to check for
5634  // any assignment, increment, decrement, function-calls, or
5635  // commas outside of a sizeof.  In C99, it's the same list,
5636  // except that the aforementioned are allowed in unevaluated
5637  // expressions.  Everything else falls under the
5638  // "may accept other forms of constant expressions" exception.
5639  // (We never end up here for C++, so the constant expression
5640  // rules there don't matter.)
5641  if (Init->isConstantInitializer(Context, false))
5642    return false;
5643  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5644    << Init->getSourceRange();
5645  return true;
5646}
5647
5648namespace {
5649  // Visits an initialization expression to see if OrigDecl is evaluated in
5650  // its own initialization and throws a warning if it does.
5651  class SelfReferenceChecker
5652      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5653    Sema &S;
5654    Decl *OrigDecl;
5655    bool isRecordType;
5656    bool isPODType;
5657
5658  public:
5659    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5660
5661    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5662                                                    S(S), OrigDecl(OrigDecl) {
5663      isPODType = false;
5664      isRecordType = false;
5665      if (ValueDecl *VD = dyn_cast<ValueDecl>(OrigDecl)) {
5666        isPODType = VD->getType().isPODType(S.Context);
5667        isRecordType = VD->getType()->isRecordType();
5668      }
5669    }
5670
5671    void VisitExpr(Expr *E) {
5672      if (isa<ObjCMessageExpr>(*E)) return;
5673      if (isRecordType) {
5674        Expr *expr = E;
5675        if (MemberExpr *ME = dyn_cast<MemberExpr>(E)) {
5676          ValueDecl *VD = ME->getMemberDecl();
5677          if (isa<EnumConstantDecl>(VD) || isa<VarDecl>(VD)) return;
5678          expr = ME->getBase();
5679        }
5680        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(expr)) {
5681          HandleDeclRefExpr(DRE);
5682          return;
5683        }
5684      }
5685      Inherited::VisitExpr(E);
5686    }
5687
5688    void VisitMemberExpr(MemberExpr *E) {
5689      if (E->getType()->canDecayToPointerType()) return;
5690      if (isa<FieldDecl>(E->getMemberDecl()))
5691        if (DeclRefExpr *DRE
5692              = dyn_cast<DeclRefExpr>(E->getBase()->IgnoreParenImpCasts())) {
5693          HandleDeclRefExpr(DRE);
5694          return;
5695        }
5696      Inherited::VisitMemberExpr(E);
5697    }
5698
5699    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5700      if ((!isRecordType &&E->getCastKind() == CK_LValueToRValue) ||
5701          (isRecordType && E->getCastKind() == CK_NoOp)) {
5702        Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5703        if (MemberExpr *ME = dyn_cast<MemberExpr>(SubExpr))
5704          SubExpr = ME->getBase()->IgnoreParenImpCasts();
5705        if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr)) {
5706          HandleDeclRefExpr(DRE);
5707          return;
5708        }
5709      }
5710      Inherited::VisitImplicitCastExpr(E);
5711    }
5712
5713    void VisitUnaryOperator(UnaryOperator *E) {
5714      // For POD record types, addresses of its own members are well-defined.
5715      if (isRecordType && isPODType) return;
5716      Inherited::VisitUnaryOperator(E);
5717    }
5718
5719    void HandleDeclRefExpr(DeclRefExpr *DRE) {
5720      Decl* ReferenceDecl = DRE->getDecl();
5721      if (OrigDecl != ReferenceDecl) return;
5722      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5723                          Sema::NotForRedeclaration);
5724      S.DiagRuntimeBehavior(DRE->getLocStart(), DRE,
5725                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5726                              << Result.getLookupName()
5727                              << OrigDecl->getLocation()
5728                              << DRE->getSourceRange());
5729    }
5730  };
5731}
5732
5733/// CheckSelfReference - Warns if OrigDecl is used in expression E.
5734void Sema::CheckSelfReference(Decl* OrigDecl, Expr *E) {
5735  SelfReferenceChecker(*this, OrigDecl).VisitExpr(E);
5736}
5737
5738/// AddInitializerToDecl - Adds the initializer Init to the
5739/// declaration dcl. If DirectInit is true, this is C++ direct
5740/// initialization rather than copy initialization.
5741void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5742                                bool DirectInit, bool TypeMayContainAuto) {
5743  // If there is no declaration, there was an error parsing it.  Just ignore
5744  // the initializer.
5745  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5746    return;
5747
5748  // Check for self-references within variable initializers.
5749  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5750    // Variables declared within a function/method body are handled
5751    // by a dataflow analysis.
5752    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5753      CheckSelfReference(RealDecl, Init);
5754  }
5755  else {
5756    CheckSelfReference(RealDecl, Init);
5757  }
5758
5759  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5760    // With declarators parsed the way they are, the parser cannot
5761    // distinguish between a normal initializer and a pure-specifier.
5762    // Thus this grotesque test.
5763    IntegerLiteral *IL;
5764    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5765        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5766      CheckPureMethod(Method, Init->getSourceRange());
5767    else {
5768      Diag(Method->getLocation(), diag::err_member_function_initialization)
5769        << Method->getDeclName() << Init->getSourceRange();
5770      Method->setInvalidDecl();
5771    }
5772    return;
5773  }
5774
5775  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5776  if (!VDecl) {
5777    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5778    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5779    RealDecl->setInvalidDecl();
5780    return;
5781  }
5782
5783  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5784  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5785    TypeSourceInfo *DeducedType = 0;
5786    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5787      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5788        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5789        << Init->getSourceRange();
5790    if (!DeducedType) {
5791      RealDecl->setInvalidDecl();
5792      return;
5793    }
5794    VDecl->setTypeSourceInfo(DeducedType);
5795    VDecl->setType(DeducedType->getType());
5796
5797    // In ARC, infer lifetime.
5798    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5799      VDecl->setInvalidDecl();
5800
5801    // If this is a redeclaration, check that the type we just deduced matches
5802    // the previously declared type.
5803    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5804      MergeVarDeclTypes(VDecl, Old);
5805  }
5806
5807
5808  // A definition must end up with a complete type, which means it must be
5809  // complete with the restriction that an array type might be completed by the
5810  // initializer; note that later code assumes this restriction.
5811  QualType BaseDeclType = VDecl->getType();
5812  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5813    BaseDeclType = Array->getElementType();
5814  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5815                          diag::err_typecheck_decl_incomplete_type)) {
5816    RealDecl->setInvalidDecl();
5817    return;
5818  }
5819
5820  // The variable can not have an abstract class type.
5821  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5822                             diag::err_abstract_type_in_decl,
5823                             AbstractVariableType))
5824    VDecl->setInvalidDecl();
5825
5826  const VarDecl *Def;
5827  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5828    Diag(VDecl->getLocation(), diag::err_redefinition)
5829      << VDecl->getDeclName();
5830    Diag(Def->getLocation(), diag::note_previous_definition);
5831    VDecl->setInvalidDecl();
5832    return;
5833  }
5834
5835  const VarDecl* PrevInit = 0;
5836  if (getLangOptions().CPlusPlus) {
5837    // C++ [class.static.data]p4
5838    //   If a static data member is of const integral or const
5839    //   enumeration type, its declaration in the class definition can
5840    //   specify a constant-initializer which shall be an integral
5841    //   constant expression (5.19). In that case, the member can appear
5842    //   in integral constant expressions. The member shall still be
5843    //   defined in a namespace scope if it is used in the program and the
5844    //   namespace scope definition shall not contain an initializer.
5845    //
5846    // We already performed a redefinition check above, but for static
5847    // data members we also need to check whether there was an in-class
5848    // declaration with an initializer.
5849    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5850      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5851      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5852      return;
5853    }
5854
5855    if (VDecl->hasLocalStorage())
5856      getCurFunction()->setHasBranchProtectedScope();
5857
5858    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5859      VDecl->setInvalidDecl();
5860      return;
5861    }
5862  }
5863
5864  // OpenCL 1.1 6.5.2: "Variables allocated in the __local address space inside
5865  // a kernel function cannot be initialized."
5866  if (VDecl->getStorageClass() == SC_OpenCLWorkGroupLocal) {
5867    Diag(VDecl->getLocation(), diag::err_local_cant_init);
5868    VDecl->setInvalidDecl();
5869    return;
5870  }
5871
5872  // Capture the variable that is being initialized and the style of
5873  // initialization.
5874  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5875
5876  // FIXME: Poor source location information.
5877  InitializationKind Kind
5878    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5879                                                   Init->getLocStart(),
5880                                                   Init->getLocEnd())
5881                : InitializationKind::CreateCopy(VDecl->getLocation(),
5882                                                 Init->getLocStart());
5883
5884  // Get the decls type and save a reference for later, since
5885  // CheckInitializerTypes may change it.
5886  QualType DclT = VDecl->getType(), SavT = DclT;
5887  if (VDecl->isLocalVarDecl()) {
5888    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5889      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5890      VDecl->setInvalidDecl();
5891    } else if (!VDecl->isInvalidDecl()) {
5892      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5893      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5894                                                MultiExprArg(*this, &Init, 1),
5895                                                &DclT);
5896      if (Result.isInvalid()) {
5897        VDecl->setInvalidDecl();
5898        return;
5899      }
5900
5901      Init = Result.takeAs<Expr>();
5902
5903      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5904      // Don't check invalid declarations to avoid emitting useless diagnostics.
5905      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5906        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5907          CheckForConstantInitializer(Init, DclT);
5908      }
5909    }
5910  } else if (VDecl->isStaticDataMember() &&
5911             VDecl->getLexicalDeclContext()->isRecord()) {
5912    // This is an in-class initialization for a static data member, e.g.,
5913    //
5914    // struct S {
5915    //   static const int value = 17;
5916    // };
5917
5918    // Try to perform the initialization regardless.
5919    if (!VDecl->isInvalidDecl()) {
5920      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5921      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5922                                          MultiExprArg(*this, &Init, 1),
5923                                          &DclT);
5924      if (Result.isInvalid()) {
5925        VDecl->setInvalidDecl();
5926        return;
5927      }
5928
5929      Init = Result.takeAs<Expr>();
5930    }
5931
5932    // C++ [class.mem]p4:
5933    //   A member-declarator can contain a constant-initializer only
5934    //   if it declares a static member (9.4) of const integral or
5935    //   const enumeration type, see 9.4.2.
5936    //
5937    // C++0x [class.static.data]p3:
5938    //   If a non-volatile const static data member is of integral or
5939    //   enumeration type, its declaration in the class definition can
5940    //   specify a brace-or-equal-initializer in which every initalizer-clause
5941    //   that is an assignment-expression is a constant expression. A static
5942    //   data member of literal type can be declared in the class definition
5943    //   with the constexpr specifier; if so, its declaration shall specify a
5944    //   brace-or-equal-initializer in which every initializer-clause that is
5945    //   an assignment-expression is a constant expression.
5946    QualType T = VDecl->getType();
5947
5948    // Do nothing on dependent types.
5949    if (T->isDependentType()) {
5950
5951    // Allow any 'static constexpr' members, whether or not they are of literal
5952    // type. We separately check that the initializer is a constant expression,
5953    // which implicitly requires the member to be of literal type.
5954    } else if (VDecl->isConstexpr()) {
5955
5956    // Require constness.
5957    } else if (!T.isConstQualified()) {
5958      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5959        << Init->getSourceRange();
5960      VDecl->setInvalidDecl();
5961
5962    // We allow integer constant expressions in all cases.
5963    } else if (T->isIntegralOrEnumerationType()) {
5964      // Check whether the expression is a constant expression.
5965      SourceLocation Loc;
5966      if (getLangOptions().CPlusPlus0x && T.isVolatileQualified())
5967        // In C++0x, a non-constexpr const static data member with an
5968        // in-class initializer cannot be volatile.
5969        Diag(VDecl->getLocation(), diag::err_in_class_initializer_volatile);
5970      else if (Init->isValueDependent())
5971        ; // Nothing to check.
5972      else if (Init->isIntegerConstantExpr(Context, &Loc))
5973        ; // Ok, it's an ICE!
5974      else if (Init->isEvaluatable(Context)) {
5975        // If we can constant fold the initializer through heroics, accept it,
5976        // but report this as a use of an extension for -pedantic.
5977        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5978          << Init->getSourceRange();
5979      } else {
5980        // Otherwise, this is some crazy unknown case.  Report the issue at the
5981        // location provided by the isIntegerConstantExpr failed check.
5982        Diag(Loc, diag::err_in_class_initializer_non_constant)
5983          << Init->getSourceRange();
5984        VDecl->setInvalidDecl();
5985      }
5986
5987    // We allow floating-point constants as an extension.
5988    } else if (T->isFloatingType()) { // also permits complex, which is ok
5989      Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5990        << T << Init->getSourceRange();
5991      if (getLangOptions().CPlusPlus0x)
5992        Diag(VDecl->getLocation(),
5993             diag::note_in_class_initializer_float_type_constexpr)
5994          << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
5995
5996      if (!Init->isValueDependent() &&
5997          !Init->isConstantInitializer(Context, false)) {
5998        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5999          << Init->getSourceRange();
6000        VDecl->setInvalidDecl();
6001      }
6002
6003    // Suggest adding 'constexpr' in C++0x for literal types.
6004    } else if (getLangOptions().CPlusPlus0x && T->isLiteralType()) {
6005      Diag(VDecl->getLocation(), diag::err_in_class_initializer_literal_type)
6006        << T << Init->getSourceRange()
6007        << FixItHint::CreateInsertion(VDecl->getLocStart(), "constexpr ");
6008      VDecl->setConstexpr(true);
6009
6010    } else {
6011      Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
6012        << T << Init->getSourceRange();
6013      VDecl->setInvalidDecl();
6014    }
6015  } else if (VDecl->isFileVarDecl()) {
6016    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
6017        (!getLangOptions().CPlusPlus ||
6018         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
6019      Diag(VDecl->getLocation(), diag::warn_extern_init);
6020    if (!VDecl->isInvalidDecl()) {
6021      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
6022      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
6023                                                MultiExprArg(*this, &Init, 1),
6024                                                &DclT);
6025      if (Result.isInvalid()) {
6026        VDecl->setInvalidDecl();
6027        return;
6028      }
6029
6030      Init = Result.takeAs<Expr>();
6031    }
6032
6033    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
6034    // Don't check invalid declarations to avoid emitting useless diagnostics.
6035    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
6036      // C99 6.7.8p4. All file scoped initializers need to be constant.
6037      CheckForConstantInitializer(Init, DclT);
6038    }
6039  }
6040  // If the type changed, it means we had an incomplete type that was
6041  // completed by the initializer. For example:
6042  //   int ary[] = { 1, 3, 5 };
6043  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
6044  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
6045    VDecl->setType(DclT);
6046    Init->setType(DclT);
6047  }
6048
6049  // Check any implicit conversions within the expression.
6050  CheckImplicitConversions(Init, VDecl->getLocation());
6051
6052  if (!VDecl->isInvalidDecl())
6053    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
6054
6055  if (VDecl->isConstexpr() && !VDecl->isInvalidDecl() &&
6056      !VDecl->getType()->isDependentType() &&
6057      !Init->isTypeDependent() && !Init->isValueDependent() &&
6058      !Init->isConstantInitializer(Context,
6059                                   VDecl->getType()->isReferenceType())) {
6060    // FIXME: Improve this diagnostic to explain why the initializer is not
6061    // a constant expression.
6062    Diag(VDecl->getLocation(), diag::err_constexpr_var_requires_const_init)
6063      << VDecl << Init->getSourceRange();
6064  }
6065
6066  Init = MaybeCreateExprWithCleanups(Init);
6067  // Attach the initializer to the decl.
6068  VDecl->setInit(Init);
6069
6070  CheckCompleteVariableDeclaration(VDecl);
6071}
6072
6073/// ActOnInitializerError - Given that there was an error parsing an
6074/// initializer for the given declaration, try to return to some form
6075/// of sanity.
6076void Sema::ActOnInitializerError(Decl *D) {
6077  // Our main concern here is re-establishing invariants like "a
6078  // variable's type is either dependent or complete".
6079  if (!D || D->isInvalidDecl()) return;
6080
6081  VarDecl *VD = dyn_cast<VarDecl>(D);
6082  if (!VD) return;
6083
6084  // Auto types are meaningless if we can't make sense of the initializer.
6085  if (ParsingInitForAutoVars.count(D)) {
6086    D->setInvalidDecl();
6087    return;
6088  }
6089
6090  QualType Ty = VD->getType();
6091  if (Ty->isDependentType()) return;
6092
6093  // Require a complete type.
6094  if (RequireCompleteType(VD->getLocation(),
6095                          Context.getBaseElementType(Ty),
6096                          diag::err_typecheck_decl_incomplete_type)) {
6097    VD->setInvalidDecl();
6098    return;
6099  }
6100
6101  // Require an abstract type.
6102  if (RequireNonAbstractType(VD->getLocation(), Ty,
6103                             diag::err_abstract_type_in_decl,
6104                             AbstractVariableType)) {
6105    VD->setInvalidDecl();
6106    return;
6107  }
6108
6109  // Don't bother complaining about constructors or destructors,
6110  // though.
6111}
6112
6113void Sema::ActOnUninitializedDecl(Decl *RealDecl,
6114                                  bool TypeMayContainAuto) {
6115  // If there is no declaration, there was an error parsing it. Just ignore it.
6116  if (RealDecl == 0)
6117    return;
6118
6119  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
6120    QualType Type = Var->getType();
6121
6122    // C++0x [dcl.spec.auto]p3
6123    if (TypeMayContainAuto && Type->getContainedAutoType()) {
6124      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
6125        << Var->getDeclName() << Type;
6126      Var->setInvalidDecl();
6127      return;
6128    }
6129
6130    // C++0x [dcl.constexpr]p9: An object or reference declared constexpr must
6131    // have an initializer.
6132    // C++0x [class.static.data]p3: A static data member can be declared with
6133    // the constexpr specifier; if so, its declaration shall specify
6134    // a brace-or-equal-initializer.
