SemaDecl.cpp revision 36ef0787532ef3ecfc8ecd5e9661f5b2f87a280f
1//===--- SemaDecl.cpp - Semantic Analysis for Declarations ----------------===//
2//
3//                     The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10//  This file implements semantic analysis for declarations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "Sema.h"
15#include "SemaInherit.h"
16#include "clang/AST/APValue.h"
17#include "clang/AST/ASTConsumer.h"
18#include "clang/AST/ASTContext.h"
19#include "clang/Analysis/CFG.h"
20#include "clang/AST/DeclObjC.h"
21#include "clang/AST/DeclTemplate.h"
22#include "clang/AST/ExprCXX.h"
23#include "clang/AST/StmtCXX.h"
24#include "clang/AST/StmtObjC.h"
25#include "clang/Parse/DeclSpec.h"
26#include "clang/Basic/PartialDiagnostic.h"
27#include "clang/Basic/SourceManager.h"
28#include "clang/Basic/TargetInfo.h"
29// FIXME: layering (ideally, Sema shouldn't be dependent on Lex API's)
30#include "clang/Lex/Preprocessor.h"
31#include "clang/Lex/HeaderSearch.h"
32#include "llvm/ADT/BitVector.h"
33#include "llvm/ADT/STLExtras.h"
34#include <algorithm>
35#include <functional>
36#include <queue>
37using namespace clang;
38
39/// getDeclName - Return a pretty name for the specified decl if possible, or
40/// an empty string if not.  This is used for pretty crash reporting.
41std::string Sema::getDeclName(DeclPtrTy d) {
42  Decl *D = d.getAs<Decl>();
43  if (NamedDecl *DN = dyn_cast_or_null<NamedDecl>(D))
44    return DN->getQualifiedNameAsString();
45  return "";
46}
47
48Sema::DeclGroupPtrTy Sema::ConvertDeclToDeclGroup(DeclPtrTy Ptr) {
49  return DeclGroupPtrTy::make(DeclGroupRef(Ptr.getAs<Decl>()));
50}
51
52/// \brief If the identifier refers to a type name within this scope,
53/// return the declaration of that type.
54///
55/// This routine performs ordinary name lookup of the identifier II
56/// within the given scope, with optional C++ scope specifier SS, to
57/// determine whether the name refers to a type. If so, returns an
58/// opaque pointer (actually a QualType) corresponding to that
59/// type. Otherwise, returns NULL.
60///
61/// If name lookup results in an ambiguity, this routine will complain
62/// and then return NULL.
63Sema::TypeTy *Sema::getTypeName(IdentifierInfo &II, SourceLocation NameLoc,
64                                Scope *S, const CXXScopeSpec *SS,
65                                bool isClassName) {
66  // C++ [temp.res]p3:
67  //   A qualified-id that refers to a type and in which the
68  //   nested-name-specifier depends on a template-parameter (14.6.2)
69  //   shall be prefixed by the keyword typename to indicate that the
70  //   qualified-id denotes a type, forming an
71  //   elaborated-type-specifier (7.1.5.3).
72  //
73  // We therefore do not perform any name lookup if the result would
74  // refer to a member of an unknown specialization.
75  if (SS && isUnknownSpecialization(*SS)) {
76    if (!isClassName)
77      return 0;
78
79    // We know from the grammar that this name refers to a type, so build a
80    // TypenameType node to describe the type.
81    // FIXME: Record somewhere that this TypenameType node has no "typename"
82    // keyword associated with it.
83    return CheckTypenameType((NestedNameSpecifier *)SS->getScopeRep(),
84                             II, SS->getRange()).getAsOpaquePtr();
85  }
86
87  LookupResult Result
88    = LookupParsedName(S, SS, &II, LookupOrdinaryName, false, false);
89
90  NamedDecl *IIDecl = 0;
91  switch (Result.getKind()) {
92  case LookupResult::NotFound:
93  case LookupResult::FoundOverloaded:
94    return 0;
95
96  case LookupResult::AmbiguousBaseSubobjectTypes:
97  case LookupResult::AmbiguousBaseSubobjects:
98  case LookupResult::AmbiguousReference: {
99    // Look to see if we have a type anywhere in the list of results.
100    for (LookupResult::iterator Res = Result.begin(), ResEnd = Result.end();
101         Res != ResEnd; ++Res) {
102      if (isa<TypeDecl>(*Res) || isa<ObjCInterfaceDecl>(*Res)) {
103        if (!IIDecl ||
104            (*Res)->getLocation().getRawEncoding() <
105              IIDecl->getLocation().getRawEncoding())
106          IIDecl = *Res;
107      }
108    }
109
110    if (!IIDecl) {
111      // None of the entities we found is a type, so there is no way
112      // to even assume that the result is a type. In this case, don't
113      // complain about the ambiguity. The parser will either try to
114      // perform this lookup again (e.g., as an object name), which
115      // will produce the ambiguity, or will complain that it expected
116      // a type name.
117      Result.Destroy();
118      return 0;
119    }
120
121    // We found a type within the ambiguous lookup; diagnose the
122    // ambiguity and then return that type. This might be the right
123    // answer, or it might not be, but it suppresses any attempt to
124    // perform the name lookup again.
125    DiagnoseAmbiguousLookup(Result, DeclarationName(&II), NameLoc);
126    break;
127  }
128
129  case LookupResult::Found:
130    IIDecl = Result.getAsDecl();
131    break;
132  }
133
134  if (IIDecl) {
135    QualType T;
136
137    if (TypeDecl *TD = dyn_cast<TypeDecl>(IIDecl)) {
138      // Check whether we can use this type
139      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
140
141      if (getLangOptions().CPlusPlus) {
142        // C++ [temp.local]p2:
143        //   Within the scope of a class template specialization or
144        //   partial specialization, when the injected-class-name is
145        //   not followed by a <, it is equivalent to the
146        //   injected-class-name followed by the template-argument s
147        //   of the class template specialization or partial
148        //   specialization enclosed in <>.
149        if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(TD))
150          if (RD->isInjectedClassName())
151            if (ClassTemplateDecl *Template = RD->getDescribedClassTemplate())
152              T = Template->getInjectedClassNameType(Context);
153      }
154
155      if (T.isNull())
156        T = Context.getTypeDeclType(TD);
157    } else if (ObjCInterfaceDecl *IDecl = dyn_cast<ObjCInterfaceDecl>(IIDecl)) {
158      // Check whether we can use this interface.
159      (void)DiagnoseUseOfDecl(IIDecl, NameLoc);
160
161      T = Context.getObjCInterfaceType(IDecl);
162    } else
163      return 0;
164
165    if (SS)
166      T = getQualifiedNameType(*SS, T);
167
168    return T.getAsOpaquePtr();
169  }
170
171  return 0;
172}
173
174/// isTagName() - This method is called *for error recovery purposes only*
175/// to determine if the specified name is a valid tag name ("struct foo").  If
176/// so, this returns the TST for the tag corresponding to it (TST_enum,
177/// TST_union, TST_struct, TST_class).  This is used to diagnose cases in C
178/// where the user forgot to specify the tag.
179DeclSpec::TST Sema::isTagName(IdentifierInfo &II, Scope *S) {
180  // Do a tag name lookup in this scope.
181  LookupResult R = LookupName(S, &II, LookupTagName, false, false);
182  if (R.getKind() == LookupResult::Found)
183    if (const TagDecl *TD = dyn_cast<TagDecl>(R.getAsDecl())) {
184      switch (TD->getTagKind()) {
185      case TagDecl::TK_struct: return DeclSpec::TST_struct;
186      case TagDecl::TK_union:  return DeclSpec::TST_union;
187      case TagDecl::TK_class:  return DeclSpec::TST_class;
188      case TagDecl::TK_enum:   return DeclSpec::TST_enum;
189      }
190    }
191
192  return DeclSpec::TST_unspecified;
193}
194
195
196// Determines the context to return to after temporarily entering a
197// context.  This depends in an unnecessarily complicated way on the
198// exact ordering of callbacks from the parser.
199DeclContext *Sema::getContainingDC(DeclContext *DC) {
200
201  // Functions defined inline within classes aren't parsed until we've
202  // finished parsing the top-level class, so the top-level class is
203  // the context we'll need to return to.
204  if (isa<FunctionDecl>(DC)) {
205    DC = DC->getLexicalParent();
206
207    // A function not defined within a class will always return to its
208    // lexical context.
209    if (!isa<CXXRecordDecl>(DC))
210      return DC;
211
212    // A C++ inline method/friend is parsed *after* the topmost class
213    // it was declared in is fully parsed ("complete");  the topmost
214    // class is the context we need to return to.
215    while (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC->getLexicalParent()))
216      DC = RD;
217
218    // Return the declaration context of the topmost class the inline method is
219    // declared in.
220    return DC;
221  }
222
223  if (isa<ObjCMethodDecl>(DC))
224    return Context.getTranslationUnitDecl();
225
226  return DC->getLexicalParent();
227}
228
229void Sema::PushDeclContext(Scope *S, DeclContext *DC) {
230  assert(getContainingDC(DC) == CurContext &&
231      "The next DeclContext should be lexically contained in the current one.");
232  CurContext = DC;
233  S->setEntity(DC);
234}
235
236void Sema::PopDeclContext() {
237  assert(CurContext && "DeclContext imbalance!");
238
239  CurContext = getContainingDC(CurContext);
240}
241
242/// EnterDeclaratorContext - Used when we must lookup names in the context
243/// of a declarator's nested name specifier.
244void Sema::EnterDeclaratorContext(Scope *S, DeclContext *DC) {
245  assert(PreDeclaratorDC == 0 && "Previous declarator context not popped?");
246  PreDeclaratorDC = static_cast<DeclContext*>(S->getEntity());
247  CurContext = DC;
248  assert(CurContext && "No context?");
249  S->setEntity(CurContext);
250}
251
252void Sema::ExitDeclaratorContext(Scope *S) {
253  S->setEntity(PreDeclaratorDC);
254  PreDeclaratorDC = 0;
255
256  // Reset CurContext to the nearest enclosing context.
257  while (!S->getEntity() && S->getParent())
258    S = S->getParent();
259  CurContext = static_cast<DeclContext*>(S->getEntity());
260  assert(CurContext && "No context?");
261}
262
263/// \brief Determine whether we allow overloading of the function
264/// PrevDecl with another declaration.
265///
266/// This routine determines whether overloading is possible, not
267/// whether some new function is actually an overload. It will return
268/// true in C++ (where we can always provide overloads) or, as an
269/// extension, in C when the previous function is already an
270/// overloaded function declaration or has the "overloadable"
271/// attribute.
272static bool AllowOverloadingOfFunction(Decl *PrevDecl, ASTContext &Context) {
273  if (Context.getLangOptions().CPlusPlus)
274    return true;
275
276  if (isa<OverloadedFunctionDecl>(PrevDecl))
277    return true;
278
279  return PrevDecl->getAttr<OverloadableAttr>() != 0;
280}
281
282/// Add this decl to the scope shadowed decl chains.
283void Sema::PushOnScopeChains(NamedDecl *D, Scope *S) {
284  // Move up the scope chain until we find the nearest enclosing
285  // non-transparent context. The declaration will be introduced into this
286  // scope.
287  while (S->getEntity() &&
288         ((DeclContext *)S->getEntity())->isTransparentContext())
289    S = S->getParent();
290
291  S->AddDecl(DeclPtrTy::make(D));
292
293  // Add scoped declarations into their context, so that they can be
294  // found later. Declarations without a context won't be inserted
295  // into any context.
296  CurContext->addDecl(D);
297
298  // C++ [basic.scope]p4:
299  //   -- exactly one declaration shall declare a class name or
300  //   enumeration name that is not a typedef name and the other
301  //   declarations shall all refer to the same object or
302  //   enumerator, or all refer to functions and function templates;
303  //   in this case the class name or enumeration name is hidden.
304  if (TagDecl *TD = dyn_cast<TagDecl>(D)) {
305    // We are pushing the name of a tag (enum or class).
306    if (CurContext->getLookupContext()
307          == TD->getDeclContext()->getLookupContext()) {
308      // We're pushing the tag into the current context, which might
309      // require some reshuffling in the identifier resolver.
310      IdentifierResolver::iterator
311        I = IdResolver.begin(TD->getDeclName()),
312        IEnd = IdResolver.end();
313      if (I != IEnd && isDeclInScope(*I, CurContext, S)) {
314        NamedDecl *PrevDecl = *I;
315        for (; I != IEnd && isDeclInScope(*I, CurContext, S);
316             PrevDecl = *I, ++I) {
317          if (TD->declarationReplaces(*I)) {
318            // This is a redeclaration. Remove it from the chain and
319            // break out, so that we'll add in the shadowed
320            // declaration.
321            S->RemoveDecl(DeclPtrTy::make(*I));
322            if (PrevDecl == *I) {
323              IdResolver.RemoveDecl(*I);
324              IdResolver.AddDecl(TD);
325              return;
326            } else {
327              IdResolver.RemoveDecl(*I);
328              break;
329            }
330          }
331        }
332
333        // There is already a declaration with the same name in the same
334        // scope, which is not a tag declaration. It must be found
335        // before we find the new declaration, so insert the new
336        // declaration at the end of the chain.
337        IdResolver.AddShadowedDecl(TD, PrevDecl);
338
339        return;
340      }
341    }
342  } else if ((isa<FunctionDecl>(D) &&
343              AllowOverloadingOfFunction(D, Context)) ||
344             isa<FunctionTemplateDecl>(D)) {
345    // We are pushing the name of a function or function template,
346    // which might be an overloaded name.
347    IdentifierResolver::iterator Redecl
348      = std::find_if(IdResolver.begin(D->getDeclName()),
349                     IdResolver.end(),
350                     std::bind1st(std::mem_fun(&NamedDecl::declarationReplaces),
351                                  D));
352    if (Redecl != IdResolver.end() &&
353        S->isDeclScope(DeclPtrTy::make(*Redecl))) {
354      // There is already a declaration of a function on our
355      // IdResolver chain. Replace it with this declaration.
356      S->RemoveDecl(DeclPtrTy::make(*Redecl));
357      IdResolver.RemoveDecl(*Redecl);
358    }
359  } else if (isa<ObjCInterfaceDecl>(D)) {
360    // We're pushing an Objective-C interface into the current
361    // context. If there is already an alias declaration, remove it first.
362    for (IdentifierResolver::iterator
363           I = IdResolver.begin(D->getDeclName()), IEnd = IdResolver.end();
364         I != IEnd; ++I) {
365      if (isa<ObjCCompatibleAliasDecl>(*I)) {
366        S->RemoveDecl(DeclPtrTy::make(*I));
367        IdResolver.RemoveDecl(*I);
368        break;
369      }
370    }
371  }
372
373  IdResolver.AddDecl(D);
374}
375
376void Sema::ActOnPopScope(SourceLocation Loc, Scope *S) {
377  if (S->decl_empty()) return;
378  assert((S->getFlags() & (Scope::DeclScope | Scope::TemplateParamScope)) &&
379	 "Scope shouldn't contain decls!");
380
381  for (Scope::decl_iterator I = S->decl_begin(), E = S->decl_end();
382       I != E; ++I) {
383    Decl *TmpD = (*I).getAs<Decl>();
384    assert(TmpD && "This decl didn't get pushed??");
385
386    assert(isa<NamedDecl>(TmpD) && "Decl isn't NamedDecl?");
387    NamedDecl *D = cast<NamedDecl>(TmpD);
388
389    if (!D->getDeclName()) continue;
390
391    // Remove this name from our lexical scope.
392    IdResolver.RemoveDecl(D);
393  }
394}
395
396/// getObjCInterfaceDecl - Look up a for a class declaration in the scope.
397/// return 0 if one not found.
398ObjCInterfaceDecl *Sema::getObjCInterfaceDecl(IdentifierInfo *Id) {
399  // The third "scope" argument is 0 since we aren't enabling lazy built-in
400  // creation from this context.
401  NamedDecl *IDecl = LookupName(TUScope, Id, LookupOrdinaryName);
402
403  return dyn_cast_or_null<ObjCInterfaceDecl>(IDecl);
404}
405
406/// getNonFieldDeclScope - Retrieves the innermost scope, starting
407/// from S, where a non-field would be declared. This routine copes
408/// with the difference between C and C++ scoping rules in structs and
409/// unions. For example, the following code is well-formed in C but
410/// ill-formed in C++:
411/// @code
412/// struct S6 {
413///   enum { BAR } e;
414/// };
415///
416/// void test_S6() {
417///   struct S6 a;
418///   a.e = BAR;
419/// }
420/// @endcode
421/// For the declaration of BAR, this routine will return a different
422/// scope. The scope S will be the scope of the unnamed enumeration
423/// within S6. In C++, this routine will return the scope associated
424/// with S6, because the enumeration's scope is a transparent
425/// context but structures can contain non-field names. In C, this
426/// routine will return the translation unit scope, since the
427/// enumeration's scope is a transparent context and structures cannot
428/// contain non-field names.
429Scope *Sema::getNonFieldDeclScope(Scope *S) {
430  while (((S->getFlags() & Scope::DeclScope) == 0) ||
431         (S->getEntity() &&
432          ((DeclContext *)S->getEntity())->isTransparentContext()) ||
433         (S->isClassScope() && !getLangOptions().CPlusPlus))
434    S = S->getParent();
435  return S;
436}
437
438void Sema::InitBuiltinVaListType() {
439  if (!Context.getBuiltinVaListType().isNull())
440    return;
441
442  IdentifierInfo *VaIdent = &Context.Idents.get("__builtin_va_list");
443  NamedDecl *VaDecl = LookupName(TUScope, VaIdent, LookupOrdinaryName);
444  TypedefDecl *VaTypedef = cast<TypedefDecl>(VaDecl);
445  Context.setBuiltinVaListType(Context.getTypedefType(VaTypedef));
446}
447
448/// LazilyCreateBuiltin - The specified Builtin-ID was first used at
449/// file scope.  lazily create a decl for it. ForRedeclaration is true
450/// if we're creating this built-in in anticipation of redeclaring the
451/// built-in.
452NamedDecl *Sema::LazilyCreateBuiltin(IdentifierInfo *II, unsigned bid,
453                                     Scope *S, bool ForRedeclaration,
454                                     SourceLocation Loc) {
455  Builtin::ID BID = (Builtin::ID)bid;
456
457  if (Context.BuiltinInfo.hasVAListUse(BID))
458    InitBuiltinVaListType();
459
460  ASTContext::GetBuiltinTypeError Error;
461  QualType R = Context.GetBuiltinType(BID, Error);
462  switch (Error) {
463  case ASTContext::GE_None:
464    // Okay
465    break;
466
467  case ASTContext::GE_Missing_stdio:
468    if (ForRedeclaration)
469      Diag(Loc, diag::err_implicit_decl_requires_stdio)
470        << Context.BuiltinInfo.GetName(BID);
471    return 0;
472
473  case ASTContext::GE_Missing_setjmp:
474    if (ForRedeclaration)
475      Diag(Loc, diag::err_implicit_decl_requires_setjmp)
476        << Context.BuiltinInfo.GetName(BID);
477    return 0;
478  }
479
480  if (!ForRedeclaration && Context.BuiltinInfo.isPredefinedLibFunction(BID)) {
481    Diag(Loc, diag::ext_implicit_lib_function_decl)
482      << Context.BuiltinInfo.GetName(BID)
483      << R;
484    if (Context.BuiltinInfo.getHeaderName(BID) &&
485        Diags.getDiagnosticLevel(diag::ext_implicit_lib_function_decl)
486          != Diagnostic::Ignored)
487      Diag(Loc, diag::note_please_include_header)
488        << Context.BuiltinInfo.getHeaderName(BID)
489        << Context.BuiltinInfo.GetName(BID);
490  }
491
492  FunctionDecl *New = FunctionDecl::Create(Context,
493                                           Context.getTranslationUnitDecl(),
494                                           Loc, II, R, /*DInfo=*/0,
495                                           FunctionDecl::Extern, false,
496                                           /*hasPrototype=*/true);
497  New->setImplicit();
498
499  // Create Decl objects for each parameter, adding them to the
500  // FunctionDecl.
501  if (FunctionProtoType *FT = dyn_cast<FunctionProtoType>(R)) {
502    llvm::SmallVector<ParmVarDecl*, 16> Params;
503    for (unsigned i = 0, e = FT->getNumArgs(); i != e; ++i)
504      Params.push_back(ParmVarDecl::Create(Context, New, SourceLocation(), 0,
505                                           FT->getArgType(i), /*DInfo=*/0,
506                                           VarDecl::None, 0));
507    New->setParams(Context, Params.data(), Params.size());
508  }
509
510  AddKnownFunctionAttributes(New);
511
512  // TUScope is the translation-unit scope to insert this function into.
513  // FIXME: This is hideous. We need to teach PushOnScopeChains to
514  // relate Scopes to DeclContexts, and probably eliminate CurContext
515  // entirely, but we're not there yet.
516  DeclContext *SavedContext = CurContext;
517  CurContext = Context.getTranslationUnitDecl();
518  PushOnScopeChains(New, TUScope);
519  CurContext = SavedContext;
520  return New;
521}
522
523/// GetStdNamespace - This method gets the C++ "std" namespace. This is where
524/// everything from the standard library is defined.
525NamespaceDecl *Sema::GetStdNamespace() {
526  if (!StdNamespace) {
527    IdentifierInfo *StdIdent = &PP.getIdentifierTable().get("std");
528    DeclContext *Global = Context.getTranslationUnitDecl();
529    Decl *Std = LookupQualifiedName(Global, StdIdent, LookupNamespaceName);
530    StdNamespace = dyn_cast_or_null<NamespaceDecl>(Std);
531  }
532  return StdNamespace;
533}
534
535/// MergeTypeDefDecl - We just parsed a typedef 'New' which has the
536/// same name and scope as a previous declaration 'Old'.  Figure out
537/// how to resolve this situation, merging decls or emitting
538/// diagnostics as appropriate. If there was an error, set New to be invalid.
539///
540void Sema::MergeTypeDefDecl(TypedefDecl *New, Decl *OldD) {
541  // If either decl is known invalid already, set the new one to be invalid and
542  // don't bother doing any merging checks.
543  if (New->isInvalidDecl() || OldD->isInvalidDecl())
544    return New->setInvalidDecl();
545
546  // Allow multiple definitions for ObjC built-in typedefs.
547  // FIXME: Verify the underlying types are equivalent!
548  if (getLangOptions().ObjC1) {
549    const IdentifierInfo *TypeID = New->getIdentifier();
550    switch (TypeID->getLength()) {
551    default: break;
552    case 2:
553      if (!TypeID->isStr("id"))
554        break;
555      Context.ObjCIdRedefinitionType = New->getUnderlyingType();
556      // Install the built-in type for 'id', ignoring the current definition.
557      New->setTypeForDecl(Context.getObjCIdType().getTypePtr());
558      return;
559    case 5:
560      if (!TypeID->isStr("Class"))
561        break;
562      Context.ObjCClassRedefinitionType = New->getUnderlyingType();
563      // Install the built-in type for 'Class', ignoring the current definition.
564      New->setTypeForDecl(Context.getObjCClassType().getTypePtr());
565      return;
566    case 3:
567      if (!TypeID->isStr("SEL"))
568        break;
569      Context.setObjCSelType(Context.getTypeDeclType(New));
570      return;
571    case 8:
572      if (!TypeID->isStr("Protocol"))
573        break;
574      Context.setObjCProtoType(New->getUnderlyingType());
575      return;
576    }
577    // Fall through - the typedef name was not a builtin type.
578  }
579  // Verify the old decl was also a type.
580  TypeDecl *Old = dyn_cast<TypeDecl>(OldD);
581  if (!Old) {
582    Diag(New->getLocation(), diag::err_redefinition_different_kind)
583      << New->getDeclName();
584    if (OldD->getLocation().isValid())
585      Diag(OldD->getLocation(), diag::note_previous_definition);
586    return New->setInvalidDecl();
587  }
588
589  // Determine the "old" type we'll use for checking and diagnostics.
590  QualType OldType;
591  if (TypedefDecl *OldTypedef = dyn_cast<TypedefDecl>(Old))
592    OldType = OldTypedef->getUnderlyingType();
593  else
594    OldType = Context.getTypeDeclType(Old);
595
596  // If the typedef types are not identical, reject them in all languages and
597  // with any extensions enabled.
598
599  if (OldType != New->getUnderlyingType() &&
600      Context.getCanonicalType(OldType) !=
601      Context.getCanonicalType(New->getUnderlyingType())) {
602    Diag(New->getLocation(), diag::err_redefinition_different_typedef)
603      << New->getUnderlyingType() << OldType;
604    if (Old->getLocation().isValid())
605      Diag(Old->getLocation(), diag::note_previous_definition);
606    return New->setInvalidDecl();
607  }
608
609  if (getLangOptions().Microsoft)
610    return;
611
612  // C++ [dcl.typedef]p2:
613  //   In a given non-class scope, a typedef specifier can be used to
614  //   redefine the name of any type declared in that scope to refer
615  //   to the type to which it already refers.
616  if (getLangOptions().CPlusPlus) {
617    if (!isa<CXXRecordDecl>(CurContext))
618      return;
619    Diag(New->getLocation(), diag::err_redefinition)
620      << New->getDeclName();
621    Diag(Old->getLocation(), diag::note_previous_definition);
622    return New->setInvalidDecl();
623  }
624
625  // If we have a redefinition of a typedef in C, emit a warning.  This warning
626  // is normally mapped to an error, but can be controlled with
627  // -Wtypedef-redefinition.  If either the original or the redefinition is
628  // in a system header, don't emit this for compatibility with GCC.
629  if (PP.getDiagnostics().getSuppressSystemWarnings() &&
630      (Context.getSourceManager().isInSystemHeader(Old->getLocation()) ||
631       Context.getSourceManager().isInSystemHeader(New->getLocation())))
632    return;
633
634  Diag(New->getLocation(), diag::warn_redefinition_of_typedef)
635    << New->getDeclName();
636  Diag(Old->getLocation(), diag::note_previous_definition);
637  return;
638}
639
640/// DeclhasAttr - returns true if decl Declaration already has the target
641/// attribute.
642static bool
643DeclHasAttr(const Decl *decl, const Attr *target) {
644  for (const Attr *attr = decl->getAttrs(); attr; attr = attr->getNext())
645    if (attr->getKind() == target->getKind())
646      return true;
647
648  return false;
649}
650
651/// MergeAttributes - append attributes from the Old decl to the New one.
652static void MergeAttributes(Decl *New, Decl *Old, ASTContext &C) {
653  for (const Attr *attr = Old->getAttrs(); attr; attr = attr->getNext()) {
654    if (!DeclHasAttr(New, attr) && attr->isMerged()) {
655      Attr *NewAttr = attr->clone(C);
656      NewAttr->setInherited(true);
657      New->addAttr(NewAttr);
658    }
659  }
660}
661
662/// Used in MergeFunctionDecl to keep track of function parameters in
663/// C.
664struct GNUCompatibleParamWarning {
665  ParmVarDecl *OldParm;
666  ParmVarDecl *NewParm;
667  QualType PromotedType;
668};
669
670/// MergeFunctionDecl - We just parsed a function 'New' from
671/// declarator D which has the same name and scope as a previous
672/// declaration 'Old'.  Figure out how to resolve this situation,
673/// merging decls or emitting diagnostics as appropriate.
674///
675/// In C++, New and Old must be declarations that are not
676/// overloaded. Use IsOverload to determine whether New and Old are
677/// overloaded, and to select the Old declaration that New should be
678/// merged with.
679///
680/// Returns true if there was an error, false otherwise.
681bool Sema::MergeFunctionDecl(FunctionDecl *New, Decl *OldD) {
682  assert(!isa<OverloadedFunctionDecl>(OldD) &&
683         "Cannot merge with an overloaded function declaration");
684
685  // Verify the old decl was also a function.
686  FunctionDecl *Old = 0;
687  if (FunctionTemplateDecl *OldFunctionTemplate
688        = dyn_cast<FunctionTemplateDecl>(OldD))
689    Old = OldFunctionTemplate->getTemplatedDecl();
690  else
691    Old = dyn_cast<FunctionDecl>(OldD);
692  if (!Old) {
693    Diag(New->getLocation(), diag::err_redefinition_different_kind)
694      << New->getDeclName();
695    Diag(OldD->getLocation(), diag::note_previous_definition);
696    return true;
697  }
698
699  // Determine whether the previous declaration was a definition,
700  // implicit declaration, or a declaration.
701  diag::kind PrevDiag;
702  if (Old->isThisDeclarationADefinition())
703    PrevDiag = diag::note_previous_definition;
704  else if (Old->isImplicit())
705    PrevDiag = diag::note_previous_implicit_declaration;
706  else
707    PrevDiag = diag::note_previous_declaration;
708
709  QualType OldQType = Context.getCanonicalType(Old->getType());
710  QualType NewQType = Context.getCanonicalType(New->getType());
711
712  if (!isa<CXXMethodDecl>(New) && !isa<CXXMethodDecl>(Old) &&
713      New->getStorageClass() == FunctionDecl::Static &&
714      Old->getStorageClass() != FunctionDecl::Static) {
715    Diag(New->getLocation(), diag::err_static_non_static)
716      << New;
717    Diag(Old->getLocation(), PrevDiag);
718    return true;
719  }
720
721  if (getLangOptions().CPlusPlus) {
722    // (C++98 13.1p2):
723    //   Certain function declarations cannot be overloaded:
724    //     -- Function declarations that differ only in the return type
725    //        cannot be overloaded.
