SemaDecl.cpp revision 3215398dc9dac2be19a9fc1df929e6b7d83eafca
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "clang/Sema/SemaInternal.h"
15#include "clang/Sema/Initialization.h"
16#include "clang/Sema/Lookup.h"
17#include "clang/Sema/CXXFieldCollector.h"
18#include "clang/Sema/Scope.h"
19#include "clang/Sema/ScopeInfo.h"
20#include "TypeLocBuilder.h"
21#include "clang/AST/APValue.h"
22#include "clang/AST/ASTConsumer.h"
23#include "clang/AST/ASTContext.h"
24#include "clang/AST/CXXInheritance.h"
25#include "clang/AST/DeclCXX.h"
26#include "clang/AST/DeclObjC.h"
27#include "clang/AST/DeclTemplate.h"
28#include "clang/AST/EvaluatedExprVisitor.h"
29#include "clang/AST/ExprCXX.h"
30#include "clang/AST/StmtCXX.h"
31#include "clang/AST/CharUnits.h"
32#include "clang/Sema/DeclSpec.h"
33#include "clang/Sema/ParsedTemplate.h"
34#include "clang/Parse/ParseDiagnostic.h"
35#include "clang/Basic/PartialDiagnostic.h"
36#include "clang/Basic/SourceManager.h"
37#include "clang/Basic/TargetInfo.h"
38// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
39#include "clang/Lex/Preprocessor.h"
40#include "clang/Lex/HeaderSearch.h"
41#include "llvm/ADT/Triple.h"
42#include <algorithm>
43#include <cstring>
44#include <functional>
45using namespace clang;
46using namespace sema;
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(Decl *Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63ParsedType Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                             Scope *S, CXXScopeSpec *SS,
65                             bool isClassName, bool HasTrailingDot,
66                             ParsedType ObjectTypePtr,
67                             bool WantNontrivialTypeSourceInfo) {
68  // Determine where we will perform name lookup.
69  DeclContext *LookupCtx = 0;
70  if (ObjectTypePtr) {
71    QualType ObjectType = ObjectTypePtr.get();
72    if (ObjectType->isRecordType())
73      LookupCtx = computeDeclContext(ObjectType);
74  } else if (SS && SS->isNotEmpty()) {
75    LookupCtx = computeDeclContext(*SS, false);
76
77    if (!LookupCtx) {
78      if (isDependentScopeSpecifier(*SS)) {
79        // C++ [temp.res]p3:
80        //   A qualified-id that refers to a type and in which the
81        //   nested-name-specifier depends on a template-parameter (14.6.2)
82        //   shall be prefixed by the keyword typename to indicate that the
83        //   qualified-id denotes a type, forming an
84        //   elaborated-type-specifier (7.1.5.3).
85        //
86        // We therefore do not perform any name lookup if the result would
87        // refer to a member of an unknown specialization.
88        if (!isClassName)
89          return ParsedType();
90
91        // We know from the grammar that this name refers to a type,
92        // so build a dependent node to describe the type.
93        if (WantNontrivialTypeSourceInfo)
94          return ActOnTypenameType(S, SourceLocation(), *SS, II, NameLoc).get();
95
96        NestedNameSpecifierLoc QualifierLoc = SS->getWithLocInContext(Context);
97        QualType T =
98          CheckTypenameType(ETK_None, SourceLocation(), QualifierLoc,
99                            II, NameLoc);
100
101          return ParsedType::make(T);
102      }
103
104      return ParsedType();
105    }
106
107    if (!LookupCtx->isDependentContext() &&
108        RequireCompleteDeclContext(*SS, LookupCtx))
109      return ParsedType();
110  }
111
112  // FIXME: LookupNestedNameSpecifierName isn't the right kind of
113  // lookup for class-names.
114  LookupNameKind Kind = isClassName ? LookupNestedNameSpecifierName :
115                                      LookupOrdinaryName;
116  LookupResult Result(*this, &II, NameLoc, Kind);
117  if (LookupCtx) {
118    // Perform "qualified" name lookup into the declaration context we
119    // computed, which is either the type of the base of a member access
120    // expression or the declaration context associated with a prior
121    // nested-name-specifier.
122    LookupQualifiedName(Result, LookupCtx);
123
124    if (ObjectTypePtr && Result.empty()) {
125      // C++ [basic.lookup.classref]p3:
126      //   If the unqualified-id is ~type-name, the type-name is looked up
127      //   in the context of the entire postfix-expression. If the type T of
128      //   the object expression is of a class type C, the type-name is also
129      //   looked up in the scope of class C. At least one of the lookups shall
130      //   find a name that refers to (possibly cv-qualified) T.
131      LookupName(Result, S);
132    }
133  } else {
134    // Perform unqualified name lookup.
135    LookupName(Result, S);
136  }
137
138  NamedDecl *IIDecl = 0;
139  switch (Result.getResultKind()) {
140  case LookupResult::NotFound:
141  case LookupResult::NotFoundInCurrentInstantiation:
142  case LookupResult::FoundOverloaded:
143  case LookupResult::FoundUnresolvedValue:
144    Result.suppressDiagnostics();
145    return ParsedType();
146
147  case LookupResult::Ambiguous:
148    // Recover from type-hiding ambiguities by hiding the type.  We'll
149    // do the lookup again when looking for an object, and we can
150    // diagnose the error then.  If we don't do this, then the error
151    // about hiding the type will be immediately followed by an error
152    // that only makes sense if the identifier was treated like a type.
153    if (Result.getAmbiguityKind() == LookupResult::AmbiguousTagHiding) {
154      Result.suppressDiagnostics();
155      return ParsedType();
156    }
157
158    // Look to see if we have a type anywhere in the list of results.
159    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
160         Res != ResEnd; ++Res) {
161      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
162        if (!IIDecl ||
163            (*Res)->getLocation().getRawEncoding() <
164              IIDecl->getLocation().getRawEncoding())
165          IIDecl = *Res;
166      }
167    }
168
169    if (!IIDecl) {
170      // None of the entities we found is a type, so there is no way
171      // to even assume that the result is a type. In this case, don't
172      // complain about the ambiguity. The parser will either try to
173      // perform this lookup again (e.g., as an object name), which
174      // will produce the ambiguity, or will complain that it expected
175      // a type name.
176      Result.suppressDiagnostics();
177      return ParsedType();
178    }
179
180    // We found a type within the ambiguous lookup; diagnose the
181    // ambiguity and then return that type. This might be the right
182    // answer, or it might not be, but it suppresses any attempt to
183    // perform the name lookup again.
184    break;
185
186  case LookupResult::Found:
187    IIDecl = Result.getFoundDecl();
188    break;
189  }
190
191  assert(IIDecl && "Didn't find decl");
192
193  QualType T;
194  if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
195    DiagnoseUseOfDecl(IIDecl, NameLoc);
196
197    if (T.isNull())
198      T = Context.getTypeDeclType(TD);
199
200    if (SS && SS->isNotEmpty()) {
201      if (WantNontrivialTypeSourceInfo) {
202        // Construct a type with type-source information.
203        TypeLocBuilder Builder;
204        Builder.pushTypeSpec(T).setNameLoc(NameLoc);
205
206        T = getElaboratedType(ETK_None, *SS, T);
207        ElaboratedTypeLoc ElabTL = Builder.push<ElaboratedTypeLoc>(T);
208        ElabTL.setKeywordLoc(SourceLocation());
209        ElabTL.setQualifierLoc(SS->getWithLocInContext(Context));
210        return CreateParsedType(T, Builder.getTypeSourceInfo(Context, T));
211      } else {
212        T = getElaboratedType(ETK_None, *SS, T);
213      }
214    }
215  } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
216    (void)DiagnoseUseOfDecl(IDecl, NameLoc);
217    if (!HasTrailingDot)
218      T = Context.getObjCInterfaceType(IDecl);
219  }
220
221  if (T.isNull()) {
222    // If it's not plausibly a type, suppress diagnostics.
223    Result.suppressDiagnostics();
224    return ParsedType();
225  }
226  return ParsedType::make(T);
227}
228
229/// isTagName() - This method is called *for error recovery purposes only*
230/// to determine if the specified name is a valid tag name ("struct foo").  If
231/// so, this returns the TST for the tag corresponding to it (TST_enum,
232/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
233/// where the user forgot to specify the tag.
234DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
235  // Do a tag name lookup in this scope.
236  LookupResult R(*this, &II, SourceLocation(), LookupTagName);
237  LookupName(R, S, false);
238  R.suppressDiagnostics();
239  if (R.getResultKind() == LookupResult::Found)
240    if (const TagDecl *TD = R.getAsSingle<TagDecl>()) {
241      switch (TD->getTagKind()) {
242      default:         return DeclSpec::TST_unspecified;
243      case TTK_Struct: return DeclSpec::TST_struct;
244      case TTK_Union:  return DeclSpec::TST_union;
245      case TTK_Class:  return DeclSpec::TST_class;
246      case TTK_Enum:   return DeclSpec::TST_enum;
247      }
248    }
249
250  return DeclSpec::TST_unspecified;
251}
252
253/// isMicrosoftMissingTypename - In Microsoft mode, within class scope,
254/// if a CXXScopeSpec's type is equal to the type of one of the base classes
255/// then downgrade the missing typename error to a warning.
256/// This is needed for MSVC compatibility; Example:
257/// @code
258/// template<class T> class A {
259/// public:
260///   typedef int TYPE;
261/// };
262/// template<class T> class B : public A<T> {
263/// public:
264///   A<T>::TYPE a; // no typename required because A<T> is a base class.
265/// };
266/// @endcode
267bool Sema::isMicrosoftMissingTypename(const CXXScopeSpec *SS) {
268  if (CurContext->isRecord()) {
269    const Type *Ty = SS->getScopeRep()->getAsType();
270
271    CXXRecordDecl *RD = cast<CXXRecordDecl>(CurContext);
272    for (CXXRecordDecl::base_class_const_iterator Base = RD->bases_begin(),
273          BaseEnd = RD->bases_end(); Base != BaseEnd; ++Base)
274      if (Context.hasSameUnqualifiedType(QualType(Ty, 1), Base->getType()))
275        return true;
276  }
277  return false;
278}
279
280bool Sema::DiagnoseUnknownTypeName(const IdentifierInfo &II,
281                                   SourceLocation IILoc,
282                                   Scope *S,
283                                   CXXScopeSpec *SS,
284                                   ParsedType &SuggestedType) {
285  // We don't have anything to suggest (yet).
286  SuggestedType = ParsedType();
287
288  // There may have been a typo in the name of the type. Look up typo
289  // results, in case we have something that we can suggest.
290  LookupResult Lookup(*this, &II, IILoc, LookupOrdinaryName,
291                      NotForRedeclaration);
292
293  if (DeclarationName Corrected = CorrectTypo(Lookup, S, SS, 0, 0, CTC_Type)) {
294    if (NamedDecl *Result = Lookup.getAsSingle<NamedDecl>()) {
295      if ((isa<TypeDecl>(Result) || isa<ObjCInterfaceDecl>(Result)) &&
296          !Result->isInvalidDecl()) {
297        // We found a similarly-named type or interface; suggest that.
298        if (!SS || !SS->isSet())
299          Diag(IILoc, diag::err_unknown_typename_suggest)
300            << &II << Lookup.getLookupName()
301            << FixItHint::CreateReplacement(SourceRange(IILoc),
302                                            Result->getNameAsString());
303        else if (DeclContext *DC = computeDeclContext(*SS, false))
304          Diag(IILoc, diag::err_unknown_nested_typename_suggest)
305            << &II << DC << Lookup.getLookupName() << SS->getRange()
306            << FixItHint::CreateReplacement(SourceRange(IILoc),
307                                            Result->getNameAsString());
308        else
309          llvm_unreachable("could not have corrected a typo here");
310
311        Diag(Result->getLocation(), diag::note_previous_decl)
312          << Result->getDeclName();
313
314        SuggestedType = getTypeName(*Result->getIdentifier(), IILoc, S, SS,
315                                    false, false, ParsedType(),
316                                    /*NonTrivialTypeSourceInfo=*/true);
317        return true;
318      }
319    } else if (Lookup.empty()) {
320      // We corrected to a keyword.
321      // FIXME: Actually recover with the keyword we suggest, and emit a fix-it.
322      Diag(IILoc, diag::err_unknown_typename_suggest)
323        << &II << Corrected;
324      return true;
325    }
326  }
327
328  if (getLangOptions().CPlusPlus) {
329    // See if II is a class template that the user forgot to pass arguments to.
330    UnqualifiedId Name;
331    Name.setIdentifier(&II, IILoc);
332    CXXScopeSpec EmptySS;
333    TemplateTy TemplateResult;
334    bool MemberOfUnknownSpecialization;
335    if (isTemplateName(S, SS ? *SS : EmptySS, /*hasTemplateKeyword=*/false,
336                       Name, ParsedType(), true, TemplateResult,
337                       MemberOfUnknownSpecialization) == TNK_Type_template) {
338      TemplateName TplName = TemplateResult.getAsVal<TemplateName>();
339      Diag(IILoc, diag::err_template_missing_args) << TplName;
340      if (TemplateDecl *TplDecl = TplName.getAsTemplateDecl()) {
341        Diag(TplDecl->getLocation(), diag::note_template_decl_here)
342          << TplDecl->getTemplateParameters()->getSourceRange();
343      }
344      return true;
345    }
346  }
347
348  // FIXME: Should we move the logic that tries to recover from a missing tag
349  // (struct, union, enum) from Parser::ParseImplicitInt here, instead?
350
351  if (!SS || (!SS->isSet() && !SS->isInvalid()))
352    Diag(IILoc, diag::err_unknown_typename) << &II;
353  else if (DeclContext *DC = computeDeclContext(*SS, false))
354    Diag(IILoc, diag::err_typename_nested_not_found)
355      << &II << DC << SS->getRange();
356  else if (isDependentScopeSpecifier(*SS)) {
357    unsigned DiagID = diag::err_typename_missing;
358    if (getLangOptions().Microsoft && isMicrosoftMissingTypename(SS))
359      DiagID = diag::warn_typename_missing;
360
361    Diag(SS->getRange().getBegin(), DiagID)
362      << (NestedNameSpecifier *)SS->getScopeRep() << II.getName()
363      << SourceRange(SS->getRange().getBegin(), IILoc)
364      << FixItHint::CreateInsertion(SS->getRange().getBegin(), "typename ");
365    SuggestedType = ActOnTypenameType(S, SourceLocation(), *SS, II, IILoc).get();
366  } else {
367    assert(SS && SS->isInvalid() &&
368           "Invalid scope specifier has already been diagnosed");
369  }
370
371  return true;
372}
373
374/// \brief Determine whether the given result set contains either a type name
375/// or
376static bool isResultTypeOrTemplate(LookupResult &R, const Token &NextToken) {
377  bool CheckTemplate = R.getSema().getLangOptions().CPlusPlus &&
378                       NextToken.is(tok::less);
379
380  for (LookupResult::iterator I = R.begin(), IEnd = R.end(); I != IEnd; ++I) {
381    if (isa<TypeDecl>(*I) || isa<ObjCInterfaceDecl>(*I))
382      return true;
383
384    if (CheckTemplate && isa<TemplateDecl>(*I))
385      return true;
386  }
387
388  return false;
389}
390
391Sema::NameClassification Sema::ClassifyName(Scope *S,
392                                            CXXScopeSpec &SS,
393                                            IdentifierInfo *&Name,
394                                            SourceLocation NameLoc,
395                                            const Token &NextToken) {
396  DeclarationNameInfo NameInfo(Name, NameLoc);
397  ObjCMethodDecl *CurMethod = getCurMethodDecl();
398
399  if (NextToken.is(tok::coloncolon)) {
400    BuildCXXNestedNameSpecifier(S, *Name, NameLoc, NextToken.getLocation(),
401                                QualType(), false, SS, 0, false);
402
403  }
404
405  LookupResult Result(*this, Name, NameLoc, LookupOrdinaryName);
406  LookupParsedName(Result, S, &SS, !CurMethod);
407
408  // Perform lookup for Objective-C instance variables (including automatically
409  // synthesized instance variables), if we're in an Objective-C method.
410  // FIXME: This lookup really, really needs to be folded in to the normal
411  // unqualified lookup mechanism.
412  if (!SS.isSet() && CurMethod && !isResultTypeOrTemplate(Result, NextToken)) {
413    ExprResult E = LookupInObjCMethod(Result, S, Name, true);
414    if (E.get() || E.isInvalid())
415      return E;
416
417    // Synthesize ivars lazily.
418    if (getLangOptions().ObjCDefaultSynthProperties &&
419        getLangOptions().ObjCNonFragileABI2) {
420      if (SynthesizeProvisionalIvar(Result, Name, NameLoc)) {
421        if (const ObjCPropertyDecl *Property =
422                                          canSynthesizeProvisionalIvar(Name)) {
423          Diag(NameLoc, diag::warn_synthesized_ivar_access) << Name;
424          Diag(Property->getLocation(), diag::note_property_declare);
425        }
426
427        // FIXME: This is strange. Shouldn't we just take the ivar returned
428        // from SynthesizeProvisionalIvar and continue with that?
429        E = LookupInObjCMethod(Result, S, Name, true);
430        if (E.get() || E.isInvalid())
431          return E;
432      }
433    }
434  }
435
436  bool SecondTry = false;
437  bool IsFilteredTemplateName = false;
438
439Corrected:
440  switch (Result.getResultKind()) {
441  case LookupResult::NotFound:
442    // If an unqualified-id is followed by a '(', then we have a function
443    // call.
444    if (!SS.isSet() && NextToken.is(tok::l_paren)) {
445      // In C++, this is an ADL-only call.
446      // FIXME: Reference?
447      if (getLangOptions().CPlusPlus)
448        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/true);
449
450      // C90 6.3.2.2:
451      //   If the expression that precedes the parenthesized argument list in a
452      //   function call consists solely of an identifier, and if no
453      //   declaration is visible for this identifier, the identifier is
454      //   implicitly declared exactly as if, in the innermost block containing
455      //   the function call, the declaration
456      //
457      //     extern int identifier ();
458      //
459      //   appeared.
460      //
461      // We also allow this in C99 as an extension.
462      if (NamedDecl *D = ImplicitlyDefineFunction(NameLoc, *Name, S)) {
463        Result.addDecl(D);
464        Result.resolveKind();
465        return BuildDeclarationNameExpr(SS, Result, /*ADL=*/false);
466      }
467    }
468
469    // In C, we first see whether there is a tag type by the same name, in
470    // which case it's likely that the user just forget to write "enum",
471    // "struct", or "union".
472    if (!getLangOptions().CPlusPlus && !SecondTry) {
473      Result.clear(LookupTagName);
474      LookupParsedName(Result, S, &SS);
475      if (TagDecl *Tag = Result.getAsSingle<TagDecl>()) {
476        const char *TagName = 0;
477        const char *FixItTagName = 0;
478        switch (Tag->getTagKind()) {
479          case TTK_Class:
480            TagName = "class";
481            FixItTagName = "class ";
482            break;
483
484          case TTK_Enum:
485            TagName = "enum";
486            FixItTagName = "enum ";
487            break;
488
489          case TTK_Struct:
490            TagName = "struct";
491            FixItTagName = "struct ";
492            break;
493
494          case TTK_Union:
495            TagName = "union";
496            FixItTagName = "union ";
497            break;
498        }
499
500        Diag(NameLoc, diag::err_use_of_tag_name_without_tag)
501          << Name << TagName << getLangOptions().CPlusPlus
502          << FixItHint::CreateInsertion(NameLoc, FixItTagName);
503        break;
504      }
505
506      Result.clear(LookupOrdinaryName);
507    }
508
509    // Perform typo correction to determine if there is another name that is
510    // close to this name.
511    if (!SecondTry) {
512      if (DeclarationName Corrected = CorrectTypo(Result, S, &SS)) {
513        unsigned UnqualifiedDiag = diag::err_undeclared_var_use_suggest;
514        unsigned QualifiedDiag = diag::err_no_member_suggest;
515
516        NamedDecl *FirstDecl = Result.empty()? 0 : *Result.begin();
517        NamedDecl *UnderlyingFirstDecl
518          = FirstDecl? FirstDecl->getUnderlyingDecl() : 0;
519        if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
520            UnderlyingFirstDecl && isa<TemplateDecl>(UnderlyingFirstDecl)) {
521          UnqualifiedDiag = diag::err_no_template_suggest;
522          QualifiedDiag = diag::err_no_member_template_suggest;
523        } else if (UnderlyingFirstDecl &&
524                   (isa<TypeDecl>(UnderlyingFirstDecl) ||
525                    isa<ObjCInterfaceDecl>(UnderlyingFirstDecl) ||
526                    isa<ObjCCompatibleAliasDecl>(UnderlyingFirstDecl))) {
527           UnqualifiedDiag = diag::err_unknown_typename_suggest;
528           QualifiedDiag = diag::err_unknown_nested_typename_suggest;
529         }
530
531        if (SS.isEmpty())
532          Diag(NameLoc, UnqualifiedDiag)
533            << Name << Corrected
534            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
535        else
536          Diag(NameLoc, QualifiedDiag)
537            << Name << computeDeclContext(SS, false) << Corrected
538            << SS.getRange()
539            << FixItHint::CreateReplacement(NameLoc, Corrected.getAsString());
540
541        // Update the name, so that the caller has the new name.
542        Name = Corrected.getAsIdentifierInfo();
543
544        // Typo correction corrected to a keyword.
545        if (Result.empty())
546          return Corrected.getAsIdentifierInfo();
547
548        Diag(FirstDecl->getLocation(), diag::note_previous_decl)
549          << FirstDecl->getDeclName();
550
551        // If we found an Objective-C instance variable, let
552        // LookupInObjCMethod build the appropriate expression to
553        // reference the ivar.
554        // FIXME: This is a gross hack.
555        if (ObjCIvarDecl *Ivar = Result.getAsSingle<ObjCIvarDecl>()) {
556          Result.clear();
557          ExprResult E(LookupInObjCMethod(Result, S, Ivar->getIdentifier()));
558          return move(E);
559        }
560
561        goto Corrected;
562      }
563    }
564
565    // We failed to correct; just fall through and let the parser deal with it.
566    Result.suppressDiagnostics();
567    return NameClassification::Unknown();
568
569  case LookupResult::NotFoundInCurrentInstantiation:
570    // We performed name lookup into the current instantiation, and there were
571    // dependent bases, so we treat this result the same way as any other
572    // dependent nested-name-specifier.
573
574    // C++ [temp.res]p2:
575    //   A name used in a template declaration or definition and that is
576    //   dependent on a template-parameter is assumed not to name a type
577    //   unless the applicable name lookup finds a type name or the name is
578    //   qualified by the keyword typename.
579    //
580    // FIXME: If the next token is '<', we might want to ask the parser to
581    // perform some heroics to see if we actually have a
582    // template-argument-list, which would indicate a missing 'template'
583    // keyword here.
584    return BuildDependentDeclRefExpr(SS, NameInfo, /*TemplateArgs=*/0);
585
586  case LookupResult::Found:
587  case LookupResult::FoundOverloaded:
588  case LookupResult::FoundUnresolvedValue:
589    break;
590
591  case LookupResult::Ambiguous:
592    if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
593        hasAnyAcceptableTemplateNames(Result)) {
594      // C++ [temp.local]p3:
595      //   A lookup that finds an injected-class-name (10.2) can result in an
596      //   ambiguity in certain cases (for example, if it is found in more than
597      //   one base class). If all of the injected-class-names that are found
598      //   refer to specializations of the same class template, and if the name
599      //   is followed by a template-argument-list, the reference refers to the
600      //   class template itself and not a specialization thereof, and is not
601      //   ambiguous.
602      //
603      // This filtering can make an ambiguous result into an unambiguous one,
604      // so try again after filtering out template names.
605      FilterAcceptableTemplateNames(Result);
606      if (!Result.isAmbiguous()) {
607        IsFilteredTemplateName = true;
608        break;
609      }
610    }
611
612    // Diagnose the ambiguity and return an error.
613    return NameClassification::Error();
614  }
615
616  if (getLangOptions().CPlusPlus && NextToken.is(tok::less) &&
617      (IsFilteredTemplateName || hasAnyAcceptableTemplateNames(Result))) {
618    // C++ [temp.names]p3:
619    //   After name lookup (3.4) finds that a name is a template-name or that
620    //   an operator-function-id or a literal- operator-id refers to a set of
621    //   overloaded functions any member of which is a function template if
622    //   this is followed by a <, the < is always taken as the delimiter of a
623    //   template-argument-list and never as the less-than operator.
624    if (!IsFilteredTemplateName)
625      FilterAcceptableTemplateNames(Result);
626
627    if (!Result.empty()) {
628      bool IsFunctionTemplate;
629      TemplateName Template;
630      if (Result.end() - Result.begin() > 1) {
631        IsFunctionTemplate = true;
632        Template = Context.getOverloadedTemplateName(Result.begin(),
633                                                     Result.end());
634      } else {
635        TemplateDecl *TD
636          = cast<TemplateDecl>((*Result.begin())->getUnderlyingDecl());
637        IsFunctionTemplate = isa<FunctionTemplateDecl>(TD);
638
639        if (SS.isSet() && !SS.isInvalid())
640          Template = Context.getQualifiedTemplateName(SS.getScopeRep(),
641                                                    /*TemplateKeyword=*/false,
642                                                      TD);
643        else
644          Template = TemplateName(TD);
645      }
646
647      if (IsFunctionTemplate) {
648        // Function templates always go through overload resolution, at which
649        // point we'll perform the various checks (e.g., accessibility) we need
650        // to based on which function we selected.
651        Result.suppressDiagnostics();
652
653        return NameClassification::FunctionTemplate(Template);
654      }
655
656      return NameClassification::TypeTemplate(Template);
657    }
658  }
659
660  NamedDecl *FirstDecl = (*Result.begin())->getUnderlyingDecl();
661  if (TypeDecl *Type = dyn_cast<TypeDecl>(FirstDecl)) {
662    DiagnoseUseOfDecl(Type, NameLoc);
663    QualType T = Context.getTypeDeclType(Type);
664    return ParsedType::make(T);
665  }
666
667  ObjCInterfaceDecl *Class = dyn_cast<ObjCInterfaceDecl>(FirstDecl);
668  if (!Class) {
669    // FIXME: It's unfortunate that we don't have a Type node for handling this.
670    if (ObjCCompatibleAliasDecl *Alias
671                                = dyn_cast<ObjCCompatibleAliasDecl>(FirstDecl))
672      Class = Alias->getClassInterface();
673  }
674
675  if (Class) {
676    DiagnoseUseOfDecl(Class, NameLoc);
677
678    if (NextToken.is(tok::period)) {
679      // Interface. <something> is parsed as a property reference expression.
680      // Just return "unknown" as a fall-through for now.
681      Result.suppressDiagnostics();
682      return NameClassification::Unknown();
683    }
684
685    QualType T = Context.getObjCInterfaceType(Class);
686    return ParsedType::make(T);
687  }
688
689  if (!Result.empty() && (*Result.begin())->isCXXClassMember())
690    return BuildPossibleImplicitMemberExpr(SS, Result, 0);
691
692  bool ADL = UseArgumentDependentLookup(SS, Result, NextToken.is(tok::l_paren));
693  return BuildDeclarationNameExpr(SS, Result, ADL);
694}
695
696// Determines the context to return to after temporarily entering a
697// context.  This depends in an unnecessarily complicated way on the
698// exact ordering of callbacks from the parser.
699DeclContext *Sema::getContainingDC(DeclContext *DC) {
700
701  // Functions defined inline within classes aren't parsed until we've
702  // finished parsing the top-level class, so the top-level class is
703  // the context we'll need to return to.
704  if (isa<FunctionDecl>(DC)) {
705    DC = DC->getLexicalParent();
706
707    // A function not defined within a class will always return to its
708    // lexical context.
709    if (!isa<CXXRecordDecl>(DC))
710      return DC;
711
712    // A C++ inline method/friend is parsed *after* the topmost class
713    // it was declared in is fully parsed ("complete");  the topmost
714    // class is the context we need to return to.
715    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
716      DC = RD;
717
718    // Return the declaration context of the topmost class the inline method is
719    // declared in.
720    return DC;
721  }
722
723  // ObjCMethodDecls are parsed (for some reason) outside the context
724  // of the class.
725  if (isa<ObjCMethodDecl>(DC))
726    return DC->getLexicalParent()->getLexicalParent();
727
728  return DC->getLexicalParent();
729}
730
731void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
732  assert(getContainingDC(DC) == CurContext &&
733      "The next DeclContext should be lexically contained in the current one.");
734  CurContext = DC;
735  S->setEntity(DC);
736}
737
738void Sema::PopDeclContext() {
739  assert(CurContext && "DeclContext imbalance!");
740
741  CurContext = getContainingDC(CurContext);
742  assert(CurContext && "Popped translation unit!");
743}
744
745/// EnterDeclaratorContext - Used when we must lookup names in the context
746/// of a declarator's nested name specifier.
747///
748void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
749  // C++0x [basic.lookup.unqual]p13:
750  //   A name used in the definition of a static data member of class
751  //   X (after the qualified-id of the static member) is looked up as
752  //   if the name was used in a member function of X.
753  // C++0x [basic.lookup.unqual]p14:
754  //   If a variable member of a namespace is defined outside of the
755  //   scope of its namespace then any name used in the definition of
756  //   the variable member (after the declarator-id) is looked up as
757  //   if the definition of the variable member occurred in its
758  //   namespace.
759  // Both of these imply that we should push a scope whose context
760  // is the semantic context of the declaration.  We can't use
761  // PushDeclContext here because that context is not necessarily
762  // lexically contained in the current context.  Fortunately,
763  // the containing scope should have the appropriate information.
764
765  assert(!S->getEntity() && "scope already has entity");
766
767#ifndef NDEBUG
768  Scope *Ancestor = S->getParent();
769  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
770  assert(Ancestor->getEntity() == CurContext && "ancestor context mismatch");
771#endif
772
773  CurContext = DC;
774  S->setEntity(DC);
775}
776
777void Sema::ExitDeclaratorContext(Scope *S) {
778  assert(S->getEntity() == CurContext && "Context imbalance!");
779
780  // Switch back to the lexical context.  The safety of this is
781  // enforced by an assert in EnterDeclaratorContext.
782  Scope *Ancestor = S->getParent();
783  while (!Ancestor->getEntity()) Ancestor = Ancestor->getParent();
784  CurContext = (DeclContext*) Ancestor->getEntity();
785
786  // We don't need to do anything with the scope, which is going to
787  // disappear.
788}
789
790/// \brief Determine whether we allow overloading of the function
791/// PrevDecl with another declaration.
792///
793/// This routine determines whether overloading is possible, not
794/// whether some new function is actually an overload. It will return
795/// true in C++ (where we can always provide overloads) or, as an
796/// extension, in C when the previous function is already an
797/// overloaded function declaration or has the "overloadable"
798/// attribute.
799static bool AllowOverloadingOfFunction(LookupResult &Previous,
800                                       ASTContext &Context) {
801  if (Context.getLangOptions().CPlusPlus)
802    return true;
803
804  if (Previous.getResultKind() == LookupResult::FoundOverloaded)
805    return true;
806
807  return (Previous.getResultKind() == LookupResult::Found
808          && Previous.getFoundDecl()->hasAttr<OverloadableAttr>());
809}
810
811/// Add this decl to the scope shadowed decl chains.
812void Sema::PushOnScopeChains(NamedDecl *D, Scope *S, bool AddToContext) {
813  // Move up the scope chain until we find the nearest enclosing
814  // non-transparent context. The declaration will be introduced into this
815  // scope.
816  while (S->getEntity() &&
817         ((DeclContext *)S->getEntity())->isTransparentContext())
818    S = S->getParent();
819
820  // Add scoped declarations into their context, so that they can be
821  // found later. Declarations without a context won't be inserted
822  // into any context.
823  if (AddToContext)
824    CurContext->addDecl(D);
825
826  // Out-of-line definitions shouldn't be pushed into scope in C++.
827  // Out-of-line variable and function definitions shouldn't even in C.
828  if ((getLangOptions().CPlusPlus || isa<VarDecl>(D) || isa<FunctionDecl>(D)) &&
829      D->isOutOfLine())
830    return;
831
832  // Template instantiations should also not be pushed into scope.
833  if (isa<FunctionDecl>(D) &&
834      cast<FunctionDecl>(D)->isFunctionTemplateSpecialization())
835    return;
836
837  // If this replaces anything in the current scope,
838  IdentifierResolver::iterator I = IdResolver.begin(D->getDeclName()),
839                               IEnd = IdResolver.end();
840  for (; I != IEnd; ++I) {
841    if (S->isDeclScope(*I) && D->declarationReplaces(*I)) {
842      S->RemoveDecl(*I);
843      IdResolver.RemoveDecl(*I);
844
845      // Should only need to replace one decl.
846      break;
847    }
848  }
849
850  S->AddDecl(D);
851
852  if (isa<LabelDecl>(D) && !cast<LabelDecl>(D)->isGnuLocal()) {
853    // Implicitly-generated labels may end up getting generated in an order that
854    // isn't strictly lexical, which breaks name lookup. Be careful to insert
855    // the label at the appropriate place in the identifier chain.
856    for (I = IdResolver.begin(D->getDeclName()); I != IEnd; ++I) {
857      DeclContext *IDC = (*I)->getLexicalDeclContext()->getRedeclContext();
858      if (IDC == CurContext) {
859        if (!S->isDeclScope(*I))
860          continue;
861      } else if (IDC->Encloses(CurContext))
862        break;
863    }
864
865    IdResolver.InsertDeclAfter(I, D);
866  } else {
867    IdResolver.AddDecl(D);
868  }
869}
870
871bool Sema::isDeclInScope(NamedDecl *&D, DeclContext *Ctx, Scope *S,
872                         bool ExplicitInstantiationOrSpecialization) {
873  return IdResolver.isDeclInScope(D, Ctx, Context, S,
874                                  ExplicitInstantiationOrSpecialization);
875}
876
877Scope *Sema::getScopeForDeclContext(Scope *S, DeclContext *DC) {
878  DeclContext *TargetDC = DC->getPrimaryContext();
879  do {
880    if (DeclContext *ScopeDC = (DeclContext*) S->getEntity())
881      if (ScopeDC->getPrimaryContext() == TargetDC)
882        return S;
883  } while ((S = S->getParent()));
884
885  return 0;
886}
887
888static bool isOutOfScopePreviousDeclaration(NamedDecl *,
889                                            DeclContext*,
890                                            ASTContext&);
891
892/// Filters out lookup results that don't fall within the given scope
893/// as determined by isDeclInScope.
894void Sema::FilterLookupForScope(LookupResult &R,
895                                DeclContext *Ctx, Scope *S,
896                                bool ConsiderLinkage,
897                                bool ExplicitInstantiationOrSpecialization) {
898  LookupResult::Filter F = R.makeFilter();
899  while (F.hasNext()) {
900    NamedDecl *D = F.next();
901
902    if (isDeclInScope(D, Ctx, S, ExplicitInstantiationOrSpecialization))
903      continue;
904
905    if (ConsiderLinkage &&
906        isOutOfScopePreviousDeclaration(D, Ctx, Context))
907      continue;
908
909    F.erase();
910  }
911
912  F.done();
913}
914
915static bool isUsingDecl(NamedDecl *D) {
916  return isa<UsingShadowDecl>(D) ||
917         isa<UnresolvedUsingTypenameDecl>(D) ||
918         isa<UnresolvedUsingValueDecl>(D);
919}
920
921/// Removes using shadow declarations from the lookup results.
922static void RemoveUsingDecls(LookupResult &R) {
923  LookupResult::Filter F = R.makeFilter();
924  while (F.hasNext())
925    if (isUsingDecl(F.next()))
926      F.erase();
927
928  F.done();
929}
930
931/// \brief Check for this common pattern:
932/// @code
933/// class S {
934///   S(const S&); // DO NOT IMPLEMENT
935///   void operator=(const S&); // DO NOT IMPLEMENT
936/// };
937/// @endcode
938static bool IsDisallowedCopyOrAssign(const CXXMethodDecl *D) {
939  // FIXME: Should check for private access too but access is set after we get
940  // the decl here.
941  if (D->doesThisDeclarationHaveABody())
942    return false;
943
944  if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(D))
945    return CD->isCopyConstructor();
946  if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D))
947    return Method->isCopyAssignmentOperator();
948  return false;
949}
950
951bool Sema::ShouldWarnIfUnusedFileScopedDecl(const DeclaratorDecl *D) const {
952  assert(D);
953
954  if (D->isInvalidDecl() || D->isUsed() || D->hasAttr<UnusedAttr>())
955    return false;
956
957  // Ignore class templates.
958  if (D->getDeclContext()->isDependentContext() ||
959      D->getLexicalDeclContext()->isDependentContext())
960    return false;
961
962  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
963    if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
964      return false;
965
966    if (const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD)) {
967      if (MD->isVirtual() || IsDisallowedCopyOrAssign(MD))
968        return false;
969    } else {
970      // 'static inline' functions are used in headers; don't warn.
971      if (FD->getStorageClass() == SC_Static &&
972          FD->isInlineSpecified())
973        return false;
974    }
975
976    if (FD->doesThisDeclarationHaveABody() &&
977        Context.DeclMustBeEmitted(FD))
978      return false;
979  } else if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
980    if (!VD->isFileVarDecl() ||
981        VD->getType().isConstant(Context) ||
982        Context.DeclMustBeEmitted(VD))
983      return false;
984
985    if (VD->isStaticDataMember() &&
986        VD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation)
987      return false;
988
989  } else {
990    return false;
991  }
992
993  // Only warn for unused decls internal to the translation unit.
994  if (D->getLinkage() == ExternalLinkage)
995    return false;
996
997  return true;
998}
999
1000void Sema::MarkUnusedFileScopedDecl(const DeclaratorDecl *D) {
1001  if (!D)
1002    return;
1003
1004  if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1005    const FunctionDecl *First = FD->getFirstDeclaration();
1006    if (FD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1007      return; // First should already be in the vector.
1008  }
1009
1010  if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1011    const VarDecl *First = VD->getFirstDeclaration();
1012    if (VD != First && ShouldWarnIfUnusedFileScopedDecl(First))
1013      return; // First should already be in the vector.
1014  }
1015
1016   if (ShouldWarnIfUnusedFileScopedDecl(D))
1017     UnusedFileScopedDecls.push_back(D);
1018 }
1019
1020static bool ShouldDiagnoseUnusedDecl(const NamedDecl *D) {
1021  if (D->isInvalidDecl())
1022    return false;
1023
1024  if (D->isUsed() || D->hasAttr<UnusedAttr>())
1025    return false;
1026
1027  if (isa<LabelDecl>(D))
1028    return true;
1029
1030  // White-list anything that isn't a local variable.
1031  if (!isa<VarDecl>(D) || isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D) ||
1032      !D->getDeclContext()->isFunctionOrMethod())
1033    return false;
1034
1035  // Types of valid local variables should be complete, so this should succeed.
1036  if (const ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
1037
1038    // White-list anything with an __attribute__((unused)) type.
1039    QualType Ty = VD->getType();
1040
1041    // Only look at the outermost level of typedef.
1042    if (const TypedefType *TT = dyn_cast<TypedefType>(Ty)) {
1043      if (TT->getDecl()->hasAttr<UnusedAttr>())
1044        return false;
1045    }
1046
1047    // If we failed to complete the type for some reason, or if the type is
1048    // dependent, don't diagnose the variable.
1049    if (Ty->isIncompleteType() || Ty->isDependentType())
1050      return false;
1051
1052    if (const TagType *TT = Ty->getAs<TagType>()) {
1053      const TagDecl *Tag = TT->getDecl();
1054      if (Tag->hasAttr<UnusedAttr>())
1055        return false;
1056
1057      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(Tag)) {
1058        // FIXME: Checking for the presence of a user-declared constructor
1059        // isn't completely accurate; we'd prefer to check that the initializer
1060        // has no side effects.
1061        if (RD->hasUserDeclaredConstructor() || !RD->hasTrivialDestructor())
1062          return false;
1063      }
1064    }
1065
1066    // TODO: __attribute__((unused)) templates?
1067  }
1068
1069  return true;
1070}
1071
1072/// DiagnoseUnusedDecl - Emit warnings about declarations that are not used
1073/// unless they are marked attr(unused).
1074void Sema::DiagnoseUnusedDecl(const NamedDecl *D) {
1075  if (!ShouldDiagnoseUnusedDecl(D))
1076    return;
1077
1078  unsigned DiagID;
1079  if (isa<VarDecl>(D) && cast<VarDecl>(D)->isExceptionVariable())
1080    DiagID = diag::warn_unused_exception_param;
1081  else if (isa<LabelDecl>(D))
1082    DiagID = diag::warn_unused_label;
1083  else
1084    DiagID = diag::warn_unused_variable;
1085
1086  Diag(D->getLocation(), DiagID) << D->getDeclName();
1087}
1088
1089static void CheckPoppedLabel(LabelDecl *L, Sema &S) {
1090  // Verify that we have no forward references left.  If so, there was a goto
1091  // or address of a label taken, but no definition of it.  Label fwd
1092  // definitions are indicated with a null substmt.
1093  if (L->getStmt() == 0)
1094    S.Diag(L->getLocation(), diag::err_undeclared_label_use) <<L->getDeclName();
1095}
1096
1097void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
1098  if (S->decl_empty()) return;
1099  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
1100         "Scope shouldn't contain decls!");
1101
1102  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
1103       I != E; ++I) {
1104    Decl *TmpD = (*I);
1105    assert(TmpD && "This decl didn't get pushed??");
1106
1107    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
1108    NamedDecl *D = cast<NamedDecl>(TmpD);
1109
1110    if (!D->getDeclName()) continue;
1111
1112    // Diagnose unused variables in this scope.
1113    if (!S->hasErrorOccurred())
1114      DiagnoseUnusedDecl(D);
1115
1116    // If this was a forward reference to a label, verify it was defined.
1117    if (LabelDecl *LD = dyn_cast<LabelDecl>(D))
1118      CheckPoppedLabel(LD, *this);
1119
1120    // Remove this name from our lexical scope.
1121    IdResolver.RemoveDecl(D);
1122  }
1123}
1124
1125/// \brief Look for an Objective-C class in the translation unit.
1126///
1127/// \param Id The name of the Objective-C class we're looking for. If
1128/// typo-correction fixes this name, the Id will be updated
1129/// to the fixed name.
1130///
1131/// \param IdLoc The location of the name in the translation unit.
1132///
1133/// \param TypoCorrection If true, this routine will attempt typo correction
1134/// if there is no class with the given name.
1135///
1136/// \returns The declaration of the named Objective-C class, or NULL if the
1137/// class could not be found.
1138ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *&Id,
1139                                              SourceLocation IdLoc,
1140                                              bool TypoCorrection) {
1141  // The third "scope" argument is 0 since we aren't enabling lazy built-in
1142  // creation from this context.
1143  NamedDecl *IDecl = LookupSingleName(TUScope, Id, IdLoc, LookupOrdinaryName);
1144
1145  if (!IDecl && TypoCorrection) {
1146    // Perform typo correction at the given location, but only if we
1147    // find an Objective-C class name.
1148    LookupResult R(*this, Id, IdLoc, LookupOrdinaryName);
1149    if (CorrectTypo(R, TUScope, 0, 0, false, CTC_NoKeywords) &&
1150        (IDecl = R.getAsSingle<ObjCInterfaceDecl>())) {
1151      Diag(IdLoc, diag::err_undef_interface_suggest)
1152        << Id << IDecl->getDeclName()
1153        << FixItHint::CreateReplacement(IdLoc, IDecl->getNameAsString());
1154      Diag(IDecl->getLocation(), diag::note_previous_decl)
1155        << IDecl->getDeclName();
1156
1157      Id = IDecl->getIdentifier();
1158    }
1159  }
1160
1161  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
1162}
1163
1164/// getNonFieldDeclScope - Retrieves the innermost scope, starting
1165/// from S, where a non-field would be declared. This routine copes
1166/// with the difference between C and C++ scoping rules in structs and
1167/// unions. For example, the following code is well-formed in C but
1168/// ill-formed in C++:
1169/// @code
1170/// struct S6 {
1171///   enum { BAR } e;
1172/// };
1173///
1174/// void test_S6() {
1175///   struct S6 a;
1176///   a.e = BAR;
1177/// }
1178/// @endcode
1179/// For the declaration of BAR, this routine will return a different
1180/// scope. The scope S will be the scope of the unnamed enumeration
1181/// within S6. In C++, this routine will return the scope associated
1182/// with S6, because the enumeration's scope is a transparent
1183/// context but structures can contain non-field names. In C, this
1184/// routine will return the translation unit scope, since the
1185/// enumeration's scope is a transparent context and structures cannot
1186/// contain non-field names.
1187Scope *Sema::getNonFieldDeclScope(Scope *S) {
1188  while (((S->getFlags() & Scope::DeclScope) == 0) ||
1189         (S->getEntity() &&
1190          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
1191         (S->isClassScope() && !getLangOptions().CPlusPlus))
1192    S = S->getParent();
1193  return S;
1194}
1195
1196/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
1197/// file scope.  lazily create a decl for it. ForRedeclaration is true
1198/// if we're creating this built-in in anticipation of redeclaring the
1199/// built-in.