6135    //
6136    // A static data member's definition may inherit an initializer from an
6137    // in-class declaration.
6138    if (Var->isConstexpr() && !Var->getAnyInitializer()) {
6139      Diag(Var->getLocation(), diag::err_constexpr_var_requires_init)
6140        << Var->getDeclName();
6141      Var->setInvalidDecl();
6142      return;
6143    }
6144
6145    switch (Var->isThisDeclarationADefinition()) {
6146    case VarDecl::Definition:
6147      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
6148        break;
6149
6150      // We have an out-of-line definition of a static data member
6151      // that has an in-class initializer, so we type-check this like
6152      // a declaration.
6153      //
6154      // Fall through
6155
6156    case VarDecl::DeclarationOnly:
6157      // It's only a declaration.
6158
6159      // Block scope. C99 6.7p7: If an identifier for an object is
6160      // declared with no linkage (C99 6.2.2p6), the type for the
6161      // object shall be complete.
6162      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
6163          !Var->getLinkage() && !Var->isInvalidDecl() &&
6164          RequireCompleteType(Var->getLocation(), Type,
6165                              diag::err_typecheck_decl_incomplete_type))
6166        Var->setInvalidDecl();
6167
6168      // Make sure that the type is not abstract.
6169      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
6170          RequireNonAbstractType(Var->getLocation(), Type,
6171                                 diag::err_abstract_type_in_decl,
6172                                 AbstractVariableType))
6173        Var->setInvalidDecl();
6174      return;
6175
6176    case VarDecl::TentativeDefinition:
6177      // File scope. C99 6.9.2p2: A declaration of an identifier for an
6178      // object that has file scope without an initializer, and without a
6179      // storage-class specifier or with the storage-class specifier "static",
6180      // constitutes a tentative definition. Note: A tentative definition with
6181      // external linkage is valid (C99 6.2.2p5).
6182      if (!Var->isInvalidDecl()) {
6183        if (const IncompleteArrayType *ArrayT
6184                                    = Context.getAsIncompleteArrayType(Type)) {
6185          if (RequireCompleteType(Var->getLocation(),
6186                                  ArrayT->getElementType(),
6187                                  diag::err_illegal_decl_array_incomplete_type))
6188            Var->setInvalidDecl();
6189        } else if (Var->getStorageClass() == SC_Static) {
6190          // C99 6.9.2p3: If the declaration of an identifier for an object is
6191          // a tentative definition and has internal linkage (C99 6.2.2p3), the
6192          // declared type shall not be an incomplete type.
6193          // NOTE: code such as the following
6194          //     static struct s;
6195          //     struct s { int a; };
6196          // is accepted by gcc. Hence here we issue a warning instead of
6197          // an error and we do not invalidate the static declaration.
6198          // NOTE: to avoid multiple warnings, only check the first declaration.
6199          if (Var->getPreviousDeclaration() == 0)
6200            RequireCompleteType(Var->getLocation(), Type,
6201                                diag::ext_typecheck_decl_incomplete_type);
6202        }
6203      }
6204
6205      // Record the tentative definition; we're done.
6206      if (!Var->isInvalidDecl())
6207        TentativeDefinitions.push_back(Var);
6208      return;
6209    }
6210
6211    // Provide a specific diagnostic for uninitialized variable
6212    // definitions with incomplete array type.
6213    if (Type->isIncompleteArrayType()) {
6214      Diag(Var->getLocation(),
6215           diag::err_typecheck_incomplete_array_needs_initializer);
6216      Var->setInvalidDecl();
6217      return;
6218    }
6219
6220    // Provide a specific diagnostic for uninitialized variable
6221    // definitions with reference type.
6222    if (Type->isReferenceType()) {
6223      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
6224        << Var->getDeclName()
6225        << SourceRange(Var->getLocation(), Var->getLocation());
6226      Var->setInvalidDecl();
6227      return;
6228    }
6229
6230    // Do not attempt to type-check the default initializer for a
6231    // variable with dependent type.
6232    if (Type->isDependentType())
6233      return;
6234
6235    if (Var->isInvalidDecl())
6236      return;
6237
6238    if (RequireCompleteType(Var->getLocation(),
6239                            Context.getBaseElementType(Type),
6240                            diag::err_typecheck_decl_incomplete_type)) {
6241      Var->setInvalidDecl();
6242      return;
6243    }
6244
6245    // The variable can not have an abstract class type.
6246    if (RequireNonAbstractType(Var->getLocation(), Type,
6247                               diag::err_abstract_type_in_decl,
6248                               AbstractVariableType)) {
6249      Var->setInvalidDecl();
6250      return;
6251    }
6252
6253    // Check for jumps past the implicit initializer.  C++0x
6254    // clarifies that this applies to a "variable with automatic
6255    // storage duration", not a "local variable".
6256    // C++0x [stmt.dcl]p3
6257    //   A program that jumps from a point where a variable with automatic
6258    //   storage duration is not in scope to a point where it is in scope is
6259    //   ill-formed unless the variable has scalar type, class type with a
6260    //   trivial default constructor and a trivial destructor, a cv-qualified
6261    //   version of one of these types, or an array of one of the preceding
6262    //   types and is declared without an initializer.
6263    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
6264      if (const RecordType *Record
6265            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
6266        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
6267        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
6268            (getLangOptions().CPlusPlus0x &&
6269             (!CXXRecord->hasTrivialDefaultConstructor() ||
6270              !CXXRecord->hasTrivialDestructor())))
6271          getCurFunction()->setHasBranchProtectedScope();
6272      }
6273    }
6274
6275    // C++03 [dcl.init]p9:
6276    //   If no initializer is specified for an object, and the
6277    //   object is of (possibly cv-qualified) non-POD class type (or
6278    //   array thereof), the object shall be default-initialized; if
6279    //   the object is of const-qualified type, the underlying class
6280    //   type shall have a user-declared default
6281    //   constructor. Otherwise, if no initializer is specified for
6282    //   a non- static object, the object and its subobjects, if
6283    //   any, have an indeterminate initial value); if the object
6284    //   or any of its subobjects are of const-qualified type, the
6285    //   program is ill-formed.
6286    // C++0x [dcl.init]p11:
6287    //   If no initializer is specified for an object, the object is
6288    //   default-initialized; [...].
6289    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
6290    InitializationKind Kind
6291      = InitializationKind::CreateDefault(Var->getLocation());
6292
6293    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
6294    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
6295                                      MultiExprArg(*this, 0, 0));
6296    if (Init.isInvalid())
6297      Var->setInvalidDecl();
6298    else if (Init.get())
6299      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
6300
6301    CheckCompleteVariableDeclaration(Var);
6302  }
6303}
6304
6305void Sema::ActOnCXXForRangeDecl(Decl *D) {
6306  VarDecl *VD = dyn_cast<VarDecl>(D);
6307  if (!VD) {
6308    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
6309    D->setInvalidDecl();
6310    return;
6311  }
6312
6313  VD->setCXXForRangeDecl(true);
6314
6315  // for-range-declaration cannot be given a storage class specifier.
6316  int Error = -1;
6317  switch (VD->getStorageClassAsWritten()) {
6318  case SC_None:
6319    break;
6320  case SC_Extern:
6321    Error = 0;
6322    break;
6323  case SC_Static:
6324    Error = 1;
6325    break;
6326  case SC_PrivateExtern:
6327    Error = 2;
6328    break;
6329  case SC_Auto:
6330    Error = 3;
6331    break;
6332  case SC_Register:
6333    Error = 4;
6334    break;
6335  case SC_OpenCLWorkGroupLocal:
6336    llvm_unreachable("Unexpected storage class");
6337  }
6338  if (VD->isConstexpr())
6339    Error = 5;
6340  if (Error != -1) {
6341    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
6342      << VD->getDeclName() << Error;
6343    D->setInvalidDecl();
6344  }
6345}
6346
6347void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
6348  if (var->isInvalidDecl()) return;
6349
6350  // In ARC, don't allow jumps past the implicit initialization of a
6351  // local retaining variable.
6352  if (getLangOptions().ObjCAutoRefCount &&
6353      var->hasLocalStorage()) {
6354    switch (var->getType().getObjCLifetime()) {
6355    case Qualifiers::OCL_None:
6356    case Qualifiers::OCL_ExplicitNone:
6357    case Qualifiers::OCL_Autoreleasing:
6358      break;
6359
6360    case Qualifiers::OCL_Weak:
6361    case Qualifiers::OCL_Strong:
6362      getCurFunction()->setHasBranchProtectedScope();
6363      break;
6364    }
6365  }
6366
6367  // All the following checks are C++ only.
6368  if (!getLangOptions().CPlusPlus) return;
6369
6370  QualType baseType = Context.getBaseElementType(var->getType());
6371  if (baseType->isDependentType()) return;
6372
6373  // __block variables might require us to capture a copy-initializer.
6374  if (var->hasAttr<BlocksAttr>()) {
6375    // It's currently invalid to ever have a __block variable with an
6376    // array type; should we diagnose that here?
6377
6378    // Regardless, we don't want to ignore array nesting when
6379    // constructing this copy.
6380    QualType type = var->getType();
6381
6382    if (type->isStructureOrClassType()) {
6383      SourceLocation poi = var->getLocation();
6384      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
6385      ExprResult result =
6386        PerformCopyInitialization(
6387                        InitializedEntity::InitializeBlock(poi, type, false),
6388                                  poi, Owned(varRef));
6389      if (!result.isInvalid()) {
6390        result = MaybeCreateExprWithCleanups(result);
6391        Expr *init = result.takeAs<Expr>();
6392        Context.setBlockVarCopyInits(var, init);
6393      }
6394    }
6395  }
6396
6397  // Check for global constructors.
6398  if (!var->getDeclContext()->isDependentContext() &&
6399      var->hasGlobalStorage() &&
6400      !var->isStaticLocal() &&
6401      var->getInit() &&
6402      !var->getInit()->isConstantInitializer(Context,
6403                                             baseType->isReferenceType()))
6404    Diag(var->getLocation(), diag::warn_global_constructor)
6405      << var->getInit()->getSourceRange();
6406
6407  // Require the destructor.
6408  if (const RecordType *recordType = baseType->getAs<RecordType>())
6409    FinalizeVarWithDestructor(var, recordType);
6410}
6411
6412/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
6413/// any semantic actions necessary after any initializer has been attached.
6414void
6415Sema::FinalizeDeclaration(Decl *ThisDecl) {
6416  // Note that we are no longer parsing the initializer for this declaration.
6417  ParsingInitForAutoVars.erase(ThisDecl);
6418}
6419
6420Sema::DeclGroupPtrTy
6421Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
6422                              Decl **Group, unsigned NumDecls) {
6423  SmallVector<Decl*, 8> Decls;
6424
6425  if (DS.isTypeSpecOwned())
6426    Decls.push_back(DS.getRepAsDecl());
6427
6428  for (unsigned i = 0; i != NumDecls; ++i)
6429    if (Decl *D = Group[i])
6430      Decls.push_back(D);
6431
6432  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
6433                              DS.getTypeSpecType() == DeclSpec::TST_auto);
6434}
6435
6436/// BuildDeclaratorGroup - convert a list of declarations into a declaration
6437/// group, performing any necessary semantic checking.
6438Sema::DeclGroupPtrTy
6439Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
6440                           bool TypeMayContainAuto) {
6441  // C++0x [dcl.spec.auto]p7:
6442  //   If the type deduced for the template parameter U is not the same in each
6443  //   deduction, the program is ill-formed.
6444  // FIXME: When initializer-list support is added, a distinction is needed
6445  // between the deduced type U and the deduced type which 'auto' stands for.
6446  //   auto a = 0, b = { 1, 2, 3 };
6447  // is legal because the deduced type U is 'int' in both cases.
6448  if (TypeMayContainAuto && NumDecls > 1) {
6449    QualType Deduced;
6450    CanQualType DeducedCanon;
6451    VarDecl *DeducedDecl = 0;
6452    for (unsigned i = 0; i != NumDecls; ++i) {
6453      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
6454        AutoType *AT = D->getType()->getContainedAutoType();
6455        // Don't reissue diagnostics when instantiating a template.
6456        if (AT && D->isInvalidDecl())
6457          break;
6458        if (AT && AT->isDeduced()) {
6459          QualType U = AT->getDeducedType();
6460          CanQualType UCanon = Context.getCanonicalType(U);
6461          if (Deduced.isNull()) {
6462            Deduced = U;
6463            DeducedCanon = UCanon;
6464            DeducedDecl = D;
6465          } else if (DeducedCanon != UCanon) {
6466            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
6467                 diag::err_auto_different_deductions)
6468              << Deduced << DeducedDecl->getDeclName()
6469              << U << D->getDeclName()
6470              << DeducedDecl->getInit()->getSourceRange()
6471              << D->getInit()->getSourceRange();
6472            D->setInvalidDecl();
6473            break;
6474          }
6475        }
6476      }
6477    }
6478  }
6479
6480  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
6481}
6482
6483
6484/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
6485/// to introduce parameters into function prototype scope.
6486Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
6487  const DeclSpec &DS = D.getDeclSpec();
6488
6489  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
6490  VarDecl::StorageClass StorageClass = SC_None;
6491  VarDecl::StorageClass StorageClassAsWritten = SC_None;
6492  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
6493    StorageClass = SC_Register;
6494    StorageClassAsWritten = SC_Register;
6495  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
6496    Diag(DS.getStorageClassSpecLoc(),
6497         diag::err_invalid_storage_class_in_func_decl);
6498    D.getMutableDeclSpec().ClearStorageClassSpecs();
6499  }
6500
6501  if (D.getDeclSpec().isThreadSpecified())
6502    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
6503  if (D.getDeclSpec().isConstexprSpecified())
6504    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
6505      << 0;
6506
6507  DiagnoseFunctionSpecifiers(D);
6508
6509  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
6510  QualType parmDeclType = TInfo->getType();
6511
6512  if (getLangOptions().CPlusPlus) {
6513    // Check that there are no default arguments inside the type of this
6514    // parameter.
6515    CheckExtraCXXDefaultArguments(D);
6516
6517    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
6518    if (D.getCXXScopeSpec().isSet()) {
6519      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
6520        << D.getCXXScopeSpec().getRange();
6521      D.getCXXScopeSpec().clear();
6522    }
6523  }
6524
6525  // Ensure we have a valid name
6526  IdentifierInfo *II = 0;
6527  if (D.hasName()) {
6528    II = D.getIdentifier();
6529    if (!II) {
6530      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
6531        << GetNameForDeclarator(D).getName().getAsString();
6532      D.setInvalidType(true);
6533    }
6534  }
6535
6536  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6537  if (II) {
6538    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6539                   ForRedeclaration);
6540    LookupName(R, S);
6541    if (R.isSingleResult()) {
6542      NamedDecl *PrevDecl = R.getFoundDecl();
6543      if (PrevDecl->isTemplateParameter()) {
6544        // Maybe we will complain about the shadowed template parameter.
6545        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6546        // Just pretend that we didn't see the previous declaration.
6547        PrevDecl = 0;
6548      } else if (S->isDeclScope(PrevDecl)) {
6549        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6550        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6551
6552        // Recover by removing the name
6553        II = 0;
6554        D.SetIdentifier(0, D.getIdentifierLoc());
6555        D.setInvalidType(true);
6556      }
6557    }
6558  }
6559
6560  // Temporarily put parameter variables in the translation unit, not
6561  // the enclosing context.  This prevents them from accidentally
6562  // looking like class members in C++.
6563  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6564                                    D.getSourceRange().getBegin(),
6565                                    D.getIdentifierLoc(), II,
6566                                    parmDeclType, TInfo,
6567                                    StorageClass, StorageClassAsWritten);
6568
6569  if (D.isInvalidType())
6570    New->setInvalidDecl();
6571
6572  assert(S->isFunctionPrototypeScope());
6573  assert(S->getFunctionPrototypeDepth() >= 1);
6574  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6575                    S->getNextFunctionPrototypeIndex());
6576
6577  // Add the parameter declaration into this scope.
6578  S->AddDecl(New);
6579  if (II)
6580    IdResolver.AddDecl(New);
6581
6582  ProcessDeclAttributes(S, New, D);
6583
6584  if (D.getDeclSpec().isModulePrivateSpecified())
6585    Diag(New->getLocation(), diag::err_module_private_local)
6586      << 1 << New->getDeclName()
6587      << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
6588      << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
6589
6590  if (New->hasAttr<BlocksAttr>()) {
6591    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6592  }
6593  return New;
6594}
6595
6596/// \brief Synthesizes a variable for a parameter arising from a
6597/// typedef.
6598ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6599                                              SourceLocation Loc,
6600                                              QualType T) {
6601  /* FIXME: setting StartLoc == Loc.
6602     Would it be worth to modify callers so as to provide proper source
6603     location for the unnamed parameters, embedding the parameter's type? */
6604  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6605                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6606                                           SC_None, SC_None, 0);
6607  Param->setImplicit();
6608  return Param;
6609}
6610
6611void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6612                                    ParmVarDecl * const *ParamEnd) {
6613  // Don't diagnose unused-parameter errors in template instantiations; we
6614  // will already have done so in the template itself.
6615  if (!ActiveTemplateInstantiations.empty())
6616    return;
6617
6618  for (; Param != ParamEnd; ++Param) {
6619    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6620        !(*Param)->hasAttr<UnusedAttr>()) {
6621      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6622        << (*Param)->getDeclName();
6623    }
6624  }
6625}
6626
6627void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6628                                                  ParmVarDecl * const *ParamEnd,
6629                                                  QualType ReturnTy,
6630                                                  NamedDecl *D) {
6631  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6632    return;
6633
6634  // Warn if the return value is pass-by-value and larger than the specified
6635  // threshold.
6636  if (ReturnTy.isPODType(Context)) {
6637    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6638    if (Size > LangOpts.NumLargeByValueCopy)
6639      Diag(D->getLocation(), diag::warn_return_value_size)
6640          << D->getDeclName() << Size;
6641  }
6642
6643  // Warn if any parameter is pass-by-value and larger than the specified
6644  // threshold.