726    QualType OldReturnType
727      = cast<FunctionType>(OldQType.getTypePtr())->getResultType();
728    QualType NewReturnType
729      = cast<FunctionType>(NewQType.getTypePtr())->getResultType();
730    if (OldReturnType != NewReturnType) {
731      Diag(New->getLocation(), diag::err_ovl_diff_return_type);
732      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
733      return true;
734    }
735
736    const CXXMethodDecl* OldMethod = dyn_cast<CXXMethodDecl>(Old);
737    const CXXMethodDecl* NewMethod = dyn_cast<CXXMethodDecl>(New);
738    if (OldMethod && NewMethod && !NewMethod->getFriendObjectKind() &&
739        NewMethod->getLexicalDeclContext()->isRecord()) {
740      //    -- Member function declarations with the same name and the
741      //       same parameter types cannot be overloaded if any of them
742      //       is a static member function declaration.
743      if (OldMethod->isStatic() || NewMethod->isStatic()) {
744        Diag(New->getLocation(), diag::err_ovl_static_nonstatic_member);
745        Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
746        return true;
747      }
748
749      // C++ [class.mem]p1:
750      //   [...] A member shall not be declared twice in the
751      //   member-specification, except that a nested class or member
752      //   class template can be declared and then later defined.
753      unsigned NewDiag;
754      if (isa<CXXConstructorDecl>(OldMethod))
755        NewDiag = diag::err_constructor_redeclared;
756      else if (isa<CXXDestructorDecl>(NewMethod))
757        NewDiag = diag::err_destructor_redeclared;
758      else if (isa<CXXConversionDecl>(NewMethod))
759        NewDiag = diag::err_conv_function_redeclared;
760      else
761        NewDiag = diag::err_member_redeclared;
762
763      Diag(New->getLocation(), NewDiag);
764      Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
765    }
766
767    // (C++98 8.3.5p3):
768    //   All declarations for a function shall agree exactly in both the
769    //   return type and the parameter-type-list.
770    if (OldQType == NewQType)
771      return MergeCompatibleFunctionDecls(New, Old);
772
773    // Fall through for conflicting redeclarations and redefinitions.
774  }
775
776  // C: Function types need to be compatible, not identical. This handles
777  // duplicate function decls like "void f(int); void f(enum X);" properly.
778  if (!getLangOptions().CPlusPlus &&
779      Context.typesAreCompatible(OldQType, NewQType)) {
780    const FunctionType *OldFuncType = OldQType->getAsFunctionType();
781    const FunctionType *NewFuncType = NewQType->getAsFunctionType();
782    const FunctionProtoType *OldProto = 0;
783    if (isa<FunctionNoProtoType>(NewFuncType) &&
784        (OldProto = dyn_cast<FunctionProtoType>(OldFuncType))) {
785      // The old declaration provided a function prototype, but the
786      // new declaration does not. Merge in the prototype.
787      assert(!OldProto->hasExceptionSpec() && "Exception spec in C");
788      llvm::SmallVector<QualType, 16> ParamTypes(OldProto->arg_type_begin(),
789                                                 OldProto->arg_type_end());
790      NewQType = Context.getFunctionType(NewFuncType->getResultType(),
791                                         ParamTypes.data(), ParamTypes.size(),
792                                         OldProto->isVariadic(),
793                                         OldProto->getTypeQuals());
794      New->setType(NewQType);
795      New->setHasInheritedPrototype();
796
797      // Synthesize a parameter for each argument type.
798      llvm::SmallVector<ParmVarDecl*, 16> Params;
799      for (FunctionProtoType::arg_type_iterator
800             ParamType = OldProto->arg_type_begin(),
801             ParamEnd = OldProto->arg_type_end();
802           ParamType != ParamEnd; ++ParamType) {
803        ParmVarDecl *Param = ParmVarDecl::Create(Context, New,
804                                                 SourceLocation(), 0,
805                                                 *ParamType, /*DInfo=*/0,
806                                                 VarDecl::None, 0);
807        Param->setImplicit();
808        Params.push_back(Param);
809      }
810
811      New->setParams(Context, Params.data(), Params.size());
812    }
813
814    return MergeCompatibleFunctionDecls(New, Old);
815  }
816
817  // GNU C permits a K&R definition to follow a prototype declaration
818  // if the declared types of the parameters in the K&R definition
819  // match the types in the prototype declaration, even when the
820  // promoted types of the parameters from the K&R definition differ
821  // from the types in the prototype. GCC then keeps the types from
822  // the prototype.
823  //
824  // If a variadic prototype is followed by a non-variadic K&R definition,
825  // the K&R definition becomes variadic.  This is sort of an edge case, but
826  // it's legal per the standard depending on how you read C99 6.7.5.3p15 and
827  // C99 6.9.1p8.
828  if (!getLangOptions().CPlusPlus &&
829      Old->hasPrototype() && !New->hasPrototype() &&
830      New->getType()->getAsFunctionProtoType() &&
831      Old->getNumParams() == New->getNumParams()) {
832    llvm::SmallVector<QualType, 16> ArgTypes;
833    llvm::SmallVector<GNUCompatibleParamWarning, 16> Warnings;
834    const FunctionProtoType *OldProto
835      = Old->getType()->getAsFunctionProtoType();
836    const FunctionProtoType *NewProto
837      = New->getType()->getAsFunctionProtoType();
838
839    // Determine whether this is the GNU C extension.
840    QualType MergedReturn = Context.mergeTypes(OldProto->getResultType(),
841                                               NewProto->getResultType());
842    bool LooseCompatible = !MergedReturn.isNull();
843    for (unsigned Idx = 0, End = Old->getNumParams();
844         LooseCompatible && Idx != End; ++Idx) {
845      ParmVarDecl *OldParm = Old->getParamDecl(Idx);
846      ParmVarDecl *NewParm = New->getParamDecl(Idx);
847      if (Context.typesAreCompatible(OldParm->getType(),
848                                     NewProto->getArgType(Idx))) {
849        ArgTypes.push_back(NewParm->getType());
850      } else if (Context.typesAreCompatible(OldParm->getType(),
851                                            NewParm->getType())) {
852        GNUCompatibleParamWarning Warn
853          = { OldParm, NewParm, NewProto->getArgType(Idx) };
854        Warnings.push_back(Warn);
855        ArgTypes.push_back(NewParm->getType());
856      } else
857        LooseCompatible = false;
858    }
859
860    if (LooseCompatible) {
861      for (unsigned Warn = 0; Warn < Warnings.size(); ++Warn) {
862        Diag(Warnings[Warn].NewParm->getLocation(),
863             diag::ext_param_promoted_not_compatible_with_prototype)
864          << Warnings[Warn].PromotedType
865          << Warnings[Warn].OldParm->getType();
866        Diag(Warnings[Warn].OldParm->getLocation(),
867             diag::note_previous_declaration);
868      }
869
870      New->setType(Context.getFunctionType(MergedReturn, &ArgTypes[0],
871                                           ArgTypes.size(),
872                                           OldProto->isVariadic(), 0));
873      return MergeCompatibleFunctionDecls(New, Old);
874    }
875
876    // Fall through to diagnose conflicting types.
877  }
878
879  // A function that has already been declared has been redeclared or defined
880  // with a different type- show appropriate diagnostic
881  if (unsigned BuiltinID = Old->getBuiltinID(Context)) {
882    // The user has declared a builtin function with an incompatible
883    // signature.
884    if (Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
885      // The function the user is redeclaring is a library-defined
886      // function like 'malloc' or 'printf'. Warn about the
887      // redeclaration, then pretend that we don't know about this
888      // library built-in.
889      Diag(New->getLocation(), diag::warn_redecl_library_builtin) << New;
890      Diag(Old->getLocation(), diag::note_previous_builtin_declaration)
891        << Old << Old->getType();
892      New->getIdentifier()->setBuiltinID(Builtin::NotBuiltin);
893      Old->setInvalidDecl();
894      return false;
895    }
896
897    PrevDiag = diag::note_previous_builtin_declaration;
898  }
899
900  Diag(New->getLocation(), diag::err_conflicting_types) << New->getDeclName();
901  Diag(Old->getLocation(), PrevDiag) << Old << Old->getType();
902  return true;
903}
904
905/// \brief Completes the merge of two function declarations that are
906/// known to be compatible.
907///
908/// This routine handles the merging of attributes and other
909/// properties of function declarations form the old declaration to
910/// the new declaration, once we know that New is in fact a
911/// redeclaration of Old.
912///
913/// \returns false
914bool Sema::MergeCompatibleFunctionDecls(FunctionDecl *New, FunctionDecl *Old) {
915  // Merge the attributes
916  MergeAttributes(New, Old, Context);
917
918  // Merge the storage class.
919  if (Old->getStorageClass() != FunctionDecl::Extern)
920    New->setStorageClass(Old->getStorageClass());
921
922  // Merge "inline"
923  if (Old->isInline())
924    New->setInline(true);
925
926  // If this function declaration by itself qualifies as a C99 inline
927  // definition (C99 6.7.4p6), but the previous definition did not,
928  // then the function is not a C99 inline definition.
929  if (New->isC99InlineDefinition() && !Old->isC99InlineDefinition())
930    New->setC99InlineDefinition(false);
931  else if (Old->isC99InlineDefinition() && !New->isC99InlineDefinition()) {
932    // Mark all preceding definitions as not being C99 inline definitions.
933    for (const FunctionDecl *Prev = Old; Prev;
934         Prev = Prev->getPreviousDeclaration())
935      const_cast<FunctionDecl *>(Prev)->setC99InlineDefinition(false);
936  }
937
938  // Merge "pure" flag.
939  if (Old->isPure())
940    New->setPure();
941
942  // Merge the "deleted" flag.
943  if (Old->isDeleted())
944    New->setDeleted();
945
946  if (getLangOptions().CPlusPlus)
947    return MergeCXXFunctionDecl(New, Old);
948
949  return false;
950}
951
952/// MergeVarDecl - We just parsed a variable 'New' which has the same name
953/// and scope as a previous declaration 'Old'.  Figure out how to resolve this
954/// situation, merging decls or emitting diagnostics as appropriate.
955///
956/// Tentative definition rules (C99 6.9.2p2) are checked by
957/// FinalizeDeclaratorGroup. Unfortunately, we can't analyze tentative
958/// definitions here, since the initializer hasn't been attached.
959///
960void Sema::MergeVarDecl(VarDecl *New, Decl *OldD) {
961  // If either decl is invalid, make sure the new one is marked invalid and
962  // don't do any other checking.
963  if (New->isInvalidDecl() || OldD->isInvalidDecl())
964    return New->setInvalidDecl();
965
966  // Verify the old decl was also a variable.
967  VarDecl *Old = dyn_cast<VarDecl>(OldD);
968  if (!Old) {
969    Diag(New->getLocation(), diag::err_redefinition_different_kind)
970      << New->getDeclName();
971    Diag(OldD->getLocation(), diag::note_previous_definition);
972    return New->setInvalidDecl();
973  }
974
975  MergeAttributes(New, Old, Context);
976
977  // Merge the types
978  QualType MergedT;
979  if (getLangOptions().CPlusPlus) {
980    if (Context.hasSameType(New->getType(), Old->getType()))
981      MergedT = New->getType();
982  } else {
983    MergedT = Context.mergeTypes(New->getType(), Old->getType());
984  }
985  if (MergedT.isNull()) {
986    Diag(New->getLocation(), diag::err_redefinition_different_type)
987      << New->getDeclName();
988    Diag(Old->getLocation(), diag::note_previous_definition);
989    return New->setInvalidDecl();
990  }
991  New->setType(MergedT);
992
993  // C99 6.2.2p4: Check if we have a static decl followed by a non-static.
994  if (New->getStorageClass() == VarDecl::Static &&
995      (Old->getStorageClass() == VarDecl::None || Old->hasExternalStorage())) {
996    Diag(New->getLocation(), diag::err_static_non_static) << New->getDeclName();
997    Diag(Old->getLocation(), diag::note_previous_definition);
998    return New->setInvalidDecl();
999  }
1000  // C99 6.2.2p4:
1001  //   For an identifier declared with the storage-class specifier
1002  //   extern in a scope in which a prior declaration of that
1003  //   identifier is visible,23) if the prior declaration specifies
1004  //   internal or external linkage, the linkage of the identifier at
1005  //   the later declaration is the same as the linkage specified at
1006  //   the prior declaration. If no prior declaration is visible, or
1007  //   if the prior declaration specifies no linkage, then the
1008  //   identifier has external linkage.
1009  if (New->hasExternalStorage() && Old->hasLinkage())
1010    /* Okay */;
1011  else if (New->getStorageClass() != VarDecl::Static &&
1012           Old->getStorageClass() == VarDecl::Static) {
1013    Diag(New->getLocation(), diag::err_non_static_static) << New->getDeclName();
1014    Diag(Old->getLocation(), diag::note_previous_definition);
1015    return New->setInvalidDecl();
1016  }
1017
1018  // Variables with external linkage are analyzed in FinalizeDeclaratorGroup.
1019
1020  // FIXME: The test for external storage here seems wrong? We still
1021  // need to check for mismatches.
1022  if (!New->hasExternalStorage() && !New->isFileVarDecl() &&
1023      // Don't complain about out-of-line definitions of static members.
1024      !(Old->getLexicalDeclContext()->isRecord() &&
1025        !New->getLexicalDeclContext()->isRecord())) {
1026    Diag(New->getLocation(), diag::err_redefinition) << New->getDeclName();
1027    Diag(Old->getLocation(), diag::note_previous_definition);
1028    return New->setInvalidDecl();
1029  }
1030
1031  if (New->isThreadSpecified() && !Old->isThreadSpecified()) {
1032    Diag(New->getLocation(), diag::err_thread_non_thread) << New->getDeclName();
1033    Diag(Old->getLocation(), diag::note_previous_definition);
1034  } else if (!New->isThreadSpecified() && Old->isThreadSpecified()) {
1035    Diag(New->getLocation(), diag::err_non_thread_thread) << New->getDeclName();
1036    Diag(Old->getLocation(), diag::note_previous_definition);
1037  }
1038
1039  // Keep a chain of previous declarations.
1040  New->setPreviousDeclaration(Old);
1041}
1042
1043/// CheckFallThrough - Check that we don't fall off the end of a
1044/// Statement that should return a value.
1045///
1046/// \returns AlwaysFallThrough iff we always fall off the end of the statement,
1047/// MaybeFallThrough iff we might or might not fall off the end and
1048/// NeverFallThrough iff we never fall off the end of the statement.  We assume
1049/// that functions not marked noreturn will return.
1050Sema::ControlFlowKind Sema::CheckFallThrough(Stmt *Root) {
1051  llvm::OwningPtr<CFG> cfg (CFG::buildCFG(Root, &Context));
1052
1053  // FIXME: They should never return 0, fix that, delete this code.
1054  if (cfg == 0)
1055    return NeverFallThrough;
1056  // The CFG leaves in dead things, and we don't want to dead code paths to
1057  // confuse us, so we mark all live things first.
1058  std::queue<CFGBlock*> workq;
1059  llvm::BitVector live(cfg->getNumBlockIDs());
1060  // Prep work queue
1061  workq.push(&cfg->getEntry());
1062  // Solve
1063  while (!workq.empty()) {
1064    CFGBlock *item = workq.front();
1065    workq.pop();
1066    live.set(item->getBlockID());
1067    for (CFGBlock::succ_iterator I=item->succ_begin(),
1068           E=item->succ_end();
1069         I != E;
1070         ++I) {
1071      if ((*I) && !live[(*I)->getBlockID()]) {
1072        live.set((*I)->getBlockID());
1073        workq.push(*I);
1074      }
1075    }
1076  }
1077
1078  // Now we know what is live, we check the live precessors of the exit block
1079  // and look for fall through paths, being careful to ignore normal returns,
1080  // and exceptional paths.
1081  bool HasLiveReturn = false;
1082  bool HasFakeEdge = false;
1083  bool HasPlainEdge = false;
1084  for (CFGBlock::succ_iterator I=cfg->getExit().pred_begin(),
1085         E = cfg->getExit().pred_end();
1086       I != E;
1087       ++I) {
1088    CFGBlock& B = **I;
1089    if (!live[B.getBlockID()])
1090      continue;
1091    if (B.size() == 0) {
1092      // A labeled empty statement, or the entry block...
1093      HasPlainEdge = true;
1094      continue;
1095    }
1096    Stmt *S = B[B.size()-1];
1097    if (isa<ReturnStmt>(S)) {
1098      HasLiveReturn = true;
1099      continue;
1100    }
1101    if (isa<ObjCAtThrowStmt>(S)) {
1102      HasFakeEdge = true;
1103      continue;
1104    }
1105    if (isa<CXXThrowExpr>(S)) {
1106      HasFakeEdge = true;
1107      continue;
1108    }
1109    bool NoReturnEdge = false;
1110    if (CallExpr *C = dyn_cast<CallExpr>(S)) {
1111      Expr *CEE = C->getCallee()->IgnoreParenCasts();
1112      if (CEE->getType().getNoReturnAttr()) {
1113        NoReturnEdge = true;
1114        HasFakeEdge = true;
1115      } else if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(CEE)) {
1116        if (FunctionDecl *FD = dyn_cast<FunctionDecl>(DRE->getDecl())) {
1117          if (FD->hasAttr<NoReturnAttr>()) {
1118            NoReturnEdge = true;
1119            HasFakeEdge = true;
1120          }
1121        }
1122      }
1123    }
1124    // FIXME: Add noreturn message sends.
1125    if (NoReturnEdge == false)
1126      HasPlainEdge = true;
1127  }
1128  if (!HasPlainEdge)
1129    return NeverFallThrough;
1130  if (HasFakeEdge || HasLiveReturn)
1131    return MaybeFallThrough;
1132  // This says AlwaysFallThrough for calls to functions that are not marked
1133  // noreturn, that don't return.  If people would like this warning to be more
1134  // accurate, such functions should be marked as noreturn.
1135  return AlwaysFallThrough;
1136}
1137
1138/// CheckFallThroughForFunctionDef - Check that we don't fall off the end of a
1139/// function that should return a value.  Check that we don't fall off the end
1140/// of a noreturn function.  We assume that functions and blocks not marked
1141/// noreturn will return.
1142void Sema::CheckFallThroughForFunctionDef(Decl *D, Stmt *Body) {
1143  // FIXME: Would be nice if we had a better way to control cascading errors,
1144  // but for now, avoid them.  The problem is that when Parse sees:
1145  //   int foo() { return a; }
1146  // The return is eaten and the Sema code sees just:
1147  //   int foo() { }
1148  // which this code would then warn about.
1149  if (getDiagnostics().hasErrorOccurred())
1150    return;
1151  bool ReturnsVoid = false;
1152  bool HasNoReturn = false;
1153  if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1154    if (FD->getResultType()->isVoidType())
1155      ReturnsVoid = true;
1156    if (FD->hasAttr<NoReturnAttr>())
1157      HasNoReturn = true;
1158  } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
1159    if (MD->getResultType()->isVoidType())
1160      ReturnsVoid = true;
1161    if (MD->hasAttr<NoReturnAttr>())
1162      HasNoReturn = true;
1163  }
1164
1165  // Short circuit for compilation speed.
1166  if ((Diags.getDiagnosticLevel(diag::warn_maybe_falloff_nonvoid_function)
1167       == Diagnostic::Ignored || ReturnsVoid)
1168      && (Diags.getDiagnosticLevel(diag::warn_noreturn_function_has_return_expr)
1169          == Diagnostic::Ignored || !HasNoReturn)
1170      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1171          == Diagnostic::Ignored || !ReturnsVoid))
1172    return;
1173  // FIXME: Funtion try block
1174  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1175    switch (CheckFallThrough(Body)) {
1176    case MaybeFallThrough:
1177      if (HasNoReturn)
1178        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1179      else if (!ReturnsVoid)
1180        Diag(Compound->getRBracLoc(),diag::warn_maybe_falloff_nonvoid_function);
1181      break;
1182    case AlwaysFallThrough:
1183      if (HasNoReturn)
1184        Diag(Compound->getRBracLoc(), diag::warn_falloff_noreturn_function);
1185      else if (!ReturnsVoid)
1186        Diag(Compound->getRBracLoc(), diag::warn_falloff_nonvoid_function);
1187      break;
1188    case NeverFallThrough:
1189      if (ReturnsVoid)
1190        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_function);
1191      break;
1192    }
1193  }
1194}
1195
1196/// CheckFallThroughForBlock - Check that we don't fall off the end of a block
1197/// that should return a value.  Check that we don't fall off the end of a
1198/// noreturn block.  We assume that functions and blocks not marked noreturn
1199/// will return.
1200void Sema::CheckFallThroughForBlock(QualType BlockTy, Stmt *Body) {
1201  // FIXME: Would be nice if we had a better way to control cascading errors,
1202  // but for now, avoid them.  The problem is that when Parse sees:
1203  //   int foo() { return a; }
1204  // The return is eaten and the Sema code sees just:
1205  //   int foo() { }
1206  // which this code would then warn about.
1207  if (getDiagnostics().hasErrorOccurred())
1208    return;
1209  bool ReturnsVoid = false;
1210  bool HasNoReturn = false;
1211  if (const FunctionType *FT = BlockTy->getPointeeType()->getAsFunctionType()) {
1212    if (FT->getResultType()->isVoidType())
1213      ReturnsVoid = true;
1214    if (FT->getNoReturnAttr())
1215      HasNoReturn = true;
1216  }
1217
1218  // Short circuit for compilation speed.
1219  if (ReturnsVoid
1220      && !HasNoReturn
1221      && (Diags.getDiagnosticLevel(diag::warn_suggest_noreturn_block)
1222          == Diagnostic::Ignored || !ReturnsVoid))
1223    return;
1224  // FIXME: Funtion try block
1225  if (CompoundStmt *Compound = dyn_cast<CompoundStmt>(Body)) {
1226    switch (CheckFallThrough(Body)) {
1227    case MaybeFallThrough:
1228      if (HasNoReturn)
1229        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1230      else if (!ReturnsVoid)
1231        Diag(Compound->getRBracLoc(), diag::err_maybe_falloff_nonvoid_block);
1232      break;
1233    case AlwaysFallThrough:
1234      if (HasNoReturn)
1235        Diag(Compound->getRBracLoc(), diag::err_noreturn_block_has_return_expr);
1236      else if (!ReturnsVoid)
1237        Diag(Compound->getRBracLoc(), diag::err_falloff_nonvoid_block);
1238      break;
1239    case NeverFallThrough:
1240      if (ReturnsVoid)
1241        Diag(Compound->getLBracLoc(), diag::warn_suggest_noreturn_block);
1242      break;
1243    }
1244  }
1245}
1246
1247/// CheckParmsForFunctionDef - Check that the parameters of the given
1248/// function are appropriate for the definition of a function. This
1249/// takes care of any checks that cannot be performed on the
1250/// declaration itself, e.g., that the types of each of the function
1251/// parameters are complete.
1252bool Sema::CheckParmsForFunctionDef(FunctionDecl *FD) {
1253  bool HasInvalidParm = false;
1254  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
1255    ParmVarDecl *Param = FD->getParamDecl(p);
1256
1257    // C99 6.7.5.3p4: the parameters in a parameter type list in a
1258    // function declarator that is part of a function definition of
1259    // that function shall not have incomplete type.
1260    //
1261    // This is also C++ [dcl.fct]p6.
1262    if (!Param->isInvalidDecl() &&
1263        RequireCompleteType(Param->getLocation(), Param->getType(),
1264                               diag::err_typecheck_decl_incomplete_type)) {
1265      Param->setInvalidDecl();
1266      HasInvalidParm = true;
1267    }
1268
1269    // C99 6.9.1p5: If the declarator includes a parameter type list, the
1270    // declaration of each parameter shall include an identifier.
1271    if (Param->getIdentifier() == 0 &&
1272        !Param->isImplicit() &&
1273        !getLangOptions().CPlusPlus)
1274      Diag(Param->getLocation(), diag::err_parameter_name_omitted);
1275  }
1276
1277  return HasInvalidParm;
1278}
1279
1280/// ParsedFreeStandingDeclSpec - This method is invoked when a declspec with
1281/// no declarator (e.g. "struct foo;") is parsed.
1282Sema::DeclPtrTy Sema::ParsedFreeStandingDeclSpec(Scope *S, DeclSpec &DS) {
1283  // FIXME: Error on auto/register at file scope
1284  // FIXME: Error on inline/virtual/explicit
1285  // FIXME: Error on invalid restrict
1286  // FIXME: Warn on useless __thread
1287  // FIXME: Warn on useless const/volatile
1288  // FIXME: Warn on useless static/extern/typedef/private_extern/mutable
1289  // FIXME: Warn on useless attributes
1290  TagDecl *Tag = 0;
1291  if (DS.getTypeSpecType() == DeclSpec::TST_class ||
1292      DS.getTypeSpecType() == DeclSpec::TST_struct ||
1293      DS.getTypeSpecType() == DeclSpec::TST_union ||
1294      DS.getTypeSpecType() == DeclSpec::TST_enum) {
1295    if (!DS.getTypeRep()) // We probably had an error
1296      return DeclPtrTy();
1297
1298    // Note that the above type specs guarantee that the
1299    // type rep is a Decl, whereas in many of the others
1300    // it's a Type.
1301    Tag = dyn_cast<TagDecl>(static_cast<Decl *>(DS.getTypeRep()));
1302  }
1303
1304  if (RecordDecl *Record = dyn_cast_or_null<RecordDecl>(Tag)) {
1305    if (!Record->getDeclName() && Record->isDefinition() &&
1306        DS.getStorageClassSpec() != DeclSpec::SCS_typedef) {
1307      if (getLangOptions().CPlusPlus ||
1308          Record->getDeclContext()->isRecord())
1309        return BuildAnonymousStructOrUnion(S, DS, Record);
1310
1311      Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1312        << DS.getSourceRange();
1313    }
1314
1315    // Microsoft allows unnamed struct/union fields. Don't complain
1316    // about them.
1317    // FIXME: Should we support Microsoft's extensions in this area?
1318    if (Record->getDeclName() && getLangOptions().Microsoft)
1319      return DeclPtrTy::make(Tag);
1320  }
1321
1322  if (!DS.isMissingDeclaratorOk() &&
1323      DS.getTypeSpecType() != DeclSpec::TST_error) {
1324    // Warn about typedefs of enums without names, since this is an
1325    // extension in both Microsoft an GNU.
1326    if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef &&
1327        Tag && isa<EnumDecl>(Tag)) {
1328      Diag(DS.getSourceRange().getBegin(), diag::ext_typedef_without_a_name)
1329        << DS.getSourceRange();
1330      return DeclPtrTy::make(Tag);
1331    }
1332
1333    Diag(DS.getSourceRange().getBegin(), diag::err_no_declarators)
1334      << DS.getSourceRange();
1335    return DeclPtrTy();
1336  }
1337
1338  return DeclPtrTy::make(Tag);
1339}
1340
1341/// InjectAnonymousStructOrUnionMembers - Inject the members of the
1342/// anonymous struct or union AnonRecord into the owning context Owner
1343/// and scope S. This routine will be invoked just after we realize
1344/// that an unnamed union or struct is actually an anonymous union or
1345/// struct, e.g.,
1346///
1347/// @code
1348/// union {
1349///   int i;
1350///   float f;
1351/// }; // InjectAnonymousStructOrUnionMembers called here to inject i and
1352///    // f into the surrounding scope.x
1353/// @endcode
1354///
1355/// This routine is recursive, injecting the names of nested anonymous
1356/// structs/unions into the owning context and scope as well.
1357bool Sema::InjectAnonymousStructOrUnionMembers(Scope *S, DeclContext *Owner,
1358                                               RecordDecl *AnonRecord) {
1359  bool Invalid = false;
1360  for (RecordDecl::field_iterator F = AnonRecord->field_begin(),
1361                               FEnd = AnonRecord->field_end();
1362       F != FEnd; ++F) {
1363    if ((*F)->getDeclName()) {
1364      NamedDecl *PrevDecl = LookupQualifiedName(Owner, (*F)->getDeclName(),
1365                                                LookupOrdinaryName, true);
1366      if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
1367        // C++ [class.union]p2:
1368        //   The names of the members of an anonymous union shall be
1369        //   distinct from the names of any other entity in the
1370        //   scope in which the anonymous union is declared.
1371        unsigned diagKind
1372          = AnonRecord->isUnion()? diag::err_anonymous_union_member_redecl
1373                                 : diag::err_anonymous_struct_member_redecl;
1374        Diag((*F)->getLocation(), diagKind)
1375          << (*F)->getDeclName();
1376        Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
1377        Invalid = true;
1378      } else {
1379        // C++ [class.union]p2:
1380        //   For the purpose of name lookup, after the anonymous union
1381        //   definition, the members of the anonymous union are
1382        //   considered to have been defined in the scope in which the
1383        //   anonymous union is declared.
1384        Owner->makeDeclVisibleInContext(*F);
1385        S->AddDecl(DeclPtrTy::make(*F));
1386        IdResolver.AddDecl(*F);
1387      }
1388    } else if (const RecordType *InnerRecordType
1389                 = (*F)->getType()->getAs<RecordType>()) {
1390      RecordDecl *InnerRecord = InnerRecordType->getDecl();
1391      if (InnerRecord->isAnonymousStructOrUnion())
1392        Invalid = Invalid ||
1393          InjectAnonymousStructOrUnionMembers(S, Owner, InnerRecord);
1394    }
1395  }
1396
1397  return Invalid;
1398}
1399
1400/// ActOnAnonymousStructOrUnion - Handle the declaration of an
1401/// anonymous structure or union. Anonymous unions are a C++ feature
1402/// (C++ [class.union]) and a GNU C extension; anonymous structures
1403/// are a GNU C and GNU C++ extension.
1404Sema::DeclPtrTy Sema::BuildAnonymousStructOrUnion(Scope *S, DeclSpec &DS,
1405                                                  RecordDecl *Record) {
1406  DeclContext *Owner = Record->getDeclContext();
1407
1408  // Diagnose whether this anonymous struct/union is an extension.