1200NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
1201                                     Scope *S, bool ForRedeclaration,
1202                                     SourceLocation Loc) {
1203  Builtin::ID BID = (Builtin::ID)bid;
1204
1205  ASTContext::GetBuiltinTypeError Error;
1206  QualType R = Context.GetBuiltinType(BID, Error);
1207  switch (Error) {
1208  case ASTContext::GE_None:
1209    // Okay
1210    break;
1211
1212  case ASTContext::GE_Missing_stdio:
1213    if (ForRedeclaration)
1214      Diag(Loc, diag::warn_implicit_decl_requires_stdio)
1215        << Context.BuiltinInfo.GetName(BID);
1216    return 0;
1217
1218  case ASTContext::GE_Missing_setjmp:
1219    if (ForRedeclaration)
1220      Diag(Loc, diag::warn_implicit_decl_requires_setjmp)
1221        << Context.BuiltinInfo.GetName(BID);
1222    return 0;
1223  }
1224
1225  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
1226    Diag(Loc, diag::ext_implicit_lib_function_decl)
1227      << Context.BuiltinInfo.GetName(BID)
1228      << R;
1229    if (Context.BuiltinInfo.getHeaderName(BID) &&
1230        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl, Loc)
1231          != Diagnostic::Ignored)
1232      Diag(Loc, diag::note_please_include_header)
1233        << Context.BuiltinInfo.getHeaderName(BID)
1234        << Context.BuiltinInfo.GetName(BID);
1235  }
1236
1237  FunctionDecl *New = FunctionDecl::Create(Context,
1238                                           Context.getTranslationUnitDecl(),
1239                                           Loc, Loc, II, R, /*TInfo=*/0,
1240                                           SC_Extern,
1241                                           SC_None, false,
1242                                           /*hasPrototype=*/true);
1243  New->setImplicit();
1244
1245  // Create Decl objects for each parameter, adding them to the
1246  // FunctionDecl.
1247  if (const FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
1248    llvm::SmallVector<ParmVarDecl*, 16> Params;
1249    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i) {
1250      ParmVarDecl *parm =
1251        ParmVarDecl::Create(Context, New, SourceLocation(),
1252                            SourceLocation(), 0,
1253                            FT->getArgType(i), /*TInfo=*/0,
1254                            SC_None, SC_None, 0);
1255      parm->setScopeInfo(0, i);
1256      Params.push_back(parm);
1257    }
1258    New->setParams(Params.data(), Params.size());
1259  }
1260
1261  AddKnownFunctionAttributes(New);
1262
1263  // TUScope is the translation-unit scope to insert this function into.
1264  // FIXME: This is hideous. We need to teach PushOnScopeChains to
1265  // relate Scopes to DeclContexts, and probably eliminate CurContext
1266  // entirely, but we're not there yet.
1267  DeclContext *SavedContext = CurContext;
1268  CurContext = Context.getTranslationUnitDecl();
1269  PushOnScopeChains(New, TUScope);
1270  CurContext = SavedContext;
1271  return New;
1272}
1273
1274/// MergeTypedefNameDecl - We just parsed a typedef 'New' which has the
1275/// same name and scope as a previous declaration 'Old'.  Figure out
1276/// how to resolve this situation, merging decls or emitting
1277/// diagnostics as appropriate. If there was an error, set New to be invalid.
1278///
1279void Sema::MergeTypedefNameDecl(TypedefNameDecl *New, LookupResult &OldDecls) {
1280  // If the new decl is known invalid already, don't bother doing any
1281  // merging checks.
1282  if (New->isInvalidDecl()) return;
1283
1284  // Allow multiple definitions for ObjC built-in typedefs.
1285  // FIXME: Verify the underlying types are equivalent!
1286  if (getLangOptions().ObjC1) {
1287    const IdentifierInfo *TypeID = New->getIdentifier();
1288    switch (TypeID->getLength()) {
1289    default: break;
1290    case 2:
1291      if (!TypeID->isStr("id"))
1292        break;
1293      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
1294      // Install the built-in type for 'id', ignoring the current definition.
1295      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
1296      return;
1297    case 5:
1298      if (!TypeID->isStr("Class"))
1299        break;
1300      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
1301      // Install the built-in type for 'Class', ignoring the current definition.
1302      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
1303      return;
1304    case 3:
1305      if (!TypeID->isStr("SEL"))
1306        break;
1307      Context.ObjCSelRedefinitionType = New->getUnderlyingType();
1308      // Install the built-in type for 'SEL', ignoring the current definition.
1309      New->setTypeForDecl(Context.getObjCSelType().getTypePtr());
1310      return;
1311    case 8:
1312      if (!TypeID->isStr("Protocol"))
1313        break;
1314      Context.setObjCProtoType(New->getUnderlyingType());
1315      return;
1316    }
1317    // Fall through - the typedef name was not a builtin type.
1318  }
1319
1320  // Verify the old decl was also a type.
1321  TypeDecl *Old = OldDecls.getAsSingle<TypeDecl>();
1322  if (!Old) {
1323    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1324      << New->getDeclName();
1325
1326    NamedDecl *OldD = OldDecls.getRepresentativeDecl();
1327    if (OldD->getLocation().isValid())
1328      Diag(OldD->getLocation(), diag::note_previous_definition);
1329
1330    return New->setInvalidDecl();
1331  }
1332
1333  // If the old declaration is invalid, just give up here.
1334  if (Old->isInvalidDecl())
1335    return New->setInvalidDecl();
1336
1337  // Determine the "old" type we'll use for checking and diagnostics.
1338  QualType OldType;
1339  if (TypedefNameDecl *OldTypedef = dyn_cast<TypedefNameDecl>(Old))
1340    OldType = OldTypedef->getUnderlyingType();
1341  else
1342    OldType = Context.getTypeDeclType(Old);
1343
1344  // If the typedef types are not identical, reject them in all languages and
1345  // with any extensions enabled.
1346
1347  if (OldType != New->getUnderlyingType() &&
1348      Context.getCanonicalType(OldType) !=
1349      Context.getCanonicalType(New->getUnderlyingType())) {
1350    int Kind = 0;
1351    if (isa<TypeAliasDecl>(Old))
1352      Kind = 1;
1353    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
1354      << Kind << New->getUnderlyingType() << OldType;
1355    if (Old->getLocation().isValid())
1356      Diag(Old->getLocation(), diag::note_previous_definition);
1357    return New->setInvalidDecl();
1358  }
1359
1360  // The types match.  Link up the redeclaration chain if the old
1361  // declaration was a typedef.
1362  // FIXME: this is a potential source of wierdness if the type
1363  // spellings don't match exactly.
1364  if (TypedefNameDecl *Typedef = dyn_cast<TypedefNameDecl>(Old))
1365    New->setPreviousDeclaration(Typedef);
1366
1367  if (getLangOptions().Microsoft)
1368    return;
1369
1370  if (getLangOptions().CPlusPlus) {
1371    // C++ [dcl.typedef]p2:
1372    //   In a given non-class scope, a typedef specifier can be used to
1373    //   redefine the name of any type declared in that scope to refer
1374    //   to the type to which it already refers.
1375    if (!isa<CXXRecordDecl>(CurContext))
1376      return;
1377
1378    // C++0x [dcl.typedef]p4:
1379    //   In a given class scope, a typedef specifier can be used to redefine
1380    //   any class-name declared in that scope that is not also a typedef-name
1381    //   to refer to the type to which it already refers.
1382    //
1383    // This wording came in via DR424, which was a correction to the
1384    // wording in DR56, which accidentally banned code like:
1385    //
1386    //   struct S {
1387    //     typedef struct A { } A;
1388    //   };
1389    //
1390    // in the C++03 standard. We implement the C++0x semantics, which
1391    // allow the above but disallow
1392    //
1393    //   struct S {
1394    //     typedef int I;
1395    //     typedef int I;
1396    //   };
1397    //
1398    // since that was the intent of DR56.
1399    if (!isa<TypedefNameDecl>(Old))
1400      return;
1401
1402    Diag(New->getLocation(), diag::err_redefinition)
1403      << New->getDeclName();
1404    Diag(Old->getLocation(), diag::note_previous_definition);
1405    return New->setInvalidDecl();
1406  }
1407
1408  // If we have a redefinition of a typedef in C, emit a warning.  This warning
1409  // is normally mapped to an error, but can be controlled with
1410  // -Wtypedef-redefinition.  If either the original or the redefinition is
1411  // in a system header, don't emit this for compatibility with GCC.
1412  if (getDiagnostics().getSuppressSystemWarnings() &&
1413      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
1414       Context.getSourceManager().isInSystemHeader(New->getLocation())))
1415    return;
1416
1417  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
1418    << New->getDeclName();
1419  Diag(Old->getLocation(), diag::note_previous_definition);
1420  return;
1421}
1422
1423/// DeclhasAttr - returns true if decl Declaration already has the target
1424/// attribute.
1425static bool
1426DeclHasAttr(const Decl *D, const Attr *A) {
1427  const OwnershipAttr *OA = dyn_cast<OwnershipAttr>(A);
1428  for (Decl::attr_iterator i = D->attr_begin(), e = D->attr_end(); i != e; ++i)
1429    if ((*i)->getKind() == A->getKind()) {
1430      // FIXME: Don't hardcode this check
1431      if (OA && isa<OwnershipAttr>(*i))
1432        return OA->getOwnKind() == cast<OwnershipAttr>(*i)->getOwnKind();
1433      return true;
1434    }
1435
1436  return false;
1437}
1438
1439/// mergeDeclAttributes - Copy attributes from the Old decl to the New one.
1440static void mergeDeclAttributes(Decl *newDecl, const Decl *oldDecl,
1441                                ASTContext &C) {
1442  if (!oldDecl->hasAttrs())
1443    return;
1444
1445  bool foundAny = newDecl->hasAttrs();
1446
1447  // Ensure that any moving of objects within the allocated map is done before
1448  // we process them.
1449  if (!foundAny) newDecl->setAttrs(AttrVec());
1450
1451  for (specific_attr_iterator<InheritableAttr>
1452       i = oldDecl->specific_attr_begin<InheritableAttr>(),
1453       e = oldDecl->specific_attr_end<InheritableAttr>(); i != e; ++i) {
1454    if (!DeclHasAttr(newDecl, *i)) {
1455      InheritableAttr *newAttr = cast<InheritableAttr>((*i)->clone(C));
1456      newAttr->setInherited(true);
1457      newDecl->addAttr(newAttr);
1458      foundAny = true;
1459    }
1460  }
1461
1462  if (!foundAny) newDecl->dropAttrs();
1463}
1464
1465/// mergeParamDeclAttributes - Copy attributes from the old parameter
1466/// to the new one.
1467static void mergeParamDeclAttributes(ParmVarDecl *newDecl,
1468                                     const ParmVarDecl *oldDecl,
1469                                     ASTContext &C) {
1470  if (!oldDecl->hasAttrs())
1471    return;
1472
1473  bool foundAny = newDecl->hasAttrs();
1474
1475  // Ensure that any moving of objects within the allocated map is
1476  // done before we process them.
1477  if (!foundAny) newDecl->setAttrs(AttrVec());
1478
1479  for (specific_attr_iterator<InheritableParamAttr>
1480       i = oldDecl->specific_attr_begin<InheritableParamAttr>(),
1481       e = oldDecl->specific_attr_end<InheritableParamAttr>(); i != e; ++i) {
1482    if (!DeclHasAttr(newDecl, *i)) {
1483      InheritableAttr *newAttr = cast<InheritableParamAttr>((*i)->clone(C));
1484      newAttr->setInherited(true);
1485      newDecl->addAttr(newAttr);
1486      foundAny = true;
1487    }
1488  }
1489
1490  if (!foundAny) newDecl->dropAttrs();
1491}
1492
1493namespace {
1494
1495/// Used in MergeFunctionDecl to keep track of function parameters in
1496/// C.
1497struct GNUCompatibleParamWarning {
1498  ParmVarDecl *OldParm;
1499  ParmVarDecl *NewParm;
1500  QualType PromotedType;
1501};
1502
1503}
1504
1505/// getSpecialMember - get the special member enum for a method.
1506Sema::CXXSpecialMember Sema::getSpecialMember(const CXXMethodDecl *MD) {
1507  if (const CXXConstructorDecl *Ctor = dyn_cast<CXXConstructorDecl>(MD)) {
1508    if (Ctor->isDefaultConstructor())
1509      return Sema::CXXDefaultConstructor;
1510
1511    if (Ctor->isCopyConstructor())
1512      return Sema::CXXCopyConstructor;
1513
1514    if (Ctor->isMoveConstructor())
1515      return Sema::CXXMoveConstructor;
1516  } else if (isa<CXXDestructorDecl>(MD)) {
1517    return Sema::CXXDestructor;
1518  } else if (MD->isCopyAssignmentOperator()) {
1519    return Sema::CXXCopyAssignment;
1520  }
1521
1522  return Sema::CXXInvalid;
1523}
1524
1525/// canRedefineFunction - checks if a function can be redefined. Currently,
1526/// only extern inline functions can be redefined, and even then only in
1527/// GNU89 mode.
1528static bool canRedefineFunction(const FunctionDecl *FD,
1529                                const LangOptions& LangOpts) {
1530  return ((FD->hasAttr<GNUInlineAttr>() || LangOpts.GNUInline) &&
1531          !LangOpts.CPlusPlus &&
1532          FD->isInlineSpecified() &&
1533          FD->getStorageClass() == SC_Extern);
1534}
1535
1536/// MergeFunctionDecl - We just parsed a function 'New' from
1537/// declarator D which has the same name and scope as a previous
1538/// declaration 'Old'.  Figure out how to resolve this situation,
1539/// merging decls or emitting diagnostics as appropriate.
1540///
1541/// In C++, New and Old must be declarations that are not
1542/// overloaded. Use IsOverload to determine whether New and Old are
1543/// overloaded, and to select the Old declaration that New should be
1544/// merged with.
1545///
1546/// Returns true if there was an error, false otherwise.
1547bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
1548  // Verify the old decl was also a function.
1549  FunctionDecl *Old = 0;
1550  if (FunctionTemplateDecl *OldFunctionTemplate
1551        = dyn_cast<FunctionTemplateDecl>(OldD))
1552    Old = OldFunctionTemplate->getTemplatedDecl();
1553  else
1554    Old = dyn_cast<FunctionDecl>(OldD);
1555  if (!Old) {
1556    if (UsingShadowDecl *Shadow = dyn_cast<UsingShadowDecl>(OldD)) {
1557      Diag(New->getLocation(), diag::err_using_decl_conflict_reverse);
1558      Diag(Shadow->getTargetDecl()->getLocation(),
1559           diag::note_using_decl_target);
1560      Diag(Shadow->getUsingDecl()->getLocation(),
1561           diag::note_using_decl) << 0;
1562      return true;
1563    }
1564
1565    Diag(New->getLocation(), diag::err_redefinition_different_kind)
1566      << New->getDeclName();
1567    Diag(OldD->getLocation(), diag::note_previous_definition);
1568    return true;
1569  }
1570
1571  // Determine whether the previous declaration was a definition,
1572  // implicit declaration, or a declaration.
1573  diag::kind PrevDiag;
1574  if (Old->isThisDeclarationADefinition())
1575    PrevDiag = diag::note_previous_definition;
1576  else if (Old->isImplicit())
1577    PrevDiag = diag::note_previous_implicit_declaration;
1578  else
1579    PrevDiag = diag::note_previous_declaration;
1580
1581  QualType OldQType = Context.getCanonicalType(Old->getType());
1582  QualType NewQType = Context.getCanonicalType(New->getType());
1583
1584  // Don't complain about this if we're in GNU89 mode and the old function
1585  // is an extern inline function.
1586  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
1587      New->getStorageClass() == SC_Static &&
1588      Old->getStorageClass() != SC_Static &&
1589      !canRedefineFunction(Old, getLangOptions())) {
1590    if (getLangOptions().Microsoft) {
1591      Diag(New->getLocation(), diag::warn_static_non_static) << New;
1592      Diag(Old->getLocation(), PrevDiag);
1593    } else {
1594      Diag(New->getLocation(), diag::err_static_non_static) << New;
1595      Diag(Old->getLocation(), PrevDiag);
1596      return true;
1597    }
1598  }
1599
1600  // If a function is first declared with a calling convention, but is
1601  // later declared or defined without one, the second decl assumes the
1602  // calling convention of the first.
1603  //
1604  // For the new decl, we have to look at the NON-canonical type to tell the
1605  // difference between a function that really doesn't have a calling
1606  // convention and one that is declared cdecl. That's because in
1607  // canonicalization (see ASTContext.cpp), cdecl is canonicalized away
1608  // because it is the default calling convention.
1609  //
1610  // Note also that we DO NOT return at this point, because we still have
1611  // other tests to run.
1612  const FunctionType *OldType = cast<FunctionType>(OldQType);
1613  const FunctionType *NewType = New->getType()->getAs<FunctionType>();
1614  FunctionType::ExtInfo OldTypeInfo = OldType->getExtInfo();
1615  FunctionType::ExtInfo NewTypeInfo = NewType->getExtInfo();
1616  bool RequiresAdjustment = false;
1617  if (OldTypeInfo.getCC() != CC_Default &&
1618      NewTypeInfo.getCC() == CC_Default) {
1619    NewTypeInfo = NewTypeInfo.withCallingConv(OldTypeInfo.getCC());
1620    RequiresAdjustment = true;
1621  } else if (!Context.isSameCallConv(OldTypeInfo.getCC(),
1622                                     NewTypeInfo.getCC())) {
1623    // Calling conventions really aren't compatible, so complain.
1624    Diag(New->getLocation(), diag::err_cconv_change)
1625      << FunctionType::getNameForCallConv(NewTypeInfo.getCC())
1626      << (OldTypeInfo.getCC() == CC_Default)
1627      << (OldTypeInfo.getCC() == CC_Default ? "" :
1628          FunctionType::getNameForCallConv(OldTypeInfo.getCC()));
1629    Diag(Old->getLocation(), diag::note_previous_declaration);
1630    return true;
1631  }
1632
1633  // FIXME: diagnose the other way around?
1634  if (OldTypeInfo.getNoReturn() && !NewTypeInfo.getNoReturn()) {
1635    NewTypeInfo = NewTypeInfo.withNoReturn(true);
1636    RequiresAdjustment = true;
1637  }
1638
1639  // Merge regparm attribute.
1640  if (OldTypeInfo.getHasRegParm() != NewTypeInfo.getHasRegParm() ||
1641      OldTypeInfo.getRegParm() != NewTypeInfo.getRegParm()) {
1642    if (NewTypeInfo.getHasRegParm()) {
1643      Diag(New->getLocation(), diag::err_regparm_mismatch)
1644        << NewType->getRegParmType()
1645        << OldType->getRegParmType();
1646      Diag(Old->getLocation(), diag::note_previous_declaration);
1647      return true;
1648    }
1649
1650    NewTypeInfo = NewTypeInfo.withRegParm(OldTypeInfo.getRegParm());
1651    RequiresAdjustment = true;
1652  }
1653
1654  if (RequiresAdjustment) {
1655    NewType = Context.adjustFunctionType(NewType, NewTypeInfo);
1656    New->setType(QualType(NewType, 0));
1657    NewQType = Context.getCanonicalType(New->getType());
1658  }
1659
1660  if (getLangOptions().CPlusPlus) {
1661    // (C++98 13.1p2):
1662    //   Certain function declarations cannot be overloaded:
1663    //     -- Function declarations that differ only in the return type
1664    //        cannot be overloaded.
1665    QualType OldReturnType = OldType->getResultType();
1666    QualType NewReturnType = cast<FunctionType>(NewQType)->getResultType();
1667    QualType ResQT;
1668    if (OldReturnType != NewReturnType) {
1669      if (NewReturnType->isObjCObjectPointerType()
1670          && OldReturnType->isObjCObjectPointerType())
1671        ResQT = Context.mergeObjCGCQualifiers(NewQType, OldQType);
1672      if (ResQT.isNull()) {
1673        if (New->isCXXClassMember() && New->isOutOfLine())
1674          Diag(New->getLocation(),
1675               diag::err_member_def_does_not_match_ret_type) << New;
1676        else
1677          Diag(New->getLocation(), diag::err_ovl_diff_return_type);
1678        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1679        return true;
1680      }
1681      else
1682        NewQType = ResQT;
1683    }
1684
1685    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
1686    CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
1687    if (OldMethod && NewMethod) {
1688      // Preserve triviality.
1689      NewMethod->setTrivial(OldMethod->isTrivial());
1690
1691      bool isFriend = NewMethod->getFriendObjectKind();
1692
1693      if (!isFriend && NewMethod->getLexicalDeclContext()->isRecord()) {
1694        //    -- Member function declarations with the same name and the
1695        //       same parameter types cannot be overloaded if any of them
1696        //       is a static member function declaration.
1697        if (OldMethod->isStatic() || NewMethod->isStatic()) {
1698          Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
1699          Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1700          return true;
1701        }
1702
1703        // C++ [class.mem]p1:
1704        //   [...] A member shall not be declared twice in the
1705        //   member-specification, except that a nested class or member
1706        //   class template can be declared and then later defined.
1707        unsigned NewDiag;
1708        if (isa<CXXConstructorDecl>(OldMethod))
1709          NewDiag = diag::err_constructor_redeclared;
1710        else if (isa<CXXDestructorDecl>(NewMethod))
1711          NewDiag = diag::err_destructor_redeclared;
1712        else if (isa<CXXConversionDecl>(NewMethod))
1713          NewDiag = diag::err_conv_function_redeclared;
1714        else
1715          NewDiag = diag::err_member_redeclared;
1716
1717        Diag(New->getLocation(), NewDiag);
1718        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1719
1720      // Complain if this is an explicit declaration of a special
1721      // member that was initially declared implicitly.
1722      //
1723      // As an exception, it's okay to befriend such methods in order
1724      // to permit the implicit constructor/destructor/operator calls.
1725      } else if (OldMethod->isImplicit()) {
1726        if (isFriend) {
1727          NewMethod->setImplicit();
1728        } else {
1729          Diag(NewMethod->getLocation(),
1730               diag::err_definition_of_implicitly_declared_member)
1731            << New << getSpecialMember(OldMethod);
1732          return true;
1733        }
1734      } else if (OldMethod->isExplicitlyDefaulted()) {
1735        Diag(NewMethod->getLocation(),
1736             diag::err_definition_of_explicitly_defaulted_member)
1737          << getSpecialMember(OldMethod);
1738        return true;
1739      }
1740    }
1741
1742    // (C++98 8.3.5p3):
1743    //   All declarations for a function shall agree exactly in both the
1744    //   return type and the parameter-type-list.
1745    // We also want to respect all the extended bits except noreturn.
1746
1747    // noreturn should now match unless the old type info didn't have it.
1748    QualType OldQTypeForComparison = OldQType;
1749    if (!OldTypeInfo.getNoReturn() && NewTypeInfo.getNoReturn()) {
1750      assert(OldQType == QualType(OldType, 0));
1751      const FunctionType *OldTypeForComparison
1752        = Context.adjustFunctionType(OldType, OldTypeInfo.withNoReturn(true));
1753      OldQTypeForComparison = QualType(OldTypeForComparison, 0);
1754      assert(OldQTypeForComparison.isCanonical());
1755    }
1756
1757    if (OldQTypeForComparison == NewQType)
1758      return MergeCompatibleFunctionDecls(New, Old);
1759
1760    // Fall through for conflicting redeclarations and redefinitions.
1761  }
1762
1763  // C: Function types need to be compatible, not identical. This handles
1764  // duplicate function decls like "void f(int); void f(enum X);" properly.
1765  if (!getLangOptions().CPlusPlus &&
1766      Context.typesAreCompatible(OldQType, NewQType)) {
1767    const FunctionType *OldFuncType = OldQType->getAs<FunctionType>();
1768    const FunctionType *NewFuncType = NewQType->getAs<FunctionType>();
1769    const FunctionProtoType *OldProto = 0;
1770    if (isa<FunctionNoProtoType>(NewFuncType) &&
1771        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
1772      // The old declaration provided a function prototype, but the
1773      // new declaration does not. Merge in the prototype.
1774      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
1775      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
1776                                                 OldProto->arg_type_end());
1777      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
1778                                         ParamTypes.data(), ParamTypes.size(),
1779                                         OldProto->getExtProtoInfo());
1780      New->setType(NewQType);
1781      New->setHasInheritedPrototype();
1782
1783      // Synthesize a parameter for each argument type.
1784      llvm::SmallVector<ParmVarDecl*, 16> Params;
1785      for (FunctionProtoType::arg_type_iterator
1786             ParamType = OldProto->arg_type_begin(),
1787             ParamEnd = OldProto->arg_type_end();
1788           ParamType != ParamEnd; ++ParamType) {
1789        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
1790                                                 SourceLocation(),
1791                                                 SourceLocation(), 0,
1792                                                 *ParamType, /*TInfo=*/0,
1793                                                 SC_None, SC_None,
1794                                                 0);
1795        Param->setScopeInfo(0, Params.size());
1796        Param->setImplicit();
1797        Params.push_back(Param);
1798      }
1799
1800      New->setParams(Params.data(), Params.size());
1801    }
1802
1803    return MergeCompatibleFunctionDecls(New, Old);
1804  }
1805
1806  // GNU C permits a K&R definition to follow a prototype declaration
1807  // if the declared types of the parameters in the K&R definition
1808  // match the types in the prototype declaration, even when the
1809  // promoted types of the parameters from the K&R definition differ
1810  // from the types in the prototype. GCC then keeps the types from
1811  // the prototype.
1812  //
1813  // If a variadic prototype is followed by a non-variadic K&R definition,
1814  // the K&R definition becomes variadic.  This is sort of an edge case, but
1815  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
1816  // C99 6.9.1p8.
1817  if (!getLangOptions().CPlusPlus &&
1818      Old->hasPrototype() && !New->hasPrototype() &&
1819      New->getType()->getAs<FunctionProtoType>() &&
1820      Old->getNumParams() == New->getNumParams()) {
1821    llvm::SmallVector<QualType, 16> ArgTypes;
1822    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
1823    const FunctionProtoType *OldProto
1824      = Old->getType()->getAs<FunctionProtoType>();
1825    const FunctionProtoType *NewProto
1826      = New->getType()->getAs<FunctionProtoType>();
1827
1828    // Determine whether this is the GNU C extension.
1829    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
1830                                               NewProto->getResultType());
1831    bool LooseCompatible = !MergedReturn.isNull();
1832    for (unsigned Idx = 0, End = Old->getNumParams();
1833         LooseCompatible && Idx != End; ++Idx) {
1834      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
1835      ParmVarDecl *NewParm = New->getParamDecl(Idx);
1836      if (Context.typesAreCompatible(OldParm->getType(),
1837                                     NewProto->getArgType(Idx))) {
1838        ArgTypes.push_back(NewParm->getType());
1839      } else if (Context.typesAreCompatible(OldParm->getType(),
1840                                            NewParm->getType(),
1841                                            /*CompareUnqualified=*/true)) {
1842        GNUCompatibleParamWarning Warn
1843          = { OldParm, NewParm, NewProto->getArgType(Idx) };
1844        Warnings.push_back(Warn);
1845        ArgTypes.push_back(NewParm->getType());
1846      } else
1847        LooseCompatible = false;
1848    }
1849
1850    if (LooseCompatible) {
1851      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
1852        Diag(Warnings[Warn].NewParm->getLocation(),
1853             diag::ext_param_promoted_not_compatible_with_prototype)
1854          << Warnings[Warn].PromotedType
1855          << Warnings[Warn].OldParm->getType();
1856        if (Warnings[Warn].OldParm->getLocation().isValid())
1857          Diag(Warnings[Warn].OldParm->getLocation(),
1858               diag::note_previous_declaration);
1859      }
1860
1861      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
1862                                           ArgTypes.size(),
1863                                           OldProto->getExtProtoInfo()));
1864      return MergeCompatibleFunctionDecls(New, Old);
1865    }
1866
1867    // Fall through to diagnose conflicting types.
1868  }
1869
1870  // A function that has already been declared has been redeclared or defined
1871  // with a different type- show appropriate diagnostic
1872  if (unsigned BuiltinID = Old->getBuiltinID()) {
1873    // The user has declared a builtin function with an incompatible
1874    // signature.
1875    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
1876      // The function the user is redeclaring is a library-defined
1877      // function like 'malloc' or 'printf'. Warn about the
1878      // redeclaration, then pretend that we don't know about this
1879      // library built-in.
1880      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
1881      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
1882        << Old << Old->getType();
1883      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
1884      Old->setInvalidDecl();
1885      return false;
1886    }
1887
1888    PrevDiag = diag::note_previous_builtin_declaration;
1889  }
1890
1891  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
1892  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
1893  return true;
1894}
1895
1896/// \brief Completes the merge of two function declarations that are
1897/// known to be compatible.
1898///
1899/// This routine handles the merging of attributes and other
1900/// properties of function declarations form the old declaration to
1901/// the new declaration, once we know that New is in fact a
1902/// redeclaration of Old.
1903///
1904/// \returns false
1905bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
1906  // Merge the attributes
1907  mergeDeclAttributes(New, Old, Context);
1908
1909  // Merge the storage class.
1910  if (Old->getStorageClass() != SC_Extern &&
1911      Old->getStorageClass() != SC_None)
1912    New->setStorageClass(Old->getStorageClass());
1913
1914  // Merge "pure" flag.
1915  if (Old->isPure())
1916    New->setPure();
1917
1918  // Merge attributes from the parameters.  These can mismatch with K&R
1919  // declarations.
1920  if (New->getNumParams() == Old->getNumParams())
1921    for (unsigned i = 0, e = New->getNumParams(); i != e; ++i)
1922      mergeParamDeclAttributes(New->getParamDecl(i), Old->getParamDecl(i),
1923                               Context);
1924
1925  if (getLangOptions().CPlusPlus)
1926    return MergeCXXFunctionDecl(New, Old);
1927
1928  return false;
1929}
1930
1931
1932void Sema::mergeObjCMethodDecls(ObjCMethodDecl *newMethod,
1933                                const ObjCMethodDecl *oldMethod) {
1934  // Merge the attributes.
1935  mergeDeclAttributes(newMethod, oldMethod, Context);
1936
1937  // Merge attributes from the parameters.
1938  for (ObjCMethodDecl::param_iterator oi = oldMethod->param_begin(),
1939         ni = newMethod->param_begin(), ne = newMethod->param_end();
1940       ni != ne; ++ni, ++oi)
1941    mergeParamDeclAttributes(*ni, *oi, Context);
1942
1943  CheckObjCMethodOverride(newMethod, oldMethod, true);
1944}
1945
1946/// MergeVarDeclTypes - We parsed a variable 'New' which has the same name and
1947/// scope as a previous declaration 'Old'.  Figure out how to merge their types,
1948/// emitting diagnostics as appropriate.
1949///
1950/// Declarations using the auto type specifier (C++ [decl.spec.auto]) call back
1951/// to here in AddInitializerToDecl and AddCXXDirectInitializerToDecl. We can't
1952/// check them before the initializer is attached.
1953///
1954void Sema::MergeVarDeclTypes(VarDecl *New, VarDecl *Old) {
1955  if (New->isInvalidDecl() || Old->isInvalidDecl())
1956    return;
1957
1958  QualType MergedT;
1959  if (getLangOptions().CPlusPlus) {
1960    AutoType *AT = New->getType()->getContainedAutoType();
1961    if (AT && !AT->isDeduced()) {
1962      // We don't know what the new type is until the initializer is attached.
1963      return;
1964    } else if (Context.hasSameType(New->getType(), Old->getType())) {
1965      // These could still be something that needs exception specs checked.
1966      return MergeVarDeclExceptionSpecs(New, Old);
1967    }
1968    // C++ [basic.link]p10:
1969    //   [...] the types specified by all declarations referring to a given
1970    //   object or function shall be identical, except that declarations for an
1971    //   array object can specify array types that differ by the presence or
1972    //   absence of a major array bound (8.3.4).
1973    else if (Old->getType()->isIncompleteArrayType() &&
1974             New->getType()->isArrayType()) {
1975      CanQual<ArrayType> OldArray
1976        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1977      CanQual<ArrayType> NewArray
1978        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1979      if (OldArray->getElementType() == NewArray->getElementType())
1980        MergedT = New->getType();
1981    } else if (Old->getType()->isArrayType() &&
1982             New->getType()->isIncompleteArrayType()) {
1983      CanQual<ArrayType> OldArray
1984        = Context.getCanonicalType(Old->getType())->getAs<ArrayType>();
1985      CanQual<ArrayType> NewArray
1986        = Context.getCanonicalType(New->getType())->getAs<ArrayType>();
1987      if (OldArray->getElementType() == NewArray->getElementType())
1988        MergedT = Old->getType();
1989    } else if (New->getType()->isObjCObjectPointerType()
1990               && Old->getType()->isObjCObjectPointerType()) {
1991        MergedT = Context.mergeObjCGCQualifiers(New->getType(),
1992                                                        Old->getType());
1993    }
1994  } else {
1995    MergedT = Context.mergeTypes(New->getType(), Old->getType());
1996  }
1997  if (MergedT.isNull()) {
1998    Diag(New->getLocation(), diag::err_redefinition_different_type)
1999      << New->getDeclName();
2000    Diag(Old->getLocation(), diag::note_previous_definition);
2001    return New->setInvalidDecl();
2002  }
2003  New->setType(MergedT);
2004}
2005
2006/// MergeVarDecl - We just parsed a variable 'New' which has the same name
2007/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
2008/// situation, merging decls or emitting diagnostics as appropriate.
2009///
2010/// Tentative definition rules (C99 6.9.2p2) are checked by
2011/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
2012/// definitions here, since the initializer hasn't been attached.
2013///
2014void Sema::MergeVarDecl(VarDecl *New, LookupResult &Previous) {
2015  // If the new decl is already invalid, don't do any other checking.
2016  if (New->isInvalidDecl())
2017    return;
2018
2019  // Verify the old decl was also a variable.
2020  VarDecl *Old = 0;
2021  if (!Previous.isSingleResult() ||
2022      !(Old = dyn_cast<VarDecl>(Previous.getFoundDecl()))) {
2023    Diag(New->getLocation(), diag::err_redefinition_different_kind)
2024      << New->getDeclName();
2025    Diag(Previous.getRepresentativeDecl()->getLocation(),
2026         diag::note_previous_definition);
2027    return New->setInvalidDecl();
2028  }
2029
2030  // C++ [class.mem]p1:
2031  //   A member shall not be declared twice in the member-specification [...]
2032  //
2033  // Here, we need only consider static data members.
2034  if (Old->isStaticDataMember() && !New->isOutOfLine()) {
2035    Diag(New->getLocation(), diag::err_duplicate_member)
2036      << New->getIdentifier();
2037    Diag(Old->getLocation(), diag::note_previous_declaration);
2038    New->setInvalidDecl();
2039  }
2040
2041  mergeDeclAttributes(New, Old, Context);
2042  // Warn if an already-declared variable is made a weak_import in a subsequent declaration
2043  if (New->getAttr<WeakImportAttr>() &&
2044      Old->getStorageClass() == SC_None &&
2045      !Old->getAttr<WeakImportAttr>()) {
2046    Diag(New->getLocation(), diag::warn_weak_import) << New->getDeclName();
2047    Diag(Old->getLocation(), diag::note_previous_definition);
2048    // Remove weak_import attribute on new declaration.
2049    New->dropAttr<WeakImportAttr>();
2050  }
2051
2052  // Merge the types.
2053  MergeVarDeclTypes(New, Old);
2054  if (New->isInvalidDecl())
2055    return;
2056
2057  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
2058  if (New->getStorageClass() == SC_Static &&
2059      (Old->getStorageClass() == SC_None || Old->hasExternalStorage())) {
2060    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
2061    Diag(Old->getLocation(), diag::note_previous_definition);
2062    return New->setInvalidDecl();
2063  }
2064  // C99 6.2.2p4:
2065  //   For an identifier declared with the storage-class specifier
2066  //   extern in a scope in which a prior declaration of that
2067  //   identifier is visible,23) if the prior declaration specifies
2068  //   internal or external linkage, the linkage of the identifier at
2069  //   the later declaration is the same as the linkage specified at
2070  //   the prior declaration. If no prior declaration is visible, or
2071  //   if the prior declaration specifies no linkage, then the
2072  //   identifier has external linkage.
2073  if (New->hasExternalStorage() && Old->hasLinkage())
2074    /* Okay */;
2075  else if (New->getStorageClass() != SC_Static &&
2076           Old->getStorageClass() == SC_Static) {
2077    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
2078    Diag(Old->getLocation(), diag::note_previous_definition);
2079    return New->setInvalidDecl();
2080  }
2081
2082  // Check if extern is followed by non-extern and vice-versa.
2083  if (New->hasExternalStorage() &&
2084      !Old->hasLinkage() && Old->isLocalVarDecl()) {
2085    Diag(New->getLocation(), diag::err_extern_non_extern) << New->getDeclName();
2086    Diag(Old->getLocation(), diag::note_previous_definition);
2087    return New->setInvalidDecl();
2088  }
2089  if (Old->hasExternalStorage() &&
2090      !New->hasLinkage() && New->isLocalVarDecl()) {
2091    Diag(New->getLocation(), diag::err_non_extern_extern) << New->getDeclName();
2092    Diag(Old->getLocation(), diag::note_previous_definition);
2093    return New->setInvalidDecl();
2094  }
2095
2096  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
2097
2098  // FIXME: The test for external storage here seems wrong? We still
2099  // need to check for mismatches.
2100  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
2101      // Don't complain about out-of-line definitions of static members.
2102      !(Old->getLexicalDeclContext()->isRecord() &&
2103        !New->getLexicalDeclContext()->isRecord())) {
2104    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
2105    Diag(Old->getLocation(), diag::note_previous_definition);
2106    return New->setInvalidDecl();
2107  }
2108
2109  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
2110    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
2111    Diag(Old->getLocation(), diag::note_previous_definition);
2112  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
2113    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
2114    Diag(Old->getLocation(), diag::note_previous_definition);
2115  }
2116
2117  // C++ doesn't have tentative definitions, so go right ahead and check here.
2118  const VarDecl *Def;
2119  if (getLangOptions().CPlusPlus &&
2120      New->isThisDeclarationADefinition() == VarDecl::Definition &&
2121      (Def = Old->getDefinition())) {
2122    Diag(New->getLocation(), diag::err_redefinition)
2123      << New->getDeclName();
2124    Diag(Def->getLocation(), diag::note_previous_definition);
2125    New->setInvalidDecl();
2126    return;
2127  }
2128  // c99 6.2.2 P4.
2129  // For an identifier declared with the storage-class specifier extern in a
2130  // scope in which a prior declaration of that identifier is visible, if
2131  // the prior declaration specifies internal or external linkage, the linkage
2132  // of the identifier at the later declaration is the same as the linkage
2133  // specified at the prior declaration.
2134  // FIXME. revisit this code.
2135  if (New->hasExternalStorage() &&
2136      Old->getLinkage() == InternalLinkage &&
2137      New->getDeclContext() == Old->getDeclContext())
2138    New->setStorageClass(Old->getStorageClass());
2139
2140  // Keep a chain of previous declarations.
2141  New->setPreviousDeclaration(Old);
2142
2143  // Inherit access appropriately.
2144  New->setAccess(Old->getAccess());
2145}
2146
2147/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2148/// no declarator (e.g. "struct foo;") is parsed.
2149Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2150                                       DeclSpec &DS) {
2151  return ParsedFreeStandingDeclSpec(S, AS, DS,
2152                                    MultiTemplateParamsArg(*this, 0, 0));
2153}
2154
2155/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
2156/// no declarator (e.g. "struct foo;") is parsed. It also accopts template
2157/// parameters to cope with template friend declarations.
2158Decl *Sema::ParsedFreeStandingDeclSpec(Scope *S, AccessSpecifier AS,
2159                                       DeclSpec &DS,
2160                                       MultiTemplateParamsArg TemplateParams) {
2161  Decl *TagD = 0;
2162  TagDecl *Tag = 0;
2163  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
2164      DS.getTypeSpecType() == DeclSpec::TST_struct ||
2165      DS.getTypeSpecType() == DeclSpec::TST_union ||
2166      DS.getTypeSpecType() == DeclSpec::TST_enum) {
2167    TagD = DS.getRepAsDecl();
2168
2169    if (!TagD) // We probably had an error
2170      return 0;
2171
2172    // Note that the above type specs guarantee that the
2173    // type rep is a Decl, whereas in many of the others
2174    // it's a Type.
2175    Tag = dyn_cast<TagDecl>(TagD);
2176  }
2177
2178  if (unsigned TypeQuals = DS.getTypeQualifiers()) {
2179    // Enforce C99 6.7.3p2: "Types other than pointer types derived from object
2180    // or incomplete types shall not be restrict-qualified."
2181    if (TypeQuals & DeclSpec::TQ_restrict)
2182      Diag(DS.getRestrictSpecLoc(),
2183           diag::err_typecheck_invalid_restrict_not_pointer_noarg)
2184           << DS.getSourceRange();
2185  }
2186
2187  if (DS.isFriendSpecified()) {
2188    // If we're dealing with a decl but not a TagDecl, assume that
2189    // whatever routines created it handled the friendship aspect.
2190    if (TagD && !Tag)
2191      return 0;
2192    return ActOnFriendTypeDecl(S, DS, TemplateParams);
2193  }
2194
2195  // Track whether we warned about the fact that there aren't any
2196  // declarators.
2197  bool emittedWarning = false;
2198
2199  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
2200    ProcessDeclAttributeList(S, Record, DS.getAttributes().getList());
2201
2202    if (!Record->getDeclName() && Record->isDefinition() &&
2203        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
2204      if (getLangOptions().CPlusPlus ||
2205          Record->getDeclContext()->isRecord())
2206        return BuildAnonymousStructOrUnion(S, DS, AS, Record);
2207
2208      Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2209        << DS.getSourceRange();
2210      emittedWarning = true;
2211    }
2212  }
2213
2214  // Check for Microsoft C extension: anonymous struct.
2215  if (getLangOptions().Microsoft && !getLangOptions().CPlusPlus &&
2216      CurContext->isRecord() &&
2217      DS.getStorageClassSpec() == DeclSpec::SCS_unspecified) {
2218    // Handle 2 kinds of anonymous struct:
2219    //   struct STRUCT;
2220    // and
2221    //   STRUCT_TYPE;  <- where STRUCT_TYPE is a typedef struct.
2222    RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag);
2223    if ((Record && Record->getDeclName() && !Record->isDefinition()) ||
2224        (DS.getTypeSpecType() == DeclSpec::TST_typename &&
2225         DS.getRepAsType().get()->isStructureType())) {
2226      Diag(DS.getSourceRange().getBegin(), diag::ext_ms_anonymous_struct)
2227        << DS.getSourceRange();
2228      return BuildMicrosoftCAnonymousStruct(S, DS, Record);
2229    }
2230  }
2231
2232  if (getLangOptions().CPlusPlus &&
2233      DS.getStorageClassSpec() != DeclSpec::SCS_typedef)
2234    if (EnumDecl *Enum = dyn_cast_or_null<EnumDecl>(Tag))
2235      if (Enum->enumerator_begin() == Enum->enumerator_end() &&
2236          !Enum->getIdentifier() && !Enum->isInvalidDecl()) {
2237        Diag(Enum->getLocation(), diag::ext_no_declarators)
2238          << DS.getSourceRange();
2239        emittedWarning = true;
2240      }
2241
2242  // Skip all the checks below if we have a type error.
2243  if (DS.getTypeSpecType() == DeclSpec::TST_error) return TagD;
2244
2245  if (!DS.isMissingDeclaratorOk()) {
2246    // Warn about typedefs of enums without names, since this is an
2247    // extension in both Microsoft and GNU.
2248    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
2249        Tag && isa<EnumDecl>(Tag)) {
2250      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
2251        << DS.getSourceRange();
2252      return Tag;
2253    }
2254
2255    Diag(DS.getSourceRange().getBegin(), diag::ext_no_declarators)
2256      << DS.getSourceRange();
2257    emittedWarning = true;
2258  }
2259
2260  // We're going to complain about a bunch of spurious specifiers;
2261  // only do this if we're declaring a tag, because otherwise we
2262  // should be getting diag::ext_no_declarators.
2263  if (emittedWarning || (TagD && TagD->isInvalidDecl()))
2264    return TagD;
2265
2266  // Note that a linkage-specification sets a storage class, but
2267  // 'extern "C" struct foo;' is actually valid and not theoretically
2268  // useless.
2269  if (DeclSpec::SCS scs = DS.getStorageClassSpec())
2270    if (!DS.isExternInLinkageSpec())
2271      Diag(DS.getStorageClassSpecLoc(), diag::warn_standalone_specifier)
2272        << DeclSpec::getSpecifierName(scs);
2273
2274  if (DS.isThreadSpecified())
2275    Diag(DS.getThreadSpecLoc(), diag::warn_standalone_specifier) << "__thread";
2276  if (DS.getTypeQualifiers()) {
2277    if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2278      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "const";
2279    if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2280      Diag(DS.getConstSpecLoc(), diag::warn_standalone_specifier) << "volatile";
2281    // Restrict is covered above.
2282  }
2283  if (DS.isInlineSpecified())
2284    Diag(DS.getInlineSpecLoc(), diag::warn_standalone_specifier) << "inline";
2285  if (DS.isVirtualSpecified())
2286    Diag(DS.getVirtualSpecLoc(), diag::warn_standalone_specifier) << "virtual";
2287  if (DS.isExplicitSpecified())
2288    Diag(DS.getExplicitSpecLoc(), diag::warn_standalone_specifier) <<"explicit";
2289
2290  // FIXME: Warn on useless attributes
2291
2292  return TagD;
2293}
2294
2295/// ActOnVlaStmt - This rouine if finds a vla expression in a decl spec.
2296/// builds a statement for it and returns it so it is evaluated.
2297StmtResult Sema::ActOnVlaStmt(const DeclSpec &DS) {
2298  StmtResult R;
2299  if (DS.getTypeSpecType() == DeclSpec::TST_typeofExpr) {
2300    Expr *Exp = DS.getRepAsExpr();
2301    QualType Ty = Exp->getType();
2302    if (Ty->isPointerType()) {
2303      do
2304        Ty = Ty->getAs<PointerType>()->getPointeeType();
2305      while (Ty->isPointerType());
2306    }
2307    if (Ty->isVariableArrayType()) {
2308      R = ActOnExprStmt(MakeFullExpr(Exp));
2309    }
2310  }
2311  return R;
2312}
2313
2314/// We are trying to inject an anonymous member into the given scope;
2315/// check if there's an existing declaration that can't be overloaded.