6645  for (; Param != ParamEnd; ++Param) {
6646    QualType T = (*Param)->getType();
6647    if (!T.isPODType(Context))
6648      continue;
6649    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6650    if (Size > LangOpts.NumLargeByValueCopy)
6651      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6652          << (*Param)->getDeclName() << Size;
6653  }
6654}
6655
6656ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6657                                  SourceLocation NameLoc, IdentifierInfo *Name,
6658                                  QualType T, TypeSourceInfo *TSInfo,
6659                                  VarDecl::StorageClass StorageClass,
6660                                  VarDecl::StorageClass StorageClassAsWritten) {
6661  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6662  if (getLangOptions().ObjCAutoRefCount &&
6663      T.getObjCLifetime() == Qualifiers::OCL_None &&
6664      T->isObjCLifetimeType()) {
6665
6666    Qualifiers::ObjCLifetime lifetime;
6667
6668    // Special cases for arrays:
6669    //   - if it's const, use __unsafe_unretained
6670    //   - otherwise, it's an error
6671    if (T->isArrayType()) {
6672      if (!T.isConstQualified()) {
6673        DelayedDiagnostics.add(
6674            sema::DelayedDiagnostic::makeForbiddenType(
6675            NameLoc, diag::err_arc_array_param_no_ownership, T, false));
6676      }
6677      lifetime = Qualifiers::OCL_ExplicitNone;
6678    } else {
6679      lifetime = T->getObjCARCImplicitLifetime();
6680    }
6681    T = Context.getLifetimeQualifiedType(T, lifetime);
6682  }
6683
6684  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6685                                         Context.getAdjustedParameterType(T),
6686                                         TSInfo,
6687                                         StorageClass, StorageClassAsWritten,
6688                                         0);
6689
6690  // Parameters can not be abstract class types.
6691  // For record types, this is done by the AbstractClassUsageDiagnoser once
6692  // the class has been completely parsed.
6693  if (!CurContext->isRecord() &&
6694      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6695                             AbstractParamType))
6696    New->setInvalidDecl();
6697
6698  // Parameter declarators cannot be interface types. All ObjC objects are
6699  // passed by reference.
6700  if (T->isObjCObjectType()) {
6701    Diag(NameLoc,
6702         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T
6703      << FixItHint::CreateInsertion(NameLoc, "*");
6704    T = Context.getObjCObjectPointerType(T);
6705    New->setType(T);
6706  }
6707
6708  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6709  // duration shall not be qualified by an address-space qualifier."
6710  // Since all parameters have automatic store duration, they can not have
6711  // an address space.
6712  if (T.getAddressSpace() != 0) {
6713    Diag(NameLoc, diag::err_arg_with_address_space);
6714    New->setInvalidDecl();
6715  }
6716
6717  return New;
6718}
6719
6720void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6721                                           SourceLocation LocAfterDecls) {
6722  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6723
6724  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6725  // for a K&R function.
6726  if (!FTI.hasPrototype) {
6727    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6728      --i;
6729      if (FTI.ArgInfo[i].Param == 0) {
6730        llvm::SmallString<256> Code;
6731        llvm::raw_svector_ostream(Code) << "  int "
6732                                        << FTI.ArgInfo[i].Ident->getName()
6733                                        << ";\n";
6734        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6735          << FTI.ArgInfo[i].Ident
6736          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6737
6738        // Implicitly declare the argument as type 'int' for lack of a better
6739        // type.
6740        AttributeFactory attrs;
6741        DeclSpec DS(attrs);
6742        const char* PrevSpec; // unused
6743        unsigned DiagID; // unused
6744        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6745                           PrevSpec, DiagID);
6746        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6747        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6748        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6749      }
6750    }
6751  }
6752}
6753
6754Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6755                                         Declarator &D) {
6756  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6757  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6758  Scope *ParentScope = FnBodyScope->getParent();
6759
6760  D.setFunctionDefinition(true);
6761  Decl *DP = HandleDeclarator(ParentScope, D,
6762                              MultiTemplateParamsArg(*this));
6763  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6764}
6765
6766static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6767  // Don't warn about invalid declarations.
6768  if (FD->isInvalidDecl())
6769    return false;
6770
6771  // Or declarations that aren't global.
6772  if (!FD->isGlobal())
6773    return false;
6774
6775  // Don't warn about C++ member functions.
6776  if (isa<CXXMethodDecl>(FD))
6777    return false;
6778
6779  // Don't warn about 'main'.
6780  if (FD->isMain())
6781    return false;
6782
6783  // Don't warn about inline functions.
6784  if (FD->isInlined())
6785    return false;
6786
6787  // Don't warn about function templates.
6788  if (FD->getDescribedFunctionTemplate())
6789    return false;
6790
6791  // Don't warn about function template specializations.
6792  if (FD->isFunctionTemplateSpecialization())
6793    return false;
6794
6795  bool MissingPrototype = true;
6796  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6797       Prev; Prev = Prev->getPreviousDeclaration()) {
6798    // Ignore any declarations that occur in function or method
6799    // scope, because they aren't visible from the header.
6800    if (Prev->getDeclContext()->isFunctionOrMethod())
6801      continue;
6802
6803    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6804    break;
6805  }
6806
6807  return MissingPrototype;
6808}
6809
6810void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6811  // Don't complain if we're in GNU89 mode and the previous definition
6812  // was an extern inline function.
6813  const FunctionDecl *Definition;
6814  if (FD->isDefined(Definition) &&
6815      !canRedefineFunction(Definition, getLangOptions())) {
6816    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6817        Definition->getStorageClass() == SC_Extern)
6818      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6819        << FD->getDeclName() << getLangOptions().CPlusPlus;
6820    else
6821      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6822    Diag(Definition->getLocation(), diag::note_previous_definition);
6823  }
6824}
6825
6826Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6827  // Clear the last template instantiation error context.
6828  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6829
6830  if (!D)
6831    return D;
6832  FunctionDecl *FD = 0;
6833
6834  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6835    FD = FunTmpl->getTemplatedDecl();
6836  else
6837    FD = cast<FunctionDecl>(D);
6838
6839  // Enter a new function scope
6840  PushFunctionScope();
6841
6842  // See if this is a redefinition.
6843  if (!FD->isLateTemplateParsed())
6844    CheckForFunctionRedefinition(FD);
6845
6846  // Builtin functions cannot be defined.
6847  if (unsigned BuiltinID = FD->getBuiltinID()) {
6848    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6849      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6850      FD->setInvalidDecl();
6851    }
6852  }
6853
6854  // The return type of a function definition must be complete
6855  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6856  QualType ResultType = FD->getResultType();
6857  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6858      !FD->isInvalidDecl() &&
6859      RequireCompleteType(FD->getLocation(), ResultType,
6860                          diag::err_func_def_incomplete_result))
6861    FD->setInvalidDecl();
6862
6863  // GNU warning -Wmissing-prototypes:
6864  //   Warn if a global function is defined without a previous
6865  //   prototype declaration. This warning is issued even if the
6866  //   definition itself provides a prototype. The aim is to detect
6867  //   global functions that fail to be declared in header files.
6868  if (ShouldWarnAboutMissingPrototype(FD))
6869    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6870
6871  if (FnBodyScope)
6872    PushDeclContext(FnBodyScope, FD);
6873
6874  // Check the validity of our function parameters
6875  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6876                           /*CheckParameterNames=*/true);
6877
6878  // Introduce our parameters into the function scope
6879  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6880    ParmVarDecl *Param = FD->getParamDecl(p);
6881    Param->setOwningFunction(FD);
6882
6883    // If this has an identifier, add it to the scope stack.
6884    if (Param->getIdentifier() && FnBodyScope) {
6885      CheckShadow(FnBodyScope, Param);
6886
6887      PushOnScopeChains(Param, FnBodyScope);
6888    }
6889  }
6890
6891  // Checking attributes of current function definition
6892  // dllimport attribute.
6893  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6894  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6895    // dllimport attribute cannot be directly applied to definition.
6896    // Microsoft accepts dllimport for functions defined within class scope.
6897    if (!DA->isInherited() &&
6898        !(LangOpts.MicrosoftExt && FD->getLexicalDeclContext()->isRecord())) {
6899      Diag(FD->getLocation(),
6900           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6901        << "dllimport";
6902      FD->setInvalidDecl();
6903      return FD;
6904    }
6905
6906    // Visual C++ appears to not think this is an issue, so only issue
6907    // a warning when Microsoft extensions are disabled.
6908    if (!LangOpts.MicrosoftExt) {
6909      // If a symbol previously declared dllimport is later defined, the
6910      // attribute is ignored in subsequent references, and a warning is
6911      // emitted.
6912      Diag(FD->getLocation(),
6913           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6914        << FD->getName() << "dllimport";
6915    }
6916  }
6917  return FD;
6918}
6919
6920/// \brief Given the set of return statements within a function body,
6921/// compute the variables that are subject to the named return value
6922/// optimization.
6923///
6924/// Each of the variables that is subject to the named return value
6925/// optimization will be marked as NRVO variables in the AST, and any
6926/// return statement that has a marked NRVO variable as its NRVO candidate can
6927/// use the named return value optimization.
6928///
6929/// This function applies a very simplistic algorithm for NRVO: if every return
6930/// statement in the function has the same NRVO candidate, that candidate is
6931/// the NRVO variable.
6932///
6933/// FIXME: Employ a smarter algorithm that accounts for multiple return
6934/// statements and the lifetimes of the NRVO candidates. We should be able to
6935/// find a maximal set of NRVO variables.
6936void Sema::computeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6937  ReturnStmt **Returns = Scope->Returns.data();
6938
6939  const VarDecl *NRVOCandidate = 0;
6940  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6941    if (!Returns[I]->getNRVOCandidate())
6942      return;
6943
6944    if (!NRVOCandidate)
6945      NRVOCandidate = Returns[I]->getNRVOCandidate();
6946    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6947      return;
6948  }
6949
6950  if (NRVOCandidate)
6951    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6952}
6953
6954Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6955  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6956}
6957
6958Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6959                                    bool IsInstantiation) {
6960  FunctionDecl *FD = 0;
6961  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6962  if (FunTmpl)
6963    FD = FunTmpl->getTemplatedDecl();
6964  else
6965    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6966
6967  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6968  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6969
6970  if (FD) {
6971    FD->setBody(Body);
6972    if (FD->isMain()) {
6973      // C and C++ allow for main to automagically return 0.
6974      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6975      FD->setHasImplicitReturnZero(true);
6976      WP.disableCheckFallThrough();
6977    } else if (FD->hasAttr<NakedAttr>()) {
6978      // If the function is marked 'naked', don't complain about missing return
6979      // statements.
6980      WP.disableCheckFallThrough();
6981    }
6982
6983    // MSVC permits the use of pure specifier (=0) on function definition,
6984    // defined at class scope, warn about this non standard construct.
6985    if (getLangOptions().MicrosoftExt && FD->isPure())
6986      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6987
6988    if (!FD->isInvalidDecl()) {
6989      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6990      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6991                                             FD->getResultType(), FD);
6992
6993      // If this is a constructor, we need a vtable.
6994      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6995        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6996
6997      computeNRVO(Body, getCurFunction());
6998    }
6999
7000    assert(FD == getCurFunctionDecl() && "Function parsing confused");
7001  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
7002    assert(MD == getCurMethodDecl() && "Method parsing confused");
7003    MD->setBody(Body);
7004    if (Body)
7005      MD->setEndLoc(Body->getLocEnd());
7006    if (!MD->isInvalidDecl()) {
7007      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
7008      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
7009                                             MD->getResultType(), MD);
7010
7011      if (Body)
7012        computeNRVO(Body, getCurFunction());
7013    }
7014    if (ObjCShouldCallSuperDealloc) {
7015      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_dealloc);
7016      ObjCShouldCallSuperDealloc = false;
7017    }
7018    if (ObjCShouldCallSuperFinalize) {
7019      Diag(MD->getLocEnd(), diag::warn_objc_missing_super_finalize);
7020      ObjCShouldCallSuperFinalize = false;
7021    }
7022  } else {
7023    return 0;
7024  }
7025
7026  assert(!ObjCShouldCallSuperDealloc && "This should only be set for "
7027         "ObjC methods, which should have been handled in the block above.");
7028  assert(!ObjCShouldCallSuperFinalize && "This should only be set for "
7029         "ObjC methods, which should have been handled in the block above.");
7030
7031  // Verify and clean out per-function state.
7032  if (Body) {
7033    // C++ constructors that have function-try-blocks can't have return
7034    // statements in the handlers of that block. (C++ [except.handle]p14)
7035    // Verify this.
7036    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
7037      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
7038
7039    // Verify that gotos and switch cases don't jump into scopes illegally.
7040    if (getCurFunction()->NeedsScopeChecking() &&
7041        !dcl->isInvalidDecl() &&
7042        !hasAnyUnrecoverableErrorsInThisFunction())
7043      DiagnoseInvalidJumps(Body);
7044
7045    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
7046      if (!Destructor->getParent()->isDependentType())
7047        CheckDestructor(Destructor);
7048
7049      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
7050                                             Destructor->getParent());
7051    }
7052
7053    // If any errors have occurred, clear out any temporaries that may have
7054    // been leftover. This ensures that these temporaries won't be picked up for
7055    // deletion in some later function.
7056    if (PP.getDiagnostics().hasErrorOccurred() ||
7057        PP.getDiagnostics().getSuppressAllDiagnostics()) {
7058      ExprTemporaries.clear();
7059      ExprNeedsCleanups = false;
7060    } else if (!isa<FunctionTemplateDecl>(dcl)) {
7061      // Since the body is valid, issue any analysis-based warnings that are
7062      // enabled.
7063      ActivePolicy = &WP;
7064    }
7065
7066    if (FD && FD->isConstexpr() && !FD->isInvalidDecl() &&
7067        !CheckConstexprFunctionBody(FD, Body))
7068      FD->setInvalidDecl();
7069
7070    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
7071    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
7072  }
7073
7074  if (!IsInstantiation)
7075    PopDeclContext();
7076
7077  PopFunctionOrBlockScope(ActivePolicy, dcl);
7078
7079  // If any errors have occurred, clear out any temporaries that may have
7080  // been leftover. This ensures that these temporaries won't be picked up for
7081  // deletion in some later function.
7082  if (getDiagnostics().hasErrorOccurred()) {
7083    ExprTemporaries.clear();
7084    ExprNeedsCleanups = false;
7085  }
7086
7087  return dcl;
7088}
7089
7090
7091/// When we finish delayed parsing of an attribute, we must attach it to the
7092/// relevant Decl.
7093void Sema::ActOnFinishDelayedAttribute(Scope *S, Decl *D,
7094                                       ParsedAttributes &Attrs) {
7095  ProcessDeclAttributeList(S, D, Attrs.getList());
7096}
7097
7098
7099/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
7100/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
7101NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
7102                                          IdentifierInfo &II, Scope *S) {
7103  // Before we produce a declaration for an implicitly defined
7104  // function, see whether there was a locally-scoped declaration of
7105  // this name as a function or variable. If so, use that
7106  // (non-visible) declaration, and complain about it.
7107  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
7108    = findLocallyScopedExternalDecl(&II);
7109  if (Pos != LocallyScopedExternalDecls.end()) {
7110    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
7111    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
7112    return Pos->second;
7113  }
7114
7115  // Extension in C99.  Legal in C90, but warn about it.
7116  if (II.getName().startswith("__builtin_"))
7117    Diag(Loc, diag::warn_builtin_unknown) << &II;
7118  else if (getLangOptions().C99)
7119    Diag(Loc, diag::ext_implicit_function_decl) << &II;
7120  else
7121    Diag(Loc, diag::warn_implicit_function_decl) << &II;
7122
7123  // Set a Declarator for the implicit definition: int foo();
7124  const char *Dummy;
7125  AttributeFactory attrFactory;
7126  DeclSpec DS(attrFactory);
7127  unsigned DiagID;
7128  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
7129  (void)Error; // Silence warning.
7130  assert(!Error && "Error setting up implicit decl!");
7131  Declarator D(DS, Declarator::BlockContext);
7132  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
7133                                             0, 0, true, SourceLocation(),
7134                                             SourceLocation(),
7135                                             EST_None, SourceLocation(),
7136                                             0, 0, 0, 0, Loc, Loc, D),
7137                DS.getAttributes(),
7138                SourceLocation());
7139  D.SetIdentifier(&II, Loc);
7140
7141  // Insert this function into translation-unit scope.
7142
7143  DeclContext *PrevDC = CurContext;
7144  CurContext = Context.getTranslationUnitDecl();
7145
7146  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
7147  FD->setImplicit();
7148
7149  CurContext = PrevDC;
7150
7151  AddKnownFunctionAttributes(FD);
7152
7153  return FD;
7154}
7155
7156/// \brief Adds any function attributes that we know a priori based on
7157/// the declaration of this function.
7158///
7159/// These attributes can apply both to implicitly-declared builtins
7160/// (like __builtin___printf_chk) or to library-declared functions
7161/// like NSLog or printf.
7162///
7163/// We need to check for duplicate attributes both here and where user-written
7164/// attributes are applied to declarations.
7165void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
7166  if (FD->isInvalidDecl())
7167    return;
7168
7169  // If this is a built-in function, map its builtin attributes to
7170  // actual attributes.
7171  if (unsigned BuiltinID = FD->getBuiltinID()) {
7172    // Handle printf-formatting attributes.
7173    unsigned FormatIdx;
7174    bool HasVAListArg;
7175    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
7176      if (!FD->getAttr<FormatAttr>())
7177        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7178                                                "printf", FormatIdx+1,
7179                                               HasVAListArg ? 0 : FormatIdx+2));
7180    }
7181    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
7182                                             HasVAListArg)) {
7183     if (!FD->getAttr<FormatAttr>())
7184       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7185                                              "scanf", FormatIdx+1,
7186                                              HasVAListArg ? 0 : FormatIdx+2));
7187    }
7188
7189    // Mark const if we don't care about errno and that is the only
7190    // thing preventing the function from being const. This allows
7191    // IRgen to use LLVM intrinsics for such functions.