1409  if (Record->isUnion() && !getLangOptions().CPlusPlus)
1410    Diag(Record->getLocation(), diag::ext_anonymous_union);
1411  else if (!Record->isUnion())
1412    Diag(Record->getLocation(), diag::ext_anonymous_struct);
1413
1414  // C and C++ require different kinds of checks for anonymous
1415  // structs/unions.
1416  bool Invalid = false;
1417  if (getLangOptions().CPlusPlus) {
1418    const char* PrevSpec = 0;
1419    unsigned DiagID;
1420    // C++ [class.union]p3:
1421    //   Anonymous unions declared in a named namespace or in the
1422    //   global namespace shall be declared static.
1423    if (DS.getStorageClassSpec() != DeclSpec::SCS_static &&
1424        (isa<TranslationUnitDecl>(Owner) ||
1425         (isa<NamespaceDecl>(Owner) &&
1426          cast<NamespaceDecl>(Owner)->getDeclName()))) {
1427      Diag(Record->getLocation(), diag::err_anonymous_union_not_static);
1428      Invalid = true;
1429
1430      // Recover by adding 'static'.
1431      DS.SetStorageClassSpec(DeclSpec::SCS_static, SourceLocation(),
1432                             PrevSpec, DiagID);
1433    }
1434    // C++ [class.union]p3:
1435    //   A storage class is not allowed in a declaration of an
1436    //   anonymous union in a class scope.
1437    else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified &&
1438             isa<RecordDecl>(Owner)) {
1439      Diag(DS.getStorageClassSpecLoc(),
1440           diag::err_anonymous_union_with_storage_spec);
1441      Invalid = true;
1442
1443      // Recover by removing the storage specifier.
1444      DS.SetStorageClassSpec(DeclSpec::SCS_unspecified, SourceLocation(),
1445                             PrevSpec, DiagID);
1446    }
1447
1448    // C++ [class.union]p2:
1449    //   The member-specification of an anonymous union shall only
1450    //   define non-static data members. [Note: nested types and
1451    //   functions cannot be declared within an anonymous union. ]
1452    for (DeclContext::decl_iterator Mem = Record->decls_begin(),
1453                                 MemEnd = Record->decls_end();
1454         Mem != MemEnd; ++Mem) {
1455      if (FieldDecl *FD = dyn_cast<FieldDecl>(*Mem)) {
1456        // C++ [class.union]p3:
1457        //   An anonymous union shall not have private or protected
1458        //   members (clause 11).
1459        if (FD->getAccess() == AS_protected || FD->getAccess() == AS_private) {
1460          Diag(FD->getLocation(), diag::err_anonymous_record_nonpublic_member)
1461            << (int)Record->isUnion() << (int)(FD->getAccess() == AS_protected);
1462          Invalid = true;
1463        }
1464      } else if ((*Mem)->isImplicit()) {
1465        // Any implicit members are fine.
1466      } else if (isa<TagDecl>(*Mem) && (*Mem)->getDeclContext() != Record) {
1467        // This is a type that showed up in an
1468        // elaborated-type-specifier inside the anonymous struct or
1469        // union, but which actually declares a type outside of the
1470        // anonymous struct or union. It's okay.
1471      } else if (RecordDecl *MemRecord = dyn_cast<RecordDecl>(*Mem)) {
1472        if (!MemRecord->isAnonymousStructOrUnion() &&
1473            MemRecord->getDeclName()) {
1474          // This is a nested type declaration.
1475          Diag(MemRecord->getLocation(), diag::err_anonymous_record_with_type)
1476            << (int)Record->isUnion();
1477          Invalid = true;
1478        }
1479      } else {
1480        // We have something that isn't a non-static data
1481        // member. Complain about it.
1482        unsigned DK = diag::err_anonymous_record_bad_member;
1483        if (isa<TypeDecl>(*Mem))
1484          DK = diag::err_anonymous_record_with_type;
1485        else if (isa<FunctionDecl>(*Mem))
1486          DK = diag::err_anonymous_record_with_function;
1487        else if (isa<VarDecl>(*Mem))
1488          DK = diag::err_anonymous_record_with_static;
1489        Diag((*Mem)->getLocation(), DK)
1490            << (int)Record->isUnion();
1491          Invalid = true;
1492      }
1493    }
1494  }
1495
1496  if (!Record->isUnion() && !Owner->isRecord()) {
1497    Diag(Record->getLocation(), diag::err_anonymous_struct_not_member)
1498      << (int)getLangOptions().CPlusPlus;
1499    Invalid = true;
1500  }
1501
1502  // Create a declaration for this anonymous struct/union.
1503  NamedDecl *Anon = 0;
1504  if (RecordDecl *OwningClass = dyn_cast<RecordDecl>(Owner)) {
1505    Anon = FieldDecl::Create(Context, OwningClass, Record->getLocation(),
1506                             /*IdentifierInfo=*/0,
1507                             Context.getTypeDeclType(Record),
1508                             // FIXME: Type source info.
1509                             /*DInfo=*/0,
1510                             /*BitWidth=*/0, /*Mutable=*/false);
1511    Anon->setAccess(AS_public);
1512    if (getLangOptions().CPlusPlus)
1513      FieldCollector->Add(cast<FieldDecl>(Anon));
1514  } else {
1515    VarDecl::StorageClass SC;
1516    switch (DS.getStorageClassSpec()) {
1517    default: assert(0 && "Unknown storage class!");
1518    case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
1519    case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
1520    case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
1521    case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
1522    case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
1523    case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
1524    case DeclSpec::SCS_mutable:
1525      // mutable can only appear on non-static class members, so it's always
1526      // an error here
1527      Diag(Record->getLocation(), diag::err_mutable_nonmember);
1528      Invalid = true;
1529      SC = VarDecl::None;
1530      break;
1531    }
1532
1533    Anon = VarDecl::Create(Context, Owner, Record->getLocation(),
1534                           /*IdentifierInfo=*/0,
1535                           Context.getTypeDeclType(Record),
1536                           // FIXME: Type source info.
1537                           /*DInfo=*/0,
1538                           SC);
1539  }
1540  Anon->setImplicit();
1541
1542  // Add the anonymous struct/union object to the current
1543  // context. We'll be referencing this object when we refer to one of
1544  // its members.
1545  Owner->addDecl(Anon);
1546
1547  // Inject the members of the anonymous struct/union into the owning
1548  // context and into the identifier resolver chain for name lookup
1549  // purposes.
1550  if (InjectAnonymousStructOrUnionMembers(S, Owner, Record))
1551    Invalid = true;
1552
1553  // Mark this as an anonymous struct/union type. Note that we do not
1554  // do this until after we have already checked and injected the
1555  // members of this anonymous struct/union type, because otherwise
1556  // the members could be injected twice: once by DeclContext when it
1557  // builds its lookup table, and once by
1558  // InjectAnonymousStructOrUnionMembers.
1559  Record->setAnonymousStructOrUnion(true);
1560
1561  if (Invalid)
1562    Anon->setInvalidDecl();
1563
1564  return DeclPtrTy::make(Anon);
1565}
1566
1567
1568/// GetNameForDeclarator - Determine the full declaration name for the
1569/// given Declarator.
1570DeclarationName Sema::GetNameForDeclarator(Declarator &D) {
1571  switch (D.getKind()) {
1572  case Declarator::DK_Abstract:
1573    assert(D.getIdentifier() == 0 && "abstract declarators have no name");
1574    return DeclarationName();
1575
1576  case Declarator::DK_Normal:
1577    assert (D.getIdentifier() != 0 && "normal declarators have an identifier");
1578    return DeclarationName(D.getIdentifier());
1579
1580  case Declarator::DK_Constructor: {
1581    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1582    return Context.DeclarationNames.getCXXConstructorName(
1583                                                Context.getCanonicalType(Ty));
1584  }
1585
1586  case Declarator::DK_Destructor: {
1587    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1588    return Context.DeclarationNames.getCXXDestructorName(
1589                                                Context.getCanonicalType(Ty));
1590  }
1591
1592  case Declarator::DK_Conversion: {
1593    // FIXME: We'd like to keep the non-canonical type for diagnostics!
1594    QualType Ty = GetTypeFromParser(D.getDeclaratorIdType());
1595    return Context.DeclarationNames.getCXXConversionFunctionName(
1596                                                Context.getCanonicalType(Ty));
1597  }
1598
1599  case Declarator::DK_Operator:
1600    assert(D.getIdentifier() == 0 && "operator names have no identifier");
1601    return Context.DeclarationNames.getCXXOperatorName(
1602                                                D.getOverloadedOperator());
1603  }
1604
1605  assert(false && "Unknown name kind");
1606  return DeclarationName();
1607}
1608
1609/// isNearlyMatchingFunction - Determine whether the C++ functions
1610/// Declaration and Definition are "nearly" matching. This heuristic
1611/// is used to improve diagnostics in the case where an out-of-line
1612/// function definition doesn't match any declaration within
1613/// the class or namespace.
1614static bool isNearlyMatchingFunction(ASTContext &Context,
1615                                     FunctionDecl *Declaration,
1616                                     FunctionDecl *Definition) {
1617  if (Declaration->param_size() != Definition->param_size())
1618    return false;
1619  for (unsigned Idx = 0; Idx < Declaration->param_size(); ++Idx) {
1620    QualType DeclParamTy = Declaration->getParamDecl(Idx)->getType();
1621    QualType DefParamTy = Definition->getParamDecl(Idx)->getType();
1622
1623    DeclParamTy = Context.getCanonicalType(DeclParamTy.getNonReferenceType());
1624    DefParamTy = Context.getCanonicalType(DefParamTy.getNonReferenceType());
1625    if (DeclParamTy.getUnqualifiedType() != DefParamTy.getUnqualifiedType())
1626      return false;
1627  }
1628
1629  return true;
1630}
1631
1632Sema::DeclPtrTy
1633Sema::HandleDeclarator(Scope *S, Declarator &D,
1634                       MultiTemplateParamsArg TemplateParamLists,
1635                       bool IsFunctionDefinition) {
1636  DeclarationName Name = GetNameForDeclarator(D);
1637
1638  // All of these full declarators require an identifier.  If it doesn't have
1639  // one, the ParsedFreeStandingDeclSpec action should be used.
1640  if (!Name) {
1641    if (!D.isInvalidType())  // Reject this if we think it is valid.
1642      Diag(D.getDeclSpec().getSourceRange().getBegin(),
1643           diag::err_declarator_need_ident)
1644        << D.getDeclSpec().getSourceRange() << D.getSourceRange();
1645    return DeclPtrTy();
1646  }
1647
1648  // The scope passed in may not be a decl scope.  Zip up the scope tree until
1649  // we find one that is.
1650  while ((S->getFlags() & Scope::DeclScope) == 0 ||
1651         (S->getFlags() & Scope::TemplateParamScope) != 0)
1652    S = S->getParent();
1653
1654  // If this is an out-of-line definition of a member of a class template
1655  // or class template partial specialization, we may need to rebuild the
1656  // type specifier in the declarator. See RebuildTypeInCurrentInstantiation()
1657  // for more information.
1658  // FIXME: cope with decltype(expr) and typeof(expr) once the rebuilder can
1659  // handle expressions properly.
1660  DeclSpec &DS = const_cast<DeclSpec&>(D.getDeclSpec());
1661  if (D.getCXXScopeSpec().isSet() && !D.getCXXScopeSpec().isInvalid() &&
1662      isDependentScopeSpecifier(D.getCXXScopeSpec()) &&
1663      (DS.getTypeSpecType() == DeclSpec::TST_typename ||
1664       DS.getTypeSpecType() == DeclSpec::TST_typeofType ||
1665       DS.getTypeSpecType() == DeclSpec::TST_typeofExpr ||
1666       DS.getTypeSpecType() == DeclSpec::TST_decltype)) {
1667    if (DeclContext *DC = computeDeclContext(D.getCXXScopeSpec(), true)) {
1668      // FIXME: Preserve type source info.
1669      QualType T = GetTypeFromParser(DS.getTypeRep());
1670      EnterDeclaratorContext(S, DC);
1671      T = RebuildTypeInCurrentInstantiation(T, D.getIdentifierLoc(), Name);
1672      ExitDeclaratorContext(S);
1673      if (T.isNull())
1674        return DeclPtrTy();
1675      DS.UpdateTypeRep(T.getAsOpaquePtr());
1676    }
1677  }
1678
1679  DeclContext *DC;
1680  NamedDecl *PrevDecl;
1681  NamedDecl *New;
1682
1683  DeclaratorInfo *DInfo = 0;
1684  QualType R = GetTypeForDeclarator(D, S, &DInfo);
1685
1686  // See if this is a redefinition of a variable in the same scope.
1687  if (D.getCXXScopeSpec().isInvalid()) {
1688    DC = CurContext;
1689    PrevDecl = 0;
1690    D.setInvalidType();
1691  } else if (!D.getCXXScopeSpec().isSet()) {
1692    LookupNameKind NameKind = LookupOrdinaryName;
1693
1694    // If the declaration we're planning to build will be a function
1695    // or object with linkage, then look for another declaration with
1696    // linkage (C99 6.2.2p4-5 and C++ [basic.link]p6).
1697    if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef)
1698      /* Do nothing*/;
1699    else if (R->isFunctionType()) {
1700      if (CurContext->isFunctionOrMethod() ||
1701          D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1702        NameKind = LookupRedeclarationWithLinkage;
1703    } else if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_extern)
1704      NameKind = LookupRedeclarationWithLinkage;
1705    else if (CurContext->getLookupContext()->isTranslationUnit() &&
1706             D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_static)
1707      NameKind = LookupRedeclarationWithLinkage;
1708
1709    DC = CurContext;
1710    PrevDecl = LookupName(S, Name, NameKind, true,
1711                          NameKind == LookupRedeclarationWithLinkage,
1712                          D.getIdentifierLoc());
1713  } else { // Something like "int foo::x;"
1714    DC = computeDeclContext(D.getCXXScopeSpec(), true);
1715
1716    if (!DC) {
1717      // If we could not compute the declaration context, it's because the
1718      // declaration context is dependent but does not refer to a class,
1719      // class template, or class template partial specialization. Complain
1720      // and return early, to avoid the coming semantic disaster.
1721      Diag(D.getIdentifierLoc(),
1722           diag::err_template_qualified_declarator_no_match)
1723        << (NestedNameSpecifier*)D.getCXXScopeSpec().getScopeRep()
1724        << D.getCXXScopeSpec().getRange();
1725      return DeclPtrTy();
1726    }
1727
1728    PrevDecl = LookupQualifiedName(DC, Name, LookupOrdinaryName, true);
1729
1730    // C++ 7.3.1.2p2:
1731    // Members (including explicit specializations of templates) of a named
1732    // namespace can also be defined outside that namespace by explicit
1733    // qualification of the name being defined, provided that the entity being
1734    // defined was already declared in the namespace and the definition appears
1735    // after the point of declaration in a namespace that encloses the
1736    // declarations namespace.
1737    //
1738    // Note that we only check the context at this point. We don't yet
1739    // have enough information to make sure that PrevDecl is actually
1740    // the declaration we want to match. For example, given:
1741    //
1742    //   class X {
1743    //     void f();
1744    //     void f(float);
1745    //   };
1746    //
1747    //   void X::f(int) { } // ill-formed
1748    //
1749    // In this case, PrevDecl will point to the overload set
1750    // containing the two f's declared in X, but neither of them
1751    // matches.
1752
1753    // First check whether we named the global scope.
1754    if (isa<TranslationUnitDecl>(DC)) {
1755      Diag(D.getIdentifierLoc(), diag::err_invalid_declarator_global_scope)
1756        << Name << D.getCXXScopeSpec().getRange();
1757    } else if (!CurContext->Encloses(DC)) {
1758      // The qualifying scope doesn't enclose the original declaration.
1759      // Emit diagnostic based on current scope.
1760      SourceLocation L = D.getIdentifierLoc();
1761      SourceRange R = D.getCXXScopeSpec().getRange();
1762      if (isa<FunctionDecl>(CurContext))
1763        Diag(L, diag::err_invalid_declarator_in_function) << Name << R;
1764      else
1765        Diag(L, diag::err_invalid_declarator_scope)
1766          << Name << cast<NamedDecl>(DC) << R;
1767      D.setInvalidType();
1768    }
1769  }
1770
1771  if (PrevDecl && PrevDecl->isTemplateParameter()) {
1772    // Maybe we will complain about the shadowed template parameter.
1773    if (!D.isInvalidType())
1774      if (DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl))
1775        D.setInvalidType();
1776
1777    // Just pretend that we didn't see the previous declaration.
1778    PrevDecl = 0;
1779  }
1780
1781  // In C++, the previous declaration we find might be a tag type
1782  // (class or enum). In this case, the new declaration will hide the
1783  // tag type. Note that this does does not apply if we're declaring a
1784  // typedef (C++ [dcl.typedef]p4).
1785  if (PrevDecl && PrevDecl->getIdentifierNamespace() == Decl::IDNS_Tag &&
1786      D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef)
1787    PrevDecl = 0;
1788
1789  bool Redeclaration = false;
1790  if (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_typedef) {
1791    if (TemplateParamLists.size()) {
1792      Diag(D.getIdentifierLoc(), diag::err_template_typedef);
1793      return DeclPtrTy();
1794    }
1795
1796    New = ActOnTypedefDeclarator(S, D, DC, R, DInfo, PrevDecl, Redeclaration);
1797  } else if (R->isFunctionType()) {
1798    New = ActOnFunctionDeclarator(S, D, DC, R, DInfo, PrevDecl,
1799                                  move(TemplateParamLists),
1800                                  IsFunctionDefinition, Redeclaration);
1801  } else {
1802    New = ActOnVariableDeclarator(S, D, DC, R, DInfo, PrevDecl,
1803                                  move(TemplateParamLists),
1804                                  Redeclaration);
1805  }
1806
1807  if (New == 0)
1808    return DeclPtrTy();
1809
1810  // If this has an identifier and is not an invalid redeclaration,
1811  // add it to the scope stack.
1812  if (Name && !(Redeclaration && New->isInvalidDecl()))
1813    PushOnScopeChains(New, S);
1814
1815  return DeclPtrTy::make(New);
1816}
1817
1818/// TryToFixInvalidVariablyModifiedType - Helper method to turn variable array
1819/// types into constant array types in certain situations which would otherwise
1820/// be errors (for GCC compatibility).
1821static QualType TryToFixInvalidVariablyModifiedType(QualType T,
1822                                                    ASTContext &Context,
1823                                                    bool &SizeIsNegative) {
1824  // This method tries to turn a variable array into a constant
1825  // array even when the size isn't an ICE.  This is necessary
1826  // for compatibility with code that depends on gcc's buggy
1827  // constant expression folding, like struct {char x[(int)(char*)2];}
1828  SizeIsNegative = false;
1829
1830  if (const PointerType* PTy = dyn_cast<PointerType>(T)) {
1831    QualType Pointee = PTy->getPointeeType();
1832    QualType FixedType =
1833        TryToFixInvalidVariablyModifiedType(Pointee, Context, SizeIsNegative);
1834    if (FixedType.isNull()) return FixedType;
1835    FixedType = Context.getPointerType(FixedType);
1836    FixedType.setCVRQualifiers(T.getCVRQualifiers());
1837    return FixedType;
1838  }
1839
1840  const VariableArrayType* VLATy = dyn_cast<VariableArrayType>(T);
1841  if (!VLATy)
1842    return QualType();
1843  // FIXME: We should probably handle this case
1844  if (VLATy->getElementType()->isVariablyModifiedType())
1845    return QualType();
1846
1847  Expr::EvalResult EvalResult;
1848  if (!VLATy->getSizeExpr() ||
1849      !VLATy->getSizeExpr()->Evaluate(EvalResult, Context) ||
1850      !EvalResult.Val.isInt())
1851    return QualType();
1852
1853  llvm::APSInt &Res = EvalResult.Val.getInt();
1854  if (Res >= llvm::APSInt(Res.getBitWidth(), Res.isUnsigned())) {
1855    Expr* ArySizeExpr = VLATy->getSizeExpr();
1856    // FIXME: here we could "steal" (how?) ArySizeExpr from the VLA,
1857    // so as to transfer ownership to the ConstantArrayWithExpr.
1858    // Alternatively, we could "clone" it (how?).
1859    // Since we don't know how to do things above, we just use the
1860    // very same Expr*.
1861    return Context.getConstantArrayWithExprType(VLATy->getElementType(),
1862                                                Res, ArySizeExpr,
1863                                                ArrayType::Normal, 0,
1864                                                VLATy->getBracketsRange());
1865  }
1866
1867  SizeIsNegative = true;
1868  return QualType();
1869}
1870
1871/// \brief Register the given locally-scoped external C declaration so
1872/// that it can be found later for redeclarations
1873void
1874Sema::RegisterLocallyScopedExternCDecl(NamedDecl *ND, NamedDecl *PrevDecl,
1875                                       Scope *S) {
1876  assert(ND->getLexicalDeclContext()->isFunctionOrMethod() &&
1877         "Decl is not a locally-scoped decl!");
1878  // Note that we have a locally-scoped external with this name.
1879  LocallyScopedExternalDecls[ND->getDeclName()] = ND;
1880
1881  if (!PrevDecl)
1882    return;
1883
1884  // If there was a previous declaration of this variable, it may be
1885  // in our identifier chain. Update the identifier chain with the new
1886  // declaration.
1887  if (S && IdResolver.ReplaceDecl(PrevDecl, ND)) {
1888    // The previous declaration was found on the identifer resolver
1889    // chain, so remove it from its scope.
1890    while (S && !S->isDeclScope(DeclPtrTy::make(PrevDecl)))
1891      S = S->getParent();
1892
1893    if (S)
1894      S->RemoveDecl(DeclPtrTy::make(PrevDecl));
1895  }
1896}
1897
1898/// \brief Diagnose function specifiers on a declaration of an identifier that
1899/// does not identify a function.
1900void Sema::DiagnoseFunctionSpecifiers(Declarator& D) {
1901  // FIXME: We should probably indicate the identifier in question to avoid
1902  // confusion for constructs like "inline int a(), b;"
1903  if (D.getDeclSpec().isInlineSpecified())
1904    Diag(D.getDeclSpec().getInlineSpecLoc(),
1905         diag::err_inline_non_function);
1906
1907  if (D.getDeclSpec().isVirtualSpecified())
1908    Diag(D.getDeclSpec().getVirtualSpecLoc(),
1909         diag::err_virtual_non_function);
1910
1911  if (D.getDeclSpec().isExplicitSpecified())
1912    Diag(D.getDeclSpec().getExplicitSpecLoc(),
1913         diag::err_explicit_non_function);
1914}
1915
1916NamedDecl*
1917Sema::ActOnTypedefDeclarator(Scope* S, Declarator& D, DeclContext* DC,
1918                             QualType R,  DeclaratorInfo *DInfo,
1919                             Decl* PrevDecl, bool &Redeclaration) {
1920  // Typedef declarators cannot be qualified (C++ [dcl.meaning]p1).
1921  if (D.getCXXScopeSpec().isSet()) {
1922    Diag(D.getIdentifierLoc(), diag::err_qualified_typedef_declarator)
1923      << D.getCXXScopeSpec().getRange();
1924    D.setInvalidType();
1925    // Pretend we didn't see the scope specifier.
1926    DC = 0;
1927  }
1928
1929  if (getLangOptions().CPlusPlus) {
1930    // Check that there are no default arguments (C++ only).
1931    CheckExtraCXXDefaultArguments(D);
1932  }
1933
1934  DiagnoseFunctionSpecifiers(D);
1935
1936  if (D.getDeclSpec().isThreadSpecified())
1937    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
1938
1939  TypedefDecl *NewTD = ParseTypedefDecl(S, D, R);
1940  if (!NewTD) return 0;
1941
1942  if (D.isInvalidType())
1943    NewTD->setInvalidDecl();
1944
1945  // Handle attributes prior to checking for duplicates in MergeVarDecl
1946  ProcessDeclAttributes(S, NewTD, D);
1947  // Merge the decl with the existing one if appropriate. If the decl is
1948  // in an outer scope, it isn't the same thing.
1949  if (PrevDecl && isDeclInScope(PrevDecl, DC, S)) {
1950    Redeclaration = true;
1951    MergeTypeDefDecl(NewTD, PrevDecl);
1952  }
1953
1954  // C99 6.7.7p2: If a typedef name specifies a variably modified type
1955  // then it shall have block scope.
1956  QualType T = NewTD->getUnderlyingType();
1957  if (T->isVariablyModifiedType()) {
1958    CurFunctionNeedsScopeChecking = true;
1959
1960    if (S->getFnParent() == 0) {
1961      bool SizeIsNegative;
1962      QualType FixedTy =
1963          TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
1964      if (!FixedTy.isNull()) {
1965        Diag(D.getIdentifierLoc(), diag::warn_illegal_constant_array_size);
1966        NewTD->setUnderlyingType(FixedTy);
1967      } else {
1968        if (SizeIsNegative)
1969          Diag(D.getIdentifierLoc(), diag::err_typecheck_negative_array_size);
1970        else if (T->isVariableArrayType())
1971          Diag(D.getIdentifierLoc(), diag::err_vla_decl_in_file_scope);
1972        else
1973          Diag(D.getIdentifierLoc(), diag::err_vm_decl_in_file_scope);
1974        NewTD->setInvalidDecl();
1975      }
1976    }
1977  }
1978
1979  // If this is the C FILE type, notify the AST context.
1980  if (IdentifierInfo *II = NewTD->getIdentifier())
1981    if (!NewTD->isInvalidDecl() &&
1982        NewTD->getDeclContext()->getLookupContext()->isTranslationUnit()) {
1983      if (II->isStr("FILE"))
1984        Context.setFILEDecl(NewTD);
1985      else if (II->isStr("jmp_buf"))
1986        Context.setjmp_bufDecl(NewTD);
1987      else if (II->isStr("sigjmp_buf"))
1988        Context.setsigjmp_bufDecl(NewTD);
1989    }
1990
1991  return NewTD;
1992}
1993
1994/// \brief Determines whether the given declaration is an out-of-scope
1995/// previous declaration.
1996///
1997/// This routine should be invoked when name lookup has found a
1998/// previous declaration (PrevDecl) that is not in the scope where a
1999/// new declaration by the same name is being introduced. If the new
2000/// declaration occurs in a local scope, previous declarations with
2001/// linkage may still be considered previous declarations (C99
2002/// 6.2.2p4-5, C++ [basic.link]p6).
2003///
2004/// \param PrevDecl the previous declaration found by name
2005/// lookup
2006///
2007/// \param DC the context in which the new declaration is being
2008/// declared.
2009///
2010/// \returns true if PrevDecl is an out-of-scope previous declaration
2011/// for a new delcaration with the same name.
2012static bool
2013isOutOfScopePreviousDeclaration(NamedDecl *PrevDecl, DeclContext *DC,
2014                                ASTContext &Context) {
2015  if (!PrevDecl)
2016    return 0;
2017
2018  // FIXME: PrevDecl could be an OverloadedFunctionDecl, in which
2019  // case we need to check each of the overloaded functions.
2020  if (!PrevDecl->hasLinkage())
2021    return false;
2022
2023  if (Context.getLangOptions().CPlusPlus) {
2024    // C++ [basic.link]p6:
2025    //   If there is a visible declaration of an entity with linkage
2026    //   having the same name and type, ignoring entities declared
2027    //   outside the innermost enclosing namespace scope, the block
2028    //   scope declaration declares that same entity and receives the
2029    //   linkage of the previous declaration.
2030    DeclContext *OuterContext = DC->getLookupContext();
2031    if (!OuterContext->isFunctionOrMethod())
2032      // This rule only applies to block-scope declarations.
2033      return false;
2034    else {
2035      DeclContext *PrevOuterContext = PrevDecl->getDeclContext();
2036      if (PrevOuterContext->isRecord())
2037        // We found a member function: ignore it.
2038        return false;
2039      else {
2040        // Find the innermost enclosing namespace for the new and
2041        // previous declarations.
2042        while (!OuterContext->isFileContext())
2043          OuterContext = OuterContext->getParent();
2044        while (!PrevOuterContext->isFileContext())
2045          PrevOuterContext = PrevOuterContext->getParent();
2046
2047        // The previous declaration is in a different namespace, so it
2048        // isn't the same function.
2049        if (OuterContext->getPrimaryContext() !=
2050            PrevOuterContext->getPrimaryContext())
2051          return false;
2052      }
2053    }
2054  }
2055
2056  return true;
2057}
2058
2059NamedDecl*
2060Sema::ActOnVariableDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2061                              QualType R, DeclaratorInfo *DInfo,
2062                              NamedDecl* PrevDecl,
2063                              MultiTemplateParamsArg TemplateParamLists,
2064                              bool &Redeclaration) {
2065  DeclarationName Name = GetNameForDeclarator(D);
2066
2067  // Check that there are no default arguments (C++ only).