2316///
2317/// \return true if this is a forbidden redeclaration
2318static bool CheckAnonMemberRedeclaration(Sema &SemaRef,
2319                                         Scope *S,
2320                                         DeclContext *Owner,
2321                                         DeclarationName Name,
2322                                         SourceLocation NameLoc,
2323                                         unsigned diagnostic) {
2324  LookupResult R(SemaRef, Name, NameLoc, Sema::LookupMemberName,
2325                 Sema::ForRedeclaration);
2326  if (!SemaRef.LookupName(R, S)) return false;
2327
2328  if (R.getAsSingle<TagDecl>())
2329    return false;
2330
2331  // Pick a representative declaration.
2332  NamedDecl *PrevDecl = R.getRepresentativeDecl()->getUnderlyingDecl();
2333  assert(PrevDecl && "Expected a non-null Decl");
2334
2335  if (!SemaRef.isDeclInScope(PrevDecl, Owner, S))
2336    return false;
2337
2338  SemaRef.Diag(NameLoc, diagnostic) << Name;
2339  SemaRef.Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
2340
2341  return true;
2342}
2343
2344/// InjectAnonymousStructOrUnionMembers - Inject the members of the
2345/// anonymous struct or union AnonRecord into the owning context Owner
2346/// and scope S. This routine will be invoked just after we realize
2347/// that an unnamed union or struct is actually an anonymous union or
2348/// struct, e.g.,
2349///
2350/// @code
2351/// union {
2352///   int i;
2353///   float f;
2354/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
2355///    // f into the surrounding scope.x
2356/// @endcode
2357///
2358/// This routine is recursive, injecting the names of nested anonymous
2359/// structs/unions into the owning context and scope as well.
2360static bool InjectAnonymousStructOrUnionMembers(Sema &SemaRef, Scope *S,
2361                                                DeclContext *Owner,
2362                                                RecordDecl *AnonRecord,
2363                                                AccessSpecifier AS,
2364                              llvm::SmallVector<NamedDecl*, 2> &Chaining,
2365                                                      bool MSAnonStruct) {
2366  unsigned diagKind
2367    = AnonRecord->isUnion() ? diag::err_anonymous_union_member_redecl
2368                            : diag::err_anonymous_struct_member_redecl;
2369
2370  bool Invalid = false;
2371
2372  // Look every FieldDecl and IndirectFieldDecl with a name.
2373  for (RecordDecl::decl_iterator D = AnonRecord->decls_begin(),
2374                               DEnd = AnonRecord->decls_end();
2375       D != DEnd; ++D) {
2376    if ((isa<FieldDecl>(*D) || isa<IndirectFieldDecl>(*D)) &&
2377        cast<NamedDecl>(*D)->getDeclName()) {
2378      ValueDecl *VD = cast<ValueDecl>(*D);
2379      if (CheckAnonMemberRedeclaration(SemaRef, S, Owner, VD->getDeclName(),
2380                                       VD->getLocation(), diagKind)) {
2381        // C++ [class.union]p2:
2382        //   The names of the members of an anonymous union shall be
2383        //   distinct from the names of any other entity in the
2384        //   scope in which the anonymous union is declared.
2385        Invalid = true;
2386      } else {
2387        // C++ [class.union]p2:
2388        //   For the purpose of name lookup, after the anonymous union
2389        //   definition, the members of the anonymous union are
2390        //   considered to have been defined in the scope in which the
2391        //   anonymous union is declared.
2392        unsigned OldChainingSize = Chaining.size();
2393        if (IndirectFieldDecl *IF = dyn_cast<IndirectFieldDecl>(VD))
2394          for (IndirectFieldDecl::chain_iterator PI = IF->chain_begin(),
2395               PE = IF->chain_end(); PI != PE; ++PI)
2396            Chaining.push_back(*PI);
2397        else
2398          Chaining.push_back(VD);
2399
2400        assert(Chaining.size() >= 2);
2401        NamedDecl **NamedChain =
2402          new (SemaRef.Context)NamedDecl*[Chaining.size()];
2403        for (unsigned i = 0; i < Chaining.size(); i++)
2404          NamedChain[i] = Chaining[i];
2405
2406        IndirectFieldDecl* IndirectField =
2407          IndirectFieldDecl::Create(SemaRef.Context, Owner, VD->getLocation(),
2408                                    VD->getIdentifier(), VD->getType(),
2409                                    NamedChain, Chaining.size());
2410
2411        IndirectField->setAccess(AS);
2412        IndirectField->setImplicit();
2413        SemaRef.PushOnScopeChains(IndirectField, S);
2414
2415        // That includes picking up the appropriate access specifier.
2416        if (AS != AS_none) IndirectField->setAccess(AS);
2417
2418        Chaining.resize(OldChainingSize);
2419      }
2420    }
2421  }
2422
2423  return Invalid;
2424}
2425
2426/// StorageClassSpecToVarDeclStorageClass - Maps a DeclSpec::SCS to
2427/// a VarDecl::StorageClass. Any error reporting is up to the caller:
2428/// illegal input values are mapped to SC_None.
2429static StorageClass
2430StorageClassSpecToVarDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2431  switch (StorageClassSpec) {
2432  case DeclSpec::SCS_unspecified:    return SC_None;
2433  case DeclSpec::SCS_extern:         return SC_Extern;
2434  case DeclSpec::SCS_static:         return SC_Static;
2435  case DeclSpec::SCS_auto:           return SC_Auto;
2436  case DeclSpec::SCS_register:       return SC_Register;
2437  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2438    // Illegal SCSs map to None: error reporting is up to the caller.
2439  case DeclSpec::SCS_mutable:        // Fall through.
2440  case DeclSpec::SCS_typedef:        return SC_None;
2441  }
2442  llvm_unreachable("unknown storage class specifier");
2443}
2444
2445/// StorageClassSpecToFunctionDeclStorageClass - Maps a DeclSpec::SCS to
2446/// a StorageClass. Any error reporting is up to the caller:
2447/// illegal input values are mapped to SC_None.
2448static StorageClass
2449StorageClassSpecToFunctionDeclStorageClass(DeclSpec::SCS StorageClassSpec) {
2450  switch (StorageClassSpec) {
2451  case DeclSpec::SCS_unspecified:    return SC_None;
2452  case DeclSpec::SCS_extern:         return SC_Extern;
2453  case DeclSpec::SCS_static:         return SC_Static;
2454  case DeclSpec::SCS_private_extern: return SC_PrivateExtern;
2455    // Illegal SCSs map to None: error reporting is up to the caller.
2456  case DeclSpec::SCS_auto:           // Fall through.
2457  case DeclSpec::SCS_mutable:        // Fall through.
2458  case DeclSpec::SCS_register:       // Fall through.
2459  case DeclSpec::SCS_typedef:        return SC_None;
2460  }
2461  llvm_unreachable("unknown storage class specifier");
2462}
2463
2464/// BuildAnonymousStructOrUnion - Handle the declaration of an
2465/// anonymous structure or union. Anonymous unions are a C++ feature
2466/// (C++ [class.union]) and a GNU C extension; anonymous structures
2467/// are a GNU C and GNU C++ extension.
2468Decl *Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
2469                                             AccessSpecifier AS,
2470                                             RecordDecl *Record) {
2471  DeclContext *Owner = Record->getDeclContext();
2472
2473  // Diagnose whether this anonymous struct/union is an extension.
2474  if (Record->isUnion() && !getLangOptions().CPlusPlus)
2475    Diag(Record->getLocation(), diag::ext_anonymous_union);
2476  else if (!Record->isUnion())
2477    Diag(Record->getLocation(), diag::ext_anonymous_struct);
2478
2479  // C and C++ require different kinds of checks for anonymous
2480  // structs/unions.
2481  bool Invalid = false;
2482  if (getLangOptions().CPlusPlus) {
2483    const char* PrevSpec = 0;
2484    unsigned DiagID;
2485    // C++ [class.union]p3:
2486    //   Anonymous unions declared in a named namespace or in the
2487    //   global namespace shall be declared static.
2488    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
2489        (isa<TranslationUnitDecl>(Owner) ||
2490         (isa<NamespaceDecl>(Owner) &&
2491          cast<NamespaceDecl>(Owner)->getDeclName()))) {
2492      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
2493      Invalid = true;
2494
2495      // Recover by adding 'static'.
2496      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
2497                             PrevSpec, DiagID, getLangOptions());
2498    }
2499    // C++ [class.union]p3:
2500    //   A storage class is not allowed in a declaration of an
2501    //   anonymous union in a class scope.
2502    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
2503             isa<RecordDecl>(Owner)) {
2504      Diag(DS.getStorageClassSpecLoc(),
2505           diag::err_anonymous_union_with_storage_spec);
2506      Invalid = true;
2507
2508      // Recover by removing the storage specifier.
2509      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
2510                             PrevSpec, DiagID, getLangOptions());
2511    }
2512
2513    // Ignore const/volatile/restrict qualifiers.
2514    if (DS.getTypeQualifiers()) {
2515      if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
2516        Diag(DS.getConstSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2517          << Record->isUnion() << 0
2518          << FixItHint::CreateRemoval(DS.getConstSpecLoc());
2519      if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
2520        Diag(DS.getVolatileSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2521          << Record->isUnion() << 1
2522          << FixItHint::CreateRemoval(DS.getVolatileSpecLoc());
2523      if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
2524        Diag(DS.getRestrictSpecLoc(), diag::ext_anonymous_struct_union_qualified)
2525          << Record->isUnion() << 2
2526          << FixItHint::CreateRemoval(DS.getRestrictSpecLoc());
2527
2528      DS.ClearTypeQualifiers();
2529    }
2530
2531    // C++ [class.union]p2:
2532    //   The member-specification of an anonymous union shall only
2533    //   define non-static data members. [Note: nested types and
2534    //   functions cannot be declared within an anonymous union. ]
2535    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
2536                                 MemEnd = Record->decls_end();
2537         Mem != MemEnd; ++Mem) {
2538      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
2539        // C++ [class.union]p3:
2540        //   An anonymous union shall not have private or protected
2541        //   members (clause 11).
2542        assert(FD->getAccess() != AS_none);
2543        if (FD->getAccess() != AS_public) {
2544          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
2545            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
2546          Invalid = true;
2547        }
2548
2549        // C++ [class.union]p1
2550        //   An object of a class with a non-trivial constructor, a non-trivial
2551        //   copy constructor, a non-trivial destructor, or a non-trivial copy
2552        //   assignment operator cannot be a member of a union, nor can an
2553        //   array of such objects.
2554        if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(FD))
2555          Invalid = true;
2556      } else if ((*Mem)->isImplicit()) {
2557        // Any implicit members are fine.
2558      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
2559        // This is a type that showed up in an
2560        // elaborated-type-specifier inside the anonymous struct or
2561        // union, but which actually declares a type outside of the
2562        // anonymous struct or union. It's okay.
2563      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
2564        if (!MemRecord->isAnonymousStructOrUnion() &&
2565            MemRecord->getDeclName()) {
2566          // Visual C++ allows type definition in anonymous struct or union.
2567          if (getLangOptions().Microsoft)
2568            Diag(MemRecord->getLocation(), diag::ext_anonymous_record_with_type)
2569              << (int)Record->isUnion();
2570          else {
2571            // This is a nested type declaration.
2572            Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
2573              << (int)Record->isUnion();
2574            Invalid = true;
2575          }
2576        }
2577      } else if (isa<AccessSpecDecl>(*Mem)) {
2578        // Any access specifier is fine.
2579      } else {
2580        // We have something that isn't a non-static data
2581        // member. Complain about it.
2582        unsigned DK = diag::err_anonymous_record_bad_member;
2583        if (isa<TypeDecl>(*Mem))
2584          DK = diag::err_anonymous_record_with_type;
2585        else if (isa<FunctionDecl>(*Mem))
2586          DK = diag::err_anonymous_record_with_function;
2587        else if (isa<VarDecl>(*Mem))
2588          DK = diag::err_anonymous_record_with_static;
2589
2590        // Visual C++ allows type definition in anonymous struct or union.
2591        if (getLangOptions().Microsoft &&
2592            DK == diag::err_anonymous_record_with_type)
2593          Diag((*Mem)->getLocation(), diag::ext_anonymous_record_with_type)
2594            << (int)Record->isUnion();
2595        else {
2596          Diag((*Mem)->getLocation(), DK)
2597              << (int)Record->isUnion();
2598          Invalid = true;
2599        }
2600      }
2601    }
2602  }
2603
2604  if (!Record->isUnion() && !Owner->isRecord()) {
2605    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
2606      << (int)getLangOptions().CPlusPlus;
2607    Invalid = true;
2608  }
2609
2610  // Mock up a declarator.
2611  Declarator Dc(DS, Declarator::TypeNameContext);
2612  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2613  assert(TInfo && "couldn't build declarator info for anonymous struct/union");
2614
2615  // Create a declaration for this anonymous struct/union.
2616  NamedDecl *Anon = 0;
2617  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
2618    Anon = FieldDecl::Create(Context, OwningClass,
2619                             DS.getSourceRange().getBegin(),
2620                             Record->getLocation(),
2621                             /*IdentifierInfo=*/0,
2622                             Context.getTypeDeclType(Record),
2623                             TInfo,
2624                             /*BitWidth=*/0, /*Mutable=*/false,
2625                             /*HasInit=*/false);
2626    Anon->setAccess(AS);
2627    if (getLangOptions().CPlusPlus)
2628      FieldCollector->Add(cast<FieldDecl>(Anon));
2629  } else {
2630    DeclSpec::SCS SCSpec = DS.getStorageClassSpec();
2631    assert(SCSpec != DeclSpec::SCS_typedef &&
2632           "Parser allowed 'typedef' as storage class VarDecl.");
2633    VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
2634    if (SCSpec == DeclSpec::SCS_mutable) {
2635      // mutable can only appear on non-static class members, so it's always
2636      // an error here
2637      Diag(Record->getLocation(), diag::err_mutable_nonmember);
2638      Invalid = true;
2639      SC = SC_None;
2640    }
2641    SCSpec = DS.getStorageClassSpecAsWritten();
2642    VarDecl::StorageClass SCAsWritten
2643      = StorageClassSpecToVarDeclStorageClass(SCSpec);
2644
2645    Anon = VarDecl::Create(Context, Owner,
2646                           DS.getSourceRange().getBegin(),
2647                           Record->getLocation(), /*IdentifierInfo=*/0,
2648                           Context.getTypeDeclType(Record),
2649                           TInfo, SC, SCAsWritten);
2650  }
2651  Anon->setImplicit();
2652
2653  // Add the anonymous struct/union object to the current
2654  // context. We'll be referencing this object when we refer to one of
2655  // its members.
2656  Owner->addDecl(Anon);
2657
2658  // Inject the members of the anonymous struct/union into the owning
2659  // context and into the identifier resolver chain for name lookup
2660  // purposes.
2661  llvm::SmallVector<NamedDecl*, 2> Chain;
2662  Chain.push_back(Anon);
2663
2664  if (InjectAnonymousStructOrUnionMembers(*this, S, Owner, Record, AS,
2665                                          Chain, false))
2666    Invalid = true;
2667
2668  // Mark this as an anonymous struct/union type. Note that we do not
2669  // do this until after we have already checked and injected the
2670  // members of this anonymous struct/union type, because otherwise
2671  // the members could be injected twice: once by DeclContext when it
2672  // builds its lookup table, and once by
2673  // InjectAnonymousStructOrUnionMembers.
2674  Record->setAnonymousStructOrUnion(true);
2675
2676  if (Invalid)
2677    Anon->setInvalidDecl();
2678
2679  return Anon;
2680}
2681
2682/// BuildMicrosoftCAnonymousStruct - Handle the declaration of an
2683/// Microsoft C anonymous structure.
2684/// Ref: http://msdn.microsoft.com/en-us/library/z2cx9y4f.aspx
2685/// Example:
2686///
2687/// struct A { int a; };
2688/// struct B { struct A; int b; };
2689///
2690/// void foo() {
2691///   B var;
2692///   var.a = 3;
2693/// }
2694///
2695Decl *Sema::BuildMicrosoftCAnonymousStruct(Scope *S, DeclSpec &DS,
2696                                           RecordDecl *Record) {
2697
2698  // If there is no Record, get the record via the typedef.
2699  if (!Record)
2700    Record = DS.getRepAsType().get()->getAsStructureType()->getDecl();
2701
2702  // Mock up a declarator.
2703  Declarator Dc(DS, Declarator::TypeNameContext);
2704  TypeSourceInfo *TInfo = GetTypeForDeclarator(Dc, S);
2705  assert(TInfo && "couldn't build declarator info for anonymous struct");
2706
2707  // Create a declaration for this anonymous struct.
2708  NamedDecl* Anon = FieldDecl::Create(Context,
2709                             cast<RecordDecl>(CurContext),
2710                             DS.getSourceRange().getBegin(),
2711                             DS.getSourceRange().getBegin(),
2712                             /*IdentifierInfo=*/0,
2713                             Context.getTypeDeclType(Record),
2714                             TInfo,
2715                             /*BitWidth=*/0, /*Mutable=*/false,
2716                             /*HasInit=*/false);
2717  Anon->setImplicit();
2718
2719  // Add the anonymous struct object to the current context.
2720  CurContext->addDecl(Anon);
2721
2722  // Inject the members of the anonymous struct into the current
2723  // context and into the identifier resolver chain for name lookup
2724  // purposes.
2725  llvm::SmallVector<NamedDecl*, 2> Chain;
2726  Chain.push_back(Anon);
2727
2728  if (InjectAnonymousStructOrUnionMembers(*this, S, CurContext,
2729                                          Record->getDefinition(),
2730                                          AS_none, Chain, true))
2731    Anon->setInvalidDecl();
2732
2733  return Anon;
2734}
2735
2736/// GetNameForDeclarator - Determine the full declaration name for the
2737/// given Declarator.
2738DeclarationNameInfo Sema::GetNameForDeclarator(Declarator &D) {
2739  return GetNameFromUnqualifiedId(D.getName());
2740}
2741
2742/// \brief Retrieves the declaration name from a parsed unqualified-id.
2743DeclarationNameInfo
2744Sema::GetNameFromUnqualifiedId(const UnqualifiedId &Name) {
2745  DeclarationNameInfo NameInfo;
2746  NameInfo.setLoc(Name.StartLocation);
2747
2748  switch (Name.getKind()) {
2749
2750  case UnqualifiedId::IK_Identifier:
2751    NameInfo.setName(Name.Identifier);
2752    NameInfo.setLoc(Name.StartLocation);
2753    return NameInfo;
2754
2755  case UnqualifiedId::IK_OperatorFunctionId:
2756    NameInfo.setName(Context.DeclarationNames.getCXXOperatorName(
2757                                           Name.OperatorFunctionId.Operator));
2758    NameInfo.setLoc(Name.StartLocation);
2759    NameInfo.getInfo().CXXOperatorName.BeginOpNameLoc
2760      = Name.OperatorFunctionId.SymbolLocations[0];
2761    NameInfo.getInfo().CXXOperatorName.EndOpNameLoc
2762      = Name.EndLocation.getRawEncoding();
2763    return NameInfo;
2764
2765  case UnqualifiedId::IK_LiteralOperatorId:
2766    NameInfo.setName(Context.DeclarationNames.getCXXLiteralOperatorName(
2767                                                           Name.Identifier));
2768    NameInfo.setLoc(Name.StartLocation);
2769    NameInfo.setCXXLiteralOperatorNameLoc(Name.EndLocation);
2770    return NameInfo;
2771
2772  case UnqualifiedId::IK_ConversionFunctionId: {
2773    TypeSourceInfo *TInfo;
2774    QualType Ty = GetTypeFromParser(Name.ConversionFunctionId, &TInfo);
2775    if (Ty.isNull())
2776      return DeclarationNameInfo();
2777    NameInfo.setName(Context.DeclarationNames.getCXXConversionFunctionName(
2778                                               Context.getCanonicalType(Ty)));
2779    NameInfo.setLoc(Name.StartLocation);
2780    NameInfo.setNamedTypeInfo(TInfo);
2781    return NameInfo;
2782  }
2783
2784  case UnqualifiedId::IK_ConstructorName: {
2785    TypeSourceInfo *TInfo;
2786    QualType Ty = GetTypeFromParser(Name.ConstructorName, &TInfo);
2787    if (Ty.isNull())
2788      return DeclarationNameInfo();
2789    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2790                                              Context.getCanonicalType(Ty)));
2791    NameInfo.setLoc(Name.StartLocation);
2792    NameInfo.setNamedTypeInfo(TInfo);
2793    return NameInfo;
2794  }
2795
2796  case UnqualifiedId::IK_ConstructorTemplateId: {
2797    // In well-formed code, we can only have a constructor
2798    // template-id that refers to the current context, so go there
2799    // to find the actual type being constructed.
2800    CXXRecordDecl *CurClass = dyn_cast<CXXRecordDecl>(CurContext);
2801    if (!CurClass || CurClass->getIdentifier() != Name.TemplateId->Name)
2802      return DeclarationNameInfo();
2803
2804    // Determine the type of the class being constructed.
2805    QualType CurClassType = Context.getTypeDeclType(CurClass);
2806
2807    // FIXME: Check two things: that the template-id names the same type as
2808    // CurClassType, and that the template-id does not occur when the name
2809    // was qualified.
2810
2811    NameInfo.setName(Context.DeclarationNames.getCXXConstructorName(
2812                                    Context.getCanonicalType(CurClassType)));
2813    NameInfo.setLoc(Name.StartLocation);
2814    // FIXME: should we retrieve TypeSourceInfo?
2815    NameInfo.setNamedTypeInfo(0);
2816    return NameInfo;
2817  }
2818
2819  case UnqualifiedId::IK_DestructorName: {
2820    TypeSourceInfo *TInfo;
2821    QualType Ty = GetTypeFromParser(Name.DestructorName, &TInfo);
2822    if (Ty.isNull())
2823      return DeclarationNameInfo();
2824    NameInfo.setName(Context.DeclarationNames.getCXXDestructorName(
2825                                              Context.getCanonicalType(Ty)));
2826    NameInfo.setLoc(Name.StartLocation);
2827    NameInfo.setNamedTypeInfo(TInfo);
2828    return NameInfo;
2829  }
2830
2831  case UnqualifiedId::IK_TemplateId: {
2832    TemplateName TName = Name.TemplateId->Template.get();
2833    SourceLocation TNameLoc = Name.TemplateId->TemplateNameLoc;
2834    return Context.getNameForTemplate(TName, TNameLoc);
2835  }
2836
2837  } // switch (Name.getKind())
2838
2839  assert(false && "Unknown name kind");
2840  return DeclarationNameInfo();
2841}
2842
2843/// isNearlyMatchingFunction - Determine whether the C++ functions
2844/// Declaration and Definition are "nearly" matching. This heuristic
2845/// is used to improve diagnostics in the case where an out-of-line
2846/// function definition doesn't match any declaration within
2847/// the class or namespace.
2848static bool isNearlyMatchingFunction(ASTContext &Context,
2849                                     FunctionDecl *Declaration,
2850                                     FunctionDecl *Definition) {
2851  if (Declaration->param_size() != Definition->param_size())
2852    return false;
2853  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
2854    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
2855    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
2856
2857    if (!Context.hasSameUnqualifiedType(DeclParamTy.getNonReferenceType(),
2858                                        DefParamTy.getNonReferenceType()))
2859      return false;
2860  }
2861
2862  return true;
2863}
2864
2865/// NeedsRebuildingInCurrentInstantiation - Checks whether the given
2866/// declarator needs to be rebuilt in the current instantiation.
2867/// Any bits of declarator which appear before the name are valid for
2868/// consideration here.  That's specifically the type in the decl spec
2869/// and the base type in any member-pointer chunks.
2870static bool RebuildDeclaratorInCurrentInstantiation(Sema &S, Declarator &D,
2871                                                    DeclarationName Name) {
2872  // The types we specifically need to rebuild are:
2873  //   - typenames, typeofs, and decltypes
2874  //   - types which will become injected class names
2875  // Of course, we also need to rebuild any type referencing such a
2876  // type.  It's safest to just say "dependent", but we call out a
2877  // few cases here.
2878
2879  DeclSpec &DS = D.getMutableDeclSpec();
2880  switch (DS.getTypeSpecType()) {
2881  case DeclSpec::TST_typename:
2882  case DeclSpec::TST_typeofType:
2883  case DeclSpec::TST_decltype:
2884  case DeclSpec::TST_underlyingType: {
2885    // Grab the type from the parser.
2886    TypeSourceInfo *TSI = 0;
2887    QualType T = S.GetTypeFromParser(DS.getRepAsType(), &TSI);
2888    if (T.isNull() || !T->isDependentType()) break;
2889
2890    // Make sure there's a type source info.  This isn't really much
2891    // of a waste; most dependent types should have type source info
2892    // attached already.
2893    if (!TSI)
2894      TSI = S.Context.getTrivialTypeSourceInfo(T, DS.getTypeSpecTypeLoc());
2895
2896    // Rebuild the type in the current instantiation.
2897    TSI = S.RebuildTypeInCurrentInstantiation(TSI, D.getIdentifierLoc(), Name);
2898    if (!TSI) return true;
2899
2900    // Store the new type back in the decl spec.
2901    ParsedType LocType = S.CreateParsedType(TSI->getType(), TSI);
2902    DS.UpdateTypeRep(LocType);
2903    break;
2904  }
2905
2906  case DeclSpec::TST_typeofExpr: {
2907    Expr *E = DS.getRepAsExpr();
2908    ExprResult Result = S.RebuildExprInCurrentInstantiation(E);
2909    if (Result.isInvalid()) return true;
2910    DS.UpdateExprRep(Result.get());
2911    break;
2912  }
2913
2914  default:
2915    // Nothing to do for these decl specs.
2916    break;
2917  }
2918
2919  // It doesn't matter what order we do this in.
2920  for (unsigned I = 0, E = D.getNumTypeObjects(); I != E; ++I) {
2921    DeclaratorChunk &Chunk = D.getTypeObject(I);
2922
2923    // The only type information in the declarator which can come
2924    // before the declaration name is the base type of a member
2925    // pointer.
2926    if (Chunk.Kind != DeclaratorChunk::MemberPointer)
2927      continue;
2928
2929    // Rebuild the scope specifier in-place.
2930    CXXScopeSpec &SS = Chunk.Mem.Scope();
2931    if (S.RebuildNestedNameSpecifierInCurrentInstantiation(SS))
2932      return true;
2933  }
2934
2935  return false;
2936}
2937
2938Decl *Sema::ActOnDeclarator(Scope *S, Declarator &D,
2939                            bool IsFunctionDefinition) {
2940  return HandleDeclarator(S, D, MultiTemplateParamsArg(*this),
2941                          IsFunctionDefinition);
2942}
2943
2944/// DiagnoseClassNameShadow - Implement C++ [class.mem]p13:
2945///   If T is the name of a class, then each of the following shall have a
2946///   name different from T:
2947///     - every static data member of class T;
2948///     - every member function of class T
2949///     - every member of class T that is itself a type;
2950/// \returns true if the declaration name violates these rules.
2951bool Sema::DiagnoseClassNameShadow(DeclContext *DC,
2952                                   DeclarationNameInfo NameInfo) {
2953  DeclarationName Name = NameInfo.getName();
2954
2955  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(DC))
2956    if (Record->getIdentifier() && Record->getDeclName() == Name) {
2957      Diag(NameInfo.getLoc(), diag::err_member_name_of_class) << Name;
2958      return true;
2959    }
2960
2961  return false;
2962}
2963
2964Decl *Sema::HandleDeclarator(Scope *S, Declarator &D,
2965                             MultiTemplateParamsArg TemplateParamLists,
2966                             bool IsFunctionDefinition) {
2967  // TODO: consider using NameInfo for diagnostic.
2968  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
2969  DeclarationName Name = NameInfo.getName();
2970
2971  // All of these full declarators require an identifier.  If it doesn't have
2972  // one, the ParsedFreeStandingDeclSpec action should be used.
2973  if (!Name) {
2974    if (!D.isInvalidType())  // Reject this if we think it is valid.
2975      Diag(D.getDeclSpec().getSourceRange().getBegin(),
2976           diag::err_declarator_need_ident)
2977        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
2978    return 0;
2979  } else if (DiagnoseUnexpandedParameterPack(NameInfo, UPPC_DeclarationType))
2980    return 0;
2981
2982  // The scope passed in may not be a decl scope.  Zip up the scope tree until
2983  // we find one that is.
2984  while ((S->getFlags() & Scope::DeclScope) == 0 ||
2985         (S->getFlags() & Scope::TemplateParamScope) != 0)
2986    S = S->getParent();
2987
2988  DeclContext *DC = CurContext;
2989  if (D.getCXXScopeSpec().isInvalid())
2990    D.setInvalidType();
2991  else if (D.getCXXScopeSpec().isSet()) {
2992    if (DiagnoseUnexpandedParameterPack(D.getCXXScopeSpec(),
2993                                        UPPC_DeclarationQualifier))
2994      return 0;
2995
2996    bool EnteringContext = !D.getDeclSpec().isFriendSpecified();
2997    DC = computeDeclContext(D.getCXXScopeSpec(), EnteringContext);
2998    if (!DC) {
2999      // If we could not compute the declaration context, it's because the
3000      // declaration context is dependent but does not refer to a class,
3001      // class template, or class template partial specialization. Complain
3002      // and return early, to avoid the coming semantic disaster.
3003      Diag(D.getIdentifierLoc(),
3004           diag::err_template_qualified_declarator_no_match)
3005        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
3006        << D.getCXXScopeSpec().getRange();
3007      return 0;
3008    }
3009    bool IsDependentContext = DC->isDependentContext();
3010
3011    if (!IsDependentContext &&
3012        RequireCompleteDeclContext(D.getCXXScopeSpec(), DC))
3013      return 0;
3014
3015    if (isa<CXXRecordDecl>(DC)) {
3016      if (!cast<CXXRecordDecl>(DC)->hasDefinition()) {
3017        Diag(D.getIdentifierLoc(),
3018             diag::err_member_def_undefined_record)
3019          << Name << DC << D.getCXXScopeSpec().getRange();
3020        D.setInvalidType();
3021      } else if (isa<CXXRecordDecl>(CurContext) &&
3022                 !D.getDeclSpec().isFriendSpecified()) {
3023        // The user provided a superfluous scope specifier inside a class
3024        // definition:
3025        //
3026        // class X {
3027        //   void X::f();
3028        // };
3029        if (CurContext->Equals(DC))
3030          Diag(D.getIdentifierLoc(), diag::warn_member_extra_qualification)
3031            << Name << FixItHint::CreateRemoval(D.getCXXScopeSpec().getRange());
3032        else
3033          Diag(D.getIdentifierLoc(), diag::err_member_qualification)
3034            << Name << D.getCXXScopeSpec().getRange();
3035
3036        // Pretend that this qualifier was not here.
3037        D.getCXXScopeSpec().clear();
3038      }
3039    }
3040
3041    // Check whether we need to rebuild the type of the given
3042    // declaration in the current instantiation.
3043    if (EnteringContext && IsDependentContext &&
3044        TemplateParamLists.size() != 0) {
3045      ContextRAII SavedContext(*this, DC);
3046      if (RebuildDeclaratorInCurrentInstantiation(*this, D, Name))
3047        D.setInvalidType();
3048    }
3049  }
3050
3051  if (DiagnoseClassNameShadow(DC, NameInfo))
3052    // If this is a typedef, we'll end up spewing multiple diagnostics.
3053    // Just return early; it's safer.
3054    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3055      return 0;
3056
3057  NamedDecl *New;
3058
3059  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
3060  QualType R = TInfo->getType();
3061
3062  if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
3063                                      UPPC_DeclarationType))
3064    D.setInvalidType();
3065
3066  LookupResult Previous(*this, NameInfo, LookupOrdinaryName,
3067                        ForRedeclaration);
3068
3069  // See if this is a redefinition of a variable in the same scope.
3070  if (!D.getCXXScopeSpec().isSet()) {
3071    bool IsLinkageLookup = false;
3072
3073    // If the declaration we're planning to build will be a function
3074    // or object with linkage, then look for another declaration with
3075    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
3076    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
3077      /* Do nothing*/;
3078    else if (R->isFunctionType()) {
3079      if (CurContext->isFunctionOrMethod() ||
3080          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3081        IsLinkageLookup = true;
3082    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
3083      IsLinkageLookup = true;
3084    else if (CurContext->getRedeclContext()->isTranslationUnit() &&
3085             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
3086      IsLinkageLookup = true;
3087
3088    if (IsLinkageLookup)
3089      Previous.clear(LookupRedeclarationWithLinkage);
3090
3091    LookupName(Previous, S, /* CreateBuiltins = */ IsLinkageLookup);
3092  } else { // Something like "int foo::x;"
3093    LookupQualifiedName(Previous, DC);
3094
3095    // Don't consider using declarations as previous declarations for
3096    // out-of-line members.
3097    RemoveUsingDecls(Previous);
3098
3099    // C++ 7.3.1.2p2:
3100    // Members (including explicit specializations of templates) of a named
3101    // namespace can also be defined outside that namespace by explicit
3102    // qualification of the name being defined, provided that the entity being
3103    // defined was already declared in the namespace and the definition appears
3104    // after the point of declaration in a namespace that encloses the
3105    // declarations namespace.
3106    //
3107    // Note that we only check the context at this point. We don't yet
3108    // have enough information to make sure that PrevDecl is actually
3109    // the declaration we want to match. For example, given:
3110    //
3111    //   class X {
3112    //     void f();
3113    //     void f(float);
3114    //   };
3115    //
3116    //   void X::f(int) { } // ill-formed
3117    //
3118    // In this case, PrevDecl will point to the overload set
3119    // containing the two f's declared in X, but neither of them
3120    // matches.
3121
3122    // First check whether we named the global scope.
3123    if (isa<TranslationUnitDecl>(DC)) {
3124      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
3125        << Name << D.getCXXScopeSpec().getRange();
3126    } else {
3127      DeclContext *Cur = CurContext;
3128      while (isa<LinkageSpecDecl>(Cur))
3129        Cur = Cur->getParent();
3130      if (!Cur->Encloses(DC)) {
3131        // The qualifying scope doesn't enclose the original declaration.
3132        // Emit diagnostic based on current scope.
3133        SourceLocation L = D.getIdentifierLoc();
3134        SourceRange R = D.getCXXScopeSpec().getRange();
3135        if (isa<FunctionDecl>(Cur))
3136          Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
3137        else
3138          Diag(L, diag::err_invalid_declarator_scope)
3139            << Name << cast<NamedDecl>(DC) << R;
3140        D.setInvalidType();
3141      }
3142    }
3143  }
3144
3145  if (Previous.isSingleResult() &&
3146      Previous.getFoundDecl()->isTemplateParameter()) {
3147    // Maybe we will complain about the shadowed template parameter.
3148    if (!D.isInvalidType())
3149      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(),
3150                                          Previous.getFoundDecl()))
3151        D.setInvalidType();
3152
3153    // Just pretend that we didn't see the previous declaration.
3154    Previous.clear();
3155  }
3156
3157  // In C++, the previous declaration we find might be a tag type
3158  // (class or enum). In this case, the new declaration will hide the
3159  // tag type. Note that this does does not apply if we're declaring a
3160  // typedef (C++ [dcl.typedef]p4).
3161  if (Previous.isSingleTagDecl() &&
3162      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
3163    Previous.clear();
3164
3165  bool Redeclaration = false;
3166  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
3167    if (TemplateParamLists.size()) {
3168      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
3169      return 0;
3170    }
3171
3172    New = ActOnTypedefDeclarator(S, D, DC, R, TInfo, Previous, Redeclaration);
3173  } else if (R->isFunctionType()) {
3174    New = ActOnFunctionDeclarator(S, D, DC, R, TInfo, Previous,
3175                                  move(TemplateParamLists),
3176                                  IsFunctionDefinition, Redeclaration);
3177  } else {
3178    New = ActOnVariableDeclarator(S, D, DC, R, TInfo, Previous,
3179                                  move(TemplateParamLists),
3180                                  Redeclaration);
3181  }
3182
3183  if (New == 0)
3184    return 0;
3185
3186  // If this has an identifier and is not an invalid redeclaration or
3187  // function template specialization, add it to the scope stack.
3188  if (New->getDeclName() && !(Redeclaration && New->isInvalidDecl()))
3189    PushOnScopeChains(New, S);
3190
3191  return New;
3192}
3193
3194/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
3195/// types into constant array types in certain situations which would otherwise
3196/// be errors (for GCC compatibility).
3197static QualType TryToFixInvalidVariablyModifiedType(QualType T,
3198                                                    ASTContext &Context,
3199                                                    bool &SizeIsNegative,
3200                                                    llvm::APSInt &Oversized) {
3201  // This method tries to turn a variable array into a constant
3202  // array even when the size isn't an ICE.  This is necessary
3203  // for compatibility with code that depends on gcc's buggy
3204  // constant expression folding, like struct {char x[(int)(char*)2];}
3205  SizeIsNegative = false;
3206  Oversized = 0;
3207
3208  if (T->isDependentType())
3209    return QualType();
3210
3211  QualifierCollector Qs;
3212  const Type *Ty = Qs.strip(T);
3213
3214  if (const PointerType* PTy = dyn_cast<PointerType>(Ty)) {
3215    QualType Pointee = PTy->getPointeeType();
3216    QualType FixedType =
3217        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative,
3218                                            Oversized);
3219    if (FixedType.isNull()) return FixedType;
3220    FixedType = Context.getPointerType(FixedType);
3221    return Qs.apply(Context, FixedType);
3222  }
3223  if (const ParenType* PTy = dyn_cast<ParenType>(Ty)) {
3224    QualType Inner = PTy->getInnerType();
3225    QualType FixedType =
3226        TryToFixInvalidVariablyModifiedType(Inner, Context, SizeIsNegative,
3227                                            Oversized);
3228    if (FixedType.isNull()) return FixedType;
3229    FixedType = Context.getParenType(FixedType);
3230    return Qs.apply(Context, FixedType);
3231  }
3232
3233  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
3234  if (!VLATy)
3235    return QualType();
3236  // FIXME: We should probably handle this case
3237  if (VLATy->getElementType()->isVariablyModifiedType())
3238    return QualType();
3239
3240  Expr::EvalResult EvalResult;
3241  if (!VLATy->getSizeExpr() ||
3242      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
3243      !EvalResult.Val.isInt())
3244    return QualType();
3245
3246  // Check whether the array size is negative.
3247  llvm::APSInt &Res = EvalResult.Val.getInt();
3248  if (Res.isSigned() && Res.isNegative()) {
3249    SizeIsNegative = true;
3250    return QualType();
3251  }
3252
3253  // Check whether the array is too large to be addressed.
3254  unsigned ActiveSizeBits
3255    = ConstantArrayType::getNumAddressingBits(Context, VLATy->getElementType(),
3256                                              Res);
3257  if (ActiveSizeBits > ConstantArrayType::getMaxSizeBits(Context)) {
3258    Oversized = Res;
3259    return QualType();
3260  }
3261
3262  return Context.getConstantArrayType(VLATy->getElementType(),
3263                                      Res, ArrayType::Normal, 0);
3264}
3265
3266/// \brief Register the given locally-scoped external C declaration so
3267/// that it can be found later for redeclarations
3268void
3269Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND,
3270                                       const LookupResult &Previous,
3271                                       Scope *S) {
3272  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
3273         "Decl is not a locally-scoped decl!");
3274  // Note that we have a locally-scoped external with this name.
3275  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
3276
3277  if (!Previous.isSingleResult())
3278    return;
3279
3280  NamedDecl *PrevDecl = Previous.getFoundDecl();
3281
3282  // If there was a previous declaration of this variable, it may be
3283  // in our identifier chain. Update the identifier chain with the new
3284  // declaration.
3285  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
3286    // The previous declaration was found on the identifer resolver
3287    // chain, so remove it from its scope.
3288    while (S && !S->isDeclScope(PrevDecl))
3289      S = S->getParent();
3290
3291    if (S)
3292      S->RemoveDecl(PrevDecl);
3293  }
3294}
3295
3296/// \brief Diagnose function specifiers on a declaration of an identifier that
3297/// does not identify a function.
3298void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
3299  // FIXME: We should probably indicate the identifier in question to avoid
3300  // confusion for constructs like "inline int a(), b;"
3301  if (D.getDeclSpec().isInlineSpecified())
3302    Diag(D.getDeclSpec().getInlineSpecLoc(),
3303         diag::err_inline_non_function);
3304
3305  if (D.getDeclSpec().isVirtualSpecified())
3306    Diag(D.getDeclSpec().getVirtualSpecLoc(),
3307         diag::err_virtual_non_function);
3308
3309  if (D.getDeclSpec().isExplicitSpecified())
3310    Diag(D.getDeclSpec().getExplicitSpecLoc(),
3311         diag::err_explicit_non_function);
3312}
3313
3314NamedDecl*
3315Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
3316                             QualType R,  TypeSourceInfo *TInfo,
3317                             LookupResult &Previous, bool &Redeclaration) {
3318  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
3319  if (D.getCXXScopeSpec().isSet()) {
3320    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
3321      << D.getCXXScopeSpec().getRange();
3322    D.setInvalidType();
3323    // Pretend we didn't see the scope specifier.
3324    DC = CurContext;
3325    Previous.clear();
3326  }
3327
3328  if (getLangOptions().CPlusPlus) {
3329    // Check that there are no default arguments (C++ only).
3330    CheckExtraCXXDefaultArguments(D);
3331  }
3332
3333  DiagnoseFunctionSpecifiers(D);
3334
3335  if (D.getDeclSpec().isThreadSpecified())
3336    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3337
3338  if (D.getName().Kind != UnqualifiedId::IK_Identifier) {
3339    Diag(D.getName().StartLocation, diag::err_typedef_not_identifier)
3340      << D.getName().getSourceRange();
3341    return 0;
3342  }
3343
3344  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R, TInfo);
3345  if (!NewTD) return 0;
3346
3347  // Handle attributes prior to checking for duplicates in MergeVarDecl
3348  ProcessDeclAttributes(S, NewTD, D);
3349
3350  CheckTypedefForVariablyModifiedType(S, NewTD);
3351
3352  return ActOnTypedefNameDecl(S, DC, NewTD, Previous, Redeclaration);
3353}
3354
3355void
3356Sema::CheckTypedefForVariablyModifiedType(Scope *S, TypedefNameDecl *NewTD) {
3357  // C99 6.7.7p2: If a typedef name specifies a variably modified type
3358  // then it shall have block scope.
3359  // Note that variably modified types must be fixed before merging the decl so
3360  // that redeclarations will match.
3361  QualType T = NewTD->getUnderlyingType();
3362  if (T->isVariablyModifiedType()) {
3363    getCurFunction()->setHasBranchProtectedScope();
3364
3365    if (S->getFnParent() == 0) {
3366      bool SizeIsNegative;
3367      llvm::APSInt Oversized;
3368      QualType FixedTy =
3369          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3370                                              Oversized);
3371      if (!FixedTy.isNull()) {
3372        Diag(NewTD->getLocation(), diag::warn_illegal_constant_array_size);
3373        NewTD->setTypeSourceInfo(Context.getTrivialTypeSourceInfo(FixedTy));
3374      } else {
3375        if (SizeIsNegative)
3376          Diag(NewTD->getLocation(), diag::err_typecheck_negative_array_size);
3377        else if (T->isVariableArrayType())
3378          Diag(NewTD->getLocation(), diag::err_vla_decl_in_file_scope);
3379        else if (Oversized.getBoolValue())
3380          Diag(NewTD->getLocation(), diag::err_array_too_large) << Oversized.toString(10);
3381        else
3382          Diag(NewTD->getLocation(), diag::err_vm_decl_in_file_scope);
3383        NewTD->setInvalidDecl();
3384      }
3385    }
3386  }
3387}
3388
3389
3390/// ActOnTypedefNameDecl - Perform semantic checking for a declaration which
3391/// declares a typedef-name, either using the 'typedef' type specifier or via
3392/// a C++0x [dcl.typedef]p2 alias-declaration: 'using T = A;'.
3393NamedDecl*
3394Sema::ActOnTypedefNameDecl(Scope *S, DeclContext *DC, TypedefNameDecl *NewTD,
3395                           LookupResult &Previous, bool &Redeclaration) {
3396  // Merge the decl with the existing one if appropriate. If the decl is
3397  // in an outer scope, it isn't the same thing.
3398  FilterLookupForScope(Previous, DC, S, /*ConsiderLinkage*/ false,
3399                       /*ExplicitInstantiationOrSpecialization=*/false);
3400  if (!Previous.empty()) {
3401    Redeclaration = true;
3402    MergeTypedefNameDecl(NewTD, Previous);
3403  }
3404
3405  // If this is the C FILE type, notify the AST context.
3406  if (IdentifierInfo *II = NewTD->getIdentifier())
3407    if (!NewTD->isInvalidDecl() &&
3408        NewTD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
3409      if (II->isStr("FILE"))
3410        Context.setFILEDecl(NewTD);
3411      else if (II->isStr("jmp_buf"))
3412        Context.setjmp_bufDecl(NewTD);
3413      else if (II->isStr("sigjmp_buf"))
3414        Context.setsigjmp_bufDecl(NewTD);
3415      else if (II->isStr("__builtin_va_list"))
3416        Context.setBuiltinVaListType(Context.getTypedefType(NewTD));
3417    }
3418
3419  return NewTD;
3420}
3421
3422/// \brief Determines whether the given declaration is an out-of-scope
3423/// previous declaration.