7192    if (!getLangOptions().MathErrno &&
7193        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
7194      if (!FD->getAttr<ConstAttr>())
7195        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7196    }
7197
7198    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
7199      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
7200    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
7201      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
7202  }
7203
7204  IdentifierInfo *Name = FD->getIdentifier();
7205  if (!Name)
7206    return;
7207  if ((!getLangOptions().CPlusPlus &&
7208       FD->getDeclContext()->isTranslationUnit()) ||
7209      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
7210       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
7211       LinkageSpecDecl::lang_c)) {
7212    // Okay: this could be a libc/libm/Objective-C function we know
7213    // about.
7214  } else
7215    return;
7216
7217  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
7218    // FIXME: NSLog and NSLogv should be target specific
7219    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
7220      // FIXME: We known better than our headers.
7221      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
7222    } else
7223      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7224                                             "printf", 1,
7225                                             Name->isStr("NSLogv") ? 0 : 2));
7226  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
7227    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
7228    // target-specific builtins, perhaps?
7229    if (!FD->getAttr<FormatAttr>())
7230      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
7231                                             "printf", 2,
7232                                             Name->isStr("vasprintf") ? 0 : 3));
7233  }
7234}
7235
7236TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
7237                                    TypeSourceInfo *TInfo) {
7238  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
7239  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
7240
7241  if (!TInfo) {
7242    assert(D.isInvalidType() && "no declarator info for valid type");
7243    TInfo = Context.getTrivialTypeSourceInfo(T);
7244  }
7245
7246  // Scope manipulation handled by caller.
7247  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
7248                                           D.getSourceRange().getBegin(),
7249                                           D.getIdentifierLoc(),
7250                                           D.getIdentifier(),
7251                                           TInfo);
7252
7253  // Bail out immediately if we have an invalid declaration.
7254  if (D.isInvalidType()) {
7255    NewTD->setInvalidDecl();
7256    return NewTD;
7257  }
7258
7259  if (D.getDeclSpec().isModulePrivateSpecified()) {
7260    if (CurContext->isFunctionOrMethod())
7261      Diag(NewTD->getLocation(), diag::err_module_private_local)
7262        << 2 << NewTD->getDeclName()
7263        << SourceRange(D.getDeclSpec().getModulePrivateSpecLoc())
7264        << FixItHint::CreateRemoval(D.getDeclSpec().getModulePrivateSpecLoc());
7265    else
7266      NewTD->setModulePrivate();
7267  }
7268
7269  // C++ [dcl.typedef]p8:
7270  //   If the typedef declaration defines an unnamed class (or
7271  //   enum), the first typedef-name declared by the declaration
7272  //   to be that class type (or enum type) is used to denote the
7273  //   class type (or enum type) for linkage purposes only.
7274  // We need to check whether the type was declared in the declaration.
7275  switch (D.getDeclSpec().getTypeSpecType()) {
7276  case TST_enum:
7277  case TST_struct:
7278  case TST_union:
7279  case TST_class: {
7280    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
7281
7282    // Do nothing if the tag is not anonymous or already has an
7283    // associated typedef (from an earlier typedef in this decl group).
7284    if (tagFromDeclSpec->getIdentifier()) break;
7285    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
7286
7287    // A well-formed anonymous tag must always be a TUK_Definition.
7288    assert(tagFromDeclSpec->isThisDeclarationADefinition());
7289
7290    // The type must match the tag exactly;  no qualifiers allowed.
7291    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
7292      break;
7293
7294    // Otherwise, set this is the anon-decl typedef for the tag.
7295    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
7296    break;
7297  }
7298
7299  default:
7300    break;
7301  }
7302
7303  return NewTD;
7304}
7305
7306
7307/// \brief Determine whether a tag with a given kind is acceptable
7308/// as a redeclaration of the given tag declaration.
7309///
7310/// \returns true if the new tag kind is acceptable, false otherwise.
7311bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
7312                                        TagTypeKind NewTag, bool isDefinition,
7313                                        SourceLocation NewTagLoc,
7314                                        const IdentifierInfo &Name) {
7315  // C++ [dcl.type.elab]p3:
7316  //   The class-key or enum keyword present in the
7317  //   elaborated-type-specifier shall agree in kind with the
7318  //   declaration to which the name in the elaborated-type-specifier
7319  //   refers. This rule also applies to the form of
7320  //   elaborated-type-specifier that declares a class-name or
7321  //   friend class since it can be construed as referring to the
7322  //   definition of the class. Thus, in any
7323  //   elaborated-type-specifier, the enum keyword shall be used to
7324  //   refer to an enumeration (7.2), the union class-key shall be
7325  //   used to refer to a union (clause 9), and either the class or
7326  //   struct class-key shall be used to refer to a class (clause 9)
7327  //   declared using the class or struct class-key.
7328  TagTypeKind OldTag = Previous->getTagKind();
7329  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
7330    if (OldTag == NewTag)
7331      return true;
7332
7333  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
7334      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
7335    // Warn about the struct/class tag mismatch.
7336    bool isTemplate = false;
7337    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
7338      isTemplate = Record->getDescribedClassTemplate();
7339
7340    if (!ActiveTemplateInstantiations.empty()) {
7341      // In a template instantiation, do not offer fix-its for tag mismatches
7342      // since they usually mess up the template instead of fixing the problem.
7343      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7344        << (NewTag == TTK_Class) << isTemplate << &Name;
7345      return true;
7346    }
7347
7348    if (isDefinition) {
7349      // On definitions, check previous tags and issue a fix-it for each
7350      // one that doesn't match the current tag.
7351      if (Previous->getDefinition()) {
7352        // Don't suggest fix-its for redefinitions.
7353        return true;
7354      }
7355
7356      bool previousMismatch = false;
7357      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
7358           E(Previous->redecls_end()); I != E; ++I) {
7359        if (I->getTagKind() != NewTag) {
7360          if (!previousMismatch) {
7361            previousMismatch = true;
7362            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
7363              << (NewTag == TTK_Class) << isTemplate << &Name;
7364          }
7365          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
7366            << (NewTag == TTK_Class)
7367            << FixItHint::CreateReplacement(I->getInnerLocStart(),
7368                                            NewTag == TTK_Class?
7369                                            "class" : "struct");
7370        }
7371      }
7372      return true;
7373    }
7374
7375    // Check for a previous definition.  If current tag and definition
7376    // are same type, do nothing.  If no definition, but disagree with
7377    // with previous tag type, give a warning, but no fix-it.
7378    const TagDecl *Redecl = Previous->getDefinition() ?
7379                            Previous->getDefinition() : Previous;
7380    if (Redecl->getTagKind() == NewTag) {
7381      return true;
7382    }
7383
7384    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
7385      << (NewTag == TTK_Class)
7386      << isTemplate << &Name;
7387    Diag(Redecl->getLocation(), diag::note_previous_use);
7388
7389    // If there is a previous defintion, suggest a fix-it.
7390    if (Previous->getDefinition()) {
7391        Diag(NewTagLoc, diag::note_struct_class_suggestion)
7392          << (Redecl->getTagKind() == TTK_Class)
7393          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
7394                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
7395    }
7396
7397    return true;
7398  }
7399  return false;
7400}
7401
7402/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
7403/// former case, Name will be non-null.  In the later case, Name will be null.
7404/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
7405/// reference/declaration/definition of a tag.
7406Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
7407                     SourceLocation KWLoc, CXXScopeSpec &SS,
7408                     IdentifierInfo *Name, SourceLocation NameLoc,
7409                     AttributeList *Attr, AccessSpecifier AS,
7410                     SourceLocation ModulePrivateLoc,
7411                     MultiTemplateParamsArg TemplateParameterLists,
7412                     bool &OwnedDecl, bool &IsDependent,
7413                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
7414                     TypeResult UnderlyingType) {
7415  // If this is not a definition, it must have a name.
7416  assert((Name != 0 || TUK == TUK_Definition) &&
7417         "Nameless record must be a definition!");
7418  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
7419
7420  OwnedDecl = false;
7421  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
7422
7423  // FIXME: Check explicit specializations more carefully.
7424  bool isExplicitSpecialization = false;
7425  bool Invalid = false;
7426
7427  // We only need to do this matching if we have template parameters
7428  // or a scope specifier, which also conveniently avoids this work
7429  // for non-C++ cases.
7430  if (TemplateParameterLists.size() > 0 ||
7431      (SS.isNotEmpty() && TUK != TUK_Reference)) {
7432    if (TemplateParameterList *TemplateParams
7433          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
7434                                                TemplateParameterLists.get(),
7435                                                TemplateParameterLists.size(),
7436                                                    TUK == TUK_Friend,
7437                                                    isExplicitSpecialization,
7438                                                    Invalid)) {
7439      if (TemplateParams->size() > 0) {
7440        // This is a declaration or definition of a class template (which may
7441        // be a member of another template).
7442
7443        if (Invalid)
7444          return 0;
7445
7446        OwnedDecl = false;
7447        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
7448                                               SS, Name, NameLoc, Attr,
7449                                               TemplateParams, AS,
7450                                               ModulePrivateLoc,
7451                                           TemplateParameterLists.size() - 1,
7452                 (TemplateParameterList**) TemplateParameterLists.release());
7453        return Result.get();
7454      } else {
7455        // The "template<>" header is extraneous.
7456        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
7457          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
7458        isExplicitSpecialization = true;
7459      }
7460    }
7461  }
7462
7463  // Figure out the underlying type if this a enum declaration. We need to do
7464  // this early, because it's needed to detect if this is an incompatible
7465  // redeclaration.
7466  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
7467
7468  if (Kind == TTK_Enum) {
7469    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
7470      // No underlying type explicitly specified, or we failed to parse the
7471      // type, default to int.
7472      EnumUnderlying = Context.IntTy.getTypePtr();
7473    else if (UnderlyingType.get()) {
7474      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
7475      // integral type; any cv-qualification is ignored.
7476      TypeSourceInfo *TI = 0;
7477      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
7478      EnumUnderlying = TI;
7479
7480      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
7481
7482      if (!T->isDependentType() && !T->isIntegralType(Context)) {
7483        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
7484          << T;
7485        // Recover by falling back to int.
7486        EnumUnderlying = Context.IntTy.getTypePtr();
7487      }
7488
7489      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
7490                                          UPPC_FixedUnderlyingType))
7491        EnumUnderlying = Context.IntTy.getTypePtr();
7492
7493    } else if (getLangOptions().MicrosoftExt)
7494      // Microsoft enums are always of int type.
7495      EnumUnderlying = Context.IntTy.getTypePtr();
7496  }
7497
7498  DeclContext *SearchDC = CurContext;
7499  DeclContext *DC = CurContext;
7500  bool isStdBadAlloc = false;
7501
7502  RedeclarationKind Redecl = ForRedeclaration;
7503  if (TUK == TUK_Friend || TUK == TUK_Reference)
7504    Redecl = NotForRedeclaration;
7505
7506  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
7507
7508  if (Name && SS.isNotEmpty()) {
7509    // We have a nested-name tag ('struct foo::bar').
7510
7511    // Check for invalid 'foo::'.
7512    if (SS.isInvalid()) {
7513      Name = 0;
7514      goto CreateNewDecl;
7515    }
7516
7517    // If this is a friend or a reference to a class in a dependent
7518    // context, don't try to make a decl for it.
7519    if (TUK == TUK_Friend || TUK == TUK_Reference) {
7520      DC = computeDeclContext(SS, false);
7521      if (!DC) {
7522        IsDependent = true;
7523        return 0;
7524      }
7525    } else {
7526      DC = computeDeclContext(SS, true);
7527      if (!DC) {
7528        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
7529          << SS.getRange();
7530        return 0;
7531      }
7532    }
7533
7534    if (RequireCompleteDeclContext(SS, DC))
7535      return 0;
7536
7537    SearchDC = DC;
7538    // Look-up name inside 'foo::'.
7539    LookupQualifiedName(Previous, DC);
7540
7541    if (Previous.isAmbiguous())
7542      return 0;
7543
7544    if (Previous.empty()) {
7545      // Name lookup did not find anything. However, if the
7546      // nested-name-specifier refers to the current instantiation,
7547      // and that current instantiation has any dependent base
7548      // classes, we might find something at instantiation time: treat
7549      // this as a dependent elaborated-type-specifier.
7550      // But this only makes any sense for reference-like lookups.
7551      if (Previous.wasNotFoundInCurrentInstantiation() &&
7552          (TUK == TUK_Reference || TUK == TUK_Friend)) {
7553        IsDependent = true;
7554        return 0;
7555      }
7556
7557      // A tag 'foo::bar' must already exist.
7558      Diag(NameLoc, diag::err_not_tag_in_scope)
7559        << Kind << Name << DC << SS.getRange();
7560      Name = 0;
7561      Invalid = true;
7562      goto CreateNewDecl;
7563    }
7564  } else if (Name) {
7565    // If this is a named struct, check to see if there was a previous forward
7566    // declaration or definition.
7567    // FIXME: We're looking into outer scopes here, even when we
7568    // shouldn't be. Doing so can result in ambiguities that we
7569    // shouldn't be diagnosing.
7570    LookupName(Previous, S);
7571
7572    if (Previous.isAmbiguous() &&
7573        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
7574      LookupResult::Filter F = Previous.makeFilter();
7575      while (F.hasNext()) {
7576        NamedDecl *ND = F.next();
7577        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
7578          F.erase();
7579      }
7580      F.done();
7581    }
7582
7583    // Note:  there used to be some attempt at recovery here.
7584    if (Previous.isAmbiguous())
7585      return 0;
7586
7587    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
7588      // FIXME: This makes sure that we ignore the contexts associated
7589      // with C structs, unions, and enums when looking for a matching
7590      // tag declaration or definition. See the similar lookup tweak
7591      // in Sema::LookupName; is there a better way to deal with this?
7592      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7593        SearchDC = SearchDC->getParent();
7594    }
7595  } else if (S->isFunctionPrototypeScope()) {
7596    // If this is an enum declaration in function prototype scope, set its
7597    // initial context to the translation unit.
7598    SearchDC = Context.getTranslationUnitDecl();
7599  }
7600
7601  if (Previous.isSingleResult() &&
7602      Previous.getFoundDecl()->isTemplateParameter()) {
7603    // Maybe we will complain about the shadowed template parameter.
7604    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7605    // Just pretend that we didn't see the previous declaration.
7606    Previous.clear();
7607  }
7608
7609  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7610      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7611    // This is a declaration of or a reference to "std::bad_alloc".
7612    isStdBadAlloc = true;
7613
7614    if (Previous.empty() && StdBadAlloc) {
7615      // std::bad_alloc has been implicitly declared (but made invisible to
7616      // name lookup). Fill in this implicit declaration as the previous
7617      // declaration, so that the declarations get chained appropriately.
7618      Previous.addDecl(getStdBadAlloc());
7619    }
7620  }
7621
7622  // If we didn't find a previous declaration, and this is a reference
7623  // (or friend reference), move to the correct scope.  In C++, we
7624  // also need to do a redeclaration lookup there, just in case
7625  // there's a shadow friend decl.
7626  if (Name && Previous.empty() &&
7627      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7628    if (Invalid) goto CreateNewDecl;
7629    assert(SS.isEmpty());
7630
7631    if (TUK == TUK_Reference) {
7632      // C++ [basic.scope.pdecl]p5:
7633      //   -- for an elaborated-type-specifier of the form
7634      //
7635      //          class-key identifier
7636      //
7637      //      if the elaborated-type-specifier is used in the
7638      //      decl-specifier-seq or parameter-declaration-clause of a
7639      //      function defined in namespace scope, the identifier is
7640      //      declared as a class-name in the namespace that contains
7641      //      the declaration; otherwise, except as a friend
7642      //      declaration, the identifier is declared in the smallest
7643      //      non-class, non-function-prototype scope that contains the
7644      //      declaration.
7645      //
7646      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7647      // C structs and unions.
7648      //
7649      // It is an error in C++ to declare (rather than define) an enum
7650      // type, including via an elaborated type specifier.  We'll
7651      // diagnose that later; for now, declare the enum in the same
7652      // scope as we would have picked for any other tag type.
7653      //
7654      // GNU C also supports this behavior as part of its incomplete
7655      // enum types extension, while GNU C++ does not.
7656      //
7657      // Find the context where we'll be declaring the tag.
7658      // FIXME: We would like to maintain the current DeclContext as the
7659      // lexical context,
7660      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7661        SearchDC = SearchDC->getParent();
7662
7663      // Find the scope where we'll be declaring the tag.
7664      while (S->isClassScope() ||
7665             (getLangOptions().CPlusPlus &&
7666              S->isFunctionPrototypeScope()) ||
7667             ((S->getFlags() & Scope::DeclScope) == 0) ||
7668             (S->getEntity() &&
7669              ((DeclContext *)S->getEntity())->isTransparentContext()))
7670        S = S->getParent();
7671    } else {
7672      assert(TUK == TUK_Friend);
7673      // C++ [namespace.memdef]p3:
7674      //   If a friend declaration in a non-local class first declares a
7675      //   class or function, the friend class or function is a member of
7676      //   the innermost enclosing namespace.
7677      SearchDC = SearchDC->getEnclosingNamespaceContext();
7678    }
7679
7680    // In C++, we need to do a redeclaration lookup to properly
7681    // diagnose some problems.
7682    if (getLangOptions().CPlusPlus) {
7683      Previous.setRedeclarationKind(ForRedeclaration);
7684      LookupQualifiedName(Previous, SearchDC);
7685    }
7686  }
7687
7688  if (!Previous.empty()) {
7689    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7690
7691    // It's okay to have a tag decl in the same scope as a typedef
7692    // which hides a tag decl in the same scope.  Finding this
7693    // insanity with a redeclaration lookup can only actually happen
7694    // in C++.