2068  if (getLangOptions().CPlusPlus)
2069    CheckExtraCXXDefaultArguments(D);
2070
2071  VarDecl *NewVD;
2072  VarDecl::StorageClass SC;
2073  switch (D.getDeclSpec().getStorageClassSpec()) {
2074  default: assert(0 && "Unknown storage class!");
2075  case DeclSpec::SCS_unspecified:    SC = VarDecl::None; break;
2076  case DeclSpec::SCS_extern:         SC = VarDecl::Extern; break;
2077  case DeclSpec::SCS_static:         SC = VarDecl::Static; break;
2078  case DeclSpec::SCS_auto:           SC = VarDecl::Auto; break;
2079  case DeclSpec::SCS_register:       SC = VarDecl::Register; break;
2080  case DeclSpec::SCS_private_extern: SC = VarDecl::PrivateExtern; break;
2081  case DeclSpec::SCS_mutable:
2082    // mutable can only appear on non-static class members, so it's always
2083    // an error here
2084    Diag(D.getIdentifierLoc(), diag::err_mutable_nonmember);
2085    D.setInvalidType();
2086    SC = VarDecl::None;
2087    break;
2088  }
2089
2090  IdentifierInfo *II = Name.getAsIdentifierInfo();
2091  if (!II) {
2092    Diag(D.getIdentifierLoc(), diag::err_bad_variable_name)
2093      << Name.getAsString();
2094    return 0;
2095  }
2096
2097  DiagnoseFunctionSpecifiers(D);
2098
2099  if (!DC->isRecord() && S->getFnParent() == 0) {
2100    // C99 6.9p2: The storage-class specifiers auto and register shall not
2101    // appear in the declaration specifiers in an external declaration.
2102    if (SC == VarDecl::Auto || SC == VarDecl::Register) {
2103
2104      // If this is a register variable with an asm label specified, then this
2105      // is a GNU extension.
2106      if (SC == VarDecl::Register && D.getAsmLabel())
2107        Diag(D.getIdentifierLoc(), diag::err_unsupported_global_register);
2108      else
2109        Diag(D.getIdentifierLoc(), diag::err_typecheck_sclass_fscope);
2110      D.setInvalidType();
2111    }
2112  }
2113  if (DC->isRecord() && !CurContext->isRecord()) {
2114    // This is an out-of-line definition of a static data member.
2115    if (SC == VarDecl::Static) {
2116      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2117           diag::err_static_out_of_line)
2118        << CodeModificationHint::CreateRemoval(
2119                       SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2120    } else if (SC == VarDecl::None)
2121      SC = VarDecl::Static;
2122  }
2123  if (SC == VarDecl::Static) {
2124    if (const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(DC)) {
2125      if (RD->isLocalClass())
2126        Diag(D.getIdentifierLoc(),
2127             diag::err_static_data_member_not_allowed_in_local_class)
2128          << Name << RD->getDeclName();
2129    }
2130  }
2131
2132  // Match up the template parameter lists with the scope specifier, then
2133  // determine whether we have a template or a template specialization.
2134  if (TemplateParameterList *TemplateParams
2135      = MatchTemplateParametersToScopeSpecifier(
2136                                  D.getDeclSpec().getSourceRange().getBegin(),
2137                                                D.getCXXScopeSpec(),
2138                        (TemplateParameterList**)TemplateParamLists.get(),
2139                                                 TemplateParamLists.size())) {
2140    if (TemplateParams->size() > 0) {
2141      // There is no such thing as a variable template.
2142      Diag(D.getIdentifierLoc(), diag::err_template_variable)
2143        << II
2144        << SourceRange(TemplateParams->getTemplateLoc(),
2145                       TemplateParams->getRAngleLoc());
2146      return 0;
2147    } else {
2148      // There is an extraneous 'template<>' for this variable. Complain
2149      // about it, but allow the declaration of the variable.
2150      Diag(TemplateParams->getTemplateLoc(),
2151           diag::err_template_variable_noparams)
2152        << II
2153        << SourceRange(TemplateParams->getTemplateLoc(),
2154                       TemplateParams->getRAngleLoc());
2155    }
2156  }
2157
2158  NewVD = VarDecl::Create(Context, DC, D.getIdentifierLoc(),
2159                          II, R, DInfo, SC);
2160
2161  if (D.isInvalidType())
2162    NewVD->setInvalidDecl();
2163
2164  if (D.getDeclSpec().isThreadSpecified()) {
2165    if (NewVD->hasLocalStorage())
2166      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_non_global);
2167    else if (!Context.Target.isTLSSupported())
2168      Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_thread_unsupported);
2169    else
2170      NewVD->setThreadSpecified(true);
2171  }
2172
2173  // Set the lexical context. If the declarator has a C++ scope specifier, the
2174  // lexical context will be different from the semantic context.
2175  NewVD->setLexicalDeclContext(CurContext);
2176
2177  // Handle attributes prior to checking for duplicates in MergeVarDecl
2178  ProcessDeclAttributes(S, NewVD, D);
2179
2180  // Handle GNU asm-label extension (encoded as an attribute).
2181  if (Expr *E = (Expr*) D.getAsmLabel()) {
2182    // The parser guarantees this is a string.
2183    StringLiteral *SE = cast<StringLiteral>(E);
2184    NewVD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2185                                                        SE->getByteLength())));
2186  }
2187
2188  // If name lookup finds a previous declaration that is not in the
2189  // same scope as the new declaration, this may still be an
2190  // acceptable redeclaration.
2191  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2192      !(NewVD->hasLinkage() &&
2193        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2194    PrevDecl = 0;
2195
2196  // Merge the decl with the existing one if appropriate.
2197  if (PrevDecl) {
2198    if (isa<FieldDecl>(PrevDecl) && D.getCXXScopeSpec().isSet()) {
2199      // The user tried to define a non-static data member
2200      // out-of-line (C++ [dcl.meaning]p1).
2201      Diag(NewVD->getLocation(), diag::err_nonstatic_member_out_of_line)
2202        << D.getCXXScopeSpec().getRange();
2203      PrevDecl = 0;
2204      NewVD->setInvalidDecl();
2205    }
2206  } else if (D.getCXXScopeSpec().isSet()) {
2207    // No previous declaration in the qualifying scope.
2208    Diag(D.getIdentifierLoc(), diag::err_typecheck_no_member)
2209      << Name << D.getCXXScopeSpec().getRange();
2210    NewVD->setInvalidDecl();
2211  }
2212
2213  CheckVariableDeclaration(NewVD, PrevDecl, Redeclaration);
2214
2215  // attributes declared post-definition are currently ignored
2216  if (PrevDecl) {
2217    const VarDecl *Def = 0, *PrevVD = dyn_cast<VarDecl>(PrevDecl);
2218    if (PrevVD->getDefinition(Def) && D.hasAttributes()) {
2219      Diag(NewVD->getLocation(), diag::warn_attribute_precede_definition);
2220      Diag(Def->getLocation(), diag::note_previous_definition);
2221    }
2222  }
2223
2224  // If this is a locally-scoped extern C variable, update the map of
2225  // such variables.
2226  if (CurContext->isFunctionOrMethod() && NewVD->isExternC(Context) &&
2227      !NewVD->isInvalidDecl())
2228    RegisterLocallyScopedExternCDecl(NewVD, PrevDecl, S);
2229
2230  return NewVD;
2231}
2232
2233/// \brief Perform semantic checking on a newly-created variable
2234/// declaration.
2235///
2236/// This routine performs all of the type-checking required for a
2237/// variable declaration once it has been built. It is used both to
2238/// check variables after they have been parsed and their declarators
2239/// have been translated into a declaration, and to check variables
2240/// that have been instantiated from a template.
2241///
2242/// Sets NewVD->isInvalidDecl() if an error was encountered.
2243void Sema::CheckVariableDeclaration(VarDecl *NewVD, NamedDecl *PrevDecl,
2244                                    bool &Redeclaration) {
2245  // If the decl is already known invalid, don't check it.
2246  if (NewVD->isInvalidDecl())
2247    return;
2248
2249  QualType T = NewVD->getType();
2250
2251  if (T->isObjCInterfaceType()) {
2252    Diag(NewVD->getLocation(), diag::err_statically_allocated_object);
2253    return NewVD->setInvalidDecl();
2254  }
2255
2256  // The variable can not have an abstract class type.
2257  if (RequireNonAbstractType(NewVD->getLocation(), T,
2258                             diag::err_abstract_type_in_decl,
2259                             AbstractVariableType))
2260    return NewVD->setInvalidDecl();
2261
2262  // Emit an error if an address space was applied to decl with local storage.
2263  // This includes arrays of objects with address space qualifiers, but not
2264  // automatic variables that point to other address spaces.
2265  // ISO/IEC TR 18037 S5.1.2
2266  if (NewVD->hasLocalStorage() && (T.getAddressSpace() != 0)) {
2267    Diag(NewVD->getLocation(), diag::err_as_qualified_auto_decl);
2268    return NewVD->setInvalidDecl();
2269  }
2270
2271  if (NewVD->hasLocalStorage() && T.isObjCGCWeak()
2272      && !NewVD->hasAttr<BlocksAttr>())
2273    Diag(NewVD->getLocation(), diag::warn_attribute_weak_on_local);
2274
2275  bool isVM = T->isVariablyModifiedType();
2276  if (isVM || NewVD->hasAttr<CleanupAttr>() ||
2277      NewVD->hasAttr<BlocksAttr>())
2278    CurFunctionNeedsScopeChecking = true;
2279
2280  if ((isVM && NewVD->hasLinkage()) ||
2281      (T->isVariableArrayType() && NewVD->hasGlobalStorage())) {
2282    bool SizeIsNegative;
2283    QualType FixedTy =
2284        TryToFixInvalidVariablyModifiedType(T, Context, SizeIsNegative);
2285
2286    if (FixedTy.isNull() && T->isVariableArrayType()) {
2287      const VariableArrayType *VAT = Context.getAsVariableArrayType(T);
2288      // FIXME: This won't give the correct result for
2289      // int a[10][n];
2290      SourceRange SizeRange = VAT->getSizeExpr()->getSourceRange();
2291
2292      if (NewVD->isFileVarDecl())
2293        Diag(NewVD->getLocation(), diag::err_vla_decl_in_file_scope)
2294        << SizeRange;
2295      else if (NewVD->getStorageClass() == VarDecl::Static)
2296        Diag(NewVD->getLocation(), diag::err_vla_decl_has_static_storage)
2297        << SizeRange;
2298      else
2299        Diag(NewVD->getLocation(), diag::err_vla_decl_has_extern_linkage)
2300        << SizeRange;
2301      return NewVD->setInvalidDecl();
2302    }
2303
2304    if (FixedTy.isNull()) {
2305      if (NewVD->isFileVarDecl())
2306        Diag(NewVD->getLocation(), diag::err_vm_decl_in_file_scope);
2307      else
2308        Diag(NewVD->getLocation(), diag::err_vm_decl_has_extern_linkage);
2309      return NewVD->setInvalidDecl();
2310    }
2311
2312    Diag(NewVD->getLocation(), diag::warn_illegal_constant_array_size);
2313    NewVD->setType(FixedTy);
2314  }
2315
2316  if (!PrevDecl && NewVD->isExternC(Context)) {
2317    // Since we did not find anything by this name and we're declaring
2318    // an extern "C" variable, look for a non-visible extern "C"
2319    // declaration with the same name.
2320    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2321      = LocallyScopedExternalDecls.find(NewVD->getDeclName());
2322    if (Pos != LocallyScopedExternalDecls.end())
2323      PrevDecl = Pos->second;
2324  }
2325
2326  if (T->isVoidType() && !NewVD->hasExternalStorage()) {
2327    Diag(NewVD->getLocation(), diag::err_typecheck_decl_incomplete_type)
2328      << T;
2329    return NewVD->setInvalidDecl();
2330  }
2331
2332  if (!NewVD->hasLocalStorage() && NewVD->hasAttr<BlocksAttr>()) {
2333    Diag(NewVD->getLocation(), diag::err_block_on_nonlocal);
2334    return NewVD->setInvalidDecl();
2335  }
2336
2337  if (isVM && NewVD->hasAttr<BlocksAttr>()) {
2338    Diag(NewVD->getLocation(), diag::err_block_on_vm);
2339    return NewVD->setInvalidDecl();
2340  }
2341
2342  if (PrevDecl) {
2343    Redeclaration = true;
2344    MergeVarDecl(NewVD, PrevDecl);
2345  }
2346}
2347
2348NamedDecl*
2349Sema::ActOnFunctionDeclarator(Scope* S, Declarator& D, DeclContext* DC,
2350                              QualType R, DeclaratorInfo *DInfo,
2351                              NamedDecl* PrevDecl,
2352                              MultiTemplateParamsArg TemplateParamLists,
2353                              bool IsFunctionDefinition, bool &Redeclaration) {
2354  assert(R.getTypePtr()->isFunctionType());
2355
2356  DeclarationName Name = GetNameForDeclarator(D);
2357  FunctionDecl::StorageClass SC = FunctionDecl::None;
2358  switch (D.getDeclSpec().getStorageClassSpec()) {
2359  default: assert(0 && "Unknown storage class!");
2360  case DeclSpec::SCS_auto:
2361  case DeclSpec::SCS_register:
2362  case DeclSpec::SCS_mutable:
2363    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2364         diag::err_typecheck_sclass_func);
2365    D.setInvalidType();
2366    break;
2367  case DeclSpec::SCS_unspecified: SC = FunctionDecl::None; break;
2368  case DeclSpec::SCS_extern:      SC = FunctionDecl::Extern; break;
2369  case DeclSpec::SCS_static: {
2370    if (CurContext->getLookupContext()->isFunctionOrMethod()) {
2371      // C99 6.7.1p5:
2372      //   The declaration of an identifier for a function that has
2373      //   block scope shall have no explicit storage-class specifier
2374      //   other than extern
2375      // See also (C++ [dcl.stc]p4).
2376      Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2377           diag::err_static_block_func);
2378      SC = FunctionDecl::None;
2379    } else
2380      SC = FunctionDecl::Static;
2381    break;
2382  }
2383  case DeclSpec::SCS_private_extern: SC = FunctionDecl::PrivateExtern;break;
2384  }
2385
2386  if (D.getDeclSpec().isThreadSpecified())
2387    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
2388
2389  bool isFriend = D.getDeclSpec().isFriendSpecified();
2390  bool isInline = D.getDeclSpec().isInlineSpecified();
2391  bool isVirtual = D.getDeclSpec().isVirtualSpecified();
2392  bool isExplicit = D.getDeclSpec().isExplicitSpecified();
2393
2394  // Check that the return type is not an abstract class type.
2395  // For record types, this is done by the AbstractClassUsageDiagnoser once
2396  // the class has been completely parsed.
2397  if (!DC->isRecord() &&
2398      RequireNonAbstractType(D.getIdentifierLoc(),
2399                             R->getAsFunctionType()->getResultType(),
2400                             diag::err_abstract_type_in_decl,
2401                             AbstractReturnType))
2402    D.setInvalidType();
2403
2404  // Do not allow returning a objc interface by-value.
2405  if (R->getAsFunctionType()->getResultType()->isObjCInterfaceType()) {
2406    Diag(D.getIdentifierLoc(),
2407         diag::err_object_cannot_be_passed_returned_by_value) << 0
2408      << R->getAsFunctionType()->getResultType();
2409    D.setInvalidType();
2410  }
2411
2412  bool isVirtualOkay = false;
2413  FunctionDecl *NewFD;
2414
2415  if (isFriend) {
2416    // DC is the namespace in which the function is being declared.
2417    assert((DC->isFileContext() || PrevDecl) && "previously-undeclared "
2418           "friend function being created in a non-namespace context");
2419
2420    // C++ [class.friend]p5
2421    //   A function can be defined in a friend declaration of a
2422    //   class . . . . Such a function is implicitly inline.
2423    isInline |= IsFunctionDefinition;
2424  }
2425
2426  if (D.getKind() == Declarator::DK_Constructor) {
2427    // This is a C++ constructor declaration.
2428    assert(DC->isRecord() &&
2429           "Constructors can only be declared in a member context");
2430
2431    R = CheckConstructorDeclarator(D, R, SC);
2432
2433    // Create the new declaration
2434    NewFD = CXXConstructorDecl::Create(Context,
2435                                       cast<CXXRecordDecl>(DC),
2436                                       D.getIdentifierLoc(), Name, R, DInfo,
2437                                       isExplicit, isInline,
2438                                       /*isImplicitlyDeclared=*/false);
2439  } else if (D.getKind() == Declarator::DK_Destructor) {
2440    // This is a C++ destructor declaration.
2441    if (DC->isRecord()) {
2442      R = CheckDestructorDeclarator(D, SC);
2443
2444      NewFD = CXXDestructorDecl::Create(Context,
2445                                        cast<CXXRecordDecl>(DC),
2446                                        D.getIdentifierLoc(), Name, R,
2447                                        isInline,
2448                                        /*isImplicitlyDeclared=*/false);
2449
2450      isVirtualOkay = true;
2451    } else {
2452      Diag(D.getIdentifierLoc(), diag::err_destructor_not_member);
2453
2454      // Create a FunctionDecl to satisfy the function definition parsing
2455      // code path.
2456      NewFD = FunctionDecl::Create(Context, DC, D.getIdentifierLoc(),
2457                                   Name, R, DInfo, SC, isInline,
2458                                   /*hasPrototype=*/true);
2459      D.setInvalidType();
2460    }
2461  } else if (D.getKind() == Declarator::DK_Conversion) {
2462    if (!DC->isRecord()) {
2463      Diag(D.getIdentifierLoc(),
2464           diag::err_conv_function_not_member);
2465      return 0;
2466    }
2467
2468    CheckConversionDeclarator(D, R, SC);
2469    NewFD = CXXConversionDecl::Create(Context, cast<CXXRecordDecl>(DC),
2470                                      D.getIdentifierLoc(), Name, R, DInfo,
2471                                      isInline, isExplicit);
2472
2473    isVirtualOkay = true;
2474  } else if (DC->isRecord()) {
2475    // If the of the function is the same as the name of the record, then this
2476    // must be an invalid constructor that has a return type.
2477    // (The parser checks for a return type and makes the declarator a
2478    // constructor if it has no return type).
2479    // must have an invalid constructor that has a return type
2480    if (Name.getAsIdentifierInfo() == cast<CXXRecordDecl>(DC)->getIdentifier()){
2481      Diag(D.getIdentifierLoc(), diag::err_constructor_return_type)
2482        << SourceRange(D.getDeclSpec().getTypeSpecTypeLoc())
2483        << SourceRange(D.getIdentifierLoc());
2484      return 0;
2485    }
2486
2487    // This is a C++ method declaration.
2488    NewFD = CXXMethodDecl::Create(Context, cast<CXXRecordDecl>(DC),
2489                                  D.getIdentifierLoc(), Name, R, DInfo,
2490                                  (SC == FunctionDecl::Static), isInline);
2491
2492    isVirtualOkay = (SC != FunctionDecl::Static);
2493  } else {
2494    // Determine whether the function was written with a
2495    // prototype. This true when:
2496    //   - we're in C++ (where every function has a prototype),
2497    //   - there is a prototype in the declarator, or
2498    //   - the type R of the function is some kind of typedef or other reference
2499    //     to a type name (which eventually refers to a function type).
2500    bool HasPrototype =
2501       getLangOptions().CPlusPlus ||
2502       (D.getNumTypeObjects() && D.getTypeObject(0).Fun.hasPrototype) ||
2503       (!isa<FunctionType>(R.getTypePtr()) && R->isFunctionProtoType());
2504
2505    NewFD = FunctionDecl::Create(Context, DC,
2506                                 D.getIdentifierLoc(),
2507                                 Name, R, DInfo, SC, isInline, HasPrototype);
2508  }
2509
2510  if (D.isInvalidType())
2511    NewFD->setInvalidDecl();
2512
2513  // Set the lexical context. If the declarator has a C++
2514  // scope specifier, or is the object of a friend declaration, the
2515  // lexical context will be different from the semantic context.
2516  NewFD->setLexicalDeclContext(CurContext);
2517
2518  if (isFriend)
2519    NewFD->setObjectOfFriendDecl(/* PreviouslyDeclared= */ PrevDecl != NULL);
2520
2521  // Match up the template parameter lists with the scope specifier, then
2522  // determine whether we have a template or a template specialization.
2523  FunctionTemplateDecl *FunctionTemplate = 0;
2524  if (TemplateParameterList *TemplateParams
2525        = MatchTemplateParametersToScopeSpecifier(
2526                                  D.getDeclSpec().getSourceRange().getBegin(),
2527                                  D.getCXXScopeSpec(),
2528                           (TemplateParameterList**)TemplateParamLists.get(),
2529                                                  TemplateParamLists.size())) {
2530    if (TemplateParams->size() > 0) {
2531      // This is a function template
2532
2533      // Check that we can declare a template here.
2534      if (CheckTemplateDeclScope(S, TemplateParams))
2535        return 0;
2536
2537      FunctionTemplate = FunctionTemplateDecl::Create(Context, DC,
2538                                                      NewFD->getLocation(),
2539                                                      Name, TemplateParams,
2540                                                      NewFD);
2541      FunctionTemplate->setLexicalDeclContext(CurContext);
2542      NewFD->setDescribedFunctionTemplate(FunctionTemplate);
2543    } else {
2544      // FIXME: Handle function template specializations
2545    }
2546
2547    // FIXME: Free this memory properly.
2548    TemplateParamLists.release();
2549  }
2550
2551  // C++ [dcl.fct.spec]p5:
2552  //   The virtual specifier shall only be used in declarations of
2553  //   nonstatic class member functions that appear within a
2554  //   member-specification of a class declaration; see 10.3.
2555  //
2556  if (isVirtual && !NewFD->isInvalidDecl()) {
2557    if (!isVirtualOkay) {
2558       Diag(D.getDeclSpec().getVirtualSpecLoc(),
2559           diag::err_virtual_non_function);
2560    } else if (!CurContext->isRecord()) {
2561      // 'virtual' was specified outside of the class.
2562      Diag(D.getDeclSpec().getVirtualSpecLoc(), diag::err_virtual_out_of_class)
2563        << CodeModificationHint::CreateRemoval(
2564                             SourceRange(D.getDeclSpec().getVirtualSpecLoc()));
2565    } else {
2566      // Okay: Add virtual to the method.
2567      cast<CXXMethodDecl>(NewFD)->setVirtualAsWritten(true);
2568      CXXRecordDecl *CurClass = cast<CXXRecordDecl>(DC);
2569      CurClass->setAggregate(false);
2570      CurClass->setPOD(false);
2571      CurClass->setEmpty(false);
2572      CurClass->setPolymorphic(true);
2573      CurClass->setHasTrivialConstructor(false);
2574      CurClass->setHasTrivialCopyConstructor(false);
2575      CurClass->setHasTrivialCopyAssignment(false);
2576    }
2577  }
2578
2579  if (CXXMethodDecl *NewMD = dyn_cast<CXXMethodDecl>(NewFD)) {
2580    // Look for virtual methods in base classes that this method might override.
2581
2582    BasePaths Paths;
2583    if (LookupInBases(cast<CXXRecordDecl>(DC),
2584                      MemberLookupCriteria(NewMD), Paths)) {
2585      for (BasePaths::decl_iterator I = Paths.found_decls_begin(),
2586           E = Paths.found_decls_end(); I != E; ++I) {
2587        if (CXXMethodDecl *OldMD = dyn_cast<CXXMethodDecl>(*I)) {
2588          if (!CheckOverridingFunctionReturnType(NewMD, OldMD) &&
2589              !CheckOverridingFunctionExceptionSpec(NewMD, OldMD))
2590            NewMD->addOverriddenMethod(OldMD);
2591        }
2592      }
2593    }
2594  }
2595
2596  if (SC == FunctionDecl::Static && isa<CXXMethodDecl>(NewFD) &&
2597      !CurContext->isRecord()) {
2598    // C++ [class.static]p1:
2599    //   A data or function member of a class may be declared static
2600    //   in a class definition, in which case it is a static member of
2601    //   the class.
2602
2603    // Complain about the 'static' specifier if it's on an out-of-line
2604    // member function definition.
2605    Diag(D.getDeclSpec().getStorageClassSpecLoc(),
2606         diag::err_static_out_of_line)
2607      << CodeModificationHint::CreateRemoval(
2608                      SourceRange(D.getDeclSpec().getStorageClassSpecLoc()));
2609  }
2610
2611  // Handle GNU asm-label extension (encoded as an attribute).
2612  if (Expr *E = (Expr*) D.getAsmLabel()) {
2613    // The parser guarantees this is a string.
2614    StringLiteral *SE = cast<StringLiteral>(E);
2615    NewFD->addAttr(::new (Context) AsmLabelAttr(std::string(SE->getStrData(),
2616                                                        SE->getByteLength())));
2617  }
2618
2619  // Copy the parameter declarations from the declarator D to the function
2620  // declaration NewFD, if they are available.  First scavenge them into Params.
2621  llvm::SmallVector<ParmVarDecl*, 16> Params;
2622  if (D.getNumTypeObjects() > 0) {
2623    DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
2624
2625    // Check for C99 6.7.5.3p10 - foo(void) is a non-varargs
2626    // function that takes no arguments, not a function that takes a
2627    // single void argument.
2628    // We let through "const void" here because Sema::GetTypeForDeclarator
2629    // already checks for that case.
2630    if (FTI.NumArgs == 1 && !FTI.isVariadic && FTI.ArgInfo[0].Ident == 0 &&
2631        FTI.ArgInfo[0].Param &&
2632        FTI.ArgInfo[0].Param.getAs<ParmVarDecl>()->getType()->isVoidType()) {
2633      // Empty arg list, don't push any params.
2634      ParmVarDecl *Param = FTI.ArgInfo[0].Param.getAs<ParmVarDecl>();
2635
2636      // In C++, the empty parameter-type-list must be spelled "void"; a
2637      // typedef of void is not permitted.
2638      if (getLangOptions().CPlusPlus &&
2639          Param->getType().getUnqualifiedType() != Context.VoidTy)
2640        Diag(Param->getLocation(), diag::err_param_typedef_of_void);
2641      // FIXME: Leaks decl?
2642    } else if (FTI.NumArgs > 0 && FTI.ArgInfo[0].Param != 0) {
2643      for (unsigned i = 0, e = FTI.NumArgs; i != e; ++i) {
2644        ParmVarDecl *Param = FTI.ArgInfo[i].Param.getAs<ParmVarDecl>();
2645        assert(Param->getDeclContext() != NewFD && "Was set before ?");
2646        Param->setDeclContext(NewFD);
2647        Params.push_back(Param);
2648      }
2649    }
2650
2651  } else if (const FunctionProtoType *FT = R->getAsFunctionProtoType()) {
2652    // When we're declaring a function with a typedef, typeof, etc as in the
2653    // following example, we'll need to synthesize (unnamed)
2654    // parameters for use in the declaration.
2655    //
2656    // @code
2657    // typedef void fn(int);
2658    // fn f;
2659    // @endcode
2660
2661    // Synthesize a parameter for each argument type.
2662    for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
2663         AE = FT->arg_type_end(); AI != AE; ++AI) {
2664      ParmVarDecl *Param = ParmVarDecl::Create(Context, DC,
2665                                               SourceLocation(), 0,
2666                                               *AI, /*DInfo=*/0,
2667                                               VarDecl::None, 0);
2668      Param->setImplicit();
2669      Params.push_back(Param);
2670    }
2671  } else {
2672    assert(R->isFunctionNoProtoType() && NewFD->getNumParams() == 0 &&
2673           "Should not need args for typedef of non-prototype fn");
2674  }
2675  // Finally, we know we have the right number of parameters, install them.
2676  NewFD->setParams(Context, Params.data(), Params.size());
2677
2678  // If name lookup finds a previous declaration that is not in the
2679  // same scope as the new declaration, this may still be an
2680  // acceptable redeclaration.
2681  if (PrevDecl && !isDeclInScope(PrevDecl, DC, S) &&
2682      !(NewFD->hasLinkage() &&
2683        isOutOfScopePreviousDeclaration(PrevDecl, DC, Context)))
2684    PrevDecl = 0;
2685
2686  // Perform semantic checking on the function declaration.
2687  bool OverloadableAttrRequired = false; // FIXME: HACK!
2688  CheckFunctionDeclaration(NewFD, PrevDecl, Redeclaration,
2689                           /*FIXME:*/OverloadableAttrRequired);
2690
2691  if (D.getCXXScopeSpec().isSet() && !NewFD->isInvalidDecl()) {
2692    // An out-of-line member function declaration must also be a
2693    // definition (C++ [dcl.meaning]p1).
2694    if (!IsFunctionDefinition && !isFriend) {
2695      Diag(NewFD->getLocation(), diag::err_out_of_line_declaration)
2696        << D.getCXXScopeSpec().getRange();
2697      NewFD->setInvalidDecl();
2698    } else if (!Redeclaration && (!PrevDecl || !isa<UsingDecl>(PrevDecl))) {
2699      // The user tried to provide an out-of-line definition for a
2700      // function that is a member of a class or namespace, but there
2701      // was no such member function declared (C++ [class.mfct]p2,
2702      // C++ [namespace.memdef]p2). For example:
2703      //
2704      // class X {
2705      //   void f() const;
2706      // };
2707      //
2708      // void X::f() { } // ill-formed
2709      //
2710      // Complain about this problem, and attempt to suggest close
2711      // matches (e.g., those that differ only in cv-qualifiers and
2712      // whether the parameter types are references).
2713      Diag(D.getIdentifierLoc(), diag::err_member_def_does_not_match)
2714        << cast<NamedDecl>(DC) << D.getCXXScopeSpec().getRange();
2715      NewFD->setInvalidDecl();
2716
2717      LookupResult Prev = LookupQualifiedName(DC, Name, LookupOrdinaryName,
2718                                              true);
2719      assert(!Prev.isAmbiguous() &&
2720             "Cannot have an ambiguity in previous-declaration lookup");
2721      for (LookupResult::iterator Func = Prev.begin(), FuncEnd = Prev.end();
2722           Func != FuncEnd; ++Func) {
2723        if (isa<FunctionDecl>(*Func) &&
2724            isNearlyMatchingFunction(Context, cast<FunctionDecl>(*Func), NewFD))
2725          Diag((*Func)->getLocation(), diag::note_member_def_close_match);
2726      }
2727
2728      PrevDecl = 0;
2729    }
2730  }
2731
2732  // Handle attributes. We need to have merged decls when handling attributes
2733  // (for example to check for conflicts, etc).