3424///
3425/// This routine should be invoked when name lookup has found a
3426/// previous declaration (PrevDecl) that is not in the scope where a
3427/// new declaration by the same name is being introduced. If the new
3428/// declaration occurs in a local scope, previous declarations with
3429/// linkage may still be considered previous declarations (C99
3430/// 6.2.2p4-5, C++ [basic.link]p6).
3431///
3432/// \param PrevDecl the previous declaration found by name
3433/// lookup
3434///
3435/// \param DC the context in which the new declaration is being
3436/// declared.
3437///
3438/// \returns true if PrevDecl is an out-of-scope previous declaration
3439/// for a new delcaration with the same name.
3440static bool
3441isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
3442                                ASTContext &Context) {
3443  if (!PrevDecl)
3444    return false;
3445
3446  if (!PrevDecl->hasLinkage())
3447    return false;
3448
3449  if (Context.getLangOptions().CPlusPlus) {
3450    // C++ [basic.link]p6:
3451    //   If there is a visible declaration of an entity with linkage
3452    //   having the same name and type, ignoring entities declared
3453    //   outside the innermost enclosing namespace scope, the block
3454    //   scope declaration declares that same entity and receives the
3455    //   linkage of the previous declaration.
3456    DeclContext *OuterContext = DC->getRedeclContext();
3457    if (!OuterContext->isFunctionOrMethod())
3458      // This rule only applies to block-scope declarations.
3459      return false;
3460
3461    DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
3462    if (PrevOuterContext->isRecord())
3463      // We found a member function: ignore it.
3464      return false;
3465
3466    // Find the innermost enclosing namespace for the new and
3467    // previous declarations.
3468    OuterContext = OuterContext->getEnclosingNamespaceContext();
3469    PrevOuterContext = PrevOuterContext->getEnclosingNamespaceContext();
3470
3471    // The previous declaration is in a different namespace, so it
3472    // isn't the same function.
3473    if (!OuterContext->Equals(PrevOuterContext))
3474      return false;
3475  }
3476
3477  return true;
3478}
3479
3480static void SetNestedNameSpecifier(DeclaratorDecl *DD, Declarator &D) {
3481  CXXScopeSpec &SS = D.getCXXScopeSpec();
3482  if (!SS.isSet()) return;
3483  DD->setQualifierInfo(SS.getWithLocInContext(DD->getASTContext()));
3484}
3485
3486bool Sema::inferObjCARCLifetime(ValueDecl *decl) {
3487  QualType type = decl->getType();
3488  Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
3489  if (lifetime == Qualifiers::OCL_Autoreleasing) {
3490    // Various kinds of declaration aren't allowed to be __autoreleasing.
3491    unsigned kind = -1U;
3492    if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3493      if (var->hasAttr<BlocksAttr>())
3494        kind = 0; // __block
3495      else if (!var->hasLocalStorage())
3496        kind = 1; // global
3497    } else if (isa<ObjCIvarDecl>(decl)) {
3498      kind = 3; // ivar
3499    } else if (isa<FieldDecl>(decl)) {
3500      kind = 2; // field
3501    }
3502
3503    if (kind != -1U) {
3504      Diag(decl->getLocation(), diag::err_arc_autoreleasing_var)
3505        << kind;
3506    }
3507  } else if (lifetime == Qualifiers::OCL_None) {
3508    // Try to infer lifetime.
3509    if (!type->isObjCLifetimeType())
3510      return false;
3511
3512    lifetime = type->getObjCARCImplicitLifetime();
3513    type = Context.getLifetimeQualifiedType(type, lifetime);
3514    decl->setType(type);
3515  }
3516
3517  if (VarDecl *var = dyn_cast<VarDecl>(decl)) {
3518    // Thread-local variables cannot have lifetime.
3519    if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone &&
3520        var->isThreadSpecified()) {
3521      Diag(var->getLocation(), diag::err_arc_thread_ownership)
3522        << var->getType();
3523      return true;
3524    }
3525  }
3526
3527  return false;
3528}
3529
3530NamedDecl*
3531Sema::ActOnVariableDeclarator(Scope *S, Declarator &D, DeclContext *DC,
3532                              QualType R, TypeSourceInfo *TInfo,
3533                              LookupResult &Previous,
3534                              MultiTemplateParamsArg TemplateParamLists,
3535                              bool &Redeclaration) {
3536  DeclarationName Name = GetNameForDeclarator(D).getName();
3537
3538  // Check that there are no default arguments (C++ only).
3539  if (getLangOptions().CPlusPlus)
3540    CheckExtraCXXDefaultArguments(D);
3541
3542  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpec();
3543  assert(SCSpec != DeclSpec::SCS_typedef &&
3544         "Parser allowed 'typedef' as storage class VarDecl.");
3545  VarDecl::StorageClass SC = StorageClassSpecToVarDeclStorageClass(SCSpec);
3546  if (SCSpec == DeclSpec::SCS_mutable) {
3547    // mutable can only appear on non-static class members, so it's always
3548    // an error here
3549    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
3550    D.setInvalidType();
3551    SC = SC_None;
3552  }
3553  SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
3554  VarDecl::StorageClass SCAsWritten
3555    = StorageClassSpecToVarDeclStorageClass(SCSpec);
3556
3557  IdentifierInfo *II = Name.getAsIdentifierInfo();
3558  if (!II) {
3559    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
3560      << Name.getAsString();
3561    return 0;
3562  }
3563
3564  DiagnoseFunctionSpecifiers(D);
3565
3566  if (!DC->isRecord() && S->getFnParent() == 0) {
3567    // C99 6.9p2: The storage-class specifiers auto and register shall not
3568    // appear in the declaration specifiers in an external declaration.
3569    if (SC == SC_Auto || SC == SC_Register) {
3570
3571      // If this is a register variable with an asm label specified, then this
3572      // is a GNU extension.
3573      if (SC == SC_Register && D.getAsmLabel())
3574        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
3575      else
3576        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
3577      D.setInvalidType();
3578    }
3579  }
3580
3581  bool isExplicitSpecialization = false;
3582  VarDecl *NewVD;
3583  if (!getLangOptions().CPlusPlus) {
3584    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3585                            D.getIdentifierLoc(), II,
3586                            R, TInfo, SC, SCAsWritten);
3587
3588    if (D.isInvalidType())
3589      NewVD->setInvalidDecl();
3590  } else {
3591    if (DC->isRecord() && !CurContext->isRecord()) {
3592      // This is an out-of-line definition of a static data member.
3593      if (SC == SC_Static) {
3594        Diag(D.getDeclSpec().getStorageClassSpecLoc(),
3595             diag::err_static_out_of_line)
3596          << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
3597      } else if (SC == SC_None)
3598        SC = SC_Static;
3599    }
3600    if (SC == SC_Static) {
3601      if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
3602        if (RD->isLocalClass())
3603          Diag(D.getIdentifierLoc(),
3604               diag::err_static_data_member_not_allowed_in_local_class)
3605            << Name << RD->getDeclName();
3606
3607        // C++ [class.union]p1: If a union contains a static data member,
3608        // the program is ill-formed.
3609        //
3610        // We also disallow static data members in anonymous structs.
3611        if (CurContext->isRecord() && (RD->isUnion() || !RD->getDeclName()))
3612          Diag(D.getIdentifierLoc(),
3613               diag::err_static_data_member_not_allowed_in_union_or_anon_struct)
3614            << Name << RD->isUnion();
3615      }
3616    }
3617
3618    // Match up the template parameter lists with the scope specifier, then
3619    // determine whether we have a template or a template specialization.
3620    isExplicitSpecialization = false;
3621    bool Invalid = false;
3622    if (TemplateParameterList *TemplateParams
3623        = MatchTemplateParametersToScopeSpecifier(
3624                                  D.getDeclSpec().getSourceRange().getBegin(),
3625                                                  D.getIdentifierLoc(),
3626                                                  D.getCXXScopeSpec(),
3627                                                  TemplateParamLists.get(),
3628                                                  TemplateParamLists.size(),
3629                                                  /*never a friend*/ false,
3630                                                  isExplicitSpecialization,
3631                                                  Invalid)) {
3632      if (TemplateParams->size() > 0) {
3633        // There is no such thing as a variable template.
3634        Diag(D.getIdentifierLoc(), diag::err_template_variable)
3635          << II
3636          << SourceRange(TemplateParams->getTemplateLoc(),
3637                         TemplateParams->getRAngleLoc());
3638        return 0;
3639      } else {
3640        // There is an extraneous 'template<>' for this variable. Complain
3641        // about it, but allow the declaration of the variable.
3642        Diag(TemplateParams->getTemplateLoc(),
3643             diag::err_template_variable_noparams)
3644          << II
3645          << SourceRange(TemplateParams->getTemplateLoc(),
3646                         TemplateParams->getRAngleLoc());
3647      }
3648    }
3649
3650    NewVD = VarDecl::Create(Context, DC, D.getSourceRange().getBegin(),
3651                            D.getIdentifierLoc(), II,
3652                            R, TInfo, SC, SCAsWritten);
3653
3654    // If this decl has an auto type in need of deduction, make a note of the
3655    // Decl so we can diagnose uses of it in its own initializer.
3656    if (D.getDeclSpec().getTypeSpecType() == DeclSpec::TST_auto &&
3657        R->getContainedAutoType())
3658      ParsingInitForAutoVars.insert(NewVD);
3659
3660    if (D.isInvalidType() || Invalid)
3661      NewVD->setInvalidDecl();
3662
3663    SetNestedNameSpecifier(NewVD, D);
3664
3665    if (TemplateParamLists.size() > 0 && D.getCXXScopeSpec().isSet()) {
3666      NewVD->setTemplateParameterListsInfo(Context,
3667                                           TemplateParamLists.size(),
3668                                           TemplateParamLists.release());
3669    }
3670  }
3671
3672  if (D.getDeclSpec().isThreadSpecified()) {
3673    if (NewVD->hasLocalStorage())
3674      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
3675    else if (!Context.Target.isTLSSupported())
3676      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
3677    else
3678      NewVD->setThreadSpecified(true);
3679  }
3680
3681  // Set the lexical context. If the declarator has a C++ scope specifier, the
3682  // lexical context will be different from the semantic context.
3683  NewVD->setLexicalDeclContext(CurContext);
3684
3685  // Handle attributes prior to checking for duplicates in MergeVarDecl
3686  ProcessDeclAttributes(S, NewVD, D);
3687
3688  // In auto-retain/release, infer strong retension for variables of
3689  // retainable type.
3690  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewVD))
3691    NewVD->setInvalidDecl();
3692
3693  // Handle GNU asm-label extension (encoded as an attribute).
3694  if (Expr *E = (Expr*)D.getAsmLabel()) {
3695    // The parser guarantees this is a string.
3696    StringLiteral *SE = cast<StringLiteral>(E);
3697    llvm::StringRef Label = SE->getString();
3698    if (S->getFnParent() != 0) {
3699      switch (SC) {
3700      case SC_None:
3701      case SC_Auto:
3702        Diag(E->getExprLoc(), diag::warn_asm_label_on_auto_decl) << Label;
3703        break;
3704      case SC_Register:
3705        if (!Context.Target.isValidGCCRegisterName(Label))
3706          Diag(E->getExprLoc(), diag::err_asm_unknown_register_name) << Label;
3707        break;
3708      case SC_Static:
3709      case SC_Extern:
3710      case SC_PrivateExtern:
3711        break;
3712      }
3713    }
3714
3715    NewVD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0),
3716                                                Context, Label));
3717  }
3718
3719  // Diagnose shadowed variables before filtering for scope.
3720  if (!D.getCXXScopeSpec().isSet())
3721    CheckShadow(S, NewVD, Previous);
3722
3723  // Don't consider existing declarations that are in a different
3724  // scope and are out-of-semantic-context declarations (if the new
3725  // declaration has linkage).
3726  FilterLookupForScope(Previous, DC, S, NewVD->hasLinkage(),
3727                       isExplicitSpecialization);
3728
3729  if (!getLangOptions().CPlusPlus)
3730    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3731  else {
3732    // Merge the decl with the existing one if appropriate.
3733    if (!Previous.empty()) {
3734      if (Previous.isSingleResult() &&
3735          isa<FieldDecl>(Previous.getFoundDecl()) &&
3736          D.getCXXScopeSpec().isSet()) {
3737        // The user tried to define a non-static data member
3738        // out-of-line (C++ [dcl.meaning]p1).
3739        Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
3740          << D.getCXXScopeSpec().getRange();
3741        Previous.clear();
3742        NewVD->setInvalidDecl();
3743      }
3744    } else if (D.getCXXScopeSpec().isSet()) {
3745      // No previous declaration in the qualifying scope.
3746      Diag(D.getIdentifierLoc(), diag::err_no_member)
3747        << Name << computeDeclContext(D.getCXXScopeSpec(), true)
3748        << D.getCXXScopeSpec().getRange();
3749      NewVD->setInvalidDecl();
3750    }
3751
3752    CheckVariableDeclaration(NewVD, Previous, Redeclaration);
3753
3754    // This is an explicit specialization of a static data member. Check it.
3755    if (isExplicitSpecialization && !NewVD->isInvalidDecl() &&
3756        CheckMemberSpecialization(NewVD, Previous))
3757      NewVD->setInvalidDecl();
3758  }
3759
3760  // attributes declared post-definition are currently ignored
3761  // FIXME: This should be handled in attribute merging, not
3762  // here.
3763  if (Previous.isSingleResult()) {
3764    VarDecl *Def = dyn_cast<VarDecl>(Previous.getFoundDecl());
3765    if (Def && (Def = Def->getDefinition()) &&
3766        Def != NewVD && D.hasAttributes()) {
3767      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
3768      Diag(Def->getLocation(), diag::note_previous_definition);
3769    }
3770  }
3771
3772  // If this is a locally-scoped extern C variable, update the map of
3773  // such variables.
3774  if (CurContext->isFunctionOrMethod() && NewVD->isExternC() &&
3775      !NewVD->isInvalidDecl())
3776    RegisterLocallyScopedExternCDecl(NewVD, Previous, S);
3777
3778  // If there's a #pragma GCC visibility in scope, and this isn't a class
3779  // member, set the visibility of this variable.
3780  if (NewVD->getLinkage() == ExternalLinkage && !DC->isRecord())
3781    AddPushedVisibilityAttribute(NewVD);
3782
3783  MarkUnusedFileScopedDecl(NewVD);
3784
3785  return NewVD;
3786}
3787
3788/// \brief Diagnose variable or built-in function shadowing.  Implements
3789/// -Wshadow.
3790///
3791/// This method is called whenever a VarDecl is added to a "useful"
3792/// scope.
3793///
3794/// \param S the scope in which the shadowing name is being declared
3795/// \param R the lookup of the name
3796///
3797void Sema::CheckShadow(Scope *S, VarDecl *D, const LookupResult& R) {
3798  // Return if warning is ignored.
3799  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, R.getNameLoc()) ==
3800        Diagnostic::Ignored)
3801    return;
3802
3803  // Don't diagnose declarations at file scope.
3804  if (D->hasGlobalStorage())
3805    return;
3806
3807  DeclContext *NewDC = D->getDeclContext();
3808
3809  // Only diagnose if we're shadowing an unambiguous field or variable.
3810  if (R.getResultKind() != LookupResult::Found)
3811    return;
3812
3813  NamedDecl* ShadowedDecl = R.getFoundDecl();
3814  if (!isa<VarDecl>(ShadowedDecl) && !isa<FieldDecl>(ShadowedDecl))
3815    return;
3816
3817  // Fields are not shadowed by variables in C++ static methods.
3818  if (isa<FieldDecl>(ShadowedDecl))
3819    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(NewDC))
3820      if (MD->isStatic())
3821        return;
3822
3823  if (VarDecl *shadowedVar = dyn_cast<VarDecl>(ShadowedDecl))
3824    if (shadowedVar->isExternC()) {
3825      // For shadowing external vars, make sure that we point to the global
3826      // declaration, not a locally scoped extern declaration.
3827      for (VarDecl::redecl_iterator
3828             I = shadowedVar->redecls_begin(), E = shadowedVar->redecls_end();
3829           I != E; ++I)
3830        if (I->isFileVarDecl()) {
3831          ShadowedDecl = *I;
3832          break;
3833        }
3834    }
3835
3836  DeclContext *OldDC = ShadowedDecl->getDeclContext();
3837
3838  // Only warn about certain kinds of shadowing for class members.
3839  if (NewDC && NewDC->isRecord()) {
3840    // In particular, don't warn about shadowing non-class members.
3841    if (!OldDC->isRecord())
3842      return;
3843
3844    // TODO: should we warn about static data members shadowing
3845    // static data members from base classes?
3846
3847    // TODO: don't diagnose for inaccessible shadowed members.
3848    // This is hard to do perfectly because we might friend the
3849    // shadowing context, but that's just a false negative.
3850  }
3851
3852  // Determine what kind of declaration we're shadowing.
3853  unsigned Kind;
3854  if (isa<RecordDecl>(OldDC)) {
3855    if (isa<FieldDecl>(ShadowedDecl))
3856      Kind = 3; // field
3857    else
3858      Kind = 2; // static data member
3859  } else if (OldDC->isFileContext())
3860    Kind = 1; // global
3861  else
3862    Kind = 0; // local
3863
3864  DeclarationName Name = R.getLookupName();
3865
3866  // Emit warning and note.
3867  Diag(R.getNameLoc(), diag::warn_decl_shadow) << Name << Kind << OldDC;
3868  Diag(ShadowedDecl->getLocation(), diag::note_previous_declaration);
3869}
3870
3871/// \brief Check -Wshadow without the advantage of a previous lookup.
3872void Sema::CheckShadow(Scope *S, VarDecl *D) {
3873  if (Diags.getDiagnosticLevel(diag::warn_decl_shadow, D->getLocation()) ==
3874        Diagnostic::Ignored)
3875    return;
3876
3877  LookupResult R(*this, D->getDeclName(), D->getLocation(),
3878                 Sema::LookupOrdinaryName, Sema::ForRedeclaration);
3879  LookupName(R, S);
3880  CheckShadow(S, D, R);
3881}
3882
3883/// \brief Perform semantic checking on a newly-created variable
3884/// declaration.
3885///
3886/// This routine performs all of the type-checking required for a
3887/// variable declaration once it has been built. It is used both to
3888/// check variables after they have been parsed and their declarators
3889/// have been translated into a declaration, and to check variables
3890/// that have been instantiated from a template.
3891///
3892/// Sets NewVD->isInvalidDecl() if an error was encountered.
3893void Sema::CheckVariableDeclaration(VarDecl *NewVD,
3894                                    LookupResult &Previous,
3895                                    bool &Redeclaration) {
3896  // If the decl is already known invalid, don't check it.
3897  if (NewVD->isInvalidDecl())
3898    return;
3899
3900  QualType T = NewVD->getType();
3901
3902  if (T->isObjCObjectType()) {
3903    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
3904    return NewVD->setInvalidDecl();
3905  }
3906
3907  // Emit an error if an address space was applied to decl with local storage.
3908  // This includes arrays of objects with address space qualifiers, but not
3909  // automatic variables that point to other address spaces.
3910  // ISO/IEC TR 18037 S5.1.2
3911  if (NewVD->hasLocalStorage() && T.getAddressSpace() != 0) {
3912    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
3913    return NewVD->setInvalidDecl();
3914  }
3915
3916  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
3917      && !NewVD->hasAttr<BlocksAttr>()) {
3918    if (getLangOptions().getGCMode() != LangOptions::NonGC)
3919      Diag(NewVD->getLocation(), diag::warn_gc_attribute_weak_on_local);
3920    else
3921      Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
3922  }
3923
3924  bool isVM = T->isVariablyModifiedType();
3925  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
3926      NewVD->hasAttr<BlocksAttr>())
3927    getCurFunction()->setHasBranchProtectedScope();
3928
3929  if ((isVM && NewVD->hasLinkage()) ||
3930      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
3931    bool SizeIsNegative;
3932    llvm::APSInt Oversized;
3933    QualType FixedTy =
3934        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative,
3935                                            Oversized);
3936
3937    if (FixedTy.isNull() && T->isVariableArrayType()) {
3938      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
3939      // FIXME: This won't give the correct result for
3940      // int a[10][n];
3941      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
3942
3943      if (NewVD->isFileVarDecl())
3944        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
3945        << SizeRange;
3946      else if (NewVD->getStorageClass() == SC_Static)
3947        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
3948        << SizeRange;
3949      else
3950        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
3951        << SizeRange;
3952      return NewVD->setInvalidDecl();
3953    }
3954
3955    if (FixedTy.isNull()) {
3956      if (NewVD->isFileVarDecl())
3957        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
3958      else
3959        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
3960      return NewVD->setInvalidDecl();
3961    }
3962
3963    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
3964    NewVD->setType(FixedTy);
3965  }
3966
3967  if (Previous.empty() && NewVD->isExternC()) {
3968    // Since we did not find anything by this name and we're declaring
3969    // an extern "C" variable, look for a non-visible extern "C"
3970    // declaration with the same name.
3971    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3972      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
3973    if (Pos != LocallyScopedExternalDecls.end())
3974      Previous.addDecl(Pos->second);
3975  }
3976
3977  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
3978    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
3979      << T;
3980    return NewVD->setInvalidDecl();
3981  }
3982
3983  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
3984    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
3985    return NewVD->setInvalidDecl();
3986  }
3987
3988  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
3989    Diag(NewVD->getLocation(), diag::err_block_on_vm);
3990    return NewVD->setInvalidDecl();
3991  }
3992
3993  // Function pointers and references cannot have qualified function type, only
3994  // function pointer-to-members can do that.
3995  QualType Pointee;
3996  unsigned PtrOrRef = 0;
3997  if (const PointerType *Ptr = T->getAs<PointerType>())
3998    Pointee = Ptr->getPointeeType();
3999  else if (const ReferenceType *Ref = T->getAs<ReferenceType>()) {
4000    Pointee = Ref->getPointeeType();
4001    PtrOrRef = 1;
4002  }
4003  if (!Pointee.isNull() && Pointee->isFunctionProtoType() &&
4004      Pointee->getAs<FunctionProtoType>()->getTypeQuals() != 0) {
4005    Diag(NewVD->getLocation(), diag::err_invalid_qualified_function_pointer)
4006        << PtrOrRef;
4007    return NewVD->setInvalidDecl();
4008  }
4009
4010  if (!Previous.empty()) {
4011    Redeclaration = true;
4012    MergeVarDecl(NewVD, Previous);
4013  }
4014}
4015
4016/// \brief Data used with FindOverriddenMethod
4017struct FindOverriddenMethodData {
4018  Sema *S;
4019  CXXMethodDecl *Method;
4020};
4021
4022/// \brief Member lookup function that determines whether a given C++
4023/// method overrides a method in a base class, to be used with
4024/// CXXRecordDecl::lookupInBases().
4025static bool FindOverriddenMethod(const CXXBaseSpecifier *Specifier,
4026                                 CXXBasePath &Path,
4027                                 void *UserData) {
4028  RecordDecl *BaseRecord = Specifier->getType()->getAs<RecordType>()->getDecl();
4029
4030  FindOverriddenMethodData *Data
4031    = reinterpret_cast<FindOverriddenMethodData*>(UserData);
4032
4033  DeclarationName Name = Data->Method->getDeclName();
4034
4035  // FIXME: Do we care about other names here too?
4036  if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4037    // We really want to find the base class destructor here.
4038    QualType T = Data->S->Context.getTypeDeclType(BaseRecord);
4039    CanQualType CT = Data->S->Context.getCanonicalType(T);
4040
4041    Name = Data->S->Context.DeclarationNames.getCXXDestructorName(CT);
4042  }
4043
4044  for (Path.Decls = BaseRecord->lookup(Name);
4045       Path.Decls.first != Path.Decls.second;
4046       ++Path.Decls.first) {
4047    NamedDecl *D = *Path.Decls.first;
4048    if (CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(D)) {
4049      if (MD->isVirtual() && !Data->S->IsOverload(Data->Method, MD, false))
4050        return true;
4051    }
4052  }
4053
4054  return false;
4055}
4056
4057/// AddOverriddenMethods - See if a method overrides any in the base classes,
4058/// and if so, check that it's a valid override and remember it.
4059bool Sema::AddOverriddenMethods(CXXRecordDecl *DC, CXXMethodDecl *MD) {
4060  // Look for virtual methods in base classes that this method might override.
4061  CXXBasePaths Paths;
4062  FindOverriddenMethodData Data;
4063  Data.Method = MD;
4064  Data.S = this;
4065  bool AddedAny = false;
4066  if (DC->lookupInBases(&FindOverriddenMethod, &Data, Paths)) {
4067    for (CXXBasePaths::decl_iterator I = Paths.found_decls_begin(),
4068         E = Paths.found_decls_end(); I != E; ++I) {
4069      if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
4070        if (!CheckOverridingFunctionReturnType(MD, OldMD) &&
4071            !CheckOverridingFunctionExceptionSpec(MD, OldMD) &&
4072            !CheckIfOverriddenFunctionIsMarkedFinal(MD, OldMD)) {
4073          MD->addOverriddenMethod(OldMD->getCanonicalDecl());
4074          AddedAny = true;
4075        }
4076      }
4077    }
4078  }
4079
4080  return AddedAny;
4081}
4082
4083static void DiagnoseInvalidRedeclaration(Sema &S, FunctionDecl *NewFD) {
4084  LookupResult Prev(S, NewFD->getDeclName(), NewFD->getLocation(),
4085                    Sema::LookupOrdinaryName, Sema::ForRedeclaration);
4086  S.LookupQualifiedName(Prev, NewFD->getDeclContext());
4087  assert(!Prev.isAmbiguous() &&
4088         "Cannot have an ambiguity in previous-declaration lookup");
4089  for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
4090       Func != FuncEnd; ++Func) {
4091    if (isa<FunctionDecl>(*Func) &&
4092        isNearlyMatchingFunction(S.Context, cast<FunctionDecl>(*Func), NewFD))
4093      S.Diag((*Func)->getLocation(), diag::note_member_def_close_match);
4094  }
4095}
4096
4097NamedDecl*
4098Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
4099                              QualType R, TypeSourceInfo *TInfo,
4100                              LookupResult &Previous,
4101                              MultiTemplateParamsArg TemplateParamLists,
4102                              bool IsFunctionDefinition, bool &Redeclaration) {
4103  assert(R.getTypePtr()->isFunctionType());
4104
4105  // TODO: consider using NameInfo for diagnostic.
4106  DeclarationNameInfo NameInfo = GetNameForDeclarator(D);
4107  DeclarationName Name = NameInfo.getName();
4108  FunctionDecl::StorageClass SC = SC_None;
4109  switch (D.getDeclSpec().getStorageClassSpec()) {
4110  default: assert(0 && "Unknown storage class!");
4111  case DeclSpec::SCS_auto:
4112  case DeclSpec::SCS_register:
4113  case DeclSpec::SCS_mutable:
4114    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4115         diag::err_typecheck_sclass_func);
4116    D.setInvalidType();
4117    break;
4118  case DeclSpec::SCS_unspecified: SC = SC_None; break;
4119  case DeclSpec::SCS_extern:      SC = SC_Extern; break;
4120  case DeclSpec::SCS_static: {
4121    if (CurContext->getRedeclContext()->isFunctionOrMethod()) {
4122      // C99 6.7.1p5:
4123      //   The declaration of an identifier for a function that has
4124      //   block scope shall have no explicit storage-class specifier
4125      //   other than extern
4126      // See also (C++ [dcl.stc]p4).
4127      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4128           diag::err_static_block_func);
4129      SC = SC_None;
4130    } else
4131      SC = SC_Static;
4132    break;
4133  }
4134  case DeclSpec::SCS_private_extern: SC = SC_PrivateExtern; break;
4135  }
4136
4137  if (D.getDeclSpec().isThreadSpecified())
4138    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4139
4140  // Do not allow returning a objc interface by-value.
4141  if (R->getAs<FunctionType>()->getResultType()->isObjCObjectType()) {
4142    Diag(D.getIdentifierLoc(),
4143         diag::err_object_cannot_be_passed_returned_by_value) << 0
4144    << R->getAs<FunctionType>()->getResultType();
4145    D.setInvalidType();
4146  }
4147
4148  FunctionDecl *NewFD;
4149  bool isInline = D.getDeclSpec().isInlineSpecified();
4150  bool isFriend = false;
4151  DeclSpec::SCS SCSpec = D.getDeclSpec().getStorageClassSpecAsWritten();
4152  FunctionDecl::StorageClass SCAsWritten
4153    = StorageClassSpecToFunctionDeclStorageClass(SCSpec);
4154  FunctionTemplateDecl *FunctionTemplate = 0;
4155  bool isExplicitSpecialization = false;
4156  bool isFunctionTemplateSpecialization = false;
4157
4158  if (!getLangOptions().CPlusPlus) {
4159    // Determine whether the function was written with a
4160    // prototype. This true when:
4161    //   - there is a prototype in the declarator, or
4162    //   - the type R of the function is some kind of typedef or other reference
4163    //     to a type name (which eventually refers to a function type).
4164    bool HasPrototype =
4165    (D.isFunctionDeclarator() && D.getFunctionTypeInfo().hasPrototype) ||
4166    (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
4167
4168    NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4169                                 NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4170                                 HasPrototype);
4171    if (D.isInvalidType())
4172      NewFD->setInvalidDecl();
4173
4174    // Set the lexical context.
4175    NewFD->setLexicalDeclContext(CurContext);
4176    // Filter out previous declarations that don't match the scope.
4177    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4178                         /*ExplicitInstantiationOrSpecialization=*/false);
4179  } else {
4180    isFriend = D.getDeclSpec().isFriendSpecified();
4181    bool isVirtual = D.getDeclSpec().isVirtualSpecified();
4182    bool isExplicit = D.getDeclSpec().isExplicitSpecified();
4183    bool isVirtualOkay = false;
4184
4185    // Check that the return type is not an abstract class type.
4186    // For record types, this is done by the AbstractClassUsageDiagnoser once
4187    // the class has been completely parsed.
4188    if (!DC->isRecord() &&
4189      RequireNonAbstractType(D.getIdentifierLoc(),
4190                             R->getAs<FunctionType>()->getResultType(),
4191                             diag::err_abstract_type_in_decl,
4192                             AbstractReturnType))
4193      D.setInvalidType();
4194
4195    if (Name.getNameKind() == DeclarationName::CXXConstructorName) {
4196      // This is a C++ constructor declaration.
4197      assert(DC->isRecord() &&
4198             "Constructors can only be declared in a member context");
4199
4200      R = CheckConstructorDeclarator(D, R, SC);
4201
4202      // Create the new declaration
4203      CXXConstructorDecl *NewCD = CXXConstructorDecl::Create(
4204                                         Context,
4205                                         cast<CXXRecordDecl>(DC),
4206                                         D.getSourceRange().getBegin(),
4207                                         NameInfo, R, TInfo,
4208                                         isExplicit, isInline,
4209                                         /*isImplicitlyDeclared=*/false);
4210
4211      NewFD = NewCD;
4212    } else if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4213      // This is a C++ destructor declaration.
4214      if (DC->isRecord()) {
4215        R = CheckDestructorDeclarator(D, R, SC);
4216        CXXRecordDecl *Record = cast<CXXRecordDecl>(DC);
4217
4218        CXXDestructorDecl *NewDD = CXXDestructorDecl::Create(Context, Record,
4219                                          D.getSourceRange().getBegin(),
4220                                          NameInfo, R, TInfo,
4221                                          isInline,
4222                                          /*isImplicitlyDeclared=*/false);
4223        NewFD = NewDD;
4224        isVirtualOkay = true;
4225
4226        // If the class is complete, then we now create the implicit exception
4227        // specification. If the class is incomplete or dependent, we can't do
4228        // it yet.
4229        if (getLangOptions().CPlusPlus0x && !Record->isDependentType() &&
4230            Record->getDefinition() && !Record->isBeingDefined() &&
4231            R->getAs<FunctionProtoType>()->getExceptionSpecType() == EST_None) {
4232          AdjustDestructorExceptionSpec(Record, NewDD);
4233        }
4234
4235      } else {
4236        Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
4237
4238        // Create a FunctionDecl to satisfy the function definition parsing
4239        // code path.
4240        NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4241                                     D.getIdentifierLoc(), Name, R, TInfo,
4242                                     SC, SCAsWritten, isInline,
4243                                     /*hasPrototype=*/true);
4244        D.setInvalidType();
4245      }
4246    } else if (Name.getNameKind() == DeclarationName::CXXConversionFunctionName) {
4247      if (!DC->isRecord()) {
4248        Diag(D.getIdentifierLoc(),
4249             diag::err_conv_function_not_member);
4250        return 0;
4251      }
4252
4253      CheckConversionDeclarator(D, R, SC);
4254      NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
4255                                        D.getSourceRange().getBegin(),
4256                                        NameInfo, R, TInfo,
4257                                        isInline, isExplicit,
4258                                        SourceLocation());
4259
4260      isVirtualOkay = true;
4261    } else if (DC->isRecord()) {
4262      // If the of the function is the same as the name of the record, then this
4263      // must be an invalid constructor that has a return type.
4264      // (The parser checks for a return type and makes the declarator a
4265      // constructor if it has no return type).
4266      // must have an invalid constructor that has a return type
4267      if (Name.getAsIdentifierInfo() &&
4268          Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
4269        Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
4270          << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
4271          << SourceRange(D.getIdentifierLoc());
4272        return 0;
4273      }
4274
4275      bool isStatic = SC == SC_Static;
4276
4277      // [class.free]p1:
4278      // Any allocation function for a class T is a static member
4279      // (even if not explicitly declared static).
4280      if (Name.getCXXOverloadedOperator() == OO_New ||
4281          Name.getCXXOverloadedOperator() == OO_Array_New)
4282        isStatic = true;
4283
4284      // [class.free]p6 Any deallocation function for a class X is a static member
4285      // (even if not explicitly declared static).
4286      if (Name.getCXXOverloadedOperator() == OO_Delete ||
4287          Name.getCXXOverloadedOperator() == OO_Array_Delete)
4288        isStatic = true;
4289
4290      // This is a C++ method declaration.
4291      CXXMethodDecl *NewMD = CXXMethodDecl::Create(
4292                                               Context, cast<CXXRecordDecl>(DC),
4293                                               D.getSourceRange().getBegin(),
4294                                               NameInfo, R, TInfo,
4295                                               isStatic, SCAsWritten, isInline,
4296                                               SourceLocation());
4297      NewFD = NewMD;
4298
4299      isVirtualOkay = !isStatic;
4300    } else {
4301      // Determine whether the function was written with a
4302      // prototype. This true when:
4303      //   - we're in C++ (where every function has a prototype),
4304      NewFD = FunctionDecl::Create(Context, DC, D.getSourceRange().getBegin(),
4305                                   NameInfo, R, TInfo, SC, SCAsWritten, isInline,
4306                                   true/*HasPrototype*/);
4307    }
4308
4309    if (isFriend && !isInline && IsFunctionDefinition) {
4310      // C++ [class.friend]p5
4311      //   A function can be defined in a friend declaration of a
4312      //   class . . . . Such a function is implicitly inline.
4313      NewFD->setImplicitlyInline();
4314    }
4315
4316    SetNestedNameSpecifier(NewFD, D);
4317    isExplicitSpecialization = false;
4318    isFunctionTemplateSpecialization = false;
4319    if (D.isInvalidType())
4320      NewFD->setInvalidDecl();
4321
4322    // Set the lexical context. If the declarator has a C++
4323    // scope specifier, or is the object of a friend declaration, the
4324    // lexical context will be different from the semantic context.
4325    NewFD->setLexicalDeclContext(CurContext);
4326
4327    // Match up the template parameter lists with the scope specifier, then
4328    // determine whether we have a template or a template specialization.
4329    bool Invalid = false;
4330    if (TemplateParameterList *TemplateParams
4331          = MatchTemplateParametersToScopeSpecifier(
4332                                  D.getDeclSpec().getSourceRange().getBegin(),
4333                                  D.getIdentifierLoc(),
4334                                  D.getCXXScopeSpec(),
4335                                  TemplateParamLists.get(),
4336                                  TemplateParamLists.size(),
4337                                  isFriend,
4338                                  isExplicitSpecialization,
4339                                  Invalid)) {
4340      if (TemplateParams->size() > 0) {
4341        // This is a function template
4342
4343        // Check that we can declare a template here.
4344        if (CheckTemplateDeclScope(S, TemplateParams))
4345          return 0;
4346
4347        // A destructor cannot be a template.
4348        if (Name.getNameKind() == DeclarationName::CXXDestructorName) {
4349          Diag(NewFD->getLocation(), diag::err_destructor_template);
4350          return 0;
4351        }
4352
4353        FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
4354                                                        NewFD->getLocation(),
4355                                                        Name, TemplateParams,
4356                                                        NewFD);
4357        FunctionTemplate->setLexicalDeclContext(CurContext);
4358        NewFD->setDescribedFunctionTemplate(FunctionTemplate);
4359
4360        // For source fidelity, store the other template param lists.
4361        if (TemplateParamLists.size() > 1) {
4362          NewFD->setTemplateParameterListsInfo(Context,
4363                                               TemplateParamLists.size() - 1,
4364                                               TemplateParamLists.release());
4365        }
4366      } else {
4367        // This is a function template specialization.
4368        isFunctionTemplateSpecialization = true;
4369        // For source fidelity, store all the template param lists.
4370        NewFD->setTemplateParameterListsInfo(Context,
4371                                             TemplateParamLists.size(),
4372                                             TemplateParamLists.release());
4373
4374        // C++0x [temp.expl.spec]p20 forbids "template<> friend void foo(int);".
4375        if (isFriend) {
4376          // We want to remove the "template<>", found here.
4377          SourceRange RemoveRange = TemplateParams->getSourceRange();
4378
4379          // If we remove the template<> and the name is not a
4380          // template-id, we're actually silently creating a problem:
4381          // the friend declaration will refer to an untemplated decl,
4382          // and clearly the user wants a template specialization.  So
4383          // we need to insert '<>' after the name.
4384          SourceLocation InsertLoc;
4385          if (D.getName().getKind() != UnqualifiedId::IK_TemplateId) {
4386            InsertLoc = D.getName().getSourceRange().getEnd();
4387            InsertLoc = PP.getLocForEndOfToken(InsertLoc);
4388          }
4389
4390          Diag(D.getIdentifierLoc(), diag::err_template_spec_decl_friend)
4391            << Name << RemoveRange
4392            << FixItHint::CreateRemoval(RemoveRange)
4393            << FixItHint::CreateInsertion(InsertLoc, "<>");
4394        }
4395      }
4396    }
4397    else {
4398      // All template param lists were matched against the scope specifier:
4399      // this is NOT (an explicit specialization of) a template.
4400      if (TemplateParamLists.size() > 0)
4401        // For source fidelity, store all the template param lists.
4402        NewFD->setTemplateParameterListsInfo(Context,
4403                                             TemplateParamLists.size(),
4404                                             TemplateParamLists.release());
4405    }
4406
4407    if (Invalid) {
4408      NewFD->setInvalidDecl();
4409      if (FunctionTemplate)
4410        FunctionTemplate->setInvalidDecl();
4411    }
4412
4413    // C++ [dcl.fct.spec]p5:
4414    //   The virtual specifier shall only be used in declarations of
4415    //   nonstatic class member functions that appear within a
4416    //   member-specification of a class declaration; see 10.3.
4417    //
4418    if (isVirtual && !NewFD->isInvalidDecl()) {
4419      if (!isVirtualOkay) {
4420        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4421             diag::err_virtual_non_function);
4422      } else if (!CurContext->isRecord()) {
4423        // 'virtual' was specified outside of the class.
4424        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4425             diag::err_virtual_out_of_class)
4426          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4427      } else if (NewFD->getDescribedFunctionTemplate()) {
4428        // C++ [temp.mem]p3:
4429        //  A member function template shall not be virtual.
4430        Diag(D.getDeclSpec().getVirtualSpecLoc(),
4431             diag::err_virtual_member_function_template)
4432          << FixItHint::CreateRemoval(D.getDeclSpec().getVirtualSpecLoc());
4433      } else {
4434        // Okay: Add virtual to the method.
4435        NewFD->setVirtualAsWritten(true);
4436      }
4437    }
4438
4439    // C++ [dcl.fct.spec]p3:
4440    //  The inline specifier shall not appear on a block scope function declaration.
4441    if (isInline && !NewFD->isInvalidDecl()) {
4442      if (CurContext->isFunctionOrMethod()) {
4443        // 'inline' is not allowed on block scope function declaration.
4444        Diag(D.getDeclSpec().getInlineSpecLoc(),
4445             diag::err_inline_declaration_block_scope) << Name
4446          << FixItHint::CreateRemoval(D.getDeclSpec().getInlineSpecLoc());
4447      }
4448    }
4449
4450    // C++ [dcl.fct.spec]p6:
4451    //  The explicit specifier shall be used only in the declaration of a
4452    //  constructor or conversion function within its class definition; see 12.3.1
4453    //  and 12.3.2.
4454    if (isExplicit && !NewFD->isInvalidDecl()) {
4455      if (!CurContext->isRecord()) {
4456        // 'explicit' was specified outside of the class.
4457        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4458             diag::err_explicit_out_of_class)
4459          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4460      } else if (!isa<CXXConstructorDecl>(NewFD) &&
4461                 !isa<CXXConversionDecl>(NewFD)) {
4462        // 'explicit' was specified on a function that wasn't a constructor
4463        // or conversion function.
4464        Diag(D.getDeclSpec().getExplicitSpecLoc(),
4465             diag::err_explicit_non_ctor_or_conv_function)
4466          << FixItHint::CreateRemoval(D.getDeclSpec().getExplicitSpecLoc());
4467      }
4468    }
4469
4470    // Filter out previous declarations that don't match the scope.
4471    FilterLookupForScope(Previous, DC, S, NewFD->hasLinkage(),
4472                         isExplicitSpecialization ||
4473                         isFunctionTemplateSpecialization);
4474
4475    if (isFriend) {
4476      // For now, claim that the objects have no previous declaration.
4477      if (FunctionTemplate) {
4478        FunctionTemplate->setObjectOfFriendDecl(false);
4479        FunctionTemplate->setAccess(AS_public);
4480      }
4481      NewFD->setObjectOfFriendDecl(false);
4482      NewFD->setAccess(AS_public);
4483    }
4484
4485    if (isa<CXXMethodDecl>(NewFD) && DC == CurContext && IsFunctionDefinition) {
4486      // A method is implicitly inline if it's defined in its class
4487      // definition.
4488      NewFD->setImplicitlyInline();
4489    }
4490
4491    if (SC == SC_Static && isa<CXXMethodDecl>(NewFD) &&
4492        !CurContext->isRecord()) {
4493      // C++ [class.static]p1:
4494      //   A data or function member of a class may be declared static
4495      //   in a class definition, in which case it is a static member of
4496      //   the class.
4497
4498      // Complain about the 'static' specifier if it's on an out-of-line
4499      // member function definition.
4500      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
4501           diag::err_static_out_of_line)
4502        << FixItHint::CreateRemoval(D.getDeclSpec().getStorageClassSpecLoc());
4503    }
4504  }
4505
4506  // Handle GNU asm-label extension (encoded as an attribute).
4507  if (Expr *E = (Expr*) D.getAsmLabel()) {
4508    // The parser guarantees this is a string.
4509    StringLiteral *SE = cast<StringLiteral>(E);
4510    NewFD->addAttr(::new (Context) AsmLabelAttr(SE->getStrTokenLoc(0), Context,
4511                                                SE->getString()));
4512  }
4513
4514  // Copy the parameter declarations from the declarator D to the function
4515  // declaration NewFD, if they are available.  First scavenge them into Params.
4516  llvm::SmallVector<ParmVarDecl*, 16> Params;
4517  if (D.isFunctionDeclarator()) {
4518    DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
4519
4520    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
4521    // function that takes no arguments, not a function that takes a
4522    // single void argument.
4523    // We let through "const void" here because Sema::GetTypeForDeclarator
4524    // already checks for that case.
4525    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
4526        FTI.ArgInfo[0].Param &&
4527        cast<ParmVarDecl>(FTI.ArgInfo[0].Param)->getType()->isVoidType()) {
4528      // Empty arg list, don't push any params.
4529      ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[0].Param);
4530
4531      // In C++, the empty parameter-type-list must be spelled "void"; a
4532      // typedef of void is not permitted.
4533      if (getLangOptions().CPlusPlus &&
4534          Param->getType().getUnqualifiedType() != Context.VoidTy) {
4535        bool IsTypeAlias = false;
4536        if (const TypedefType *TT = Param->getType()->getAs<TypedefType>())
4537          IsTypeAlias = isa<TypeAliasDecl>(TT->getDecl());
4538        else if (const TemplateSpecializationType *TST =
4539                   Param->getType()->getAs<TemplateSpecializationType>())
4540          IsTypeAlias = TST->isTypeAlias();
4541        Diag(Param->getLocation(), diag::err_param_typedef_of_void)
4542          << IsTypeAlias;
4543      }
4544    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
4545      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
4546        ParmVarDecl *Param = cast<ParmVarDecl>(FTI.ArgInfo[i].Param);
4547        assert(Param->getDeclContext() != NewFD && "Was set before ?");
4548        Param->setDeclContext(NewFD);
4549        Params.push_back(Param);
4550
4551        if (Param->isInvalidDecl())
4552          NewFD->setInvalidDecl();
4553      }
4554    }
4555
4556  } else if (const FunctionProtoType *FT = R->getAs<FunctionProtoType>()) {
4557    // When we're declaring a function with a typedef, typeof, etc as in the
4558    // following example, we'll need to synthesize (unnamed)
4559    // parameters for use in the declaration.
4560    //
4561    // @code
4562    // typedef void fn(int);
4563    // fn f;
4564    // @endcode
4565
4566    // Synthesize a parameter for each argument type.