7695    //
7696    // This is also okay for elaborated-type-specifiers, which is
7697    // technically forbidden by the current standard but which is
7698    // okay according to the likely resolution of an open issue;
7699    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7700    if (getLangOptions().CPlusPlus) {
7701      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7702        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7703          TagDecl *Tag = TT->getDecl();
7704          if (Tag->getDeclName() == Name &&
7705              Tag->getDeclContext()->getRedeclContext()
7706                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7707            PrevDecl = Tag;
7708            Previous.clear();
7709            Previous.addDecl(Tag);
7710            Previous.resolveKind();
7711          }
7712        }
7713      }
7714    }
7715
7716    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7717      // If this is a use of a previous tag, or if the tag is already declared
7718      // in the same scope (so that the definition/declaration completes or
7719      // rementions the tag), reuse the decl.
7720      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7721          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7722        // Make sure that this wasn't declared as an enum and now used as a
7723        // struct or something similar.
7724        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7725                                          TUK == TUK_Definition, KWLoc,
7726                                          *Name)) {
7727          bool SafeToContinue
7728            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7729               Kind != TTK_Enum);
7730          if (SafeToContinue)
7731            Diag(KWLoc, diag::err_use_with_wrong_tag)
7732              << Name
7733              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7734                                              PrevTagDecl->getKindName());
7735          else
7736            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7737          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7738
7739          if (SafeToContinue)
7740            Kind = PrevTagDecl->getTagKind();
7741          else {
7742            // Recover by making this an anonymous redefinition.
7743            Name = 0;
7744            Previous.clear();
7745            Invalid = true;
7746          }
7747        }
7748
7749        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7750          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7751
7752          // All conflicts with previous declarations are recovered by
7753          // returning the previous declaration.
7754          if (ScopedEnum != PrevEnum->isScoped()) {
7755            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7756              << PrevEnum->isScoped();
7757            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7758            return PrevTagDecl;
7759          }
7760          else if (EnumUnderlying && PrevEnum->isFixed()) {
7761            QualType T;
7762            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7763                T = TI->getType();
7764            else
7765                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7766
7767            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7768              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7769                   diag::err_enum_redeclare_type_mismatch)
7770                << T
7771                << PrevEnum->getIntegerType();
7772              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7773              return PrevTagDecl;
7774            }
7775          }
7776          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7777            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7778              << PrevEnum->isFixed();
7779            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7780            return PrevTagDecl;
7781          }
7782        }
7783
7784        if (!Invalid) {
7785          // If this is a use, just return the declaration we found.
7786
7787          // FIXME: In the future, return a variant or some other clue
7788          // for the consumer of this Decl to know it doesn't own it.
7789          // For our current ASTs this shouldn't be a problem, but will
7790          // need to be changed with DeclGroups.
7791          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7792               getLangOptions().MicrosoftExt)) || TUK == TUK_Friend)
7793            return PrevTagDecl;
7794
7795          // Diagnose attempts to redefine a tag.
7796          if (TUK == TUK_Definition) {
7797            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7798              // If we're defining a specialization and the previous definition
7799              // is from an implicit instantiation, don't emit an error
7800              // here; we'll catch this in the general case below.
7801              if (!isExplicitSpecialization ||
7802                  !isa<CXXRecordDecl>(Def) ||
7803                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7804                                               == TSK_ExplicitSpecialization) {
7805                Diag(NameLoc, diag::err_redefinition) << Name;
7806                Diag(Def->getLocation(), diag::note_previous_definition);
7807                // If this is a redefinition, recover by making this
7808                // struct be anonymous, which will make any later
7809                // references get the previous definition.
7810                Name = 0;
7811                Previous.clear();
7812                Invalid = true;
7813              }
7814            } else {
7815              // If the type is currently being defined, complain
7816              // about a nested redefinition.
7817              const TagType *Tag
7818                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7819              if (Tag->isBeingDefined()) {
7820                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7821                Diag(PrevTagDecl->getLocation(),
7822                     diag::note_previous_definition);
7823                Name = 0;
7824                Previous.clear();
7825                Invalid = true;
7826              }
7827            }
7828
7829            // Okay, this is definition of a previously declared or referenced
7830            // tag PrevDecl. We're going to create a new Decl for it.
7831          }
7832        }
7833        // If we get here we have (another) forward declaration or we
7834        // have a definition.  Just create a new decl.
7835
7836      } else {
7837        // If we get here, this is a definition of a new tag type in a nested
7838        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7839        // new decl/type.  We set PrevDecl to NULL so that the entities
7840        // have distinct types.
7841        Previous.clear();
7842      }
7843      // If we get here, we're going to create a new Decl. If PrevDecl
7844      // is non-NULL, it's a definition of the tag declared by
7845      // PrevDecl. If it's NULL, we have a new definition.
7846
7847
7848    // Otherwise, PrevDecl is not a tag, but was found with tag
7849    // lookup.  This is only actually possible in C++, where a few
7850    // things like templates still live in the tag namespace.
7851    } else {
7852      assert(getLangOptions().CPlusPlus);
7853
7854      // Use a better diagnostic if an elaborated-type-specifier
7855      // found the wrong kind of type on the first
7856      // (non-redeclaration) lookup.
7857      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7858          !Previous.isForRedeclaration()) {
7859        unsigned Kind = 0;
7860        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7861        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7862        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7863        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7864        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7865        Invalid = true;
7866
7867      // Otherwise, only diagnose if the declaration is in scope.
7868      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7869                                isExplicitSpecialization)) {
7870        // do nothing
7871
7872      // Diagnose implicit declarations introduced by elaborated types.
7873      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7874        unsigned Kind = 0;
7875        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7876        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7877        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7878        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7879        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7880        Invalid = true;
7881
7882      // Otherwise it's a declaration.  Call out a particularly common
7883      // case here.
7884      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7885        unsigned Kind = 0;
7886        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7887        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7888          << Name << Kind << TND->getUnderlyingType();
7889        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7890        Invalid = true;
7891
7892      // Otherwise, diagnose.
7893      } else {
7894        // The tag name clashes with something else in the target scope,
7895        // issue an error and recover by making this tag be anonymous.
7896        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7897        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7898        Name = 0;
7899        Invalid = true;
7900      }
7901
7902      // The existing declaration isn't relevant to us; we're in a
7903      // new scope, so clear out the previous declaration.
7904      Previous.clear();
7905    }
7906  }
7907
7908CreateNewDecl:
7909
7910  TagDecl *PrevDecl = 0;
7911  if (Previous.isSingleResult())
7912    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7913
7914  // If there is an identifier, use the location of the identifier as the
7915  // location of the decl, otherwise use the location of the struct/union
7916  // keyword.
7917  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7918
7919  // Otherwise, create a new declaration. If there is a previous
7920  // declaration of the same entity, the two will be linked via
7921  // PrevDecl.
7922  TagDecl *New;
7923
7924  bool IsForwardReference = false;
7925  if (Kind == TTK_Enum) {
7926    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7927    // enum X { A, B, C } D;    D should chain to X.
7928    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7929                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7930                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7931    // If this is an undefined enum, warn.
7932    if (TUK != TUK_Definition && !Invalid) {
7933      TagDecl *Def;
7934      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7935        // C++0x: 7.2p2: opaque-enum-declaration.
7936        // Conflicts are diagnosed above. Do nothing.
7937      }
7938      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7939        Diag(Loc, diag::ext_forward_ref_enum_def)
7940          << New;
7941        Diag(Def->getLocation(), diag::note_previous_definition);
7942      } else {
7943        unsigned DiagID = diag::ext_forward_ref_enum;
7944        if (getLangOptions().MicrosoftExt)
7945          DiagID = diag::ext_ms_forward_ref_enum;
7946        else if (getLangOptions().CPlusPlus)
7947          DiagID = diag::err_forward_ref_enum;
7948        Diag(Loc, DiagID);
7949
7950        // If this is a forward-declared reference to an enumeration, make a
7951        // note of it; we won't actually be introducing the declaration into
7952        // the declaration context.
7953        if (TUK == TUK_Reference)
7954          IsForwardReference = true;
7955      }
7956    }
7957
7958    if (EnumUnderlying) {
7959      EnumDecl *ED = cast<EnumDecl>(New);
7960      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7961        ED->setIntegerTypeSourceInfo(TI);
7962      else
7963        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7964      ED->setPromotionType(ED->getIntegerType());
7965    }
7966
7967  } else {
7968    // struct/union/class
7969
7970    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7971    // struct X { int A; } D;    D should chain to X.
7972    if (getLangOptions().CPlusPlus) {
7973      // FIXME: Look for a way to use RecordDecl for simple structs.
7974      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7975                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7976
7977      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7978        StdBadAlloc = cast<CXXRecordDecl>(New);
7979    } else
7980      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7981                               cast_or_null<RecordDecl>(PrevDecl));
7982  }
7983
7984  // Maybe add qualifier info.
7985  if (SS.isNotEmpty()) {
7986    if (SS.isSet()) {
7987      New->setQualifierInfo(SS.getWithLocInContext(Context));
7988      if (TemplateParameterLists.size() > 0) {
7989        New->setTemplateParameterListsInfo(Context,
7990                                           TemplateParameterLists.size(),
7991                    (TemplateParameterList**) TemplateParameterLists.release());
7992      }
7993    }
7994    else
7995      Invalid = true;
7996  }
7997
7998  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7999    // Add alignment attributes if necessary; these attributes are checked when
8000    // the ASTContext lays out the structure.
8001    //
8002    // It is important for implementing the correct semantics that this
8003    // happen here (in act on tag decl). The #pragma pack stack is
8004    // maintained as a result of parser callbacks which can occur at
8005    // many points during the parsing of a struct declaration (because
8006    // the #pragma tokens are effectively skipped over during the
8007    // parsing of the struct).
8008    AddAlignmentAttributesForRecord(RD);
8009
8010    AddMsStructLayoutForRecord(RD);
8011  }
8012
8013  if (PrevDecl && PrevDecl->isModulePrivate())
8014    New->setModulePrivate();
8015  else if (ModulePrivateLoc.isValid()) {
8016    if (isExplicitSpecialization)
8017      Diag(New->getLocation(), diag::err_module_private_specialization)
8018        << 2
8019        << FixItHint::CreateRemoval(ModulePrivateLoc);
8020    else if (PrevDecl && !PrevDecl->isModulePrivate())
8021      diagnoseModulePrivateRedeclaration(New, PrevDecl, ModulePrivateLoc);
8022    // __module_private__ does not apply to local classes. However, we only
8023    // diagnose this as an error when the declaration specifiers are
8024    // freestanding. Here, we just ignore the __module_private__.
8025    // foobar
8026    else if (!SearchDC->isFunctionOrMethod())
8027      New->setModulePrivate();
8028  }
8029
8030  // If this is a specialization of a member class (of a class template),
8031  // check the specialization.
8032  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
8033    Invalid = true;
8034
8035  if (Invalid)
8036    New->setInvalidDecl();
8037
8038  if (Attr)
8039    ProcessDeclAttributeList(S, New, Attr);
8040
8041  // If we're declaring or defining a tag in function prototype scope
8042  // in C, note that this type can only be used within the function.
8043  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
8044    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
8045
8046  // Set the lexical context. If the tag has a C++ scope specifier, the
8047  // lexical context will be different from the semantic context.
8048  New->setLexicalDeclContext(CurContext);
8049
8050  // Mark this as a friend decl if applicable.
8051  // In Microsoft mode, a friend declaration also acts as a forward
8052  // declaration so we always pass true to setObjectOfFriendDecl to make
8053  // the tag name visible.
8054  if (TUK == TUK_Friend)
8055    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
8056                               getLangOptions().MicrosoftExt);
8057
8058  // Set the access specifier.
8059  if (!Invalid && SearchDC->isRecord())
8060    SetMemberAccessSpecifier(New, PrevDecl, AS);
8061
8062  if (TUK == TUK_Definition)
8063    New->startDefinition();
8064
8065  // If this has an identifier, add it to the scope stack.
8066  if (TUK == TUK_Friend) {
8067    // We might be replacing an existing declaration in the lookup tables;
8068    // if so, borrow its access specifier.
8069    if (PrevDecl)
8070      New->setAccess(PrevDecl->getAccess());
8071
8072    DeclContext *DC = New->getDeclContext()->getRedeclContext();
8073    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8074    if (Name) // can be null along some error paths
8075      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
8076        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
8077  } else if (Name) {
8078    S = getNonFieldDeclScope(S);
8079    PushOnScopeChains(New, S, !IsForwardReference);
8080    if (IsForwardReference)
8081      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
8082
8083  } else {
8084    CurContext->addDecl(New);
8085  }
8086
8087  // If this is the C FILE type, notify the AST context.
8088  if (IdentifierInfo *II = New->getIdentifier())
8089    if (!New->isInvalidDecl() &&
8090        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
8091        II->isStr("FILE"))
8092      Context.setFILEDecl(New);
8093
8094  OwnedDecl = true;
8095  return New;
8096}
8097
8098void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
8099  AdjustDeclIfTemplate(TagD);
8100  TagDecl *Tag = cast<TagDecl>(TagD);
8101
8102  // Enter the tag context.
8103  PushDeclContext(S, Tag);
8104}
8105
8106Decl *Sema::ActOnObjCContainerStartDefinition(Decl *IDecl) {
8107  assert(isa<ObjCContainerDecl>(IDecl) &&
8108         "ActOnObjCContainerStartDefinition - Not ObjCContainerDecl");
8109  DeclContext *OCD = cast<DeclContext>(IDecl);
8110  assert(getContainingDC(OCD) == CurContext &&
8111      "The next DeclContext should be lexically contained in the current one.");
8112  CurContext = OCD;
8113  return IDecl;
8114}
8115
8116void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
8117                                           SourceLocation FinalLoc,
8118                                           SourceLocation LBraceLoc) {
8119  AdjustDeclIfTemplate(TagD);
8120  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
8121
8122  FieldCollector->StartClass();
8123
8124  if (!Record->getIdentifier())
8125    return;
8126
8127  if (FinalLoc.isValid())
8128    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
8129
8130  // C++ [class]p2:
8131  //   [...] The class-name is also inserted into the scope of the
8132  //   class itself; this is known as the injected-class-name. For
8133  //   purposes of access checking, the injected-class-name is treated
8134  //   as if it were a public member name.
8135  CXXRecordDecl *InjectedClassName
8136    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
8137                            Record->getLocStart(), Record->getLocation(),
8138                            Record->getIdentifier(),
8139                            /*PrevDecl=*/0,
8140                            /*DelayTypeCreation=*/true);
8141  Context.getTypeDeclType(InjectedClassName, Record);
8142  InjectedClassName->setImplicit();
8143  InjectedClassName->setAccess(AS_public);
8144  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
8145      InjectedClassName->setDescribedClassTemplate(Template);
8146  PushOnScopeChains(InjectedClassName, S);
8147  assert(InjectedClassName->isInjectedClassName() &&
8148         "Broken injected-class-name");
8149}
8150
8151void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
8152                                    SourceLocation RBraceLoc) {
8153  AdjustDeclIfTemplate(TagD);
8154  TagDecl *Tag = cast<TagDecl>(TagD);
8155  Tag->setRBraceLoc(RBraceLoc);
8156
8157  if (isa<CXXRecordDecl>(Tag))
8158    FieldCollector->FinishClass();
8159
8160  // Exit this scope of this tag's definition.
8161  PopDeclContext();
8162
8163  // Notify the consumer that we've defined a tag.
8164  Consumer.HandleTagDeclDefinition(Tag);
8165}
8166
8167void Sema::ActOnObjCContainerFinishDefinition() {
8168  // Exit this scope of this interface definition.
8169  PopDeclContext();
8170}
8171
8172void Sema::ActOnObjCTemporaryExitContainerContext() {
8173  OriginalLexicalContext = CurContext;
8174  ActOnObjCContainerFinishDefinition();
8175}
8176
8177void Sema::ActOnObjCReenterContainerContext() {
8178  ActOnObjCContainerStartDefinition(cast<Decl>(OriginalLexicalContext));
8179  OriginalLexicalContext = 0;
8180}
8181
8182void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
8183  AdjustDeclIfTemplate(TagD);
8184  TagDecl *Tag = cast<TagDecl>(TagD);
8185  Tag->setInvalidDecl();
8186
8187  // We're undoing ActOnTagStartDefinition here, not
8188  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
8189  // the FieldCollector.
8190
8191  PopDeclContext();
8192}
8193
8194// Note that FieldName may be null for anonymous bitfields.
8195bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
8196                          QualType FieldTy, const Expr *BitWidth,
8197                          bool *ZeroWidth) {
8198  // Default to true; that shouldn't confuse checks for emptiness
8199  if (ZeroWidth)
8200    *ZeroWidth = true;
8201
8202  // C99 6.7.2.1p4 - verify the field type.
8203  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
8204  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
8205    // Handle incomplete types with specific error.
8206    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
8207      return true;
8208    if (FieldName)
8209      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
8210        << FieldName << FieldTy << BitWidth->getSourceRange();
8211    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
8212      << FieldTy << BitWidth->getSourceRange();
8213  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
8214                                             UPPC_BitFieldWidth))
8215    return true;
8216
8217  // If the bit-width is type- or value-dependent, don't try to check
8218  // it now.
8219  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
8220    return false;
8221
8222  llvm::APSInt Value;
8223  if (VerifyIntegerConstantExpression(BitWidth, &Value))
8224    return true;
8225
8226  if (Value != 0 && ZeroWidth)
8227    *ZeroWidth = false;
8228
8229  // Zero-width bitfield is ok for anonymous field.