2734  // FIXME: This needs to happen before we merge declarations. Then,
2735  // let attribute merging cope with attribute conflicts.
2736  ProcessDeclAttributes(S, NewFD, D);
2737
2738  // attributes declared post-definition are currently ignored
2739  if (PrevDecl) {
2740    const FunctionDecl *Def, *PrevFD = dyn_cast<FunctionDecl>(PrevDecl);
2741    if (PrevFD && PrevFD->getBody(Def) && D.hasAttributes()) {
2742      Diag(NewFD->getLocation(), diag::warn_attribute_precede_definition);
2743      Diag(Def->getLocation(), diag::note_previous_definition);
2744    }
2745  }
2746
2747  AddKnownFunctionAttributes(NewFD);
2748
2749  if (OverloadableAttrRequired && !NewFD->getAttr<OverloadableAttr>()) {
2750    // If a function name is overloadable in C, then every function
2751    // with that name must be marked "overloadable".
2752    Diag(NewFD->getLocation(), diag::err_attribute_overloadable_missing)
2753      << Redeclaration << NewFD;
2754    if (PrevDecl)
2755      Diag(PrevDecl->getLocation(),
2756           diag::note_attribute_overloadable_prev_overload);
2757    NewFD->addAttr(::new (Context) OverloadableAttr());
2758  }
2759
2760  // If this is a locally-scoped extern C function, update the
2761  // map of such names.
2762  if (CurContext->isFunctionOrMethod() && NewFD->isExternC(Context)
2763      && !NewFD->isInvalidDecl())
2764    RegisterLocallyScopedExternCDecl(NewFD, PrevDecl, S);
2765
2766  // Set this FunctionDecl's range up to the right paren.
2767  NewFD->setLocEnd(D.getSourceRange().getEnd());
2768
2769  if (FunctionTemplate && NewFD->isInvalidDecl())
2770    FunctionTemplate->setInvalidDecl();
2771
2772  if (FunctionTemplate)
2773    return FunctionTemplate;
2774
2775  return NewFD;
2776}
2777
2778/// \brief Perform semantic checking of a new function declaration.
2779///
2780/// Performs semantic analysis of the new function declaration
2781/// NewFD. This routine performs all semantic checking that does not
2782/// require the actual declarator involved in the declaration, and is
2783/// used both for the declaration of functions as they are parsed
2784/// (called via ActOnDeclarator) and for the declaration of functions
2785/// that have been instantiated via C++ template instantiation (called
2786/// via InstantiateDecl).
2787///
2788/// This sets NewFD->isInvalidDecl() to true if there was an error.
2789void Sema::CheckFunctionDeclaration(FunctionDecl *NewFD, NamedDecl *&PrevDecl,
2790                                    bool &Redeclaration,
2791                                    bool &OverloadableAttrRequired) {
2792  // If NewFD is already known erroneous, don't do any of this checking.
2793  if (NewFD->isInvalidDecl())
2794    return;
2795
2796  if (NewFD->getResultType()->isVariablyModifiedType()) {
2797    // Functions returning a variably modified type violate C99 6.7.5.2p2
2798    // because all functions have linkage.
2799    Diag(NewFD->getLocation(), diag::err_vm_func_decl);
2800    return NewFD->setInvalidDecl();
2801  }
2802
2803  if (NewFD->isMain(Context)) CheckMain(NewFD);
2804
2805  // Semantic checking for this function declaration (in isolation).
2806  if (getLangOptions().CPlusPlus) {
2807    // C++-specific checks.
2808    if (CXXConstructorDecl *Constructor = dyn_cast<CXXConstructorDecl>(NewFD)) {
2809      CheckConstructor(Constructor);
2810    } else if (isa<CXXDestructorDecl>(NewFD)) {
2811      CXXRecordDecl *Record = cast<CXXRecordDecl>(NewFD->getParent());
2812      QualType ClassType = Context.getTypeDeclType(Record);
2813      if (!ClassType->isDependentType()) {
2814        DeclarationName Name
2815          = Context.DeclarationNames.getCXXDestructorName(
2816                                        Context.getCanonicalType(ClassType));
2817        if (NewFD->getDeclName() != Name) {
2818          Diag(NewFD->getLocation(), diag::err_destructor_name);
2819          return NewFD->setInvalidDecl();
2820        }
2821      }
2822      Record->setUserDeclaredDestructor(true);
2823      // C++ [class]p4: A POD-struct is an aggregate class that has [...] no
2824      // user-defined destructor.
2825      Record->setPOD(false);
2826
2827      // C++ [class.dtor]p3: A destructor is trivial if it is an implicitly-
2828      // declared destructor.
2829      // FIXME: C++0x: don't do this for "= default" destructors
2830      Record->setHasTrivialDestructor(false);
2831    } else if (CXXConversionDecl *Conversion
2832               = dyn_cast<CXXConversionDecl>(NewFD))
2833      ActOnConversionDeclarator(Conversion);
2834
2835    // Extra checking for C++ overloaded operators (C++ [over.oper]).
2836    if (NewFD->isOverloadedOperator() &&
2837        CheckOverloadedOperatorDeclaration(NewFD))
2838      return NewFD->setInvalidDecl();
2839  }
2840
2841  // C99 6.7.4p6:
2842  //   [... ] For a function with external linkage, the following
2843  //   restrictions apply: [...] If all of the file scope declarations
2844  //   for a function in a translation unit include the inline
2845  //   function specifier without extern, then the definition in that
2846  //   translation unit is an inline definition. An inline definition
2847  //   does not provide an external definition for the function, and
2848  //   does not forbid an external definition in another translation
2849  //   unit.
2850  //
2851  // Here we determine whether this function, in isolation, would be a
2852  // C99 inline definition. MergeCompatibleFunctionDecls looks at
2853  // previous declarations.
2854  if (NewFD->isInline() && getLangOptions().C99 &&
2855      NewFD->getStorageClass() == FunctionDecl::None &&
2856      NewFD->getDeclContext()->getLookupContext()->isTranslationUnit())
2857    NewFD->setC99InlineDefinition(true);
2858
2859  // Check for a previous declaration of this name.
2860  if (!PrevDecl && NewFD->isExternC(Context)) {
2861    // Since we did not find anything by this name and we're declaring
2862    // an extern "C" function, look for a non-visible extern "C"
2863    // declaration with the same name.
2864    llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
2865      = LocallyScopedExternalDecls.find(NewFD->getDeclName());
2866    if (Pos != LocallyScopedExternalDecls.end())
2867      PrevDecl = Pos->second;
2868  }
2869
2870  // Merge or overload the declaration with an existing declaration of
2871  // the same name, if appropriate.
2872  if (PrevDecl) {
2873    // Determine whether NewFD is an overload of PrevDecl or
2874    // a declaration that requires merging. If it's an overload,
2875    // there's no more work to do here; we'll just add the new
2876    // function to the scope.
2877    OverloadedFunctionDecl::function_iterator MatchedDecl;
2878
2879    if (!getLangOptions().CPlusPlus &&
2880        AllowOverloadingOfFunction(PrevDecl, Context)) {
2881      OverloadableAttrRequired = true;
2882
2883      // Functions marked "overloadable" must have a prototype (that
2884      // we can't get through declaration merging).
2885      if (!NewFD->getType()->getAsFunctionProtoType()) {
2886        Diag(NewFD->getLocation(), diag::err_attribute_overloadable_no_prototype)
2887          << NewFD;
2888        Redeclaration = true;
2889
2890        // Turn this into a variadic function with no parameters.
2891        QualType R = Context.getFunctionType(
2892                       NewFD->getType()->getAsFunctionType()->getResultType(),
2893                       0, 0, true, 0);
2894        NewFD->setType(R);
2895        return NewFD->setInvalidDecl();
2896      }
2897    }
2898
2899    if (PrevDecl &&
2900        (!AllowOverloadingOfFunction(PrevDecl, Context) ||
2901         !IsOverload(NewFD, PrevDecl, MatchedDecl)) &&
2902        !isa<UsingDecl>(PrevDecl) && !isa<UnresolvedUsingDecl>(PrevDecl)) {
2903      Redeclaration = true;
2904      Decl *OldDecl = PrevDecl;
2905
2906      // If PrevDecl was an overloaded function, extract the
2907      // FunctionDecl that matched.
2908      if (isa<OverloadedFunctionDecl>(PrevDecl))
2909        OldDecl = *MatchedDecl;
2910
2911      // NewFD and OldDecl represent declarations that need to be
2912      // merged.
2913      if (MergeFunctionDecl(NewFD, OldDecl))
2914        return NewFD->setInvalidDecl();
2915
2916      if (FunctionTemplateDecl *OldTemplateDecl
2917            = dyn_cast<FunctionTemplateDecl>(OldDecl))
2918        NewFD->setPreviousDeclaration(OldTemplateDecl->getTemplatedDecl());
2919      else {
2920        if (isa<CXXMethodDecl>(NewFD)) // Set access for out-of-line definitions
2921          NewFD->setAccess(OldDecl->getAccess());
2922        NewFD->setPreviousDeclaration(cast<FunctionDecl>(OldDecl));
2923      }
2924    }
2925  }
2926
2927  // In C++, check default arguments now that we have merged decls. Unless
2928  // the lexical context is the class, because in this case this is done
2929  // during delayed parsing anyway.
2930  if (getLangOptions().CPlusPlus && !CurContext->isRecord())
2931    CheckCXXDefaultArguments(NewFD);
2932}
2933
2934void Sema::CheckMain(FunctionDecl* FD) {
2935  // C++ [basic.start.main]p3:  A program that declares main to be inline
2936  //   or static is ill-formed.
2937  // C99 6.7.4p4:  In a hosted environment, the inline function specifier
2938  //   shall not appear in a declaration of main.
2939  // static main is not an error under C99, but we should warn about it.
2940  bool isInline = FD->isInline();
2941  bool isStatic = FD->getStorageClass() == FunctionDecl::Static;
2942  if (isInline || isStatic) {
2943    unsigned diagID = diag::warn_unusual_main_decl;
2944    if (isInline || getLangOptions().CPlusPlus)
2945      diagID = diag::err_unusual_main_decl;
2946
2947    int which = isStatic + (isInline << 1) - 1;
2948    Diag(FD->getLocation(), diagID) << which;
2949  }
2950
2951  QualType T = FD->getType();
2952  assert(T->isFunctionType() && "function decl is not of function type");
2953  const FunctionType* FT = T->getAsFunctionType();
2954
2955  if (!Context.hasSameUnqualifiedType(FT->getResultType(), Context.IntTy)) {
2956    // TODO: add a replacement fixit to turn the return type into 'int'.
2957    Diag(FD->getTypeSpecStartLoc(), diag::err_main_returns_nonint);
2958    FD->setInvalidDecl(true);
2959  }
2960
2961  // Treat protoless main() as nullary.
2962  if (isa<FunctionNoProtoType>(FT)) return;
2963
2964  const FunctionProtoType* FTP = cast<const FunctionProtoType>(FT);
2965  unsigned nparams = FTP->getNumArgs();
2966  assert(FD->getNumParams() == nparams);
2967
2968  if (nparams > 3) {
2969    Diag(FD->getLocation(), diag::err_main_surplus_args) << nparams;
2970    FD->setInvalidDecl(true);
2971    nparams = 3;
2972  }
2973
2974  // FIXME: a lot of the following diagnostics would be improved
2975  // if we had some location information about types.
2976
2977  QualType CharPP =
2978    Context.getPointerType(Context.getPointerType(Context.CharTy));
2979  QualType Expected[] = { Context.IntTy, CharPP, CharPP };
2980
2981  for (unsigned i = 0; i < nparams; ++i) {
2982    QualType AT = FTP->getArgType(i);
2983
2984    bool mismatch = true;
2985
2986    if (Context.hasSameUnqualifiedType(AT, Expected[i]))
2987      mismatch = false;
2988    else if (Expected[i] == CharPP) {
2989      // As an extension, the following forms are okay:
2990      //   char const **
2991      //   char const * const *
2992      //   char * const *
2993
2994      QualifierSet qs;
2995      const PointerType* PT;
2996      if ((PT = qs.strip(AT)->getAs<PointerType>()) &&
2997          (PT = qs.strip(PT->getPointeeType())->getAs<PointerType>()) &&
2998          (QualType(qs.strip(PT->getPointeeType()), 0) == Context.CharTy)) {
2999        qs.removeConst();
3000        mismatch = !qs.empty();
3001      }
3002    }
3003
3004    if (mismatch) {
3005      Diag(FD->getLocation(), diag::err_main_arg_wrong) << i << Expected[i];
3006      // TODO: suggest replacing given type with expected type
3007      FD->setInvalidDecl(true);
3008    }
3009  }
3010
3011  if (nparams == 1 && !FD->isInvalidDecl()) {
3012    Diag(FD->getLocation(), diag::warn_main_one_arg);
3013  }
3014}
3015
3016bool Sema::CheckForConstantInitializer(Expr *Init, QualType DclT) {
3017  // FIXME: Need strict checking.  In C89, we need to check for
3018  // any assignment, increment, decrement, function-calls, or
3019  // commas outside of a sizeof.  In C99, it's the same list,
3020  // except that the aforementioned are allowed in unevaluated
3021  // expressions.  Everything else falls under the
3022  // "may accept other forms of constant expressions" exception.
3023  // (We never end up here for C++, so the constant expression
3024  // rules there don't matter.)
3025  if (Init->isConstantInitializer(Context))
3026    return false;
3027  Diag(Init->getExprLoc(), diag::err_init_element_not_constant)
3028    << Init->getSourceRange();
3029  return true;
3030}
3031
3032void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init) {
3033  AddInitializerToDecl(dcl, move(init), /*DirectInit=*/false);
3034}
3035
3036/// AddInitializerToDecl - Adds the initializer Init to the
3037/// declaration dcl. If DirectInit is true, this is C++ direct
3038/// initialization rather than copy initialization.
3039void Sema::AddInitializerToDecl(DeclPtrTy dcl, ExprArg init, bool DirectInit) {
3040  Decl *RealDecl = dcl.getAs<Decl>();
3041  // If there is no declaration, there was an error parsing it.  Just ignore
3042  // the initializer.
3043  if (RealDecl == 0)
3044    return;
3045
3046  if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(RealDecl)) {
3047    // With declarators parsed the way they are, the parser cannot
3048    // distinguish between a normal initializer and a pure-specifier.
3049    // Thus this grotesque test.
3050    IntegerLiteral *IL;
3051    Expr *Init = static_cast<Expr *>(init.get());
3052    if ((IL = dyn_cast<IntegerLiteral>(Init)) && IL->getValue() == 0 &&
3053        Context.getCanonicalType(IL->getType()) == Context.IntTy) {
3054      if (Method->isVirtualAsWritten()) {
3055        Method->setPure();
3056
3057        // A class is abstract if at least one function is pure virtual.
3058        cast<CXXRecordDecl>(CurContext)->setAbstract(true);
3059      } else if (!Method->isInvalidDecl()) {
3060        Diag(Method->getLocation(), diag::err_non_virtual_pure)
3061          << Method->getDeclName() << Init->getSourceRange();
3062        Method->setInvalidDecl();
3063      }
3064    } else {
3065      Diag(Method->getLocation(), diag::err_member_function_initialization)
3066        << Method->getDeclName() << Init->getSourceRange();
3067      Method->setInvalidDecl();
3068    }
3069    return;
3070  }
3071
3072  VarDecl *VDecl = dyn_cast<VarDecl>(RealDecl);
3073  if (!VDecl) {
3074    if (getLangOptions().CPlusPlus &&
3075        RealDecl->getLexicalDeclContext()->isRecord() &&
3076        isa<NamedDecl>(RealDecl))
3077      Diag(RealDecl->getLocation(), diag::err_member_initialization)
3078        << cast<NamedDecl>(RealDecl)->getDeclName();
3079    else
3080      Diag(RealDecl->getLocation(), diag::err_illegal_initializer);
3081    RealDecl->setInvalidDecl();
3082    return;
3083  }
3084
3085  if (!VDecl->getType()->isArrayType() &&
3086      RequireCompleteType(VDecl->getLocation(), VDecl->getType(),
3087                          diag::err_typecheck_decl_incomplete_type)) {
3088    RealDecl->setInvalidDecl();
3089    return;
3090  }
3091
3092  const VarDecl *Def = 0;
3093  if (VDecl->getDefinition(Def)) {
3094    Diag(VDecl->getLocation(), diag::err_redefinition)
3095      << VDecl->getDeclName();
3096    Diag(Def->getLocation(), diag::note_previous_definition);
3097    VDecl->setInvalidDecl();
3098    return;
3099  }
3100
3101  // Take ownership of the expression, now that we're sure we have somewhere
3102  // to put it.
3103  Expr *Init = init.takeAs<Expr>();
3104  assert(Init && "missing initializer");
3105
3106  // Get the decls type and save a reference for later, since
3107  // CheckInitializerTypes may change it.
3108  QualType DclT = VDecl->getType(), SavT = DclT;
3109  if (VDecl->isBlockVarDecl()) {
3110    if (VDecl->hasExternalStorage()) { // C99 6.7.8p5
3111      Diag(VDecl->getLocation(), diag::err_block_extern_cant_init);
3112      VDecl->setInvalidDecl();
3113    } else if (!VDecl->isInvalidDecl()) {
3114      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3115                                VDecl->getDeclName(), DirectInit))
3116        VDecl->setInvalidDecl();
3117
3118      // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3119      // Don't check invalid declarations to avoid emitting useless diagnostics.
3120      if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3121        if (VDecl->getStorageClass() == VarDecl::Static) // C99 6.7.8p4.
3122          CheckForConstantInitializer(Init, DclT);
3123      }
3124    }
3125  } else if (VDecl->isStaticDataMember() &&
3126             VDecl->getLexicalDeclContext()->isRecord()) {
3127    // This is an in-class initialization for a static data member, e.g.,
3128    //
3129    // struct S {
3130    //   static const int value = 17;
3131    // };
3132
3133    // Attach the initializer
3134    VDecl->setInit(Context, Init);
3135
3136    // C++ [class.mem]p4:
3137    //   A member-declarator can contain a constant-initializer only
3138    //   if it declares a static member (9.4) of const integral or
3139    //   const enumeration type, see 9.4.2.
3140    QualType T = VDecl->getType();
3141    if (!T->isDependentType() &&
3142        (!Context.getCanonicalType(T).isConstQualified() ||
3143         !T->isIntegralType())) {
3144      Diag(VDecl->getLocation(), diag::err_member_initialization)
3145        << VDecl->getDeclName() << Init->getSourceRange();
3146      VDecl->setInvalidDecl();
3147    } else {
3148      // C++ [class.static.data]p4:
3149      //   If a static data member is of const integral or const
3150      //   enumeration type, its declaration in the class definition
3151      //   can specify a constant-initializer which shall be an
3152      //   integral constant expression (5.19).
3153      if (!Init->isTypeDependent() &&
3154          !Init->getType()->isIntegralType()) {
3155        // We have a non-dependent, non-integral or enumeration type.
3156        Diag(Init->getSourceRange().getBegin(),
3157             diag::err_in_class_initializer_non_integral_type)
3158          << Init->getType() << Init->getSourceRange();
3159        VDecl->setInvalidDecl();
3160      } else if (!Init->isTypeDependent() && !Init->isValueDependent()) {
3161        // Check whether the expression is a constant expression.
3162        llvm::APSInt Value;
3163        SourceLocation Loc;
3164        if (!Init->isIntegerConstantExpr(Value, Context, &Loc)) {
3165          Diag(Loc, diag::err_in_class_initializer_non_constant)
3166            << Init->getSourceRange();
3167          VDecl->setInvalidDecl();
3168        } else if (!VDecl->getType()->isDependentType())
3169          ImpCastExprToType(Init, VDecl->getType());
3170      }
3171    }
3172  } else if (VDecl->isFileVarDecl()) {
3173    if (VDecl->getStorageClass() == VarDecl::Extern)
3174      Diag(VDecl->getLocation(), diag::warn_extern_init);
3175    if (!VDecl->isInvalidDecl())
3176      if (CheckInitializerTypes(Init, DclT, VDecl->getLocation(),
3177                                VDecl->getDeclName(), DirectInit))
3178        VDecl->setInvalidDecl();
3179
3180    // C++ 3.6.2p2, allow dynamic initialization of static initializers.
3181    // Don't check invalid declarations to avoid emitting useless diagnostics.
3182    if (!getLangOptions().CPlusPlus && !VDecl->isInvalidDecl()) {
3183      // C99 6.7.8p4. All file scoped initializers need to be constant.
3184      CheckForConstantInitializer(Init, DclT);
3185    }
3186  }
3187  // If the type changed, it means we had an incomplete type that was
3188  // completed by the initializer. For example:
3189  //   int ary[] = { 1, 3, 5 };
3190  // "ary" transitions from a VariableArrayType to a ConstantArrayType.
3191  if (!VDecl->isInvalidDecl() && (DclT != SavT)) {
3192    VDecl->setType(DclT);
3193    Init->setType(DclT);
3194  }
3195
3196  Init = MaybeCreateCXXExprWithTemporaries(Init,
3197                                           /*ShouldDestroyTemporaries=*/true);
3198  // Attach the initializer to the decl.
3199  VDecl->setInit(Context, Init);
3200
3201  // If the previous declaration of VDecl was a tentative definition,
3202  // remove it from the set of tentative definitions.
3203  if (VDecl->getPreviousDeclaration() &&
3204      VDecl->getPreviousDeclaration()->isTentativeDefinition(Context)) {
3205    llvm::DenseMap<DeclarationName, VarDecl *>::iterator Pos
3206      = TentativeDefinitions.find(VDecl->getDeclName());
3207    assert(Pos != TentativeDefinitions.end() &&
3208           "Unrecorded tentative definition?");
3209    TentativeDefinitions.erase(Pos);
3210  }
3211
3212  return;
3213}
3214
3215void Sema::ActOnUninitializedDecl(DeclPtrTy dcl,
3216                                  bool TypeContainsUndeducedAuto) {
3217  Decl *RealDecl = dcl.getAs<Decl>();
3218
3219  // If there is no declaration, there was an error parsing it. Just ignore it.
3220  if (RealDecl == 0)
3221    return;
3222
3223  if (VarDecl *Var = dyn_cast<VarDecl>(RealDecl)) {
3224    QualType Type = Var->getType();
3225
3226    // Record tentative definitions.
3227    if (Var->isTentativeDefinition(Context))
3228      TentativeDefinitions[Var->getDeclName()] = Var;
3229
3230    // C++ [dcl.init.ref]p3:
3231    //   The initializer can be omitted for a reference only in a
3232    //   parameter declaration (8.3.5), in the declaration of a
3233    //   function return type, in the declaration of a class member
3234    //   within its class declaration (9.2), and where the extern
3235    //   specifier is explicitly used.
3236    if (Type->isReferenceType() && !Var->hasExternalStorage()) {
3237      Diag(Var->getLocation(), diag::err_reference_var_requires_init)
3238        << Var->getDeclName()
3239        << SourceRange(Var->getLocation(), Var->getLocation());
3240      Var->setInvalidDecl();
3241      return;
3242    }
3243
3244    // C++0x [dcl.spec.auto]p3
3245    if (TypeContainsUndeducedAuto) {
3246      Diag(Var->getLocation(), diag::err_auto_var_requires_init)
3247        << Var->getDeclName() << Type;
3248      Var->setInvalidDecl();
3249      return;
3250    }
3251
3252    // C++ [dcl.init]p9:
3253    //
3254    //   If no initializer is specified for an object, and the object
3255    //   is of (possibly cv-qualified) non-POD class type (or array
3256    //   thereof), the object shall be default-initialized; if the
3257    //   object is of const-qualified type, the underlying class type
3258    //   shall have a user-declared default constructor.
3259    if (getLangOptions().CPlusPlus) {
3260      QualType InitType = Type;
3261      if (const ArrayType *Array = Context.getAsArrayType(Type))
3262        InitType = Array->getElementType();
3263      if ((!Var->hasExternalStorage() && !Var->isExternC(Context)) &&
3264          InitType->isRecordType() && !InitType->isDependentType()) {
3265        CXXRecordDecl *RD =
3266          cast<CXXRecordDecl>(InitType->getAs<RecordType>()->getDecl());
3267        CXXConstructorDecl *Constructor = 0;
3268        if (!RequireCompleteType(Var->getLocation(), InitType,
3269                                    diag::err_invalid_incomplete_type_use))
3270          Constructor
3271            = PerformInitializationByConstructor(InitType, 0, 0,
3272                                                 Var->getLocation(),
3273                                               SourceRange(Var->getLocation(),
3274                                                           Var->getLocation()),
3275                                                 Var->getDeclName(),
3276                                                 IK_Default);
3277        if (!Constructor)
3278          Var->setInvalidDecl();
3279        else {
3280          if (!RD->hasTrivialConstructor() || !RD->hasTrivialDestructor()) {
3281            if (InitializeVarWithConstructor(Var, Constructor, InitType, 0, 0))
3282              Var->setInvalidDecl();
3283          }
3284
3285          FinalizeVarWithDestructor(Var, InitType);
3286        }
3287      }
3288    }
3289
3290#if 0
3291    // FIXME: Temporarily disabled because we are not properly parsing
3292    // linkage specifications on declarations, e.g.,
3293    //
3294    //   extern "C" const CGPoint CGPointerZero;
3295    //
3296    // C++ [dcl.init]p9:
3297    //
3298    //     If no initializer is specified for an object, and the
3299    //     object is of (possibly cv-qualified) non-POD class type (or
3300    //     array thereof), the object shall be default-initialized; if
3301    //     the object is of const-qualified type, the underlying class
3302    //     type shall have a user-declared default
3303    //     constructor. Otherwise, if no initializer is specified for
3304    //     an object, the object and its subobjects, if any, have an
3305    //     indeterminate initial value; if the object or any of its
3306    //     subobjects are of const-qualified type, the program is
3307    //     ill-formed.
3308    //
3309    // This isn't technically an error in C, so we don't diagnose it.
3310    //
3311    // FIXME: Actually perform the POD/user-defined default
3312    // constructor check.
3313    if (getLangOptions().CPlusPlus &&
3314        Context.getCanonicalType(Type).isConstQualified() &&
3315        !Var->hasExternalStorage())
3316      Diag(Var->getLocation(),  diag::err_const_var_requires_init)
3317        << Var->getName()
3318        << SourceRange(Var->getLocation(), Var->getLocation());
3319#endif
3320  }
3321}
3322
3323Sema::DeclGroupPtrTy Sema::FinalizeDeclaratorGroup(Scope *S, const DeclSpec &DS,
3324                                                   DeclPtrTy *Group,
3325                                                   unsigned NumDecls) {
3326  llvm::SmallVector<Decl*, 8> Decls;
3327
3328  if (DS.isTypeSpecOwned())
3329    Decls.push_back((Decl*)DS.getTypeRep());
3330
3331  for (unsigned i = 0; i != NumDecls; ++i)
3332    if (Decl *D = Group[i].getAs<Decl>())
3333      Decls.push_back(D);
3334
3335  // Perform semantic analysis that depends on having fully processed both
3336  // the declarator and initializer.
3337  for (unsigned i = 0, e = Decls.size(); i != e; ++i) {
3338    VarDecl *IDecl = dyn_cast<VarDecl>(Decls[i]);
3339    if (!IDecl)
3340      continue;
3341    QualType T = IDecl->getType();
3342
3343    // Block scope. C99 6.7p7: If an identifier for an object is declared with
3344    // no linkage (C99 6.2.2p6), the type for the object shall be complete...
3345    if (IDecl->isBlockVarDecl() && !IDecl->hasExternalStorage()) {
3346      if (!IDecl->isInvalidDecl() &&
3347          RequireCompleteType(IDecl->getLocation(), T,
3348                              diag::err_typecheck_decl_incomplete_type))
3349        IDecl->setInvalidDecl();
3350    }
3351    // File scope. C99 6.9.2p2: A declaration of an identifier for an
3352    // object that has file scope without an initializer, and without a
3353    // storage-class specifier or with the storage-class specifier "static",
3354    // constitutes a tentative definition. Note: A tentative definition with
3355    // external linkage is valid (C99 6.2.2p5).
3356    if (IDecl->isTentativeDefinition(Context) && !IDecl->isInvalidDecl()) {
3357      if (const IncompleteArrayType *ArrayT
3358          = Context.getAsIncompleteArrayType(T)) {
3359        if (RequireCompleteType(IDecl->getLocation(),
3360                                ArrayT->getElementType(),
3361                                diag::err_illegal_decl_array_incomplete_type))
3362          IDecl->setInvalidDecl();
3363      } else if (IDecl->getStorageClass() == VarDecl::Static) {
3364        // C99 6.9.2p3: If the declaration of an identifier for an object is
3365        // a tentative definition and has internal linkage (C99 6.2.2p3), the
3366        // declared type shall not be an incomplete type.
3367        // NOTE: code such as the following
3368        //     static struct s;
3369        //     struct s { int a; };
3370        // is accepted by gcc. Hence here we issue a warning instead of
3371        // an error and we do not invalidate the static declaration.
3372        // NOTE: to avoid multiple warnings, only check the first declaration.
3373        if (IDecl->getPreviousDeclaration() == 0)
3374          RequireCompleteType(IDecl->getLocation(), T,
3375                              diag::ext_typecheck_decl_incomplete_type);
3376      }
3377    }
3378  }
3379  return DeclGroupPtrTy::make(DeclGroupRef::Create(Context,
3380                                                   Decls.data(), Decls.size()));
3381}
3382
3383
3384/// ActOnParamDeclarator - Called from Parser::ParseFunctionDeclarator()
3385/// to introduce parameters into function prototype scope.