4567    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
4568         AE = FT->arg_type_end(); AI != AE; ++AI) {
4569      ParmVarDecl *Param =
4570        BuildParmVarDeclForTypedef(NewFD, D.getIdentifierLoc(), *AI);
4571      Param->setScopeInfo(0, Params.size());
4572      Params.push_back(Param);
4573    }
4574  } else {
4575    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
4576           "Should not need args for typedef of non-prototype fn");
4577  }
4578  // Finally, we know we have the right number of parameters, install them.
4579  NewFD->setParams(Params.data(), Params.size());
4580
4581  // Process the non-inheritable attributes on this declaration.
4582  ProcessDeclAttributes(S, NewFD, D,
4583                        /*NonInheritable=*/true, /*Inheritable=*/false);
4584
4585  if (!getLangOptions().CPlusPlus) {
4586    // Perform semantic checking on the function declaration.
4587    bool isExplicitSpecialization=false;
4588    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4589                             Redeclaration);
4590    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4591            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4592           "previous declaration set still overloaded");
4593  } else {
4594    // If the declarator is a template-id, translate the parser's template
4595    // argument list into our AST format.
4596    bool HasExplicitTemplateArgs = false;
4597    TemplateArgumentListInfo TemplateArgs;
4598    if (D.getName().getKind() == UnqualifiedId::IK_TemplateId) {
4599      TemplateIdAnnotation *TemplateId = D.getName().TemplateId;
4600      TemplateArgs.setLAngleLoc(TemplateId->LAngleLoc);
4601      TemplateArgs.setRAngleLoc(TemplateId->RAngleLoc);
4602      ASTTemplateArgsPtr TemplateArgsPtr(*this,
4603                                         TemplateId->getTemplateArgs(),
4604                                         TemplateId->NumArgs);
4605      translateTemplateArguments(TemplateArgsPtr,
4606                                 TemplateArgs);
4607      TemplateArgsPtr.release();
4608
4609      HasExplicitTemplateArgs = true;
4610
4611      if (NewFD->isInvalidDecl()) {
4612        HasExplicitTemplateArgs = false;
4613      } else if (FunctionTemplate) {
4614        // Function template with explicit template arguments.
4615        Diag(D.getIdentifierLoc(), diag::err_function_template_partial_spec)
4616          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc);
4617
4618        HasExplicitTemplateArgs = false;
4619      } else if (!isFunctionTemplateSpecialization &&
4620                 !D.getDeclSpec().isFriendSpecified()) {
4621        // We have encountered something that the user meant to be a
4622        // specialization (because it has explicitly-specified template
4623        // arguments) but that was not introduced with a "template<>" (or had
4624        // too few of them).
4625        Diag(D.getIdentifierLoc(), diag::err_template_spec_needs_header)
4626          << SourceRange(TemplateId->LAngleLoc, TemplateId->RAngleLoc)
4627          << FixItHint::CreateInsertion(
4628                                        D.getDeclSpec().getSourceRange().getBegin(),
4629                                                  "template<> ");
4630        isFunctionTemplateSpecialization = true;
4631      } else {
4632        // "friend void foo<>(int);" is an implicit specialization decl.
4633        isFunctionTemplateSpecialization = true;
4634      }
4635    } else if (isFriend && isFunctionTemplateSpecialization) {
4636      // This combination is only possible in a recovery case;  the user
4637      // wrote something like:
4638      //   template <> friend void foo(int);
4639      // which we're recovering from as if the user had written:
4640      //   friend void foo<>(int);
4641      // Go ahead and fake up a template id.
4642      HasExplicitTemplateArgs = true;
4643        TemplateArgs.setLAngleLoc(D.getIdentifierLoc());
4644      TemplateArgs.setRAngleLoc(D.getIdentifierLoc());
4645    }
4646
4647    // If it's a friend (and only if it's a friend), it's possible
4648    // that either the specialized function type or the specialized
4649    // template is dependent, and therefore matching will fail.  In
4650    // this case, don't check the specialization yet.
4651    if (isFunctionTemplateSpecialization && isFriend &&
4652        (NewFD->getType()->isDependentType() || DC->isDependentContext())) {
4653      assert(HasExplicitTemplateArgs &&
4654             "friend function specialization without template args");
4655      if (CheckDependentFunctionTemplateSpecialization(NewFD, TemplateArgs,
4656                                                       Previous))
4657        NewFD->setInvalidDecl();
4658    } else if (isFunctionTemplateSpecialization) {
4659      if (CurContext->isDependentContext() && CurContext->isRecord()
4660          && !isFriend) {
4661        Diag(NewFD->getLocation(), diag::err_function_specialization_in_class)
4662          << NewFD->getDeclName();
4663        NewFD->setInvalidDecl();
4664        return 0;
4665      } else if (CheckFunctionTemplateSpecialization(NewFD,
4666                                  (HasExplicitTemplateArgs ? &TemplateArgs : 0),
4667                                                     Previous))
4668        NewFD->setInvalidDecl();
4669
4670      // C++ [dcl.stc]p1:
4671      //   A storage-class-specifier shall not be specified in an explicit
4672      //   specialization (14.7.3)
4673      if (SC != SC_None) {
4674        if (SC != NewFD->getStorageClass())
4675          Diag(NewFD->getLocation(),
4676               diag::err_explicit_specialization_inconsistent_storage_class)
4677            << SC
4678            << FixItHint::CreateRemoval(
4679                                      D.getDeclSpec().getStorageClassSpecLoc());
4680
4681        else
4682          Diag(NewFD->getLocation(),
4683               diag::ext_explicit_specialization_storage_class)
4684            << FixItHint::CreateRemoval(
4685                                      D.getDeclSpec().getStorageClassSpecLoc());
4686      }
4687
4688    } else if (isExplicitSpecialization && isa<CXXMethodDecl>(NewFD)) {
4689      if (CheckMemberSpecialization(NewFD, Previous))
4690          NewFD->setInvalidDecl();
4691    }
4692
4693    // Perform semantic checking on the function declaration.
4694    CheckFunctionDeclaration(S, NewFD, Previous, isExplicitSpecialization,
4695                             Redeclaration);
4696
4697    assert((NewFD->isInvalidDecl() || !Redeclaration ||
4698            Previous.getResultKind() != LookupResult::FoundOverloaded) &&
4699           "previous declaration set still overloaded");
4700
4701    NamedDecl *PrincipalDecl = (FunctionTemplate
4702                                ? cast<NamedDecl>(FunctionTemplate)
4703                                : NewFD);
4704
4705    if (isFriend && Redeclaration) {
4706      AccessSpecifier Access = AS_public;
4707      if (!NewFD->isInvalidDecl())
4708        Access = NewFD->getPreviousDeclaration()->getAccess();
4709
4710      NewFD->setAccess(Access);
4711      if (FunctionTemplate) FunctionTemplate->setAccess(Access);
4712
4713      PrincipalDecl->setObjectOfFriendDecl(true);
4714    }
4715
4716    if (NewFD->isOverloadedOperator() && !DC->isRecord() &&
4717        PrincipalDecl->isInIdentifierNamespace(Decl::IDNS_Ordinary))
4718      PrincipalDecl->setNonMemberOperator();
4719
4720    // If we have a function template, check the template parameter
4721    // list. This will check and merge default template arguments.
4722    if (FunctionTemplate) {
4723      FunctionTemplateDecl *PrevTemplate = FunctionTemplate->getPreviousDeclaration();
4724      CheckTemplateParameterList(FunctionTemplate->getTemplateParameters(),
4725                                 PrevTemplate? PrevTemplate->getTemplateParameters() : 0,
4726                            D.getDeclSpec().isFriendSpecified()
4727                              ? (IsFunctionDefinition
4728                                   ? TPC_FriendFunctionTemplateDefinition
4729                                   : TPC_FriendFunctionTemplate)
4730                              : (D.getCXXScopeSpec().isSet() &&
4731                                 DC && DC->isRecord() &&
4732                                 DC->isDependentContext())
4733                                  ? TPC_ClassTemplateMember
4734                                  : TPC_FunctionTemplate);
4735    }
4736
4737    if (NewFD->isInvalidDecl()) {
4738      // Ignore all the rest of this.
4739    } else if (!Redeclaration) {
4740      // Fake up an access specifier if it's supposed to be a class member.
4741      if (isa<CXXRecordDecl>(NewFD->getDeclContext()))
4742        NewFD->setAccess(AS_public);
4743
4744      // Qualified decls generally require a previous declaration.
4745      if (D.getCXXScopeSpec().isSet()) {
4746        // ...with the major exception of templated-scope or
4747        // dependent-scope friend declarations.
4748
4749        // TODO: we currently also suppress this check in dependent
4750        // contexts because (1) the parameter depth will be off when
4751        // matching friend templates and (2) we might actually be
4752        // selecting a friend based on a dependent factor.  But there
4753        // are situations where these conditions don't apply and we
4754        // can actually do this check immediately.
4755        if (isFriend &&
4756            (TemplateParamLists.size() ||
4757             D.getCXXScopeSpec().getScopeRep()->isDependent() ||
4758             CurContext->isDependentContext())) {
4759              // ignore these
4760            } else {
4761              // The user tried to provide an out-of-line definition for a
4762              // function that is a member of a class or namespace, but there
4763              // was no such member function declared (C++ [class.mfct]p2,
4764              // C++ [namespace.memdef]p2). For example:
4765              //
4766              // class X {
4767              //   void f() const;
4768              // };
4769              //
4770              // void X::f() { } // ill-formed
4771              //
4772              // Complain about this problem, and attempt to suggest close
4773              // matches (e.g., those that differ only in cv-qualifiers and
4774              // whether the parameter types are references).
4775              Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
4776              << Name << DC << D.getCXXScopeSpec().getRange();
4777              NewFD->setInvalidDecl();
4778
4779              DiagnoseInvalidRedeclaration(*this, NewFD);
4780            }
4781
4782        // Unqualified local friend declarations are required to resolve
4783        // to something.
4784        } else if (isFriend && cast<CXXRecordDecl>(CurContext)->isLocalClass()) {
4785          Diag(D.getIdentifierLoc(), diag::err_no_matching_local_friend);
4786          NewFD->setInvalidDecl();
4787          DiagnoseInvalidRedeclaration(*this, NewFD);
4788        }
4789
4790    } else if (!IsFunctionDefinition && D.getCXXScopeSpec().isSet() &&
4791               !isFriend && !isFunctionTemplateSpecialization &&
4792               !isExplicitSpecialization) {
4793      // An out-of-line member function declaration must also be a
4794      // definition (C++ [dcl.meaning]p1).
4795      // Note that this is not the case for explicit specializations of
4796      // function templates or member functions of class templates, per
4797      // C++ [temp.expl.spec]p2. We also allow these declarations as an extension
4798      // for compatibility with old SWIG code which likes to generate them.
4799      Diag(NewFD->getLocation(), diag::ext_out_of_line_declaration)
4800        << D.getCXXScopeSpec().getRange();
4801    }
4802  }
4803
4804
4805  // Handle attributes. We need to have merged decls when handling attributes
4806  // (for example to check for conflicts, etc).
4807  // FIXME: This needs to happen before we merge declarations. Then,
4808  // let attribute merging cope with attribute conflicts.
4809  ProcessDeclAttributes(S, NewFD, D,
4810                        /*NonInheritable=*/false, /*Inheritable=*/true);
4811
4812  // attributes declared post-definition are currently ignored
4813  // FIXME: This should happen during attribute merging
4814  if (Redeclaration && Previous.isSingleResult()) {
4815    const FunctionDecl *Def;
4816    FunctionDecl *PrevFD = dyn_cast<FunctionDecl>(Previous.getFoundDecl());
4817    if (PrevFD && PrevFD->isDefined(Def) && D.hasAttributes()) {
4818      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
4819      Diag(Def->getLocation(), diag::note_previous_definition);
4820    }
4821  }
4822
4823  AddKnownFunctionAttributes(NewFD);
4824
4825  if (NewFD->hasAttr<OverloadableAttr>() &&
4826      !NewFD->getType()->getAs<FunctionProtoType>()) {
4827    Diag(NewFD->getLocation(),
4828         diag::err_attribute_overloadable_no_prototype)
4829      << NewFD;
4830
4831    // Turn this into a variadic function with no parameters.
4832    const FunctionType *FT = NewFD->getType()->getAs<FunctionType>();
4833    FunctionProtoType::ExtProtoInfo EPI;
4834    EPI.Variadic = true;
4835    EPI.ExtInfo = FT->getExtInfo();
4836
4837    QualType R = Context.getFunctionType(FT->getResultType(), 0, 0, EPI);
4838    NewFD->setType(R);
4839  }
4840
4841  // If there's a #pragma GCC visibility in scope, and this isn't a class
4842  // member, set the visibility of this function.
4843  if (NewFD->getLinkage() == ExternalLinkage && !DC->isRecord())
4844    AddPushedVisibilityAttribute(NewFD);
4845
4846  // If this is a locally-scoped extern C function, update the
4847  // map of such names.
4848  if (CurContext->isFunctionOrMethod() && NewFD->isExternC()
4849      && !NewFD->isInvalidDecl())
4850    RegisterLocallyScopedExternCDecl(NewFD, Previous, S);
4851
4852  // Set this FunctionDecl's range up to the right paren.
4853  NewFD->setRangeEnd(D.getSourceRange().getEnd());
4854
4855  if (getLangOptions().CPlusPlus) {
4856    if (FunctionTemplate) {
4857      if (NewFD->isInvalidDecl())
4858        FunctionTemplate->setInvalidDecl();
4859      return FunctionTemplate;
4860    }
4861  }
4862
4863  MarkUnusedFileScopedDecl(NewFD);
4864
4865  if (getLangOptions().CUDA)
4866    if (IdentifierInfo *II = NewFD->getIdentifier())
4867      if (!NewFD->isInvalidDecl() &&
4868          NewFD->getDeclContext()->getRedeclContext()->isTranslationUnit()) {
4869        if (II->isStr("cudaConfigureCall")) {
4870          if (!R->getAs<FunctionType>()->getResultType()->isScalarType())
4871            Diag(NewFD->getLocation(), diag::err_config_scalar_return);
4872
4873          Context.setcudaConfigureCallDecl(NewFD);
4874        }
4875      }
4876
4877  return NewFD;
4878}
4879
4880/// \brief Perform semantic checking of a new function declaration.
4881///
4882/// Performs semantic analysis of the new function declaration
4883/// NewFD. This routine performs all semantic checking that does not
4884/// require the actual declarator involved in the declaration, and is
4885/// used both for the declaration of functions as they are parsed
4886/// (called via ActOnDeclarator) and for the declaration of functions
4887/// that have been instantiated via C++ template instantiation (called
4888/// via InstantiateDecl).
4889///
4890/// \param IsExplicitSpecialiation whether this new function declaration is
4891/// an explicit specialization of the previous declaration.
4892///
4893/// This sets NewFD->isInvalidDecl() to true if there was an error.
4894void Sema::CheckFunctionDeclaration(Scope *S, FunctionDecl *NewFD,
4895                                    LookupResult &Previous,
4896                                    bool IsExplicitSpecialization,
4897                                    bool &Redeclaration) {
4898  // If NewFD is already known erroneous, don't do any of this checking.
4899  if (NewFD->isInvalidDecl()) {
4900    // If this is a class member, mark the class invalid immediately.
4901    // This avoids some consistency errors later.
4902    if (isa<CXXMethodDecl>(NewFD))
4903      cast<CXXMethodDecl>(NewFD)->getParent()->setInvalidDecl();
4904
4905    return;
4906  }
4907
4908  if (NewFD->getResultType()->isVariablyModifiedType()) {
4909    // Functions returning a variably modified type violate C99 6.7.5.2p2
4910    // because all functions have linkage.
4911    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
4912    return NewFD->setInvalidDecl();
4913  }
4914
4915  if (NewFD->isMain())
4916    CheckMain(NewFD);
4917
4918  // Check for a previous declaration of this name.
4919  if (Previous.empty() && NewFD->isExternC()) {
4920    // Since we did not find anything by this name and we're declaring
4921    // an extern "C" function, look for a non-visible extern "C"
4922    // declaration with the same name.
4923    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
4924      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
4925    if (Pos != LocallyScopedExternalDecls.end())
4926      Previous.addDecl(Pos->second);
4927  }
4928
4929  // Merge or overload the declaration with an existing declaration of
4930  // the same name, if appropriate.
4931  if (!Previous.empty()) {
4932    // Determine whether NewFD is an overload of PrevDecl or
4933    // a declaration that requires merging. If it's an overload,
4934    // there's no more work to do here; we'll just add the new
4935    // function to the scope.
4936
4937    NamedDecl *OldDecl = 0;
4938    if (!AllowOverloadingOfFunction(Previous, Context)) {
4939      Redeclaration = true;
4940      OldDecl = Previous.getFoundDecl();
4941    } else {
4942      switch (CheckOverload(S, NewFD, Previous, OldDecl,
4943                            /*NewIsUsingDecl*/ false)) {
4944      case Ovl_Match:
4945        Redeclaration = true;
4946        break;
4947
4948      case Ovl_NonFunction:
4949        Redeclaration = true;
4950        break;
4951
4952      case Ovl_Overload:
4953        Redeclaration = false;
4954        break;
4955      }
4956
4957      if (!getLangOptions().CPlusPlus && !NewFD->hasAttr<OverloadableAttr>()) {
4958        // If a function name is overloadable in C, then every function
4959        // with that name must be marked "overloadable".
4960        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
4961          << Redeclaration << NewFD;
4962        NamedDecl *OverloadedDecl = 0;
4963        if (Redeclaration)
4964          OverloadedDecl = OldDecl;
4965        else if (!Previous.empty())
4966          OverloadedDecl = Previous.getRepresentativeDecl();
4967        if (OverloadedDecl)
4968          Diag(OverloadedDecl->getLocation(),
4969               diag::note_attribute_overloadable_prev_overload);
4970        NewFD->addAttr(::new (Context) OverloadableAttr(SourceLocation(),
4971                                                        Context));
4972      }
4973    }
4974
4975    if (Redeclaration) {
4976      // NewFD and OldDecl represent declarations that need to be
4977      // merged.
4978      if (MergeFunctionDecl(NewFD, OldDecl))
4979        return NewFD->setInvalidDecl();
4980
4981      Previous.clear();
4982      Previous.addDecl(OldDecl);
4983
4984      if (FunctionTemplateDecl *OldTemplateDecl
4985                                    = dyn_cast<FunctionTemplateDecl>(OldDecl)) {
4986        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
4987        FunctionTemplateDecl *NewTemplateDecl
4988          = NewFD->getDescribedFunctionTemplate();
4989        assert(NewTemplateDecl && "Template/non-template mismatch");
4990        if (CXXMethodDecl *Method
4991              = dyn_cast<CXXMethodDecl>(NewTemplateDecl->getTemplatedDecl())) {
4992          Method->setAccess(OldTemplateDecl->getAccess());
4993          NewTemplateDecl->setAccess(OldTemplateDecl->getAccess());
4994        }
4995
4996        // If this is an explicit specialization of a member that is a function
4997        // template, mark it as a member specialization.
4998        if (IsExplicitSpecialization &&
4999            NewTemplateDecl->getInstantiatedFromMemberTemplate()) {
5000          NewTemplateDecl->setMemberSpecialization();
5001          assert(OldTemplateDecl->isMemberSpecialization());
5002        }
5003      } else {
5004        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
5005          NewFD->setAccess(OldDecl->getAccess());
5006        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
5007      }
5008    }
5009  }
5010
5011  // Semantic checking for this function declaration (in isolation).
5012  if (getLangOptions().CPlusPlus) {
5013    // C++-specific checks.
5014    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
5015      CheckConstructor(Constructor);
5016    } else if (CXXDestructorDecl *Destructor =
5017                dyn_cast<CXXDestructorDecl>(NewFD)) {
5018      CXXRecordDecl *Record = Destructor->getParent();
5019      QualType ClassType = Context.getTypeDeclType(Record);
5020
5021      // FIXME: Shouldn't we be able to perform this check even when the class
5022      // type is dependent? Both gcc and edg can handle that.
5023      if (!ClassType->isDependentType()) {
5024        DeclarationName Name
5025          = Context.DeclarationNames.getCXXDestructorName(
5026                                        Context.getCanonicalType(ClassType));
5027        if (NewFD->getDeclName() != Name) {
5028          Diag(NewFD->getLocation(), diag::err_destructor_name);
5029          return NewFD->setInvalidDecl();
5030        }
5031      }
5032    } else if (CXXConversionDecl *Conversion
5033               = dyn_cast<CXXConversionDecl>(NewFD)) {
5034      ActOnConversionDeclarator(Conversion);
5035    }
5036
5037    // Find any virtual functions that this function overrides.
5038    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(NewFD)) {
5039      if (!Method->isFunctionTemplateSpecialization() &&
5040          !Method->getDescribedFunctionTemplate()) {
5041        if (AddOverriddenMethods(Method->getParent(), Method)) {
5042          // If the function was marked as "static", we have a problem.
5043          if (NewFD->getStorageClass() == SC_Static) {
5044            Diag(NewFD->getLocation(), diag::err_static_overrides_virtual)
5045              << NewFD->getDeclName();
5046            for (CXXMethodDecl::method_iterator
5047                      Overridden = Method->begin_overridden_methods(),
5048                   OverriddenEnd = Method->end_overridden_methods();
5049                 Overridden != OverriddenEnd;
5050                 ++Overridden) {
5051              Diag((*Overridden)->getLocation(),
5052                   diag::note_overridden_virtual_function);
5053            }
5054          }
5055        }
5056      }
5057    }
5058
5059    // Extra checking for C++ overloaded operators (C++ [over.oper]).
5060    if (NewFD->isOverloadedOperator() &&
5061        CheckOverloadedOperatorDeclaration(NewFD))
5062      return NewFD->setInvalidDecl();
5063
5064    // Extra checking for C++0x literal operators (C++0x [over.literal]).
5065    if (NewFD->getLiteralIdentifier() &&
5066        CheckLiteralOperatorDeclaration(NewFD))
5067      return NewFD->setInvalidDecl();
5068
5069    // In C++, check default arguments now that we have merged decls. Unless
5070    // the lexical context is the class, because in this case this is done
5071    // during delayed parsing anyway.
5072    if (!CurContext->isRecord())
5073      CheckCXXDefaultArguments(NewFD);
5074
5075    // If this function declares a builtin function, check the type of this
5076    // declaration against the expected type for the builtin.
5077    if (unsigned BuiltinID = NewFD->getBuiltinID()) {
5078      ASTContext::GetBuiltinTypeError Error;
5079      QualType T = Context.GetBuiltinType(BuiltinID, Error);
5080      if (!T.isNull() && !Context.hasSameType(T, NewFD->getType())) {
5081        // The type of this function differs from the type of the builtin,
5082        // so forget about the builtin entirely.
5083        Context.BuiltinInfo.ForgetBuiltin(BuiltinID, Context.Idents);
5084      }
5085    }
5086  }
5087}
5088
5089void Sema::CheckMain(FunctionDecl* FD) {
5090  // C++ [basic.start.main]p3:  A program that declares main to be inline
5091  //   or static is ill-formed.
5092  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
5093  //   shall not appear in a declaration of main.
5094  // static main is not an error under C99, but we should warn about it.
5095  bool isInline = FD->isInlineSpecified();
5096  bool isStatic = FD->getStorageClass() == SC_Static;
5097  if (isInline || isStatic) {
5098    unsigned diagID = diag::warn_unusual_main_decl;
5099    if (isInline || getLangOptions().CPlusPlus)
5100      diagID = diag::err_unusual_main_decl;
5101
5102    int which = isStatic + (isInline << 1) - 1;
5103    Diag(FD->getLocation(), diagID) << which;
5104  }
5105
5106  QualType T = FD->getType();
5107  assert(T->isFunctionType() && "function decl is not of function type");
5108  const FunctionType* FT = T->getAs<FunctionType>();
5109
5110  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
5111    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
5112    FD->setInvalidDecl(true);
5113  }
5114
5115  // Treat protoless main() as nullary.
5116  if (isa<FunctionNoProtoType>(FT)) return;
5117
5118  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
5119  unsigned nparams = FTP->getNumArgs();
5120  assert(FD->getNumParams() == nparams);
5121
5122  bool HasExtraParameters = (nparams > 3);
5123
5124  // Darwin passes an undocumented fourth argument of type char**.  If
5125  // other platforms start sprouting these, the logic below will start
5126  // getting shifty.
5127  if (nparams == 4 && Context.Target.getTriple().isOSDarwin())
5128    HasExtraParameters = false;
5129
5130  if (HasExtraParameters) {
5131    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
5132    FD->setInvalidDecl(true);
5133    nparams = 3;
5134  }
5135
5136  // FIXME: a lot of the following diagnostics would be improved
5137  // if we had some location information about types.
5138
5139  QualType CharPP =
5140    Context.getPointerType(Context.getPointerType(Context.CharTy));
5141  QualType Expected[] = { Context.IntTy, CharPP, CharPP, CharPP };
5142
5143  for (unsigned i = 0; i < nparams; ++i) {
5144    QualType AT = FTP->getArgType(i);
5145
5146    bool mismatch = true;
5147
5148    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
5149      mismatch = false;
5150    else if (Expected[i] == CharPP) {
5151      // As an extension, the following forms are okay:
5152      //   char const **
5153      //   char const * const *
5154      //   char * const *
5155
5156      QualifierCollector qs;
5157      const PointerType* PT;
5158      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
5159          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
5160          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
5161        qs.removeConst();
5162        mismatch = !qs.empty();
5163      }
5164    }
5165
5166    if (mismatch) {
5167      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
5168      // TODO: suggest replacing given type with expected type
5169      FD->setInvalidDecl(true);
5170    }
5171  }
5172
5173  if (nparams == 1 && !FD->isInvalidDecl()) {
5174    Diag(FD->getLocation(), diag::warn_main_one_arg);
5175  }
5176
5177  if (!FD->isInvalidDecl() && FD->getDescribedFunctionTemplate()) {
5178    Diag(FD->getLocation(), diag::err_main_template_decl);
5179    FD->setInvalidDecl();
5180  }
5181}
5182
5183bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
5184  // FIXME: Need strict checking.  In C89, we need to check for
5185  // any assignment, increment, decrement, function-calls, or
5186  // commas outside of a sizeof.  In C99, it's the same list,
5187  // except that the aforementioned are allowed in unevaluated
5188  // expressions.  Everything else falls under the
5189  // "may accept other forms of constant expressions" exception.
5190  // (We never end up here for C++, so the constant expression
5191  // rules there don't matter.)
5192  if (Init->isConstantInitializer(Context, false))
5193    return false;
5194  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
5195    << Init->getSourceRange();
5196  return true;
5197}
5198
5199namespace {
5200  // Visits an initialization expression to see if OrigDecl is evaluated in
5201  // its own initialization and throws a warning if it does.
5202  class SelfReferenceChecker
5203      : public EvaluatedExprVisitor<SelfReferenceChecker> {
5204    Sema &S;
5205    Decl *OrigDecl;
5206
5207  public:
5208    typedef EvaluatedExprVisitor<SelfReferenceChecker> Inherited;
5209
5210    SelfReferenceChecker(Sema &S, Decl *OrigDecl) : Inherited(S.Context),
5211                                                    S(S), OrigDecl(OrigDecl) { }
5212
5213    void VisitExpr(Expr *E) {
5214      if (isa<ObjCMessageExpr>(*E)) return;
5215      Inherited::VisitExpr(E);
5216    }
5217
5218    void VisitImplicitCastExpr(ImplicitCastExpr *E) {
5219      CheckForSelfReference(E);
5220      Inherited::VisitImplicitCastExpr(E);
5221    }
5222
5223    void CheckForSelfReference(ImplicitCastExpr *E) {
5224      if (E->getCastKind() != CK_LValueToRValue) return;
5225      Expr* SubExpr = E->getSubExpr()->IgnoreParenImpCasts();
5226      DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(SubExpr);
5227      if (!DRE) return;
5228      Decl* ReferenceDecl = DRE->getDecl();
5229      if (OrigDecl != ReferenceDecl) return;
5230      LookupResult Result(S, DRE->getNameInfo(), Sema::LookupOrdinaryName,
5231                          Sema::NotForRedeclaration);
5232      S.DiagRuntimeBehavior(SubExpr->getLocStart(), SubExpr,
5233                            S.PDiag(diag::warn_uninit_self_reference_in_init)
5234                              << Result.getLookupName()
5235                              << OrigDecl->getLocation()
5236                              << SubExpr->getSourceRange());
5237    }
5238  };
5239}
5240
5241/// AddInitializerToDecl - Adds the initializer Init to the
5242/// declaration dcl. If DirectInit is true, this is C++ direct
5243/// initialization rather than copy initialization.
5244void Sema::AddInitializerToDecl(Decl *RealDecl, Expr *Init,
5245                                bool DirectInit, bool TypeMayContainAuto) {
5246  // If there is no declaration, there was an error parsing it.  Just ignore
5247  // the initializer.
5248  if (RealDecl == 0 || RealDecl->isInvalidDecl())
5249    return;
5250
5251  // Check for self-references within variable initializers.
5252  if (VarDecl *vd = dyn_cast<VarDecl>(RealDecl)) {
5253    // Variables declared within a function/method body are handled
5254    // by a dataflow analysis.
5255    if (!vd->hasLocalStorage() && !vd->isStaticLocal())
5256      SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5257  }
5258  else {
5259    SelfReferenceChecker(*this, RealDecl).VisitExpr(Init);
5260  }
5261
5262  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
5263    // With declarators parsed the way they are, the parser cannot
5264    // distinguish between a normal initializer and a pure-specifier.
5265    // Thus this grotesque test.
5266    IntegerLiteral *IL;
5267    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
5268        Context.getCanonicalType(IL->getType()) == Context.IntTy)
5269      CheckPureMethod(Method, Init->getSourceRange());
5270    else {
5271      Diag(Method->getLocation(), diag::err_member_function_initialization)
5272        << Method->getDeclName() << Init->getSourceRange();
5273      Method->setInvalidDecl();
5274    }
5275    return;
5276  }
5277
5278  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
5279  if (!VDecl) {
5280    assert(!isa<FieldDecl>(RealDecl) && "field init shouldn't get here");
5281    Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
5282    RealDecl->setInvalidDecl();
5283    return;
5284  }
5285
5286  // C++0x [decl.spec.auto]p6. Deduce the type which 'auto' stands in for.
5287  if (TypeMayContainAuto && VDecl->getType()->getContainedAutoType()) {
5288    TypeSourceInfo *DeducedType = 0;
5289    if (!DeduceAutoType(VDecl->getTypeSourceInfo(), Init, DeducedType))
5290      Diag(VDecl->getLocation(), diag::err_auto_var_deduction_failure)
5291        << VDecl->getDeclName() << VDecl->getType() << Init->getType()
5292        << Init->getSourceRange();
5293    if (!DeducedType) {
5294      RealDecl->setInvalidDecl();
5295      return;
5296    }
5297    VDecl->setTypeSourceInfo(DeducedType);
5298    VDecl->setType(DeducedType->getType());
5299
5300    // In ARC, infer lifetime.
5301    if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(VDecl))
5302      VDecl->setInvalidDecl();
5303
5304    // If this is a redeclaration, check that the type we just deduced matches
5305    // the previously declared type.
5306    if (VarDecl *Old = VDecl->getPreviousDeclaration())
5307      MergeVarDeclTypes(VDecl, Old);
5308  }
5309
5310
5311  // A definition must end up with a complete type, which means it must be
5312  // complete with the restriction that an array type might be completed by the
5313  // initializer; note that later code assumes this restriction.
5314  QualType BaseDeclType = VDecl->getType();
5315  if (const ArrayType *Array = Context.getAsIncompleteArrayType(BaseDeclType))
5316    BaseDeclType = Array->getElementType();
5317  if (RequireCompleteType(VDecl->getLocation(), BaseDeclType,
5318                          diag::err_typecheck_decl_incomplete_type)) {
5319    RealDecl->setInvalidDecl();
5320    return;
5321  }
5322
5323  // The variable can not have an abstract class type.
5324  if (RequireNonAbstractType(VDecl->getLocation(), VDecl->getType(),
5325                             diag::err_abstract_type_in_decl,
5326                             AbstractVariableType))
5327    VDecl->setInvalidDecl();
5328
5329  const VarDecl *Def;
5330  if ((Def = VDecl->getDefinition()) && Def != VDecl) {
5331    Diag(VDecl->getLocation(), diag::err_redefinition)
5332      << VDecl->getDeclName();
5333    Diag(Def->getLocation(), diag::note_previous_definition);
5334    VDecl->setInvalidDecl();
5335    return;
5336  }
5337
5338  const VarDecl* PrevInit = 0;
5339  if (getLangOptions().CPlusPlus) {
5340    // C++ [class.static.data]p4
5341    //   If a static data member is of const integral or const
5342    //   enumeration type, its declaration in the class definition can
5343    //   specify a constant-initializer which shall be an integral
5344    //   constant expression (5.19). In that case, the member can appear
5345    //   in integral constant expressions. The member shall still be
5346    //   defined in a namespace scope if it is used in the program and the
5347    //   namespace scope definition shall not contain an initializer.
5348    //
5349    // We already performed a redefinition check above, but for static
5350    // data members we also need to check whether there was an in-class
5351    // declaration with an initializer.
5352    if (VDecl->isStaticDataMember() && VDecl->getAnyInitializer(PrevInit)) {
5353      Diag(VDecl->getLocation(), diag::err_redefinition) << VDecl->getDeclName();
5354      Diag(PrevInit->getLocation(), diag::note_previous_definition);
5355      return;
5356    }
5357
5358    if (VDecl->hasLocalStorage())
5359      getCurFunction()->setHasBranchProtectedScope();
5360
5361    if (DiagnoseUnexpandedParameterPack(Init, UPPC_Initializer)) {
5362      VDecl->setInvalidDecl();
5363      return;
5364    }
5365  }
5366
5367  // Capture the variable that is being initialized and the style of
5368  // initialization.
5369  InitializedEntity Entity = InitializedEntity::InitializeVariable(VDecl);
5370
5371  // FIXME: Poor source location information.
5372  InitializationKind Kind
5373    = DirectInit? InitializationKind::CreateDirect(VDecl->getLocation(),
5374                                                   Init->getLocStart(),
5375                                                   Init->getLocEnd())
5376                : InitializationKind::CreateCopy(VDecl->getLocation(),
5377                                                 Init->getLocStart());
5378
5379  // Get the decls type and save a reference for later, since
5380  // CheckInitializerTypes may change it.
5381  QualType DclT = VDecl->getType(), SavT = DclT;
5382  if (VDecl->isLocalVarDecl()) {
5383    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
5384      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
5385      VDecl->setInvalidDecl();
5386    } else if (!VDecl->isInvalidDecl()) {
5387      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5388      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5389                                                MultiExprArg(*this, &Init, 1),
5390                                                &DclT);
5391      if (Result.isInvalid()) {
5392        VDecl->setInvalidDecl();
5393        return;
5394      }
5395
5396      Init = Result.takeAs<Expr>();
5397
5398      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5399      // Don't check invalid declarations to avoid emitting useless diagnostics.
5400      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5401        if (VDecl->getStorageClass() == SC_Static) // C99 6.7.8p4.
5402          CheckForConstantInitializer(Init, DclT);
5403      }
5404    }
5405  } else if (VDecl->isStaticDataMember() &&
5406             VDecl->getLexicalDeclContext()->isRecord()) {
5407    // This is an in-class initialization for a static data member, e.g.,
5408    //
5409    // struct S {
5410    //   static const int value = 17;
5411    // };
5412
5413    // Try to perform the initialization regardless.
5414    if (!VDecl->isInvalidDecl()) {
5415      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5416      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5417                                          MultiExprArg(*this, &Init, 1),
5418                                          &DclT);
5419      if (Result.isInvalid()) {
5420        VDecl->setInvalidDecl();
5421        return;
5422      }
5423
5424      Init = Result.takeAs<Expr>();
5425    }
5426
5427    // C++ [class.mem]p4:
5428    //   A member-declarator can contain a constant-initializer only
5429    //   if it declares a static member (9.4) of const integral or
5430    //   const enumeration type, see 9.4.2.
5431    QualType T = VDecl->getType();
5432
5433    // Do nothing on dependent types.
5434    if (T->isDependentType()) {
5435
5436    // Require constness.
5437    } else if (!T.isConstQualified()) {
5438      Diag(VDecl->getLocation(), diag::err_in_class_initializer_non_const)
5439        << Init->getSourceRange();
5440      VDecl->setInvalidDecl();
5441
5442    // We allow integer constant expressions in all cases.
5443    } else if (T->isIntegralOrEnumerationType()) {
5444      // Check whether the expression is a constant expression.
5445      SourceLocation Loc;
5446      if (Init->isValueDependent())
5447        ; // Nothing to check.
5448      else if (Init->isIntegerConstantExpr(Context, &Loc))
5449        ; // Ok, it's an ICE!
5450      else if (Init->isEvaluatable(Context)) {
5451        // If we can constant fold the initializer through heroics, accept it,
5452        // but report this as a use of an extension for -pedantic.
5453        Diag(Loc, diag::ext_in_class_initializer_non_constant)
5454          << Init->getSourceRange();
5455      } else {
5456        // Otherwise, this is some crazy unknown case.  Report the issue at the
5457        // location provided by the isIntegerConstantExpr failed check.
5458        Diag(Loc, diag::err_in_class_initializer_non_constant)
5459          << Init->getSourceRange();
5460        VDecl->setInvalidDecl();
5461      }
5462
5463    // We allow floating-point constants as an extension in C++03, and
5464    // C++0x has far more complicated rules that we don't really
5465    // implement fully.
5466    } else {
5467      bool Allowed = false;
5468      if (getLangOptions().CPlusPlus0x) {
5469        Allowed = T->isLiteralType();
5470      } else if (T->isFloatingType()) { // also permits complex, which is ok
5471        Diag(VDecl->getLocation(), diag::ext_in_class_initializer_float_type)
5472          << T << Init->getSourceRange();
5473        Allowed = true;
5474      }
5475
5476      if (!Allowed) {
5477        Diag(VDecl->getLocation(), diag::err_in_class_initializer_bad_type)
5478          << T << Init->getSourceRange();
5479        VDecl->setInvalidDecl();
5480
5481      // TODO: there are probably expressions that pass here that shouldn't.
5482      } else if (!Init->isValueDependent() &&
5483                 !Init->isConstantInitializer(Context, false)) {
5484        Diag(Init->getExprLoc(), diag::err_in_class_initializer_non_constant)
5485          << Init->getSourceRange();
5486        VDecl->setInvalidDecl();
5487      }
5488    }
5489  } else if (VDecl->isFileVarDecl()) {
5490    if (VDecl->getStorageClassAsWritten() == SC_Extern &&
5491        (!getLangOptions().CPlusPlus ||
5492         !Context.getBaseElementType(VDecl->getType()).isConstQualified()))
5493      Diag(VDecl->getLocation(), diag::warn_extern_init);
5494    if (!VDecl->isInvalidDecl()) {
5495      InitializationSequence InitSeq(*this, Entity, Kind, &Init, 1);
5496      ExprResult Result = InitSeq.Perform(*this, Entity, Kind,
5497                                                MultiExprArg(*this, &Init, 1),
5498                                                &DclT);
5499      if (Result.isInvalid()) {
5500        VDecl->setInvalidDecl();
5501        return;
5502      }
5503
5504      Init = Result.takeAs<Expr>();
5505    }
5506
5507    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
5508    // Don't check invalid declarations to avoid emitting useless diagnostics.
5509    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
5510      // C99 6.7.8p4. All file scoped initializers need to be constant.
5511      CheckForConstantInitializer(Init, DclT);
5512    }
5513  }
5514  // If the type changed, it means we had an incomplete type that was
5515  // completed by the initializer. For example:
5516  //   int ary[] = { 1, 3, 5 };
5517  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
5518  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
5519    VDecl->setType(DclT);
5520    Init->setType(DclT);
5521  }
5522
5523
5524  // If this variable is a local declaration with record type, make sure it
5525  // doesn't have a flexible member initialization.  We only support this as a
5526  // global/static definition.
5527  if (VDecl->hasLocalStorage())
5528    if (const RecordType *RT = VDecl->getType()->getAs<RecordType>())
5529      if (RT->getDecl()->hasFlexibleArrayMember()) {
5530        // Check whether the initializer tries to initialize the flexible
5531        // array member itself to anything other than an empty initializer list.
5532        if (InitListExpr *ILE = dyn_cast<InitListExpr>(Init)) {
5533          unsigned Index = std::distance(RT->getDecl()->field_begin(),
5534                                         RT->getDecl()->field_end()) - 1;
5535          if (Index < ILE->getNumInits() &&
5536              !(isa<InitListExpr>(ILE->getInit(Index)) &&
5537                cast<InitListExpr>(ILE->getInit(Index))->getNumInits() == 0)) {
5538            Diag(VDecl->getLocation(), diag::err_nonstatic_flexible_variable);
5539            VDecl->setInvalidDecl();
5540          }
5541        }
5542      }
5543
5544  // Check any implicit conversions within the expression.
5545  CheckImplicitConversions(Init, VDecl->getLocation());
5546
5547  if (!VDecl->isInvalidDecl())
5548    checkUnsafeAssigns(VDecl->getLocation(), VDecl->getType(), Init);
5549
5550  Init = MaybeCreateExprWithCleanups(Init);
5551  // Attach the initializer to the decl.
5552  VDecl->setInit(Init);
5553
5554  CheckCompleteVariableDeclaration(VDecl);
5555}
5556
5557/// ActOnInitializerError - Given that there was an error parsing an
5558/// initializer for the given declaration, try to return to some form
5559/// of sanity.
5560void Sema::ActOnInitializerError(Decl *D) {
5561  // Our main concern here is re-establishing invariants like "a
5562  // variable's type is either dependent or complete".
5563  if (!D || D->isInvalidDecl()) return;
5564
5565  VarDecl *VD = dyn_cast<VarDecl>(D);
5566  if (!VD) return;
5567
5568  // Auto types are meaningless if we can't make sense of the initializer.
5569  if (ParsingInitForAutoVars.count(D)) {
5570    D->setInvalidDecl();
5571    return;
5572  }
5573
5574  QualType Ty = VD->getType();
5575  if (Ty->isDependentType()) return;
5576
5577  // Require a complete type.
5578  if (RequireCompleteType(VD->getLocation(),
5579                          Context.getBaseElementType(Ty),
5580                          diag::err_typecheck_decl_incomplete_type)) {
5581    VD->setInvalidDecl();
5582    return;
5583  }
5584
5585  // Require an abstract type.
5586  if (RequireNonAbstractType(VD->getLocation(), Ty,
5587                             diag::err_abstract_type_in_decl,
5588                             AbstractVariableType)) {
5589    VD->setInvalidDecl();
5590    return;
5591  }
5592
5593  // Don't bother complaining about constructors or destructors,
5594  // though.
5595}
5596
5597void Sema::ActOnUninitializedDecl(Decl *RealDecl,
5598                                  bool TypeMayContainAuto) {
5599  // If there is no declaration, there was an error parsing it. Just ignore it.
5600  if (RealDecl == 0)
5601    return;
5602
5603  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
5604    QualType Type = Var->getType();
5605
5606    // C++0x [dcl.spec.auto]p3
5607    if (TypeMayContainAuto && Type->getContainedAutoType()) {
5608      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
5609        << Var->getDeclName() << Type;
5610      Var->setInvalidDecl();
5611      return;
5612    }
5613
5614    switch (Var->isThisDeclarationADefinition()) {
5615    case VarDecl::Definition:
5616      if (!Var->isStaticDataMember() || !Var->getAnyInitializer())
5617        break;
5618
5619      // We have an out-of-line definition of a static data member
5620      // that has an in-class initializer, so we type-check this like
5621      // a declaration.
5622      //
5623      // Fall through
5624
5625    case VarDecl::DeclarationOnly:
5626      // It's only a declaration.
5627
5628      // Block scope. C99 6.7p7: If an identifier for an object is
5629      // declared with no linkage (C99 6.2.2p6), the type for the
5630      // object shall be complete.
5631      if (!Type->isDependentType() && Var->isLocalVarDecl() &&
5632          !Var->getLinkage() && !Var->isInvalidDecl() &&
5633          RequireCompleteType(Var->getLocation(), Type,
5634                              diag::err_typecheck_decl_incomplete_type))
5635        Var->setInvalidDecl();
5636
5637      // Make sure that the type is not abstract.
5638      if (!Type->isDependentType() && !Var->isInvalidDecl() &&
5639          RequireNonAbstractType(Var->getLocation(), Type,
5640                                 diag::err_abstract_type_in_decl,
5641                                 AbstractVariableType))
5642        Var->setInvalidDecl();
5643      return;
5644
5645    case VarDecl::TentativeDefinition:
5646      // File scope. C99 6.9.2p2: A declaration of an identifier for an
5647      // object that has file scope without an initializer, and without a
5648      // storage-class specifier or with the storage-class specifier "static",
5649      // constitutes a tentative definition. Note: A tentative definition with
5650      // external linkage is valid (C99 6.2.2p5).
5651      if (!Var->isInvalidDecl()) {
5652        if (const IncompleteArrayType *ArrayT
5653                                    = Context.getAsIncompleteArrayType(Type)) {
5654          if (RequireCompleteType(Var->getLocation(),
5655                                  ArrayT->getElementType(),
5656                                  diag::err_illegal_decl_array_incomplete_type))
5657            Var->setInvalidDecl();
5658        } else if (Var->getStorageClass() == SC_Static) {
5659          // C99 6.9.2p3: If the declaration of an identifier for an object is
5660          // a tentative definition and has internal linkage (C99 6.2.2p3), the
5661          // declared type shall not be an incomplete type.
5662          // NOTE: code such as the following
5663          //     static struct s;
5664          //     struct s { int a; };
5665          // is accepted by gcc. Hence here we issue a warning instead of
5666          // an error and we do not invalidate the static declaration.