8230  if (Value == 0 && FieldName)
8231    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
8232
8233  if (Value.isSigned() && Value.isNegative()) {
8234    if (FieldName)
8235      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
8236               << FieldName << Value.toString(10);
8237    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
8238      << Value.toString(10);
8239  }
8240
8241  if (!FieldTy->isDependentType()) {
8242    uint64_t TypeSize = Context.getTypeSize(FieldTy);
8243    if (Value.getZExtValue() > TypeSize) {
8244      if (!getLangOptions().CPlusPlus) {
8245        if (FieldName)
8246          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
8247            << FieldName << (unsigned)Value.getZExtValue()
8248            << (unsigned)TypeSize;
8249
8250        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
8251          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8252      }
8253
8254      if (FieldName)
8255        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
8256          << FieldName << (unsigned)Value.getZExtValue()
8257          << (unsigned)TypeSize;
8258      else
8259        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
8260          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
8261    }
8262  }
8263
8264  return false;
8265}
8266
8267/// ActOnField - Each field of a C struct/union is passed into this in order
8268/// to create a FieldDecl object for it.
8269Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
8270                       Declarator &D, Expr *BitfieldWidth) {
8271  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
8272                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
8273                               /*HasInit=*/false, AS_public);
8274  return Res;
8275}
8276
8277/// HandleField - Analyze a field of a C struct or a C++ data member.
8278///
8279FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
8280                             SourceLocation DeclStart,
8281                             Declarator &D, Expr *BitWidth, bool HasInit,
8282                             AccessSpecifier AS) {
8283  IdentifierInfo *II = D.getIdentifier();
8284  SourceLocation Loc = DeclStart;
8285  if (II) Loc = D.getIdentifierLoc();
8286
8287  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8288  QualType T = TInfo->getType();
8289  if (getLangOptions().CPlusPlus) {
8290    CheckExtraCXXDefaultArguments(D);
8291
8292    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
8293                                        UPPC_DataMemberType)) {
8294      D.setInvalidType();
8295      T = Context.IntTy;
8296      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
8297    }
8298  }
8299
8300  DiagnoseFunctionSpecifiers(D);
8301
8302  if (D.getDeclSpec().isThreadSpecified())
8303    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
8304  if (D.getDeclSpec().isConstexprSpecified())
8305    Diag(D.getDeclSpec().getConstexprSpecLoc(), diag::err_invalid_constexpr)
8306      << 2;
8307
8308  // Check to see if this name was declared as a member previously
8309  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
8310  LookupName(Previous, S);
8311  assert((Previous.empty() || Previous.isOverloadedResult() ||
8312          Previous.isSingleResult())
8313    && "Lookup of member name should be either overloaded, single or null");
8314
8315  // If the name is overloaded then get any declaration else get the single result
8316  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
8317    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
8318
8319  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8320    // Maybe we will complain about the shadowed template parameter.
8321    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
8322    // Just pretend that we didn't see the previous declaration.
8323    PrevDecl = 0;
8324  }
8325
8326  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
8327    PrevDecl = 0;
8328
8329  bool Mutable
8330    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
8331  SourceLocation TSSL = D.getSourceRange().getBegin();
8332  FieldDecl *NewFD
8333    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
8334                     TSSL, AS, PrevDecl, &D);
8335
8336  if (NewFD->isInvalidDecl())
8337    Record->setInvalidDecl();
8338
8339  if (D.getDeclSpec().isModulePrivateSpecified())
8340    NewFD->setModulePrivate();
8341
8342  if (NewFD->isInvalidDecl() && PrevDecl) {
8343    // Don't introduce NewFD into scope; there's already something
8344    // with the same name in the same scope.
8345  } else if (II) {
8346    PushOnScopeChains(NewFD, S);
8347  } else
8348    Record->addDecl(NewFD);
8349
8350  return NewFD;
8351}
8352
8353/// \brief Build a new FieldDecl and check its well-formedness.
8354///
8355/// This routine builds a new FieldDecl given the fields name, type,
8356/// record, etc. \p PrevDecl should refer to any previous declaration
8357/// with the same name and in the same scope as the field to be
8358/// created.
8359///
8360/// \returns a new FieldDecl.
8361///
8362/// \todo The Declarator argument is a hack. It will be removed once
8363FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
8364                                TypeSourceInfo *TInfo,
8365                                RecordDecl *Record, SourceLocation Loc,
8366                                bool Mutable, Expr *BitWidth, bool HasInit,
8367                                SourceLocation TSSL,
8368                                AccessSpecifier AS, NamedDecl *PrevDecl,
8369                                Declarator *D) {
8370  IdentifierInfo *II = Name.getAsIdentifierInfo();
8371  bool InvalidDecl = false;
8372  if (D) InvalidDecl = D->isInvalidType();
8373
8374  // If we receive a broken type, recover by assuming 'int' and
8375  // marking this declaration as invalid.
8376  if (T.isNull()) {
8377    InvalidDecl = true;
8378    T = Context.IntTy;
8379  }
8380
8381  QualType EltTy = Context.getBaseElementType(T);
8382  if (!EltTy->isDependentType() &&
8383      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
8384    // Fields of incomplete type force their record to be invalid.
8385    Record->setInvalidDecl();
8386    InvalidDecl = true;
8387  }
8388
8389  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8390  // than a variably modified type.
8391  if (!InvalidDecl && T->isVariablyModifiedType()) {
8392    bool SizeIsNegative;
8393    llvm::APSInt Oversized;
8394    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
8395                                                           SizeIsNegative,
8396                                                           Oversized);
8397    if (!FixedTy.isNull()) {
8398      Diag(Loc, diag::warn_illegal_constant_array_size);
8399      T = FixedTy;
8400    } else {
8401      if (SizeIsNegative)
8402        Diag(Loc, diag::err_typecheck_negative_array_size);
8403      else if (Oversized.getBoolValue())
8404        Diag(Loc, diag::err_array_too_large)
8405          << Oversized.toString(10);
8406      else
8407        Diag(Loc, diag::err_typecheck_field_variable_size);
8408      InvalidDecl = true;
8409    }
8410  }
8411
8412  // Fields can not have abstract class types
8413  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
8414                                             diag::err_abstract_type_in_decl,
8415                                             AbstractFieldType))
8416    InvalidDecl = true;
8417
8418  bool ZeroWidth = false;
8419  // If this is declared as a bit-field, check the bit-field.
8420  if (!InvalidDecl && BitWidth &&
8421      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
8422    InvalidDecl = true;
8423    BitWidth = 0;
8424    ZeroWidth = false;
8425  }
8426
8427  // Check that 'mutable' is consistent with the type of the declaration.
8428  if (!InvalidDecl && Mutable) {
8429    unsigned DiagID = 0;
8430    if (T->isReferenceType())
8431      DiagID = diag::err_mutable_reference;
8432    else if (T.isConstQualified())
8433      DiagID = diag::err_mutable_const;
8434
8435    if (DiagID) {
8436      SourceLocation ErrLoc = Loc;
8437      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
8438        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
8439      Diag(ErrLoc, DiagID);
8440      Mutable = false;
8441      InvalidDecl = true;
8442    }
8443  }
8444
8445  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
8446                                       BitWidth, Mutable, HasInit);
8447  if (InvalidDecl)
8448    NewFD->setInvalidDecl();
8449
8450  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
8451    Diag(Loc, diag::err_duplicate_member) << II;
8452    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8453    NewFD->setInvalidDecl();
8454  }
8455
8456  if (!InvalidDecl && getLangOptions().CPlusPlus) {
8457    if (Record->isUnion()) {
8458      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8459        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8460        if (RDecl->getDefinition()) {
8461          // C++ [class.union]p1: An object of a class with a non-trivial
8462          // constructor, a non-trivial copy constructor, a non-trivial
8463          // destructor, or a non-trivial copy assignment operator
8464          // cannot be a member of a union, nor can an array of such
8465          // objects.
8466          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
8467            NewFD->setInvalidDecl();
8468        }
8469      }
8470
8471      // C++ [class.union]p1: If a union contains a member of reference type,
8472      // the program is ill-formed.
8473      if (EltTy->isReferenceType()) {
8474        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
8475          << NewFD->getDeclName() << EltTy;
8476        NewFD->setInvalidDecl();
8477      }
8478    }
8479  }
8480
8481  // FIXME: We need to pass in the attributes given an AST
8482  // representation, not a parser representation.
8483  if (D)
8484    // FIXME: What to pass instead of TUScope?
8485    ProcessDeclAttributes(TUScope, NewFD, *D);
8486
8487  // In auto-retain/release, infer strong retension for fields of
8488  // retainable type.
8489  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
8490    NewFD->setInvalidDecl();
8491
8492  if (T.isObjCGCWeak())
8493    Diag(Loc, diag::warn_attribute_weak_on_field);
8494
8495  NewFD->setAccess(AS);
8496  return NewFD;
8497}
8498
8499bool Sema::CheckNontrivialField(FieldDecl *FD) {
8500  assert(FD);
8501  assert(getLangOptions().CPlusPlus && "valid check only for C++");
8502
8503  if (FD->isInvalidDecl())
8504    return true;
8505
8506  QualType EltTy = Context.getBaseElementType(FD->getType());
8507  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
8508    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
8509    if (RDecl->getDefinition()) {
8510      // We check for copy constructors before constructors
8511      // because otherwise we'll never get complaints about
8512      // copy constructors.
8513
8514      CXXSpecialMember member = CXXInvalid;
8515      if (!RDecl->hasTrivialCopyConstructor())
8516        member = CXXCopyConstructor;
8517      else if (!RDecl->hasTrivialDefaultConstructor())
8518        member = CXXDefaultConstructor;
8519      else if (!RDecl->hasTrivialCopyAssignment())
8520        member = CXXCopyAssignment;
8521      else if (!RDecl->hasTrivialDestructor())
8522        member = CXXDestructor;
8523
8524      if (member != CXXInvalid) {
8525        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
8526          // Objective-C++ ARC: it is an error to have a non-trivial field of
8527          // a union. However, system headers in Objective-C programs
8528          // occasionally have Objective-C lifetime objects within unions,
8529          // and rather than cause the program to fail, we make those
8530          // members unavailable.
8531          SourceLocation Loc = FD->getLocation();
8532          if (getSourceManager().isInSystemHeader(Loc)) {
8533            if (!FD->hasAttr<UnavailableAttr>())
8534              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
8535                                  "this system field has retaining ownership"));
8536            return false;
8537          }
8538        }
8539
8540        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
8541              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
8542        DiagnoseNontrivial(RT, member);
8543        return true;
8544      }
8545    }
8546  }
8547
8548  return false;
8549}
8550
8551/// DiagnoseNontrivial - Given that a class has a non-trivial
8552/// special member, figure out why.
8553void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
8554  QualType QT(T, 0U);
8555  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
8556
8557  // Check whether the member was user-declared.
8558  switch (member) {
8559  case CXXInvalid:
8560    break;
8561
8562  case CXXDefaultConstructor:
8563    if (RD->hasUserDeclaredConstructor()) {
8564      typedef CXXRecordDecl::ctor_iterator ctor_iter;
8565      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
8566        const FunctionDecl *body = 0;
8567        ci->hasBody(body);
8568        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
8569          SourceLocation CtorLoc = ci->getLocation();
8570          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8571          return;
8572        }
8573      }
8574
8575      llvm_unreachable("found no user-declared constructors");
8576    }
8577    break;
8578
8579  case CXXCopyConstructor:
8580    if (RD->hasUserDeclaredCopyConstructor()) {
8581      SourceLocation CtorLoc =
8582        RD->getCopyConstructor(0)->getLocation();
8583      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8584      return;
8585    }
8586    break;
8587
8588  case CXXMoveConstructor:
8589    if (RD->hasUserDeclaredMoveConstructor()) {
8590      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
8591      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8592      return;
8593    }
8594    break;
8595
8596  case CXXCopyAssignment:
8597    if (RD->hasUserDeclaredCopyAssignment()) {
8598      // FIXME: this should use the location of the copy
8599      // assignment, not the type.
8600      SourceLocation TyLoc = RD->getSourceRange().getBegin();
8601      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
8602      return;
8603    }
8604    break;
8605
8606  case CXXMoveAssignment:
8607    if (RD->hasUserDeclaredMoveAssignment()) {
8608      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
8609      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
8610      return;
8611    }
8612    break;
8613
8614  case CXXDestructor:
8615    if (RD->hasUserDeclaredDestructor()) {
8616      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
8617      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
8618      return;
8619    }
8620    break;
8621  }
8622
8623  typedef CXXRecordDecl::base_class_iterator base_iter;
8624
8625  // Virtual bases and members inhibit trivial copying/construction,
8626  // but not trivial destruction.
8627  if (member != CXXDestructor) {
8628    // Check for virtual bases.  vbases includes indirect virtual bases,
8629    // so we just iterate through the direct bases.
8630    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
8631      if (bi->isVirtual()) {
8632        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8633        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
8634        return;
8635      }
8636
8637    // Check for virtual methods.
8638    typedef CXXRecordDecl::method_iterator meth_iter;
8639    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8640         ++mi) {
8641      if (mi->isVirtual()) {
8642        SourceLocation MLoc = mi->getSourceRange().getBegin();
8643        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8644        return;
8645      }
8646    }
8647  }
8648
8649  bool (CXXRecordDecl::*hasTrivial)() const;
8650  switch (member) {
8651  case CXXDefaultConstructor:
8652    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8653  case CXXCopyConstructor:
8654    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8655  case CXXCopyAssignment:
8656    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8657  case CXXDestructor:
8658    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8659  default:
8660    llvm_unreachable("unexpected special member");
8661  }
8662
8663  // Check for nontrivial bases (and recurse).
8664  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8665    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8666    assert(BaseRT && "Don't know how to handle dependent bases");
8667    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8668    if (!(BaseRecTy->*hasTrivial)()) {
8669      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8670      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8671      DiagnoseNontrivial(BaseRT, member);
8672      return;
8673    }
8674  }
8675
8676  // Check for nontrivial members (and recurse).
8677  typedef RecordDecl::field_iterator field_iter;
8678  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8679       ++fi) {
8680    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8681    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8682      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8683
8684      if (!(EltRD->*hasTrivial)()) {
8685        SourceLocation FLoc = (*fi)->getLocation();
8686        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8687        DiagnoseNontrivial(EltRT, member);
8688        return;
8689      }
8690    }
8691
8692    if (EltTy->isObjCLifetimeType()) {
8693      switch (EltTy.getObjCLifetime()) {
8694      case Qualifiers::OCL_None:
8695      case Qualifiers::OCL_ExplicitNone:
8696        break;
8697
8698      case Qualifiers::OCL_Autoreleasing:
8699      case Qualifiers::OCL_Weak:
8700      case Qualifiers::OCL_Strong:
8701        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8702          << QT << EltTy.getObjCLifetime();
8703        return;
8704      }
8705    }
8706  }
8707
8708  llvm_unreachable("found no explanation for non-trivial member");
8709}
8710
8711/// TranslateIvarVisibility - Translate visibility from a token ID to an
8712///  AST enum value.
8713static ObjCIvarDecl::AccessControl
8714TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8715  switch (ivarVisibility) {
8716  default: llvm_unreachable("Unknown visitibility kind");
8717  case tok::objc_private: return ObjCIvarDecl::Private;
8718  case tok::objc_public: return ObjCIvarDecl::Public;
8719  case tok::objc_protected: return ObjCIvarDecl::Protected;
8720  case tok::objc_package: return ObjCIvarDecl::Package;
8721  }
8722}
8723
8724/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8725/// in order to create an IvarDecl object for it.
8726Decl *Sema::ActOnIvar(Scope *S,
8727                                SourceLocation DeclStart,
8728                                Declarator &D, Expr *BitfieldWidth,
8729                                tok::ObjCKeywordKind Visibility) {
8730
8731  IdentifierInfo *II = D.getIdentifier();
8732  Expr *BitWidth = (Expr*)BitfieldWidth;
8733  SourceLocation Loc = DeclStart;
8734  if (II) Loc = D.getIdentifierLoc();
8735
8736  // FIXME: Unnamed fields can be handled in various different ways, for
8737  // example, unnamed unions inject all members into the struct namespace!
8738
8739  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8740  QualType T = TInfo->getType();
8741
8742  if (BitWidth) {
8743    // 6.7.2.1p3, 6.7.2.1p4
8744    if (VerifyBitField(Loc, II, T, BitWidth)) {
8745      D.setInvalidType();
8746      BitWidth = 0;
8747    }
8748  } else {
8749    // Not a bitfield.
8750
8751    // validate II.
8752
8753  }
8754  if (T->isReferenceType()) {
8755    Diag(Loc, diag::err_ivar_reference_type);
8756    D.setInvalidType();
8757  }
8758  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8759  // than a variably modified type.
8760  else if (T->isVariablyModifiedType()) {
8761    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8762    D.setInvalidType();
8763  }
8764
8765  // Get the visibility (access control) for this ivar.
8766  ObjCIvarDecl::AccessControl ac =
8767    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8768                                        : ObjCIvarDecl::None;
8769  // Must set ivar's DeclContext to its enclosing interface.
8770  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(CurContext);
8771  ObjCContainerDecl *EnclosingContext;
8772  if (ObjCImplementationDecl *IMPDecl =
8773      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8774    if (!LangOpts.ObjCNonFragileABI2) {
8775    // Case of ivar declared in an implementation. Context is that of its class.
8776      EnclosingContext = IMPDecl->getClassInterface();
8777      assert(EnclosingContext && "Implementation has no class interface!");
8778    }
8779    else
8780      EnclosingContext = EnclosingDecl;
8781  } else {
8782    if (ObjCCategoryDecl *CDecl =
8783        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8784      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8785        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8786        return 0;
8787      }
8788    }
8789    EnclosingContext = EnclosingDecl;
8790  }
8791
8792  // Construct the decl.
8793  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8794                                             DeclStart, Loc, II, T,
8795                                             TInfo, ac, (Expr *)BitfieldWidth);
8796
8797  if (II) {
8798    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8799                                           ForRedeclaration);
8800    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8801        && !isa<TagDecl>(PrevDecl)) {
8802      Diag(Loc, diag::err_duplicate_member) << II;
8803      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8804      NewID->setInvalidDecl();
8805    }
8806  }
8807
8808  // Process attributes attached to the ivar.
8809  ProcessDeclAttributes(S, NewID, D);
8810
8811  if (D.isInvalidType())
8812    NewID->setInvalidDecl();
8813
8814  // In ARC, infer 'retaining' for ivars of retainable type.