3386Sema::DeclPtrTy
3387Sema::ActOnParamDeclarator(Scope *S, Declarator &D) {
3388  const DeclSpec &DS = D.getDeclSpec();
3389
3390  // Verify C99 6.7.5.3p2: The only SCS allowed is 'register'.
3391  VarDecl::StorageClass StorageClass = VarDecl::None;
3392  if (DS.getStorageClassSpec() == DeclSpec::SCS_register) {
3393    StorageClass = VarDecl::Register;
3394  } else if (DS.getStorageClassSpec() != DeclSpec::SCS_unspecified) {
3395    Diag(DS.getStorageClassSpecLoc(),
3396         diag::err_invalid_storage_class_in_func_decl);
3397    D.getMutableDeclSpec().ClearStorageClassSpecs();
3398  }
3399
3400  if (D.getDeclSpec().isThreadSpecified())
3401    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
3402
3403  DiagnoseFunctionSpecifiers(D);
3404
3405  // Check that there are no default arguments inside the type of this
3406  // parameter (C++ only).
3407  if (getLangOptions().CPlusPlus)
3408    CheckExtraCXXDefaultArguments(D);
3409
3410  DeclaratorInfo *DInfo = 0;
3411  TagDecl *OwnedDecl = 0;
3412  QualType parmDeclType = GetTypeForDeclarator(D, S, &DInfo, /*Skip=*/0,
3413                                               &OwnedDecl);
3414
3415  if (getLangOptions().CPlusPlus && OwnedDecl && OwnedDecl->isDefinition()) {
3416    // C++ [dcl.fct]p6:
3417    //   Types shall not be defined in return or parameter types.
3418    Diag(OwnedDecl->getLocation(), diag::err_type_defined_in_param_type)
3419      << Context.getTypeDeclType(OwnedDecl);
3420  }
3421
3422  // TODO: CHECK FOR CONFLICTS, multiple decls with same name in one scope.
3423  // Can this happen for params?  We already checked that they don't conflict
3424  // among each other.  Here they can only shadow globals, which is ok.
3425  IdentifierInfo *II = D.getIdentifier();
3426  if (II) {
3427    if (NamedDecl *PrevDecl = LookupName(S, II, LookupOrdinaryName)) {
3428      if (PrevDecl->isTemplateParameter()) {
3429        // Maybe we will complain about the shadowed template parameter.
3430        DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
3431        // Just pretend that we didn't see the previous declaration.
3432        PrevDecl = 0;
3433      } else if (S->isDeclScope(DeclPtrTy::make(PrevDecl))) {
3434        Diag(D.getIdentifierLoc(), diag::err_param_redefinition) << II;
3435
3436        // Recover by removing the name
3437        II = 0;
3438        D.SetIdentifier(0, D.getIdentifierLoc());
3439      }
3440    }
3441  }
3442
3443  // Parameters can not be abstract class types.
3444  // For record types, this is done by the AbstractClassUsageDiagnoser once
3445  // the class has been completely parsed.
3446  if (!CurContext->isRecord() &&
3447      RequireNonAbstractType(D.getIdentifierLoc(), parmDeclType,
3448                             diag::err_abstract_type_in_decl,
3449                             AbstractParamType))
3450    D.setInvalidType(true);
3451
3452  QualType T = adjustParameterType(parmDeclType);
3453
3454  ParmVarDecl *New;
3455  if (T == parmDeclType) // parameter type did not need adjustment
3456    New = ParmVarDecl::Create(Context, CurContext,
3457                              D.getIdentifierLoc(), II,
3458                              parmDeclType, DInfo, StorageClass,
3459                              0);
3460  else // keep track of both the adjusted and unadjusted types
3461    New = OriginalParmVarDecl::Create(Context, CurContext,
3462                                      D.getIdentifierLoc(), II, T, DInfo,
3463                                      parmDeclType, StorageClass, 0);
3464
3465  if (D.isInvalidType())
3466    New->setInvalidDecl();
3467
3468  // Parameter declarators cannot be interface types. All ObjC objects are
3469  // passed by reference.
3470  if (T->isObjCInterfaceType()) {
3471    Diag(D.getIdentifierLoc(),
3472         diag::err_object_cannot_be_passed_returned_by_value) << 1 << T;
3473    New->setInvalidDecl();
3474  }
3475
3476  // Parameter declarators cannot be qualified (C++ [dcl.meaning]p1).
3477  if (D.getCXXScopeSpec().isSet()) {
3478    Diag(D.getIdentifierLoc(), diag::err_qualified_param_declarator)
3479      << D.getCXXScopeSpec().getRange();
3480    New->setInvalidDecl();
3481  }
3482
3483  // Add the parameter declaration into this scope.
3484  S->AddDecl(DeclPtrTy::make(New));
3485  if (II)
3486    IdResolver.AddDecl(New);
3487
3488  ProcessDeclAttributes(S, New, D);
3489
3490  if (New->hasAttr<BlocksAttr>()) {
3491    Diag(New->getLocation(), diag::err_block_on_nonlocal);
3492  }
3493  return DeclPtrTy::make(New);
3494}
3495
3496void Sema::ActOnFinishKNRParamDeclarations(Scope *S, Declarator &D,
3497                                           SourceLocation LocAfterDecls) {
3498  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3499         "Not a function declarator!");
3500  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3501
3502  // Verify 6.9.1p6: 'every identifier in the identifier list shall be declared'
3503  // for a K&R function.
3504  if (!FTI.hasPrototype) {
3505    for (int i = FTI.NumArgs; i != 0; /* decrement in loop */) {
3506      --i;
3507      if (FTI.ArgInfo[i].Param == 0) {
3508        std::string Code = "  int ";
3509        Code += FTI.ArgInfo[i].Ident->getName();
3510        Code += ";\n";
3511        Diag(FTI.ArgInfo[i].IdentLoc, diag::ext_param_not_declared)
3512          << FTI.ArgInfo[i].Ident
3513          << CodeModificationHint::CreateInsertion(LocAfterDecls, Code);
3514
3515        // Implicitly declare the argument as type 'int' for lack of a better
3516        // type.
3517        DeclSpec DS;
3518        const char* PrevSpec; // unused
3519        unsigned DiagID; // unused
3520        DS.SetTypeSpecType(DeclSpec::TST_int, FTI.ArgInfo[i].IdentLoc,
3521                           PrevSpec, DiagID);
3522        Declarator ParamD(DS, Declarator::KNRTypeListContext);
3523        ParamD.SetIdentifier(FTI.ArgInfo[i].Ident, FTI.ArgInfo[i].IdentLoc);
3524        FTI.ArgInfo[i].Param = ActOnParamDeclarator(S, ParamD);
3525      }
3526    }
3527  }
3528}
3529
3530Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope,
3531                                              Declarator &D) {
3532  assert(getCurFunctionDecl() == 0 && "Function parsing confused");
3533  assert(D.getTypeObject(0).Kind == DeclaratorChunk::Function &&
3534         "Not a function declarator!");
3535  DeclaratorChunk::FunctionTypeInfo &FTI = D.getTypeObject(0).Fun;
3536
3537  if (FTI.hasPrototype) {
3538    // FIXME: Diagnose arguments without names in C.
3539  }
3540
3541  Scope *ParentScope = FnBodyScope->getParent();
3542
3543  DeclPtrTy DP = HandleDeclarator(ParentScope, D,
3544                                  MultiTemplateParamsArg(*this),
3545                                  /*IsFunctionDefinition=*/true);
3546  return ActOnStartOfFunctionDef(FnBodyScope, DP);
3547}
3548
3549Sema::DeclPtrTy Sema::ActOnStartOfFunctionDef(Scope *FnBodyScope, DeclPtrTy D) {
3550  if (!D)
3551    return D;
3552  FunctionDecl *FD = 0;
3553
3554  if (FunctionTemplateDecl *FunTmpl
3555        = dyn_cast<FunctionTemplateDecl>(D.getAs<Decl>()))
3556    FD = FunTmpl->getTemplatedDecl();
3557  else
3558    FD = cast<FunctionDecl>(D.getAs<Decl>());
3559
3560  CurFunctionNeedsScopeChecking = false;
3561
3562  // See if this is a redefinition.
3563  const FunctionDecl *Definition;
3564  if (FD->getBody(Definition)) {
3565    Diag(FD->getLocation(), diag::err_redefinition) << FD->getDeclName();
3566    Diag(Definition->getLocation(), diag::note_previous_definition);
3567  }
3568
3569  // Builtin functions cannot be defined.
3570  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3571    if (!Context.BuiltinInfo.isPredefinedLibFunction(BuiltinID)) {
3572      Diag(FD->getLocation(), diag::err_builtin_definition) << FD;
3573      FD->setInvalidDecl();
3574    }
3575  }
3576
3577  // The return type of a function definition must be complete
3578  // (C99 6.9.1p3, C++ [dcl.fct]p6).
3579  QualType ResultType = FD->getResultType();
3580  if (!ResultType->isDependentType() && !ResultType->isVoidType() &&
3581      !FD->isInvalidDecl() &&
3582      RequireCompleteType(FD->getLocation(), ResultType,
3583                          diag::err_func_def_incomplete_result))
3584    FD->setInvalidDecl();
3585
3586  // GNU warning -Wmissing-prototypes:
3587  //   Warn if a global function is defined without a previous
3588  //   prototype declaration. This warning is issued even if the
3589  //   definition itself provides a prototype. The aim is to detect
3590  //   global functions that fail to be declared in header files.
3591  if (!FD->isInvalidDecl() && FD->isGlobal() && !isa<CXXMethodDecl>(FD) &&
3592      !FD->isMain(Context)) {
3593    bool MissingPrototype = true;
3594    for (const FunctionDecl *Prev = FD->getPreviousDeclaration();
3595         Prev; Prev = Prev->getPreviousDeclaration()) {
3596      // Ignore any declarations that occur in function or method
3597      // scope, because they aren't visible from the header.
3598      if (Prev->getDeclContext()->isFunctionOrMethod())
3599        continue;
3600
3601      MissingPrototype = !Prev->getType()->isFunctionProtoType();
3602      break;
3603    }
3604
3605    if (MissingPrototype)
3606      Diag(FD->getLocation(), diag::warn_missing_prototype) << FD;
3607  }
3608
3609  if (FnBodyScope)
3610    PushDeclContext(FnBodyScope, FD);
3611
3612  // Check the validity of our function parameters
3613  CheckParmsForFunctionDef(FD);
3614
3615  // Introduce our parameters into the function scope
3616  for (unsigned p = 0, NumParams = FD->getNumParams(); p < NumParams; ++p) {
3617    ParmVarDecl *Param = FD->getParamDecl(p);
3618    Param->setOwningFunction(FD);
3619
3620    // If this has an identifier, add it to the scope stack.
3621    if (Param->getIdentifier() && FnBodyScope)
3622      PushOnScopeChains(Param, FnBodyScope);
3623  }
3624
3625  // Checking attributes of current function definition
3626  // dllimport attribute.
3627  if (FD->getAttr<DLLImportAttr>() &&
3628      (!FD->getAttr<DLLExportAttr>())) {
3629    // dllimport attribute cannot be applied to definition.
3630    if (!(FD->getAttr<DLLImportAttr>())->isInherited()) {
3631      Diag(FD->getLocation(),
3632           diag::err_attribute_can_be_applied_only_to_symbol_declaration)
3633        << "dllimport";
3634      FD->setInvalidDecl();
3635      return DeclPtrTy::make(FD);
3636    } else {
3637      // If a symbol previously declared dllimport is later defined, the
3638      // attribute is ignored in subsequent references, and a warning is
3639      // emitted.
3640      Diag(FD->getLocation(),
3641           diag::warn_redeclaration_without_attribute_prev_attribute_ignored)
3642        << FD->getNameAsCString() << "dllimport";
3643    }
3644  }
3645  return DeclPtrTy::make(FD);
3646}
3647
3648Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg) {
3649  return ActOnFinishFunctionBody(D, move(BodyArg), false);
3650}
3651
3652Sema::DeclPtrTy Sema::ActOnFinishFunctionBody(DeclPtrTy D, StmtArg BodyArg,
3653                                              bool IsInstantiation) {
3654  Decl *dcl = D.getAs<Decl>();
3655  Stmt *Body = BodyArg.takeAs<Stmt>();
3656
3657  FunctionDecl *FD = 0;
3658  FunctionTemplateDecl *FunTmpl = dyn_cast_or_null<FunctionTemplateDecl>(dcl);
3659  if (FunTmpl)
3660    FD = FunTmpl->getTemplatedDecl();
3661  else
3662    FD = dyn_cast_or_null<FunctionDecl>(dcl);
3663
3664  if (FD) {
3665    FD->setBody(Body);
3666    if (FD->isMain(Context))
3667      // C and C++ allow for main to automagically return 0.
3668      // Implements C++ [basic.start.main]p5 and C99 5.1.2.2.3.
3669      FD->setHasImplicitReturnZero(true);
3670    else
3671      CheckFallThroughForFunctionDef(FD, Body);
3672
3673    if (!FD->isInvalidDecl())
3674      DiagnoseUnusedParameters(FD->param_begin(), FD->param_end());
3675
3676    // C++ [basic.def.odr]p2:
3677    //   [...] A virtual member function is used if it is not pure. [...]
3678    if (CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(FD))
3679      if (Method->isVirtual() && !Method->isPure())
3680        MarkDeclarationReferenced(Method->getLocation(), Method);
3681
3682    assert(FD == getCurFunctionDecl() && "Function parsing confused");
3683  } else if (ObjCMethodDecl *MD = dyn_cast_or_null<ObjCMethodDecl>(dcl)) {
3684    assert(MD == getCurMethodDecl() && "Method parsing confused");
3685    MD->setBody(Body);
3686    CheckFallThroughForFunctionDef(MD, Body);
3687    MD->setEndLoc(Body->getLocEnd());
3688
3689    if (!MD->isInvalidDecl())
3690      DiagnoseUnusedParameters(MD->param_begin(), MD->param_end());
3691  } else {
3692    Body->Destroy(Context);
3693    return DeclPtrTy();
3694  }
3695  if (!IsInstantiation)
3696    PopDeclContext();
3697
3698  // Verify and clean out per-function state.
3699
3700  assert(&getLabelMap() == &FunctionLabelMap && "Didn't pop block right?");
3701
3702  // Check goto/label use.
3703  for (llvm::DenseMap<IdentifierInfo*, LabelStmt*>::iterator
3704       I = FunctionLabelMap.begin(), E = FunctionLabelMap.end(); I != E; ++I) {
3705    LabelStmt *L = I->second;
3706
3707    // Verify that we have no forward references left.  If so, there was a goto
3708    // or address of a label taken, but no definition of it.  Label fwd
3709    // definitions are indicated with a null substmt.
3710    if (L->getSubStmt() != 0)
3711      continue;
3712
3713    // Emit error.
3714    Diag(L->getIdentLoc(), diag::err_undeclared_label_use) << L->getName();
3715
3716    // At this point, we have gotos that use the bogus label.  Stitch it into
3717    // the function body so that they aren't leaked and that the AST is well
3718    // formed.
3719    if (Body == 0) {
3720      // The whole function wasn't parsed correctly, just delete this.
3721      L->Destroy(Context);
3722      continue;
3723    }
3724
3725    // Otherwise, the body is valid: we want to stitch the label decl into the
3726    // function somewhere so that it is properly owned and so that the goto
3727    // has a valid target.  Do this by creating a new compound stmt with the
3728    // label in it.
3729
3730    // Give the label a sub-statement.
3731    L->setSubStmt(new (Context) NullStmt(L->getIdentLoc()));
3732
3733    CompoundStmt *Compound = isa<CXXTryStmt>(Body) ?
3734                               cast<CXXTryStmt>(Body)->getTryBlock() :
3735                               cast<CompoundStmt>(Body);
3736    std::vector<Stmt*> Elements(Compound->body_begin(), Compound->body_end());
3737    Elements.push_back(L);
3738    Compound->setStmts(Context, &Elements[0], Elements.size());
3739  }
3740  FunctionLabelMap.clear();
3741
3742  if (!Body) return D;
3743
3744  // Verify that that gotos and switch cases don't jump into scopes illegally.
3745  if (CurFunctionNeedsScopeChecking)
3746    DiagnoseInvalidJumps(Body);
3747
3748  // C++ constructors that have function-try-blocks can't have return
3749  // statements in the handlers of that block. (C++ [except.handle]p14)
3750  // Verify this.
3751  if (FD && isa<CXXConstructorDecl>(FD) && isa<CXXTryStmt>(Body))
3752    DiagnoseReturnInConstructorExceptionHandler(cast<CXXTryStmt>(Body));
3753
3754  if (CXXDestructorDecl *Destructor = dyn_cast<CXXDestructorDecl>(dcl))
3755    Destructor->computeBaseOrMembersToDestroy(Context);
3756  return D;
3757}
3758
3759/// ImplicitlyDefineFunction - An undeclared identifier was used in a function
3760/// call, forming a call to an implicitly defined function (per C99 6.5.1p2).
3761NamedDecl *Sema::ImplicitlyDefineFunction(SourceLocation Loc,
3762                                          IdentifierInfo &II, Scope *S) {
3763  // Before we produce a declaration for an implicitly defined
3764  // function, see whether there was a locally-scoped declaration of
3765  // this name as a function or variable. If so, use that
3766  // (non-visible) declaration, and complain about it.
3767  llvm::DenseMap<DeclarationName, NamedDecl *>::iterator Pos
3768    = LocallyScopedExternalDecls.find(&II);
3769  if (Pos != LocallyScopedExternalDecls.end()) {
3770    Diag(Loc, diag::warn_use_out_of_scope_declaration) << Pos->second;
3771    Diag(Pos->second->getLocation(), diag::note_previous_declaration);
3772    return Pos->second;
3773  }
3774
3775  // Extension in C99.  Legal in C90, but warn about it.
3776  if (getLangOptions().C99)
3777    Diag(Loc, diag::ext_implicit_function_decl) << &II;
3778  else
3779    Diag(Loc, diag::warn_implicit_function_decl) << &II;
3780
3781  // FIXME: handle stuff like:
3782  // void foo() { extern float X(); }
3783  // void bar() { X(); }  <-- implicit decl for X in another scope.
3784
3785  // Set a Declarator for the implicit definition: int foo();
3786  const char *Dummy;
3787  DeclSpec DS;
3788  unsigned DiagID;
3789  bool Error = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, Dummy, DiagID);
3790  Error = Error; // Silence warning.
3791  assert(!Error && "Error setting up implicit decl!");
3792  Declarator D(DS, Declarator::BlockContext);
3793  D.AddTypeInfo(DeclaratorChunk::getFunction(false, false, SourceLocation(), 0,
3794                                             0, 0, false, SourceLocation(),
3795                                             false, 0,0,0, Loc, Loc, D),
3796                SourceLocation());
3797  D.SetIdentifier(&II, Loc);
3798
3799  // Insert this function into translation-unit scope.
3800
3801  DeclContext *PrevDC = CurContext;
3802  CurContext = Context.getTranslationUnitDecl();
3803
3804  FunctionDecl *FD =
3805 dyn_cast<FunctionDecl>(ActOnDeclarator(TUScope, D).getAs<Decl>());
3806  FD->setImplicit();
3807
3808  CurContext = PrevDC;
3809
3810  AddKnownFunctionAttributes(FD);
3811
3812  return FD;
3813}
3814
3815/// \brief Adds any function attributes that we know a priori based on
3816/// the declaration of this function.
3817///
3818/// These attributes can apply both to implicitly-declared builtins
3819/// (like __builtin___printf_chk) or to library-declared functions
3820/// like NSLog or printf.
3821void Sema::AddKnownFunctionAttributes(FunctionDecl *FD) {
3822  if (FD->isInvalidDecl())
3823    return;
3824
3825  // If this is a built-in function, map its builtin attributes to
3826  // actual attributes.
3827  if (unsigned BuiltinID = FD->getBuiltinID(Context)) {
3828    // Handle printf-formatting attributes.
3829    unsigned FormatIdx;
3830    bool HasVAListArg;
3831    if (Context.BuiltinInfo.isPrintfLike(BuiltinID, FormatIdx, HasVAListArg)) {
3832      if (!FD->getAttr<FormatAttr>())
3833        FD->addAttr(::new (Context) FormatAttr("printf", FormatIdx + 1,
3834                                             HasVAListArg ? 0 : FormatIdx + 2));
3835    }
3836
3837    // Mark const if we don't care about errno and that is the only
3838    // thing preventing the function from being const. This allows
3839    // IRgen to use LLVM intrinsics for such functions.
3840    if (!getLangOptions().MathErrno &&
3841        Context.BuiltinInfo.isConstWithoutErrno(BuiltinID)) {
3842      if (!FD->getAttr<ConstAttr>())
3843        FD->addAttr(::new (Context) ConstAttr());
3844    }
3845
3846    if (Context.BuiltinInfo.isNoReturn(BuiltinID))
3847      FD->addAttr(::new (Context) NoReturnAttr());
3848  }
3849
3850  IdentifierInfo *Name = FD->getIdentifier();
3851  if (!Name)
3852    return;
3853  if ((!getLangOptions().CPlusPlus &&
3854       FD->getDeclContext()->isTranslationUnit()) ||
3855      (isa<LinkageSpecDecl>(FD->getDeclContext()) &&
3856       cast<LinkageSpecDecl>(FD->getDeclContext())->getLanguage() ==
3857       LinkageSpecDecl::lang_c)) {
3858    // Okay: this could be a libc/libm/Objective-C function we know
3859    // about.
3860  } else
3861    return;
3862
3863  if (Name->isStr("NSLog") || Name->isStr("NSLogv")) {
3864    // FIXME: NSLog and NSLogv should be target specific
3865    if (const FormatAttr *Format = FD->getAttr<FormatAttr>()) {
3866      // FIXME: We known better than our headers.
3867      const_cast<FormatAttr *>(Format)->setType("printf");
3868    } else
3869      FD->addAttr(::new (Context) FormatAttr("printf", 1,
3870                                             Name->isStr("NSLogv") ? 0 : 2));
3871  } else if (Name->isStr("asprintf") || Name->isStr("vasprintf")) {
3872    // FIXME: asprintf and vasprintf aren't C99 functions. Should they be
3873    // target-specific builtins, perhaps?
3874    if (!FD->getAttr<FormatAttr>())
3875      FD->addAttr(::new (Context) FormatAttr("printf", 2,
3876                                             Name->isStr("vasprintf") ? 0 : 3));
3877  }
3878}
3879
3880TypedefDecl *Sema::ParseTypedefDecl(Scope *S, Declarator &D, QualType T) {
3881  assert(D.getIdentifier() && "Wrong callback for declspec without declarator");
3882  assert(!T.isNull() && "GetTypeForDeclarator() returned null type");
3883
3884  // Scope manipulation handled by caller.
3885  TypedefDecl *NewTD = TypedefDecl::Create(Context, CurContext,
3886                                           D.getIdentifierLoc(),
3887                                           D.getIdentifier(),
3888                                           T);
3889
3890  if (TagType *TT = dyn_cast<TagType>(T)) {
3891    TagDecl *TD = TT->getDecl();
3892
3893    // If the TagDecl that the TypedefDecl points to is an anonymous decl
3894    // keep track of the TypedefDecl.
3895    if (!TD->getIdentifier() && !TD->getTypedefForAnonDecl())
3896      TD->setTypedefForAnonDecl(NewTD);
3897  }
3898
3899  if (D.isInvalidType())
3900    NewTD->setInvalidDecl();
3901  return NewTD;
3902}
3903
3904
3905/// \brief Determine whether a tag with a given kind is acceptable
3906/// as a redeclaration of the given tag declaration.
3907///
3908/// \returns true if the new tag kind is acceptable, false otherwise.
3909bool Sema::isAcceptableTagRedeclaration(const TagDecl *Previous,
3910                                        TagDecl::TagKind NewTag,
3911                                        SourceLocation NewTagLoc,
3912                                        const IdentifierInfo &Name) {
3913  // C++ [dcl.type.elab]p3:
3914  //   The class-key or enum keyword present in the
3915  //   elaborated-type-specifier shall agree in kind with the
3916  //   declaration to which the name in theelaborated-type-specifier
3917  //   refers. This rule also applies to the form of
3918  //   elaborated-type-specifier that declares a class-name or
3919  //   friend class since it can be construed as referring to the
3920  //   definition of the class. Thus, in any
3921  //   elaborated-type-specifier, the enum keyword shall be used to
3922  //   refer to an enumeration (7.2), the union class-keyshall be
3923  //   used to refer to a union (clause 9), and either the class or
3924  //   struct class-key shall be used to refer to a class (clause 9)
3925  //   declared using the class or struct class-key.
3926  TagDecl::TagKind OldTag = Previous->getTagKind();
3927  if (OldTag == NewTag)
3928    return true;
3929
3930  if ((OldTag == TagDecl::TK_struct || OldTag == TagDecl::TK_class) &&
3931      (NewTag == TagDecl::TK_struct || NewTag == TagDecl::TK_class)) {
3932    // Warn about the struct/class tag mismatch.
3933    bool isTemplate = false;
3934    if (const CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Previous))
3935      isTemplate = Record->getDescribedClassTemplate();
3936
3937    Diag(NewTagLoc, diag::warn_struct_class_tag_mismatch)
3938      << (NewTag == TagDecl::TK_class)
3939      << isTemplate << &Name
3940      << CodeModificationHint::CreateReplacement(SourceRange(NewTagLoc),
3941                              OldTag == TagDecl::TK_class? "class" : "struct");
3942    Diag(Previous->getLocation(), diag::note_previous_use);
3943    return true;
3944  }
3945  return false;
3946}
3947
3948/// ActOnTag - This is invoked when we see 'struct foo' or 'struct {'.  In the
3949/// former case, Name will be non-null.  In the later case, Name will be null.
3950/// TagSpec indicates what kind of tag this is. TUK indicates whether this is a
3951/// reference/declaration/definition of a tag.
3952Sema::DeclPtrTy Sema::ActOnTag(Scope *S, unsigned TagSpec, TagUseKind TUK,
3953                               SourceLocation KWLoc, const CXXScopeSpec &SS,
3954                               IdentifierInfo *Name, SourceLocation NameLoc,
3955                               AttributeList *Attr, AccessSpecifier AS,
3956                               MultiTemplateParamsArg TemplateParameterLists,
3957                               bool &OwnedDecl) {
3958  // If this is not a definition, it must have a name.
3959  assert((Name != 0 || TUK == TUK_Definition) &&
3960         "Nameless record must be a definition!");
3961
3962  OwnedDecl = false;
3963  TagDecl::TagKind Kind;
3964  switch (TagSpec) {
3965  default: assert(0 && "Unknown tag type!");
3966  case DeclSpec::TST_struct: Kind = TagDecl::TK_struct; break;
3967  case DeclSpec::TST_union:  Kind = TagDecl::TK_union; break;
3968  case DeclSpec::TST_class:  Kind = TagDecl::TK_class; break;
3969  case DeclSpec::TST_enum:   Kind = TagDecl::TK_enum; break;
3970  }
3971
3972  if (TUK != TUK_Reference) {
3973    if (TemplateParameterList *TemplateParams
3974          = MatchTemplateParametersToScopeSpecifier(KWLoc, SS,
3975                        (TemplateParameterList**)TemplateParameterLists.get(),
3976                                              TemplateParameterLists.size())) {
3977      if (TemplateParams->size() > 0) {
3978        // This is a declaration or definition of a class template (which may
3979        // be a member of another template).
3980        OwnedDecl = false;
3981        DeclResult Result = CheckClassTemplate(S, TagSpec, TUK, KWLoc,
3982                                               SS, Name, NameLoc, Attr,
3983                                               TemplateParams,
3984                                               AS);
3985        TemplateParameterLists.release();
3986        return Result.get();
3987      } else {
3988        // FIXME: diagnose the extraneous 'template<>', once we recover
3989        // slightly better in ParseTemplate.cpp from bogus template
3990        // parameters.
3991      }
3992    }
3993  }
3994
3995  DeclContext *SearchDC = CurContext;
3996  DeclContext *DC = CurContext;
3997  NamedDecl *PrevDecl = 0;
3998
3999  bool Invalid = false;
4000
4001  if (Name && SS.isNotEmpty()) {
4002    // We have a nested-name tag ('struct foo::bar').
4003
4004    // Check for invalid 'foo::'.
4005    if (SS.isInvalid()) {
4006      Name = 0;
4007      goto CreateNewDecl;
4008    }
4009
4010    if (RequireCompleteDeclContext(SS))
4011      return DeclPtrTy::make((Decl *)0);
4012
4013    DC = computeDeclContext(SS, true);
4014    SearchDC = DC;
4015    // Look-up name inside 'foo::'.
4016    PrevDecl
4017      = dyn_cast_or_null<TagDecl>(
4018               LookupQualifiedName(DC, Name, LookupTagName, true).getAsDecl());
4019
4020    // A tag 'foo::bar' must already exist.
4021    if (PrevDecl == 0) {
4022      Diag(NameLoc, diag::err_not_tag_in_scope) << Name << SS.getRange();
4023      Name = 0;
4024      Invalid = true;
4025      goto CreateNewDecl;
4026    }
4027  } else if (Name) {
4028    // If this is a named struct, check to see if there was a previous forward
4029    // declaration or definition.
4030    // FIXME: We're looking into outer scopes here, even when we
4031    // shouldn't be. Doing so can result in ambiguities that we
4032    // shouldn't be diagnosing.
4033    LookupResult R = LookupName(S, Name, LookupTagName,
4034                                /*RedeclarationOnly=*/(TUK != TUK_Reference));
4035    if (R.isAmbiguous()) {
4036      DiagnoseAmbiguousLookup(R, Name, NameLoc);
4037      // FIXME: This is not best way to recover from case like:
4038      //
4039      // struct S s;
4040      //
4041      // causes needless "incomplete type" error later.