5667          // NOTE: to avoid multiple warnings, only check the first declaration.
5668          if (Var->getPreviousDeclaration() == 0)
5669            RequireCompleteType(Var->getLocation(), Type,
5670                                diag::ext_typecheck_decl_incomplete_type);
5671        }
5672      }
5673
5674      // Record the tentative definition; we're done.
5675      if (!Var->isInvalidDecl())
5676        TentativeDefinitions.push_back(Var);
5677      return;
5678    }
5679
5680    // Provide a specific diagnostic for uninitialized variable
5681    // definitions with incomplete array type.
5682    if (Type->isIncompleteArrayType()) {
5683      Diag(Var->getLocation(),
5684           diag::err_typecheck_incomplete_array_needs_initializer);
5685      Var->setInvalidDecl();
5686      return;
5687    }
5688
5689    // Provide a specific diagnostic for uninitialized variable
5690    // definitions with reference type.
5691    if (Type->isReferenceType()) {
5692      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
5693        << Var->getDeclName()
5694        << SourceRange(Var->getLocation(), Var->getLocation());
5695      Var->setInvalidDecl();
5696      return;
5697    }
5698
5699    // Do not attempt to type-check the default initializer for a
5700    // variable with dependent type.
5701    if (Type->isDependentType())
5702      return;
5703
5704    if (Var->isInvalidDecl())
5705      return;
5706
5707    if (RequireCompleteType(Var->getLocation(),
5708                            Context.getBaseElementType(Type),
5709                            diag::err_typecheck_decl_incomplete_type)) {
5710      Var->setInvalidDecl();
5711      return;
5712    }
5713
5714    // The variable can not have an abstract class type.
5715    if (RequireNonAbstractType(Var->getLocation(), Type,
5716                               diag::err_abstract_type_in_decl,
5717                               AbstractVariableType)) {
5718      Var->setInvalidDecl();
5719      return;
5720    }
5721
5722    // Check for jumps past the implicit initializer.  C++0x
5723    // clarifies that this applies to a "variable with automatic
5724    // storage duration", not a "local variable".
5725    // C++0x [stmt.dcl]p3
5726    //   A program that jumps from a point where a variable with automatic
5727    //   storage duration is not in scope to a point where it is in scope is
5728    //   ill-formed unless the variable has scalar type, class type with a
5729    //   trivial default constructor and a trivial destructor, a cv-qualified
5730    //   version of one of these types, or an array of one of the preceding
5731    //   types and is declared without an initializer.
5732    if (getLangOptions().CPlusPlus && Var->hasLocalStorage()) {
5733      if (const RecordType *Record
5734            = Context.getBaseElementType(Type)->getAs<RecordType>()) {
5735        CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record->getDecl());
5736        if ((!getLangOptions().CPlusPlus0x && !CXXRecord->isPOD()) ||
5737            (getLangOptions().CPlusPlus0x &&
5738             (!CXXRecord->hasTrivialDefaultConstructor() ||
5739              !CXXRecord->hasTrivialDestructor())))
5740          getCurFunction()->setHasBranchProtectedScope();
5741      }
5742    }
5743
5744    // C++03 [dcl.init]p9:
5745    //   If no initializer is specified for an object, and the
5746    //   object is of (possibly cv-qualified) non-POD class type (or
5747    //   array thereof), the object shall be default-initialized; if
5748    //   the object is of const-qualified type, the underlying class
5749    //   type shall have a user-declared default
5750    //   constructor. Otherwise, if no initializer is specified for
5751    //   a non- static object, the object and its subobjects, if
5752    //   any, have an indeterminate initial value); if the object
5753    //   or any of its subobjects are of const-qualified type, the
5754    //   program is ill-formed.
5755    // C++0x [dcl.init]p11:
5756    //   If no initializer is specified for an object, the object is
5757    //   default-initialized; [...].
5758    InitializedEntity Entity = InitializedEntity::InitializeVariable(Var);
5759    InitializationKind Kind
5760      = InitializationKind::CreateDefault(Var->getLocation());
5761
5762    InitializationSequence InitSeq(*this, Entity, Kind, 0, 0);
5763    ExprResult Init = InitSeq.Perform(*this, Entity, Kind,
5764                                      MultiExprArg(*this, 0, 0));
5765    if (Init.isInvalid())
5766      Var->setInvalidDecl();
5767    else if (Init.get())
5768      Var->setInit(MaybeCreateExprWithCleanups(Init.get()));
5769
5770    CheckCompleteVariableDeclaration(Var);
5771  }
5772}
5773
5774void Sema::ActOnCXXForRangeDecl(Decl *D) {
5775  VarDecl *VD = dyn_cast<VarDecl>(D);
5776  if (!VD) {
5777    Diag(D->getLocation(), diag::err_for_range_decl_must_be_var);
5778    D->setInvalidDecl();
5779    return;
5780  }
5781
5782  VD->setCXXForRangeDecl(true);
5783
5784  // for-range-declaration cannot be given a storage class specifier.
5785  int Error = -1;
5786  switch (VD->getStorageClassAsWritten()) {
5787  case SC_None:
5788    break;
5789  case SC_Extern:
5790    Error = 0;
5791    break;
5792  case SC_Static:
5793    Error = 1;
5794    break;
5795  case SC_PrivateExtern:
5796    Error = 2;
5797    break;
5798  case SC_Auto:
5799    Error = 3;
5800    break;
5801  case SC_Register:
5802    Error = 4;
5803    break;
5804  }
5805  // FIXME: constexpr isn't allowed here.
5806  //if (DS.isConstexprSpecified())
5807  //  Error = 5;
5808  if (Error != -1) {
5809    Diag(VD->getOuterLocStart(), diag::err_for_range_storage_class)
5810      << VD->getDeclName() << Error;
5811    D->setInvalidDecl();
5812  }
5813}
5814
5815void Sema::CheckCompleteVariableDeclaration(VarDecl *var) {
5816  if (var->isInvalidDecl()) return;
5817
5818  // In ARC, don't allow jumps past the implicit initialization of a
5819  // local retaining variable.
5820  if (getLangOptions().ObjCAutoRefCount &&
5821      var->hasLocalStorage()) {
5822    switch (var->getType().getObjCLifetime()) {
5823    case Qualifiers::OCL_None:
5824    case Qualifiers::OCL_ExplicitNone:
5825    case Qualifiers::OCL_Autoreleasing:
5826      break;
5827
5828    case Qualifiers::OCL_Weak:
5829    case Qualifiers::OCL_Strong:
5830      getCurFunction()->setHasBranchProtectedScope();
5831      break;
5832    }
5833  }
5834
5835  // All the following checks are C++ only.
5836  if (!getLangOptions().CPlusPlus) return;
5837
5838  QualType baseType = Context.getBaseElementType(var->getType());
5839  if (baseType->isDependentType()) return;
5840
5841  // __block variables might require us to capture a copy-initializer.
5842  if (var->hasAttr<BlocksAttr>()) {
5843    // It's currently invalid to ever have a __block variable with an
5844    // array type; should we diagnose that here?
5845
5846    // Regardless, we don't want to ignore array nesting when
5847    // constructing this copy.
5848    QualType type = var->getType();
5849
5850    if (type->isStructureOrClassType()) {
5851      SourceLocation poi = var->getLocation();
5852      Expr *varRef = new (Context) DeclRefExpr(var, type, VK_LValue, poi);
5853      ExprResult result =
5854        PerformCopyInitialization(
5855                        InitializedEntity::InitializeBlock(poi, type, false),
5856                                  poi, Owned(varRef));
5857      if (!result.isInvalid()) {
5858        result = MaybeCreateExprWithCleanups(result);
5859        Expr *init = result.takeAs<Expr>();
5860        Context.setBlockVarCopyInits(var, init);
5861      }
5862    }
5863  }
5864
5865  // Check for global constructors.
5866  if (!var->getDeclContext()->isDependentContext() &&
5867      var->hasGlobalStorage() &&
5868      !var->isStaticLocal() &&
5869      var->getInit() &&
5870      !var->getInit()->isConstantInitializer(Context,
5871                                             baseType->isReferenceType()))
5872    Diag(var->getLocation(), diag::warn_global_constructor)
5873      << var->getInit()->getSourceRange();
5874
5875  // Require the destructor.
5876  if (const RecordType *recordType = baseType->getAs<RecordType>())
5877    FinalizeVarWithDestructor(var, recordType);
5878}
5879
5880/// FinalizeDeclaration - called by ParseDeclarationAfterDeclarator to perform
5881/// any semantic actions necessary after any initializer has been attached.
5882void
5883Sema::FinalizeDeclaration(Decl *ThisDecl) {
5884  // Note that we are no longer parsing the initializer for this declaration.
5885  ParsingInitForAutoVars.erase(ThisDecl);
5886}
5887
5888Sema::DeclGroupPtrTy
5889Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
5890                              Decl **Group, unsigned NumDecls) {
5891  llvm::SmallVector<Decl*, 8> Decls;
5892
5893  if (DS.isTypeSpecOwned())
5894    Decls.push_back(DS.getRepAsDecl());
5895
5896  for (unsigned i = 0; i != NumDecls; ++i)
5897    if (Decl *D = Group[i])
5898      Decls.push_back(D);
5899
5900  return BuildDeclaratorGroup(Decls.data(), Decls.size(),
5901                              DS.getTypeSpecType() == DeclSpec::TST_auto);
5902}
5903
5904/// BuildDeclaratorGroup - convert a list of declarations into a declaration
5905/// group, performing any necessary semantic checking.
5906Sema::DeclGroupPtrTy
5907Sema::BuildDeclaratorGroup(Decl **Group, unsigned NumDecls,
5908                           bool TypeMayContainAuto) {
5909  // C++0x [dcl.spec.auto]p7:
5910  //   If the type deduced for the template parameter U is not the same in each
5911  //   deduction, the program is ill-formed.
5912  // FIXME: When initializer-list support is added, a distinction is needed
5913  // between the deduced type U and the deduced type which 'auto' stands for.
5914  //   auto a = 0, b = { 1, 2, 3 };
5915  // is legal because the deduced type U is 'int' in both cases.
5916  if (TypeMayContainAuto && NumDecls > 1) {
5917    QualType Deduced;
5918    CanQualType DeducedCanon;
5919    VarDecl *DeducedDecl = 0;
5920    for (unsigned i = 0; i != NumDecls; ++i) {
5921      if (VarDecl *D = dyn_cast<VarDecl>(Group[i])) {
5922        AutoType *AT = D->getType()->getContainedAutoType();
5923        // Don't reissue diagnostics when instantiating a template.
5924        if (AT && D->isInvalidDecl())
5925          break;
5926        if (AT && AT->isDeduced()) {
5927          QualType U = AT->getDeducedType();
5928          CanQualType UCanon = Context.getCanonicalType(U);
5929          if (Deduced.isNull()) {
5930            Deduced = U;
5931            DeducedCanon = UCanon;
5932            DeducedDecl = D;
5933          } else if (DeducedCanon != UCanon) {
5934            Diag(D->getTypeSourceInfo()->getTypeLoc().getBeginLoc(),
5935                 diag::err_auto_different_deductions)
5936              << Deduced << DeducedDecl->getDeclName()
5937              << U << D->getDeclName()
5938              << DeducedDecl->getInit()->getSourceRange()
5939              << D->getInit()->getSourceRange();
5940            D->setInvalidDecl();
5941            break;
5942          }
5943        }
5944      }
5945    }
5946  }
5947
5948  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context, Group, NumDecls));
5949}
5950
5951
5952/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
5953/// to introduce parameters into function prototype scope.
5954Decl *Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
5955  const DeclSpec &DS = D.getDeclSpec();
5956
5957  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
5958  VarDecl::StorageClass StorageClass = SC_None;
5959  VarDecl::StorageClass StorageClassAsWritten = SC_None;
5960  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
5961    StorageClass = SC_Register;
5962    StorageClassAsWritten = SC_Register;
5963  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
5964    Diag(DS.getStorageClassSpecLoc(),
5965         diag::err_invalid_storage_class_in_func_decl);
5966    D.getMutableDeclSpec().ClearStorageClassSpecs();
5967  }
5968
5969  if (D.getDeclSpec().isThreadSpecified())
5970    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
5971
5972  DiagnoseFunctionSpecifiers(D);
5973
5974  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
5975  QualType parmDeclType = TInfo->getType();
5976
5977  if (getLangOptions().CPlusPlus) {
5978    // Check that there are no default arguments inside the type of this
5979    // parameter.
5980    CheckExtraCXXDefaultArguments(D);
5981
5982    // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
5983    if (D.getCXXScopeSpec().isSet()) {
5984      Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
5985        << D.getCXXScopeSpec().getRange();
5986      D.getCXXScopeSpec().clear();
5987    }
5988  }
5989
5990  // Ensure we have a valid name
5991  IdentifierInfo *II = 0;
5992  if (D.hasName()) {
5993    II = D.getIdentifier();
5994    if (!II) {
5995      Diag(D.getIdentifierLoc(), diag::err_bad_parameter_name)
5996        << GetNameForDeclarator(D).getName().getAsString();
5997      D.setInvalidType(true);
5998    }
5999  }
6000
6001  // Check for redeclaration of parameters, e.g. int foo(int x, int x);
6002  if (II) {
6003    LookupResult R(*this, II, D.getIdentifierLoc(), LookupOrdinaryName,
6004                   ForRedeclaration);
6005    LookupName(R, S);
6006    if (R.isSingleResult()) {
6007      NamedDecl *PrevDecl = R.getFoundDecl();
6008      if (PrevDecl->isTemplateParameter()) {
6009        // Maybe we will complain about the shadowed template parameter.
6010        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
6011        // Just pretend that we didn't see the previous declaration.
6012        PrevDecl = 0;
6013      } else if (S->isDeclScope(PrevDecl)) {
6014        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
6015        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
6016
6017        // Recover by removing the name
6018        II = 0;
6019        D.SetIdentifier(0, D.getIdentifierLoc());
6020        D.setInvalidType(true);
6021      }
6022    }
6023  }
6024
6025  // Temporarily put parameter variables in the translation unit, not
6026  // the enclosing context.  This prevents them from accidentally
6027  // looking like class members in C++.
6028  ParmVarDecl *New = CheckParameter(Context.getTranslationUnitDecl(),
6029                                    D.getSourceRange().getBegin(),
6030                                    D.getIdentifierLoc(), II,
6031                                    parmDeclType, TInfo,
6032                                    StorageClass, StorageClassAsWritten);
6033
6034  if (D.isInvalidType())
6035    New->setInvalidDecl();
6036
6037  assert(S->isFunctionPrototypeScope());
6038  assert(S->getFunctionPrototypeDepth() >= 1);
6039  New->setScopeInfo(S->getFunctionPrototypeDepth() - 1,
6040                    S->getNextFunctionPrototypeIndex());
6041
6042  // Add the parameter declaration into this scope.
6043  S->AddDecl(New);
6044  if (II)
6045    IdResolver.AddDecl(New);
6046
6047  ProcessDeclAttributes(S, New, D);
6048
6049  if (New->hasAttr<BlocksAttr>()) {
6050    Diag(New->getLocation(), diag::err_block_on_nonlocal);
6051  }
6052  return New;
6053}
6054
6055/// \brief Synthesizes a variable for a parameter arising from a
6056/// typedef.
6057ParmVarDecl *Sema::BuildParmVarDeclForTypedef(DeclContext *DC,
6058                                              SourceLocation Loc,
6059                                              QualType T) {
6060  /* FIXME: setting StartLoc == Loc.
6061     Would it be worth to modify callers so as to provide proper source
6062     location for the unnamed parameters, embedding the parameter's type? */
6063  ParmVarDecl *Param = ParmVarDecl::Create(Context, DC, Loc, Loc, 0,
6064                                T, Context.getTrivialTypeSourceInfo(T, Loc),
6065                                           SC_None, SC_None, 0);
6066  Param->setImplicit();
6067  return Param;
6068}
6069
6070void Sema::DiagnoseUnusedParameters(ParmVarDecl * const *Param,
6071                                    ParmVarDecl * const *ParamEnd) {
6072  // Don't diagnose unused-parameter errors in template instantiations; we
6073  // will already have done so in the template itself.
6074  if (!ActiveTemplateInstantiations.empty())
6075    return;
6076
6077  for (; Param != ParamEnd; ++Param) {
6078    if (!(*Param)->isUsed() && (*Param)->getDeclName() &&
6079        !(*Param)->hasAttr<UnusedAttr>()) {
6080      Diag((*Param)->getLocation(), diag::warn_unused_parameter)
6081        << (*Param)->getDeclName();
6082    }
6083  }
6084}
6085
6086void Sema::DiagnoseSizeOfParametersAndReturnValue(ParmVarDecl * const *Param,
6087                                                  ParmVarDecl * const *ParamEnd,
6088                                                  QualType ReturnTy,
6089                                                  NamedDecl *D) {
6090  if (LangOpts.NumLargeByValueCopy == 0) // No check.
6091    return;
6092
6093  // Warn if the return value is pass-by-value and larger than the specified
6094  // threshold.
6095  if (ReturnTy.isPODType(Context)) {
6096    unsigned Size = Context.getTypeSizeInChars(ReturnTy).getQuantity();
6097    if (Size > LangOpts.NumLargeByValueCopy)
6098      Diag(D->getLocation(), diag::warn_return_value_size)
6099          << D->getDeclName() << Size;
6100  }
6101
6102  // Warn if any parameter is pass-by-value and larger than the specified
6103  // threshold.
6104  for (; Param != ParamEnd; ++Param) {
6105    QualType T = (*Param)->getType();
6106    if (!T.isPODType(Context))
6107      continue;
6108    unsigned Size = Context.getTypeSizeInChars(T).getQuantity();
6109    if (Size > LangOpts.NumLargeByValueCopy)
6110      Diag((*Param)->getLocation(), diag::warn_parameter_size)
6111          << (*Param)->getDeclName() << Size;
6112  }
6113}
6114
6115ParmVarDecl *Sema::CheckParameter(DeclContext *DC, SourceLocation StartLoc,
6116                                  SourceLocation NameLoc, IdentifierInfo *Name,
6117                                  QualType T, TypeSourceInfo *TSInfo,
6118                                  VarDecl::StorageClass StorageClass,
6119                                  VarDecl::StorageClass StorageClassAsWritten) {
6120  // In ARC, infer a lifetime qualifier for appropriate parameter types.
6121  if (getLangOptions().ObjCAutoRefCount &&
6122      T.getObjCLifetime() == Qualifiers::OCL_None &&
6123      T->isObjCLifetimeType()) {
6124
6125    Qualifiers::ObjCLifetime lifetime;
6126
6127    // Special cases for arrays:
6128    //   - if it's const, use __unsafe_unretained
6129    //   - otherwise, it's an error
6130    if (T->isArrayType()) {
6131      if (!T.isConstQualified()) {
6132        Diag(NameLoc, diag::err_arc_array_param_no_ownership)
6133          << TSInfo->getTypeLoc().getSourceRange();
6134      }
6135      lifetime = Qualifiers::OCL_ExplicitNone;
6136    } else {
6137      lifetime = T->getObjCARCImplicitLifetime();
6138    }
6139    T = Context.getLifetimeQualifiedType(T, lifetime);
6140  }
6141
6142  ParmVarDecl *New = ParmVarDecl::Create(Context, DC, StartLoc, NameLoc, Name,
6143                                         adjustParameterType(T), TSInfo,
6144                                         StorageClass, StorageClassAsWritten,
6145                                         0);
6146
6147  // Parameters can not be abstract class types.
6148  // For record types, this is done by the AbstractClassUsageDiagnoser once
6149  // the class has been completely parsed.
6150  if (!CurContext->isRecord() &&
6151      RequireNonAbstractType(NameLoc, T, diag::err_abstract_type_in_decl,
6152                             AbstractParamType))
6153    New->setInvalidDecl();
6154
6155  // Parameter declarators cannot be interface types. All ObjC objects are
6156  // passed by reference.
6157  if (T->isObjCObjectType()) {
6158    Diag(NameLoc,
6159         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
6160    New->setInvalidDecl();
6161  }
6162
6163  // ISO/IEC TR 18037 S6.7.3: "The type of an object with automatic storage
6164  // duration shall not be qualified by an address-space qualifier."
6165  // Since all parameters have automatic store duration, they can not have
6166  // an address space.
6167  if (T.getAddressSpace() != 0) {
6168    Diag(NameLoc, diag::err_arg_with_address_space);
6169    New->setInvalidDecl();
6170  }
6171
6172  return New;
6173}
6174
6175void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
6176                                           SourceLocation LocAfterDecls) {
6177  DeclaratorChunk::FunctionTypeInfo &FTI = D.getFunctionTypeInfo();
6178
6179  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
6180  // for a K&R function.
6181  if (!FTI.hasPrototype) {
6182    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
6183      --i;
6184      if (FTI.ArgInfo[i].Param == 0) {
6185        llvm::SmallString<256> Code;
6186        llvm::raw_svector_ostream(Code) << "  int "
6187                                        << FTI.ArgInfo[i].Ident->getName()
6188                                        << ";\n";
6189        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
6190          << FTI.ArgInfo[i].Ident
6191          << FixItHint::CreateInsertion(LocAfterDecls, Code.str());
6192
6193        // Implicitly declare the argument as type 'int' for lack of a better
6194        // type.
6195        AttributeFactory attrs;
6196        DeclSpec DS(attrs);
6197        const char* PrevSpec; // unused
6198        unsigned DiagID; // unused
6199        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
6200                           PrevSpec, DiagID);
6201        Declarator ParamD(DS, Declarator::KNRTypeListContext);
6202        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
6203        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
6204      }
6205    }
6206  }
6207}
6208
6209Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
6210                                         Declarator &D) {
6211  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
6212  assert(D.isFunctionDeclarator() && "Not a function declarator!");
6213  Scope *ParentScope = FnBodyScope->getParent();
6214
6215  Decl *DP = HandleDeclarator(ParentScope, D,
6216                              MultiTemplateParamsArg(*this),
6217                              /*IsFunctionDefinition=*/true);
6218  return ActOnStartOfFunctionDef(FnBodyScope, DP);
6219}
6220
6221static bool ShouldWarnAboutMissingPrototype(const FunctionDecl *FD) {
6222  // Don't warn about invalid declarations.
6223  if (FD->isInvalidDecl())
6224    return false;
6225
6226  // Or declarations that aren't global.
6227  if (!FD->isGlobal())
6228    return false;
6229
6230  // Don't warn about C++ member functions.
6231  if (isa<CXXMethodDecl>(FD))
6232    return false;
6233
6234  // Don't warn about 'main'.
6235  if (FD->isMain())
6236    return false;
6237
6238  // Don't warn about inline functions.
6239  if (FD->isInlined())
6240    return false;
6241
6242  // Don't warn about function templates.
6243  if (FD->getDescribedFunctionTemplate())
6244    return false;
6245
6246  // Don't warn about function template specializations.
6247  if (FD->isFunctionTemplateSpecialization())
6248    return false;
6249
6250  bool MissingPrototype = true;
6251  for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
6252       Prev; Prev = Prev->getPreviousDeclaration()) {
6253    // Ignore any declarations that occur in function or method
6254    // scope, because they aren't visible from the header.
6255    if (Prev->getDeclContext()->isFunctionOrMethod())
6256      continue;
6257
6258    MissingPrototype = !Prev->getType()->isFunctionProtoType();
6259    break;
6260  }
6261
6262  return MissingPrototype;
6263}
6264
6265void Sema::CheckForFunctionRedefinition(FunctionDecl *FD) {
6266  // Don't complain if we're in GNU89 mode and the previous definition
6267  // was an extern inline function.
6268  const FunctionDecl *Definition;
6269  if (FD->isDefined(Definition) &&
6270      !canRedefineFunction(Definition, getLangOptions())) {
6271    if (getLangOptions().GNUMode && Definition->isInlineSpecified() &&
6272        Definition->getStorageClass() == SC_Extern)
6273      Diag(FD->getLocation(), diag::err_redefinition_extern_inline)
6274        << FD->getDeclName() << getLangOptions().CPlusPlus;
6275    else
6276      Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
6277    Diag(Definition->getLocation(), diag::note_previous_definition);
6278  }
6279}
6280
6281Decl *Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, Decl *D) {
6282  // Clear the last template instantiation error context.
6283  LastTemplateInstantiationErrorContext = ActiveTemplateInstantiation();
6284
6285  if (!D)
6286    return D;
6287  FunctionDecl *FD = 0;
6288
6289  if (FunctionTemplateDecl *FunTmpl = dyn_cast<FunctionTemplateDecl>(D))
6290    FD = FunTmpl->getTemplatedDecl();
6291  else
6292    FD = cast<FunctionDecl>(D);
6293
6294  // Enter a new function scope
6295  PushFunctionScope();
6296
6297  // See if this is a redefinition.
6298  if (!FD->isLateTemplateParsed())
6299    CheckForFunctionRedefinition(FD);
6300
6301  // Builtin functions cannot be defined.
6302  if (unsigned BuiltinID = FD->getBuiltinID()) {
6303    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
6304      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
6305      FD->setInvalidDecl();
6306    }
6307  }
6308
6309  // The return type of a function definition must be complete
6310  // (C99 6.9.1p3, C++ [dcl.fct]p6).
6311  QualType ResultType = FD->getResultType();
6312  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
6313      !FD->isInvalidDecl() &&
6314      RequireCompleteType(FD->getLocation(), ResultType,
6315                          diag::err_func_def_incomplete_result))
6316    FD->setInvalidDecl();
6317
6318  // GNU warning -Wmissing-prototypes:
6319  //   Warn if a global function is defined without a previous
6320  //   prototype declaration. This warning is issued even if the
6321  //   definition itself provides a prototype. The aim is to detect
6322  //   global functions that fail to be declared in header files.
6323  if (ShouldWarnAboutMissingPrototype(FD))
6324    Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
6325
6326  if (FnBodyScope)
6327    PushDeclContext(FnBodyScope, FD);
6328
6329  // Check the validity of our function parameters
6330  CheckParmsForFunctionDef(FD->param_begin(), FD->param_end(),
6331                           /*CheckParameterNames=*/true);
6332
6333  // Introduce our parameters into the function scope
6334  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
6335    ParmVarDecl *Param = FD->getParamDecl(p);
6336    Param->setOwningFunction(FD);
6337
6338    // If this has an identifier, add it to the scope stack.
6339    if (Param->getIdentifier() && FnBodyScope) {
6340      CheckShadow(FnBodyScope, Param);
6341
6342      PushOnScopeChains(Param, FnBodyScope);
6343    }
6344  }
6345
6346  // Checking attributes of current function definition
6347  // dllimport attribute.
6348  DLLImportAttr *DA = FD->getAttr<DLLImportAttr>();
6349  if (DA && (!FD->getAttr<DLLExportAttr>())) {
6350    // dllimport attribute cannot be directly applied to definition.
6351    // Microsoft accepts dllimport for functions defined within class scope.
6352    if (!DA->isInherited() &&
6353        !(LangOpts.Microsoft && FD->getLexicalDeclContext()->isRecord())) {
6354      Diag(FD->getLocation(),
6355           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
6356        << "dllimport";
6357      FD->setInvalidDecl();
6358      return FD;
6359    }
6360
6361    // Visual C++ appears to not think this is an issue, so only issue
6362    // a warning when Microsoft extensions are disabled.
6363    if (!LangOpts.Microsoft) {
6364      // If a symbol previously declared dllimport is later defined, the
6365      // attribute is ignored in subsequent references, and a warning is
6366      // emitted.
6367      Diag(FD->getLocation(),
6368           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
6369        << FD->getName() << "dllimport";
6370    }
6371  }
6372  return FD;
6373}
6374
6375/// \brief Given the set of return statements within a function body,
6376/// compute the variables that are subject to the named return value
6377/// optimization.
6378///
6379/// Each of the variables that is subject to the named return value
6380/// optimization will be marked as NRVO variables in the AST, and any
6381/// return statement that has a marked NRVO variable as its NRVO candidate can
6382/// use the named return value optimization.
6383///
6384/// This function applies a very simplistic algorithm for NRVO: if every return
6385/// statement in the function has the same NRVO candidate, that candidate is
6386/// the NRVO variable.
6387///
6388/// FIXME: Employ a smarter algorithm that accounts for multiple return
6389/// statements and the lifetimes of the NRVO candidates. We should be able to
6390/// find a maximal set of NRVO variables.
6391static void ComputeNRVO(Stmt *Body, FunctionScopeInfo *Scope) {
6392  ReturnStmt **Returns = Scope->Returns.data();
6393
6394  const VarDecl *NRVOCandidate = 0;
6395  for (unsigned I = 0, E = Scope->Returns.size(); I != E; ++I) {
6396    if (!Returns[I]->getNRVOCandidate())
6397      return;
6398
6399    if (!NRVOCandidate)
6400      NRVOCandidate = Returns[I]->getNRVOCandidate();
6401    else if (NRVOCandidate != Returns[I]->getNRVOCandidate())
6402      return;
6403  }
6404
6405  if (NRVOCandidate)
6406    const_cast<VarDecl*>(NRVOCandidate)->setNRVOVariable(true);
6407}
6408
6409Decl *Sema::ActOnFinishFunctionBody(Decl *D, Stmt *BodyArg) {
6410  return ActOnFinishFunctionBody(D, move(BodyArg), false);
6411}
6412
6413Decl *Sema::ActOnFinishFunctionBody(Decl *dcl, Stmt *Body,
6414                                    bool IsInstantiation) {
6415  FunctionDecl *FD = 0;
6416  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
6417  if (FunTmpl)
6418    FD = FunTmpl->getTemplatedDecl();
6419  else
6420    FD = dyn_cast_or_null<FunctionDecl>(dcl);
6421
6422  sema::AnalysisBasedWarnings::Policy WP = AnalysisWarnings.getDefaultPolicy();
6423  sema::AnalysisBasedWarnings::Policy *ActivePolicy = 0;
6424
6425  if (FD) {
6426    FD->setBody(Body);
6427    if (FD->isMain()) {
6428      // C and C++ allow for main to automagically return 0.
6429      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
6430      FD->setHasImplicitReturnZero(true);
6431      WP.disableCheckFallThrough();
6432    }
6433
6434    // MSVC permits the use of pure specifier (=0) on function definition,
6435    // defined at class scope, warn about this non standard construct.
6436    if (getLangOptions().Microsoft && FD->isPure())
6437      Diag(FD->getLocation(), diag::warn_pure_function_definition);
6438
6439    if (!FD->isInvalidDecl()) {
6440      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
6441      DiagnoseSizeOfParametersAndReturnValue(FD->param_begin(), FD->param_end(),
6442                                             FD->getResultType(), FD);
6443
6444      // If this is a constructor, we need a vtable.
6445      if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(FD))
6446        MarkVTableUsed(FD->getLocation(), Constructor->getParent());
6447
6448      ComputeNRVO(Body, getCurFunction());
6449    }
6450
6451    assert(FD == getCurFunctionDecl() && "Function parsing confused");
6452  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
6453    assert(MD == getCurMethodDecl() && "Method parsing confused");
6454    MD->setBody(Body);
6455    if (Body)
6456      MD->setEndLoc(Body->getLocEnd());
6457    if (!MD->isInvalidDecl()) {
6458      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
6459      DiagnoseSizeOfParametersAndReturnValue(MD->param_begin(), MD->param_end(),
6460                                             MD->getResultType(), MD);
6461    }
6462  } else {
6463    return 0;
6464  }
6465
6466  // Verify and clean out per-function state.
6467  if (Body) {
6468    // C++ constructors that have function-try-blocks can't have return
6469    // statements in the handlers of that block. (C++ [except.handle]p14)
6470    // Verify this.
6471    if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
6472      DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
6473
6474    // Verify that that gotos and switch cases don't jump into scopes illegally.
6475    // Verify that that gotos and switch cases don't jump into scopes illegally.
6476    if (getCurFunction()->NeedsScopeChecking() &&
6477        !dcl->isInvalidDecl() &&
6478        !hasAnyUnrecoverableErrorsInThisFunction())
6479      DiagnoseInvalidJumps(Body);
6480
6481    if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl)) {
6482      if (!Destructor->getParent()->isDependentType())
6483        CheckDestructor(Destructor);
6484
6485      MarkBaseAndMemberDestructorsReferenced(Destructor->getLocation(),
6486                                             Destructor->getParent());
6487    }
6488
6489    // If any errors have occurred, clear out any temporaries that may have
6490    // been leftover. This ensures that these temporaries won't be picked up for
6491    // deletion in some later function.
6492    if (PP.getDiagnostics().hasErrorOccurred() ||
6493        PP.getDiagnostics().getSuppressAllDiagnostics()) {
6494      ExprTemporaries.clear();
6495      ExprNeedsCleanups = false;
6496    } else if (!isa<FunctionTemplateDecl>(dcl)) {
6497      // Since the body is valid, issue any analysis-based warnings that are
6498      // enabled.
6499      ActivePolicy = &WP;
6500    }
6501
6502    assert(ExprTemporaries.empty() && "Leftover temporaries in function");
6503    assert(!ExprNeedsCleanups && "Unaccounted cleanups in function");
6504  }
6505
6506  if (!IsInstantiation)
6507    PopDeclContext();
6508
6509  PopFunctionOrBlockScope(ActivePolicy, dcl);
6510
6511  // If any errors have occurred, clear out any temporaries that may have
6512  // been leftover. This ensures that these temporaries won't be picked up for
6513  // deletion in some later function.
6514  if (getDiagnostics().hasErrorOccurred()) {
6515    ExprTemporaries.clear();
6516    ExprNeedsCleanups = false;
6517  }
6518
6519  return dcl;
6520}
6521
6522/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
6523/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
6524NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
6525                                          IdentifierInfo &II, Scope *S) {
6526  // Before we produce a declaration for an implicitly defined
6527  // function, see whether there was a locally-scoped declaration of
6528  // this name as a function or variable. If so, use that
6529  // (non-visible) declaration, and complain about it.
6530  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
6531    = LocallyScopedExternalDecls.find(&II);
6532  if (Pos != LocallyScopedExternalDecls.end()) {
6533    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
6534    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
6535    return Pos->second;
6536  }
6537
6538  // Extension in C99.  Legal in C90, but warn about it.
6539  if (II.getName().startswith("__builtin_"))
6540    Diag(Loc, diag::warn_builtin_unknown) << &II;
6541  else if (getLangOptions().C99)
6542    Diag(Loc, diag::ext_implicit_function_decl) << &II;
6543  else
6544    Diag(Loc, diag::warn_implicit_function_decl) << &II;
6545
6546  // Set a Declarator for the implicit definition: int foo();
6547  const char *Dummy;
6548  AttributeFactory attrFactory;
6549  DeclSpec DS(attrFactory);
6550  unsigned DiagID;
6551  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
6552  (void)Error; // Silence warning.
6553  assert(!Error && "Error setting up implicit decl!");
6554  Declarator D(DS, Declarator::BlockContext);
6555  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
6556                                             0, 0, true, SourceLocation(),
6557                                             EST_None, SourceLocation(),
6558                                             0, 0, 0, 0, Loc, Loc, D),
6559                DS.getAttributes(),
6560                SourceLocation());
6561  D.SetIdentifier(&II, Loc);
6562
6563  // Insert this function into translation-unit scope.
6564
6565  DeclContext *PrevDC = CurContext;
6566  CurContext = Context.getTranslationUnitDecl();
6567
6568  FunctionDecl *FD = dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D));
6569  FD->setImplicit();
6570
6571  CurContext = PrevDC;
6572
6573  AddKnownFunctionAttributes(FD);
6574
6575  return FD;
6576}
6577
6578/// \brief Adds any function attributes that we know a priori based on
6579/// the declaration of this function.
6580///
6581/// These attributes can apply both to implicitly-declared builtins
6582/// (like __builtin___printf_chk) or to library-declared functions
6583/// like NSLog or printf.
6584///
6585/// We need to check for duplicate attributes both here and where user-written
6586/// attributes are applied to declarations.
6587void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
6588  if (FD->isInvalidDecl())
6589    return;
6590
6591  // If this is a built-in function, map its builtin attributes to
6592  // actual attributes.
6593  if (unsigned BuiltinID = FD->getBuiltinID()) {
6594    // Handle printf-formatting attributes.
6595    unsigned FormatIdx;
6596    bool HasVAListArg;
6597    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
6598      if (!FD->getAttr<FormatAttr>())
6599        FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6600                                                "printf", FormatIdx+1,
6601                                               HasVAListArg ? 0 : FormatIdx+2));
6602    }
6603    if (Context.BuiltinInfo.isScanfLike(BuiltinID, FormatIdx,
6604                                             HasVAListArg)) {
6605     if (!FD->getAttr<FormatAttr>())
6606       FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6607                                              "scanf", FormatIdx+1,
6608                                              HasVAListArg ? 0 : FormatIdx+2));
6609    }
6610
6611    // Mark const if we don't care about errno and that is the only
6612    // thing preventing the function from being const. This allows
6613    // IRgen to use LLVM intrinsics for such functions.
6614    if (!getLangOptions().MathErrno &&
6615        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
6616      if (!FD->getAttr<ConstAttr>())
6617        FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6618    }
6619
6620    if (Context.BuiltinInfo.isNoThrow(BuiltinID) && !FD->getAttr<NoThrowAttr>())
6621      FD->addAttr(::new (Context) NoThrowAttr(FD->getLocation(), Context));
6622    if (Context.BuiltinInfo.isConst(BuiltinID) && !FD->getAttr<ConstAttr>())
6623      FD->addAttr(::new (Context) ConstAttr(FD->getLocation(), Context));
6624  }
6625
6626  IdentifierInfo *Name = FD->getIdentifier();
6627  if (!Name)
6628    return;
6629  if ((!getLangOptions().CPlusPlus &&
6630       FD->getDeclContext()->isTranslationUnit()) ||
6631      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
6632       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
6633       LinkageSpecDecl::lang_c)) {
6634    // Okay: this could be a libc/libm/Objective-C function we know
6635    // about.
6636  } else
6637    return;
6638
6639  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
6640    // FIXME: NSLog and NSLogv should be target specific
6641    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
6642      // FIXME: We known better than our headers.
6643      const_cast<FormatAttr *>(Format)->setType(Context, "printf");
6644    } else
6645      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6646                                             "printf", 1,
6647                                             Name->isStr("NSLogv") ? 0 : 2));
6648  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
6649    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
6650    // target-specific builtins, perhaps?
6651    if (!FD->getAttr<FormatAttr>())
6652      FD->addAttr(::new (Context) FormatAttr(FD->getLocation(), Context,
6653                                             "printf", 2,
6654                                             Name->isStr("vasprintf") ? 0 : 3));
6655  }
6656}
6657
6658TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T,
6659                                    TypeSourceInfo *TInfo) {
6660  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
6661  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
6662
6663  if (!TInfo) {
6664    assert(D.isInvalidType() && "no declarator info for valid type");
6665    TInfo = Context.getTrivialTypeSourceInfo(T);
6666  }
6667
6668  // Scope manipulation handled by caller.
6669  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
6670                                           D.getSourceRange().getBegin(),
6671                                           D.getIdentifierLoc(),
6672                                           D.getIdentifier(),
6673                                           TInfo);
6674
6675  // Bail out immediately if we have an invalid declaration.
6676  if (D.isInvalidType()) {
6677    NewTD->setInvalidDecl();
6678    return NewTD;
6679  }
6680
6681  // C++ [dcl.typedef]p8:
6682  //   If the typedef declaration defines an unnamed class (or
6683  //   enum), the first typedef-name declared by the declaration
6684  //   to be that class type (or enum type) is used to denote the
6685  //   class type (or enum type) for linkage purposes only.
6686  // We need to check whether the type was declared in the declaration.
6687  switch (D.getDeclSpec().getTypeSpecType()) {
6688  case TST_enum:
6689  case TST_struct:
6690  case TST_union:
6691  case TST_class: {
6692    TagDecl *tagFromDeclSpec = cast<TagDecl>(D.getDeclSpec().getRepAsDecl());
6693
6694    // Do nothing if the tag is not anonymous or already has an
6695    // associated typedef (from an earlier typedef in this decl group).
6696    if (tagFromDeclSpec->getIdentifier()) break;
6697    if (tagFromDeclSpec->getTypedefNameForAnonDecl()) break;
6698
6699    // A well-formed anonymous tag must always be a TUK_Definition.
6700    assert(tagFromDeclSpec->isThisDeclarationADefinition());
6701
6702    // The type must match the tag exactly;  no qualifiers allowed.
6703    if (!Context.hasSameType(T, Context.getTagDeclType(tagFromDeclSpec)))
6704      break;
6705
6706    // Otherwise, set this is the anon-decl typedef for the tag.
6707    tagFromDeclSpec->setTypedefNameForAnonDecl(NewTD);
6708    break;
6709  }
6710
6711  default:
6712    break;
6713  }
6714
6715  return NewTD;
6716}
6717
6718
6719/// \brief Determine whether a tag with a given kind is acceptable
6720/// as a redeclaration of the given tag declaration.
6721///
6722/// \returns true if the new tag kind is acceptable, false otherwise.
6723bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
6724                                        TagTypeKind NewTag, bool isDefinition,
6725                                        SourceLocation NewTagLoc,
6726                                        const IdentifierInfo &Name) {
6727  // C++ [dcl.type.elab]p3:
6728  //   The class-key or enum keyword present in the
6729  //   elaborated-type-specifier shall agree in kind with the
6730  //   declaration to which the name in the elaborated-type-specifier
6731  //   refers. This rule also applies to the form of
6732  //   elaborated-type-specifier that declares a class-name or
6733  //   friend class since it can be construed as referring to the
6734  //   definition of the class. Thus, in any
6735  //   elaborated-type-specifier, the enum keyword shall be used to
6736  //   refer to an enumeration (7.2), the union class-key shall be
6737  //   used to refer to a union (clause 9), and either the class or
6738  //   struct class-key shall be used to refer to a class (clause 9)
6739  //   declared using the class or struct class-key.
6740  TagTypeKind OldTag = Previous->getTagKind();
6741  if (!isDefinition || (NewTag != TTK_Class && NewTag != TTK_Struct))
6742    if (OldTag == NewTag)
6743      return true;
6744
6745  if ((OldTag == TTK_Struct || OldTag == TTK_Class) &&
6746      (NewTag == TTK_Struct || NewTag == TTK_Class)) {
6747    // Warn about the struct/class tag mismatch.
6748    bool isTemplate = false;
6749    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
6750      isTemplate = Record->getDescribedClassTemplate();
6751
6752    if (!ActiveTemplateInstantiations.empty()) {
6753      // In a template instantiation, do not offer fix-its for tag mismatches
6754      // since they usually mess up the template instead of fixing the problem.
6755      Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6756        << (NewTag == TTK_Class) << isTemplate << &Name;
6757      return true;
6758    }
6759
6760    if (isDefinition) {
6761      // On definitions, check previous tags and issue a fix-it for each
6762      // one that doesn't match the current tag.
6763      if (Previous->getDefinition()) {
6764        // Don't suggest fix-its for redefinitions.
6765        return true;
6766      }
6767
6768      bool previousMismatch = false;
6769      for (TagDecl::redecl_iterator I(Previous->redecls_begin()),
6770           E(Previous->redecls_end()); I != E; ++I) {
6771        if (I->getTagKind() != NewTag) {
6772          if (!previousMismatch) {
6773            previousMismatch = true;
6774            Diag(NewTagLoc, diag::warn_struct_class_previous_tag_mismatch)
6775              << (NewTag == TTK_Class) << isTemplate << &Name;
6776          }
6777          Diag(I->getInnerLocStart(), diag::note_struct_class_suggestion)
6778            << (NewTag == TTK_Class)
6779            << FixItHint::CreateReplacement(I->getInnerLocStart(),
6780                                            NewTag == TTK_Class?
6781                                            "class" : "struct");
6782        }
6783      }
6784      return true;
6785    }
6786
6787    // Check for a previous definition.  If current tag and definition
6788    // are same type, do nothing.  If no definition, but disagree with
6789    // with previous tag type, give a warning, but no fix-it.
6790    const TagDecl *Redecl = Previous->getDefinition() ?
6791                            Previous->getDefinition() : Previous;
6792    if (Redecl->getTagKind() == NewTag) {
6793      return true;
6794    }
6795
6796    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
6797      << (NewTag == TTK_Class)
6798      << isTemplate << &Name;
6799    Diag(Redecl->getLocation(), diag::note_previous_use);
6800
6801    // If there is a previous defintion, suggest a fix-it.
6802    if (Previous->getDefinition()) {
6803        Diag(NewTagLoc, diag::note_struct_class_suggestion)
6804          << (Redecl->getTagKind() == TTK_Class)
6805          << FixItHint::CreateReplacement(SourceRange(NewTagLoc),
6806                        Redecl->getTagKind() == TTK_Class? "class" : "struct");
6807    }
6808
6809    return true;
6810  }
6811  return false;
6812}
6813
6814/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
6815/// former case, Name will be non-null.  In the later case, Name will be null.
6816/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
6817/// reference/declaration/definition of a tag.
6818Decl *Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
6819                     SourceLocation KWLoc, CXXScopeSpec &SS,
6820                     IdentifierInfo *Name, SourceLocation NameLoc,
6821                     AttributeList *Attr, AccessSpecifier AS,
6822                     MultiTemplateParamsArg TemplateParameterLists,
6823                     bool &OwnedDecl, bool &IsDependent,
6824                     bool ScopedEnum, bool ScopedEnumUsesClassTag,
6825                     TypeResult UnderlyingType) {
6826  // If this is not a definition, it must have a name.
6827  assert((Name != 0 || TUK == TUK_Definition) &&
6828         "Nameless record must be a definition!");
6829  assert(TemplateParameterLists.size() == 0 || TUK != TUK_Reference);
6830
6831  OwnedDecl = false;
6832  TagTypeKind Kind = TypeWithKeyword::getTagTypeKindForTypeSpec(TagSpec);
6833
6834  // FIXME: Check explicit specializations more carefully.