8815  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8816    NewID->setInvalidDecl();
8817
8818  if (D.getDeclSpec().isModulePrivateSpecified())
8819    NewID->setModulePrivate();
8820
8821  if (II) {
8822    // FIXME: When interfaces are DeclContexts, we'll need to add
8823    // these to the interface.
8824    S->AddDecl(NewID);
8825    IdResolver.AddDecl(NewID);
8826  }
8827
8828  return NewID;
8829}
8830
8831/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8832/// class and class extensions. For every class @interface and class
8833/// extension @interface, if the last ivar is a bitfield of any type,
8834/// then add an implicit `char :0` ivar to the end of that interface.
8835void Sema::ActOnLastBitfield(SourceLocation DeclLoc,
8836                             SmallVectorImpl<Decl *> &AllIvarDecls) {
8837  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8838    return;
8839
8840  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8841  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8842
8843  if (!Ivar->isBitField() || Ivar->getBitWidthValue(Context) == 0)
8844    return;
8845  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(CurContext);
8846  if (!ID) {
8847    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(CurContext)) {
8848      if (!CD->IsClassExtension())
8849        return;
8850    }
8851    // No need to add this to end of @implementation.
8852    else
8853      return;
8854  }
8855  // All conditions are met. Add a new bitfield to the tail end of ivars.
8856  llvm::APInt Zero(Context.getTypeSize(Context.IntTy), 0);
8857  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.IntTy, DeclLoc);
8858
8859  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(CurContext),
8860                              DeclLoc, DeclLoc, 0,
8861                              Context.CharTy,
8862                              Context.getTrivialTypeSourceInfo(Context.CharTy,
8863                                                               DeclLoc),
8864                              ObjCIvarDecl::Private, BW,
8865                              true);
8866  AllIvarDecls.push_back(Ivar);
8867}
8868
8869void Sema::ActOnFields(Scope* S,
8870                       SourceLocation RecLoc, Decl *EnclosingDecl,
8871                       llvm::ArrayRef<Decl *> Fields,
8872                       SourceLocation LBrac, SourceLocation RBrac,
8873                       AttributeList *Attr) {
8874  assert(EnclosingDecl && "missing record or interface decl");
8875
8876  // If the decl this is being inserted into is invalid, then it may be a
8877  // redeclaration or some other bogus case.  Don't try to add fields to it.
8878  if (EnclosingDecl->isInvalidDecl())
8879    return;
8880
8881  // Verify that all the fields are okay.
8882  unsigned NumNamedMembers = 0;
8883  SmallVector<FieldDecl*, 32> RecFields;
8884
8885  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8886  bool ARCErrReported = false;
8887  for (llvm::ArrayRef<Decl *>::iterator i = Fields.begin(), end = Fields.end();
8888       i != end; ++i) {
8889    FieldDecl *FD = cast<FieldDecl>(*i);
8890
8891    // Get the type for the field.
8892    const Type *FDTy = FD->getType().getTypePtr();
8893
8894    if (!FD->isAnonymousStructOrUnion()) {
8895      // Remember all fields written by the user.
8896      RecFields.push_back(FD);
8897    }
8898
8899    // If the field is already invalid for some reason, don't emit more
8900    // diagnostics about it.
8901    if (FD->isInvalidDecl()) {
8902      EnclosingDecl->setInvalidDecl();
8903      continue;
8904    }
8905
8906    // C99 6.7.2.1p2:
8907    //   A structure or union shall not contain a member with
8908    //   incomplete or function type (hence, a structure shall not
8909    //   contain an instance of itself, but may contain a pointer to
8910    //   an instance of itself), except that the last member of a
8911    //   structure with more than one named member may have incomplete
8912    //   array type; such a structure (and any union containing,
8913    //   possibly recursively, a member that is such a structure)
8914    //   shall not be a member of a structure or an element of an
8915    //   array.
8916    if (FDTy->isFunctionType()) {
8917      // Field declared as a function.
8918      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8919        << FD->getDeclName();
8920      FD->setInvalidDecl();
8921      EnclosingDecl->setInvalidDecl();
8922      continue;
8923    } else if (FDTy->isIncompleteArrayType() && Record &&
8924               ((i + 1 == Fields.end() && !Record->isUnion()) ||
8925                ((getLangOptions().MicrosoftExt ||
8926                  getLangOptions().CPlusPlus) &&
8927                 (i + 1 == Fields.end() || Record->isUnion())))) {
8928      // Flexible array member.
8929      // Microsoft and g++ is more permissive regarding flexible array.
8930      // It will accept flexible array in union and also
8931      // as the sole element of a struct/class.
8932      if (getLangOptions().MicrosoftExt) {
8933        if (Record->isUnion())
8934          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8935            << FD->getDeclName();
8936        else if (Fields.size() == 1)
8937          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8938            << FD->getDeclName() << Record->getTagKind();
8939      } else if (getLangOptions().CPlusPlus) {
8940        if (Record->isUnion())
8941          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8942            << FD->getDeclName();
8943        else if (Fields.size() == 1)
8944          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8945            << FD->getDeclName() << Record->getTagKind();
8946      } else if (NumNamedMembers < 1) {
8947        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8948          << FD->getDeclName();
8949        FD->setInvalidDecl();
8950        EnclosingDecl->setInvalidDecl();
8951        continue;
8952      }
8953      if (!FD->getType()->isDependentType() &&
8954          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8955        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8956          << FD->getDeclName() << FD->getType();
8957        FD->setInvalidDecl();
8958        EnclosingDecl->setInvalidDecl();
8959        continue;
8960      }
8961      // Okay, we have a legal flexible array member at the end of the struct.
8962      if (Record)
8963        Record->setHasFlexibleArrayMember(true);
8964    } else if (!FDTy->isDependentType() &&
8965               RequireCompleteType(FD->getLocation(), FD->getType(),
8966                                   diag::err_field_incomplete)) {
8967      // Incomplete type
8968      FD->setInvalidDecl();
8969      EnclosingDecl->setInvalidDecl();
8970      continue;
8971    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8972      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8973        // If this is a member of a union, then entire union becomes "flexible".
8974        if (Record && Record->isUnion()) {
8975          Record->setHasFlexibleArrayMember(true);
8976        } else {
8977          // If this is a struct/class and this is not the last element, reject
8978          // it.  Note that GCC supports variable sized arrays in the middle of
8979          // structures.
8980          if (i + 1 != Fields.end())
8981            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8982              << FD->getDeclName() << FD->getType();
8983          else {
8984            // We support flexible arrays at the end of structs in
8985            // other structs as an extension.
8986            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8987              << FD->getDeclName();
8988            if (Record)
8989              Record->setHasFlexibleArrayMember(true);
8990          }
8991        }
8992      }
8993      if (Record && FDTTy->getDecl()->hasObjectMember())
8994        Record->setHasObjectMember(true);
8995    } else if (FDTy->isObjCObjectType()) {
8996      /// A field cannot be an Objective-c object
8997      Diag(FD->getLocation(), diag::err_statically_allocated_object)
8998        << FixItHint::CreateInsertion(FD->getLocation(), "*");
8999      QualType T = Context.getObjCObjectPointerType(FD->getType());
9000      FD->setType(T);
9001    }
9002    else if (!getLangOptions().CPlusPlus) {
9003      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
9004        // It's an error in ARC if a field has lifetime.
9005        // We don't want to report this in a system header, though,
9006        // so we just make the field unavailable.
9007        // FIXME: that's really not sufficient; we need to make the type
9008        // itself invalid to, say, initialize or copy.
9009        QualType T = FD->getType();
9010        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
9011        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
9012          SourceLocation loc = FD->getLocation();
9013          if (getSourceManager().isInSystemHeader(loc)) {
9014            if (!FD->hasAttr<UnavailableAttr>()) {
9015              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
9016                                "this system field has retaining ownership"));
9017            }
9018          } else {
9019            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
9020          }
9021          ARCErrReported = true;
9022        }
9023      }
9024      else if (getLangOptions().ObjC1 &&
9025               getLangOptions().getGC() != LangOptions::NonGC &&
9026               Record && !Record->hasObjectMember()) {
9027        if (FD->getType()->isObjCObjectPointerType() ||
9028            FD->getType().isObjCGCStrong())
9029          Record->setHasObjectMember(true);
9030        else if (Context.getAsArrayType(FD->getType())) {
9031          QualType BaseType = Context.getBaseElementType(FD->getType());
9032          if (BaseType->isRecordType() &&
9033              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
9034            Record->setHasObjectMember(true);
9035          else if (BaseType->isObjCObjectPointerType() ||
9036                   BaseType.isObjCGCStrong())
9037                 Record->setHasObjectMember(true);
9038        }
9039      }
9040    }
9041    // Keep track of the number of named members.
9042    if (FD->getIdentifier())
9043      ++NumNamedMembers;
9044  }
9045
9046  // Okay, we successfully defined 'Record'.
9047  if (Record) {
9048    bool Completed = false;
9049    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
9050      if (!CXXRecord->isInvalidDecl()) {
9051        // Set access bits correctly on the directly-declared conversions.
9052        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
9053        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
9054             I != E; ++I)
9055          Convs->setAccess(I, (*I)->getAccess());
9056
9057        if (!CXXRecord->isDependentType()) {
9058          // Objective-C Automatic Reference Counting:
9059          //   If a class has a non-static data member of Objective-C pointer
9060          //   type (or array thereof), it is a non-POD type and its
9061          //   default constructor (if any), copy constructor, copy assignment
9062          //   operator, and destructor are non-trivial.
9063          //
9064          // This rule is also handled by CXXRecordDecl::completeDefinition().
9065          // However, here we check whether this particular class is only
9066          // non-POD because of the presence of an Objective-C pointer member.
9067          // If so, objects of this type cannot be shared between code compiled
9068          // with instant objects and code compiled with manual retain/release.
9069          if (getLangOptions().ObjCAutoRefCount &&
9070              CXXRecord->hasObjectMember() &&
9071              CXXRecord->getLinkage() == ExternalLinkage) {
9072            if (CXXRecord->isPOD()) {
9073              Diag(CXXRecord->getLocation(),
9074                   diag::warn_arc_non_pod_class_with_object_member)
9075               << CXXRecord;
9076            } else {
9077              // FIXME: Fix-Its would be nice here, but finding a good location
9078              // for them is going to be tricky.
9079              if (CXXRecord->hasTrivialCopyConstructor())
9080                Diag(CXXRecord->getLocation(),
9081                     diag::warn_arc_trivial_member_function_with_object_member)
9082                  << CXXRecord << 0;
9083              if (CXXRecord->hasTrivialCopyAssignment())
9084                Diag(CXXRecord->getLocation(),
9085                     diag::warn_arc_trivial_member_function_with_object_member)
9086                << CXXRecord << 1;
9087              if (CXXRecord->hasTrivialDestructor())
9088                Diag(CXXRecord->getLocation(),
9089                     diag::warn_arc_trivial_member_function_with_object_member)
9090                << CXXRecord << 2;
9091            }
9092          }
9093
9094          // Adjust user-defined destructor exception spec.
9095          if (getLangOptions().CPlusPlus0x &&
9096              CXXRecord->hasUserDeclaredDestructor())
9097            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
9098
9099          // Add any implicitly-declared members to this class.
9100          AddImplicitlyDeclaredMembersToClass(CXXRecord);
9101
9102          // If we have virtual base classes, we may end up finding multiple
9103          // final overriders for a given virtual function. Check for this
9104          // problem now.
9105          if (CXXRecord->getNumVBases()) {
9106            CXXFinalOverriderMap FinalOverriders;
9107            CXXRecord->getFinalOverriders(FinalOverriders);
9108
9109            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
9110                                             MEnd = FinalOverriders.end();
9111                 M != MEnd; ++M) {
9112              for (OverridingMethods::iterator SO = M->second.begin(),
9113                                            SOEnd = M->second.end();
9114                   SO != SOEnd; ++SO) {
9115                assert(SO->second.size() > 0 &&
9116                       "Virtual function without overridding functions?");
9117                if (SO->second.size() == 1)
9118                  continue;
9119
9120                // C++ [class.virtual]p2:
9121                //   In a derived class, if a virtual member function of a base
9122                //   class subobject has more than one final overrider the
9123                //   program is ill-formed.
9124                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
9125                  << (NamedDecl *)M->first << Record;
9126                Diag(M->first->getLocation(),
9127                     diag::note_overridden_virtual_function);
9128                for (OverridingMethods::overriding_iterator
9129                          OM = SO->second.begin(),
9130                       OMEnd = SO->second.end();
9131                     OM != OMEnd; ++OM)
9132                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
9133                    << (NamedDecl *)M->first << OM->Method->getParent();
9134
9135                Record->setInvalidDecl();
9136              }
9137            }
9138            CXXRecord->completeDefinition(&FinalOverriders);
9139            Completed = true;
9140          }
9141        }
9142      }
9143    }
9144
9145    if (!Completed)
9146      Record->completeDefinition();
9147
9148    // Now that the record is complete, do any delayed exception spec checks
9149    // we were missing.
9150    while (!DelayedDestructorExceptionSpecChecks.empty()) {
9151      const CXXDestructorDecl *Dtor =
9152              DelayedDestructorExceptionSpecChecks.back().first;
9153      if (Dtor->getParent() != Record)
9154        break;
9155
9156      assert(!Dtor->getParent()->isDependentType() &&
9157          "Should not ever add destructors of templates into the list.");
9158      CheckOverridingFunctionExceptionSpec(Dtor,
9159          DelayedDestructorExceptionSpecChecks.back().second);
9160      DelayedDestructorExceptionSpecChecks.pop_back();
9161    }
9162
9163  } else {
9164    ObjCIvarDecl **ClsFields =
9165      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
9166    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
9167      ID->setLocEnd(RBrac);
9168      // Add ivar's to class's DeclContext.
9169      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9170        ClsFields[i]->setLexicalDeclContext(ID);
9171        ID->addDecl(ClsFields[i]);
9172      }
9173      // Must enforce the rule that ivars in the base classes may not be
9174      // duplicates.
9175      if (ID->getSuperClass())
9176        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
9177    } else if (ObjCImplementationDecl *IMPDecl =
9178                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
9179      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
9180      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
9181        // Ivar declared in @implementation never belongs to the implementation.
9182        // Only it is in implementation's lexical context.
9183        ClsFields[I]->setLexicalDeclContext(IMPDecl);
9184      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
9185    } else if (ObjCCategoryDecl *CDecl =
9186                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
9187      // case of ivars in class extension; all other cases have been
9188      // reported as errors elsewhere.
9189      // FIXME. Class extension does not have a LocEnd field.
9190      // CDecl->setLocEnd(RBrac);
9191      // Add ivar's to class extension's DeclContext.
9192      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
9193        ClsFields[i]->setLexicalDeclContext(CDecl);
9194        CDecl->addDecl(ClsFields[i]);
9195      }
9196    }
9197  }
9198
9199  if (Attr)
9200    ProcessDeclAttributeList(S, Record, Attr);
9201
9202  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
9203  // set the visibility of this record.
9204  if (Record && !Record->getDeclContext()->isRecord())
9205    AddPushedVisibilityAttribute(Record);
9206}
9207
9208/// \brief Determine whether the given integral value is representable within
9209/// the given type T.
9210static bool isRepresentableIntegerValue(ASTContext &Context,
9211                                        llvm::APSInt &Value,
9212                                        QualType T) {
9213  assert(T->isIntegralType(Context) && "Integral type required!");
9214  unsigned BitWidth = Context.getIntWidth(T);
9215
9216  if (Value.isUnsigned() || Value.isNonNegative()) {
9217    if (T->isSignedIntegerOrEnumerationType())
9218      --BitWidth;
9219    return Value.getActiveBits() <= BitWidth;
9220  }
9221  return Value.getMinSignedBits() <= BitWidth;
9222}
9223
9224// \brief Given an integral type, return the next larger integral type
9225// (or a NULL type of no such type exists).
9226static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
9227  // FIXME: Int128/UInt128 support, which also needs to be introduced into
9228  // enum checking below.
9229  assert(T->isIntegralType(Context) && "Integral type required!");
9230  const unsigned NumTypes = 4;
9231  QualType SignedIntegralTypes[NumTypes] = {
9232    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
9233  };
9234  QualType UnsignedIntegralTypes[NumTypes] = {
9235    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
9236    Context.UnsignedLongLongTy
9237  };
9238
9239  unsigned BitWidth = Context.getTypeSize(T);
9240  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
9241                                                        : UnsignedIntegralTypes;
9242  for (unsigned I = 0; I != NumTypes; ++I)
9243    if (Context.getTypeSize(Types[I]) > BitWidth)
9244      return Types[I];
9245
9246  return QualType();
9247}
9248
9249EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
9250                                          EnumConstantDecl *LastEnumConst,
9251                                          SourceLocation IdLoc,
9252                                          IdentifierInfo *Id,
9253                                          Expr *Val) {
9254  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9255  llvm::APSInt EnumVal(IntWidth);
9256  QualType EltTy;
9257
9258  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
9259    Val = 0;
9260
9261  if (Val) {
9262    if (Enum->isDependentType() || Val->isTypeDependent())
9263      EltTy = Context.DependentTy;
9264    else {
9265      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
9266      SourceLocation ExpLoc;
9267      if (!Val->isValueDependent() &&
9268          VerifyIntegerConstantExpression(Val, &EnumVal)) {
9269        Val = 0;
9270      } else {
9271        if (!getLangOptions().CPlusPlus) {
9272          // C99 6.7.2.2p2:
9273          //   The expression that defines the value of an enumeration constant
9274          //   shall be an integer constant expression that has a value
9275          //   representable as an int.
9276
9277          // Complain if the value is not representable in an int.
9278          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
9279            Diag(IdLoc, diag::ext_enum_value_not_int)
9280              << EnumVal.toString(10) << Val->getSourceRange()
9281              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
9282          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
9283            // Force the type of the expression to 'int'.