4042      Name = 0;
4043      PrevDecl = 0;
4044      Invalid = true;
4045    } else
4046      PrevDecl = R;
4047
4048    if (!getLangOptions().CPlusPlus && TUK != TUK_Reference) {
4049      // FIXME: This makes sure that we ignore the contexts associated
4050      // with C structs, unions, and enums when looking for a matching
4051      // tag declaration or definition. See the similar lookup tweak
4052      // in Sema::LookupName; is there a better way to deal with this?
4053      while (isa<RecordDecl>(SearchDC) || isa<EnumDecl>(SearchDC))
4054        SearchDC = SearchDC->getParent();
4055    }
4056  }
4057
4058  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4059    // Maybe we will complain about the shadowed template parameter.
4060    DiagnoseTemplateParameterShadow(NameLoc, PrevDecl);
4061    // Just pretend that we didn't see the previous declaration.
4062    PrevDecl = 0;
4063  }
4064
4065  if (PrevDecl) {
4066    // Check whether the previous declaration is usable.
4067    (void)DiagnoseUseOfDecl(PrevDecl, NameLoc);
4068
4069    if (TagDecl *PrevTagDecl = dyn_cast<TagDecl>(PrevDecl)) {
4070      // If this is a use of a previous tag, or if the tag is already declared
4071      // in the same scope (so that the definition/declaration completes or
4072      // rementions the tag), reuse the decl.
4073      if (TUK == TUK_Reference || TUK == TUK_Friend ||
4074          isDeclInScope(PrevDecl, SearchDC, S)) {
4075        // Make sure that this wasn't declared as an enum and now used as a
4076        // struct or something similar.
4077        if (!isAcceptableTagRedeclaration(PrevTagDecl, Kind, KWLoc, *Name)) {
4078          bool SafeToContinue
4079            = (PrevTagDecl->getTagKind() != TagDecl::TK_enum &&
4080               Kind != TagDecl::TK_enum);
4081          if (SafeToContinue)
4082            Diag(KWLoc, diag::err_use_with_wrong_tag)
4083              << Name
4084              << CodeModificationHint::CreateReplacement(SourceRange(KWLoc),
4085                                                  PrevTagDecl->getKindName());
4086          else
4087            Diag(KWLoc, diag::err_use_with_wrong_tag) << Name;
4088          Diag(PrevDecl->getLocation(), diag::note_previous_use);
4089
4090          if (SafeToContinue)
4091            Kind = PrevTagDecl->getTagKind();
4092          else {
4093            // Recover by making this an anonymous redefinition.
4094            Name = 0;
4095            PrevDecl = 0;
4096            Invalid = true;
4097          }
4098        }
4099
4100        if (!Invalid) {
4101          // If this is a use, just return the declaration we found.
4102
4103          // FIXME: In the future, return a variant or some other clue
4104          // for the consumer of this Decl to know it doesn't own it.
4105          // For our current ASTs this shouldn't be a problem, but will
4106          // need to be changed with DeclGroups.
4107          if (TUK == TUK_Reference)
4108            return DeclPtrTy::make(PrevDecl);
4109
4110          // If this is a friend, make sure we create the new
4111          // declaration in the appropriate semantic context.
4112          if (TUK == TUK_Friend)
4113            SearchDC = PrevDecl->getDeclContext();
4114
4115          // Diagnose attempts to redefine a tag.
4116          if (TUK == TUK_Definition) {
4117            if (TagDecl *Def = PrevTagDecl->getDefinition(Context)) {
4118              Diag(NameLoc, diag::err_redefinition) << Name;
4119              Diag(Def->getLocation(), diag::note_previous_definition);
4120              // If this is a redefinition, recover by making this
4121              // struct be anonymous, which will make any later
4122              // references get the previous definition.
4123              Name = 0;
4124              PrevDecl = 0;
4125              Invalid = true;
4126            } else {
4127              // If the type is currently being defined, complain
4128              // about a nested redefinition.
4129              TagType *Tag = cast<TagType>(Context.getTagDeclType(PrevTagDecl));
4130              if (Tag->isBeingDefined()) {
4131                Diag(NameLoc, diag::err_nested_redefinition) << Name;
4132                Diag(PrevTagDecl->getLocation(),
4133                     diag::note_previous_definition);
4134                Name = 0;
4135                PrevDecl = 0;
4136                Invalid = true;
4137              }
4138            }
4139
4140            // Okay, this is definition of a previously declared or referenced
4141            // tag PrevDecl. We're going to create a new Decl for it.
4142          }
4143        }
4144        // If we get here we have (another) forward declaration or we
4145        // have a definition.  Just create a new decl.
4146
4147      } else {
4148        // If we get here, this is a definition of a new tag type in a nested
4149        // scope, e.g. "struct foo; void bar() { struct foo; }", just create a
4150        // new decl/type.  We set PrevDecl to NULL so that the entities
4151        // have distinct types.
4152        PrevDecl = 0;
4153      }
4154      // If we get here, we're going to create a new Decl. If PrevDecl
4155      // is non-NULL, it's a definition of the tag declared by
4156      // PrevDecl. If it's NULL, we have a new definition.
4157    } else {
4158      // PrevDecl is a namespace, template, or anything else
4159      // that lives in the IDNS_Tag identifier namespace.
4160      if (isDeclInScope(PrevDecl, SearchDC, S)) {
4161        // The tag name clashes with a namespace name, issue an error and
4162        // recover by making this tag be anonymous.
4163        Diag(NameLoc, diag::err_redefinition_different_kind) << Name;
4164        Diag(PrevDecl->getLocation(), diag::note_previous_definition);
4165        Name = 0;
4166        PrevDecl = 0;
4167        Invalid = true;
4168      } else {
4169        // The existing declaration isn't relevant to us; we're in a
4170        // new scope, so clear out the previous declaration.
4171        PrevDecl = 0;
4172      }
4173    }
4174  } else if (TUK == TUK_Reference && SS.isEmpty() && Name &&
4175             (Kind != TagDecl::TK_enum || !getLangOptions().CPlusPlus)) {
4176    // C++ [basic.scope.pdecl]p5:
4177    //   -- for an elaborated-type-specifier of the form
4178    //
4179    //          class-key identifier
4180    //
4181    //      if the elaborated-type-specifier is used in the
4182    //      decl-specifier-seq or parameter-declaration-clause of a
4183    //      function defined in namespace scope, the identifier is
4184    //      declared as a class-name in the namespace that contains
4185    //      the declaration; otherwise, except as a friend
4186    //      declaration, the identifier is declared in the smallest
4187    //      non-class, non-function-prototype scope that contains the
4188    //      declaration.
4189    //
4190    // C99 6.7.2.3p8 has a similar (but not identical!) provision for
4191    // C structs and unions.
4192    //
4193    // GNU C also supports this behavior as part of its incomplete
4194    // enum types extension, while GNU C++ does not.
4195    //
4196    // Find the context where we'll be declaring the tag.
4197    // FIXME: We would like to maintain the current DeclContext as the
4198    // lexical context,
4199    while (SearchDC->isRecord())
4200      SearchDC = SearchDC->getParent();
4201
4202    // Find the scope where we'll be declaring the tag.
4203    while (S->isClassScope() ||
4204           (getLangOptions().CPlusPlus && S->isFunctionPrototypeScope()) ||
4205           ((S->getFlags() & Scope::DeclScope) == 0) ||
4206           (S->getEntity() &&
4207            ((DeclContext *)S->getEntity())->isTransparentContext()))
4208      S = S->getParent();
4209
4210  } else if (TUK == TUK_Friend && SS.isEmpty() && Name) {
4211    // C++ [namespace.memdef]p3:
4212    //   If a friend declaration in a non-local class first declares a
4213    //   class or function, the friend class or function is a member of
4214    //   the innermost enclosing namespace.
4215    while (!SearchDC->isFileContext())
4216      SearchDC = SearchDC->getParent();
4217
4218    // The entity of a decl scope is a DeclContext; see PushDeclContext.
4219    while (S->getEntity() != SearchDC)
4220      S = S->getParent();
4221  }
4222
4223CreateNewDecl:
4224
4225  // If there is an identifier, use the location of the identifier as the
4226  // location of the decl, otherwise use the location of the struct/union
4227  // keyword.
4228  SourceLocation Loc = NameLoc.isValid() ? NameLoc : KWLoc;
4229
4230  // Otherwise, create a new declaration. If there is a previous
4231  // declaration of the same entity, the two will be linked via
4232  // PrevDecl.
4233  TagDecl *New;
4234
4235  if (Kind == TagDecl::TK_enum) {
4236    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4237    // enum X { A, B, C } D;    D should chain to X.
4238    New = EnumDecl::Create(Context, SearchDC, Loc, Name, KWLoc,
4239                           cast_or_null<EnumDecl>(PrevDecl));
4240    // If this is an undefined enum, warn.
4241    if (TUK != TUK_Definition && !Invalid)  {
4242      unsigned DK = getLangOptions().CPlusPlus? diag::err_forward_ref_enum
4243                                              : diag::ext_forward_ref_enum;
4244      Diag(Loc, DK);
4245    }
4246  } else {
4247    // struct/union/class
4248
4249    // FIXME: Tag decls should be chained to any simultaneous vardecls, e.g.:
4250    // struct X { int A; } D;    D should chain to X.
4251    if (getLangOptions().CPlusPlus)
4252      // FIXME: Look for a way to use RecordDecl for simple structs.
4253      New = CXXRecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4254                                  cast_or_null<CXXRecordDecl>(PrevDecl));
4255    else
4256      New = RecordDecl::Create(Context, Kind, SearchDC, Loc, Name, KWLoc,
4257                               cast_or_null<RecordDecl>(PrevDecl));
4258  }
4259
4260  if (Kind != TagDecl::TK_enum) {
4261    // Handle #pragma pack: if the #pragma pack stack has non-default
4262    // alignment, make up a packed attribute for this decl. These
4263    // attributes are checked when the ASTContext lays out the
4264    // structure.
4265    //
4266    // It is important for implementing the correct semantics that this
4267    // happen here (in act on tag decl). The #pragma pack stack is
4268    // maintained as a result of parser callbacks which can occur at
4269    // many points during the parsing of a struct declaration (because
4270    // the #pragma tokens are effectively skipped over during the
4271    // parsing of the struct).
4272    if (unsigned Alignment = getPragmaPackAlignment())
4273      New->addAttr(::new (Context) PragmaPackAttr(Alignment * 8));
4274  }
4275
4276  if (getLangOptions().CPlusPlus && SS.isEmpty() && Name && !Invalid) {
4277    // C++ [dcl.typedef]p3:
4278    //   [...] Similarly, in a given scope, a class or enumeration
4279    //   shall not be declared with the same name as a typedef-name
4280    //   that is declared in that scope and refers to a type other
4281    //   than the class or enumeration itself.
4282    LookupResult Lookup = LookupName(S, Name, LookupOrdinaryName, true);
4283    TypedefDecl *PrevTypedef = 0;
4284    if (Lookup.getKind() == LookupResult::Found)
4285      PrevTypedef = dyn_cast<TypedefDecl>(Lookup.getAsDecl());
4286
4287    if (PrevTypedef && isDeclInScope(PrevTypedef, SearchDC, S) &&
4288        Context.getCanonicalType(Context.getTypeDeclType(PrevTypedef)) !=
4289          Context.getCanonicalType(Context.getTypeDeclType(New))) {
4290      Diag(Loc, diag::err_tag_definition_of_typedef)
4291        << Context.getTypeDeclType(New)
4292        << PrevTypedef->getUnderlyingType();
4293      Diag(PrevTypedef->getLocation(), diag::note_previous_definition);
4294      Invalid = true;
4295    }
4296  }
4297
4298  if (Invalid)
4299    New->setInvalidDecl();
4300
4301  if (Attr)
4302    ProcessDeclAttributeList(S, New, Attr);
4303
4304  // If we're declaring or defining a tag in function prototype scope
4305  // in C, note that this type can only be used within the function.
4306  if (Name && S->isFunctionPrototypeScope() && !getLangOptions().CPlusPlus)
4307    Diag(Loc, diag::warn_decl_in_param_list) << Context.getTagDeclType(New);
4308
4309  // Set the lexical context. If the tag has a C++ scope specifier, the
4310  // lexical context will be different from the semantic context.
4311  New->setLexicalDeclContext(CurContext);
4312
4313  // Mark this as a friend decl if applicable.
4314  if (TUK == TUK_Friend)
4315    New->setObjectOfFriendDecl(/* PreviouslyDeclared = */ PrevDecl != NULL);
4316
4317  // Set the access specifier.
4318  if (!Invalid && TUK != TUK_Friend)
4319    SetMemberAccessSpecifier(New, PrevDecl, AS);
4320
4321  if (TUK == TUK_Definition)
4322    New->startDefinition();
4323
4324  // If this has an identifier, add it to the scope stack.
4325  if (Name && TUK != TUK_Friend) {
4326    S = getNonFieldDeclScope(S);
4327    PushOnScopeChains(New, S);
4328  } else {
4329    CurContext->addDecl(New);
4330  }
4331
4332  // If this is the C FILE type, notify the AST context.
4333  if (IdentifierInfo *II = New->getIdentifier())
4334    if (!New->isInvalidDecl() &&
4335        New->getDeclContext()->getLookupContext()->isTranslationUnit() &&
4336        II->isStr("FILE"))
4337      Context.setFILEDecl(New);
4338
4339  OwnedDecl = true;
4340  return DeclPtrTy::make(New);
4341}
4342
4343void Sema::ActOnTagStartDefinition(Scope *S, DeclPtrTy TagD) {
4344  AdjustDeclIfTemplate(TagD);
4345  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4346
4347  // Enter the tag context.
4348  PushDeclContext(S, Tag);
4349
4350  if (CXXRecordDecl *Record = dyn_cast<CXXRecordDecl>(Tag)) {
4351    FieldCollector->StartClass();
4352
4353    if (Record->getIdentifier()) {
4354      // C++ [class]p2:
4355      //   [...] The class-name is also inserted into the scope of the
4356      //   class itself; this is known as the injected-class-name. For
4357      //   purposes of access checking, the injected-class-name is treated
4358      //   as if it were a public member name.
4359      CXXRecordDecl *InjectedClassName
4360        = CXXRecordDecl::Create(Context, Record->getTagKind(),
4361                                CurContext, Record->getLocation(),
4362                                Record->getIdentifier(),
4363                                Record->getTagKeywordLoc(),
4364                                Record);
4365      InjectedClassName->setImplicit();
4366      InjectedClassName->setAccess(AS_public);
4367      if (ClassTemplateDecl *Template = Record->getDescribedClassTemplate())
4368        InjectedClassName->setDescribedClassTemplate(Template);
4369      PushOnScopeChains(InjectedClassName, S);
4370      assert(InjectedClassName->isInjectedClassName() &&
4371             "Broken injected-class-name");
4372    }
4373  }
4374}
4375
4376void Sema::ActOnTagFinishDefinition(Scope *S, DeclPtrTy TagD,
4377                                    SourceLocation RBraceLoc) {
4378  AdjustDeclIfTemplate(TagD);
4379  TagDecl *Tag = cast<TagDecl>(TagD.getAs<Decl>());
4380  Tag->setRBraceLoc(RBraceLoc);
4381
4382  if (isa<CXXRecordDecl>(Tag))
4383    FieldCollector->FinishClass();
4384
4385  // Exit this scope of this tag's definition.
4386  PopDeclContext();
4387
4388  // Notify the consumer that we've defined a tag.
4389  Consumer.HandleTagDeclDefinition(Tag);
4390}
4391
4392// Note that FieldName may be null for anonymous bitfields.
4393bool Sema::VerifyBitField(SourceLocation FieldLoc, IdentifierInfo *FieldName,
4394                          QualType FieldTy, const Expr *BitWidth,
4395                          bool *ZeroWidth) {
4396  // Default to true; that shouldn't confuse checks for emptiness
4397  if (ZeroWidth)
4398    *ZeroWidth = true;
4399
4400  // C99 6.7.2.1p4 - verify the field type.
4401  // C++ 9.6p3: A bit-field shall have integral or enumeration type.
4402  if (!FieldTy->isDependentType() && !FieldTy->isIntegralType()) {
4403    // Handle incomplete types with specific error.
4404    if (RequireCompleteType(FieldLoc, FieldTy, diag::err_field_incomplete))
4405      return true;
4406    if (FieldName)
4407      return Diag(FieldLoc, diag::err_not_integral_type_bitfield)
4408        << FieldName << FieldTy << BitWidth->getSourceRange();
4409    return Diag(FieldLoc, diag::err_not_integral_type_anon_bitfield)
4410      << FieldTy << BitWidth->getSourceRange();
4411  }
4412
4413  // If the bit-width is type- or value-dependent, don't try to check
4414  // it now.
4415  if (BitWidth->isValueDependent() || BitWidth->isTypeDependent())
4416    return false;
4417
4418  llvm::APSInt Value;
4419  if (VerifyIntegerConstantExpression(BitWidth, &Value))
4420    return true;
4421
4422  if (Value != 0 && ZeroWidth)
4423    *ZeroWidth = false;
4424
4425  // Zero-width bitfield is ok for anonymous field.
4426  if (Value == 0 && FieldName)
4427    return Diag(FieldLoc, diag::err_bitfield_has_zero_width) << FieldName;
4428
4429  if (Value.isSigned() && Value.isNegative()) {
4430    if (FieldName)
4431      return Diag(FieldLoc, diag::err_bitfield_has_negative_width)
4432               << FieldName << Value.toString(10);
4433    return Diag(FieldLoc, diag::err_anon_bitfield_has_negative_width)
4434      << Value.toString(10);
4435  }
4436
4437  if (!FieldTy->isDependentType()) {
4438    uint64_t TypeSize = Context.getTypeSize(FieldTy);
4439    if (Value.getZExtValue() > TypeSize) {
4440      if (FieldName)
4441        return Diag(FieldLoc, diag::err_bitfield_width_exceeds_type_size)
4442          << FieldName << (unsigned)TypeSize;
4443      return Diag(FieldLoc, diag::err_anon_bitfield_width_exceeds_type_size)
4444        << (unsigned)TypeSize;
4445    }
4446  }
4447
4448  return false;
4449}
4450
4451/// ActOnField - Each field of a struct/union/class is passed into this in order
4452/// to create a FieldDecl object for it.
4453Sema::DeclPtrTy Sema::ActOnField(Scope *S, DeclPtrTy TagD,
4454                                 SourceLocation DeclStart,
4455                                 Declarator &D, ExprTy *BitfieldWidth) {
4456  FieldDecl *Res = HandleField(S, cast_or_null<RecordDecl>(TagD.getAs<Decl>()),
4457                               DeclStart, D, static_cast<Expr*>(BitfieldWidth),
4458                               AS_public);
4459  return DeclPtrTy::make(Res);
4460}
4461
4462/// HandleField - Analyze a field of a C struct or a C++ data member.
4463///
4464FieldDecl *Sema::HandleField(Scope *S, RecordDecl *Record,
4465                             SourceLocation DeclStart,
4466                             Declarator &D, Expr *BitWidth,
4467                             AccessSpecifier AS) {
4468  IdentifierInfo *II = D.getIdentifier();
4469  SourceLocation Loc = DeclStart;
4470  if (II) Loc = D.getIdentifierLoc();
4471
4472  DeclaratorInfo *DInfo = 0;
4473  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4474  if (getLangOptions().CPlusPlus)
4475    CheckExtraCXXDefaultArguments(D);
4476
4477  DiagnoseFunctionSpecifiers(D);
4478
4479  if (D.getDeclSpec().isThreadSpecified())
4480    Diag(D.getDeclSpec().getThreadSpecLoc(), diag::err_invalid_thread);
4481
4482  NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4483
4484  if (PrevDecl && PrevDecl->isTemplateParameter()) {
4485    // Maybe we will complain about the shadowed template parameter.
4486    DiagnoseTemplateParameterShadow(D.getIdentifierLoc(), PrevDecl);
4487    // Just pretend that we didn't see the previous declaration.
4488    PrevDecl = 0;
4489  }
4490
4491  if (PrevDecl && !isDeclInScope(PrevDecl, Record, S))
4492    PrevDecl = 0;
4493
4494  bool Mutable
4495    = (D.getDeclSpec().getStorageClassSpec() == DeclSpec::SCS_mutable);
4496  SourceLocation TSSL = D.getSourceRange().getBegin();
4497  FieldDecl *NewFD
4498    = CheckFieldDecl(II, T, DInfo, Record, Loc, Mutable, BitWidth, TSSL,
4499                     AS, PrevDecl, &D);
4500  if (NewFD->isInvalidDecl() && PrevDecl) {
4501    // Don't introduce NewFD into scope; there's already something
4502    // with the same name in the same scope.
4503  } else if (II) {
4504    PushOnScopeChains(NewFD, S);
4505  } else
4506    Record->addDecl(NewFD);
4507
4508  return NewFD;
4509}
4510
4511/// \brief Build a new FieldDecl and check its well-formedness.
4512///
4513/// This routine builds a new FieldDecl given the fields name, type,
4514/// record, etc. \p PrevDecl should refer to any previous declaration
4515/// with the same name and in the same scope as the field to be
4516/// created.
4517///
4518/// \returns a new FieldDecl.
4519///
4520/// \todo The Declarator argument is a hack. It will be removed once
4521FieldDecl *Sema::CheckFieldDecl(DeclarationName Name, QualType T,
4522                                DeclaratorInfo *DInfo,
4523                                RecordDecl *Record, SourceLocation Loc,
4524                                bool Mutable, Expr *BitWidth,
4525                                SourceLocation TSSL,
4526                                AccessSpecifier AS, NamedDecl *PrevDecl,
4527                                Declarator *D) {
4528  IdentifierInfo *II = Name.getAsIdentifierInfo();
4529  bool InvalidDecl = false;
4530  if (D) InvalidDecl = D->isInvalidType();
4531
4532  // If we receive a broken type, recover by assuming 'int' and
4533  // marking this declaration as invalid.
4534  if (T.isNull()) {
4535    InvalidDecl = true;
4536    T = Context.IntTy;
4537  }
4538
4539  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4540  // than a variably modified type.
4541  if (T->isVariablyModifiedType()) {
4542    bool SizeIsNegative;
4543    QualType FixedTy = TryToFixInvalidVariablyModifiedType(T, Context,
4544                                                           SizeIsNegative);
4545    if (!FixedTy.isNull()) {
4546      Diag(Loc, diag::warn_illegal_constant_array_size);
4547      T = FixedTy;
4548    } else {
4549      if (SizeIsNegative)
4550        Diag(Loc, diag::err_typecheck_negative_array_size);
4551      else
4552        Diag(Loc, diag::err_typecheck_field_variable_size);
4553      InvalidDecl = true;
4554    }
4555  }
4556
4557  // Fields can not have abstract class types
4558  if (RequireNonAbstractType(Loc, T, diag::err_abstract_type_in_decl,
4559                             AbstractFieldType))
4560    InvalidDecl = true;
4561
4562  bool ZeroWidth = false;
4563  // If this is declared as a bit-field, check the bit-field.
4564  if (BitWidth && VerifyBitField(Loc, II, T, BitWidth, &ZeroWidth)) {
4565    InvalidDecl = true;
4566    DeleteExpr(BitWidth);
4567    BitWidth = 0;
4568    ZeroWidth = false;
4569  }
4570
4571  FieldDecl *NewFD = FieldDecl::Create(Context, Record, Loc, II, T, DInfo,
4572                                       BitWidth, Mutable);
4573  if (InvalidDecl)
4574    NewFD->setInvalidDecl();
4575
4576  if (PrevDecl && !isa<TagDecl>(PrevDecl)) {
4577    Diag(Loc, diag::err_duplicate_member) << II;
4578    Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4579    NewFD->setInvalidDecl();
4580  }
4581
4582  if (getLangOptions().CPlusPlus) {
4583    QualType EltTy = Context.getBaseElementType(T);
4584
4585    CXXRecordDecl* CXXRecord = cast<CXXRecordDecl>(Record);
4586
4587    if (!T->isPODType())
4588      CXXRecord->setPOD(false);
4589    if (!ZeroWidth)
4590      CXXRecord->setEmpty(false);
4591
4592    if (const RecordType *RT = EltTy->getAs<RecordType>()) {
4593      CXXRecordDecl* RDecl = cast<CXXRecordDecl>(RT->getDecl());
4594
4595      if (!RDecl->hasTrivialConstructor())
4596        CXXRecord->setHasTrivialConstructor(false);
4597      if (!RDecl->hasTrivialCopyConstructor())
4598        CXXRecord->setHasTrivialCopyConstructor(false);
4599      if (!RDecl->hasTrivialCopyAssignment())
4600        CXXRecord->setHasTrivialCopyAssignment(false);
4601      if (!RDecl->hasTrivialDestructor())
4602        CXXRecord->setHasTrivialDestructor(false);
4603
4604      // C++ 9.5p1: An object of a class with a non-trivial
4605      // constructor, a non-trivial copy constructor, a non-trivial
4606      // destructor, or a non-trivial copy assignment operator
4607      // cannot be a member of a union, nor can an array of such
4608      // objects.
4609      // TODO: C++0x alters this restriction significantly.
4610      if (Record->isUnion()) {
4611        // We check for copy constructors before constructors
4612        // because otherwise we'll never get complaints about
4613        // copy constructors.
4614
4615        const CXXSpecialMember invalid = (CXXSpecialMember) -1;
4616
4617        CXXSpecialMember member;
4618        if (!RDecl->hasTrivialCopyConstructor())
4619          member = CXXCopyConstructor;
4620        else if (!RDecl->hasTrivialConstructor())
4621          member = CXXDefaultConstructor;
4622        else if (!RDecl->hasTrivialCopyAssignment())
4623          member = CXXCopyAssignment;
4624        else if (!RDecl->hasTrivialDestructor())
4625          member = CXXDestructor;
4626        else
4627          member = invalid;
4628
4629        if (member != invalid) {
4630          Diag(Loc, diag::err_illegal_union_member) << Name << member;
4631          DiagnoseNontrivial(RT, member);
4632          NewFD->setInvalidDecl();
4633        }
4634      }
4635    }
4636  }
4637
4638  // FIXME: We need to pass in the attributes given an AST
4639  // representation, not a parser representation.
4640  if (D)
4641    // FIXME: What to pass instead of TUScope?
4642    ProcessDeclAttributes(TUScope, NewFD, *D);
4643
4644  if (T.isObjCGCWeak())
4645    Diag(Loc, diag::warn_attribute_weak_on_field);
4646
4647  NewFD->setAccess(AS);
4648
4649  // C++ [dcl.init.aggr]p1:
4650  //   An aggregate is an array or a class (clause 9) with [...] no
4651  //   private or protected non-static data members (clause 11).
4652  // A POD must be an aggregate.
4653  if (getLangOptions().CPlusPlus &&
4654      (AS == AS_private || AS == AS_protected)) {
4655    CXXRecordDecl *CXXRecord = cast<CXXRecordDecl>(Record);
4656    CXXRecord->setAggregate(false);
4657    CXXRecord->setPOD(false);
4658  }
4659
4660  return NewFD;
4661}
4662
4663/// DiagnoseNontrivial - Given that a class has a non-trivial
4664/// special member, figure out why.
4665void Sema::DiagnoseNontrivial(const RecordType* T, CXXSpecialMember member) {
4666  QualType QT(T, 0U);
4667  CXXRecordDecl* RD = cast<CXXRecordDecl>(T->getDecl());
4668
4669  // Check whether the member was user-declared.
4670  switch (member) {
4671  case CXXDefaultConstructor:
4672    if (RD->hasUserDeclaredConstructor()) {
4673      typedef CXXRecordDecl::ctor_iterator ctor_iter;
4674      for (ctor_iter ci = RD->ctor_begin(), ce = RD->ctor_end(); ci != ce; ++ci)
4675        if (!ci->isImplicitlyDefined(Context)) {
4676          SourceLocation CtorLoc = ci->getLocation();
4677          Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4678          return;
4679        }
4680
4681      assert(0 && "found no user-declared constructors");
4682      return;
4683    }
4684    break;
4685
4686  case CXXCopyConstructor:
4687    if (RD->hasUserDeclaredCopyConstructor()) {
4688      SourceLocation CtorLoc =
4689        RD->getCopyConstructor(Context, 0)->getLocation();
4690      Diag(CtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4691      return;
4692    }
4693    break;
4694
4695  case CXXCopyAssignment:
4696    if (RD->hasUserDeclaredCopyAssignment()) {
4697      // FIXME: this should use the location of the copy
4698      // assignment, not the type.
4699      SourceLocation TyLoc = RD->getSourceRange().getBegin();
4700      Diag(TyLoc, diag::note_nontrivial_user_defined) << QT << member;
4701      return;
4702    }
4703    break;
4704
4705  case CXXDestructor:
4706    if (RD->hasUserDeclaredDestructor()) {
4707      SourceLocation DtorLoc = RD->getDestructor(Context)->getLocation();
4708      Diag(DtorLoc, diag::note_nontrivial_user_defined) << QT << member;
4709      return;
4710    }
4711    break;
4712  }
4713
4714  typedef CXXRecordDecl::base_class_iterator base_iter;
4715
4716  // Virtual bases and members inhibit trivial copying/construction,
4717  // but not trivial destruction.
4718  if (member != CXXDestructor) {
4719    // Check for virtual bases.  vbases includes indirect virtual bases,
4720    // so we just iterate through the direct bases.