6835  bool isExplicitSpecialization = false;
6836  bool Invalid = false;
6837
6838  // We only need to do this matching if we have template parameters
6839  // or a scope specifier, which also conveniently avoids this work
6840  // for non-C++ cases.
6841  if (TemplateParameterLists.size() > 0 ||
6842      (SS.isNotEmpty() && TUK != TUK_Reference)) {
6843    if (TemplateParameterList *TemplateParams
6844          = MatchTemplateParametersToScopeSpecifier(KWLoc, NameLoc, SS,
6845                                                TemplateParameterLists.get(),
6846                                                TemplateParameterLists.size(),
6847                                                    TUK == TUK_Friend,
6848                                                    isExplicitSpecialization,
6849                                                    Invalid)) {
6850      if (TemplateParams->size() > 0) {
6851        // This is a declaration or definition of a class template (which may
6852        // be a member of another template).
6853
6854        if (Invalid)
6855          return 0;
6856
6857        OwnedDecl = false;
6858        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
6859                                               SS, Name, NameLoc, Attr,
6860                                               TemplateParams, AS,
6861                                           TemplateParameterLists.size() - 1,
6862                 (TemplateParameterList**) TemplateParameterLists.release());
6863        return Result.get();
6864      } else {
6865        // The "template<>" header is extraneous.
6866        Diag(TemplateParams->getTemplateLoc(), diag::err_template_tag_noparams)
6867          << TypeWithKeyword::getTagTypeKindName(Kind) << Name;
6868        isExplicitSpecialization = true;
6869      }
6870    }
6871  }
6872
6873  // Figure out the underlying type if this a enum declaration. We need to do
6874  // this early, because it's needed to detect if this is an incompatible
6875  // redeclaration.
6876  llvm::PointerUnion<const Type*, TypeSourceInfo*> EnumUnderlying;
6877
6878  if (Kind == TTK_Enum) {
6879    if (UnderlyingType.isInvalid() || (!UnderlyingType.get() && ScopedEnum))
6880      // No underlying type explicitly specified, or we failed to parse the
6881      // type, default to int.
6882      EnumUnderlying = Context.IntTy.getTypePtr();
6883    else if (UnderlyingType.get()) {
6884      // C++0x 7.2p2: The type-specifier-seq of an enum-base shall name an
6885      // integral type; any cv-qualification is ignored.
6886      TypeSourceInfo *TI = 0;
6887      QualType T = GetTypeFromParser(UnderlyingType.get(), &TI);
6888      EnumUnderlying = TI;
6889
6890      SourceLocation UnderlyingLoc = TI->getTypeLoc().getBeginLoc();
6891
6892      if (!T->isDependentType() && !T->isIntegralType(Context)) {
6893        Diag(UnderlyingLoc, diag::err_enum_invalid_underlying)
6894          << T;
6895        // Recover by falling back to int.
6896        EnumUnderlying = Context.IntTy.getTypePtr();
6897      }
6898
6899      if (DiagnoseUnexpandedParameterPack(UnderlyingLoc, TI,
6900                                          UPPC_FixedUnderlyingType))
6901        EnumUnderlying = Context.IntTy.getTypePtr();
6902
6903    } else if (getLangOptions().Microsoft)
6904      // Microsoft enums are always of int type.
6905      EnumUnderlying = Context.IntTy.getTypePtr();
6906  }
6907
6908  DeclContext *SearchDC = CurContext;
6909  DeclContext *DC = CurContext;
6910  bool isStdBadAlloc = false;
6911
6912  RedeclarationKind Redecl = ForRedeclaration;
6913  if (TUK == TUK_Friend || TUK == TUK_Reference)
6914    Redecl = NotForRedeclaration;
6915
6916  LookupResult Previous(*this, Name, NameLoc, LookupTagName, Redecl);
6917
6918  if (Name && SS.isNotEmpty()) {
6919    // We have a nested-name tag ('struct foo::bar').
6920
6921    // Check for invalid 'foo::'.
6922    if (SS.isInvalid()) {
6923      Name = 0;
6924      goto CreateNewDecl;
6925    }
6926
6927    // If this is a friend or a reference to a class in a dependent
6928    // context, don't try to make a decl for it.
6929    if (TUK == TUK_Friend || TUK == TUK_Reference) {
6930      DC = computeDeclContext(SS, false);
6931      if (!DC) {
6932        IsDependent = true;
6933        return 0;
6934      }
6935    } else {
6936      DC = computeDeclContext(SS, true);
6937      if (!DC) {
6938        Diag(SS.getRange().getBegin(), diag::err_dependent_nested_name_spec)
6939          << SS.getRange();
6940        return 0;
6941      }
6942    }
6943
6944    if (RequireCompleteDeclContext(SS, DC))
6945      return 0;
6946
6947    SearchDC = DC;
6948    // Look-up name inside 'foo::'.
6949    LookupQualifiedName(Previous, DC);
6950
6951    if (Previous.isAmbiguous())
6952      return 0;
6953
6954    if (Previous.empty()) {
6955      // Name lookup did not find anything. However, if the
6956      // nested-name-specifier refers to the current instantiation,
6957      // and that current instantiation has any dependent base
6958      // classes, we might find something at instantiation time: treat
6959      // this as a dependent elaborated-type-specifier.
6960      // But this only makes any sense for reference-like lookups.
6961      if (Previous.wasNotFoundInCurrentInstantiation() &&
6962          (TUK == TUK_Reference || TUK == TUK_Friend)) {
6963        IsDependent = true;
6964        return 0;
6965      }
6966
6967      // A tag 'foo::bar' must already exist.
6968      Diag(NameLoc, diag::err_not_tag_in_scope)
6969        << Kind << Name << DC << SS.getRange();
6970      Name = 0;
6971      Invalid = true;
6972      goto CreateNewDecl;
6973    }
6974  } else if (Name) {
6975    // If this is a named struct, check to see if there was a previous forward
6976    // declaration or definition.
6977    // FIXME: We're looking into outer scopes here, even when we
6978    // shouldn't be. Doing so can result in ambiguities that we
6979    // shouldn't be diagnosing.
6980    LookupName(Previous, S);
6981
6982    if (Previous.isAmbiguous() &&
6983        (TUK == TUK_Definition || TUK == TUK_Declaration)) {
6984      LookupResult::Filter F = Previous.makeFilter();
6985      while (F.hasNext()) {
6986        NamedDecl *ND = F.next();
6987        if (ND->getDeclContext()->getRedeclContext() != SearchDC)
6988          F.erase();
6989      }
6990      F.done();
6991    }
6992
6993    // Note:  there used to be some attempt at recovery here.
6994    if (Previous.isAmbiguous())
6995      return 0;
6996
6997    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
6998      // FIXME: This makes sure that we ignore the contexts associated
6999      // with C structs, unions, and enums when looking for a matching
7000      // tag declaration or definition. See the similar lookup tweak
7001      // in Sema::LookupName; is there a better way to deal with this?
7002      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
7003        SearchDC = SearchDC->getParent();
7004    }
7005  } else if (S->isFunctionPrototypeScope()) {
7006    // If this is an enum declaration in function prototype scope, set its
7007    // initial context to the translation unit.
7008    SearchDC = Context.getTranslationUnitDecl();
7009  }
7010
7011  if (Previous.isSingleResult() &&
7012      Previous.getFoundDecl()->isTemplateParameter()) {
7013    // Maybe we will complain about the shadowed template parameter.
7014    DiagnoseTemplateParameterShadow(NameLoc, Previous.getFoundDecl());
7015    // Just pretend that we didn't see the previous declaration.
7016    Previous.clear();
7017  }
7018
7019  if (getLangOptions().CPlusPlus && Name && DC && StdNamespace &&
7020      DC->Equals(getStdNamespace()) && Name->isStr("bad_alloc")) {
7021    // This is a declaration of or a reference to "std::bad_alloc".
7022    isStdBadAlloc = true;
7023
7024    if (Previous.empty() && StdBadAlloc) {
7025      // std::bad_alloc has been implicitly declared (but made invisible to
7026      // name lookup). Fill in this implicit declaration as the previous
7027      // declaration, so that the declarations get chained appropriately.
7028      Previous.addDecl(getStdBadAlloc());
7029    }
7030  }
7031
7032  // If we didn't find a previous declaration, and this is a reference
7033  // (or friend reference), move to the correct scope.  In C++, we
7034  // also need to do a redeclaration lookup there, just in case
7035  // there's a shadow friend decl.
7036  if (Name && Previous.empty() &&
7037      (TUK == TUK_Reference || TUK == TUK_Friend)) {
7038    if (Invalid) goto CreateNewDecl;
7039    assert(SS.isEmpty());
7040
7041    if (TUK == TUK_Reference) {
7042      // C++ [basic.scope.pdecl]p5:
7043      //   -- for an elaborated-type-specifier of the form
7044      //
7045      //          class-key identifier
7046      //
7047      //      if the elaborated-type-specifier is used in the
7048      //      decl-specifier-seq or parameter-declaration-clause of a
7049      //      function defined in namespace scope, the identifier is
7050      //      declared as a class-name in the namespace that contains
7051      //      the declaration; otherwise, except as a friend
7052      //      declaration, the identifier is declared in the smallest
7053      //      non-class, non-function-prototype scope that contains the
7054      //      declaration.
7055      //
7056      // C99 6.7.2.3p8 has a similar (but not identical!) provision for
7057      // C structs and unions.
7058      //
7059      // It is an error in C++ to declare (rather than define) an enum
7060      // type, including via an elaborated type specifier.  We'll
7061      // diagnose that later; for now, declare the enum in the same
7062      // scope as we would have picked for any other tag type.
7063      //
7064      // GNU C also supports this behavior as part of its incomplete
7065      // enum types extension, while GNU C++ does not.
7066      //
7067      // Find the context where we'll be declaring the tag.
7068      // FIXME: We would like to maintain the current DeclContext as the
7069      // lexical context,
7070      while (SearchDC->isRecord() || SearchDC->isTransparentContext())
7071        SearchDC = SearchDC->getParent();
7072
7073      // Find the scope where we'll be declaring the tag.
7074      while (S->isClassScope() ||
7075             (getLangOptions().CPlusPlus &&
7076              S->isFunctionPrototypeScope()) ||
7077             ((S->getFlags() & Scope::DeclScope) == 0) ||
7078             (S->getEntity() &&
7079              ((DeclContext *)S->getEntity())->isTransparentContext()))
7080        S = S->getParent();
7081    } else {
7082      assert(TUK == TUK_Friend);
7083      // C++ [namespace.memdef]p3:
7084      //   If a friend declaration in a non-local class first declares a
7085      //   class or function, the friend class or function is a member of
7086      //   the innermost enclosing namespace.
7087      SearchDC = SearchDC->getEnclosingNamespaceContext();
7088    }
7089
7090    // In C++, we need to do a redeclaration lookup to properly
7091    // diagnose some problems.
7092    if (getLangOptions().CPlusPlus) {
7093      Previous.setRedeclarationKind(ForRedeclaration);
7094      LookupQualifiedName(Previous, SearchDC);
7095    }
7096  }
7097
7098  if (!Previous.empty()) {
7099    NamedDecl *PrevDecl = (*Previous.begin())->getUnderlyingDecl();
7100
7101    // It's okay to have a tag decl in the same scope as a typedef
7102    // which hides a tag decl in the same scope.  Finding this
7103    // insanity with a redeclaration lookup can only actually happen
7104    // in C++.
7105    //
7106    // This is also okay for elaborated-type-specifiers, which is
7107    // technically forbidden by the current standard but which is
7108    // okay according to the likely resolution of an open issue;
7109    // see http://www.open-std.org/jtc1/sc22/wg21/docs/cwg_active.html#407
7110    if (getLangOptions().CPlusPlus) {
7111      if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7112        if (const TagType *TT = TD->getUnderlyingType()->getAs<TagType>()) {
7113          TagDecl *Tag = TT->getDecl();
7114          if (Tag->getDeclName() == Name &&
7115              Tag->getDeclContext()->getRedeclContext()
7116                          ->Equals(TD->getDeclContext()->getRedeclContext())) {
7117            PrevDecl = Tag;
7118            Previous.clear();
7119            Previous.addDecl(Tag);
7120            Previous.resolveKind();
7121          }
7122        }
7123      }
7124    }
7125
7126    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
7127      // If this is a use of a previous tag, or if the tag is already declared
7128      // in the same scope (so that the definition/declaration completes or
7129      // rementions the tag), reuse the decl.
7130      if (TUK == TUK_Reference || TUK == TUK_Friend ||
7131          isDeclInScope(PrevDecl, SearchDC, S, isExplicitSpecialization)) {
7132        // Make sure that this wasn't declared as an enum and now used as a
7133        // struct or something similar.
7134        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind,
7135                                          TUK == TUK_Definition, KWLoc,
7136                                          *Name)) {
7137          bool SafeToContinue
7138            = (PrevTagDecl->getTagKind() != TTK_Enum &&
7139               Kind != TTK_Enum);
7140          if (SafeToContinue)
7141            Diag(KWLoc, diag::err_use_with_wrong_tag)
7142              << Name
7143              << FixItHint::CreateReplacement(SourceRange(KWLoc),
7144                                              PrevTagDecl->getKindName());
7145          else
7146            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
7147          Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7148
7149          if (SafeToContinue)
7150            Kind = PrevTagDecl->getTagKind();
7151          else {
7152            // Recover by making this an anonymous redefinition.
7153            Name = 0;
7154            Previous.clear();
7155            Invalid = true;
7156          }
7157        }
7158
7159        if (Kind == TTK_Enum && PrevTagDecl->getTagKind() == TTK_Enum) {
7160          const EnumDecl *PrevEnum = cast<EnumDecl>(PrevTagDecl);
7161
7162          // All conflicts with previous declarations are recovered by
7163          // returning the previous declaration.
7164          if (ScopedEnum != PrevEnum->isScoped()) {
7165            Diag(KWLoc, diag::err_enum_redeclare_scoped_mismatch)
7166              << PrevEnum->isScoped();
7167            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7168            return PrevTagDecl;
7169          }
7170          else if (EnumUnderlying && PrevEnum->isFixed()) {
7171            QualType T;
7172            if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7173                T = TI->getType();
7174            else
7175                T = QualType(EnumUnderlying.get<const Type*>(), 0);
7176
7177            if (!Context.hasSameUnqualifiedType(T, PrevEnum->getIntegerType())) {
7178              Diag(NameLoc.isValid() ? NameLoc : KWLoc,
7179                   diag::err_enum_redeclare_type_mismatch)
7180                << T
7181                << PrevEnum->getIntegerType();
7182              Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7183              return PrevTagDecl;
7184            }
7185          }
7186          else if (!EnumUnderlying.isNull() != PrevEnum->isFixed()) {
7187            Diag(KWLoc, diag::err_enum_redeclare_fixed_mismatch)
7188              << PrevEnum->isFixed();
7189            Diag(PrevTagDecl->getLocation(), diag::note_previous_use);
7190            return PrevTagDecl;
7191          }
7192        }
7193
7194        if (!Invalid) {
7195          // If this is a use, just return the declaration we found.
7196
7197          // FIXME: In the future, return a variant or some other clue
7198          // for the consumer of this Decl to know it doesn't own it.
7199          // For our current ASTs this shouldn't be a problem, but will
7200          // need to be changed with DeclGroups.
7201          if ((TUK == TUK_Reference && (!PrevTagDecl->getFriendObjectKind() ||
7202               getLangOptions().Microsoft)) || TUK == TUK_Friend)
7203            return PrevTagDecl;
7204
7205          // Diagnose attempts to redefine a tag.
7206          if (TUK == TUK_Definition) {
7207            if (TagDecl *Def = PrevTagDecl->getDefinition()) {
7208              // If we're defining a specialization and the previous definition
7209              // is from an implicit instantiation, don't emit an error
7210              // here; we'll catch this in the general case below.
7211              if (!isExplicitSpecialization ||
7212                  !isa<CXXRecordDecl>(Def) ||
7213                  cast<CXXRecordDecl>(Def)->getTemplateSpecializationKind()
7214                                               == TSK_ExplicitSpecialization) {
7215                Diag(NameLoc, diag::err_redefinition) << Name;
7216                Diag(Def->getLocation(), diag::note_previous_definition);
7217                // If this is a redefinition, recover by making this
7218                // struct be anonymous, which will make any later
7219                // references get the previous definition.
7220                Name = 0;
7221                Previous.clear();
7222                Invalid = true;
7223              }
7224            } else {
7225              // If the type is currently being defined, complain
7226              // about a nested redefinition.
7227              const TagType *Tag
7228                = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
7229              if (Tag->isBeingDefined()) {
7230                Diag(NameLoc, diag::err_nested_redefinition) << Name;
7231                Diag(PrevTagDecl->getLocation(),
7232                     diag::note_previous_definition);
7233                Name = 0;
7234                Previous.clear();
7235                Invalid = true;
7236              }
7237            }
7238
7239            // Okay, this is definition of a previously declared or referenced
7240            // tag PrevDecl. We're going to create a new Decl for it.
7241          }
7242        }
7243        // If we get here we have (another) forward declaration or we
7244        // have a definition.  Just create a new decl.
7245
7246      } else {
7247        // If we get here, this is a definition of a new tag type in a nested
7248        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
7249        // new decl/type.  We set PrevDecl to NULL so that the entities
7250        // have distinct types.
7251        Previous.clear();
7252      }
7253      // If we get here, we're going to create a new Decl. If PrevDecl
7254      // is non-NULL, it's a definition of the tag declared by
7255      // PrevDecl. If it's NULL, we have a new definition.
7256
7257
7258    // Otherwise, PrevDecl is not a tag, but was found with tag
7259    // lookup.  This is only actually possible in C++, where a few
7260    // things like templates still live in the tag namespace.
7261    } else {
7262      assert(getLangOptions().CPlusPlus);
7263
7264      // Use a better diagnostic if an elaborated-type-specifier
7265      // found the wrong kind of type on the first
7266      // (non-redeclaration) lookup.
7267      if ((TUK == TUK_Reference || TUK == TUK_Friend) &&
7268          !Previous.isForRedeclaration()) {
7269        unsigned Kind = 0;
7270        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7271        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7272        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7273        Diag(NameLoc, diag::err_tag_reference_non_tag) << Kind;
7274        Diag(PrevDecl->getLocation(), diag::note_declared_at);
7275        Invalid = true;
7276
7277      // Otherwise, only diagnose if the declaration is in scope.
7278      } else if (!isDeclInScope(PrevDecl, SearchDC, S,
7279                                isExplicitSpecialization)) {
7280        // do nothing
7281
7282      // Diagnose implicit declarations introduced by elaborated types.
7283      } else if (TUK == TUK_Reference || TUK == TUK_Friend) {
7284        unsigned Kind = 0;
7285        if (isa<TypedefDecl>(PrevDecl)) Kind = 1;
7286        else if (isa<TypeAliasDecl>(PrevDecl)) Kind = 2;
7287        else if (isa<ClassTemplateDecl>(PrevDecl)) Kind = 3;
7288        Diag(NameLoc, diag::err_tag_reference_conflict) << Kind;
7289        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7290        Invalid = true;
7291
7292      // Otherwise it's a declaration.  Call out a particularly common
7293      // case here.
7294      } else if (TypedefNameDecl *TND = dyn_cast<TypedefNameDecl>(PrevDecl)) {
7295        unsigned Kind = 0;
7296        if (isa<TypeAliasDecl>(PrevDecl)) Kind = 1;
7297        Diag(NameLoc, diag::err_tag_definition_of_typedef)
7298          << Name << Kind << TND->getUnderlyingType();
7299        Diag(PrevDecl->getLocation(), diag::note_previous_decl) << PrevDecl;
7300        Invalid = true;
7301
7302      // Otherwise, diagnose.
7303      } else {
7304        // The tag name clashes with something else in the target scope,
7305        // issue an error and recover by making this tag be anonymous.
7306        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
7307        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
7308        Name = 0;
7309        Invalid = true;
7310      }
7311
7312      // The existing declaration isn't relevant to us; we're in a
7313      // new scope, so clear out the previous declaration.
7314      Previous.clear();
7315    }
7316  }
7317
7318CreateNewDecl:
7319
7320  TagDecl *PrevDecl = 0;
7321  if (Previous.isSingleResult())
7322    PrevDecl = cast<TagDecl>(Previous.getFoundDecl());
7323
7324  // If there is an identifier, use the location of the identifier as the
7325  // location of the decl, otherwise use the location of the struct/union
7326  // keyword.
7327  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
7328
7329  // Otherwise, create a new declaration. If there is a previous
7330  // declaration of the same entity, the two will be linked via
7331  // PrevDecl.
7332  TagDecl *New;
7333
7334  bool IsForwardReference = false;
7335  if (Kind == TTK_Enum) {
7336    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7337    // enum X { A, B, C } D;    D should chain to X.
7338    New = EnumDecl::Create(Context, SearchDC, KWLoc, Loc, Name,
7339                           cast_or_null<EnumDecl>(PrevDecl), ScopedEnum,
7340                           ScopedEnumUsesClassTag, !EnumUnderlying.isNull());
7341    // If this is an undefined enum, warn.
7342    if (TUK != TUK_Definition && !Invalid) {
7343      TagDecl *Def;
7344      if (getLangOptions().CPlusPlus0x && cast<EnumDecl>(New)->isFixed()) {
7345        // C++0x: 7.2p2: opaque-enum-declaration.
7346        // Conflicts are diagnosed above. Do nothing.
7347      }
7348      else if (PrevDecl && (Def = cast<EnumDecl>(PrevDecl)->getDefinition())) {
7349        Diag(Loc, diag::ext_forward_ref_enum_def)
7350          << New;
7351        Diag(Def->getLocation(), diag::note_previous_definition);
7352      } else {
7353        unsigned DiagID = diag::ext_forward_ref_enum;
7354        if (getLangOptions().Microsoft)
7355          DiagID = diag::ext_ms_forward_ref_enum;
7356        else if (getLangOptions().CPlusPlus)
7357          DiagID = diag::err_forward_ref_enum;
7358        Diag(Loc, DiagID);
7359
7360        // If this is a forward-declared reference to an enumeration, make a
7361        // note of it; we won't actually be introducing the declaration into
7362        // the declaration context.
7363        if (TUK == TUK_Reference)
7364          IsForwardReference = true;
7365      }
7366    }
7367
7368    if (EnumUnderlying) {
7369      EnumDecl *ED = cast<EnumDecl>(New);
7370      if (TypeSourceInfo *TI = EnumUnderlying.dyn_cast<TypeSourceInfo*>())
7371        ED->setIntegerTypeSourceInfo(TI);
7372      else
7373        ED->setIntegerType(QualType(EnumUnderlying.get<const Type*>(), 0));
7374      ED->setPromotionType(ED->getIntegerType());
7375    }
7376
7377  } else {
7378    // struct/union/class
7379
7380    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
7381    // struct X { int A; } D;    D should chain to X.
7382    if (getLangOptions().CPlusPlus) {
7383      // FIXME: Look for a way to use RecordDecl for simple structs.
7384      New = CXXRecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7385                                  cast_or_null<CXXRecordDecl>(PrevDecl));
7386
7387      if (isStdBadAlloc && (!StdBadAlloc || getStdBadAlloc()->isImplicit()))
7388        StdBadAlloc = cast<CXXRecordDecl>(New);
7389    } else
7390      New = RecordDecl::Create(Context, Kind, SearchDC, KWLoc, Loc, Name,
7391                               cast_or_null<RecordDecl>(PrevDecl));
7392  }
7393
7394  // Maybe add qualifier info.
7395  if (SS.isNotEmpty()) {
7396    if (SS.isSet()) {
7397      New->setQualifierInfo(SS.getWithLocInContext(Context));
7398      if (TemplateParameterLists.size() > 0) {
7399        New->setTemplateParameterListsInfo(Context,
7400                                           TemplateParameterLists.size(),
7401                    (TemplateParameterList**) TemplateParameterLists.release());
7402      }
7403    }
7404    else
7405      Invalid = true;
7406  }
7407
7408  if (RecordDecl *RD = dyn_cast<RecordDecl>(New)) {
7409    // Add alignment attributes if necessary; these attributes are checked when
7410    // the ASTContext lays out the structure.
7411    //
7412    // It is important for implementing the correct semantics that this
7413    // happen here (in act on tag decl). The #pragma pack stack is
7414    // maintained as a result of parser callbacks which can occur at
7415    // many points during the parsing of a struct declaration (because
7416    // the #pragma tokens are effectively skipped over during the
7417    // parsing of the struct).
7418    AddAlignmentAttributesForRecord(RD);
7419
7420    AddMsStructLayoutForRecord(RD);
7421  }
7422
7423  // If this is a specialization of a member class (of a class template),
7424  // check the specialization.
7425  if (isExplicitSpecialization && CheckMemberSpecialization(New, Previous))
7426    Invalid = true;
7427
7428  if (Invalid)
7429    New->setInvalidDecl();
7430
7431  if (Attr)
7432    ProcessDeclAttributeList(S, New, Attr);
7433
7434  // If we're declaring or defining a tag in function prototype scope
7435  // in C, note that this type can only be used within the function.
7436  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
7437    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
7438
7439  // Set the lexical context. If the tag has a C++ scope specifier, the
7440  // lexical context will be different from the semantic context.
7441  New->setLexicalDeclContext(CurContext);
7442
7443  // Mark this as a friend decl if applicable.
7444  // In Microsoft mode, a friend declaration also acts as a forward
7445  // declaration so we always pass true to setObjectOfFriendDecl to make
7446  // the tag name visible.
7447  if (TUK == TUK_Friend)
7448    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ !Previous.empty() ||
7449                               getLangOptions().Microsoft);
7450
7451  // Set the access specifier.
7452  if (!Invalid && SearchDC->isRecord())
7453    SetMemberAccessSpecifier(New, PrevDecl, AS);
7454
7455  if (TUK == TUK_Definition)
7456    New->startDefinition();
7457
7458  // If this has an identifier, add it to the scope stack.
7459  if (TUK == TUK_Friend) {
7460    // We might be replacing an existing declaration in the lookup tables;
7461    // if so, borrow its access specifier.
7462    if (PrevDecl)
7463      New->setAccess(PrevDecl->getAccess());
7464
7465    DeclContext *DC = New->getDeclContext()->getRedeclContext();
7466    DC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7467    if (Name) // can be null along some error paths
7468      if (Scope *EnclosingScope = getScopeForDeclContext(S, DC))
7469        PushOnScopeChains(New, EnclosingScope, /* AddToContext = */ false);
7470  } else if (Name) {
7471    S = getNonFieldDeclScope(S);
7472    PushOnScopeChains(New, S, !IsForwardReference);
7473    if (IsForwardReference)
7474      SearchDC->makeDeclVisibleInContext(New, /* Recoverable = */ false);
7475
7476  } else {
7477    CurContext->addDecl(New);
7478  }
7479
7480  // If this is the C FILE type, notify the AST context.
7481  if (IdentifierInfo *II = New->getIdentifier())
7482    if (!New->isInvalidDecl() &&
7483        New->getDeclContext()->getRedeclContext()->isTranslationUnit() &&
7484        II->isStr("FILE"))
7485      Context.setFILEDecl(New);
7486
7487  OwnedDecl = true;
7488  return New;
7489}
7490
7491void Sema::ActOnTagStartDefinition(Scope *S, Decl *TagD) {
7492  AdjustDeclIfTemplate(TagD);
7493  TagDecl *Tag = cast<TagDecl>(TagD);
7494
7495  // Enter the tag context.
7496  PushDeclContext(S, Tag);
7497}
7498
7499void Sema::ActOnStartCXXMemberDeclarations(Scope *S, Decl *TagD,
7500                                           SourceLocation FinalLoc,
7501                                           SourceLocation LBraceLoc) {
7502  AdjustDeclIfTemplate(TagD);
7503  CXXRecordDecl *Record = cast<CXXRecordDecl>(TagD);
7504
7505  FieldCollector->StartClass();
7506
7507  if (!Record->getIdentifier())
7508    return;
7509
7510  if (FinalLoc.isValid())
7511    Record->addAttr(new (Context) FinalAttr(FinalLoc, Context));
7512
7513  // C++ [class]p2:
7514  //   [...] The class-name is also inserted into the scope of the
7515  //   class itself; this is known as the injected-class-name. For
7516  //   purposes of access checking, the injected-class-name is treated
7517  //   as if it were a public member name.
7518  CXXRecordDecl *InjectedClassName
7519    = CXXRecordDecl::Create(Context, Record->getTagKind(), CurContext,
7520                            Record->getLocStart(), Record->getLocation(),
7521                            Record->getIdentifier(),
7522                            /*PrevDecl=*/0,
7523                            /*DelayTypeCreation=*/true);
7524  Context.getTypeDeclType(InjectedClassName, Record);
7525  InjectedClassName->setImplicit();
7526  InjectedClassName->setAccess(AS_public);
7527  if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
7528      InjectedClassName->setDescribedClassTemplate(Template);
7529  PushOnScopeChains(InjectedClassName, S);
7530  assert(InjectedClassName->isInjectedClassName() &&
7531         "Broken injected-class-name");
7532}
7533
7534void Sema::ActOnTagFinishDefinition(Scope *S, Decl *TagD,
7535                                    SourceLocation RBraceLoc) {
7536  AdjustDeclIfTemplate(TagD);
7537  TagDecl *Tag = cast<TagDecl>(TagD);
7538  Tag->setRBraceLoc(RBraceLoc);
7539
7540  if (isa<CXXRecordDecl>(Tag))
7541    FieldCollector->FinishClass();
7542
7543  // Exit this scope of this tag's definition.
7544  PopDeclContext();
7545
7546  // Notify the consumer that we've defined a tag.
7547  Consumer.HandleTagDeclDefinition(Tag);
7548}
7549
7550void Sema::ActOnTagDefinitionError(Scope *S, Decl *TagD) {
7551  AdjustDeclIfTemplate(TagD);
7552  TagDecl *Tag = cast<TagDecl>(TagD);
7553  Tag->setInvalidDecl();
7554
7555  // We're undoing ActOnTagStartDefinition here, not
7556  // ActOnStartCXXMemberDeclarations, so we don't have to mess with
7557  // the FieldCollector.
7558
7559  PopDeclContext();
7560}
7561
7562// Note that FieldName may be null for anonymous bitfields.
7563bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
7564                          QualType FieldTy, const Expr *BitWidth,
7565                          bool *ZeroWidth) {
7566  // Default to true; that shouldn't confuse checks for emptiness
7567  if (ZeroWidth)
7568    *ZeroWidth = true;
7569
7570  // C99 6.7.2.1p4 - verify the field type.
7571  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
7572  if (!FieldTy->isDependentType() && !FieldTy->isIntegralOrEnumerationType()) {
7573    // Handle incomplete types with specific error.
7574    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
7575      return true;
7576    if (FieldName)
7577      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
7578        << FieldName << FieldTy << BitWidth->getSourceRange();
7579    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
7580      << FieldTy << BitWidth->getSourceRange();
7581  } else if (DiagnoseUnexpandedParameterPack(const_cast<Expr *>(BitWidth),
7582                                             UPPC_BitFieldWidth))
7583    return true;
7584
7585  // If the bit-width is type- or value-dependent, don't try to check
7586  // it now.
7587  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
7588    return false;
7589
7590  llvm::APSInt Value;
7591  if (VerifyIntegerConstantExpression(BitWidth, &Value))
7592    return true;
7593
7594  if (Value != 0 && ZeroWidth)
7595    *ZeroWidth = false;
7596
7597  // Zero-width bitfield is ok for anonymous field.
7598  if (Value == 0 && FieldName)
7599    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
7600
7601  if (Value.isSigned() && Value.isNegative()) {
7602    if (FieldName)
7603      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
7604               << FieldName << Value.toString(10);
7605    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
7606      << Value.toString(10);
7607  }
7608
7609  if (!FieldTy->isDependentType()) {
7610    uint64_t TypeSize = Context.getTypeSize(FieldTy);
7611    if (Value.getZExtValue() > TypeSize) {
7612      if (!getLangOptions().CPlusPlus) {
7613        if (FieldName)
7614          return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
7615            << FieldName << (unsigned)Value.getZExtValue()
7616            << (unsigned)TypeSize;
7617
7618        return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
7619          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7620      }
7621
7622      if (FieldName)
7623        Diag(FieldLoc, diag::warn_bitfield_width_exceeds_type_size)
7624          << FieldName << (unsigned)Value.getZExtValue()
7625          << (unsigned)TypeSize;
7626      else
7627        Diag(FieldLoc, diag::warn_anon_bitfield_width_exceeds_type_size)
7628          << (unsigned)Value.getZExtValue() << (unsigned)TypeSize;
7629    }
7630  }
7631
7632  return false;
7633}
7634
7635/// ActOnField - Each field of a C struct/union is passed into this in order
7636/// to create a FieldDecl object for it.
7637Decl *Sema::ActOnField(Scope *S, Decl *TagD, SourceLocation DeclStart,
7638                       Declarator &D, ExprTy *BitfieldWidth) {
7639  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD),
7640                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
7641                               /*HasInit=*/false, AS_public);
7642  return Res;
7643}
7644
7645/// HandleField - Analyze a field of a C struct or a C++ data member.
7646///
7647FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
7648                             SourceLocation DeclStart,
7649                             Declarator &D, Expr *BitWidth, bool HasInit,
7650                             AccessSpecifier AS) {
7651  IdentifierInfo *II = D.getIdentifier();
7652  SourceLocation Loc = DeclStart;
7653  if (II) Loc = D.getIdentifierLoc();
7654
7655  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
7656  QualType T = TInfo->getType();
7657  if (getLangOptions().CPlusPlus) {
7658    CheckExtraCXXDefaultArguments(D);
7659
7660    if (DiagnoseUnexpandedParameterPack(D.getIdentifierLoc(), TInfo,
7661                                        UPPC_DataMemberType)) {
7662      D.setInvalidType();
7663      T = Context.IntTy;
7664      TInfo = Context.getTrivialTypeSourceInfo(T, Loc);
7665    }
7666  }
7667
7668  DiagnoseFunctionSpecifiers(D);
7669
7670  if (D.getDeclSpec().isThreadSpecified())
7671    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
7672
7673  // Check to see if this name was declared as a member previously
7674  LookupResult Previous(*this, II, Loc, LookupMemberName, ForRedeclaration);
7675  LookupName(Previous, S);
7676  assert((Previous.empty() || Previous.isOverloadedResult() ||
7677          Previous.isSingleResult())
7678    && "Lookup of member name should be either overloaded, single or null");
7679
7680  // If the name is overloaded then get any declaration else get the single result
7681  NamedDecl *PrevDecl = Previous.isOverloadedResult() ?
7682    Previous.getRepresentativeDecl() : Previous.getAsSingle<NamedDecl>();
7683
7684  if (PrevDecl && PrevDecl->isTemplateParameter()) {
7685    // Maybe we will complain about the shadowed template parameter.
7686    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
7687    // Just pretend that we didn't see the previous declaration.
7688    PrevDecl = 0;
7689  }
7690
7691  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
7692    PrevDecl = 0;
7693
7694  bool Mutable
7695    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
7696  SourceLocation TSSL = D.getSourceRange().getBegin();
7697  FieldDecl *NewFD
7698    = CheckFieldDecl(II, T, TInfo, Record, Loc, Mutable, BitWidth, HasInit,
7699                     TSSL, AS, PrevDecl, &D);
7700
7701  if (NewFD->isInvalidDecl())
7702    Record->setInvalidDecl();
7703
7704  if (NewFD->isInvalidDecl() && PrevDecl) {
7705    // Don't introduce NewFD into scope; there's already something
7706    // with the same name in the same scope.
7707  } else if (II) {
7708    PushOnScopeChains(NewFD, S);
7709  } else
7710    Record->addDecl(NewFD);
7711
7712  return NewFD;
7713}
7714
7715/// \brief Build a new FieldDecl and check its well-formedness.
7716///
7717/// This routine builds a new FieldDecl given the fields name, type,
7718/// record, etc. \p PrevDecl should refer to any previous declaration
7719/// with the same name and in the same scope as the field to be
7720/// created.
7721///
7722/// \returns a new FieldDecl.
7723///
7724/// \todo The Declarator argument is a hack. It will be removed once
7725FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
7726                                TypeSourceInfo *TInfo,
7727                                RecordDecl *Record, SourceLocation Loc,
7728                                bool Mutable, Expr *BitWidth, bool HasInit,
7729                                SourceLocation TSSL,
7730                                AccessSpecifier AS, NamedDecl *PrevDecl,
7731                                Declarator *D) {
7732  IdentifierInfo *II = Name.getAsIdentifierInfo();
7733  bool InvalidDecl = false;
7734  if (D) InvalidDecl = D->isInvalidType();
7735
7736  // If we receive a broken type, recover by assuming 'int' and
7737  // marking this declaration as invalid.
7738  if (T.isNull()) {
7739    InvalidDecl = true;
7740    T = Context.IntTy;
7741  }
7742
7743  QualType EltTy = Context.getBaseElementType(T);
7744  if (!EltTy->isDependentType() &&
7745      RequireCompleteType(Loc, EltTy, diag::err_field_incomplete)) {
7746    // Fields of incomplete type force their record to be invalid.
7747    Record->setInvalidDecl();
7748    InvalidDecl = true;
7749  }
7750
7751  // C99 6.7.2.1p8: A member of a structure or union may have any type other
7752  // than a variably modified type.
7753  if (!InvalidDecl && T->isVariablyModifiedType()) {
7754    bool SizeIsNegative;
7755    llvm::APSInt Oversized;
7756    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
7757                                                           SizeIsNegative,
7758                                                           Oversized);
7759    if (!FixedTy.isNull()) {
7760      Diag(Loc, diag::warn_illegal_constant_array_size);
7761      T = FixedTy;
7762    } else {
7763      if (SizeIsNegative)
7764        Diag(Loc, diag::err_typecheck_negative_array_size);
7765      else if (Oversized.getBoolValue())
7766        Diag(Loc, diag::err_array_too_large)
7767          << Oversized.toString(10);
7768      else
7769        Diag(Loc, diag::err_typecheck_field_variable_size);
7770      InvalidDecl = true;
7771    }
7772  }
7773
7774  // Fields can not have abstract class types
7775  if (!InvalidDecl && RequireNonAbstractType(Loc, T,
7776                                             diag::err_abstract_type_in_decl,
7777                                             AbstractFieldType))
7778    InvalidDecl = true;
7779
7780  bool ZeroWidth = false;
7781  // If this is declared as a bit-field, check the bit-field.
7782  if (!InvalidDecl && BitWidth &&
7783      VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
7784    InvalidDecl = true;
7785    BitWidth = 0;
7786    ZeroWidth = false;
7787  }
7788
7789  // Check that 'mutable' is consistent with the type of the declaration.
7790  if (!InvalidDecl && Mutable) {
7791    unsigned DiagID = 0;
7792    if (T->isReferenceType())
7793      DiagID = diag::err_mutable_reference;
7794    else if (T.isConstQualified())
7795      DiagID = diag::err_mutable_const;
7796
7797    if (DiagID) {
7798      SourceLocation ErrLoc = Loc;
7799      if (D && D->getDeclSpec().getStorageClassSpecLoc().isValid())
7800        ErrLoc = D->getDeclSpec().getStorageClassSpecLoc();
7801      Diag(ErrLoc, DiagID);
7802      Mutable = false;
7803      InvalidDecl = true;
7804    }
7805  }
7806
7807  FieldDecl *NewFD = FieldDecl::Create(Context, Record, TSSL, Loc, II, T, TInfo,
7808                                       BitWidth, Mutable, HasInit);
7809  if (InvalidDecl)
7810    NewFD->setInvalidDecl();
7811
7812  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
7813    Diag(Loc, diag::err_duplicate_member) << II;
7814    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
7815    NewFD->setInvalidDecl();
7816  }
7817
7818  if (!InvalidDecl && getLangOptions().CPlusPlus) {
7819    if (Record->isUnion()) {
7820      if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7821        CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7822        if (RDecl->getDefinition()) {
7823          // C++ [class.union]p1: An object of a class with a non-trivial
7824          // constructor, a non-trivial copy constructor, a non-trivial
7825          // destructor, or a non-trivial copy assignment operator
7826          // cannot be a member of a union, nor can an array of such
7827          // objects.
7828          if (!getLangOptions().CPlusPlus0x && CheckNontrivialField(NewFD))
7829            NewFD->setInvalidDecl();
7830        }
7831      }
7832
7833      // C++ [class.union]p1: If a union contains a member of reference type,
7834      // the program is ill-formed.
7835      if (EltTy->isReferenceType()) {
7836        Diag(NewFD->getLocation(), diag::err_union_member_of_reference_type)
7837          << NewFD->getDeclName() << EltTy;
7838        NewFD->setInvalidDecl();
7839      }
7840    }
7841  }
7842
7843  // FIXME: We need to pass in the attributes given an AST
7844  // representation, not a parser representation.
7845  if (D)
7846    // FIXME: What to pass instead of TUScope?
7847    ProcessDeclAttributes(TUScope, NewFD, *D);
7848
7849  // In auto-retain/release, infer strong retension for fields of
7850  // retainable type.
7851  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewFD))
7852    NewFD->setInvalidDecl();
7853
7854  if (T.isObjCGCWeak())
7855    Diag(Loc, diag::warn_attribute_weak_on_field);
7856
7857  NewFD->setAccess(AS);
7858  return NewFD;
7859}
7860
7861bool Sema::CheckNontrivialField(FieldDecl *FD) {
7862  assert(FD);
7863  assert(getLangOptions().CPlusPlus && "valid check only for C++");
7864
7865  if (FD->isInvalidDecl())
7866    return true;
7867
7868  QualType EltTy = Context.getBaseElementType(FD->getType());
7869  if (const RecordType *RT = EltTy->getAs<RecordType>()) {
7870    CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
7871    if (RDecl->getDefinition()) {
7872      // We check for copy constructors before constructors
7873      // because otherwise we'll never get complaints about
7874      // copy constructors.
7875
7876      CXXSpecialMember member = CXXInvalid;
7877      if (!RDecl->hasTrivialCopyConstructor())
7878        member = CXXCopyConstructor;
7879      else if (!RDecl->hasTrivialDefaultConstructor())
7880        member = CXXDefaultConstructor;
7881      else if (!RDecl->hasTrivialCopyAssignment())
7882        member = CXXCopyAssignment;
7883      else if (!RDecl->hasTrivialDestructor())
7884        member = CXXDestructor;
7885
7886      if (member != CXXInvalid) {
7887        if (getLangOptions().ObjCAutoRefCount && RDecl->hasObjectMember()) {
7888          // Objective-C++ ARC: it is an error to have a non-trivial field of
7889          // a union. However, system headers in Objective-C programs
7890          // occasionally have Objective-C lifetime objects within unions,
7891          // and rather than cause the program to fail, we make those
7892          // members unavailable.
7893          SourceLocation Loc = FD->getLocation();
7894          if (getSourceManager().isInSystemHeader(Loc)) {
7895            if (!FD->hasAttr<UnavailableAttr>())
7896              FD->addAttr(new (Context) UnavailableAttr(Loc, Context,
7897                                  "this system field has retaining ownership"));
7898            return false;
7899          }
7900        }
7901
7902        Diag(FD->getLocation(), diag::err_illegal_union_or_anon_struct_member)
7903              << (int)FD->getParent()->isUnion() << FD->getDeclName() << member;
7904        DiagnoseNontrivial(RT, member);
7905        return true;
7906      }
7907    }
7908  }
7909
7910  return false;
7911}
7912
7913/// DiagnoseNontrivial - Given that a class has a non-trivial
7914/// special member, figure out why.
7915void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
7916  QualType QT(T, 0U);
7917  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
7918
7919  // Check whether the member was user-declared.
7920  switch (member) {
7921  case CXXInvalid:
7922    break;
7923
7924  case CXXDefaultConstructor:
7925    if (RD->hasUserDeclaredConstructor()) {
7926      typedef CXXRecordDecl::ctor_iterator ctor_iter;
7927      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce;++ci){
7928        const FunctionDecl *body = 0;
7929        ci->hasBody(body);
7930        if (!body || !cast<CXXConstructorDecl>(body)->isImplicitlyDefined()) {
7931          SourceLocation CtorLoc = ci->getLocation();
7932          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7933          return;
7934        }
7935      }
7936
7937      assert(0 && "found no user-declared constructors");
7938      return;
7939    }
7940    break;
7941
7942  case CXXCopyConstructor:
7943    if (RD->hasUserDeclaredCopyConstructor()) {
7944      SourceLocation CtorLoc =
7945        RD->getCopyConstructor(0)->getLocation();
7946      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7947      return;
7948    }
7949    break;
7950
7951  case CXXMoveConstructor:
7952    if (RD->hasUserDeclaredMoveConstructor()) {
7953      SourceLocation CtorLoc = RD->getMoveConstructor()->getLocation();
7954      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7955      return;
7956    }
7957    break;
7958
7959  case CXXCopyAssignment:
7960    if (RD->hasUserDeclaredCopyAssignment()) {
7961      // FIXME: this should use the location of the copy
7962      // assignment, not the type.
7963      SourceLocation TyLoc = RD->getSourceRange().getBegin();
7964      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
7965      return;
7966    }
7967    break;
7968
7969  case CXXMoveAssignment:
7970    if (RD->hasUserDeclaredMoveAssignment()) {
7971      SourceLocation AssignLoc = RD->getMoveAssignmentOperator()->getLocation();
7972      Diag(AssignLoc, diag::note_nontrivial_user_defined) << QT << member;
7973      return;
7974    }
7975    break;
7976
7977  case CXXDestructor:
7978    if (RD->hasUserDeclaredDestructor()) {
7979      SourceLocation DtorLoc = LookupDestructor(RD)->getLocation();
7980      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
7981      return;
7982    }
7983    break;
7984  }
7985
7986  typedef CXXRecordDecl::base_class_iterator base_iter;
7987
7988  // Virtual bases and members inhibit trivial copying/construction,
7989  // but not trivial destruction.