9284            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
9285          }
9286        }
9287
9288        if (Enum->isFixed()) {
9289          EltTy = Enum->getIntegerType();
9290
9291          // C++0x [dcl.enum]p5:
9292          //   ... if the initializing value of an enumerator cannot be
9293          //   represented by the underlying type, the program is ill-formed.
9294          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9295            if (getLangOptions().MicrosoftExt) {
9296              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
9297              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9298            } else
9299              Diag(IdLoc, diag::err_enumerator_too_large)
9300                << EltTy;
9301          } else
9302            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
9303        }
9304        else {
9305          // C++0x [dcl.enum]p5:
9306          //   If the underlying type is not fixed, the type of each enumerator
9307          //   is the type of its initializing value:
9308          //     - If an initializer is specified for an enumerator, the
9309          //       initializing value has the same type as the expression.
9310          EltTy = Val->getType();
9311        }
9312      }
9313    }
9314  }
9315
9316  if (!Val) {
9317    if (Enum->isDependentType())
9318      EltTy = Context.DependentTy;
9319    else if (!LastEnumConst) {
9320      // C++0x [dcl.enum]p5:
9321      //   If the underlying type is not fixed, the type of each enumerator
9322      //   is the type of its initializing value:
9323      //     - If no initializer is specified for the first enumerator, the
9324      //       initializing value has an unspecified integral type.
9325      //
9326      // GCC uses 'int' for its unspecified integral type, as does
9327      // C99 6.7.2.2p3.
9328      if (Enum->isFixed()) {
9329        EltTy = Enum->getIntegerType();
9330      }
9331      else {
9332        EltTy = Context.IntTy;
9333      }
9334    } else {
9335      // Assign the last value + 1.
9336      EnumVal = LastEnumConst->getInitVal();
9337      ++EnumVal;
9338      EltTy = LastEnumConst->getType();
9339
9340      // Check for overflow on increment.
9341      if (EnumVal < LastEnumConst->getInitVal()) {
9342        // C++0x [dcl.enum]p5:
9343        //   If the underlying type is not fixed, the type of each enumerator
9344        //   is the type of its initializing value:
9345        //
9346        //     - Otherwise the type of the initializing value is the same as
9347        //       the type of the initializing value of the preceding enumerator
9348        //       unless the incremented value is not representable in that type,
9349        //       in which case the type is an unspecified integral type
9350        //       sufficient to contain the incremented value. If no such type
9351        //       exists, the program is ill-formed.
9352        QualType T = getNextLargerIntegralType(Context, EltTy);
9353        if (T.isNull() || Enum->isFixed()) {
9354          // There is no integral type larger enough to represent this
9355          // value. Complain, then allow the value to wrap around.
9356          EnumVal = LastEnumConst->getInitVal();
9357          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
9358          ++EnumVal;
9359          if (Enum->isFixed())
9360            // When the underlying type is fixed, this is ill-formed.
9361            Diag(IdLoc, diag::err_enumerator_wrapped)
9362              << EnumVal.toString(10)
9363              << EltTy;
9364          else
9365            Diag(IdLoc, diag::warn_enumerator_too_large)
9366              << EnumVal.toString(10);
9367        } else {
9368          EltTy = T;
9369        }
9370
9371        // Retrieve the last enumerator's value, extent that type to the
9372        // type that is supposed to be large enough to represent the incremented
9373        // value, then increment.
9374        EnumVal = LastEnumConst->getInitVal();
9375        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9376        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9377        ++EnumVal;
9378
9379        // If we're not in C++, diagnose the overflow of enumerator values,
9380        // which in C99 means that the enumerator value is not representable in
9381        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
9382        // permits enumerator values that are representable in some larger
9383        // integral type.
9384        if (!getLangOptions().CPlusPlus && !T.isNull())
9385          Diag(IdLoc, diag::warn_enum_value_overflow);
9386      } else if (!getLangOptions().CPlusPlus &&
9387                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
9388        // Enforce C99 6.7.2.2p2 even when we compute the next value.
9389        Diag(IdLoc, diag::ext_enum_value_not_int)
9390          << EnumVal.toString(10) << 1;
9391      }
9392    }
9393  }
9394
9395  if (!EltTy->isDependentType()) {
9396    // Make the enumerator value match the signedness and size of the
9397    // enumerator's type.
9398    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
9399    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
9400  }
9401
9402  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
9403                                  Val, EnumVal);
9404}
9405
9406
9407Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
9408                              SourceLocation IdLoc, IdentifierInfo *Id,
9409                              AttributeList *Attr,
9410                              SourceLocation EqualLoc, Expr *val) {
9411  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
9412  EnumConstantDecl *LastEnumConst =
9413    cast_or_null<EnumConstantDecl>(lastEnumConst);
9414  Expr *Val = static_cast<Expr*>(val);
9415
9416  // The scope passed in may not be a decl scope.  Zip up the scope tree until
9417  // we find one that is.
9418  S = getNonFieldDeclScope(S);
9419
9420  // Verify that there isn't already something declared with this name in this
9421  // scope.
9422  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
9423                                         ForRedeclaration);
9424  if (PrevDecl && PrevDecl->isTemplateParameter()) {
9425    // Maybe we will complain about the shadowed template parameter.
9426    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
9427    // Just pretend that we didn't see the previous declaration.
9428    PrevDecl = 0;
9429  }
9430
9431  if (PrevDecl) {
9432    // When in C++, we may get a TagDecl with the same name; in this case the
9433    // enum constant will 'hide' the tag.
9434    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
9435           "Received TagDecl when not in C++!");
9436    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
9437      if (isa<EnumConstantDecl>(PrevDecl))
9438        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
9439      else
9440        Diag(IdLoc, diag::err_redefinition) << Id;
9441      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
9442      return 0;
9443    }
9444  }
9445
9446  // C++ [class.mem]p13:
9447  //   If T is the name of a class, then each of the following shall have a
9448  //   name different from T:
9449  //     - every enumerator of every member of class T that is an enumerated
9450  //       type
9451  if (CXXRecordDecl *Record
9452                      = dyn_cast<CXXRecordDecl>(
9453                             TheEnumDecl->getDeclContext()->getRedeclContext()))
9454    if (Record->getIdentifier() && Record->getIdentifier() == Id)
9455      Diag(IdLoc, diag::err_member_name_of_class) << Id;
9456
9457  EnumConstantDecl *New =
9458    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
9459
9460  if (New) {
9461    // Process attributes.
9462    if (Attr) ProcessDeclAttributeList(S, New, Attr);
9463
9464    // Register this decl in the current scope stack.
9465    New->setAccess(TheEnumDecl->getAccess());
9466    PushOnScopeChains(New, S);
9467  }
9468
9469  return New;
9470}
9471
9472void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
9473                         SourceLocation RBraceLoc, Decl *EnumDeclX,
9474                         Decl **Elements, unsigned NumElements,
9475                         Scope *S, AttributeList *Attr) {
9476  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
9477  QualType EnumType = Context.getTypeDeclType(Enum);
9478
9479  if (Attr)
9480    ProcessDeclAttributeList(S, Enum, Attr);
9481
9482  if (Enum->isDependentType()) {
9483    for (unsigned i = 0; i != NumElements; ++i) {
9484      EnumConstantDecl *ECD =
9485        cast_or_null<EnumConstantDecl>(Elements[i]);
9486      if (!ECD) continue;
9487
9488      ECD->setType(EnumType);
9489    }
9490
9491    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
9492    return;
9493  }
9494
9495  // TODO: If the result value doesn't fit in an int, it must be a long or long
9496  // long value.  ISO C does not support this, but GCC does as an extension,
9497  // emit a warning.
9498  unsigned IntWidth = Context.getTargetInfo().getIntWidth();
9499  unsigned CharWidth = Context.getTargetInfo().getCharWidth();
9500  unsigned ShortWidth = Context.getTargetInfo().getShortWidth();
9501
9502  // Verify that all the values are okay, compute the size of the values, and
9503  // reverse the list.
9504  unsigned NumNegativeBits = 0;
9505  unsigned NumPositiveBits = 0;
9506
9507  // Keep track of whether all elements have type int.
9508  bool AllElementsInt = true;
9509
9510  for (unsigned i = 0; i != NumElements; ++i) {
9511    EnumConstantDecl *ECD =
9512      cast_or_null<EnumConstantDecl>(Elements[i]);
9513    if (!ECD) continue;  // Already issued a diagnostic.
9514
9515    const llvm::APSInt &InitVal = ECD->getInitVal();
9516
9517    // Keep track of the size of positive and negative values.
9518    if (InitVal.isUnsigned() || InitVal.isNonNegative())
9519      NumPositiveBits = std::max(NumPositiveBits,
9520                                 (unsigned)InitVal.getActiveBits());
9521    else
9522      NumNegativeBits = std::max(NumNegativeBits,
9523                                 (unsigned)InitVal.getMinSignedBits());
9524
9525    // Keep track of whether every enum element has type int (very commmon).
9526    if (AllElementsInt)
9527      AllElementsInt = ECD->getType() == Context.IntTy;
9528  }
9529
9530  // Figure out the type that should be used for this enum.
9531  QualType BestType;
9532  unsigned BestWidth;
9533
9534  // C++0x N3000 [conv.prom]p3:
9535  //   An rvalue of an unscoped enumeration type whose underlying
9536  //   type is not fixed can be converted to an rvalue of the first
9537  //   of the following types that can represent all the values of
9538  //   the enumeration: int, unsigned int, long int, unsigned long
9539  //   int, long long int, or unsigned long long int.
9540  // C99 6.4.4.3p2:
9541  //   An identifier declared as an enumeration constant has type int.
9542  // The C99 rule is modified by a gcc extension
9543  QualType BestPromotionType;
9544
9545  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
9546  // -fshort-enums is the equivalent to specifying the packed attribute on all
9547  // enum definitions.
9548  if (LangOpts.ShortEnums)
9549    Packed = true;
9550
9551  if (Enum->isFixed()) {
9552    BestType = BestPromotionType = Enum->getIntegerType();
9553    // We don't need to set BestWidth, because BestType is going to be the type
9554    // of the enumerators, but we do anyway because otherwise some compilers
9555    // warn that it might be used uninitialized.
9556    BestWidth = CharWidth;
9557  }
9558  else if (NumNegativeBits) {
9559    // If there is a negative value, figure out the smallest integer type (of
9560    // int/long/longlong) that fits.
9561    // If it's packed, check also if it fits a char or a short.
9562    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
9563      BestType = Context.SignedCharTy;
9564      BestWidth = CharWidth;
9565    } else if (Packed && NumNegativeBits <= ShortWidth &&
9566               NumPositiveBits < ShortWidth) {
9567      BestType = Context.ShortTy;
9568      BestWidth = ShortWidth;
9569    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
9570      BestType = Context.IntTy;
9571      BestWidth = IntWidth;
9572    } else {
9573      BestWidth = Context.getTargetInfo().getLongWidth();
9574
9575      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
9576        BestType = Context.LongTy;
9577      } else {
9578        BestWidth = Context.getTargetInfo().getLongLongWidth();
9579
9580        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
9581          Diag(Enum->getLocation(), diag::warn_enum_too_large);
9582        BestType = Context.LongLongTy;
9583      }
9584    }
9585    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
9586  } else {
9587    // If there is no negative value, figure out the smallest type that fits
9588    // all of the enumerator values.
9589    // If it's packed, check also if it fits a char or a short.
9590    if (Packed && NumPositiveBits <= CharWidth) {
9591      BestType = Context.UnsignedCharTy;
9592      BestPromotionType = Context.IntTy;
9593      BestWidth = CharWidth;
9594    } else if (Packed && NumPositiveBits <= ShortWidth) {
9595      BestType = Context.UnsignedShortTy;
9596      BestPromotionType = Context.IntTy;
9597      BestWidth = ShortWidth;
9598    } else if (NumPositiveBits <= IntWidth) {
9599      BestType = Context.UnsignedIntTy;
9600      BestWidth = IntWidth;
9601      BestPromotionType
9602        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9603                           ? Context.UnsignedIntTy : Context.IntTy;
9604    } else if (NumPositiveBits <=
9605               (BestWidth = Context.getTargetInfo().getLongWidth())) {
9606      BestType = Context.UnsignedLongTy;
9607      BestPromotionType
9608        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9609                           ? Context.UnsignedLongTy : Context.LongTy;
9610    } else {
9611      BestWidth = Context.getTargetInfo().getLongLongWidth();
9612      assert(NumPositiveBits <= BestWidth &&
9613             "How could an initializer get larger than ULL?");
9614      BestType = Context.UnsignedLongLongTy;
9615      BestPromotionType
9616        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
9617                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
9618    }
9619  }
9620
9621  // Loop over all of the enumerator constants, changing their types to match
9622  // the type of the enum if needed.
9623  for (unsigned i = 0; i != NumElements; ++i) {
9624    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
9625    if (!ECD) continue;  // Already issued a diagnostic.
9626
9627    // Standard C says the enumerators have int type, but we allow, as an
9628    // extension, the enumerators to be larger than int size.  If each
9629    // enumerator value fits in an int, type it as an int, otherwise type it the
9630    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
9631    // that X has type 'int', not 'unsigned'.
9632
9633    // Determine whether the value fits into an int.
9634    llvm::APSInt InitVal = ECD->getInitVal();
9635
9636    // If it fits into an integer type, force it.  Otherwise force it to match
9637    // the enum decl type.
9638    QualType NewTy;
9639    unsigned NewWidth;
9640    bool NewSign;
9641    if (!getLangOptions().CPlusPlus &&
9642        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9643      NewTy = Context.IntTy;
9644      NewWidth = IntWidth;
9645      NewSign = true;
9646    } else if (ECD->getType() == BestType) {
9647      // Already the right type!
9648      if (getLangOptions().CPlusPlus)
9649        // C++ [dcl.enum]p4: Following the closing brace of an
9650        // enum-specifier, each enumerator has the type of its
9651        // enumeration.
9652        ECD->setType(EnumType);
9653      continue;
9654    } else {
9655      NewTy = BestType;
9656      NewWidth = BestWidth;
9657      NewSign = BestType->isSignedIntegerOrEnumerationType();
9658    }
9659
9660    // Adjust the APSInt value.
9661    InitVal = InitVal.extOrTrunc(NewWidth);
9662    InitVal.setIsSigned(NewSign);
9663    ECD->setInitVal(InitVal);
9664
9665    // Adjust the Expr initializer and type.
9666    if (ECD->getInitExpr() &&
9667        !Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9668      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9669                                                CK_IntegralCast,
9670                                                ECD->getInitExpr(),
9671                                                /*base paths*/ 0,
9672                                                VK_RValue));
9673    if (getLangOptions().CPlusPlus)
9674      // C++ [dcl.enum]p4: Following the closing brace of an
9675      // enum-specifier, each enumerator has the type of its
9676      // enumeration.
9677      ECD->setType(EnumType);
9678    else
9679      ECD->setType(NewTy);
9680  }
9681
9682  Enum->completeDefinition(BestType, BestPromotionType,
9683                           NumPositiveBits, NumNegativeBits);
9684}
9685
9686Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9687                                  SourceLocation StartLoc,
9688                                  SourceLocation EndLoc) {
9689  StringLiteral *AsmString = cast<StringLiteral>(expr);
9690
9691  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9692                                                   AsmString, StartLoc,
9693                                                   EndLoc);
9694  CurContext->addDecl(New);
9695  return New;
9696}
9697
9698DeclResult Sema::ActOnModuleImport(SourceLocation ImportLoc,
9699                                   IdentifierInfo &ModuleName,
9700                                   SourceLocation ModuleNameLoc) {
9701  ModuleKey Module = PP.getModuleLoader().loadModule(ImportLoc,
9702                                                     ModuleName, ModuleNameLoc);
9703  if (!Module)
9704    return true;
9705
9706  // FIXME: Actually create a declaration to describe the module import.
9707  (void)Module;
9708  return DeclResult((Decl *)0);
9709}
9710
9711void
9712Sema::diagnoseModulePrivateRedeclaration(NamedDecl *New, NamedDecl *Old,
9713                                         SourceLocation ModulePrivateKeyword) {
9714  assert(!Old->isModulePrivate() && "Old is module-private!");
9715
9716  Diag(New->getLocation(), diag::err_module_private_follows_public)
9717    << New->getDeclName() << SourceRange(ModulePrivateKeyword);
9718  Diag(Old->getLocation(), diag::note_previous_declaration)
9719    << Old->getDeclName();
9720
9721  // Drop the __module_private__ from the new declaration, since it's invalid.
9722  New->setModulePrivate(false);
9723}
9724
9725void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9726                             SourceLocation PragmaLoc,
9727                             SourceLocation NameLoc) {
9728  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9729
9730  if (PrevDecl) {
9731    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9732  } else {
9733    (void)WeakUndeclaredIdentifiers.insert(
9734      std::pair<IdentifierInfo*,WeakInfo>
9735        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9736  }
9737}
9738
9739void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9740                                IdentifierInfo* AliasName,
9741                                SourceLocation PragmaLoc,
9742                                SourceLocation NameLoc,
9743                                SourceLocation AliasNameLoc) {
9744  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9745                                    LookupOrdinaryName);
9746  WeakInfo W = WeakInfo(Name, NameLoc);
9747
9748  if (PrevDecl) {
9749    if (!PrevDecl->hasAttr<AliasAttr>())
9750      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9751        DeclApplyPragmaWeak(TUScope, ND, W);
9752  } else {
9753    (void)WeakUndeclaredIdentifiers.insert(
9754      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9755  }
9756}
9757
9758Decl *Sema::getObjCDeclContext() const {
9759  return (dyn_cast_or_null<ObjCContainerDecl>(CurContext));
9760}
9761
9762AvailabilityResult Sema::getCurContextAvailability() const {
9763  const Decl *D = cast<Decl>(getCurLexicalContext());
9764  // A category implicitly has the availability of the interface.
9765  if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
9766    D = CatD->getClassInterface();
9767
9768  return D->getAvailability();
9769}
9770