4721    for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi)
4722      if (bi->isVirtual()) {
4723        SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4724        Diag(BaseLoc, diag::note_nontrivial_has_virtual) << QT << 1;
4725        return;
4726      }
4727
4728    // Check for virtual methods.
4729    typedef CXXRecordDecl::method_iterator meth_iter;
4730    for (meth_iter mi = RD->method_begin(), me = RD->method_end(); mi != me;
4731         ++mi) {
4732      if (mi->isVirtual()) {
4733        SourceLocation MLoc = mi->getSourceRange().getBegin();
4734        Diag(MLoc, diag::note_nontrivial_has_virtual) << QT << 0;
4735        return;
4736      }
4737    }
4738  }
4739
4740  bool (CXXRecordDecl::*hasTrivial)() const;
4741  switch (member) {
4742  case CXXDefaultConstructor:
4743    hasTrivial = &CXXRecordDecl::hasTrivialConstructor; break;
4744  case CXXCopyConstructor:
4745    hasTrivial = &CXXRecordDecl::hasTrivialCopyConstructor; break;
4746  case CXXCopyAssignment:
4747    hasTrivial = &CXXRecordDecl::hasTrivialCopyAssignment; break;
4748  case CXXDestructor:
4749    hasTrivial = &CXXRecordDecl::hasTrivialDestructor; break;
4750  default:
4751    assert(0 && "unexpected special member"); return;
4752  }
4753
4754  // Check for nontrivial bases (and recurse).
4755  for (base_iter bi = RD->bases_begin(), be = RD->bases_end(); bi != be; ++bi) {
4756    const RecordType *BaseRT = bi->getType()->getAs<RecordType>();
4757    assert(BaseRT);
4758    CXXRecordDecl *BaseRecTy = cast<CXXRecordDecl>(BaseRT->getDecl());
4759    if (!(BaseRecTy->*hasTrivial)()) {
4760      SourceLocation BaseLoc = bi->getSourceRange().getBegin();
4761      Diag(BaseLoc, diag::note_nontrivial_has_nontrivial) << QT << 1 << member;
4762      DiagnoseNontrivial(BaseRT, member);
4763      return;
4764    }
4765  }
4766
4767  // Check for nontrivial members (and recurse).
4768  typedef RecordDecl::field_iterator field_iter;
4769  for (field_iter fi = RD->field_begin(), fe = RD->field_end(); fi != fe;
4770       ++fi) {
4771    QualType EltTy = Context.getBaseElementType((*fi)->getType());
4772    if (const RecordType *EltRT = EltTy->getAs<RecordType>()) {
4773      CXXRecordDecl* EltRD = cast<CXXRecordDecl>(EltRT->getDecl());
4774
4775      if (!(EltRD->*hasTrivial)()) {
4776        SourceLocation FLoc = (*fi)->getLocation();
4777        Diag(FLoc, diag::note_nontrivial_has_nontrivial) << QT << 0 << member;
4778        DiagnoseNontrivial(EltRT, member);
4779        return;
4780      }
4781    }
4782  }
4783
4784  assert(0 && "found no explanation for non-trivial member");
4785}
4786
4787/// TranslateIvarVisibility - Translate visibility from a token ID to an
4788///  AST enum value.
4789static ObjCIvarDecl::AccessControl
4790TranslateIvarVisibility(tok::ObjCKeywordKind ivarVisibility) {
4791  switch (ivarVisibility) {
4792  default: assert(0 && "Unknown visitibility kind");
4793  case tok::objc_private: return ObjCIvarDecl::Private;
4794  case tok::objc_public: return ObjCIvarDecl::Public;
4795  case tok::objc_protected: return ObjCIvarDecl::Protected;
4796  case tok::objc_package: return ObjCIvarDecl::Package;
4797  }
4798}
4799
4800/// ActOnIvar - Each ivar field of an objective-c class is passed into this
4801/// in order to create an IvarDecl object for it.
4802Sema::DeclPtrTy Sema::ActOnIvar(Scope *S,
4803                                SourceLocation DeclStart,
4804                                DeclPtrTy IntfDecl,
4805                                Declarator &D, ExprTy *BitfieldWidth,
4806                                tok::ObjCKeywordKind Visibility) {
4807
4808  IdentifierInfo *II = D.getIdentifier();
4809  Expr *BitWidth = (Expr*)BitfieldWidth;
4810  SourceLocation Loc = DeclStart;
4811  if (II) Loc = D.getIdentifierLoc();
4812
4813  // FIXME: Unnamed fields can be handled in various different ways, for
4814  // example, unnamed unions inject all members into the struct namespace!
4815
4816  DeclaratorInfo *DInfo = 0;
4817  QualType T = GetTypeForDeclarator(D, S, &DInfo);
4818
4819  if (BitWidth) {
4820    // 6.7.2.1p3, 6.7.2.1p4
4821    if (VerifyBitField(Loc, II, T, BitWidth)) {
4822      D.setInvalidType();
4823      DeleteExpr(BitWidth);
4824      BitWidth = 0;
4825    }
4826  } else {
4827    // Not a bitfield.
4828
4829    // validate II.
4830
4831  }
4832
4833  // C99 6.7.2.1p8: A member of a structure or union may have any type other
4834  // than a variably modified type.
4835  if (T->isVariablyModifiedType()) {
4836    Diag(Loc, diag::err_typecheck_ivar_variable_size);
4837    D.setInvalidType();
4838  }
4839
4840  // Get the visibility (access control) for this ivar.
4841  ObjCIvarDecl::AccessControl ac =
4842    Visibility != tok::objc_not_keyword ? TranslateIvarVisibility(Visibility)
4843                                        : ObjCIvarDecl::None;
4844  // Must set ivar's DeclContext to its enclosing interface.
4845  Decl *EnclosingDecl = IntfDecl.getAs<Decl>();
4846  DeclContext *EnclosingContext;
4847  if (ObjCImplementationDecl *IMPDecl =
4848      dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
4849    // Case of ivar declared in an implementation. Context is that of its class.
4850    ObjCInterfaceDecl* IDecl = IMPDecl->getClassInterface();
4851    assert(IDecl && "No class- ActOnIvar");
4852    EnclosingContext = cast_or_null<DeclContext>(IDecl);
4853  } else
4854    EnclosingContext = dyn_cast<DeclContext>(EnclosingDecl);
4855  assert(EnclosingContext && "null DeclContext for ivar - ActOnIvar");
4856
4857  // Construct the decl.
4858  ObjCIvarDecl *NewID = ObjCIvarDecl::Create(Context,
4859                                             EnclosingContext, Loc, II, T,
4860                                             DInfo, ac, (Expr *)BitfieldWidth);
4861
4862  if (II) {
4863    NamedDecl *PrevDecl = LookupName(S, II, LookupMemberName, true);
4864    if (PrevDecl && isDeclInScope(PrevDecl, EnclosingContext, S)
4865        && !isa<TagDecl>(PrevDecl)) {
4866      Diag(Loc, diag::err_duplicate_member) << II;
4867      Diag(PrevDecl->getLocation(), diag::note_previous_declaration);
4868      NewID->setInvalidDecl();
4869    }
4870  }
4871
4872  // Process attributes attached to the ivar.
4873  ProcessDeclAttributes(S, NewID, D);
4874
4875  if (D.isInvalidType())
4876    NewID->setInvalidDecl();
4877
4878  if (II) {
4879    // FIXME: When interfaces are DeclContexts, we'll need to add
4880    // these to the interface.
4881    S->AddDecl(DeclPtrTy::make(NewID));
4882    IdResolver.AddDecl(NewID);
4883  }
4884
4885  return DeclPtrTy::make(NewID);
4886}
4887
4888void Sema::ActOnFields(Scope* S,
4889                       SourceLocation RecLoc, DeclPtrTy RecDecl,
4890                       DeclPtrTy *Fields, unsigned NumFields,
4891                       SourceLocation LBrac, SourceLocation RBrac,
4892                       AttributeList *Attr) {
4893  Decl *EnclosingDecl = RecDecl.getAs<Decl>();
4894  assert(EnclosingDecl && "missing record or interface decl");
4895
4896  // If the decl this is being inserted into is invalid, then it may be a
4897  // redeclaration or some other bogus case.  Don't try to add fields to it.
4898  if (EnclosingDecl->isInvalidDecl()) {
4899    // FIXME: Deallocate fields?
4900    return;
4901  }
4902
4903
4904  // Verify that all the fields are okay.
4905  unsigned NumNamedMembers = 0;
4906  llvm::SmallVector<FieldDecl*, 32> RecFields;
4907
4908  RecordDecl *Record = dyn_cast<RecordDecl>(EnclosingDecl);
4909  for (unsigned i = 0; i != NumFields; ++i) {
4910    FieldDecl *FD = cast<FieldDecl>(Fields[i].getAs<Decl>());
4911
4912    // Get the type for the field.
4913    Type *FDTy = FD->getType().getTypePtr();
4914
4915    if (!FD->isAnonymousStructOrUnion()) {
4916      // Remember all fields written by the user.
4917      RecFields.push_back(FD);
4918    }
4919
4920    // If the field is already invalid for some reason, don't emit more
4921    // diagnostics about it.
4922    if (FD->isInvalidDecl())
4923      continue;
4924
4925    // C99 6.7.2.1p2:
4926    //   A structure or union shall not contain a member with
4927    //   incomplete or function type (hence, a structure shall not
4928    //   contain an instance of itself, but may contain a pointer to
4929    //   an instance of itself), except that the last member of a
4930    //   structure with more than one named member may have incomplete
4931    //   array type; such a structure (and any union containing,
4932    //   possibly recursively, a member that is such a structure)
4933    //   shall not be a member of a structure or an element of an
4934    //   array.
4935    if (FDTy->isFunctionType()) {
4936      // Field declared as a function.
4937      Diag(FD->getLocation(), diag::err_field_declared_as_function)
4938        << FD->getDeclName();
4939      FD->setInvalidDecl();
4940      EnclosingDecl->setInvalidDecl();
4941      continue;
4942    } else if (FDTy->isIncompleteArrayType() && i == NumFields - 1 &&
4943               Record && Record->isStruct()) {
4944      // Flexible array member.
4945      if (NumNamedMembers < 1) {
4946        Diag(FD->getLocation(), diag::err_flexible_array_empty_struct)
4947          << FD->getDeclName();
4948        FD->setInvalidDecl();
4949        EnclosingDecl->setInvalidDecl();
4950        continue;
4951      }
4952      // Okay, we have a legal flexible array member at the end of the struct.
4953      if (Record)
4954        Record->setHasFlexibleArrayMember(true);
4955    } else if (!FDTy->isDependentType() &&
4956               RequireCompleteType(FD->getLocation(), FD->getType(),
4957                                   diag::err_field_incomplete)) {
4958      // Incomplete type
4959      FD->setInvalidDecl();
4960      EnclosingDecl->setInvalidDecl();
4961      continue;
4962    } else if (const RecordType *FDTTy = FDTy->getAs<RecordType>()) {
4963      if (FDTTy->getDecl()->hasFlexibleArrayMember()) {
4964        // If this is a member of a union, then entire union becomes "flexible".
4965        if (Record && Record->isUnion()) {
4966          Record->setHasFlexibleArrayMember(true);
4967        } else {
4968          // If this is a struct/class and this is not the last element, reject
4969          // it.  Note that GCC supports variable sized arrays in the middle of
4970          // structures.
4971          if (i != NumFields-1)
4972            Diag(FD->getLocation(), diag::ext_variable_sized_type_in_struct)
4973              << FD->getDeclName() << FD->getType();
4974          else {
4975            // We support flexible arrays at the end of structs in
4976            // other structs as an extension.
4977            Diag(FD->getLocation(), diag::ext_flexible_array_in_struct)
4978              << FD->getDeclName();
4979            if (Record)
4980              Record->setHasFlexibleArrayMember(true);
4981          }
4982        }
4983      }
4984      if (Record && FDTTy->getDecl()->hasObjectMember())
4985        Record->setHasObjectMember(true);
4986    } else if (FDTy->isObjCInterfaceType()) {
4987      /// A field cannot be an Objective-c object
4988      Diag(FD->getLocation(), diag::err_statically_allocated_object);
4989      FD->setInvalidDecl();
4990      EnclosingDecl->setInvalidDecl();
4991      continue;
4992    } else if (getLangOptions().ObjC1 &&
4993               getLangOptions().getGCMode() != LangOptions::NonGC &&
4994               Record &&
4995               (FD->getType()->isObjCObjectPointerType() ||
4996                FD->getType().isObjCGCStrong()))
4997      Record->setHasObjectMember(true);
4998    // Keep track of the number of named members.
4999    if (FD->getIdentifier())
5000      ++NumNamedMembers;
5001  }
5002
5003  // Okay, we successfully defined 'Record'.
5004  if (Record) {
5005    Record->completeDefinition(Context);
5006  } else {
5007    ObjCIvarDecl **ClsFields =
5008      reinterpret_cast<ObjCIvarDecl**>(RecFields.data());
5009    if (ObjCInterfaceDecl *ID = dyn_cast<ObjCInterfaceDecl>(EnclosingDecl)) {
5010      ID->setIVarList(ClsFields, RecFields.size(), Context);
5011      ID->setLocEnd(RBrac);
5012      // Add ivar's to class's DeclContext.
5013      for (unsigned i = 0, e = RecFields.size(); i != e; ++i) {
5014        ClsFields[i]->setLexicalDeclContext(ID);
5015        ID->addDecl(ClsFields[i]);
5016      }
5017      // Must enforce the rule that ivars in the base classes may not be
5018      // duplicates.
5019      if (ID->getSuperClass()) {
5020        for (ObjCInterfaceDecl::ivar_iterator IVI = ID->ivar_begin(),
5021             IVE = ID->ivar_end(); IVI != IVE; ++IVI) {
5022          ObjCIvarDecl* Ivar = (*IVI);
5023
5024          if (IdentifierInfo *II = Ivar->getIdentifier()) {
5025            ObjCIvarDecl* prevIvar =
5026              ID->getSuperClass()->lookupInstanceVariable(II);
5027            if (prevIvar) {
5028              Diag(Ivar->getLocation(), diag::err_duplicate_member) << II;
5029              Diag(prevIvar->getLocation(), diag::note_previous_declaration);
5030            }
5031          }
5032        }
5033      }
5034    } else if (ObjCImplementationDecl *IMPDecl =
5035                  dyn_cast<ObjCImplementationDecl>(EnclosingDecl)) {
5036      assert(IMPDecl && "ActOnFields - missing ObjCImplementationDecl");
5037      for (unsigned I = 0, N = RecFields.size(); I != N; ++I)
5038        // Ivar declared in @implementation never belongs to the implementation.
5039        // Only it is in implementation's lexical context.
5040        ClsFields[I]->setLexicalDeclContext(IMPDecl);
5041      CheckImplementationIvars(IMPDecl, ClsFields, RecFields.size(), RBrac);
5042    }
5043  }
5044
5045  if (Attr)
5046    ProcessDeclAttributeList(S, Record, Attr);
5047}
5048
5049EnumConstantDecl *Sema::CheckEnumConstant(EnumDecl *Enum,
5050                                          EnumConstantDecl *LastEnumConst,
5051                                          SourceLocation IdLoc,
5052                                          IdentifierInfo *Id,
5053                                          ExprArg val) {
5054  Expr *Val = (Expr *)val.get();
5055
5056  llvm::APSInt EnumVal(32);
5057  QualType EltTy;
5058  if (Val && !Val->isTypeDependent()) {
5059    // Make sure to promote the operand type to int.
5060    UsualUnaryConversions(Val);
5061    if (Val != val.get()) {
5062      val.release();
5063      val = Val;
5064    }
5065
5066    // C99 6.7.2.2p2: Make sure we have an integer constant expression.
5067    SourceLocation ExpLoc;
5068    if (!Val->isValueDependent() &&
5069        VerifyIntegerConstantExpression(Val, &EnumVal)) {
5070      Val = 0;
5071    } else {
5072      EltTy = Val->getType();
5073    }
5074  }
5075
5076  if (!Val) {
5077    if (LastEnumConst) {
5078      // Assign the last value + 1.
5079      EnumVal = LastEnumConst->getInitVal();
5080      ++EnumVal;
5081
5082      // Check for overflow on increment.
5083      if (EnumVal < LastEnumConst->getInitVal())
5084        Diag(IdLoc, diag::warn_enum_value_overflow);
5085
5086      EltTy = LastEnumConst->getType();
5087    } else {
5088      // First value, set to zero.
5089      EltTy = Context.IntTy;
5090      EnumVal.zextOrTrunc(static_cast<uint32_t>(Context.getTypeSize(EltTy)));
5091    }
5092  }
5093
5094  val.release();
5095  return EnumConstantDecl::Create(Context, Enum, IdLoc, Id, EltTy,
5096                                  Val, EnumVal);
5097}
5098
5099
5100Sema::DeclPtrTy Sema::ActOnEnumConstant(Scope *S, DeclPtrTy theEnumDecl,
5101                                        DeclPtrTy lastEnumConst,
5102                                        SourceLocation IdLoc,
5103                                        IdentifierInfo *Id,
5104                                        SourceLocation EqualLoc, ExprTy *val) {
5105  EnumDecl *TheEnumDecl = cast<EnumDecl>(theEnumDecl.getAs<Decl>());
5106  EnumConstantDecl *LastEnumConst =
5107    cast_or_null<EnumConstantDecl>(lastEnumConst.getAs<Decl>());
5108  Expr *Val = static_cast<Expr*>(val);
5109
5110  // The scope passed in may not be a decl scope.  Zip up the scope tree until
5111  // we find one that is.
5112  S = getNonFieldDeclScope(S);
5113
5114  // Verify that there isn't already something declared with this name in this
5115  // scope.
5116  NamedDecl *PrevDecl = LookupName(S, Id, LookupOrdinaryName);
5117  if (PrevDecl && PrevDecl->isTemplateParameter()) {
5118    // Maybe we will complain about the shadowed template parameter.
5119    DiagnoseTemplateParameterShadow(IdLoc, PrevDecl);
5120    // Just pretend that we didn't see the previous declaration.
5121    PrevDecl = 0;
5122  }
5123
5124  if (PrevDecl) {
5125    // When in C++, we may get a TagDecl with the same name; in this case the
5126    // enum constant will 'hide' the tag.
5127    assert((getLangOptions().CPlusPlus || !isa<TagDecl>(PrevDecl)) &&
5128           "Received TagDecl when not in C++!");
5129    if (!isa<TagDecl>(PrevDecl) && isDeclInScope(PrevDecl, CurContext, S)) {
5130      if (isa<EnumConstantDecl>(PrevDecl))
5131        Diag(IdLoc, diag::err_redefinition_of_enumerator) << Id;
5132      else
5133        Diag(IdLoc, diag::err_redefinition) << Id;
5134      Diag(PrevDecl->getLocation(), diag::note_previous_definition);
5135      if (Val) Val->Destroy(Context);
5136      return DeclPtrTy();
5137    }
5138  }
5139
5140  EnumConstantDecl *New = CheckEnumConstant(TheEnumDecl, LastEnumConst,
5141                                            IdLoc, Id, Owned(Val));
5142
5143  // Register this decl in the current scope stack.
5144  if (New)
5145    PushOnScopeChains(New, S);
5146
5147  return DeclPtrTy::make(New);
5148}
5149
5150void Sema::ActOnEnumBody(SourceLocation EnumLoc, SourceLocation LBraceLoc,
5151                         SourceLocation RBraceLoc, DeclPtrTy EnumDeclX,
5152                         DeclPtrTy *Elements, unsigned NumElements,
5153                         Scope *S, AttributeList *Attr) {
5154  EnumDecl *Enum = cast<EnumDecl>(EnumDeclX.getAs<Decl>());
5155  QualType EnumType = Context.getTypeDeclType(Enum);
5156
5157  if (Attr)
5158    ProcessDeclAttributeList(S, Enum, Attr);
5159
5160  // TODO: If the result value doesn't fit in an int, it must be a long or long
5161  // long value.  ISO C does not support this, but GCC does as an extension,
5162  // emit a warning.
5163  unsigned IntWidth = Context.Target.getIntWidth();
5164  unsigned CharWidth = Context.Target.getCharWidth();
5165  unsigned ShortWidth = Context.Target.getShortWidth();
5166
5167  // Verify that all the values are okay, compute the size of the values, and
5168  // reverse the list.
5169  unsigned NumNegativeBits = 0;
5170  unsigned NumPositiveBits = 0;
5171
5172  // Keep track of whether all elements have type int.
5173  bool AllElementsInt = true;
5174
5175  for (unsigned i = 0; i != NumElements; ++i) {
5176    EnumConstantDecl *ECD =
5177      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5178    if (!ECD) continue;  // Already issued a diagnostic.
5179
5180    // If the enum value doesn't fit in an int, emit an extension warning.
5181    const llvm::APSInt &InitVal = ECD->getInitVal();
5182    assert(InitVal.getBitWidth() >= IntWidth &&
5183           "Should have promoted value to int");
5184    if (InitVal.getBitWidth() > IntWidth) {
5185      llvm::APSInt V(InitVal);
5186      V.trunc(IntWidth);
5187      V.extend(InitVal.getBitWidth());
5188      if (V != InitVal)
5189        Diag(ECD->getLocation(), diag::ext_enum_value_not_int)
5190          << InitVal.toString(10);
5191    }
5192
5193    // Keep track of the size of positive and negative values.
5194    if (InitVal.isUnsigned() || InitVal.isNonNegative())
5195      NumPositiveBits = std::max(NumPositiveBits,
5196                                 (unsigned)InitVal.getActiveBits());
5197    else
5198      NumNegativeBits = std::max(NumNegativeBits,
5199                                 (unsigned)InitVal.getMinSignedBits());
5200
5201    // Keep track of whether every enum element has type int (very commmon).
5202    if (AllElementsInt)
5203      AllElementsInt = ECD->getType() == Context.IntTy;
5204  }
5205
5206  // Figure out the type that should be used for this enum.
5207  // FIXME: Support -fshort-enums.
5208  QualType BestType;
5209  unsigned BestWidth;
5210
5211  bool Packed = Enum->getAttr<PackedAttr>() ? true : false;
5212
5213  if (NumNegativeBits) {
5214    // If there is a negative value, figure out the smallest integer type (of
5215    // int/long/longlong) that fits.
5216    // If it's packed, check also if it fits a char or a short.
5217    if (Packed && NumNegativeBits <= CharWidth && NumPositiveBits < CharWidth) {
5218        BestType = Context.SignedCharTy;
5219        BestWidth = CharWidth;
5220    } else if (Packed && NumNegativeBits <= ShortWidth &&
5221               NumPositiveBits < ShortWidth) {
5222        BestType = Context.ShortTy;
5223        BestWidth = ShortWidth;
5224    }
5225    else if (NumNegativeBits <= IntWidth && NumPositiveBits < IntWidth) {
5226      BestType = Context.IntTy;
5227      BestWidth = IntWidth;
5228    } else {
5229      BestWidth = Context.Target.getLongWidth();
5230
5231      if (NumNegativeBits <= BestWidth && NumPositiveBits < BestWidth)
5232        BestType = Context.LongTy;
5233      else {
5234        BestWidth = Context.Target.getLongLongWidth();
5235
5236        if (NumNegativeBits > BestWidth || NumPositiveBits >= BestWidth)
5237          Diag(Enum->getLocation(), diag::warn_enum_too_large);
5238        BestType = Context.LongLongTy;
5239      }
5240    }
5241  } else {
5242    // If there is no negative value, figure out which of uint, ulong, ulonglong
5243    // fits.
5244    // If it's packed, check also if it fits a char or a short.
5245    if (Packed && NumPositiveBits <= CharWidth) {
5246        BestType = Context.UnsignedCharTy;
5247        BestWidth = CharWidth;
5248    } else if (Packed && NumPositiveBits <= ShortWidth) {
5249        BestType = Context.UnsignedShortTy;
5250        BestWidth = ShortWidth;
5251    }
5252    else if (NumPositiveBits <= IntWidth) {
5253      BestType = Context.UnsignedIntTy;
5254      BestWidth = IntWidth;
5255    } else if (NumPositiveBits <=
5256               (BestWidth = Context.Target.getLongWidth())) {
5257      BestType = Context.UnsignedLongTy;
5258    } else {
5259      BestWidth = Context.Target.getLongLongWidth();
5260      assert(NumPositiveBits <= BestWidth &&
5261             "How could an initializer get larger than ULL?");
5262      BestType = Context.UnsignedLongLongTy;
5263    }
5264  }
5265
5266  // Loop over all of the enumerator constants, changing their types to match
5267  // the type of the enum if needed.
5268  for (unsigned i = 0; i != NumElements; ++i) {
5269    EnumConstantDecl *ECD =
5270      cast_or_null<EnumConstantDecl>(Elements[i].getAs<Decl>());
5271    if (!ECD) continue;  // Already issued a diagnostic.
5272
5273    // Standard C says the enumerators have int type, but we allow, as an
5274    // extension, the enumerators to be larger than int size.  If each
5275    // enumerator value fits in an int, type it as an int, otherwise type it the
5276    // same as the enumerator decl itself.  This means that in "enum { X = 1U }"
5277    // that X has type 'int', not 'unsigned'.
5278    if (ECD->getType() == Context.IntTy) {
5279      // Make sure the init value is signed.
5280      llvm::APSInt IV = ECD->getInitVal();
5281      IV.setIsSigned(true);
5282      ECD->setInitVal(IV);
5283
5284      if (getLangOptions().CPlusPlus)
5285        // C++ [dcl.enum]p4: Following the closing brace of an
5286        // enum-specifier, each enumerator has the type of its
5287        // enumeration.
5288        ECD->setType(EnumType);
5289      continue;  // Already int type.
5290    }
5291
5292    // Determine whether the value fits into an int.
5293    llvm::APSInt InitVal = ECD->getInitVal();
5294    bool FitsInInt;
5295    if (InitVal.isUnsigned() || !InitVal.isNegative())
5296      FitsInInt = InitVal.getActiveBits() < IntWidth;
5297    else
5298      FitsInInt = InitVal.getMinSignedBits() <= IntWidth;
5299
5300    // If it fits into an integer type, force it.  Otherwise force it to match
5301    // the enum decl type.
5302    QualType NewTy;
5303    unsigned NewWidth;
5304    bool NewSign;
5305    if (FitsInInt) {
5306      NewTy = Context.IntTy;
5307      NewWidth = IntWidth;
5308      NewSign = true;
5309    } else if (ECD->getType() == BestType) {
5310      // Already the right type!
5311      if (getLangOptions().CPlusPlus)
5312        // C++ [dcl.enum]p4: Following the closing brace of an
5313        // enum-specifier, each enumerator has the type of its
5314        // enumeration.
5315        ECD->setType(EnumType);
5316      continue;
5317    } else {
5318      NewTy = BestType;
5319      NewWidth = BestWidth;
5320      NewSign = BestType->isSignedIntegerType();
5321    }
5322
5323    // Adjust the APSInt value.
5324    InitVal.extOrTrunc(NewWidth);
5325    InitVal.setIsSigned(NewSign);
5326    ECD->setInitVal(InitVal);
5327
5328    // Adjust the Expr initializer and type.
5329    if (ECD->getInitExpr())
5330      ECD->setInitExpr(new (Context) ImplicitCastExpr(NewTy,
5331                                                      CastExpr::CK_Unknown,
5332                                                      ECD->getInitExpr(),
5333                                                      /*isLvalue=*/false));
5334    if (getLangOptions().CPlusPlus)
5335      // C++ [dcl.enum]p4: Following the closing brace of an
5336      // enum-specifier, each enumerator has the type of its
5337      // enumeration.
5338      ECD->setType(EnumType);
5339    else
5340      ECD->setType(NewTy);
5341  }
5342
5343  Enum->completeDefinition(Context, BestType);
5344}
5345
5346Sema::DeclPtrTy Sema::ActOnFileScopeAsmDecl(SourceLocation Loc,
5347                                            ExprArg expr) {
5348  StringLiteral *AsmString = cast<StringLiteral>(expr.takeAs<Expr>());
5349
5350  FileScopeAsmDecl *New = FileScopeAsmDecl::Create(Context, CurContext,
5351                                                   Loc, AsmString);
5352  CurContext->addDecl(New);
5353  return DeclPtrTy::make(New);
5354}
5355
5356void Sema::ActOnPragmaWeakID(IdentifierInfo* Name,
5357                             SourceLocation PragmaLoc,
5358                             SourceLocation NameLoc) {
5359  Decl *PrevDecl = LookupName(TUScope, Name, LookupOrdinaryName);
5360
5361  if (PrevDecl) {
5362    PrevDecl->addAttr(::new (Context) WeakAttr());
5363  } else {
5364    (void)WeakUndeclaredIdentifiers.insert(
5365      std::pair<IdentifierInfo*,WeakInfo>
5366        (Name, WeakInfo((IdentifierInfo*)0, NameLoc)));
5367  }
5368}
5369
5370void Sema::ActOnPragmaWeakAlias(IdentifierInfo* Name,
5371                                IdentifierInfo* AliasName,
5372                                SourceLocation PragmaLoc,
5373                                SourceLocation NameLoc,
5374                                SourceLocation AliasNameLoc) {
5375  Decl *PrevDecl = LookupName(TUScope, AliasName, LookupOrdinaryName);
5376  WeakInfo W = WeakInfo(Name, NameLoc);
5377
5378  if (PrevDecl) {
5379    if (!PrevDecl->hasAttr<AliasAttr>())
5380      if (NamedDecl *ND = dyn_cast<NamedDecl>(PrevDecl))
5381        DeclApplyPragmaWeak(TUScope, ND, W);
5382  } else {
5383    (void)WeakUndeclaredIdentifiers.insert(
5384      std::pair<IdentifierInfo*,WeakInfo>(AliasName, W));
5385  }
5386}
5387