7990  if (member != CXXDestructor) {
7991    // Check for virtual bases.  vbases includes indirect virtual bases,
7992    // so we just iterate through the direct bases.
7993    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
7994      if (bi->isVirtual()) {
7995        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
7996        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
7997        return;
7998      }
7999
8000    // Check for virtual methods.
8001    typedef CXXRecordDecl::method_iterator meth_iter;
8002    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
8003         ++mi) {
8004      if (mi->isVirtual()) {
8005        SourceLocation MLoc = mi->getSourceRange().getBegin();
8006        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
8007        return;
8008      }
8009    }
8010  }
8011
8012  bool (CXXRecordDecl::*hasTrivial)() const;
8013  switch (member) {
8014  case CXXDefaultConstructor:
8015    hasTrivial = &CXXRecordDecl::hasTrivialDefaultConstructor; break;
8016  case CXXCopyConstructor:
8017    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
8018  case CXXCopyAssignment:
8019    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
8020  case CXXDestructor:
8021    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
8022  default:
8023    assert(0 && "unexpected special member"); return;
8024  }
8025
8026  // Check for nontrivial bases (and recurse).
8027  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
8028    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
8029    assert(BaseRT && "Don't know how to handle dependent bases");
8030    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
8031    if (!(BaseRecTy->*hasTrivial)()) {
8032      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
8033      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
8034      DiagnoseNontrivial(BaseRT, member);
8035      return;
8036    }
8037  }
8038
8039  // Check for nontrivial members (and recurse).
8040  typedef RecordDecl::field_iterator field_iter;
8041  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
8042       ++fi) {
8043    QualType EltTy = Context.getBaseElementType((*fi)->getType());
8044    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
8045      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
8046
8047      if (!(EltRD->*hasTrivial)()) {
8048        SourceLocation FLoc = (*fi)->getLocation();
8049        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
8050        DiagnoseNontrivial(EltRT, member);
8051        return;
8052      }
8053    }
8054
8055    if (EltTy->isObjCLifetimeType()) {
8056      switch (EltTy.getObjCLifetime()) {
8057      case Qualifiers::OCL_None:
8058      case Qualifiers::OCL_ExplicitNone:
8059        break;
8060
8061      case Qualifiers::OCL_Autoreleasing:
8062      case Qualifiers::OCL_Weak:
8063      case Qualifiers::OCL_Strong:
8064        Diag((*fi)->getLocation(), diag::note_nontrivial_objc_ownership)
8065          << QT << EltTy.getObjCLifetime();
8066        return;
8067      }
8068    }
8069  }
8070
8071  assert(0 && "found no explanation for non-trivial member");
8072}
8073
8074/// TranslateIvarVisibility - Translate visibility from a token ID to an
8075///  AST enum value.
8076static ObjCIvarDecl::AccessControl
8077TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
8078  switch (ivarVisibility) {
8079  default: assert(0 && "Unknown visitibility kind");
8080  case tok::objc_private: return ObjCIvarDecl::Private;
8081  case tok::objc_public: return ObjCIvarDecl::Public;
8082  case tok::objc_protected: return ObjCIvarDecl::Protected;
8083  case tok::objc_package: return ObjCIvarDecl::Package;
8084  }
8085}
8086
8087/// ActOnIvar - Each ivar field of an objective-c class is passed into this
8088/// in order to create an IvarDecl object for it.
8089Decl *Sema::ActOnIvar(Scope *S,
8090                                SourceLocation DeclStart,
8091                                Decl *IntfDecl,
8092                                Declarator &D, ExprTy *BitfieldWidth,
8093                                tok::ObjCKeywordKind Visibility) {
8094
8095  IdentifierInfo *II = D.getIdentifier();
8096  Expr *BitWidth = (Expr*)BitfieldWidth;
8097  SourceLocation Loc = DeclStart;
8098  if (II) Loc = D.getIdentifierLoc();
8099
8100  // FIXME: Unnamed fields can be handled in various different ways, for
8101  // example, unnamed unions inject all members into the struct namespace!
8102
8103  TypeSourceInfo *TInfo = GetTypeForDeclarator(D, S);
8104  QualType T = TInfo->getType();
8105
8106  if (BitWidth) {
8107    // 6.7.2.1p3, 6.7.2.1p4
8108    if (VerifyBitField(Loc, II, T, BitWidth)) {
8109      D.setInvalidType();
8110      BitWidth = 0;
8111    }
8112  } else {
8113    // Not a bitfield.
8114
8115    // validate II.
8116
8117  }
8118  if (T->isReferenceType()) {
8119    Diag(Loc, diag::err_ivar_reference_type);
8120    D.setInvalidType();
8121  }
8122  // C99 6.7.2.1p8: A member of a structure or union may have any type other
8123  // than a variably modified type.
8124  else if (T->isVariablyModifiedType()) {
8125    Diag(Loc, diag::err_typecheck_ivar_variable_size);
8126    D.setInvalidType();
8127  }
8128
8129  // Get the visibility (access control) for this ivar.
8130  ObjCIvarDecl::AccessControl ac =
8131    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
8132                                        : ObjCIvarDecl::None;
8133  // Must set ivar's DeclContext to its enclosing interface.
8134  ObjCContainerDecl *EnclosingDecl = cast<ObjCContainerDecl>(IntfDecl);
8135  ObjCContainerDecl *EnclosingContext;
8136  if (ObjCImplementationDecl *IMPDecl =
8137      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8138    if (!LangOpts.ObjCNonFragileABI2) {
8139    // Case of ivar declared in an implementation. Context is that of its class.
8140      EnclosingContext = IMPDecl->getClassInterface();
8141      assert(EnclosingContext && "Implementation has no class interface!");
8142    }
8143    else
8144      EnclosingContext = EnclosingDecl;
8145  } else {
8146    if (ObjCCategoryDecl *CDecl =
8147        dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8148      if (!LangOpts.ObjCNonFragileABI2 || !CDecl->IsClassExtension()) {
8149        Diag(Loc, diag::err_misplaced_ivar) << CDecl->IsClassExtension();
8150        return 0;
8151      }
8152    }
8153    EnclosingContext = EnclosingDecl;
8154  }
8155
8156  // Construct the decl.
8157  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context, EnclosingContext,
8158                                             DeclStart, Loc, II, T,
8159                                             TInfo, ac, (Expr *)BitfieldWidth);
8160
8161  if (II) {
8162    NamedDecl *PrevDecl = LookupSingleName(S, II, Loc, LookupMemberName,
8163                                           ForRedeclaration);
8164    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
8165        && !isa<TagDecl>(PrevDecl)) {
8166      Diag(Loc, diag::err_duplicate_member) << II;
8167      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
8168      NewID->setInvalidDecl();
8169    }
8170  }
8171
8172  // Process attributes attached to the ivar.
8173  ProcessDeclAttributes(S, NewID, D);
8174
8175  if (D.isInvalidType())
8176    NewID->setInvalidDecl();
8177
8178  // In ARC, infer 'retaining' for ivars of retainable type.
8179  if (getLangOptions().ObjCAutoRefCount && inferObjCARCLifetime(NewID))
8180    NewID->setInvalidDecl();
8181
8182  if (II) {
8183    // FIXME: When interfaces are DeclContexts, we'll need to add
8184    // these to the interface.
8185    S->AddDecl(NewID);
8186    IdResolver.AddDecl(NewID);
8187  }
8188
8189  return NewID;
8190}
8191
8192/// ActOnLastBitfield - This routine handles synthesized bitfields rules for
8193/// class and class extensions. For every class @interface and class
8194/// extension @interface, if the last ivar is a bitfield of any type,
8195/// then add an implicit `char :0` ivar to the end of that interface.
8196void Sema::ActOnLastBitfield(SourceLocation DeclLoc, Decl *EnclosingDecl,
8197                             llvm::SmallVectorImpl<Decl *> &AllIvarDecls) {
8198  if (!LangOpts.ObjCNonFragileABI2 || AllIvarDecls.empty())
8199    return;
8200
8201  Decl *ivarDecl = AllIvarDecls[AllIvarDecls.size()-1];
8202  ObjCIvarDecl *Ivar = cast<ObjCIvarDecl>(ivarDecl);
8203
8204  if (!Ivar->isBitField())
8205    return;
8206  uint64_t BitFieldSize =
8207    Ivar->getBitWidth()->EvaluateAsInt(Context).getZExtValue();
8208  if (BitFieldSize == 0)
8209    return;
8210  ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl);
8211  if (!ID) {
8212    if (ObjCCategoryDecl *CD = dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8213      if (!CD->IsClassExtension())
8214        return;
8215    }
8216    // No need to add this to end of @implementation.
8217    else
8218      return;
8219  }
8220  // All conditions are met. Add a new bitfield to the tail end of ivars.
8221  llvm::APInt Zero(Context.getTypeSize(Context.CharTy), 0);
8222  Expr * BW = IntegerLiteral::Create(Context, Zero, Context.CharTy, DeclLoc);
8223
8224  Ivar = ObjCIvarDecl::Create(Context, cast<ObjCContainerDecl>(EnclosingDecl),
8225                              DeclLoc, DeclLoc, 0,
8226                              Context.CharTy,
8227                              Context.CreateTypeSourceInfo(Context.CharTy),
8228                              ObjCIvarDecl::Private, BW,
8229                              true);
8230  AllIvarDecls.push_back(Ivar);
8231}
8232
8233void Sema::ActOnFields(Scope* S,
8234                       SourceLocation RecLoc, Decl *EnclosingDecl,
8235                       Decl **Fields, unsigned NumFields,
8236                       SourceLocation LBrac, SourceLocation RBrac,
8237                       AttributeList *Attr) {
8238  assert(EnclosingDecl && "missing record or interface decl");
8239
8240  // If the decl this is being inserted into is invalid, then it may be a
8241  // redeclaration or some other bogus case.  Don't try to add fields to it.
8242  if (EnclosingDecl->isInvalidDecl()) {
8243    // FIXME: Deallocate fields?
8244    return;
8245  }
8246
8247
8248  // Verify that all the fields are okay.
8249  unsigned NumNamedMembers = 0;
8250  llvm::SmallVector<FieldDecl*, 32> RecFields;
8251
8252  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
8253  bool ARCErrReported = false;
8254  for (unsigned i = 0; i != NumFields; ++i) {
8255    FieldDecl *FD = cast<FieldDecl>(Fields[i]);
8256
8257    // Get the type for the field.
8258    const Type *FDTy = FD->getType().getTypePtr();
8259
8260    if (!FD->isAnonymousStructOrUnion()) {
8261      // Remember all fields written by the user.
8262      RecFields.push_back(FD);
8263    }
8264
8265    // If the field is already invalid for some reason, don't emit more
8266    // diagnostics about it.
8267    if (FD->isInvalidDecl()) {
8268      EnclosingDecl->setInvalidDecl();
8269      continue;
8270    }
8271
8272    // C99 6.7.2.1p2:
8273    //   A structure or union shall not contain a member with
8274    //   incomplete or function type (hence, a structure shall not
8275    //   contain an instance of itself, but may contain a pointer to
8276    //   an instance of itself), except that the last member of a
8277    //   structure with more than one named member may have incomplete
8278    //   array type; such a structure (and any union containing,
8279    //   possibly recursively, a member that is such a structure)
8280    //   shall not be a member of a structure or an element of an
8281    //   array.
8282    if (FDTy->isFunctionType()) {
8283      // Field declared as a function.
8284      Diag(FD->getLocation(), diag::err_field_declared_as_function)
8285        << FD->getDeclName();
8286      FD->setInvalidDecl();
8287      EnclosingDecl->setInvalidDecl();
8288      continue;
8289    } else if (FDTy->isIncompleteArrayType() && Record &&
8290               ((i == NumFields - 1 && !Record->isUnion()) ||
8291                ((getLangOptions().Microsoft || getLangOptions().CPlusPlus) &&
8292                 (i == NumFields - 1 || Record->isUnion())))) {
8293      // Flexible array member.
8294      // Microsoft and g++ is more permissive regarding flexible array.
8295      // It will accept flexible array in union and also
8296      // as the sole element of a struct/class.
8297      if (getLangOptions().Microsoft) {
8298        if (Record->isUnion())
8299          Diag(FD->getLocation(), diag::ext_flexible_array_union_ms)
8300            << FD->getDeclName();
8301        else if (NumFields == 1)
8302          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_ms)
8303            << FD->getDeclName() << Record->getTagKind();
8304      } else if (getLangOptions().CPlusPlus) {
8305        if (Record->isUnion())
8306          Diag(FD->getLocation(), diag::ext_flexible_array_union_gnu)
8307            << FD->getDeclName();
8308        else if (NumFields == 1)
8309          Diag(FD->getLocation(), diag::ext_flexible_array_empty_aggregate_gnu)
8310            << FD->getDeclName() << Record->getTagKind();
8311      } else if (NumNamedMembers < 1) {
8312        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
8313          << FD->getDeclName();
8314        FD->setInvalidDecl();
8315        EnclosingDecl->setInvalidDecl();
8316        continue;
8317      }
8318      if (!FD->getType()->isDependentType() &&
8319          !Context.getBaseElementType(FD->getType()).isPODType(Context)) {
8320        Diag(FD->getLocation(), diag::err_flexible_array_has_nonpod_type)
8321          << FD->getDeclName() << FD->getType();
8322        FD->setInvalidDecl();
8323        EnclosingDecl->setInvalidDecl();
8324        continue;
8325      }
8326      // Okay, we have a legal flexible array member at the end of the struct.
8327      if (Record)
8328        Record->setHasFlexibleArrayMember(true);
8329    } else if (!FDTy->isDependentType() &&
8330               RequireCompleteType(FD->getLocation(), FD->getType(),
8331                                   diag::err_field_incomplete)) {
8332      // Incomplete type
8333      FD->setInvalidDecl();
8334      EnclosingDecl->setInvalidDecl();
8335      continue;
8336    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
8337      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
8338        // If this is a member of a union, then entire union becomes "flexible".
8339        if (Record && Record->isUnion()) {
8340          Record->setHasFlexibleArrayMember(true);
8341        } else {
8342          // If this is a struct/class and this is not the last element, reject
8343          // it.  Note that GCC supports variable sized arrays in the middle of
8344          // structures.
8345          if (i != NumFields-1)
8346            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
8347              << FD->getDeclName() << FD->getType();
8348          else {
8349            // We support flexible arrays at the end of structs in
8350            // other structs as an extension.
8351            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
8352              << FD->getDeclName();
8353            if (Record)
8354              Record->setHasFlexibleArrayMember(true);
8355          }
8356        }
8357      }
8358      if (Record && FDTTy->getDecl()->hasObjectMember())
8359        Record->setHasObjectMember(true);
8360    } else if (FDTy->isObjCObjectType()) {
8361      /// A field cannot be an Objective-c object
8362      Diag(FD->getLocation(), diag::err_statically_allocated_object);
8363      FD->setInvalidDecl();
8364      EnclosingDecl->setInvalidDecl();
8365      continue;
8366    }
8367    else if (!getLangOptions().CPlusPlus) {
8368      if (getLangOptions().ObjCAutoRefCount && Record && !ARCErrReported) {
8369        // It's an error in ARC if a field has lifetime.
8370        // We don't want to report this in a system header, though,
8371        // so we just make the field unavailable.
8372        // FIXME: that's really not sufficient; we need to make the type
8373        // itself invalid to, say, initialize or copy.
8374        QualType T = FD->getType();
8375        Qualifiers::ObjCLifetime lifetime = T.getObjCLifetime();
8376        if (lifetime && lifetime != Qualifiers::OCL_ExplicitNone) {
8377          SourceLocation loc = FD->getLocation();
8378          if (getSourceManager().isInSystemHeader(loc)) {
8379            if (!FD->hasAttr<UnavailableAttr>()) {
8380              FD->addAttr(new (Context) UnavailableAttr(loc, Context,
8381                                "this system field has retaining ownership"));
8382            }
8383          } else {
8384            Diag(FD->getLocation(), diag::err_arc_objc_object_in_struct);
8385          }
8386          ARCErrReported = true;
8387        }
8388      }
8389      else if (getLangOptions().ObjC1 &&
8390               getLangOptions().getGCMode() != LangOptions::NonGC &&
8391               Record && !Record->hasObjectMember()) {
8392        if (FD->getType()->isObjCObjectPointerType() ||
8393            FD->getType().isObjCGCStrong())
8394          Record->setHasObjectMember(true);
8395        else if (Context.getAsArrayType(FD->getType())) {
8396          QualType BaseType = Context.getBaseElementType(FD->getType());
8397          if (BaseType->isRecordType() &&
8398              BaseType->getAs<RecordType>()->getDecl()->hasObjectMember())
8399            Record->setHasObjectMember(true);
8400          else if (BaseType->isObjCObjectPointerType() ||
8401                   BaseType.isObjCGCStrong())
8402                 Record->setHasObjectMember(true);
8403        }
8404      }
8405    }
8406    // Keep track of the number of named members.
8407    if (FD->getIdentifier())
8408      ++NumNamedMembers;
8409  }
8410
8411  // Okay, we successfully defined 'Record'.
8412  if (Record) {
8413    bool Completed = false;
8414    if (CXXRecordDecl *CXXRecord = dyn_cast<CXXRecordDecl>(Record)) {
8415      if (!CXXRecord->isInvalidDecl()) {
8416        // Set access bits correctly on the directly-declared conversions.
8417        UnresolvedSetImpl *Convs = CXXRecord->getConversionFunctions();
8418        for (UnresolvedSetIterator I = Convs->begin(), E = Convs->end();
8419             I != E; ++I)
8420          Convs->setAccess(I, (*I)->getAccess());
8421
8422        if (!CXXRecord->isDependentType()) {
8423          // Objective-C Automatic Reference Counting:
8424          //   If a class has a non-static data member of Objective-C pointer
8425          //   type (or array thereof), it is a non-POD type and its
8426          //   default constructor (if any), copy constructor, copy assignment
8427          //   operator, and destructor are non-trivial.
8428          //
8429          // This rule is also handled by CXXRecordDecl::completeDefinition().
8430          // However, here we check whether this particular class is only
8431          // non-POD because of the presence of an Objective-C pointer member.
8432          // If so, objects of this type cannot be shared between code compiled
8433          // with instant objects and code compiled with manual retain/release.
8434          if (getLangOptions().ObjCAutoRefCount &&
8435              CXXRecord->hasObjectMember() &&
8436              CXXRecord->getLinkage() == ExternalLinkage) {
8437            if (CXXRecord->isPOD()) {
8438              Diag(CXXRecord->getLocation(),
8439                   diag::warn_arc_non_pod_class_with_object_member)
8440               << CXXRecord;
8441            } else {
8442              // FIXME: Fix-Its would be nice here, but finding a good location
8443              // for them is going to be tricky.
8444              if (CXXRecord->hasTrivialCopyConstructor())
8445                Diag(CXXRecord->getLocation(),
8446                     diag::warn_arc_trivial_member_function_with_object_member)
8447                  << CXXRecord << 0;
8448              if (CXXRecord->hasTrivialCopyAssignment())
8449                Diag(CXXRecord->getLocation(),
8450                     diag::warn_arc_trivial_member_function_with_object_member)
8451                << CXXRecord << 1;
8452              if (CXXRecord->hasTrivialDestructor())
8453                Diag(CXXRecord->getLocation(),
8454                     diag::warn_arc_trivial_member_function_with_object_member)
8455                << CXXRecord << 2;
8456            }
8457          }
8458
8459          // Adjust user-defined destructor exception spec.
8460          if (getLangOptions().CPlusPlus0x &&
8461              CXXRecord->hasUserDeclaredDestructor())
8462            AdjustDestructorExceptionSpec(CXXRecord,CXXRecord->getDestructor());
8463
8464          // Add any implicitly-declared members to this class.
8465          AddImplicitlyDeclaredMembersToClass(CXXRecord);
8466
8467          // If we have virtual base classes, we may end up finding multiple
8468          // final overriders for a given virtual function. Check for this
8469          // problem now.
8470          if (CXXRecord->getNumVBases()) {
8471            CXXFinalOverriderMap FinalOverriders;
8472            CXXRecord->getFinalOverriders(FinalOverriders);
8473
8474            for (CXXFinalOverriderMap::iterator M = FinalOverriders.begin(),
8475                                             MEnd = FinalOverriders.end();
8476                 M != MEnd; ++M) {
8477              for (OverridingMethods::iterator SO = M->second.begin(),
8478                                            SOEnd = M->second.end();
8479                   SO != SOEnd; ++SO) {
8480                assert(SO->second.size() > 0 &&
8481                       "Virtual function without overridding functions?");
8482                if (SO->second.size() == 1)
8483                  continue;
8484
8485                // C++ [class.virtual]p2:
8486                //   In a derived class, if a virtual member function of a base
8487                //   class subobject has more than one final overrider the
8488                //   program is ill-formed.
8489                Diag(Record->getLocation(), diag::err_multiple_final_overriders)
8490                  << (NamedDecl *)M->first << Record;
8491                Diag(M->first->getLocation(),
8492                     diag::note_overridden_virtual_function);
8493                for (OverridingMethods::overriding_iterator
8494                          OM = SO->second.begin(),
8495                       OMEnd = SO->second.end();
8496                     OM != OMEnd; ++OM)
8497                  Diag(OM->Method->getLocation(), diag::note_final_overrider)
8498                    << (NamedDecl *)M->first << OM->Method->getParent();
8499
8500                Record->setInvalidDecl();
8501              }
8502            }
8503            CXXRecord->completeDefinition(&FinalOverriders);
8504            Completed = true;
8505          }
8506        }
8507      }
8508    }
8509
8510    if (!Completed)
8511      Record->completeDefinition();
8512
8513    // Now that the record is complete, do any delayed exception spec checks
8514    // we were missing.
8515    while (!DelayedDestructorExceptionSpecChecks.empty()) {
8516      const CXXDestructorDecl *Dtor =
8517              DelayedDestructorExceptionSpecChecks.back().first;
8518      if (Dtor->getParent() != Record)
8519        break;
8520
8521      assert(!Dtor->getParent()->isDependentType() &&
8522          "Should not ever add destructors of templates into the list.");
8523      CheckOverridingFunctionExceptionSpec(Dtor,
8524          DelayedDestructorExceptionSpecChecks.back().second);
8525      DelayedDestructorExceptionSpecChecks.pop_back();
8526    }
8527
8528  } else {
8529    ObjCIvarDecl **ClsFields =
8530      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
8531    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
8532      ID->setLocEnd(RBrac);
8533      // Add ivar's to class's DeclContext.
8534      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8535        ClsFields[i]->setLexicalDeclContext(ID);
8536        ID->addDecl(ClsFields[i]);
8537      }
8538      // Must enforce the rule that ivars in the base classes may not be
8539      // duplicates.
8540      if (ID->getSuperClass())
8541        DiagnoseDuplicateIvars(ID, ID->getSuperClass());
8542    } else if (ObjCImplementationDecl *IMPDecl =
8543                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
8544      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
8545      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
8546        // Ivar declared in @implementation never belongs to the implementation.
8547        // Only it is in implementation's lexical context.
8548        ClsFields[I]->setLexicalDeclContext(IMPDecl);
8549      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
8550    } else if (ObjCCategoryDecl *CDecl =
8551                dyn_cast<ObjCCategoryDecl>(EnclosingDecl)) {
8552      // case of ivars in class extension; all other cases have been
8553      // reported as errors elsewhere.
8554      // FIXME. Class extension does not have a LocEnd field.
8555      // CDecl->setLocEnd(RBrac);
8556      // Add ivar's to class extension's DeclContext.
8557      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
8558        ClsFields[i]->setLexicalDeclContext(CDecl);
8559        CDecl->addDecl(ClsFields[i]);
8560      }
8561    }
8562  }
8563
8564  if (Attr)
8565    ProcessDeclAttributeList(S, Record, Attr);
8566
8567  // If there's a #pragma GCC visibility in scope, and this isn't a subclass,
8568  // set the visibility of this record.
8569  if (Record && !Record->getDeclContext()->isRecord())
8570    AddPushedVisibilityAttribute(Record);
8571}
8572
8573/// \brief Determine whether the given integral value is representable within
8574/// the given type T.
8575static bool isRepresentableIntegerValue(ASTContext &Context,
8576                                        llvm::APSInt &Value,
8577                                        QualType T) {
8578  assert(T->isIntegralType(Context) && "Integral type required!");
8579  unsigned BitWidth = Context.getIntWidth(T);
8580
8581  if (Value.isUnsigned() || Value.isNonNegative()) {
8582    if (T->isSignedIntegerOrEnumerationType())
8583      --BitWidth;
8584    return Value.getActiveBits() <= BitWidth;
8585  }
8586  return Value.getMinSignedBits() <= BitWidth;
8587}
8588
8589// \brief Given an integral type, return the next larger integral type
8590// (or a NULL type of no such type exists).
8591static QualType getNextLargerIntegralType(ASTContext &Context, QualType T) {
8592  // FIXME: Int128/UInt128 support, which also needs to be introduced into
8593  // enum checking below.
8594  assert(T->isIntegralType(Context) && "Integral type required!");
8595  const unsigned NumTypes = 4;
8596  QualType SignedIntegralTypes[NumTypes] = {
8597    Context.ShortTy, Context.IntTy, Context.LongTy, Context.LongLongTy
8598  };
8599  QualType UnsignedIntegralTypes[NumTypes] = {
8600    Context.UnsignedShortTy, Context.UnsignedIntTy, Context.UnsignedLongTy,
8601    Context.UnsignedLongLongTy
8602  };
8603
8604  unsigned BitWidth = Context.getTypeSize(T);
8605  QualType *Types = T->isSignedIntegerOrEnumerationType()? SignedIntegralTypes
8606                                                        : UnsignedIntegralTypes;
8607  for (unsigned I = 0; I != NumTypes; ++I)
8608    if (Context.getTypeSize(Types[I]) > BitWidth)
8609      return Types[I];
8610
8611  return QualType();
8612}
8613
8614EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
8615                                          EnumConstantDecl *LastEnumConst,
8616                                          SourceLocation IdLoc,
8617                                          IdentifierInfo *Id,
8618                                          Expr *Val) {
8619  unsigned IntWidth = Context.Target.getIntWidth();
8620  llvm::APSInt EnumVal(IntWidth);
8621  QualType EltTy;
8622
8623  if (Val && DiagnoseUnexpandedParameterPack(Val, UPPC_EnumeratorValue))
8624    Val = 0;
8625
8626  if (Val) {
8627    if (Enum->isDependentType() || Val->isTypeDependent())
8628      EltTy = Context.DependentTy;
8629    else {
8630      // C99 6.7.2.2p2: Make sure we have an integer constant expression.
8631      SourceLocation ExpLoc;
8632      if (!Val->isValueDependent() &&
8633          VerifyIntegerConstantExpression(Val, &EnumVal)) {
8634        Val = 0;
8635      } else {
8636        if (!getLangOptions().CPlusPlus) {
8637          // C99 6.7.2.2p2:
8638          //   The expression that defines the value of an enumeration constant
8639          //   shall be an integer constant expression that has a value
8640          //   representable as an int.
8641
8642          // Complain if the value is not representable in an int.
8643          if (!isRepresentableIntegerValue(Context, EnumVal, Context.IntTy))
8644            Diag(IdLoc, diag::ext_enum_value_not_int)
8645              << EnumVal.toString(10) << Val->getSourceRange()
8646              << (EnumVal.isUnsigned() || EnumVal.isNonNegative());
8647          else if (!Context.hasSameType(Val->getType(), Context.IntTy)) {
8648            // Force the type of the expression to 'int'.
8649            Val = ImpCastExprToType(Val, Context.IntTy, CK_IntegralCast).take();
8650          }
8651        }
8652
8653        if (Enum->isFixed()) {
8654          EltTy = Enum->getIntegerType();
8655
8656          // C++0x [dcl.enum]p5:
8657          //   ... if the initializing value of an enumerator cannot be
8658          //   represented by the underlying type, the program is ill-formed.
8659          if (!isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8660            if (getLangOptions().Microsoft) {
8661              Diag(IdLoc, diag::ext_enumerator_too_large) << EltTy;
8662              Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8663            } else
8664              Diag(IdLoc, diag::err_enumerator_too_large)
8665                << EltTy;
8666          } else
8667            Val = ImpCastExprToType(Val, EltTy, CK_IntegralCast).take();
8668        }
8669        else {
8670          // C++0x [dcl.enum]p5:
8671          //   If the underlying type is not fixed, the type of each enumerator
8672          //   is the type of its initializing value:
8673          //     - If an initializer is specified for an enumerator, the
8674          //       initializing value has the same type as the expression.
8675          EltTy = Val->getType();
8676        }
8677      }
8678    }
8679  }
8680
8681  if (!Val) {
8682    if (Enum->isDependentType())
8683      EltTy = Context.DependentTy;
8684    else if (!LastEnumConst) {
8685      // C++0x [dcl.enum]p5:
8686      //   If the underlying type is not fixed, the type of each enumerator
8687      //   is the type of its initializing value:
8688      //     - If no initializer is specified for the first enumerator, the
8689      //       initializing value has an unspecified integral type.
8690      //
8691      // GCC uses 'int' for its unspecified integral type, as does
8692      // C99 6.7.2.2p3.
8693      if (Enum->isFixed()) {
8694        EltTy = Enum->getIntegerType();
8695      }
8696      else {
8697        EltTy = Context.IntTy;
8698      }
8699    } else {
8700      // Assign the last value + 1.
8701      EnumVal = LastEnumConst->getInitVal();
8702      ++EnumVal;
8703      EltTy = LastEnumConst->getType();
8704
8705      // Check for overflow on increment.
8706      if (EnumVal < LastEnumConst->getInitVal()) {
8707        // C++0x [dcl.enum]p5:
8708        //   If the underlying type is not fixed, the type of each enumerator
8709        //   is the type of its initializing value:
8710        //
8711        //     - Otherwise the type of the initializing value is the same as
8712        //       the type of the initializing value of the preceding enumerator
8713        //       unless the incremented value is not representable in that type,
8714        //       in which case the type is an unspecified integral type
8715        //       sufficient to contain the incremented value. If no such type
8716        //       exists, the program is ill-formed.
8717        QualType T = getNextLargerIntegralType(Context, EltTy);
8718        if (T.isNull() || Enum->isFixed()) {
8719          // There is no integral type larger enough to represent this
8720          // value. Complain, then allow the value to wrap around.
8721          EnumVal = LastEnumConst->getInitVal();
8722          EnumVal = EnumVal.zext(EnumVal.getBitWidth() * 2);
8723          ++EnumVal;
8724          if (Enum->isFixed())
8725            // When the underlying type is fixed, this is ill-formed.
8726            Diag(IdLoc, diag::err_enumerator_wrapped)
8727              << EnumVal.toString(10)
8728              << EltTy;
8729          else
8730            Diag(IdLoc, diag::warn_enumerator_too_large)
8731              << EnumVal.toString(10);
8732        } else {
8733          EltTy = T;
8734        }
8735
8736        // Retrieve the last enumerator's value, extent that type to the
8737        // type that is supposed to be large enough to represent the incremented
8738        // value, then increment.
8739        EnumVal = LastEnumConst->getInitVal();
8740        EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8741        EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8742        ++EnumVal;
8743
8744        // If we're not in C++, diagnose the overflow of enumerator values,
8745        // which in C99 means that the enumerator value is not representable in
8746        // an int (C99 6.7.2.2p2). However, we support GCC's extension that
8747        // permits enumerator values that are representable in some larger
8748        // integral type.
8749        if (!getLangOptions().CPlusPlus && !T.isNull())
8750          Diag(IdLoc, diag::warn_enum_value_overflow);
8751      } else if (!getLangOptions().CPlusPlus &&
8752                 !isRepresentableIntegerValue(Context, EnumVal, EltTy)) {
8753        // Enforce C99 6.7.2.2p2 even when we compute the next value.
8754        Diag(IdLoc, diag::ext_enum_value_not_int)
8755          << EnumVal.toString(10) << 1;
8756      }
8757    }
8758  }
8759
8760  if (!EltTy->isDependentType()) {
8761    // Make the enumerator value match the signedness and size of the
8762    // enumerator's type.
8763    EnumVal = EnumVal.zextOrTrunc(Context.getIntWidth(EltTy));
8764    EnumVal.setIsSigned(EltTy->isSignedIntegerOrEnumerationType());
8765  }
8766
8767  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
8768                                  Val, EnumVal);
8769}
8770
8771
8772Decl *Sema::ActOnEnumConstant(Scope *S, Decl *theEnumDecl, Decl *lastEnumConst,
8773                              SourceLocation IdLoc, IdentifierInfo *Id,
8774                              AttributeList *Attr,
8775                              SourceLocation EqualLoc, ExprTy *val) {
8776  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl);
8777  EnumConstantDecl *LastEnumConst =
8778    cast_or_null<EnumConstantDecl>(lastEnumConst);
8779  Expr *Val = static_cast<Expr*>(val);
8780
8781  // The scope passed in may not be a decl scope.  Zip up the scope tree until
8782  // we find one that is.
8783  S = getNonFieldDeclScope(S);
8784
8785  // Verify that there isn't already something declared with this name in this
8786  // scope.
8787  NamedDecl *PrevDecl = LookupSingleName(S, Id, IdLoc, LookupOrdinaryName,
8788                                         ForRedeclaration);
8789  if (PrevDecl && PrevDecl->isTemplateParameter()) {
8790    // Maybe we will complain about the shadowed template parameter.
8791    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
8792    // Just pretend that we didn't see the previous declaration.
8793    PrevDecl = 0;
8794  }
8795
8796  if (PrevDecl) {
8797    // When in C++, we may get a TagDecl with the same name; in this case the
8798    // enum constant will 'hide' the tag.
8799    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
8800           "Received TagDecl when not in C++!");
8801    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
8802      if (isa<EnumConstantDecl>(PrevDecl))
8803        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
8804      else
8805        Diag(IdLoc, diag::err_redefinition) << Id;
8806      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
8807      return 0;
8808    }
8809  }
8810
8811  // C++ [class.mem]p13:
8812  //   If T is the name of a class, then each of the following shall have a
8813  //   name different from T:
8814  //     - every enumerator of every member of class T that is an enumerated
8815  //       type
8816  if (CXXRecordDecl *Record
8817                      = dyn_cast<CXXRecordDecl>(
8818                             TheEnumDecl->getDeclContext()->getRedeclContext()))
8819    if (Record->getIdentifier() && Record->getIdentifier() == Id)
8820      Diag(IdLoc, diag::err_member_name_of_class) << Id;
8821
8822  EnumConstantDecl *New =
8823    CheckEnumConstant(TheEnumDecl, LastEnumConst, IdLoc, Id, Val);
8824
8825  if (New) {
8826    // Process attributes.
8827    if (Attr) ProcessDeclAttributeList(S, New, Attr);
8828
8829    // Register this decl in the current scope stack.
8830    New->setAccess(TheEnumDecl->getAccess());
8831    PushOnScopeChains(New, S);
8832  }
8833
8834  return New;
8835}
8836
8837void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
8838                         SourceLocation RBraceLoc, Decl *EnumDeclX,
8839                         Decl **Elements, unsigned NumElements,
8840                         Scope *S, AttributeList *Attr) {
8841  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX);
8842  QualType EnumType = Context.getTypeDeclType(Enum);
8843
8844  if (Attr)
8845    ProcessDeclAttributeList(S, Enum, Attr);
8846
8847  if (Enum->isDependentType()) {
8848    for (unsigned i = 0; i != NumElements; ++i) {
8849      EnumConstantDecl *ECD =
8850        cast_or_null<EnumConstantDecl>(Elements[i]);
8851      if (!ECD) continue;
8852
8853      ECD->setType(EnumType);
8854    }
8855
8856    Enum->completeDefinition(Context.DependentTy, Context.DependentTy, 0, 0);
8857    return;
8858  }
8859
8860  // TODO: If the result value doesn't fit in an int, it must be a long or long
8861  // long value.  ISO C does not support this, but GCC does as an extension,
8862  // emit a warning.
8863  unsigned IntWidth = Context.Target.getIntWidth();
8864  unsigned CharWidth = Context.Target.getCharWidth();
8865  unsigned ShortWidth = Context.Target.getShortWidth();
8866
8867  // Verify that all the values are okay, compute the size of the values, and
8868  // reverse the list.
8869  unsigned NumNegativeBits = 0;
8870  unsigned NumPositiveBits = 0;
8871
8872  // Keep track of whether all elements have type int.
8873  bool AllElementsInt = true;
8874
8875  for (unsigned i = 0; i != NumElements; ++i) {
8876    EnumConstantDecl *ECD =
8877      cast_or_null<EnumConstantDecl>(Elements[i]);
8878    if (!ECD) continue;  // Already issued a diagnostic.
8879
8880    const llvm::APSInt &InitVal = ECD->getInitVal();
8881
8882    // Keep track of the size of positive and negative values.
8883    if (InitVal.isUnsigned() || InitVal.isNonNegative())
8884      NumPositiveBits = std::max(NumPositiveBits,
8885                                 (unsigned)InitVal.getActiveBits());
8886    else
8887      NumNegativeBits = std::max(NumNegativeBits,
8888                                 (unsigned)InitVal.getMinSignedBits());
8889
8890    // Keep track of whether every enum element has type int (very commmon).
8891    if (AllElementsInt)
8892      AllElementsInt = ECD->getType() == Context.IntTy;
8893  }
8894
8895  // Figure out the type that should be used for this enum.
8896  QualType BestType;
8897  unsigned BestWidth;
8898
8899  // C++0x N3000 [conv.prom]p3:
8900  //   An rvalue of an unscoped enumeration type whose underlying
8901  //   type is not fixed can be converted to an rvalue of the first
8902  //   of the following types that can represent all the values of
8903  //   the enumeration: int, unsigned int, long int, unsigned long
8904  //   int, long long int, or unsigned long long int.
8905  // C99 6.4.4.3p2:
8906  //   An identifier declared as an enumeration constant has type int.
8907  // The C99 rule is modified by a gcc extension
8908  QualType BestPromotionType;
8909
8910  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
8911  // -fshort-enums is the equivalent to specifying the packed attribute on all
8912  // enum definitions.
8913  if (LangOpts.ShortEnums)
8914    Packed = true;
8915
8916  if (Enum->isFixed()) {
8917    BestType = BestPromotionType = Enum->getIntegerType();
8918    // We don't need to set BestWidth, because BestType is going to be the type
8919    // of the enumerators, but we do anyway because otherwise some compilers
8920    // warn that it might be used uninitialized.
8921    BestWidth = CharWidth;
8922  }
8923  else if (NumNegativeBits) {
8924    // If there is a negative value, figure out the smallest integer type (of
8925    // int/long/longlong) that fits.
8926    // If it's packed, check also if it fits a char or a short.
8927    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
8928      BestType = Context.SignedCharTy;
8929      BestWidth = CharWidth;
8930    } else if (Packed && NumNegativeBits <= ShortWidth &&
8931               NumPositiveBits < ShortWidth) {
8932      BestType = Context.ShortTy;
8933      BestWidth = ShortWidth;
8934    } else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
8935      BestType = Context.IntTy;
8936      BestWidth = IntWidth;
8937    } else {
8938      BestWidth = Context.Target.getLongWidth();
8939
8940      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth) {
8941        BestType = Context.LongTy;
8942      } else {
8943        BestWidth = Context.Target.getLongLongWidth();
8944
8945        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
8946          Diag(Enum->getLocation(), diag::warn_enum_too_large);
8947        BestType = Context.LongLongTy;
8948      }
8949    }
8950    BestPromotionType = (BestWidth <= IntWidth ? Context.IntTy : BestType);
8951  } else {
8952    // If there is no negative value, figure out the smallest type that fits
8953    // all of the enumerator values.
8954    // If it's packed, check also if it fits a char or a short.
8955    if (Packed && NumPositiveBits <= CharWidth) {
8956      BestType = Context.UnsignedCharTy;
8957      BestPromotionType = Context.IntTy;
8958      BestWidth = CharWidth;
8959    } else if (Packed && NumPositiveBits <= ShortWidth) {
8960      BestType = Context.UnsignedShortTy;
8961      BestPromotionType = Context.IntTy;
8962      BestWidth = ShortWidth;
8963    } else if (NumPositiveBits <= IntWidth) {
8964      BestType = Context.UnsignedIntTy;
8965      BestWidth = IntWidth;
8966      BestPromotionType
8967        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8968                           ? Context.UnsignedIntTy : Context.IntTy;
8969    } else if (NumPositiveBits <=
8970               (BestWidth = Context.Target.getLongWidth())) {
8971      BestType = Context.UnsignedLongTy;
8972      BestPromotionType
8973        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8974                           ? Context.UnsignedLongTy : Context.LongTy;
8975    } else {
8976      BestWidth = Context.Target.getLongLongWidth();
8977      assert(NumPositiveBits <= BestWidth &&
8978             "How could an initializer get larger than ULL?");
8979      BestType = Context.UnsignedLongLongTy;
8980      BestPromotionType
8981        = (NumPositiveBits == BestWidth || !getLangOptions().CPlusPlus)
8982                           ? Context.UnsignedLongLongTy : Context.LongLongTy;
8983    }
8984  }
8985
8986  // Loop over all of the enumerator constants, changing their types to match
8987  // the type of the enum if needed.
8988  for (unsigned i = 0; i != NumElements; ++i) {
8989    EnumConstantDecl *ECD = cast_or_null<EnumConstantDecl>(Elements[i]);
8990    if (!ECD) continue;  // Already issued a diagnostic.
8991
8992    // Standard C says the enumerators have int type, but we allow, as an
8993    // extension, the enumerators to be larger than int size.  If each
8994    // enumerator value fits in an int, type it as an int, otherwise type it the
8995    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
8996    // that X has type 'int', not 'unsigned'.
8997
8998    // Determine whether the value fits into an int.
8999    llvm::APSInt InitVal = ECD->getInitVal();
9000
9001    // If it fits into an integer type, force it.  Otherwise force it to match
9002    // the enum decl type.
9003    QualType NewTy;
9004    unsigned NewWidth;
9005    bool NewSign;
9006    if (!getLangOptions().CPlusPlus &&
9007        isRepresentableIntegerValue(Context, InitVal, Context.IntTy)) {
9008      NewTy = Context.IntTy;
9009      NewWidth = IntWidth;
9010      NewSign = true;
9011    } else if (ECD->getType() == BestType) {
9012      // Already the right type!
9013      if (getLangOptions().CPlusPlus)
9014        // C++ [dcl.enum]p4: Following the closing brace of an
9015        // enum-specifier, each enumerator has the type of its
9016        // enumeration.
9017        ECD->setType(EnumType);
9018      continue;
9019    } else {
9020      NewTy = BestType;
9021      NewWidth = BestWidth;
9022      NewSign = BestType->isSignedIntegerOrEnumerationType();
9023    }
9024
9025    // Adjust the APSInt value.
9026    InitVal = InitVal.extOrTrunc(NewWidth);
9027    InitVal.setIsSigned(NewSign);
9028    ECD->setInitVal(InitVal);
9029
9030    // Adjust the Expr initializer and type.
9031    if (ECD->getInitExpr() &&
9032	!Context.hasSameType(NewTy, ECD->getInitExpr()->getType()))
9033      ECD->setInitExpr(ImplicitCastExpr::Create(Context, NewTy,
9034                                                CK_IntegralCast,
9035                                                ECD->getInitExpr(),
9036                                                /*base paths*/ 0,
9037                                                VK_RValue));
9038    if (getLangOptions().CPlusPlus)
9039      // C++ [dcl.enum]p4: Following the closing brace of an
9040      // enum-specifier, each enumerator has the type of its
9041      // enumeration.
9042      ECD->setType(EnumType);
9043    else
9044      ECD->setType(NewTy);
9045  }
9046
9047  Enum->completeDefinition(BestType, BestPromotionType,
9048                           NumPositiveBits, NumNegativeBits);
9049}
9050
9051Decl *Sema::ActOnFileScopeAsmDecl(Expr *expr,
9052                                  SourceLocation StartLoc,
9053                                  SourceLocation EndLoc) {
9054  StringLiteral *AsmString = cast<StringLiteral>(expr);
9055
9056  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
9057                                                   AsmString, StartLoc,
9058                                                   EndLoc);
9059  CurContext->addDecl(New);
9060  return New;
9061}
9062
9063void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
9064                             SourceLocation PragmaLoc,
9065                             SourceLocation NameLoc) {
9066  Decl *PrevDecl = LookupSingleName(TUScope, Name, NameLoc, LookupOrdinaryName);
9067
9068  if (PrevDecl) {
9069    PrevDecl->addAttr(::new (Context) WeakAttr(PragmaLoc, Context));
9070  } else {
9071    (void)WeakUndeclaredIdentifiers.insert(
9072      std::pair<IdentifierInfo*,WeakInfo>
9073        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
9074  }
9075}
9076
9077void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
9078                                IdentifierInfo* AliasName,
9079                                SourceLocation PragmaLoc,
9080                                SourceLocation NameLoc,
9081                                SourceLocation AliasNameLoc) {
9082  Decl *PrevDecl = LookupSingleName(TUScope, AliasName, AliasNameLoc,
9083                                    LookupOrdinaryName);
9084  WeakInfo W = WeakInfo(Name, NameLoc);
9085
9086  if (PrevDecl) {
9087    if (!PrevDecl->hasAttr<AliasAttr>())
9088      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
9089        DeclApplyPragmaWeak(TUScope, ND, W);
9090  } else {
9091    (void)WeakUndeclaredIdentifiers.insert(
9092      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
9093  }
9094}
9095